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Abstract

Bioinformatics web-based resources and databases are precious references for most biological laboratories worldwide.
However, the quality and reliability of the information they provide depends on them being used in an appropriate way that
takes into account their specific features. Huge collections of gene expression data are currently publicly available, ready to
support the understanding of gene and genome functionalities. In this context, tools and resources for gene co-expression
analyses have flourished to exploit the ‘guilty by association’ principle, which assumes that genes with correlated expres-
sion profiles are functionally related. In the case of Arabidopsis thaliana, the reference species in plant biology, the resources
available mainly consist of microarray results. After a general overview of such resources, we tested and compared the re-
sults they offer for gene co-expression analysis. We also discuss the effect on the results when using different data sets, as
well as different data normalization approaches and parameter settings, which often consider different metrics for estab-
lishing co-expression. A dedicated example analysis of different gene pools, implemented by including/excluding mutant
samples in a reference data set, showed significant variation of gene co-expression occurrence, magnitude and direction.
We conclude that, as the heterogeneity of the resources and methods may produce different results for the same query
genes, the exploration of more than one of the available resources is strongly recommended. The aim of this article is to
show how best to integrate data sources and/or merge outputs to achieve robust analyses and reliable interpretations,
thereby making use of diverse data resources an opportunity for added value.
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Background

Thirty years after the first implementation with antibodies, 20
after the first application with DNA and since the first genome-
wide report, microarray technology still remains one of the least
expensive and most powerful approaches used to explore the
transcriptional landscape of a biological sample, whether it is
represented by a tissue, a group of cells or a mixture, in physio-
logical, stress or pathological conditions [1–4]. Though with

some well-known technical limits, their use enables the detec-
tion of differentially expressed genes from comparative experi-
ments and the description of expression patterns in different
tissues/conditions, or in time course experiments [2, 5]. The
variability of the expression of a multitude of genes from a gen-
ome can be traced using this technology [6]. Moreover, as
defined by the guilty by association (GbA) principle, genes shar-
ing the same expression patterns in several experiments may
be studied as candidates involved in the same functional
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network [7, 8]. Gene expression profile analysis is therefore
used for the detection of co-expressed genes, i.e. genes with ei-
ther positively or negatively correlated profiles [9]. This type of
analysis requires the exploitation of a sufficiently high number
of homogenous experiments, to ensure acceptable levels of stat-
istical power. However, experimental homogeneity, in terms of
the biological and technical aspects of the experimental design,
is required to permit different experiments to be compared and
minimize the occurrence of potential biases and confounding
effects. Despite the increasing accessibility of microarray tech-
nology and the availability of gene expression profiles for many
different biological species and samples, the different collec-
tions need to be appropriately selected for assessing gene co-
expression. This is mainly owing to the extensive heterogeneity
of the experimental efforts, often involving different genotypes
or cultivars; the fast evolution of technologies, usually offered
from different companies with different platforms; and the
availability of different approaches for data analysis. The ana-
lysis of gene co-expression requires a suitable design [10]. As an
example, gene co-expression under stress or pathological con-
ditions should be assessed on enough samples within the same
context and, possibly, be compared with an adequate set of con-
trols in physiological conditions. It is therefore paradoxical that,
although microarray-based transcriptome analyses are wide-
spread, few collections, even from reference species, may be
useful for dedicated co-expression analyses. Moreover, even
fewer collections have been found to be representative for com-
parable approaches, often rendering the data not useful for
more advanced analyses [11–14]. However, the interest in co-ex-
pression analysis is increasing and the experimental designs
are becoming more suitable for providing source data useful to
this end. The availability of alternative high-throughput tran-
scriptome approaches, such as RNA-seq, is growing and further
enhancing the feasibility of gene co-expression analyses in mo-
lecular biology [15–17].

Because Arabidopsis thaliana is well established as a reference in
plant biology, with a genome completely sequenced since the year
2000, its transcriptome has been extensively studied using differ-
ent microarray technologies [18–21], offering useful collections for
gene co-expression analyses. Indeed, an overwhelming number of
experiments comes from the Affymetrix platform (ATH1). All the
related results were collected at the NASCArrays Web site. Though
the direct web-based service for data distribution on the NASC’s
International Affymetrix Web site was closed in 2013, all the data
are still accessible from the Gene Expression Omnibus repository
of the US National Center for Biotechnology Information [22]. Being
the reference for all the public Affymetrix ATH1 and AG ‘GeneChip’
microarrays for A. thaliana, the NASCArrays collection stores hun-
dreds of different experiments and thousands of slides. All data
are described following the MIAME guidelines, and the metadata
include information on the sample and on the approaches ex-
ploited for hybridization, scanning and normalization, this latter
generally based on the MAS5.0 protocol [23–25].

The availability of this and other Arabidopsis microarray
collections has encouraged the development of web-based dedi-
cated resources to collect the data and to offer tools for co-ex-
pression analyses (e.g. [26, 27]). Among these, we here consider
AtCOECiS [28], ATTED II [29], BAR [30], CoP [31], CORNET [32],
Cress Express [33], CSB.DB [34], GeneCAT [35], GeneMania [36],
Genevestigator [37], PlaNet [38]. They show similarities and dif-
ferences related to gene co-expression analysis. Moreover, they
assess the effect of particular features of these resources on the
co-expression results and identify important issues that users
should consider when approaching similar analyses. Then, by

using a comparative meta-analysis of the results attainable
using different resources queried for co-expression results with
different genes, we provide an example of the variability of co-
expression analysis results. Because almost all platforms con-
sidered in this work contain many different microarray experi-
ments, we also tested, as an example, the hypothesis that
experimental heterogeneity affects the stability of gene co-ex-
pression results. To this end, as we assessed the different po-
tential sources of heterogeneity, we also considered the
inclusion/exclusion of mutant-based experiments with a refer-
ence data set from physiological conditions, and tested the sta-
bility of co-expression occurrence, magnitude and direction in
selected gene pools.

Methods
Reference data set for gene co-expression assessment

A reference collection of experiments from the A. thaliana ATH1
Affymetrix chipset, designed with 22 810 probes was organized as
a framework for our analyses. The gene expression values from 63
experiments on samples including several tissues and organs in
physiological conditions, and repeated in triplicate, for a total
number of 189 microarray slides (Additional Table 1 in the
Supplementary Material) of AtGenExpress [39] developmental ser-
ies, were downloaded from http://affymetrix.arabidopsis.info/link_
to_iplant.shtml, on January 2013. In addition, gene expression
values from 16 experiments involving mutants were considered
(Additional Table 1 in the Supplementary Material), bringing the
final number of downloaded experiments to 79, with a total of 237
slides. In the following analysis, the full data set including that
form mutant genotypes is referred to as the mutþ set, and that
without mutant genotypes, the mut�set. Microarray results were
normalized using the MAS 5.0 protocol (for each experiment the
highest and lowest 2% of each signal were removed, and then all
values were transformed to an average of 100). Only 21 769 probes
had signals; from these, we removed 802 ambiguous probes (i.e.
shared between genes, mapping gene families or noncoding
genes). Moreover, we filtered out all the probes with an expression
level under the 5th percentile in each sample of all the experi-
ments, bringing the final number of gene-specific probes to 20 957.
Because all experiments were repeated in triplicate, the signals of
each gene-specific probe in each experiment were calculated as
the average of the three replicates. Finally, a log2 transformation
was applied to all the signals.

Co-expression between any two X and Y genes was established
after calculating the Pearson product–moment correlation coeffi-
cient (Equation (1)), considering a threshold value of jrj � 0.7, com-
monly used in gene co-expression networks (e.g. [40]):

r ¼

Xn

i¼1
ðXi � XÞðYi � YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðXi � XÞ

2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðYi � YÞ2

q (1)

where Xi and X are the gene expression value in the i-th experi-
ment and the average of the expression values in all the experi-
ments for the gene X, respectively, while Yi and Y are the same
for the gene Y.

Testing the effects of sample heterogeneity on
gene co-expression assessment

To evaluate the effects of sample heterogeneity on the stability
of co-expression analysis results, we used two pair-wise
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correlation matrices calculated for the 20 957 gene-specific
probes, either on the full data set of 79 experiments (i.e. the
mut þ data set) and on the smaller data set of 63 experiments
with nonmutant samples (i.e. the mut� data set). The correl-
ation matrices were calculated using an in-house method.
Because the inclusion of mutant data could lead to different co-
expression outcomes for different genes, we purposely con-
sidered two different pools of genes in the following analyses.
First, to selectively assess the effect of mutant inclusion on the
most co-expressed genes, we selected the topmost 1% of gene-
specific probes (N¼ 200) showing the highest number of co-
expression occurrences in the mutþ data set. Second, to study
the effect on the most unstably co-expressed genes, we selected
the topmost 1% of gene probes showing the highest co-expres-
sion variation owing to mutant inclusion. In addition, for each
pair of genes we calculated the correlation in the mutþ and
mut� data sets (i.e. rmutþ and rmut�, respectively) and their ab-
solute difference (i.e. d¼ jrmutþ – rmut�j). Then, we ranked the
gene pairs by decreasing d. Finally, unstable genes (N¼ 200)
were identified from the gene pair ranking as those showing the
lowest sum of ranks (i.e. the highest occurrence of large vari-
ations in correlation scores).

In a preliminary analysis of the most co-expressed and un-
stably co-expressed gene pools, we extensively tested the exist-
ence of a relationship between the frequency of gene co-
expression and presence/absence of mutants in the data set.
We used the Chi-square test for independence on 2� 2 contin-
gency tables, for each gene separately and for all genes pooled,
reporting the observed occurrences of either co-expressed
(jrj � 0.7) or non-co-expressed (jrj< 0.7) genes, for either mutþor
mut� data sets (a total of 398 pair-wise comparisons for each
tested gene, 199 in each data set). A significant Chi-square stat-
istic indicated the dependence of the observed gene co-expres-
sion pattern on the inclusion or exclusion of mutants in the
reference data set.

In a more specific approach, we assessed the effect of mu-
tant inclusion on the correlation between each pair of genes,
testing the significance of the difference between the correl-
ation calculated with and without mutants (previously defined
as d) by calculating the probability P (rmutþ¼ rmut�). We assumed
that the distribution of correlations follows a t-distribution with
n� 2 degrees of freedom, when considering the null hypothesis
of no correlation, with n number of experiments in the data set.
Therefore, we used a two-tailed t-test on the Fisher’s z trans-
formed values of rmutþ and rmut� according to [41]. We con-
trolled for multiple comparisons using Bonferroni correction for
the number of genes tested, such that the family-wise error rate
was controlled at a¼ 0.05/200¼ 0.00025 per gene pool. Then, P-
values in the range of 0.00025 to 0.05 were considered only mar-
ginally significant. For a given gene pair, a significant value of d
indicates that gene co-expression significantly changed after
mutant inclusion in the data set. Occurrences of significant val-
ues of d within each data set were calculated both separately for
each tested gene and for all pooled genes. In the case of gene
pairs showing significant values of d, the type of mutant-de-
pendent effect on co-expression change and the relevance of its
occurrences in the gene pools were assessed. Types of effects
were defined based on the values of rmutþ and rmut� as follows:
(i) gene co-expression inhibition (from statistically significant
rmut� to not significant rmutþ), (ii) induction (from not statistic-
ally significant rmut� to significant rmutþ), (iii) inversion (from
positive to negative correlation or vice versa) and (iv) changes of
magnitude not affecting r sign and significance. For each type of
effect, the mean and the 95% confidence interval of occurrences

within the gene pairs tested for each gene (N¼ 199) were calcu-
lated across all genes of each pool. To assess the relevance of
the effects in the gene pools, we tested for significant deviations
from zero using t-tests for single sample means. To evaluate the
relative prevalence of different types of effect, occurrences were
expressed as percentage of the total number of gene pairs sig-
nificantly affected by all types of effect. Finally, for all tested
gene pairs (2 gene pools� 200!/(200� 2)!2! gene pairs per pools,
corresponding to a total number of 39 800 gene pars), the co-
expression variability owing to mutant effects was visually as-
sessed by a scatterplot of Pearson correlations observed in the
mutþversus mut� data sets.

Public co-expression analysis resources

Eleven web-based and publicly available resources, offering
databases and facilities for gene co-expression analysis in
A. thaliana, were consulted between February and June 2014
(Table 1).

All information was directly retrieved from the platform
Web sites, and from reference publications indicated therein.
The resources were surveyed for general functionality, includ-
ing main features, tools and data sources. The total number of
experiments, slides, treatments and conditions, the data nor-
malization method, metrics and tools for gene co-expression
analyses are also described in Additional Methods in the
Supplementary Material.

Meta-analysis of queries from different platforms

We investigated the performance of the surveyed web-based re-
sources when queried using four different sample genes as
probes, here indicated using the Arabidopsis Genome Initiative
code. We selected the gene AT5G17420 (CESA7), which is well
known to be co-expressed with AT5G44030 and AT4G18780
(genes CESA4 and CESA8, respectively) under physiological con-
ditions, as the three different genes are components of a com-
plex involved in the cell wall synthesis [18, 42]. The gene
AT5G06680, implied in the gamma–tubulin complex, has been
considered because it showed variability in co-expressed genes
when analyzed within the mut� and mutþ collections (data not
shown). AT1G20580, a small nuclear ribonucleoprotein, and
AT1G01290, a cofactor of nitrate reductase and xanthine de-
hydrogenase, were selected among the most co-expressed and
unstable gene pools from the mut� and mutþ collections. For
all the four query genes, the analyses were performed on each
platform (Table 1). When possible we selected the Pearson coef-
ficient (r) or the coefficient of determination (r2), to base the
analysis on comparable metrics. The default metrics were used
in other cases (see Additional Methods in the Supplementary
Material). The default normalization methods were used in
each platform. In the case of Cress Express, we performed the
analysis changing the normalization methods among the three
available. For each query, we recorded the topmost 20 co-ex-
pressed genes, resulting from each platform. The resulting
genes were ranked according to the value of the specific metric
proposed by each platform, when available.

Results and discussion
Effects of sample heterogeneity by mutant inclusion on
gene co-expression profiles

We tested the hypothesis that sample heterogeneity in the ref-
erence data set could affect the stability of gene co-expression

Arabidopsis gene-co-expression resources | 3

 at U
niversita di N

apoli on February 19, 2016
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text:  
Deleted Text: -
Deleted Text: -
Deleted Text: Since 
Deleted Text:  
Deleted Text: due 
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: x
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: the 
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: a
Deleted Text: -
Deleted Text: b
Deleted Text: -
Deleted Text: c
Deleted Text: -
Deleted Text: ,
Deleted Text: d
Deleted Text: -
Deleted Text: due 
Deleted Text: vs.
Deleted Text: -
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbw002/-/DC1
Deleted Text:  
Deleted Text:  
Deleted Text: since 
Deleted Text: -
Deleted Text: since 
Deleted Text: s
Deleted Text: s
Deleted Text: -
Deleted Text: -
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbw002/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbw002/-/DC1
Deleted Text:  
http://bib.oxfordjournals.org/


analysis. To this aim, among different factors possibly produc-
ing sample heterogeneity, we considered the presence/absence
of mutant samples in the data set. Then, after calculating pair-
wise correlations among all gene probes, either including or
excluding data from mutant samples, we selected two gene
pools for further analysis. These corresponded to either the
most co-expressed or the most unstably co-expressed genes
(i.e. genes showing the highest co-expression variation owing to
mutant inclusion/exclusion).

In a first analysis, for each single gene of both pools, we
tested the independence of co-expression occurrences from the
presence/absence of mutants in the reference data set, using the
independence Chi-square test. The analysis showed a clear pat-
tern of interdependence between the two variables, with mutant
inclusion affecting the co-expression pattern of most genes in
both pools, and for data pooled for all genes (Additional Tables 2
and 3 in the Supplementary Material). In particular, Chi-square
tests for the topmost 200 co-expressed genes (Additional Table 2
in the Supplementary Material) were significant (at P< 0.00025)
for 136 genes, marginally significant (0.00025< P< 0.05) in 39
cases and not significant (P> 0.05) in 19 cases. Six genes were al-
ways co-expressed with all other remaining 199 genes of the
pool, either considering the mutþ or the mut� data sets and,
therefore, the Chi-squared test did not apply. These results were
similar to what was observed for the unstably co-expressed
genes (Additional Table 3 in the Supplementary Material).
Indeed, the genes from this pool showed 101 significant, 30 mar-
ginally significant and 31 nonsignificant cases of mutant pres-
ence/absence effect on co-expression occurrence. Twenty-five
genes were never co-expressed with the other genes of the pool,
whether considering the mutþ or the mut� data sets, and there-
fore, the Chi-squared test was not calculated.

In a more detailed approach, focused on the specific effect of
sample heterogeneity on the magnitude and direction of gene
co-expression, we assessed whether mutant inclusion/exclu-
sion in the reference data set produced significant variation of
pair-wise correlation, considering all pair-wise comparisons for
all genes of the two pools. For each gene pair, we calculated the
correlations from the data sets including or excluding mutants
and tested the significance of the difference between the two re-
sulting values (d) using a two-tailed t-test on the Fisher’s z
transformed correlation values.

Considering unstably co-expressed genes (insert in Figure 1),
14% of the tested gene pairs (5300 out of 39 800) showed a sig-
nificant value of d, indicating that the presence of mutants
affected the co-expression magnitude. In the cases of mutant-
dependent significant effects on co-expression magnitude (i.e.
significant d values), further investigations provided an insight
on the type and relevance of this effect (Figure 1). For each pair
of genes showing a significant d value, the type of effect was
defined based on the values of pair-wise correlation observed
either in the presence (rmutþ) or in the absence (rmut�) of mu-
tants. On the other hand, the relevance of each type of effect
was assessed by testing its occurrence in the gene pool for sig-
nificant deviations from zero, using t-tests for single sample
mean.

All types of mutant-related effects were relevant, being
observed with significant occurrence among the tested genes
(Figure 1), though with important differences for different types
of effect. In particular (Figure 1, Table 2), inhibition of co-expres-
sion highly prevailed, with 1622 and 784 total cases of positive
and negative correlations (i.e. 30.6% and 14.8% of all the signifi-
cant observed effects) becoming not significant after exclusion
of mutants from the data set. Significant changes of magnitude,
not affecting co-expression direction, were also frequently
observed, mostly in the case of positive correlations (1434 cases,
27.1% of all the significant effects), while for negative correl-
ations such effect was still relevant, but more rarely observed
(140 cases, i.e. 2.6% of all the significant effects). Induction of
gene co-expression (i.e. nonsignificant correlations in presence
of mutants that turn into significance, either positive or nega-
tive, after mutant exclusion) were relatively frequent (512 and
492 cases, corresponding to 2.3% and 2.2% of all the significant
effects for positive and negative correlations). Co-expression in-
version (i.e. positive correlation in presence of mutants turning
into negative correlation after mutant exclusion, and vice versa)
was also recorded, although rarely, with 70 (1.3% of all the sig-
nificant effects) and 10 cases (0.2%), respectively.

When such analysis was performed for the most co-
expressed genes, only 0.04% of the tested gene pairs (14 out
of 39 800) were significantly affected by mutant inclusion/
exclusion in the data set (Table 2). No occurrence of co-
expression inhibition, induction or inversion was recorded. All
the 14 cases of significant effects resulted in changes of

Table 1. Web-based platforms offering facilities for gene co-expression analysis on Arabidopsis

Platform Web site Release Slides Normalization Metrics

AtCOECiS http://bioinformatics.psb.ugent.be/ATCOECIS 2009 322 RMA r
ATTED II http://atted.jp/ 2007 11 171 RMA MR, r
BAR http://bar.utoronto.ca/welcome.htm 2005 NA MAS 5.0 r
CoP http://webs2.kazusa.or.jp/kagiana/cop0911/ 2010 5272 MAS 5.0 CC, VF
CORNET https://cornet.psb.ugent.be/ 2009 NA RMA r, q

Cress Express http://cressexpress.org 2008 1799 RMA, MAS 5.0, GCRMA r2, slope
CSB.DB http://csbdb.mpimp-golm.mpg.de/csbdb/dbcor/ath.html 2004 NA MAS 5.0 (GCOS) r, q, s

GeneCAT http://genecat.mpg.de/cgi-bin/Ainitiator.py 2008 351 RMA r
GeneMania http://www.genemania.org/ 2008 NA NA W
Genevestigator https://www.genevestigator.com/gv/ 2004 9848 RMA, MAS 5.0 r
PlaNet http://aranet.mpimp-golm.mpg.de/ 2011 1074 NA r

Note. For each platform, web address, year of first release, total number of slides, methods used for signal normalization and metrics used to establish gene co-expres-

sion are reported. For further details of databases and microarray collections, as well as parameter settings used for querying each platform, see Additional Methods in

the Supplementary Material.

Metric symbols indicate: mutual ranking (MR), Pearson’s product-moment correlation coefficient (r) and associated P-value, cosine correlation (CC), vertex F-measure

(VF), coefficient of determination (r2), slope of least squares best fitting regression line (slope), Spearman’s rank correlation coefficient (q), Kendall’s rank correlation co-

efficient (s) and weight of the relation (W). NA¼ information not available.
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Figure 1. Effect of mutants on pair-wise co-expression of unstable gene pools. Data in main graphs refer to occurrences (mean and 95% confidence interval) of different

types of effect, expressed as percentage of the total number of significantly affected gene pairs. Asterisks above symbols refer to statistically significant occurrences (t-

tests for single mean; significant deviation from zero indicated by the gray vertical line; ***P< 0.001; **P< 0.01; *P<0.05). The insert shows overall occurrences of signifi-

cant (P<0.05) and not significant (NS) co-expression changes owing to mutants (two-tailed t-tests on Fisher’s z transformed values of rmutþ and rmut� for the null hy-

pothesis that gene pair-wise co-expression is not affected by mutant exclusion or inclusion, that is, rmutþ¼ rmut�).

Table 2. Significance and occurrence of different mutant-related effects on gene co-expression

Gene pool Effect type r d Occurrences t-test

mutþ mut� N % Mean 95% CI t P

Most co-expressed genes Inhibition þ NS * 0 0 0 � 0 1
� NS * 0 0 0 � 0 1

Magnitude change þ þ * 14 100 0.07 0–0.14 1.88 0.061
NS NS * 0 0 0 � 0 1
� � * 0 0 0 � 0 1

Induction NS þ * 0 0 0 � 0 1
NS � * 0 0 0 � 0 1

Inversion þ � * 0 0 0 � 0 1
� þ * 0 0 0 � 0 1

Not significant All All NS 39 786 – 198.93 198.9–199 5350 <0.001
Unstably co-expressed genes Inhibition þ NS * 1622 30.6 8.11 6.3–9.92 8.84 <0.005

� NS * 784 14.8 3.92 2.63–5.21 6.01 <0.004
Magnitude change þ þ * 1434 27.1 7.17 5.36–8.98 7.80 <0.003

NS NS * 236 4.5 1.18 0.81–1.55 6.25 <0.002
� � * 140 2.6 0.7 0.45–0.95 5.48 <0.001

Induction NS þ * 512 9.7 2.56 1.58–3.54 5.16 <0.001
NS � * 492 9.3 2.46 1.19–3.73 3.82 <0.001

Inversion þ � * 70 1.3 0.35 0.02–0.68 2.10 0.037
� þ * 10 0.2 0.05 0.02–0.08 3.24 0.001

Not significant All All NS 34 500 – 172.5 168.2–176.7 80.39 <0.001

Note. For most co-expressed and unstably co-expressed gene pools, effect type depends on Pearson’s correlation scores (þ, positive and significant; �, negative and sig-

nificant; NS¼not significant) as resulting from the reference data sets including (mutþ) and excluding (mut�) experiments with mutants, and on the statistical signifi-

cance of their difference (i.e. d¼ jrmutþ – rmut�j; *, significant; NS¼not significant). Occurrences for each gene pool are reported as total counts (N), percentage of total

significant effects (%), mean and 95% confidence interval in the gene pairs tested for each gene (N¼ 199). Results of single sample t-tests on each mean for significant

deviation from zero are also reported.
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magnitude in gene co-expression, all corresponding to positive
correlations both in presence and absence of mutants.

Our analysis of co-expression profiles, represented by 400
genes subdivided into two pools out of a total of 20 957 gene-
specific probes in the reference data set, showed a clear-cut ef-
fect from data set heterogeneity, here represented by mutant
inclusion/exclusion, on co-expression profiles. Interestingly,
such effects can be extremely variable for different gene pools,
in terms of overall occurrence, magnitude and direction of co-
expression changes. In particular, our assessment of mut� and
mutþ collections, exploited to assess a possible effect of data
set heterogeneity on the results of co-expression analysis,
showed a different pattern for the two gene pools considered in
our analysis. Indeed, when pair-wise gene correlation values
observed in the absence of mutants were compared against cor-
responding values calculated in presence of mutants, relevant
differences between the most co-expressed and the unstably
co-expressed gene pools were observed (Figure 2). In particular,
the genes of the first pool shared high correlation values irre-
spective of the mutant inclusion/exclusion, indicating that the
most co-expressed genes can be considered stably co-expressed
because they are negligibly affected by the sample heterogen-
eity in the reference data set (Figure 2). Conversely, the pool of
genes selected as the most unstably co-expressed ones clearly
showed relevant deviations in their pair-wise correlation pro-
files related to the presence/absence of mutant samples in the

data set (Figure 2), hence indicating an overall relevant effect of
sample heterogeneity on gene co-expression assessment.

In general, our first analysis based on Chi-squared testing of
co-expression occurrences excluded the independence of co-ex-
pression from mutant presence/absence for most genes of both
pools, apparently indicating the existence of a relationship in
both cases (Additional Tables 2 and 3 in the Supplementary
Material). However, the evaluation of significance, type and oc-
currence of this relationship highlighted many important differ-
ences between the two pools. In particular, the total occurrence
of significant effects among unstable genes was >370-fold
higher (i.e. 5300/14) than among the most co-expressed genes,
which, as a consequence, can be defined as stably co-expressed
genes. Interestingly, all the 14 gene pairs affected by mutant in-
clusion in the reference data set showed a gene in common,
namely AT5G12080. This gene encodes a mechanically sensitive
(or stretch-activated) ion channel in the plasma membrane
with a moderate preference for anions, and has been reported
as involved in anion transport, detection of mechanical stimu-
lus, leaf senescence and programmed cell death in response to
reactive oxygen species [43, 44]. Such functions could be related
to the differential expression levels of AT5G12080 among plant
organs and tissues. Indeed, the gene is significantly more ex-
pressed in shoots and stems, both in wild-type genotype and in
mutant samples [one-way analysis of variance (ANOVA),
F5,183¼ 18.1, P< 0.001 and F2,45¼ 299.8, P< 0.001, respectively].

Figure 2. Choice of experimental conditions used for co-expression analysis differently affects co-expression scores of different gene pools. Data refer to Pearson’s cor-

relation coefficient scores (r) for 39 800 gene pairs, calculated either excluding or including experiments with mutants from the reference data set. Each point in the

graph represents for a given gene pair the correlation calculated for the mut� data set on the x-axis and its corresponding value from the mutþ data set on the y-axis.

Blue and green dots indicate pairs of stable and unstable gene pairs, respectively (200 genes for each pool, 199 gene pairs for each gene); red dots indicate gene pairs sig-

nificantly affected by the presence of mutants (i.e. significant d values, see Table 2). Points above the diagonal dotted line correspond to gene pairs with co-expression

increased (or anti-co-expression decreased, for negative r scores) in presence of mutants (i.e. rmutþ higher than rmut�) and vice versa for points below the line. For de-

tails on the reference data set and gene pools definition see main text.
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AT5G12080 was significantly more expressed in experiments
with mutants compared with the mut� data set, both consider-
ing different plant organs separately (one-way ANOVA,
F1,64¼ 26.9, P< 0.001; F1,58¼ 4.0, P< 0.05; F1,40¼ 40.6, P< 0.001 for
flowers, leaves and shoots and stems, respectively) and all
pooled data (one-way ANOVA, F1,235¼ 148.5, P< 0.001). Such re-
sults suggest potential interesting characteristics of AT5G12080.
First, we have shown that, within the pool of the most co-ex-
pressed genes, the gene AT5G12080, responsible for all the sig-
nificant variations of co-expression owing to mutants, is over-
expressed in mutant samples. Second, AT5G12080 was included
in the pools of most co-expressed genes, which also were found
to be the most stably co-expressed genes in the presence of mu-
tants. These observations suggest that the only deviations from
a stable co-expression in presence of mutants could be owing to
mutations directly involving AT5G12080 and/or pathways
enhancing its expression level. In other words, AT5G12080 could
be the most stably co-expressed among the mutated genes,
and/or the only mutated among the most stably co-expressed
genes, because no other gene pair in that pool was affected by
the presence of mutants. Independent of the particular results
on the characteristics of AT5G12080, this case study can be
regarded as a general example of insights attainable with our
approach. In particular, our results showed that by the analysis
of co-expression variation between two partially overlapping
data sets (i.e. mutþ and mut�), it is possible to make inferences
on the functional behavior of a single gene.

Finally, considering the pool of the most co-expressed genes,
we observed further 39 786 gene pairs showing no significant
variations of co-expression (Table 2), while maintaining signifi-
cant positive correlations in both data sets, mutþ and mut�,
respectively.

Arabidopsis thaliana resources for gene co-expression
analyses

Despite the multitude of resources available for A. thaliana gene
expression data, and the heterogeneity of the associated tools,
our survey of the most referenced web-based platforms
(Table 1) illustrates the variety of the specific features that could
possibly affect the results of gene co-expression analysis,
including the type of statistics implemented for assessing pair-
wise gene co-expression. A total of nine different co-expression
metrics are available in the 11 tested platforms (Table 1), includ-
ing Pearson product–moment correlation coefficient, common
in eight of the platforms, and lacking in Cress Express, where r2

is used instead, CoP and GeneMania; the slope of least squares
best-fitting regression line (exclusively used in Cress Express);
the cosine correlation and the vertex F-measure (both exclu-
sively used in CoP); the mutual ranking (used in ATTED II); the
Spearman and Kendall rank correlation coefficients (both used
in CSB.DB) and weight of the relation (in GeneMania). However,
the pre-processing methods for microarray data normalization,
though changing, were less variable among the platforms
(Table 1). In particular, the RMA method is proposed by six plat-
forms (AtCOECiS, ATTED II, CORNET, Cress Express, GeneCAT,
Genevestigator), the MAS 5.0 protocol was implemented in five
resources (BAR, CoP, Cress Express, CSB.DB, Genevestigator),
while the GCRMA method is proposed only in Cress Express.
Interestingly, Cress Express offers data normalized by all
the three different methods [45, 46]. Finally, information on
the normalization method implemented was not available
from GeneMania and PlaNet platforms. Moreover, all the plat-
forms exploit different data and different number of slides.

In addition, it is not always possible to select the preferred data
set or to get information on its content (Table 1 and Additional
Table 4 in the Supplementary Material).

Comparative meta-analysis of results from different
platforms

The comparative meta-analysis of gene co-expression results
from the tested databases, based on the four query genes
AT5G17420, AT5G06680, AT1G20580 and AT1G01290, and on the
default settings of the databases provided different outcomes
for the different queries (Figures 3 and 4). The figures summar-
ize the number of genes in common when comparing lists of re-
sults between two different platforms.

In the case of AT5G17420 (CESA7), which is well known for
being involved in cell-wall synthesis, the lists of the topmost 20
co-expressed genes produced by the different platforms were
relatively coherent (see also Additional Table 4 in the
Supplementary Material), despite the relevant differences of
data sets, co-expression metrics and normalization methods
proposed by each database. In particular, ATTED II, CoP, BAR,
Cress Express, GeneCAT and Genevestigator shared about 50%
of the genes in the resulting lists, with >70% of shared genes
when considering pair-wise comparisons including BAR, CoP
and GeneCAT results (Figure 3) [47]. In contrast, the PlaNet and
GeneMania output lists shared at most 25% with the results
found in the lists provided by the other databases, and only 1
gene of 20 when compared with each other. This can be ex-
plained by the fact that these two platforms do not offer ranked
lists of co-expressed genes, as they are more focused on defin-
ing co-expressed gene modules. Therefore, their results are not
appropriately sorted and the selection of the first 20 genes in

Figure 3. Pair-wise comparison of co-expression analysis results from different

public platforms, when querying AT5G06680 (upper right values with respect to

the matrix diagonal) and AT5G17420 (CESA7, lower left values). For each matrix

cell, data refer to the number of items shared between the two lists of topmost

20 co-expressed genes, as proposed by the two platforms corresponding to cell

row and column. Zero scores are omitted to improve readability. Color shading

highlights the cell values, according to a color scale ranging between 0 (white)

and 20 (full red). Data normalization methods used for the analysis are reported

in brackets. For each resources and for each query gene, the mean number of

shared items among the databases is also reported, excluding the self-matching

values along the matrix diagonal. A colour version of this figure is available

online at BIB online: http://bib.oxfordjournals.org.
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the lists cannot be compared with the ones from the other plat-
forms. Finally, CSB.DB and CORNET showed an intermediate
outcome, with concordance with other lists below the 50%,
though still relatively high.

Considering previous knowledge about co-expression pat-
terns of CESA7, the presence of AT5G44030 (CESA4) and
AT4G18780 (CESA8) in the results from the different platforms
can be used as an indicator of the output reliability (Additional
Table 5 in the Supplementary Material) [47]. Indeed, most of the
platforms confirm the co-expression of the CESA4-7-8 complex.
ATTED II, CORNET, Cress Express (three different lists for each
normalization method), GeneCAT, GeneMania and
Genevestigator, where the ranking of co-expressed genes is
defined by the P-value of the co-expression metric, listed CESA4
and CESA8 within the top three genes co-expressed with CESA7.
Conversely, CESA4 and CESA8 were not found in the list of re-
sults from CSB.DB and PlaNet. In the case of CSB.DB, the probe
set of CESA8 was missing in the data set exploited for the cur-
rent analysis, while PlaNet did not show CESA4 in the top 20
output list, because of the lack of ranking when reporting the
list. This gene, however, is identified when considering the
whole cluster of genes co-expressed with CESA7. The nearly co-
herent results from CESA7, which has fewer exceptions, mainly
owing to the platform set up (lacking probes or visualization
limits), are not confirmed when considering the results of co-
expression analyses for AT5G06680, implied in the c-tubulin
complex [48]. Remarkably, the average number of shared items
among the output lists did not exceed 10% in all cases
(Additional Table 6 in the Supplementary Material).
Surprisingly, considering pair-wise comparisons between differ-
ent output lists, in 23 cases of 66 a complete discordance be-
tween the results provided by different tools was observed, with

most of the lists pairs showing no items in common (Figure 3).
In 21 other cases only one gene was shared, while the max-
imum number of shared items was 4 (Figure 3), which is even
more surprising considering that, among the tested resources,
the Cress Express platform offered three identical collections
that were queried only by changing the normalization methods
(Figure 3).

Finally, querying the platforms with AT1G20580 and
AT1G01290, selected among the most stable and unstable co-
expressed gene pools, respectively, detected from our in-house
presented analysis, produced contrasting outcomes among the
tested resources (Figure 4). In particular, for both genes the
highest concordance among the resulting lists was observed for
the three results from the Cress Express platform, which vary
only for the parameter settings. However, the number of shared
items among these lists was on average 5 and 7 for AT1G20580
and AT1G01290, respectively (Figure 4). Comparing the results
from other platforms, the mean number of shared items
among the different lists were consistently low for both query
genes, rarely exceeding 10% of the list items (i.e. 2 of 20), with
the exception of the pair-wise comparisons involving the
ATTED II platform, which showed slightly higher concordances
(Figure 4).

Our meta-analysis showed that different platforms for gene
co-expression analysis, when queried with a single gene, can
produce contrasting results as a consequence of different ex-
perimental collections and specific technical features of the
tools used for the analysis. The outcome, typically a list of the
most co-expressed genes, can be totally different for different
tools, depending on the genes queried, as observed when com-
paring the results for AT5G17420 (CESA7) and AT5G06680.
Indeed, differences in co-expression results between specific
tools can be highly variable, as shown, for example, when com-
paring BAR and CoP output rankings. These two platforms
shared 16 and 1 items when queried with AT5G17420 (CESA7)
and AT5G06680, respectively (Figure 3). This occurs even when
the analysis is carried out on the same query gene using the
same experimental data sets and correlation metrics. This was
evident in the three versions of the results from the Cress
Express platform, where discordances are produced by data
pre-processing approaches, which often cannot be controlled by
the user, such as the normalization method. In this respect, our
results are consistent with previous findings on the important
role of the normalization methods in determining the results of
co-expression analysis. Our studies, however, provide further
evidence, as they are based on a higher number of tested plat-
forms and also consider other features [49].

The possible bias associated with the specifics of the re-
source tools can sometimes be relevant, being most important
in the case of genes with highly sensitive co-expression profiles,
such as AT5G06680, while being less relevant for genes like
CESA7 (cf. cell color shading in Figure 3 versus Figure 4). In this
latter case, it is interesting to note that the co-expression results
are less variable, despite some huge difference in the data set
size and experiment content among the platforms (e.g. passing
from 11 171 slides of Genevestigator to 351 of GeneCAT). This
consensus result supports more reliable assessments of a pos-
sible functional relationship among the listed genes. However,
the assessment of the co-expression profile of AT5G06680 may
be harder to establish, probably owing to the higher variability
of the possible expressed ‘partners’ according to the conditions
of expression [Additional Table 1 in the Supplementary Material
and changes in number of correlated genes detected in the
mutþ and mut� data sets (data not shown)].

Figure 4. Pair-wise comparison of co-expression analysis results from different

public platforms, when querying AT1G20580 (upper right values with respect to

the matrix diagonal) and AT1G01290 (lower left values). For each matrix cell,

data refer to the number of items shared between the two lists of topmost 20 co-

expressed genes, as proposed by the two platforms corresponding to cell row

and column. Zero scores are omitted to improve readability. Color shading high-

lights the cell values, according to a color scale ranging between 0 (white) and 20

(full red). Data normalization methods used for the analysis are reported in

brackets. For each resource and for each query gene, the mean number of

shared items among the databases is also reported, excluding the self-matching

values along the matrix diagonal. A colour version of this figure is available

online at BIB online: http://bib.oxfordjournals.org.
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In addition to the data set composition, our evidence high-
lights that the normalization method had a remarkable influ-
ence on the results, as we showed for the Cress Express
platform. In this case, the same data source collection, queried
by three versions (3.0, 3.1 and 3.2) and only differing by normal-
ization algorithm (RMA, GCRMA and MAS5.0, respectively), pro-
duced highly variable output lists. In particular, the number of
shared genes between the three pairs of lists produced by the
three approaches were 4, 2 and 1 for queries with AT5G06680,
and 13, 13 and 10 for queries with CESA7. Such numbers, al-
though different between the two query genes, are consistent
with the range of items that the Cress Express tools shared with
other platforms based on different data sets. In other words, the
variability of results related to normalization methods was of
the same order of magnitude of data variability associated
mainly with the reference experimental data set. In this respect,
the results of our meta-analysis showed a strong influence of
several technical issues on the outcomes of gene co-expression
analyses, also suggesting a role of gene expression variation on
the stability of co-expression profiles across different experi-
mental collections.

Hence, the evidence presented here suggests that before pro-
ceeding with interpretation of results from web-based tools,
various tests, by different parameter setting, on different re-
sources should be performed. Then, results should be carefully
compared to assess their consistency. Otherwise, the result
from a single resource should be regarded as limited not only by
the specific array collections made available, but also by the
particular data processing methods applied.

In this context, a relevant issue could be how to fuse data
from different web-based resources to fully and suitably exploit
their information content. The effect of heterogeneity of data
sources and tools on co-expression results highlights the need
for reconciliations at data and at methodology levels, and for
tools that aid the selection of appropriate sources and methods.
Uniformity in data sets would require data sharing for the cre-
ation of comprehensive collections. These should be accessible
from the different sources at the database level. Tools for
flexible data selection would permit the design of suitable co-
expression analyses, before further assessments. Data collec-
tion in the form of a flat file exported from reference resources
is widespread in bioinformatics, including for microarray data
[22, 50]. Data sharing between different resources could also be
solved using web services-based approaches [51]. This would
overcome issues like elimination of redundancy by facilitating
removal of duplicated experiments from different resources
and overcoming relevant issues like semantics [52]. Indeed, a
web services framework could favor the selection of appropriate
data sets for successive analyses, although it would not over-
come methodological issues such as differences in methods for
raw data processing and normalization [23].

However, the possibility of exploiting dedicated resources
including reference collections for a single or dedicated species
taking advantage of online user-friendly tools and avoiding the
burden of data management and software selection would be
inestimable value for nonexpert users. Data fusion at results
level has also been proposed, based on formal probabilistic
approaches, capable of integrating heterogeneous outputs from
different resources [53]. Computational implementations can
include the representation of each input data set as a separate
kernel and the weighted optimized combination of these ker-
nels to reconstruct co-expression patterns [54], as well as
Bayesian network-based functions [55], decision trees [56] and
weighted rank aggregation [57]. In particular, we tested the

RankAggreg R package [58], which exploits the rank aggregation
method. This R package takes different lists of ranked elements
as input. Ranked lists of co-expressed genes can also be con-
sidered. As output, the method provides an optimal list, which
is defined using Spearman or Kendall distances and Cross-
Entropy Monte Carlo or Genetic algorithms. The results from
the different combinations of metrics and methods for the lists
of genes that are co-expressed with CESA 7 from the 11 plat-
forms here considered are reported in the Additional Table 7 in
the Supplementary Material. Although the methods presented
support the merging of co-expression results from different re-
sources, this problem has not yet been fully solved, as no gener-
ally robust method can be routinely applied to noisy results
from heterogeneous resources [53]. Moreover, as gene co-
expression results are highly context dependent, being variable
for different genes and data sources, as we have shown here, a
reliable data-fusion approach should always be consistent with
the selection of appropriate experiments fitting the underlying
working hypothesis.

In the context of gene co-expression analysis, the definition
and the mining of co-expression networks is also worthy of
mention. Indeed, matrices, reporting co-expression results for
gene pairs, represent the source data for the definition of net-
works of co-expressed genes. This approach expands the view
from lists of genes to graphs of genes, where connections are
based on co-expression. This can be accomplished considering
simple ranks and/or significance of pair-wise correlation values
[59], but also exploiting more sophisticated algorithms [60].
Some of the platforms we have reviewed here provide
embedded network generation tools (Additional Methods in the
Supplementary Material [61]) or data formats suitable for net-
work visualization by appropriate tools, among which
Cytoscape is one of the most commonly used [62].

Although the instability of gene co-expression across differ-
ent resources can be considered a major source of uncertainty
inflating the confidence associated with the definition of co-
expression networks, with the transfer of uncertainly from the
pair-wise to the network level, the exploitation of networks can
support the assessment of consensus among different results.
Different results may indeed support the identification of key
nodes, or conserved patterns, which may be cross confirmed in
their co-expression by different approaches, supporting a re-
sult-based merging by suitable mining [63, 64] or visualization
tools [65, 66].

Conclusions

Our study consistently demonstrated that gene co-expression
analysis of the transcriptome from the same target plant can be
significantly affected by the heterogeneity of the reference data
set, which we mimicked by the sample case of inclusion/exclu-
sion of experiments from mutants. The results can vary signifi-
cantly for different gene pools, but, most important, the
mutant-related effect can be characterized in terms of occur-
rence, magnitude and direction. Interestingly, our results pro-
vided information even at the single-gene level, suggesting that
a candidate gene (i.e. AT5G12080), known to be coding for rele-
vant biological functions, can potentially discriminate between
mutant and nonmutant samples. Moreover, our survey of differ-
ent platforms available on the web also showed that they can
produce remarkably variable results according to several tech-
nical and biological factors. Considering technical issues, the
number and the heterogeneity of array collections among dif-
ferent platforms can be considered the major drivers. However,
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as shown by our meta-analysis of the results attainable by single-
gene query, different normalization methods, as well as metrics
used for assessing gene co-expression, can also play an important
role. The variability of results appears to be highly dependent on
the single gene used for the query upon simple analyses, as in the
case of stable gene networks, when the tested platforms are gen-
erally more prone to concordant outcomes.

All of our results, although they were produced by a general
survey, a meta-analysis and an original assessment on a limited
number of genes, highlight important issues and consequences
for data processing in gene co-expression analyses. Our study
suggests that data mining should include ‘databases mining’, i.e.
it is necessary to move away from the idea of analyzing one sin-
gle collection to the idea that it is necessary to compare all, or at
least the majority, of the available resources, paying close atten-
tion to the bias the selection of a reference can bring. Moreover,
the results obtained from different resources must be tested for
consistency against the selected hypotheses. Finally, considering
the high number of available resources, the diversity of databases
should be fully exploited to get added value information and to
increase the robustness of results that, otherwise, could be biased
by an inappropriate usage of one single reference.

Key Points

• Arabidopsis thaliana co-expression platforms produce
remarkably different results because of several tech-
nical and biological issues.

• Gene co-expression analysis is significantly affected
by the heterogeneity of the reference data set and
methods, for example, inclusion/exclusion of mutants.

• Comparing and merging results from the manifold
gene co-expression analysis resources is the strategy
to get robust and reliable results.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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