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A subgroup H of R is characterized if H = τu(R) := {x ∈ R : unx → 0 mod Z} for 
some sequence u in R. Given two sequences u and v in R, we find conditions under 
which τu(R) is contained or not in τv(R). As a by-product of our main theorems, we 
find a known result by Eliaš on inclusions of characterized subgroups of T, motivated 
by problems in harmonic analysis.
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1. Introduction

Let G be a topological abelian group and denote by Ĝ the group of all continuous characters χ : G → T, 
where T = R/Z is endowed with the compact quotient topology inherited from R. Following [19], for a 
sequence u = (un)n∈N in Ĝ, let

su(G) := {x ∈ G : un(x) → 0} .

A subgroup H of G is called characterized if H = su(G) for some sequence u in Ĝ.
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The characterized subgroups were considered almost exclusively for metrizable compact abelian groups 
(e.g., see [5,18]); only recently, the case of general compact abelian groups was given full attention in [13], 
and the case of abelian topological groups in [16] (see also [24,25]).

The fundamental and starting case remains when G = T (e.g., see [6,27,29]); the characterized subgroups 
of T were studied also in relation to Diophantine approximation, dynamical systems and ergodic theory (see 
[6,30,35] and the survey [24]).

Moreover, it is worth pointing out that, since T̂ can be identified with Z, we may assume that a sequence 
u in T̂ is a sequence in Z. Then su(T) coincides with the subgroup

tu(T) := {x ∈ T : unx → 0}

of all topologically u-torsion elements of T. The concept of topologically u-torsion element generalizes that 
of topologically torsion element (for un = n!) and that of topologically p-torsion element (for un = pn), 
which were introduced to study the structure of topological groups and in particular of locally compact 
abelian groups (see [2,8,20,33] and the survey [11]). A complete description of the subgroups tu(T) was 
found in [17,12] for sequences u in N such that un divides un+1 for every n ∈ N.

We consider here the characterized subgroups of R. Since R̂ is topologically isomorphic to R, we can 
identify a sequence u in R̂ with a sequence in R; then su(R) coincides with the subgroup

τu(R) := {x ∈ R : unx → 0 mod Z} .

We would like to underline that, if u is a sequence in Z, the examination of τu(R) includes that of tu(T); in 
fact, in this case τu(R) = π−1(tu(T)), where π : R → T is the canonical projection.

Characterized subgroups of R were studied in relation to uniform distribution of sequences modulo Z by 
Kuipers and Niederreiter in the book [28], where [28, Theorem 7.8] shows that τu(R) has Lebesgue measure 
zero if u is a sequence in R not converging to 0 in R (they give credit to Schoenberg for this result, see 
[32]). Moreover, Borel proved in [7, Proposition 2] that if H = τv(R) is a non-trivial proper characterized 
subgroup of R, then there exist γ ∈ R and a strictly increasing sequence u in N such that γH = τu(R). 
This underlines the strict relation between characterized subgroups of R and characterized subgroups of T. 
Borel proved also that every countable subgroup of R is characterized and left open the general question of 
a complete description of the characterized subgroups of R.

In this paper, under some restrictions on the sequences, we find conditions ensuring the inclusion of one 
characterized subgroup of R into another characterized subgroup of R. In particular, we consider character-
ized subgroups τu(R) of R always under the assumption that u is in R \ {0} and |qun | → +∞, where

qun := un

un−1
(n ∈ N) and u0 = 1.

Thus, the cardinality of τu(R) is c (see Remark 2.1). Moreover, we can always assume that such sequences 
are in R+, since for any sequence w in R we have τw(R) = τ|w|(R) where |w| := (|wn|)n∈N.

The problem of reciprocal inclusions of characterized subgroups has the following topological motivation, 
described in more detail in Section 2. Recall that a topological abelian group G is totally bounded if for 
every non-empty open set U in G there exists a finite subset F of G such that G = U + F ; moreover, G is 
precompact if it is Hausdorff and totally bounded. For two sequences u and v in R such that |qun | → +∞, 
we see in Corollary 2.7 that the condition τu(R) � τv(R) is equivalent to the existence of a non-metrizable 
precompact group topology T on R such that un → 0 (T ) and vn �→ 0 (T ) (i.e., un → 0 in (R, T ) and vn �→ 0
in (R, T )), and also to the fact that vn �→ 0 (σu) where σu is the finest precompact group topology such 
that un → 0 (σu) (see (2.1) for the definition of σu). The topology σu considered in [4,19] was investigated 
in [14], where also ss-precompact groups were studied (a precompact group topology T on an abelian group 
G is ss-precompact if there exists a sequence u in G such that T = σu).
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Another motivation for considering the reciprocal inclusions of characterized subgroups comes from the 
following open problem left in [4]. A subgroup H of T is factorizable if H = tv(T) + tw(T) for proper 
characterized subgroups tv(T) and tw(T) of H. Now, [4, Question 5.1] asks when a given factorizable 
subgroup is characterized and when a given characterized subgroup is factorizable. A partial answer to this 
problem is given in [3], where in particular it is proved that T is factorizable. A first step in approaching this 
problem appears to be the understanding of when, for two given characterized subgroups, one is contained 
in the other.

We describe now the main results of the paper, and we start by the following observation. If u and v are 
two strictly increasing sequences in R+ with v1 ≥ u1, then for every n ∈ N there exists m ∈ N such that

um ≤ vn < um+1,

and therefore vn can be written as

vn = αmum,

where αm is a real number with 1 ≤ αm < qum+1. To simplify the situation we assume that un ≤ vn < un+1, 
i.e., that vn = αnun with 1 ≤ αn < qun+1 for every n ∈ N. Under these assumptions, in Section 3 we look 
for conditions on the sequence (αn)n∈N to find out when τu(R) is not contained in τv(R). The first main 
theorem of the paper is Theorem 3.3, from which we can derive the following result.

Theorem 1.1. Let u and v be sequences in R+ such that vn = αnun for every n ∈ N. If αn → +∞ and 
αn ≤ κqun+1 eventually for some κ < 1, then τu(R) � τv(R).

The relation vn = αnun (n ∈ N) can be written as v = Au, where A is an infinite diagonal matrix with 
the values αn on the diagonal. This suggests to consider the (apparently) more general situation when u
and v are sequences in R such that

v = Au,

where A = (ai,j)i,j∈N is a row-finite infinite real matrix (here row-finite means that each row of A is 
eventually null). We do this in Section 4.

Such a situation was considered in different terms by Eliaš in [22,23] (see Theorem 1.2 below) when u
and v are strictly increasing sequences in N and A is a particular row-finite infinite integer matrix that 
always exists by the following argument. First observe that by [23, Theorem 1.1], for a strictly increasing 
sequence u in N and m ∈ Z there exists an eventually null sequence r in Z (called a good expansion of m
by u) such that

m =
∑
n∈N

rnun, where

∣∣∣∣∣∣
∑
j≤n

rjuj

∣∣∣∣∣∣ ≤ un+1

2 for every n ∈ N. (1.1)

So, if v is another strictly increasing sequence in N, for every i ∈ N there exists a good expansion ri of vi
by u, and ri becomes the i-th row of an infinite matrix A such that v = Au.

Eliaš proved in [22] the following theorem on inclusions between characterized subgroups of T, that we 
express in our terminology based on our original approach using the row-finite infinite integer matrix A.

Theorem 1.2 ([23, Theorem 1.2]). Let u and v be two strictly increasing sequences in N such that qun → +∞
and qvn → +∞, and let A = (ai,j)i,j∈N be the row-finite integer matrix such that each row ri of A is a good 
expansion of vi by u (so v = Au). Then tu(T) ⊆ tv(T) if and only if:
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(C) cj is eventually null for each column cj of A;
(R) supi∈N ‖ri‖1 < +∞.

This result was in [23] an important tool to solve a problem on Arbault sets,1 and more precisely on 
A-permitted sets (see [31]). In our terminology A is an Arbault set if and only if A ⊆ τu(R) for some strictly 
increasing sequence u in N. Arbault introduced this kind of thin sets2 in studying the sets of absolute 
convergence of trigonometric series in [1], where he also started the study of permitted sets.

In Section 4, using different techniques from those of Eliaš, we give in Theorem 4.10 a self-contained proof 
of a more general result; notice that the sequences u and v are in R (and not assumed to be integer-valued). 
We mention here a consequence of Theorem 4.10:

Corollary 1.3. Let u be a sequence in R \ {0} such that |qun | → +∞. Let A = (ai,j)i,j∈N be a row-finite 
integer matrix such that there exists 0 < κ < 1 with∣∣∣∣∣∣

∑
j≤n

ai,juj

∣∣∣∣∣∣ ≤ κ · |un+1| for every n, i ∈ N. (1.2)

If v = Au, then τu(R) ⊆ τv(R) if and only if (C) and (R) hold.

The result by Eliaš stated in Theorem 1.2 follows now directly from Corollary 1.3 and (1.1), since under 
the assumptions of Theorem 1.2 the condition (1.2) is satisfied with κ = 1

2 .
To conclude, we leave the following open question suggested by the referee, that deserves to be investi-

gated. For two subgroups H, K of an infinite group G say that H is almost contained in K if [H : K ∩H]
is finite. Similarly, say that H is weakly contained in K if [H : K ∩H] is at most countable.

Question 1.4. Do the characterizations for inclusion of characterized subgroups given in this article remain 
true also for almost inclusion or for weak inclusion in the above sense?

Notations. For a real sequence a = (an)n∈N, let ‖a‖1 =
∑

n∈N
|an| and ‖a‖∞ = supn∈N |an|.

Let c00 denote the space of all real sequences that are eventually zero and 	∞ the space of all bounded 
real sequences.

For a matrix A = (ai,j)i,j∈N we denote by ri and cj its i-th row and its j-th column, respectively. 
Moreover, let ‖A‖∞ = supi,j∈N |ai,j |.

Let ‖ − ‖ : R →
[
0, 1

2
]

be defined by ‖x‖ = inf{|x − n| : n ∈ Z}. For x ∈ R we denote by {x} := x − �x�
the fractional part of x and by ϕ(x) the unique number in 

[
−1

2 ,
1
2
[

such that ϕ(x) ≡Z x. In particular, 
|ϕ(x)| = ‖x‖.

For u, ε ∈ R+ := {x ∈ R : x > 0} consider the following family of intervals of R

I(u, ε) =
{[

− ε

u
,
ε

u

]
+ n

u
: n ∈ Z

}
.

Thus 
⋃

J∈I(u,ε) J = {x ∈ R : ‖ux‖ ≤ ε}.
In the whole paper, let u = (un)n∈N be a sequence in R \ {0} and qun = un

un−1
(n ∈ N) with u0 = 1. When 

we write simply qn we always mean qun .
If (G, T ) is a topological group and u is a sequence in G, by writing shortly un → 0 (T ) we mean that 

un converges to 0 in G with respect to T .

1 A set A ⊆ [0, 1] is an Arbault set if there is a strictly increasing sequence of positive integers u = (un)n∈N such that 
limn→+∞ sinπunx = 0 for all x ∈ A (see [1]).
2 See [9] for a survey on thin sets in harmonic analysis.
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2. Characterized subgroups and precompact group topologies

We start by the following basic property of the characterized subgroups of R.

Remark 2.1. If u = (un)n∈N is a sequence in R+, then

τu(R) =
⋂
ε>0

⋃
n∈N

⋂
k≥n

⋃
J∈I(uk,ε)

J

=
⋂
m∈N

⋃
n∈N

⋂
k≥n

⋃
J∈I

(
uk,

1
m

) J.

Therefore, the characterized subgroup τu(R) is a Borel set, hence either τu(R) is countable or has the 
cardinality c of the continuum (see [26, Theorem 13.6]). The latter occurs whenever qn → +∞ (see [4,21]
and [34, Theorem 3.4]).

Let G be an abelian group and H a subgroup of Hom(G, T). It is easy to see that the weakest group 
topology TH on G making every character of H continuous is totally bounded. Vice versa, Comfort and 
Ross proved that any totally bounded group topology is of this type (see [10, Theorem 1.2]).

For all this section, let G be a topological abelian group, denote by T the group topology of G and 
consider the group Ĝ of all continuous characters of G. Clearly, for H ≤ Hom(G, T),

TH ≤ T if and only if H ≤ Ĝ.

Therefore, [10, Theorems 1.2, 1.3 and 1.11, Corollary 1.4] (see also [4, Theorem 2.1]) yield the next result.

Theorem 2.2 (Comfort–Ross). The assignment H �→ TH defines an order preserving isomorphism from the 
lattice of all subgroups of Ĝ onto the lattice of all totally bounded group topologies on G weaker than T . 
Moreover, for H ≤ Ĝ,

(a) TH is Hausdorff if and only if H separates the points of G;
(b) TH is first countable if and only if H is countable.

Following [19], for a sequence u in G, let3

τu(Ĝ) :=
{
χ ∈ Ĝ : χ(un) → 0

}
and σu := Tτu(Ĝ). (2.1)

By the definition of the topology TH on G, we obtain the following equivalence.

Lemma 2.3. [19, Lemma 3.1] Let u be a sequence in G and H ≤ Ĝ. Then un → 0 (TH) if and only if 
H ≤ τu(Ĝ).

So, in analogy to [4, Corollary 2.3], σu is the finest totally bounded group topology T ′ weaker than T
on G such that un → 0 (T ′).

3 If G is a locally compact Hausdorff abelian group, then one can identify G with ̂̂G in view of Pontryagin–van Kampen duality 
theorem, so in this case τu(Ĝ) coincides with su(Ĝ).
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Proposition 2.4. Let u and v be sequences in G. Then the following conditions are equivalent:

(a) τu(Ĝ) ⊆ τv(Ĝ);
(b) vn → 0 (σu);
(c) for every totally bounded group topology T ′ ≤ T on G, if un → 0 (T ′) then vn → 0 (T ′).

Proof. (a) ⇔ (b) It follows directly from Lemma 2.3 with H = τu(Ĝ).
(a) ⇒ (c) Let T ′ ≤ T be a totally bounded group topology on G such that un → 0 (T ′). By Theorem 2.2

there exists H ≤ Ĝ such that T ′ = TH . By Lemma 2.3 and the hypothesis, H ⊆ τu(Ĝ) ⊆ τv(Ĝ), hence 
vn → 0 (T ′).

(c) ⇒ (b) Take T ′ = σu and apply again Lemma 2.3. �
We now discuss the case when G = R and T = E is the Euclidean topology. As known, R̂ is topologically 

isomorphic to R itself. For any α ∈ R the corresponding continuous character is χα, defined by χα(x) = π(αx)
for every x ∈ R. So, identifying χα with α and R̂ with R, and taking a sequence u in R, τu(R) defined in 
the Introduction coincides with τu(R̂) defined in this section.

In the proof of the following proposition we use that, for H ≤ R, TH is generated by the family of 
seminorms pα(x) := ‖αx‖ with α belonging to a set of generators of H.

Proposition 2.5. Let H ≤ R. Then TH is Hausdorff if and only if H is not cyclic.

Proof. First observe that TH is Hausdorff if and only if {0}TH = {0}, and that {0}TH is a closed subgroup 

of (R, E) since TH ≤ E . Therefore, either {0}TH = R or {0}TH is cyclic. The first case occurs exactly when 

H = 0 and in this case TH is not Hausdorff and H is cyclic. So we may assume that {0}TH = �Z for some 
� ∈ R.

Suppose that TH is not Hausdorff; then � �= 0. If α ∈ H \ {0}, then from

�Z = {0}TH ⊆ {x ∈ R : pα(x) = 0} = 1
α
Z,

we derive � ∈ 1
αZ, i.e., α ∈ 1

�Z. Therefore, H ⊆ 1
�Z and so H is cyclic. Suppose now that H is cyclic and 

H �= 0, and let α ∈ R \ {0} be a generator of H. Since {0}TH = {x ∈ R : pα(x) = 0} = 1
αZ, we get that TH

is not Hausdorff. �
Corollary 2.6. Let u be a sequence in R \ {0} such that |qun | → +∞. Then σu = Tτu(R) is Hausdorff (hence, 
precompact).

Proof. By Remark 2.1 we get that |τu(R)| = c. Then apply Proposition 2.5. �
From Theorem 2.2, Proposition 2.4 and Corollary 2.6 we derive a topological interpretation of the non-

inclusion of characterized subgroups of R.

Corollary 2.7. Let u, v be sequences in R \ {0} such that |qun | → +∞. Then the following conditions are 
equivalent:

(a) τu(R) � τv(R);
(b) vn �→ 0 (σu);
(c) there exists a non-metrizable precompact group topology T ′ on R weaker than E, such that un → 0 (T ′)

but vn �→ 0 (T ′).
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Recall that a sequence u in an abelian group G is a TB-sequence if there exists a precompact group 
topology T on G such that un → 0 (T ) (see [4]). This notion, studied also in [14], is generalized to 
topological abelian groups (G, T ) in [15], where a sequence v in G is called a topological TB-sequence
if there exists a precompact group topology T ′ ≤ T such that un → 0 (T ′) (clearly, every topological 
TB-sequence of (G, T ) is a TB-sequence of G).

With this terminology, a sequence u in R is a topological TB-sequence if and only if σu is Hausdorff, or 
equivalently, if τu(R) is not cyclic (see Proposition 2.5); in particular, if u is in R \ {0} and |qun | → +∞, 
then u is a topological TB-sequence and σu is a precompact group topology on R weaker than E such that 
un → 0 (σu) (see Corollary 2.6).

3. Comparison of τu(R) and τv(R) whenever vn = αnun

The first main result of this article is Theorem 3.3. In this theorem – and also in Theorems 4.3 and 4.5
– fixed two sequences v and u in R \ {0} with |qun | → +∞, we look for sufficient conditions so that 
τu(R) � τv(R); in particular, we search an element x ∈ τu(R) \ τv(R).

The strategy for that consists in constructing:

1. a nested sequence of compact intervals In ∈ I(un, εn), where 0 < εn ↓ 0;
2. a subsequence (vnk

)k∈N of v such that ‖vnk
x‖ is away from zero for every x ∈ Ink

and k ∈ N.

For x ∈
⋂

n∈N
In, the first condition gives that x ∈ τu(R) and the second that x /∈ τv(R).

The following lemma will give the required nested sequence of intervals.

Lemma 3.1. Let 0 < ε < 1
2 . If u ∈ R+ and I is an interval of length μ(I) ≥ 2

u , then I contains an interval 
of I(u, ε). In particular, if u is a sequence in R+ and n ∈ N, then any I ∈ I(un, ε) contains an interval of 
I(un+1, ε) if εqn+1 ≥ 1.

Proof. To prove the first statement, it is sufficient to observe that the distance between the centers of two 
successive intervals of I(u, ε) is 1

u , the length of any interval of I(u, ε) is 2εu and 1
u + 2ε

u ≤ μ(I). In particular, 
if I ∈ I(un, ε) and u = un+1, then μ(I) = 2ε

un
and thus μ(I) ≥ 2

u is equivalent to εqn+1 ≥ 1. �
The next lemma is another essential tool in the proof of Theorems 3.3 and 4.3.

Lemma 3.2. Let α, ui, εi ∈ R+ (i = 1, 2), with

v := αu1, q2 := u2

u1
, 0 < κ < 1, ε2 ≤ δ := 1 − κ

4 and 1
ε1

≤ α ≤ κq2.

Then, for I1 ∈ I(u1, ε1), there exists I2 ∈ I(u2, ε2) such that I2 ⊆ I1 and ‖vx‖ ≥ δ for every x ∈ I2.

Proof. Define f : R → R by f(x) = vx. Since μ(I1) = 2ε1
u1

, we have μ(f(I1)) = 2ε1α ≥ 2. Therefore, there 
exists k ∈ Z such that [k, k + 1] ⊆ f(I1). Let J := [k + 2δ, k + 1 − 2δ].

k k + 2δ k + 1 − 2δ k + 1

J

Since for every i ∈ N we have
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∣∣∣∣f ( i

u2

)
− f

(
i + 1
u2

)∣∣∣∣ = v

u2
= α

q2
≤ κ = μ(J),

and the numbers i
u2

are the centers of the intervals of I(u2, ε2), there exists I2 ∈ I(u2, ε2) with center 
c = i

u2
such that f(c) ∈ J . Therefore, since

μ(f(I2))
2 = v

μ(I2)
2 = v

ε2

u2
= α

q2
ε2 ≤ κε2 ≤ δ,

it follows that f(I2) ⊆ [k + δ, k + 1 − δ].

k k + 2δ

k + δ f( i
u2

)

k + 1 − 2δ

k + 1 − δ

k + 1

f(I2)

Consequently, f(I2) ⊆ [k + δ, k + 1 − δ] ⊆ f(I1). Hence, I2 ⊆ I1 and ‖vx‖ ≥ δ for every x ∈ I2. �
The following first main result of the paper gives sufficient conditions to obtain the required non-inclusion 

τu(R) � τv(R). Slightly strengthening the hypotheses (by choosing γ(n) = n for every n ∈ N and M = N), 
one can find a simplified reformulation of this result in Theorem 1.1 of the Introduction, and a direct 
consequence in Corollary 3.4.

Theorem 3.3. Let u and v be sequences in R+. Assume that:

(a) (qn)n∈N has a subsequence (qγ(n))n∈N such that qγ(n) → +∞;
(b) qn ∈ N for every n ∈ N \ γ(N).

Let M be an infinite subset of N, set αm := vm
um

for every m ∈ M and let 0 < κ < 1. Assume that:

(c) limM�m→+∞ αm = +∞;
(d) αm ≤ κqm+1 for every m ∈ M .

Then τu(R) � τv(R).

Proof. Let δ := 1−κ
4 and 0 < εn ↓ 0 such that:

(i) εnqn+1 ≥ 1 if n + 1 ∈ γ(N);
(ii) εmαm ≥ 1 if m ∈ M .

Moreover, let n0 ∈ N with:

(iii) εn0 ≤ δ.

We define inductively a decreasing sequence In ∈ I(un, εn) for n ≥ n0 such that ‖vmx‖ ≥ δ for every 
m ∈ M with m ≥ n0 and x ∈ Im+1. Then we conclude that ∅ �=

⋂
n≥n0

In ⊆ τu(R) \ τv(R).
Choose arbitrarily In0 ∈ I(un0 , εn0). Suppose that n ≥ n0 and that In ∈ I(un, εn) is defined. If n ∈ M , 

Lemma 3.2 yields the existence of In+1 ∈ I(un+1, εn+1) such that In+1 ⊆ In and ‖vnx‖ ≥ δ for every 
x ∈ In+1. Assume that n ∈ N \M . If n + 1 ∈ γ(N), there exists In+1 ∈ I(un+1, εn+1) such that In+1 ⊆ In
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by (i) and by Lemma 3.1. If n +1 ∈ N \ γ(N), then qn+1 ∈ N, and so there exists In+1 ∈ I(un+1, εn+1) such 
that the center of In+1 coincides with the center of In, thus In+1 ⊆ In. �
Corollary 3.4. Let u be a sequence in R \ {0} such that |qn| → +∞. Consider a sequence (αn)n∈N in R such 
that supn∈N |αn| = +∞ and let vn := αnun for n ∈ N. If there exists 0 < κ < 1 such that |αn| ≤ κ|qn+1|
eventually, then τu(R) � τv(R).

Proof. It follows from Theorem 3.3 recalling that τu(R) = τ|u|(R) and τv(R) = τ|v|(R). �
An easy modification of the proof of Theorem 3.3 shows that τu(R) \τv(R) contains a Cantor-like set and 

therefore has size c. The latter also follows from the next remark under the assumptions of Theorem 3.3 or 
of Corollary 3.4, since in this case |τu(R)| = c by Remark 2.1.

Remark 3.5. Let H, K be infinite subgroups of a group G such that H � K. Then |H \K| = |H|.

Proof. If |H ∩K| < |H|, then the thesis follows from |H| = |H \K| + |H ∩K|.
If |H ∩K| = |H| and x ∈ H \K, then x + (H ∩K) ⊆ H \K, hence

|H| = |H ∩K| = |x + (H ∩K)| ≤ |H \K|. �
Now we provide an example which shows that Theorem 3.3 and Corollary 3.4 fail for κ = 1.

Example 3.6. For n ∈ N, let un = n! and vn = (n − 1)un. With the notation of Corollary 3.4 we have 
qn+1 > αn → +∞, but τu(R) ⊆ τv(R) since vn = un+1 − 2un.

As for the assumption supn∈N αn = +∞ in Corollary 3.4, consider the following observation. If u and v
are sequences in R and vn = αnun where (αn)n∈N is a bounded sequence, then obviously τu(R) ⊆ τv(R) if 
the αn’s are integers. But τu(R) may be not contained in τv(R) if αn ∈ R \ Z as the next example shows.

Example 3.7. For n ∈ N, let un = n! and vn = 1
2un. Then e ∈ τu(R) \ τv(R). Indeed, e =

∑+∞
n=0

1
n! and for 

n ∈ N,

une ≡Z n!
+∞∑

i=n+1

1
i! ≤

1
n + 1

+∞∑
i=0

1
2i = 2

n + 1 → 0;

hence, ‖une‖ → 0. Analogously, ‖v2ne‖ → 1
2 , since

v2ne ≡Z

1
2 + (2n)!

+∞∑
i=2n+1

1
i! →

1
2 .

We proceed by proving two technical lemmas, that are used in the rest of the paper.

Lemma 3.8. Let u be a sequence in R+ with qn → +∞. Then limn→+∞
∑

j<n
uj

un
= 0.

Proof. Let sn :=
∑

j<n
uj

un
and n0 ∈ N such that qn ≥ 2 for n ≥ n0. Then

sn+1 = snun + un

un+1
= sn + 1

qn+1
≤ sn + 1

2 . (3.1)

Let tn := max{1, sn}; then (tn)n∈N is a bounded sequence since tn+1 ≤ tn for every n ≥ n0. Hence (sn)n∈N

is bounded, too, and tends to 0 by (3.1) since qn → +∞. �
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Lemma 3.9. Let u be a sequence in R+ with qn → +∞ and A = (ai,j)i,j∈N a row-finite real matrix.

(a) If cj ∈ 	∞ for every j ∈ N, then

lim sup
n→+∞

‖cn‖∞
qn+1

= lim sup
n→+∞

sup
i∈N

∑
j≤n

|ai,j |uj

un+1
= lim sup

n→+∞
sup
i∈N

∣∣∣∣∣∣
∑
j≤n

ai,juj

un+1

∣∣∣∣∣∣ .
(b) If supn,i∈N

∣∣∣∑j≤n
ai,juj

un+1

∣∣∣ < +∞, then cj ∈ 	∞ for every j ∈ N.

Proof. (i) Let lim supn→+∞
‖cn‖∞
qn+1

< σ < κ, for some reals σ and κ, and let m ∈ N be such that ‖cj‖∞
qj+1

≤ σ

for j ≥ m. Then, for i ∈ N and n ≥ m,

∣∣∣∣∣∣
∑
j≤n

ai,juj

un+1

∣∣∣∣∣∣ ≤
∑
j≤n

|ai,j |uj

un+1
≤
∑
j<m

|ai,j |uj

un+1
+ σ

∑
m≤j≤n

uj+1

un+1
=

= 1
un+1

∑
j<m

|ai,j |uj + σ

⎛⎝1 +
∑

m<j≤n

uj

un+1

⎞⎠ .

The first summand tends to 0 for n → +∞ uniformly on i ∈ N, and the second one tends to σ by Lemma 3.8. 
Therefore, there exists n0 ∈ N such that for every n ≥ n0 and i ∈ N we have 

∑
j≤n

|ai,j |uj

un+1
≤ κ. Hence,

lim sup
n→+∞

sup
i∈N

∣∣∣∣∣∣
∑
j≤n

ai,juj

un+1

∣∣∣∣∣∣ ≤ lim sup
n→+∞

sup
i∈N

∑
j≤n

|ai,j |uj

un+1
≤ κ.

(ii) Let now lim supn→+∞ supi∈N | 
∑

j≤n
ai,juj

un+1
| < σ < κ and let m ∈ N such that, for n ≥ m,

sup
i∈N

∣∣∣∣∣∣
∑
j≤n

ai,juj

un+1

∣∣∣∣∣∣ < σ.

Then for n ≥ m and i ∈ N we get

|ai,nun| ≤

∣∣∣∣∣∣
∑
j≤n

ai,juj

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j<n

ai,juj

∣∣∣∣∣∣ ≤ σun+1 + σun.

Thus,

sup
i∈N

|ai,n|
un

un+1
≤ σ + σ

un

un+1
≤ κ

eventually. Hence, lim supn→+∞
‖cn‖∞
qn+1

≤ κ.
Then (i) and (ii) give (a). The same reasoning of (ii) applied for m = 1 proves (b). �
We give some further consequences of Theorem 3.3.
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Theorem 3.10. Let u be a sequence in R \ {0} such that |qn| → +∞, let A = (ai,j)i,j∈N be a row-finite real 
matrix such that cj ∈ 	∞ for every j ∈ N, and let v = Au. Assume that lim supn→+∞

‖cn‖∞
|qn+1| < 1 and that 

there exist a sequence (ri)i∈N in N divergent to +∞ and l ∈ N such that:

(a) supi∈N |ai,ri | = +∞;
(b) ai,j = 0 if j > ri + l;
(c) {ai,j : i, j ∈ N, j > ri} is a bounded subset of Z.

Then τu(R) � τv(R).

Proof. Since ri → +∞, v has a subsequence v∗ = (vin)n∈N such that |ain,rin | → +∞ and (rin)n∈N is 
strictly increasing. Since τv(R) ⊆ τv∗(R), it suffices to prove that τu(R) � τv∗(R). To simplify the notation 
we may assume that v∗ = v, i.e., that (ri)i∈N is strictly increasing.

Let, for i ∈ N,

v′i =
∑
j≤ri

ai,juj and v′′i =
∑
j>ri

ai,juj .

Then v = v′ + v′′. It easily follows from (b) and (c) that τu(R) ⊆ τv′′(R). Therefore, it is enough to show 
that τu(R) � τv′(R). Thus, we may assume that v′ = v, i.e., ai,j = 0 if i ∈ N and j > ri.

Set M := {ri : i ∈ N}. If m = ri for some i ∈ N, choose αm ∈ R such that vi = αmum =: wm; for 
n ∈ N \ M , let wn = αn = 0. Obviously, τv(R) = τw(R). With the aid of Corollary 3.4 we show that 
τu(R) � τw(R). By Lemma 3.9 there exists 0 < κ < 1 such that, for every m = ri ∈ M large enough,

||αm| − |ai,m|| ≤ |αm − ai,m| =

∣∣∣∣∣∣
∑
j<m

ai,juj

um

∣∣∣∣∣∣ ≤ κ.

Therefore,

sup
n∈N

|αn| = lim
i→+∞

|ai,ri | = +∞

and

|αm| =
∣∣∣∣ vivm

∣∣∣∣ =
∣∣∣∣∣∣
∑
j≤m

ai,j
uj

um

∣∣∣∣∣∣ ≤ |qm+1|

∣∣∣∣∣∣
∑
j≤m

ai,juj

um+1

∣∣∣∣∣∣ ≤ |qm+1|κ.

Now Corollary 3.4 yields τu(R) � τw(R), hence τu(R) � τv(R). �
Remark 3.11. If A = (ai,j)i,j∈N is a row-finite real matrix and 0 < κ < 1 such that |ai,j | ≤ κ|qj+1| for 
every i, j ∈ N (equivalently, supj∈N

‖cj‖∞
|qj+1| ≤ κ), then the assumption lim supn→+∞

‖cn‖∞
|qn+1| < 1 of the above 

theorem is satisfied, and moreover cj ∈ 	∞ for every j ∈ N (see also the assumptions of Theorems 4.3 and 
4.10).

In the next consequence of Theorem 3.10 we consider the case when the coefficients of the row-finite 
infinite matrix A are integer.

Corollary 3.12. Let u be a sequence in R \ {0} such that |qn| → +∞, let A = (ai,j)i,j∈N be a row-finite 
integer matrix and v = Au. Assume that there exists 0 < κ < 1 such that |ai,j | ≤ κ|qj+1| for every i, j ∈ N
and that:
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(a) supi∈N | supp ri| < +∞;
(b) ‖A‖∞ = +∞.

Then τu(R) � τv(R).

Proof. Let l = maxi∈N | supp ri|. Then for every i ∈ N, there are indices

n(i, 1) < n(i, 2) < . . . < n(i, l),

such that ai,j = 0 if j /∈ {n(i, 1), . . . , n(i, l)}.
By (b) there exists j ∈ {1, . . . , l} such that supi∈N |ai,n(i,j)| = +∞; let j be maximal with this property 

and put ri = n(i, j) for i ∈ N. Then, thanks to Remark 3.11, the hypotheses of Theorem 3.10 are satisfied, 
thus it yields τu(R) � τv(R). �

We see in Theorem 4.3 that the assumption (a) in Corollary 3.12 can be cancelled.

4. Comparison of τu(R) and τv(R) whenever v = Au

Assumption 4.1. In this section let u be a sequence in R \ {0} such that |qn| → +∞, where qn := qun . 
Moreover, let A = (ai,j)i,j∈N be a row-finite integer matrix and let v = Au. We also recall that we denote 
by ri and cj the i-th row and the j-th column of A, respectively.

We preliminarily explain the idea of the proofs of Theorems 4.3 and 4.5. The thesis of these theorems is 
τu(R) � τv(R). As observed before Lemma 3.1, we will construct:

1. a nested sequence of compact intervals In ∈ I(un, εn) where 0 < εn ↓ 0;
2. and a subsequence (vmk

)k∈N of v such that infk∈N ‖vmk
x‖ > 0 for x ∈

⋂
n∈N

In.

The assumption |qn| → +∞ will guarantee that there exists a decreasing sequence In ∈ I(un, εn), and 
therefore x ∈ τu(R) for x ∈

⋂
n∈N

In.
We briefly describe how to choose the intervals In such that in addition ‖vix‖ is large for some i and all 

x ∈ In1 where vi =
∑

j<n1
ai,juj . Let cn be the center of the interval In, let

Cn =
∑
j<n

ai,jujcn

and let tn = {Cn} ∈ [0, 1); we can identify tn with a point of T.
In Theorem 4.3 we choose a suitable small δ > 0 and an index i such that one of the coefficients, say 

ai,n̄, of the linear combination vi =
∑

j<n1
ai,juj is big enough. As a first step, we show – using an idea 

of the proof of Theorem 3.10 – that ‖Cn̄‖ ≥ δ. Afterwards, we choose In (n̄ < n ≤ n1) in such a way 
that

tn ≥ tn−1 if tn−1 < 1
2 and tn ≤ tn−1 otherwise;

in other words, the (finite) sequence tn first approaches 1
2 and then remains close to 1

2 . Finally, since 
any x ∈ In1 is close to cn1 , one sees that ‖vix‖ is close to ‖vicn1‖ = ‖tn1‖ which is close to 1

2 (see 
Lemma 4.2).
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01
2

δ

δ

tn̄tn̄+1

tn̄+2

tn̄+3

tn̄+4

The proof of Theorem 4.5 is based on a similar idea. We choose an index i ∈ N such that supp ri is big 
enough, and In in such a way that

tn ≥ tn−1 if tn−1 < 1
2 and tn ≤ tn−1 otherwise;

finally, a control of the estimation of tn − tn−1 allows us to prove that the (finite) sequence tn arrives close 
to 1

2 and then remains there.

Lemma 4.2. Assume that u is in R+, that cj ∈ 	∞ for every j ∈ N and that lim supn→+∞
‖cn‖∞
qn+1

< κ for 
some real κ. Then there exists n0 ∈ N such that, for every n ≥ n0 and i ∈ N,∑

j<n

|ai,j |uj

un
≤ κ

and therefore, ∣∣∣∣∣∣
∑
j<n

ai,juj(x− c)

∣∣∣∣∣∣ ≤ κε

whenever ε > 0, x ∈ I ∈ I(un, ε) and c is the center of I.

Proof. By Lemma 3.9 there is n0 ∈ N such that 
∑

j<n
|ai,j |uj

un
≤ κ for every n ≥ n0 and i ∈ N. Hence, for 

n ≥ n0, ∣∣∣∣∣∣
∑
j<n

ai,juj(x− c)

∣∣∣∣∣∣ ≤
∑
j<n

|ai,j |uj ·
ε

un
≤ κε,

where ε, I, c, x are chosen as above. �
As noted in Remark 3.11, the assumptions (b) and (c) of the following theorem are satisfied if there exists 

κ ∈ [0, 1) such that |ai,j | ≤ κ|qj+1| for every i, j ∈ N. We consider now the case when the coefficients of the 
row-finite infinite integer matrix A are unbounded.

Theorem 4.3. Suppose that:

(a) ‖A‖∞ = +∞;
(b) cj ∈ 	∞ for every j ∈ N;
(c) lim supj→+∞

‖cj‖∞
|qj+1| < 1.

Then τu(R) � τv(R).
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Proof. Since τu(R) = τ|u|(R) and τv(R) = τ|v|(R) and moreover |vi| =
∑

j∈N
ai,j sgn(vi · uj)|uj | for all 

i, j ∈ N, we may assume that un, vn ≥ 0 for all n ∈ N.
Let κ ∈ R with lim supj→+∞

‖cj‖∞
|qj+1| < κ < 1 and εn ↓ 0 such that

εnqn+1 ≥ 8
1 − κ

, (4.1)

for every n ∈ N. Choose n0 ∈ N according to Lemma 4.2; we can assume that moreover εn0 ≤ δ := 1−κ
4 . We 

define inductively two strictly increasing sequences (nk)k∈N and (mk)k∈N of natural numbers, a decreasing 
sequence of compact intervals (In)n≥n0 and a decreasing sequence (ε̄n)n≥n0 of positive reals such that for 
every k ∈ N ∪ {0}:

(i) ε̄nk
= εnk

;
(ii) In ∈ I(un, ̄εn) if nk ≤ n < nk+1;
(iii) ‖vmk

x‖ ≥ δ
4 if x ∈ Ink

and k > 0.

Then ∅ �=
⋂

n≥n0
In ⊆ τu(R) \ τv(R) and this finishes the proof.

For k = 0 we choose ε̄n0 := εn0 , an arbitrary In0 ∈ I(un0 ε̄n0) and m0 := 1. Assume that for some 
k ∈ N ∪ {0} we have already defined nk, mk, and In and ε̄n for n0 ≤ n ≤ nk.

Let ε := ε̄nk
. Since A is row-finite, by (a) and (b) there exist mk+1 > mk and j > nk such that 

|amk+1,j |ε ≥ 1 + ε. Let

n̄ := max{j > nk : |amk+1,j |ε ≥ 1 + ε} (4.2)

and nk+1 > n̄ such that εnk+1 < ε
4 and amk+1,j = 0 for j ≥ nk+1. Set

ε̄n := ε for nk < n ≤ n̄, ε̄n := ε

4 for n̄ < n < nk+1 and ε̄nk+1 := εnk+1 .

Thanks to (4.1) and Lemma 3.1 there is, for nk < n ≤ n̄, a decreasing sequence of intervals In ∈ I(un, ̄εn)
contained in Ink

. We show with the aid of Lemma 3.2 that In̄ contains an interval In̄+1 ∈ I(un̄+1, ̄εn̄+1)
such that ∥∥∥∥∥∥

∑
j≤n̄

amk+1,jujx

∥∥∥∥∥∥ ≥ δ for all x ∈ In̄+1. (4.3)

For that, let v := | 
∑

j≤n̄ amk+1,juj | and α ∈ R with v = αun̄. Then by Lemma 4.2 and (4.2),

κqn̄+1 ≥

∣∣∣∣∣∣
∑
j≤n̄

amk+1,j
uj

un̄+1

∣∣∣∣∣∣ qn̄+1 = α

and

α =

∣∣∣∣∣∣
∑
j≤n̄

amk+1,j
uj

un̄

∣∣∣∣∣∣ ≥ |amk+1,n̄| −

∣∣∣∣∣∣
∑
j<n̄

amk+1,j
uj

un̄

∣∣∣∣∣∣ ≥
≥ |amk+1,n̄| − κ ≥ 1 + ε − κ >

1
.

ε ε
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Moreover, ε̄n̄+1 ≤ ε ≤ δ. It follows from Lemma 3.2 that there exists In̄+1 ∈ I(un̄+1, ̄εn̄+1) such that 
In̄+1 ⊆ In̄ and ‖vx‖ ≥ δ for all x ∈ In̄+1. This proves (4.3).

In what follows we denote by cn the center of In,

Cn :=
∑
j<n

amk+1,jujcn and tn := Cn − �Cn� = {Cn}.

Then ‖tn̄+1‖ ≥ δ by (4.3). If n̄+1 < nk+1, we define by induction In ∈ I(un, ̄εn) for n̄+1 < n ≤ nk+1 such 
that ‖tn‖ ≥ δ

2 . Assume that n̄ < n < nk+1 and that In is defined.
Consider the two subintervals

I−n :=
[
cn − ε

4un
, cn − κε

4un

]
and I+

n :=
[
cn + κε

4un
, cn + ε

4un

]

of the interval In =
[
cn − ε

4un
, cn + ε

4un

]
. Both I−n and I+

n have length (1 − κ) ε
4un

, so by Lemma 3.1 and 

by (4.1) there exist J−, J+ ∈ I(un+1, ̄εn+1) such that J− ⊆ I−n and J+ ⊆ I+
n .

cn − ε
4un

cn − κε
4un

cn

cn + κε
4un

cn + ε
4un

J− J+

We will choose In+1 ∈ {J−, J+} as follows.

Case amk+1,n �= 0. Observe that for any x ∈ J+, we have κε4 ≤ ϕ(unx) ≤ ε
4 . Therefore, since |amk+1,n|ε ≤

1 + ε by (4.2),

∣∣amk+1,n

∣∣unx ≡Z

∣∣amk+1,n

∣∣ϕ(unx) ∈
[
κε

4 ,
1 + ε

4

]
⊆
[
0, 1

2

[
,

thus,

sgn(amk+1,n)ϕ(amk+1,nunx) = ϕ(
∣∣amk+1,n

∣∣unx) =
∣∣amk+1,n

∣∣ϕ(unx) ∈
[
κε

4 ,
1 + ε

4

]
.

Analogously, sgn(amk+1,n)ϕ(amk+1,nunx) ∈
[
−1+ε

4 ,−κε
4
]

for every x ∈ J−. Therefore, we can choose In+1 ∈
{J−, J+} in such a way that{

κε
4 ≤ ϕ(amk+1,nunx) ≤ 1+ε

4 if 0 ≤ tn < 1
2 ,

−1+ε
4 ≤ ϕ(amk+1,nunx) ≤ −κε

4 if 1
2 ≤ tn < 1.

Consider first the case 0 ≤ tn < 1
2 . Observe that

Cn+1 = Cn +

⎛⎝∑
j<n

amk+1,juj

⎞⎠ (cn+1 − cn) + amk+1,nuncn+1.

Since by Lemma 4.2 ∣∣∣∣∣∣
∑

amk+1,juj(cn+1 − cn)

∣∣∣∣∣∣ ≤ κε

4 (4.4)

j<n
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and κε4 ≤ ϕ(amk+1,nuncn+1) ≤ 1+ε
4 by the choice of In+1, we have

0 ≤

⎛⎝∑
j<n

amk+1,juj

⎞⎠ (cn+1 − cn) + ϕ(amk+1,nuncn+1) ≤
κε

4 + 1 + ε

4 ≤ 1
4 + δ

2 .

Together with the inductive hypothesis we obtain

tn+1 = tn +

⎛⎝∑
j<n

amk+1,juj

⎞⎠ (cn+1 − cn) + ϕ(amk+1,nuncn+1) ∈
[
δ

2 ,
1
2 + 1

4 + δ

2

]
⊆
[
δ

2 , 1 − δ

2

]
,

i.e., ‖tn+1‖ ≥ δ
2 .

Analogously one shows that ‖tn+1‖ ≥ δ
2 in the case 1

2 ≤ tn ≤ 1.

Case amk+1,n = 0. Denote by c− and c+ the center of J− and J+, respectively. Then c− < cn < c+ and 
therefore if one of the sums∑

j<n

amk+1,juj(c− − cn) and
∑
j<n

amk+1,juj(c+ − cn)

is positive, the other one is negative. Thus, we can choose In+1 ∈ {J−, J+} in such a way that

Cn+1 − Cn =
∑
j<n

amk+1,juj(cn+1 − cn)
{
≥ 0 if 0 ≤ tn < 1

2 ,

< 0 if 1
2 ≤ tn < 1.

Moreover, |Cn+1 − Cn| ≤ κε
4 by (4.4). It follows that

{
δ
2 ≤ tn ≤ tn+1 ≤ tn + κε

4 ≤ 3
4 if 0 ≤ tn < 1

2 ,

1 − δ
2 ≥ tn ≥ tn+1 ≥ tn − κε

4 ≥ 1
4 if 1

2 ≤ tn < 1.

Hence, ‖tn+1‖ ≥ δ
2 .

Let now x ∈ Ink+1 . Since amk+1,j = 0 for every j ≥ nk+1, we have |vmk+1x −Cnk+1 | ≤ κε
4 by Lemma 4.2. 

Therefore,

‖vmk+1x‖ ≥ ‖Cnk+1‖ −
κε

4 = ‖tnk+1‖ −
κε

4 ≥ δ

2 − κε

4 ≥ δ

4 ,

as required. �
The following example shows that in the above theorem the hypothesis on the matrix A to be integer 

cannot be dropped.

Example 4.4. Let un = n! and vn = un+1 for n ∈ N. Since v is a subsequence of u, we have τu(R) ⊆ τv(R). 
We can also write vn as

vn = 1
2n · un + n + 2

2n + 2 · un+1,

i.e., v = Au where A is a matrix satisfying all the hypotheses of Theorem 4.3 except the one to have all 
entries integer.
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We now deal with the case where the coefficients are bounded.

Theorem 4.5. Assume that:

(a) ‖A‖∞ < +∞;
(b) supi∈N | supp ri| = +∞.

Then τu(R) � τv(R).

Proof. As in Theorem 4.3 we may assume that u, v ∈ RN
+. Let εn ↓ 0 be such that

εnqn+1 ≥ 4 for every n ∈ N. (4.5)

Let s := ‖A‖∞. Since limn→+∞
∑

j<n
uj

un
= 0 by Lemma 3.8, there is n0 ∈ N such that

∑
j<n

uj

un
≤ 1

6s for every n ≥ n0. (4.6)

We can also assume that (s + 1)εn0 ≤ 1
8 .

We define inductively two strictly increasing sequences (nk)k∈N and (mk)k∈N of natural numbers and a 
decreasing sequence of intervals (In)n≥n0 such that for every k ∈ N ∪ {0}:

(i) In ∈ I(un, εnk
) for every nk ≤ n < nk+1;

(ii) ‖vmk
x‖ ≥ 1

4 if x ∈ Ink
and k > 0.

Then ∅ �=
⋂

n≥n0
In ⊆ τu(R) \ τv(R) and this finishes the proof.

For k = 0 we choose an arbitrary In0 ∈ I(un0 , εn0) and m0 := 1. Assume that for some k ∈ N ∪ {0} we 
have already defined nk, mk, and In for n0 ≤ n ≤ nk. Set ε := εnk

.
By (b) there exists mk+1 > mk such that

|{j > nk : amk+1,j �= 0}| · ε ≥ 2. (4.7)

Let nk+1 > nk such that amk+1,j = 0 for every j ≥ nk+1.
Set ε̄n := ε for nk < n < nk+1 and ε̄nk+1 := εnk+1 . We will define by induction, for nk < n ≤ nk+1, a 

decreasing sequence of intervals In ∈ I(un, ̄εn) contained in Ink
. Hereby we denote by cn the center of In, 

Cn :=
∑

j<n amk+1,jujcn and tn := Cn − �Cn� = {Cn}. We will define In in such a way that the sequence 
tn satisfies

tn+1 ≥ tn if 0 ≤ tn <
1
2 , and tn+1 ≤ tn if 1

2 ≤ tn < 1,
ε

3 ≤ |tn+1 − tn| ≤ (s + 1)ε if amk+1,n �= 0, and |tn+1 − tn| ≤
ε

6 if amk+1,n = 0
(4.8)

for nk ≤ n < nk+1.
Now assume to have defined In for some nk ≤ n < nk+1. We will use several times that, by (4.6), for all 

x ∈ In ∣∣∣∣∣∣
∑

amk+1,juj(x− cn)

∣∣∣∣∣∣ ≤ s
∑

uj |x− cn| ≤ s
∑

uj
ε

un
≤ ε

6 . (4.9)

j<n j<n j<n
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Divide In in four disjoint subintervals of the same length. Denote by I−n and I+
n , respectively, the first and 

the fourth of these subintervals. By Lemma 3.1 and (4.5), I−n and I+
n , respectively, contain an interval J−

and J+ belonging to I(un+1, ̄εn+1). We choose In+1 ∈ {J−, J+} as follows.

Case amk+1,n �= 0. Observe that for any x ∈ I+
n , we have ε2 ≤ ϕ(unx) ≤ ε. Therefore,

∣∣amk+1,n

∣∣unx ≡Z

∣∣amk+1,n

∣∣ϕ(unx) ∈
[ε
2 , sε

]
⊆
[
0, 1

2

)
,

thus

sgn(amk+1,n)ϕ(amk+1,nunx) = ϕ(
∣∣amk+1,n

∣∣unx) =
∣∣amk+1,n

∣∣ϕ(unx) ∈
[ε
2 , sε

]
.

Analogously, sgn(amk+1,n)ϕ(amk+1,nunx) ∈ [−sε, − ε
2 ] for any x ∈ I−n . Therefore, we can choose In+1 ∈

{J−, J+} in such a way that for any x ∈ In+1,{
ε
2 ≤ ϕ(amk+1,nunx) ≤ sε if 0 ≤ tn < 1

2 ,

−sε ≤ ϕ(amk+1,nunx) ≤ − ε
2 if 1

2 ≤ tn < 1.
(4.10)

Consider first the case 0 ≤ tn < 1
2 . Then we have by (4.9) and (4.10)

Cn+1 = Cn +
∑
j<n

amk+1,juj(cn+1 − cn) + amk+1,nuncn+1 ≡Z

≡Z tn +
∑
j<n

amk+1,juj(cn+1 − cn) + ϕ(amk+1,nuncn+1)

∈ tn +
[
−ε

6 + ε

2 ,
ε

6 + sε
]

= tn +
[
ε

3 ,
(
s + 1

6

)
ε

]
⊆ [0, 1).

Therefore,

tn + ε

3 ≤ tn+1 ≤ tn +
(
s + 1

6

)
ε.

Analogously, one sees that, if 1
2 ≤ tn < 1, then

tn −
(
s + 1

6

)
ε ≤ tn+1 ≤ tn − ε

3 .

Case amk+1,n = 0. Denote by c− and c+ the center of J− and J+, respectively. Then c− < cn < c+, and 
therefore if one of the sums∑

j<n

amk+1,juj(c− − cn) and
∑
j<n

amk+1,juj(c+ − cn)

is positive, the other one is negative. Thus, we can choose In+1 ∈ {J−, J+} in such a way that, since

Cn+1 − Cn =
∑
j<n

amk+1,juj(cn+1 − cn),

Cn+1 − Cn

{
≥ 0 if 0 ≤ tn < 1

2 ,

≤ 0 if 1 ≤ t < 1
2 n
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Moreover, |Cn+1 − Cn| ≤ ε
6 by (4.9). It follows that

{
tn ≤ tn+1 ≤ tn + ε

6 if 0 ≤ tn < 1
2 ;

tn ≥ tn+1 ≥ tn − ε
6 if 1

2 ≤ tn < 1.

Let us now prove (ii). It follows, from (4.8) and (4.7), that there exists n̄ ∈ N with nk < n̄ < nk+1 such 
that 1

2 lies between tn̄−1 and tn̄. Then 
∣∣tn − 1

2
∣∣ ≤ (s + 1)ε for all n̄ ≤ n ≤ nk+1.

Since vmk+1cnk+1 = Cnk+1 , it follows that

∥∥∥∥vmk+1cnk+1 −
1
2

∥∥∥∥ =
∥∥∥∥tnk+1 −

1
2

∥∥∥∥ ≤ (s + 1)ε.

Moreover, for all x ∈ Ink+1 (compare (4.9))

|vmk+1x− vmk+1cnk+1 | =

∣∣∣∣∣∣
∑

j<nk+1

amk+1,juj(x− cnk+1)

∣∣∣∣∣∣ ≤ εnk+1

6 .

Hence, ∥∥∥∥vmk+1x− 1
2

∥∥∥∥ ≤
∥∥vmk+1x− vmk+1cnk+1

∥∥+
∥∥∥∥vmk+1cnk+1 −

1
2

∥∥∥∥ ≤ εnk+1

6 + (s + 1)ε ≤ 1
4 ,

and thus 
∥∥vmk+1x

∥∥ ≥ 1
4 for every x ∈ Ink+1 . �

The following example shows that in the above theorem the hypothesis for the matrix A to be integer 
cannot be dropped.

Example 4.6. For n ∈ N, let un := n! and vn := 2u2n. Then τu(R) ⊆ τv(R). Moreover,

vn =
2n∑
j=n

αnuj , where αn = 2 (2n)!
n! + · · · + (2n)! ∈ [1, 2].

Then v = Au, where the coefficients of the matrix A = (ai,j)i,j are ai,j = αi if i ≤ j ≤ 2i and ai,j = 0
otherwise.

It is worth stressing that in Theorems 4.3 and 4.5 the condition limn→+∞ |qn| = +∞ cannot be replaced 
by the milder one supn∈N |qn| = +∞, as items (a) and (b) in the next example witness, respectively.

Example 4.7.

(a) Choose a sequence u in R+ such that supn∈N qn = +∞ and infinitely many times un+1 = un + 1. Let 
A be a diagonal matrix with ai,i = 1

2qi+1 for every i ∈ N and v = Au. Then τu(R) = {0} ⊆ τv(R).
(b) Put

A :=

⎛⎜⎝210000000000000 . . .
000211000000000 . . .
000000021110000 . . .

⎞⎟⎠ .
. . .
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Denote by kn the indices of the columns of A which are identically zero, that is, kn = kn−1 + n + 2
for n ≥ 1, where k0 := 0. Let N � pn → +∞. Moreover, let qm = pn if m = kn + 1 for some n ∈ N
and qm = 2 otherwise. Finally, un :=

∏n
i=1 qi for n ∈ N. Then for v := Au we have vn = ukn

, since 
vn =

∑kn−1
j=kn−1+1 an,juj and uj+1 = 2uj for every j = kn−1 +1, . . . , kn−1. Therefore, v is a subsequence 

of u and thus τu(R) ⊆ τv(R).

Our next aim is Theorem 4.10. One implication of the equivalence given there is obvious:

Lemma 4.8 (see [23, Lemma 2.1]). If the matrix A satisfies the conditions

(C) cj ∈ c00 for every j ∈ N,
(R) supi∈N ‖ri‖1 < +∞,

then τu(R) ⊆ τv(R).

Proof. Let x ∈ τu(R) and ε > 0. Then there exists n0 ∈ N such that ‖ujx‖ ≤ ε for all j ≥ n0. By 
(C) there exists k0 ∈ N such that ai,j = 0 for i ≥ k0 and j < n0. Therefore, for all i ≥ k0 we have 
‖vix‖ = ‖ 

∑
j∈N

ai,jujx‖ = ‖ 
∑

j≥n0
ai,jujx‖ ≤ ‖ri‖1 · ε ≤ sε where s := supi∈N ‖ri‖1. This proves that 

x ∈ τv(R). �
The next proposition gives assumptions under which condition (R) in Lemma 4.8 implies condition (C).

Proposition 4.9. Assume that the matrix A satisfies the condition

for all i, n ∈ N, 
∑

j≤n ai,juj = 0 implies ai,j = 0 for every j ≤ n,

If τu(R) ⊆ τv(R), then (R) implies (C).

Proof. Since τu(R) has size c by Remark 2.1, it contains a number x �= 0 such that 
∑

j≤n ai,jujx �= b for 
all n, i ∈ N and b ∈ Z \ {0}. By (R) there exists m ∈ N with m ≥ supi∈N ‖ri‖1. Therefore,

ai,j ∈ {−m,−m + 1, . . . , 0, 1, . . . ,m− 1,m} for every i, j ∈ N. (4.11)

By way of contradiction suppose that there exists n ∈ N such that cn /∈ c00. Starting with A(0) := A we 
define matrices A(i) (i ≤ l) such that A(i) is obtained by erasing rows from A(i−1) and A(i) has still infinitely 
many rows. Let n1 be the smallest index with cn1 /∈ c00. It follows from (4.11) that cn1 has infinitely many 
entries equal to the same integer an1 �= 0. We can erase some rows of A in such a way that the entries of the 
column with index n1 of the new matrix A(1) are all equal to an1 and A(1) has still infinitely many rows. 
Let n2 be the smallest index > n1 such that the column of A(1) with index n2 does not belong to c00 if 
such a column exists. As before define A(2) by erasing rows from A(1) in such a way that the entries of the 
column with index n2 of the new matrix A(2) are all equal to an integer an2 �= 0 and A(2) has still infinitely 
many rows. It follows from (R) that this process stops after l steps for some l ≤ m, i.e., the columns of 
A(l) with index n �= nk (k = 1, . . . , l) belong to c00. Observe that w := A(l)u is a subsequence of v, thus 
x ∈ τu(R) ⊆ τv(R) ⊆ τw(R). Therefore, we may assume, to simplify the notation, that A = A(l), i.e., that 
for every k = 1, . . . , l the entries of cnk

are all equal to ank
and cj ∈ c00 for j �= nk.

Let ε > 0 and n0 > nl such that ‖ujx‖ ≤ ε
m for j ≥ n0. Choose i ∈ N such that ‖vix‖ ≤ ε and ai,j = 0

for j ≤ n0 different from n1, . . . , nl. Then∥∥∥∥∥
(

l∑
ank

unk

)
x

∥∥∥∥∥ =

∥∥∥∥∥∥
∑

ai,jujx

∥∥∥∥∥∥ ≤ ‖vix‖ +

∥∥∥∥∥∥
∑

ai,jujx

∥∥∥∥∥∥ ≤ ‖vix‖ + ‖ri‖1
ε

m
≤ 2ε.
k=1 j<n0 j≥n0
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This shows that ‖(
∑l

k=1 ank
unk

)x‖ ≤ ε for every ε > 0.
Therefore, ‖(

∑l
k=1 ank

unk
)x‖ = 0, consequently we have (

∑l
k=1 ank

unk
)x ∈ Z. Thus, 

∑l
k=1 ank

unk
= 0

by the choice of x. By hypothesis we obtain ank
= 0 for every k = 1, . . . , l, a contradiction. �

We are now in position to prove the second main result of the paper.

Theorem 4.10. Assume that:

(a) for all i, n ∈ N, 
∑

j≤n ai,juj = 0 implies ai,j = 0 for every j ≤ n;
(b) cj ∈ 	∞ for every j ∈ N;
(c) lim supj→+∞

‖cj‖∞
|qj+1| < 1.

Then τu(R) ⊆ τv(R) if and only if (C) and (R) hold.

Proof. If (C) and (R) hold, then τu(R) ⊆ τv(R) by Lemma 4.8.
Now assume that τu(R) ⊆ τv(R). By Proposition 4.9 it is enough to show that condition (R) holds true. 

It follows from Theorem 4.3 that ‖A‖∞ = supi,j∈N |ai,j | < +∞. This together with Theorem 4.5 yields 
supi∈N | supp ri| < +∞. These two conditions imply (R). �
Corollary 4.11. Assume that there exists 0 < κ < 1 such that∣∣∣∣∣∣

∑
j≤n

ai,juj

∣∣∣∣∣∣ ≤ κ · |un+1|

for every n, i ∈ N. Then τu(R) ⊆ τv(R) if and only if (C) and (R) hold.

Proof. We have to check that the hypotheses (a), (b) and (c) of Theorem 4.10 are satisfied. By Lemma 3.9, 
items (b) and (c) hold; it remains to verify (a). To this end, let i, n ∈ N and assume that 

∑
j≤n ai,juj = 0

and ai,j �= 0 for some j ≤ n. Let r = max{j ≤ n : ai,j �= 0}. Then

0 =
∑
j≤r

ai,j
uj

ur
=
∑
j<r

ai,j
uj

ur
+ ai,r,

hence ai,r = − 
∑

j<r ai,j
uj

ur
. Since 

∣∣∣∑j<r ai,j
uj

ur

∣∣∣ ≤ κ < 1 and ai,r ∈ Z, it follows that ai,r = 0, a contradic-
tion. �
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