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Topological entropy in totally disconnected locally compact groups

Anna Giordano Bruno ∗ Simone Virili †‡

Abstract

Let G be a topological group, let φ be a continuous endomorphism of G and let H be a closed
φ-invariant subgroup of G. We study whether the topological entropy is an additive invariant, that
is,

htop(φ) = htop(φ �H) + htop(φ̄) ,

where φ̄ : G/H → G/H is the map induced by φ. We concentrate on the case when G is locally
compact totally disconnected and H is either compact or normal. Under these hypotheses, we show
that the above additivity property holds true whenever φH = H and ker(φ) ≤ H. As an application
we give a dynamical interpretation of the scale s(φ), by showing that log s(φ) is the topological
entropy of a suitable map induced by φ. Finally, we give necessary and sufficient conditions for the
equality log s(φ) = htop(φ) to hold.

Key words: 37B40, 22D05, 22D40, 54H11, 54H20, 54C70.

2010 AMS Subject Classification: Topological entropy, totally disconnected locally compact group, scale, con-

tinuous endomorphism, Addition Theorem.

1 Introduction

Topological entropy for continuous self-maps of compact spaces was introduced in [1] by Adler, Kon-
heim and McAndrew, in analogy with the measure entropy studied in ergodic theory by Kolmogorov
and Sinai. In his celebrated paper [3], Bowen gave a definition of entropy for uniformly continuous
self-maps of metric spaces. Later on, Hood in [10] extended Bowen’s entropy to uniformly continuous
self-maps of uniform spaces. This notion of entropy is sometimes called uniform entropy, and it coin-
cides with the topological entropy in the compact case (when the given compact topological space is
endowed with the unique uniformity compatible with the topology). For this reason we call topological
entropy also Hood’s extension and we denote it by htop (see §3.1 for a definition).

Let G be a topological group and let φ : G → G be a continuous endomorphism. When endowed
with its left uniformity U , then (G,U) is a uniform space, and φ is uniformly continuous with respect
to U . Hence, Hood’s definition of the topological entropy htop applies to any given continuous endo-
morphism φ : G→ G. Similarly, if H is a closed subgroup of G, the set G/H of the left cosets of H in
G inherits from G a natural uniform structure Ū (see §2.1), that we call left uniformity of G/H and
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that generates the quotient topology of G/H. If H is φ-invariant, the map φ̄ : G/H → G/H induced
by φ is uniformly continuous with respect to Ū , so htop(φ̄) is defined.

In this paper we study the following general question (see [7, Question 4.3] in the locally compact
Abelian case) when G is a totally disconnected locally compact (briefly, t.d.l.c.) group.

Question 1.1. Let G be a topological group, φ : G→ G a continuous endomorphism and H a closed
φ-invariant subgroup of G. Is it true that

htop(φ) = htop(φ �H) + htop(φ̄) , (1.1)

where φ̄ : G/H → G/H is the map induced by φ?

We say that the Addition Theorem holds if the formula (1.1) is verified. Some instances of the
Addition Theorem are already known. Indeed, as a consequence of [7, Corollary 4.7], the Addition
Theorem holds when H is a normal and open subgroup of the locally compact group G; in fact, one
can directly check that, under these strong assumptions,

htop(φ̄) = 0 and htop(φ) = htop(φ �H) .

Moreover, it is known from [5, Theorem 4.5.8] that, if G1 and G2 are t.d.l.c. groups and φi : Gi → Gi
is a continuous endomorphism for i = 1, 2, then htop(φ1 × φ2) = htop(φ1) + htop(φ2).

An important known case of the Addition Theorem is the compact one: when G is a compact group
and H is a closed φ-invariant normal subgroup of G then (1.1) holds true. Yuzvinski proved this in
[23] for separable compact groups (a generalization for the measure entropy was given by Thomas in
[17]). Later on, Bowen proved in [3, Theorem 19] a version of the Addition Theorem for compact
metric spaces. The general statement, when G is compact but not necessarily metrizable, is deduced
from the metrizable case in [6, Theorem 8.3].
Let us also remark that, after the introduction of entropy for actions of amenable groups in [15], there
has been considerable effort to generalize Yuzvinski’s Addition Theorem to this context. Some of the
main steps in this development have been done, chronologically, in [12] (for actions of Zd), [13] (for
actions of a general countable torsion-free Abelian group, so in particular Z(N)), and [11] (where Li
proved a very general Addition Theorem for actions of a countable amenable group).

As mentioned above, in this paper we consider Question 1.1 for t.d.l.c. groups. For these groups
van Dantzig proved in [18] that the family

B(G) := {U ≤ G : U compact and open}

is a base for the neighborhoods of 1 in G. As noticed in [7] (see §3.1 and Proposition 3.4), the
topological entropy of a continuous endomorphism φ : G → G of a t.d.l.c. group G can be computed
as

htop(φ) = sup{Htop(φ,K) : K ∈ B(G)} , where Htop(φ,K) = lim
n→∞

log[K : K−n]

n
;

here, K−n = K ∩ φ−1K ∩ . . . ∩ φ−nK ∈ B(G), and the index [K : K−n] is finite since K−n is open in
the compact subgroup K.

If H is a closed φ-invariant subgroup of G, and H is compact but not necessarily normal, we see
in §3.1 how Hood’s definition of topological entropy applies to the map φ̄ : G/H → G/H, obtaining
the following formula (see Proposition 3.4):

htop(φ̄) = sup{Htop(φ,K) : H ≤ K ∈ B(G)} .

The main result of this paper is the following instance of the Addition Theorem:
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Theorem 1.2. Let G be a t.d.l.c. group, φ : G → G a continuous endomorphism and H a closed
φ-stable subgroup of G containing ker(φ). If H is either normal or compact, then

htop(φ) = htop(φ �H) + htop(φ̄) , (∗)

where φ̄ : G/H → G/H is the map induced by φ.

In particular, the Addition Theorem holds for topological automorphisms of t.d.l.c. groups:

Corollary 1.3. Let G be a t.d.l.c. group, φ : G → G a topological automorphism and H a closed
φ-stable normal subgroup of G. Then

htop(φ) = htop(φ �H) + htop(φ̄) ,

where φ̄ : G/H → G/H is the topological automorphism induced by φ.

The proof of Theorem 1.2 is given in §3.3, where we treat separately the cases when the subgroup
H is normal or compact. In fact, the proofs of these two cases, even with their technical differences,
use similar ideas and follow a similar pattern, that is, we prove separately the two inequalities giving
the equality in (∗). While the proof of the lower bound uses relatively standard arguments, the proof
of the upper bound is based on a Limit Free Formula for the computation of the topological entropy
(see Proposition 3.9). Indeed, following [22], for every U ∈ B(G) we can construct a compact subgroup
U+ of G contained in U (see Definition 2.11), such that U+ ≤ φU+ and

Htop(φ,U) = log[φU+ : U+] .

The counterpart of this formula for topological automorphisms was proved in [8] and for compact
groups in [4].

In Section 4, we show a precise relation between the topological entropy and the scale, generalizing
a result from [2]. Indeed, in the recent paper [22], extending the same notion from [20], Willis defined
the scale of a continuous endomorphism φ of a t.d.l.c. group G as the positive integer

s(φ) := min{[φU : U ∩ φU ] : U ∈ B(G)} .

Moreover, a subgroup U ∈ B(G) is said to be minimizing if the value s(φ) is attained at U , that is,
s(φ) = [φU : U ∩ φU ], and nub(φ) :=

⋂
{U ∈ B(G) : U is minimizing} is a compact φ-stable subgroup

of G. We see in Proposition 4.8 that

log s(φ) = htop(φ̄) , (1.2)

where φ̄ : G/nub(φ)→ G/nub(φ) is the map induced by φ. Moreover, we describe nub(φ) in dynamical
terms that depend only on G and φ, and not on the scale. A consequence of Theorem 1.2 and of (1.2)
is that log s(φ) = htop(φ) if and only if htop(φ �nub(φ)) = 0, if and only if nub(φ) = {1}.

Conventions and notation

All topological groups in this paper are Hausdorff.
We denote by N and N>0 respectively the set of natural numbers and the set of positive integers.
Analogously, R and R>0 stand respectively for the real numbers and the positive real numbers.
For a group G and an endomorphism φ : G→ G, we say that a subgroup H of G is φ-stable if φH = H
and φ-invariant if φH ≤ H.
For a group G and a subgroup H of G, we denote by G/H = {xH : x ∈ G} the set of all left cosets
of H in G, and by [G : H] the index of H in G, that is the size of G/H. If K is another subgroup
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of G, then KH/H is the family of all left cosets of H in G with representing elements in K, that is
KH/H = {kH : k ∈ K}, and we denote by [KH : H] the size of this family, generalizing the usual
notion of index.
Moreover, NG(H) = {x ∈ G : x−1Hx = H} is the normalizer of H in G. We say that a subgroup L
of G normalizes H precisely when L ≤ NG(H); equivalently, x−1Hx ⊆ H for every x ∈ L.
For a topological group G, we denote by End(G) the semigroup of all the continuous endomorphisms
of G.

2 Background and preliminary results

2.1 Locally compact groups and their quotients

A topological group G can be always endowed with a natural uniform structure U , called the left
uniformity of G (for every g ∈ G the multiplication x 7→ gx is uniformly continuous with respect to
U), which generates the given topology of G. If B is a base for the neighborhoods of 1 in G, the family

V := {UK : K ∈ B} , where UK := {(x, y) : y−1x ∈ K} ,

is a fundamental system of entourages of U .
Similarly, if H is a closed subgroup of G, then G/H inherits from G a natural uniform structure

Ū , for which a fundamental system of entourages is given by the family

V̄ = {ŪK : K ∈ B} , where ŪK := {(xH, yH) : y−1x ∈ K} .

The topology generated by Ū on G/H coincides with the quotient topology of G/H. Furthermore,
G acts on G/H on the left, in the sense that, to each element g ∈ G, we can associate the following
uniform automorphism of G/H:

λg : G/H → G/H such that xH 7→ gxH .

In fact, λgλh = λgh, for all g, h ∈ G and the inverse of λg is λg−1 . For this reason we call Ū the left
uniformity of G/H.

A topological group G is locally compact precisely when the family

C(G) := {K : K compact neighborhood of 1 in G}

is a base for the neighborhoods of 1 in G. In this case, one can take B = C(G) in the definition of
the fundamental systems of entourages for the uniformities U and Ū above. Moreover, if G is locally
compact and H is a closed subgroup of G, then G/H is a locally compact Hausdorff topological space
(see, for example, the discussion in [16, Section 3.1] or [9, Theorems 5.21, 5.22]). If in addition G is
totally disconnected, the quotient G/H is 0-dimensional (see [9, Theorem 7.11]).

Given a locally compact group G, it is known that there exists a left Haar measure µ on G. For
a compact subgroup C of G and a relatively open subgroup K of C, we can write C =

⋃̇
cK∈C/KcK.

By the compactness of C, and since each cK is open in C, the index [C : K] is finite; so, since µ is
left invariant,

µ(C) = [C : K]µ(K) . (2.1)

Choose now a closed subgroup H of G. In analogy to the left invariance of µ, a measure µ̄ on G/H
is said to be left invariant if, for any measurable subset C of G/H,

µ̄(λgC) = µ̄(C) for all g ∈ G .
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We would like to find a left invariant measure µ̄ on G/H, which is finite on the compact subsets of
G/H and such that there exists a compact subset K0 of G/H with µ̄(K0) > 0. Unfortunately, such
a measure does not always exist. In fact, a necessary and sufficient condition for its existence is that
the restriction to H of the modular function ∆G of G coincides with the modular function ∆H of H
(see [14, Corollary 3 on p.140] or [16, Section 8.1]). On the other hand, if H is compact, then both
∆H(H) and ∆G(H) are compact (multiplicative) subgroups of R>0, hence, ∆H(H) = ∆G(H) = {1}.
We obtain the following

Lemma 2.1. Let G be a locally compact group and H a compact subgroup of G. Then there exists a
left invariant measure µ̄ on G/H, which is finite on the compact subsets of G/H and such that there
exists a compact subset K0 of G/H with µ̄(K0) > 0.

In the hypotheses of the above lemma, let π : G→ G/H be the canonical projection. Analogously
to the discussion that leads to (2.1), if C is a compact subgroup of G and K is a relatively open
subgroup of C containing H, then πC =

⋃̇
xK∈C/Kπ(xK) =

⋃̇
xK∈C/Kλx(πK) in G/H. Thus, we still

have the formula
µ̄(πC) = [C : K]µ̄(πK) . (2.2)

2.2 T.d.l.c. groups

If G is a t.d.l.c. group, then, as observed in the Introduction, the subfamily

B(G) = {U ≤ G : U compact and open}

of C(G) is a base for the neighborhoods of 1 in G.
For C a closed subgroup of G, let

B(G,C) := {U ∈ B(G) : C ≤ U} .

The following results will be useful many times in what follows.

Lemma 2.2. Let G be a t.d.l.c. group, C a compact subgroup of G and K ∈ B(G). Then there exists
L ∈ B(G) such that L ≤ K and C ≤ NG(L). In particular, CL ∈ B(G).

Proof. Let L =
⋂
{x−1Kx : x ∈ C}. It is clear that L ≤ K and that L (being defined as an

intersection of closed subgroups) is a closed subgroup of K, so it is compact. Let us show that C
normalizes L, that is, y−1Ly ≤ L for all y ∈ C. Let y ∈ C and n ∈ L. For x ∈ C, we have
xy−1nyx−1 = (yx−1)−1n(yx−1) ∈ K. Therefore, y−1ny ∈ x−1Kx for every x ∈ C, and hence
y−1ny ∈ L.
It remains to show that L is open. Indeed, given x ∈ C, choose U ∈ B(G) such that U ≤ K and
x−1Ux ≤ K. Let Wx = Ux and Vx = U . Thus, W−1x VxWx = x−1UUUx = x−1Ux ≤ K. The family
{Wx : x ∈ C} is an open cover C, which is compact, so there is a finite subset F of C such that
C ⊆

⋃
{Wx : x ∈ F}. Set V =

⋂
{Vx : x ∈ F}. Then x−1V x ≤ K for each element x ∈ C; in fact,

given x ∈ C, there exists f ∈ F such that x ∈ Wf , so that x−1V x ⊆ W−1f VfWf ⊆ K. Thus, V ≤ L,
showing that L is open.

Corollary 2.3. Let G be a t.d.l.c. group and C a compact subgroup of G. Then:

(1) B = {U ∈ B(G) : C ≤ NG(U)} is a base for the neighborhoods of 1 in G.

(2) B′ = {CU : U ∈ B(G), C ≤ NG(U)} (and so also B(G,C)) is a base for the neighborhoods of C
in G.
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Proof. (1) follows directly from Lemma 2.2.

(2) Let A be an open subset of G containing C. In particular, A is an open neighborhood of every
element of C, and so for every c ∈ C, there exists Vc ∈ B(G) such that cVc ⊆ A. Since C ⊆

⋃
c∈C cVc,

by the compactness of C there exists a finite subset F of C such that C ⊆
⋃
f∈F fVf . Let K =⋂

f∈F Vf ∈ B(G); we claim that CK ⊆ A. Indeed, for all c ∈ C there exists f ∈ F such that
c ∈ fVf , hence cK ⊆ fVfK = fVf ⊆ A. By Lemma 2.2 there exists L ∈ B(G) such that L ≤ K and
CL ∈ B(G). Clearly, CL ⊆ A and CL ∈ B′ ⊆ B(G,C).

The next lemma generalizes part (2) of Corollary 2.3.

Lemma 2.4. Let G be a t.d.l.c. group and C a compact subgroup of G. If B ⊆ B(G,C) is a downward
directed family with respect to inclusion such that

⋂
B = C, then B is a base for the neighborhoods of

C in G.

Proof. We should verify that, given a neighborhood N of C in G, there is W ∈ B such that W ≤ N .
Since B(G,C) is a base for the neighborhoods of C in G by Corollary 2.3(2), we can suppose that
N ∈ B(G,C). Let U ∈ B, let BU = {W ∈ B : W ≤ U}, and consider the open cover N ⊆

⋃
x∈N xU .

Since N is compact, there is a finite subset 1 ∈ F ⊆ N such that N ⊆
⋃
x∈F xU = V , where V is

compact. Then, V \N is compact and

V \N ⊆ V \ C = V \
⋂

W∈BU

W =
⋃

W∈BU

(V \W ) .

By compactness of V \ N , there exist W1, . . . ,Wn ∈ BU such that V \ N ⊆
⋃n
i=1(V \ Wi). Since

B is downward directed, let W be any element of B which is contained in
⋂n
i=1Wi and notice that

W ⊆ N .

The next corollary describes B(H) for any closed subgroup H of a t.d.l.c. group G, and it gives
suitable subbases of B(G/H) respectively when H is normal and when H is compact.

Corollary 2.5. Let G be a t.d.l.c. group and H a closed subgroup of G. Then:

(1) B(H) = {U ∩H : U ∈ B(G)};

(2) if H is normal and π : G→ G/H is the canonical projection, then πB(G) = {πU : U ∈ B(G)} ⊆
B(G/H) is a base for the neighborhoods of H in G/H;

(3) H is compact if and only if B(G,H) is a base for the neighborhoods of H in G.

Proof. (1) The inclusion {U ∩H : U ∈ B(G)} ⊆ B(H) is clear. On the other hand, given V ∈ B(H),
there exists an open subset U ′ ⊆ G such that U ′ ∩H = V . Now, V is a compact subgroup of G so, by
Corollary 2.3(2), there exists U ∈ B(G) such that V ⊆ U ⊆ U ′. Clearly, U ∩H = V .

(2) Let V ∈ B(G/H). Then π−1V is an open subgroup of G, thus there is U ∈ B(G) such that
U ≤ π−1V . It is now clear that, πU ≤ V and πU ∈ B(G/H).

(3) If H is compact, then B(G,H) is a base for the neighborhoods of H in G by Corollary 2.3(2).
Conversely, if B(G,H) is a base for the neighborhoods of H in G, in particular it is not empty, and
we can take some U ∈ B(G,H); then H is closed in the compact U and so H is compact.
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2.3 Indices of subgroups

As underlined in the previous subsection, the study of Haar measure of subgroups reduces to some
extent to the study of indices of subgroups. In this subsection we collect some facts about indices of
subgroups of an abstract group.

Lemma 2.6. Let G be a group and H, K, L subgroups of G with H ≤ K. Then:

(1) [G : H] = [G : K][K : H];

(2) [LH : H] = [L : H ∩ L];

(3) [K : H] ≥ [K ∩ L : H ∩ L];

(4) [K : H] ≥ [KL : HL], provided HL = LH;

Let G′ be a group, H ′, K ′ subgroups of G′ with H ′ ≤ K ′, and consider a homomorphism φ : G′ → G.
Then:

(5) [φ−1K : φ−1H] = [K ∩ Im(φ) : H ∩ Im(φ)], in particular [φ−1K : φ−1H] ≤ [K : H];

(6) [K ′ ker(φ) : H ′ ker(φ)] = [φK ′ : φH ′], in particular [K ′ : H ′] ≥ [φK ′ : φH ′].

As a consequence of the above lemma we obtain:

Corollary 2.7. Let G be a group, φ ∈ End(G) and H ≤ K subgroups of G such that H ≤ φH and
K ≤ φK. If [φK : φH] <∞, then [φH : H] ≥ [φK : K].

Proof. By Lemma 2.6(1,6), [φK : H] = [φK : K] · [K : H] ≥ [φK : K][φK : φH]. Similarly,
[φK : H] = [φK : φH][φH : H]. Thus, [φK : φH][φH : H] ≥ [φK : K][φK : φH], and hence
[φH : H] ≥ [φK : K].

Consider now a group B, and let B′ ≤ B and A � B; we obtain the following diagram:

1

��

1

��

1

��
1 // A ∩B′

��

// B′

��

// B′A/A //

��

1

1 // A

��

// B

��

// B/A //

��

1

A/A ∩B′ B/B′ B/B′A

If the groups involved in the above diagram are Abelian, then an easy application of the Snake Lemma
gives that |B/B′| = |A/A ∩ B′| · |B/B′A|, as these groups fit into a suitable (short) exact sequence.
In the following lemma we generalize this fact to the non-Abelian situation. In fact, we need to work
in a slightly more general setting than that in the above picture, that is, we want to just assume that
B′A is a subgroup of B (i.e., B′A = AB′), but allowing A not to be normal in B.

Lemma 2.8. Let B be a group and A, B′ subgroups of B with A′ = B′ ∩A. If B′A = AB′, then

[B : B′] = [A : A′] · [B : B′A] .
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Proof. It is not hard to check that the following map is well-defined and surjective:

π : B/B′ → B/B′A such that bB′ 7→ bB′A .

Hence, we should just verify that |π−1(bB′A)| = |A/A′| for all b ∈ B. This follows from the next two
claims describing the fibers of π:

(Claim.1) for b1, b2 ∈ B, π(b1B
′) = π(b2B

′) if and only if there exists a ∈ A such that b1B
′ = b2aB

′;

(Claim.2) for b ∈ B and a1, a2 ∈ A, ba1B
′ = ba2B

′ if and only if a1A
′ = a2A

′.

To verify (Claim.1), proceed as follows: π(b1B
′) = π(b2B

′) if and only if b−12 b1 ∈ B′A = AB′, if and
only if there exist b ∈ B′ and a ∈ A such that b−12 b1 = ab, so that b1B

′ = b2abB
′ = b2aB

′, as desired.
To verify (Claim.2), just notice that ba1B

′ = ba2B
′ is equivalent to say that a−12 a1 = a−12 b−1ba1 =

(ba2)
−1(ba1) ∈ B′, that is, a−12 a1 ∈ A ∩B′ = A′, so that a1A

′ = a2A
′.

2.4 Cotrajectories

Let X be a topological space and φ : X → X a continuous self-map. Given n ∈ N and U ⊆ X, let

U−n = U ∩ φ−1U ∩ . . . ∩ φ−nU ;

the φ-cotrajectory of U is

U− =

∞⋂
n=0

φ−nU =

∞⋂
n=0

U−n .

If U is open (respectively, compact), then so is U−n for all n ∈ N. Similarly, if U is compact, then so
is U−.

Remark 2.9. In the context of topological entropy (for example, see [5]) the notations Cn(φ,U) and
C(φ,U) are commonly used in place of U−n and U−, that are commonly used for the study of the
scale (see [20, 22]). We adopt the shorter version, even if, in some cases, this may be slightly more
ambiguous.

In view of the above remark, we clarify now some notations. Let G be a t.d.l.c. group and let
φ ∈ End(G). Given n ∈ N and U ∈ B(G), the index [U : U−n] is finite (as U is compact and
U−n is open), for all n ∈ N. Furthermore, given a φ-invariant closed subgroup H of G, denoting by
φ̄ : G/H → G/H the map induced by φ, and letting π : G → G/H be the canonical projection, then
for all U ∈ B(G)

(U ∩H)−n = (U ∩H) ∩ (φ �H)−1(U ∩H) ∩ . . . ∩ (φ �H)−n(U ∩H)

and
(πU)−n = πU ∩ φ̄−1(πU) ∩ . . . ∩ φ̄−n(πU) .

Lemma 2.10. Let G be a t.d.l.c. group, φ ∈ End(G) and U ∈ B(G). For any n ∈ N, let

cn = [U : U−n] and αn = [U−n : U−n−1] .

The following statements hold true:

(1) cn divides cn+1 for all n ∈ N, and αn = cn+1/cn;

(2) αn+1 ≤ αn, for all n ∈ N;
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(3) the sequence (αn)n∈N stabilizes.

Proof. (1) Since U ≥ U−n ≥ U−n−1, it follows from Lemma 2.6(1) that

[U : U−n−1] = [U : U−n][U−n : U−n−1] .

Thus, cn+1/cn = [U−n : U−n−1] = αn is a positive integer.
(2) For any given n ∈ N,

αn = [U−n : U−n−1]
(∗)
≥ [φ−1U−n : φ−1U−n−1]

(∗∗)
≥ [φ−1U−n ∩ U : φ−1U−n−1 ∩ U ] = αn+1 ,

where (∗) and (∗∗) use Lemma 2.6(5) and (3), respectively.
(3) follows by (2).

In the following definition we recall some useful subgroups, namely U+ and Un (for n ∈ N), of a
given U ∈ B(G), as introduced in [22]. The subgroups of the form U+ will be crucial for the Limit
Free Formula given in Proposition 3.9 (in this respect, see also Remark 3.8) and for the connection
between topological entropy and scale given in Section 4, as we briefly discussed in the Introduction.

Definition 2.11. [22] Let G be a t.d.l.c. group, φ ∈ End(G) and U ∈ B(G). Define Un inductively as
follows:

– U0 = U ;

– Un+1 = U ∩ φUn, for all n ∈ N.

Let also U+ =
⋂
n∈N Un.

Notice that Un ≥ Un+1 ≥ U+ and Un is compact for all n ∈ N; similarly, U+ is compact.

Lemma 2.12. [22, Proposition 1, Lemma 2] Let G be a t.d.l.c. group, φ ∈ End(G) and U ∈ B(G).
The following properties hold:

(1) Un = {u ∈ U : ∃v ∈ U with φjv ∈ U for j ∈ {0, 1, . . . , n} and u = φnv} = φnU−n for all n ∈ N;

(2) U+ = {u ∈ U : ∃(un)n∈N ∈ UN such that φ(un+1) = un, for n ≥ 0, and u0 = u};

(3) U+ = U ∩ φU+ ≤ φU+;

(4) φkU−n = Uk ∩ Uk−n for all k ≤ n in N (in particular, φnU−n = Un).

Since U+ is compact, so is φU+. Furthermore, since U is open, U+ = U ∩ φU+ is open in φU+.
This shows that the index [φU+ : U+] is finite .

Lemma 2.13. Let G be a t.d.l.c. group, φ ∈ End(G) and U ∈ B(G). Then:

(1) U−n+1 ∩ φ−nUn = U−n;

(2) [φUn : Un+1] = [U−n : U−n−1].

Proof. (1) It is clear that U−n ≤ U−n+1, while U−n ≤ φ−nUn by Lemma 2.12(4). On the other hand,
φ−nUn ≤ φ−nU , so that U−n+1 ∩ φ−nUn ≤ U−n+1 ∩ φ−nU = U−n.

(2) Consider the map

Φ : U−n/U−n−1 → φUn/Un+1 such that Φ(xU−n−1) = φn+1xUn+1 .

Then Φ is well-defined and surjective by Lemma 2.12(4). Let us prove that it is injective. Indeed,
choose x, y ∈ U−n such that φn+1xUn+1 = φn+1yUn+1. This means that φn+1(y−1x) ∈ Un+1, so
y−1x ∈ U−n ∩ φ−n−1Un+1. By part (1), U−n ∩ φ−n−1Un+1 = U−n−1, so that xU−n−1 = yU−n−1,
concluding the proof.
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We conclude the section with two basic lemmas that will be useful in the next section.

Lemma 2.14. Let G be a t.d.l.c. group, φ ∈ End(G), U ∈ B(G) and H a subgroup of G with H ≤ U .

(1) If φH ≤ H, then H ≤ U−n for every n ∈ N; in particular, H ≤ U−.

(2) If H ≤ φH, then H ≤ Un for every n ∈ N; in particular, H ≤ U+.

Proof. (1) Since φH ≤ H, it follows that H ≤ φ−1H and by induction one can verify that H ≤ φ−nH
for every n ∈ N. We proceed by induction to prove that H ≤ U−n for every n ∈ N. The case n = 0 is
the assumption. Assume that H ≤ U−n for some n ∈ N. Then H ≤ U−n ∩ φ−n−1(U) = U−n−1. This
concludes the proof.

(2) We proceed by induction. For n = 0 we find the hypothesis. If H ≤ Un for some n ∈ N, then
H ≤ φH ≤ φUn, so H ≤ U ∩ φUn = Un+1.

Lemma 2.15. Let G be a t.d.l.c. group and φ ∈ End(G). Assume that H is a subgroup of G that
normalizes a given U ∈ B(G).

(1) If H is φ-invariant, then H normalizes U−n for all n ∈ N. Consequently, H normalizes U−.

(2) If H is φ-stable, then H normalizes Un for all n ∈ N. Consequently, H normalizes U+.

Proof. If {Li}i∈I is a family of subgroups of G such that H normalizes Li for all i ∈ I, then H
normalizes

⋂
i∈I Li. Thus, it is enough to prove the first half of statements (1) and (2), as the second

part follows by this observation.

(1) We proceed by induction on n ∈ N. For n = 0 there is nothing to prove. Given n ∈ N such that H
normalizes U−n, let us show that H normalizes φ−1U−n. Indeed, given x ∈ H, since H is φ-invariant,
φ(x−1φ−1U−nx) ⊆ φ(x)−1U−nφ(x) = U−n, and so x−1φ−1U−nx ⊆ φ−1U−n. Thus, H normalizes both
φ−1U−n and U , so H normalizes U−n−1 = U ∩ φ−1U−n.

(2) We proceed by induction on n ∈ N. For n = 0 there is nothing to prove. Let n ∈ N and assume
that H normalizes Un. We verify that H normalizes φUn. Indeed, given x ∈ H there exists z ∈ H
such that x = φ(z), since H is φ-stable. Thus, x−1φUnx = φ(z−1Unz) = φUn. Thus, H normalizes
both φUn and U , so H normalizes Un+1 = U ∩ φUn.

3 Topological entropy in t.d.l.c. groups

3.1 Entropy in uniform spaces

We first recall the version of Hood’s definition of topological entropy that fits well for locally compact
uniform spaces and then specialize it to the context of t.d.l.c. groups.

Let (X,U) be a locally compact uniform space and let φ : X → X be a uniformly continuous
self-map. For V ∈ U , x ∈ X and n ∈ N>0, let

Dn(φ, V, x) :=
n−1⋂
k=0

φ−k(V (φkx)) .

Let B a fundamental system of entourages of U , and recall that a Borel measure m on X is φ-
homogeneous if it satisfies the following conditions:

(Ho.1) m(K) <∞ for any compact subset K ⊆ X;

(Ho.2) m(K0) > 0 for some compact subset K0 ⊆ X;
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(Ho.3) for all U ∈ B there exist V ∈ B and c ∈ R>0 such that, for all n ∈ N>0 and all x, y ∈ X,

m(Dn(φ, V, y)) ≤ c ·m(Dn(φ,U, x)) .

Suppose that there is a φ-homogeneous measure m on X. For all U ∈ U and x ∈ X, define

k(φ,U, x) := lim sup
n→∞

− logm(Dn+1(φ,U, x))

n
. (3.1)

The topological entropy of φ can be defined by the following formula: for a given x ∈ X,

htop(φ) := sup{k(φ,U, x) : U ∈ B} , (3.2)

It follows from (Ho.3) that the value htop(φ) does not depend on the choice of x ∈ X.

Remark 3.1. (1) The definition of topological entropy given by Hood in [10], following closely the
ideas of Bowen in [3], applies to any uniformly continuous self-map φ : X → X of a uniform
space (X,U). For the general definition one needs to introduce the concepts of separated and
spanning subsets; for this formalism we refer to [10, Section 2] or, in the metric case, to [3,
Section 1]. Notice also that the definition of φ-homogeneous measure given by Hood slightly differs
from ours, but they are easily seen to be equivalent. Following the proof of [3, Proposition 7] with
the obvious changes, one can show that the definition in (3.2), when applicable, gives the same
notion of entropy as the one defined by means of separated or spanning subsets.

(2) The definition of topological entropy given in (3.2) applies to the case when X is locally compact
and there exists a φ-homogeneous measure on X. The local compactness plays a very important
role, in fact, we want htop to take values in R≥0 ∪ {+∞}. On the other hand, if m(Dn+1(φ,U, x))
is infinite for all n ∈ N, then k(φ,U, x) is −∞. The hypothesis that X is locally compact ensures
that there exists U ∈ U such that U(x) is contained in a compact, so that m(Dn(φ,U, x)) is finite
for all n ∈ N, showing that k(φ,U, x) is not −∞ and belongs to R≥0.

Lemma 3.2. In the above notation, the following properties hold true:

(1) k(φ,U2, x) ≤ k(φ,U1, x), for all x ∈ X, and U1 ⊆ U2 in B;

(2) htop(φ) = sup{k(φ,U, x) : U ∈ B′}, whenever B′ ⊆ B is a smaller fundamental system of entourages
of U .

Let us now return to our setting, that is, let G be a t.d.l.c. group and φ ∈ End(G). Recall from §2.1
that V = {UK : K ∈ B(G)}, where UK = {(x, y) : y−1x ∈ K}, is a fundamental system of entourages
for the left uniformity U on G. Furthermore, for all K ∈ B(G) and x ∈ G, it is straightforward to
prove that, for every K ∈ B(G), every x ∈ G and n ∈ N,

Dn+1(φ,UK , x) = xK−n . (3.3)

The left Haar measure µ on G is φ-homogeneous. Indeed, it clearly satisfies (Ho.1) and (Ho.2).
Moreover, µ satisfies (Ho.3) with B = V, since, by the left invariance of µ and by (3.3), for every
K ∈ B(G), every x ∈ G and n ∈ N,

µ(Dn+1(φ,UK , x)) = µ(K−n) ;

hence, in (Ho.3) for U ∈ V it suffices to take V = U and c = 1.
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Now, for K ∈ B(G), by (3.3) with x = 1, we have

Htop(φ,K) := k(φ,UK , 1) = lim sup
n→∞

− logµ(K−n)

n
, (3.4)

and so, as it was noticed in [7],

htop(φ) = sup{Htop(φ,K) : K ∈ B(G)} .

We consider now the topological entropy of φ̄ : G/H → G/H, where H is a compact φ-invariant
subgroup of G. Let π : G → G/H be the canonical projection. Recall from §2.1 that V̄ = {ŪK :
K ∈ B(G)}, where ŪK = {(xH, yH) : y−1x ∈ K}, is a fundamental system of entourages of the
left uniformity Ū of G/H. In fact, a consequence Lemma 2.5(3) is that the smaller set {ŪK : K ∈
B(G,H)} ⊆ V̄ is a fundamental system of entourages. By Lemma 2.1, there is a left invariant measure
µ̄ on G/H which satisfies (Ho.1) and (Ho.2). Proceeding as in the case of µ and G, and noticing that
for every K ∈ B(G,H), every x ∈ G and n ∈ N,

Dn+1(φ̄, ŪK , xH) = λx(πK)−n , (3.5)

the left invariance of µ̄ easily gives (Ho.3); thus, µ̄ is φ̄-homogenous.
Now, for K ∈ B(G,H), by (3.5) with x = 1, we have

Htop(φ̄, πK) := k(φ̄, ŪK , H) = lim sup
n→∞

− log µ̄((πK)−n)

n
. (3.6)

Thus, the topological entropy of φ̄ is

htop(φ̄) = sup{Htop(φ̄, πK) : K ∈ B(G,H)} .

In Proposition 3.4 we are going to restate the formulas (3.4) and (3.6) without making recourse to
the measure. We need first the following lemma:

Lemma 3.3. Let G be a t.d.l.c. group, φ ∈ End(G), H a closed φ-invariant subgroup of G and
π : G → G/H the canonical projection. If K is a subgroup of G containing H and n ∈ N, then
π(K−n) = (πK)−n.

Proof. Let xH ∈ G/H. Then, xH ∈ (πK)−n = πK ∩ φ̄−1(πK) ∩ . . . ∩ φ̄−n(πK) if and only if
φi(x)H = φ̄i(xH) ∈ πK = K/H for all i = 0, . . . , n. This means that φi(x) ∈ K for all i = 0, . . . , n,
that is, x ∈ K−n; equivalently, since H ≤ K, πx = xH ∈ π(K−n).

The next proposition shows in particular that the superior limits in (3.4) and (3.6) are limits; item
(1) was already proved in [5, Proposition 4.5.3]. Let logN>0 = {log n : n ∈ N>0}.

Proposition 3.4. Let G be a t.d.l.c. group, φ ∈ End(G) and H a compact φ-invariant subgroup of G.
Then:

(1) Htop(φ,K) = limn→∞
1
n log[K : K−n] ∈ logN>0, for all K ∈ B(G);

(2) Htop(φ̄, πK) = Htop(φ,K) = limn→∞
1
n log[K : K−n] ∈ logN>0, for all K ∈ B(G,H).

Proof. (1) Let K ∈ B(G). By (2.1), µ(K) = [K : K−n]µ(K−n) for every n ∈ N, and hence by (3.4)

Htop(φ,K) = lim sup
n→∞

− logµ(K)− log[K : K−n]

n
= lim sup

n→∞

log[K : K−n]

n
.
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For all n ∈ N, let cn = [K : K−n] and αn = [K−n : K−n−1]. By Lemma 2.10(3), the sequence
(αn)n∈N stabilizes, that is, there exists n ∈ N such that αn = αm =: α for all n ≥ m. Therefore, for
every n ≥ m, by Lemma 2.10(1) we have that α = cn+1/cn, hence cn = αn−mcm. So, the sequence
(log cn/n)N converges to logα, and by the first part of the proof we conclude that

Htop(φ,K) = lim
n→∞

log[K : K−n]

n
= logα . (3.7)

(2) Let K ∈ B(G,H). By Lemma 2.14(1), H ≤ K−n for every n ∈ N. Using (2.2) and Lemma 3.3, we
obtain that

µ̄(πK) = [K : K−n]µ̄((πK)−n)

for every n ∈ N, so by (3.6)

Htop(φ̄, πK) = lim sup
n→∞

− log µ̄(πK)− log[K : K−n]

n
= lim sup

n→∞

log[K : K−n]

n
;

in particular, Htop(φ̄, πK) = Htop(φ,K).

As a consequence, we obtain the monotonicity of the topological entropy under taking quotients
over compact φ-invariant subgroups:

htop(φ) = sup{Htop(φ,K) : K ∈ B(G)} ≥ sup{Htop(φ,K) : K ∈ B(G,H)} = htop(φ̄) .

Similarly, the topological entropy is monotone under taking closed (not necessarily compact) φ-
invariant subgroups:

Lemma 3.5. Let G be a t.d.l.c. group, φ ∈ End(G) and G′ a closed φ-invariant subgroup of G. Then:

(1) for U ∈ B(G) and n ∈ N, U−n ∩G′ = (U ∩G′)−n;

(2) htop(φ) ≥ htop(φ �G′).

Proof. (1) Clearly, (U ∩ G′)−n ≤ U−n ∩ G′. On the other hand, let x ∈ U−n ∩ G′, that is, φi(x) ∈ U
for all i = 0, . . . , n and x ∈ G′. Since G′ is φ-invariant, φi(x) ∈ G′ for all i ∈ N, so that φi(x) ∈ U ∩G′
for all i = 0, . . . , n. Hence, x ∈ (U ∩G′)−n.
(2) By Corollary 2.5(1), B(G′) = {U ∩ G′ : U ∈ B(G)}. By item (1), Lemma 2.6(2) and Proposition
3.4(2),

Htop(φ �G′ , U ∩G′) = lim
n→∞

[U ∩G′ : (U ∩G′)−n]

n
= lim

n→∞

[U ∩G′ : U−n ∩G′]
n

≤ lim
n→∞

[U : U−n]

n
= Htop(φ,U) ,

for all U ∈ B(G). Hence,

htop(φ) = sup{Htop(φ,U) : U ∈ B(G)} ≥ sup{Htop(φ �G′ , U) : U ∈ B(G′)} = htop(φ �G′) .

Let us state the following useful properties of the topological entropy in the case of groups. Notice
that these are direct consequences of the more general Lemma 3.2.

Lemma 3.6. Let G be a t.d.l.c. group, φ ∈ End(G), H a compact φ-invariant subgroup of G and
φ̄ : G/H → G/H the map induced by φ.

(1) If U, V ∈ B(G) and U ≤ V , then Htop(φ, V ) ≤ Htop(φ,U).

13



(2) If B ⊆ B(G) is a base for the neighborhoods of 1 in G, then htop(φ) = sup{Htop(φ,U) : U ∈ B}.

(3) If B ⊆ B(G,H) is a base for the neighborhoods of H in G, then htop(φ̄) = sup{Htop(φ,U) : U ∈ B}.

The following corollary follows from Lemma 3.6(2,3) and Corollary 2.3(1,2).

Corollary 3.7. Let G be a t.d.l.c. group, φ ∈ End(G), H a compact φ-invariant subgroup of G and
φ̄ : G/H → G/H the map induced by φ. Then htop(φ) = sup{Htop(φ,U) : U ∈ B(G), H ≤ NG(U)}
and htop(φ̄) = sup{Htop(φ,U) : U ∈ B(G,H), H ≤ NG(U)}.

3.2 The Limit Free Formula

The aim of this subsection is to prove in Proposition 3.9 a formula for the computation of the topological
entropy avoiding the limit in the definition (hence, the name Limit Free Formula).

Remark 3.8. When φ : G → G is a topological automorphism of a t.d.l.c. group G, one of the
main ingredients used in [8] was the full cotrajectory C(φ−1, U) =

⋂∞
n=0 φ

nU of the inverse φ−1 of φ.
When φ is a continuous endomorphism we need to substitute C(φ−1, U) and Cn(φ−1, U) by the smaller
subgroups U+ and Un (see Definition 2.11).

Proposition 3.9. Let G be a t.d.l.c. group, φ ∈ End(G) and U ∈ B(G). Then

Htop(φ,U) = log[φU+ : U+] .

Proof. By Lemma 2.10 there exist n0 ∈ N and α > 0 such that αn = α for any positive integer n > n0,
and Htop(φ,U) = logα by (3.7). Hence, it suffices to prove that

log[φU+ : U+] = logα . (3.8)

Since U+ = U ∩ φU+ by Lemma 2.12(3), and using Lemma 2.6(2),

[φU+ : U+] = [φU+ : U ∩ φU+] = [φU+ · U : U ] .

Now, both U and φU are compact, so φU · U is compact as well. Thus, [φU · U : U ] is finite, U being
open. Consequently, the sequence {[φUn · U : U ] : n ∈ N} is a non-increasing sequence of positive
integers bounded above by [φU0 · U : U ] = [φU · U : U ]. Therefore, this sequence stabilizes, so there
exists n1 ∈ N such that

φUn · U = φUn1 · U for all n ≥ n1. (3.9)

Thus, for all m ≥ n1,

φUm · U =
∞⋂
n=0

(φUn · U) =

( ∞⋂
n=0

φUn

)
· U = φ

( ∞⋂
n=0

Un

)
· U = φU+ · U ,

where the above equalities follow respectively by (3.9), [8, Lemma 2.3], and [22, Lemma 1]. Choose
now a positive integer n ≥ max{n0, n1}, then by Lemma 2.6(2),

[φU+ : U+] = [φU+ : U ∩ φU+] = [φU+ · U : U ] = [φUn · U : U ] =

= [φUn : U ∩ φUn] = [φUn : Un+1] = [U−n : U−n−1] = α ,

where the penultimate equality comes from Lemma 2.13(2). This concludes the proof of (3.8).

The following corollary is an immediate consequence of the above proposition:
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Corollary 3.10. Let G be a t.d.l.c. group, φ ∈ End(G) and let H be a compact φ-invariant subgroup
of G. Then

htop(φ̄) = sup{log[φU+ : U+] : U ∈ B(G,H)} ,
where φ̄ : G/H → G/H is the map induced by φ.

If H is φ-stable, the above formula can be improved as follows:

Proposition 3.11. Let G be a t.d.l.c. group, φ ∈ End(G) and H a compact φ-stable subgroup of G.
Then

htop(φ̄) = sup{log[φM : M ] : H ≤M ≤ G, M compact, M ≤ φM, [φM : M ] <∞} =: s ,

where φ̄ : G/H → G/H is the map induced by φ.

Proof. By Corollary 3.10, htop(φ̄) = sup{log[φU+ : U+] : U ∈ B(G,H)}. Since H is φ-stable, U+

contains H for every U ∈ B(G) by Lemma 2.14(2); moreover, U+ ≤ φU+ by Lemma 2.12(3) and
[φU+ : U+] is finite. Thus, htop(φ̄) ≤ s.

To prove the converse inequality, let M be a compact subgroup of G such that H ≤M ≤ φM and
[φM : M ] is finite. Since M is closed in φM and [φM : M ] is finite, M is open in φM . Consequently,
there exists an open subset U of G such that φM ∩ U = M . By Corollary 2.3(2), there exists
K ∈ B(G) such that M ≤ NG(K) (so MK ∈ B(G,M)) and M ≤ MK ⊆ U . By Lemma 2.2 there
exists N ∈ B(G) such that N ≤ K and such that φM normalizes K. Since also M normalizes N , we
have that MN ∈ B(G). Moreover, M = φM ∩ U ⊇ φM ∩MN ≥ M , hence M = φM ∩MN . By
Lemma 2.14(2), M ≤ (MN)+, and so

[φ(MN)+ : (MN)+] = [φ(MN)+ : MN ∩ φ(MN)+] ≥ [φM : MN ∩ φM ] = [φM : M ] ,

where the first equality holds since (MN)+ = MN ∩φ(MN)+ by Lemma 2.12(3), while the inequality
uses part (3) of Lemma 2.6 as follows:

[φ(MN)+ : MN ∩ φ(MN)+] ≥ [φ(MN)+ ∩ φM : MN ∩ φ(MN)+ ∩ φM ] = [φM : MN ∩ φM ] .

By the arbitrariness of M we conclude that s ≤ htop(φ̄).

By Corollary 3.7 and Proposition 3.9, and since H ≤ NG(U) implies H ≤ NG(U+) by Lemma
2.15(2), we have htop(φ̄) = sup{log[φU+ : U+] : U ∈ B(G), H ≤ NG(U+)}. So, Proposition 3.11 with
H = {1} gives

htop(φ) = sup{log[φM : M ] : M ≤ φM ≤ G, M compact, [φM : M ] <∞, H ≤ NG(M)} . (3.10)

3.3 Proof of the Addition Theorem

This section is devoted to the proof of Theorem 1.2, that we divide into four lemmas. In Lemmas 3.12
and 3.13 we handle the case where H is a compact (not necessarily normal) subgroup of the t.d.l.c.
group G. Let us remark that the proof of Lemma 3.12, establishing the inequality ≥ in (∗) (see the
statement of Theorem 1.2), is almost self-contained. On the other hand, Lemma 3.13, proving the
converse inequality, relies on Proposition 3.11, which itself relies on the Limit Free Formula and so,
indirectly, on most of the theory developed in Section 2 and the first part of Section 3. Analogous
observations can be done for Lemmas 3.14 and 3.15 respectively, in which we handle the case when H
is a normal subgroup.

Let us now assume that H is a compact subgroup of G, let φ ∈ End(G), and let H be φ-invariant.
Then by Lemma 2.5(1) and Lemma 3.6(2,3),

htop(φ �H) = sup{Htop(φ,U ∩H) : U ∈ B(G)} and htop(φ̄) = sup{Htop(φ,U) : U ∈ B(G,H)} .
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Lemma 3.12. Let G be a t.d.l.c. group, φ ∈ End(G) and H a compact φ-invariant subgroup of G.
Then

htop(φ) ≥ htop(φ �H) + htop(φ̄) ,

where φ̄ : G/H → G/H denotes the endomorphism induced by φ.

Proof. Choose arbitrarily U1 ∈ B(G) and U2 ∈ B(G,H). By Corollary 2.3(1) there exists U ∈ B(G)
such that U ≤ U1 ∩ U2 and H ≤ NG(U) (in particular, UH ∈ B(G,H)). Now, given n ∈ N, since H
normalizes U−n by Lemma 2.15(1), (U ∩H)U−n is a subgroup of G, and Lemma 2.6(1) yields

[U : U−n] = [U : (U ∩H)U−n] · [(U ∩H)U−n : U−n] .

By Lemma 3.5(1), U−n ∩H = (U ∩H)−n and so, using Lemma 2.6(2) for the first equality,

[(U ∩H)U−n : U−n] = [U ∩H : U−n ∩H] = [U ∩H : (U ∩H)−n] .

Let π : G→ G/H be the canonical projection. By Lemma 2.6(4),

[U : (U ∩H)U−n] ≥ [UH : H(U ∩H)U−n] = [UH : U−nH] ≥ [UH : (UH)−n].

Hence, [U : U−n] ≥ [U∩H : (U∩H)−n] · [UH : (UH)−n]. Taking logarithms, dividing by n and passing
to the limit for n → ∞, by Proposition 3.4(1,2) and applying Lemma 3.6(1) for the first inequality,
since π(UH) = πU , we obtain

Htop(φ �H , U1) +Htop(φ̄, πU2) ≤ Htop(φ �H , U) +Htop(φ̄, πU) ≤ Htop(φ,U) ≤ htop(φ) .

By the arbitrariness of U1 and U2 we can conclude.

Lemma 3.13. Let G be a t.d.l.c. group, φ ∈ End(G) and H a compact φ-stable subgroup of G such
that ker(φ) ≤ H. Then

htop(φ) ≤ htop(φ �H) + htop(φ̄) ,

where φ̄ : G/H → G/H is the map induced by φ.

Proof. Let π : G → G/H be the canonical projection and choose a compact subgroup M of G such
that M ≤ φM , [φM : M ] <∞, and such that H normalizes M . Applying Lemma 2.8 with B = φM ,
B′ = M and A = φM ∩H, we obtain

[φM : M ] = [φM ∩H : M ∩H] · [φM : (φM ∩H)M ] . (3.11)

By modularity, since M ≤ φM , we get (φM ∩ H)M = φM ∩ HM ; moreover, φ(MH) = (φM)H =
(φM)HM , so by Lemma 2.6(2)

[φM : (φM ∩H)M ] = [φM : φM ∩HM ] = [(φM)HM : HM ] = [φ(HM) : HM ] .

Since HM is a compact subgroup of G containing H such that HM ≤ φ(HM), and [φ(HM) : HM ] <
∞ by (3.11) and by hypothesis, it follows that log[φ(MH) : MH] ≤ htop(φ̄) by Proposition 3.11.
On the other hand, since ker(φ) ≤ H and H = φH, φ(M ∩ H) = φM ∩ φH = φM ∩ H. Thus,
[φM∩H : M∩H] = [φ(M∩H) : M∩H] is finite by (3.11) and by hypothesis, where M∩H is a compact
subgroup of H such that M ∩H ≤ φ(M ∩H). By Proposition 3.11, log[φM ∩H : M ∩H] ≤ htop(φ �H).
Thus, we have proved that

log[φM : M ] ≤ htop(φ �H) + htop(φ̄)

for any compact subgroup M of G such that M ≤ φM , [φM : M ] < ∞, and such that H normalizes
M . So we can conclude by (3.10).
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In Lemmas 3.14 and 3.15 we handle the case when H is a closed normal subgroup of the t.d.l.c.
group G. Recall that in this setting, if φ ∈ End(G) and H is φ-invariant, then by Lemma 3.6(2) and
Lemma 2.5(1,2),

htop(φ �H) = sup{Htop(φ,U ∩H) : U ∈ B(G)} and htop(φ̄) = sup{Htop(φ̄, πU) : U ∈ B(G)} .

Lemma 3.14. Let G be a t.d.l.c. group, φ ∈ End(G) and H a closed φ-invariant normal subgroup of
G. Then

htop(φ) ≥ htop(φ �H) + htop(φ̄) ,

where φ̄ : G/H → G/H denotes the endomorphism induced by φ.

Proof. Let π : G→ G/H be the canonical projection, let U1, U2 ∈ B(G) and U = U1 ∩ U2. We claim
that

Htop(φ,U) ≥ Htop(φ �H , U ∩H) +Htop(φ̄, πU) ≥ Htop(φ �H , U1 ∩H) +Htop(φ̄, πU2) . (3.12)

By the arbitrariness of U1 and U2, this implies that htop(φ) ≥ htop(φ �H) + htop(φ̄). Thus, we have
just to check (3.12). In fact, the second inequality is clear by Lemma 3.6(1), while for the first one, we
proceed as follows. Since H � G, also U ∩H � U , so that (U ∩H)U−n is a subgroup of U containing
U−n, for all n ∈ N. Thus, Lemma 2.6(1) yields

[U : U−n] = [U : (U ∩H)U−n] · [(U ∩H)U−n : U−n] .

Proceeding as in the second part of the proof of Lemma 3.12, applying Lemma 2.6(6) and Lemma 3.3
we get

[U : U−n] ≥ [U ∩H : (U ∩H)−n] · [UH : (UH)−n] = [U ∩H : (U ∩H)−n] · [πU : (πU)−n] .

Taking logarithms, dividing by n and passing to the limit for n→∞, by Proposition 3.4(1) we obtain
(3.12).

Lemma 3.15. Let G be a t.d.l.c. group, φ ∈ End(G) and H a closed φ-stable normal subgroup of G
such that ker(φ) ≤ H. Then

htop(φ) ≤ htop(φ �H) + htop(φ̄) ,

where φ̄ : G/H → G/H denotes the continuous endomorphism induced by φ.

Proof. The proof is analogous to the proof of Lemma 3.13, with the further simplification that there
is no need to choose an M which is normalized by H since, being H normal, HM is a subgroup of
G.

4 Topological entropy vs scale

4.1 Reminders on scale

We recall that for a continuous endomorphism φ : G→ G of a t.d.l.c. group G, the scale of φ is defined
in [22] by

s(φ) := min{[φU : φU ∩ U ] : U ∈ B(G)} .

Moreover, U ∈ B(G) is said to be minimizing if s(φ) = [φU : U ∩ φU ]. The following lemma is a
consequence of some results proved in [22]:
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Lemma 4.1. Let G be a t.d.l.c. group and let φ ∈ End(G). Let also

M(G,φ) := {U ∈ B(G) : U minimizing} and nub(φ) :=
⋂
M(G,φ) .

Then, nub(φ) is a compact φ-stable subgroup of G, and M(G,φ) is a base for the neighborhoods of
nub(φ) in G.

Proof. The fact that nub(φ) is compact and φ-stable is proved in [22, Section 9]. Furthermore, by
[22, Proposition 12],M(G,φ) is closed under finite intersections, in particular it is downward directed
with respect to inclusion, and so the conclusion follows by Lemma 2.4.

One of the main results of [22], extending its counterpart for topological automorphisms from [21],
is the following characterization of minimizing subgroups (see (4.1) below).

Definition 4.2. Let G be a t.d.l.c. group and φ ∈ End(G). A U ∈ B(G) is said to be:

– tidy above if U = U+U−;

– tidy below if U++ :=
⋃
n∈N φ

nU+ is closed and the sequence {[φn+1U+ : φnU+]}n∈N is constant;

– tidy if U is both tidy above and tidy below.

Theorem 7.7 in [22] states that

U ∈ B(G) is minimizing if and only if U is tidy. (4.1)

We will use the following properties of tidy subgroups, note that (2) follows from (1) and (4.1).

Lemma 4.3. [22] Let G be a t.d.l.c. group, φ ∈ End(G) and U ∈ B(G).

(1) If U is tidy above, then [φU+ : U+] = [φU : U ∩ φU ].

(2) If U is tidy, then s(φ) = [φU+ : U+].

4.2 Reduction to surjective endomorphisms and automorphisms

In this subsection we recall the definition of the following two subgroups from [22], and how they can
be used to reduce the computation of the scale and the topological entropy respectively to topological
automorphisms and to surjective continuous endomorphisms.

Definition 4.4. Let G be a t.d.l.c. group and φ ∈ End(G). Define:

–
←

par(φ) = {x ∈ G : there exists (xn)n∈N ⊆ G bounded, x0 = x and φ(xn+1) = xn, for all n ∈ N>0};

– bik(φ) = ker∞(φ) ∩ ←
par(φ), where ker∞(φ) =

⋃∞
n=1 ker(φn).

It is shown in [22, Section 9] that bik(φ) ≤ nub(φ) ≤ ←
par(φ), and in particular,

ker(φ) ∩ ←
par(φ) ≤ nub(φ) . (4.2)

Moreover,
←

par(φ) is a closed φ-stable subgroup of G such that

U++ ≤
←

par(φ) for all U ∈ B(G) . (4.3)

Similarly to nub(φ), also bik(φ) is a compact φ-stable subgroup of G, but bik(φ) is normal in
←

par(φ).

For all this section, for G a t.d.l.c. group and φ ∈ End(G), let

ψ := φ � ←
par(φ)

:
←

par(φ)→ ←
par(φ) and ψ̃ :

←
par(φ)/bik(φ)→ ←

par(φ)/bik(φ) ,

where ψ̃ is the map induced by ψ. Let also π :
←

par(φ)→ ←
par(φ)/bik(φ) be the canonical projection.
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Lemma 4.5. Let G be a t.d.l.c. group and φ ∈ End(G). Then:

(1) ψ is a surjective continuous endomorphism and ψ̃ is a topological automorphism;

(2) if U ∈ B(G) and V = U ∩ ←par(φ) ∈ B(
←

par(φ)), then V+ = U+ and V− = U−∩
←

par(φ). In particular,
if U is tidy above for φ, then V is tidy above for ψ;

(3) s(ψ) = s(φ), and {U ∩ ←
par(φ) : U ∈ M(G,φ)} ⊆ M(

←
par(φ), ψ) is cofinal with respect to ⊇ (i.e.,

for every V ∈M(
←

par(φ), ψ) there exists U ∈M(G,φ) such that U ∩ ←
par(φ) ≤ V );

(4) s(ψ̃) = s(ψ), and M(
←

par(φ)/bik(φ), ψ̃) = {πU : U ∈M(
←

par(φ), ψ)};

(5) nub(φ) = nub(ψ) and π(nub(ψ)) = nub(ψ̃).

Proof. (1) is proved in [22, Section 9].

(2) Clearly, V+ ≤ U+. Since U+ ≤
←

par(φ) by (4.3), it follows that U+ ≤ U ∩
←

par(φ) = V . Since U+ ≤
φU+ by Lemma 2.12(3), then Lemma 2.14(2) yields that U+ ≤ V+, and so U+ = V+. Furthermore,

U− ∩
←

par(φ) =
⋂
n∈N φ

−nU ∩ ←
par(φ) =

⋂
n∈N ψ

−nV = V−.
For the last part of the statement, assume that U = U+U−, then by modularity

V = U ∩ ←
par(φ) = (U+U−) ∩ ←

par(φ) = U+(U− ∩
←

par(φ)) = V+V− ,

showing that V is tidy above for ψ.

(3) Let U ∈M(G,φ) and let V = U ∩ ←par(φ). By part (2), V is tidy above for ψ and V+ = U+, so by
Lemma 4.3(1,2),

s(φ) = [φU+ : U+] = [ψV+ : V+] ≥ s(ψ) , (4.4)

showing that s(φ) ≥ s(ψ).

Let now V ∈M(
←

par(φ), ψ) and in view of Corollary 2.5(1) choose U ′ ∈ B(G) such that V = U ′∩ ←par(φ).

By [22, Proposition 3.9], there exists n ∈ N such that U := (U ′)−n is tidy above for φ. Since
←

par(φ)

is φ-stable, we have that U ∩ ←
par(φ) = V−n, where V−n is tidy for ψ by [22, Proposition 7.10]. Since

(V−n)+ = U+ by item (2), and applying Lemma 4.3(1,2), it follows that

s(ψ) = [ψ(V−n)+ : (V−n)+] = [φU+ : U+] = [φU : U ∩ φU ] ≥ s(φ) ≥ s(ψ) .

Thus, s(ψ) = s(φ) and U is tidy for φ (note that U ∩ ←
par(φ) ≤ V ). The inclusion M(

←
par(φ), ψ) ⊇

{U ∩ ←
par(φ) : U ∈M(G,φ)} follows now from (4.4).

(4) Let U ∈ M(
←

par(φ), ψ). Then bik(φ) = bik(ψ) ≤ nub(ψ) ≤ U , so πU ∈ B(
←

par(φ)/bik(φ)) and, by
Lemma 2.6(6), s(ψ) = [ψU : U ∩ ψU ] = [πψU : π(U ∩ ψU)] = [ψ̃πU : πU ∩ ψ̃πU ] ≥ s(ψ̃). To prove

the converse inequality, let W ∈ M(
←

par(φ)/bik(φ), ψ̃). Since bik(φ) �
←

par(φ) and bik(φ) is compact,

π−1W ∈ B(
←

par(φ)). Moreover, by Lemma 2.6(5) and since bik(φ) is φ-stable,

s(ψ̃) = [ψ̃W : W ∩ ψ̃W ] = [π−1(ψ̃W ) : π−1(W ∩ ψ̃W )] = [ψ(π−1W ) : π−1W ∩ ψ(π−1W )] ≥ s(ψ) .

It is now clear from the above proof that M(
←

par(φ)/bik(φ), ψ̃) = {πU : U ∈M(
←

par(φ), ψ)}.
(5) follows from parts (3) and (4) using that nub(φ) is contained in

←
par(φ).

As a consequence of the above lemma, we can define nub(φ) without using the scale or minimizing
subgroups. In fact, when φ is a topological automorphism, Willis in [19] characterized nub(φ) as
the largest compact φ-stable subgroup on which φ acts ergodically; equivalently, it is the largest
compact φ-stable subgroup with no proper relatively open φ-stable subgroups. Using this, we obtain
the following
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Corollary 4.6. Let G be a t.d.l.c. group and φ ∈ End(φ). Then nub(φ) is the largest compact φ-stable
subgroup of G which contains bik(φ) and such that, if A ≤ nub(φ) is a relatively open φ-stable subgroup
containing bik(φ), then A = nub(φ).

Proof. We have already noticed that nub(φ) is a compact φ-stable subgroup of G which contains
bik(φ). Furthermore, given a relatively open φ-stable subgroup bik(φ) ≤ A ≤ nub(φ), then πA is
a relatively open ψ̃-stable subgroup of π(nub(φ)) = π(nub(ψ)) = nub(ψ̃) (see Lemma 4.5), where

π :
←

par(φ) → ←
par(φ)/bik(φ) is the natural projection. By [19, Corollary 4.7], πA = nub(ψ̃), so that

A = nub(φ) as desired.
It remains to show that nub(φ) is the largest subgroup with these properties. Indeed, given

any compact φ-stable subgroup K of G, then K ≤ ←
par(φ). In fact, for every x ∈ K there exists

(xn)n∈N ⊆ K, such that x0 = x and φ(xn+1) = xn for all n ∈ N (use that φK = K); moreover, the
closure of (xn)n∈N is compact, being K compact. Suppose also that bik(φ) ≤ K and that, given a
relatively open φ-stable subgroup bik(φ) ≤ A ≤ K, then A = K. This means that πK is a compact

ψ̃-stable subgroup of
←

par(φ)/bik(φ) with no proper relatively open ψ̃-stable subgroups. As nub(ψ̃)

is the largest subgroup of
←

par(φ)/bik(φ) with this property, πK ≤ nub(ψ̃) = π(nub(φ)), and so
K ≤ nub(φ).

We conclude this subsection by giving a counterpart of Lemma 4.5 for the topological entropy:

Lemma 4.7. Let G be a t.d.l.c. group and φ ∈ End(G). Then:

(1) htop(φ) = htop(ψ);

(2) htop(φ̄) = htop(ψ̄), where φ̄ and ψ̄ are the maps induced by φ and ψ respectively on G/nub(φ) and
←

par(φ)/nub(φ).

Proof. We verify just (2), as the proof of (1) follows the same arguments. Let us start noticing that,
by Proposition 3.11,

htop(ψ̄) = sup{log[φM : M ] : nub(φ) ≤M ≤ ←
par(φ), M compact, M ≤ φM, [φ(M) : M ] <∞}

≤ sup{log[φM : M ] : nub(φ) ≤M ≤ G, M compact, M ≤ φM, [φM : M ] <∞} = htop(φ̄) .

On the other hand, by Corollary 3.10 and Proposition 3.11,

htop(φ̄) = {log[φU+ : U+] : nub(φ) ≤ U ∈ B(G)}

≤ sup{log[φM : M ] : nub(φ) ≤M ≤ ←
par(φ), M compact, M ≤ φM, [φM : M ] <∞}

= htop(ψ̄) .

4.3 The topological entropy knows all the values of the scale

We give first the precise relation, stated in the Introduction in (1.2), between the topological entropy
and the scale:

Proposition 4.8. Let G be a t.d.l.c. group and φ ∈ End(G). Then

log s(φ) = htop(φ̄) ,

where φ̄ : G/nub(φ)→ G/nub(φ) is the map induced by φ.

Proof. Since M(G,φ) is a base for the neighborhoods of nub(φ) in G by Lemma 2.4, in view of
Lemma 3.6(3) we have htop(φ̄) = sup{Htop(φ,U) : U ∈ M(G,φ)}. Furthermore, given U ∈ M(G,φ),
Proposition 3.9 and Lemma 4.3(2) give Htop(φ,U) = log[φU+ : U+] = log s(φ). Thus, htop(φ̄) =
Htop(φ,U) = log s(φ), for any U ∈M(G,φ).
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As a consequence of Lemma 4.5, Proposition 4.8 and Lemma 4.7, we obtain

log s(ψ̃) = log s(ψ) = log s(φ) = htop(φ̄) = htop(ψ̄) .

Another consequence of Proposition 4.8 and Proposition 3.11 is the following formula for the
computation of the scale.

Corollary 4.9. Let G be a t.d.l.c. group and φ ∈ End(G). Then

log s(φ) = sup{log[φM : M ] : nub(φ) ≤M ≤ G,M compact,M ≤ φM, [φM : M ] <∞}

Since nub(φ) is a compact ψ-stable subgroup of
←

par(φ) which contains ker(ψ) by (4.2), Theorem
1.2 applies to ψ and nub(φ), so we have the following

Corollary 4.10. Let G be a t.d.l.c. group and φ ∈ End(G). Then

htop(φ) = htop(φ �nub(φ)) + htop(φ̄).

Proof. By Lemma 4.7(1) and Theorem 1.2, htop(φ) = htop(ψ) = htop(ψ �nub(φ)) + htop(ψ̄). Since
φ �nub(φ)= ψ �nub(φ), and since htop(ψ̄) = htop(φ̄) by Lemma 4.7(2), we get the thesis.

As a consequence of Corollary 4.10 and Proposition 4.8 we obtain the following formula:

htop(φ) = log s(φ) + htop(φ �nub(φ)) . (4.5)

Applying this formula, we obtain a characterization of when htop(φ) = log s(φ):

Corollary 4.11. Let G be a t.d.l.c. group and φ ∈ End(G). The following are equivalent:

(1) htop(φ) = log s(φ);

(2) nub(φ) = {1};

(3) htop(φ �nub(φ)) = 0.

Proof. It is clear that (2) implies (3), while (3) implies (1) by (4.5). It remains to verify that (1) implies
(2). Indeed, if nub(φ) 6= {1}, there exists U ∈ B(G) not containing nub(φ). By [22, Proposition 3],
there exists n ∈ N such that V := U−n is tidy above but, since V does not contain nub(φ), it is not
tidy below, that is, it is not minimizing by (4.1). Thus,

log s(φ) < log[φV : V ∩ φV ] = log[φV+ : V+] = Htop(φ, V ) ≤ htop(φ) .

Since s(φ) ∈ N>0, we obtain that htop(φ) is finite whenever nub(φ) = {1}. More generally, applying
Theorem 1.2, we get

htop(φ) =∞ ⇐⇒ htop(φ �nub(φ)) =∞ .
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