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Positive periodic solutions and optimal control for a
distributed biological model of two interacting species

G. Fragnelli1, P. Nistri1, D. Papini∗,1

aDipartimento di Ingegneria dell’Informazione, Università degli Studi di Siena
via Roma 56, 53100 Siena, Italy

Abstract

The paper deals with the existence of positive periodic solutions to a system
of degenerate parabolic equations with delayed nonlocal terms and Dirichlet
boundary conditions. Taking in each equation a meaningful function as a control
parameter, we show that for a suitable choice of a class of such controls we
have, for each of them, a time-periodic response of the system under different
assumptions on the kernels of the nonlocal terms. Finally, we consider the
problem of the minimization of a cost functional on the set of pairs: control-
periodic response. The considered system may be regarded as a possible model
for the coexistence problem of two biological populations, which dislike crowding
and live in a common territory, under different kind of intra- and inter-specific
interferences.

Key words: Degenerate parabolic equations, nonlocal delayed terms, periodic
solutions, topological degree theory, optimal control problem
2009 MSC: Primary: 35K65, 49J20; Secondary: 35B10, 47H11

1. Introduction

We consider the following system of degenerate parabolic equations with
delayed nonlocal terms on QT = Ω×(0, T ) with periodic and Dirichlet boundary
conditions:




∂u

∂t
−∆um=

(
a(x, t)−∫

Ω
K1(ξ, t)u2(ξ, t− τ1)dξ+

∫
Ω
K2(ξ, t)v2(ξ, t− τ2)dξ

)
u,

∂v

∂t
−∆vm=

(
b(x, t) +

∫
Ω
K3(ξ, t)u2(ξ, t− τ3)dξ −∫

Ω
K4(ξ, t)v2(ξ, t− τ4)dξ

)
v,

u(·, t)|∂Ω = v(·, t)|∂Ω = 0, for t ∈ [0, T ],
u(·, 0) = u(·, T ) and v(·, 0) = v(·, T ),

(1)
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and we look for continuous weak solutions. Here τi ∈ (0, +∞), m > 1, sm =
|s|m−1s, Ω is a bounded domain of Rn with smooth boundary ∂Ω, and Ki, a, b ∈
L∞(QT ) are extended to Ω× R by T -periodicity.

Degenerate parabolic equations like those in system (1) model nonlinear dif-
fusive phenomena and have been the subject of extensive study (see the recent
monographs [8], [21] and their bibliography). In particular, system (1) is a
possible model for the evolution of two biological species living in a common
territory Ω where u(x, t) and v(x, t) are the respective densities of population
at time t located at x ∈ Ω, while a(x, t) and b(x, t) are the growth rates at
x and time t of the two populations in absence of any intra- and inter- inter-
ferences. In this framework the nonlinear terms ∆um and ∆vm, m > 1, are
proposed for instance in [10], [11], [18] and [20] instead of ∆u and ∆v in order
to represent the tendency of the populations to avoid crowding. The nonlocal
terms

∫
Ω

Ki(ξ, t)u2(ξ, t− τi)dξ and
∫
Ω

Ki(ξ, t)v2(ξ, t− τi)dξ evaluate a weighted
fraction of individuals that actually interact at time t > 0. The choice of consid-
ering u2, v2 in the nonlocal terms is mainly motivated by our approach that, as
in [13], requires a priori estimates in L2-norm for the solution of the regularized
problem obtained from (1) by adding −ε∆u, ε > 0, to the left hand sides of the
two differential equations. The functions K1, K4 are supposed to be nonnega-
tive and, roughly speaking, they measure the competition for food among each
specie. On the other hand K2, K3 model the influence of a population on the
other one. Observe that the system is cooperative if K2,K3 are non-negative
and it is competitive if they are non-positive. We also consider cases where
K2,K3 change sign in QT . The delayed densities u, v at time t− τi, that appear
in the nonlocal terms, take into account the time needed to an individual to
become adult and, thus, to interact and compete. Therefore, the term on the
right hand side of each equation in (1) denotes the actual increasing rate of the
population at (x, t) ∈ QT . We remark that we have u(·, s) = u(·, s + T ) and
v(·, s) = v(·, s + T ) for s ∈ (−τ, 0), whenever τ > 0, since we are looking for
T -periodic solutions u, v to (1).

The interest in studying the existence of positive periodic solutions for reac-
tion diffusion equations that model biological and physical phenomena, relies in
the consideration that the periodic behavior of certain biological and physical
non-negative quantities is the most natural and desirable one, see e.g. [1], [2],
[3], [4], [12], [13], [14], [17], [18] and [23]. For this reason we look at the functions
a, b as control parameters, i.e. we assume that the intrinsic growth rates a, b
can be modified by means of an external action at a certain time t > 0 and at a
certain location x ∈ Ω. In this paper, under different assumption on the kernels
Ki of the nonlocal terms, we are interested in determining a class of essentially
bounded functions a, b in order to have for each pair of them a T -periodic con-
tinuous weak solution (u, v) to (1) with u, v non-negative and non-trivial in QT .
Moreover, we aim at minimizing a given cost functional associated to (1) on
the set (u, v, a, b). In this framework the controls represent the intrinsic growth
rates of the two populations.

A similar optimization problem has been considered in [2] for a single reac-
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tion diffusion equation of the form:

∂u

∂t
−∆u = f

(
x, t, Φ(u), u, a

)
u, (2)

where Φ(u) is a coercive and positive nonlocal term, i.e. Φ(u) ≥ C‖u(t)‖L1(Ω),
and a = a(x, t) belongs to a suitable set U ⊂ L∞(QT ) of controls, f satisfies
the following growth and positivity conditions:

(H1): for any given a ∈ U there exists M ∈ L∞(QT ) such that

f
(
x, t, r, s, a(x, t)

) ≤ M(x, t)− ηr

for some positive constant η if r, s are nonnegative;

(H2): for any given a ∈ U we have

1
T

∫ T

0

f
(
x, t, Φ(u), u(x, t), a(x, t)

)
dt > µ1 for a.a. x ∈ Ω

if 0 ≤ u ∈ Cα(QT ) and ‖u‖∞ is sufficiently small. Here µ1 denotes the
least eigenvalue of −∆ in Ω with Dirichlet boundary conditions.

The authors of [2] pointed out that monotonicity methods fail here due to the
presence of the nonlocal term and thus cannot be employed to prove the exis-
tence of periodic solutions of (2) (see [2, Theorem 0]). In fact they adopted a
topological approach based on a priori bounds and the continuation property of
Leray-Schauder topological degree.

Recently these results and the relative techniques have been extended in [14]
to the following degenerate equation:

∂u

∂t
−∆um =

(
a(x, t)− Φ(u)

)
u, in QT for m > 1,

with T -periodic and Dirichlet boundary conditions. Here Φ : L2(Ω)+ → R+ is
a bounded, continuous and coercive functional, i.e.:

C1‖w‖2L2(Ω) ≤ Φ(w) ≤ C2‖w‖2L2(Ω),

where w(·) = u(·, t), C1, C2 are positive constants, and L2(Ω)+ := {w ∈ L2(Ω) :
w ≥ 0, a.e. in Ω}. On the other hand a(x, t) satisfies

ess inf
x∈Ω

1
T

∫ T

0

a(x, t)dt > µ1,

in agreement with assumption (H2) of [2].
The literature about systems of degenerate parabolic equations is scarce and,

to our knowledge, there are no papers dealing with the periodic problem (for
systems of nondegenerate parabolic equations see, for example, [9]). In this
paper we consider the problem of the existence of a continuous T -periodic weak

3



solution (u, v) of problem (1) with non-trivial u, v ≥ 0 in QT , where the growth
rates a, b and the functions Ki are chosen in the class L∞(QT ) and must satisfy
conditions involving µ1.

More precisely, a first existence result, Theorem 3.1, is obtained by assuming
the coercivity in L2(Ω) of the nonlocal terms corresponding to K1 and K4 and
using suitable bounds on K2 and K3. As already noticed, for a single equation
a coercivity assumption was considered in both [2] and [14]. In particular,
competitive systems (those with K2 ≤ 0 and K3 ≤ 0 a.e. in QT ) and cooperative
systems (those with K2 ≥ 0 and K3 ≥ 0 a.e. in QT ) fall into this existence result.

Furthermore, two existence results are proved in Theorem 3.2 and Theo-
rem 3.3 for competitive systems without assuming the coercivity in L2(Ω) of
the nonlocal terms corresponding to K1 and K4.

An existence result is finally obtained in Theorem 3.4 without that coercivity
and any sign condition on K2, K3 by adding the technical assumption m > 3 in
the degenerate terms ∆um and ∆vm.

We follow a standard technique to deal with the degeneracy of the equations
(see for instance [4], [14], [17]) by perturbing the degenerate part of the equations
∆um and ∆vm by ε∆u and ε ∆v respectively, with ε > 0 small enough. We thus
obtain a family of regularized non-degenerate problems and we solve them by
means of the topological degree theory. We finally get a solution of (1) passing
to the limit as ε → 0. This procedure is carried out once for all in Section 2 and,
in particular, in Theorem 2.1 where we show that the explicit knowledge of a
priori bounds for the L2-norms of the solutions of the regularized problems and
the positivity of a certain value η, that depends on the bounds, are sufficient to
prove the existence of a non-negative solution (u, v) of (1) with non-trivial u, v
(i.e. periodic coexistence). We devote Section 3 to finding the required a priori
bounds and to state the definitive existence results and their corollaries in some
significative situations. Finally, in Section 4, we introduce a cost functional
J(u, v, a, b) to be minimized on the set of all the quadruple (u, v, a, b), where
u, v is the T -periodic solution to (1) corresponding to a, b. The considered cost
functional is suitable to evaluate the difference between the cost of controlling
the growth rate to the values a(x, t), b(x, t) and the benefits due to the presence
of the two populations of density u(x, t) and v(x, t) respectively.
Notation. Throughout the paper Ω ⊂ Rn is an open and bounded set with
smooth boundary ∂Ω and QT = Ω × [0, T ], for T > 0; ‖u‖p denotes the usual
norm in Lp(QT ) for 1 ≤ p ≤ ∞; µ1 denotes the first eigenvalue of −∆ on Ω with
homogeneous Dirichlet boundary condition and φ1 is the corresponding positive
eigenfunction with ‖φ1‖L2(Ω) = 1. We always adopt the notation sm = |s|m−1s
for any m > 1 and s ∈ R.

2. Preliminary results and a general coexistence theorem

Throughout the paper we will assume that a, b,Ki ∈ L∞(QT ) in (1). We
now recall the definition of a weak solution to (1).
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Definition 2.1. A pair of functions (u, v) is said to be a weak solution of (1)
if u, v ∈ C(QT ), um, vm ∈ L2

(
(0, T ); H1

0 (Ω)
)

and (u, v) satisfies

∫∫

QT

(
−u

∂ϕ

∂t
+∇um∇ϕ− auϕ + uϕ

∫

Ω

[K1(ξ, t)u2(ξ, t− τ1)−

−K2(ξ, t)v2(ξ, t− τ2)]dξ
)
dxdt = 0

and
∫∫

QT

(
−v

∂ϕ

∂t
+∇vm∇ϕ− bvϕ + vϕ

∫

Ω

[−K3(ξ, t)u2(ξ, t− τ3)+

+K4(ξ, t)v2(ξ, t− τ4)]dξ
)
dxdt = 0,

for any ϕ ∈ C1(QT ), ϕ(x, T ) = ϕ(x, 0) for any x ∈ Ω and ϕ(x, t) = 0 for any
(x, t) ∈ ∂Ω× [0, T ].

Here and in the following we assume that the functions t → u(·, t) and t → v(·, t)
are extended from [0, T ] to R by T -periodicity so that (u, v) is a solution for all
t.

Due to the degeneracy of the equation we consider, as in [17] and [14], the
following regularized (non-degenerate) problem:





∂u

∂t
−∆(um + εu) =

(
a(x, t)−

∫

Ω

K1(ξ, t)u2(ξ, t− τ1)dξ+

+
∫

Ω

K2(ξ, t)v2(ξ, t− τ2)dξ

)
u

∂v

∂t
−∆(vm + εv) =

(
b(x, t) +

∫

Ω

K3(ξ, t)u2(ξ, t− τ3)dξ−

−
∫

Ω

K4(ξ, t)v2(ξ, t− τ4)dξ

)
v,

u(·, t)|∂Ω = v(·, t)|∂Ω = 0, for a.a. t ∈ (0, T ),
u(·, 0) = u(·, T ) and v(·, 0) = v(·, T ),

(3)

where (x, t) ∈ QT and ε ∈ (0, 1/2). A solution (u, v) of (1) will be then obtained
as the limit, for ε → 0, of the solutions (uε, vε) of (3), which will be functions
in L2

(
(0, T ); H1

0 (Ω)
) ∩ C(QT ) satisfying (3) in the usual weak sense.

To deal with the existence of T -periodic solutions (uε, vε) of system (3),
with uε, vε ≥ 0 in QT , we introduce, for any ε ∈ (0, 1/2) , the map Gε : [0, 1] ×
L∞(QT )× L∞(QT ) → L∞(QT )× L∞(QT ) as follows:

(σ, f, g) 7→ (uε, vε) = Gε(σ, f, g)
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if and only if (uε, vε) solves the following uncoupled problem




∂u

∂t
−∆(σum + εu) = f, for a.a. (x, t) ∈ QT ,

∂v

∂t
−∆(σvm + εv) = g, for a.a. (x, t) ∈ QT ,

u(·, t)|∂Ω = v(·, t)|∂Ω = 0, for a.a. t ∈ (0, T ),
u(·, 0) = u(·, T ) and v(·, 0) = v(·, T ).

(4)

This map Gε is well defined since [17, Theorem 2] grants existence and unique-
ness for (4). Consider now

f(p, q) :=
(

a−
∫

Ω

K1(ξ, ·) p2(ξ, · − τ1)dξ +
∫

Ω

K2(ξ, ·) q2(ξ, · − τ2)dξ

)
p

and

g(p, q) :=
(

b +
∫

Ω

K3(ξ, ·) p2(ξ, · − τ3)dξ −
∫

Ω

K4(ξ, ·) q2(ξ, · − τ4)dξ

)
q,

where p and q belong to L∞(QT ). Clearly, if the nonnegative functions uε, vε ∈
L∞(QT ) are such that (uε, vε) = Gε

(
1, f(uε, vε), g(uε, vε)

)
, then (uε, vε) is also a

solution of (3) (with uε and vε ≥ 0) in QT . Hence, the existence of a nonnegative
solution of (3) is equivalent to the existence of a fixed point (p, q) of the map
(p, q) → Gε

(
1, f(p, q), g(p, q)

)
with p and q ≥ 0.

As a matter of notation, throughout the paper we denote

BR =
{
(p, q) ∈ L∞(QT )× L∞(QT ) : max{‖p‖∞, ‖q‖∞} < R

}
, R > 0.

Let Tε(σ, p, q) := Gε

(
σ, f(p, q), g(p, q)

)
, we have the following result.

Lemma 2.1. Let (p, q) ∈ L∞(QT ) × L∞(QT ) and let ε ∈ (0, 1/2). Then
(uε, vε) = Tε(σ, p, q) is a compact continuous map from [0, 1] × L∞(QT ) ×
L∞(QT ) → L∞(QT )× L∞(QT ).

Proof. Let (p, q) ∈ B, where B is a bounded set of L∞(QT )× L∞(QT ), then
{f(p, q) : (p, q) ∈ B} is a bounded set in L∞(QT ). The T -periodicity condition
gives

‖uε(0, ·)‖L2(Ω) ≤ c‖f‖∞,

for some positive constant c. Since the initial data uε(0, ·) is bounded in L2(Ω),
it results

‖uε‖2 ≤ c‖f‖∞.

We may apply classical local estimates (see [15]) to bound uε in L∞
(
Ω× [T

2 , 3T
2 ]

)
and thus, by T -periodicity, for all t in terms of ‖f‖∞. Classical results in the
above reference (Theorem 1.1 p. 419) also show that uε ∈ Cα,α/2(QT ) for some
α > 0. Moreover, due to its uniform continuity in QT , uε can be uniquely
extended by continuity to QT . The same arguments apply to vε, thus the pair
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(uε, vε) satisfies (4) and uε, vε ∈ C(QT ). Finally, by the Ascoli-Arzelà Theorem,
the compactness and continuity of Tε follow from the bound in the L∞−norm
of uε and vε and the fact that they are equi-Hölder continuous in QT ([15,
Theorem 1.1]).

Our aim is to prove the existence of T -periodic solutions uε, vε ∈ C(QT ),
uε, vε > 0 in QT , of the regularized problem (3) for all ε > 0 small enough as
positive fixed points of the map (p, q) → Tε(1, p, q). As a first step we prove the
following result.

Proposition 2.1. Assume that a, b,Ki ∈ L∞(QT ) for i = 1, 2, 3, 4. If the non-
trivial pair (uε, vε) solves

(u, v) = Gε

(
σ, ρf(u+, v+) + (1− σ), ρg(u+, v+) + (1− σ)

)
, (5)

for some σ ∈ [0, 1] and ρ ∈ [0, 1], then

uε(x, t) ≥ 0 and vε(x, t) ≥ 0 for any (x, t) ∈ QT .

Moreover, if uε 6= 0 or vε 6= 0 then uε > 0 or vε > 0 in QT , respectively.

Proof. Assume that (uε, vε) solves (5) with uε 6= 0 for some σ ∈ [0, 1] and
ρ ∈ [0, 1]. We first prove that uε ≥ 0. Multiplying the first equation of (4), where
f(p, q) is replaced by ρf(u+

ε , v+
ε ) + (1− σ), by u−ε := min{0, uε}, integrating on

QT and passing to the limit in the Steklov averages (uε)h ∈ H1(QT−δ), δ, h > 0,
in the standard way [15, p. 85], we obtain

−
∫∫

QT

∆(σum
ε + εuε)u−ε dxdt =

∫∫

QT

(1− σ)u−ε dxdt

by the T -periodicity of uε and taking into account that u+
ε u−ε = 0. Hence we

obtain

−
∫∫

QT

∆(σum
ε + εuε)u−ε dxdt =

∫∫

QT

∇(σum
ε + εuε)∇u−ε dxdt ≤ 0,

that is ∫∫

QT

σm|u−ε |m−1|∇u−ε |2dxdt + ε

∫∫

QT

|∇u−ε |2dxdt ≤ 0,

which implies that u−ε = 0 by Poincaré’s inequality and, thus, uε = u+
ε ≥ 0 in

QT .
Now we prove that uε > 0 in QT . Since uε is non-trivial, there exists

(x0, t0) ∈ Ω× (0, T ] such that uε(x0, t0) > 0. Let ψ ∈ C∞0 (Ω) be a nonnegative
function such that 0 < ψ(x0) < uε(x0, t0) and, for M > 0, let z be a solution of





∂z

∂t
−∆(σzm + εz) + Mz = 0, (x, t) ∈ Ω× (t0, t0 + T ] ,

z(·, t)|∂Ω = 0, for t ∈ [t0, t0 + T ],
z(·, t0) = ψ(·).
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Since a−∫
Ω

K1(ξ, ·)u2
ε(ξ, ·−τ1)dξ +

∫
Ω

K2(ξ, ·)v2
ε (ξ, ·−τ2)dξ ∈ L∞(QT ), we can

choose M large enough so that, by the comparison theorem,

uε(x, t) ≥ z(x, t) for any (x, t) ∈ Ω× [t0, t0 + T ].

By the maximum principle, z(x, t) > 0 for any (x, t) ∈ Ω×[t0, t0+T ]. Therefore,
by T -periodicity, uε(x, t) > 0 for all (x, t) ∈ QT . In the same way, one can prove
that vε 6= 0 implies vε(x, t) > 0 for all (x, t) ∈ QT .

Remark 2.1. Observe that if ρ = 0, by using the arguments of the proof of
Proposition 2.1 to show that u−ε = 0, it can be shown that (u, v) = Gε(1, 0, 0) if
and only if (u, v) = (0, 0).

The following result guarantees that the solutions (uε, vε) of (3) we are going to
find are not bifurcating from the trivial solution (0, 0) as ε ranges in (0, 1/2).

Proposition 2.2. Assume that

1
T

∫∫

QT

φ2
1(x)a(x, t)dxdt > µ1 and

1
T

∫∫

QT

φ2
1(x)b(x, t)dxdt > µ1 (6)

and let

r0 = min





(
1

2m

) 1
m−1

,

[∫∫
QT

φ2
1(x)a(x, t)dxdt− Tµ1

‖K1‖1 + ‖K2‖1

]1/2

,

[∫∫
QT

φ2
1(x)b(x, t)dxdt− Tµ1

‖K3‖1 + ‖K4‖1

]1/2


 .

If the non-trivial pair (uε, vε) solves (u, v) = Gε

(
σ, f(u+, v+)+(1−σ), g(u+, v+)+

(1− σ)
)
, for some σ ∈ [0, 1], then

max{‖uε‖∞, ‖vε‖∞} ≥ r0.

Moreover deg
(
(u, v)− Tε(1, u+, v+), Br, 0

)
= 0 for all r ∈ (0, r0).

Proof. By contradiction, assume that for some σ ∈ [0, 1] and r ∈ (0, r0)
there exists a pair (uε, vε) 6= (0, 0) such that (uε, vε) = Gε

(
σ, f(u+

ε , v+
ε ) + (1 −

σ), g(u+
ε , v+

ε ) + (1 − σ)
)

with ‖uε‖∞ ≤ r and ‖vε‖∞ ≤ r. Assume that uε 6= 0
and take φ ∈ C∞0 (Ω). Since by Proposition 2.1 we have uε > 0 in QT , we can
multiply the equation

∂uε

∂t
−∆(σum

ε + εuε) =
(

a(x, t)−
∫

Ω

K1(ξ, t)u2
ε(ξ, t− τ1)dξ+

+
∫

Ω

K2(ξ, t)v2
ε (ξ, t− τ2)dξ

)
uε + (1− σ)
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by
φ2

uε
, integrate over QT and pass to the limit in the Steklov averages in order

to obtain

−
∫∫

QT

φ2

uε
∆(σum

ε + εuε)dxdt =
∫∫

QT

(
φ2(x)a(x, t) + (1− σ)

φ2

uε

)
dxdt−

−
∫∫

QT

φ2(x)
(∫

Ω

K1(ξ, t)u2
ε(ξ, t− τ1)dξ

)
dxdt+

+
∫∫

QT

φ2(x)
(∫

Ω

K2(ξ, t)v2
ε (ξ, t− τ2)dξ

)
dxdt

(7)
by the T -periodicity of uε. Moreover, a straightforward computation shows that

−
∫∫

QT

φ2

uε
∆(σum

ε + εuε)dxdt =
∫∫

QT

∇
(

φ2

uε

)
∇(σum

ε + εuε)dxdt

=
∫∫

QT

(mσum−1
ε + ε)

(
|∇φ|2 − u2

ε

∣∣∣∣∇
(

φ

uε

)∣∣∣∣
2
)

dxdt.

Since r <
(

1
2m

)1/(m−1), then mσum−1
ε + ε ≤ mum−1

ε + ε < 1/2 + ε < 1 and

−
∫∫

QT

φ2

uε
∆(σum

ε + εuε)dxdt ≤
∫∫

QT

(mσum−1
ε + ε)|∇φ|2dxdt

<

∫∫

QT

|∇φ|2dxdt.

(8)

Hence, combining (7) and (8), we obtain
∫∫

QT

φ2(x)
(

a(x, t)−
∫

Ω

K1(ξ, t)u2
ε(ξ, t− τ1)dξ +

∫

Ω

K2(ξ, t)v2
ε (ξ, t− τ2)dξ

)
dxdt

<

∫∫

QT

|∇φ|2dxdt.

Taking φ(x) = φ1(x) one has

0 <

∫∫

QT

[
|∇φ1(x)|2 − φ2

1(x)
(

a(x, t)−
∫

Ω

K1(ξ, t)u2
ε(ξ, t− τ1)dξ

)]
dxdt−

−
∫∫

QT

[
φ2

1(x)
∫

Ω

K2(ξ, t)v2
ε (ξ, t− τ2)dξ

]
dxdt

= µ1T −
∫∫

QT

φ2
1(x)a(x, t)dxdt +

+
∫∫

QT

[
K1(ξ, t)u2

ε(ξ, t− τ1)−K2(ξ, t)v2
ε (ξ, t− τ2)

]
dξdt (9)

and, by Hölder’s inequality:
∫∫

QT

φ2
1(x)a(x, t)dxdt− µ1T < ‖K1‖1r2 + ‖K2‖1r2.

9



Thus

r2
0 ≤

∫∫
QT

φ2
1(x)a(x, t)dxdt− µ1T

‖K1‖1 + ‖K2‖1 < r2

that is a contradiction. The same argument applies if vε 6= 0.

Let us now fix any r ∈ (0, r0). We just proved that

(u, v) 6= Gε

(
σ, f(u+, v+) + (1− σ), g(u+, v+) + (1− σ)

)
,

∀ (u, v) ∈ ∂Br and ∀ σ ∈ [0, 1]. Hence the topological degree of (u, v) −
Gε

(
σ, f(u+, v+) + (1 − σ), g(u+, v+) + (1 − σ)

)
is well defined in Br for all

σ ∈ [0, 1]. From the homotopy invariance of the Leray-Schauder degree, we
have

deg
(
(u, v)− Tε(1, u+, v+), Br, 0

)

= deg
(
(u, v)−Gε(0, f(u+, v+) + 1, g(u+, v+) + 1), Br, 0

)

and the last degree is zero since the equation

(u, v) = Gε

(
0, f(u+, v+) + 1, g(u+, v+) + 1

)

admits neither trivial nor non-trivial solutions in Br.

The next result is our main tool to obtain coexistence results for (1). Roughly
speaking, it says that the existence of non-negative non-trivial solutions u, v of
(1) follows as soon as we can check the positivity of a value η(C1, C2), where
C1, C2 are uniform a priori bounds on the L2-norm of any solution pair (uε, vε)
of the regularized problem (3) for any ε > 0 small enough. The next section
will be devoted to the search of such explicit bounds when something more is
known on the structure of the equations.

Theorem 2.1. Assume that K1(x, t),K4(x, t) ≥ 0 for a.a. (x, t) ∈ QT and
that there are C1, C2 > 0 such that

‖uε‖22 ≤ C1 and ‖vε‖22 ≤ C2 (10)

for all solution pairs (uε, vε) of

(u, v) = Gε

(
1, ρf(u+, v+), ρg(u+, v+)

)
(11)

and all ε ∈ (0, 1/2) and ρ ∈ (0, 1] . Then there is a constant R > 0 such that

‖uε‖∞, ‖vε‖∞ < R

for all solution pairs (uε, vε) of (11) and all ε ∈ (0, 1/2) and ρ ∈ (0, 1]. In
particular, one has that

deg
(
(u, v)− Tε(1, u+, v+), BR, 0

)
= 1.

10



Moreover, if

η(C1, C2) := min
{

1
T

∫∫

QT

φ2
1(x)a(x, t)dxdt− µ1 − k2C2

T
,

1
T

∫∫

QT

φ2
1(x)b(x, t)dxdt− µ1 − k3C1

T

}
> 0,

(12)

where k2, k3 are such that −k2 ≤ K2(x, t) and −k3 ≤ K3(x, t) for a.a. (x, t) ∈
QT , then problem (1) has a T -periodic non-negative solution (u, v) with non-
trivial u, v.

Proof. Assume uε 6= 0, thus uε > 0 and vε ≥ 0 in QT by Proposition 2.1.
Multiplying by uε the first equation of (3), where f(u, v) is replaced by ρf(u, v),
integrating over Ω and using the Steklov averages (uε)h ∈ H1(QT−δ), δ, h > 0,
(see [15, p.85]), we obtain

1
2

d

dt
log

∫

Ω

(uε)2hdx +

∫
Ω
(m(uε)m−1

h + ε)|∇(uε)h|2dx∫
Ω
(uε)2hdx

≤ ρ

(
‖a‖∞ + ‖K2‖∞

∫

Ω

(vε)2h(ξ, t− τ2)dξ

)
.

(13)

Since t 7→ ‖u(t)‖L2(Ω) is continuous in [0, T ], there exist t1 and t2 in [0, T ] such
that ∫

Ω

u2
ε(x, t1)dx = min

t∈[0,T ]

∫

Ω

u2
ε(x, t)dx

and ∫

Ω

u2
ε(x, t2)dx = max

t∈[0,T ]

∫

Ω

u2
ε(x, t)dx.

Integrating (13) between t1 and t2 and passing to the limit as h → 0 we obtain

1
2

[
log max

t∈[0,T ]

∫

Ω

u2
ε(x, t)dx− log min

t∈[0,T ]

∫

Ω

u2
ε(x, t)dx

]
≤ T‖a‖∞ + ‖K2‖∞C2,

or, equivalently,

max
t∈[0,T ]

∫

Ω

u2
ε(x, t)dx ≤ C min

t∈[0,T ]

∫

Ω

u2
ε(x, t)dx, (14)

where C is independent of ε and ρ. Hence, there is a constant γ > 0, independent
of ε and ρ, such that

max
t∈[0,T ]

∫

Ω

u2
ε(x, t)dx ≤ γ.

Otherwise, inequality (14) would imply that the solutions uε are unbounded in
L2(QT ) as ε ranges in (0, 1/2) and ρ in (0, 1], against our assumption (10). Of
course, an analogous inequality holds for vε.

11



Now, we have

∂uε

∂t
−∆(um

ε + εuε) ≤
(
‖a‖∞ + ‖K2‖∞ max

t∈[0,T ]

∫

Ω

v2
ε (x, t)dx

)
uε

≤ (‖a‖∞ + ‖K2‖∞γ)uε.

(15)

By [22, Lemma 2] we conclude that ‖uε‖∞ ≤ R1 for some R1 > 0 independent
of ρ and ε. Analogously, ‖vε‖∞ ≤ R2 for some constant R2 > 0. Therefore it is
enough to choose R > max{R1, R2}.

The homotopy invariance property of the Leray-Schauder degree implies that

deg
(
(u, v)− Tε(1, u+, v+), BR, 0

)

= deg
(
(u, v)−Gε(1, ρf(u+, v+), ρg(u+, v+)), BR, 0

)
,

for any ρ ∈ [0, 1]. If we take ρ = 0, using the fact that Gε at ρ = 0 is the zero
map, it results

deg
(
(u, v)− Tε(1, u+, v+), BR, 0

)
= deg

(
(u, v), BR, 0

)
= 1.

Now, let us assume that η(C1, C2) > 0 and observe that this ensures that (6)
holds and that there are R > r > 0, independent of ε, such that

deg
(
(u, v)−Gε(1, f(u+, v+), g(u+, v+)), BR \Br, 0

)
= 1,

for any ε ∈ (0, 1/2), by Proposition 2.2 and the excision property of the topo-
logical degree.

Let us fix any ε ∈ (0, 1/2). There is σ0 = σ0(ε) ∈ (0, 1) such that still

deg
(
(u, v)−Gε(σ, f(u+, v+) + 1− σ, g(u+, v+) + 1− σ), BR \Br, 0

)
= 1

for all σ ∈ [σ0, 1], by the continuity of Leray-Schauder degree. This implies that
the set of solution triples (σ, u, v) ∈ [0, 1]× (BR \Br) such that

(u, v) = Gε

(
σ, f(u+, v+) + 1− σ, g(u+, v+) + 1− σ

)
(16)

contains a continuum Sε with the property that

Sε ∩
[{σ} × (

BR \Br

)] 6= ∅ for all σ ∈ [σ0, 1].

Now, all the pairs (u, v) such that (1, u, v) ∈ Sε are T -periodic solutions of (3)
with (u, v) 6= (0, 0) and, hence, satisfy (10). Since the L2-norm is continuous
with respect to the L∞-norm and Sε is a continuum, for every ν > 0 there is
σν ∈ [σ0, 1) such that

‖u‖22 ≤ C1 + ν and ‖v‖22 ≤ C2 + ν

for all (u, v) with (σ, u, v) ∈ Sε and σ ∈ [σν , 1]. Observe that, if (σ, u, v) ∈ Sε for
σ < 1, then u and v are positive solutions of (16). Moreover, if ν is sufficiently
small, then we still have η(C1 + ν, C2 + ν) > 0.
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Now we can prove that, if ν is sufficiently small, then

‖u‖∞, ‖v‖∞ ≥ λν := min

{[
1

2m

] 1
m−1

,

[
Tη(C1 + ν, C2 + ν)

‖K1‖1

] 1
2

,

[
Tη(C1 + ν, C2 + ν)

‖K4‖1

] 1
2
} (17)

for all u, v such that (σ, u, v) ∈ Sε and σ ∈ [σν , 1). Indeed, let (u, v) be a solution
of (16). Arguing by contradiction, assume that ‖u‖∞ < λν and proceeding as
in the proof of Proposition 2.2 (see (9) and recall that u > 0 since (u, v) solves
(16) with σ < 1) we obtain the inequality

∫∫

QT

φ2
1(x)a(x, t)dxdt− µ1T < ‖K1‖1λ2

ν + k2(C2 + ν)

Thus, the definition of η implies that

Tη(C1 + ν, C2 + ν) ≤
∫∫

QT

φ2
1(x)a(x, t)dxdt− µ1T − k2(C2 + ν) < ‖K1‖1λ2

ν ,

which is a contradiction with the definition of λν . The same argument shows
that ‖v‖∞ ≥ λν .

Now, if we let σ → 1 and ν → 0, then we obtain that (3) has at least
a solution (uε, vε) such that ‖uε‖∞, ‖vε‖∞ ≥ λ0, since Sε is a continuum and
λν → λ0 as ν → 0.

Finally, we show that a solution (u, v) of (1) with non-trivial u, v ≥ 0 is
obtained as a limit of (uε, vε) as ε → 0 since λ0 is independent of ε. Indeed,
from (15) we have

∂uε

∂t
−∆(um

ε + εuε) ≤ Cuε, (18)

where C is a positive constant independent of ε. Multiplying (18) by um
ε , in-

tegrating over QT and passing to the limit in the Steklov averages (uε)h, one
has
∫∫

QT

|∇um
ε |2dxdt ≤

∫∫

QT

∇(um
ε + εuε)∇um

ε dxdt ≤ C

∫∫

QT

um+1
ε dxdt ≤ M,

(19)
by the T -periodicity of uε and its boundedness in L∞(QT ), where M is positive
and independent of ε. An analogous estimate holds for vε.

Since uε, vε are Hölder continuous in QT , bounded in C(QT ) uniformly in
ε > 0 and the structure conditions of [19] are satisfied for the equations of
system (1), whenever ε ∈ (0, 1/2), Theorem 1.2 of [19] applies to conclude that
the following inequality

|uε(x1, t1)− uε(x2, t2))| ≤ Γ(|x1 − x2|β + |t1 − t2|
β
2 )
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holds for any (x1, t1), (x2, t2) ∈ QT , where the constants Γ, β ∈ (0, 1) are in-
dependent of ‖uε‖∞. The same inequality holds for vε. Therefore, by the
Ascoli-Arzelà Theorem, a subsequence of (uε, vε) converges uniformly in QT to
a pair (u, v) satisfying

λ0 ≤ ‖u‖∞, ‖v‖∞ ≤ R.

Moreover, by (19), um
ε , vm

ε are uniformly bounded in L2
(
(0, T ); H1

0 (Ω)
)
. Thus,

some subsequences of∇um
ε and∇vm

ε weakly converge in L2(QT ). Hence um, vm ∈
L2

(
(0, T ); H1

0 (Ω)
)
, and by the convergence of uε and vε to u and v we obtain

that (u, v) is a weak solution of (1).

Remark 2.2. Proposition 2.2, with assumption (6), does not guarantee that
both components of a non-trivial solution (uε, vε) of the regularized problem (3)
are positive and, in fact, the proof of such a positivity is one of the main issues we
had to handle in the proof of the preceding theorem with the help of the stronger
assumption η(C1, C2) > 0. However, if the cooperative case K2(x, t),K3(x, t) ≥
0, i.e., k2 = k3 = 0, is considered, then we have that

η(C1, C2)= min
{

1
T

∫∫

QT

φ2
1(x)a(x, t)dxdt− µ1,

1
T

∫∫

QT

φ2
1(x)b(x, t)dxdt− µ1

}
= η0

and the condition η0 > 0 is equivalent to (6). In particular, coexistence in the
cooperative case follows from η0 > 0 and a priori bounds on (uε, vε), even if the
constants C1, C2 are not explicitly known.

Remark 2.3. The assumption η(C1, C2) > 0 is used to show (17) and, there-
fore, grants the non-triviality of both the components of the non-negative T -
periodic solution (u, v) that is given by Theorem 2.1. From a biological point of
view, this hypothesis requires that the growth rates a, b of the species are suffi-
ciently large with respect to the terms that model the competition between them.
In other words, it reasonably states that the competitive interaction between the
two species should not prevail the growth capacity of the species if extinction has
to be avoided.

However, when we proved the lower bounds (17), we used the estimate (9)
for the first equation of the system in order to show that ‖u‖∞ was not smaller
than λν and, implicitly, we used for ‖v‖∞ the analogous estimate that holds for
the second equation. On the other hand, if we use the second equation for ‖u‖∞
(and the first equation for ‖v‖∞) we obtain a different choice for λν and, in
particular, for η. In fact, we can prove a version of Theorem 2.1 with

ζ(C1, C2) := min
{

1
T

∫∫

QT

φ2
1(x)a(x, t)dxdt− µ1 − k1C1

T
,

1
T

∫∫

QT

φ2
1(x)b(x, t)dxdt− µ1 − k4C2

T

}
> 0

(20)

in place of η(C1, C2) > 0, where 0 ≤ Ki(x, t) ≤ ki a.e. in QT for i = 1, 4.

14



Specifically, it turns out that

λν := min

{[
1

2m

] 1
m−1

,

[
Tζ(C1 + ν, C2 + ν)

‖K2‖1

] 1
2

,

[
Tζ(C1 + ν, C2 + ν)

‖K3‖1

] 1
2
}

in (17). We observe that also the assumption ζ(C1, C2) > 0 has a biological
meaning: it requires that the the competition inside each species does not prevail
on the growth rate of the species itself.

The feasibility of the two conditions (12) and (20) depends on the constants
C1, C2. As we will see in Section 3 there are cases, namely Theorems 3.1
and 3.3, in which one of them is never satisfied (see the next Remark 3.1).

3. A priori bounds in L2(QT )

We apply Theorem 2.1 by looking for explicit a priori bounds in L2(QT )
for the solutions of the approximating problems (3) in different situations. We
consider two main different cases. In the first one, which we call the “coercive
case”, we assume that Ki(x, t) ≥ ki > 0 a.e. in QT for i = 1, 4. In the second
one, the “non-coercive case”, we allow the non-negative functions K1,K4 to
vanish on sets with positive measure. We distinguish also between cooperative
and competitive situations by imposing sign conditions on K2,K3 and having
in mind the biological interpretation of model (1).

3.1. The coercive case
Theorem 3.1. Assume m > 1 and that

1. there are constants ki > 0, i = 1, 4, and ki, ki ≥ 0, i = 2, 3, such that
k1k4 > k2k3 and

Ki(x, t) ≥ ki for i = 1, 4 and − ki ≤ Ki(x, t) ≤ ki for i = 2, 3,

for a.a. (x, t) ∈ QT ;
2. condition (12) of Theorem 2.1, that is η(C1, C2) > 0, is satisfied with

C1 =
Tk4

k1k4 − k2k3

(
‖a‖∞ +

k2

k4

‖b‖∞
)

and

C2 =
Tk1

k1k4 − k2k3

(
‖b‖∞ +

k3

k1

‖a‖∞
)

.

Then problem (1) has a non-negative T -periodic solution (u, v) with non-trivial
u, v.

Proof. We just need to show that ‖uε‖22 ≤ C1 and ‖vε‖22 ≤ C2 for any solution
(uε, vε) of (11). Then, assume uε 6= 0, thus uε > 0 and vε ≥ 0 in QT by
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Proposition 2.1. Integrating the equation (13) over [0, T ], and passing to the
limit as h → 0, by the T -periodicity of uε, we have that

∫ T

0

ε
∫
Ω
|∇uε|2dx∫
Ω

u2
εdx

dt ≤
∫ T

0

∫
Ω
(mum−1

ε + ε)|∇uε|2dx∫
Ω

u2
εdx

dt

≤ T‖a‖∞ − k1‖uε‖22 + k2‖vε‖22
and, by Poincaré’s inequality:

εµ1T ≤ T‖a‖∞ − k1‖uε‖22 + k2‖vε‖22. (21)

The same procedure, when it is applied to the second equation of (3), leads to

εµ1T ≤ T‖b‖∞ − k4‖vε‖22 + k3‖uε‖22. (22)

Hence from (21) and (22) we have

‖uε‖22 ≤
T‖a‖∞ + k2‖vε‖22 − εµ1T

k1

,

‖vε‖22 ≤
T‖b‖∞ + k3‖uε‖22 − εµ1T

k4

.

These two inequalities imply that
(

1− k2k3

k1k4

)
‖uε‖22 <

T

k1

(
‖a‖∞ +

k2

k4

‖b‖∞
)

(
1− k2k3

k1k4

)
‖vε‖22 <

T

k4

(
‖b‖∞ +

k3

k1

‖a‖∞
)

for any ε ∈ (0, 1/2) and the desired bounds follow since k2k3 < k1k4.

As immediate consequences of the previous result we obtain the following corol-
laries for the cooperative and the competitive cases.

Corollary 3.1. Assume m > 1 and that Ki(x, t) ≥ ki > 0 for a.a. (x, t) ∈ QT

and i = 1, 4. If the system is cooperative, i.e. k2, k3 = 0, and (6) holds, then
problem (1) has a non-negative T -periodic solution (u, v) with non-trivial u, v.

Corollary 3.2. Assume m > 1 and that Ki(x, t) ≥ ki > 0 for a.a. (x, t) ∈ QT

and i = 1, 4. If the system is competitive, i.e. k2, k3 = 0, then problem (1) has
a non-negative T -periodic solution (u, v), with non-trivial u, v, provided that

min
{

1
T

∫∫

QT

φ2
1(x)a(x, t)dxdt− µ1 − k2

k4

‖b‖∞;

1
T

∫∫

QT

φ2
1(x)b(x, t)dxdt− µ1 − k3

k1

‖a‖∞
}

> 0.
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We observe that the condition k2k3 < k1k4 of Theorem 3.1 is crucial to
establish the a priori L2-bounds on the solution pairs (uε, vε) of (3). Roughly
speaking this condition guarantees that the terms in the equations that con-
tribute to the growth of the respective species do not prevail on the whole on
those limiting the growth.

On the other hand, when the strict positivity of the functions K1 and K4 is
relaxed, obtaining the needed a priori bounds becomes more difficult (at least
with our approach). In fact, we are able to obtain simple a priori bounds in the
non-coercive case when some sign condition is imposed on the functions K2 and
K3 (weak and strong competition, see Subsections 3.2 and 3.3), but we have to
impose the technical restriction m > 3 to obtain a result like Theorem 3.1 with
no sign condition on the functions K2 and K3 (and with rather complicated
constants C1, C2, see Subsection 3.4).

3.2. The non-coercive case: weak competition and m > 1
Theorem 3.2. Assume m > 1 and that

1. Ki(x, t) ≥ 0, i = 1, 4 and −ki ≤ Ki(x, t) ≤ 0, i = 2, 3 for a.a. (x, t) ∈ QT

and for some non-negative constants ki, i = 2, 3;
2. condition (12) of Theorem 2.1, that is η(C1, C2) > 0, is satisfied with

C1 = T |Ω|
(

(m + 1)2

4mµ1
‖a‖∞

) 2
m−1

and

C2 = T |Ω|
(

(m + 1)2

4mµ1
‖b‖∞

) 2
m−1

.

Then problem (1) has a T -periodic non-negative solution (u, v) with non-trivial
u, v.

Proof. We begin by finding the bound for the solutions uε of the first equation
of (11). Since, by Hölder’s inequality,

∫

Ω

u2
εdx ≤ |Ω|m−1

m+1

(∫

Ω

um+1
ε dx

) 2
m+1

,

and, by Poincaré’s inequality,
∫

Ω

∣∣∣u
m+1

2
ε

∣∣∣
2

dx ≤ 1
µ1

∫

Ω

∣∣∣∇u
m+1

2
ε

∣∣∣
2

dx =
(m + 1)2

4µ1

∫

Ω

um−1
ε |∇uε|2dx

≤ (m + 1)2

4mµ1

∫

Ω

(mum−1
ε + ε)|∇uε|2dx,

we obtain
∫

Ω

u2
εdx ≤ |Ω|m−1

m+1

(
(m + 1)2

4mµ1

) 2
m+1

(∫

Ω

(mum−1
ε + ε)|∇uε|2dx

) 2
m+1

. (23)
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Integrating over [0, T ] it results

‖uε‖22 ≤ |Ω|m−1
m+1

(
(m + 1)2

4mµ1

) 2
m+1

∫ T

0

(∫

Ω

(mum−1
ε + ε)|∇uε|2dx

) 2
m+1

dt

≤ |Ω|m−1
m+1

(
(m + 1)2

4mµ1

) 2
m+1

T
m−1
m+1

(∫∫

QT

(mum−1
ε + ε)|∇uε|2dxdt

) 2
m+1

by Hölder’s inequality with p = m+1
2 . Multiplying the first equation of (11) by

uε, integrating in QT and passing to the limit in the Steklov averages (uε)h, we
obtain ∫∫

QT

(mum−1
ε + ε)|∇uε|2dxdt ≤ ‖a‖∞‖uε‖22

by the T -periodicity of uε and the non-positivity of the function K2, and, there-
fore,

‖uε‖22 ≤ T |Ω|
(

(m + 1)2

4mµ1
‖a‖∞

) 2
m−1

= C1.

In an analogous way we obtain that ‖vε‖22 ≤ C2, if vε is a solution of the second
equation of (11).

The arguments of the proof of Theorem 3.2 can be easily adapted to show
the following result for the case of a single equation with a non-coercive local
term.

Corollary 3.3. Assume m > 1 and that the function K is non-negative. If

1
T

∫∫

QT

φ2
1(x)a(x, t)dxdt− µ1 > 0,

then the problem




∂u

∂t
−∆um =

(
a(x, t)− ∫

Ω
K(ξ, t)u2(ξ, t− τ)dξ

)
u,

u(·, t)|∂Ω = 0, for a.a. t ∈ (0, T ),
u(·, 0) = u(·, T ),

has a non-trivial T -periodic solution u ≥ 0.

3.3. The non-coercive case: strong competition and m > 1
Theorem 3.3. Assume m > 1 and that

1. Ki(x, t) ≥ 0, i = 1, 4 and −ki ≤ Ki(x, t) ≤ −ki < 0, i = 2, 3 for a.a.
(x, t) ∈ QT and for some positive constants ki, ki, i = 2, 3;

2. condition (20), i.e. ζ(C1, C2) > 0, is satisfied with

C1 = T max

{
|Ω|

(
(m + 1)2

4mµ1
‖a‖∞

) 2
m−1

,
‖b‖∞
k3

}

C2 = T max

{
|Ω|

(
(m + 1)2

4mµ1
‖b‖∞

) 2
m−1

,
‖a‖∞

k2

}
.
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Then problem (1) has a non-negative T -periodic solution (u, v) with non-trivial
u, v.

Proof. If (uε, vε) is a solution of (11) with uε ≡ 0, or respectively vε ≡ 0, one
can argue as in the proof of Theorem 3.2 to obtain that

‖vε‖22 ≤ T |Ω|
(

(m + 1)2

4mµ1
‖b‖∞

) 2
m−1

,

or respectively,

‖uε‖22 ≤ T |Ω|
(

(m + 1)2

4mµ1
‖a‖∞

) 2
m−1

.

If uε 6= 0, then uε > 0 and vε ≥ 0 in QT by Proposition 2.1. Moreover uε ∈
C(QT ) and, hence, there exists t1 ∈ [0, T ] such that

∫

Ω

u2
ε(x, t1)dx = min

t∈[0,T ]

∫

Ω

u2
ε(x, t)dx.

Multiplying the first equation of (11) by uε, integrating over Ω and using the
Steklov averages (uε)h we obtain

1
2

d

dt

∫

Ω

(uε)2hdx ≤
(
‖a‖∞ − k2

∫

Ω

(vε)2h(ξ, t− τ2)dξ

) ∫

Ω

(uε)2hdx.

Hence, we have

d

dt

[
exp

{
2

∫ t

t1

(
k2

∫

Ω

(vε)2h(ξ, s− τ2)dξ − ‖a‖∞
)

ds

} ∫

Ω

(uε)2h(x, t)dx

]
≤ 0,

for t ≥ t1, which implies that

exp
{

2
∫ t

t1

(
k2

∫

Ω

(vε)2h(ξ, s− τ2)dξ − ‖a‖∞
)

ds

}∫

Ω

(uε)2h(x, t)dx≤
∫

Ω

(uε)2h(x, t1)dx

for t ≥ t1, and, passing to the limit as h → 0 and taking t = t1 + T ,

exp

{
2k2

∫ t1+T

t1

∫

Ω

v2
ε (ξ, t− τ2)dξdt− 2T‖a‖∞

} ∫

Ω

u2
ε(x, t1 + T )dx

≤
∫

Ω

u2
ε(x, t1)dx ≤

∫

Ω

u2
ε(x, t1 + T )dx.

Therefore we have that
∫∫

QT

v2
ε (x, t)dxdt =

∫ t1+T

t1

∫

Ω

v2
ε (ξ, t− τ2)dξdt ≤ T‖a‖∞

k2

by the T -periodicity of vε.

If vε 6= 0, then we can prove that ‖uε‖22 ≤ T‖b‖∞/k3 in a similar way.
Finally, Remark 2.3 allows to apply Theorem 2.1 with (12) replaced by (20).

Observe that the conditions k2 > 0 and k3 > 0 are essential to establish the a
priori bounds of the last theorem.
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3.4. The non-coercive case: m > 3
If m > 3, we are able to find explicit bounds (although complicated) without

any assumption on the sign of the functions K2, K3, as shown in the next result.

Theorem 3.4. Assume m > 3 and that

1. Ki(x, t) ≥ 0, i = 1, 4 and Ki(x, t) ≤ ki, i = 2, 3 for a.a. (x, t) ∈ QT and
for some positive constants ki, i = 2, 3;

2. condition (12) of Theorem 2.1, that is η(C1, C2) > 0, is satisfied with

C1 = T

{
(m− 1)2

(m− 3)(m + 1)

[
(
M‖a‖2∞

) 2
m−1 +

(
M

m+1
m−1 k

2

2‖b‖
4

m−1∞

) 2
m−1

]
+

+
(

Mk
2m−2
m+1

2 k
4

m+1
3

) 2
m−3

}1/2

,

C2 = T

{
(m− 1)2

(m− 3)(m + 1)

[
(
M‖b‖2∞

) 2
m−1 +

(
M

m+1
m−1 k

2

3‖a‖
4

m−1∞

) 2
m−1

]
+

+
(

Mk
2m−2
m+1

3 k
4

m+1
2

) 2
m−3

}1/2

,

M =
(m + 1)4|Ω|m−1

8m2µ2
1

.

(24)

Then problem (1) has a non-negative T -periodic solution (u, v) with non-trivial
u, v.

Proof. Let (uε, vε) be a solution of (11). We have

(∫

Ω

u2
εdx

)m+1
2

≤
(

M

2

)1/2 ∫

Ω

(
mum−1

ε + ε
) |∇uε|2dx (25)

by inequality (23). Multiplying the first equation of (11) by uε, integrating in
QT and passing to the limit in the Steklov averages (uε)h, we obtain by the
T -periodicity of uε

∫∫

QT

(mum−1
ε +ε)|∇uε|2dx ≤

∫ T

0

(
‖a‖∞ + k2

∫

Ω

v2
ε (ξ, t− τ2)dξ

)(∫

Ω

u2
εdx

)
dt .

(26)
It follows that

∫ T

0

(∫

Ω

u2
ε

)m+1
2

dt ≤
[

M

2

∫ T

0

(
‖a‖∞ + k2

∫

Ω

v2
ε (ξ, t− τ2)dξ

)2

dt

] 1
2

·

·
[∫ T

0

(∫

Ω

u2
εdx

)2

dt

] 1
2
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by (25), (26) and Hölder’s inequality. On the other hand,

∫ T

0

(∫

Ω

u2
εdx

)2

dt ≤ T
m−3
m+1

[∫ T

0

(∫

Ω

u2
εdx

)m+1
2

dt

] 4
m+1

by Hölder’s inequality with p = m+1
4 . Therefore, these last two inequalities

imply

∫ T

0

(∫

Ω

u2
εdx

)2

dt ≤ T
m−3
m−1

(
M

2

) 2
m−1

[∫ T

0

(
‖a‖∞ + k2

∫

Ω

v2
ε dx

)2

dt

] 2
m−1

≤ T
m−3
m−1

(
M

2

) 2
m−1

[
2T‖a‖2∞ + 2k

2

2

∫ T

0

(∫

Ω

v2
ε dx

)2

dt

] 2
m−1

≤ T
(
M‖a‖2∞

) 2
m−1 + T

m−3
m−1

(
Mk

2

2

) 2
m−1

[∫ T

0

(∫

Ω

v2
ε dx

)2

dt

] 2
m−1

thanks to the fact that m > 3. In an analogous way we can show that

∫ T

0

(∫

Ω

v2
ε dx

)2

dt ≤ T
(
M‖b‖2∞

) 2
m−1 +

+ T
m−3
m−1

(
Mk

2

3

) 2
m−1

[∫ T

0

(∫

Ω

u2
εdx

)2

dt

] 2
m−1

and, hence,

U ≤ T
(
M‖a‖2∞

) 2
m−1 +

+ T
m−3
m−1

(
Mk

2

2

) 2
m−1

[
T

(
M‖b‖2∞

) 2
m−1 + T

m−3
m−1

(
Mk

2

3

) 2
m−1

U
2

m−1

] 2
m−1

≤ T
(
M‖a‖2∞

) 2
m−1 + T

(
M

m+1
m−1 k

2

2‖b‖
4

m−1∞

) 2
m−1

+

+
(

T
(m−3)(m+1)

2(m−1) M
m+1
m−1 k

2

2k
4

m−1
3

) 2
m−1

U
4

(m−1)2

with U =
∫ T

0
(
∫
Ω

u2
εdx)2dt. The last inequality has the form:

U ≤ α + βU
4

(m−1)2 ,

with α, β > 0. Since m > 3 the function f(U) := α + βU
4

(m−1)2 is concave, and
then

f(U) ≤ f(U0) + f ′(U0)(U − U0),
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where U0 := β
(m−1)2

(m−3)(m+1) . This implies

U ≤ (m− 1)2

(m− 3)(m + 1)
α + β

(m−1)2

(m−3)(m+1) .

A final application of Hölder’s inequality shows that ‖uε‖22 ≤ T 1/2U1/2 = C1.
The argument for vε proceeds in a similar way.

In the cooperative case we can ignore the explicit value of the constants in
(24) and obtain the following cleaner looking corollary thanks to Remark 2.2.

Corollary 3.4. Assume m > 3 and that K1(x, t),K4(x, t) ≥ 0 for a.a. (x, t) ∈
QT . If the system is cooperative, i.e. k2, k3 = 0, and (6) holds, then problem
(1) has a non-negative T -periodic solution (u, v) with non-trivial u, v.

Remark 3.1. Observe that the a priori bounds C1, C2 in Theorem 3.1 do not
allow to replace the condition (12) with (20), since

min
{

k1k4

k1k4 − k2k3

,
k1k4

k1k4 − k2k3

}
≥ 1,

which implies that ζ(C1, C2) ≤ −µ1. Analogously, in Theorem 3.3 the condition
(20) cannot be replaced by (12) since in this case we have that

min
{

k2

k2

,
k3

k3

}
≥ 1,

which implies that η(C1, C2) ≤ −µ1. Finally, in the other cases, namely Theo-
rems 3.2 and 3.4, the constants C1, C2 allow to employ indifferently any of the
two conditions.

4. An optimization problem

In this section we associate to (1) a cost function J defined by

J(u, v, a, b) :=
∫∫

QT

F
(
x, t, u(x, t), v(x, t), a(x, t), b(x, t)

)
dxdt

to be minimized on all the pairs (u, v, a, b) which satisfy (1) with u, v non-trivial,
non-negative in QT and a, b fulfilling either condition (12) of Theorem 2.1 or
condition (20) of Remark 2.3. Moreover, we assume that F : QT × R4 → R
is a Carathéodory function which is measurable in (x, t) for any (u, v, a, b) and
continuous with respect to (u, v, a, b) for a.a. (x, t) ∈ QT . As a possible choice
of F we can consider F (x, t, u, v, a, b) := C(x, t, a, b) − G(x, t, u, v, a, b), where
C represents the cost of controlling the natural growth rates to the values a
and b, and G represents the benefit due to the presence of the populations of
densities u, v and growth rates a, b. We consider the above stated optimization
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problem both in the coercive and noncoercive case for cooperative and compet-
itive systems, which are, in our opinion, the most relevant cases. To this aim
we introduce the following set of admissible controls

U = {(a, b) ∈ L∞(QT )× L∞(QT ) : µ1 + δ ≤ a(x, t), b(x, t) ≤ c a.e. in QT }
for some fixed δ, c > 0. In the coercive case, Corollary 3.1 guarantees that if
the system is cooperative then, for any (a, b) ∈ U with any positive constants
δ, c such that δ + µ1 < c, (1) has non-negative solution (u, v) with non-trivial
u, v. Furthermore, Corollary 3.2 ensures that the same holds if the system is
competitive for δ, c > 0 such that δ + µ1 < c and

δ

c
> max

{
k2

k4

,
k3

k1

}
.

In the non-coercive case for cooperative systems, Corollary 3.4 allows the same
conclusion of the coercive, cooperative case. While, if the system is weak com-
petitive for δ, c > 0 such that

δ
m−1

2

c
> max

{
k

m−1
2

2 , k
m−1

2
3

}
|Ω|m−1

2
(m + 1)2

4mµ1

Theorem 3.2 applies for any (a, b) ∈ U . Finally, if the system is strongly com-
petitive then Theorem 3.3 applies for any (a, b) ∈ U, where δ, c > 0 satisfy the
conditions

δ
m−1

2

c
> max

{
k

m−1
2

1 , k
m−1

2
4

}
|Ω|m−1

2
(m + 1)2

4mµ1

and
δ

c
> max

{
k1

k3

,
k4

k2

}
.

To the control set U we associate the solution set

S := {(u, v, a, b) : (u, v) ∈ C(QT )× C(QT ) is a weak solution of (1)
corresponding to (a, b) ∈ U such that u, v ≥ 0 in QT ,

u, v 6= 0 and λ0 < ‖u‖C(QT ), ‖v‖C(QT ) < R},
where the constants λ0 and R are given by Theorem 2.1.

In order to deal with the minimization of the cost functional J on S we
give some preliminary definitions. Fixed (a, b) ∈ U , consider the function ψa,b :
QT × R6 → R3 given by

ψa,b(x, t, α, β, α1, β1, α2, β2) :=
{(

a(x, t)− α1 + β1

)
α,

(
b(x, t) + α2 − β2

)
β,

F
(
x, t, α, β, a(x, t), b(x, t)

)}
,

and the multivalued map Ψ : QT × R6 ( R3 defined as follows:

Ψ(x, t, α, β, α1, β1, α2, β2) := {(γ1 − α1 + β1)α, (γ2 + α2 − β2)β,

F (x, t, α, β, γ1, γ2) : γ1, γ2 ∈ [µ1 + δ, c]} .

23



In what follows, abusing notations, we denote X ×X ×X · · · ×X by means of
(X)n, where X is a normed vector space.
Consider the multivalued Nemytskii operator generated by Ψ, that is the oper-
ator NΨ :

(
L6(QT ))2 (

(
L2(QT )

)3 given by

NΨ(p, q)(x, t) :={(f, g, h) ∈ (
L2(QT )

)3 :
(
f(x, t), g(x, t), h(x, t)

)

∈ Ψ
(
x, t, p(x, t), q(x, t), φ1(p)(t), φ2(q)(t), φ3(p)(t), φ4(q)(t)

)

for a.e. (x, t) ∈ QT },

where φi(w)(t) =
∫
Ω

Ki(x, t− τi) w2(x, t)dx, i = 1, 2, 3, 4, and t ∈ [0, T ].

For the multivalued Nemytskii operator NΨ we have the following result.

Lemma 4.1 (see [16], Theorem 5.1). The multivalued map NΨ has bounded
closed convex values and maps bounded sets into bounded sets. Moreover,

NΨ(p, q) =
⋃

(a,b)∈U

Ψa,b(p, q) (27)

for any (p, q) ∈ (
L6(QT )

)2, where

Ψa,b(p, q)(x, t) = ψa,b

(
x, t, p(x, t), q(x, t), φ1(p)(t), φ2(q)(t), φ3(p)(t), φ4(q)(t)

)
.

In order to solve the optimization problem first of all we prove a relevant
property concerning the solution map G of the following Cauchy problems with
Dirichlet boundary conditions.





∂u

∂t
−∆um = f,

∂v

∂t
−∆vm = g,

u(·, t)|∂Ω = v(·, t)|∂Ω = 0, for a.a. t ∈ (0, T ),
u(·, 0) = u0(·),
v(·, 0) = v0(·),

(28)

and {
ẇ(t) =

∫
Ω

h(x, t)dx, a.e. in [0, T ],
w(0) = 0.

(29)

The assumptions on the data f, g, h, u0, v0 will be precised later, for the moment
we assume only their integrability to permit the formulation of the following
definition of weak solution.

Definition 4.1. ([21], Definition 5.4, p.87). By a solution (u, v) of (28) we
mean locally integrable functions u, v defined in QT such that

1. u, v ∈ L1(QT ) and um, vm ∈ L1
(
(0, T ),W 1,1(Ω)

)
,
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2. u and v satisfy the identities
∫∫

QT

−u
∂ϕ

∂t
+∇um∇ϕ =

∫

Ω

u0(x)ϕ(x, 0)dx +
∫∫

QT

fϕdxdt (30)

and
∫∫

QT

−v
∂ϕ

∂t
+∇vm∇ϕ =

∫

Ω

v0(x)ϕ(x, 0)dx +
∫∫

QT

gϕdxdt (31)

for any ϕ ∈ C1(QT ), such that ϕ(x, t) = 0 for all (x, t) ∈ ∂Ω × [0, T ] and
ϕ(x, T ) = 0 for any x ∈ Ω.

For our purposes we consider f, g, h ∈ L2(QT ) and u0, v0 ∈ L∞(Ω). Under these
conditions by means of ([21], Theorem 5.7, p.97, and Theorem 6.2, p.128) there
exists a unique weak solution (u, v) of (28), which is also a limit solution of
classical solutions, with the properties: u, v ∈ L∞

(
(0, T ), L2(Ω)

)
and um, vm ∈

L2
(
(0, T ),H1

0 (Ω)
)
. Therefore, the solution map G :

(
L2(QT )

)3 × (
L∞(Ω)

)2 →(
L2(QT )

)2 × L2(0, T ) given by

G(f, g, h, u0, v0) = (u, v, w)

if and only if (u, v) is the unique weak solution of (28) and w is the solution of
(29), is well defined.

Let N 0
Ψ :

(
L6(QT )

)2×(
L∞(Ω)

)2 (
(
L2(QT )

)3× (
L∞(Ω)

)2 be the operator
defined by

N 0
Ψ(p, q, u0, v0) =

(NΨ(p, q), u0, v0
)

We have the following result.

Proposition 4.1. The operator G◦N 0
Ψ :

(
L6(QT )

)2×(
L∞(Ω)

)2 (
(
L2(QT )

)2×
L2(0, T ) has closed graph.

Proof. Consider arbitrary sequences (pn, qn)∈(
L6(QT )

)2
, (y0

n, z0
n)∈(

L∞(Ω)
)2

and (yn, zn, wn)∈(
L2(QT )

)2×L2(0, T ) so that (yn, zn, wn)∈G(N 0
Ψ(pn, qn, y0

n, z0
n)

)
with (pn, qn), (y0

n, z0
n) and (yn, zn, wn) converging respectively to (p0, q0), (y0, z0)

and (y0, z0, w0) as n → +∞. Since (yn, zn, wn) ∈ G(N 0
Ψ(pn, qn, y0

n, z0
n)

)
, there

exists a sequence (fn, gn, hn) with (fn, gn, hn, y0
n, z0

n) ∈ N 0
Ψ(pn, qn, y0

n, z0
n) such

that (yn, zn, wn) = G(fn, gn, hn, y0
n, z0

n), namely (yn, zn, wn) is the unique weak
solution of the problem





∂y

∂t
−∆ym = fn,

∂z

∂t
−∆zm = gn,

y(·, t)|∂Ω = z(·, t)|∂Ω = 0, for a.a. t ∈ (0, T ),
y(·, 0) = y0

n(·),
z(·, 0) = z0

n(·),

25



{
ẇ(t) =

∫
Ω

hn(x, t)dx, a.e. in [0, T ],
w(0) = 0,

where hn(x, t) ∈ F(
x, t, yn(x, t), zn(x, t)

)
:= {F (

x, t, yn(x, t), zn(x, t), γ1, γ2

)
:

γ1, γ2 ∈ [µ1 + δ, c]}, for a.a. (x, t) ∈ QT .
Since NΨ sends bounded sets into bounded sets, by passing to a subsequence

if necessary, we have that (fn, gn, hn) weakly converges to some (f0, g0, h0) ∈(
L2(QT )

)3. We want to show that

(y0, z0, w0) = lim
n→+∞

G(fn, gn, hn, y0
n, z0

n) = G(f0, g0, h0, y
0, z0).

To this end, let ŵ0 ∈ L2(0, T ) be the solution of
{

ẇ(t) =
∫
Ω

h0(x, t)dx, a.e. in [0, T ],
w(0) = 0.

Then ŵ0 = w0. In fact, using the fact that hn weakly converges to h0 in L2(QT ),
we have

µn(t) :=
∣∣∣∣
∫ t

0

∫

Ω

(
hn(x, τ)− h0(x, τ)

)
dxdτ

∣∣∣∣
2

→ 0, as n → +∞,

for a.e. t ∈ (0, T ). Moreover, since hn is bounded in L∞(QT ) we have that
0 ≤ µn(t) ≤ C, for a.e. t ∈ [0, T ]. Thus we can apply Lebesgue’s Theorem and
we can conclude that
∫ T

0

|wn(t)−ŵ0(t)|2dt=
∫ T

0

∣∣∣∣
∫ t

0

∫

Ω

(
hn(x, τ)− h0(x, τ)

)
dxdτ

∣∣∣∣
2

dt =
∫ T

0

µn(t)dt → 0,

(32)
as n → +∞. On the other hand, by assumption, limn→+∞ ‖wn−w0‖L2(0,T ) = 0,
hence ŵ0 = w0.
Furthermore, by ([5, Theorem 6.4, p. 89]), if (ŷ0, ẑ0) is a weak solution of the
problem 




∂y

∂t
−∆ym = f0,

∂z

∂t
−∆zm = g0,

y(·, t)|∂Ω = z(·, t)|∂Ω = 0, for a.a. t ∈ (0, T ),
y(·, 0) = y0(·),
z(·, 0) = z0(·),
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then, for t ∈ [0, T ], we have that

‖yn(·, t)− ŷ0(·, t)‖L2(Ω) − ‖yn(·, 0)− ŷ0(·, 0)‖L2(Ω) + ‖zn(·, t)− ẑ0(·, t)‖L2(Ω)−
− ‖zn(·, 0)− ẑ0(·, 0)‖L2(Ω)

≤
∫ t

0

∫

Ω

(
yn(x, τ)− ŷ0(x, τ)

)(
fn(x, τ)− f0(x, τ)

)
dxdτ+

+
∫ t

0

∫

Ω

(
zn(x, τ)− ẑ0(x, τ)

)(
gn(x, τ)− g0(x, τ)

)
dxdτ.

(33)
Since yn converges to y0 in L2(QT ) and fn weakly converges to f0 in L2(QT ),
as n → +∞, we have that

∫ t

0

∫

Ω

(
yn(x, τ)− ŷ0(x, τ)

)(
fn(x, τ)− f0(x, τ)

)
dxdτ

≤
∫ t

0

∫

Ω

(
yn(x, τ)− y0(x, τ) + y0(x, τ)− ŷ0(x, τ)

)(
fn(x, τ)− f0(x, τ)

)
dxdτ

=
∫ t

0

∫

Ω

(
yn(x, τ)− y0(x, τ)

)(
fn(x, τ)− f0(x, τ)

)
dxdτ+

+
∫ t

0

∫

Ω

(
y0(x, τ)− ŷ0(x, τ)

)(
fn(x, τ)− f0(x, τ)

)
dxdτ → 0,

as n → +∞. Analogously,

lim
n→+∞

∫ t

0

∫

Ω

(
zn(x, τ)− ẑ0(x, τ)

)(
gn(x, τ)− g0(x, τ)

)
dxdτ = 0.

Moreover, ‖yn(·, 0) − ŷ0(·, 0)‖L2(Ω) and ‖zn(·, 0) − ẑ0(·, 0)‖L2(Ω) tend to 0 as
n →∞, hence, for t ∈ [0, T ], we have that

lim
n→+∞

‖yn(·, t)− ŷ0(·, t)‖L2(Ω) = lim
n→+∞

‖zn(·, t)− ẑ0(·, t)‖L2(Ω) = 0.

Thus, (ŷ0, ẑ0, ŵ0) = (y0, z0, w0) and we can conclude that

lim
n→+∞

G(fn, gn, hn, y0
n, z0

n) = G(f0, g0, h0, y
0, z0).

Finally, since (pn, qn) converges to (p0, q0) in (L6(QT ))2 and (y0
n, z0

n) converges
to (y0, z0) in

(
L∞(Ω)

)2, we have, by [16, Theorem 5.1 - (ii)], that

d(L2(QT ))3×(L∞(Ω))2
(
(fn, gn, hn, y0

n, z0
n),N 0

Ψ(p0, q0, y
0, z0)

) → 0,

as n → +∞, where dX(a,A) denotes the distance in X of a ∈ X from the set
A ⊂ X. On the other hand, from (32) and (33) we obtain that G :

(
L2(QT )

)3×(
L∞(Ω)

)2 → (
L2(QT )

)2 × L2(0, T ) is continuous, thus

d(L2(QT ))2×L2(0,T )×(L∞(Ω))2
(G(fn, gn, hn, y0

n, z0
n),G(N 0

Ψ(p0, q0, y
0, z0)

)) → 0.

27



Therefore

(y0, z0, w0) = G(f0, g0, h0, y
0, z0) ∈ G(N 0

Ψ(p0, q0, y0, z0)
)(L2(QT ))2×L2(0,T )

.

The same arguments of the first part of the proof show that

G(N 0
Ψ(p0, q0, y0, z0)

)(L2(QT ))2×L2(0,T )
= G(N 0

Ψ(p0, q0, y
0, z0)

)
.

In fact, if one considers a sequence (yn, zn, wn) ∈ G(N 0
Ψ(p0, q0, y

0, z0)
)

with
(yn, zn, wn) → (y0, z0, w0) in

(
L2(QT )

)2×L2(0, T ), as n → +∞, then there ex-
ists a sequence (fn, gn, hn)∈NΨ(p0, q0) so that (yn, zn, wn)=G(fn, gn, hn, y0, z0).
On the other hand, passing to a subsequence if necessary, we have that (fn,gn,hn)
weakly converges in

(
L2(QT )

)3 to some (f0, g0, h0)∈NΨ(p0, q0), sinceNΨ(p0, q0)
is a closed, convex set of (L2

(
QT )

)3
. This concludes the proof.

Now, we are in the position to prove the following result.

Theorem 4.1. The cost functional J attains its minimum in S.

Proof. Let (un, vn, an, bn) ∈ S be a minimizing sequence for the cost functional
J ; hence, by the existence results of the previous section, (un, vn) ∈ C(QT ) ×
C(QT ), un, vn ≥ 0 in QT and ‖un‖C(QT ), ‖vn‖C(QT ) > λ0, is a solution of
(1) corresponding to (an, bn) ∈ U . Now, set u0

n(·) := un(·, 0) = un(·, T ) and
v0

n(·) := vn(·, 0) = vn(·, T ), hence u0
n, v0

n are Hölder continuous in Ω by the
regularity results of [19], and consider the solution wn ∈ L2(0, T ) of the problem

{
ẇ(t) =

∫
Ω

hn(x, t)dx, a.e. in [0, T ],
w(0) = 0,

(34)

where hn(x, t) := F
(
x, t, un(x, t), vn(x, t), an(x, t), bn(x, t)

)
.

Then (un, vn, wn) ∈ G(N 0
Ψ(un, vn, u0

n, v0
n)

)
, namely wn is defined by (34) and

(un, vn) is a weak solution of the problem.





∂u

∂t
−∆um =

(
an(x, t)−

∫

Ω

K1(ξ, t)u2(ξ, t− τ1)dξ+

+
∫

Ω

K2(ξ, t)v2(ξ, t− τ2)dξ

)
u

∂v

∂t
−∆vm =

(
bn(x, t) +

∫

Ω

K3(ξ, t)u2(ξ, t− τ3)dξ−

−
∫

Ω

K4(ξ, t)v2(ξ, t− τ4)dξ

)
v,

u(·, t)|∂Ω = v(·, t)|∂Ω = 0, for a.a. t ∈ (0, T ),
u(·, 0) = u0

n(·),
v(·, 0) = v0

n(·).
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By the uniform boundedness of the functions un, vn, an and bn in L∞(QT )
it is easy to see that all the assumptions of [19, Theorem 1.2] are satisfied.
Therefore as in the proof of Theorem 2.1, by passing to a subsequence, if nec-
essary, (un, vn) converges uniformly in QT to a pair (u0, v0) ∈ C(QT )×C(QT ),
λ0 ≤ ‖u0‖C(QT ), ‖v0‖C(QT ) ≤ R. Furthermore, repeating the arguments of the
proof of Proposition 4.1, one has that wn converges to w0 in L2(0, T ), where w0

solves {
ẇ(t) =

∫
Ω

h0(x, t)dx, a.e. in [0, T ],
w(0) = 0,

being h0 the weakly limit of hn in L2(QT ). Furthermore, since G ◦ N 0
Ψ :(

L6(QT )
)2×(

L∞(Ω)
)2 (

(
L2(QT )

)2×L2(0, T ) has closed graph, we have that
(u0, v0, w0) ∈ G(N 0

Ψ(u0, v0, u
0, v0)

)
. Thus, by (27), there exists (a0, b0) ∈ U

such that
(u0, v0, w0) = G(

Ψa0,b0(u0, v0, u
0, v0)

)
,

i.e. (u0, v0) is a weak solution of the problem





∂u

∂t
−∆um =

(
a0(x, t)−

∫

Ω

K1(ξ, t)u2(ξ, t− τ1)dξ+

+
∫

Ω

K2(ξ, t)v2(ξ, t− τ2)dξ

)
u

∂v

∂t
−∆vm =

(
b0(x, t) +

∫

Ω

K3(ξ, t)u2(ξ, t− τ3)dξ−

−
∫

Ω

K4(ξ, t)v2(ξ, t− τ4)dξ

)
v,

u(·, t)|∂Ω = v(·, t)|∂Ω = 0, for a.a. t ∈ (0, T ),
u(·, 0) = u0(·),
v(·, 0) = v0(·),

and w0 is such that
{

ẇ(t) =
∫
Ω

F
(
x, t, u0(x, t), v0(x, t), a0(x, t), b0(x, t)

)
dx, a.e. in QT ,

w(0) = 0.

Here u0 and v0 are the uniform limits of u0
n and v0

n in Ω, respectively, thus
they belong to C(Ω). Moreover, repeating the arguments of the proof of The-
orem 2.1 with ε = 0, one can show that um

n and vm
n are uniformly bounded

in L2
(
(0, T ); H1

0 (Ω)
)

and thus um
0 , vm

0 ∈ L2
(
(0, T ); H1

0 (Ω)
)

and (u0, v0) satisfies
(30)-(31).
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[17] M. Nakao, Periodic solutions of some nonlinear degenerate parabolic equa-
tions, J. Math. Anal. Appl., 104 (1984), 554-567.

[18] A. Okubo, “Diffusion and ecological problems: mathematical models”,
Biomathematics, 10, Springer, 1980.
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