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Modal logics for Brane Calculus

Marino Miculan Giorgio Bacci

Dept. of Mathematics and Computer Science
University of Udine, Italy. mm@uniud.it

Abstract. The Brane Calculus is a calculus of mobile processes, in-
tended to model the transport machinery of a cell system. In this paper,
we introduce the Brane Logic, a modal logic for expressing formally prop-
erties about systems in Brane Calculus. Similarly to previous logics for
mobile ambients, Brane Logic has specific spatial and temporal modali-
ties. Moreover, since in Brane Calculus the activity resides on membrane
surfaces and not inside membranes, we need to add a specific logic (akin
Hennessy-Milner’s) for reasoning about membrane activity.
We present also a proof system for deriving valid sequents in Brane Logic.
Finally, we present a model checker for a decidable fragment of this logic.

1 Introduction

In [4], Cardelli has proposed a schematic model of biological systems as three
different and interacting abstract machines. Following the approach pioneered in
[13], these abstract machines are modelled using methodologies borrowed from
the theory of concurrent systems.

The most abstract of these three machines is the membrane machine, which
focuses on the dynamics of biological membranes. At this level of abstraction,
a biological system is seen as a hierarchy of compartments, which can interact
by changing their position. In order to model this machinery, Cardelli has in-
troduced the Brane Calculus [3], a calculus of mobile nested processes where
the computational activity takes place on membranes, not inside them. A pro-
cess of this represents a system of nested membranes; the evolution of a process
corresponds to membrane interactions (phagocytosis, endo/exocytosis, . . . ).

Having such a formal representation of the membrane machine, a natural
question is how to express formally also the biological properties, that is, the
“statements” about a given system. Some examples are the following:

“If a macrophage is exposed to target cells that have been evenly coated
with antibody, it ingests the coated cells.” [1, Chap.6, p.335]
“The [. . . ] Rous sarcoma virus [. . . ] can transform a cell into a cancer
cell.” [1, Chap.8, p.417]
“The virus escapes from the endosome” [1, Chap.8, p.469]

In our opinion, it is highly desirable to be able to express formally (i.e., in a
well-specified logical formalism) this kind of properties. First, this would avoid
the intrinsic ambiguity of natural language, ruling out any misinterpretation of



the meaning of a statement. Secondly, such a logical formalism can be used for
defining specifications of systems, i.e. requirements that a system must satisfy.
These specifications can be used in (semi)automatic verification of existing sys-
tems (using model-checking or static analysis techniques), or in (semi)automatic
synthesis of new systems (meeting the given specification). Finally, the logical
formalism yields naturally a formal notion of system equivalence: two systems
are equivalent if they satisfy precisely the same properties. Often this equiva-
lence implies observational equivalence (depending on the expressive power of
the logical formalism), so a subsystem can be replaced with a logically equivalent
one (possibly synthetic) without altering the behaviour of the whole system.

The aim of this work is to take a step in this direction. We introduce the
Brane Logic, a modal logic specifically designed for expressing properties about
systems described using the Brane Calculus. Modal logics are commonly used in
concurrency theory for describing behaviour of concurrent systems. In particu-
lar, we take inspiration from Ambient Logic, the logic for Ambient calculus [5].
Like Ambient Logic, our logic features spatial and temporal modalities, which
are specific logical operators for expressing properties about the topology and
the dynamic behaviour of nested systems. However, differently from Ambient
Logic, we need to define also a specific logic for expressing properties of mem-
branes themselves. Each membrane can be seen as a flat surface where different
agents can interact, but without nestings. Thus membranes are more similar to
CCS than to Ambients; as a consequence, the logic for membranes is similar to
Hennessy-Milner’s logic [8], extended with spatial connectives as in [2].

After having defined Brane Logic and its formal interpretation over the
Brane Calculus (Section 3), in Section 4 we consider sequents, and introduce
a set of valid inference rules (with many derivable corollaries). Several examples
throughout the paper will illustrate the expressive power of the logic. Finally, in
Section 5, we single out a fragment of the calculus and of the logic for which the
satisfiability problem is decidable and for which we give a model checker algo-
rithm. Conclusions, final remarks and directions for future work are in Section 6.

2 Summary of Brane calculus

In this paper we focus on the basic version of Brane Calculus without commu-
nication primitives and molecular complexes. For a description of the intuitive
meaning of the language and the reduction rules, we refer the reader to [3].

Syntax of (Basic) Brane Calculus
Systems Π : P,Q ::= k | σhPi | P mQ |!P
Membranes Σ : σ, τ ::= 0 | σ|τ | a.σ |!σ
Actions Ξ : a, b ::= Jn | JI

n(σ) | Kn | KI
n | G(σ)

where n is taken from a countable set Λ of names. We will write a, hPi and
σhi, instead of a.0, 0hPi and σhki, respectively.

The set of free names of a system P , of a membrane σ and of an action a,
denoted by FN(P ), FN(σ), FN(a) respectively, are defined as usual; notice that
in this syntax there are no binders.
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As in many process calculi, terms of the Brane Calculus can be rearranged
according to a structural congruence relation (≡). For a formal definition see [3].

The dynamic behaviour of Brane Calculus is specified by means of a reduction
relation (“reaction”) between systems P }Q, whose rules are the following:

Operational Semantics
J

I
n(ρ).τ |τ0hQi m Jn.σ|σ0hPi}τ |τ0hρhσ|σ0hPii mQi (React phago)
K

I
n.τ |τ0hKn.σ|σ0hPi mQi}σ|σ0|τ |τ0hQi m P (React exo)

G(ρ).σ|σ0hPi}σ|σ0hρhki m Pi (React pino)
P }Q

σhPi} σhQi

P }Q

P mR}Q mR
(React loc, React comp)

P ≡ P ′ P ′ }Q′ Q′ ≡ Q
P }Q

(React equiv)

We denote by }∗ the usual reflexive and transitive closure of }.
As in [3], the Mate-Bud-Drip calculus is easily encoded, as follows:

Derived membrane constructors and reaction

Mate : maten.σ , Jn.Kn′ .σ mateIn.τ , JI
n(K

I
n′ .Kn′′).KI

n′′ .τ
maten.σ|σ0hPi m mateIn.τ |τ0hQi}∗ σ|σ0|τ |τ0hP mQi

Bud : budn.σ , Jn.σ budIn(ρ).τ , G(JI
n(ρ).Kn′).KI

n′ .τ
budIn(ρ).τ |τ0hbudn.σ|σ0hPi mQi}∗ ρhσ|σ0hPii m τ |τ0hQi

Drip : dripn.(ρ).σ , G(G(ρ).Kn).KI
n.σ

dripn(ρ).σ|σ0hPi}∗ ρhi m σ|σ0hPi

3 The Brane Logic
In this section we introduce a logic for expressing properties of systems of the
Brane Calculus, called Brane Logic. Like similar temporal-spatial logics, such
as Ambient Logic [5] and Separation Logic [14], Brane Logic features special
modal connectives for expressing spatial properties (i.e., about relative positions)
and behavioural properties. The main difference between its closest ancestor
(Ambient Logic), is that Brane Logic can express properties about the actions
which can take place on membranes, not only in systems. Thus, there are actually
two spatial logics, interacting each other: one for reasoning about membranes
(called membrane logic) and one for reasoning about systems (the system logic).

Syntax The syntax of the Brane Logic is the following:

Syntax of Brane Logic
System formulas Φ
A,B ::= T | ¬A | A ∨ B (classical propositional fragment)

k (void system)
MhAi | A@M (compartment, compartment adjoint)
A m B | A B B (spatial composition, composition adjoint)
NA | mA (eventually modality, somewhere modality)
∀x.A (quantification over names)
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Membrane formulas Ω
M,N ::= T | ¬M | M∨N (classical propositional fragment)

0 (void membrane)
M|N | M I N (spatial composition, composition adjoint)
)α*M (action modality)

Action formulas Θ
α, β ::= Jη | JI

η(M) (phago, co-phago)
Kη | KI

η (exo, co-exo)
G(M) (pino)

η ::= n | x (terms)

Given a formula A, its free names FN(A) are easily defined, since there are no
binders for names. Similarly, we can define the set of free variables FV(A), notic-
ing that the only binder for variables is the universal quantifier. As usual, a
formula A is closed if FV(A) = ∅.

For sake of simplicity, we will use the shorthands Mhi and )α* in place of
Mhki and )α*0 respectively.

We give next an intuitive explanation of the most unusual constructors.
- P satisfiesMhAi if P ≡ σhQi, where σ and Q satisfyM and A respectively.
- @ e B are very useful for expressing security and safety properties.

A system P satisfies A@M if, when P is enclosed in a membrane satisfying
M, the resulting system satisfies A. Similarly, a system P satisfies A B B if,
when P is put aside a system enjoying B, the whole system satisfies A.

- A membrane σ satisfies )α*M if σ can perform an action satisfying α, yielding
a residual satisfyingM.

- M|N and its adjointM I N are analogous to A ◦ B and A B B respectively.

Satisfaction Formally, the meaning of a formula is defined by means of a family
of satisfaction relations, one for each syntactic sort of logical formulas1

�⊆ Π × Φ �⊆ Σ ×Ω �⊆ Ξ ×Θ
These relations are defined by induction on the syntax of the formulas. Let us
start with satisfaction of systems. First, we have to introduce the subsystem
relation P ↓ Q (read “Q is an immediate subsystem of P”), defined as

P ↓ Q , ∃P ′ : Π,σ : Σ.P ≡ σhQi|P ′

We denote by ↓∗ the reflexive-transitive closure of ↓.
Then, we can define the satisfaction of system formulas.

Satisfaction of System Formulas
∀P : Π P � T
∀P : Π,A : Φ P � ¬A , P 2 A
∀P : Π,A,B : Φ P � A ∨ B , P � A ∨ P � B
∀P : Π P � k , P ≡ k

∀P : Π,A : Φ,M : Ω P �MhAi , ∃P ′ : Π,σ : Σ.P ≡ σhP ′i ∧ P ′ � A ∧ σ �M
1 We will use the same symbol � for the three relations, since they are easily distin-

guishable from the context.
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∀P : Π,A,B : Φ P � A m B , ∃P ′, P ′′ : Π.P ≡ P ′ m P ′′ ∧ P ′ � A ∧ P ′′ � B
∀P : Π,A : Φ, x : ϑ P � ∀x.A , ∀m : Λ.P � A{x← m}
∀P : Π,A : Φ P � NA , ∃P ′ : Π.P }∗ P ′ ∧ P ′ � A
∀P : Π,A : Φ P � mA , ∃P ′ : Π.P ↓∗ P ′ ∧ P ′ � A
∀P : Π,A : Φ,M : Ω P � A@M , ∀σ : Σ.σ �M⇒ σhPi � A
∀P : Π,A,B : Φ P � A B B , ∀P ′ : Π.P ′ � A ⇒ P m P ′ � B

This definition relies on the satisfaction of membrane formulas, which we define
next. To this end, we need to introduce a notion of membrane observation, by
means of a labelled transition system (LTS) σ l−→ τ for membranes. A crucial
point is how to define correctly the labels (i.e., the observations) l of this LTS.

The evident similarity between membranes and Milner’s CCS [12] could sug-
gest to define observations simply as actions; e.g., we could take a.σ

a−→ σ.
However, an important difference between membranes and CCS is that in latter
case, the labels are τ and communications over channels, i.e. names (possibly
together with terms, which are separated from processes in any case). On the
other hand, actions in membranes form a whole language, which incorporates
also the membranes themselves. Thus, observing actions over the membranes
would mean to observe explicitly (also) membranes instead of some abstract

logical property. For instance, in the transition J(σ).τ
J(σ)−−−→ τ we have a spe-

cific membrane σ in the label. This kind of observation is too “fine-grained” and
intensional with respect to the rest of the logic, which never deals with specific
membranes but only with their properties.

Therefore, we choose to take as labels the action formulas, instead of actions.
Thus the LTS is a relation σ α−→ τ , which reads as “σ performs an action satisfying
α, and reduces to τ”. This LTS is defined by the following rules:

Labelled Transition System for Membranes

a � α

a.σ
α−→ σ

(prefix)
σ

α−→ σ′

σ|τ α−→ σ′|τ
(par)

σ ≡ σ′ σ′
α−→ τ ′ τ ′ ≡ τ

σ
α−→ τ

(equiv)

Notice that in the (prefix) rule we use the satisfaction relation for actions:

Satisfaction of action formulas

∀a : Γ, n : Λ a � Jn , a = Jn

∀a : Γ, n : Λ,M : Ω a � JI
n(M) , ∃σ : Σ.a = JI

n(σ) ∧ σ �M
∀a : Γ, n : Λ a � Kn , a = Kn

∀a : Γ, n : Λ a � KI
n , a = KI

n

∀a : Γ,M : Ω a � G(M) , ∃σ : Σ.a = G(σ) ∧ σ �M

This relation is defined in terms of the satisfaction of membrane formulas:

Satisfaction of membrane formulas
∀σ : Σ σ � T
∀σ : Σ,M : Ω σ � ¬M , σ 2M
∀σ : Σ,M,N : Ω σ �M∨N , σ �M∨ σ �M
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∀σ : Σ σ � 0 , σ ≡ 0
∀σ : Σ,N ,M : Ω σ �M|N , ∃σ′, σ′′ : Σ.σ ≡ σ′|σ′′ ∧ σ′ �M∧ σ′′ � N
∀σ : Σ,α : Θ σ � )α*M , ∃σ′ : Σ.σ α−→ σ′ ∧ σ′ �M
∀σ : Σ,M,N : Ω σ �M I N , ∀σ′ : Σ.σ′ �M⇒ σ|σ′ � N

Notice that the truth of )α*M is defined using the LTS we defined before. Thus,
the LTS, the satisfaction of action formulas, and the satisfaction of membrane
formulas are three mutually defined judgments.

Derived connectives In the following table, we introduce several useful derived
connectives which can be defined as shorthands of longer formulas, together with
an intuitive description of their meaning. This description can be easily checked
by unfolding the formal meaning, using the satisfaction relations above.

Some derived connectives

A � B , ¬(¬A m ¬B) system decomposition
A∀ , A � F every subsystem (also non proper) satisfies A
A∃ , A m T some subsystem satisfies A

A ∝ B , ¬(B B ¬A) system fusion
Am⇒ B , ¬(A m ¬B) fusion adjoint

M ‖ N , ¬(¬M|¬N ) membrane decomposition
M∀ ,M ‖ F every part of the membrane satisfies M
M∃ ,M|T some part of the membrane satisfies M

MnN , ¬(N I ¬M) membrane fusion
M Z⇒ N , ¬(M|¬N ) fusion adjoint

Derived connectives for Mate-Bud-Drip

)mateη*M , )Jη*)Kη′*M mate
)mateIη*N , )JI

η()K
I
η′*)Kη′′*)*)KI

η′′*N co-mate

)budη*M , )Jη*M bud
)budIη(K)*N , )G()JI

η(K)*)Kη′*)*)KI
η′*N co-bud

)dripη(N )*M , )G()G(N )*)Kη*)*)KI
η*M drip

Let us describe shortly the meaning of the most important derived connectives;
not surprisingly, these are close to similar ones in the Ambient Logic.

System decomposition is the dual of composition, and it is useful to describe
invariant properties of systems. A system satisfies A�B if, for any decomposition
of the system in two parts, a part satisfies A or the other B. As a consequence,
the formula A∀ means that any decomposition satisfies A, or satisfies F. Since
F is never satisfied, this means that in every possible decomposition, a part
satisfies A; hence, every immediate subsystem satisfies A. Thus, the formula
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(MhTi⇒MhNhTii)∀ means “every membrane satisfying M in the system,
must contain just a membrane satisfying N”.

Dually, A∃ means that there exists a decomposition of the system where
a component satisfies A. Thus, the formula MhNhTi∃i states that the sys-
tem is composed by a membrane satisfying M, which contains at least another
membrane satisfying N .

Other interesting applications of derived constructors are, e.g., 2MhTi (“the
system will be always composed by a single membrane, satisfying M), and
n¬(MhTi∃) (“nowhere there is a membrane satisfyingM”). This last formula
expresses a purity condition (like, e.g., “nowhere there exists a bacterium/virus
identified byM”, i.e., “the system is free from infections of type M”).

The fusion A ∝ B means that there exists a system satisfying B such that,
when put together with the actual system, the whole system satisfies A. Dually,
Am⇒ B means that in any decomposition of the system, whenever a part satisfies
A then the other satisfies B.

We end this section with a basic property of satisfaction relations, that is,
that satisfaction is preserved by structural congruence.

Proposition 1 (Satisfaction is up to ≡).
1. (σ �M∧ σ ≡ τ)⇒ τ �M 2. (P � A ∧ P ≡ Q)⇒ Q � A

4 Validity and proof system

In this section, we investigate validity of formulas or, more generally of sequents
and inference rules. Validity is defined in terms of satisfaction; more precisely,
a closed system/membrane/action formula is valid if it is satisfied by every
system/membrane/action.

4.1 Interpretation of sequents and rules
For sequents and rules we will adopt a notation similar to that of Ambient
Logic [5]. A sequent will have exactly one premise and one conclusion, denoted
as A ` B; in this way we do not have to decide any (somewhat arbitrary)
intrepretation of commas in sequents.

Formally, validity of formulas, sequents and rules is as follows:

Validity of formulas, sequents and rules

vld(A) , ∀P : Π.P � A A (closed) is valid
A ` B , vld(A ⇒ B) Sequent
A a` B , A ` B ∧ B ` A Double sequent

A1 ` B1 · · · An ` Bn
A0 ` B0

, A1 ` B1 ∧ · · · ∧ An ` Bn ⇒ A0 ` B0 Inference rule
(n ≥ 0)

A1 ` B1 · · · An ` Bn
A0 a` B0

, A1 ` B1 ∧ · · · ∧ An ` Bn ⇒ A0 a` B0 Double conclusion

A1 ` B1

A2 ` B2

,
A1 ` B1

A2 ` B2
∧ A2 ` B2

A1 ` B1
Double rule
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4.2 Logical Rules

In this section we collect several valid sequents and rules for the Brane Logic.
We distinguish between “inference rules”, which can be seen as proper theorems
validated by the interpretation above, and “derived rules”, that is corollaries
derived by solely applying the inference rules. We omit the rules for propositional
calculus which are the same of Ambient Logic [5].

Composition The spatial nature of Brane Logic leads to important rules for
reasoning about composition and decomposition of systems and membranes.

Rules for composition of systems and membranes

(mk)
A m k a` A

(m¬k)
A m ¬k ` ¬k

(Am)
A m (B m C) a` (A m B) m C

(Xm)
A m B ` B mA

(m∨)
(A ∨ B) m C ` A m C ∨ B m C

(m `) A
′ ` B′ A′′ ` B′′

A′ mA′′ ` B′ m B′′

(m�)
A′ mA′′ ` (A′ m B′′) ∨ (B′ mA′′) ∨ (¬B′ m ¬B′′)

(m B) A m C ` B
A ` C B B

(|0)
M|0 a` M

(|¬0)
M|¬0 ` ¬0

(A|)
M|(N|K) a` (M|N )|K

(X|)
M|N ` N|M

(|∨)
(M∨N )|K ` M|K ∨N|K

(| `) M
′ ` N ′ M′′ ` N ′′

M′|M′′ ` N ′|N ′′

(| ‖)
M′|M′′ ` (M′|N ′′) ∨ (N ′|M′′) ∨ (¬N ′|¬N ′′)

(| I)
M|K ` N
M ` K I N

Most of these rules have a direct and intuitive meaning. For instance, ◦k and
◦¬k state that k is part of any system, and if a part of a system is not void
then the whole system is not void. Notice that rule (◦ B) states that ◦ is the left
adjoint of B, as expected; similarly for | and I.

Due to lack of space we cannot show many interesting corollaries; see [11].

Compartments The rules for reasoning about compartments are similar to
those about compartments in Ambient Logic; the main difference is that now
boundaries are structured and not only names. Clearly, these rules do not apply
to membrane logic, since membranes are not structured in compartments.

Rules for Compartments

(hAi¬k)
A ` ¬k

MhAi ` ¬k
(Mhi¬k)

M ` ¬0
MhAi ` ¬k

(0hki)
0hki a` k

(Mhi¬m)
MhAi ` ¬(¬k m ¬k)

(Mhi `) A ` B M ` N
MhAi ` NhBi

(Mhi∧)
MhAi ∧MhBi ` MhA ∧ Bi

(Mhi@)MhAi ` B
A ` B@M

(Mhi∨)
MhA ∨ Bi ` MhAi ∨MhBi

(¬@)
A@M a` ¬(¬(A)@M)
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The first two rules state that a compartment cannot be considered non-existent if
the membrane is not empty or the contained system is not empty. The third rule
states that an inactive membrane enclosing an empty system is logically equiv-
alent to an empty system. The fourth rule states that a single compartment
cannot be decomposed into two non-trivial systems. The rule (Mhi@) shows
that A@B and MhAi are adjoints, and the rule (¬@) that the compartment
adjoint @ is self-dual.

The fragment about compartment is particularly simple to handle, because
all rules (with assumptions) are bidirectional: (Mhi `) holds in both directions,
and the inverses of (Mhi∧) and (Mhi∨) are derivable.

See [11] for some corollaries about compartments.
Time and space modalities Let us now discuss the logical rules and properties
about spatial and temporal modalities.

Some rules for spatial and temporal modalities in systems
(NMhi)

MhNAi ` NMhAi
(mMhi)

MhmAi ` mA
(Nm)

NA mNB ` N(A m B)
(mm)

mA m B ` m(A m T)
(mN)

mNA ` NmA

The rules for these constructors are very similar to those of ambient logic [5].
The modalities N and m obey the rules of S4 modalities, but are not S5 modal-
ities [9]. The last rule shows that the two modalities permute in one direction.
The other direction does not hold; consider, e.g., the formula A = )Kk*hi and
the system P = KI

mhKmhJnhiii m JI
n(Kk)hi. Then, P � NmA, but P 2 mNA

because neither P nor any of its subsystems will ever exhibit the action Kk.
On the other hand, the action modality )α*M of membranes does not satisfy

the laws of S4 modality, because the relation α−→ is neither reflexive nor transitive.
Nevertheless, it satisfies the laws of any Kripke modality [9].

Rules for action modality
()α*)

)α*M ` ¬ [α]¬M
([α]K)

[α] (M⇒N ) ` [α]M⇒ [α]N
([α] `) M ` N

[α]M ` [α]N

Some corollaries about action modality
([α])

[α]M ` ¬)α*¬M
()α*K)

)α*M⇒ )α*N ` )α*(M⇒N )

()α* `) M ` N
)α*M ` )α*N

([α]∧)
[α] (M∧N ) a` [α]M∧ [α]N

([α] )α*)
[α]M ` )α*M

()α*∨)
)α*(M∨N ) ` )α*M∨ )α*N

A quite expressive set of rules can be obtained by reflecting at the logical
level the operational behaviour of systems and membranes. The next table shows
some of these rules, which can be validated using the reaction of the calculus.

9



Logical rules for reactions
()J*)

)Jn*MhAi m )JI
n(K)*NhBi ` NNhKhMhAii m Bi

()K*)
)KI

n*Nh)Kn*MhAi m Bi ` N(M|NhBi mA)
()G*)

)G(N )*MhAi ` NMhNhki mAi

Some corollaries about reactions
()mate*)

)maten*MhAi m )mateIn*NhBi ` NM|NhA m Bi
()bud*)

)budIn(K)*Nh)budn*MhAi m Bi ` N(KhMhAii mNhBi)
()drip*)

)dripn(N )*MhAi ` N(Nhki mMhAi)

These rules show the connections between action modalities )a* (in the logic of
membranes) and temporal modalities N (in the logic of systems). These rules
are very useful in verifying dynamic properties of systems and membranes.

Predicates We need to extend the notion of validity to open formulas. Let
FV(A) = {x1 . . . xk} be the set of free variables of a formula A, and φ ∈
FV(A) → Λ a substitution of names for variables; Aφ denotes the formula
A{x1 ← φ(x1), . . . , xn ← φ(xk)} obtained by applying the substitution φ. Then,

vld(A) , ∀φ ∈ FV(A)→ Λ.∀P ∈ Π.P � Aφ

Using this notion of validity of formulas, the definitions of sequents and rules do
not need to be changed. Then, the rules for the quantifiers are the usual ones:

Rules for the universal quantifier

(∀L)
A{x← η} ` B
∀x.A ` B

(∀R)
A ` B
A ` ∀x.B

(x /∈ FV(A))

With respect to Ambient Logic, name quantification has a slightly different
meaning. In the Brane Calculus, different names are intended to denote dif-
ferent proteine complexes on membranes; an action and a coaction can trigger a
reaction only if they are using matching complexes, i.e., names. Given this inter-
pretation, using the quantifiers we can express properties which are schematic
with respect to the names involved, that is, they do not depend on the specific
complexes. For instance, ∀x.()KI

x*h)Kx*hkii ⇒ Nk) means “if, for any given
complexes, the system exhibits a matching exo and co-exo capabilities in the
right places, then it can evolve (into the empty system)”.

Name equality We can encode name equality just using logical constructors,
and in particular the adjoint of compartment:

η = µ , )Kη*hTi@)Kµ*
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Proposition 2. ∀φ ∈ FV(η, µ)→ Λ.∀P ∈ Π.P � (η = µ)φ ⇐⇒ φ(η) = φ(µ)

As an example application, the formula

∀x.∀y.)Jx*ThTi m )JI
y(T)*ThTi m T⇒ ¬x = y

means “no pair of membranes exhibit matching action and coaction for a phagoc-
itosis”, which can be seen as a safety property (think, e.g., of a virus trying to
enter a cell, and looking for the right complexes on its surface).

Substitution The next result provides a substitution principle for validity of
predicates; this will allow us to replace logically equivalent formulas inside for-
mula contexts. Let B{−} be a formula with a hole, and let B{A} the formula
obtained by filling the hole with A.

Lemma 1 (Substitution). vld(A′ ⇐⇒ A′′)⇒ vld(B {A′} ⇐⇒ B {A′′})

Corollary 1 (Principle of substitution). A′ a` A′′ ⇒ B{A′} a` B {A′′}

4.3 From validity of propositions to validity of predicates

We can take advantage of (name) equality to lift validity of propositions to
validity of quantified formulas. As a consequence, all the rules and corollaries we
have given so far for propositional validity, can be lifted to predicate validity.

To this end, we need to prove the following proposition:

Proposition 3 (Lifting propositional validity). Let A be a closed valid for-
mula. For any injective function ψ ∈ FN(A) → ϑ mapping names to variables,
the formula (dfn(A)⇒ A)ψ is valid, where dfn(A) ,

∧
n,m∈FN(A),n 6=m

¬(n = m).

For instance, the valid proposition [Kn]M⇒ ¬)Km*M is mapped into the valid
predicate ¬x = y ⇒ ([Kx]M⇒ ¬)Ky*M). Notice that without the inequalities
between variables denoting different names, the result would not hold.

The proof of Proposition 3 relies on some injective renaming lemmata. This
kind of lemmata, stating that the relevant meta-logical properties are preserved
by name permutations, is quite common among calculi with names (they occur,
e.g., in π-calculus, ambient calculus,. . . ); the general technique for their proof is
to proceed by induction on the syntax of formulas.

Lemma 2 (Fresh renaming preserves satisfaction).

1. LetM be a closed membrane formula, σ a membrane and m, m′ names such
that m′ /∈ FN(σ)∪FN(M). Then, σ �M ⇐⇒ σ {m← m′} �M{m← m′}.

2. Let A be a closed system formula, P a system and m, m′ names such that
m′ /∈ FN(P ) ∪ FN(A). Then, P � A ⇐⇒ P {m← m′} � A{m← m′}.

Lemma 3 (Fresh renaming preserves validity). Let A be a valid closed
formula.

1. If m′ is a name such that m′ /∈ FN(A), then A {m← m′} is closed and valid.
2. If φ ∈ FN(A)→ Λ is an injective renaming, then Aφ is closed and valid.
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4.4 Example: Viral Infection

As an example of the expressivity of Brane Logic, we give the formulas describing
a viral infection. We borrow the example of the Semliki Forest virus in [3].

Viral infection system

virus , Jn.Kkhnucapi

cell , membranehcytosoli
membrane , !JI

n(matem)|!KI
w

cytosol , endosome m Z

endosome , !mateIm|!KI
khi

infected cell , membranehnucap m cytosoli

It is simple to show that cell, if placed next to virus, evolves into infected cell

virus m cell }∗ infected cell

The system describe in detail an infection of the Semliki Forest virus; however,
it is almost impossible to abstract from the structure of the system, for instance
if we are interested only in its dynamic behaviour. There are entire subsystems
(e.g. Z) or parts of mebranes (e.g. !Kw) in cell that are not involved in the
infection process. These are only a burden in explaining what happens in the
infection process. The logic can help us to abstract from these irrelevant details:
the formulas describe only what is really needed for the viral attack to take
place. This kind of abstraction is very important in more complex systems or
for focusing only about certain aspects of their evolution.

Virus , )Jn*)Kk*ThNucapi

InfectableCell , ∃x.Membrane(x)hEndosome(x)∃i
Membrane(x) , )JI

n()matex*T )*T
Endosome(x) , )mateIx*T|)KI

k*ThTi

InfectedCell , ThNucap∃i

A system satisfies Virus if and only if it can be phagocitated by cells revealing
a co-phago action with key n on their surface, and, after that, it can release its
nucleocapsid if enveloped in a membrane revealing a co-exo action with key k.
An infectable cell is a cell containing an endosome, such that their respective
membranes have matching mate and mateI actions and which exhibit the keys
requested by J and K actions of the virus. Notice that the existential quantifier
allow us to abstract from the specific key x in the membrane and the endosome:
it is not important which is the specific key, only that it is the same.

Using the logical rules, we can derive that “an infectable cell can become
infected if it gets close to a virus”:

InfectableCell ` Virus B NInfectedCell

12



5 A decidable sublogic
In this section we describe a simple model checker for a decidable fragment of
the Brane Logic. On the basis of undecidability results for model checking of
Ambient Logic [6], we expect that the statement “P � A” is undecidable. There
are several reasons for this. First, replication allows to define infinitary systems
and membranes. Restricting to replication-free processes and membranes does
not suffice either; in fact, following [6], it should be possible to reduce the finite
model problem of first order logic to model checking of replication-free systems
against first order formulas extended with compartements, composition and com-
positionadjoint. However, it is possible to consider fragments of the logic, where
model checking is decidable. In this section, we describe a model checker for
replication-free systems against adjoint-free formulas. Although this logic is not
very expressive, it allows to point out the differences respect to the model checker
presented in [5], especially in the verification of membrane satisfaction.

5.1 Deciding satisfaction of membrane formulas
Let us consider first the problem of deciding “σ � M”, where σ is a !-free
membrane and M is an I-free membrane formula. This problem can be solved
without checking system formulas. As a first step, every !-free membrane can be
put in a normal form, given by a finite multiset of prime membranes.

Normalization of a replication-free membrane
ξ ::= 0 | a.σ (prime membranes)

Norm(0) , [] Norm(a.σ) , [a.σ]
Norm(σ|τ) , [ξ1, . . . , ξk, ξ′1, . . . , ξ

′
l],

where Norm(σ) = [ξ1, . . . , ξk] and Norm(τ) = [ξ′1, . . . , ξ
′
l]

Lemma 4. If Norm(σ) = [ξ1, . . . , ξk] then σ ≡
∏
i=1...k ξi.

The model checker algorithm for membranes consists of three mutually recursive
functions: the model checker Check : Σ×Ω → Bool, an auxiliary checker Check :
Ξ × Θ → Bool for checking action formulas, and a function Next : Σ × Θ →
Pf (Ξ). Intuitively, Next(σ, α) is the (finite) set of residuals of σ after performing
an action satisfying α.

Checking whether membrane σ satisfies closed formula M
Check(σ,T) ,T

Check(σ,¬M) ,¬Check(σ,M)

Check(σ,M∨N ) ,Check(σ,M) ∨ Check(σ,N )

Check(σ,0) ,Norm(σ) = []

Check(σ,M|N ) ,let Norm(σ) = [ξ1, . . . , ξk] in
∃I, J.I ∪ J = {1, . . . , k} ∧ I ∩ J = ∅∧
Check(

∏
i∈I ξi,M) ∧ Check(

∏
j∈J ξj ,N )

Check(σ, )α*M) ,∃τ ∈ Next(σ, α).Check(τ,M)
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Next(0, α) ,∅
Next(σ|τ, α) ,Next(σ, α) ∪ Next(τ, α)

Next(a.σ, α) ,if Check(a, α) then {σ} else ∅

Check(Jn,Jm) ,n = m Check(JI
n(σ),JI

m(M)) ,n = m ∧ Check(σ,M)

Check(Kn,Km) ,n = m Check(Gn(σ),Gm(M)) ,n = m ∧ Check(σ,M)

Check(KI
n,K

I
m) ,n = m Check(wrapn(σ),wrapm(M)) ,n = m ∧ Check(σ,M)

Check(a, α) ,F otherwise

The algorithm always terminates, because each recursive call is on formulas and
membranes smaller than the original ones.

Proposition 4. For all !-free membranes σ and I-free closed membrane for-
mulas M, σ �M iff Check(σ,M) = T.

5.2 Deciding satisfaction of system formulas

The model checker for system formulas relies on the model checker for mem-
branes. First we have to define a normalization function for systems into multi-
sets of prime systems.

Normalization of a replication-free system

π ::= k | σhPi (prime systems)
Norm(k) , [] Norm(σhPi) , [σhPi]

Norm(P mQ) , [π1, . . . , πk, π
′
1, . . . , π

′
l],

where Norm(P ) = [π1, . . . , πk] and Norm(Q) = [π′1, . . . , π
′
l]

Lemma 5. If Norm(P ) = [π1, . . . , πk] then P ≡
∏
i=1...k πi.

As for many modal logics, we need two auxiliary functions Reach,SubLoc :
Π → Pf (Π) for checking the two modalities. Their specification is the following:

Q ∈ Reach(P )⇒ P }
∗ Q ∀P ′.P }

∗ P ′ ⇒ ∃Q ∈ Reach(P ).P ′ ≡ Q
Q ∈ SubLoc(P )⇒ P ↓∗ Q ∀P ′.P ↓∗ P ′ ⇒ ∃Q ∈ SubLoc(P ).P ′ ≡ Q

Due to lack of space, we omit their (easy) definitions.

Checking whether system P satisfies closed formula A

Check(P,T) ,T

Check(P,¬A) ,¬Check(P,A)

Check(P,A ∨ B) ,Check(P,A) ∨ Check(P,B)

Check(P,0) ,Norm(P ) = []
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Check(P,A|B) ,let Norm(P ) = [π1, . . . , πk] in
∃I, J.I ∪ J = {1, . . . , k} ∧ I ∩ J = ∅∧
Check(

∏
i∈I πi,A) ∧ Check(

∏
j∈J πj ,B)

Check(P,MhAi) ,∃σ,Q.Norm(P ) = [σhQi] ∧ Check(σ,M) ∧ Check(Q,A)

Check(P,∀x.A) ,let m 6∈ FN(P ) ∪ FN(A) in
∀n ∈ FN(P ) ∪ FN(A) ∪ {m}.Check(P,A{x← m})

Check(P,NA) ,∃Q ∈ Reach(P ).Check(Q,A)

Check(P,mA) ,∃Q ∈ SubLoc(P ).Check(Q,A)

Also this algorithm always terminates, because each recursive call is on formulas
and processes smaller than the original ones. Notice that in the case of compart-
ment, we execute the model checker over membranes defined above.

Proposition 5. For all !-free systems P and (BI@)-free closed system formulas
A, P � A iff Check(P,A) = T.

6 Conclusions

In this paper we have introduced a modal logic for describing spatial and tem-
poral properties of biological systems represented as nested membranes, with
particular attention to the computational activity which takes place on mem-
branes. The logic is quite expressive, since it can describe in a easy but formal
way a large range of biological situations at the abstraction level of membrane
machines. For a decidable sublogic, we have given a model-checking algorithm,
which is a useful tool for automatic verification of properties (e.g., vulnerabili-
ties) of biological systems.

The work presented in this paper is intended to be the basis for further de-
velopments, in many directions. First, we can consider logics for more expressive
brane calculi, e.g. with communication cross/on-membranes and protein com-
plexes logic formulas. Suitable corresponding logical constructors can be added
to the logic of actions. Also, the logic can be easily adapted to other variants
of the Brane Calculus, such as the Projective Brane Calculus [7] (e.g., a system
formula like 〈M;N〉hAi would carry a formula for each face of the membrane).

Another interesting aspect to investigate is the notion of logical equivalence
induced by the logic. This should be similar to the equivalences induced by
Hennessy-Milner logic extended with spatial connectives (for membranes) and
of Ambient Logic (for systems). We think that the methodologies and results
developed in [15] can be extended to our logic.

Moreover, it would be interesting to extend the decidability result to a larger
class of formulas. We plan to extend the model checker algorithm to formulas
without quantifiers but with the guarantees operators (i.e., the adjoints of com-
positions), along the lines of [6]. On a different direction, it is interesting to
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consider also epistemic logics [10], where the role of the guarantee operator is
played by an epistemic operator, while maintaining decidability.

Acknowledgments The authors wish to thank Luca Cardelli for useful discus-
sions and for kindly providing the fancy font of the actions of Brane Calculus.
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