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8 Annex: Case studies

8.1 Geomorphic change detection in Gadria-Strimm and
Moscardo catchments, Italy (PP4)

M. Cavalli!, B. Goldin!, S. Crema?, F. Brardinoni'?, L. Marchi!, G. Blasone?,
F. Cazorzi®

1 CNR IRPI, Padova (PP4)
2 University of Milano-Bicocca
3 University of Udine

8.1.1 Introduction

Methods devoted to the assessment of geomorphic changes can be used to
identify geomorphologically unstable areas, to quantify processes intensity,
and to compute sediment budgets. Digital elevation models (DEMs) built
from repeated topographic surveys can be used to produce DEM of
Difference (DoD) maps whose analysis allows to study morphological
changes in slopes and channels from the quantitative (scour and fill
changes in volume) and the qualitative (spatial patterns of erosion and
deposition) perspectives (Scheidl et al., 2008; Theule et al., 2012; Picco et
al., 2013). The activity carried out by CNR IRPI (PP4) in the frame of the
SedAlp project focused on the analysis of multi temporal high-resolution
Digital Terrain Models (DTMs) derived by Airborne and Terrestrial LiDAR.
The aim is to analyse surface changes due to erosion and deposition in a
bedload and two debris-flow prone basins in the Eastern Italian Alps
(Strimm, Gadria and Moscardo pilot areas). The analysis was carried out at
different temporal and spatial scales basically related to the typology of the
adopted surveying method. In Gadria and Strimm catchments, where two
airborne LIDAR (2005 and 2011) are available, geomorphic changes
induced by debris flows and landslides were investigated at catchment
scale. DoD results have been then compared with field estimations stored
in a historical database. In the Moscardo catchment, Terrestrial Laser
Scanner (TLS) has been used to survey three representative areas of the
catchment in a small time window (August 2011-October 2012). Results of
volumetric budgets of the surveyed sediment source areas derived from
DoD analysis have been compared with debris-flow volumes estimated
from flow stage measurements at the instrumented channel reach.

www.sedalp.eu

Sediment management in Alpine basins



8.1.2Study areas

8.1.2.1 Strimm and Gadria catchments

The Strimm and Gadria catchments are two adjacent basins located in the
upper Vinschgau-Venosta valley (Eastern Alps, Italy) (Figure 8-1 and Table
8-1). Gadria and Strimm creeks join at a filter check dam located near the
apex of their large alluvial fan (10.9 km2). The combination of steep
topography, highly deformed-fractured metamorphic rocks and thick glacio-
fluvial deposits, sets the conditions for chronic debris-flow activity within
the Gadria channel network (Comiti et al., 2014.). The Strimm is
essentially a bedload stream in which debris flows occur only in the
steepest parts of the catchment and rarely in a few sectors of the main
channel (Cavalli et al., 2013). A monitoring station was installed in 2011 in
the Gadria for monitoring debris flows and testing warning procedures
(Comiti et al., 2014).
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Figure 8-1: Location map of Gadria and Strimm catchments (Comiti et al., 2014)
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8.1.2.2 Moscardo torrent

The Moscardo catchment is a debris-flow prone basin located in Friuli
Venezia Giulia (Eastern Alps, Italy) (Figure 8-2 and Table 8-1). A debris-
flow monitoring system has been in operation in the Moscardo Torrent
since 1989 (Marchi et al., 2002). The presence of a deep-seated
gravitational deformation at the valley head, the low rock mass quality and
its highly shattered state make the steep slopes of the basin prone to
rockfalls and shallow slope failures that supply large amounts of debris to
the channel. Large sediment source areas are present in the upper part of
the basin and along the main channel. Debris-flow initiation points can vary
from event to event, being generally located at the head of the main
channel.
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Figure 8-2: Location map of the Moscardo Torrent basin. (1) Instrumented channel stretch; (2 and
3) rain gauges; (A, B, E) TLS surveyed areas
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Table 8-1: Summary of study area characteristics

Name Gadria and Strimm | Moscardo Torrent
catchments

Country/Region/Province Autonomous Province of | Friuli Venezia Giulia Region
Bozen-Bolzano (Italy) (Italy)

Drainage area (km?2) 14.8 (6.3 km2 Gadria, | 4.1
8.5 km2 Strimm)

Main river basin Adige River But and Tagliamento River

Range of elevation (m) 1394 - 3197 890-2043

Geology (dominant rocks) Metamorphic rocks | Sedimentary rocks (Flysch)
including para- and

ortogneiss, pegmatite

Quaternary legacy

Glaciated

Glaciated

Human impact

Presence of several
check dams in the Gadria
creek and of an open
check dam with a
retention basin at the
confluence of Gadria and
Strimm creeks

Presence of several check dams
along the main channel

Mean annual discharge | n.a. n.a.
(m3/s)

Q10 and Q100 (m3/s) n.a. n.a.
Mean annual rainfall (mm) 500 500

Timescale of investigation

Years 2005-2011

Scale of single event (August
2011-October 2012)

Investigated components of

the sediment cascade

sediment production /
sediment transfer /
sediment storage

sediment production/ sediment
transfer / sediment storage

Investigated hillslope
geomorphic processes

landslide / debris flow

landslide / debris flow

Fluvial sediment transport

n.a.

n.a.

8.1.3 Methods

For assessing geomorphic changes and estimating erosion and deposition
volumes, a method based on fuzzy logic developed by Wheaton et al.
(2010), was used to derive the DoD maps of both study areas. This method
takes into account DEM uncertainties in a spatially variable manner making
possible to discriminate real changes from noise. According to Wheaton et
al. (2010), the process of accounting for DoD uncertainty requires three
main steps consisting of (i) quantifying the uncertainty in the individual
DEM surfaces, (ii) propagating the identified uncertainties into the DoD,
and (iii) assessing the significance of propagated uncertainty.
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The spatially variable uncertainty assessment has been addressed by
creating ad-hoc Fuzzy Inference Systems (FIS) (Wheaton et al., 2010)
using in inputs geomorphometric parameters as proxy of vertical
uncertainty in the DTM: slope and point density in the Gadria-Strimm
catchments and slope, point density and Vegetation Noise in the Moscardo
catchment. Vegetation Noise is an indicator, recently developed by Blasone
et al. (2014), based on the characteristic noise-structures caused by
vegetation cover in LiDAR-derived DTMs. It is intended to measure the
relative vegetation presence in relation to ground points used for DTM
interpolation.

After defining membership functions (MFs) (the process identifying both
linguistic adjectives to characterize the variable to be described and the
range of values covered by each adjective for inputs and output) on the
basis of expert knowledge and the average errors identified in unchanged
areas, a map of spatially variable 6z (elevation uncertainty) was obtain for
each individual DTM.

Following the approach by Brasington et al. (2003) and Lane et al. (2003)
based on Taylor (1997) and assuming a normal distribution of errors,
individual errors in the DTMs can be propagated into DoD according to the
equation:

Ueric = t\/(gznew)z + (6Zold)2 [1]

where Ucrit is the critical threshold error in the DoD or Level of Detection
(LoD) of significant elevation change, dznew and 6zold are the individual
errors in new and old DTM, respectively. Ucrit is based on a critical
student’s t-value at a chosen confidence interval where:

|ZDEMnew_ ZDEMold|

t = [2]

Supop

where |zpgu,., — Zpem,,,| iS the absolute value of the DoD.

In both study areas, the 95% confidence interval is used as a threshold.
For each DoD cell, a critical threshold error is then calculated with Eq. (1)
to derive a LoD which is then subtracted from all DoD cells to derive maps
of significant elevation change and calculate volumes of erosion and
deposition.

To refine DoD uncertainty analysis in the Moscardo catchment, spatial
coherence of depositional and erosional units was taken into account. This
approach is based on the observation that erosion and deposition tends to
occur in spatially coherent patterns (Wheaton et al., 2010) and then DoD
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predicted elevation changes within those units could have a higher
probability of being true.

8.1.4 Results

8.1.4.1 Gadria and Strimm catchments

The topographic changes that occurred from 2005 to 2011 along the
channel network of Gadria and Strimm catchments have been assessed.
The analysis was based on two high-resolution DTMs (2 m resolution) from
airborne LiDAR surveys. DoD map for Gadria and Strimm basins is
presented in Figure 8-3. This map is useful to highlight the spatial pattern
of geomorphologic changes at basin scale with colors scale ranging from
blue (deposition) to red (erosion).

In order to focus on the assessment of geomorphic changes on fluvial and
debris flow processes, which is the main objective of the study, a mask that
includes channel network and adjacent areas has been created using
various informative layers (e.g. hillshade, orthophoto): this has permitted
also to exclude areas where inconsistencies between the two DTMs had
resulted in unrealistic topographic changes.

DoD 2005-2011
m<-35
m-35--3
m-3--25
m-25--2
2--15
m-15--1
£-1--0.5
-05-0
=0-0.5
=05-1
E1-15
m15-2
m2-25
m25-3
m>35

) Gadria basin
1 Strimm basin ]

500
—_— ===

Figure 8-3: DoD map of Gadria and Strimm catchments
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Figure 8-4: Volumetric distributions for Gadria (a) and Strimm (b). Grey shaded areas represent
probabilistically thresholded values at 95% confidence interval. Red and blue values represent
erosion and deposition respectively.

From areal and volumetric point of view, erosion process dominate in both
basins. For the two basins, volumetric elevation change distributions
(ECDs) appear to be different (Figure 8-4): ECD of the Gadria shows a very
peaked distribution of low magnitude erosion change whereas Strimm ECD
is characterized by a bimodal distribution with two peaks of erosion. The
peak of relatively high magnitude of erosion is likely due to the main
channel near the retention basin, where a debris flow occurred in the
summer of 2010. This event was the largest erosion process occurred in
the catchment during 2005-2011 time period.

Table 8-2: Volumes calculated with DoD approach compared with historical database for the Gadria
catchment

Gadria catchment Historical Data DoD Error
Base thresholded Volume
Total erosion (m?) 150,900 198,005 + 86,690
Deposition w1th1n3 16,100 20,955 £ 6,909
the catchment (m?)

Table 8-3: Volumes calculated with DoD approach compared with historical database for the Strimm
catchment

Strimm catchment Historical DoD Error
Data Base | thresholded Volume
Total erosion (m?) 35,700 49,791 + 18,872
Deposition within
7,539 + 3,406
the catchment (m?) 11,700
www.sedalp.eu
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Volumes calculated with DoD approach have been then compared with
historical database values (Table 8-2 and Table 8-3). To this end, total
deposition volumes estimated in the field have been considered as the
sediment that remained inside the basin. Conversely, eroded volumes refer
to the sediment transported and deposited in the monitored retention
basin, located at the confluence of both catchments, from which material is
periodically removed. Volumes detected in the field are similar to the ones
derived from DoD for both basins. Anyway, it can be observed that DoD
results in a volume of total erosion greater than the field estimates of the
historical database. In the case of Strimm catchment, this can be partly
ascribed to the fact that some events that affected only the upper part of
the basin could have remained undetected by field surveys. In general, the
comparison between volume estimates of DoD and the historical database
are affected by uncertainties in assessing the relative contribution of Gadria
and Strimm to sediment deposition in the retention basin at the
catchments outlet in the case of events that involved both catchments.

8.1.4.2 Moscardo torrent

Three areas (A, B and E in Figure 8-2) were surveyed using a Riegl LMS-
2620 laser scanner selected for being, for different reasons, exposed to
debris-flow dynamics. The downstream area (Area A), is located in the
upper part of the alluvial fan, and includes the channel reach monitored
with ultrasonic sensors. The second area (Area B) is located in the central
part of the basin where a large active roto-translational landslide affects
the right bank of the creek (Marcato et al. 2012) and the left bank foot is
subjected to erosion. The upstream area (Area E) was chosen for being the
main sediment source of the basin.
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Figure 8-5: DEMs of differences for surveyed areas A, B and E. Left-hand DoDs refer to DEM(S2) -
DEM(S1) while right-hand DoDs to DEM(S3) - DEM(S2)

Each area was surveyed three times (referred to, respectively, as S1, S2
and S3), granting the possibility to capture the morphology before and
after a debris flow occurred on 14th September 2011 and after two large
debris flows recorded on September 24th and 27th of 2012.

Figure 8-5 presents the spatial distribution of differences between
subsequent DTMs (0.2 m resolution).
www.sedalp.eu
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For Area A, the 2011 event involved moderate changes of erosion and
deposition, with a prevalence of deposition in the left side of the channel,
without particularly affecting the banks. For the 2012 events, more
relevant changes can be observed, in particular concerning foot erosion of
a large portion of the right side bank.

In Area B, both DoDs show degradation of the channel bed, with foot
erosion on the right bank, which, in the 2012 events, led to the removal of
riprap that had been built to protect the slope. A 40 meters wide landslide
eroded the cliff on the left side, enlarging its area across the events.

For Area E, the pattern of changes is similar between the two DoDs, but
the magnitude of the changes in the second DoD, which includes the 2012
debris flows, is higher.

DoD areal and volumetric budgets are summarized in Table 8-4.

Table 8-4: Areal and volumetric DoD results for unthresholded DoDs and for FIS with spatial
coherence method. DoD code reported is: area, new survey DEM, old survey DEM (e.g. A21: area A,
DoD = DEM(S2) - DEM(S1)).

DoD Area (m?2) Volume (m3)

Erosion Deposition Erosion Deposition Net Change
No uncertainty analysis (unthresholded)
A21 1399 1330 269 462 +193
A32 2003 1191 1107 480 -627
B21 2256 789 1119 108 -1011
B32 2915 1490 2271 374 -1897
E21 22121 7881 14236 1029 -13207
E32 28697 11152 21004 2033 -18971
Bayesian updating of FIS with spatial coherence (95% CI)
A21 949 967 244 (£51) 441 (£49) +198 (£71)
A32 1703 914 1083 (£139) 458 (+87) -625 (+164)
B21 1290 273 1060 (£83) 80 (£12) -980 (+84)
B32 1792 817 2162 (£188) 324 (£44) -1838 (+£194)
E21 14449 2221 13723 (£1957) 760 (£170) -12963 (£1983)
E32 18594 4253 20206 (£2555) 1553 (£378) -18654 (+£2587)

Except from DoD A21 (Area A, DoD = DEM(S2) - DEM(S1)), which shows a
modest positive depositional net budget, all DoDs are characterized by
negative erosional budgets. Eroded volumes are greater for the 2012
events for all DoDs.

Table 8-5 reports the average erosion/deposition values for surveyed
channel and bank areas and channel debris yield rates, which commonly
express sediment supply from the channel bed. Area E calculations refer
only to the main channel, and do not consider the entire scanned area with
secondary channels. These values may be helpful for the geomorphological
estimation of volumes, and can be compared with those reported in other
studies (e.g., Marchi and D’Agostino, 2004).
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Table 8-5: Average erosion/deposition thickness and channel debris yield rate. Values are
calculated from Bayesian updating of FIS with spatial coherence (95% CI) results.

DoD Average erosion/deposition Debris yield rate (m3m™)
thickness (m)

A21 +0.04 (£0.01) +1.06 (£0.38)

A32 -0.11 (£0.03) -3.21 (£0.84)

B21 -0.08 (£0.01) -11.53 (£0.99)

B32 -0.14 (£0.01) -21.62 (£2.28)

E21 -0.18 (£0.03) -13.23 (£2.02)

E32 -0.23 (£0.03) -12.96 (+1.80)

8.1.5Conclusions

Compared to airborne LiDAR, the TLS technique is more flexible and
accurate in particular for the monitoring of steep areas such as sediment
sources in debris-flow catchment. Nevertheless, TLS is limited in terms of
range and areal coverage: airborne LIiDAR is then a valuable and
convenient solution for the monitoring of geomorphic changes at the
catchment scale. In order to carry out sound DoD analysis a spatially
variable uncertainty assessment is recommended, moreover when using
DTMs at different accuracy as in the case of Gadria and Strimm catchments
where the 2005 DTM was less accurate than the 2011 DTM. DoD proved to
be a very interesting method to rapidly assess geomorphic changes both at
catchment scale and in selected sediment sources with a single event time
scale. In the case studies, DoD also provides useful information on
undetected events within the basins and helps in the identification of
erosional and depositional processes in uneasily accessible areas.
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