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Abstract Many natural systems exhibit a hybrid be-
havior characterized by a set of continuous laws which
are switched by discrete events. Such behaviors can
be described in a very natural way by a class of au-
tomata called hybrid automata. Their evolution are
represented by both dynamical systems on dense do-
mains and discrete transitions. Once a real system is
modeled in a such framework, one may want to an-
alyze it by applying automatic techniques, such as
Model Checking or Abstract Interpretation. Unfortu-
nately, the discrete/continuous evolutions not only pro-
vide hybrid automata of great flexibility, but they are
also at the root of many undecidability phenomena.
This paper addresses issues regarding the decidabil-
ity of the reachability problem for hybrid automata (i.e.,
“can the system reach a state a from a state b?”) by
proposing an “inaccurate” semantics. In particular, af-
ter observing that dense sets are often abstractions of
real world domains, we suggest, especially in the con-
text of biological simulation, to avoid the ability of dis-
tinguishing between values whose distance is less than
a fixed ε. On the ground of the above considerations,
we propose a new semantics for first-order formulæ
which guarantees the decidability of reachability. We
conclude providing a paradigmatic biological example
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behavior better than the precise one.
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1 Introduction

A huge amount of data is available from modern (wet
and dry) technologies employed in studying Biology
today. This data is, in general, very heterogeneous and
provides “views” at different levels of abstraction, and
the ultimate challenge is the attempt to distill from it
the emerging behavior of a system. Such a behavior can
be defined as what is observable only when the en-
tire system and its dynamics are studied as-a-whole.
The corresponding field of study is named Systems Bi-
ology and is currently enjoying a great success, with
contributions given from researchers with very differ-
ent backgrounds.

In many cases computer scientists have considered
mathematical models of biological systems as starting
points and rephrased them inside their frameworks in
order to exploit automatic analysis tools. We mention
here some of such models. In 1969, S.A. Kauffman [1]
presented Boolean Networks as a model for genetic
regulatory networks. Petri Nets were introduced by
C.A. Petri in 1962 [2] as a language to describe discrete
distributed systems and are now a classic in model-
ing biochemical networks and, in general, biological
systems (see, e.g., [3,4] where also stochastic and con-
tinuous extensions are considered). In this context, [5]
establishes a bridge between logical models and Petri
net formalism in the study of biological regulatory net-
works. Process Calculi (see, e.g., [6]) have been devel-
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oped to model networks of communication protocols.
In the representation of biological systems processes
can be used to model the reactants involved in the
system (each molecule is represented by a process).
Reactions and, more generally, interactions, are seen
as communications between processes. Stochastic Pi-
calculus [7] has been successfully used in the modeling
of biochemical systems and, in the same spirit, other
process algebra have been introduced with the aim of
providing languages closer to the requirements of biol-
ogy (see, e.g., [8] and [9]). A more complete description
and classification of the formalisms introduced in Sys-
tems Biology can be found in [10], where a distinction
between mathematical and computational models is in-
troduced and investigated.

The above mentioned emerging behavior is clearly
touching deep into the intrinsic properties of the sys-
tems under study and, hence, the kind of (mathemat-
ical) tools employed for their description is a rather
delicate point. In this paper we try to give our own
contribution to the study of Systems Biology by con-
centrating on a specific decidability issue arising when
tools allowing a mixed form of discrete/continuous de-
scription (extremely natural for natural phenomena)
are used.

The use of such hybrid tools is easily justifiable, espe-
cially when dealing with biological systems. Continu-
ous approximations simplify the analysis and allow to
characterize complex events using—simple, compact,
deterministic, and continuous—equations. On the other
hand, for example, both artificial digital devices and
natural discrete control networks, need to be described
by simple—although often large—interaction graphs.
Neither one of the methodologies is sufficient and the
situation is clear: none is ”the winner”. Both discrete
and continuous approaches have merits, and formal
tools allowing to use together the two points of view
have a great potential.

Combining discrete and continuous modeling tools
and techniques, however, can be done in so many ways
that it is easy in principle but can be extremely difficult
in practice.

Hybrid automata (see, e.g., [11,12]) were proposed
to model hybrid systems and, due to their flexible dy-
namics, have obtained a growing consensus in the sci-
entific community. Automatic deduction of properties
for such systems, however, often forces us to deal with
undecidability phenomena. Since the first half of the 20-
th century, there exist decision problems (i.e., problems
having a yes/no answer) which cannot be tackled algo-
rithmically. In particular, it has been proved that al-
gorithms which provides the correct answer for any
instance of such problems cannot exist. Such problems

are said be undecidable as opposed to decidable prob-
lems for which there exists a decision algorithm. For
example, in the context of hybrid automata, one may
inquire which questions are decidable, i.e., what we can
hope to deduce automatically about hybrid automata.
Unfortunately, expressiveness and the assumption of
a dense and infinite state space bring along difficul-
ties and limitations. Many undecidability and heavy-
complexity results have been proved for general hybrid
automata exploiting density of state space [13]. If the
possible discrete/continuous configurations of hybrid
automata are restricted by definition, as in the family of
o-minimal systems [14], one could hope to maintain a
level of faithfulness of the representation that surpasses
by far either that of finite automata or a that of a solv-
able (numerically or analytically) system of differential
equations. Following the above considerations, many
decidable classes of hybrid automata, characterized by
a specific set of restrictions, have been proposed (see,
e.g., [12,14,15]). Nevertheless, most of them have high
computational complexity and are not suitable for ap-
plications.

Our aim here is to tackle the undecidability/comple-
xity problem of hybrid automata from a different per-
spective. Starting from practical considerations on the
application of hybrid automata to biological systems,
we propose different semantics allowing us simplifi-
cations in the study of the hybrid automata. In accor-
dance with J.T. Schwartz’s observations [16], we think
that classical models have a “pernicious influence” on
the investigation of Nature, as they are too abstract and
their infinite precision introduces regrettable complex-
ity which has no correspondence with the phenomenon
to be modeled. For such reasons, we consider the pos-
sibility of distilling conditions ensuring a more realistic
semantics for our models.

Biological systems have been the inspiration for the
above mentioned semantics. This must be intended in
the sense that Nature provides scenarios in which, of-
ten, either a complete understanding of the underly-
ing physical mechanisms is lacking (and must be ap-
proximated), or some form of noise must be taken into
account. Boolean regulatory networks, signaling path-
ways, biochemical networks in general, can therefore
be modeled by hybrid automata (see [17,9]), in which
the continuous component is basically approximating
a dynamics which is either not fully understood or
too costly to simulate. Moreover, another usual mea-
sure taken to better approximate natural behaviors,
consists in introducing—either on top of a discrete
events network description or on a hybrid system—
some stochastic ingredients. We, therefore, do not con-
sider a chance that one of the most popular simulation
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algorithms on the market starts with an observation
very similar to our starting point. As observed by Gille-
spie in [18], “it is physically meaningless to talk about
the number of molecules whose centers lie inside . . . ”
a sphere “. . . in the required limit of vanishingly small
δt . . . ”. We will ultimately formalize the intuition that
(natural) noise does not allow the (un-natural) unde-
cidability results obtained, for example, by an infinite
partitioning of a continuous bounded portion of the
states space.

As already done in [19], we want to address un-
decidability results in hybrid automata by imposing
bounded guards and a sort of “quantic value”. How-
ever, our proposal diverges from such work because
we consider continuous both time and space domains,
while the previously mentioned paper discretizes both
of them. Our work differs also from regularization
method introduced in [20]: the latter is a technique to
deduce models which guarantee a minimal time dis-
tance ε > 0 between discrete events as opposed the for-
mer which is a method working on the original models
and admitting continuous time events. In some sense,
our work is more similar to the idea expressed in [21–
23]. In particular, these papers suggest an approximate
(bi)simulation relation which ensure to group all the
continuous evolutions of an hybrid automaton whose
reciprocal distances are upper bounded. Nevertheless,
our method seems to be more general as it does not dis-
tinguish between continuous and discrete evolutions
and it is based on a new semantics framework which
in theory can be applied to any class of hybrid au-
tomata. As far as other works concerning biological in-
spired hybrid models, we mention here [24] where the
interplay between continuous, discrete and stochastic
aspects in molecular processes is analyzed.

As a “significant” biological example we consider
the Delta-Notch signaling mechanisms. Such mecha-
nism is at the basis of cell differentiation in many bi-
ological systems (e.g., emergence of ciliated cells in
Xenopus embryonic skin [25], sensory cell differenti-
ation in the zebrafish ear [26], and neurogenesis in
Drosophila [27,28]). It relays on the concentrations of
two proteins, Delta and Notch, inside neighboring cells.
In particular, Notch production is triggered by high
Delta levels in neighboring cells, while Delta produc-
tion is triggered by low Notch concentrations in the
same cell. High Delta concentration leads to differenti-
ated cells. If we consider a system involving two cells
starting with the same values of Delta and Notch, the
classical models (both continuous and hybrid) exhibit a
Zeno behavior which never reaches one of the two pos-
sible stable states, i.e., a state in which one of the two
cells is differentiated and the other is not. However, this

is a mathematical artifact which never occurs in Nature
where after a finite amount of time an equilibrium is
always obtained. Using our approach with hybrid au-
tomata and ε-semantics, the Zeno behavior disappears
and, coherently with what one can observe in Nature,
each evolution eventually reaches an equilibrium.

The paper is organized as follows: after giving some
basic definitions in Sections 2 and 3, we present our
proposal in Sections 4, we motivate the use of a limited
but decidable class of hybrid automata to model any
kind of hybrid systems in Section 5, and we illustrate
it on the Delta-Notch biological example in Section 6.
Finally, we comment on our work by comparing it with
some further results from the literature, in Section 7.

This is an extended version of [29].

2 Logics and Theories

In this section, we review the notion of first-order the-
ory. For a more detailed treatment of these notions, the
reader may refer, for example, to [30,31].

A first-order language L is a tuple 〈Var,Const,Funct,
Rel,Ar〉, where Var is a set of variables, Const is a set
of constant values, Funct is a set of functional opera-
tors, Rel is a set of relational symbols, and the “arity”
function Ar : Funct∪Rel→ (N \ {0}) associates to each
element of Funct and Rel the number of arguments it
takes.

A term of L can be defined as:

term ::= X | c | f(term1, . . . , termAr(f))

where X is a variable in Var, c is a constant in Const,
and f is a function in Funct.

An atomic formula ϕa of L has the form > or ⊥ (true
and false, respectively) or R(term1, . . . , termAr(R)), where
R is a relational operator in Rel and termi is a term of
L for all i ∈ [1,Ar(R)]. Moreover, a formula ϕ of L is
defined as follows:

ϕ ::= ϕa | ϕ1 ∨ ϕ2 | ¬ϕ1 | ∀Xϕ1

where ϕa is an atomic formula of L, X is a variable in
Var, and ϕi is a formula of L for all i ∈ {1, 2}. We define
ϕ1 ∧ ϕ2 as a short hand for ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 _ ϕ2

as a short hand for (¬ϕ1) ∨ ϕ2, and ∃Xϕ1 as a short
hand for ¬∀X¬ϕ1. The two symbols ∃ and ∀ are called
quantifiers.

An occurrence of a variable X ∈ Var is bound or quan-
tified in a formula ϕ, if it occurs in a ϕ’s sub-formula of
the kind either ∀X ϕ̄ or ∃X ϕ̄. An occurrence of a vari-
able is free if it is not bound. Modulo renaming we can
safely assume that the variables which occur bound in
a formula do not occur free, and vice-versa. A sentence
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is a formula such that all the variable occurrences are
bound. The set of free variables occurring in the first-
order formula ϕ is denoted by Free(ϕ). We will use the
notation ϕ[X1, . . . , Xm] (ϕ[X], where X = (X1, . . . ,Xm))
to stress the fact that Free(ϕ) includes the set of vari-
ables {X1, . . ., Xm} (the set of components of the vector
X, respectively).

A model or semantics of a language L is a tuple
〈M, Const, Funct, Rel〉, where:

– M is a nonempty set called support;
– Const : Const→ C ⊆M is an interpretation for (the

elements of) Const;
– Funct : Funct→

⋃
∞

k=1

(∏k
i=1 M→M

)
, withFunct (f) :∏Ar(f)

i=1 M→M, is an interpretation for (the elements
of) Funct;

– Rel : Rel →
⋃
∞

k=1

(∏k
i=1 M→ {>,⊥}

)
, with Rel (R) :∏Ar(R)

i=1 M→ {>,⊥}, is an interpretation for (the ele-
ments of) Rel.

LetM be a model of L with support M, ϕ[X1, . . . ,
Xi, . . . ,Xm] be a formula of L, and p ∈ M. The ex-
pression obtained by syntactically replacing Xi by p is
denoted by ϕ[X1, . . . ,Xi−1, p,Xi+1, . . . ,Xn] and, strictly
speaking, is to be intended as obtained after adding a
new constant cp to the language. With a slight abuse
of notation we will use formulæ to also denote such
expressions.

The semantics ofL-formulæ with respect to a model
M is defined in the standard way (see [30,31]). In par-
ticular, we say that a formula ϕa[p1, . . . , pm], where ϕa

is atomic, holds in M if applying the interpretations
of the constant, functional, and relational operators we
obtain the truth value >. The formula ϕ1[p1, . . . , pm] ∨
ϕ2[p1, . . . , pm] holds in M if either the first or the sec-
ond disjunct holds inM. The formula ¬ϕ1[p1, . . . , pm]
holds in M if ϕ1[p1, . . . , pm] does not. The formula
∀Xϕ1[X, p1, . . . , pm] holds in M if for each p ∈ M the
formula ϕ1[p, p1, . . . , pm] holds. We say that a formula
ϕ[X1, . . . ,Xm] in L is satisfiable in M if there exist m
values in M, p1, . . . , pm, such that ϕ[p1, . . . , pm] holds
in M. Moreover, we say that ϕ[X1, . . . ,Xm] is valid if
ϕ[p1, . . . , pm] holds in M for all p1, . . . , pm ∈ M. When
the model M is clear from the context we will sim-
ply say that a formula holds (is satisfiable or is valid,
respectively).

When we speak of models over M, where M is a
nonempty set, we are referring to those models whose
support is M. Moreover, when Const : Const → C
is clear from the context, we use 〈M,C, Funct, Rel〉 to
mean 〈M, Const, Funct, Rel〉.

Given a set Γ of sentences and a sentence ϕ, we say
that ϕ is a logical consequence of Γ (denoted by Γ |= ϕ)
if for each model M it holds that if each formula of

Γ is valid in M (M |= Γ), then ϕ is valid in M. As a
consequence of completeness of first-order logic, we
may equivalently say that ϕ is provable from Γ (see
[30,31]). A theory T is a set of sentences such that if
T |= ϕ, then ϕ ∈ T . Given a language L and a model
M the complete theory T (M) ofM, is the set of all the
sentences of L which are valid in M. Given a model
〈M,C, Funct, Rel〉, we also indicate its complete theory
by either 〈M,C, Funct, Rel〉or 〈M,C, f0, . . . , fn, r0, . . . rm〉,
where Funct = { f0, . . . , fn} and Rel = {r0, . . . , rm}. If
there exists an algorithm for deciding whether a sen-
tence ϕ belongs to T or not, we say that T is decidable.
By analogy, we say that M is decidable, if T (M) is
decidable. It is easy to see that given a model M, its
complete theory T (M) is decidable if and only if both
the satisfiability and the validity of formulæ inM are
decidable.

Example 1 The theory 〈R, 0, 1,+, ∗, <〉 is the first-order
theory of polynomials over the reals and it is also
known as Tarski theory [32]. Such theory is decidable
and many algorithms have been proposed to decide
whether a formula belongs to it or not [33–37].

Notice that any theory defines both syntax and se-
mantics of the corresponding language. For such a rea-
son, from time to time, we refer to a theory T meaning
the language associate to T .

In the rest of this paper we will only refer to theories
of the form T (M) for some modelM.

3 Hybrid Automata

We introduce some notations and conventions. Capi-
tal letters X, X′, Xm, and Xm

′, where m ∈ N, denote
variables ranging over R. Analogously, Z denotes the
vector of variables 〈X1, . . . , Xd〉 and Z′ denotes the vec-
tor 〈X1

′, . . . ,Xd
′
〉. The temporal variables T, T′, T0,. . . ,

Tn model time and range over R≥0. We use the small
letters p, q, r, s, . . . to denote d-dimensional vectors of
real numbers.

We are now ready to define hybrid automata. For
each node of a graph we have an invariant condition
and a dynamic law. The dynamic law may depend on
the initial conditions, i.e., on the values of the contin-
uous variables at the beginning of the evolution in the
state. Jumps from one discrete state to another are reg-
ulated by activation and reset conditions.

Definition 1 (Hybrid Automata - Syntax) A hybrid au-
tomaton H = (Z, Z′, V, E, Inv, F , Act, Res) of dimension
d(H) consists of the following components:

1. Z = 〈X1, . . ., Xd(H)〉 and Z′ = 〈X1
′, . . ., Xd(H)

′
〉 are two

vectors of variables ranging over the reals R;
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2. 〈V, E〉 is a graph. Each element of V will be dubbed
location or mode.

3. Each vertex v ∈ V is labeled by the formula Inv(v) [Z];
4. F is a function assigning to each vertex v ∈ V a

continuous vector field over Rd(H); we will use fv :
Rd(H)

×R≥0 −→ Rd(H) to indicate the solution of the
vector fieldF (v) and Dyn(v)[Z,Z′,T] to identify the
corresponding formula, i.e., Dyn(v)[Z,Z′,T] def

= Z′ =
fv(Z,T);

5. Each edge e ∈ E is labeled by the two formulæ
Act(e)[Z] and Res(e)[Z,Z′].

If Dyn(v), Inv(v), Act(e), and Res(e) are formulæ belong-
ing to the same logic theory T (e.g., the first-order the-
ory of polynomials 〈R, 0, 1,+, ∗, <〉 [32]), then we say
equivalently that the hybrid automaton is definable in
T or that it is a T hybrid automaton.

We present hybrid automaton semantics as tran-
sition systems: given an initial state, we can deduce
the evolution of a hybrid automaton by iteratively ap-
plying of the transition relation which is associated
to the automaton itself. Since hybrid automata have a
double nature, the transition systems defining their se-
mantics contains two different transition relations: the
continuous reachability transition relation and the discrete
reachability transition relation.

Definition 2 (Hybrid Automata - Semantics) A state
` of H is a pair 〈v, r〉, where v ∈ V is a location and
r = 〈r1, . . . , rd(H)〉 ∈ R

d(H) is an assignment of values for
the variables of Z. A state 〈v, r〉 is said to be admissible
if Inv(v) [r] is true.

The continuous reachability transition relation t
−→C be-

tween admissible states, with t ≥ 0 denoting the tran-
sition elapsed time, is defined as follows:

〈v, r〉 t
−→C 〈v, s〉 ⇐⇒

s = fv(r, t), and for each
t′ ∈ [0, t] the formula
Inv(v)

[
fv(r, t′)

]
is true.

The discrete reachability transition relation e
−→D among

admissible states is defined as follows:

〈v, r〉 e
−→D 〈u, s〉 ⇐⇒

e ∈ E, with v and u
source and destination of
e, respectively, and both
Act(e)[r] and Res(e)[r, s] are
true.

We write ` →C `′ and ` →D `′ meaning respectively

that there exists a t ∈ R≥0 such that ` t
−→C `′ and that

there exists a e ∈ E such that ` e
−→D `′. Moreover, we

write `→ `′ to denote that either `→C `′ or `→D `′.
Building upon a combination of both continuous

and discrete transitions, we can formulate a notion of
trace as well as a resulting notion of reachability. A trace
is a sequence of continuous and discrete transitions. A

point s is reachable from a point r if there is a trace
starting from r and ending in s.

Definition 3 (Hybrid Automata - Reachability) Let I
be eitherN or an initial finite interval ofN. A trace of H
is a sequence of admissible states `0, `1, . . . , `i, . . . , with
i ∈ I, such that `i−1 → `i holds for each i ∈ I greater
than zero; such a trace is also denoted by (`i)i∈I.

The automaton H reaches a point s ∈ Rd(H) (in time t)
from a point r ∈ Rd(H) if there exists a trace tr = `0, . . . , `n

of H such that `0 = 〈v, r〉 and `n = 〈u, s〉, for some
v,u ∈ V (and t is the sum of the continuous transitions
elapsed times). In such a case, we also say that s is
reachable from r in H.

A trace produced by an infinite sequence of discrete
transitions during a bounded amount of time is called
Zeno trace and every hybrid automaton allowing such
kind of trace is said to have a Zeno behavior.

Example 2 Let us consider the canonical example of a
hybrid automaton, Hb modeling a bouncing ball whose
collisions are inelastic.

Ż1 = Z2

Ż2 = −g
Z1
′ = Z1

Z2
′ = −γZ2

Fig. 1 Bouncing ball hybrid automaton

Such automaton is provided of two continuous vari-
ables Z1, representing ball’s height, and Z2, represent-
ing ball’s velocity. Fig. 1 presents dynamics, resets, and
discrete structure of Hb, where g and γ are the standard
gravity and the coefficient of restitution, respectively.
The activation formula for the single edge is Z1 = 0.

Fig. 2 represents the evolution of ball’s elevation,
Z1, along time assuming starting height h0 = 10m and
γ = 0.86. It is easy to see that the peak of bounces de-
creases at each iteration and eventually it will become
arbitrarily small. Moreover, the overall bouncing time

converges to
√

2h0
g

( 1+γ
1−γ

)
even if the ball bounces forever

and, thus, the automaton Hb has a Zeno behavior.

Given a hybrid automaton H and trace, tr, of H, a
corresponding path of tr is a path ph obtained by consid-
ering the discrete component of tr.

We are interested in the reachability problem for
hybrid automata, namely, given a hybrid automaton
H, an initial set of points I ⊆ Rd(H), and a final set of
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4.44444 sec 8.88889 sec 13.33333 sec 17.77777 sec

2 m

4 m

6 m

8 m

10 m h0

18.5 sec 18.9 sec

18.93999 sec

Accumulation point

√
2h0
g

(
1+γ
1−γ

)

Fig. 2 Zeno behavior of a bouncing ball.

points F ⊆ Rd(H) we wish to decide whether there ex-
ists a point in I from which a point in F is reachable.
This problem is undecidable on hybrid automata (see,
e.g., [11]). Hence, one could try to identify classes of
hybrid automata over which such problem can be de-
cided. Many non-trivial (or non-degenerate) classes of
hybrid automata for which reachability problem is de-
cidable have been proposed. Multirate automata have
been introduced in [38] as an extensions of timed au-
tomata [39]. Such hybrid automata are characterized by
resets which are either identity or constant function
zero. Moreover, their continuous variables evolve like
clocks with rational rates (i.e., x becomes c · t + x, where
c ∈ Q, in time t). Decidability of reachability problem
for such class had been shown by imposing a restric-
tion on dynamics called simplicity condition. Puri and
Varaiya in [40] introduced rectangular hybrid automata
whose dynamics can be characterized by a differen-
tial inclusion of the type ẋ ∈ [l,u], where l and u are
rational numbers. Even if Kopke proved in [41] that
reachability is, in general, undecidable for such classes
of hybrid automata and that three dimensional rectan-
gular automata have infinite simulation quotient, they
showed that, under a condition called initialized condi-
tion, reachability can be decided.

In general, the reachability problem for T hybrid
automata can be reduced to the satisfiability of a nu-
merable disjunction of formulæ of T itself. In partic-
ular, if H is a T hybrid automaton, then q ∈ Rd(H)

in location v′ is reachable from p ∈ Rd(H) in location
v by H through a trace whose corresponding path
begins in v, ends in v′, and has length at most i, if
and only if the formula Reachi

H(v, v′)[p, q] holds (e.g.,
Reach0

H(v, v) characterizes continuous reachability in lo-
cation v, Reach1

H(v, v′) denotes automaton evolutions
which begin in location v, end in location v′, and cross
at most one discrete edge from v to v′, etc.). However,

even if T is decidable (i.e., there exists an algorithm
to decide whether a formula in T is valid or not), the
reachability problem for T hybrid automata may be
undecidable (see [42]).

Given the above undecidability results, natural ques-
tions arise:

– What is the meaning of these undecidability results when
we model biological systems?

– What happens to our undecidability results if we add to
the semantics natural hypothesis which are consequence
of the fact that we are modeling biological systems?

Let us consider the first question. In the modeling of
biological systems each variable represents the quan-
tity of a reactant (e.g., protein level, gene expression,
. . . ), hence it is reasonable to assume that each variable
ranges over a bounded interval. When we consider hy-
brid automata with bounded invariants, undecidabil-
ity is a consequence of the possibility, usually related
with the presence of a Zeno behavior, of characterizing
regions of arbitrarily small size. In applications this cor-
responds to the ability of measuring with infinite preci-
sion. This is not only unrealistic, but misleading. First,
the continuous quantities used in hybrid automata are
mainly an abstraction of the discrete (large) quantities
involved in biological systems, hence it makes no sense
to use infinite precision. Moreover, one of the most im-
portant features of biological systems is robustness.
This means that small fluctuations have no effects on
the global behavior. Hence, again infinite precision is
unnecessary. Keeping these considerations in mind we
can now turn to our second question.

First we have to consider bounded regions. Bound-
edness immediately calls into play the notion of com-
pactness. In particular, the set of points reachable from
I by H, denoted by RSetH (I), is characterized by

RSetH (I) =
⋃
i∈N

RSeti
H (I) = lim

i→+∞
RSeti

H (I)

where RSeti
H (I) is defined as RSeti

H (I) = {q ∈ Rd(H)
|∃p ∈

I ∃v, v′ ∈ V s.t. Reachi
H(v, v′)[p, q]}, i.e., the sets of points

reachable from I in at most i discrete steps provide a
covering of RSetH (I). If RSetH (I) were compact and for
each i the set RSeti

H (I) had a non-empty interior, then
we would have obtained the decidability of reachabil-
ity. In fact, from each open covering of a compact set
it is possible to extract a finite covering. Unfortunately,
even if we use only closed and bounded sets we cannot
ensure that RSetH (I) is closed. Here, our considerations
about measuring precision come into play. Even if we
do not have compact sets, the boundedness hypothesis
together with finite precision provide the following re-
sult. Given a set S, let B (S, ε) = {q |∃p ∈ S s.t. d(p, q) < ε},
where d(p, q) is the standard Euclidean distance.
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Lemma 1 Let S ⊆ Rd(H) be a bounded set such that S =
∪i∈NDi, with either Di = D j or Di ∩D j = ∅. If there exists
ε > 0 such that for each i ∈ N there exists ai ∈ Rd(H)

such that B ({ai}, ε) ⊆ Di, then there exists j ∈ N such that
S =

⋃
i≤ j Di holds.

Proof Let us assume by contradiction that ∪i≤ jDi ⊂ S
holds for each j ∈ N. Since S = ∪i∈NDi, for each j ∈ N
and each i ≤ j, there exists k > j such that Dk , Di

and Dk ∩ Di = ∅. Let Bk = B ({ak}, ε) ⊆ Dk. We consider
the succession (sn)n∈N defined as s0 = B0 and s j = Bk,
with j and k as previously described. The above con-
siderations ensure that sn is properly defined for all
n ∈ N. By construction, all the sets sn’s are disjoint
and ∪n∈Nsn ⊆ S. Let µ be the Lebesgue measure over
Rd(H), we have that µ(∪n∈Nsn) =

∑
n∈N µ(sn) =

∑
n∈N b,

where b = µ(B ({ak}, ε)) > 0 for all k ∈ N. Hence,
µ(S) ≥ µ(∪n∈Nsn) = +∞ which contradicts the fact that
S is bounded. Hence, the thesis holds.

Intuitively this means that if we cannot measure
sets which are “smaller” than ε and we are working
on bounded regions, then only a finite number of mea-
surements is necessary.

Embedding the above lemma into our context we
get the following theorem.

Theorem 1 Let T be a decidable first-order theory over
the reals and H be a T hybrid automaton with bounded
invariants. If there exists ε > 0, such that, for each I ⊆
Rd(H) and for each i ∈ N, either RSeti+1

H (I) = RSeti
H (I) or

there exists a ai ∈ Rd(H) such that B ({ai}, ε) ⊆ RSeti+1
H (I) \

RSeti
H (I), then there exists j such that RSetH (I) = RSet j

H (I)
and the reachability problem over H is decidable.

Proof It is not restrictive to assume that the invariants
are pairwise disjoint. This can be simply realized by
adding one dummy continuous variable whose value
represents the current location.

Let us consider the sets D0 = RSet0
H (I) and Di+1 =

RSeti+1
H (I) \ RSeti

H (I). We have that the sets Di are dis-
joint. Moreover, ∪i∈NDi = RSetH (I) is bounded, since it
is included in bounded invariants. By Lemma 1, there
exists j such that RSetH (I) =

⋃
i≤ j Di. As a consequence,

we get that the set RSetH (I) is equal to
⋃

i≤ j RSeti
H (I).

Moreover, since, by definition, RSetk
H (I) is the set of

points reachable from I with at most k discrete transi-
tions, RSetk

H (I) ⊆ RSetk+1
H (I) for each k ∈N and RSet j

H (I)
is such that RSetH (I) = RSet j

H (I).
As far as decidability is concerned, we have that the

sets RSeti
H (I) are computable sinceT is decidable and H

is a T hybrid automaton. Moreover, since we assumed
disjoint invariants, it is easy to see that RSetH (I) =
RSetk

H (I) if and only if RSetk
H (I) = RSetk+1

H (I). Hence,

to compute RSetH (I), we compute all the RSeti
H (I) until

we reach the fix-point RSet j
H (I).

The above result finds interesting applications when
it makes no sense to distinguish measurements which
differ for less than ε. In such cases we have the de-
cidability of reachability, even though a full-precision
analysis could lead to (Zeno behavior and) undecid-
ability. On the one hand, biological systems can some-
how naturally produce such situations when, for ex-
ample, bi-stability is expected. On the other hand, bi-
stability is a typical situation in which the continu-
ous/discrete modeling capability of hybrid systems is
most effectively used (see [43,44]). A paradigmatic ex-
ample of Zeno behavior arising in a context of a bi-
stable system eliminated through the use of ε-semantics,
is given in Section 6.

4 Finite Precision Semantics

We are interested in distinguishing only between sets
which differ for “at least ε”. The hybrid automaton
characterization based on formulæ enables us to change
the semantics of semi-algebraic automata by modifying
semantics of first-order formulæ defining them. Hence,
we can achieve our goal by giving to each formula a
semantics “of dimension at least ε”.

Let us consider the following general semantics.

Definition 4 (ε-Semantics) Let T be a first order the-
ory and let ε ∈ R>0. For each formula ψ on T let{∣∣∣ψ∣∣∣}

ε
⊆ Rd, where d is the number of free variables

of ψ, be such that:

(ε) either
{∣∣∣ψ∣∣∣}

ε
= ∅ or there exists p ∈ Rd such that

B
(
{p}, ε

)
⊆

{∣∣∣ψ∣∣∣}
ε
;

(∩)
{∣∣∣ψ1 ∧ ψ2

∣∣∣}
ε
⊆

{∣∣∣ψ1

∣∣∣}
ε
∩

{∣∣∣ψ2

∣∣∣}
ε
;

(∪)
{∣∣∣ψ1 ∨ ψ2

∣∣∣}
ε

=
{∣∣∣ψ1

∣∣∣}
ε
∪

{∣∣∣ψ2

∣∣∣}
ε
;

(∀)
{∣∣∣∀Xψ

[
X,Z

]∣∣∣}
ε

=
{∣∣∣∧r∈R ψ

[
r,Z

]∣∣∣}
ε
;

(∃)
{∣∣∣∃Xψ

[
X,Z

]∣∣∣}
ε

=
{∣∣∣∨r∈R ψ

[
r,Z

]∣∣∣}
ε
;

(¬)
{∣∣∣ψ∣∣∣}

ε
∩

{∣∣∣¬ψ∣∣∣}
ε

= ∅.

Any semantics satisfying the above conditions is said
to be an ε-semantics for T .

We can now use such a general semantics to guide our
reachability algorithm. The idea is that, since the se-
mantics of our formulæ is either empty or it contains
at least a set of the form B

(
{p}, ε

)
, our algorithm termi-

nates when the formula characterizing the new reached
points has empty semantics, i.e., when we do not reach
enough new points. Let I be a set of points included
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in the invariants and characterized by the first-order
formula ψ[Z], i.e., I =

{∣∣∣ψ[Z]
∣∣∣}
ε
. Consider Algorithm 3

whose goal is to determine the the points reachable
from I with respect to the ε-semantics {|·|}ε.

Algorithm 1 Init(H, ψ[Z])
Ensure: R(v) [Z] = ψ[Z] ∧ Inv(v)

[
Z
]

and N(v) = ⊥.
1: for all v ∈ V do
2: R(v)

[
Z
]
← ψ[Z] ∧ Inv(v)

[
Z
]

3: N(v)← ⊥
4: end for
5: return 〈R,N〉

The variables R(v)
[
Z
]
, N(v)

[
Z
]
, and C(v)

[
Z
]

main-
tain the formulæ denoting the reach set from begin of
the computation, the reach set from

{∣∣∣R(v)
[
Z
]∣∣∣}
ε

admit-
ting at most one discrete step, and the set of points
which are reached for the first time by the last iteration
in location v, respectively. At the beginning of the com-
putation, the points reachable by H from

{∣∣∣ψ[Z]
∣∣∣}
ε

are
the points which both satisfy invariants and are “reach-
able” with neither discrete nor continuous transitions.
Hence, Algorithm 1 setsψ[Z] toψ[Z]∧Inv(v)

[
Z
]
, while

poses the newly reached points to {|⊥|}ε, i.e., to the
empty set. At the i-th iteration of the algorithm, the
reach set is added of the points which are reachable
from ψ[Z] through a sequence of transitions contain-
ing at most i − 1 discrete transitions. In particular,{∣∣∣R(v)

[
Z
]∣∣∣}
ε

is augmented by the points which are de-
noted by N(v) at the (i − 1)-th iteration (line 2 of Al-
gorithm 2). After that, N(v)

[
Z
]

is assigned by line 5 of
Algorithm 2 to represent the points reachable from the
set

{∣∣∣R(v)
[
Z
]∣∣∣}
ε

with at most one discrete transition, i.e.,
the set of points reachable from ψ[Z] by using at most i
discrete transitions. Finally, the repeat-until condition
at line 7 imposes to increase the number of allowed dis-
crete transitions used during the reachability evolution
until a fixed point is reached.

Algorithm 2 ReachStep(H,R,N)

Require:
{∣∣∣N(v)

[
Z
]∣∣∣}
ε
∪

{∣∣∣R(v)
[
Z
]∣∣∣}
ε
⊆

{∣∣∣Inv(v)
[
Z
]∣∣∣}
ε
.

Ensure:
{∣∣∣N(v)

[
Z
]∣∣∣}
ε
∪

{∣∣∣R(v)
[
Z
]∣∣∣}
ε
⊆

{∣∣∣Inv(v)
[
Z
]∣∣∣}
ε
.

1: for all v ∈ V do
2: R(v)

[
Z
]
← R(v)

[
Z
]
∨N(v)

[
Z
]

3: end for
4: for all v ∈ V do
5: N(v)

[
Z
]
←

∨
v′∈V

(
∃Z′

(
R(v′)

[
Z′

]
∧ Reach1

H(v′, v)[Z′,Z]
))

6: end for
7: return 〈R,N〉

Notice that, in all the presented algorithms, the right
hand sides of assignments are variables representing
formulæ and the assignments are syntactic operations.
Namely, they consist in building the formula at the
right side of the assignments themselves. For instance,
the instruction at line 5 of Algorithm 3 assigns the for-
mula

(
φ1 ∧ ¬φ2

)
, where φ1 and φ2 are the formulæ

in N(v)
[
Z
]

and R(v)
[
Z
]
, respectively, to the variable

C(v)
[
Z
]
. The only formula evaluation performed by

the algorithm is at line 7 and, for such a reason, the
semantics {|·|}ε is not a parameter of either Algorithm 1
or Algorithm 2.

Algorithm 3 Reachability(H, ψ[Z], {|·|}ε)

Ensure:
{∣∣∣R(v)

[
Z
]∣∣∣}
ε
⊆

{∣∣∣Inv(v)
[
Z
]∣∣∣}
ε

for all v ∈ V.
1: 〈R,N〉 ←Init(H, ψ[Z])
2: repeat
3: 〈R,N〉 ← ReachStep(H,R,N)
4: for all v ∈ V do
5: C(v)

[
Z
]
← (N(v)

[
Z
]
∧ ¬R(v)

[
Z
]
)

6: end for
7: until

{∣∣∣∨v∈V C(v)
[
Z
]∣∣∣}
ε

= ∅

8: return R

All sets characterized by the formulæ occurring in
our algorithm are included in the invariants and are
monotonically growing in size of at least ε at each it-
eration. Hence, our algorithm always terminates, if the
invariants are bounded. We recall that a semanticsM
is decidable, if T (M) is decidable.

Theorem 2 LetT be a first-order theory over the reals, H be
aT hybrid automaton, and let {|·|}ε be a decidable ε-semantics
forT . If H has bounded invariants, i.e., {|∨v∈VInv(v) [Z]|}ε is
bounded, then Algorithm 3 always terminates and computes
the reachability set of H from

{∣∣∣ψ∣∣∣}
ε

with respect to {|·|}ε.

Proof If we prove that {|∨v∈VC(v) [Z]|}ε is a covering
of a subset of {|∨v∈VInv(v) [Z]|}ε, then we can exploit
Lemma 1 and Theorem 1 to prove termination.

It is not restrictive to assume that the invariants
are pairwise disjoint, i.e., {|Inv(v) [Z]|}ε ∩ {|Inv(v′) [Z]|}ε
is empty set for all v, v′ ∈ V with v , v′. This can
be simply realized by adding one dummy continuous
variable whose value represents the current location.

First we prove that, at each iteration of Algorithm 3,
{|∨v∈VC(v) [Z]|}ε is a subset of {|∨v∈VInv(v) [Z]|}ε. Algo-
rithm 2 is called at line 3 of Algorithm 3. It assigns the
formulæ R(v) [Z] ∨ N(v) [Z] and ∨v′∈V(∃Z′(R(v′) [Z′]∧
Reach1

H(v′, v)[Z′,Z])) to R(v) [Z] and N(v) [Z], respec-
tively. By items (∃) and (∩) of Definition 4, {|N(v) [Z]|}ε
is subset of

⋃
v′∈V

⋃
r∈R {|R(v′) [r]|}ε and, by item (∪),

the set {|R(v) [Z]|}ε is equal to {|R(v) [Z]|}ε ∪ {|N(v) [Z]|}ε.
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Thus, if both {|R(v) [Z]|}ε and {|N(v) [Z]|}ε are subset of
{|Inv(v) [Z]|}ε before the execution of the Algorithm 2,
then they are its subsets also after the execution. Since
the execution of Algorithm 1 sets R(v) [Z] and N(v) [Z]
to ψ[Z]∧ Inv(v) [Z] and⊥, respectively, after the execu-
tion of Algorithm 1, {|R(v) [Z]|}ε is a subset of {|Inv(v) [Z]|}ε,
by item (∩) of Definition 4, and {|N(v) [Z]|}ε = {|⊥|}ε =
∅ ⊆ {|Inv(v) [Z]|}ε. Thus, by induction on the number i of
iterations, along the execution of the repeat-until of Al-
gorithm 3, {|R(v) [Z]|}ε ⊆ {|Inv(v) [Z]|}ε and {|N(v) [Z]|}ε ⊆
{|Inv(v) [Z]|}ε. In particular, at each execution of line 5,
{|C(v) [Z]|}ε becomes a subset of {|Inv(v) [Z]|}ε by item
(∩) of Definition 4 and, finally, the set {|∨v∈VC(v) [Z]|}ε
is included {|∨v∈VInv(v) [Z]|}ε by item (∪). It follows
that the set {|∨v∈VC(v) [Z]|}ε is a covering of a subset of
{|∨v∈VInv(v) [Z]|}ε and, since {|∨v∈VInv(v) [Z]|}ε is bounded
by hypothesis, {|∨v∈VC(v) [Z]|}ε is bounded also.

Let us denote {|C(v) [Z]|}ε, {|N(v) [Z]|}ε, {|R(v) [Z]|}ε, and
{|∨v∈LocC(v) [Z]|}ε at the i-th iteration of the Algorithm 3
with Ci(v), Ni(v), Ri(v), and Ci, respectively. In order
to satisfy the hypothesis of both Lemma 1 and Theo-
rem 1, we have now to prove that (1) Ci is either empty
set or includes a ball of radius ε > 0 for all i ∈N and (2)
Ci∩C j is empty for all j > i. Statement (1) holds because
of item (ε) of Definition 4. Concerning statement (2), by
line 5 of Algorithm 3 and by both items (∩) and (¬) of
Definition 4, C j(v) is included into N j(v) and is disjoint
from R j(v). However, by line 2 of Algorithm 2 and item
(∪) of Definition 4, it is easy to prove by induction on
j − i that R j(v) ⊇ Ri(v) ∪Ni(v) for all j > i. Hence, C j(v)
is disjoint from Ri(v) ∪Ni(v) and Ci(v) ∩ C j(v) is empty
set for all j > i. Moreover, since {|C(v) [Z]|}ε is subset
of {|Inv(v) [Z]|}ε as proved above and {|Inv(v) [Z]|}ε and
{|Inv(v′) [Z]|}ε are disjoint by assumption for all v, v′ ∈ V

with v , v′, it follows that Ci(v) and C j(v′) are pairwise
disjoint for all j > i ∈ N and v, v′ ∈ V with v , v′. The
sets∪v∈VCi(v) and∪v∈VC j(v) are disjoint and Ci∩C j = ∅
for all j > i. Thus, we can apply Lemma 1 and Theo-
rem 1 and deduce both termination and correctness of
Algorithm 3.

Since we are going to propose a new semantics, it is
important to recall that, even if>,≤, and≥ are all defin-
able in any theory having as relational symbol <, they
are actually syntactic shortcuts and are not provided of
a real stand-alone semantics. In particular, x > y is syn-
tactically equivalent to y < x, x ≤ y stands for ¬(x > y),
and x ≥ y is used in place of y ≤ x.

In the following, given a first-order theory over the
reals,T , and any formulaψ inT ,

[∣∣∣ψ[Z]
∣∣∣] will denote the

set of points satisfying ψ[Z] in the standard semantics,
i.e.,

[∣∣∣ψ[Z]
∣∣∣] =

{
p |ψ[p] ∈ T

}
. Let us now try to instantiate

our general schema.

Definition 5 (Sphere Semantics) LetT be a first-order
theory over the reals and let ε > 0. The set

[∣∣∣ψ∣∣∣]
ε

is
defined by structural induction on ψ as follows:

– [|t1 ◦ t2|]ε = B ([|t1 ◦ t2|], ε), for ◦ ∈ {=, <};
–

[∣∣∣ψ1 ∧ ψ2

∣∣∣]
ε

=
⋃

B({p},ε)⊆[|ψ1|]ε∩[|ψ2|]ε B
(
{p}, ε

)
;

–
[∣∣∣ψ1 ∨ ψ2

∣∣∣]
ε

=
[∣∣∣ψ1

∣∣∣]
ε
∪

[∣∣∣ψ2

∣∣∣]
ε
;

–
[∣∣∣∀Xψ

[
X,Z

]∣∣∣]
ε

=
[∣∣∣∧r∈R ψ

[
r,Z

]∣∣∣]
ε
;

–
[∣∣∣∃Xψ

[
X,Z

]∣∣∣]
ε

=
[∣∣∣∨r∈R ψ

[
r,Z

]∣∣∣]
ε
;

–
[∣∣∣¬ψ∣∣∣]

ε
=

⋃
B({p},ε)∩[|ψ|]ε=∅ B

(
{p}, ε

)
.

Example 3 Let us consider the formula 1 < X < 5 and
ε = 0.1. We have that [|1 < X < 5|]ε = [|1 < X ∧ X < 5|]ε =
(0.9, 5.1), hence, in this case the sphere semantics over
approximates the standard one. If we consider the for-
mula¬(1 < X∧X < 5) we get that [|¬(1 < X ∧ X < 5)|]ε =
(−∞, 0.9) ∪ (5.1,+∞) which is an under approximation
of the standard semantics.

Notice that, if t1 ≤ t2 was a shortcut for (t1 <
t2) ∧ (t1 = t2), the above formula would not be “sphere
equivalent” to the formula X ≤ 1∨5 ≤ X, as the sphere
semantics of the latter would be [|X ≤ 1 ∨ 5 ≤ X|]ε =
(−∞, 1.1) ∪ (4.9,+∞). However, since as argued above
t1 ≤ t2 stands for ¬(t2 < t1), the formula X ≤ 1 ∨ 5 ≤ X
is a shortcut for ¬(1 < X) ∨ ¬(X < 5) and its semantics
is (−∞, 0.9)∪ (5.1,+∞) which is precisely the semantics
of ¬(1 < X ∧ X < 5). Moreover, the formula X = 5 is
syntactically equivalent to ¬(5 < X) ∧ ¬(X < 5) whose
ε sphere semantics is ∅.

At the light of above example, it is clear that the for-
mulæ to be used in the automata have to be carefully
analyzed to avoid wrong modeling due to classical as-
sumptions which fails with respect to ε-semantics.

It is easy to see that sphere semantics [|·|]ε satisfies
the requirements of Definition 4 and is an ε-semantics.

Example 4 As already noticed above, Example 2 reports
a hybrid automaton having a Zeno behavior. In partic-
ular, the height of bounces decreases at each iteration
and eventually it will become arbitrarily small. By us-
ing the proposed semantics, from a certain time on, the
ball will “reach” all the points in {y ∈ B

(
{y′}, ε

)
| 0 ∈

B
(
{y′}, ε

)
}. Such behavior avoids the need of further in-

vestigations on the reachable region from that time on
and faithfully represents the real physics of the ball.

The accuracy of the proposed model relays on ε.
For instance, if we choose an ε greater than γ, then the
bounce’s height would increase and, hence, this would
not be a proper model. The smaller is ε the tighter is
the model behavior to the real world physics. Never-
theless, to avoid Zeno behaviors, ε must be greater 0.
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A different ε-semantics, (|·|)ε, can be defined as:

(∣∣∣φ∣∣∣)
ε

def
=

∪B({p},ε)⊆[|φ|]B
(
{p}, ε

)
if φ is t1 < t2 or t1 = t2[∣∣∣φ∣∣∣]

ε
otherwise

Such new semantics under-approximates the standard
semantics of predicates like t1 < t2, whereas sphere se-
mantics tends to over-approximate them. However, as
noticed also for sphere semantics, (|·|)ε is neither an over-
approximating nor an under-approximating seman-
tics. For instance, the set

(∣∣∣2 ∗ X2 < ε2
∣∣∣)
ε

= ∅ is an under-

approximation of
[∣∣∣2 ∗ X2 < ε2

∣∣∣], while
(∣∣∣¬(2 ∗ X2 < ε2)

∣∣∣)
ε

over-approximates
[∣∣∣¬(2 ∗ X2 < ε2)

∣∣∣]. We leave further
investigations on the set of ε-semantics, i.e., on its ele-
ments and on their relationships as future work.

5 Semi-Algebraic Theory and ε-Semantics

The results reported in Section 4 provides an algo-
rithm to compute the reachability set of a T hybrid
automaton with respect to any decidable ε-semantics
over T . However, the most expressive first-order the-
ory over the reals which is known to be decidable is
the semi-algebraic theory, whose terms are inequalities
of polynomials (see [32]), and even the decidability
of the exponential theory, whose terms are inequali-
ties of polynomials and exponential formulæ, is still
an open problem [45]. Because of such considerations,
one could conclude that both ε-semantics and Algo-
rithm 3 cannot be used to reason about real systems
whose continuous dynamics are usually represented
by complex differential equations such as, for instance,
Michaelis-Menten kinetics. Luckily, this is not the case.

Our main goal is to increase the fidelity of our mod-
els by avoiding the un-natural ability of distinguish too
close points and, in particular, we do not want to dis-
criminate evolutions which differ for a quantity smaller
than a fixed ε. By Taylor’s approximation, any differen-
tiable function f can be approximated on a given inter-
val I with a maximum error γ by a polynomial p(I, γ, f ).
Hence, if we admit a limited time horizon th, for any
ε, we can approximate any differentiable function f (t)
(e.g., Michaelis-Menten) by a polynomial p(t) such that
‖ f (t) − p(t)‖ < ε for all t ∈ [0, th]. It follows that p(t) and
f (t) cannot be distinguished by any ε-semantics and we
can use p(t) in place of f (t) to represent the its evolution
for all t ∈ [0, th]. Practically, once we have chosen ε, we
can replace every differentiable dynamics, f , by its Tay-
lor approximation, pT, whose degree is high enough to
ensure that the corresponding Lagrange remainder is
smaller than ε itself in t ∈ [0, th]. This guarantees us that
f and pT cannot be distinguished by any ε-semantics.

Let us consider the class of semi-algebraic hybrid au-
tomata [14,42], i.e., the class of hybrid automata defin-
able in the Tarski theory (i.e., the theory of polynomials
over the reals). As we notice above, if we adopt any ε-
semantics, all the possible dynamics (differentiable re-
set functions) can be modeled by using an opportune
formula in 〈R, 0, 1,+, ∗, <〉. Hence, semi-algebraic hy-
brid automata are enough to model any hybrid system
according the framework proposed in this paper.

Intriguingly, both [|·|]ε and (|·|)ε of Tarski theory are
definable in Tarski theory itself. For instance, the set[∣∣∣ψ1[Z] < ψ2[Z]

∣∣∣]
ε

is definable by the semi-algebraic for-
mula ∃Z′ ψ1[Z′] < ψ2[Z′] ∧ d(Z,Z′) < ε, while the two
sets

(∣∣∣ψ1[Z] < ψ2[Z]
∣∣∣)
ε

and [|∃Z′(∀Z′′ d(Z′,Z′′) < ε _
ψ1[Z′′] < ψ2[Z′′]) ∧ Z′ = Z|] are the same. Since Tarski
theory is decidable, both [|·|]ε and (|·|)ε on 〈R, 0, 1,+, ∗, <〉
are also decidable and the next theorem immediately
follows.

Lemma 2 If H is a semi-algebraic hybrid automaton with
bounded invariants, then Algorithm 3 on both [|·|]ε and (|·|)ε
terminates.

Proof The first part is immediate. The second part is a
consequence of Theorem 2.

6 Modeling of Biological Systems

In order to prove the effectiveness of ε-semantics, let us
consider the Delta-Notch mechanism (see [46]). Delta
and Notch are transmembrane proteins that are at the
basis of cells differentiation and signal when cells are
in direct contact. Notch production is triggered by high
Delta levels in neighboring cells, while Delta produc-
tion is triggered by low Notch concentrations in the
same cell. High Delta concentration leads to differenti-
ated cells and low Delta levels to undifferentiated ones.
The Delta-Notch signaling mechanism has attracted
the attention of many researchers, since it is the core of
biological pattern formation. The mathematical model
for Delta-Notch signaling, presented in [46], has been
rephrased in terms of hybrid automata in [47,48] and
approximated by a piecewise affine hybrid automaton
in both [48] and [49]. As observed by the authors, the
hybrid automaton representing the two cells model has
a Zeno behavior which is “vestige of the mathematical
model and not observable in nature due to noise” [47].
The one cell model has and two continuous variables,
XD and XN, representing Delta and Notch concentra-
tions, respectively. Moreover, it is provided with four
discrete states, q1, q2, q3, and q4, characterizing all the
possible combinations of high/low concentration lev-
els for Delta and Notch. Figure 3 partially depicts the
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model suggested in [47]. Invariant conditions are rect-
angular regions depending on concentration levels in
the cell and in its neighbors and resets are identity func-
tions. All the details, including a full description for
both activations and invariants, can be found in [47].

q1 q2

q3 q4

ẊD = −λDXD

ẊN = RN − λNXN

ẊD = RD − λDXD

ẊN = RN − λNXN

ẊD = RD − λDXD

ẊN = −λNXN

ẊD = −λDXD

ẊN = −λNXN

Fig. 3 One cell Delta-Notch model.

The two-cells automaton is the Cartesian product of
two one-cell models. It has two feasible equilibria cor-
responding to high Delta in the first cell and low in the
second one and vice-versa. No matter which are the dy-
namical laws, it also exhibits a Zeno behavior: the au-
tomaton cycles on path 〈q4, q4〉, 〈q3, q3〉, 〈q1, q1〉, 〈q2, q2〉

in the case of two cells with identical initial concentra-
tions. However, this is an artifact of the mathematical
model. In Nature, two cells will always reach one of
the equilibrium points in a finite amount of time, since
it is not reasonable to have the two cells exhibiting the
same concentrations forever.

As noticed in Section 5, the dynamics of above hy-
brid automata can be exactly represented by polyno-
mials with respect to any ε-semantics. In particular,
if we fix th as maximum evolution time and, for all
t ∈ [0, th], it holds that ε > (−λN)n(RN−λNXN)

(n+1)! tn+1, then
ẊN = RN − λNXN and

X′N = XN +

n−1∑
i=0

(−λN)i(RN − λNXN)
(i + 1)!

Ti+1

are equivalent with respect to any ε-semantics, i.e.,
there is no ε-semantics which can distinguish them.
Analogously, we can write polynomial dynamics which
are equivalent to ẊN = −λNXN, ẊD = RD − λDXD,
and ẊD = −λDXD. Hence, the above models can be
rephrased into equivalent semi-algebraic hybrid au-
tomata whose evolutions cannot be distinguished by
any ε-semantics (e.g., [|·|]ε or (|·|)ε). If we investigate the
semi-algebraic hybrid automaton corresponding to the

two-cells model and we endow it with ε-semantics, the
Zeno behavior disappears. As a matter of facts, even if
we start from a point, p, of the form 〈xD, xN, xD, xN〉, as
soon as the first transition is taken, an ε-neighborhood
of p is reached, and, since such kind of set always in-
cludes at least one point of the form 〈xD, xN, yD, yN〉,
with xD , yD and xN , yN, we known that from such
a point we will eventually reach equilibrium. In par-
ticular, because of neighborhood symmetry, both the
equilibria will be reached. This is consistent with what
we would expect. Since, it is almost impossible to start
with two cells with the same concentrations, this means
that our measures of the concentrations are not precise
enough to determine the differences in the concentra-
tions. Hence, we only know that we will reach one of
the equilibria, but not which one. Moreover, even if we
assume that we can really start with the same concen-
trations in both cells, due to small perturbations (e.g.,
in the decay of the proteins), such situation will not
hold forever. This again means that we do not know
when, why, and which, but one of the equilibria will
be eventually reached.

7 Conclusions and Discussion

Hybrid automata allow to reason on continuous quan-
tities and to exploit a large and powerful set of tech-
niques inherited from mathematical analysis. How-
ever, such continuous quantities are, in Systems Biol-
ogy context, over approximations of a discrete (huge)
number of molecules. Hence, while on the hybrid au-
tomaton we can reason with infinite precision, on the
biological system we cannot go behind the precision of
one molecule. This difference does not only introduce
in the hybrid model unrealistic behaviors, but soon
leads to undecidability. In fact, we end up with a weird
model in which the more intractable behaviors are ex-
actly the unrealistic ones. Starting from such analysis,
we presented alternative semantics, called ε-semantics,
which allow to give a more faithful representation of
biological systems by reasoning up to limited precision.

In [50] similar considerations are posed from a dif-
ferent perspective: “real hybrid systems are always
subject to noise”. To model such noise the author in-
troduced a disturbed variant H̃ of the original automa-
ton H and proved that all the states reachable from H
are reachable in H̃ after a finite number i of discrete
steps. Since i is computable, the reachability problem
over H can be effectively over-approximated. However,
the decidability of the reachability problem over either
the original automaton or on the disturbed one is not
guaranteed. In Fränzle framework it is not interest-
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ing to study the reachability problem on the disturbed
automaton H̃, since it is only functional to the over-
approximation of the reachability problem on H and,
hence, it is more reasonable to stop the computation
of Reach(H̃)(I, i) as soon as this set includes Reach(H)(I).
The semantics we proposed in this paper instead are
neither over nor under approximating and try to intro-
duce in our model a finite precision ingredient. Once
established which ε-semantics is more suitable for a
particular application it is necessary to reason only in
terms of such ε-semantics and forget about the classi-
cal one. In fact, our semantics does not only affect the
continuous dynamics as in the case of [50], but all the
interpretations of the formulæ involved in the automa-
ton. We start from the assumption that we are model-
ing robust systems and we try to embed robustness in
the semantics, while Fränlzle analyzes also non-robust
systems and proves that robustness is undecidable.

Many other approaches, which avoid undecidabil-
ity by introducing approximations, have been proposed
in the literature (see, e.g., [51,52,19]). In these works
the space is a-priori discretized and such discretization
is used to perform the reachability computation. Intu-
itively, when over approximations are concerned this
can be seen as putting a grid on the space and marking
as reachable a square of the grid as soon as at least a
point in the square is reached. In these pictorial terms
we can read our approach as follows: instead of having
a fixed grid we have a lens allowing us to see only ob-
jects of size at least ε. The ε-semantics establishes the
size of each object by fixing the size of the basic ones
and of their combinations. Then what we have to do
is to follow the dynamics with our lens and to stop
looking as soon as we cannot see anything new.

There are three main reasons to adopt the proposed
framework: first of all, provided the decidability of
the ε-semantics of a theory T , the reachability prob-
lem over T hybrid automata with bounded invariants
with respect to the ε-semantics is decidable. Moreover,
Zeno behaviors, which are at the ground of the differ-
ence between practice and theory in the modeling of
biological systems with hybrid automata, are not pos-
sible in the proposed framework. Last, but not least,
since ε-semantics cannot distinguish too close evolu-
tions, semi-algebraic theory can model any kind of dy-
namics exactly with respect to ε-semantics themselves.

Such last point, together with the observation that
many ε-semantics for semi-algebraic hybrid automata
are semi-algebraic also, opens new scenarios about au-
tomatic deduction in Systems Biology and Bioinfor-
matics analysis. In particular, it means that ε-semantics
enable us to both model any biological system by us-
ing semi-algebraic hybrid automata and apply Model

Checking techniques, such as reachability computa-
tion, being confident in the solvability of the inves-
tigated decision problem. Unfortunately, the most ef-
ficient known decision algorithm for Tarski theory is
more that exponential with respect to both formula
size and number of variables [36]. Hence, because of
the chosen quantum ε or because of their complexity,
many systems cannot be currently investigated in an
efficient way by using the proposed method. However,
specific ε-semantics decision algorithms have not been
investigated yet and we hope, in the future, to iden-
tify relevant ε-semantics with low complexity decision
methods.
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