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A note on predictive densities based on composite
likelihood methods

Paolo Vidoni

Abstract Whenever the computation of the data distribution is not feasible
or convenient, the classical predictive procedures are not useful since they rely
on the conditional distribution of the future random variable given the obser-
vations, which is also not available. This paper aims at considering a notion of
composite likelihood for specifying composite predictive distributions, viewed
as surrogates for the true unknown predictive distribution. In particular, the
focus is on the pairwise likelihood obtained as a weighted product of likelihood
factors related to bivariate events associated to both the sample data and the
future observation. The specification of the weights, and more generally the
evaluation of the frequentist properties of alternative pairwise predictive dis-
tributions, is performed by considering the mean square prediction error of
the associated predictors and the expected Kullback-Liebler loss of the re-
lated predictive densities. Finally, simple examples concerning autoregressive
models are presented.

Keywords Kullback-Leibler divergence · Pairwise likelihood · Logarithmic
prediction pool · Predictive distribution

1 Introduction

This paper concerns the prediction of the value of a future or not yet observed
random variable, based on the available observations, in the challenging situ-
ation where the joint distribution of the data is not available. This happens
whenever a full model specification is not reliable and the model turns out
to be partially specified giving only low-dimensional marginal or conditional
distributions. Moreover, even if the model may be potentially defined, a closed
form expression for the joint distribution could not be computable in a closed
form, or approximated using analytical or numerical procedures, due to the
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complex interdependencies which are involved or to the presence of a huge
amount of data.

In these situations, in order to perform likelihood-based inference, it may
be useful to consider suitable pseudolikelihoods, such as composite likelihoods
which are constructed by composing low-dimensional likelihood objects [10].
Composite likelihood inferential procedures have proved to be useful in a num-
ber of complex statistical models (see for example [14] and references therein)
and they usually have good properties even if, compared to the full likelihood
methods, they could be less efficient. A careful choice of the likelihood objects
and the specification of a suitable system of weights may reduce this gap.

In this context the classical predictive procedures are not useful either,
since the lack of an explicit expression for the joint distribution of data does
not permit the computation of the conditional distribution of the future ran-
dom variable given the observed ones. The aim of this paper is to consider
a suitable notion of composite likelihood for specifying composite predictive
distributions, as useful surrogates for the true unknown predictive distribu-
tion. Among various notions of composite likelihood, we focus on the pairwise
likelihood, obtained as a weighted product of likelihood factors related to bi-
variate marginal or conditional events associated to both the observed sample
and the future unknown observation.

The pairwise predictive distribution obtained in this way may be inter-
preted as a weighted pool of bivariate predictive distributions, which corre-
spond to partially specified models for prediction. A further interesting in-
terpretation involves the notion of exponential tilting and the information
theoretical principle of maximum entropy. This new notion of predictive dis-
tribution can be considered for specifying point predictors and prediction in-
tervals, whenever a genuine predictive distribution cannot be defined for com-
putational or modelling problems. With particular regard to the construction
of prediction intervals, a careful specification of the pairwise predictive dis-
tribution is required, in order to get a valid uncertainty assessment for the
prediction statement. Under this respect, the specification of the weights, and
more generally the evaluation of the properties of alternative pairwise predic-
tive distributions is extremely important and, in this case, it is performed by
considering the mean square prediction error of the associated predictors and,
in particular, the expected Kullback-Leibler loss of the predictive distribution
taken into account.

Finally, a simple example concerning autoregressive models with additive
observation noise is presented with the aim of comparing the classical pre-
dictive procedures, available in this case, and those ones based on the pair-
wise predictive distribution. Furthermore, a more interesting application to
autoregressive ordered probit models, where an exact predictive solution is
not available, is also proposed.
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2 Preliminaries on composite likelihood prediction

2.1 Composite likelihood inference

Let (Y1, . . . , Yn, Yn+1) be a random vector with joint density f(y1, . . . , yn+1; θ),
with respect to a suitable dominating measure, specified by the unknown d -
dimensional parameter θ ∈ Θ ⊆ Rd, d ≥ 1; Y = (Y1, . . . , Yn), n > 1, is
observable, while Z = Yn+1 is a future or not yet available observation. Given
the observed sample y = (y1, . . . , yn), there are two general aims to be con-
sidered: the first one is to make inference on the unknown parameter θ, while
the second one, which is the main objective of this paper, is to predict the fu-
ture observation z by means of suitable point predictors, predictive densities
or prediction intervals. Although the predictive procedures presented in the
paper can be considered for both continuous and discrete random vectors, in
order to simplify the exposition we confine the presentation to the continuous
case.

Whenever the computation of the joint density f(y; θ), and then of the full
likelihood function, is cumbersome or infeasible, we may consider alternative
inferential methods based on a suitable surrogate of the true likelihood, such
as the composite likelihood. Following Lindsay [10], a composite likelihood is
simply defined as the (weighted) product

LC(θ; y) =

K∏
k=1

Lk(θ; y)wk (1)

of likelihood components Lk(θ; y), k = 1, . . . ,K, with K ≥ 1, generated from
low-dimensional marginal or conditional densities associated to f(y; θ). Here-
after, w = {wk} indicates a set of non-negative weights. In particular, we
shall consider the pairwise marginal (PM) and the pairwise conditional (PC)
likelihoods, obtained by combining bivariate marginal or conditional densities.
They are given, respectively, by

LPM (θ; y) =

n−1∏
i=1

n∏
j=i+1

f(yi, yj ; θ)
wij , LPC(θ; y) =

n∏
i=1

∏
j 6=i

f(yi|yj ; θ)wij ,

where functions f(·; θ) specify the marginal or the conditional density of the
random variables involved in the argument. Furthermore, the one-wise (inde-
pendence) likelihood is constructed under the independence assumption and
it corresponds to

LO(θ; y) =

n∏
i=1

f(yi; θ)
wi .

A generalization of the notion of one-wise and pairwise likelihoods corresponds
to consider, in the specification of the likelihood objects, blocks of observations
with dimension greater than one. These pseudolikelihoods are usually called
block composite (in particular, block one-wise or pairwise) likelihoods. Further
marginal or conditional composite likelihoods are reviewed in [14].
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Compared to the usual likelihood methods, composite likelihood inferen-
tial procedures are usually less efficient. In regular problems, provided that
the parameter is identifiable, the maximum pairwise (marginal or conditional)

likelihood estimator θ̂P = θ̂P (Y ), and in general the maximum composite like-

lihood estimator θ̂C , is consistent and asymptotically normally distributed,
with asymptotic mean θ and the inverse of the Godambe information as asymp-
totic variance matrix. Thus, there is usually a loss of efficiency, which may be
reduced with a suitable choice for the weights w and for the likelihood com-
ponents Lk(θ; y), k = 1, . . . ,K (see [8], [10], [14]).

2.2 Composite likelihood prediction

Since the computation of the model function f(y; θ) is not feasible, the spec-
ification of the conditional density f(z|y; θ) of the future random variable Z
given Y = y turns out to be not available either. In order to overcome this
drawback, we shall consider a suitable composite predictive likelihood with
the aim of defining a surrogate for f(z|y; θ) to be used as predictive density
for Z.

The notion of predictive likelihood stems from the fact that in prediction
problems there are two unknown quantities to deal with, namely the future ob-
servation z and the parameter θ, and the evidence about these two quantities is
contained in the joint likelihood function L(θ; y, z) = f(y, z; θ). Since our pri-
mary aim is to get information about z, with θ viewed as nuisance parameter,
we consider here the simplest version of a predictive likelihood, termed estima-
tive or plug-in predictive likelihood, which is defined as L(θ̂; y, z) = f(y, z; θ̂),

where θ̂ = θ̂(y) is the maximum likelihood estimate (or an alternative con-
sistent estimate) for θ. Note that, after normalization with respect to z, we

obtain the estimative or plug-in predictive density f(z|y; θ̂). A complete re-
view on a number of alternative approaches to finding predictive likelihoods,
which differ by the procedure adopted to deal with the nuisance parameter θ,
is given by Bjørnstad [2].

In this framework, given a joint composite likelihood LC(θ; y, z), obtained
from (1) with (y, z) substituted for y, we define the estimative composite pre-
dictive likelihood by substituting the nuisance parameter θ with the estimate
θ̂C = θ̂C(y), and we get

LC(θ̂C ; y, z) ∝
H∏
h=1

Lh(θ̂C ; y, z)wh ,

where only the likelihood components Lh(θ̂C ; y, z), h = 1, . . . ,H, H ≥ 1,
involving the future observation z are taken into account. The components not
based on z are neglected, being not relevant for prediction purposes. Although
function LC(θ̂C ; y, z) depends on the weights w, this is not made explicit in
order to simplify the notation. Alternative notions of composite predictive
likelihood could be defined by mimicking those ones reviewed in [2]. However,
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these proposals, though quite complicated to compute, are usually first-order
equivalent to the estimative one.

The predictive density obtained by considering the normalized version of
LC(θ̂C ; y, z), assuming that it is integrable, may be interpreted as a surrogate
to the true density f(z|y; θ) and it can be used for prediction purposes instead

of the true, unknown estimative predictive density f(z|y; θ̂). In particular,
we may obtain point predictors or prediction intervals for z. However, since
the predictive conclusions are based on a misspecified or a partially specified
model, their accuracy is affected by a potentially relevant misspecification
error. For this reason, a suitable choice for the weights w is required, as we
shall show in the following sections. Another potential difficulty is related to
the additional uncertainty introduced by substituting θ with θ̂C , giving rise to
the well-known plug-in error. Actually, this part of the error is not so relevant,
provided that the sample size n is large enough and the estimator θ̂C is proved
to be consistent.

3 Pairwise predictive densities

3.1 Definition

This paper focuses on the estimative composite predictive likelihood based on
both the one- and the two-dimensional marginal distributions, which is defined
as

LC(θ̂P ; y, z) = LO(θ̂P ; y, z)LPM (θ̂P ; y, z) ∝ f(z; θ̂P )w0

n∏
i=1

f(z, yi; θ̂P )wi , (2)

with θ̂P = θ̂P (y) a suitable maximum pairwise likelihood estimate for θ. This
function can be viewed as a simple surrogate to the full estimative predictive
likelihood L(θ̂; y, z) = f(y, z; θ̂). Note that, if LPC(θ̂P ; y, z) is considered in-

stead of LPM (θ̂P ; y, z), we obtain the same final expression as in (2). Thus,
from a predictive view point, the marginal and the conditional pairwise like-
lihoods are in fact equivalent and, after normalization, they both define the
estimative pairwise predictive density

fP (z|y; θ̂P ) = c(y, θ̂P , w)

n∏
i=0

f(z|yi; θ̂P )wi , (3)

with c(y, θ̂P , w) the normalizing constant, assumed to be finite. Here, for sim-

plifying the notation, we set f(z|y0; θ̂P ) ≡ f(z; θ̂P ). Indeed, we implicitly as-
sume that the product of densities in (3) is integrable, so that it can be normal-
ized to get a valid density function. Under this respect, a sufficient condition
is that functions f(z|yi; θ), i = 0, . . . , n, are bounded probability densities for
each θ ∈ Θ. This assumption holds, for example, for many probability densities
belonging to the exponential family.
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Expression (2) is rather general and it combines one-wise and pairwise
composite likelihoods; when w0 = 0, we get a predictive density based on the
two-dimensional marginal distributions. Even if in most empirical applications
we conveniently assume w0 = 0, we maintain this formulation since f(z; θ̂P )
may indicate a preliminary or a prior guess on the distribution of the future
random variable Z, specified under the independence assumption.

Function (3) can be interpreted as a misspecified version of the true density
f(z|y; θ) and it determines the distribution which is in fact considered for

prediction purposes, instead of the unknown estimative density f(z|y; θ̂). It is
almost immediate to see that

f(z|yi; θ) = f(z|y; θ)δi(y, z; θ), δi(y, z; θ) =
f(y−i|yi; θ)f(z|yi; θ)

f(y−i, z|yi; θ)
, (4)

i = 1, . . . , n, with y−i = {yj , j 6= i} and z such that f(y−i, z|yi; θ) 6= 0; for the
case i = 0, f(z|y0; θ) ≡ f(z; θ) and δ0(y, z; θ) = f(y; θ)f(z; θ)/f(y, z; θ). Note
that, for i = 1, . . . , n, δi(y, z; θ) = 1 if Z and Y−i are conditionally independent
given Yi = yi and δ0(y, z; θ) = 1 if Z and Y are independent. By substituting
(4) in (3) we find that

fP (z|y; θ̂P ) = f(z|y; θ̂P )
∑n

i=0
wic(y, θ̂P , w)

n∏
i=0

δi(y, z; θ̂P )wi ,

so that the estimative pairwise predictive density is a function of the estima-
tive predictive density f(z|y; θ̂P ) raised to the power

∑n
i=0 wi and, for this

reason, it could be too much peaked or too much flat. Then a cautious as-
sumption could be to consider weights normalized to sum up to one, even if
this constraint can not be enough in order to have a density with a suitable
shape and it may produce a sub-optimal predictive distributions. Relation (4)
can be generalized to the case of block pairwise predictive densities, where
blocks of observations are considered instead of single observations.

3.2 Point predictors and prediction intervals

The pairwise predictive density (3) can be considered to obtain point predictors
or prediction intervals for the future observation z. In particular, as a point
predictor for z we may consider the quantity ẑp = zp(y; θ̂P , w) obtained by
maximizing (3) or (2) with respect to z. The maximizer ẑp is called pairwise
predictor and, for continuous random variables, it is usually specified as the
solution with respect to z of the following score-type equation

n∑
i=0

wi
d log f(z|yi; θ̂P )

dz
= 0.

Alternative point predictors are the expected value, if it exists, or the median
associated to the pairwise predictive density.
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The predictive accuracy of a point predictor ẑp can be evaluated in terms
of the associated (unconditional) mean square prediction error

MSPE(ẑp, w) = EY,Z

[{
Z − zp(Y ; θ̂P , w)

}2
]
, (5)

where the expectation is with respect to the true joint distribution of (Y, Z).
This quantity can be considered for choosing among competing point pre-
dictors and also for comparing different choices for the weights w. Although
ẑp may be obtained quite easily using, if required, numerical optimization
techniques, an explicit expression for MSPE(ẑp, w) is usually infeasible. An
estimate can be obtained using a parametric bootstrap procedure, provided
that simulated observations may be generated from the distribution of (Y,Z)

with θ = θ̂P . This happens, for example, within latent variable models, such as
state space models and mixed models, where simulated samples can be easily
obtained taking advantage of the hierarchical structure of the model. Then,
if (y∗b , z

∗
b ), b = 1, . . . , B, are parametric bootstrap samples simulated from

f(y, z; θ̂P ) and θ̂∗P,b, b = 1, . . . , B, are the corresponding maximum pairwise
likelihood estimates, the parametric bootstrap estimate for (5) is defined as

MSPE(ẑp, w)boot =
1

B

B∑
b=1

{
z∗b − zp(y∗b ; θ̂∗P,b, w)

}2

. (6)

Whenever the aim is to specify prediction intervals for z, we may consider
suitable lower and upper prediction limits so that the coverage probability of
the associated interval is equal or close to the required nominal value. Given
the observed sample y, an α-prediction limit for Z is a quantity cα(y) such
that

prY,Z{Z ≤ cα(Y ); θ} = α,

for every θ ∈ Θ and any fixed α ∈ (0, 1). This probability is called coverage
probability and it is calculated with respect to the joint distribution of (Y, Z).
In this framework, we may consider the estimative pairwise α-prediction limit
ẑα = zα(y; θ̂P ) obtained as the α-quantile of the predictive density (3); namely,

ẑα is such that FP (ẑα|y; θ̂P ) = α, with FP (·|y; θ̂P ) the pairwise predictive
distribution function associated to (3).

As a consequence of both the model misspecification and the plug-in pro-
cedure, the actual coverage probability of ẑα does not usually match the target
nominal value α. More precisely, we have that

prY,Z{Z ≤ ẑα; θ} = EY {F (ẑα|Y ; θ)} = EY {FP (ẑα|Y ; θ)}
+EY {F (ẑα|Y ; θ)− FP (ẑα|Y ; θ)}

= α+ [EY {FP (ẑα|Y ; θ)} − α] +

EY {F (ẑα|Y ; θ)− FP (ẑα|Y ; θ)} (7)

with F (·|Y ; θ) the true distribution function of Z given Y . Since an explicit
expression for the coverage probability is not available, an estimate can be
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obtained using a simple parametric bootstrap simulation procedure similar to
that one mentioned before, which can be applied whenever simulated obser-
vations may be generated from the distribution of (Y,Z) with θ = θ̂P .

From equation (7) we may state that the coverage error term of ẑα can
be specified as the sum of two components. The first one, defined by the
second term in (7), is related to the estimative procedure and it depends on
the additional uncertainty introduced when θ is substituted by the estimator
θ̂P . The second one, defined by the third term in (7), corresponds to the
misspecification error due to the fact that the prediction limit ẑα is calculated
using the pairwise estimative predictive density rather than the true one. The
plug-in error term, which is usually not relevant in case of large samples, can be
substantially reduced by introducing analytical or simulation-based corrections
(see [7], [13] and references therein). On the other hand, the misspecification
error is usually remarkable, since it can produce a misleading assessment of
the uncertainty of the predictive procedure, giving useless prediction intervals.
A significant reduction of this source of error can be obtained by a suitable
choice for the weights w, so that the discrepancy between the pairwise and the
true predictive models is minimized, as described in the following subsection.
Furthermore, an additional improvement could be achieved by taking into
account further modifications for the pairwise predictive density, obtained by
mimicking those ones introduced in the inferential framework (see, for example,
[3] and [12]) for adjusting the magnitude and the curvature of a composite
likelihood.

Finally, we emphasize that the two criteria introduced in this section for
assessing, respectively, the accuracy of point predictors and prediction intervals
are in fact unconditional. Although there is a strong motivation towards the
fact that a prediction procedure should be judged conditionally on the observed
value of the sample Y , or on the value of a suitable subset of Y , the conditional
version of the mean square error and of the coverage probability are usually
not computable in a closed form. Furthermore, parametric bootstrap estimates
for these conditional quantities are hardly ever available, since to perform
simulations from the distribution of Z given Y = y is usually not possible. For
this reason we focus only on non-conditional quantities so that the accuracy
of prediction statements are evaluated under repeated random sampling from
the unconditional distribution of (Y,Z).

3.3 Choice of the weights for improving prediction

In order to evaluate the closeness of the estimative pairwise predictive den-
sity f̂P = fP (z|y; θ̂P ) to the true density f = f(z|y; θ) we may consider the
Kullback-Leibler divergence. For continuous random variables (analogous re-
sults may be obtained in the discrete case), it corresponds to

KL(f, f̂P ;w) =

∫
f(z|y; θ) log

f(z|y; θ)

fP (z|y; θ̂P )
dz
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= EZ|Y=y

{
log f(Z|y; θ)− log fP (Z|y; θ̂P )

}
,

where the expectation is with respect to the true conditional distribution of
Z given Y = y. It is easy to prove that

KL(f, f̂P ;w) = KL(f, f̂) +

∫
f(z|y; θ) log

f(z|y; θ̂)

fP (z|y; θ̂P )
dz,

with f̂ = f(z|y, θ̂P ), which points out the divergence contributions due to the
plug-in procedure and to model misspecification, respectively.

In this context, we evaluate a predictive density f̂P by its Kullback-Leibler
risk (expected loss) R(f, f̂P ;w) = EY {KL(f, f̂P ;w)} or by the associated
expected logarithmic score

EL(f, f̂P ;w) = EY,Z

{
log fP (Z|Y ; θ̂P )

}
, (8)

which may be estimated, using the bootstrap samples considered before, by

EL(f, f̂P ;w)boot =
1

B

B∑
b=1

log fP (z∗b |y∗b ; θ̂∗P,b). (9)

If we aim at comparing different predictive distributions, or in particular alter-
native choices for the weights, we look for the solution with higher expected
logarithmic score and, consequently, lower Kullback-Leibler risk. Thus, the
optimal weights with respect to the Kullback-Leibler loss will be defined as

wopt = arg maxw EL(f, f̂P ;w),

subject to the following constraints: wi ≥ 0, i = 0, . . . , n, and, possibly,∑n
i=0 wi = 1. Here, the bootstrap estimate (9) is usually considered as ob-

jective function instead of EL(f, f̂P ;w).
Alternative (unconditional) criteria for weights selection can be defined. In

particular, an optimality criterion based on the mean square prediction error
may be considered. In this case, the optimal weights are such that

wopt = arg minw MSPE(ẑp, w),

with the assumption that wi ≥ 0, i = 0, . . . , n, and, possibly,
∑n
i=0 wi = 1.

The objective function MSPE(ẑp, w) is given by (5) and it may be substituted
by its bootstrap estimate (6).

We will see in the section devoted to applications and simulation experi-
ments that the simple criterion based on the mean square error can produce un-
trustworthy solutions. The selection procedure based on the Kullback-Leibler
divergence, which may require an additional computational effort, turns out
to be more reliable since it considers the entire predictive distribution, instead
of the first two moments of the prediction error associated to the particular
point predictor taken into account. Furthermore, both the procedures for ob-
taining optimal weights require a substantial computational effort, since the
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dimension of the vector parameter w = (w0, . . . , wn) could be quite large. In
the applications presented in Section 5, in order to mitigate this potential dif-
ficulty, we run several times the optimization procedure by considering only
the pairs with a maximum lag k, ranging from 1 to 10; namely, we impose that
wi = 0 for i = 1, . . . , n − k. This particular choice is motivated by the short
range dependence structure of the models taken into account and it reduces
the dimension of the parameter space. In these applications we use an opti-
mization procedure based on the Nelder and Mead algorithm and we find that
optimality is usually reached for k = 2 or k = 3. Different initial values for the
parameters are considered in order to reach a global maximum (or minimum).

A final interesting issue should be pointed out with regard to the approach
considered in this paper, which distinguishes between the estimation and the
prediction phases. We have considered so far the situation where the com-
ponent density functions f(z|yi; θ), i = 0, . . . , n, are estimated by assuming

θ = θ̂P . Nevertheless, in most practical situations, the pairwise likelihood
estimate θ̂P is only a preliminary or initial guess for the unknown model pa-
rameter θ. Thus, it is immediate to realize that conditioning on this parameter
estimate may give inaccurate predictive statements.

In order to improve the pairwise likelihood estimator for θ, and conse-
quently the accuracy of predictive inference on z, a two-step iterative proce-
dure can be defined, where a weights calibration step is followed by a pair-
wise estimation step, until a suitable stopping criterion is satisfied. More
precisely, given a set of weights w = (w0, . . . , wn), where wi = 0 for i =
0, . . . , n − k for a fixed lag k = 1, . . . , n, the pairwise predictive density
fP (z|y; θ) = fP (z|yn−k+1, . . . , yn; θ), under stationarity assumptions, can be
viewed as a surrogate to the true conditional densities f(yj |yj−k, . . . , yj−1; θ)
with j = k + 1, . . . , n. In many applications the optimal weights are all zero
except the ones assigned to observations close to the future observation z (in
a suitable temporal or spatial sense). Thus, the lag k is usually a rather low
quantity. In this context, the following conditional pairwise likelihood

L†PC(θ; y) =

n∏
j=k+1

fP (yj |yj−k, . . . , yj−1; θ)

=

n∏
j=k+1

c(yj−k, . . . , yj−1; θ, w)

j−1∏
i=j−k

f(yj |yi; θ)wi

defines a misspecified version of the true conditional likelihood

L†C(θ; y) = f(yk+1, . . . , yn|y1, . . . , yk; θ) =

n∏
j=k+1

f(yj |yj−k, . . . , yj−1; θ).

Whenever the aim is to define an estimator θ̂ for θ, obtained as the max-
imizer of the conditional pairwise likelihood L†PC(θ; y) based on a suitable
choice for the weights w, an iterative optimization scheme can be specified.
The results of a preliminary simulation study, not reported in this paper,
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show that the estimates for θ, obtained using a sequential algorithm where
the weights are selected using predictive criteria, like those recalled above, are
usually poor in terms of efficiency. Although these negative findings are not
surprising, since inference and prediction do not usually share the same objec-
tives, this issue is certainly interesting and it deserves further consideration in
future research.

4 Alternative views for the pairwise predictive density

This section gives two alternative views of the pairwise predictive density,
which can be useful for interpreting and studying this new predictive tool
within some well-known theoretical frameworks. Firstly, the predictive density
(3) may be defined as the logarithmic combination of the forecast densities

f(z; θ̂P ), f(z|yi; θ̂P ), i = 1, . . . , n, which correspond to partially specified, and
usually misspecified, (estimative) predictive models for Z given Y = y. The
problem of combining density forecasts, also termed prediction pooling, is con-
sidered quite often in the econometric and in the quantitative finance literature
(see, for example, [6], [9]). In this context the objective is to combine alterna-
tive predictive distributions so that the combined distribution provides much
more accurate prediction statements than selecting a single model.

Among the possible ways of aggregations, we can mention the linear pre-
diction pool, which defines a mixture density, and the logarithmic prediction
pool, which is in fact considered in the specification of the predictive densities
based on composite likelihood presented in this paper. Compared to the linear
pool, the logarithmic one gives predictive densities which are typically uni-
modal and less dispersed. Moreover, if the weights w are normalized to sum
up to one, the logarithmic combination method is invariant under rescaling
and it verifies the property of external Bayesianity ([5], [1]).

This last property characterizes the logarithmic pool and it essentially
means that it does not matter whether new information arrives before or after
the pooling, since the update of the pooled distribution corresponds to the dis-
tribution obtained by applying the pooling procedure to the formerly updated
component distributions. Namely, the operation of updating the component
distributions with a common likelihood commutes with the pooling operator.

Secondly, the logarithmic pooling formula, which is considered as aggrega-
tion method for specifying the estimative pairwise predictive density, can be
defined as the solution of a well-known optimization problem in information
theory (see [4], chapter 12). More precisely, according to the maximum en-
tropy principle [17], we look for a predictive density p = p(z|y) defined as the
solution of the following constrained optimization problem

p̂ = arg minp KL
{
p(z|y), f(z; θ̂P )

}
, (10)
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subject to

Ep

{
log

f(Z|yi; θ̂P )

f(Z; θ̂P )

}
= EZ|Y=y

{
log

f(Z|yi; θ̂P )

f(Z; θ̂P )

}
, i = 1, . . . , n, (11)

and the normalization condition Ep(1) = 1, where Ep(·) is the expectation
with respect to the density p(z|y). Thus, we find out a predictive density which

is closest, in the Kullback-Leibler sense, to f(z; θ̂P ), that is the preliminary
guess, under the independence assumption, of the prediction model for Z, and
it reproduces the same conditional expectation as the true density f(z|y; θ)

on functions log{f(Z|yi; θ̂P )/f(Z; θ̂P )}, i = 1, . . . , n. If we do not consider
any preliminary predictive model for Z, the optimization problem simplifies
to p̂ = arg maxp [−Ep{log p(z|y)}], that is p̂ maximizes the entropy, subject

to the constraints (11) where, in this case, function f(Z; θ̂P ) is substituted by
the constant 1.

By an application of the Lagrange multipliers, we obtain that the unique
solution to (10) has the following form

p̂(z|y) = p(z|y; θ̂P , λ) = f(z; θ̂P ) exp

{
n∑
i=1

λi log
f(z|yi; θ̂P )

f(z; θ̂P )
−K(y, θ̂P , λ)

}
,

(12)
provided that parameters λ = (λ1, . . . , λn) satisfy conditions (11) and quan-

tity K(y, θ̂P , λ) assures normalization. Function (12) corresponds to a mul-
tiparameter exponential family obtained as the tilting of the carrier density
f(z; θ̂P ) in the directions spanned by log{f(z|yi; θ̂P )/f(z; θ̂P )}, i = 1, . . . , n,

and K(y, θ̂P , λ) specifies the associated cumulant generating function. Fur-

thermore, if λi ≥ 0, i = 1, . . . , n, and
∑n
i=1 λi ≤ 1, density p(z|y; θ̂P , λ) equals

the estimative pairwise predictive density (3) with wi = λi, i = 1, . . . , n,

w0 = 1 −
∑n
i=1 λi and c(y, θ̂P , w) = exp{−K(y, θ̂P , λ)}. Note that, whenever

differentiation and integration may be interchanged, the weights w satisfy the
score-type equations

∂EZ|Y=y

{
log fP (Z|y; θ̂P )

}
∂wi

= 0, i = 1, . . . , n,

since Ep[log{f(Z|yi; θ̂P )/f(Z; θ̂P )}] = ∂K(y, θ̂P , λ)/∂λi, i = 1, . . . , n. Thus,
under the usual regularity conditions, w maximizes the conditional expected
logarithmic score EZ|Y=y{log fP (Z|y; θ̂P )}.

However, since the optimality criterion for weights selection presented in
Section 3.2 is based on the Kullback-Leibler risk, or equivalently on the ex-
pected logarithmic score EY,Z{log fP (Z|Y ; θ̂P )}, the information theoretical
interpretation of the estimative pairwise predictive density (3) has to be prop-
erly adapted. More precisely, we have to compute the expectation, with re-
spect to Y , of the quantities considered in the constrained optimization prob-
lem (10)-(11). In this case, the non-negative weights w1, . . . , wn, such that
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i=1 wi ≤ 1, satisfy the score-type equations and, under regularity condi-

tions, they in fact maximize the unconditional expected logarithmic score (8).
Thus, the solution corresponds to the optimal values wopt defined in Section
3.3 using the Kullback-Leibler loss.

5 Simulation studies

5.1 Autoregressive models with additive observation noise

Let us consider the following simple linear Gaussian state space model, called
first-order autoregressive model with additive observation noise,

Yr = β +Xr + Vr, r ≥ 1,

Xr = γXr−1 +Wr, r ≥ 1,

with Vr ∼ N(0, σ2), Wr ∼ N(0, τ2), r ≥ 1, mutually independent Gaussian
random variables. Let us assume that X0 ∼ N(0, τ2/(1 − γ2)) and that the
latent autoregressive process Xr, r ≥ 0, is stationary, being |γ| < 1. We
observe Y = (Y1, . . . , Yn), n ≥ 1, and we aim at predicting the future random
variable Z = Yn+1. The parameter θ = (β, σ2, γ, τ2) is unknown. In this
elementary example the likelihood function and the conditional density of Z
given Y = y are available in a closed form and they can be efficiently computed
by means of Kalman filter recursions. Thus, we can compare the performance
of the classical predictive procedures and of those ones based on the notion
of pairwise predictive density. With regard to the inferential issues, we refer
to the procedure based on the marginal pairwise likelihood proposed by Varin
and Vidoni [16] for general state space models.

In this case the estimative pairwise predictive density can be specified quite
easily since Z|Yi = yi ∼ N(µi, σ

2
i ), i = 1, . . . , n, where µi = β + ρi(yi − β)

and σ2
i = (1 − ρ2i ){σ2 + τ2/(1 − γ2)}, with ρi = {τ2γn+1−i/(1 − γ2)}/{σ2 +

τ2/(1− γ2)} the correlation coefficient between Z and Yi. From (3) we obtain

that fP (z|y; θ̂P ) = φ(z; µ̂P , σ̂
2
P ), namely it is a Gaussian density with mean

µ̂P and variance σ̂2
P given by

µP =

∑n
i=1 µiwi/(1− ρ2i )∑n
i=1 wi/(1− ρ2i )

, σ2
P =

σ2 + τ2/(1− γ2)∑n
i=1 wi/(1− ρ2i )

,

evaluated at θ = θ̂P . Hereafter we do not consider f(z; θ̂P ), since in the simu-
lation experiments we always obtain w0 = 0 as optimal choice for w0.

It is immediate to conclude that a suitable point predictor based on the
pairwise predictive density is ẑp = µ̂P . However, since θ is unknown, the asso-
ciated mean square prediction error MSPE(ẑp, w) is not explicitly available,
but it can be estimated using a simple parametric bootstrap procedure. We
shall consider weights wi, i = 1, . . . , n, normalized to sum up to one and this is
motivated by the fact that, otherwise, the predictive density (3) could be too
much peaked or flat, as emphasized at the end of Section 3.1. Furthermore,



14 Paolo Vidoni

it is interesting to observe that, at least in this example, the point predictor
ẑp, unlike the variance σ̂2

P of the pairwise predictive density, is invariant un-
der scale transformation of the weights. Moreover, it is easy to see that also
MSPE(ẑp, w) is invariant and

MSPE(ẑp, w) = var(Z − ẑp) = var(Z) + var(ẑp)− 2cov(Z, ẑp),

with

var(Z) = σ2 + τ2/(1− γ2),

var(ẑp) =
1

{
∑n
i=1 wi/(1− ρ2i )}2

{
n∑
i=1

w2
i ρ

2
i

(1− ρ2i )2
var(Yi)+

2

n∑
i=2

∑
j<i

wiwjρiρj
(1− ρ2i )2

cov(Yi, Yj)

 ,

cov(Z, ẑp) =
1∑n

i=1 wi/(1− ρ2i )

n∑
i=1

wiρi
1− ρ2i

cov(Yi, Z),

where var(Yi) = var(Z) and cov(Yi, Yj) = τ2γ|i−j|/(1 − γ2), i = 1, . . . , n + 1,
j 6= i.

We specify the following point predictors: ẑ1p, obtained by considering all
the pairs with wi = 1/n, i = 1, . . . , n, and ẑ2p(k), specified using only the pairs
with a maximum lag k with wi = 1/k, i = n − k + 1, . . . , n and wi = 0,
i = 1, . . . , n − k. We also take into account the true estimative predictor
ẑKF , based on Kalman filter recursions, and the point predictor ẑoptp based on
the optimal normalized weights minimizing the mean square prediction error
MSPE(ẑp, w).

Samples of dimension n = 200, 500 are generated from a first-order autore-
gressive model plus additive observation noise, with β = 0.2, σ = 1, τ = 1,
(a) γ = 0.5 and (b) γ = 0.95 as true parameter values. Similar results are
obtained with alternative choices for θ. In order to estimate the mean square
prediction errors, we consider 5, 000 parametric bootstrap samples and the
unknown parameter θ is estimated using the maximum (marginal) pairwise
likelihood estimator of order six, as proposed in [16]. With regard to the opti-
mal weights, we obtain, for the case (a), wi = 0, i = 1, . . . , 497, w498 = 0.015,
w499 = 0, w500 = 0.985 for n = 200 and wi = 0, i = 1, . . . , 498, w499 = 0.327,
w500 = 0.673 for n = 500 and, for the case (b), wi = 0, i = 1, . . . , 498, w499 =
0.321, w500 = 0.688 for n = 200 and wi = 0, i = 1, . . . , 497, w498 = 0.089,
w499 = 0.330, w500 = 0.581 for n = 500. With samples having a smaller di-
mension n, we obtain unstable results, since in the present application the
size of the bootstrap simulation procedure is conveniently reduced in order to
lighten the computational burden.

The results are outlined in Table 1 and show that ẑoptp presents values for
the mean square prediction error which are very close to those ones related
to the benchmark ẑKF . Indeed, ẑ2p(3) has a better predictive performance
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than ẑ2p(6), which has the same order as the maximum pairwise likelihood

estimator θ̂P . Notice that, in the more challenging situation related to case
(b), the mean square prediction error of ẑ1p, the predictor based on all the
pairs, is very high. Moreover, since the model under consideration presents a
short memory structure, we compute also the mean square prediction error of
the simple predictor ẑ2p(1) based only on one lag pairs. For both the cases (a)
and (b), the predictive performance is rather good and, in one circumstance,
it equals that one of the optimal predictor.

(a)

n ẑKF ẑoptp ẑ1p ẑ2p(1) ẑ2p(3) ẑ2p(6)

200 2.201 2.236 2.420 2.235 2.334 2.371

500 2.198 2.220 2.420 2.236 2.316 2.356

(b)

n ẑKF ẑoptp ẑ1p ẑ2p(1) ẑ2p(3) ẑ2p(6)

200 2.737 2.832 7.636 2.949 3.072 3.624

500 2.695 2.698 9.698 2.902 2.733 3.193

Table 1 Mean square prediction error of the predictors ẑKF , ẑoptp , ẑ1p, ẑ2p(k), with k = 1, 3, 6,
estimated using 5,000 bootstrap replications. Predictors based on samples of dimension
n = 200, 500, from a first-order autoregressive model with additive observation noise with
β = 0.2, σ = 1, τ = 1, (a) γ = 0.5 and (b) γ = 0.95.

Although the mean square prediction error defines a valuable criterion for
selecting point predictors, it could not be useful for choosing among alterna-
tive pairwise predictive densities, due to its invariance under rescaling of the
weights. The point is that a set of weights, obtained as a scale transforma-
tion of the optimal ones, gives the same mean square prediction error but,
on the contrary, the associated predictive density may have a different vari-
ance and it can produce misleading prediction intervals. For this reason we
shall consider the Kullback-Leibler risk in order to evaluate pairwise predic-
tive densities based on alternative choices for w and, in particular, to make a
comparison with the true estimative predictive density, available in this case
using Kalman filter recursions.

We consider the same simulated samples and the same 5, 000 parametric
bootstrap replications used before and, in particular, we focus on the case
n = 500 since we obtain more stable results. The optimal weights are now
defined by maximizing the bootstrap estimate (9) of the expected logarithmic

score EL(f, f̂P ;w), which is equivalent to minimize the Kullback-Leibler risk.
For the case (a), with n = 500, we have wi = 0, i = 1, . . . , 498, w499 = 0.334,

w500 = 0.669, corresponding to a EL(f, f̂P ;w) = −1.819, and for the case (b),
with n = 500, wi = 0, i = 1, . . . , 497, w498 = 0.111, w499 = 0.365, w500 =
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0.626, corresponding to a EL(f, f̂P ;w) = −1.919. Here we do not impose the
normalization constraint, otherwise we would have found suboptimal solutions.

It can be interesting to compare the values thus obtained, for the uncon-
ditional expected logarithmic score, with those corresponding to the optimal
weights based on the mean square prediction error criterion. While for the case
(a) the values nearly coincide, for case (b) we obtain the value -1.921, which
is lower than the previous one, indicating a higher Kullback-Leibler loss. On
the other hand the values for the mean square prediction error, when we use
the optimal weights based on the Kullback-Leibler risk, are almost exactly the
same as those presented in Table 1 for the optimal predictor.

In Figure 1 we compare the behaviour of the estimative pairwise predictive
densities, based on the two alternative sets of optimal weights, with respect to
the true estimative predictive density. The pairwise predictive densities based
on all the pairs and on the pairs with a maximum lag 3 and 6 are also taken
into account. We consider only the sample of dimension n = 500 simulated
from a first-order autoregressive model with additive observation noise where
(b) β = 0.2, σ = 1, τ = 1, γ = 0.95, since in this case the differences are
more pronounced. We find that, as expected, the pairwise predictive density
based on the maximization of the expected logarithmic score turns out to be
closer to the true estimative predictive density, obtained using the Kalman
filter updating formula. Thus, at least in this case, it improves the predictive
density with weights based on the mean square prediction error. Moreover, the
predictive densities based on all the pairs or on the pairs with a maximum lag
3 and 6 present a poor behaviour.

Finally, at least in this preliminary analysis, we may state that the goodness
of a pairwise predictive density, and then the usefulness of the associated
prediction intervals, strongly depend on the specification of w. Under this
respect, the definition of the weights according to the Kullack-Leibler risk
seems to provide satisfactory results.

5.2 Autoregressive ordered probit models

The class of autoregressive ordered probit models (see, for example, [11]) speci-
fies a flexible device for describing ordinal categorical time series. These models
constitute a dynamic extension of the ordered probit models, which maintain
the regression part and introduce a latent autoregressive time evolution. In
this case, the likelihood function and the predictive distribution are not avail-
able in a closed form and the use of numerical procedures is problematic in
terms of accuracy and computational effort. Thus, for inference and prediction
we may conveniently exploit the procedures based on the notion of pairwise
likelihood.

Let us consider an ordinal categorical time series Yr, r ≥ 1, described as a
simple first-order autoregressive ordered probit model defined as follows. The
random variable Yr, r ≥ 1, takes values in the ordered set {1, . . . , D}, with
D > 1 the number of categories, according to a censoring mechanism obtained
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Fig. 1 Predictive densities based on a sample of dimension n = 500 from a first-order
autoregressive model with additive observation noise with β = 0.2, σ = 1, τ = 1, γ = 0.95:
true estimative (solid line), estimative pairwise based on the optimal (expected logarithmic
score criterion) weights (dashed line), based on the optimal (mean square prediction error
criterion) weights (dotted line), based on all the pairs (dot-dashed line), based on the pairs
with a maximum lag 3 (longdashed line) and with a maximum lag 6 (two-dashed line).

by partitioning the sample space of the latent random variable Xr, r ≥ 1, into
non-overlapping intervals. More precisely, we specify

Yr = 1, if and only if −∞ < Xr ≤ c1,
Yr = d, if and only if cd−1 < Xr ≤ cd, d = 2, . . . , D − 1,

Yr = D, if and only if cD−1 < Xr < +∞,

where the integer value d = 1, . . . , D is assigned to the d -th category and
{c1, . . . , cD−1} is a set of ordered threshold parameters, with c0 = −∞ and
cD = +∞. The latent first-order autoregressive process Xr, r ≥ 1, is such that

Xr = β0 + β1xr,1 + . . .+ βpxr,p + γXr−1 +Wr, r ≥ 1,

with Wr ∼ N(0, σ2), r ≥ 1, independent Gaussian distributed random vari-
ables; β = (β0, . . . , βp)

T is the column vector of the regression coefficients and
xr = (1, xr,1, . . . , xr,p)

T is the vector of the observed covariates at time r. We
assume that X0 ∼ N(0, τ2/(1 − γ2)) and that the latent autoregressive pro-
cess is stationary, being |γ| < 1. For overcoming identifiability problems we
set σ2 = 1 and c1 = 0. Thus, θ = (c2, . . . , cD−1, β0, . . . , βp, γ) is the unknown
parameter vector.

We observe Y = (Y1, . . . , Yn), n ≥ 1, and we aim at predicting the future
discrete random variable Z = Yn+1. As mentioned before, in this context the
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classical predictive solutions are not available since the calculation of joint
probabilities, such as pr(Y = y; θ), requires the computation of intractable
high-dimensional Gaussian integrals. For instance,

pr(Y = y; θ) =

∫
R(y)

p(x; θ) dx1 · · · dxn,

where R(y) = {x = (x1, . . . , xn) : cyi−1 < xi ≤ cyi , i = 1, . . . , n} and p(x; θ) is
the joint Gaussian density of X = (X1, . . . , Xn). Thus, the unknown parameter
θ is estimated using the procedure based on the marginal pairwise likelihood
proposed by Varin and Vidoni [15] and, as predictive probability function

for Z, we consider fP (z|y; θ̂P ), where the weights are determined minimizing

the Kullback-Leibler loss. Hereafter we do not consider f(z; θ̂P ), since in the
simulation experiments we always obtain w0 = 0 as optimal choice for w0.

We shall present the results of a simple simulation study where we com-
pare the unconditional expected logarithmic score EL(f, f̂P ;w) of alterna-
tive pairwise predictive probability functions. We consider pairwise predic-
tive distributions defined by considering all the pairs with equal normalized
weights, namely wi = 1/n, i = 1, . . . , n, and the pairs with a maximum lag
k, k = 1, 2, 3, 5, 10, 50, 100 with equal normalized weights, namely wi = 1/k,
i = n− k + 1, . . . , n and wi = 0, i = 1, . . . , n− k. Moreover, we consider also
the pairwise predictive distribution based on the optimal weights obtained by
maximizing the unconditional expected logarithmic score EL(f, f̂P ;w).

Samples of dimension n = 500 are generated from a first-order autoregres-
sive ordered probit model, also considered by Müller and Czado [11], where
D = 7, p = 2 and the covariates x1 and x2 are obtained by simulating from
a N(−1, 1) and a N(−0.25, 0.0324) distribution, respectively. The thresholds
are c2 = 1.2, c3 = 2.2, c4 = 3.1, c5 = 4.1, c6 = 5.3 and the regression coef-
ficients are β0 = 2, β1 = −0.6, β2 = 9; for the autoregressive parameter we
consider the cases (a) γ = 0.5 and (b) γ = 0.8. Similar results are obtained
with alternative parameter values. In order to estimate the unconditional ex-
pected logarithmic scores, we use 1, 000 parametric bootstrap samples and the
unknown parameter θ is estimated using the maximum (marginal) pairwise
likelihood estimator of order one, as proposed in [15]. With regard to the op-
timal weights, we obtain wi = 0, i = 1, . . . , 498, w499 = 0.136, w500 = 0.871,
for the case (a), and wi = 0, i = 1, . . . , 498, w499 = 0.058, w500 = 0.865, for
the case (b). Notice that these weights are not normalized to sum up to one.
As in the simulation study presented in Section 5.1, in order to obtain more
stable results, we consider large samples, since the size of the bootstrap simu-
lation procedure is conveniently reduced in order to lighten the computational
burden.

The results are outlined in Table 2 and show that the pairwise predictive
distributions defined by considering the pairs with a lag k = 1, 2 present a pre-
dictive performance which is quite close to the that of the optimal (with respect
to the Kullback-Leibler risk) solution. This conclusion is not unexpected, as
the autoregressive ordered probit model under consideration presents a short
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range dependence structure. In the more challenging situation related to case
(b), the differences in the estimated values are, obviously, more pronounced.

k

γ opt 1 2 3 5 10 50 100 500

0.5 -0.477 -0.478 -0.482 -0.492 -0.502 -0.513 -0.522 -0.524 -0.525

0.8 -1.184 -1.187 -1.213 -1.253 -1.313 -1.398 -1.525 -1.547 -1.565

Table 2 Unconditional expected logarithmic scores of the pairwise predictive distributions
based on the optimal weights and with equal normalized weights, based on pairs with a
maximum lag k = 1, 2, 3, 5, 10, 50, 100 and on all the pairs (k = 500), estimated using 1,000
bootstrap replications. Predictive distributions computed on samples of dimension n = 500
from a first-order autoregressive ordered probit model with D = 7, p = 2, c2 = 1.2, c3 = 2.2,
c4 = 3.1, c5 = 4.1, c6 = 5.3, β = (2,−0.6, 9) and (a) γ = 0.5, (b) γ = 0.8.

Furthermore, Figure 2 describes the behaviour of estimative pairwise pre-
dictive probability functions based on alternative choices for the weights, in-
cluding the optimal one. We consider the same simulated sample as before
and we focus, in particular, on the case (b), where the differences in the prob-
abilities associated to the D categories may be substantial. Thus, at least in
this situation, we may state that the predictive conclusions turn out to be
significantly affected by the system of weights which is adopted.

In order to further emphasize how the choice of the weights may influence
the predictive performance, we shall present an additional simple simulation
study related to case (b), where we compare the mean square prediction er-
ror and the mean absolute prediction error of alternative point predictors
based on different choices for the weights. As stated in Section 3.2, a point
predictor for Z can be defined, also for a discrete predictand, as the cat-
egory ẑp ∈ {1, . . . , D} which maximizes the estimative pairwise predictive

probability function fP (z|y; θ̂P ). We consider the pairwise predictive distribu-
tions based on the optimal weights and on the normalized weights for pairs
with maximum lag k = 1, 2, 3, 5, 10, 50, 100. The mean square prediction er-
ror MSPE(ẑp, w) = EY,Z{(Z − ẑp)2} and the mean absolute prediction error
MAPE(ẑp, w) = EY,Z(|Z− ẑp|) are estimated using the 1,000 bootstrap sam-
ples of dimension n = 500.

The results, outlined in Table 3, show that the pairwise predictive distribu-
tions based on the optimal weights (with respect to the Kullback-Leibler risk)
and on the the pairs with a lag k = 1 present a similar predictive ability and
they outperform the other predictive distributions in terms of both the mean
square prediction error and the mean absolute prediction error. Namely, with
a suitable choice for the weights, the mean prediction errors of the predictor
ẑp may be considerably reduced.
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Fig. 2 Predictive probability functions based on the optimal weights (×) and on pairs with
a maximum lag k = 2 (4), k = 5 (+) and k = 50 (◦), with normalized weights. Sample
of dimension n = 500 from a first-order autoregressive ordered probit model with D = 7,
p = 2, c2 = 1.2, c3 = 2.2, c4 = 3.1, c5 = 4.1, c6 = 5.3, β = (2,−0.6, 9) and γ = 0.8.

opt k = 1 k = 2 k = 3 k = 5 k = 10 k = 50 k = 100

MSPE 1.192 1.176 1.287 1.436 1.749 2.351 3.036 3.145

MAPE 0.730 0.728 0.755 0.798 0.881 1.015 1.186 1.215

Table 3 Mean square prediction error and mean absolute prediction error of point predic-

tors associated to fP (z|y; θ̂P ) with optimal weights (opt) and with equal normalized weights,
based on pairs with maximum lag k = 1, 2, 3, 5, 10, 50, 100. Estimates obtained using 1,000
bootstrap samples of dimension n = 500 from a first-order autoregressive ordered probit
model with D = 7, p = 2, c2 = 1.2, c3 = 2.2, c4 = 3.1, c5 = 4.1, c6 = 5.3, β = (2,−0.6, 9)
and γ = 0.8.

6 Conclusions

Although the inferential procedures based on the notion of composite like-
lihood draw an increasing attention in the scientific literature, the problem
of prediction, in the situation where the complete specification of the model
is not available, is not considered with the same interest. In this paper, us-
ing the notion of weighted composite likelihood, and in particular the notion
of weighted pairwise likelihood, we introduce a useful surrogate for the true
unknown predictive density function, which can be considered for specifying
predictors and prediction intervals.
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Since this new predictive density is obtained as a weighted combination of
partially specified predictive models, we emphasize that the specification of the
weights and the selection of the component models is crucial for making reliable
predictive inference. Under this respect, we propose criteria related to the mean
square error of the associated predictor and to the divergence, in the Kullback-
Leibler sense, between the true unknown predictive distribution and that one
based on composite likelihood methods. This procedure, specifying optimal
weights for composite likelihood prediction, could be possibly considered as
a part of a sequential algorithm aiming at improving composite likelihood
inference as well. However, the preliminary results on this iterative inferential
procedure are not positive in terms of efficiency and they may constitute a
matter for future research.

A further interesting issue, to be considered in future work, concerns the
specification of an optimality criterion for weights selection, which aims at re-
ducing the coverage error of the prediction intervals given by the pairwise pre-
dictive distribution. Moreover, an additional improvement could be achieved
by suitably modifying the shape of the pairwise predictive density, as done in
the inferential framework by [3] and [12] for adjusting the uncertainty assess-
ment of the maximum composite likelihood estimators.
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