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DBtk: a Toolkit for Directed Bigraphs

Giorgio Bacci Davide Grohmann Marino Miculan

Department of Mathematics and Computer Science, University of Udine, Italy
{giorgio.bacci,grohmann,miculan}@dimi.uniud.it

Abstract. We present DBtk, a toolkit for Directed Bigraphs. DBtk sup-
ports a textual language for directed bigraphs, the graphical visualization
of bigraphs, the calculation of IPO labels, and the calculation of redex
matchings. Therefore, this toolkit provides the main functions needed to
implement simulators and verification tools.

1 Introduction

Bigraphical Reactive Systems (BRSs) [7] are a promising meta-model for ubiqui-
tous (i.e., concurrent, communicating, mobile) systems. A calculus can be mod-
eled as a BRS by encoding its terms (or states) as bigraphs, semi-structured
data capable to represent at once both the location and the connections of the
components of a system. The reduction semantics of the calculus is represented
by a set of rewrite rules on this semi-structured data. Many calculi and models
have been successfully represented as BRSs, such as CCS, Petri Nets, Mobile
Ambients and, in the “directed” variant of [2], also Fusion calculus [5,6,3].

BRSs offer many general and powerful results. Particularly important for
verification purposes is the possibility to derive systematically labelled transition
systems via the so-called IPO construction [5], where the labels for a given agent
are the minimal contexts which trigger a transition. Interestingly, the strong
bisimilarity induced by this LTS is always a congruence.

Moreover, a “bigraphical simulation engine” would allow to obtain immedi-
ately a simulator for any calculus/model formalized as a BRS. The core of this
engine will be the implementation of redex matching, that is, to determine when
and where the left-hand side of a bigraphical reaction rule matches a bigraph;
then this redex is replaced with the right-hand side of the same rule.

These are the main features offered by the Directed Bigraphs Toolkit (DBtk),
which we describe in this paper. The architecture of DBtk is shown in Fig. 1.
First, the toolkit defines data structures and operations for representing and
manipulating bigraphs (Section 2). For more conveniently interacting with the
user, bigraphs can be described using a language called DBL (Section 3), and
also graphically visualized by means of a SVG representation (Section 4). Then,
the toolkit provides the functions for calculating matchings of a redex within a
bigraph (Section 5) and the RPOs and IPOs of directed bigraphs (Section 6).

Comparison with related work and directions for future work are in Section 7.
DBtk can be found, with examples and more detailed descriptions, at http:
//www.dimi.uniud.it/grohmann/dbtk.

http://www.dimi.uniud.it/grohmann/dbtk
http://www.dimi.uniud.it/grohmann/dbtk
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Fig. 1. Architecture of DBtk.

2 Basic data structures and operations

The Main module contains the basic data structures for representing directed
bigraphs, and the two basic categorical operations: composition and tensor prod-
uct. Two bigraphs can be composed by putting the roots of the “lower” one in-
side the sites (or holes) of the “upper” one, and by pasting the links having the
same names in the common interface, whereas the tensor product juxtaposes
two bigraphs if they do not share names on their inner and outer interfaces,
respectively. For user convenience, the derived operations (such as sharing prod-
ucts and merge product) are also provided. Moreover, the module provides the
support for the bigraph algebra, i.e., functions for constructing the elementary
bigraphs (see Table 1), and the normalization procedure, which takes a generic
bigraph and yields a triple of bigraphs (more precisely two wirings and a discrete
bigraph) that represent its directed normal form (see [4]).

3 DBL, the directed bigraphical language

The directed bigraphical language (DBL) is a (term) language for bigraphs, which
follows the algebra defined in [4]. An expression in DBL can be compiled in the
internal representation of bigraphs. Also a decompiler is provided, translating a
bigraph represented in the internal data structures back to a term expression.

A bigraph definition begins with a signature definition, whose syntax is:

Signature [ACTIVITY NAME:#PORTS ,...] ;

where ACTIVITY is picked from the set {active, passive, atomic}, NAME is the
name of the control, and #PORTS is the number of the node ports. For example:

Signature [passive n1:2, atomic node_AT:0, active tr:1] ;

Then, the bigraph is described in a functional-style language, which allows to
compose elementary bigraphs (whose syntax is in Table 1) and other expressions
with the various operators of the algebra. Composition and tensor product are
denoted by ◦ and *, respectively. As a shortcut, also the sharing operators are
also provided: outer sharing product (/\); inner sharing product (\/); sharing
product (||); prime outer product (/^\); and prime sharing product (|).

As an example, the following specification



Barren root (1)
merge 0

(special case of merge)

Closure (HN
x
y)

x X y

(generalized to [x,w] X [y,z])
y

x

Merge (merge)
merge 2

(generalized to merge n)
0 1

Substitution (MyX)
y / [x_1,...,x_n]

(also y / x and y /)

y

x1x2. . .xn

. . .

Swap (γ)
@[1,0]

(generalized to @[3,4,1,0,2])
1 0

Fusion (OYx )
[y_1,...,y_n] \ x

(also y \ x and \ x)
x

y1y2 . . .ym

. . .

Ion (K~x
~y (l))

K[-y_1,...,-y_n,+x_1,...,+x_m]

(the names in the list can be written in any order)
y1y2 . . . yn

x1x2. . .xm
. . .

. . .

Table 1. Syntax expressions for elementary directed bigraphs.
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Fig. 2. A directed bigraph (left) and its SVG representation (right).

Signature [active t4:1,atomic t5:1,atomic t2:2];

let a = merge 1|X[x,z]|( y1X[a,y]*t4 [-w]) ◦

(w\w*merge 1|t5 [+a]*y/y) in

let b = (((wX[b,c]* merge 1) ◦

(b/b*t4 [+c]) ◦t2 [+b,-d]|t2 [+x,-e]) ◦ ([d,e]X)) in

let c = t2 [+z,+y] in a◦ (b*c)

corresponds to the directed bigraph shown in Fig. 2.

4 Graphical Visualization

In addition to the bigraphical language, DBtk allows to represent bigraphs in the
XML-based SVG format, which is the W3C open standard for vector graphics;
many web browsers have free, native support for SVG rendering. The translation
function dbg2svg takes a directed bigraph data structure and returns a string
containing its SVG representation. This function is fruitful in combination with
the compiler module: bigraphs are defined in DBL, compiled to the DBG-data
structure and then written to an SVG file (see Fig. 2, right).



=
a

ωa ⊗ id

d

RidX+

ωR ⊗ id

ω′C ⊗ id

idY +

C
idV -

ωC ⊗ id

idZ+

C′

(context)

R′

(redex)

a′

(agent)

Fig. 3. Schema of a valid matching sentence

5 Matching

The main challenge for implementing the dynamics of bigraphical reactive sys-
tems is the maching problem, that is, to determine whether a reaction rule can
be applied to rewrite a given bigraphical agent. To this end, we have to find
when, and where, a redex appears in a bigraph; then this redex can be replaced
with the corresponding reactum.

The matching problem can be defined formally as follows: given a ground
bigraphical agent a′ and a (parametric) redex R′, there is a match of R′ in a′

if there exist a context C ′ and parameters d such that a′ = C ′ ◦ (R′ ⊗ id) ◦ d.
A matching can be decomposed in a set of simpler components, as in Fig. 3.
It is evident that solving this problem is necessary to yield a mechanism for
simulating bigraphical computations.

To solve this equation we have defined a set of inference rules that, by induc-
tion on the structure of a′ and R′, find the matching context C ′ and parameters
d, preserving the equality at each inference step. So, we give an inductive char-
acterization of a matching algorithm for directed bigraphs, along the lines of [1].
The main difference between the characterization presented in [1] is that we con-
sider directed bigraphs (without binders). For this reason, both the structure of
a matching sequence and many rules have to be changed and generalized.

We base our presentation on discrete decomposition of directed bigraphs:

Proposition 1 (Discrete decomposition). Any directed bigraph G can be
decomposed uniquely (up to iso) into a composition of the following form:

G = (ω ⊗ id) ◦D ◦ (ω′ ⊗ id)

where D is discrete and ω, ω′ are two wirings satisfying the following conditions:
1. in ω if two outer downward names are peer, then their target is an edge;
2. in ω′ there are no edges, and no two inner upward names are peer (i.e. on

inner upward names is a renaming, but outer downward names can be peer).

For a formal proof see the discrete normal form in [4]. The two conditions ensure
that all edges are in ω and that the two wirings are of the following forms:

ω = δ HN
~x
~y σ ⊗ α ω′ = δ′ ⊗ β



for some downward renaming α, upward renaming β, fusions δ, δ′ and substitu-
tion σ. Note that for a ground bigraph g the wiring ω′ is simply idε.

Using the same approach of [1] we now define matching sentences and a set
of rules for deriving valid matching sentences.

Definition 1 (Matching Sentence). A matching sentence is a 7-uple over
wirings and directed bigraphs, written

ωa, ωR, ω
′
C , ωC ` a,R ↪→ C, d

where a, R, C, d are discrete directed bigraphs, R and C have not renamings
(i.e. are just composed by discrete molecules), ωa, ωR, ωC are wirings with no
inner downward names, and ω′C is a generic fusion.

A matching sentence is valid if a′ = C ′(idZ+ ⊗R′)d holds, where

a′ = (ωa ⊗ id)a (agent)
R′ = (ωR ⊗ id)(idX+ ⊗R) (redex)

C ′ = (ωC ⊗ id⊗ idV −)
(
id(Z]Y )+ ⊗ (idV − ⊗ C)(ω′C ⊗ id)

)
(context)

Note that the notion of valid sentence precisely capture the abstract defini-
tion of matching: for a general match a′ = C ′(idZ+ ⊗ R′)d, by Proposition 1
and some simplifications due to the groundness of a and d, we can decom-
pose a′, R′, C ′ obtaining a corresponding valid matching sentence; conversely,
if ωa, ωR, ω

′
C , ωC ` a,R ↪→ C, d is valid, by definition, there exist a′, R′ C ′ such

that a′ = C ′(idZ+ ⊗R′)d.
The discrete decomposition of the agent, context and redex in a valid match-

ing sentence is schematically shown in the picture in Figure 3. Composition and
tensor product on bigraphs are depicted as vertical and horizontal juxtaposition.

We infer valid matching sentences using the inference system given in Fig. 4.

A detailed discussion of this system is out of the scope of this paper; we refer
to [1] for explanation of a similar system. We just notice that we can prove that
this matching inference system for directed bigraphs is sound and complete, that
is, all valid matching sequences can be derived using these rules.

A redex can occur many times inside an agent, hence the resolving procedure
is highly non-deterministic. This is implemented by a back-tracking technique
based on two stacks: one for storing all the applicable rules, and the other for trac-
ing all the different ways to apply a single rule. To solve a matching problem we
create a match object for the pair (a′, R′), whose constructor initializes the two
stacks; then invoking the next method the next match (i.e. the pair (C ′, d)) found
exploring the searching tree is returned, until no matches are found anymore.

An example of matching is given in Fig. 5. Consider the agent a in the picture
above, and the redex R below. A matching of R into a split the agent itself in
three parts: a context, the redex and some parameters. In this case, there exist
two possible splitting: one identifies the redex’s round node with the agent’s
round node inside the left rectangle, and the rectangle node with the one on the
right in the agent. So, the context has the left rectangle and the below round



Prime-Axiom
p : 〈W+〉 σ : Z+ → α : W+ → Z+

σα, idε, idε, σ ` p, id1 ↪→ id1, (α⊗ id1)p

Switch
ωa, idε, idε, ωC(idZ+ ⊗ σR) ` p, id1 ↪→ P, d d : 〈m,Z+〉

ωa, σR, idε, ωC ` p, P ↪→ id1, d

Ion
ωa, ωR, ω

′
C , ωC ` p,R ↪→ P, d σ : {~y}+ →

σ 	 ωa, ωR, ω′C , σM~y~x 	 ωC ` (K~y
ε ⊗ idU+)p,R ↪→ (K~x

ε ⊗ idW )P, d

Par
ωa, ωR, ω

′
C , ωC 	 σ ` a,R ↪→ C, d ωb, ωS , ω

′
D, ωD 	 σ ` b, S ↪→ D, e

ωa 	 ωb , ωR 	 ωS ,
ω′C ⊗ ω′D , ωC 	 ωD 	 σ ` a⊗ b,R⊗ S ↪→ C ⊗D, d⊗ e

Perm
ωa, ωR, ω

′
C , ωC ` a,

Nm
i Pπ−1(i) ↪→ C, d

ωa, ωR, ω′C , ωC ` a,
Nm

i Pi ↪→ Cπ, d

Merge
ωa, ωR, ω

′
C , ωC ` a,R ↪→ C, d

ωa, ωR, ω′C , ωC ` (merge⊗ idY )a,R ↪→ (merge⊗ idX)C, d

Edge-Lift

δC : T− → V − ζC : S− →W− C : 〈n,W−〉 →
ωa , σR ⊗ τR , idε,

(δC � OS)δR HN
~x
~y (id{~y}+ 	 M~y~x

bδR(MT 	 bζC))⊗ ωC
` a,R ↪→ bC, d

ωa, δR HN
~x
~y σR ⊗ τR, δC � ζC , ωC ` a,R ↪→ C, d

Wiring-Axiom
My,M~x, idε,M

y
~x ` idε, idε ↪→ idε, idε

Close
σa, ωR, ω

′
C , σC ` a,R ↪→ C, d

(δ ⊗ idU+)(HN
~x
~y ⊗ idU+)σa , ωR

ω′C , (δ ⊗ idW+)(HN
~x
~w ⊗ idW+)σC

` a,R ↪→ C, d

Fig. 4. Matching inference system.

node of the agent, whilst the parameter contains both nodes contained by the
agent’s rectangle node on the right. In the other case, the matching identifies
both the redex’s nodes with the nodes inside the agent’s right rectangle. Hence,
the context contains all the remaining nodes, and the parameter is empty.

6 RPO and IPO

The RPO/IPO module provides the functions for constructing relative pushouts
and idem pushouts (see Fig. 6). The implementation of the RPO construction
follows faithfully the algorithm given in [2]; it takes four bigraphs (f0, f1, g0, g1)
as depicted in Fig. 6(1), and yields the RPO triple (h0, h1, h) as in Fig. 6(2).

An example of an RPO construction is in Fig. 7. Intuitively, the construction
works as follows: the common parts of the span f0, f1 are removed from the
bound g0, g1 and placed in h; the nodes/edges of f0 not present in f1 are added
to h1, and analogously for h0; finally the middle interface is computed and the
parent and link maps are computed, preserving compositions.
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Fig. 5. An example: there are two matches of the redex R into the agent a.

The procedure calculating IPOs (see [2]) is split into two steps:

1. a check if the span of bigraphs has bounds;
2. the effective computation of the IPO.

Since the IPO construction is non-deterministic, an implementation must
calculate all possible solutions. To do this, we define an object IPO, whose con-
structor takes two bigraphs (satisfying the consistency conditions, i.e., they must
admit bounds) and internally computes all the possible sets (L+, Q+) and auxil-
iary functions (θ, φ, ξ, η) needed in the construction. After the initialization, the
IPO computation proceeds as follows: when the object method next is called, an
IPO is calculated by using the current internal state of the object, which is then
updated for the next call to next. If no IPO is found, an exception is raised.

An example of an IPO calculation is shown in Fig. 8. Where, after checking
that the span f0, f1 has bounds, the computation of IPO yields out to different
IPOs. The first (shown above) have an arrow connecting the node v2 to y, whilst
the second an arrow connecting v2 to z. Both cases are suitable, for the fact that
v2 is linked to e1 in f1, and v2 is not present in f0, but e1 belongs to f0 and it
is accessible by two names y and z. So, to get a bound for our span, we must
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Fig. 6. A candidate RPO (1), an RPO (2) and an IPO (3).

add v2 to h0 and connect its port to the edge e1 in f0, to do so, there are two
possibility to target e1: trough the name y or trough the name z.

7 Related and future work

Related work. The closest work is Birkedal et al. [1], where a language and a
matching algoritm for binding bigraphs are presented. That work has been of
inspiration for our matching inference system, although we had to change quite
many details both in the rules and in the implementation due to the fact that
we consider directed bigraphs and not binding bigraphs. Also, as far as we know,
DBtk provides the first constructions of RPOs and IPOs for bigraphs.

Future work. The present system is still a prototype, and needs some refinements
to mature to a ready-to-use tool. Among the features that can be added, we
mention a graphical user interface (GUI), where the user can “draw” interactively
a bigraph, a reaction rule and ultimately a whole BRSs. Another interesting
development will be to consider stochastic bigraphic reactive systems, where rules
are endowed with rates. We think that the matching procedure given in this
paper can be successfully used within a Gillespie algorithm.

Acknowledgements. We thank our students Raul Pellarini, Patrik Osgnach, Fe-
derico Chiabai for their help in developing the code.
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