
17 April 2024

Università degli studi di Udine

Original

Taming the complexity of biochemical models through bisimulation and
collapsing: theory and practice

Publisher:

Published
DOI:10.1016/j.tcs.2004.03.064

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/881198 since 2016-11-29T18:55:09Z

Taming the Complexity of Biochemical Models
through Bisimulation and Collapsing:

Theory and Practice

M. Antoniotti1, B. Mishra1,2, C. Piazza3, A. Policriti4, and M. Simeoni3

1 Courant Institute of Mathematical Science, NYU, New York, U.S.A.
2 Watson School of Biological Sciences, Cold Spring Harbor, New York, U.S.A.

3 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
4 Dipartimento di Matematica e Informatica, Università di Udine, Italy

marcoxa@cs.nyu.edu, mishra@nyu.edu piazza@dsi.unive.it,

policrit@dimi.uniud.it simeoni@dsi.unive.it

Abstract. Many biological systems can be modeled using systems of or-
dinary differential algebraic equations (e.g., S-systems), thus allowing the
study of their solutions and behavior automatically with suitable soft-
ware tools (e.g., PLAS, Octave/Matlabtm). Usually, numerical solutions
(traces or trajectories) for appropriate initial conditions are analyzed in
order to infer significant properties of the biological systems under study.
When several variables are involved and the traces span over a long in-
terval of time, the analysis phase necessitates automation in a scalable
and efficient manner. Earlier, we have advocated and experimented with
the use of automata and temporal logics for this purpose (XS-systems
and Simpathica) and here we continue our investigation more deeply.
We propose the use of hybrid automata and we discuss the use of the
notions of bisimulation and collapsing for a “qualitative” analysis of the
temporal evolution of biological systems. As compared with our previous
approach, hybrid automata allow maintenance of more information about
the differential equations (S-system) than standard automata. The use
of the notion of bisimulation in the definition of the projection operation
(restrictions to a subset of “interesting” variables) makes possible to
work with reduced automata satisfying the same formulae as the initial
ones. Finally, the notion of collapsing is introduced to move toward still
simpler and equivalent automata taming the complexity of the automata
whose number of states depends on the level of approximation allowed.

Keywords: Biochemical Models, Hybrid Automata, Bisimulation, Col-
lapsing.

1 Introduction

The emerging fields of system biology [30], and its sister field of bioinformat-
ics, focuses on creating a finely detailed and “mechanistic” picture of biology
at the cellular level by combining the part-lists (genes, regulatory sequences,
other objects from an annotated genome, and known metabolic pathways), with

observations of both transcriptional states of a cell (using micro-arrays) and
translational states of the cell (using proteomics tools).

Recently, the need has arisen for more and more sophisticated and mathe-
matically well founded computational tools capable of analyzing the models that
are and will be at the core of system biology. Such computational models should
be implemented in software packages faithfully while exploiting the potential
trade-offs among usability, accuracy, and scalability dealing with large amounts
of data. The work described in this paper is part of a much larger project still in
progress, and thus only provides a partial and evolving picture of a new paradigm
for computational biology.

Consider the following scenario. A biologist is trying to test a set of hypothe-
ses against a corpus of data produced in very different ways by several in vitro, in
vivo, and in silico experiments. The system the biologist is considering may be
a piece of a pathway for a given organism. The biologist can access the following
pieces of information:

– raw data stored somewhere about the temporal evolution of the biological
system; this data may have been previously collected by observing an in vivo
or an in vitro system, or by simulating the system in silico;

– some mathematical model of the biological system5.

The biologist will want to formulate queries about the evolution encoded in the
data sets. For example, he/she may ask: will the system reach a “steady state”?,
or will an increase in the level of a certain protein activate the transcription of
another? Clearly the set of numerical traces of very complex systems rapidly
becomes unwieldy to wade through for increasingly larger numbers of variables.

Eventually, many of these models will be available in large public databases
(e.g. [7, 27–29, 39, 35]) and it is not inconceivable to foresee a biologist to test
some hypotheses in silico before setting up expensive wet-lab experiments. The
biologist will mix and match several models and raw data coming from the public
databases and will produce large datasets to be analyzed.

To address this problem, we have proposed a set of theoretical and prac-
tical tools, XS-systems and Simpathica, that allow the biologist to formulate
such queries in a simple way [4–6]. The computational tool Simpathica derives
its expressiveness, flexibility, and power by integrating in a novel manner many
commonly available tools from numerical analysis, symbolic computation, tem-
poral logic, model-checking, and visualization. In particular, an automaton-based
semantics of the temporal evolution of complex biochemical reactions starting
from their representations as sets of differential equations is introduced. Then
propositional temporal logic is used to qualitatively reason about the systems.
When we speak of ”qualitative reasoning,” as in the preceding sentence, we do
not intend to describe an abstracted reasoning process devoid of all quantitative
information—rather, we focus on the relation among several basic properties

5 We note that simulating a system in silico actually requires a mathematical model.
However, we want to consider the case when such mathematical model is unavailable
to both the biologist and the software system.

(each described by an atomic proposition), where each one may involve some
quantitative information, e.g., ”property of a protein concentration reaching half
of it initial value.”

In this paper we continue our research on the computational models at the
core of our approach. We bring in several techniques from the fields of Verifica-
tion, Logic and Control Theory, while maintaining a trade off between the need
to manipulate large sets of incomplete data and the requirements arising from
the needs to provide a mathematically well founded system. In particular, we
propose the use of hybrid automata together with the notions of bisimulation
and collapsing. Hybrid automata are equipped with states embodying time-flow,
initial and final conditions, and therefore allow maintenance of more information
about the differential equations (S-system). The use of the notion of bisimulation
in the definition of the projection operation (restrictions to a subset of “interest-
ing” variables) provides a way to introduce reduced automata satisfying the same
formulae as the initial ones. Notice that the idea behind and potential of this
notion of bisimulation can be exploited just as fruitfully here as in the context
of standard automata. Finally, the notion of collapsing, we introduce, serves a
dual purpose: first, it provides a natural approach for qualitative reasoning of
the automata extracted from the analysis of traces summarizing the behavior of
biomolecules; second, it tames the otherwise unruly complexity of the automata
in terms of their size as a function of the levels of approximation allowed.

The cellular and biochemical processes analyzed using XS-systems and Sim-
pathica [5, 4] provide a large set of application examples for the framework we
present here. In order to motivate the choices of our modeling framework, the
paper focuses on a detailed examination of one such example: namely, the re-
pressilator system described by Elowitz and Leibler in [21]. Later, in Section 7,
we study two more complex and natural systems: the purine metabolism, first,
described in [38] Chapter 10 and fully analyzed in [15, 16]; the quorum sensing
process in Vibrio fischeri which has been studied in [26, 32, 37, 1].

We conclude pointing out that the analysis presented in this paper is not
limited to XS-Systems, but could be extended to more general hybrid system
models.

2 Related Works

A survey on the different approaches for modeling and simulating genetic reg-
ulatory systems can be found in [18]: the author takes into consideration dif-
ferent mathematical methods (including ordinary and partial differential equa-
tions, qualitative differential equations and others) and evaluates their relative
strengths and weaknesses.

The problem of constructing an automaton from a given mathematical model
of a general dynamical system has been previously considered in the literature.
In particular, it has been investigated by Brockett in [8]: our approach in [5]
is certainly more focused, since it deals with specific mathematical models (i.e.
S-systems). Here we move farther away from purely discrete models, and adapt

hybrid automata to describe the underlying biochemical behavior instead of stan-
dard automata. Consequently, we are able to take advantage of the continuous
component of hybrid automata for allowing quantitative information in addition
to qualitative reasoning.

The use of hybrid automata for the modeling and simulation of biomolecular
networks has been proposed also by Alur et al. in [1] and by Chabrier et al.
in [10]. In [1] the discrete component of an hybrid automaton is used to switch
between two different behaviors (models) of the considered biological system,
(for example) depending on the concentration of the involved molecules. The
hybrid automaton is then implemented in Charon. In our case, the continuous
component is used to model the permanence on a given state depending on the
values of the involved variables (reactants), and the discrete component is used
for enabling the transition to another state. Moreover, we do not only model
the biological systems, but we also query them using temporal logics. A similar
approach is considered in [10], where a variant of Euler’s method is applied in
order to obtain a symbolic representation of the system. Then the authors show
how to use symbolic model checkers, such as NuSMV [11] and DMC [19], to study
the system.

Moreover, in [1], as well as in other formalisms modeling biochemical systems
(e.g., [36, 14, 13, 17]), the notion of concurrency is explicitly used since the in-
volved reactants are represented as processes running in parallel. In our case this
kind of concurrency becomes implicit since in all the states of the automaton
representing an S-system the values of all the reactants and their evolutions are
represented.

3 Setting the Context

3.1 S-systems

We begin presenting the basic definitions and properties of S-systems. The def-
inition of S-systems we use in this paper is basically the one presented in [38]
augmented with a set of algebraic constraints. The constraints characterize the
conditions that must be additionally satisfied for the system to obey conservation
of mass, stoichiometric relations, etc.

Definition 1 (S-system). An S-system is a quadruple S = (DV , IV ,DE ,C)
where:

– DV = {X1, . . . , Xn} is a finite non empty set of dependent variables ranging
over the domains D1, . . . , Dn, respectively;

– IV = {Xn+1, . . . , Xn+m} is a finite set of independent variables ranging
over the domains Dn+1, . . . , Dn+m, respectively;

– DE is a set of differential equations, one for each dependent variable, of the
form

Ẋi = αi

n+m∏

j=1

X
gij

j − βi

n+m∏

j=1

X
hij

j

with αi, βi ≥ 0 called rate constants;
– C is a set of algebraic constraints of the form

Cj(X1, . . . , Xn+m) =
∑

(γj

n+m∏

k=1

X
fjk

k) = 0

with γj called rate constraints.

In what follows we use ~X to denote the vector 〈X1, . . . , Xn, Xn+1, . . . , Xn+m〉
of variables and ~d (~a, ~b,. . .) to denote the vector 〈d1, . . . , dn, dn+1, . . . , dn+m〉 ∈
D1 × . . .×Dn ×Dn+1 × . . .×Dn+m of values. Similarly given a set of variables
U = {XU1 , . . . , XUu

} ⊆ DV ∪ IV we use ~X ¹ U to denote the vector of variables
of U , while ~d ¹ U denotes the vector of values 〈dU1 , . . . , dUu〉 ∈ DU1 × . . .×DUu .

The dynamic behavior of an S-system can be simulated by computing the
approximate values of its variables at different time instants (traces). To deter-
mine a trace of an S-system it is necessary to fix an initial time (t0), the values
of the variables at the initial time (~X(t0)), a final time (tf), and a step (s).

Definition 2 (Trace). Let S = (DV , IV ,DE ,C) be an S-system. Let ~f(t) =
〈f1(t), . . . , fn+m(t)〉 be a (approximated) solution for the S-system S in the time
interval [t0, tf] starting with initial values ~X(t0) in t0. Let s > 0 be a time step
such that tf = t0 + j ∗ s. The sequence of vectors of values

tr(S, t0, ~X(t0), s, tf) = 〈~f(t0), ~f(t0 + s), . . . , ~f(t0 + (j − 1) ∗ s), ~f(t0 + j ∗ s)〉
is a trace of S. When we are not interested in the parameters defining the trace
we use the notation tr.

Notice that ~f(t0) = ~X(t0). A trace is nothing but a sequence of values of
D1 × . . . × Dn+m representing a solution of the system in the time instants
t0, t0 + s, . . . , t0 + j ∗ s. By varying the initial values of the variables, we obtain
different system traces, for the same parameters t0, s and tf . Notice moreover
that it is not restrictive to consider traces having a fixed time step: the theory
we develop can be straighforwardly adapted to variable time steps. Simulations
of the behavior of an S-system can be automatically obtained by using the tool
PLAS (see [38]). In fact, PLAS takes in input an S-system and approximates the
values of the system variables, once the parameters in Definition 2 have been
specified. The output is exactly a trace describing the behavior of the given
system.

Example 1. The following feedback system is taken from [38], Chapter 6, and can
be found in PLAS (see \Book Examples\Feedback.plc). It represents a system
in which the reactant X1 is inhibited by X2, while X3 is an independent input
variable and X4 an independent inhibitor for the degradation of X2. Hence, we
have DV = {X1, X2}, IV = {X3, X4}, and

Ẋ1 = 0.5X−2
2 X0.5

3 − 2X1 Ẋ2 = 2X1 −X0.5
2 X−1

4

Let t0 = 0 be the initial time, ~X(t0) = 〈1, 1, 4, 2〉 be the initial values of the
reactants, s = 1 be the time step, and tf = 18 be the final time. By simulating the
system in PLAS with these values and setting the Taylor method with tolerance
1E − 16 we obtain the following trace

〈 〈1, 1, 4, 2〉, 〈0.33, 1.59, 4, 2〉, 〈0.22, 1.48, 4, 2〉, . . .
. . . , 〈0.28, 1.31, 4, 2〉, 〈0.28, 1.31, 4, 2〉, 〈0.28, 1.31, 4, 2〉 〉

where, due to lack of space, we have only presented the values at low precision
(two decimal places) and omitted the description of some states. In this trace,
for instance, we can observe that the quantity of X1 is 0.28 in the last tree steps.

The solutions of an S-system have some nice properties. First of all they
admit all the derivatives everywhere except when they intersect one of the hy-
perplane Xi = 0, for i = 1, . . . , n+m. There could be problems when Xi = 0 for
i ∈ {1, . . . , m + n} in the case one of the exponent is, for instance, of the form
0.5. As noticed in [1], this corresponds to the fact that at reasonably high molec-
ular concentrations, one can adopt continuum models which lend themselves
to deterministic models, while at lower concentrations, the discrete molecular
interactions become important and deterministic models are more difficult to
obtain. However, the existence of all the derivatives implies that if at a given
instant t1 all the Xi, for i = 1, . . . , n + m, are different from 0, then there exists
a unique solution in an interval [t1, t1 + ε] and this solution can be extended if
it still holds that all the variables are different from 0. Moreover, if two solu-
tions ~f(t) and ~g(t), obtained with different initial values, pass both in a point
~d, possibly at different times, i.e., there exist two instants t1 and t2 such that
~f(t1) = ~g(t2) = ~d, then from those instants on they always coincide, i.e., for all
p ≥ 0, ~f(t1 + p) = ~g(t2 + p). This is a consequence of the fact that the variable
time does not explicitly occur in the differential equations. What we have just
stated in mathematical terms can be restated from the biological point of view
saying that if the biological system modeled by the S-system reaches a state
~d, its evolution does not depend on the states in which the system was before
reaching ~d (i.e., the system is without memory). In particular, on a set of traces
this last property has the following consequence.

Proposition 1. Let 〈~a0, . . . ,~aj〉 and 〈~b0, . . . ,~bi〉 be two traces of an S-system S

obtained by using the same time step s. If there exist h and k such that ~ah = ~bk,
then for all r ≥ 0 it holds ~ah+r = ~bk+r.

Obviously in the above proposition we are assuming that we are using the
same approximation method to obtain both traces. Moreover, it can be the case
that the two traces are equal. This property of sets of traces of an S-system
implies what is known in the area of Model Checking as fusion closure (see
[22]). We anticipate here that all the results we present in the rest of this paper
are consequences of Proposition 1, i.e., they hold every time we deal with a set
of traces satisfying it. We formalize this as follows.

Definition 3 (Convergence). A set of traces Tr is convergent if for all the
traces 〈~a0, . . . ,~aj〉 and 〈~b0, . . . ,~bi〉 belonging to Tr, if there exist h and k such
that ~ah = ~bk, then for all r ≥ 0 it holds ~ah+r = ~bk+r.

Corollary 1. If Tr is a set of traces of an S-system S obtained by using the
same time step s, then Tr is convergent.

Example 2. Let us consider again the simple feedback system described in Ex-
ample 1. If we simulate it using ~X(t0) = 〈0.33, 1.59, 4, 2〉, i.e., ~X(t1) of the trace
in Example 1, we obtain

〈 〈0.33, 1.59, 4, 2〉, 〈0.22, 1.48, 4, 2〉, . . . , 〈0.28, 1.31, 4, 2〉, 〈0.28, 1.31, 4, 2〉 〉
which is exactly the trace we had before without the first state.

3.2 XS-systems

The basic idea of XS-systems (introduced in [5]) is to associate an S-system
S with a finite automaton, obtained by suitably encoding a set of traces on S.
Essentially, each trace on S can be encoded into a simple automaton, where states
correspond to the trace elements (i.e., the values of the system variables observed
at each step), and transitions reflect the sequence structure of the trace itself
(i.e., there exists a transition from a state vi to a state vj if they are consecutive
in the trace). When more than one trace is involved in the process, coinciding
elements of different traces correspond to the same state in the automaton.

Consider an S-system and a set of traces on it. The automaton derived from
the system traces is defined as follows.

Definition 4 (S-system Automaton). Let S be an S-system and Tr be a set
of traces on S. An S-system automaton is A(S,Tr) = (V, ∆, I, F), where

– V = {~v = 〈v1, . . . , vn+m〉 | ∃tr ∈ Tr : ~v is in tr} ⊆ D1 × . . . ×Dn+m is the
set of states;

– ∆ = {(~v, ~w) | ∃tr ∈ Tr : ~v, ~w are consecutive in tr} is the transition relation;
– I = {~v | ∃tr ∈ Tr : ~v is initial in tr} ⊆ V is the set of initial states;
– F = {~v | ∃tr ∈ Tr : ~v is final in tr} ⊆ V is the set of final states.

Automata can be equipped with labels on nodes and/or edges (see [25]).
Labels on the nodes maintain information about the properties of the nodes,
while labels on the edges are used to impose conditions on the action represented
by the edge (see [12]). In the case of S-system automata edges are unlabeled,
while the label we assign to each node is actually the name (identifier) of the
node itself, i.e. the concentrations of the reactants for that state. In this way
S-system automata maintain qualitative information about the system only in
the instants corresponding to the steps.

We say that an automaton is deterministic if each node has at most one
outgoing edge for each edge-label, i.e., in our case, at most one outgoing edge.
From Proposition 1 we get the following result.

Proposition 2. Let S be an S-system and Tr be a convergent set of traces on
S. The automaton A(S,Tr) is deterministic.

Example 3. The trace shown in Example 1 gives us the following automaton,
where we omit the values of the independent variables.

<1,1> <0.33,1.59> <0.28,1.31>

The initial state is the one on the left, while final state is the one on the right. By
using both the trace of Example 1 and the trace of Example 2 we obtain the same
automaton, but with two initial states. The automaton represents the fact that
in it, the steady state with values X1 = 0.28 and X2 = 1.31 is globally reachable.
That is, all the simulations of this system reach this steady state independent of
which initial values (equal to the values in some state of the automaton) of the
reactants are assumed.

In [5], a language called ASySA (Automata S-systems Simulation Analysis
language) has been presented to inspect and formulate queries on the simulation
results of XS-systems. The aim of this language is to provide the biologists with
a tool to formulate various queries against a repository of simulation traces.
ASySA is essentially a Temporal Logic language (see [22]) (an English version
of CTL) with a specialized set of predicate variables whose aim is to ease the
formulation of queries on numerical quantities. The fusion closure of sets of traces
(see Proposition 1 and Corollary 1) is necessary in order to reflect the behavior
of the set of traces with temporal logic semantics (see [22]). This means that
a formula is true on the S-system automaton if and only if it is true in the
set of traces. Intuitively, the behavior of the traces is not approximated in the
automaton because two traces which reach the same state always coincide in the
future.

Example 4. The automaton in Example 3 satisfies the formula

Eventually(Always(X2 > 1))

which means that the system admits a trace such that, from a certain point on,
X2 is always greater than 1. Similarly, it does not satisfies the formula

Always(Eventually(X1 > X2))

since it reaches a steady state in which X1 is less than X2.

Since the notion of steady state plays a fundamental role in biological systems,
a predicate steady state has been introduced in the ASySA language. This
predicate is satisfied by a system (S-system automaton) if there exists an instant
(a state) after which all the derivatives will always be equal to zero, i.e. the
system ends in a loop involving only one state.

Unfortunately, in the practical cases the automata built from sets of traces
have an enormous number of states. In [5] two techniques have been proposed to
reduce the number of states of an S-system automaton, namely projection and
collapsing.

Definition 5 (Projection). Let S be an S-system and U be a subset of the set
of variables of S. Given a trace tr = 〈~a0, . . . ,~aj〉 of S the projection over U of
tr is the sequence tr ¹ U = 〈~a0 ¹ U, . . . ,~aj ¹ U〉. Given a set of traces Tr the
projection over U of Tr is the set of projected traces Tr ¹ U = {tr ¹ U | tr ∈ Tr}.
The U -projected S-system automaton from Tr and S is A(S,Tr ¹ U).

The automaton A(S,Tr ¹ U) has usually less states than A(S,Tr). However,
the set of traces Tr ¹ U does not always satisfy either convergence or fusion clo-
sure. Furthermore, the automaton A(S,Tr ¹ U) can be non-deterministic. This
can introduce an approximation, i.e., the formulae satisfied by the automaton
A(S,Tr ¹ U) are not the same satisfied by the set of traces Tr ¹ U .

Example 5. As a simple yet very interesting example, consider the repressilator
system constructed by Elowitz and Leibler [21]. First the authors constructed
a mathematical model of a network of three interacting transcriptional regula-
tors and produced a trace of the interaction using a traditional mathematical
package (Matlabtm). Subsequently, they constructed a plasmid with the three
regulators and collected data from in vivo experiments in order to match them
with the predicted values. In particular, this contains three proteins, namely lacI
(which we refer to as X1), tetR (X2), and cI (X3). The protein lacI represses the
protein tetR, tetR represses cI, whereas cI represses lacI, thus completing a feed-
back system. The dynamics of the network depend on the transcription rates,
translation rates, and decay rates. Depending on the values of these rates the
system might converge to a stable limit circle or become unstable. The following
S-system represents6 the repressilator system: rate values have been set in such
a way that the system converges to a stable limit circle.

Ẋ1 = X4X
−1
3 −X0.5

1

Ẋ2 = X5X
−1
1 −X0.578151

2

Ẋ3 = X6X
−1
2 −X0.5

3

If we simulate it in PLAS, with t0 = 0, ~X(t0) = 〈0.01, 0.2, 0.01, 0.2, 0.2, 0.2〉,
s = 0.05, and tf = 30, we obtain a trace whose automaton reaches the loop
shown on the left of Figure 1: we omit the independent variables and we use
dotted lines to represent the fact that there are other intermediate states.

The automaton does not satisfy Eventually(Always(X1 ≥ 0.3)). In fact in
the limit cycle reached by the repressilator, the values of X1 range in the interval
6 To be precise the system described in [21] is not an S-system. However, it can be

reasonably approximated through an S-system, as proved by the general theory
presented in [38]. Notice that our automaton-model can be built using directly traces
of the system in [21].

<0.16><0.83> <0.44>

<0.44, 0.18, 0.67><0.83, 0.29, 0.22>

<0.44, 0.64, 0.17> <0.16, 0.56, 0.51>

Fig. 1. Repressilator: automaton and projected automaton.

[0.16, 0.83]. Hence, the formula is false also in the projected trace. However, the
formula is satisfied by the projected automaton, partially depicted on the right
of Figure 1. In fact, the projected automaton represents a system in which it
is possible that after a certain instant the variable X1 assumes values in the
interval [0.44, 0.83].

The collapsing operation is defined in such a way that a state is removed from
a trace when it behaves similarly to the previous one, i.e., when the derivatives
computed in it can be approximated by the derivatives computed in the previ-
ous state (see [5] for the formal definition). Also this operation can introduce
approximation as shown in the following example.

Example 6. Let S be an S-system with dependent variables X1 and X2. Let us
assume that S admits a trace of the form 〈 〈1, 5〉, 〈2, 4〉, 〈3, 3〉, 〈4, 2〉, 〈5, 1〉 〉.

We also assume that the derivative Ẋ1 is 1 in all the states except the last
one, and, similarly, Ẋ2 is −1 in all the states except the last one. By applying
the definitions presented in [5] we can collapse some of the states obtaining the
reduced trace 〈 〈1, 5〉, 〈5, 1〉 〉. The formula Eventually(|X1 −X2| ≤ 3) is true
in the trace of S, but is false in the collapsed one.

Consider again the repressilator system of Example 5, whose automaton is
partially represented on the left of Figure 1. If all the intermediate states on
the dotted lines are collapsed, then we obtain an automaton with 4 states which
does not satisfy the formula Eventually(|X1 −X2| ≤ 0.1), while it is easy to
check that the same formula is satisfied by the repressilator system.

In order to avoid these approximations and to obtain a more powerful and
flexible framework in the next sections we propose the use of hybrid automata
together with a reformulation of projection and collapsing.

4 Hybrid Automata to model S-systems

The notion of hybrid automata was first introduced in [2] as a model and speci-
fication language for hybrid systems, i.e., systems consisting of a discrete-valued
program (with finitely many modes) within a continuously changing environ-
ment.

Definition 6 (Hybrid automata). A hybrid automaton H = (Z, V, ∆, I, F,
init , inv ,flow , jump) consists of the following components:

– Z = {Z1, . . . , Zk} a finite set of variables; Ż = {Ż1, . . . , Żk} denotes the first
derivatives during continuous change; Z ′ = {Z ′1, . . . , Z ′k} denotes the values
at the end of discrete change;

– (V, ∆, I, F) is an automaton; the nodes of V are called control modes, the
edges of ∆ are called control switches;

– each v ∈ V is labeled by init(v), inv(v), and flow(v); the labels init(v) and
inv(v) are constraints with free variables in Z; the label flow(v) is a con-
straint with free variables in Z ∪ Ż;

– each e ∈ E is labeled by jump(e), which is a constraint whose free variables
are in Z ∪ Z ′.

Example 7. Consider the following simple hybrid automaton.

jump: Z = Z′ = 3

jump: Z = Z′ = 1

inv: 1 ≤ Z < 3

flow: Ż = 1

init: Z = 1

flow: Ż = −1

init: Z = 3

inv: 1 ≤ Z < 3

The initial state is the left one, with Z = 1. In this state Z grows with
constant rate 1. After 3 instants we have Z = 3 and we jump on the right state.
In this second state Z decreases and when Z becomes 1 we jump again in the
state on the left.

The usefulness of hybrid automata has been widely proved in the area of
verification (see, e.g., [33]). In order to exploit the expressive power of hybrid
automata their properties have been deeply studied (see [23]), specification lan-
guages have been introduced to describe them, and model checkers have been
developed to automatically verify temporal logic properties on them. Among
the specification languages and the model checkers which deal with hybrid au-
tomata we mention SHIFT (see [3]) and HyTech (see [24]) developed at Berkeley
University, and Charon (see [1]) developed at the University of Pennsylvania.

In the S-system automata introduced in the previous section the only quan-
titative information maintained is the values of the variables in the instants cor-
responding to the steps. The values at instants between two steps are lost. This
situation becomes particularly dangerous when we apply a reduction operation
such as collapsing. The novelty of our approach is in the way it circumvents this
problem by using the continuous component of hybrid automata to maintain
also some approximate information about the values of the variables between
two steps.

Let us introduce some notations which simplify the definition of a hybrid
automaton modeling a convergent set Tr of traces of an S-system. Given the
vectors ~X = 〈X1, . . . , Xn+m〉 and ~v = 〈v1, . . . , vn+m〉 we use the notation ~X =
~v to denote the conjunction X1 = v1 ∧ . . . ∧ Xn+m = vn+m. The notation

~v ≤ ~X < ~w has a similar meaning, while ~̇X = (~w − ~v)/s stands for Ẋ1 =
(w1 − v1)/s ∧ . . . ∧ Ẋn+m = (wn+m − vn+m)/s.

Definition 7 (S-system Hybrid Automaton). Let S be an S-system and Tr
be a convergent set of traces on S. Consider the S-system automaton A(S,Tr).

The S-system hybrid automaton built on A(S,Tr) is H(S,Tr) = (X,V,∆, I, F,
init , inv ,flow , jump), where:

– X = {X1, . . . , Xn+m} = DV ∪ IV ;
– (V, ∆, I, F) is the automaton A(S,Tr);
– for each ~v ∈ V let init(~v) = ~X = ~v;
– for each ~v ∈ V such that (~v, ~w) ∈ ∆ let7 inv(~v) = ~v ≤ ~X < ~w;
– for each ~v ∈ V such that (~v, ~w) ∈ ∆ let flow(~v) = ~̇X = (~w − ~v)/s;
– for each (~v, ~w) ∈ ∆ let jump((~v, ~w)) = ~X = ~X ′ = ~w.

Notice from the above definition that being in a state ~v does not necessarily
mean that the values of the variables are exactly ~v: they can in fact assume
values between ~v and ~w. In particular, they grow linearly in this interval and
when they reach ~w the system jumps to a new state.

The automaton H(S,Tr) is a rectangular singular automaton and the tem-
poral logic CTL is decidable for this class of automata (see [23]). The model
checker HyTech can be used to check whether a temporal formula is satisfied by
H(S,Tr). Moreover, H(S,Tr) is deterministic, since we require Tr to be conver-
gent and hence A(S,Tr) is deterministic. Notice also that all the information
needed to build H(S,Tr) is already encoded in A(S,Tr), i.e., it is possible to
work on H(S,Tr) by only maintaining in memory A(S,Tr).

Example 8. From the traces of the feedback system of Examples 1 and 2 we
obtain the hybrid automaton shown in Figure 8. In the first state (the one on

flow: . . .

init: X1 = 0.33 ∧X2 = 1.59

inv: . . .

jump: X1 = X′1 = 0.28

jump: X2 = X′2 = 1.31

init: X1 = 0.28 ∧X2 = 1.31

inv: 0.28 ≤ X1 < 0.28 ∧

flow: Ẋ1 = 0 ∧ Ẋ2 = 0

1.31 ≤ X2 < 1.31

init: X1 = 1 ∧X2 = 1

inv: 0.33 ≤ X1 < 1 ∧

flow: Ẋ1 = −0.67 ∧ Ẋ2 = 0.59

1 ≤ X2 < 1.59

Fig. 2. Feedback hybrid automaton.

the left) variable X1 starts with value 1 and decreases until it reaches value
0.33, while variable X2 starts with value 1 and grows until it reaches value 0.59.
Then, we jump to the second state. When we reach the last state the values of
the variables become stable and the system loops forever.

The additional quantitative information stored in each state of an S-system
hybrid automaton allows one to deeply investigate the behavior of the system
during any individual step. As we will see in Section 6, this process assumes an
additional relevance when we apply a collapsing technique to reduce the number
of states.
7 We invert the interval when wi < vi.

5 Bisimulation and Projection

As pointed out in Example 5 the projection operation can lead to incorrect pre-
diction since we only use a reduced automaton. In order to avoid this problem,
we define in this section a projection operator based on the notion of bisim-
ulation. Since bisimulation is an equivalence relation preserving temporal logic
formulae (see, e.g., [9, 31]), the obtained projected automata will satisfy the same
formulae as the original one.

Let us introduce the following notations. Given a condition init(~v) (inv(~v),
flow(~v), resp.) and U ⊆ DV ∪ IV we use init(~v) ¹ U (inv(v) ¹ U , flow(v) ¹ U ,
resp.) to denote that we consider only the conditions relative to the variables in
U .

Definition 8 (U-bisimulation). Let H(S,Tr) be an S-system hybrid automa-
ton. Let U ⊆ {X1, . . . , Xn+m} be a subset of variables. A relation R ⊆ V × V is
a U -bisimulation if

– if ~vR~w, then init(~v) ¹ U = init(~w) ¹ U ∧ inv(~v) ¹ U = inv(~w) ¹ U ∧flow(~v) ¹
U = flow(~w) ¹ U ;

– if ~vR~w and (~v,~v′) ∈ ∆, then (~w, ~w′) ∈ ∆ and ~v′R~w′;
– if ~vR~w and (~w, ~w′) ∈ ∆, then (~v,~v′) ∈ ∆ and ~v′R~w′.

Intuitively, two states ~v and ~w are U -bisimilar if it is the case that not only do
the variables in U have the same values in ~v and ~w, but additionally, from ~v and
~w, the system evolves in the same way with respect to the variables in U . In
fact, for instance,it is possible that there are two states in which the variables
in U have the same values, but the first state evolves into a state in which the
variables are incremented while the second one evolves into a state in which the
variables are decremented; in this case, we do not wish to identify these two
states as equivalent.

Lemma 1. There always exists a unique maximum U -bisimulation ≈U which is
an equivalence relation. Moreover, if ~v ≈U ~w and (~v,~v′) ∈ ∆, then (~w, ~w′) ∈ ∆
and jump((~v,~v′)) ¹ U = jump((~w, ~w′)) ¹ U.

Proof. The first part follows immediately from the fact that a U -bisimulation on
H(S,Tr) is nothing but a strong bisimulation onA(S,Tr) whose nodes have been
labeled using part of the conditions defining the hybrid automaton H(S,Tr).

The second fact is a consequence of the fact that jump is uniquely defined
once we know init and inv . ut
Definition 9 (Projected Hybrid automaton H(S,Tr , U)). Let H(S,Tr) =
(X, V,∆, I, F, init , inv ,flow , jump), be an S-system hybrid automaton and U be a
subset of variables. The projected hybrid automaton H(S,Tr , U) = (U, VU , ∆U ,
IU , FU , initU , invU ,flowU , jumpU) is defined as follows:

– VU = V/ ≈U ;
– ∆U = {([~v], [~w]) | ∃~v′ ∈ [~v], ~w′ ∈ [~w] : (v, w) ∈ ∆};

– for each [~v] ∈ VU let initU ([~v]) = init(~v) ¹ U ;
– for each [~v] ∈ VU let invU ([~v]) = inv(~v) ¹ U ;
– for each [~v] ∈ VU let flowU ([~v]) = flow(~v) ¹ U ;
– for each ([~v], [~w]) ∈ ∆U such that (~v′, ~w′) ∈ ∆ let jumpU (([~v], [~w])) =

jump((v′, w′)) ¹ U .

The above definition does not depend on the representative element of each
class. This is a consequence of the definition of ≈U as far as the init , inv , and
flow conditions are concerned, and of Lemma 1 as far as the jump conditions
are concerned. Those familiar with automata and bisimulation reductions will
immediately recognize that the hybrid automaton H(S,Tr , U) is nothing but the
hybrid automaton built on the bisimulation reduced automaton A(S,Tr)/ ≈U

with conditions defined only on the variables of U .
The automaton H(S,Tr , U) is still a rectangular singular automaton, hence

CTL is still decidable on it. Moreover, H(S, Tr, U) is deterministic, since bisim-
ulation preserves determinism. The fact that we are working on deterministic
automata implies that the bisimulation relation ≈U can be computed in linear
(see [20]) time using the procedure defined in [34].

As far as the correctness of the reduction is involved, we have the following
result.

Proposition 3. Let TL be a temporal logic which is a fragment of the µ-calculus.
Let ϕ a formula of TL involving only the variables in U . A(S,Tr) satisfies
ϕ if and only if A(S,Tr)/ ≈U satisfies ϕ. H(S,Tr) satisfies ϕ if and only if
H(S,Tr , U) satisfies ϕ.

Proof. The first part is a consequence of the fact that ≈U is a strong bisimulation
and strong bisimulations preserve all the formulae of the µ-calculus (see [9, 31]).

The second part is a consequence of the first part and of the fact that
H(S,Tr , U) is basically the hybrid automaton built on A(S,Tr)/ ≈U . ut

In the following example we show the difference between A(S,Tr ¹ U) and
A(S,Tr)/ ≈U . This difference is at the basis of the correctness of H(S,Tr , U).

Example 9. Consider again the repressilator system of Example 5. Part of the
projected automaton we obtain by applying bisimulation is shown on the left of
Figure 3. The two states in which X1 = 0.44 do not coincide when we use bisim-
ulation. In fact, the first state in which X1 is 0.44 evolves to a state in which
X1 is 0.43 (the protein concentration is decreasing), while the second state in
which X1 is 0.44 evolves to a state in which X1 is 0.47 (the protein concentra-
tion is increasing). Hence, the projected automaton fails to satisfy the formula
Eventually(Always(X1 ≥ 0.3)). This conclusion is correct, since the repres-
silator system we have simulated reaches a steady loop in which X1 oscillates
between 0.16 and 0.83. Part of the projected hybrid automaton is shown on the
right of Figure 3.

<0.44>

<0.83> <0.44>

<0.16>

flow: Ẋ1 = 0.5

init: X1 = 0.448

inv: 0.448 ≤ X1 < 0.473

flow: Ẋ1 = −0.04

init: X1 = 0.832

inv: 0.830 ≤ X1 < 0.832

flow: Ẋ1 = −0.36

init: X1 = 0.448

inv: 0.430 ≤ X1 < 0.448

flow: Ẋ1 = 0.02

init: X1 = 0.168

inv: 0.168 ≤ X1 < 0.169

Fig. 3. Repressilator: bisimulation quotiented automata.

6 Collapsing States

In this section we introduce the definition of collapsing of a trace. The definition
we present is similar but not equivalent to the one given in [5]. In fact, we do
not consider the difference between the derivatives calculated in the states, but
only the degree of growth within a step. This reformulation was inspired by
hybrid automaton in which in the flow condition of a state we do not use the
derivatives calculated at the beginning of a time step, but the coefficients of the
lines connecting the values at the beginning to the ones at the end of a time
step. In the following collapsing definition we use a compact notation similar to
the one already introduced in Section 4.

Definition 10 (Collapsing). Let ~δ = 〈δ1, . . . , δn+m〉 be a (n + m)-vector of
values. Let tr = 〈~a0, . . . ,~aj〉 be a trace obtained by simulating the S-system S

with time step s. A ~δ-collapsing of tr is a partition of the states of tr such that:

– the blocks are sub-traces of tr ;
– if a block is formed by the states from ~ai to ~ai+h, and ~aj ,~aj+1 belong to the

block, then |(~aj+1 − ~aj)/s− (~ai+1 − ~ai)/s| ≤ ~δ.

The collapsing operation in [5] is based on the difference between the first
derivatives computed in the elements of the trace. Here, instead, we consider as
collapsing criterion the degree of growth within a step. In practice the definition
requires that the lines connecting ~ai to ~ai+1 are good approximations of the lines
connecting ~aj to ~aj+1. As a consequence we obtain that the lines connecting ~ai to
~ai+h are good approximations of all the small lines. In particular, the following
result holds.

Lemma 2. If a block of a ~δ-collapsing is formed by the sequence of states from ~ai

to ~ai+h and ~aj ,~aj+1 belong to the block, then |(~aj+1−~aj)/s−(~ai+h−~ai)/(h∗s)| ≤
2 ∗ ~δ.

Proof. It is not restrictive to prove that the result holds on the first component.
Let (ai+r+1,1 − ai+r,1)/s = coefr+1 for r = 0, . . . , h− 1. It is easy to prove that
(ai+h,1−ai,1)/(h∗s) = (1/h)∗ ((ai+h,1−ai+h−1,1)/s+(ai+h−1,1−ai+h−2,1)/s+

. . .+(ai+1,1−ai,1)/s) = (1/h)∗∑h−1
r=0 coefr+1. By hypothesis we have coef1−δ1 ≤

coefr+1 ≤ coef1 + δ1, hence we obtain (1/h) ∗ h ∗ (coef1 − δ1) ≤ (ai+h,1 −
ai,1)/(h ∗ s) ≤ (1/h) ∗ h ∗ (coef1 + δ1), i.e. coef1 − δ1 ≤ (ai+h,1 − ai,1)/(h ∗ s) ≤
coef1 + δ1. From this last observation, we get (coef1 − δ1) − (coef1 + δ1) ≤
coefr+1 − (ai+h,1 − ai,1)/(h ∗ s) ≤ (coef1 + δ1) − (coef1 − δ1), i.e. −2 ∗ δ1 ≤
coefr+1 − (ai+h,1 − ai,1)/(h ∗ s) ≤ 2 ∗ δ1, which is equivalent to our thesis. ut

Given the trace tr and the vector ~δ the partition in which each state consti-
tutes a singleton class is a ~δ-collapsing.

Definition 11 (Maximal Collapsing). Let C1 and C2 be two ~δ-collapsing of
tr . We say that C1 is coarser than C2 if each block of C2 is included in a block of
C1. We say that the ~δ-collapsing C1 is maximal if there does not exist another
~δ-collapsing coarser than C1.

The uniqueness of a coarsest ~δ-collapsing is not guaranteed. However, we can
give an algorithm to find a maximal ~δ-collapsing. The algorithm performs the
following steps: it starts from ~a0, it check if ~a1 can be collapsed with ~a0, if this
is the case it goes on with ~a2, and so on. Assume that ~ai is the first state which
does not collapse to the same state as ~a0, then the algorithm starts another block
from ~ai and it goes on in the same way.

The following proposition states that if we use maximal δ-collapsing, then
two traces which match in one state always match in the future.

Proposition 4. Let Tr be a convergent set of traces of an S-system S. Let Tr/~δ
be the set of collapsed traces obtained by applying to each trace of Tr a maximal
~δ-collapsing. The set Tr/~δ is convergent.

This property is sufficient to guarantee that taking a set of traces and col-
lapsing them using maximal δ-collapsing, the set of collapsed traces can be used
to build automata and hybrid automata as defined in the previous sections. In
fact, as pointed out earlier in the paper, the correctness of our framework holds
whenever we use convergent sets of traces. Nonetheless, this statement does not
imply that the automaton we build from a set of collapsed traces satisfies the
same formulae as the original set of traces, but only that it satisfies the same
formulae as the set of collapsed automata derived from the traces.

Example 10. Consider again the S-system and the trace of Example 6. The col-
lapsed trace we obtain is again 〈 〈1, 5〉, 〈5, 1〉 〉. The hybrid automaton we build
from this trace has two states. In the first state, let us call it ~v, we have the
conditions

inv(~v) = 1 ≤ X1 ≤ 5 ∧ 1 ≤ X2 ≤ 5 flow(~v) = Ẋ1 = 1 ∧ Ẋ2 = −1

which make Eventually(|X1 − X2| ≤ 3) true in the automaton, as it was in
the original trace.

Similarly, we can safely collapse the states of the repressilator system and
obtain a hybrid automaton with four states which correctly satisfies the formula
Eventually(|X1 −X2| ≤ 0.1).

This last example shows that the additional information maintained in the
hybrid automaton is particularly useful when we use techniques as collapsing to
reduce the number of states.

7 Case Studies

In this section we present two case studies for our framework. The first one
concerns the purine metabolism pathway, whose complexity makes it a good
candidate for reasoning with the computational tools we have developed. The
second one is the quorum sensing process in Vibrio fischeri, which allows us to
discuss an extension of our framework admitting a system description based on
more than one S-system.

7.1 Purine Metabolism

We now revisit the example of purine metabolism described in [38] Chapter 10
and fully analyzed in [15, 16]. The pathway for purine metabolism is presented in
Figure 4. A brief description of the key reactions follows, and the reader is invited
to examine the more detailed summaries contained in the literature referenced
in [38, 15, 16].

The main metabolite in purine biosynthesis is PRPP (5-phosphoribosyl-α-1-
pyrophosphate). A linear cascade of reactions converts PRPP into IMP (inosine
monophosphate). IMP is the central branch point of the purine metabolism path-
way. IMP is transformed into AMP and GMP. Guanosine, adenosine and their
derivatives are recycled (unless used elsewhere) into HX (hypoxanthine) and XA
(xanthine). XA is finally oxidized into UA (uric acid). In addition to these pro-
cesses, there appear to be two “salvage” pathways that serve to maintain IMP
level and thus of adenosine and guanosine levels as well. In these pathways,
APRT (adenine phosphoribosyltransferase) and HGPRT (hypoxanthine-guanine
phosphoribosyltransferase) combine with PRPP to form ribonucleotides.

The consequences of a malfunctioning purine metabolism pathway are severe
and can lead to death. The entire pathway is quite complex and contains sev-
eral feedback loops, cross-activations and reversible reactions, and thus an ideal
candidate for reasoning with the computational tools we have developed.

In [38], a sequence of models for purine metabolism is presented alongside
an analysis of how to identify discrepancies with physically observed data, and
how to amend the current model in order to explain these discrepancies.

We show how to formulate queries over the simulation traces to express
various desirable properties (or absence of undesirable ones) that the model
should possess. Should any of these queries “fail”, the model will be marked for
further examination, experimentation and correction.

Consider the “Final” model for purine metabolism presented in [38]. The
in silico experiment shows that when an initial level of PRPP is increased by
50-fold, the steady state concentration is quickly absorbed by the system. The
level of PRPP returns rather quickly to the expected steady state values. IMP

Fig. 4. The metabolic scheme of purine metabolism in human. (Reprinted from [15],
where a full description and further references can be found.)

concentration level also rises and HX level falls before returning to predicted
steady state values. To prove that the “Final” model in [38] correctly shows
this behavior we proceed in the following way. First we simulate the system in
normal conditions, with the initial values given in [38], using Sympathica. In this
way we obtain the concentrations PRPP1, IMP1, HX1, . . . of the reactants in
the steady state. In particular, we have that PRPP1= 4.98, IMP1= 100.18, and
HX1= 10.11. Then we ask Sympathica to simulate the system under the following
conditions:

– initial concentration of PRPP equal to 50∗PRPP1;

– initial concentrations of all other reactants equal to the concentrations in
the steady state;

– steps of one second;

– final time 5000 seconds.

Hence, we use Simpathica to formulate the following query:

steady state() and
Eventually(IMP > IMP1) and Eventually(HX < HX1) and
Eventually(Always(IMP = IMP1)) and
Eventually(Always(HX = HX1))

In particular the trace we obtain, with respect to PRPP, IMP and HX, is of the
form:

〈 〈249, 100.18, 10.11〉, 〈8.95, 129.35, 2.13〉, . . . , 〈4.98, 100.18, 10.11〉 〉

Applying the collapsing with ~δ = 〈1, 1, 1〉 we obtain an (hybrid) automaton with
7 states which correctly satisfies the formula. In this case we obtain the correct
answer both using the standard and the hybrid automaton.

Let us now concentrate our attention on HX and consider only the part of
the previous query relative to this reactant, i.e.

Eventually(HX < HX1) and Eventually(Always(HX = HX1)).

Clearly, this formula is true in the trace. In fact the trace, with respect to HX,
has the following form

〈10.11, 2.13, 4.98, . . . , 10.11, . . . , 10.11〉

By applying the projection operation we conclude that the formula is false,
since we obtain a loop between the first and the last state. Instead, by using
bisimulation we correctly demonstrate that the formula is true.

7.2 Quorum Sensing in Vibrio fischeri

In this section we present an extension of our framework which allows a system
to be described by more than one S-system. The aim is to be able to capture and
reason about more complicated systems classically modeled by hybrid automata.
The extension has not yet been implemented in our tool set, since it requires an
automata composition operation which needs to be further investigated.

Hybrid automata are natural formal models for mixed discrete-continuous
systems. Typical examples are systems showing different continuous behaviors
according to specific discrete values of some of the involved variables. Each state
of a hybrid automaton usually models one continuous behavior (through the set
of differential equations specified in the flow condition), and each state transition
models the triggering mechanism (through the jump condition) allowing the
changing of the continuous model.

A good example of mixed discrete-continuous biological system is the quo-
rum sensing process in Vibrio fischeri (see [26, 32, 37]). Cell-density dependent
gene expression in prokaryotes is a process where a single cell is able to sense
when a quorum (i.e., a minimum population unit) of bacteria is achieved and

correspondingly exibits a certain behavior. This type of cell-to-cell signaling is
called quorum sensing, and the bioluminescence phenomenon in Vibrio fischeri
is an example of this kind of process.

Vibrio fischeri is a marine bacterium that can be found both as a free living
organism and as a symbiont of some marine fish and squid. As a free living
organism, it exists at low density and is non-luminescent while, as a symbiont,
it lives at high densities and is luminiscent. The accumulation of an activator
molecule or autoinducer is responsible for triggering the production of light. The
bacteria are able to sense the cell density by detecting not only the presence but
also the concentration of the autoinducer. Hence, a natural way to model such
different behavior of cells is to use a hybrid automaton where each state (mode)
represents a specific behavior of the cell and the switching from one state to
another is ruled by the degree of concentration of the autoinducer.

Before introducing a mathematical model for Vibrio fischeri, we describe the
details of the luminescence phenomenon, which is controlled by the transcrip-
tion of the lux genes. Figure 5 shows the lux region, which is organized in two
trascriptional units (operons):

– the OL operon contains the luxR gene which encodes the protein LuxR, a
transcriptional activator of the system;

– the OR operon contains the seven genes lucICDABEG. The transcription of
luxI produces the protein LuxI required for the endogenous production of the
autoinducer Ai. The genes luxA and luxB code for the luciferase subunits.
The genes luxC, luxD and luxE code for proteins of the fatty acid reductase,
needed as aldehyde substrate for luciferase. The gene luxG encodes a flavin
reductase. Along with LuxR and LuxI, the cAMP receptor protein (CRP)
plays an important role in controlling luminescence.

luxICDABEGluxR

CRP

LuxR Ai

LuxI LuxA

Ai

LuxR

+

+−

−

LuxB

Fig. 5. The lux region of Vibrio fischeri.

The biochemical network of reactions in the cell is shown in Figure 6 and
works as follows: the autoinducer Ai binds to protein LuxR to form a complex CO

which binds to the lux box. The lux box is between the two transcriptional units
and contains a binding site for CRP. The transcription from the luxR promoter
is activated by the binding of CRP to its binding site, and the transcription
of the luxICDABEG by the binding of CO to the lux box. However, growth in
the levels of CO and cAMP/CRP inhibit luxR and luxICDABEG transcription,
respectively.

Ai

LuxR

Co

CRP

luxICDABEG

luxR

LuxC, LuxD, LuxE

LuxI

LuxA LuxB

Fig. 6. The biochemical network of quorum sensing in Vibrio fischeri.

A mathematical model of the quorum sensing in Vibrio fischeri has been pro-
posed by Alur et. al. in [1]. The model is an hybrid automaton composed of three
different states (i.e., three systems of differential equations) corresponding to the
modes OFF , POS and NEG . The switching from one mode to another is ruled
by the degree of concentration of the autoinducer Ai. More precisely, the mode
OFF corresponds to very low concentration of Ai (i.e., Ai < Ai−) within the
bacterium and no luminescence; the mode POS (positive growth) corresponds
to increasing concentration of Ai (i.e., Ai− <= Ai <= Ai+) and luminescence;
the mode NEG (negative growth) corresponds to high concentration of Ai (i.e.,
Ai > Ai+). For a complete description of the model we refer to [1]. The three
systems of differential equations associated with each mode of the Alur’s model
are not S-systems. However, it is possible to translate such systems into three
equivalent S-systems equipped with linear constraints.

At the moment a biologist can use Simpathica to simulate and query one
S-system per time. When more than one S-system is involved, he/she could
define, by looking at the behavior of each system, which are the conditions under
which the system reflect a real behavior, and which are the triggering conditions
for combining the various systems. The idea is then to automatically compose
the systems on the basis of the defined conditions. Essentially, the composition
operation should first glue together the states of the different automata and then
eliminate the states that, according with the specified conditions, do not reflect
a real biological behavior.

Coming back to the Vibrio fischeri example, by simulating the obtained
S-systems separately, it is possible to build the three corresponding hybrid au-
tomata, which could be then combined with respect to the degree of concentra-
tion of the Ai autoinducer to obtain the final hybrid model. Figure 7 illustrates
how the three automata should be combined. Clearly the depicted automata do
not really reflect the real system behavior.

OFF
POS NEGAi < Ai−

Ai > Ai−

Ai < Ai+

Ai > Ai+

Fig. 7. Strcture of the Vibrio fischeri final model.

8 Conclusions

In this paper we have described how hybrid automata can be used to model and
analyze set of traces representing the behavior of a biological system. Automata
give a qualitative view of a set of traces by abstracting from the time instants,
and thus allowing a compact representation in which the properties of the system
can be easily investigated. The use of hybrid automata, instead of standard ones,
simplifies the construction of a qualitative, but complete, model of a biological
system. In fact, powerful techniques such as (bisimulation-)projections and col-
lapsing can be “safely” applied to hybrid automata in order to reduce the number
of states. In particular, while the bisimulation based projection we present could
be applied also to standard automata, the “good” behavior of the collapsing
operation with respect to the verification of temporal formulae strongly depends
on the information which is stored in each state of hybrid automata. Notice that,
although we have presented a construction of hybrid automata from standard
S-systems, it is not difficult to modify our framework in order to deal with more
complicated systems, e.g., systems whose differential equations change during
the evolution of the system itself.

In the future, we intend to extend our tool set in two directions: (1) integrate
temporal model checking tools with time-frequency analysis tools capable of
identifying distinct “modes” of the system, and (2) incorporate a learning scheme
in our approach to keep track of a parametrized family of automata in order to
identify the kinetic parameters of the system.

References

1. R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G. J. Pappas, H. Rubin, and
J. Schug. Hybrid Modeling and Simulation of Biomolecular Networks. In Hybrid

Systems: Computation and Control, volume 2034 of LNCS, pages 19–32. Springer-
Verlag, 2001.

2. R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho. Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems. In
R. L. Grossman, A. Nerode, A. P. Ravn, and H. Richel, editors, Hybrid Systems,
LNCS, pages 209–229. Springer-Verlag, 1992.

3. M. Antoniotti and A. Göllü. SHIFT and SMART-AHS: A Language for Hybrid
Systems Engineering, Modeling, and Simulation. In Conference on Domain Specific
Languages, Santa Barbara, CA, U.S.A., October 1997. USENIX.

4. M. Antoniotti, F. C. Park, A. Policriti, N. Ugel, and B. Mishra. Foundations of
a Query and Simulation System for the Modeling of Biochemical and Biological
Processes. In Proc. of the Pacific Symposium of Biocomputing (PSB’03), 2003.

5. M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. XS-systems: extended S-
systems and algebraic differential automata for modeling cellular behaviour. In
Proc. of Int. Conference on High Performance Computing (HiPC’02), 2002.

6. M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model Building and Model
Checking for Biological Processes. Cell Biochemistry and Biophysics, 2003. To
appear.

7. U. S. Bhalla. Data Base of Quatitative Cellular Signaling (DOQCS). Web site at
http://doqcs.ncbs.res.in/, 2001.

8. R. W. Brockett. Dynamical Systems and their Associated Automata. In Sys-
tems and Networks: Mathematical Theory and Applications, volume 77. Akademie-
Verlag, 1994.

9. M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing Finite Kripke
Structures in Propositional Temporal Logic. Theoretical Computer Science, 59:115–
131, 1988.

10. N. Chabrier and F. Fages. Symbolic Model Checking of Biochemical Networks. In
C. Priami, editor, Computational Methods in Systems Biology (CMSB’03), volume
2602 of LNCS, pages 149–162. Springer-Verlag, 2003.

11. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An Opensource Tool for Symbolic
Model Checking. In E. Brinksma and K. G. Larsen, editors, Int. Conf. on Com-
puter Aided Verification (CAV’02), volume 2404 of LNCS, pages 359–364. Springer-
Verlag, 2003.

12. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
13. M. Curti, P. Degano, and C. T. Baldari. Casual pi-calculus for Biochemical

Modelling. In C. Priami, editor, Computational Methods in Systems Biology
(CMSB’03), volume 2602 of LNCS, pages 21–33. Springer-Verlag, 2003.

14. M. Curti, P. Degano, C. Priami, and C. T. Baldari. Casual π-calculus for Bio-
chemical Modelling. DIT 02, University of Trento, 2002.

15. R. Curto, E. O. Voit, A. Sorribas, and M. Cascante. Analysis of Abnormalities
in Purine Metabolism leading to Gout and to Neurological Dysfunctions in Man.
Biochemical Journal, 329:477–487, 1998.

16. R. Curto, E. O. Voit, A. Sorribas, and M. Cascante. Mathematical Models of
Purine Metabolism in Man. Mathematical Biosciences, 151:1–49, 1998.

17. V. Danos and C. Laneve. Graphs for Core Molecular Biology. In C. Priami, editor,
Computational Methods in Systems Biology (CMSB’03), volume 2602 of LNCS,
pages 34–46. Springer-Verlag, 2003.

18. H. de Jong. Modeling and Simulation of Genetic Regulatory Systems: A Literature
Review. DIT 4032, Inria, 2000.

19. G. Delzanno and A. Podelski. DMC User Guide. 2000.
20. A. Dovier, C. Piazza, and A. Policriti. A Fast Bisimulation Algorithm. In G. Berry,

H. Comon, and A. Finkel, editors, Proc. of Int. Conference on Computer Aided
Verification (CAV’01), volume 2102 of LNCS, pages 79–90. Springer-Verlag, 2001.

21. M. Elowitz and S. Leibler. A Synthetic Oscillatory Network of Transcriptional
Regulators. Nature, 403:335–338, 2000.

22. E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 995–1072. MIT Press, 1990.

23. T. A. Henzinger. The Theory of Hybrid Automata. In Proc. of IEEE Symposium
on Logic in Computer Science (LICS’96), pages 278–292. IEEE Press, 1996.

24. T. A. Henzinger, P. H. Ho, and H. Wong-Toi. HYTECH: A Model Checker for
Hybrid Systems. International Journal on Software Tools for Technology Transfer,
1(1–2):110–122, 1997.

25. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

26. S. James, P. Nilson, J. James, S. Kjellenberg, and T. Fagerstrom. Bioluminescence
Control in the Marine Bacterium Vibrio Fischeri: An analysis of the dynamic lux
regualtion. J Mol Biol, 296(4):1127–1137, 2000.

27. P. D. Karp, M. Riley, S. Paley, and A. Pellegrini-Toole. The MetaCyc Database.
Nucleic Acid Research, 30(1):59, 2002.

28. P. D. Karp, M. Riley, M. Saier, and S. Paley A. Pellegrini-Toole. The EcoCyc
Database. Nucleic Acids Research, 30(1):56, 2002.

29. KEGG Database. http://www.genome.ad.jp/kegg/.
30. H. Kitano. Systems Biology: an Overview. Science, 295:1662–1664, March 2002.
31. D. Kozen. Results on the Propositional mu-calculus. Theoretical Computer Science,

27(3):333–354, 1983.
32. H. H. McAdams and A. Arkin. Simulation of Prokaryotic Genetic Circuits. An.

Rev. Biophis. Biomol. Struct., 27:199–224, 1998.
33. O. Müller and T. Stauner. Modelling and Verification using Linear Hybrid Au-

tomata. Mathematical and Computer Modelling of Dynamical Systems, 6(1):71–89,
2000.

34. R. Paige, R. E. Tarjan, and R. Bonic. A Linear Time Solution to the Single
Function Coarsest Partition Problem. Theoretical Computer Science, 40:67–84,
1985.

35. PathDB Database. http://www.ncgr.org/pathdb/.
36. A. Regev, W. Silverman, and E. Shapiro. Representation and Simulation of Bio-

chemical Processes using the π-calculus Process Algebra. In Proc. of the Pacific
Symposium of Biocomputing (PSB’01), pages 459–470, 2003.

37. D. M. Sitnikov, J. B. Schineller, and T. O. Baldwin. Transcriptional Regulation
of Bioluminescence Genes from Vibrio Fischeri. Mol. Microbiol., 17(5):801–812,
1995.

38. E. O. Voit. Computational Analysis of Biochemical Systems. A Pratical Guide for
Biochemists and Molecular Biologists. Cambridge University Press, 2000.

39. WIT Database. http://wit.mcs.anl.gov/WIT2/.

