
03 May 2024

Università degli studi di Udine

Original

From Bisimulation to Simulation: Coarsest Partition Problems

Publisher:

Published
DOI:10.1023/A:1027328830731

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/684960 since 2016-11-29T19:57:11Z



From Bisimulation to Simulation
Coarsest Partition Problems
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Dip. di Matematica e Informatica - Università di Udine
Via Le Scienze, 206 - 33100 Udine - Italy

Abstract. The notions of bisimulation and simulation are used for graph reduction
and are widely employed in many areas: Modal Logic, Concurrency Theory, Set
Theory, Formal Verification, etc. In particular, in the context of Formal Verification
they are used to tackle the so-called state-explosion problem.

The faster algorithms to compute the maximum bisimulation on a given labelled
graph are based on the, crucial, equivalence between maximum bisimulation and
relational coarsest partition problem. As far as simulation is concerned many algo-
rithms have been proposed which turn out to be relatively inexpensive in terms
of either time or space. In this paper we first revisit the state-of-the-art about
bisimulation and simulation, pointing out the analogies and differences between the
two problems. Then, we propose a generalization of the relational coarsest partition
problem which is equivalent to the simulation problem. Finally, we conclude present-
ing an algorithm which exploits such a characterization and improves on either time
or space complexity with respect to previously proposed algorithms for simulation.
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2 Gentilini, Piazza, and Policriti

1. Introduction

The behavior of a system or of a set of programs implementing a collec-
tion of cooperating subunits is naturally modelled by structures whose
nodes describe the possible states and arrows represent actions. Even
though very old and very much studied, this simple idea, so familiar to
computer scientists as well as logicians, is recurrently at the ground of
important progresses in a variety of sub-fields of informatics.

As it is natural to expect, the main, somehow intrinsic, difficulties
with this approach to modelling, are the intricacies buried in the mod-
elling structures and the sheer size of the obtained structures. In fact,
the principal purpose of the modelling activity is to be able to perform
automatically, within such structures, the search for properties, spec-
ified in suitably designed languages, that can be proved or disproved,
during the design phase. In this general framework, one of the main
tools available to cope with the explosion of the size of the modelling
structures (Kripke structures, automata, transition systems of various
kind), is to use algorithms reducing the size of the structure before any
“reasoning” takes place on them.

In this paper we consider systematically two of such possible re-
ductions (bisimulation and simulation) from an algorithmic point of
view. In particular, our purpose is to show how there is a fil rouge
connecting such notions which consists in casting them into partition
refinement problems (coarsest partition problems). Such a formulation
is then showed to be engine for the design of fast and efficient algorithms
along rather natural paths in both cases and, we hope, should also shed
some light on the concrete nature of this kind of graph reduction.

The paper continues, after introducing some preliminary material,
with a section dealing with the state of the art relative to the study of
bisimulation and simulation, respectively, providing a specific prelim-
inary discussion on some history on each of the two notions and the
algorithmic tools used for their implementations. In the subsequent
section we present a new result in the form of a novel algorithm for
simulation, based on the mapping of the notion on a suitable coarsest
partition problem.

Preliminary versions of the results presented here were discussed in
(DPP01) and (GPP02a).

2. Preliminaries

In this section we introduce the basic notations we use in the rest of
the paper.
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Coarsest Partition Problems 3

DEFINITION 2.1. Let T be a set and Q ⊆ T × T a binary relation
over T :

− Q is said to be a quasi order over T if and only if Q is reflexive
and transitive;

− Q is said to be a partial order over T if and only if Q is reflexive,
antisymmetric, and transitive;

− Q is said to be acyclic if and only if its transitive closure is
antisymmetric.

We will use Q+ to refer to the transitive closure of Q and Q∗ to refer
to the reflexive and transitive closure of Q.

Notice that if a relation is acyclic, then it is antisymmetric, while the
converse does not hold (unless it is transitive).

DEFINITION 2.2 (Labelled Graphs). A triple G = (N,→, Σ) is said
to be a labelled graph if and only if G− = (N,→) is a finite graph and
Σ is a partition over N . We say that two nodes a, b ∈ N have the same
label if they belong to the same class of Σ.

An equivalent way to define labelled graphs is to use a labelling function
� : N → L, where L is a finite set of labels (inducing a partition ΣL of
N). Given a node a ∈ N we will use [a]Σ (or [a], if Σ is clear from the
context) to denote the class of Σ to which a belongs.

EXAMPLE 2.3. A Kripke Structure is a labelled graph and, vice-versa,
each labelled graph can be seen as a Kripke Structure in which two
worlds satisfy the same set of atomic propositions if and only if their
labels are equal.

DEFINITION 2.4 (Bisimulation). Let G = (N,→, Σ) be a direct la-
belled graph. A relation �⊆ N × N is said to be a bisimulation over
G if and only if:

1. a � b ⇒ [a]Σ = [b]Σ;

2. (a � b ∧ a → c) ⇒ ∃d(c � d ∧ b → d);

3. (a � b ∧ b → d) ⇒ ∃c(c � d ∧ a → c).

We say that a and b are bisimilar (a ≡b b) if there exists a bisimulation
� such that a � b.
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Notice that a bisimulation can be neither reflexive nor transitive, and
not even symmetric, however the reader can easily verify that given an
arbitrary bisimulation its reflexive, symmetric, and transitive closure is
always a bisimulation. The proof of the following lemma can be found
in (Mil80).

LEMMA 2.5. Let G = (N,→, Σ) be a labelled graph. The relation ≡b is
an equivalence relation over N and a bisimulation over G. Moreover,
≡b is the maximum bisimulation, i.e. if � is a bisimulation over G,
then �⊆≡b.

Since ≡b is an equivalence relation, it is possible to consider the
quotient B = N/ ≡b. We will use the notation [a]b to denote the
equivalence class to which a belongs in B.

DEFINITION 2.6 (Bisimulation Problem). Given a labelled graph G =
(N,→, Σ) the bisimulation problem over G consists in computing the
quotient B = N/ ≡b, where ≡b is the maximum bisimulation over G.

DEFINITION 2.7 (Simulation). Let G = (N,→, Σ) be a labelled graph.
A relation ≤⊆ N × N is said to be a simulation over G if and only
if:

1. a ≤ b ⇒ [a]Σ = [b]Σ;

2. (a ≤ b ∧ a → c) ⇒ ∃d(c ≤ d ∧ b → d).

In this case we also say that b simulates a.
We say that b and a are sim-equivalent (b ≡s a) if there exist two
simulations ≤1 and ≤2, such that a ≤1 b and b ≤2 a.

Again, a simulation can be neither reflexive nor transitive (e.g. the
empty relation is always a simulation), but given an arbitrary simula-
tion its reflexive and transitive closure is always a simulation.

A simulation ≤s over G is said to be maximal if for all the simula-
tions ≤ over G it holds ≤⊆≤s.

LEMMA 2.8. Given a labelled graph G = (N,→, Σ) there always exists
a unique maximal simulation ≤s over G. Moreover ≤s is a quasi order.

COROLLARY 2.9. Let G = (N,→, Σ) be a labelled graph. The relation
≡s (sim-equivalence) is an equivalence relation over N .

Proof. Let ≤s be the maximal simulation relation over G. From the
definition of sim-equivalence we have that

a ≡s b iff a ≤s b ∧ b ≤s a.
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Since ≤s is a quasi order, ≡s is an equivalence relation. �

Also in the case of simulation, since ≡s is an equivalence relation,
it is possible to consider the quotient S = N/ ≡s. We will use the
notation [a]s to denote the equivalence class to which a belongs in S.

DEFINITION 2.10 (Simulation Problem). Given a labelled graph G =
(N,→, Σ) the simulation problem over G consists in computing the
quotient S = N/ ≡s, where ≡s is the sim-equivalence over G.

3. State-of-the-art

3.1. Bisimulation

The notion of bisimulation, formally defined in Section 2, has been
introduced with different purposes in many areas related to Computer
Science. In Modal Logic it was introduced by van Benthem (cf. (Ben76))
as an equivalence principle between Kripke structures. In Concurrency
Theory it was introduced by Park (cf. (Par81)) for testing observa-
tional equivalence of the Calculus of Communicating Systems (CCS).
In Set Theory, it was introduced by Forti and Honsell (cf. (FH83)) as
a natural principle replacing extensionality in the context of non well-
founded sets. As far as Formal Verification is concerned (cf. (CGP99)),
several existing verification tools make use of bisimulation in order
to minimize the state spaces of systems description ((CS96; Bou98;
FGK+96; Ros94)), since bisimulation preserves the whole µ-calculus.
The reduction of the number of states is important both in composi-
tional and in non-compositional Model Checking. Bisimulation serves
also as a mean of checking equivalence between transition systems. In
the context of Security many non interference properties are based on
checking bisimulation between systems (cf. (FG97)).

From a computational point of view, the main reason for the fortune
of bisimulation and for its fast solution lie in the equivalence between
the bisimulation problem and the problem of determining the coarsest
partition of a set stable with respect to a given relation.

DEFINITION 3.1 (Stability). Let → be a binary relation on the set
N , →−1 its inverse relation, and Σ a partition of N . Σ is said to be
stable with respect to → iff for each pair α, γ of blocks of Σ, either
α ⊆→−1 (γ) or α∩ →−1 (γ) = ∅.

We say that a partition Π refines a partition Σ (Π is finer than Σ)
if each block of Π is included in a block of Σ.
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DEFINITION 3.2 (Coarsest Stable Partition Problem). Let → be a bi-
nary relation on the set N and Σ a partition over N . The coarsest
stable partition problem is the problem of finding the coarsest partition
B refining Σ that is stable with respect to →.

This problem, that emerged also naturally in automata minimiza-
tion, is equivalent to the bisimulation problem.

PROPOSITION 3.3. Let G = (N,→, Σ) be a labelled graph.

(i) Let Π be a partition over N refining Σ and stable with respect
to →. Then �Π defined as:

a �Π b iff ∃α ∈ Π (a ∈ α ∧ b ∈ α)

is a bisimulation over G.

(ii) Let � be a bisimulation over G which is also an equivalence
relation. Then Π� = {[a]� : a ∈ N}, where [a]� = {b ∈ N : a � b},
is a partition stable with respect to →.

Next corollary follows immediately from the previous proposition.

COROLLARY 3.4. Let G = (N,→, Σ) be a graph. Computing the
maximum bisimulation ≡b on G or finding the coarsest stable partition
of N refining Σ and stable with respect to → are equivalent problems.

The first significant result related to the algorithmic solution of
the bisimulation problem is in (Hop71), where Hopcroft presents an
algorithm for the minimization of the number of states in a given fi-
nite state automaton. Hopcroft’s result has been subsequently clarified
and improved in (Gri73; Knu01) The problem is equivalent to that
of determining the coarsest partition of a set stable with respect to a
finite set of functions. A variant of this problem is studied in (PTB85),
where it is shown how to solve it in linear time in case of a single
function. Finally, in (PT87) Paige and Tarjan solved the problem for
the general case (which is the same as solving the bisimulation problem)
in which the stability requirement is relative to a relation → (on a set
N) with an algorithm whose complexity is O(| → | log |N |). The main
feature of the linear solution to the single function coarsest partition
problem (cf. (PTB85)), is the use of a positive strategy in the search
for the coarsest partition: the starting partition is the partition with
singleton classes and the output is built via a sequence of steps in
which two or more classes are merged. Instead, Hopcroft’s solution to
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the (more difficult) many functions coarsest partition problem is based
on a (somehow more natural) negative strategy: the starting partition is
the input partition and each step consists of the split of all those classes
for which the stability constraint is not satisfied. The interesting feature
of Hopcroft’s algorithm lies in its use of a clever ordering (the so-called
“process the smallest half” ordering) for processing classes that must be
used in a split step. Starting from an adaptation of Hopcroft’s idea to
the relational coarsest partition problem, Paige and Tarjan succeeded
in obtaining their fast solution (PT87). The process the smallest half
policy establishes that if a block α′ is split into α and α′ \ α, and α
has less elements than α′ \ α, then we can use (only) α as splitter and
ignore α′ \ α. In their generalization of this policy Paige and Tarjan
determine how to perform |α| steps also when it is necessary to use
both α and α′ \ α as splitters.

In (KS90) Kannellakis and Smolka notice that the algorithm by
Paige and Tarjan (PT87) for the relational coarsest partition problem
can be used to determine the maximum bisimulation over a graph G =
(N,→, Σ).

In (BFH90) Bouajjani, Fernandez, and Halbwachs propose an al-
gorithm for the relational coarsest partition problem tailored for the
context of on-the-fly Model Checking, i.e. they stabilize only reachable
blocks. In (LY92) Lee and Yannakakis improve this method by using
only reachable blocks to stabilize the reachable blocks.

From a more abstract point of view, an interesting property of the
notion of bisimulation is that the bisimulation problem over labelled
graphs is equivalent the one over unlabelled ones. Given a labelled
graph G = (N,→, Σ) it is possible to build a graph G′ = (N ′,→′ ),
with N ⊆ N ′ and →⊆→′, such that for all a, b ∈ N a ≡b b over G if
and only if a ≡b b over G′ (see (DPP01; Pia02)). As a matter of fact, in
the context of non-well-founded sets graphs are used to represent sets
(see (Acz88)), hence they have no labels and the notion of bisimulation
determines set-equalities. The fact that the problem with labels can
be reduced to the one without labels means that the set-theoretic
formulation of the bisimulation problem is general enough to embed
all the other bisimulation problems.

In (DPP01) exploiting the set-theoretic formulation of the bisimu-
lation problem an algorithm which optimizes the algorithm in (PT87)
is presented. The worst case complexity of the algorithm described
in (DPP01) is equal to the worst case complexity of the algorithm
proposed in (PT87), but in a large number of cases it obtain better
performances. In particular, this algorithm integrates positive and neg-
ative strategies and the combined strategy is driven by the set-theoretic
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notion of rank of a set. In the case of acyclic graphs the rank of a node
a is nothing but the length of the longest path from a to a leaf.

DEFINITION 3.5. Let G = (N,→) be an acyclic graph. The rank of
a node a is recursively defined as follows:

{
rank (a) = 0 if a is a leaf
rank (a) = 1 + max{rank (c) : a → c} otherwise

In the general case the rank of a node a is the length of the longest
path from a node c, reachable from a, to a leaf such that all the nodes
involved in the path do not reach cycles. In order to give a formal defi-
nition we first introduce the notion of graph of the strongly connected
components.

DEFINITION 3.6 (Strongly Connected Components). Given a graph
G = (N,→), let Gscc = (N scc,→scc) be the graph obtained as follows:

N scc = {C : C is a strongly connected component in G}
→scc = {〈C(a), C(c)〉 : C(a) �= C(c) and a → c}

Given a node a ∈ N , we refer to the node of Gscc associated to the
strongly connected component of a as C(a).

Observe that Gscc is acyclic.
We also need to distinguish between the well-founded part and the

non-well-founded part of a graph G.

DEFINITION 3.7 (Well-Founded Part). Let G = (N,→) and a ∈ N .
G(a) = (N(a),→� N(a)) is the subgraph1 of G of the nodes reachable
from a. WF (G), the well-founded part of G, is WF (G) = {a ∈ N :
G(a) is acyclic}.

DEFINITION 3.8 (Rank). Let G = (N,→). The rank of a node a of
G is defined as:



rank (a) = 0 if a is a leaf in G
rank (a) = −∞ if C(a) is a leaf in Gscc and a is not a leaf in G
rank (a) = max({1 + rank (c) : C(a) →scc C(c), c ∈ WF (G)} ∪

{rank (c) : C(a) →scc C(c), c �∈ WF (G)}) otherwise

Two important properties of the notions of rank, proved in (DPP01),
suggest to exploit it in the bisimulation problem:

− if a ≡b b, then rank (a) = rank (b);

1 We use →� N(a) to denote the restriction of → to N(a).
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− if ≡b has been computed on the nodes of rank less than i, then it
is possible to compute ≡b on the nodes at rank i.

Moreover, given a graph G = (N,→) the ranks can be assigned to the
nodes of G in time O(|N | + | → |) using the Tarjan’s algorithm for
the strongly connected components. This means that using the ranks
inside a bisimulation algorithm does not increase its asymptotic time
complexity.

The algorithm in (DPP01) first splits the graph into ranks, then
uses (PTB85) and (PT87) as subroutines in increasing order of ranks.
It terminates in linear time in many cases, for example when the input
problem corresponds to a bisimulation problem on acyclic models. It
operates in linear time in other cases as well and, in any case, it runs at
a complexity less than or equal to that of the algorithm by Paige and
Tarjan (PT87). Moreover, the partition imposed by the rank allows to
process the input without storing the entire structure in memory at the
same time. This allows (potentially) to deal with largest graphs than
those treatable using a Paige and Tarjan-like approach. A symbolic
version of the algorithm in (DPP01) has been presented in (DGPP02),
where it has also been proposed the use the notion of rank inside
Model Checking procedures (i.e., not only to compute the bisimulation
quotient, but to evaluate the CTL formulae).

In (PP01) the bisimulation problem is tackled again from a set-
theoretic point of view. In particular, it is shown how in the case of
acyclic graphs a compact version of the Ackermann’s encoding can be
used to solve the bisimulation problem, then the encoding is extended
to the general case.

In Section 2 we presented the bisimulation problem over a labelled
graph G. It is possible to formulate the problem using two graphs
G1 and G2 for which it is convinient to define labelled graphs using
a labelling function � : N → L, where L is a finite set of labels common
for all the graphs.

DEFINITION 3.9 (Two graphs Bisimulation). Let G1 = (N1,→1, �1)
and G2 = (N2,→2, �2) be two labelled graphs. A relation �⊆ N1 × N2

is said to be a bisimulation between G1 and G2 if and only if:

1. a � b ⇒ �1(a) = �2(b);

2. (a � b ∧ a → c) ⇒ ∃d(c � d ∧ b → d);

3. (a � b ∧ b → d) ⇒ ∃c(c � d ∧ a → c);

4. for each a ∈ N1 there exists b ∈ N2 such that a � b;
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5. for each b ∈ N2 there exists a ∈ N1 such that a � b;

Two graphs G1 and G2 are said to be bisimilar if there exists a bisim-
ulation between G1 and G2.

This formulation of the problem allows us to use bisimulation as a
reduction procedure quotienting G onto the domain N/ ≡b. Such a
reduced graph can be build thanks to an important property of ≡b

(and of all the bisimulations that are equivalence relations):

∀a, b, c((a → c ∧ b ∈ [a]b) ⇒ ∃d(d ∈ [c]b ∧ b → d)) (�)

Hence, we can define the quotient graph G/ ≡b= (N≡b
,→≡b

, �≡b
) as:

N≡b
= N/ ≡b

[a]b →≡b
[c]b ⇔ ∃c1(c1 ∈ [c]b ∧ a → c1)

�≡b
([a]b) = �(a).

PROPOSITION 3.10. Let G = (N,→, �) be a labelled graph. The graph
G/ ≡b is the minimum graph bisimilar to G.

3.2. Simulation

The notion of simulation, introduced in Section 2, first defined by Mil-
ner in (Mil71) as a means to compare programs, is very similar (less
demanding, in fact) to the notion of bisimulation. Since the conditions
in the definition of simulation are weaker than the ones in the defini-
tion of bisimulation, simulation provides, for example in the context of
Formal Verification, a better space reduction than bisimulation. Never-
theless simulation is still adequate for the verification of all the formulae
of the branching temporal logic without quantifiers switches (DGG93)
(e.g. the formulae of ACTL∗, see (GL94)). As explained in (HHK95) “in
many cases, neither trace equivalence nor bisimilarity, but similarity is
the appropriate abstraction for computer-aided verification . . . ”. In the
case of finite-state systems the similarity quotients can be computed
in polynomial time, while this is not the case for trace equivalence
quotients. In the case of infinite-state systems, finitely represented using
hybrid automaton and other formalisms, the similarity quotients can
be computed symbolically and in many cases the quotients are finite
(see (HHK95)).

Several polynomial-time algorithms to solve the simulation problem
on finite graphs have been proposed: the ones in (Blo89), (CPS93), and
(CS92) achieve O(|N |6| → |), O(|N |4| → |), and O(| → |2) time com-
plexities, respectively. A simulation procedure running in O(|N || → |)
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time was independently discovered in (HHK95) and (BP95). All of
the algorithms just mentioned ((Blo89), (CPS93), (CS92), (BP95),
(HHK95)) obtain the similarity quotient S = N/ ≡s as a by-product of
the computation of the entire similarity relation ≤s on the set of states
N . Their space complexity is then limited from below by O(|N |2).

Recently Bustan and Grumberg in (BG00) and Cleaveland and Tan
in (CT01) improved the above results.

The procedure by Bustan and Grumberg (BG00) gives in output
the quotient structure with respect to ≡s and the simulation relation
among the classes of S = N/≡s without computing the entire simulation
on N . Hence, its space requirements (often more critical, especially in
the field of verification) depends on the size of S and are lower than
the ones of the algorithms in (Blo89), (CPS93), (CS92), (BP95), and
(HHK95). In more detail, the algorithm described in (BG00) uses only
O(|S|2+|N | log(|S|)) space whereas its time complexity is rather heavy:
it is O(|S|4(| → | + |S|2) + |S|2|N |(|N | + |S|2)).

The procedure in (CT01) combines the fix-point calculation tech-
niques in (BP95) and (HHK95) with the bisimulation-minimization
algorithm in (PT87). A system, G2, is determined being or not capable
of simulating the behavior of G1, by interleaving the minimization via
bisimulation of the two systems with the computation of the set of
classes in G2 able to simulate each class in G1. The time complexity
achieved is O(|B1||B2|+ | →1 | log(|N1|) + |B1|| →2 |+ |ε1||B2|), where
εi and Bi represent the bisimulation reduced relation and state-space
of Ti. Compared with the time complexities of (HHK95) and (BP95),
the latter expression has many occurrences of |Ni| and | →i | replaced
with |Bi| and |εi|. Indeed, the experimental results in (CT01) prove
that the procedure by Cleaveland and Tan outperform the ones in
(HHK95) and (BP95). The space complexity of (CT01) depends on the
product of the sizes of the two bisimulation quotients involved. Being
bisimulation finer than simulation, such a space requirement may be
more demanding than the one in (BG00).

As in the case of bisimulation, it is possible to formulate the sim-
ulation problem between two graphs. In particular, a “two graphs”
formulation is used in (CT01).

DEFINITION 3.11 (Two graphs Simulation). Let G1 = (N1,→1, �1)
and G2 = (N2,→2, �2) be two labelled graphs. A relation ≤⊆ N1 × N2

is said to be a simulation from G1 to G2 if and only if:

1. a ≤ b ⇒ �1(a) = �2(b);

2. (a ≤ b ∧ a → c) ⇒ ∃d(c ≤ d ∧ b → d);
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3. for each a ∈ N1 there exists b ∈ N2 such that a ≤ b;

A graph G1 is simulated by a graph G2 (G2 simulates G1) if there exists
a simulation from G1 to G2. Two graphs G1 and G2 are sim-equivalent
if both G1 simulates G2 and G2 simulates G1

Hence, given a graph G it is possible to consider the problem of de-
termining the minimum graph sim-equivalent to G. In the context of
simulation minimality is measured in terms of both number of nodes
and edges. In (BG00) it has been proved that there always exists a
unique smallest labelled graph that is sim-equivalent to G, i.e. there is
a unique way to put a minimum number of edges between the elements
of S = N/ ≡s in order to obtain a labelled graph sim-equivalent to
G. In the case of bisimulation this was a trivial consequence of the
property (�) (see Section 3.1), since if a node reaches with an edge an
equivalence class, then all the nodes that are equivalent to it reach with
an edge the same equivalence class. This is equivalent to say that

∀a, c([a]b∩ →−1 ([c]b) �= ∅ ⇒ [a]b ⊆→−1 ([c]b)),

which is at the basis of the characterization of the bisimulation problem
as (relational) coarsest partition problem. In the case of simulation it
is possible that there exists a node a which reaches with an edge a
node c, while a node which is sim-equivalent to a does not reach any
node sim-equivalent to c. When this happens we always have that there
exists a node d such that a reaches d and c ≤s d, and we say that c is
a little brother of d. Hence, the property which holds for the maximum
simulation is that

∀a, b, c((a → c ∧ b ∈ [a]s) ⇒ ∃d(c ≤s d ∧ b → d)) (�)

which in particular, since we are working on finite graphs, implies that

∀a, c([a]s∩ →−1 ([c]s) �= ∅ ⇒ ∃[d]s([c]s ≤s [d]s ∧ [a]s ⊆→−1 ([d]s))).

This property, at the basis of the generalized stability condition that we
will introduce in the second part of this paper, provides a character-
ization of the simulation problem in terms of partitioning problem.
An immediate consequence is that there is a unique way to put a
minimum number of edges among the elements of N/ ≡s in order to
obtain a graph sim-equivalent to G: put an edge from [a]s to [d]s if and
only if it holds [a]s ⊆→−1 ([d]s) and there is no class [c]s such that
[a]s∩ →−1 ([c]s) �= ∅ with d ≤s c (i.e. d is not a little brother).

EXAMPLE 3.12. Consider the two graphs in Figure 1. The graph on
the right is the quotient with respect to the maximum simulation of the
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graph on the left. In the graph on the left there are no sim-equivalent
nodes, hence all the classes in the quotient structure are singletons. In
the graph on the left there is a node with label B which is a little brother,
hence in the quotient structure we delete an edge.

A

BB

A

A

BB

A

Figure 1. Example of little brother and of minimization in terns of edges.

Another important difference between bisimulation and simulation
is that while in the case of bisimulation working without labels is not
a restriction (see Section 3.1), in the case of simulation this is not the
case. This is a consequence of the following result whose proof is left
to the reader.

LEMMA 3.13. Let G = (N,→, Σ) be a graph such that Σ = {N}, i.e.
all the nodes have the same label. Given a node a ∈ N let G(a) be the
subgraph of G of the nodes reachable from a.

− If G(a) is acyclic, then for all b ∈ N

b ≤s a iff G(b) is acyclic and rank (b) ≤ rank (a).

− If G(a) is cyclic, then for all b ∈ N

b ≤s a.

This means that in the case without labels (i.e. only one label) all
the nodes which belong to the non-well-founded part of the graph are
sim-equivalent.

EXAMPLE 3.14. Consider the graph in Figure 2. If we try to remove
the labels A and B by adding new nodes and we do not want to use labels
also on the new nodes, then, no matter how many new nodes and edges
we add, the two nodes of the original graph become sim-equivalent.

We anticipate here that in the second part of this paper we will
introduce a “partial” unlabelling which pushes the labels down on new
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14 Gentilini, Piazza, and Policriti

BA

Figure 2. Example with Labels.

leaves. However, we introduce this unlabelling only to prove that the
simulation problem is equivalent to a generalization of the coarsest
partition problem. The unlabelling is not necessary in the algorithm
we present.

The previous lemma has also strong implications on the use of the
notion of rank in the computation of ≡s. It implies that

a ≡s b �⇒ rank (a) = rank (b),

since in a graph with only one label all the non-well-founded nodes are
sim-equivalent even if they are at different ranks. Lemma 3.13 suggests
that a reasonable definition of rank to be used in the computation of
≡s could be

rank ∗(a) =
{

max({1 + rank (c) | C(a) →scc C(c)} if a ∈ WF (G)
+∞ otherwise

i.e. on the well-founded part of the graph we use the usual notion of
rank, while all the nodes in the non-well-founded part have rank +∞.
Using such a definition we obtain

a ≡s b ⇒ rank ∗(a) = rank ∗(b);
a ≤s b ⇒ rank ∗(a) ≤ rank ∗(b).

Unfortunately this implies that, whenever we use a technique which
needs to compute ≤s in order to determine ≡s, when we process nodes
at rank i we have to keep into account also all the nodes at rank less
than i.

A second disadvantage of the use of rank ∗ is that it is reasonable to
believe that at least one half of the nodes have rank +∞, which means
that it does not split enough the computation.

For this last reason in (GPP02b) in order to exploit a notion of rank
in the simulation computation the opposite approach is taken, i.e. a
notion of rank which splits the graph as much as possible is introduced
admitting to have sim-equivalent nodes with different ranks. In any
case, what is required to the notion of rank is the property that the
information at rank i is enough to compute the similarity relations
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Coarsest Partition Problems 15

among the nodes of rank at most i. In particular, we want to avoid the
situation in which a and b are two nodes whose rank is at most i, at the
end of the i-th iteration we believe that a ≡s b (resp. a �≡s b) and at the
end of the (i + k)-th iteration we discover that a �≡s b (resp. a ≡s b). A
necessary and sufficient condition to obtain the above property is that:

if a → b, then the rank of b is not greater than the rank of a.

The following notion of rank turns out to satisfy the above condition
and splits the graph as much as possible:

DEFINITION 3.15 (sim-Rank). Let G = (N,→, Σ), the rank s of a
node is recursively defined as follows:

rank s(a) =
{

0 if a is a leaf in Gscc

max{1 + rank s(c) | C(a) →scc C(c)} otherwise

This means that at each rank a set of strongly connected components
is considered and the order in which these sets of strongly connected
components are considered is determined by the usual (well-founded)
notion of rank on the graph of the strongly connected components.

3.3. Model Checking and Symbolic Algorithms

As already mentioned, one of the main application of the notions of
bisimulation and simulation comes from the area of Formal Verifica-
tion. The main disadvantage of Model Checking is the so-called state-
explosion that can occur if the system being verified has many com-
ponents that can make transitions in parallel. In this case the number
of global system states may grow exponentially with the number of
processes. Different techniques have been developed and are still under
active investigation to solve this problem: OBDD and Symbolic Model
Checking (McM93), Abstract Model Checking (DGG97), partial order
reductions (CGP99), equivalence reductions (LY92; HHK95). Bisimu-
lation and simulation belong to this last group of techniques, since they
allow to obtain a smaller structure which satisfies the same properties of
the input one (preservation of various logics). Bisimulation guarantees
preservation of branching-time temporal logics such as CTL and CTL*
(CE82), while simulation preserves of the universal fragment of these
logics (ACTL and ACTL* (GL94)).

For this reason many Model Checking tools integrate subroutines to
perform both bisimulation and simulation reductions (CS96; Bou98;
FGK+96; Ros94). The verification environment XEVE (Bou98) pro-
vides bisimulation tools which can be used for both minimization and
equivalence test. The Concurrency Workbench (CWB) (CPS93) tests
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16 Gentilini, Piazza, and Policriti

bisimulation using techniques based on the Kanellakis and Smolka al-
gorithm. The Compositional Security Checker (CoSec) (FG97) exploits
the bisimulation algorithm implemented in CWB in order to test infor-
mation flow security properties. In the Concurrency Workbench of the
New Century (CWB-NC) (CS96) the underling bisimulation algorithm
is the Paige and Tarjan one, while the simulation algorithms used are
the ones presented in (BP95; CT01).

Sometimes different techniques are put together to obtain better
reductions in the memory requirements. In particular, Symbolic Model
Checking, which is based on the use of Ordered Binary Decision Dia-
grams (OBDDs) (see (Bry85; McM93)) to represent the input structure
and sets of states, is sometimes associated to the use of bisimulation
and simulation. Unfortunately, not all the algorithms fit with the use of
OBDDs: the main advantage of OBDDs is that they compactly repre-
sent big sets of states, hence it is not reasonable to use algorithms which
need to consider each state separately. A classical example is Tarjan’s
algorithm (or any version of it) for the strongly connected components,
which is inapplicable on OBDD since it requires to manipulate each
node singularly in order to assign it its finishing-time.

In the symbolic case, i.e. when OBDDs are used as basic data-
structures, a popular bisimulation algorithm is (BdS92) by Bouali and
de Simone. It implements the näıve negative strategy optimizing the
boolean operations involved: first, the set of reachable nodes R is com-
puted through a symbolic visit of the graph, then, starting from R×R
all the pairs 〈a, b〉 for which it is possible to prove that a is not bisimilar
to b are removed. In (BdS92) experimental results on the performances
of the algorithm are presented, while there is no a deep discussion of
its complexity in terms of basic OBDD operations.

In (FV99) Fisler and Vardi analyze the complexity of the symbolic
versions of the algorithms of Paige and Tarjan (PT87); Bouajjani, Fer-
nandez, and Halbwachs (BFH90); and Lee and Yannakakis (LY92). In
particular, they determine the number of basic symbolic operations
involved in each iteration by the three algorithms and they conclude,
through experimental results, that an optimized version of the algo-
rithm in (PT87) (splitting only reachable blocks) performs better than
the other two algorithms, since it gains from the right choice of the
splitters.

In (DGPP02) a symbolic version of the algorithm previously pre-
sented in (DPP01) is proposed. The main problem in making the al-
gorithm in (DPP01) symbolic is that the strongly connected com-
ponents are used to compute the ranks and, in the symbolic case,
the computation of the strongly connected components would require
O(|N | log |N |) operations if we admit to use only a constant num-
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ber of OBDDs (BGS00)). For this reason in (DGPP02) is described
a procedure which computes the ranks in O(|N |) steps avoiding the
computation of the strongly connected components. Notice that it is
possible to compute the strongly connected components in O(|N |)
steps, but using in the worst case p OBDDs, where p is the length
of the longest acyclic path in the graph (see (GPP03)).

In (HHK95) a symbolic version of their simulation algorithm is also
discussed. Even if in (BG00) the authors do not consider this issue,
their algorithm seems to be particularly suitable for a symbolic imple-
mentation, since it always works on classes of nodes. Such a nice feature
is shared also by the algorithm we present in the next section.

4. A New Simulation Algorithm

In this section we study the simulation problem in a general algebraic
environment. This study lead us to the definition of a generalization of
the coarsest partition problem which is at the basis of our time/space
efficient simulation algorithm. A preliminary version of the algorithm
we describe here has been presented in (GPP02a).

4.1. Simulations as Partitioning Problems

In Section 3.2 we observed that in the case of simulation labels are fun-
damental: it is not possible to completely remove the labels. However,
we begin here by showing that it is possible to encode the information in
Σ (the labels) by adding new nodes to the labelled graph. This encoding
turns out to be useful in order to compare the problem of computing
the similarity quotient with the generalized partitioning problem we will
present later in this section.

Our encoding allows us to start with a partition in which all the
nodes of the original labelled graph are in the same class (i.e., they
have the same label).

DEFINITION 4.1 (Unlabelling). Let G = (N,→, Σ) be a labelled graph.
Consider the following sets:

L = {�α | α ∈ Σ}
N ′ = N ∪ L
→′ = → ∪{〈a, �α〉 | a ∈ α ∈ Σ}
Σ′ = {N} ∪ {{�α} | �α ∈ L}.

We call the labelled graph G′ = (N ′,→′, Σ′) the unlabelling of G.

In Figure 3 we give an example of a graph together with its unlabelling.
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N

N

N

N

A B

A

A

B

B

Figure 3. Unlabelling Example.

DEFINITION 4.2. Let G be a labelled graph and G′ be its unlabelling.
If ≤G′

is a simulation over G′, then we define (its restriction to G)

≤G= r(≤G′
) =≤G′� N.

If ≤G is a simulation over G, then we define (its extension to G′)

≤G′
= e(≤G) =≤G ∪{〈�α, �α〉 | �α ∈ L}.

LEMMA 4.3. Let G be a labelled graph and let G′ be its unlabelling.
If ≤G′

is a simulation over G′, then its restriction to N , ≤G= r(≤G′
),

is a simulation over G.
If ≤G is a simulation over G, then its extension to N ′, ≤G′

= e(≤G) is
a simulation over G′.
Moreover, it holds that:

1. if ≤G′
1 ⊆≤G′

2 , then r(≤G′
1 ) ⊆ r(≤G′

2 );

2. if ≤G
1 ⊆≤G

2 , then e(≤G
1 ) ⊆ e(≤G

2 );

3. r(e(≤G)) =≤G;

4. e(r(≤G′
)) =≤G′

.

The above lemma establishes a link among the simulations on a
graph and the simulations on its unlabelling which is used to prove that
from the maximum simulation on the unlabelling we can immediately
obtain the maximum simulation on the original graph.
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PROPOSITION 4.4. Let G be a labelled graph and let G′ be its unla-
belling. Let ≤G′

s be the maximal simulation over G′, then its restriction
to N is the maximal simulation over G.

Let ≤G
s be the maximal simulation over G, then its extension to N ′

is the maximal simulation over G′.

We are now ready to introduce the Generalized Coarsest Partition
Problem (GCPP) which is the central notion in our approach. The
generalized comes from the fact that we are not only going to deal with
partitions to be refined, as in the classical coarsest partition problems
(see Section 3.1), but with pairs in which we have a partition and
a relation over the partition. The equivalence between the simulation
problem and the GCPP will be proved at the end of this section.

DEFINITION 4.5 (Partition pair). Let G = (N,→) be a finite graph.
A partition pair over G is a pair 〈Σ, P 〉 in which Σ is a partition over
N , and P ⊆ Σ2 is a reflexive and acyclic relation over Σ.

Notice that a labelled graph G = (N,→, Σ) can be seen as a graph
G′ = (N,→) together with the partition pair 〈Σ, I〉, where I is the
identity relation over Σ.

Given two partitions Π and Σ, such that Π is finer than Σ (i.e., each
block of Π is included in a block of Σ), and a relation P over Σ, we use
the notation P (Π) to refer to the relation induced on Π by P , i.e.:

∀αβ ∈ Π((α, β) ∈ P (Π) ⇔ ∃α′β′((α′, β′) ∈ P ∧ α ⊆ α′ ∧ β ⊆ β′)).

Denoting by P(G) the set of partition pairs over G we now introduce the
partial order over which we will define the notion of coarsest partition
pair.

DEFINITION 4.6. Let 〈Σ, P 〉, 〈Π, Q〉 ∈ P(G):

〈Π, Q〉 � 〈Σ, P 〉 iff Π is finer than Σ and Q ⊆ P (Π).

The search for the coarsest partition pair will proceed on the following
structures (graphs):

DEFINITION 4.7 (→∃,→∀ and Quotient Structures). Let G = (N,→
) be a graph, and Π a partition of N . The ∃-quotient structure over Π
is the graph Π∃ = (Π,→∃), where

α →∃ γ iff ∃a∃c(a ∈ α ∧ c ∈ γ ∧ a → c).

The ∀-quotient structure over Π is the graph Π∀ = (Π,→∀), where

α →∀ γ iff ∀a(a ∈ α ⇒ ∃c(c ∈ γ ∧ a → c)).

The ∃∀-quotient structure over Π is the structure Π∃∀ = (Π,→∃,→∀).
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Notice that it is always →∀⊆→∃. In other worlds α →∀ γ is a shorthand
for α ⊆→−1 (γ), while α →∃ γ stands for α∩ →−1 (γ) �= ∅. Similar no-
tations (called relation transformers and abstract transition relations)
were introduced in (DGG97) in order to combine Model Checking and
Abstract Interpretation.

We introduce now a definition strongly connected to the definition
of the quotient structures, to be used later in our algorithm (see Section
4.3).

DEFINITION 4.8 (Induced Structure). Given a graph, G = (N,→),
and two partitions of N , Σ and Π with Π finer then Σ the ∃∀-induced
quotient structure over Π is the structure

Σ∃∀(Π) = (Π,→Σ
∃ (Π),→Σ

∀ (Π))),

where:

α →Σ
∃ (Π)γ iff α∩ →−1 (γ) �= ∅

α →Σ
∀ (Π)γ iff α →Σ

∃ (Π)γ ∧ α ⊆→−1 (γ′) ∧ γ ⊆ γ′ ∈ Σ

with α, β ∈ Π.

We are now ready to introduce the fundamental notion in the general-
ized coarsest partition problems, the notion of stability of a partition
pair with respect to a relation.

DEFINITION 4.9 (Stability). Given a graph G = (N,→), we say that
a partition pair 〈Σ, P 〉 is stable with respect to the relation → if and
only if

∀α, β, γ ∈ Σ((α, β) ∈ P ∧ α →∃ γ ⇒ ∃δ ∈ Σ((γ, δ) ∈ P ∧ β →∀ δ)).

The condition in the definition of stability is equivalent to:

∀α, β, γ ∈ Σ((α, β) ∈ P ∧ α∩ →−1 (γ) �= ∅ ⇒
∃δ ∈ Σ((γ, δ) ∈ P ∧ β ⊆→−1 (δ))).

As it will be proved (see Theorem 4.17) the stability condition is exactly
the condition holding between two classes of N/ ≡s: if α, β ∈ N/ ≡s

with α ≤s β (i.e. all the elements of α are simulated by all the elements
of β) and an element a in α reaches an element c in γ, then all the
elements b of β must reach at least one element d which simulates c.
In particular, considering all the ≤s-maximal elements d simulating c
reached by elements in β, we have that all the elements in β reach a
class δ which simulates c and, hence, which simulates γ.

In Figure 4 we give a graphical representation of the notion of
stability in both the input and the induced structure.
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in P(γ,δ)
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γ δ
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. . . .
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a

c

b

d

Input Structure
Figure 4. The Stability Condition.

We use the notion of stability of a partition pair with respect to a
relation in the definition of generalized coarsest partition problem, in
the same way as the notion of stability of a partition with respect to a
relation is used in the definition of coarsest partition problem.

DEFINITION 4.10 (Generalized Coarsest Partition Problem). Given
a graph G = (N,→) and partition pair 〈Σ, P 〉 over G the generalized
coarsest partition problem consists in finding a partition pair 〈S,�〉
such that:

(a) 〈S,�〉 � 〈Σ, P+〉;
(b) 〈S,�〉 is stable with respect to →;

(c) 〈S,�〉 is �-maximal satisfying (a) and (b).

If 〈S,�〉 is a partition pair which satisfies (a) and (b) we say that it is
a stable refinement of 〈Σ, P 〉.
Notice that in the above definition 〈S,�〉 is a refinement of 〈Σ, P+〉,
while it can be the case that it is not a refinement of 〈Σ, P 〉. In partic-
ular this happens always in case 〈Σ, P 〉 is not stable while 〈Σ, P+〉 is
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stable. In this case 〈Σ, P+〉 itself is a solution of the GCPP. In general,
the solution of the GCPP can always be found by a suitable sequence
of splits (of classes) and adequate completion of the relation in order
to take the newly generated classes into account.

REMARK 4.11. Notice that it is important that � is reflexive (which
is the case since 〈S,�〉 is a partition pair). This is necessary in order
to prove that there is always a unique maximal solution. Consider the
graph G = (N,→) with N = {a, b} and →= {(a, b)}, the partition pair
〈Σ, P 〉 with Σ = {N} and P = {(N, N)}. It holds that both 〈Σ, ∅〉 and
〈Π, Q〉 with Π = {{a}, {b}} and Q = {({a}, {a}), ({b}, {b}), ({b}, {a})}
are maximal solution of the partition problem, but the first is not a
partition pair. Similarly the acyclicity condition is important because
otherwise we could coarsen the partition merging all classes which form
cycles.

Our next task is to prove that a given GCPP has always a unique
solution. To this end we will spell out the connection between the
similarity quotient problems and the GCPP’s introducing generalized
unlabellings. The generalized unlabelling of G = (N,→) and 〈Σ, I〉,
where I is the identity relation over Σ, will turn out to be exactly
the unlabelling of (N,→, Σ〉 (see Definition 4.3). In this sense the gen-
eralized unlabelling is a generalization of the unlabelling for the case
in which we have to deal with a partition pair and not only with a
partition.

DEFINITION 4.12 (Generalized unlabelling). Let G = (N,→) be a
graph and 〈Σ, P 〉 be a partition pair over G. Consider the labelled graph
G′ = (N ′,→′, Σ′) defined as:

L = {�α | α ∈ Σ}
N ′ = N � L
→′ = → ∪{〈a, �α〉 | a ∈ β ∈ Σ ∧ (α, β) ∈ P+}
Σ′ = {N} ∪ {{�α} | �α ∈ L}.

We call the labelled graph G′ the generalized unlabelling of G and
〈Σ, P 〉.

Here we have to use P+ in the definition of →′ in order to produce
a simulation from a stable refinement, since α-nodes can simulate β-
nodes whenever (α, β) ∈ P+. In Figure 5 we present a partition pair
together with its generalized unlabelling.

Now we prove the strong connection between stable refinements of
〈Σ, P 〉 and simulations over G′.
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Figure 5. Generalized Unlabelling Example.

DEFINITION 4.13. Let G = (N,→) be a graph, 〈Σ, P 〉 a partition pair
over G, and G′ the generalized unlabelling of G and 〈Σ, P 〉. Consider
the set SGP of the stable (with respect to →) refinements of 〈Σ, P 〉 and
the set Ssim of the simulations over G′. We define the two functions
f1 : SGP → Ssim and f2 : Ssim → SGP as follows2:

f1(〈Π, Q〉) =≤〈Π,Q〉
∀a, b ∈ N(a ≤〈Π,Q〉 b iff a ∈ α ∈ Π ∧ b ∈ β ∈ Π ∧ (α, β) ∈ Q)

∀�α ∈ L(�α ≤〈Π,Q〉 �α)

f2(≤) = 〈Πs, Qs〉
∀a ∈ N([a] = {b | a ≤∗ b ≤∗ a} ∈ Πs)
(α, β) ∈ Qs iff ∃a ∈ α∃b ∈ β(a ≤∗ b)

Notice that the condition ∃a ∈ α∃b ∈ β(a ≤∗ b) is equivalent to ∀a ∈
α∀b ∈ β(a ≤∗ b), since we are using the (reflexive and) transitive closure
of the simulation ≤. Notice also that it is necessary to prove that the
codomains of f1 and f2 are correctly defined. We prove this fact and
some properties of f1 and f2 in the following Lemma.

LEMMA 4.14. The function f1 and f2 are such that:

1. if 〈Π, Q〉 ∈ SGP , then f1(〈Π, Q〉) ∈ Ssim;

2. if ≤∈ Ssim, then f2(≤) ∈ SGP ;

3. if 〈Π1, Q1〉 � 〈Π2, Q2〉, then f1(〈Π1, Q1〉) ⊆ f1(〈Π2, Q2〉);
2 ≤∗ is the reflexive and transitive closure of ≤.
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4. if ≤1⊆≤2, then f2(≤1)) � f2(≤2);

5. ≤⊆ f1(f2(≤));

6. 〈Π, Q〉 � f2(f1(〈Π, Q〉)).
THEOREM 4.15 (Existence and Uniqueness). Given G = (N,→) and
a partition pair 〈Σ, P 〉 over G, the GCPP over G and 〈Σ, P 〉 has always
a unique solution.

COROLLARY 4.16. If 〈S,�〉 is the solution of the GCPP over G and
〈Σ, P 〉, then � is a partial order over S.

Proof. We have to prove that � is transitive. This is an immediate
consequence of the fact that 〈S,�〉 = f2(≤s), where ≤s is the maximal
simulation over G′ (generalized unlabelling). �

We proved that each generalized coarsest partition problem has
a unique solution which can be determined by solving a similarity
quotient problem. The following easily proved result states that the
converse also hold.

THEOREM 4.17 (Simulation as GCPP). Let G = (N,→, Σ) be a la-
belled graph. Let 〈S,�〉 be the solution of the GCPP over G− = (N,→)
and 〈Σ, I〉, where I is the identity relation over Σ. Then, S is the
simulation quotient of G, i.e. S = N/ ≡s, and f1(〈S,�〉) is the maximal
simulation over G.

Proof. As we already noticed, since the relation over Σ is the
identity relation, we have that the generalized unlabelling G′ of G− is
exactly the unlabelling of G. Hence from Lemma 4.14 and Proposition
4.4 we immediately obtain the thesis. �

The results in this section guarantee that in order to solve the
problem of determining the simulation quotient of a labelled graph
G = (N,→, Σ) we can equivalently solve the generalized coarsest par-
tition problem over (N,→) and 〈Σ, I〉. If 〈S,�〉 is the solution of the
GCPP, then the relation ≤〈S,	〉 defined as

∀a, b ∈ N(a ≤〈S,	〉 b iff [a] � [b])

is the maximal simulation over G, and S is the partition which corre-
sponds to the sim-equivalence ≡s.
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4.2. Solving the Generalized Coarsest Partition Problems

To give an operational content to the results in the previous section, we
now introduce an operator σ, mapping partition-pairs into partition-
pairs, which will turn out to be the engine of our algorithm. A procedure
which compute σ will be used to solve GCPP’s and, hence, to compute
similarity quotients: it is only necessary to iterate the computation of
σ at most |S| times.

In particular, the operator σ is defined in such a way that it refines
the partition-pair 〈Σ, P 〉 obtaining a partition-pair 〈Π, Q〉 which is more
stable than 〈Σ, P 〉 and is never finer than the solution of the GCPP
over 〈Σ, P 〉.

In the first condition of the definition of σ we impose to split the
classes of Σ which do not respect the stability condition with respect to
themselves: if a class α is such that α →∃ γ and it does not exists a class
δ such that (γ, δ) ∈ P and α →∀ δ, then the pair (α, α) does not respect
the stability condition, hence we must split α. The first condition is used
to build Π, while the second and the third conditions in σ are used to
define Q using the Π already obtained. Intuitively, the second and the
third conditions allow to obtain Q from P by starting from P (Π) and
removing the minimum number of pairs which contradict stability.

DEFINITION 4.18 (Operator σ). Let G = (N,→) be a graph and
〈Σ, P 〉 be a partition pair over G, the partition pair 〈Π, Q〉 = σ(〈Σ, P 〉)
is defined as:
(1σ) Π is the coarsest partition finer than Σ such that

(a) ∀α ∈ Π ∀γ ∈ Σ(α →∃ γ ⇒ ∃δ ∈ Σ((γ, δ) ∈ P ∧ α →∀ δ));

(2σ) Q is maximal such that Q ⊆ P (Π) and if (α, β) ∈ Q, then:

(b) ∀γ ∈ Σ(α →∀ γ ⇒ ∃γ′ ∈ Σ((γ, γ′) ∈ P ∧ β →∃ γ′)) and
(c) ∀γ ∈ Π(α →∀ γ ⇒ ∃γ′ ∈ Π((γ, γ′) ∈ Q ∧ β →∃ γ′)).

By abuse of notation we use →∃ and →∀ also when the classes belong
to different partitions.

Condition (a) in (1σ) imposes to suitably split the classes of the
partition Σ: these splits are forced by the fact that we are looking for
a partition-pair stable with respect to the relation of the given graph
and we know that in each partition-pair 〈Σ, P 〉 the second component is
reflexive (i.e. ∀α ∈ Σ(α, α) ∈ P ). Using condition (b) in (2σ), together
with condition (a) in (1σ) and exploiting the fact that P is acyclic, it
is possible to prove that Q is acyclic: the acyclicity of P ensures that
a cycle could arise only among classes of Π which are all contained in
a unique class of Σ, then using condition (a) in (1σ) and (b) in (2σ)
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we obtain a contradiction. Condition (c) is fundamental, together with
condition (a), in order to obtain the result in Theorem 4.24: if it holds
that α →∀ γ, then no matter how we split α one of the subclasses
generated from α has a chance (in the solution of GCPP) to be in
relation with at least one of the subclasses generated from β only if
β →∃ γ′ and γ is in relation with γ′. The following results guarantee
the correctness of σ and, hence, of our approach.

LEMMA 4.19 (Existence). Let G = (N,→) be a graph and 〈Σ, P 〉 be a
partition pair over G. There exists at least a partition pair 〈Π, Q〉 which
satisfies the conditions in Definition 4.18, i.e. σ is always defined.

THEOREM 4.20 (Uniqueness). Let G = (N,→) be a graph and 〈Σ, P 〉
be a partition pair over G. There exists a unique maximal pair 〈Π, Q〉
which satisfies the conditions in Definition 4.18, i.e. σ is always uniquely
defined.

Fix points of the σ operator can be used to compute the solution of
the GCPP.

LEMMA 4.21. Let 〈S,�〉 be the solution of the GCPP over G and
〈Σ, P 〉. If 〈S,�〉 � 〈Π, Q〉, then 〈S,�〉 � σ(〈Π, Q〉).

LEMMA 4.22. Let G = (N,→) be a graph and 〈Π, Q〉 be a partition
pair over G. Let 〈S,�〉 be the solution of the GCPP over G and 〈Π, Q〉.
If σ(〈Π, Q〉) = 〈Π, Q〉, then 〈Π, Q+〉 = 〈S,�〉.

The following lemma is an immediate consequence of the definition
of GCPP.

LEMMA 4.23. Let G = (N,→) be a graph and 〈Π, Q〉 � 〈Σ, P 〉 be
two partition pairs. Let 〈S,�〉 be the solution of the GCPP over G
and 〈Σ, P 〉. If 〈S,�〉 � 〈Π, Q+〉, then 〈S,�〉 is also the solution of the
GCPP over G and 〈Π, Q〉.

The following theorem, whose proof is now fairly standard, concludes
our chain of reasonings.

THEOREM 4.24 (Fix Point). Let G = (N,→) be a graph and 〈Σ, P 〉 a
partition pair over G with P transitive. Let 〈S,�〉 be the solution of the
GCPP over G and 〈Σ, P 〉. If n is such that σn(〈Σ, P 〉) = σn+1(〈Σ, P 〉),
then σn(〈Σ, P 〉) = 〈S,�〉.

The meaning of this theorem is that if 〈Σ, P 〉 is a partition pair
over a graph G such that P is transitive, then there exists i such that
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σi(〈Σ, P 〉) = σi+1(〈Σ, P 〉) and σi(〈Σ, P 〉) is the solution of the GCPP
over G and 〈Σ, P 〉.

Estimating how large is the index i in the worst case allows us to
point out another important property of the operator σ. When we
iteratively apply the operator σ until we reach a fix point, at each
iteration we refine a partition and we remove pairs from a relation.
What we prove in the following theorem is that is never the case that
there exists an iteration in which we do not refine the partition, but we
remove pairs from the relation. In a certain sense this means that the
two conditions we have given in (2σ) to remove pairs are optimal.

THEOREM 4.25 (Complexity). Let G = (N,→) be a graph and 〈Σ, P 〉
a partition pair over G with P transitive. Let 〈S,�〉 be the solution of
the GCPP over G and 〈Σ, P 〉. If i is such that σi(〈Σ, P 〉) = 〈Σi, Pi〉
and σi+1(〈Σ, P 〉) = 〈Σi, Pi+1〉, then Pi+1 = Pi and 〈Σi, Pi〉 = 〈S,�〉.

Hence from this Theorem, since σ never adds pairs to the relations,
we can conclude that if P is transitive and Σi+1 = Σi, then Pi+1 = Pi,
this last is transitive, and 〈Σi, Pi〉 = σi(〈Σ, P 〉) is the solution of the
GCPP on G and 〈Σ, P 〉. In the case that P is not transitive we obtain
the same result starting from P+ instead of P . This gives us an upper
bound to the index i which is at most |Σi|, this last is in the worst case
O(|N |).
COROLLARY 4.26. The solution 〈S,�〉 of the GCPP over a graph
G and a partition pair 〈Σ, P 〉 can be computed computing at most |S|
times the operator σ.

Proof. From Theorem 4.25 we obtain that

〈S,�〉 = σ|S|(〈Σ, P 〉).
�

The characterizations obtained in this section allow us to conclude
that if we are able to define a procedure which given a partition-pair
〈Σ, P 〉 computes σ(〈Σ, P 〉), then we can use it to solve GCPP’s and
hence to compute similarity quotients. In particular, we recall that
given a similarity quotient problem over a labelled graph G = (N,→, Σ)
in order to solve it it is sufficient solve the GCPP over G and 〈Σ, I〉
(notice that I is trivially transitive).

Moreover, the last corollary ensures that it will be necessary to
iterate the procedure which computes σ at most |S| times. This is
a first improvement on time complexity with respect to the algorithm
presented in (BG00): in a certain sense (BG00) computes an operator
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Partitioning Algorithm((N,→), 〈Σ, P 〉)
change := �;
i := 0;
while change do

change := ⊥;
Σi+1 := Refine(Σi, Pi, change);
Pi+1 := Update(Σi, Pi, Σi+1);
i := i + 1;

Figure 6. The Partitioning Algorithm.

which refines the partition-pair less than σ, and hence it is possible
that the computation has to be iterated up to |S|2 times.

In the next section we present the procedure which computes σ.

4.3. Partitioning Algorithm

In this section we propose an algorithm which solves the generalized
coarsest partition problem we have presented in the previous section.
The Partitioning Algorithm takes as input a graph G = (N,→) and
a partition pair 〈Σ, P 〉, with P transitive, calls the two functions Refine
and Update until a fix point is reached, and returns the partition pair
〈S,�〉 which is the solution of the GCPP over G and 〈Σ, P 〉. In order
to solve the GCPP over G and 〈Σ, P 〉, with P not transitive, it is
sufficient to first compute P+, the cost of this operation is O(Σ3), and
hence it does not affect the global cost of the algorithm. The function
Refine takes as input a partition pair 〈Σi, Pi〉 and it returns the par-
tition Σi+1 which is the coarsest that satisfies the condition in (1σ)
of Definition 4.18. The function Update takes as input a partition
pair 〈Σi, Pi〉 and a the refinement Σi+1 and it produces the acyclic
and reflexive relation over Σi+1 which is the greatest satisfying the
conditions in (2σ) of Definition 4.18. In particular, at the end of each
iteration of the while-loop in the Partitioning Algorithm we have
that 〈Σi+1, Pi+1〉 = σ(〈Σi, Pi〉). It is immediate to see that the Refine
function works exactly as described in the proof of Theorem 4.20, and
hence it produce the partition which is the first element of σ(Σi, Pi).

COROLLARY 4.27. If σ(〈Σi, Pi〉) = 〈Π, Q〉, then Π = Σi+1.

Update removes pairs from (Pi)(Σi+1) = Indi+1 in order to obtain
the relation Pi+1 which satisfies the two conditions in (2σ) of Definition
4.18. In particular Refi+1 satisfies the first of the two conditions, but
not necessarily the second one.
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Refine(Σi, Pi, change)
Σi+1 := Σi;
for each α ∈ Σi+1 do Stable(α) := ∅;
for each γ ∈ Σi do Row(γ) := {γ′ | (γ, γ′) ∈ Pi)};
Let Sort be a topological sorting of 〈Σi, Pi〉;
while Sort �= ∅ do

γ := dequeue(Sort);
A := ∅;
for each α ∈ Σi+1, α →∃ γ, Stable(α) ∩ Row(γ) = ∅ do

α1 := α∩ →−1 (γ);
α2 := α \ α1;
if α2 �= ∅ then change := �;
Σi+1 := Σi+1 \ {α};
A := A ∪ {α1, α2};
Stable(α1) := Stable(α) ∪ {γ};
Stable(α2) := Stable(α);

Σi+1 := Σi+1 ∪ A;
Sort := Sort \ {γ};

return Σi+1

Figure 7. The Refine Function.

Update(Σi, Pi, Σi+1)
Indi+1 := {(α1, β1) | α1, β1 ∈ Σi+1, α1 ⊆ α, β1 ⊆ β(α, β) ∈ Pi};
Σi∃∀(Σi+1) := 〈Σi+1,→Σi

∃ (Σi+1),→Σi
∃ (Σi+1)〉;

Refi+1 := New HHK(Σi∃∀(Σi+1), Indi+1,⊥);
Σ(i+1)∃∀ := 〈Σi+1,→∃,→∀〉;
Pi+1 := New HHK(Σ(i+1)∃∀, Refi+1,�);
return Pi+1

Figure 8. The Update Function.

The deletion of “wrong” pairs is performed calling the function
New HHK, which is a version of (HHK95) adapted to our purposes
here.

Notice that the space complexity of the calls to the adapted version
of (HHK95) remains limited since they are made on quotient stuctures.
This function is based on the use of the two structures Σi∃∀(Σi+1) (cf.
Definition 4.8) and Σi+1∃∀ (cf. Definition 4.7), and on the following
equivalent formulation of the second condition in (2σ).

PROPOSITION 4.28. Let G = (N,→) be a graph, 〈Σ, P 〉 be a partition
pair and Π be a partition finer than Σ. Q satisfies (2σ) of Definition
4.18 if and only if Q is the maximal relation over Π such that Q ⊆ P (Π)
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Σ i Σ i+1 (          )
Σ i Σ i+1 (          )

α

γ

β

δ

∀ ∃

(γ,δ) in Q

(α,β) in Q

α

γ

β

δ

∃∀

(γ,δ)

(α,β) in Q

in Q

Figure 9. The conditions in (2σ) on the quotient structures.

and if (α, β) ∈ Q, then:

∀γ ∈ Π(α →Σ
∀ (Π)γ ⇒ ∃γ′ ∈ Π((γ, γ′) ∈ P (Π) ∧ β →Σ

∃ (Π)γ′))
∀γ ∈ Π(α →∀ γ ⇒ ∃γ′ ∈ Π((γ, γ′) ∈ Q ∧ β →∃ γ′)),

where →Σ
∀ (Π) and →Σ

∀ (Π) are the edges of the ∃∀-induced quotient
structure, while →∃ and →∀ are the edges of the ∃∀ quotient structure.

In Figure 9 we present the conditions described in Proposition 4.28
on the ∃∀-induced quotient structure and on the ∃∀-quotient structure.
As a consequence of Theorem 4.24 these conditions are weaker than the
stability condition.

The computation performed by Update corresponds to determine
the largest relation included in Pi and satisfying conditions (2σ), thereby
getting us closer to stability. Such a computation is proved correct as
a fix-point computation of an operator τ defined as follows:

DEFINITION 4.29. Let D = (T, R1, R2) be such that R2 ⊆ R1 ⊆
T × T , and K ⊆ T × T a relation over T . We define τD(K) as:

τD(K) = K \ {(a, b) | ∃c(aR2c ∧ ∀d(bR1d ⇒ (c, d) �∈ K))}.
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New HHK((T, R1, R2), K, U)
P := K;
for each a ∈ T do

sim(c) := {e | (c, e) ∈ K};
rem(c) := T \ pre1(sim(c));

while {c | rem(c) �= ∅} �= ∅ do
let c ∈ {c | rem(c) �= ∅}
for each a ∈ pre2(c), b ∈ rem(c), b ∈ sim(a) do

sim(a) := sim(a) \ {b};
P := P \ {(a, b)};
if U then for each b1 ∈ pre1(b) do

if post1(b1) ∩ sim(a) = ∅ then
rem(a) := rem(a) ∪ {b1};

rem(c) := ∅;
return P

Figure 10. The New HHK Function.

We use Fix(τD)(K) to denote the greatest fix point of τD smaller than
K.

From the definition of τ and Proposition 4.28 we immediately get the
following result:

COROLLARY 4.30. Let G = (N,→) be a graph, and 〈Σ, P 〉 be a
partition pair. If σ(〈Σ, P 〉) = 〈Π, Q〉, then:

Q = Fix(τΠ∃∀)(τΣ∃∀(Π)(P (Π))).

We now establish a connection between the operator τ and the
function New HHK presented in Figure 10 .

LEMMA 4.31. The following holds:

New HHK(D, K,⊥) = τD(K)
New HHK(D, K,�) = Fix(τD)(K).

We are now ready to prove the invariants relative to the functions
Update and Refine.

THEOREM 4.32 (Refine-Update invariants). The following holds:

〈Σi+1, Pi+1〉 = σ(〈Σi, Pi〉).
Proof. This is an immediate consequence of Corollary 4.27, of

Corollary 4.30, and of Lemma 4.31. �
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As a consequence of Theorem 4.25 and of Corollary 4.26, since the
Partitioning Algorithm terminates whenever Σi+1 = Σi, we can
conclude that the Partitioning Algorithm computes the solution
〈S,�〉 of the GCPP over G and 〈Σ, P 〉, with P transitive, performing
at most |S| iterations of the while-loop.

THEOREM 4.33 (Time complexity). Given a graph G = (N,→) and
a partition pair 〈Σ, P 〉, with P transitive, the algorithm Partitioning
Algorithm computes the solution 〈S,�〉 of the GCPP over them in
time O(|S|2| → |).

Proof. From Corollary 4.26 we have that at most |S| iterations
of the while-loop are performed.We are going to prove that, in each
iteration of the Partitioning Algorithm, the Refine function takes
O(|Σi|| → |) = O(|S|| → |) time. The cost of the refining steps overall
the Partitioning Algorithm is then O(|S|2| → |).

The initialization phase (the instructions before the while-loop) in
Refine takes time O(|Σi|2). During each iteration of the while-loop
an element γ is taken out of Sort and it is never reinserted in it:
as there are |Σi| classes in Sort, the while-loop is iterated at most
|Σi| times. Once γ has been dequeued, the set Split(γ) can be com-
puted in O(| →−1 (γ)|) time. Each other instruction in the while-loop,
but the for-loop, costs O(1); without considering the innermost for-
loop, the global while-loop’s cost in a refining step is then O(→−1

(γ1) + . . .+ →−1 (γ|Σi|)) + O(|Σi|) = O(| → |).
Split(γ) contains at most | →−1 (γ)| elements and hence the number of
for-loop’s iterations is bounded by | →−1 (γ)|. Assuming to have Pi rep-
resented as an Σi×Σi adjacency matrix, the check Stable(α)∩Row(γ) =
∅ can be implemented in O(|Stable(α)|) = O(|Σi|). As far as the remain-
ing operations in the for-loop is concerned, we observe that, for each
class α ∈ Σi+1 with →−1 (γ) ∩ α �= ∅, the sets α1 =→−1 (γ) ∩ α and
α2 = α\α1 can be provided while computing (i.e. at the cost of comput-
ing) Split(γ): strategies similar to the ones suggested in (PT87) can be
used to this purpose. For-loop’s instructions involving the updating of
Σi+1 and the setting of the Stable sets (relative to the new Σi+1 classes)
can be straightfull implemented in O(1). Thus the global cost of the
for-loop in a refining step turn out to be O(→−1 (γ1)|Σi| + . . . + →−1

(γ|Σi|)|Σi|) = O(| → ||Σi|). We get that the complexity of the Refine
function is O(|S|2 + |S|| → |) = O(|S|| → |) 3.

3 We assume that |N | = O(| → |) in the graph in input: note that in the context
of Model Checking, Kripke structures modeling the finite systems to validate always
respect the above constraint.
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In the Update function the cost of the initialization of Indi+1 is
O(Σ2

i+1). As far as the initialization of the ∃∀-quotient structure and
the ∃∀-induced quotient structure is concerned, the following proce-
dure builds Σ(i+1)∃∀ = 〈Σi+1,→∃,→∀〉 and Σi∃∀(Σi+1) = 〈Σi+1,→Σi

∃
(Σi+1),→Σi

∃ (Σi+1)〉 in O(|Σi+1|2 + | → |) time (each iteration of the
inner-most for-loop can be easily implemented at the cost of computing
→−1 (α′)):

1. for each α ∈ Σi;

2. compute →−1 (α) and sign each β′ ∈ Σi+1, β
′ ⊆→−1 (α);

3. for each α′ ∈ Σi+1, α
′ ⊆ α;

4. →∃:= {〈α′β′〉 | β′ ∈ Σi+1, β
′∩ →−1 (α′) �= ∅};

5. →Σi
∃ (Σi+1) := {〈α′β′〉 | β′ ∈ Σi+1, β

′∩ →−1 (α′) �= ∅};
6. →∀:= {〈α′β′〉 | β′ ∈ Σi+1, β

′ ⊆→−1 (α′)};
7. →∃:= {〈α′β′〉|β′ ∈ Σi+1 has been signed in step 2, β′∩ →−1

(α′) �= ∅}.
Without considering the two calls to the New HHK function, the
complexity of the updating steps overall the Partitioning Algorithm
is then O(|S|(| → | + |S|2)) = O(|S|2| → |).

In order to evaluate the cost of performing the entire set of calls
to the function New HHK, we can either simply apply the results in
(HHK95) to a single procedure’s call or trying using a sort of global
argument. Following the first way, both the calls to New HHK, rel-
ative to a single Update step, correspond to a call to the function in
(HHK95) on a graph having Σi nodes linked by two types of edges: ∀-
edges and ∃-edges (moreover the first call is stopped after only one itera-
tion). The only substantial difference between the function in (HHK95)
and New HHK is that some of the operations of predecessor’s set’s
computation are specialized for the ∀-edges. As two nodes are linked
by a ∀-edge only if they are linked by an ∃-edge and there are O(| → |)
∃-edges, we can conclude, using the results in (HHK95), that each call
to New HHK costs O(|S|| → |).

However, as the authors of (HHK95), in order to make the innermost
if in the New HHK achieving a total complexity of O(|S|| → |)
in each procedure’s call, we need supposing to dispose of a special
counter table. This counter table keeps track, for each couple of classes
〈α, β〉, of the value |post(α)∩ sim(β)| requiring O(|S|2 log(|S|)) space.
Exploiting a sort of global argument, we will now prove that the cost of
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performing the innermost New HHK if statement overall the Par-
titioning Algorithm is indeed O(|S|2| → |), also supposing not to
dispose of the just mentioned counter tables. Practically the inner-
most New HHK if statement is executed only after a class, say β,
is removed from the set of classes simulating another class, say α; its
cost, supposing not to dispose of any counter table, is easily proved to
be O(|S|| →−1 (β)|). Let αk be a class in Σk and consider, for each
iteration of the Partitioning Algorithm i, αi ⊃ αk and the classes
β1

i , .., βmi
i removed from sim(αi) while executing the innermost for-loop

in a New HHK call. By definition 4.18, corollary 4.30 and lemma 4.31
the classes β1

1 , .., βm1
1 , .., β1

k, .., βmk
k are mutually disjoint; hence the cost

of executing the innermost New HHK if statement, involving a class
just recognized not able to simulate αi ⊃ αk, is (| →−1 (β1

1)|+..+| →−1

(βm1
1 )| + .. + | →−1 (β1

k)| + .. + | →−1 (βmk
k )|)|S| = O(| → ||S|). As

there are |S| classes in Σk, the innermost if statement of the func-
tion New HHK takes, overall the entire Partitioning Algorithm,
O(|S|2| → |). �

THEOREM 4.34 (Space complexity). Given a graph G = (N,→) and
a partition pair 〈Σ, P 〉, with P transitive, the algorithm Partitioning
Algorithm computes the solution 〈S,�〉 of the GCPP over them in
space O(|S|2 + |N | log(|S|)).

Proof. During each iteration of the algorithm it is necessary to
consider:

− the relation →;

− the relation Pi: at most O(|Σi|2) space;

− the relation which maps each node in N into the class of Σi to
which it belongs: space O(|N | log |Σi|);

− a counters’ table necessary to the function New HHK in order
to work in time O(|Σi|| → |) (see (HHK95)): this takes space
O(|Σi|2)). We observe that it is not really necessary to keep the
relation → in memory: we use it only when it is necessary to
provide the set of successors and predecessors of a given node.

Hence the space complexity is O(|S|2 + |N | log(|S|))). �
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4.4. Implementation and Tests

To asses the performance of the Partitioning Algorithm we have
implemented it in Standard ML of the New Jersey and interfaced it
with the Concurrency Workbench of the New Century (CWB-NC)
(see (CS96)). The CWB-NC release incorporates both the simulation
algorithm by Paige and Bloom (BP95) and the simulation algorithm
by Cleaveland and Tan (CT01). We tested our routine and the latter
mentioned procedure on some toy examples as well as on case studies
included in the CWB-NC.

The CWB-NC analysis routines work on transitions systems having
labelled edges. Thus, we adapted our algorithm following an approach
similar to the ones used in (CT01). The Refine step is performed
once with respect to each action, while in the Update step an action
parameter is employed.

In the sequel we describe some of the data structures used giving
several implementation details. Then, some experimental results will
be presented. Further details on the implementation as well as on the
tests are available at http://www.dimi.uniud.it/~gentilin.

We use two modifiable arrays of records (coarser partition table and
finer partition table) to represent, in each iteration i of the algorithm,
the partition Σi−1 (to be refined) and the partition Σi (result of the
refinement step). Each record in the finer partition table corresponds to
a block of Σi and we associate to it the following fields:

− states: a doubly linked list of states representing the set of states
belonging to the block;

− touched states: a doubly linked list of states used to keep trace of
the states touched while scanning the elements having transitions
into a Σi−1 class;

− superclass: the index in the coarser partition table of the Σi−1 class
containing the block;

− stable blocks: a list of indexes in the coarser partition table allowing
to represent Stable(α′) within the Refine step.

Each record in the coarser partition table corresponds to a block of Σi−1

and we keep the following information associated to it:

− splitted blocks: a list of indexes in the finer partition table corre-
sponding to the blocks α′ ∈ Σi such that α′ ⊆ α;

− greater blocks: a list of indexes in the coarser partition table corre-
sponding to the blocks β ∈ Σi−1 such that (α, β) ∈ Pi−1.
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We do not represent explicitly the set of states of each class α ∈ Σi−1:
this set can be retrieved by combining the doubly linked list of states
of each Σi class contained in α. The states are integers ranging over
[1..num states]. Thus, they are used to index the table states info main-
taining, for each state, a pointer to the position in the unique doubly
linked list (states or touched states) they belong to. The relation →−1

is maintained, by means of an adjacency list. This allows to retrieves,
for each node a, the set →−1 (a) in time proportional to its size.

At the beginning of each refinement step i the coarser partition table
and the finer partition table represent the same partition Σi−1. After
the refinement has been performed the finer partition table keeps Σi

and the splitted blocks lists in the coarser partition table allow to re-
trieve the correspondence between Σi−1 and Σi. Hence, it is possible
to construct ∃∀ quotient structure and the ∃∀ induced quotient struc-
ture. These are represented by means of two pairs of adjacency lists.
In the adjacency list representing ∃ quotient structure, for example,
we associate to each Σi class, α, the list of Σi classes β such that
α →∃ β. This allows us to retrieve, given a block α, the set of blocks β
with α →∃ β in time proportional to its size. Beside the construction
of the quotient structures some other operations are necessary before
entering the i step of update. In particular, the partition Σi is copied in
the coarser partition table. Meanwhile the relation relation induced over
Σi by Pi−1 is computed and stored in the greater blocks fields of the
coarser partition table. The remove sets used in New KKH are globally
represented as an array of lists of indexes in the coarser partition table.

Now we present the results of some tests performed to compare
our implementation of the Partitioning Algorithm with the imple-
mentation of the algorithm by Cleaveland and Tan ((CT01)) available
inside CWB-NC4. The tests have been executed on a Pentium III, 400
MHz PC, 256MB RAM, OS Linux Red Hat 6.2. Times are expressed
in seconds.

We start with some tests on toy examples built to point out the
differences between the two algorithms. Figure 11 shows the structures
of two examples. In this two cases the Partitioning Algorithm take
advantage of the fact that its time and space complexities depend on
the size of the simulation quotient. In both the examples all the states
are not bisimilar. In the example on the left of Figure 11, we call it
Tree, each level of the tree corresponds to a simulation class and the
block α0 is simulated by all the other blocks. Hence, the size of the

4 The implementation of the Cleaveland and Tan algorithm we use is the one
with ALT table and without Path Compression (see (CT01)).
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Figure 11. The Tree and the 3-classes examples.

Table I. Results of the tests on Tree (Figure 11 left).

States Cleaveland Tan Partitioning Algorithm

256 0.54 0.13

512 2.19 0.28

1024 8.41 0.61

2048 – 1.42

8192 – 8.53

simulation quotient is logarithmic with respect to the state space. The
example on the right of Figure 11, we call it 3-classes, instead has three
classes of simulation, α0, α1, and α2, and α0 is simulated by α1. Hence,
the size of the simulation quotient of 3-classes is three, while the size
of the bisimulation quotient is equal to the size of the state space.

Table I (Table II, resp.) shows the results of running the two sim-
ulation procedures over graphs having the structure of Tree (3-classes,
resp.) with increasing state space sizes. In the tables we use −− in the
cases in which we run out of memory. As expected, since in both exam-
ples the simulation reduction is larger than the bisimulation one, the
Partitioning Algorithm uses less time and space than the procedure
by Cleaveland and Tan.

Notice that if in the Tree example we remove the node in the class
α0 we have that the bisimulation and the simulation quotients coincide
and they are given by the levels of the tree. In Table III we show the
results of the tests performed on this variant of the Tree. In this case the
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Table II. Results of the tests on 3-classes (Figure 11 right).

States Cleaveland Tan Partitioning Algorithm

500 0.14 0.01

1000 12.56 0.08

1500 27.65 0.25

2000 – 0.32

10000 – 2.18

Table III. Results of the tests on a variant of Tree.

States Cleaveland Tan Partitioning Algorithm

256 0.06 0.13

512 0.16 0.3

1024 0.34 0.71

2048 1.16 1.54

8192 5.98 9.01

Cleaveland and Tan algorithm takes advantage of the large (maximal)
bisimulation reduction and performs better than our algorithm.

In Tables IV and V we report the result of a test performed using a
benchmark taken from CWB-NC. In particular, Table IV shows some
information about the structures of different models of the alternating-
bit protocol included in the CWB-NC release. In Table V the times
resulting from minimizing the systems are reported. This last example
shows the space efficiency of the Partitioning Algorithm on a more
concrete example. The time performances of the Partitioning Algo-
rithm may be surprising unless one considers that the O(|S2|| → |)
time complexity is reached only in cases in which in each iteration only
few splits are performed and |S| iterations are needed to get to the
simulation quotient.

5. Conclusions

In this paper we discussed the notions of bisimulation and simulation,
and the role they play as graph reduction procedures with special
emphasis on their use in verification. The search for efficient proce-
dures determining the bisimulation reduction is shown to be solvable
passing to an equivalent coarsest partition problem first, which is then
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Table IV. Characteristics of four bit-alternating-protocol models included
in the CWB-NC.

States Transitions Bisim Classes Sim classes

ABP-lossy 57 130 15 14

ABP-safe 49 74 18 17

Two-link-netw 1589 6819 197 147

Three-link-netw 44431 280456 2745 1470

Table V. Tests over the systems in Table IV.

Cleaveland Tan Partitioning Algorithm

ABP-lossy 0.05 0.04

ABP-safe 0.04 0.03

Two-link-netw 7.53 5.16

Three-link-netw – 1336.24

observed to be nothing but an equality problem on non-well-founded
sets. Moving to simulation, the circle of ideas discussed is also shown
to be useful in the study and design of fast simulation algorithms and
heuristics especially developed to operate in situations in which strong
space constraint are present. Moreover, the use of the ∀∃-structure and
the definition of a coarsest partition problems on them, seem to be
a methodology with some potential in all those situations in which a
fix-point in the lattice of equivalence relations is to be computed.

We plan to work on a symbolic version of our algorithms, a version
which is naturally suggested by the fact that the discussed procedure
work on sets of nodes (the classes of the partitions). Finally, an attempt
to combine the negative and positive strategies to solve the coarsest
partition problem for simulation presented here (as, in the case of
bisimulation, has been done in (DPP01)) is also under study.
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6. Appendix: Proofs

Proof of Lemma 2.8. The identity relation I over N is always a simula-
tion relation over G, hence, since N is finite, the set S of the simulation
relations over G is finite and not empty.

We prove that if ≤1 and ≤2 are simulation relations over G, then
≤=≤1 ∪ ≤2 is a simulation relation over G. If a ≤ b, then a ≤1 b or
a ≤2 b: we can safely assume that a ≤1 b. Since ≤1 is a simulation
relation we obtain that [a]Σ = [b]Σ and ∀c ∈ N(a → c ⇒ ∃d ∈ N(c ≤1

d ∧ b → d)). Since ≤=≤1 ∪ ≤2 we obtain that [a]Σ = [b]Σ and ∀c ∈
N(a → c ⇒ ∃d ∈ N(c ≤ d ∧ b → d)), which means that ≤ is a
simulation.

Consider the relation
≤s=

⋃
≤∈S

≤ .

Since S is finite and not empty ≤s is correctly defined. We have proved
that union preserves be a simulation relation, hence ≤s is the unique
maximal simulation relation over G.

Since I is a simulation relation ≤s is reflexive. In order to prove
that ≤s is transitive we prove that if ≤ is a simulation relation, then
its transitive closure ≤+ is a simulation relation. If a ≤+ b, then there
exists a1, . . . , ak in N such that a ≤ a1 ≤ . . . ≤ ak ≤ b. Hence we
obtain that [a] = [a1] = . . . = [ak] = [b]. If a → c, then there exists c1

such that a1 → c1 and c ≤ c1. Applying the same argument to ai, ci

and ai+1, for i = 1, . . . , k − 1, and to ak, ck and b we obtain a chain of
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the form c ≤ c1 ≤ . . . ≤ d. Hence, since ≤+ is the transitive closure of
≤ we have that c ≤+ d, i.e. our thesis. �

Proof of Proposition 3.3.

(i) We prove that �Π is a bisimulation on G. Since Π refines Σ, it
holds that if a �Π b, then a and b belong to the same class in
Σ. Let a, b be such that a �Π b. This means that there is a class
α ∈ Π such that a ∈ α and b ∈ α. Assume there is c ∈ N such that
a → c. Let γ be the class such that c ∈ γ. Since Π is stable with
respect to → and →−1 (γ) is not empty (it contains a), this means
that α ⊆→−1 (γ). Thus, b ∈→−1 (γ), and this implies that there
is d ∈ γ such that b → d. By definition of �Π, c �Π d. Similarly
we can prove that if a �Π b and b → d, then there exists c such
that c �Π d and a → c.

(ii) By contradiction, assume that Π� is not stable with respect to →.
This means that there are blocks α and γ and two nodes a, b such
that

a ∈ α\ →−1 (γ) ∧ b ∈ α∩ →−1 (γ)

This implies that there is a node d ∈ γ such that b → d but no
node c bisimilar to d (i.e., in γ) can be reached by an edge from
a. Thus, ¬a�b.

�

Proof of Proposition 3.10. Here with minimum graph bisimilar to G
we mean that if G′ = (N ′,→′, �′) is bisimilar to G, then |N ′| ≥ N≡b

.
It can be easily proved that the relation ∀a ∈ N(aB[a]b) is a bisim-

ulation between G and G/ ≡b.
Let G1 = (N1,→1, �1) be a graph and B1 be a bisimulation between

G and G1. The relation B′
1 defined as

∀a, b ∈ N(aB′
1b ⇔ ∃k ∈ N1(aB1k ∧ bB1k)).

is easily seen to be a bisimulation. Since B′
1 is included in ≡b, it holds

that |N/ ≡b | ≤ N1. �

Proof of Lemma 4.3. Let r(≤G′
) =≤G. We have to prove that ≤G

is a simulation over G. If a ≤G b and a ∈ α ∈ Σ, then since ≤G′
is a

simulation over G′, a →′ �α, and since [�α]Σ′ = {�α}, it must be b →′ �α,
i.e. b ∈ α. If a ≤G b and a → c, then since ≤G′

is a simulation over G′,
there must exist d ∈ N ′ such that c ≤G′

d and b →′ d. Since c ∈ N and
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in Σ′ the set N is a class, from c ≤G′
d, we obtain that d ∈ N . Hence

there exists d such that c ≤G d and b → d.
Let e(≤G) =≤G′

. We have to prove that ≤G′
is a simulation over

G. If a ≤G′
b and n ∈ L, then the case is trivial since it must be that

b = a. If a ≤G′
b and n ∈ N , then we have that b ∈ N . If a →′ c

and c ∈ L, then from the fact that ≤G is a simulation, we obtain that
c ≤G′

c and b →′ c. If a →′ c and c ∈ N , then let d be the element of N
such that c ≤G d and b → d, we have that c ≤G′

d and b →′ d, which
concludes this case.

The rest of the thesis follows easily from the definitions of r and e. �

Proof of Lemma 4.14. (1). We prove that if 〈Π, Q〉 belongs to SGP ,
then ≤〈Π,Q〉 is a simulation over G′.
If a ≤〈Π,Q〉 b, then only two cases are possible:

− a and b are elements of N ;

− a = b and a is an element of L.

Hence in both cases we have that they belongs to the same class in Σ′.
The second case is trivial. In the first case if c is such that a →′ c, then
it can either be c ∈ L or c ∈ N .
If c ∈ L, from a →′ c we have that a ∈ α ∈ Σ, c = �γ and (γ, α) ∈ P+.
From the fact that a ≤〈Π,Q〉 b we have that a ∈ α′ ∈ Π and b ∈ β′ ∈ Π
and (α′, β′) ∈ Q. Hence we have that b ∈ β ∈ Σ and (α, β) ∈ P+. From
(γ, α) ∈ P+ and (α, β) ∈ P+ we obtain (γ, β) ∈ P+, hence c ≤〈Π,Q〉 c
and b →′ c.
If c ∈ N , then we have that a ∈ α′ ∈ Π, c ∈ γ′ ∈ Π, b ∈ β′ ∈ Π,
α′ →∃ γ′, and (α′, β′) ∈ Q (since a ≤〈Π,Q〉 b). Hence, since 〈Π, Q〉 is
stable, there exists δ′ ∈ Π such that (γ′, δ′) ∈ Q and β′ →∀ δ′. Let
d ∈ δ′ be such that b → d. Since c ≤〈Π,Q〉 d, the thesis follows.

It is immediate to prove that if the relation ≤ is a simulation over
G′, then 〈Πs, Qs〉 is a partition pair, i.e. Qs is reflexive and acyclic.

(2). We prove that if ≤ is a simulation over G′, then 〈Πs, Qs〉 is a
stable refinement of 〈Σ, P 〉.
Observe that Qs is acyclic.
Let α′, β′, γ′ in Πs be such that α′ →∃ γ′ and (α′, β′) ∈ Qs. We have to
prove that there exists δ′ ∈ Πs such that (γ′, δ′) ∈ Qs and β′ →∀ δ′.
From α′ →∃ γ′ we obtain that there exist a ∈ α′ and c ∈ γ′ such that
a →′ c. From (α′, β′) ∈ Qs we obtain that a ≤∗ b for all a ∈ α′ and
b ∈ β′. Hence, since ≤∗ is a simulation, we have that for all b ∈ β′ there
exists db such that b →′ db and c ≤∗ db (hence db ∈ N). Let b1, . . . , bt

be an ordering of the elements of β′.
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We inductively define as follows the lists L1, .., Ln, .. of elements
related through →′ with b1, . . . , bt:

- L1 = d1
1, . . . , d

1
t

where d1
1 is such that b1 →′ d1

1 and c ≤∗ d1
1 and, for j = 2, . . . , t, d1

j

is such that bj →′ d1
j and d1

j−1 ≤∗ d1
j . Notice that L1 is correctly

defined (i.e d1
1, . . . , d

1
t always exist) since ≤∗ is a simulation, a ≤∗

b ∧ a →′ c and, for j = 2, . . . , t, bj−1 ≤∗ bj .

- Lh+1 = dh+1
1 , . . . , dh+1

t

where dh+1
1 is such that b1 →′ dh+1

1 and dh
t ≤∗ dh+1

1 and, for
j = 2, . . . , t, dh+1

j is such that bj →′ dh+1
j and dh+1

j−1 ≤∗ dh+1
j .

Lh+1 is correctly defined (i.e dh+1
1 , . . . , dh+1

t always exist) since
b1, . . . , bt is an ordering of the elements of the class β′ and ≤∗ is a
simulation.

By concatenation of the lists L1, L2, . . . we obtain an infinite chain
of elements d1

1, . . . , d
1
t , d

2
1, . . . , d

2
t , .., d

n
1 , . . . , dn

t , .. such that

1. for all k > 0 and for j = 1, . . . , t bk
j →′ dk

j

2. for all k > 0 and for j = 2, . . . , t, dk
j−1 ≤∗ dk

j

3. c ≤∗ d1
1 and for all k > 0 dk−1

t ≤∗ dk
1

Since the set of the successors of b1 is a finite set we have that
there exist v, u such that dv

1 = du
1 = d∗1 and v < u. Hence we obtain a

prefix of the chain of the form d1
1 . . . ≤∗ d∗1 ≤∗ . . . ≤∗ d∗1 with c ≤∗ d1

1.
This means that all the elements of this succession between the two
occurrences of d∗1 belongs to the same class δ′ ∈ Π. Moreover all the
elements β′ (b1, . . . , bt) have a successor in δ′ and obviously (γ′, δ′) ∈ Qs,
i.e. the thesis.
(3). Let ≤1= f1(〈Π1, Q1〉) and ≤2= f1(〈Π2, Q2〉). We assume that
〈Π1, Q1〉 � 〈Π2, Q2〉 and we have to prove that ≤1⊆≤2.
If a ≤1 b, then a ∈ α1 ∈ Π1, b ∈ β1 ∈ Π1 and (α1, β1) ∈ Q1, hence
a ∈ α2 ∈ Π2, b ∈ β2 ∈ Π2 and (α2, β2) ∈ Q2, from which a ≤1 b.

(4). Let 〈Π1, Q1〉 = f2(≤1) and 〈Π2, Q2〉 = f2(≤2). We assume that
≤1⊆≤2 and we prove that 〈Π1, Q1〉 � 〈Π2, Q2〉.
From ≤1⊆≤2 we have ≤∗

1⊆≤∗
2.

If a, b ∈ α1 ∈ Π1, then a ≤∗
1 b ≤∗

1 a, hence a ≤∗
2 b ≤∗

2 a, from which
a, b ∈ α2 ∈ Π2, i.e. Π1 is finer than Π2.
If (α1, β1) ∈ Q1, then since Π1 is finer than Π2 there exists α2, β2 ∈ Π2

such that α1 ⊆ α2 and β1 ⊆ β2. We have to prove that (α2, β2) ∈ Q2.
Let a1 ∈ α1 and b1 ∈ β1 be such that a1 ≤∗

1 b1. It holds that a1 ≤∗
2 b1,

a1 ∈ α2 and b1 ∈ β2, hence (α2, β2) ∈ Q2.
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(5). If a ≤ b, then a ∈ α ∈ Πs, b ∈ β ∈ Πs and (α, β) ∈ Qs. Hence
we obtain a ≤〈Πs,Qs〉 b.

(6). If a, b ∈ α ∈ Π, then, since Q is reflexive, it holds a ≤〈Π,Q〉
b ≤〈Π,Q〉 a, hence a, b ∈ α′ ∈ Π〈Π,Q〉, i.e. Π is finer than Π〈Π,Q〉. Let
(α, β) ∈ Q, consider α′, β′ ∈ Π〈Π,Q〉 such that α ⊆ α′ and β ⊆ β′. Let
a1 ∈ α and b1 ∈ β. It holds that a1 ≤〈Π,Q〉 b1, a1 ∈ α′, and b1 ∈ β′,
hence (α′, β′) ∈ Q〈Π,Q〉. �

Proof of Theorem 4.15. Let ≤s be the maximal simulation over G′.
From Lemma 4.14(2) we have that 〈Πm, Qm〉 = f2(≤s) is a stable
refinement of 〈Σ, P 〉. We prove that if 〈Π, Q〉 is another stable re-
finement, then 〈Π, Q〉 � 〈Πm, Qm〉. From Lemma 4.14(6) we know
that 〈Π, Q〉 � f2(f1(〈Π, Q〉)). Since f1(〈Π, Q〉) is a simulation over
G′ we also know that f1(〈Π, Q〉) ⊆≤m

s . Hence, using Lemma 4.14(4)
we obtain that 〈Π, Q〉 � f2(f1(〈Π, Q〉)) � f2(≤m

s ) = 〈Πm, Qm〉. As
for the uniqueness, assume 〈Π′, Q′〉 �= 〈Πm, Qm〉 is another solution.
Then, 〈Πm, Qm〉 � 〈Π′, Q′〉. Using Definition 4.13 of f1 we immediately
deduce f1(〈Π′, Q′〉) �= f1(〈Πm, Qm〉). By Lemma 4.14(3) and 4.14(5) we
then obtain ≤s= f1(f2(≤s)) ⊂ f1(〈Π′, Q′〉) which is a contradiction. �

Proof of Lemma 4.19. Consider the partition Π1 defined as Π1 =
{{a} | a ∈ N}. Clearly Π1 is finer than Σ.
Π1 satisfies all the conditions in (1)σ (but it can be the case that it is
not a coarsest), since P is reflexive.
Let Π be a partition such that:

− Π is finer than Σ;

− Π1 is finer than Π;

− Π satisfies all the conditions in (1)σ;

− if Π is finer than Π2 and Π2 is finer than Σ, then Π2 does not
satisfy the conditions in (1)σ.

Notice that there exists at least a partition Π which satisfies all these
conditions because there are only a finite number of partitions.

Consider Q1 = {(α, α) | α ∈ Π} over Π.
Clearly Q1 satisfies all the conditions in (2)σ, but it can be the case
that it is not maximal.
Let Q be a relation over Π such that:

− Q1 ⊆ Q ⊆ P (Π);

− Q1 is acyclic;
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− Q satisfies all the conditions in (2)σ;

− if Q2 is such that Q ⊆ Q2 ⊆ P (Π), then Q2 does not satisfy the
conditions in (2)σ.

There exists at least a relation Q which satisfies all these conditions
because there are only a finite number of relations. �

Proof of Theorem 4.20. The previous lemma states that there always
exists a maximal pair 〈Π, Q〉 which satisfies the conditions in Definition
4.18; we have to prove that this maximal pair is unique.
Let Sort be a topological sorting of the elements in Σ with respect to
P . Consider Π defined in Figure 12.

Π := Σ;
while Sort �= ∅ do

γ := dequeue(Sort);
for each α ∈ Π do

if α →∃ γ ∧ ∀δ((γ, δ) ∈ P ⇒ ¬α →∀ δ) then
replace α with α∩ →−1 (γ) and α\ →−1 (γ) in Π

Figure 12.

Notice that Π does not depend on the topological sorting we have
chosen.
It is clear that Π satisfies (1σ).
Let us assume by contradiction that there exists Π1 such that Π1 sat-
isfies (1σ) and Π1 is not finer than Π.
This means that there exist a, b ∈ N , α ∈ Π1 and αa, αb ∈ Π such that
a, b ∈ α, a ∈ αa, b ∈ αb and αa �= αb.
Consider the class α′ which was obtained during the construction of Π
and which was the smallest class obtained during the construction such
that α ⊆ α′.
Let γ be the class of Σ which first split α′ into two parts.
Notice that for all δ such that (γ, δ) ∈ P and δ �= γ it holds ¬α′ →∃ δ
(since all these δ’s have already been extracted from Sort).
Hence it holds that for all δ such that (γ, δ) ∈ P and δ �= γ ¬α →∀ δ,
moreover, since α is not a subset of one of the two part of α′, ¬α →∀ γ
and α →∃ γ. This is in contradiction with the fact that Π1 satisfies (1σ).

Similarly it is possible to prove that there exists a unique maximal
relation Q over Π which satisfies (2σ).

It is possible to obtain Q from P (Π) by removing all the pairs which
do not fulfill the condition, until a fix point is reached. It is immediate to
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prove that such a fix point is reflexive. In fact, being 〈Σ, P 〉 a partition
pair over G, we have that P and hence P (Π) are reflexive. As each pair
belonging to {(α, α) | α ∈ Π} respect both condition (b) in (2σ) and
condition (c) in (2σ) we can conclude that Q is reflexive.

As far as the acyclicity of Q is concerned consider the relation Qb

on Π obtained from P (Π) by removing those pairs which don’t respect
condition (b) in (2σ); we will prove that Qb is acyclic. Being Q contained
in Qb we will obtain, as a byproduct, the acyclicity of Q.

Assume by contradiction that Qb is cyclic, i.e. there exist α1, α2, .., αn

∈ Π with αi �= αj for 1 ≤ i, j ≤ n, i �= j such that (α1, α2) ∈
Qb ∧ .. ∧ ..(αn−1, αn) ∈ Qb ∧ (αn, α1) ∈ Qb. Since P is acyclic and
Q ⊆ P (Π) there must exists a class α ∈ Σ such that α1, . . . , αn ⊆ α.
Let α be the class in Σ such that αi ⊆ α for 1 ≤ i ≤ n. We have
just proved that Π i.e the coarsest partition finer than Σ which respect
condition (a) in (2σ) can be obtained using the procedure in Figure 12,
where Sort is a topological sorting of the elements in Σ with respect to
P. As, for 1 ≤ i, j ≤ n∧ i �= j, we have αi �= αj and αi ⊆ α ∈ Σ, by the
above pseudo-code we deduce that there exist γ ∈ Σ, a permutation of
α1, .., αn, say α′

1, .., α
′
n, and an index 1 ≤ k ≤ n − 1 such that

α′
1 →∀ γ∧ ..∧α′

k →∀ γ∧�δ ∈ Σ((γ, δ) ∈ P ∧(α′
k+1 →∃ δ∨ ..∨α′

n →∃ δ))
(1)

Let’s use the letters S and N to refer respectively to α′
1 ∪ .. ∪ α′

k and
α′

k+1 ∪ .. ∪ α′
n. As α′

1, .., α
′
n is a permutation of α1, .., αn and we have

supposed that (α1, α2) ∈ Qb ∧ ..∧ ..(αn−1, αn) ∈ Qb ∧ (αn, α1) ∈ Qb we
have that there exist two indexes 1 ≤ t, s ≤ n such that s = t+1∨ (t =
n∧ s = 1) and αt ∈ S ∧αs ∈ N . From αt ∈ S we obtain that αt →∀ γ;
since (αt, αs) ∈ Qb and Qb respect condition (b) in (2σ) we have that
αs →∃ δ ∧ (γ, δ) ∈ P and αs ∈ N which contradicts the condition in
Equation (1). �

Proof of Lemma 4.21. From Corollary 4.16 we have that � is tran-
sitive.
We have to prove that if 〈S,�〉 � 〈Π, Q〉, then 〈S,�〉 � σ(〈Π, Q〉) =
〈Π′, Q′〉 i.e that

1. S is a partition finer than Π′

2. The partial order (on S) � is included in the relation induced on
S by Q′ (which is an acyclic and reflessive relation on Π′)

1. If we prove that 〈S,�〉 satisfies (1σ)(a) (over 〈Π, Q〉) we can then
conclude, by theorem 4.20, that S is comparable with with Π′ and
finer then Π′ i.e our thesis. So let’s start proving that 〈S,�〉 satisfies
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(1σ)(a) (over 〈Π, Q〉).
If β ∈ S and α ∈ Π are such that β →∃ α, then there exists α′ ∈ S
such that α′ ⊆ α and β →∃ α′. Since 〈S,�〉 is the solution of a
GCPP it holds that there exists δ′ ∈ S such that (α′, δ′) ∈� and
β →∀ δ′. Hence since �⊆ Q(S) it holds that δ′ ⊆ δ ∈ Π, (α, δ) ∈ Q,
and β →∀ δ, i.e. (1σ) is satisfied.

2. we have to prove that the partial order (on S) � is included in the
relation induced on S by Q′, where 〈Π′, Q′〉 = σ(〈Π, Q〉). Notice
that as a by-product of 1. we have that the partition S is finer than
Π′ which is finer than Π.
We will use the notation αP , βP .. to denote the elements of a par-
tition P.
Suppose by contradiction that there exists αS , βS , αΠ′ , βΠ′ such
that αS ⊆ αΠ′ , βS ⊆ βΠ′ and (αS � βS ∧ (αΠ′ , βΠ′) /∈ Q′). Without
losing generality we can assume that the pair (αΠ′ , βΠ′) is the first
one which is assumed not to bee in Q′ and is such that there exist
αS ⊆ αΠ′ , βS ⊆ βΠ′ with αS � βS . We have to consider 3 cases:

a) the pair (αΠ′ , βΠ′) is not in the relation induced on Π′ by Q;

b) the pair (αΠ′ , βΠ′) has been removed from the relation induced
on Π′ by Q in order to satisfy condition (b) in (2σ);

c) the pair (αΠ′ , βΠ′) has been removed from Q′ in order to satisfy
condition (c) in (2σ).

a) Consider the classes of Π, αΠ and βΠ such that αΠ ⊇ αΠ′ , βΠ ⊇
βΠ′ ; we immediately deduce that αS ⊇ αΠ, βS ⊇ βΠ and (αS �
βS ∧ (αΠ, βΠ) /∈ Q, ) which contradicts our assumption that
〈S,�〉 � 〈Π, Q〉.

b) Recall that since (〈S,�〉) is the solution of the GCPP it holds
that (〈S,�〉) is stable i.e

∀αS , βS , γS(αS � βS ∧ αS →∃ γS ⇒ ∃δS(γS � δS ∧ βS →∀ δS)).

If the pair (αΠ′ , βΠ′) is assumed not to bee in Q′ because of
condition (b) in (2σ), then there exists a class of Π, γΠ, such
that:

αΠ′ →∀ γΠ ∧ ¬∃δΠ((γΠ, δΠ) ∈ Q ∧ βΠ′ →∃ δΠ) (2)

From αΠ′ →∀ γΠ we obtain that that for every class of S, αS

which is included5 in αΠ′ there exists a class of S included in
5 From 1. we have that the partition S is finer than Π′ which is finer then Π.
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γΠ, γS , such that αS →∃ γS . Hence we have that there is a
class of S, say γ∗

S , included in γΠ and such that αS →∃ γ∗
S .

From the second conjunct in assertion (2), γ∗
S ⊆ γΠ , βS ⊆ βΠ′

and from our assumption that � is included in the relation on
S induced by Q we deduce that

¬∃δS(γ∗
S � δS ∧ βS →∃ δS)

and hence that

αS � βS ∧ αS →∃ γ∗
S ∧ ¬∃δS(γ∗

S � δS ∧ βS →∀ δS)

i.e 〈S,�〉 is not stable, which is a contradiction.

c) Recall that we assumed that the pair (αΠ′ , βΠ′) is the first one
which is not in Q′ and is such that there exist αS ⊆ αΠ′ , βS ⊆
βΠ′ with αS � βS .
Exploiting this assumption and using the same reasoning schema
used in (b) we deduce the absurd that 〈S,�〉 is not stable.

�

Proof of Lemma 4.22. We know that, by definition, 〈S,�〉 � 〈Π, Q+〉.
Hence we only have to prove that Q+ is stable with respect to G. If
α, β, γ ∈ Π are such that (α, β) ∈ Q+ and α →∃ γ, then from the con-
dition in (1σ) applied to α and γ we have that there exists γ′

1 ∈ Π such
that (γ, γ′

1) ∈ Q and α →∀ γ′
1. Let β1, . . . , βn be such that (α, β1) ∈ Q,

(βi, βi+1) ∈ Q and βn = β. Using the second condition of (2σ) on
(α, β1) and γ′

1 we obtain that there exists γ′′
1 such that (γ′

1, γ
′′
1 ) ∈ Q and

β1 →∃ γ′′
1 . Now applying (1σ) to β1 and γ′′

1 we obtain that there exists
γ′′′

1 such that (γ′′
1 , γ′′′

1 ) ∈ Q and β1 →∀ γ′′′
1 . Similarly by induction on n

we obtain a chain of classes of Q of the form γ, γ′
1, γ

′′
1 , γ′′′

1 , . . . , γ′
n, γ′′

n, γ′′′
n

such that β →∀ γ′′′
n . Hence (γ, γ′′′

n ) ∈ Q+ and β →∀ γ′′′
n , i.e. our thesis. �

Proof of Theorem 4.24. Since P is transitive we have that 〈S,�〉 �
〈Σ, P 〉. Hence applying Lemma 4.21 we obtain that 〈S,�〉 � σ(〈Σ, P 〉).
Assume that we have proved that 〈S,�〉 � σi(〈Σ, P 〉) applying Lemma
4.21 we obtain that 〈S,�〉 � σi+1(〈Σ, P 〉).
Hence we have obtained that for all i ∈ N it holds that

〈S,�〉 � σi(〈Σ, P 〉) � 〈Σ, P 〉.

Moreover from the fact that P is transitive we obtain that

σi(〈Σ, P 〉)+ � 〈Σ, P 〉,
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where σi(〈Σ, P 〉)+ is the transitive closure of the relation in σi(〈Σ, P 〉).
Hence we have that

〈S,�〉 � σi(〈Σ, P 〉)+,

so applying Lemma 4.23 we obtain that for all i it holds that 〈S,�〉 is
also the solution of the GCPP over σi(〈Σ, P 〉).
Applying Lemma 4.22 to σn(〈Σ, P 〉) we obtain 〈S,�〉 = σn(〈Σ, P 〉)+
and we already have that 〈S,�〉 � σn(〈Σ, P 〉), hence it must be 〈S,�
〉 = σn(〈Σ, P 〉). �

Proof of Theorem 4.25. Let 〈S,�〉 be the solution of the GCPP on
G and 〈Σ, P 〉. Using the same reasoning-schema of Theorem 4.24 we
obtain that 〈S,�〉 � 〈Σi, Pi+1〉 � 〈Σi, Pi〉. If we prove that 〈Σi, P

+
i 〉

is stable we can conclude by Lemma 4.14 that 〈S,�〉 � 〈Σi, P
+
i 〉 and

hence 〈S,�〉 = 〈Σi, Pi〉 and Pi+1 = Pi.
Let α, β, γ ∈ Σi be such that (α, β) ∈ P+

i and α →∃ γ. From the fact
that (α, β) ∈ P+

i we have that there exists (α, β1), . . . , (βn, β) ∈ Pi.
Since α →∃ γ and Σi+1 = Σi, we have that there exists γ′ such that
(γ, γ′) ∈ Pi and α →∀ γ′. Since Pi is obtained from σi(〈Σ, P 〉) we
obtain that there exists δ′1 such that (γ′, δ′1) ∈ Pi and β1 →∃ δ′1. Using
again the fact that Σi+1 = Σi we obtain that there exists δ1 such
that (δ′1, δ1) ∈ P1 and β1 →∀ δ1. By induction on n we arrive to the
conclusion that there exists δ such that (γ, δ) ∈ P+

i and β →∀ δ. �

Proof of Proposition 4.28. In order to have our thesis we only need
to prove that

∀γ ∈ Π(α →Σ
∀ (Π)γ ⇒ ∃γ′ ∈ Π((γ, γ′) ∈ P (Π) ∧ β →Σ

∃ (Π)γ′)) ⇔
∀γ ∈ Σ(α →∀ γ ⇒ ∃γ′ ∈ Σ((γ, γ′) ∈ P ∧ β →∃ γ)).

(⇒) Assume, by contradiction, that

∀γ ∈ Π(α →Σ
∀ (Π)γ ⇒ ∃γ′ ∈ Π((γ, γ′) ∈ P (Π) ∧ β →Σ

∃ (Π)γ′))∧
∃γ ∈ Σ(α →∀ γ ∧ ∀γ′ ∈ Σ((γ, γ′) ∈ P ⇒ ¬β →∃ γ)). (3)

Let γ ∈ Σ be the class such that (α →∀ γ ∧ ∀γ′ ∈ Σ((γ, γ′) ∈ P ⇒
¬β →∃ γ)). As α →∀ γ we can find a class of Π, γ1 such that α →∃
γ1 ∧ γ1 ⊆ γ.

By construction of Σi∃∀(Σi+1) we have that α →Σ
∀ (Π)γ1 and hence

(by equation 3) that there exists a class in Π, say δ1, such that β →Σ
∃

(Π)δ1 ∧ (γ1, δ1) ∈ P (Π).
Let δ be the class of Σ such that δ1 ⊆ δ. As β →Σ

∃ (Π)δ1 ∧ (γ1, δ1) ∈
P (Π) we deduce, by definition of P (Π) and by construction of Σi∃∀(Σi+1),
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that β →∃ δ∧(γ, δ) ∈ P which contradicts our assumption. (⇐) Assume
by contradiction that

∀γ ∈ Σ(α →∀ γ ⇒ ∃γ′ ∈ Σ((γ, γ′) ∈ P ∧ β →∃ γ))∧
∃γ ∈ Π(α →Σ

∀ (Π)γ ∧ ∀γ′ ∈ Π((γ, γ′) ∈ P (Π) ⇒ ¬β →Σ
∃ (Π)γ′)) (4)

Let γ1 be the class of Π such that α →Σ
∀ (Π)γ1 ∧ ∀δ1 ∈ Π((γ1, δ1) ∈

P (Π) ⇒ ¬β →Σ
∃ (Π)δ1). Consider γ ∈ Σ such that γ1 ⊆ γ. By construc-

tion of Σi∃∀(Σi+1) (as α →Σ
∀ (Π)γ1) we have that α →∀ γ and hence,

by equation (4), that ∃δ ∈ Σ such that (γ, δ) ∈ P ∧β →∃ δ. Let δ1 ∈ Π
be such that δ1 ⊆ δ. As β →∃ δ∧ (γ, δ) ∈ P we deduce, by definition of
P (Π) and by construction of Σi∃∀(Σi+1), that β →Σ

∃ (Π)δ1∧(γ1, δ1) ∈ P
which contradicts our assumption. �

Proof of Lemma 4.31. Let P1 = New HHK(D, K,⊥). Let (a, b) �∈
P1, we have to prove that (a, b) �∈ τD(K). If (a, b) �∈ K, then the result
is trivial. If (a, b) ∈ K, from (a, b) �∈ P1 we have that there exists c
such that a ∈ pre2(c), b ∈ rem(c) and b ∈ sim(a). From a ∈ pre2(c)
we have that aR2c. From b ∈ rem(c), since we are in the case in which
U = ⊥, we have that b ∈ T \ pre1({e | (c, e) ∈ K}) (notice that rem(c)
is never modified and when it is build the initial definition of sim(c)
is {e | (c, e) ∈ K}). This means that ∀e((c, e) ∈ K ⇒ ¬bR1e), i.e.
∀d(bR1d ⇒ (c, d) �∈ K). Hence we have obtained aR2c and ∀d(bR1d ⇒
(c, d) �∈ K), which implies that (a, b) is not in τD(K). Now we assume
that (a, b) �∈ τD(K) and we prove that (a, b) �∈ P1. If (a, b) �∈ K is
trivial. If (a, b) ∈ K, then from the definition of τD, we have that there
exists c such that aR2c and ∀d(bR1d ⇒ (c, d) �∈ K). This implies that
a ∈ pre2(c) and b ∈ rem(c). From the fact that (a, b) ∈ K we also have
in the initialization it holds b ∈ sim(a). We can assume that c is the
first such that rem(c) �= ∅ and b ∈ rem(c), a ∈ pre2(c). This means
that also b ∈ sim(a) still holds. Hence, at this step (a, b) is removed
from P1, i.e. the thesis.

Let P2 = New HHK(D, K,�). Let (a, b) �∈ P2 we have to prove
that (a, b) �∈ Fix(τD)(K). The case in which (a, b) �∈ K is trivial. Let
k be the number of extractions performed on LS = {c | rem(c) �=
∅} at the iteration in which (a, b) is removed from P2. We proceed
by induction on k. If k = 1, then c is the first element we extract
from LS, hence rem(c) := T \ pre1({e | (c, e) ∈ K}), i.e. rem(c) =
{b | ∀d(bR1d ⇒ (c, d) �∈ K}. Since we remove (a, b) from P2 this means
that aR2c, b ∈ rem(c) and b ∈ sim(a), and using the fact that rem(c) =
{b | ∀d(bR1d ⇒ (c, d) �∈ K}, this implies that (a, b) �∈ τD(K), hence
(a, b) �∈ Fix(τD)(K). Let us assume we have proved the thesis in the
case k ≤ h, and (a, b) is such that it is removed from P2 at the (h+1)-th
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extraction from LS. This means that there exists c such that aR2c and
b ∈ rem(c). If b was in rem(c) in the initialization then, as in the base
case, we can prove that (a, b) �∈ τD(K). If b has been added to rem(c)
after the initialization, then there exists h′ ≤ h such that at the h′-th
extraction from LS we have the following situation: a pair (c, d) has
been removed from P2, b ∈ pre1(d) and post1(b) ∩ sim(c) = ∅. It is
immediate to prove that the following invariant holds:

∀c ∈ T (sim(c) = {e | (c, e) ∈ P}).
Hence, we have that the situation at the h′-th can be rewritten as (c, d)
has been removed from P2, b ∈ pre1(d) and ∀d′(bR1d

′ ⇒ (c, d′) �∈ P2).
By inductive hypothesis we have that (c, d) �∈ Fix(τD)(K) and the same
for each d′ such that bR1d

′, i.e. there exists i such that (c, d) �∈ τ i
D(K)

and ∀d′(bR1d
′ ⇒ (c, d′) �∈ τ i

D(K)). We have obtained that aR2c and
∀d′(bR1d

′ ⇒ (c, d′) �∈ τ i
D(K)), hence (a, b) �∈ τ i+1

D (K). We now prove
that if (a, b) �∈ Fix(τD(K)), then (a, b) �∈ P2. If (a, b) �∈ K, then is
trivial. Let k be the number such that (a, b) ∈ τk−1

D (K) and (a, b) �∈
τk
D(K). We proceed by induction on k and we prove that (a, b) �∈ τk

D(K)
implies (a, b) �∈ P2. If k = 1, then this is equivalent to say that there
exists c such that aR2c and ∀d(bR1d ⇒ (c, d) �∈ K). This implies that
initially b ∈ rem(c). Since we are assuming that (a, b) ∈ K we also have
that initially b ∈ sim(a). Hence, when c is extracted for the first time
from LS (since T is finite we are sure that if sim(c) �= ∅, then there
exists an iteration in which c is extracted from LS), if (a, b) has not yet
been removed from P2 we have that aR2c, b ∈ rem(c), and b ∈ sim(a).
Hence, at this point (a, b) is removed from P2. Let us assume we have
proved the thesis in the case k ≤ h and we prove the thesis for k+1. Our
hypothesis is that (a, b) ∈ τk

D(K) and (a, b) �∈ τk+1
D (K). This means that

there exists c such that aR2c and ∀d(bR1d ⇒ (c, d) �∈ τk
D(K)). Applying

the inductive hypothesis we obtain that ∀d(bR1d ⇒ (c, d) �∈ P2). When
we remove from P2 the last pair (c, d′) such that bR1d

′ we have that
b ∈ prec1(d′) and post1(b) ∩ sim(c) = ∅. This implies that b is added
to rem(c). Let us consider the first iteration after the one in which we
add b to rem(c) in which c is extracted from LS. We have that aR2c,
b ∈ rem(c), and, assuming that (a, b) has not yet been removed from
P2, b ∈ sim(a), hence at this point (a, b) is removed from P2. �
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