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Abstract

Major depressive disorder (MDD) has been associated with alterations in several functional
brain networks. Previous studies investigating brain networks in MDD during the
performance of a task have yielded inconsistent results with the function of the brain at rest.
In this study, we used functional magnetic resonance imaging at rest and during a goal-
directed task to investigate dynamics of functional connectivity in 19 unmedicated patients
with MDD and 19 healthy controls across both experimental paradigms. Patients had spatial
differences in the default mode network (DMN), in the executive network (EN), and in the
dorsal attention network (DAN) compared to controls at rest and during task performance.
In patients the amplitude of the low frequency (LFO) oscillations was reduced in the motor
and in the DAN networks during both paradigms. There was a diagnosis by paradigm
interaction on the LFO amplitude of the salience network, with increased LFO amplitude
change between task and rest in patients relative to controls. Our findings suggest that the
function of several networks could be intrinsically affected in MDD and this could be viable
phenotype for the investigation on the neurobiological mechanisms of this disorder and its

treatment.
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1. Introduction

Major depressive disorder (MDD) is a severe psychiatric disorder with a lifetime prevalence
of 10 to 20% in the general population and a significant risk for chronicity and disability
(DeRubeis et al., 2008). Altered structure and/or function of a large number of brain regions
has been associated with MDD, thus suggesting that the pathophysiology of depression
entails multiple brain circuits (Pandya et al., 2012).

Resting-state functional magnetic resonance imaging (RS-fMRI) is a valuable method
to understand how functional alterations in different brain regions are related to intrinsic
networks (INs, (Biswal et al., 2010)). Previous evidence from RS-fMRI indicates that spatially
separated brain regions show temporal correlations in their blood-oxygen-level-dependent
(BOLD) signal (Biswal et al., 1995). These synchronous neuronal signal fluctuations are
considered to reflect functional connectivity (FC) of segregated neuro-anatomical INs (Fox
and Raichle, 2007; Seeley et al., 2007). Based on their spectral profile, low frequency
oscillations (LFO) are those spontaneous neuronal signal fluctuations with frequency <0.08
Hz (Buzsaki and Draguhn, 2004). BOLD LFOs are thought to originate in the gray matter and
therefore associated with the neural processes underlying FC of the brain networks (Zuo et
al., 2010).

In MDD alterations of multiple INs have been reported (Hamilton et al., 2011;
Marchetti et al., 2012; Northoff et al., 2011; Pizzagalli, 2011), including the default mode
network (DMN), which comprises a set of brain regions more engaged during rest relative to
goal-oriented tasks (Raichle and Snyder, 2007). Whole brain functional connectivity patterns
at rest could be able to differentiate with high confidence patients with MDD from healthy
controls (Zeng et al., 2012). Interestingly, the patterns of FC with highest discriminative
power were located in multiple networks, including the DMN. More recently, two meta-
analyses and a systematic review of RS-fMRI studies agreed upon a role of functional

alterations in multiple networks in MDD including the DMN, and dorsal attention network



(DAN), the executive network (EN), and the salience network (SN) (Kaiser et al., 2015;
Sundermann et al., 2014; Wang et al., 2012b). Furthermore, we and others have
demonstrated altered LFOs during resting state in patients with MDD (Guo et al., 2012;
Sambataro et al., 2013; Wang et al., 2016). Notably, temporal network dysfunctions are
already present in patients at the first MDD episode and medication naive (Liu et al., 2013).
Widespread alterations of LFOs of resting state networks have been described in multiple
brain circuits including the salience, the DAN, the DMN (Guo et al., 2012; Sambataro et al.,
2013; Wang et al., 2016), and the motor networks (Wang et al., 2016).

Neuroimaging literature implicates altered network function in MDD also during the
performance of a task, including those networks associated with emotional, cognitive
(Roiser et al., 2012), and motor processing (Liberg and Rahm, 2015). Nonetheless, the extent
to which spatial and temporal characteristics of intrinsic networks are also altered during
task performance has not been extensively studied. A recent meta-analysis on the brain
activation differences in task-based fMRI concluded that MDD was associated with a pattern
of functional activation abnormalities in cortico-limbic/cortico-striatal circuits rather than
with regions of the DMN (Graham et al., 2013), thus showing a poor spatial overlap between
task-based and RS-fMRI findings in MDD (Sundermann et al., 2014).

This discrepancy could be explained by the paucity of studies investigating
connectivity patterns both at rest and during task performance in the same individuals with
MDD. Furthermore, results’ inconsistency could arise from different analytical methods used
to analyze RS- and task-fMRI data. In particular, the use of seed-based analysis which
estimates connectivity between a priori selected regions-of-interest (seeds) and the rest of
the brain (Wang et al., 2012b) could explain the over-representation of DMN alterations in
RS-fMRI studies. Spatial and statistical features in the selection of an a priori seed per se
could also cause an observational bias (Cole et al., 2010). Also, as a single seed can be

analyzed at the time, only a limited number of networks are investigated in each analysis.



Alternative to this approach, independent component analysis (ICA), a model-independent
multivariate statistical analysis, can extract spatially independent and temporally
synchronous activity patterns in brain regions, which represent FC (Calhoun et al., 2001).
First, this approach allows the estimation of spatial patterns of FC that fluctuate over time;
second, FC patterns are estimated across multiple brain networks at once thus avoiding a
observational bias in network selection (Veer et al., 2010). To date, few fMRI studies have
employed ICA to investigate functional abnormalities in MDD during task (Vasic et al., 2009)
or at-rest (Greicius et al., 2007; Sambataro et al., 2013; Shi et al., 2015; Veer et al., 2010; Zhu
et al., 2012). Of these studies, only one conducted a comprehensive network analysis. Veer
et al. (2010) identified 13 INs at-rest, 3 of which showed reduced FC in unmedicated patients
with MDD compared to healthy controls. These networks included a DAN, a visual network,
and an affective network involved in emotional regulation, but no significant differences
were found in the DMN (Veer et al., 2010). However, whether the functional abnormalities
of the INs in MDD are similar at-rest and during task remains unclear.

In this study, we set out to investigate the dynamics of network function across different
experimental paradigms (at rest and during a cognitive task) in unmedicated patients with
MDD and healthy volunteers. Based on this literature, we hypothesized that: 1) patients
with MDD would show consistent alterations in patterns of FC of the DMN, the EN, the DAN,
and the SN both at rest and during a goal directed processing; 2) the temporal oscillations of
these networks would be altered in the low frequency range. To this aim, we studied FC and
spectral properties of multiple brain networks, and their between network connectivity in
the same subjects with MDD while at rest and during the performance of a low demanding
cognitive task. To reduce the risks of observational biases and false positive results, we used
a hierarchical multivariate approach (Allen et al., 2011). With the multi-paradigm approach
we aimed at identifying not only those diagnosis-related changes that are associated with

paradigm performance, but also those that are independent from the experimental



conditions and therefore more robust. Also, we wanted to assess whether diagnosis

modulated network function depending on the experimental condition.

2. Methods

2.1. Participants

Nineteen unmedicated patients with MDD and nineteen healthy controls without any
psychiatric, neurologic, or medical illness (all Caucasians) completed the study (see also
Supplemental Information). Groups did not differ for gender distribution, age, years of
education and performance in a motion prediction task. Thirteen patients with MDD were
medication naive. All the other patients had been off-medication for at least six weeks
before the study (four of them were under antidepressant treatment, and for other two past
treatment information was not available). Exclusion criteria for both groups included age
<18 or >65 years, current presence of psychosis as assessed by SCID-I interview or self-
reported past history of psychosis or bipolar disorder, major medical or neurological iliness;
current drug or alcohol abuse, MRI contraindications. Inclusion in the MDD group was
contingent on a diagnosis of current MDD based on a SCID-I semi-structured interview
(DSM-IV-TR). Six subjects with MDD had comorbid anxiety disorders (Supplemental
Information). The study was approved by the University of Zurich's Institutional Review
Board, and all subjects gave written informed consent. They were paid 25 CHF/hour and the

gains related to the experimental task.

2.2. MRI Imaging

2.2.1 Image Acquisition

Images were acquired on a Philips Achieva 3-Tesla whole-body MRI unit equipped with an
eight-channel head coil using a sensitivity encoded single shot echo-planar sequence

(acceleration factor R=2). A T1-weighted gradient echo sequence (turbo field echo) with a



spatial resolution of 0.94x0.94x1.00mm? (matrix: 240x240pixels; 160slices), field of
view=240x240mm?, TE=3.7ms, TR=8.06ms, and flip angle=8° was applied. For the acquisition
of the functional images, the subjects were told to lie still in the scanner with their eyes
closed and let their minds wander (Logothetis et al., 2009; Northoff et al., 2010); 300
functional images were collected in a single 10-min run. The following parameters were
used: TR=2000ms, TE=30ms, flip angle=75°, ascending acquisition order, 80x80voxel matrix
and voxel size=3x3x4mm>.

Thirty-six contiguous axial slices were placed along the anterior-posterior commissure plane
covering the entire brain. The first four acquisitions were discarded due to T1 saturation
effects. Six hundred images of functional imaging data during the performance of a motion
prediction task were acquired in the same session with similar scanning parameters. The
task is described in details in (Spati et al., 2014) and the Supplemental Information. The
acquisition of resting-state and task data was always separated by about 10-min during
which we acquired structural data. Structural MRI scans were screened by an experienced
neuroradiologist for structural brain abnormalities and other incidental lesions. Nonetheless,

we did not exclude subjects for this reason.

2.2.2. Image Preprocessing
Functional data and structural were preprocessed and analyzed using Statistical Parametrical

Mapping (SPM8; http://www.fil.ion.ucl.ac.uk; see supplementary information for details). To

avoid a bias following a different number of volumes between rest and task fMRI
acquisition, we limited our analysis to the first 300 volumes of the task scan. Also, task fMRI

included both trials and inter-trial rest periods.

2.3. Independent Component Analysis (ICA)



A group of spatial ICA was performed on preprocessed data using the Group ICA of fMRI

Toolbox [GIFT3.0a; http://icatb.sourceforge.net] as described elsewhere (Sambataro et al.,

2010). ICA decomposition was performed using the Infomax algorithm and resulted in 75
independent components (ICs) consisting of group spatial maps of IC loadings and related
time courses (TC), which were included in the mixing matrix. Group estimated independent
components were then back-reconstructed to individual subject IC maps using double
regression approach (Beckmann et al., 2009). Individual subject TCs were scaled using the
maximum intensity values, whereas IC maps were calibrated using the standard deviation of
the time courses. For each participant, an IC spatial map includes voxel-wise IC loadings that
represent local strength of FC and reflect the correspondence between the estimated TC in
each voxel for each individual and the average TC of the aggregate network itself. All the IC
maps were screened for reliability as indicated by a coefficient of stability (Iq) greater than
0.80 calculated by 50 bootstrapped permutated estimations of the ICs (ICASSO) and for
artifactual patterns defined by those IC maps with a spatial correlation R*>0.02 with white
matter, R?>0.05 for CSF and R?<0.005 with gray matter were removed from the analysis.
Additionally, they were inspected for known vascular, ventricular, motion and susceptibility
artifact (Allen et al., 2011). This screening resulted in 34 INs (for a detailed description of the

INs and their spatial maps see Figure S.7-S.11 and Table S.1).

2.4. Statistical Analyses

We followed the same pipeline as described previously (Allen et al., 2011) for our statistical
analysis: First, we estimated three types of feature for each of the 34 INs for each subject
and created three group response matrices concatenated across all subjects (one for each
feature type); Second, we analyzed the response matrices using a multivariate approach

with backward selection of significant predictors followed by univariate tests.



2.4.1. Feature estimation. For each IN, we analyzed three types of features: IN spatial maps,
TC spectra and pairwise between-INs functional network connectivity correlations (FNC).
A) Each spatial map was thresholded with t> mean + 4 standard deviations to select
the most representative voxels according to the normal-gamma-gamma mixture
model that fits these data (Allen et al., 2011);
B) Spectra were analyzed on detrended TCs (after mean, slope, and it and 2n period
sines and cosines removal to avoid skewing in the averaging of the tapers) using the
multitaper method as implemented in Chronux in MATLAB

(http://www.chronux.org) with the time-bandwidth product set to three and the

number of tapers set to five. Each spectrum was divided in 150 bins and log-
transformed.
C) A 34 x 34 FNC matrix was calculated using Pearson’s bivariate correlation
between each pair of TCs. For each subject, TCs were detrended, despiked using the
median absolute deviation as in 3Ddespike
(https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dDespike.html) and low-
pass filtered (fifth-order Butterworth with high frequency cut-off=0.15 Hz).
Correlation coefficients were then z-transformed using Fisher’s transformation and
entered a 34x34 symmetric cross-correlation matrix for each subject.
For each subject, 34 spatial maps, 34 spectra and a single 34x34 matrix of FNC were
calculated. These features were modeled as separate vectors and concatenated per subject
thus resulting in separate response matrices per feature type. A principal component
analysis was then applied to concatenated response matrices to reduce the dimensionality
and the autocorrelation of the data to 10 dimensions for each feature. Dimension-reduced

features were then analyzed using multivariate analyses.
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2.4.2. Multivariate and univariate analyses. We used a novel multivariate model selection
strategy to reduce the number of statistical tests to be performed and to test the effects of
specific predictors on a design matrix (Allen et al., 2011). First, we created a design matrix
that included all the predictors: variables of interest [diagnosis (healthy controls, patients
with MDD), paradigm (rest, task) and diagnosis by paradigm interaction] along with the
nuisance variables (age, gender, head motion estimate, spatial normalization estimate, gray
matter content, see Supplemental Information). Normalized nuisance variables were
included to correct for the possible effects of demographic, structural or scan-related
differences across subjects. Second, each separate response matrix was analyzed using a
one-way multivariate analyses of covariance (MANCOVA) to identify significant predictors
within the design matrix for using the MANCOVAN toolbox implemented in GIFT 3.0

(http://mialab.mrn.org/software/mancovan/index.html) which runs on MATLAB (the scripts

used to analyze these data are available from the corresponding author upon request).
Briefly, backward multivariate stepwise regressions are performed for each response matrix
separately. For each IN c, the full MANCOVA model is RMc=DB+E, where RMc is the
response matrix for the IN ¢, D is the design matrix, B the matrix of regression coefficients,
and E the error matrix. At each step the full model is compared with a reduced model,
obtained removing one predictor and its interactions (when available) from D, using a Wilk’s
lambda likelihood ratio test statistics. Then, the predictor associated with the least
significant model across all the reduced models is removed, and reduced model becomes
the full model for the subsequent regression until all predictors have been tested. The final
reduced model (see Table S.1 for details on the degrees of freedom of each regression)
includes only those predictors that are significant after correction for multiple comparisons
using a false discovery rate approach [FDR (Genovese et al., 2002)] with a=0.05.

Following MANCOVA analyses, we performed univariate tests on the final reduced model

applied to the original (not-dimension reduced) feature matrices separately to identify the
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effects of diagnosis, paradigm, and diagnosis by paradigm on the spatial maps, the spectra
and temporal correlations (FNC) for each IN. Partial correlation coefficients for each
predictor were calculated from linear regressions with the feature matrix as a dependent
variable while covarying out the effects of the other predictors. All tests were corrected for
multiple comparisons using a level of a=0.05 FDR-corrected (see supplementary materials
for degree of freedom). For the spatial maps, significant clusters were identified using an
uncorrected voxel-wise threshold of p<0.001. To correct for multiple comparisons with a
family-wise error rate at p<0.05, a minimum cluster size was estimated for the whole brain
for each IC using 10'000 iterations of a Monte Carlo simulation implemented in 3dClustsim

(http://afni.nimh.nih.gov/pub/dist/doc/program help/3dClustSim.html; compile date:

September 28, 2016). All coordinates are reported in the Montreal Neurological Institute

(MNI) system.

3. Results

We found 34 reliable INs. Multivariate analyses yielded significant differences for the effects
of diagnosis, paradigm, and diagnosis by paradigm in the spatial maps and in the spectra.
Spatial maps showed an effect of diagnosis in three INs including the EN, the DMN and the
DAN (Figure 1.A). The EN included prefronto-parietal regions predominantly on the left
hemisphere. The DMN spanned across two INs: A more dorsal DMN (Figure 1.B, top)
including posterior cingulate cortex (PCC), bilateral inferior parietal cortex, the hippocampus
and medial prefrontal cortex (PFC); a more ventral DMN component (Figure 1.B, bottom)
spanning across the hippocampus and the parahippocampus. The DAN (Figure 1.C) entailed
bilateral superior parietal cortex. To identify voxel-wise differences between diagnostic
groups across INs, a composite map was estimated. Maximum statistical difference for the
effect of diagnosis at each voxel was calculated for each significant IN (Figure 2.A). Patients

showed reduced connectivity in the PCC, bilateral superior parietal cortex, and anterior
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hippocampus along with increased connectivity in the precuneus. More specifically,
univariate post-hoc analyses revealed reduced connectivity in patients in left dorsolateral
PFC (x,y,z = -45, 27, 45; k=87 ; Z=4.80; Figure 2.B) within the EN; within the ventral DMN,
patients had reduced connectivity in the left parahippocampus (x,y,z = -42, -6, -45; k=141 ;
Z=4.24; Figure 2.C); within the dorsal DMN , we found reduced connectivity (Figure 2.D left)
in patients in left temporo-parietal cortex (x,y,z = -48, -75, 21; k=101; Z=4.17) and left PCC
(x,y,z= -6, -63, 15; k=185 ; Z=4.82) along with increased connectivity in the left precuneus
(x,y,z=-15, -78, 33; k=115 ; Z=4.59; Figure 2.D right). Within the DAN, no region survived to
univariate correction for multiple comparisons.

Spectral analyses revealed reduced amplitude of LFO (0.04<f<0.08 Hz) in patients
relative to controls in two INs: the left motor network (IN2, Figure 3.A) and the DAN (IN38,
Figure 3.B) in patients relative to normal controls. The left motor network included mainly
pre- and post-central gyrus, anterior cingulate and cerebellum (Figure S.11). The DAN (IN38)
encompassed bilateral superior parietal lobule, intraparietal sulcus, frontal eye fields,
posterior cingulate and left visual cortex (Figure S.11). Additionally, patients had increased
high frequency spectral power of the left motor network. High frequency oscillations are
thought to be artefactual by nature and not to arise from the gray matter (Zuo et al., 2010).

We also found a diagnosis by paradigm (rest vs. task) interaction (Figure 4.A) in the
salience network that included bilateral insula and ventrolateral PFC (IN64, see Figure S.7 for
the spatial map). Patients had greater LFO amplitude (0.04<f<0.08 Hz) during task
performance relative to rest when compared to normal controls (Figure 4.B) but not in the
other frequency bins.

Age, gender, motion, grey matter volume and warping had an effect on the spatial
maps along with the spectra (Figure S.2). We did not find any significant effect of diagnosis
or diagnosis by paradigm (rest vs task) on FNC. Age, motion and gray matter content had an

effect on FNC correlations (Figure S.3). The paradigm modulated the spatial maps (Figure
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S.4), the spectra (Figure S.5) and the FNC correlations (Figure S.6). In particular, following the
trial presentation frequency of one trial each 7.5 + 0.5 seconds (Spati et al., 2014), the
spectral power was significantly greater at 0.13 Hz during task relative to rest condition (see

peaks in Figure 3.A, 3.B, and 4).

4. Discussion

The aim of the present study was to investigate altered dynamics of functional brain
networks in MDD at rest and during task performance. Our results show that the spatial
extent of the DMN and the EN were altered in patients with MDD compared to healthy
controls. In addition, the left motor and the DAN showed reduced power in the low-
frequency range in patients with MDD compared to healthy controls. These spatial and
temporal abnormalities were present in patients during both paradigms (rest and task),
whereas a diagnosis by paradigm interaction on the spectrum of network oscillations was
found in the salience network: patients had greater power amplitude in the low frequency
range during task relative to rest compared to normal controls.

In the present study, altered functional connectivity in the DMN was present across
two INs: A 'dorsal' component including the PCC, the inferior parietal cortex and the medial
PFC, and a 'ventral' component comprising the hippocampus and parahippocampus
bilaterally (Allen et al., 2011; Andrews-Hanna et al., 2014; Sambataro et al., 2013).
Compared to healthy controls, unmedicated patients with MDD showed altered connectivity
in the posterior regions of the DMN. Specifically, connectivity was decreased in the left
parahippocampus within the ventral component, and in the left temporal-parietal cortex
and the PCC within the dorsal component in patients with MDD. Conversely, they had
increased connectivity in the precuneus within the dorsal component. Reduced FC with the

PCC has been previously reported in first-episode medication naive patients with MDD (Zhu
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et al., 2012). A recent study investigating the FC of distinct DMN subsystems at-rest also
showed abnormal FC with the PCC, the temporal-parietal cortex and the hippocampal
formation in patients with MDD (Sambataro et al., 2013). Moreover, reduced suppression of
the PCC (and the medial PFC) has also been found in patients with MDD performing an
emotional task (Grimm et al., 2009). The importance of functional DMN abnormalities in
temporal lobe regions is also supported by the results of Zeng and coworkers (2012) who
used multivariate pattern analysis to discriminate medication-naive patients with MDD from
healthy controls. In this study, they found that the functional connections with high
discriminative power were located in the DMN and included the bilateral
hippocampus/parahippocampal gyrus, and the inferior temporal cortex (Zeng et al., 2012).
Similarly, altered activity in the posterior DMN was confirmed by two recent meta-analyses
of RS-fMRI data in MDD (Kaiser et al., 2015; Sundermann et al., 2014), but findings from
task-based neuroimaging studies showed poor spatial overlap with findings from RS-fMRI
studies (Sundermann et al., 2014). A possible explanation for the discrepancy between task-
and RS-fMRI results may be related to the different measures that are investigated in these
studies and specifically task induced activations and FC, respectively. Our results confirm and
extend these previous findings by showing that functional abnormalities within the posterior
DMN in unmedicated patients with MDD are prominent both at rest and during task
performance.

The PCC is considered one of the hubs of the DMN with a general role in attention
modulation, and in episodic and working memory (Buckner et al., 2008). The temporal
cortex, the hippocampus and parahippocampus regions have a specific role in memory
processes (Buckner et al., 2008). It is, therefore, possible that functional abnormalities in
these regions contribute to memory impairments, as consistently reported in MDD (Drevets
et al., 2008). Patients showed also altered FC with the precuneus, a finding consistent with

previous studies in MDD (Greicius et al., 2007; Sheline et al., 2009; Zhu et al., 2012). In

15



contrast to the decreased FC found with the temporal DMN regions, patients showed
increased connectivity with the precuneus. This functional dissociation is in line with
anatomical evidence showing clear differences in terms of anatomical connections and
cytoarchitecture between the PCC and the precuneus (Buckwalter et al., 2008). The
precuneus is considered important during self-perception, internal mentation, and memory
retrieval (Cavanna and Trimble, 2006; Gusnard et al., 2001; Lundstrom et al., 2005), thus
increased precuneus connectivity may be related to increased self-referential processing in
MDD (Sheline et al., 2009), or represents a compensatory process for memory deficits
associated with other DMN regions. Interestingly, increased precuneus and decreased PCC
connectivity has been reported also in schizophrenia (Sambataro et al., 2010). Although
altered memory and self-referential processes have also been reported in schizophrenic
patients, there are important distinctions between the two disorders (Egeland et al., 2003;
Kuhn and Gallinat, 2013). It is possible that increased precuneus connectivity represents a
more general compensatory effect related to reduced PCC function, a hypothesis that needs
to be further investigated.

In addition to the DMN, patients with depression showed decreased FC with the
right dorsolateral PFC (DLPFC) in the EN. Abnormal DLPFC response has been reported
during a variety of emotional and cognitive tasks in patients with MDD (Diener et al., 2012)
and abnormal FC of the DLPFC has been found in MDD patients during working memory
(Vasic et al., 2009). More importantly, the DLPFC has been shown to play a key role in
regulating DMN activity. Using transcranial magnetic stimulation in healthy subjects, Chen et
al. (2013) were able to demonstrate that stimulation of the DLPFC suppresses the DMN,
whereas inhibition had opposite effects (Chen et al., 2013). These results strongly suggest an
important role of the interplay between the EN and the DMN that is thought to be mediated
by the salience network (Chand and Dhamala, 2016), which showed also altered FC in MDD

(see below). The altered modulation of EN and DMN may be highly relevant to MDD
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pathogenesis, since impaired DMN suppression and increased self-referential processing
have been proposed to play a crucial role in the development and the maintenance of a
major depressive episode (Hamilton et al., 2011; Marchetti et al., 2012; Northoff et al., 2011;
Pizzagalli, 2011).

MDD was associated with changes in the LFO amplitude during task and at rest in
multiple networks, including salience, motor and dorsal attention networks. Recent studies
in MDD show changes in amplitude of low frequency oscillations in various brain regions at-
rest (Liu et al., 2013; Sambataro et al., 2010; Wang et al., 2012a; Wang et al., 2016; Zhang et
al., 2014). These oscillations can be modulated by the performance of different types of task,
including visual stimulation (Leopold et al., 2003), working memory (Balsters et al., 2013),
and language processing (Lohmann et al., 2010). Furthermore, the amplitude of LFO predicts
task performance at cognitive (Balsters et al., 2013) as well as sensory detection tasks
(Monto et al., 2008). We found that in the salience network patients with MDD had
increased power of the LFO during task performance relative to rest. Conversely, normal
subjects had reduced power during rest compared to task performance. The salience
network comprised the right anterior insula (Al)/ventrolateral PFC and to a lower extent also
the left Al. Increased amplitude of LFOs at-rest in the Al has recently been found in MDD
(Zhang et al., 2014). Moreover, functional and structural abnormalities in the fronto-insular
cortex have been consistently reported in patients with MDD (Sprengelmeyer et al., 2011;
Veer et al., 2010). Importantly, the right Al is considered to play a major role in switching
between the DMN and the EN when a salient event occurs (Sridharan et al., 2008), thus
increased LFOs amplitude in the salience network during task performance relative to rest in
patients compared to controls may contribute to the abnormal network's switching function
in MDD (see before). This interpretation is supported by evidence from a recent study that
specifically compared the functional 'dominance' of the DMN over the EN at-rest in patients

with MDD and healthy controls (Hamilton et al., 2011). While healthy participants exhibited
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greater response in the right fronto-insular cortex at the onset of increase in DMN activity,
patients with MDD showed greater fronto-insular activity at the onset of increase in EN
activity, suggesting an abnormal functional activation of the right fronto-insular cortex
specifically during network switching. Interestingly, we found a diagnosis by task effect only
on the 0.04<f<0.08 Hz range of LFOs of the salience network but not in the lower bands. The
difference in the neurobiology and the functional implication underlying different frequency
bands within the LFOs remain unknown. Previous reports have shown differential
representation of the low frequency oscillations based on the brain regions (Wang et al.,
2016). Indeed, Wang and coworkers found a greater representation of 0.04<f<0.08 Hz LFOs
in bilateral insula relative to other cortical regions. The amplitude of the low frequency in
the DAN and the left motor networks were also altered in patients with MDD at rest and
during task performance. The DAN encompassed bilateral superior parietal lobule,
intraparietal sulcus, frontal eye fields, posterior cingulate and left visual cortex, whereas the
left motor network included the pre- and post-central gyrus, anterior cingulate and
cerebellum. Previous findings in unmedicated MDD showed altered amplitude of LFO in
brain regions of the DAN and motor networks (Wang et al., 2012a). Furthermore, reduced FC
of the DAN was found also in a recent meta-analysis of RS-fMRI data in MDD (Kaiser et al.,
2015). Reduced connectivity of the motor pathways (Bracht et al., 2012) has been reported
in patients with MDD. LFOs are thought to originate from the cortical modulation of
neuronal excitability within large-scale networks (Pan et al., 2013). Thus, lower LFOs at rest
as well as during task performance can be interpreted as reflecting altered activity of the
whole DAN and the motor networks. Given the role of the DAN in orienting attention based
on internal goals (goal-driven) (Corbetta et al., 2008), its reduced connectivity may
contribute to the limited engagement with the external environment and potentially to

increased self-reflection in MDD. Also, alterations in sensory-motor pathways can contribute
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to mood regulation and the risk for MDD onset (Canbeyli, 2010) as well as to fatigue and
other the psychomotor symptoms.

Some limitations of this study need to be acknowledged. First, the type of statistical
analysis and the sample size limit the power of the study. To control for several sources of
bias on neuroimaging studies, we used a multivariate analysis approach that partials out the
effect of nuisance variables including demographics, preprocessing differences, and
structural variability, while allowing a robust control for the number of multiple
comparisons. A MANCOVA analysis, when including a large number of nuisance covariates,
results in reduced degrees of freedom, and ultimately in lower power to detect a significant
effect thus potentially increasing the rate of false negative results. Furthermore, a small
sample size (n=38), although in line with recent studies using the same MANCOVA approach
in psychiatric disorders (Caminiti et al., 2015; van Belle et al., 2015), may overestimate the
effect size thus increasing the risk of number of false positive results (for more details, see
Bacchetti, 2013; Button et al., 2013; Quinlan, 2013). Hence, future larger replication studies
are warranted to validate the reproducibility of these results. Second, patients with MDD
with comorbid anxiety disorders were included in the study. While anxiety could also
contribute to these findings, the comorbidity rate of these disorders is about 60-70%, thus
making this sample more representative of the general population of the patients with MDD
(Kessler et al., 1996). Third, groups were matched for behavioral performances for the whole
task as well as for the first part that we included in the analyses. However, qualitative
differences may still be present in the second part of the task potentially biasing connectivity
measures during task performance. Nonetheless, as the rationale of including different
paradigms was to study whether alterations of INs persisted during task and most of them
occurred both at-rest and during task, we believe that qualitative difference, if present, had

limited impact on our findings. Furthermore, to avoid the temporal design of task to bias the
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spectral analyses in the LFOs, we used a task with a frequency of trial presentation above
this range.

Overall, the findings of our study indicate that alterations in the brain dynamics of
the DMN, the EN, and dorsal attentional and motor networks in MDD are persistent across
rest and task performance, thus supporting an important role of these networks in MDD.
Additionally, the dynamics of the salience network was affected by the paradigm, thus
indicating an altered process-dependent modulation of this network in MDD that could be
targeted by cognitive rehabilitation. Notably, network changes could not be unduly driven
by pharmacological treatment as our patients were unmedicated. These changes may be
used as neural phenotypes to investigate the pathophysiology of MDD and as possible
targets for pharmacological treatments. Future studies investigating these alterations in
unaffected relatives of patients and their ability to classify patients with MDD relative to

healthy controls are warranted.
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Figure Legends

Figure 1. Intrinsic networks (INs) showing a effect of diagnosis on spatial maps: A)
the Executive network (IN 53), B) the default mode network (top, dorsal
component, IN 56; bottom, ventral component, IN 9) and C) the dorsal attentional
network (IN 38) showed significant changes between MDD and HC using a
MANCOVA (Figure 2). One-sample t-test maps display the spatial pattern of the INs
across of subjects and paradigms overlaid on the MNI brain template. Color bar

indicates t-scores. MNI, Montreal Neurological Institute.

Figure 2. Spatial extent of reduced connectivity within the intrinsic networks (INs)
in MDD. A) Multivariate analysis shows the brain voxels with different
independent component (IC) loadings across all INs in HCs relative to MDD. Spatial
maps of significantly increased IC loadings in patients with MDD relative to HCs
within the B) Executive network (IN53), the C) ventral DMN (IN9) and the D) dorsal
DMN (IN56). Maps of IN connectivity differences are thresholded at p=0.005 and
corrected for multiple comparisons with alpha=0.05 and overlaid on the MNI brain
template. Color bar indicates -sign(t)*log10(p) and t-scores for the HC>MDD
comparison for multivariate and univariate analysis, respectively. Default Mode
Network, DMN; HC, Healthy controls; MDD, Major Depressive Disorder; MNI,

Montreal Neurological Institute.

Figure 3. Power differences of the intrinsic networks (INs) in MDD. MDD had

reduced power in the low frequency spectrum for both the motor and the dorsal
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attention network. Conversely, they had greater power in the high frequency
domain in the motor IN. Power spectra of the A) motor (IN 2) and the B) dorsal
attentional (IN 38) networks are indicated for each diagnosis (HC, MDD) and
paradigm (rest and task). At the bottom of the spectra, two-sample t-tests of the
diagnostic differences for the contrast MDD>HC per frequency bin of the power
spectra (n=150) are reported for IN2 and IN38, respectively. Color bar indicates
-sign(t)*log10(p) for the comparison MDD >HC. HC, Healthy controls; MDD, Major

Depressive Disorder.

Figure 4. Diagnosis by paradigm interaction on power spectra of the intrinsic
networks (INs). MDD had greater power amplitude in the low frequency during task
compared to rest in the salience network relative to HC who, conversely, had greater
power in the high frequency range during rest compared to task. A) Power spectra of
salience network (IN 64) is indicated for each diagnosis and paradigm (rest and task);
at the bottom of the spectrum, two-sample t-tests of the diagnostic differences for
the interaction (MDD - HC) x (Rest — Task) per frequency bin of the power spectrum
(n=150) are reported. B) Power spectra for each diagnostic group (left panel, HC;
right panel, MDD) binned by 6 frequency ranges are reported for each paradigm
(left, Rest; right Task). Frequency bands: very low frequency, <0.04 Hz (blue); low
frequency, 0.04-0.08 Hz (red); medium frequency, 0.08-0.12 Hz (green); high
frequency, 0.12-0-17 Hz (magenta); very high frequency, 0.17-0.21 Hz (black), 0.21-
0.25 Hz (grey). Color bar indicates —sign(t)log10(p) for the interaction diagnosis by

paradigm. HC, Healthy controls; MDD, Major Depressive Disorder.
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Table 1. Demographics, symptom severity and behavioral information for healthy

controls and patients with MDD.

Patients with MDD

Healthy controls

N =19 N =19 Statistics

Gender (% Male) 26 42 p>0.3

Age (years)* 33.5+9.8 38.5+12.4 p>0.1
Education (years)* 16.1+2.8 16.4+2.7 p>0.8

BDI-II* 25.8+8.7 - -

IDS* 33.8+8.5 - -

Single MDD episode 5 - -

H Scale* 73.2+11.6 43.4+10.3 t(36) =-8.4, p < 0.001
STAI Trait* 31.9+8.8 56.2+11.2 t(36) =-7.4, p < 0.001
STAI State* 335+6.1 449+5.2 t(36) =-6.3, p < 0.001
Correct trials (%)* 67.6 £ 10.7 63.3+9.9 p>0.2

Miss (%)* 1.3+1.9 1.1+2.9 p>0.7

RT correct (ms)* 554 + 167 530+ 101 p>0.6

RT incorrect (ms)* 595 + 142 573 +111 p>0.5

* reported as mean + SD.

P-values for between-group t-tests or chi-squared analyses are presented in the final column.
BDI-II, Beck Depression Inventory-II; IDS, Inventory of Depressive Symptomatology;

H Scale, Hopelessness scale; STAI, Spielberger Trait and State Anxiety Inventory;

RT, reaction time in milliseconds (ms)
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