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Spectral Synchronization of Multiple Views in SE(3)

Federica Arrigoni†, Beatrice Rossi‡, and Andrea Fusiello†

Abstract. This paper addresses the problem of rigid-motion synchronization (a.k.a. motion averaging) in the
Special Euclidean Group SE(3), which finds application in structure-from-motion and registration
of multiple 3D point-sets. After relaxing the geometric constraints of rigid motions, we derive a
simple closed-form solution based on a spectral decomposition, which is then projected onto SE(3).
Our formulation is extremely efficient, as rigid-motion synchronization is cast to an eigenvalue
decomposition problem. Robustness to outliers is gained through Iteratively Reweighted Least
Squares. Besides providing a theoretically appealing solution, since our method recovers at the
same time both rotations and translations, we demonstrate through experimental results that our
approach is significantly faster than the state of the art, while providing accurate estimates of rigid
motions.

Key words. rigid-motion synchronization, motion averaging, motion registration, spectral decomposition, iter-
atively reweighted least squares, structure from motion, multiple point-set registration
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1. Introduction. In this paper we address the rigid-motion synchronization problem,
which consists in recovering the absolute orientations (i.e. position and angular attitude ex-
pressed in an absolute coordinate system) of a number of three-dimensional reference frames,
starting from a redundant set of relative orientations (i.e. rigid motions of one frame relative
to another). Such relative information is usually corrupted by a diffuse noise, in addition to
sparse gross errors (outliers).

This problem, also known as registration or averaging1, appears in the context of structure-
from-motion – where the reference frames are those attached to pinhole cameras, and multiple
point-set registration – where the goal is to compute rigid motions that bring multiple 3D
point-sets into alignment. In both cases reference frames can be also identified with views.

1.1. Problem Definition. Let us consider a finite simple directed graph ~G = (V, E), where
vertices correspond to reference frames and edges to the available relative measurements.
Both vertices and edges are labelled with rigid motions representing absolute and relative
orientations2, respectively. Rigid motions, or direct isometries, are elements of the Special
Euclidean Group SE(3), which is the semi-direct product of the Special Orthogonal Group
SO(3) with R3.

As a matrix group, SE(3) is a subgroup of the General Linear Group GL(4), thus inverse
and composition of rigid motions reduce to matrix operations. Accordingly, each absolute
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orientation is described by a homogeneous transformation

(1.1) Mi =

(
Ri ti
0T 1

)
∈ SE(3)

where Ri ∈ SO(3) and ti ∈ R3 represent the rotation and translation components of the i-th
transformation. Similarly, each relative orientation can be expressed as

(1.2) Mij =

(
Rij tij
0T 1

)
∈ SE(3)

where Rij∈SO(3) and tij∈R3 represent the transformation between frames i and j. The
labelling of the edges is such that if (i, j) ∈ E then (j, i) ∈ E and Mji = M−1ij . Hence,

w.l.o.g. we will consider G, the undirected version of ~G. The link between absolute and
relative orientations is encoded by the compatibility constraint

(1.3) Mij = MiM
−1
j .

The rigid-motion synchronization problem requires to compute an estimate of the vertex labels
Mi given enough measurements of the ratios MiM

−1
j . This is an instance of the more general

synchronization problem that consists in finding group elements from noisy measurements of
their ratios [20, 50], where the group is that of rigid motions. The solution is defined up to a
global direct isometry, in the sense that if Mi ∈ SE(3) satisfies (1.3) for all i, then also MiN
satisfies (1.3) for any (fixed) N ∈ SE(3).

Clearly, a solution exists only if the graph is connected. The minimum number of relative
measurements is |V| − 1, which makes G a tree. In this case every vertex can be labelled
with its absolute orientation by simply propagating Equation (1.3) along the tree, starting
from the root labelled with the identity. In this case, however, there is no remedy to error
propagation: the error affecting a relative measurement propagates down to the leaves of the
tree without compensation. In the synchronization problem, instead, the goal is to exploit
redundant relative measurements in a global fashion to improve the final estimate.

The rigid-motion synchronization problem can be tackled directly in SE(3), as we propose
in this paper, or by breaking the problem into rotation and translation and solving the two
sub-problems separately, according to the respective compatibility constraints

Rij = RiR
T
j(1.4)

tij = −RiR
T
j tj + ti.(1.5)

The latter approach is widely adopted in the structure-from-motion literature, since relative
translations are only known as directions, i.e. the magnitude is unknown, thus relative mea-
surements can not be properly represented as elements of SE(3). A wide overview of existing
solutions is provided in the next section.

1.2. Broader Context and Related Work. The rigid-motion synchronization problem has
a wide range of applications in Computer Vision, including structure-from-motion and mul-
tiple point-set registration. In both cases the relative orientations can be estimated through
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standard techniques, thus the problem is to average them in a consistent manner in order to
recover the absolute orientations. In the structure-from-motion case, given a set of match-
ing points between two images, the relative motion (up to scale) between the views can be
recovered by first estimating the essential matrix and then computing its Singular Value De-
composition [28]. In the case of 3D registration, the relative orientation between two point sets
is commonly computed through the Iterative Closest Point Algorithm [11], which alternates
the correspondence step – in which each point is matched with its closest neighbour under the
current transformation – with the orientation step – in which the rotation and translation that
align the points in a common reference frame are computed by solving an absolute orientation
problem. Other applications of rigid-motion synchronization include sensor network localiza-
tion [15], cryo-electron microscopy [51] and simultaneous localization and mapping (SLAM)
[46].

In the literature on multiple point-set registration, the origins of rigid-motion synchro-
nization can be traced back to the frame space methods [19, 48] that optimize the internal
coherence of the network of rotations and translations applied to the local coordinate frames,
as opposed to solutions that optimize a cost function depending on the distance between
corresponding points (e.g. [43, 9, 44, 55]).

In the structure-from-motion literature, global methods, that first solve for the motion by
optimizing the network of relative orientations and leave the 3D structure recovery at the end,
are fairly recent (e.g. [36]), although the origins of these approaches can be traced back to
[22]. The majority of global techniques do not address rigid-motion synchronization as such
but break the problem into rotation and translation, and solve the two problems separately.

For what regards rotation synchronization, a theoretical analysis of the problem is reported
in [27]. The absolute rotations can be recovered by using the quaternion representation of
SO(3), as done in [22, 19], or by distributing the error over cycles in the graph of neighbouring
views [48]. In [36] the problem is cast as the optimization of an objective function based
on the `2-norm of the compatibility error between relative estimates and unknown absolute
rotations, and this approach is extended in [50, 3] where approximate solutions are computed
either via spectral decomposition (EIG) or semidefinite programming (SDP). Recent works
on rotation synchronization [26, 62, 13, 6] focus on introducing robustness to outliers directly
in the cost function. In [26] a cost based on the `1-norm is used to average relative rotations,
where each absolute rotation is updated in turn using the Weiszfeld algorithm. The sum of
unsquared deviations is proposed in [62] as a more robust consistency error. Chatterjee et
al. in [13] exploit the Lie-group structure of rotations, and develop an L1-IRLS algorithm
by combining `1-averaging in the tangent space with Iteratively Reweighted Least Squares
(IRLS). In [6] the rotation synchronization problem is reformulated in terms of “low-rank and
sparse” matrix decomposition, and an efficient algorithm – called R-GoDec – is developed to
compute such decomposition. Alternatively, robustness can be achieved by removing outliers
before performing rotation synchronization [65, 17, 40, 7].

As for translation recovery methods, a discriminating factor relevant to our analysis is
whether they work in frame-space (e.g. [22, 12, 42, 41, 38, 32]), or they leverage on point
correspondences as well (e.g. [35, 33, 14, 64]). Only the former fit the general statement of the
rigid-motion synchronization problem, which is agnostic on the data that generated relative
orientation measurements. In [22] absolute translations are computed as the least squares
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solution of a linear system of equations involving relative orientations, while in [12] a fast
spectral solution to translation recovery is proposed by reformulating the problem in terms of
graph embedding. The authors of [42] first compute relative directions through a robust sub-
space estimation and then derive absolute translations using a semidefinite relaxation (SDR).
The method presented in [41] is based on a “least unsquared deviations” (LUD) formulation,
which gives rise to a convex program robust to outlier directions. In [38] relative directions are
computed through an a-contrario trifocal tensor estimation, and then absolute translations are
recovered by using an `∞ formulation. In [32] a linear solution which minimizes a geometric
error in triplets of views is presented, and such approach is extended in [16] by considering
feature tracks. All these techniques recover absolute translations from pairwise directions
tij/||tij||, i.e. they solve a bearing-only localization problem [66]. Theoretical conditions under
which the solution is unique (up to a global translation and scale) are more complex than the
cases of rotation and rigid-motion synchronization– where the measurement graph is simply
required to be connected – and they refer to the concept of parallel rigidity [42, 63].

A different approach for rigid-motion synchronization is followed in [23, 57, 46] where
rotations and translations are jointly considered as elements of SE(3). Govindu in [23] ex-
ploits the Lie-group structure of SE(3) and uses an iterative scheme in which at each step
the absolute orientations are approximated by averaging relative orientations in the tangent
space. In [24] robustness is added to the original technique through random sampling in the
measurement graph. Originally proposed in the structure-from-motion framework, the same
technique was also applied to multiple point-set registration [25] and simultaneous localization
and mapping [2]. The authors of [57] represent rigid motions as dual quaternions, and propose
a graph diffusion algorithm where each absolute orientation is updated in turn through linear
or geodesic averaging. In [46] a geometric error is adopted and the rigid motion constraints are
relaxed by considering the convex hull of SE(3), which has a semi-definite representation [47].
This results in a convex cost function which is (globally) minimized through the interior-point
method. Such a solution is then improved by (locally) minimizing the objective function over
SE(3) through the Levenberg-Marquardt algorithm.

A related approach is adopted in [59, 60] where rotations and translations are initialized
separately and then they are jointly refined through Riemannian gradient descent. In [60] the
scales of relative translations are enforced to be positive – hence this method is referred to as
“constrained least squares” (CLS) – while in [59] non-isotropic noise and incomplete relative
orientations are taken into account through the use of covariance matrices.

Other techniques [39, 18, 45] compute at the same time both rotations and translations
by minimizing an objective function involving point correspondences. At the intersection
between frame-based and point-based methods is the formulation in [49] where 3D points are
used to compute a second-order approximation of the cost function, but they are not involved
in subsequent computations.

1.3. Our Contribution. In this paper we propose a novel method for rigid-motion syn-
chronization in SE(3). After relaxing the geometric constraints of rigid motions, we derive
a closed-form solution – based on a spectral decomposition – which is then projected onto
SE(3). This can be regarded as an “extrinsic calculation”, for the rigid motion constraints
are relaxed to compute the solution, as in [61, 46]. This approach is extremely efficient, as
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rigid-motion synchronization is cast to an eigenvalue decomposition of a 4|V| × 4|V| matrix.

Our method can be seen as the extension to SE(3) of the spectral synchronization proposed
in [50] for SO(2) and generalized to SO(3) in [51, 3]. Thanks to the introduction of weights,
this simple matrix formulation naturally copes with missing measures, and it can be embedded
into an IRLS scheme in order to handle rogue measurements. The same idea appeared also in
[10] in the context of shape alignment, though without considering missing relative orientations
and outliers. Further theoretical analysis is reported in [54] where the authors address the
synchronization problem over the General Linear Group GL(N). They describe a (theoretical)
drawback of our approach applied to GL(N) and propose a new formulation that overcomes
it. That counterexample, however, does not work in SE(3) and simulations reported in [54]
show that in a realistic scenario (low dimension and many reference frames) the differences
between the two methods are negligible.

An exhaustive set of experiments on synthetic and real data show that our method com-
pares favourably with the state of the art in terms of accuracy, and it is the fastest solution
among all the analysed techniques.

The paper is organized as follows. Section 2 describes our spectral solution to rigid-motion
synchronization in SE(3). In Section 3 our method is compared to state-of-the-art algorithms
developed both in the context of structure-from-motion and 3D registration. The conclusions
are presented in Section 4.

2. Our Method. In this section we introduce our approach for solving the rigid-motion
synchronization problem in SE(3). In Section 2.1 we describe properties that hold when
all the relative information is exact, necessary to define our technique. Then we derive our
spectral solution to rigid-motion synchronization (Section 2.2). In Section 2.3 our method is
embedded into an IRLS framework in order to handle outliers among relative orientations.
Finally, Section 2.4 briefly presents the extension of our method to SE(N).

2.1. The Exact Case. The absolute orientations can be recovered from (1.3) – up to a
global rigid motion – if we express it in a useful equivalent way that takes into account all the
relative information at once. For simplicity of exposition, we first consider the case where all
the pairwise measures are available.

Let X ∈ R4n×4n denote the block-matrix containing the ideal (noise free) relative orien-
tations and let M ∈ R4n×4 be the stack of the absolute orientations, namely

(2.1) M =


M1

M2

. . .
Mn

 , X =


I4 M12 . . . M1n

M21 I4 . . . M2n

. . . . . .
Mn1 Mn2 . . . I4


where I4 indicates the 4×4 identity matrix and n = |V|. If M−[ ∈ R4×4n denotes the concate-
nation by rows of the inverse of absolute orientations, i.e. M−[ =

[
M−11 M−12 . . . M−1n

]
,

then the compatibility constraint turns into

(2.2) X = MM−[
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and hence rank(X) = 4. Note that here X is not symmetric positive semidefinite, in contrast
to the case of SO(3). Since M−[M = nI4, we obtain

(2.3) XM = nM

which means that – in the absence of noise – the columns ofM are 4 (independent) eigenvectors
of X associated to the eigenvalue n. Note that, since X has rank 4, all the other eigenvalues
are zero, thus n is also the largest eigenvalue of X. Equation (2.3) is equivalent to

(2.4) (nI4n −X)M = 0,

thus the columns of M form a basis for the 4-dimensional null-space of L = (nI4n −X).
Conversely, any basis U for null(L) will not coincide with M in general, since it will not be

composed of rigid motions. Specifically, it will not coincide with [0 0 0 1] in every fourth row.
In order to recover M from U it is sufficient to choose a different basis for null(L) that satisfies
such constraint, which can be found by taking a suitable linear combination of the columns
of U . More precisely, let B ∈ Rn×4n be the 0/1-matrix such that BU ∈ Rn×4 consists of the
rows of U with indices multiple of four. The coefficients α,β ∈ R4 of the linear combination
are solution of

(2.5) BUα = 0, BUβ = 1

where the first equation has a three-dimensional solution space. Let α,α,α be a basis for
the null-space of BU . Thus the columns of M corresponding to rotations coincide (up to a
permutation) with [Uα, Uα, Uα] and M is recovered as M = U [α,α,α,β]. Note that
this post-processing on the eigenvectors is not required for the spectral method in SO(3) [3],
since any orthogonal basis for the null-space of L coincides (up to a permutation) with the
stack of the absolute rotations.

Dealing with missing data. We now consider the case of missing data, in which the graph
G is connected but not complete. Let A ∈ Rn×n be the adjacency matrix of G, i.e. the
symmetric matrix such that Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise, and let D ∈ Rn×n

be the degree matrix of G, i.e. the diagonal matrix such that Dii =
∑

j Aij (Dii contains the
degree of node i).

In this situation missing pairwise measures correspond to zero blocks in X, i.e. the avail-
able relative information is represented by (A ⊗ 14×4) ◦ X, where ⊗ denotes the Kronecker
product and ◦ denotes the Hadamard product. The adjacency matrix A gets “inflated” to a
4× 4-block structure by the Kronecker product with 14×4 (a matrix filled by ones), to match
the block structure of X. Being a matrix of 0/1, the effect of its entry-wise product with X
is to zero the unspecified blocks of X and leave the others unchanged.

It can be seen that Equation (2.3) generalizes to

(2.6) ((A⊗ 14×4) ◦X)M = (D ⊗ I4)M.

Indeed, the i-th block-row in (2.6) is

(2.7)
∑

j s.t. (i,j)∈E

MijMj = DiiMi
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which is true since Mij = MiM
−1
j . Therefore the columns of M are 4 (independent) eigen-

vectors of

(2.8) P = (D ⊗ I4)−1((A⊗ 14×4) ◦X)

associated to the eigenvalue 1. Note that the incomplete data matrix (A⊗14×4)◦X will have
full rank in general, thus 1 is not the unique non-zero eigenvalue of P , in contrast to the case
of Equation (2.3). However, it can be shown that 1 is the largest eigenvalue of P .

Proposition 2.1. The matrix P defined in (2.8) has real eigenvalues. The largest eigenvalue
is 1 and it has multiplicity 4.

Proof. By substituting the compatibility constraint (2.2) into the definition of P we get:

(2.9) P = (D ⊗ I4)−1((A⊗ 14×4) ◦ (MM−[)).

It easy to observe that

P = (D ⊗ I4)−1bdiag(M)(A⊗ I4)bdiag(M)−1(2.10)

where bdiag(M) produces a 4n×4n block-diagonal matrix with 4×4 blocks M1, . . . ,Mn along
the diagonal. Indeed, the (i, j)-th block in (A⊗ 14×4) ◦ (MM−[) is

(2.11)

{
14×4 ◦ (MiM

−1
j ) if (i, j) ∈ E

0 if (i, j) 6∈ E

while the (i, j)-th block in bdiag(M)(A⊗ I4)bdiag(M)−1 is

(2.12)

{
MiI4M

−1
j if (i, j) ∈ E

0 if (i, j) 6∈ E .

Moreover we observe that the diagonal matrix (D ⊗ I4)−1 commutes with bdiag(M), since
each 4× 4 block along its diagonal is multiple of the identity matrix. Thus we obtain

P = bdiag(M)(D ⊗ I4)−1(A⊗ I4)bdiag(M)−1(2.13)

= bdiag(M)((D−1A)⊗ I4)bdiag(M)−1(2.14)

which means that the matrix P defined in (2.8) is similar to the matrix (D−1A)⊗ I4, i.e. they
have the same eigenvalues. Thus the thesis reduces to analyse the eigenvalues of (D−1A)⊗ I4.
The matrix D−1A, a.k.a. the transition matrix of the graph G, has real eigenvalues since it
is similar to the symmetric matrix N = D−1/2AD1/2. It follows from the Perron-Frobenius
theorem [37] that the largest eigenvalue of D−1A is 1 and it has multiplicity 1, assuming that
G is connected. Since the eigenvalues of the Kronecker product of two matrices are the product
of the eigenvalues of the matrices, we conclude that the largest eigenvalue of (D−1A) ⊗ I4 is
1 and it has multiplicity 4.

The proof of Proposition 2.1 has pointed out that – provided that X is decomposable as
X = MM−[ – the matrix P has a particular structure that yields real eigenvalues, although
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it is not symmetric. In particular, the eigenvalues of P do not depend on the measured data,
i.e. the relative orientations, but they depend only on the structure of the measurement graph
G (through the matrices D and A).

We now show that Equation (2.6) can also be expressed as a null-space problem. Let us
rewrite it as

(2.15) ((D ⊗ I4)− (A⊗ 14×4) ◦X)M = 0.

which generalizes Equation (2.4). In fact, if G is complete then D = (n − 1)In and A =
1n×n − In, hence we get Equation (2.4). Thus the columns of M belong to the null-space of

(2.16) L = (D ⊗ I4)− (A⊗ 14×4) ◦X.

It can be shown that such null-space is 4-dimensional, as happens in the case of a complete
graph. Before doing that, let us observe that the matrix D⊗I4 coincides with (D⊗14×4)◦X,
since X has identity blocks along its diagonal and D ⊗ 14×4 is block-diagonal. By using the
distributive property of the involved products we obtain an equivalent expression for L

(2.17) L = ((D −A)⊗ 14×4) ◦X.

where the matrix (D − A) (a.k.a. the Laplacian matrix of the graph G) gets “inflated” to a
4×4-block structure by the Kronecker product with 14×4, to match the block structure of X.

Proposition 2.2. The matrix L defined in (2.17) has a 4-dimensional null-space.
Proof. By using the compatibility constraint (2.2), we can express L as

(2.18) L = ((D −A)⊗ 14×4) ◦ (MM−[).

It can be easily verified that

(2.19) L = bdiag(M)((D −A)⊗ I4)bdiag(M)−1

which means that the matrix L defined in (2.17) is similar to the matrix (D − A) ⊗ I4, thus
they have the same rank. The matrix D − A, a.k.a. the Laplacian matrix of the graph G,
has rank n− 1 assuming that G is connected. Since the rank of the Kronecker product of two
matrices is the product of the rank of the matrices, we obtain

(2.20) rank(L) = rank(D −A) rank(I4) = 4n− 4

which implies that the null-space of L is 4-dimensional.
Please note that in practice one cannot measure L from Equation (2.17), because the full

X is not available; in fact only the product (A⊗ 14×4) ◦X is available. Therefore in practice
L will be derived from Equation (2.16).

Weighted graph. In some applications we are given non-negative weights wij that reflect
the reliability of the pairwise measurements. In other words, G is a weighted graph with real
weights, stored in the symmetric adjacency matrix A = [wij ]. Accordingly, the degree matrix
D of the weighted graph is defined as Dii =

∑
j wij . Equations (2.6) and (2.15) still hold with

these definitions, thus our spectral method extends straightforwardly to weighted rigid-motion
synchronization.
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2.2. Dealing with Noise. We now consider the case where the relative measures are
corrupted by noise, hence they do not satisfy equations (1.3) and (2.15) exactly. Thus the
goal is to recover the absolute orientations such that they are “maximally compatible” with
the available relative information.

Let M̂ij ∈ SE(3) denote an estimate of the theoretical relative orientation Mij ∈ SE(3).
Hereafter we will consistently use the hat accent to denote noisy measurements. Rigid-motion
synchronization can be formalized as the problem of minimizing the (weighted) residuals of
the compatibility constraint (1.3), namely

(2.21) min
Mi∈SE(3)

∑
(i,j)

wij

∥∥∥M̂ij −MiM
−1
j

∥∥∥2
F

where the Frobenius norm || · || defines a left-invariant metric on SE(3), or, more generally, as
the problem of minimizing the following geometric error

(2.22) min
Ri∈SO(3),ti∈R3

∑
(i,j)

αij

∥∥∥R̂ij −RiR
T
j

∥∥∥2
F

+ βij

∥∥∥t̂ij − ti +RiR
T
j tj

∥∥∥2
2

where αij , βij ≥ 0. Note that this is a non-convex optimization problem that needs to be
solved iteratively through e.g. the Levenberg-Marquardt algorithm. Since convergence to
a global minimum is not guaranteed, current research puts efforts in formulating tractable
approaches that solve the problem approximately but accurately, so as to provide a good
starting point for a local refinement.

In this spirit, we consider an algebraic cost function that measures the residuals (in the
Frobenius norm sense) of Equation (2.15), namely

(2.23) min
M∈SE(3)n

∥∥∥L̂M∥∥∥2
F

where L̂ = (D ⊗ I4)− (A⊗ 14×4) ◦ X̂, and X̂ denotes a noisy version of the ideal matrix X,

which contains the measured relative orientations M̂ij ∈ SE(3). By using Equation (2.7) and
expressing the squared Frobenius norm in (2.23) as the sum of the squared Frobenius norm
over each 4× 4 block, we get that such a problem coincides with

(2.24)

min
Mi∈SE(3)

n∑
i=1

∥∥∥∥∥∥
n∑

j=1

wij

(
M̂ijMj −Mi

)∥∥∥∥∥∥
2

F

=

min
Ri∈SO(3)
ti∈R3

n∑
i=1

∥∥∥∥∥∥
n∑

j=1

wij

(
R̂ijRj −Ri

)∥∥∥∥∥∥
2

F

+

n∑
i=1

∥∥∥∥∥∥
n∑

j=1

wij

(
t̂ij − ti + R̂ijtj

)∥∥∥∥∥∥
2

2

.

For each node, this cost function considers the edges incident to that node, it sums the
(weighted) residuals of the compatibility constraints, and takes the squared Frobenius norm.
These norms are then summed up over all the nodes.
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Problem (2.23) is difficult to solve since the feasible set SE(3)n = SE(3)×· · ·×SE(3) is non-
convex. In order to make the computation tractable, we do not solve Problem (2.23) directly,
but we proceed as follows. First, we look for an orthogonal basis for the (approximated)
4-dimensional null-space of L̂, by solving the following optimization problem

(2.25) min
UTU=nI4

∥∥∥L̂U∥∥∥2
F

where we use U instead of M to underline that we are looking for the subspace spanned by
the columns of M , instead of M itself. In other words, we solve the homogeneous system of
equations L̂U = 0 in the least-squares sense. Within this space, we find the solution that is
closest to have every fourth row equal to [0 0 0 1] by solving system (2.5) in the least-squares
sense. Then, such a solution is projected onto SE(3)n – as in [8] – by forcing every fourth
row to [0 0 0 1] and projecting 3 × 3 rotation blocks onto SO(3) through Singular Value
Decomposition (SVD) [61].

Proposition 2.3. Problem (2.25) admits a closed-form solution, which is given by the 4
eigenvectors of L̂TL̂ associated to the 4 smallest eigenvalues.

Proof. We first observe that Problem (2.25) coincides with

(2.26) min
UTU=nI4

trace(UT(L̂TL̂)U).

Let F be the unconstrained cost function corresponding to this problem, namely

(2.27) F(U) = trace(UT(L̂TL̂)U) + trace(Λ(UTU − nI4))

where Λ ∈ R4×4 is a symmetric matrix of unknown Lagrange multipliers. Setting to zero the
partial derivatives of F with respect to U we obtain

(2.28)
∂F
∂U

= 2(L̂TL̂)U + 2UΛ = 0⇒ (L̂TL̂)U = −UΛ.

Let ui be any four eigenvectors of L̂TL̂ (normalized so that ‖ui‖ =
√
n) and let λi be the

corresponding eigenvalues. Then U = [u1|u2|u3|u4] satisfies both (2.28) and the constraint
UTU = nI4, with Λ = −diag(λ1, λ2, λ3, λ4) (indeed L̂TL̂ admits an orthonormal basis of
real eigenvectors since it is symmetric). In other words, any quadruple of eigenvectors is a
stationary point for the objective function F . The minimum is attained in (2.26) if ui are the
4 least eigenvectors of L̂TL̂.

It follows from Proposition 2.3 that Problem (2.25) can be equivalently solved by comput-
ing the least 4 right singular vectors of L̂. It should be noted that in all practical scenarios the
measurements graph G is sparse, for pairwise measurements are typically available only for
a small number of neighbouring views, hence the number of edges is linear in the number of
nodes. However, while L̂ inherits the sparsity of G, this does not necessarily imply that L̂TL̂
will be comparably sparse. Indeed, if A has a full row, then L̂TL̂ is full. Hence the singular
vector solution has to be preferred if a sparsity-aware algorithm is used.

Note that our method produces an extrinsic estimate, for it provides a closed-form solution
to Problem (2.25), which is a relaxed version of Problem (2.23), and this solution is then
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projected onto the manifold of rigid motions. The idea of relaxing rigid-motion constraints is
also present in [46] where the feasible set SE(3)n is relaxed to its convex hull. The authors of
[46] minimize a geometric error tightly related to (2.22), resulting in an iterative scheme. This
leads to a more accurate solution than our approach, which is based on an algebraic error, but
it requires a significant amount of time, while our solution is fast and direct – as confirmed
by the simulations.

Alternatively, we can consider the equivalent formulation (2.6) and compute the 4 top
eigenvectors of

(2.29) P̂ = (D ⊗ I4)−1((A⊗ 14×4) ◦ X̂)

where the matrix D⊗I4 is easy to invert since it is diagonal. Note that P̂ inherits the sparsity
of G. In the presence of noise that cripples the structure of P (i.e. X̂ 6= MM−[) the eigenvalues
and the eigenvectors will be complex in general. As a consequence, after computing the linear
combination that yields [0 0 0 1] in every fourth row, we remove the imaginary part of the
eigenvectors, and subsequently project 3× 3 rotation blocks onto SO(3).

In summary, an approximate solution to rigid-motion synchronization in SE(3) can be
found by either computing the 4 least right singular vectors of L̂ or the 4 top eigenvectors
of P̂ . An empirical comparison between the former – called NULL-SE(3)– and the latter –
called EIG-SE(3)– is provided in Section 3. In both cases the matrices are sparse, so in the
implementation we exploited the sparse eigen-solver of Matlab (eigs) in EIG-SE(3), and the
sparse SVD routine (svds) in NULL-SE(3). As a matter of fact, svds(A) calls eigs([0 A;

A’ 0]), as reported in the function documentation and consequently – as confirmed by our
simulations – it runs slower, for the dimension of the matrix is double. From the computational
complexity point of view, the Lanczos method (implemented by eigs) is “nearly linear”,
meaning that, if the matrix is sparse, every iteration is linear in n [21], but the number of
iterations cannot be bounded by a constant.

2.3. Dealing with Outliers. The fact that our spectral method easily copes with weights
on individual relative orientations, by way of the weighted adjacency matrix A, allows a
straightforward extension to gain resilience to rogue input measures via Iteratively Reweighted
Least Squares (IRLS) [29]. Such outliers are ubiquitous in real scenarios. In the structure-
from-motion context, for example, repetitive structures in the images cause epipolar geome-
tries which are not compatible with the 3D geometry of the scene. In global registration of
multiple point-sets, outliers are caused by faulty pairwise registration, which can be originated
by insufficient overlap and/or bad initialization.

First, we obtain an estimate for M with given weights3 as explained in the previous section.
Then, we update the weights wij using the current estimate of absolute orientations, and these
steps are iterated until convergence or a maximum number of iterations is reached. In our
experiments we used the Cauchy weight function

(2.30) wij =
1

1 +
( rij

c

)2
3The initial weights are all 1 by default, but they can be initialized from any reliability information coming

from the relative orientation estimation procedure.
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with rij = ‖R̂ij−RiR
T
j‖F . It is more convenient to define the residual in terms of the rotational

component only, because the translation is affected by an arbitrary scale in the structure-from-
motion scenario. On the other hand it is reasonable to assume that if a relative orientation is
outlier, then both the rotation and translation components are wrong.

The factor c has been computed, as customary, with

(2.31) c = 1.482 med(|r−med(r)|) · θ

where med( ) is the median operator, r is the vectorization of the residuals rij , and θ is a
tuning constant set to θ = 2 in our experiments.

2.4. Generalization to SE(N). In this paper we focus on SE(3) because this group arises
in several applications. However, it is straightforward to see that our analysis and the derived
spectral method apply equally well to any dimension.

Suppose that we are given a redundant number of pairwise ratios Mij ∈ SE(N), and we
want to estimate the associated group elements Mi ∈ SE(N), which represent rigid displace-
ments in RN . If the graph is complete then – in the absence of noise – the block-matrix
X ∈ R(N+1)n×(N+1)n has rank N + 1, and the columns of M are N + 1 eigenvectors of X with
eigenvalue n, or, equivalently, they form a basis for the (N + 1)-dimensional null-space of L.
If the graph is not complete then Equations (2.6) and (2.15) still hold, thus we can generalize
our spectral method to synchronize elements of SE(N), by computing the N + 1 least right
singular vectors of L̂, or by computing the N + 1 top eigenvectors of P̂ .

Mutatis mutandis, the method applies as well to the group of Euclidean motions E(N).

3. Experiments. We evaluated our spectral solutions on both simulated and real data
in terms of accuracy, execution time and robustness to outliers. We compared EIG-SE(3)
and NULL-SE(3) to several techniques from the state-of-the-art. All the experiments were
performed on a MacBook Air with i5 dual-core @ 1.3 GHz. The Matlab code is available on
the web at www.diegm.uniud.it/fusiello/demo/gmf.

In order to compare estimated and ground-truth absolute orientations, we found the
optimal isometry that aligns them by applying single averaging for the rotation term and
least-squares for the translation (and scale). Specifically, if M̂1, . . . , M̂n are estimates of the
theoretical absolute orientations M1, . . . ,Mn then the optimal N ∈ SE(3) that aligns them

into a common reference system solves Mi = M̂iN , which is equivalent to Ri = R̂iR and
ti = R̂it + t̂i by considering separately the rotation and translation term. Thus the optimal
R ∈ SO(3) is the single mean of the set {RiR̂

T
i , i = 1, . . . , n}, which can be estimated by

applying `1-geodesic averaging [26], while the optimal t ∈ R3 is computed in the least-squares
sense. If a bearing-based method is considered, a scale s ∈ R has to be estimated in addition
to the translation t ∈ R3, resulting in a linear system of the form ti = R̂it + st̂i.

We used the angular distance d∠(Ri, R̂i) and Euclidean norm ||ti− t̂i||2 to measure the ac-
curacy of absolute rotations and translations respectively, where the angular (or geodesic) dis-
tance between two rotations R,S ∈ SO(3) is the angle (in the angle-axis space) of the rotation
SRT so chosen to lie in the range [0, 180◦], namely d∠(S,R) = d∠(RST, I) = 1/

√
2
∥∥log(RST)

∥∥
2
.

Note that the angular distance is equivalent to the Frobenius norm in the sense that they
are related by a positive continuous strictly increasing function [31], namely ||R − S||F =
2
√

2 sin
(
1/2 d∠(S,R)

)
.

www.diegm.uniud.it/fusiello/demo/gmf
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Experimental results on simulated data are presented in Section 3.1, while in Sections
3.2 and 3.3 we report experiments on real data in the context of structure-from-motion and
multiple point-set registration.

3.1. Simulated Data. In these experiments we considered n absolute orientations in which
rotations are sampled from random Euler angles and translation components follow a standard
Gaussian distribution. The measurement graph G = (V, E) is a random graph drawn from
the Erdős-Rényi model with parameters (n, p), i.e. given a vertex set V = {1, 2, . . . , n} each
edge (i, j) is in the set E with probability p, independently of all other edges. The true

relative orientations were corrupted by a multiplicative noise M̂ij = MijEij , with Eij ∈ SE(3)
representing a small perturbation of the identity matrix. The rotation component of Eij has
axis uniformly distributed over the unit sphere and angle following a Gaussian distribution
with zero mean and standard deviation σR ∈ [1◦, 10◦], and the translation components were
sampled from a Gaussian distribution with zero mean and standard deviation σT ∈ [0.01, 0.1].
In this way we perturbed both direction and magnitude of pairwise translations. All the
results were averaged over 50 trials.

We evaluated the effect of noise on rotations and translations both separately and together,
by considering n = 100 absolute orientations, in the cases p = 0.05 and p = 0.3, which
correspond to about 95% and 70% of missing pairs, respectively. Higher values of p correspond
to better conditioned problems, with the same qualitative behaviour as p = 0.3. Please note
that in the real cases reported in Table 3 the percentage of missing pairs ranges from 30% to
90%.
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Figure 1: Mean angular errors (degrees) on the absolute rotations with p = 0.3 (left) and
p = 0.05 (right). The value of σT does not affect rotations. The inset shows a magnification
at σR = 9◦.

Rotation. Besides the SE(3)-averaging technique developed by Govindu (Govindu-SE(3))
[23] and the Diffusion method by Torsello et al. [57], we considered general synchronization
techniques such as the Weiszfeld algorithm [26], spectral relaxation [3] (EIG), semidefinite
programming [3] (SDP), the L1-IRLS algorithm [13], and the R-GoDec algorithm [6]. Meth-
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ods based on quaternions (such as [22]) were already proved inferior to the other methods in
[36]. The codes of L1-IRLS and Diffusion are available on-line, the one of Govindu-SE(3) was
provided by the author, while in the other cases we used our implementation. The parameter
that determines the transition from quadratic to fixed loss in L1-IRLS was set equal to 10
degrees in these simulations.

Figure 1 reports the mean angular errors on the absolute rotations as a function of σR,
obtained by running the rotation synchronization techniques mentioned above. The noise on
relative translations does not have any influence on absolute rotations, hence the value of σT
is meaningless in this experiment. The best accuracy is obtained by our methods EIG-SE(3)
and NULL-SE(3) together with EIG, SDP, Govindu-SE(3) and Diffusion. On the contrary, the
robust approaches R-GoDec, L1-IRLS and Weiszfeld yield worse results, to different extents,
because they inherently trade robustness for statistical efficiency. By manual inspection it can
be seen that EIG-SE(3) coincides with EIG, according to the fact that the former generalises
the latter.
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Figure 2: Mean errors on the absolute translations with p = 0.3 (left) and p = 0.05 (right).
The inset shows a magnification at σT = 0.09.

Translation. We considered only methods working in frame space, i.e. not requiring point
correspondences, such as SDR [42], the graph-embedding approach by Brand et al. [12], the
Diffusion method [57] and two works by Govindu [22, 23]. Among these methods, only EIG-
SE(3), NULL-SE(3), Govindu-SE(3) [23] and Diffusion are influenced by the noise on the
translation norms, for they take as input matrices in SE(3), while this does not influence the
remaining algorithms, which take as input relative translation directions. We also included in
the comparison the Linear method for translation synchronization derived by solving Equation
(1.5) in the least-squares sense, assuming that translations norm are available and absolute
rotations have been computed beforehand. The code of SDR is available on-line, while in
the other cases we used our implementation. In this simulation we did not perturb relative
rotations (σR = 0), thus all the methods were given ground-truth relative/absolute rotations.
Noise on rotational components also influences the translation errors with results qualitatively
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Figure 3: Clustering phenomenon. The inset shows a magnification of the centre of the cloud.
The reader will distinguish one cluster of yellow squares and one of reddish triangles near
the origin, which correspond to the locations obtained by Govindu [22] and Brand et al. [12]
respectively.

similar to those reported here.

Figure 2 shows the mean errors on the absolute translations as a function of σT (units
are commensurate with the simulated data), obtained after running the techniques mentioned
above. Our methods EIG-SE(3) and NULL-SE(3) together with Govindu-SE(3), Diffusion
and the Linear solution outperform all the analysed techniques in terms of accuracy.

When the measurement graph is extremely sparse (p = 0.05) the methods by Govindu
[22] and Brand et al. [12] yield larger errors than usual. By inspecting the solution it is found
that this corresponds to wrong solutions concentrated around a few locations. This can be
visualized in Figure 3, which shows ground-truth and estimated positions (after alignment)
for a single trial when σT = 0.1. Such a behaviour – called “clustering phenomenon” – affects
the methods that use only the direction of translation (or bearing) and the cause has been
traced back to a lack of constraints on the location distances in [42]. For this reason ad-
hoc constraints were introduced in the minimization problem in [42], forcing the differences
between translations to be “sufficiently” large. On the other hand, EIG-SE(3), NULL-SE(3),
Govindu-SE(3), Diffusion and the Linear solution implicitly enforce such constraints as they
take in input the relative translations with their norm.
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Figure 4: Mean errors on the absolute translations with noise on both relative rotations and
translations, with p = 0.3 (left) and p = 0.05 (right). The inset shows a magnification at
(σT , σR) = (0.09, 9◦).
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Figure 5: Execution times (seconds) of rigid-motion synchronization versus number of nodes.
The SDR algorithm is analysed only with maximum 300 nodes in this experiment due to
computational limitations. A magnification is shown on the right to appreciate the difference
between EIG-SE(3) and NULL-SE(3).

Rigid-motion synchronization. We considered only methods that cope with rigid-motion
synchronization and work in frame space, such as SDR [42], Govindu-SE(3) [23] and Diffusion
[57]. Beside SDR – which has an original translation stage and uses EIG to synchronize
rotations – all the other methods recover rotations and translations simultaneously.

Figure 4 reports the mean errors on the absolute translations obtained after perturbing
both relative rotations and translations. All the methods return good estimates, which are
further improved by increasing edge connectivity, and the lowest errors are achieved by EIG-
SE(3), NULL-SE(3), Govindu-SE(3) and Diffusion.

We also analysed the execution time of rigid-motion synchronization, by varying the num-
ber of absolute orientations from n = 30 to n = 1000, all the others parameters being fixed.
More precisely, we chose the values p = 0.2 (about 80% missing data), σT = 0.05 and σR = 5◦
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to define sparsity and noise. We implemented EIG-SE(3) and NULL-SE(3) in Matlab using
eigs with P̂ in input and svds with L̂ in input respectively. Govindu-SE(3) and SDR are in
Matlab as well (code from the authors), while Diffusion [57] is implemented in C++ (by the
authors).

Figure 5 reports the running times of the analysed algorithms as a function of the number
of nodes in the measurement graph, showing that SDR is remarkably slower than the other
techniques. In particular, both our methods are faster than the others and EIG-SE(3) is the
fastest overall, computing a solution in less than 2 seconds for n = 1000.
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Figure 6: Mean errors on the absolute orientations versus outliers contamination
with σT=σR=0.
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Figure 7: Mean errors on the absolute orientations versus outliers contamination, with noise
on both relative rotations and translations.

In the additional material, the method described in [46] is also evaluated, on a smaller



18 Spectral Synchronization of Multiple Views in SE(3)

number of views, do to its high computational cost. As expected, [46] slightly improves the
results over EIG-SE(3) and NULL-SE(3) (for it minimizes a geometric objective function) but
at the cost of a much longer execution time (for instance, it takes around 10 minutes for a
single trial with n = 100 and p = 0.3).

The rundown of these experiments is that EIG-SE(3) achieves the same optimal accuracy
of its closest competitors in considerably less time. Therefore we elect EIG-SE(3) as our choice
and drop NULL-SE(3) in subsequent comparisons.

Outliers influence. In this experiment we studied the resilience to outliers of EIG-SE(3)
coupled with IRLS. We considered n = 100 absolute orientations sampled as before, and
we fixed p = 0.2 to define sparsity. Since we are interested in analysing exact recovery in
the presence of outliers, noise was not introduced in this first simulation. The percentage of
outliers – randomly generated – varies from 10% to 50%. Such a percentage is referred to the
number of available relative orientations, not to the maximum number of pairs (i.e. n(n−1)/2).
Figure 6 reports the mean errors obtained by EIG-SE(3) and its IRLS modification. It clearly
shows the robustness gained by IRLS: exact recovery is achieved up to 35% of outliers, but
good performances are still obtained until 50% of outliers.

Next, we analysed the behaviour of our approach in the presence of both noise and outliers.
We introduced a fixed level of noise on the relative orientations (σT = 0.05, σR = 5◦), and all
the other parameters were chosen as before. Results are reported in Figure 7, showing that
the empirical breakdown point of EIG-SE(3) + IRLS is about 30%.

3.2. Real Data: Structure from Motion. We applied our method EIG-SE(3) + IRLS to
the structure-from-motion problem, considering both the EPFL benchmark [53] and unstruc-
tured, large-scale image sequences from [64]. The latter are available on-line together with the
relative orientations, while for the EPFL benchmark we computed them following a standard
approach based on the essential matrix with a final bundle adjustment (BA) refinement of
camera pairs.

Owing to the depth-speed ambiguity, the magnitude of relative translations (also referred
to as epipolar scales) is undefined. Therefore, the input relative orientations do not fully
specify elements of SE(3), and the unknown scales have to be computed.

A straightforward approach (suggested in [23]) consists in iteratively updating these epipo-

lar scales, i.e. during each iteration the scale of the translation of M̂ij is set equal to that
of MiM

−1
j , where Mi and Mj are the current estimates of camera orientations. The starting

scales are all equal to 1 and the procedure is iterated until convergence. In our implementation
this is combined with IRLS in the same loop: in one step we update the IRLS weights and in
the next step we update the epipolar scales.

A different approach is proposed in [4], where a two-stage method is developed for comput-
ing the epipolar scales based on the knowledge of two-view geometries only. First, a cycle basis
for the measurement graph G is extracted, then all the scales are recovered simultaneously
by solving a homogeneous linear system. This approach is based on the observation that the
compatibility constraints associated to cycles can be seen as equations in the unknown scales.
In this way all the unknown norms are computed before performing rigid-motion synchroniza-
tion. In this paper we used the robust version of such approach (named NMCB in [4]) where
the cycle basis is a Minimum Cycle Basis composed of null-cycles (i.e. cycles whose relative
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rotations compose to the identity), which is computed through a modified version of Horton’s
algorithm [30]. It is shown in [58] that theoretical conditions under which the epipolar scales
can be uniquely (up to a global scale) recovered are the same as the bearing-only localization
problem, i.e. the measurement graph is required to be parallel rigid [42, 63].

However, computing the epipolar scales is not part of the synchronization task, strictly
speaking. As a matter of fact, this indeterminacy is an idiosyncrasy of the structure-from-
motion problem, which is not shared e.g. by multiple point-set registration, where the relative
orientations are fully specified. For this reason we are agnostic about the specific method for
computing the scales, and we also provide results obtained by using ground-truth scales, in
addition to the approaches mentioned above.

EPFL benchmark. The EPFL Benchmark datasets [53] contain from 8 to 30 images, and
provide ground-truth absolute orientations. Results are reported in Tables 1 and 2, which
show the mean errors of rigid-motion synchronization before and after applying a two-step
bundle adjustment, as done in [38], where in the first step rotations are kept fixed.

Table 1: Mean angular errors (degrees) on camera rotations for the EPFL benchmark. Moulon
et al. is missing in this table because rotation errors are not reported in [38].

EIG-SE(3)-GT EIG-SE(3)-Iter EIG-SE(3)-NMCB SDR R-GoDec+Brand Samantha

Dataset pre BA post BA pre BA post BA pre BA post BA pre BA post BA pre BA post BA post BA

HerzJesuP8 0.04 0.03 0.03 0.03 0.03 0.03 0.06 0.03 0.04 0.03 0.04

HerzJesuP25 0.07 0.03 0.07 0.04 0.06 0.04 0.14 0.04 0.13 0.04 0.03

FountainP11 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.06

EntryP10 0.05 0.02 0.06 0.02 0.05 0.03 0.56 0.04 0.44 0.03 0.05

CastleP19 0.41 0.06 0.44 0.06 0.41 0.06 3.69 0.05 1.57 0.05 0.09

CastleP30 0.40 0.05 0.48 0.05 0.40 0.05 1.97 0.05 0.78 0.05 0.06

Table 2: Mean errors (meters) on camera translations for the EPFL benchmark.

EIG-SE(3)-GT EIG-SE(3)-Iter EIG-SE(3)-NMCB SDR R-GoDec+Brand Moulon Samantha

Dataset pre BA post BA pre BA post BA pre BA post BA pre BA post BA pre BA post BA post BA post BA

HerzJesuP8 0.004 0.004 0.512 0.004 0.008 0.004 0.007 0.005 0.009 0.004 0.004 0.007

HerzJesuP25 0.010 0.008 0.931 0.022 0.017 0.008 0.065 0.009 0.038 0.009 0.005 0.031

FountainP11 0.002 0.003 0.257 0.003 0.005 0.003 0.004 0.003 0.006 0.003 0.003 0.006

EntryP10 0.008 0.008 0.307 0.008 0.167 0.009 0.203 0.010 0.433 0.009 0.006 0.022

CastleP19 0.218 0.034 3.747 0.034 2.971 0.035 1.769 0.032 1.493 0.036 0.026 0.046

CastleP30 0.150 0.032 2.308 0.035 0.908 0.034 1.393 0.030 1.123 0.030 0.022 0.033

We considered three versions of EIG-SE(3), which differ for the technique chosen to recover
the epipolar scales, namely using ground-truth scales (GT), computing the scales through [4]
(NMCB), and updating the scales iteratively (Iter). Our spectral solution is compared with
the SDR method [42] and the global structure-from-motion pipeline described by Moulon et
al. [38]. We also considered the pipeline obtained by combining the R-GoDec algorithm [6]
with the translation recovery method in [12], which is analysed in [5]. As a reference, we
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included in the comparison the hierarchical structure-from-motion pipeline Samantha [56],
whose binary code is publicly available. With the exception of Moulon et al., for which results
are taken from [38], and Samantha, which processes images directly, all the other methods
are given the same relative orientations as input.

Both EIG-SE(3) and all the analysed techniques achieve a high precision, obtaining an
average rotation error less than 0.1 degrees and an average translation error of the order of
millimetres, after the final BA. Our method is able to recover camera parameters efficiently,
since the rigid-motion synchronization step takes less than 0.5 seconds for all the sequences.

If we concentrate on the EIG-SE(3)-GT columns, we can see that it achieves the optimum
before BA in most datasets, confirming the effectiveness of our method for averaging relative
orientations, when the latter are fully specified. Without ground-truth scales, good estimates
of orientation parameters are still obtained, and precision increases by using NMCB rather
than the iterative approach. The errors after BA are always very small and almost equal
to the other methods, confirming that EIG-SE(3) provides a good starting point for bundle
adjustment.

Large-scale datasets. We tested our technique on irregular large-scale collections of im-
ages taken from [64], for which recovering camera orientations is challenging. Following the
experiments in [64], we used the output of Bundler [52] as reference solution, and we com-
puted the optimal isometry between this solution and our estimate with least median of squares
(LMedS), using correspondences between camera centres. Since our Matlab implementation
of [4] is too slow for large datasets, we did not compute the scales through NMCB in this
experiment and used the iterative update instead.

Table 3: Median errors (rotation in degrees, translation in metres) on the datasets from [64]
before BA. Times are in seconds. Some values are missing in this table since some datasets
are not analysed in [41] and [16]. The lowest translation errors are highlighted in boldface.

EIG-SE(3)-Iter 1DSfM SDR CLS LUD Cui et al.

Dataset n miss % rot. tra. time tra. time tra. time tra. time tra. time tra. time

Piccadilly 2446 89 5.7 7.1 230 4.1 936 – – – – – – – –

Roman Forum 1102 88 5.5 17.2 77 6.1 172 – – – – – – – –

Vienna Cathedral 898 74 1.6 3.2 87 6.6 242 – – 8.8 313 5.4 522 3.5 242

Union Square 853 93 4.6 5.7 27 5.6 92 – – – – – – – –

Alamo 606 47 1.2 0.7 67 1.1 129 – – 1.3 143 0.4 289 0.6 259

Notre Dame 553 32 0.7 0.5 47 10 112 – – 0.8 187 0.3 382 0.3 366

Tower of London 489 80 2.7 5.7 17 11 64 20 376 16 32 4.7 65 4.4 100

Montreal Notre Dame 467 52 0.6 0.7 22 2.5 92 – – 1.1 89 0.5 180 0.8 125

Yorkminster 448 72 1.8 6.4 17 3.4 104 5.0 667 6.2 29 2.7 70 3.7 45

Madrid Metropolis 370 65 3.9 8.1 14 9.9 35 4.2 208 6.4 33 1.6 54 – –

NYC Library 358 68 1.8 2.3 12 2.5 63 5.0 489 5.0 34 2.0 84 1.4 42

Piazza del Popolo 345 58 0.9 1.1 17 3.1 49 1.9 393 3.5 44 1.5 70 2.6 51

Ellis Island 240 29 0.7 3.2 11 3.7 25 – – – – – – 3.1 31

Results are reported in Table 3, which shows the median errors of rigid-motion synchro-
nization before applying bundle adjustment. We also reported the number of views that were
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synchronized and the percentage of missing pairs, which refer to the largest parallel rigid
subgraph, extracted as explained in [42].

We compared EIG-SE(3) with a recent technique – called 1DSfM [64] – which first removes
outlier directions by solving simpler low-dimensional sub-problems, and then compute absolute
translations through the Levenberg-Marquardt algorithm. We also included in the comparison
the semi-definite-relaxation (SDR) method [42], the constrained-least-squares (CLS) technique
[60], the least-unsquared-deviations (LUD) solver [41], and the method by Cui et al. [16]. The
results of 1DSfM are taken from [64], the results of LUD, SDR and CLS are taken from [41],
and the results by Cui et al. are taken from [16]. In all these papers rotation errors are not
analysed, therefore the comparison concentrates on translation errors. In this respect, the
median errors reported in Table 3 show that EIG-SE(3) with iterative scale estimate performs
equal or better than 1DSfM in 10 cases out of 13, and it always provides results in the same
range of the best methods, namely LUD, and Cui et al. These methods, however, form a
class on their own, since they internally refine the pairwise directions, whereas 1DSfM and
EIG-SE(3) use as input the relative orientations as they are. In LUD such directions are
computed through an IRLS scheme robust to outlier correspondences, while in Cui et al. they
are obtained through the method described in [34].

Computation times of 1DSfM, LUD, CLS and SDR reported in Table 3 are obtained
by summing the execution costs of rotation and translation recovery. Note that this is an
underestimation as the sum does not include the execution cost of intermediate steps which
are still part of the rigid-motion synchronization pipeline, namely outlier removal in 1DSfM
and robust pairwise direction estimation in LUD, CLS and SDR. Computation times of the
method by Cui et al. are obtained by subtracting the cost for bundle adjustment refinement
from the total execution cost reported in [16].

Please note that the execution times are taken from different papers [64, 41, 16] and
were obtained on disparate computers. Albeit not directly comparable to each other, these
machines are all more powerful than ours, however. Notwithstanding this, results in Table 3
demonstrate that our method is the fastest solution among all the analysed techniques.

The summary of these experiments with real datasets confirms that, with respect to its
competitors, EIG-SE(3) deliver results of comparable accuracy in substantially less time.

Table 4: Mean angular errors (degrees) on absolute rotations for the Stanford repository.

Dataset n % missing EIG-SE(3) Govindu-SE(3) Diffusion Weiszfeld+Linear

Bunny 10 30 0.91 0.91 0.91 0.89

Buddha 15 20 0.99 1.01 1.00 0.86

Dragon 15 10 1.06 1.06 1.06 0.84

3.3. Real Data: Multiple Point-set Registration. We applied our spectral method to
multiple point-set registration, considering both the Stanford 3D Scanning Repository [1] and
large-scale datasets used also in [18]. To obtain estimates of relative orientations we applied
the Iterative Closest Point Algorithm (ICP) [11] to pairs of 3D point sets, as customary, and
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Table 5: Cross-sections of registered point-sets on the Stanford repository.

Dataset EIG-SE(3) Govindu-SE(3) Diffusion Weiszfeld+Linear
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Figure 8: 3D models obtained with our method on the Stanford repository. Different colours
correspond to different point sets.

we defined the measurement graph by discarding all the pairs with high registration error.
With a careful threshold selection, this created a graph with no outliers. Note that, in contrast
to the structure-from-motion application, in this case there is not a scale ambiguity in relative
translations, for pairwise registration returns elements of SE(3).

Stanford 3D repository. From the Stanford 3D Scanning Repository [1] we used the
Bunny, Happy Buddha (standing) and Dragon (standing) datasets, which contain 10, 15 and
15 point sets respectively. As for the initialization of the ICP algorithm, we perturbed the
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true relative orientations by a rotation with random axis and angle uniformly distributed over
[0, 2◦], similarly to the experiments carried out in [25]. In order to evaluate the performances
of rigid-motion synchronization in itself, we considered only registration techniques working
in frame space, i.e. not requiring point correspondences, and all the methods were given the
same relative orientations as input. We compared our method EIG-SE(3) against Govindu-
SE(3) [23], Diffusion [57], and we also considered the combination of the Weiszfeld algorithm
[26] with the Linear solution for translation synchronization. On account of the fact that such
techniques are not robust, in this experiment we used our EIG-SE(3) method without IRLS
so as to perform a fair comparison.

Since ground-truth absolute orientations are available for these datasets, we evaluated
quantitatively the results by reporting the mean angular errors of rigid-motion synchroniza-
tion in Table 4 (translation errors are not reported since they are less than 1 millimetre for all
the datasets/methods). We also evaluated qualitatively the results in terms of cross-sections
in Table 5. Finally, for visualization purposes, we report in Figure 8 the 3D models obtained
by aligning the original point clouds with our method. Both EIG-SE(3) and all the analysed
techniques achieve a good precision, yielding accurate cross-sections and an average rotation
error of the order of 1 degree. Differences in execution time are meaningless for such rela-
tively small datasets, and are not reported. EIG-SE(3) took about 0.02 seconds for all these
sequences.

Table 6: Execution times (sec.) of rigid-motion synchronization for the datasets used in [18].

Dataset n % missing EIG-SE(3) Govindu-SE(3) Diffusion Weiszfeld+Linear

Gargoyle 27 62 0.02 0.08 0.22 0.47

Capital 100 76 0.04 0.70 2.11 4.17

Madonna 169 93 0.07 0.59 1.67 4.01

Large-scale datasets. The datasets used in [18] contain 27 (Gargoyle), 103 (Capital) and
196 (Madonna) point sets respectively. In the Madonna dataset, each scan covers a small
portion of the entire object, thus making the registration task very challenging. Since there is
no information about the scans, we simply initialized the ICP algorithm with identity matrices.

Results are reported in Tables 6 and 7, which show the execution times of rigid-motion
synchronization and cross-sections of output 3D models. We also report the number of point
sets registered and the percentage of missing pairs, which refer to the largest connected com-
ponent of the cleaned graph. As before, for visualization purposes, we report the whole 3D
models obtained by aligning the original point clouds with our method (Figure 9).

Note that, if needed, the estimates of absolute orientations obtained in this way can be
further improved by alternating rigid-motion synchronization and computing relative orienta-
tions, as suggested in [25, 57].

These experiments show that our method is the fastest solution within all the analysed
techniques, while being comparable in accuracy and providing high-quality reconstructions.
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Table 7: Cross-sections of registered point-sets on the datasets used in [18].

Dataset EIG-SE(3) Govindu-SE(3) Diffusion Weiszfeld+Linear
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Figure 9: 3D models obtained with our method on the datasets used in [18]. Different colours
correspond to different point sets.

4. Conclusion. We presented a novel approximate solution to rigid-motion synchroniza-
tion in SE(3). Our method is extremely fast, being based on a spectral decomposition problem,
and theoretically relevant, for it computes at the same time both rotations and translations.
Experiments on synthetic and real data showed that our method: i) provides accurate esti-
mates of absolute rotations and translations (comparable to the state of the art); ii) it is the
fastest among the existing techniques; iii) it can be successfully applied to multiple point-
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set registration, returning reliable and accurate 3D models in low execution time; and iv)
combined with a method for estimating the unknown translation norms, it can be profitably
used in a global structure-from-motion pipeline to obtain a fast/high-quality initialization for
bundle adjustment algorithms.
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