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Abstract This paper is concerned with the problem of computing the bounded
time reachable set of a polynomial discrete-time dynamical system. The prob-
lem is well-known for being difficult when nonlinear systems are considered. In
this regard, we propose three reachability methods that differ in the set rep-
resentation. The proposed algorithms adopt boxes, parallelotopes, and paral-
lelotope bundles to construct flowpipes that contain the actual reachable sets.
The latter is a new data structure for the symbolic representation of poly-
topes. Our methods exploit the Bernstein expansion of polynomials to bound
the images of sets. The scalability and precision of the presented methods are
analyzed on a number of dynamical systems, in comparison with other existing
approaches.
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1 Introduction

1.1 Dynamical Systems

Dynamical systems are important mathematical models used to describe the
evolution of a system in time. They can be seen as a relationship between
elements in a sequence (the states of the system) that captures the changes
of the terms from one period to another another (time evolution). A dynam-
ical system is said to be either discrete-time or continuous-time depending
on whether the changes take place in discrete time instants or in continu-
ous time, respectively. The common formalisms used to describe discrete- and
continuous-time dynamical systems are difference and differential equations.
In this work we will focus on discrete-time dynamical systems described by
difference equations:

xk+1 = f(xk) (1)

where x ∈ Rn and f : Rn → Rn is a vector of n-variate polynomial functions.
The reasons why we focus on this class of systems are mainly two: 1) many

real phenomena can be observed only at discrete time events, aspect that
makes discrete-time models, such as difference equations, good candidates for
the formalizations and the study of a vast class of systems arising from the real
world (see, e.g.,[52,51,36,44,4]); 2) discrete-time dynamical systems can be the
result of the discretization techniques applied on continuous-time systems for
which analytic solutions are intractable (or are not known) and thus discrete
numerical integration methods (such as Euler or Runge-Kutta) are necessary
(for surveys on numerical integration see, e.g., [43,53,28]).

1.2 The Reachability Problem

Formal verification of dynamical systems involves the rigorous and exhaustive
study based on mathematical techniques. The development of tools for the
formal verification is motivated by the fact that formal guarantees on a sys-
tem imply the reliability and robustness of the modeled phenomenon. Formal
verification is a quite general expression used to gather several problems and
methods all related to the same goal of formally proving some properties of
a system. Some examples of verification problems related to dynamical sys-
tems are the determination of equilibrium points (i.e., states that stabilize the
system), invariant sets (i.e., regions from which the system does not escape),
or periodic behaviors (i.e., evolutions that return to the same points after a
certain amount of time). The reachability problem, that often plays an impor-
tant role in questions as the above-mentioned ones, asks to determine all the
states reachable by the evolutions of a dynamical system starting from a set
of initial conditions, typically represented as compact infinite sets. Note that
considering individual trajectories would require an infinite number of simula-
tions. Hence, some techniques to handle flows of trajectories at the same time
are required.
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A common approach to the reachability computation problem is to repre-
sent the reachable set as a sequence of sets X0, X1, X2, . . . , XT whose union,
called flowpipe, contains all the states reachable by the system. Such a se-
quence can be obtained by adopting a numerical set-integration, which can be
seen as a breath-first exploration of the reachable sets. The usual key-steps of
a set-based integrator, that are similar to the traditional integrators, are:

1. Fix a set of initial conditions X0;
2. Compute Xk+1 = f(Xk);
3. Repeat Step 2 until a condition is met.

The halting conditions are typically defined in terms of thresholds on the max-
imum number of reachable steps (in this case we speak of bounded-time reacha-
bility) or the achievement of a fix-point checkable by the inclusion Xk+1 ⊆ Xk.
From this scheme, we can see that the key element of this kind of reachability
algorithms is the computation of the image of a set Xk+1 = f(Xk) (see Step
2). The hardness of this task depends on two factors: 1) the kind of set Xk that
has to be transformed, and 2) the transforming function f . For instance, to
obtain the image f(Xk) of a polytope with respect to a linear function, we can
compute the images of the vertices of Xk and, by the convexity preservation
of linear functions, we can determine Xk+1 as the convex hull of the obtained
points. However, things become more complicated when nonlinear functions,
as the polynomials treated in this work, are considered. In general, nonlinear
functions do not preserve nice properties of sets such as convexity, and thus
approximation techniques are required.

A large part of this work is concerned with the transformation of poly-
topes with respect to polynomial functions. If we define efficient methods to
over-approximate polynomial images of sets, we can also define algorithms for
computing flowpipes that contain the reachable sets of polynomial dynamical
systems. Before stating the details of our contributions, let us have an overview
of the existing methods for both linear and nonlinear systems.

1.3 Related Work

Linear Systems Reachability computation set of linear systems is one of the
most studied problems related to formal verification of linear dynamical and
hybrid systems. As previously pointed out, this class of systems has useful
properties, such as convexity preservation, that simplify the computation of
the transformation of sets. Not surprisingly, one of the most adopted classes
of sets are polytopes (often called convex polyhedra).

It has been shown how particular polytopes, such as boxes [76] and par-
allelotopes [49,50] offer a good trade-off between system dimension and pre-
cision. More complex polytopes, like zonotopes [39,40,1], that have the only
drawback of not being closed under intersection, have also been successfully ap-
plied to linear systems. Different techniques based on a combination of generic
polytopes and optimization are [42,18–20,77,34,71].
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Further approaches based on a symbolic representation of polytopes as sup-
port functions [58,59] have been successfully applied to systems with hundreds
of variables. Leaving polytopes, we can find works that use ellipsoids [54,10]
or symbolic semialgebraic sets [2,57] to represent and compute reachable sets.

Tools born from these ideas are CheckMate [20], HyTech [42], d/dt [3],
MPT [56], PHAVer [34], SpaceEx [35], and Ellipsoidal Toolbox (ET) [55].

Nonlinear Systems If on the one hand linear reachability analysis has several
efficient solutions, on the other hand nonlinear reachability remains a rather
open problem for which the available methods are limited to restricted classes
of systems with low dimensions (hardly more than ten variables for nonlinear
systems against hundreds of dimensions for linear ones).

Some attempts for tackling nonlinearity have been made by considering
subclasses of nonlinear systems, such as multi-affine systems [6,7] (where each
variable appears with degree at most one) or by transforming the original sys-
tems into simpler ones using different representations (such as Bézeir simplex
or Bernstein basis) [23,68,73].

Some examples of more direct methods that aim to numerically compute
reachable sets are based on the manipulation of nonconvex sets, such as orthog-
onal polyhedra [11,27], or Taylor models [9,16]. A different family approaches
based on symbolic manipulations of formulas [5] includes approximated logic
semantics [32,37,13] and differential algebraic logics [64,65].

Examples of the tools based on these concepts are d/dt [3], Ariadne [5],
KeYmaera [66], pyHybrid Analysis [12], dReach [48], and Flow* [17].

It is important to point out that the available methods can handle, in the
optimistic case, systems with at most a dozen of variables.

1.4 Contributions

In this work we present new scalable methods for over-approximations of the
reachable set of polynomial discrete-time dynamical systems (note that this
is a class of nonlinear systems that has numerous applications in modeling
physical phenomena). The developed reachability algorithms share at their
core the transformation of polytopes with respect to polynomials, an operation
that, as we will discover later, can be computed by maximizing polynomials
over a polytopic domains.

The Bernstein expansion, born to represent polynomials in Bernstein ba-
sis [8,75], is an efficient tool to bound polynomials over the unit box domain,
i.e., the hyperrectangle anchored at the origin having unit edge lengths. In
order to be able to bound polynomials over more generic domains, we propose
a technique to make use of Bernstein coefficients also on generic boxes and
parallelotopes. Intuitively, the adaptation is made possible by the transforma-
tion of the unit box into the set on which the polynomial has to be bounded.
This trick is the key ingredient for our set transformation methods.
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Exploiting Bernstein coefficients over generic boxes and parallelotopes, we
define some methods to over-approximate the image of boxes and parallel-
topes with respect to polynomials. Later, we will also lift these approaches to
the transformation of generic polytopes represented with a new data structure
that we call paralleltope bundle. A parallelotope bundle is a finite set of par-
allelotopes whose intersection symbolically represents a polytope. In order to
obtain the transformation of a polytope, one can reason on its bundle repre-
sentation, considering separately each parallelotope, transforming it (with our
predefined methods), and then intersecting the obtained parallelotopes. The
result is a new polytope that over-approximates the image of the starting one.
These three set image methods will be later used to define our reachability
algorithm for polynomial dynamical systems.

All the techniques presented in this work have been implemented in a C++
tool called Sapo [30]. Our methods have been evaluated on several case studies
arising from practical dynamical systems. As we will see in the experimental
section, we have been able to apply our reachability algorithms on a quadcopter
drone model composed by seventeen variables, aspect that demonstrates the
scalability and quality of the techniques proposed in this work.

To summarize, the contributions of this work are the following:

– The adaptation of the bounding properties of Bernstein coefficients of poly-
nomials to generic boxes and parallelotopes;

– A box-based set image over-approximation technique;
– A parallelotope-based set image over-approximation technique;
– The definition of parallelotope bundles for the symbolic representation of

polytopes and a parallelotope bundle-based set image over-approximation
technique;

– The definition of a reachability algorithm for discrete-time polynomial dy-
namical systems based on boxes, parallelotopes, and parallelotope bundles;

– The implementation (in a tool called Sapo) and the experimental evaluation
of our methods on several case studies.

1.5 Paper Structure

The paper is organized as follows. In Sections 2 we introduce the reacha-
bility computation problem for dynamical systems, highlighting its hardness
whenever nonlinear dynamics are involved. We will also introduce a common
optimization-based technique for over-approximating the images of sets us-
ing template polyhedra (Section 2.3). We will show how Bernstein coefficients
are good candidates to estimate these optima (Section 2.4) which however
require some adaptation when applied to generic domains. In Section 3 we
will show how some Bernstein coefficients properties can be generalized to
some polytopic domain and how they can be used to define algorithms for
the over-approximation of the images of sets with respects to polynomials. In
Section 3.1 we will reason on boxes, in Section 3.2 on parallelotopes, and in
Section 3.3 we will define and work with parallelotope bundles. Section 4 is
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dedicated to the experimental evaluation of our methods. In Section 4.1 we
will apply our methods on several dynamical systems of increasing complex-
ity, while in Section 4.2 we will compare our implementation with the current
state-of-the-art tool for the reachability computation of nonlinear systems. Fi-
nally, Section 5 concludes the paper with a short summary and some insights
for future developments. Some additional details concerning the experimental
evaluations can be found in Appendix A. The implementation of our tool and
the experiments presented in this paper can be found at the link [29].

2 Reachable Set Computation

2.1 Sets and Reachability

A discrete-time dynamical system can be described by difference equations of
the form:

xk+1 = f(xk) (2)

where x ∈ Rn is the vector of state variables and the dynamics f : Rn → Rn
is a vector of n multi-variate continuous functions of the form fi : Rn → R, for
i ∈ {1, . . . , n}. The initial conidtion (or initial state) x0 is inside some initial
set X0 ⊂ Rn.

Given a set X ⊂ Rn, the image of X by f , denoted by f(X), is defined as:

f(X) = {(f1(x), . . . , fn(x)) | x ∈ X} (3)

The set Xk ⊂ Rn reachable at time k ∈ N can be obtained by the recurrence:

Xk+1 = f(Xk) (4)

where X0 is the initial set.

Example 1 Let us consider the SIR epidemic model [46] as running example.
This is a well-known dynamical system used to describe the evolution of a
disease in a population. The dynamics of the system are the following:

sk+1 = sk − βskik/N
ik+1 = ik + βskik/N − γik
rk+1 = rk + γik

(5)

The system considers a population of N ∈ R≥0 individuals partitioned in
three compartments: s is the group of susceptible individuals who have not
been exposed to the disease, i is the class of infected individuals, and r are
the removed individuals who recovered from the disease. The migration of
individuals between compartments is regulated by two parameters: β is the
probability for a susceptible individual to become infected once there is a
contact with an sick person, and 1/γ is the mean infection period, i.e, the
time necessary for an infected individual to migrate from the infected to the
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(a) Evolution of infected i individuals in
time.

(b) Evolution of susceptible s, infected i,
and removed r individuals in space.

Fig. 1: Evolutions of SIR dynamical system with different initial conditions.

removed compartment. The values of the parameters β and γ must be kept
constant during the simulation of the model.

For simplicity, let us consider a normalized population, i.e., N = 1.0, and
parameters β = 0.35 and γ = 0.05. Let X0 = [0.80, 0.85] × [0.15, 0.20] ×
[0.0, 0.0] ⊂ R3 be the initial set, i.e., s0 ∈ [0.80, 0.85], i0 ∈ [0.15, 0.20], and
r0 ∈ [0.0, 0.0]. Figure 1 shows some evolutions of the SIR system having initial
conditions sampled from X0. From the figure we can notice that different initial
conditions lead to different trajectories.

The goal of this work is to compute (over-approximate) all the possible
trajectories starting from an initial set. In particular, we want to develop a
reachability algorithm called reach (Algorithm 1), that incrementally com-
putes the sets reachable by a dynamical system in a bounded amount of time.

Algorithm 1 Reachability

1: function reach(X0, tmax) . X0 ⊂ Rn initial set, tmax ∈ N
2: for i = 0, . . . , tmax do
3: Xi+1 ←reachStep(Xi)
4: end for
5: end function

The algorithm receives in input an initial set X0 ⊂ Rn and a time hori-
zon tmax ∈ N, and computes a sequence of sets X0, X1, . . . , Xtmax , called
flowpipe, whose union over-approximates the reachable set of the considered
dynamical system. At time i, the set Xi+1 is obtained by calling the function
reachStep(Xi) that implements a single reachability step. As we will see, a
concrete implementation of reachStep strongly depends on the adopted set
representation and the considered dynamics.
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2.2 Polytopes and Template Polyhedra

In general, the computation and representation of a set transformed by a non-
linear function is hard. A common way to deal with this issue consists in
over-approximating the transformed set with simpler objects, such as poly-
topes and template polyhedra.

Definition 1 A polytope Q ⊂ Rn is a closed, compact, bounded subset of
Rn such that there is a finite set of half-spaces H = {h1, . . . , hm} whose
intersection is Q, that is:

Q =

m⋂
i=1

hi (6)

where an half-space h = {x | dxT ≤ c} is a set characterized by a non-null
normal vector d ∈ Rn and an offset c ∈ R.

The linear constraints that generate the half-spaces can be organized in a
matrix D ∈ Rm×n called template and a vector c ∈ Rm called offset vector, in
short offsets. The polytope generated by the template D and the offset vector
c is denoted by 〈D, c〉. Notice that not all the pairs 〈D, c〉 define a nonempty
polytope.

Template polyhedra [72,14] are a subclass of polytopes with fixed templates
and variable offsets. By varying the offsets c of a template polyhedron 〈D, c〉, it
is possible to obtain a infinite number of polytopes having D as template. The
advantage of template polyhedra over polytopes is that common geometric
operations, such as intersection and union, can be performed more efficiently.
In the following we assume that the directions of the adopted templates are
given and fixed. In general, determining optimal directions for a template is
a hard problem that goes outside the scope of this work. Some works that
considered the issue of automatically finding ideal directions are, e.g., [15,74].

2.3 Single Step Reachability

A polytope-based reachability computation requires the ability of computing
the image of a polytopeQ by the dynamics f . In the case of template polyhedra,
where a template D ∈ Rm×n is given, the set image over-approximation can
be seen as the problem of finding an offset vector c ∈ Rm such that:

f(Q) ⊆ 〈D, c〉 (7)

The continuity of f guarantees that f(Q) is a closed, bounded, and compact
set for which always exists an over-approximating polytope 〈D, c〉.

It is not difficult to see that this inclusion holds if Df(x) ≤ c holds for all
the x ∈ Q. This suggests that offsets c = (c1, . . . , cm) can be determined by
solving the following optimization problems:

ci = max
x∈Q

Dif(x) (8)
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where Di is the i-th row of D and i ∈ {1, . . . ,m}. Whenever f are nonlinear
functions, these optimization problems require nonlinear and nonconvex op-
timization techniques that are in general computationally expensive. A way
to address this issue, is to relax the problem and seek tight bounds that can
be efficiently determined. For instance, if we are able to bound a polynomial
over a polytope, then we can develop a single step reachability algorithm for
polynomial dynamical systems.

Algorithm 2 Single Step Reachability

1: function reachStep(X) . X = 〈D, c〉 ⊂ Rn polytope
2: for i ∈ {1, . . . ,m} do
3: c′i ←bound(Dif(x), X)
4: end for
5: return X′ = 〈D, c′〉
6: end function

reachStep (Algorithm 2) implements this approach. It computes an over-
approximation set X ′ ⊇ f(X) bounding the functions Dif(x) over the polytope
X = 〈D, c〉. With this setup, the computation of the reachable sets depends on
the ability of bounding a function over a polytope. This task can be difficult
for generic f and X.

In the next section we introduce a technique to bound polynomials over unit
boxes exploiting Bernstein coefficients (typically used to express polynomials
in Bernstein form).

2.4 Bernstein Basis and Coefficients

Before defining Bernstein basis and coefficients, we introduce some notations
useful to work with polynomials.

A multi-index is a vector i = (i1, . . . , in) where each ij ∈ N. Given two
multi-indices i and d of the same length, we write i ≤ d (d dominates i) if for
all j ∈ {1, . . . , n}, ij ≤ dj . We denote the multi-index (i1/d1, . . . , in/dn) by
i/d and the product of the binomial coefficients

(
d1

i1

)
. . .
(
dn
in

)
by
(
d
i

)
.

A polynomial π(x) : Rn → R can be represented in the power basis as:

π(x) =
∑
i∈Iπ

aix
i (9)

where i = (i1, i2, . . . , in) is a multi-index of size n ∈ N and xi denotes the
monomial xi1

1 xi2
2 . . .x

in
n . The finite set Iπ is called the multi-index set of π.

The degree d of π is the smallest multi-index that dominates all the multi-
indices of Iπ, i.e., for all i ∈ Iπ, i ≤ d. The coefficients ai ∈ R range over the
reals.

Example 2 Consider the polynomial π(x1,x2) = 1/3x2
1 − 1/2x2 + 1/4x1x2 +

1/2. The multi-index set of π is Iπ = {(2, 0), (0, 1), (1, 1), (0, 0)}, the associated



10 Tommaso Dreossi et al.

coefficients are a(2,0) = 1/3,a(0,1) = −1/2,a(1,1) = 1/4, a(0,0) = 1/2, and the
degree is d = (2, 1).

Bernstein basis polynomials of degree d are basis for the space of polyno-
mials of degree at most d over Rn. For x = (x1,x2, . . . ,xn) ∈ Rn, the i-th
Bernstein polynomial of degree d is defined as:

B(d,i)(x) = βd1,i1(x1)βd2,i2(x2) . . . βdn,in(xn) (10)

where, for a real number x ∈ R,

βdj ,ij (x) =

(
dj
ij

)
xij (1− x)dj−ij (11)

A polynomial π(x) : Rn → R can be represented using Bernstein basis as:

π(x) =
∑
i∈Iπ

biB(d,i)(x) (12)

where, for each i ∈ Iπ, the Bernstein coefficient bi, is defined as:

bi =
∑
j≤i

(
i
j

)(
d
j

)aj (13)

Bernstein coefficients can be calculated from the coefficients of the monomi-
als of the treated polynomial in power basis. The (n + 1)-dimensional points
(i/d,bi) ∈ Rn+1 are called Bernstein control points.

Example 3 Consider the polynomial π(x1,x2) = 1/3x2
1−1/2x2+1/4x1x2+1/2

of Example 2. The Bernstein coefficient associated to the multi-index (1, 1) is:

b(1,1) =

(
(1,1)
(1,1)

)(
(2,1)
(1,1)

)1/4−

(
(1,1)
(0,1)

)(
(2,1)
(0,1)

)1/2 +

(
(1,1)
(1,0)

)(
(2,1)
(1,0)

)0 +

(
(1,1)
(0,0)

)(
(2,1)
(0,0)

)1/2 = 0.125 (14)

Applying the same scheme to the other multi-indices, we obtain the Bernstein
coefficients b(0,0) = 0.5, b(0,1) = 0.0, b(1,0) = 0.5, b(1,1) = 0.125, b(2,0) =
0.834, and b(2,1) = 0.584.

2.4.1 Properties of Bernstein Coefficients

Bernstein coefficients present several interesting properties. Here we expose
two properties that will be exploited in our reachability techniques. For further
properties see, for instance, [75,33].

Lemma 1 (Range Enclosing)

min
i∈Iπ

bi ≤ π(x) ≤ max
i∈Iπ

bi, (15)

for all x ∈ [0, 1]n, where bi, for i ∈ Iπ, are the Bernstein coefficients of π.
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Lemma 2 (Sharpness)
bi = π(i/d) (16)

for all i ∈ Vd, where bi are the Bernstein coefficients of π and Vd is the set
of vertices of the box [0,d1]× [0,d2]× . . . [0,dn].

These two properties provide us some useful information about the image
of the polynomial π over the unit box [0, 1]n. In particular:

1. The range enclosing property (Lemma 1) states that the minimum and
maximum Bernstein coefficients are a lower bound and an upper bound of
the image of π over the unit box domain, respectively;

2. The sharpness property (Lemma 2) says that the Bernstein coefficients at
the vertices of the box domain, match exactly the values of the polynomial
at some points.

Example 4 Consider the polynomial π(x1,x2) = 1/3x2
1−1/2x2+1/4x1x2+1/2

and its Bernstein coefficients (from Example 3). Figure 2 shows the image of
π over the unit box (gray area) and its control points (black dots).

The coefficients b(1,1) = 0.125 and b(2,0) = 0.834 are a lower bound and

an upper bound of π([0, 1]2) (range enclosing property) and the control points
lying on the vertices of the unit box match exactly the values of π([0, 1]2)
(sharpness property).

The following lemma [26] limits the error between the actual optimums
and the bounds provided by Bernstein coefficients.

Lemma 3 Let Cπ : Rn → R be the piecewise linear function defined by the
Bernstein control points of the polynomial π : Rn → R, with respect to the box
[0, 1]n. For all x ∈ [0, 1]n

| π(x)− Cπ(x) |≤ max
x∈[0,1]n;i,j∈{1,...,n}

| ∂i∂jπ(x) | (17)

where | · | is the infinity norm on Rn.

Several convergent subdivision procedures for reducing the gap between
bounds and optimums have been proposed [38,62,61].

2.4.2 Computation of upper and lower bounds

The range enclosing property (Lemma 1) can be used to determine upper and
lower bounds of polynomials over the unit box. We now define the algorithm
maxBernCoeff (Algorithm 3) that implements this idea.

Given a polynomial π : Rn → R, maxBernCoeff computes the set Bπ of
the Bernstein coefficients of π(x) (that can be obtained using Equation (13)),
scans all the coefficients, and determines their maximum b that is an upper
bound for the polynomial π(x) over the unit box.

If needed, in a similar way, we can define the algorithm minBernCoeff
that returns a lower bound of π(x). minBernCoeff can be easily obtained
by extracting the minimum coefficient from the set Bπ. Note that we can also
introduce a test for the sharpness property (see Lemma 2) that checks whether
the computed bound matches the exact optimum.
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Fig. 2: The polynomial π(x1,x2) = 1/3x2
1−1/2x2+1/4x1x2+1/2 over the unit

box (in gray) and its control points (in black). The coefficients b(1,1) = 0.125

and b(2,0) = 0.834 are a lower bound and an upper bound of π([0, 1]2) (range
enclosing property) and the control points lying on the vertices of the unit box
match exactly the values of π([0, 1]2) (sharpness property).

Algorithm 3 Compute maximum Bernstein Coefficient

1: function maxBernCoeff(π) . π(x) : Rn → R
2: Bπ ←BernCoeffs(π) . Compute Bernstein coefficients
3: b← max

bi∈Bπ
bi . Extract the maximum

4: return b
5: end function

3 Bounding Polynomials Over Polytopes

In the previous section we have seen how the over-approximation of the im-
age of a set can be reduced to a number of function optimizations. We have
also introduced Bernstein coefficients, that can be used to bound polynomials
exclusively on unit box domains. In this section we will develop some meth-
ods that take advantage of the Bernstein coefficients properties on different
subclasses of polytopes, precisely on generic boxes (or hyperrectangles), par-
allelotopes (the generalization of parallelograms to higher dimensions), and
parallelotope bundles (a new data structure for representing polytopes). For
each class of sets, the goal is to develop an algorithm bound(π,X) that re-
turns an upper bound of the maximum of π over X. This algorithm will be
used by reachStep (Algorithm 2) to compute over-approximations of images
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of sets and indirectly by reach (Algorithm 1) to compute the reachable set
of polynomial dynamical systems.

3.1 Boxes

We begin by considering the class of boxes, also known as hyperrectangles.

Definition 2 (Box) A set B ⊂ Rn is a box if and only if it can be expressed
as the product of n intervals, that is:

B = [x1, x1]× . . . [xn, xn] =

n∏
i=1

[xi, xi] (18)

where xi, xi ∈ R, for i ∈ {1, . . . , n}.

It is easy to see that a box B = [x1, x1]× . . . [xn, xn] is a polytope since it can
be represented by a template D ∈ R2n×n and offsets c ∈ R2n where:

D =



1 . . . 0
...

. . .
...

0 . . . 1
−1 . . . 0
...

. . .
...

0 . . . −1


c =



x1
...
xn
−x1

...
−xn


(19)

3.1.1 Bounding over Boxes

Let us now focus on the problem of extending the properties of Bernstein
coefficients, that are valid only for unit box domains, to generic boxes.

Let π : Rn → R be a polynomial and X = 〈D, c〉 = [x1, x1]× · · · × [xn, xn]
be a box. We begin by defining a linear transformation v(x) : Rn → Rn that
maps the unit box to X. Such a map can be defined as follows:

v(x) =


x1 − x1 0 . . . 0

0 x2 − x2 . . . 0
...

...
0 . . . 0 xn − xn




x1

x2

...
xn

+


x1
x2
...
xn

 (20)

Composing v(x) with π(x) we observe that the equality π(X) = π(v([0, 1]n))
holds, which suggests that we can use the Bernstein coefficients of π(v(x)), to
indirectly bound π(x) over X. We recall the the Bernstein coefficients can be
computed by maxBernCoeff (Algorithm 3).

Let us formalize this procedure in the function bound (Algorithm 4) that
receives in input a polynomial π : Rn → R and a box X ⊂ Rn, and returns an
upper bound b ∈ R of π(x) such that b ≥ max

x∈[0,1]n
π(v(x)) = max

x∈X
π(x).
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Algorithm 4 Bound polynomial over box

1: function bound(π,X) . X ⊂ Rn box
2: v(x)←mapUnitBoxTo(X) . Map [0, 1]n to X
3: b←maxBernCoeff(π(v(x))) . Compute maximum coefficient
4: return b
5: end function

The algorithm bound, using the function mapUnitBoxTo based on Equa-
tion 20, computes the transformation v(x) that maps the unit box to the given
box X. Then, it computes the Bernstein coefficients of π(v(x)) and returns
their maximum. This bounding algorithm is the basic brick of our first box-
based reachability algorithm.

Example 5 We now illustrate the computation of the single step reachability
algorithm based on boxes. We consider the SIR dynamical system introduced
in Example 1. Let X ⊂ R3 with s0 ∈ [0.80, 0.85], i0 ∈ [0.15, 0.20], and r0 ∈
[0.0, 0.0] be a box whose constraint representation is X = 〈D, c〉 where:

D =


1 0 0
0 1 0
0 0 1
−1 0 0
0 −1 0
0 0 −1

 c =


0.85
0.20
0.00
−0.80
−0.15
0.00

 (21)

The algorithm reachStep begins by composing the first direction D1 of
D with the system dynamics, obtaining the function:

D1f(s, i, r) =
(
1 0 0

)s− 0.35si
i+ 0.35si− 0.05i
r + 0.05i

 = s− 0.35si (22)

Then it proceeds by bounding D1f(x) over X calling bound(D1f(x), X) that
computes the map v(x) from the unit box to X:

v(x) =

0.85− 0.80 0 0
0 0.20− 0.15 0
0 0 0.0− 0.0

si
r

+

0.80
0.15
0.0

 (23)

and composes it with the function to bound D1f(x), generating the polyno-
mial:

D1f(v(x)) = s/20− (7(i/20 + 3/20)(s/20 + 4/5))/20 + 4/5 (24)

Finally the set BD1f(v(x)) of Bernstein coefficients of D1f(v(x)) is computed:

D1f(v(x)) = {0.7580, 0.7440, 0.8054, 0.7905} (25)

and the maximum coefficient b = 0.8054 is returned. Fixing b as the offset c′1 for
the direction D1, we obtain the first half-space of the new over-approximating
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Fig. 3: Box-based set image approximation. The constructed box (in white)
and some reachable points (in black).

box. Repeating the procedure for all the directions of D we obtain the box
X ′ = 〈D, c′〉 where:

D =


1 0 0
0 1 0
0 0 1
−1 0 0
0 −1 0
0 0 −1

 c′ =


0.8054
0.2495
0.0100
−0.7440
−0.1845
−0.0075

 (26)

The constructed box X ′ is shown in Figure 3 (in white) together with some
reachable points (in black) computed sampling initial conditions in X. Note
how X contains all the sampled reachable points.

3.2 Parallelotopes

In this section we extend our set image approximation method to parallelo-
topes, i.e., the n-dimensional generalization of parallelograms. The use of par-
allelotopes makes the reachability method more flexible as far as the choice of
the initial set is concerned and it allows one to obtain better approximations.

A parallelotope is a centrally symmetric convex polytope whose opposite
facets are parallel. As all the polytopes, it can be represented as a collection
of linear constraints.

Definition 3 (Parallelotope Constraint Representation) LetD ∈ R2n×n

be a template such that Di = −Di+n for each i ∈ {1, 2, . . . , n}, and let



16 Tommaso Dreossi et al.

x2

x1

S
D1x ≤ c1

D2x ≤ c2

D3x ≤ c3

D4x ≤ c4

(a) Constraint representation.

x2

x1

S

q

m1u
1

m2u
2

(b) Generator representation.

Fig. 4: A set S and two enclosing parallelotopes.

c ∈ R2n be an offset vector. The parallelotope P ⊂ Rn generated by D and c
is P = 〈D, c〉.

We refer to the above representation as the constraint representation (see
Figure 4a). Note that a parallelotope is a polytope and that a box is a par-
allelotope (see Equation (19)). Another way to characterize a parallelotope,
similar to the one adopted for zonotopes [21], is to fix a point of origin and
use vectors to define it.

Definition 4 (Parallelotope Generator Representation) Let U = {u1,
. . . ,un} be a set of n linearly independent normalized vectors in [0, 1]n, m ∈
Rn≥0, and q ∈ Rn. The parallelotope P ⊂ Rn generated by U,m, and q is:

P = {y | y = γU (q,m,x),x ∈ [0, 1]n} (27)

where the function γU : Rn × Rn≥0 × Rn → Rn is defined as:

γU (q,m,x) = q +

n∑
j=1

mju
jxj (28)

This representation is called generator representation. The vectors u1, . . . ,un

are the generators of the parallelotope, q is the base vertex, and m are the mag-
nitudes of the generators. Intuitively, the base vertex is the point on which the
generators are anchored, the generators defines the orientation of the parallelo-
tope, while the magnitudes its scale (see Figure 4b). This notation emphasizes
the aspect that a parallelotope can be seen as the affine transformation of the
unit box (note in Equation (27) that x ∈ [0, 1]n). This suggests that there
might be a way to combine Bernstein coefficients with parallelotopes.

Before discussing the parallelotope-based set image approximation tech-
nique, we show how a parallelotope can be equivalently represented using
constraints and generators. In our reachability algorithm we will use one of
the two representations depending on the operation we want to perform.
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3.2.1 Representation Conversion

From Constraints to Generators Given a parallelotope P = 〈D, c〉 in con-
straint representation, we want to find a generator set U , a base vertex q,
and magnitudes m such that γU (q,m, [0, 1]n) = 〈D, c〉. First, we rewrite the
inequalities given by the template D and offsets c in form:

−cn+i ≤ Dix ≤ ci (29)

for all i ∈ {1, . . . , n}. The based vertex q and the coordinates of the vertex ii
that lies on the straight line passing through the i-th generator vector applied
to the vertex q, are the solutions of the linear systems:

D1

...
Dn

x =

−cn+1

...
−c2n




D1

...
Di

...
Dn

x =



−cn+1

...
ci
...
−c2n

 (30)

Let gi be the vector anchored on the base vertex q that points to the vertex vi,
i.e., gi = vi−q. The generator ui and the magnitude mi such that gi = miu

i

are given by mi = ‖gi‖ and ui =
gi

‖gi‖
.

From Generators to Constraints We now consider the inverse conversion: given
a generator function γU (q,m,x), find a template D and an offset vector c such
that 〈D, c〉 = γU (q,m, [0, 1]n).

Let G = {gi | gi = miu
i,mi ∈ x,ui ∈ U} be the set of generators scaled

by their correspondent magnitudes. At first, we calculate the points p1, . . . ,pn

that are traversed by the hyperplanes correspondent to the constrains. Each pi

is obtained by adding the vector gi to the base vertex q, i.e., pi = q+gi. The
i-th constraint of the parallelotope lies on the hyperplane (whose equation
is hi = aix + ci) passing through the points q,p1, . . . ,pi−1,pi+1, . . . ,pn.
The equation hi+n = ai+nx + ci+n of the hyperplane parallel to hi can be
found by translating the vertices used to compute hi by the vector gi, i.e.,
hi+n is the hyperplane passing through the points q + gi,p1 + gi, . . . ,pi−1 +
gi,pi+1 + gi, . . . ,pn + gi. Let ci and ci be defined as ci = min{di, di+n} and
ci = max{di, di+n}.

Since hi and hi+n are parallel it must hold ai = ai+n. Hence, the portion
of the parallelotope included between hi and hi+n is the solution of the in-
equalities ci ≤ aix ≤ ci, which means that the i-th and (i+ n)-th rows of the
template matrix are Di = ai and Di+n = −ai, while the i-th and (i + n)-th
offset elements are ci = ci and ci+n = −ci.
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3.2.2 Bounding over Parallelotopes

Let us now focus on the set image computation and in particular on the polyno-
mial bounding problem. Let X = 〈D, c〉 ⊂ Rn be a parallelotope in constraint
representation whose generator function is γU (q,m,x). We are interested in
computing a parallelotope X ′ ⊂ Rn such that X ′ ⊇ f(X). Adopting the tem-
plate D of X, we can obtain X ′ by determining the offsets c′ ∈ R2n such that
f(X) ⊆ 〈D, c′〉 = X ′. We recall that in order for a parallelotope X ′ = 〈D, c′〉
to over-approximate the set f(X) it must hold that:

c′i ≥ max
x∈X

Dif(x) (31)

for all i ∈ {1, . . . , 2n}.
This condition can be equivalently rewritten using the generator represen-

tation as:

c′i ≥ max
x∈[0,1]n

hi(x) (32)

for all i ∈ {1, . . . , 2n}, where hi(x) = Dif(γU (q,m,x)) for some fixed U ⊂
[0, 1]n, q ∈ Rn, and m ∈ Rn. Note that hi(x) is a polynomial function of x
that we want to maximize over the unit box. Therefore, we can use Bernstein
coefficients to compute an upper bound c′i ∈ R of the function hi(x) for
x ∈ [0, 1]n.

Let Bhi = {bj | j ∈ Ihi} be the set of Bernstein coefficients of the function
hi(x) and let c′ = (c′1, . . . , c

′
2n) be defined as:

c′i = max{bj | j ∈ Ihi} (33)

for all i ∈ {1, . . . , 2n}. It is easy to see that the vector c′ satisfies the in-
clusion f(X) ⊆ 〈D, c′〉. This result follows directly from the range enclosing
property of Bernstein coefficients (Lemma 1) and the bounding condition of
Equation (32).

At this point we have all the ingredients to define an algorithm that bounds
a polynomial (the hi(x) functions) over a parallelotpe (the set to be trans-
formed). Let us formalize these ideas overloading the algorithm bound already
defined on boxes in Section 3.1. The function bound (Algorithm 5) receives in
input a polynomial π : Rn → R and a parallelotope X = 〈D, c〉 in constraint
representation, and returns an upper-bound b ∈ R of π(x) over X.

Algorithm 5 Bound polynomial over parallelotope

1: function bound(π,X) . X = 〈D, c〉 ⊂ Rn parallelotope
2: γU (q,m,x)←con2gen(X) . Compute generator function
3: b←maxBernCoeff(π(γU (q,m,x)) . Compute maximum coefficient
4: return b
5: end function
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The first step for bound is to compute the generator function γU (q,m,x)
for the parallelotope X as described in Section 3.2.1. The resulting func-
tion is composed with π, and the Bernstein coefficients of π(γU (q,m,x)) are
computed. Finally, the maximum Bernstein coefficient, constituting an upper-
bound of π over X, is returned.

Plugging the new algorithm bound into reachStep (Algorithm 2), which
in turn is used by reach (Algorithm 1), we obtain a parallelotope-based reach-
ability algorithm.

Example 6 We now show a parallelotope-based single step reachability on the
SIR epidemic model of Example 1. Let X = 〈D, c〉 be the parallelotope in
constraint representation with:

D =


−1 0 0
−1 −1 0
0 0 −1
1 0 0
1 1 0
0 0 1

 c =


−0.80
−0.95
0.00
0.85
1.00
0.00

 (34)

The algorithm reachStep picks the first direction D1 of the template D and,
calling bound, bounds the polynomial D1f(x) over X. The bounding function
computes the generator function γU (q,m,x) of X, that is:

γU (q,m,x) =

q1 + 0.7070m1s
q2 − 0.7070m1s+ m2i
q3 + rm3

 (35)

with q = (0.80, 0.15, 0.00) and m = (0.0707, 0.0500, 0.0000). ComposingD1f(x)
with γU (q,m,x), the algorithm generates the polynomial:

D1f(γU (q,m,x)) = ((q1+0.7070m1s)0.35(q1+0.7070m1s)(q20.7070m1s+m2i))
(36)

that instantiated on the base vertex q and magnitudes m, leads to the Bern-
stein coefficients:

BD1f(γU (q,m,x)) = {−0.7580,−0.7440,−0.7887,−0.7743,−0.8203,−0.8054}
(37)

The maximum coefficient −0.7440 is the offset c′1 that associated with the
direction D1 generates the first over-approximating half-space D1x ≤ c′1. Re-
peating the procedure for all the directions, we obtain the offset vector c′ =
(−0.7440,−0.9425,−0.0050, 0.8203, 0.9925, 0.0100) that coupled with the tem-
plate D leads to the over-approximating parallelotope X ′ = 〈D, c′〉 ⊇ f(X).

The constructed parallelotope X ′ and some reachable points computed
sampling initial conditions in X are shown in Figure 5 (in white and black,
respectively). Note how X ′ contains all the computed reachable points.
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Fig. 5: Parallelotope-based set image approximation. The constructed paral-
lelotope (in white) and some reachable points (in black).

3.3 Parallelotope Bundles

Combining Bernstein coefficients with generic polytopes is hard, since it re-
quires the transformation of the unit box into a polytope. This can be done
considering higher dimensional unit boxes [74], but it sensibly increases the
computation complexity of the procedure. What we propose here is a new data
structure called parallelotope bundles to symbolically represent polytopes as
intersections of parallelotopes. The core idea behind parallelotope bundles is
to exploit the techniques previously developed on parallelotopes to define a
bundle-based image algorithm.

Definition 5 (Parallelotope Bundle) A parallelotope bundle B = {P1, . . . , Pb}
is a finite set of parallelotopes whose intersection, denoted by I(B) = ∩bi=1Pi,
generates a polytope.

The polytope I(B) represented by a parallelotope bundle B can be represented
as the set of all the templates and offsets of the parallelotopes that constitute
B.

Lemma 4 (Polytope Decomposition) Any polytope Q ⊂ Rn defined by m
constrains can be represented by a bundle involving dm/ne parallelotopes.

Proof We first demonstrate that for any polytope Q ⊂ Rn there exists a par-
allelotope bundle B such that Q = I(B). Any set of parallelotopes P1, . . . , Pb
whose hyperplanes union is a cover1 of the the hyperplanes of Q, is a bundle
B = {P1, . . . , Pb} such that Q = I(B).

1 A set of nonempty subsets of X whose union contains the given set X is called a cover
of X.
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h1
h2

h3

Q

P1

P2

(a) A polytope Q and a possible decom-
posing bundle B = {P1, P2}, i.e., Q =
I(B).

h1
h2

h3

Q
P1

P2

(b) A bundle B = {P1, P2} in canonical
form, i.e., B = S(B).

Fig. 6: Examples of parallelotope bundles.

Next, we show that dm/ne parallelotopes are sufficient to decompose a
polytope Q ⊂ Rn defined by m constrains. Let HQ = {h1, . . . , hk} be the set
of hyperplanes of Q and HB = ∪bi=1{hi1, . . . , hi2n} = {h′1, . . . , h′k′} be the union
of all the hyperplanes of the parallelotopes of B, for some k′ ∈ N, k ≤ k′ ≤ b2n.

The polytope generated by B is then ∩bi=1 ∩2nj=1 h
i
j = ∩k

′

i=1h
′
i. Since HB

covers HQ, it holds that {h′1, . . . , h′k′} = {h1, . . . , hk} and then ∩k
′

i=1h
′
i =

∩ki=1hi = Q.
A single parallelotope can match at least n hyperplanes of Q. Then, the

total number of sufficient parallelotopes to decomposeQ is equal to the number
of facets of Q divided by the worst case maximum number of facet matchable
by a single parallelotope, i.e., dm/ne.

Lemma 4 states that any polytope can be represented by a parallelotope
bundle and establishes the maximum number of parallelotopes sufficient to
represent a polytope.

Example 7 Figure 6a depicts a polytope Q (in gray) together with a possible
bundle B = {P1, P2} such that Q = I(B). In this case m = 3 and n = 2, thus
d3/2e = 2 are sufficient to decompose Q (in our case P1 and P2).

A bundle representing a polytope may not be “minimal” in the sense that
one or more paralleloptopes can be shrunk while the resulting bundle still
represents the same polytope (see, e.g., the parallelotopes of Figure 6a). Thus
we can define a shrinking process that removes parts of parallelotopes that are
not in the polytope. As we will see later, the shrinking reduces the error when
the image over-approximation is performed on shrunk parallelotopes.

Definition 6 (Shrinking) Let B = {P1, . . . , Pb} be a parallelotope bun-
dle. The shrinking B′ = S(B) of B produces a parallelotope bundle B′ =
{P ′1, . . . , P ′b} such that for all P ′i = 〈D, c′〉 ∈ B′ and Pi = 〈D, c〉 ∈ B it holds
that:

c′j = max
x∈I(B)

Djx (38)

for j ∈ {1, . . . , 2n}.
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Roughly speaking, the shrinking places the hyperplanes of the parallelotopes
of a bundle tangent to its polytope. This operation can be done by solving 2n
linear programs. A bundle that remains unchanged after a shirking is said to
be in canonical form.

Definition 7 (Canonical From) A bundle B is in canonical from if and
only if S(B) = B.

A bundle in canonical form is a “minimal” representation of the polytope
with respect to a given set of directions, since all the offsets are shifted towards
the constraints of the polytope. The advantage of dealing with bundles in
canonical form will become clearer on image approximations.

Example 8 Figure 6b shows the shrinking of the bundle of Figure 6a. Note
how all the halfspaces of the parallelotopes are tangent to the polytope Q.
The shown bundle is in canonical form.

Note that after shrinking, the hyperplanes of different paralleloptopes might
overlap (specifically, those with the same directions, like for instance the hy-
perplane h2 of Figure 6b shared by P1 and P2). Moreover, the constraints of
the paralleloptopes are pairwise parallel, meaning that for a given hyperplane
we can obtain the direction of its parallel one by reversing the original di-
rection sign. These observations suggest us that in a bundle there is a lot of
redundant information and instead of storing separately each parallelotope, we
might think of a data structure that compactly represents bundles in canonical
form.

Definition 8 (Bundle Representation) A parallelotope bundle in canon-
ical from can be compactly represented by the tuple 〈D, c, c, T 〉 where:

– D ∈ Rk×n is the direction matrix that contains the directions used to build
the parallelotopes. The i-th row Di of D represents a direction;

– c ∈ Rk is the upper offsets vector. The i-th element of c associated with
the i-th direction Di constitutes the halfspace Dix ≤ ci;

– c ∈ Rk is the lower offsets vector. The i-th element of c associated with
the i-th direction Di constitutes the halfspace −Dix ≤ ci (note the change
of sing in the direction);

– T ∈ {1, . . . , k}b×n is the template matrix. Each element in T refers to a
direction in D and some offsets in c and c. A row in T points to a set of
halfspaces that generate a parallelotope.

With a slight abuse of notation we write B = {P1, . . . , Pb} = 〈D, c, c, T 〉
to indicate that the bundle B = {P1, . . . , Pb} is represented by the tuple
〈D, c, c, T 〉.
Example 9 Consider the bundle B = {P1, P2} in canonical from of Figure 6b
where P1 = 〈D1, c1〉 and P2 = 〈D2, c2〉 with:

D1 =


1.6 1
0 1
−1.6 −1

0 −1

 c1 =


10
3.1
−1
−1

 D2 =


1.6 1
−0.5 1
−1.6 −1
0.5 −1

 c2 =


10
1
−1
1.7

 (39)



Reachability Computation for Polynomial Dynamical Systems 23

The bundle B = {P1, P2} can be represented by the tuple 〈D, c, c, T 〉 where:

D =

 1.6 1
0 1
−0.5 1

 c =

10
3.1
1

 c =

−1
−1
1.7

 T =

(
1 2
1 3

)
(40)

3.3.1 Bounding over Bundles

Similarly to boxes and parallelotopes, also here we aim to use bundles to
over-approximate the image of polytopes. In particular, given a bundle B =
〈D, c, c, T 〉 and a polynomial f : Rn → Rn, we want to find a vector c′ ∈ R2k

such that f(I(B)) ⊆ 〈D′, c′〉, where D′ is a template, possibly composed by
the directions of the bundle. Once we compute the polytope 〈D′, c′〉 we might
want to decompose it into a new bundle. Let us start with the problem of
bounding a direction over the image of a bundle.

LetX = I(B) be the polytope represented by the bundleB = {P1, . . . , Pb} =
〈D, c, c, T 〉 and let D′ be a template. We recall that in order for a polytope
X ′ = 〈D′, c′〉 to over-approximate f(X) it must hold that:

c′i ≥ max
x∈X

D′if(x) (41)

for all i ∈ {1, . . . , 2k}. As pointed out in Section 2.3, since X is a generic
polytope, we may not be able to efficiently solve this optimization problem.
However, since X = I({P1, . . . , Pb}) ⊆ Pi, for all i ∈ {1, . . . , b}, it holds that:

f(X) ⊆
b⋂
i=1

f(Pi) (42)

This means that for a given direction D′i, it holds that:

max
x∈X

D′if(x) ≤ max
x∈Pj

D′if(x) (43)

for all j ∈ {1, . . . , b}. In particular, we can obtain a tight upper-bound c′i of
max
x∈X

D′if(x) looking at the parallelotopes of a bundle:

c′i = min
j∈{1,...,b}

max
x∈Pj

D′if(x) (44)

Example 10 Let B = {P1, P2} be a bundle, X = I(B) be its polytope, and
f : Rn → Rn be a continuous function. Figure 7 depicts the transformations
f(X), f(P1), and f(P2). Notice that since X ⊆ P1 ∩ P2, the inclusion f(X) ⊆
f(P1) ∩ f(P2) holds. Let Di ∈ Rn be the direction that we want to bound
over f(X). Since we are not able to directly bound Di over f(X), we bound
Di over f(P1) and f(P2) and then we take the minimum bound. For instance,
let c1i ≥ max

x∈P1

Dif(x) and c2i ≥ max
x∈P2

Dif(x) (these bounds can be obtained

with the algorithm bound defined on parallelotopes in Section 3.2.2). Suppose
that c2i ≤ c1i (as depicted in Figure 7). Then c2i is the best candidate to be
associated with the direction Di that leads to the hyperplane Dix ≤ c2i that
tightly includes f(X).
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f(P1)

f(P2)

f(X)

Dix ≤ c1i

Dix ≤ c2i

Fig. 7: Bounding the direction Di over the transformation of a bundle B =
{P1, P2}.

From Example 10 it easy to see that we obtain hyperplanes that are closer
to the polytope image by considering more parallelotopes. Of course, this has
a price in terms of computational complexity. Given a parallelotope bundle
B = {P1, . . . , Pb} we might let the user chose on which parallelotopes to
bound a direction, specifying the correspondent indices. Let us formalize the
bounding algorithm.

Algorithm 6 Bound polynomial over parallelotope bundle

1: function bound(π, {P1, . . . , Pb}) . {P1, . . . , Pb} parallelotope bundle
2: for i ∈ {1, . . . , b} do
3: bi ←bound(π, Pi)
4: end for
5: b← min{b1, . . . ,bb}
6: return b
7: end function

Let us overload the already defined algorithm bound on paralellotope bun-
dles. The new bound (Algorithm 6) takes in input a polynomial π : Rn → Rn
and a parallelotope bundle B = {P1, . . . , Pb}, and returns an upper-bound
b̄ ∈ R of π(x) over I(B). For each parallelope Pi with i ∈ {1, . . . , b}, the
algorithm calls the function bound defined on parallelotopes (Algorithm 5)
that returns a bound bi of π(x) over Pi. Once that all the paralleloptopes
have been considered, the algorithm returns the minimum bound b̄ that is an
upper-bound of π(x) over the polytope I(B).

3.3.2 Bundle-based Image Over-approximation

The function bound can be used to over-approximate the image of a polytope
represented by a bundle. In particular, we can consider a template, bound
its directions over the polytope X = I(B), and then construct the over-
approximation polytope X ′ ⊇ f(X). If we want to reapply our bundle-based
approximation scheme to X ′, we need to decompose X ′ in a new bundle.
Specifically, we have to define a new templates matrix that leads to X ′. In
order to use bundles in the reachability algorithm, we need to slightly adapt
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the reachStep algorithm (Algorithm 2) considering two main aspects: 1) the
directions to be bounded and the parallelotopes of the bundle on which the
directions have to be bounded, and 2) the decomposition of the computed
polytope into a new bundle. Let us begin by considering the first issue.

Let B = {P1, . . . , Pb} = 〈D, c, c, T 〉 be the bundle to be transformed by
f : Rn → Rn. We assume that for the over-approximating polytope we use a
template D′ composed by the same directions of B, i.e., D′ =

(
D
−D
)
. With

these ingredients, the completest over-approximation technique that we can
develop consists in bounding all the directions of D′ over all the paralleloptopes
{P1, . . . , Pb}. reachStep (Algorithm 7) formalizes this idea. The algorithm
takes in input a bundle B = 〈D, c, c, T 〉 and goes through all the directions
of D. The composition of each direction Di with the function f(x) (and its
parallel version −Di with f(x)) is bounded over all the parallelotopes of the
bundle with the function bound generating the offset vectors c′ and c′. At

this point, the polytope 〈D′, c′〉, with c′ =
(

c′

c′

)
is an over-approximation of

f(I(B)). We refer to this approach as the all-for-one (AFO) transformation,
since we bound all the directions on each single parallelope. This method
requires Θ(2kb) bounding computations.

Algorithm 7 Bundle-based reach step (AFO technique)

1: function reachStep(B) . B = {P1, . . . , Pb} bundle
2: for i ∈ {1, . . . , k} do
3: c′i ←bound(Dif(x), {P1, . . . , Pb})
4: c′i ←bound(−Dif(x), {P1, . . . , Pb})
5: end for
6: B′ ← decompose(〈D, c′, c′, T 〉) . optional
7: return B′

8: end function

Since we might want to apply again a bundle-based image over-approxima-
tion, we should decompose the polytope 〈D′, c′〉 into a new bundle B′. A static
(and fast) approach consists in keeping the same parallelotope templates of B
also for B′, i.e., reachStep can return the bundle B′ = 〈D, c′, c′, T 〉 without
any decomposition. Otherwise, we have to define the composition function
decompose.

Before focusing on the decomposition, we define a faster but rougher over-
approximation method. The technique consists in considering only a subset
of parallelotopes when bounding the directions of the bundle. Specifically, for
each parallelope Pi, we bound only the directions that compose Pi over itself.
This corresponds to independently over-approximate each parallelotope by
its own template. This method can be easily obtained by slightly modifying
Algorithm 7. We refer to this technique as one-for-one (OFO) transformation,
since the directions of one parallelope are bounded only with respect to one
parallelope. In doing so, the number of bound computations is Θ(2nb). The
OFO technique requires less optimizations than AFO (note that k ≥ n) but
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f(P1)

f(P2)

f(X)

(a) AFO already shrunk.

f(P1)

f(P2)

f(X)

(b) OFO after shrinking.

Fig. 8: AFO and OFO transformations.

it might produce coarser results. Note that the OFO over-approximation can
be seen as the independent over-approximation of each parallelotope of the
bundle that generates a new bundle which can be shrunk/canonized and then
represented with our data structure.

Example 11 Figure 8 shows the AFO and OFO transformations using the
directions of the bundle of Figure 6 and the transformed parallelotopes of
Figure 7. Figure 8a depicts the AFO transformation, where all the directions
are bounded over all the parallelopes and the smallest offsets are kept. The
gray area is the polytope resulting from the AFO transformation.

Figure 8b shows the OFO transformation, where the directions of each
parallelotope are bounded over the image of the parallelotope itself. The gray
area is the polytope obtained by shrinking the result of OFO transformation.

Note how the AFO over-approximation polytope (Figure 8a) is included in
the OFO one (Figure 8b).

Example 12 As an illustrative example, we now show a bunlde-based single
step reachability of the SIR epidemic model presented in Example 1. Let us
consider the AFO transformation, i.e., the approach in which each direction
is bounded over each parallelotope of the bundle (see Section 3.3.2).

Let X ⊂ Rn be a set represented by the bundle B = 〈D, c, c, T 〉 with:

D =


1 0 0
0 1 0
0 0 1
1 0 0.5

 c =


0.8
0.2
0.0
1.0

 c =


−0.79
0.19
0.0
0.0

 T =

(
0 1 2
1 2 3

)
(45)

Intuitively, the set X = I(B) is the box with s ∈ [0.79, 0.80], i ∈ [0.19, 0.20],
and r = 0.00. We want to determine new offset vectors c′, c′ for a new paral-
leltope bundle B′ such that I(B′) ⊇ f(X).

To do so, we apply the AFO transformation algorithm, that bounds all
the directions of the matrix D over the parallelotopes described by the tem-
plates matrix T , and keeps the tightest bound. The bounding operations are
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(a) The parallelotopes of the constructed
bundle (in white and gray).

(b) The symbolic polytope (in white) and
some reachable points (in black).

Fig. 9: Bundle-based set image approximation.

carried out using the methods previously described (see Section 3.2.2). For
instance, by bounding the direction D3 over the two parallelotopes, we ob-
tain the upper-bounds 0.89 and 0.99, respectively. Thus, the algorithm keeps
the tightest bound that is the offset c′3 = 0.89 for the over-approximating
bundle under construction. Repeating this operations for all the directions
and parallelotopes, we obtain the offset vectors c′ = (0.79, 0.20, 0.001, 0.89)
and c = (−0.78,−0.19,−0.001,−0.88) that grouped with the direction and
template matrices constitute the new bundle B′ = (D, c′, c′, T ).

Figure 9a shows the parallelotopes that compose the new bundle (in white
and gray). Figure 9a shows the symbolic polytope generated by the intersection
of the two parallelotopes (in white) with some reachable points computed by
sampling initial conditions in X. Note how all the points fall in the computed
bundle.

3.3.3 Polytope Decomposition

As earlier pointed out, in our bundle-based over-approximation algorithm we
may be interested in decomposing a polytope into a bundle (see Algorithm 7).
Hence, we now define the function decompose that receives in input a bundle
B (whose polytope I(B) has to be decomposed) and reorganizes its the tem-
plates matrix creating a new collection of parallelotopes around the polytope
I(B). The goal of the decomposition is to create a set of small parallelotopes
whose intersection is I(B). There are two reasons why we want small paral-
lelotopes:

1. Smaller parallelotopes Pi lead to a smaller bundle image {f(P1), . . . , f(Pd)}
and then to a more accurate over-approximation of f(I(B));

2. The shorter the largest side length of Pi, the more accurate the over-
approximation introduced by the Bernstein coefficients (see Lemma 3).
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Thus, the aspects to be taken into account in the construction of the par-
allelotopes are volume and maximum side length. Moreover, we do not have to
forget that the set of the parallelotope directions must cover the directions of
the polytope to be decomposed (see Lemma 4). Finding the best decomposi-
tion in terms of volume and maximum length minimization is computationally
expensive and might not be possible (recall that the set cover problem is NP-
hard [45]).

In order to efficiently find a good decomposition, we propose a heuristic
that constructs the parallelotopes while trying to minimize the volumes and
maximum side lengths. The proposed heuristic starts from a decomposition,
applies a series of random changes to the templates matrix, and keeps only
the best one accordingly to an evaluation function that we will soon define.
The procedure is repeated until a fixed number of iterations is reached.

Given a bundle B = {P1, . . . , Pb}, the evaluation function should take
into account the volumes and side lengths of the parallelotopes Pi, for i ∈
{1, . . . , b}. The exact computation of the volume of a parallelotope is rather
expensive, since it is equal to the determinant of a n × n matrix. To lighten
the computation, we approximate the volume of P = 〈D, c〉 with the product
of the distances of its constraints:

ṽ(P ) =

n∏
i=1

δ(Dix ≤ ci, Di+nx ≤ ci+n) (46)

where δ(Dix ≤ ci, Di+nx ≤ ci+n) = |ci−ci+n|/‖Di‖ and ‖·‖ is the Euclidean
norm.

The computation of the side lengths of a parallelotope passes inevitably
through the determination of its vertices, an operation that can be computa-
tionally expensive. Instead of calculating the exact lengths, we opt for a faster
heuristic that guesses the lengths of a parallelotope from the angles of the di-
rections of its constraints. Intuitively, in the two-dimensional case, having fixed
two parallel lines, the lengths of the edges not lying on the two fixed lines are
minimal when the added directions and the fixed ones are orthogonal. Thus,

we define the notion of orthogonal proximity θ(Di, Dj) = D̂i, Dj (mod π/2),

where D̂i, Dj is the angle between Di and Dj , i.e., D̂i, Dj = arccos
DiDj

‖Di‖‖Dj‖
.

The orthogonal proximity of a parallelotope P = 〈D, c〉 is defined as:

Θ(P ) = max
i,j∈{1,...,2n}

θ(Di, Dj). (47)

Exploiting the notions of approximated volume ṽ and orthogonal proximity
Θ, we define the evaluation function w for a bundle as:

w({P1, . . . , Pb}) = max
i∈{1,...,b}

αṽ(Pi) + (1− α)Θ(Pi) (48)

where α ∈ [0, 1] is a tunable parameter.



Reachability Computation for Polynomial Dynamical Systems 29

4 Experimental Evaluation

In this section we experimentally evaluate the reachability techniques pre-
sented in this paper. We take into account several dynamical systems and
observe how different methods influence flowpipe construction and computa-
tional times. As expected, the larger the number of adopted templates and
directions, the preciser the constructed flowpipe and the longer the computa-
tion are.

Our methods have been gathered in the tool called Sapo [29].2 The tool is
in C++ and it requires two external libraries: GiNaC3 (GiNaC is Not a CAS)
for handling symbolic polynomials, and GLPK4 (GNU Linear Programming
Kit) for solving linear programs. For more details on Sapo, the reader can refer
to [30].

The experimental evaluation begins with Section 4.1, where several dy-
namical systems, sorted by increasing dimension, are presented. We will study
the Van der Pol oscillator (2d) [67], the Rössler attractor (3d) [69], the SIR
epidemic model (3d) [46], a generalized Lotka-Volterra model (5d) [79], a phos-
phorelay systems (7d) [47], and a quadcopter drone model (17d) [22]. Each
model will be analyzed focusing on different aspects that influence the reach-
ability computation, such as the number of bundle directions and templates
used to construct the flowpipes, or the set transformation method (OFO or
AFO; see Section 3.3.2). All the obtained computational times and details on
models and reachability configurations are summarized in Table 1. For sim-
plicity, the direction and template matrices used to construct the bundles that
constitute the computed flowpipes are collected in Appendix A.

In Section 4.2 we compare our tool Sapo with Flow∗ [17], the state-of-
the-art tool for the reachability analysis on nonlinear dynamical and hybrid
systems. We will discuss the main differences of the results provided by the
tools and their running times. The comparison is summarized in Table 1.

All the experiments have been performed on a MacBook Pro (3.1 GHz, 16
GB DDR3 RAM).

4.1 Case Studies

4.1.1 Van der Pol Oscillator

The first studied model is the Van der Pol oscillator [67], an important two
dimensional nonlinear system that found application in many physical and
biological models. A commonly used form of the discrete-time Van der Pol

2 http://tommasodreossi.github.io/sapo/
3 http://www.ginac.de
4 https://www.gnu.org/software/glpk/
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(a) 4 dirs/2 temps (0.70s) (b) 4 dirs/4 temps (1.79s) (c) 4 dirs/6 temps (3.48s)

Fig. 10: Reachable sets of Van der Pol oscillator with increasing number of
templates (350 steps).

oscillator is given by the following dynamics:

xk+1 = xk + (yk)∆

yk+1 = yk + (µ(1− x2k)yk − xk)∆
(49)

where µ is a scalar parameter indicating the nonlinearity and the strength of
the damping of the system, and ∆ is the discretization step.

For our experiments we set µ = 0.5 and ∆ = 0.02. The constructed bun-
dles use four directions and from one to six templates (for details, see Ap-
pendix A.1). For each experiment, we increase the number of templates that
constitute the bundle. For instance, in the first experiment, we consider a sin-
gle template represented by the first direction of the templates matrix, in the
second, the first two directions, and so on.

The set of initial conditions is the box with x0 ∈ [0.00, 0.01] and y0 ∈
[1.99, 2.00]. We computed the flowpipe for 300 steps, corresponding to a full
cycle of the oscillator. Some computed flowpipes are depicted in Figure 12. In
particular, Figure 10a shows the computed flowpipe using 4 directions com-
bined in 2 templates (0.70s), Figure 10b 4 directions in 4 templates (3.48s), and
Figure 10c 4 directions in 6 templates (1.79s). Notice how adding templates
leads to finer flowpipes at the expense of longer running times.

4.1.2 Rössler Attractor

We now consider the Rössler attractor [69,70], a three dimensional nonlinear
dynamical system defined to study chaotic phenomena and that has found
application in modeling equilibria of chemical reactions. The dynamics of the
attractor are the following:

xk+1 = xk + (−yk − zk)∆

yk+1 = yk + (xk + ayk)∆

zk+1 = zk + (b+ zk(xk − c))∆
(50)
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(a) OFO transformation (0.77s) (b) AFO transformation (0.99s)

Fig. 11: Reachable sets of Rössler attractor (5 dirs/3 temps, 250 steps).

where a, b, and c are scalar parameters and ∆ is the discretization step. We
chose the common parameter values a = 0.1, b = 0.1, c = 14, and step
∆ = 0.025. The considered bundles are composed by five directions and three
templates (for details, see Appendix A.2).

We computed two flowpipes using the same bundle, but different transfor-
mation methods OFO and AFO (see Section 3.3.2). The set of initial conditions
is the box with x0 ∈ [0.09, 0.10], y0 ∈ [4.99, 5.00], and z0 ∈ [0.09, 0.10] and the
total number of steps is 250.

Figures 11a and 11b show the computed flowpipes using the OFO (0.77s)
and AFO (0.99s) transformations, respectively. As expected, the OFO trans-
formation is faster than the AFO one, but it interesting to notice that for this
case the difference between the two computed flowpipes is very small. How-
ever, it is important to remark that this is a lucky case. In general, as we will
see later, the difference between OFO and AFO can be sensible.

4.1.3 SIR Epidemic Model

Let us consider the running example adopted along this paper, that is the SIR
epidemic model [46], a three dimensional dynamical system that describes the
evolution of a disease in a population. We recall the dynamics of the system:

sk+1 = sk − (βskik/N)∆

ik+1 = ik + (βskik/N − γrk)∆

rk+1 = rk + (γik)∆

(51)

The model partitions a population of N ∈ R≥0 individuals in three compart-
ments: sk the people susceptible to the disease, ik the infected individuals, and
rk the individuals removed from the systems. The migrations of individuals
between different compartments are regulated by the parameters β, that is the
contraction rate, and γ, where 1/γ is the average infection period.
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(a) 3 dirs/1 temps (0.19s) (b) 5 dirs/3 temps (1.78s)

Fig. 12: Reachable sets of SIR epidemic model with increasing number of
directions and templates (300 steps).

For our experiments we fix the parameters β = 0.34, γ = 0.05, and ∆ = 0.1.
The set of initial conditions is the box with s0 ∈ [0.79, 0.80], i0 ∈ [0.19, 0.20],
and r0 ∈ [0.00, 0.00].

We perform two experiments: the first where the bundle consists in a single
box template, the second where five different directions are grouped in one box
template and two parallelotopic ones (for details, see Appendix A.3). In both
cases we computed 300 reachable steps using the AFO transformation. The
obtained flowpipes are depicted in Figures 12a and 12b, respectively. The box-
based analysis required 0.19s against the 1.78s of the bundle-based one but,
also in this case, a more complex bundle leads to a sensibly finer result.

4.1.4 Generalized Lotka-Volterra Model

Growing in dimension, we now consider a five-dimensional generalization of
the well-known Lotka-Volterra model [79] (sometimes called the predator-prey
model [60,78]), that is an important dynamical system used to describe the
evolutions of biological systems in which different species interact. The original
model involves only two spices; here we model five interacting spices [79]. The
model’s dynamics are the following:

vk+1 = vk + (vk(1− (vk + αwk + βzk)))∆

wk+1 = wk + (wk(1− (wk + αxk + βvk)))∆

xk+1 = xk + (xk(1− (xk + αyk + βwk)))∆

yk+1 = yk + (yk(1− (yk + αzk + βxk)))∆

zk+1 = zk + (zk(1− (zk + αvk + βyk)))∆

(52)

where α and β are the interaction parameters and ∆ is the discretization step.
We fix the parameter values as α = 0.85, β = 0.50, and ∆ = 0.01. The chosen
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set of initial conditions is the box whit v0, w0, x0, y0, z0 ∈ [0.95, 1.00], i.e., each
variable spans in the interval [0.95, 1.00].

For this model we run several experiments, starting from a simple box
template and then adding constraints and parallelotopeic templates (for de-
tails, see Appendix A.4). For the multiple template experiment we apply both
the OFO and AFO transformations (for the single one, the two methods are
equivalent). In all the cases we compute the reachable up to 500 steps. The
obtained running times are exposed in Table 1.

Surprisingly, the flowpipes constructed with different methods are the same,
meaning that for this model adding directions and templates does not improve
the precision of the results. However, this experiments gives us an idea of how
our method scales in the bundle size on a medium sized dynamical system.

4.1.5 Phosphorelay Systems

Let us now consider a model arising from molecular biology that describes
signal transduction, i.e., the activation of a receptor located inside a cell or
on its surface triggered by an extracellular signal. Specifically, we study the
phosphorelay signaling pathways system presented in [47]. The discrete-time
version of the system consists of the following seven difference equations:

Sln1k+1 = Sln1k + (−k1 · Sln1k + k3 · Sln1APk · Y pd1k)∆

Sln1HPk+1 = Sln1HPk + (k1 · Sln1k − k2 · Sln1HPk)∆

Sln1APk+1 = Sln1APk + (k2 · Sln1HPk − k3 · Sln1APk · Y pd1k)∆

Y pd1k+1 = Y pd1k + (k4 · Y pd1Pk · Ssk1k − k3 · Sln1APk · Y pd1k)∆

Y pd1Pk+1 = Y pd1Pk + (−k4 · Y pd1Pk · Ssk1k + k3 · Sln1APk · Y pd1k)∆

Ssk1k+1 = Ssk1k + (k5 · Ssk1Pk − k4 · Y pd1Pk · Ssk1k)∆

Ssk1Pk+1 = Ssk1Pk + (−k5 · Ssk1Pk + k4 · Y pd1Pk · Ssk1k)∆

(53)

where k1, k2, k3, k4, k5 are parameters and ∆ is the discretization step. We
adopt the parameter values proposed in [47], i.e., k1 = 0.4, k2 = 1.0, k3 =
5.0, k4 = 5.0, k5 = 0.5, and step ∆ = 0.01. The set of initial conditions is the
box where all the variables span in the interval [1.00, 1.01].

In this experiment we analyze the scalability of our methods applying al-
ways the AFO transformation and increasing the number of directions and
templates that compose the bundle used to construct the over-approximation
flowpipe. We compute the reachable set for 200 steps.

We perform four experiments, starting from seven directions grouped in a
single box template, and adding, at each time, a new direction and template.
At the end, we will obtain a bundle composed by ten directions and four
parallelotopic templates (for details, see Appendix A.5).

Some illustrative projections of the constructed flowpipes are depicted in
Figure 13. Specifically, the projections over time of the variables Sln1, Sln1HP ,
and Sln1AP are shown in Figures 13a, 13b, and 13c, respectively. Each plot
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(a) Sln1 (b) Sln1HP (c) Sln1AP

Fig. 13: Projections of seven dimensional biochemical model (200 steps)
with increasing number of directions and templates (7/1, 8/2, 9/3, 10/4
dirs/temps). Computation times (sec): 0.85, 2.75, 6.56, 15.51, respectively.

overlaps the projections of the flowpipes computed with different directions
and templates.

Differently from some previous experiments, each time we add a new direc-
tion and template, we obtain a finer over-approximation (see Section 4.1.4).
Of course this has a cost (between 7 directions in 1 template and 10 directions
in 3 templates there is a gap of 15s) but the precision gained from additional
parallelotopes is remarkable. All the running times are reported in Table 1.

4.1.6 Quadcopter Drone

As last case study, we consider a seventeen dimensional model of a quadcopter
drone. The goal of this study is to show the scalability of our methods in
terms of system’s dimension. Moreover, we will see how a single additional
template can lead to a fine flowpipe. The studied quadcopter drone model [22]
is composed by 17 variables, 13 of which represent the drone plant and 4
the drone controller. The plant state variables include the inertia position
of the drone (pn, pe, h), its linear velocities (u, v, w), the drone orientation
described by Euler angles expressed using quaternions (q0, q1, q2, q3), and the
angular velocities (p, q, r). The controller variables (hI , uI , vI , ψI) involve some
parameters of position, speed, and orientation. For a given reference height hr,
horizontal speeds ur, vr, and nose orientation ψr, the task of the controller is
to stabilize the drone from a configuration to the one specified by the reference
values. The quadratic dynamics of the model and its detailed description can
be found in [22]. The parameter chosen for our experiments, like mass, axis
moment of inertia, propeller masses, etc.) are taken from the real quadcopter
CrazyFlie Nano by Bitcraze.5

The chosen set of initial conditions is the box h0 ∈ [0.20, 0.21], q0 = 1.00,
and all the other variables set to zero. The reference height is hr = 1.00 and
speed and orientation are null, i.e., ur = vr = ψr = 0. We computed the

5 https://www.bitcraze.io/
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(a) Height (h) (b) Vertical speed (w) (c) Controller height (hI)

Fig. 14: Projections of seventeen dimensional quadcopter model (300 steps)
with increasing number of directions and templates (17/1, 18/2 dirs/temps).
Computation times (sec): 5.67, 12.29, respectively.

reachable set for 300 steps with a discretization step ∆ = 0.01, corresponding
to 3s of flight. Two experiments have been carried one: in the first we adopted
a single box template, in the second we added a parallelotope whose non-axis
aligned hyperplanes are not aligned with the dimensions that more vary during
the flight, such as height, vertical speed, angle quaternions, and controller
height (for details, see Appendix A.6). Both the computed flowpipes have
been calculated using the AFO transformation method. The first experiment
involving 17 directions and 1 template took 5.67s, the second experiment based
on 18 directions and 2 templates took 12.29s.

Figure 14 shows some projections over time of the computed flowpipes. In
particular, Figure 14a depicts the height h, Figure 14b the vertical speed w,
and Figure 14c the height hI computed by the controller. The figures highlight
the gain of precision provided by a single additional direction and template.
Note how the projections of the second flowpipe are sensibly thinner than the
first ones and the wrapping effect is notably reduced.

4.2 Comparison

To conclude, we compare our tool Sapo with Flow∗ [17], the state-of-the-art
tool for the computation of reachable set of nonlinear dynamical and hybrid
systems. Flow∗ represents and computes flowpipes as the integration of finite
sets of Taylor models [9]. Making a fair comparison between Sapo and Flow∗

is difficult since, for instance, the latter gives the possibility to specify er-
ror bounds on the computed flowpipes, feature that Sapo does not have yet.
However, Sapo’s errors can be bounded by Lemma 3 and reduced by exploit-
ing convergent subdivision techniques [38,62]. In the following experiments no
subdivision or splitting techniques have been applied by Sapo. Another im-
portant difference between Sapo and Flow∗ is that the first works only with
discrete-time dynamical systems, while the second deals with continuous-time
ones. To make the comparison as fair as possible, we discretized the original
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Model Sapo Flow*
Name Vars Steps Dirs/Temps Trans Time TM ε Time

Van der Pol [67]
4/2 AFO 0.70

4 10−4 1.342 300 4/4 AFO 1.79
4/6 AFO 3.48

Rössler [69] 3 250
5/3 OFO 0.77

4 10−4 0.94
5/3 AFO 0.99

SIR [46] 3 300
3/1 AFO 0.19

4 10−4 1.54
5/3 AFO 1.78
5/1 AFO 1.78

4 10−4 42.47
7/2 OFO 24.83

Lotka-Volterra [79] 5 500 7/2 AFO 49.70
7/3 OFO 46.92
7/3 AFO 89.67

Phosphorelay [47] 7 200

7/1 AFO 0.85

4 10−1 -
8/2 AFO 2.75
9/2 AFO 6.56
10/3 AFO 15.51

Quadcopter [22] 17 300
17/1 AFO 5.67

4 10−1 -
18/2 AFO 12.29

Table 1: Reachability methods evaluation on dynamical systems. Model:
model’s name; Vars: model’s dimension; Steps: reachability steps; Dirs/Temps:
number of used directions and templates; Trans: bundle transformation
method (OFO, one-for-one; AFO, all-for-one); Time: computation time (in
seconds).

continuous dynamical systems with the Euler method with a fixed size step.
The discretized models have been given in input to Sapo, while the continuous
ones, together with the chosen discretization step, have been given in input
to Flow∗. For details on the discretization steps, see the model descriptions in
Section 4.1.

As a benchmark, we run both the tools on the dynamical systems presented
in Section 4.1. In particular, for each model, Sapo has been tested using the dif-
ferent configurations (described in Section 4.1 and Appendix A), while Flow∗

parameters has been fixed as suggested by the user manual. Specifically, fixed
orders = 4, cutoff threshold = 10−10, precision = 53, and identity

precondition. The Taylor model fixed orders and reminder estimation

vary depending on the experiment as shown in Table 1. Also, the schemes for
polynomial ODEs are poly ode 1 for systems with a at most 3 variables, poly
ode 2 with at most 5, and poly ode 3 for more than 5.

Table 1 summarizes the obtained experimental results. For each case study,
the table reports the model’s name (Name), the model’s dimension in number
of variables/dynamics (Vars), and the total number of computed reachable
steps (Steps). For Sapo, the table indicates the number of adopted directions
and templates used to construct the parallelotope bundles (Dirs/Temps), the
kind of bundle transformation (Trans), and the running time. For Flow∗, the
table reports the Taylor model order (TM), the reminder estimation (ε), and
the running times. All the computational times are in seconds.
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Fig. 15: Reachable sets of Van der Pol oscillator obtained with about the same
computational times.

From the experiments, we can see how for large models Sapo is overall faster
than Flow∗. With the chosen configuration, Flow∗ was not able to compute
the reachable set of models with more than seven variables (the error message
returned after some reachablility steps was: “The reminder estimation is

not large enough”). Again, this comparison does not take into account the
precision of the results provided by the tools. However, juxtaposing the flow-
pipes produced by the tools on the Van der Pol oscillator (see Figure 15), we
can get an idea of how they behave on small models using the same amount
of time. From the figure, we can observe that the flowpipes are similar, even
if for longer rechable computations, Sapo is more likely to accumulate over-
approximation error. On the other hand, the strength of Sapo is that it can
be applied to models whose dimensions are double the size of those handled
by Flow∗ and it can still produce reasonably fine flowpipes (see, e.g., Sec-
tion 4.1.6).

5 Conclusion

5.1 Summary

This work presents three methods for the computation of bounded time reach-
able sets of polynomial dynamical systems. The goal of the developed algo-
rithms is to produce a flowpipe that over-approximates the reachable set of
a dynamical system starting from a set of initial conditions. The three meth-
ods differ from the basic sets used to construct the flowpipes. We developed
algorithms for the reachability computation based on boxes (i.e., hyperrect-
angles), parallelotopes (i.e., n-dimensional parallelograms), and parallelotope
bundles (i.e., polytopes represented as symbolic intersections of parallelo-
topes). All these methods are based on the idea of fixing a template for the
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over-approximation set and lifting the template’s constraints as close as pos-
sible to the actual (possibly non-convex) reachable set. Whenever nonlinear
dynamical systems are involved, this operation consists in solving a nonlin-
ear optimization problem. We propose to determine upper bounds to these
optimization problems using a particular property of Bernstein coefficients of
polynomials. Intuitively, instead of involving nonlinear optimizations, one can
compute the Bernstein coefficients of a polynomial and extract their maximum,
that, for a specific property of Bernstein coefficients, is an upper bound of the
polynomial. However, this property holds only for unit box domains. A consis-
tent part of our work was to lift this property to more generic domains, such
as boxes, parallelotopes, and symbolic polytopes. From this basic operation,
we defined algorithms to over-approximate the image of boxes, parallelotopes,
and parallelotope bundles with respect to polynomials, which eventually led us
to the definition of a reachability algorithm for polynomial dynamical systems.

All our techniques have been gathered in a C++ tool called Sapo and tested
on several case studies. Considering dynamical systems from two to seventeen
dimensions, we got an idea of how our techniques scale in terms of both system
dimension and complexity of the adopted templates. Moreover, we compared
Sapo to Flow∗, the state-of-the-art tool for nonlinear reachability analysis.

5.2 Future Work

We intend to improve and extend the methods presented in this work in dif-
ferent directions. First of all, we plan to have a better control on the wrapping
effect introduced by the over-approximations during the reachability compu-
tation. This task can be achieved in two manners: by improving the upper
bounds provided by Bernstein coefficients and by selecting set templates that
better wrap the real reachable sets. Several subdivision techniques for obtain-
ing tighter bounds from Bernstein coefficients already exist [38,62]. It is our
intention to integrate and automatize these techniques in our algorithms. The
selection of good templates is well-known for being a hard problem. However,
form our experiments, we observed that the definition of directions with non-
null components in the dimensions that more vary during the evolution of the
system, generally increases the precision of the computed flowpipes. Hence, we
intend to better investigate the relationship between the system’s dynamics
and the template definition.

There are also interesting ways in which we plan to extend this work. A
natural continuation could be towards hybrid automata, that are models that
describe systems characterized by the alternation of continuous and discrete
behaviors. The set image techniques developed in this work can be adapted for
the reachability analysis of hybrid automata. Moreover, in our works [31,24,
25] we considered the parameter synthesis problem for polynomial dynamical
systems, that is the problem of finding sets of parameters under which the sys-
tem satisfies a given specification. The methods that we developed are based
only on boxes and parallelotopes. Thus, we intend to study the parameter
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synthesis problem also involving paralleltope bundles with the goal of obtain-
ing less restrictive sets of parameters. Note that these techniques can also be
exploited to synthesize inputs, which differ from parameters since they can
vary during the evolution of the system. Indeed, it is our intention to consider
also the input synthesis problem for polynomial dynamical systems. Finally,
we want to emphasize that several components of our algorithms can be easily
parallelized. For instance the Bernstein coefficients of different dynamics can
be independently computed as well as the different parallelotopes of a bundle
can be independently transformed at each reachable step. It might be interest-
ing to investigate a parallel version of our algorithms exploiting ad-hoc tools
for parallel computation [41,63].
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71. Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic model checking of hybrid systems

using template polyhedra. In: Tools and Algorithms for the Construction and Analysis
of Systems, TACAS, pp. 188–202. Springer (2008)

72. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using
mathematical programming. In: Verification, Model Checking, and Abstract Interpre-
tation, VMCAI, pp. 25–41 (2005)

73. Sassi, M.A.B., Sankaranarayanan, S.: Bernstein polynomial relaxations for polynomial
optimization problems. arXiv preprint arXiv:1509.01156 (2015)

74. Sassi, M.A.B., Testylier, R., Dang, T., Girard, A.: Reachability analysis of polynomial
systems using linear programming relaxations. In: Automated Technology for Verifica-
tion and Analysis, ATVA, pp. 137–151 (2012)

75. Shisha, O.: The Bernstein form of a polynomial. Journal of Research of the National
Bureau of Standards: Mathematics and mathematical physics. B 70, 79 (1966)

76. Stursberg, O., Krogh, B.H.: Efficient representation and computation of reachable sets
for hybrid systems. In: Hybrid Systems: Computation and Control, HSCC, pp. 482–497.
Springer (2003)

77. Varaiya, P.: Reach set computation using optimal control. In: M. Inan, R. Kurshan
(eds.) Verification of Digital and Hybrid Systems, NATO ASI Series, vol. 170, pp. 323–
331. Springer Berlin Heidelberg (2000)

78. Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali con-
viventi. C. Ferrari (1927)

79. Wildenberg, J., Vano, J., Sprott, J.: Complex spatiotemporal dynamics in lotka–volterra
ring systems. ecological complexity 3(2), 140–147 (2006)

Appendix A Experiment Details

A.1 Van der Pol

D =


1 0
0 1
−1 1
1 1

 T =


0 1
2 3
0 2
1 3
0 3
1 2

 (54)

A.2 Rössler attractor

D =


1 0 0
0 1 0
0 0 1
1 0.5 0

0.5 0 0.5

 T =

0 1 2
1 2 3
2 3 4

 (55)
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A.3 SIR Epidemi Model

D =


1 0 0
0 1 0
0 0 1
1 0.5 0

0.5 0 0.5

 T =

0 1 2
1 2 3
2 3 4

 (56)

A.4 Generalized Lotka-Volterra Model

D =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 1 0 0
−1 0 0 −1 1


T =

0 1 2 3 4
1 2 3 5 6
2 3 4 5 6

 (57)

A.5 Phosphorelay Systems

D =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 1 0 0 0
0 0 0 0 1 1 0
0 0 1 1 1 1 0


T =


0 1 2 3 4 5 6
0 1 2 4 5 6 7
0 1 2 5 6 7 8
0 1 2 5 6 7 9

 (58)

A.6 Quadcopter Drone

D(i,i) = i D(17,j) = (0 0 0.5 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.25) (59)

for i, j = 0, 1, . . . , 16 and

T(i,j) =

{
17 if i = 1 and j = 5

i otherwise
(60)

for i = 0, 1, . . . , 16 and j = 0, 1.


