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Abstract

Since the 80’s, model checking (MC) has been applied to the automatic ver-
ification of hardware/software systems. Point-based temporal logics, such as
LTL, CTL, CTL∗, and the like, are commonly used in MC as the specification
language; however, there are some inherently interval-based properties of com-
putations, e.g., temporal aggregations and durations, that cannot be properly
dealt with by these logics, as they model a state-by-state evolution of systems.

Recently, an MC framework for the verification of interval-based properties
of computations, based on Halpern and Shoham’s interval temporal logic (HS,
for short) and its fragments, has been proposed and systematically investigated.
In this paper, we focus on the boundaries that separate tractable and intractable
HS fragments in MC. We first prove that MC for the logic BE of Allen’s rela-
tions started-by and finished-by is provably intractable, being Expspace-hard.
Such a lower bound immediately propagates to full HS. Then, in contrast, we
show that other noteworthy HS fragments, i.e., the logic AABB (resp., AAEE)
of Allen’s relations meets, met-by, starts (resp., finishes), and started-by (resp.,
finished-by), are well-behaved, and turn out to have the same complexity as LTL
(Pspace-complete). Halfway are the fragments AABBE and AAEBE, whose Ex-
pspace membership and Pspace hardness are already known. Here, we give
an original proof of Expspace membership, that substantially simplifies the
complexity of the constructions previously used for such a result. Contraction
techniques—suitably tailored to each HS fragment—are at the heart of our re-
sults, enabling us to prove a pair of remarkable small-model properties.

IThis paper gives an organic and systematic account of the results originally presented in
the conference papers [6] and [7].
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1. Introduction

In the context of automatic system verification, model checking (MC) is one
of the most widely applied techniques. It allows a user to automatically check
whether or not some desired properties of a system, specified by a temporal
logic formula, hold over a model of the system, usually represented by a Kripke5

structure, through an exhaustive enumeration of all the states reachable by the
computations of the system. If some of them is not fulfilled, MC algorithms
produce a counterexample, extremely useful for debugging purposes. MC has
been applied in a variety of application domains, including, e.g., planning [16],
communication and security protocols [2, 3], embedded reactive systems [13],10

computer device drivers [40], testing of railway control systems [4, 33], and
verification of clinical guidelines [15].

Point-based temporal logics, such as LTL, CTL, and CTL∗ [14, 34]—that
allow one to state properties of computation states—are usually adopted in MC
as the specification language, as they are easy to understand, and suitable for15

many practical purposes. However, some relevant temporal properties, like those
involving actions with duration, accomplishments, and temporal aggregations,
are inherently “interval-based” and thus cannot be properly expressed by point-
based temporal logics. This is the case, for instance, of statements like “the
robot has to get back to the base in 10 minutes” and “the average speed of the20

moving device cannot exceed the established threshold”. Here, interval temporal
logics (ITLs) come into play. In this paper, we focus on MC algorithms for ITLs.

ITLs take intervals, instead of points, as their primitive entities [19, 32, 38,
39]. They have been applied in a variety of fields, including artificial intelligence
(reasoning about action and change, qualitative reasoning, planning, configura-25

tion and multi-agent systems, and computational linguistics [5, 16, 25, 35]),
theoretical computer science (formal verification [32, 41]), and databases (tem-
poral and spatio-temporal databases [17]). Halpern and Shoham’s modal logic
of time intervals HS [19] is probably the most famous ITL. It features one modal-
ity for each of the 13 possible ordering relations between pairs of intervals (the30

so-called Allen’s relations [1]), apart from equality. The problem of satisfiabil-
ity checking for HS was proved to be undecidable for all relevant (classes of)
linear orders [19], and most HS fragments are undecidable as well [9, 21, 26].
However the logic of temporal neighbourhood AA and the logic of sub-intervals
D [10, 11, 12, 31] are noteworthy decidable exceptions.35

1.1. Main contributions

In this paper, we address and solve some open issues about the MC problem
for HS, which has recently entered the research agenda [22, 23, 24, 27, 28, 29,
30]. In order to check interval properties of computations, one needs to collect
information about states into computation stretches: each finite path (trace) of40
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a Kripke structure is interpreted as an interval, whose labelling is defined on
the basis of the component states.

In [27], Molinari et al. dealt with MC for full HS over finite Kripke structures
(under the homogeneity assumption [36], according to which a proposition letter
holds in a trace if and only if it holds at each occurring state). They introduced45

the problem and proved that it is nonelementarily decidable and Pspace-hard.
Later, several fragments of HS were studied, which, similarly to what happens
with satisfiability, exhibit better computational complexities. Here, we focus on
the border between computationally good and bad HS fragments.

We first show that the combined use of modalities for interval prefixes B and50

suffixes E (modalities for Allen’s relations started-by and finished-by, respec-
tively) is critical. More precisely, we prove that MC for the HS fragment BE,
whose modalities can express properties of both interval prefixes and suffixes
simultaneously, is Expspace-hard, and this lower bound immediately propa-
gates to full HS. The result is obtained by a polynomial-time reduction from55

a domino-tiling problem for grids with rows of single exponential length [20] to
the MC problem for BE.

Then, we show that the complexity of MC for HS fragments where properties
of prefixes and suffixes of intervals are dealt with separately is markedly lower.

In [30], the authors proved that the MC problem for the logic AA of temporal60

neighborhood, which only considers properties of future and past intervals (using
modalities for meet A and met-by A, respectively) is in PNP. Moreover, as shown
in [28], the addition of modalities for the transposed relations B (for B) and E
(for E) to AA, respectively allowing for interval extensions to the right and to
the left, results in the fragment AABE whose MC problem is Pspace-complete.65

Here, we prove that MC for the HS fragment AABB (resp., AAEE), that
allows one to express properties of future and past intervals, interval prefixes
(resp., suffixes), and right (resp., left) interval extensions, is in Pspace. Since
MC for the HS fragment featuring only one modality for right (resp., left) inter-
val extensions is Pspace-hard [30], Pspace-completeness immediately follows.70

Moreover, as a “byproduct”, we show that if we restrict HS to modalities
either for interval prefixes B or for interval suffixes E only, MC turns out to be
co-NP-complete. These results are achieved by means of a small-model property
based on the notion of induced trace. Intuitively, given a trace (finite path) ρ in
a Kripke structure and a formula ϕ of AABB/AAEE, we prove that it is always75

possible to build, by iteratively contracting the trace ρ, another (induced) trace,
whose length is polynomially bounded in the size of the formula and the Kripke
structure, which preserves the satisfiability of ϕ with respect to ρ.

The lower bound for BE MC shows that there is no way to provide an MC
algorithm for the extension of AABB with E (resp., of AAEE with B) with a80

“good” computational complexity. The picture is not so clear for the extension
of AABB with E (resp., AAEE with B).

The membership of AABBE (resp., AAEBE) to Expspace was already shown
in [29] and the Pspace-hardness of MC for AABB gives the best (unmatching)
lower bound. The Expspace MC algorithm developed in [29] exploits a small85

exponential-size model property, that, given any trace of the Kripke structure
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and a fixed bound k on the nesting depth of B modalities in AABBE formulas,
allows one to find a trace representative, whose length is exponentially bounded
by the size of the Kripke structure, which preserves satisfiability of the original
trace for any AABBE formula fulfilling the nesting depth constraint k. As a90

matter of fact, the proof of the existence of the trace representative is rather
involved and it exploits very technical arguments.

In this paper, we provide a much more understandable and compact proof
of the membership to Expspace of the MC problem for AABBE, which makes
use of (a suitable extension of) the notion of induced traces we exploit in the95

proof of the small model property for AABB. We expect such a proof technique
to be helpful in coping with the problem of finding a lower upper bound to the
MC problem for BE, which is known to be nonelementarily decidable only.

1.2. Related work

In [22, 23, 24], Lomuscio and Michaliszyn addressed the MC problem for100

some fragments of HS extended with epistemic modalities. Their semantic as-
sumptions are different from those made in [27], making it difficult to compare
the two research lines. In both cases, HS formulas are evaluated over finite
paths/intervals of a Kripke structure. However, while in [27] homogeneity is
assumed, in [22, 23] truth of proposition letters over an interval depends only105

on its endpoints.
In [22], they focused on the HS fragment BED of Allen’s relations started-by,

finished-by, and contains (since modality 〈D〉 is definable in terms of modalities
〈B〉 and 〈E〉, BED is actually as expressive as BE), extended with epistemic
modalities. They considered a restricted form of MC (local MC), which checks110

the specification against a single (finite) initial computation interval. Their goal
was indeed to reason about a given computation of a multi-agent system, rather
than on all its admissible computations. They proved that the considered MC
problem is Pspace-complete. Moreover, they showed that the same problem
restricted to the pure temporal fragment BED, that is, the one obtained by115

removing epistemic modalities, is in P. These results do not come as a surprise:
modalities 〈B〉 and 〈E〉 allow one to access only sub-intervals of the initial one,
whose number is quadratic in the length (number of states) of the initial interval.

In [23], they demonstrated that the picture drastically changes with other
fragments of HS that allow one to access infinitely many intervals. In particular,120

they proved that the MC problem for the HS fragment ABL of Allen’s relations
meets, starts, and before (since modality 〈L〉 is definable in terms of modality
〈A〉, ABL is actually as expressive as AB), extended with epistemic modalities, is
decidable with a non-elementary upper bound. Note that, thanks to modalities
〈A〉 and 〈B〉, formulas of ABL can possibly refer to infinitely many (future)125

intervals.
Finally, in [24], they showed how to use regular expressions in order to specify

the way intervals of a Kripke structure get labelled. Such an extension leads to
a significant increase in expressiveness, as the labelling of an interval is no more
determined by that of its endpoints, but it depends on the ordered sequence of130

states the interval consists of. They proved that there is not a corresponding
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increase in computational complexity, as the complexity bounds given in [22, 23]
still hold with the new semantic variant: (local) MC for BED is still in Pspace,
and MC is non-elementarily decidable for ABL.

1.3. Outline of the paper135

The paper is organized as follows. In Section 2, we introduce the basic no-
tions of the MC problem for HS (in particular Kripke structures, abstract interval
models, and the interpretation of HS formulas over traces), and, then, we briefly
summarize known complexity results about the MC problem for HS fragments.
In Section 3, we state the Expspace-hardness of MC for the HS fragment BE by140

a reduction from a suitable domino-tiling problem. In Section 4, we first intro-
duce the notion of induced trace and then we prove, via a contraction technique,
a small polynomial-size model property for AABB and AAEE, which allows us
to devise a Pspace MC algorithm for them. In addition, we consider the one-
modality fragments B and E, and prove their co-NP-completeness. In Section 5,145

we focus on the fragment AABBE and the symmetric fragment AAEBE. We first
define the equivalence relation of trace bisimilarity, and then we introduce the
notion of prefix sampling. With these tools, we prove a small exponential-size
model property for AABBE (and AAEBE), resulting into an easier and more
compact proof of the membership of the two fragments to Expspace. We pro-150

vide an assessment of the work done and outline future research directions in
the conclusions.

2. Preliminaries

We start with some notation. Let N be the set of natural numbers. For all
i, j ∈ N, with i ≤ j, we denote by [i, j] the set of h ∈ N such that i ≤ h ≤ j.155

Let Σ be an alphabet and ρ be a finite word over Σ. We denote by |ρ| the
length of ρ. For all 1 ≤ i ≤ j ≤ |ρ|, ρ(i) represents the i-th letter of ρ (we also
say that i is a ρ-position), while ρ(i, j) denotes the finite subword of ρ given by
ρ(i) · · · ρ(j); ε is the empty word.

If |ρ| = n, we define fst(ρ) = ρ(1) and lst(ρ) = ρ(n). The sets of all160

proper prefixes and suffixes of ρ are Pref(ρ) = {ρ(1, i) | 1 ≤ i ≤ n − 1} and
Suff(ρ) = {ρ(i, n) | 2 ≤ i ≤ n}, respectively; ρi represents the suffix ρ(i, |ρ|).
(For the sake of convenience, we will sometimes write ρ1 for ρ.)

The concatenation of two words ρ and ρ′ is denoted by ρ · ρ′. Moreover, if
lst(ρ) = fst(ρ′), ρ ? ρ′ denotes ρ(1, n− 1) · ρ′, with n = |ρ| (?-concatenation). In165

the following, when we write ρ ? ρ′, we implicitly assume that lst(ρ) = fst(ρ′).

2.1. The interval temporal logic HS

In 1983, Allen proposed an interval algebra to reason about intervals and
their relative order [1]; then, a few years later, Halpern and Shoham started
a systematic logical study of interval representation and reasoning: they intro-170

duced the interval temporal logic HS, which features one modality for each Allen
interval relation, but equality [19]. Table 1 depicts 6 of the 13 Allen’s relations,
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Table 1: Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example
x y

v z

v z

v z

v z

v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v

before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y

finished-by 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v

contains 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y

overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

together with the corresponding HS (existential) modalities. The other 7 rela-
tions are the 6 inverse relations (given a binary relation R , the inverse relation
R is such that bR a if and only if aR b) and equality.175

The language of HS consists of a set of proposition letters AP , the constant
> (true), the Boolean connectives ¬ and ∧, and a temporal modality for each
(non trivial) Allen’s relation, i.e., 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉, 〈A〉, 〈L〉, 〈B〉,
〈E〉, 〈D〉, and 〈O〉. HS formulas are formally defined by the grammar

ψ ::= > | p | ¬ψ | ψ ∧ ψ | 〈X〉ψ,
where p ∈ AP and X ∈ {A,L,B,E,D,O,A,L,B,E,D,O}. In the following, we
will also exploit the other usual logical connectives (disjunction ∨, implication
→, and double implication ↔) as abbreviations, and the constant false ⊥ for
¬>. Furthermore, for any existential modality 〈X〉, the dual universal modality
[X]ψ is defined as ¬〈X〉¬ψ.180

The joint nesting depth of B and E in a formula ψ, denoted by dBE(ψ), is
defined as:

• dBE(p) = 0, for any p ∈ AP ;

• dBE(¬ψ) = dBE(ψ);

• dBE(ψ ∧ φ) = max{dBE(ψ),dBE(φ)};185

• dBE(〈X〉ψ) = 1 + dBE(ψ), when X = B or X = E;

• dBE(〈X〉ψ) = dBE(ψ), when X 6= B and X 6= E.

Given any subset of Allen’s relations {X1, . . . , Xn}, we denote by X1 · · ·Xn

the HS fragment closed under Boolean connectives that features (existential
and universal) modalities for X1, . . . , Xn only. If we consider formulas ψ of HS190

fragments devoid of E (resp., B), the B-nesting depth (resp., E-nesting depth)
of ψ, denoted as dB(ψ) (resp., dE(ψ)), accounts for modality B (resp., E) only,
and dB(ψ) = dBE(ψ) (resp., dE(ψ) = dBE(ψ)).

W.l.o.g., we assume the non-strict semantics of HS, which admits intervals
consisting of a single point.1 Under such an assumption, all HS modalities can195

1All the results we prove in the paper hold for the strict semantics as well.
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be expressed in terms of modalities 〈B〉, 〈E〉, 〈B〉, and 〈E〉 [38]. HS can thus
be regarded as a multi-modal logic with these 4 primitive modalities and its
semantics can be defined over a multi-modal Kripke structure, called abstract
interval model, where intervals are treated as atomic objects and Allen’s rela-
tions as binary relations between pairs of intervals. Since later we will focus on200

the HS fragments AAEBE, AAEE which do not feature 〈B〉, and AABBE, AABB
which do not feature 〈E〉, we explicitly add both 〈A〉 and 〈A〉 to the considered
set of HS modalities.

Definition 2.1 (Abstract interval model [27]). An abstract interval model is a
tuple A = (AP , I, AI, BI, EI, σ), where AP is a set of proposition letters, I is a205

possibly infinite set of atomic objects (worlds), AI, BI, and EI are three binary
relations over I, and σ : I 7→ 2AP is a (total) labeling function, assigning a set of
proposition letters to each world.

In the interval setting, I is interpreted as a set of intervals and AI, BI, and EI
as Allen’s relations A (meets), B (started-by), and E (finished-by), respectively;210

σ assigns to each interval in I the set of proposition letters that hold over it.
Given an abstract interval model A = (AP , I, AI, BI, EI, σ) and an interval

I ∈ I, the truth of an HS formula over I is inductively defined as follows:

• A, I |= >;

• A, I |= p iff p ∈ σ(I), for any p ∈ AP ;215

• A, I |= ¬ψ iff it is not true that A, I |= ψ (also denoted as A, I 6|= ψ);

• A, I |= ψ ∧ φ iff A, I |= ψ and A, I |= φ;

• A, I |= 〈X〉ψ, for X ∈ {A,B,E}, iff there is J ∈ I s.t. I XI J and A, J |= ψ;

• A, I |= 〈X〉ψ, for X ∈ {A,B,E}, iff there is J ∈ I s.t. J XI I and A, J |= ψ.

2.2. Kripke structures and abstract interval models.220

In the context of MC, finite state systems are usually modelled as finite
Kripke structures. In [27], the authors define a mapping from Kripke structures
to abstract interval models, that allows one to specify interval properties of
computations by means of HS formulas.

Definition 2.2 (Kripke structure and trace). A Kripke structure is a tuple225

K = (AP ,W, δ, µ, w0), where AP is a set of proposition letters, W is a set of
states, δ ⊆ W ×W is a left-total relation between pairs of states, µ : W 7→ 2AP

is a total labelling function, and w0 ∈W is the initial state. K is finite if its set
of states is finite.

A trace of K is a non-empty finite word ρ over W such that (ρ(i), ρ(i+1)) ∈ δ230

for all i ∈ [1, |ρ| − 1]; states(ρ) is the set of states occurring in ρ. A trace ρ is
called initial if it starts from the initial state w0 of K , that is, fst(ρ) = w0. We
denote by TrcK the set of all traces of K .
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v0
p

v1
q

Figure 1: The Kripke structure Ka.

Intuitively, for all w ∈W , µ(w) is the set of proposition letters that hold on
the state w, while δ is the transition relation that describes the evolution of the235

system over time.
Figure 1 depicts the finite Kripke structure Ka = ({p, q}, {v0, v1}, δ, µ, v0),

where δ = {(v0, v0), (v0, v1), (v1, v0), (v1, v1)}, µ(v0) = {p}, and µ(v1) = {q}. A
double circle identifies the initial state v0.

An abstract interval model (over TrcK ) can be naturally associated with a240

Kripke structure K by considering the set of intervals as the set of traces of K .
Since K has loops (δ is left-total), the number of traces in TrcK , and thus the
number of intervals, is infinite.

Definition 2.3 (Induced abstract interval model [27]). The abstract interval
model induced by a finite Kripke structure K = (AP ,W, δ, µ, w0) is the tuple

AK = (AP , I, AI, BI, EI, σ), where

• I = TrcK ;

• AI = {(ρ, ρ′) ∈ I× I | lst(ρ) = fst(ρ′)};245

• BI = {(ρ, ρ′) ∈ I× I | ρ′ ∈ Pref(ρ)};

• EI = {(ρ, ρ′) ∈ I× I | ρ′ ∈ Suff(ρ)};

• σ : I 7→ 2AP is such that, for all ρ ∈ I, σ(ρ) =
⋂

w∈states(ρ)

µ(w).

Relations AI, BI, and EI are interpreted as the Allen’s relations A,B, and
E, respectively. Moreover, according to the definition of σ, p ∈ AP holds over250

ρ = v1 · · · vn if and only if it holds over all the states v1, . . . , vn of ρ. This
conforms to the homogeneity principle [36], according to which a proposition
letter holds over an interval if and only if it holds over all its subintervals.

Definition 2.4 (Satisfiability over traces and model checking). Let K be a
Kripke structure and ψ be an HS formula. We say that a trace ρ ∈ TrcK255

satisfies ψ, denoted as K , ρ |= ψ, if it holds that AK , ρ |= ψ.
The Kripke structure K is a model of ψ, denoted as K |= ψ, if for all initial

traces ρ′ ∈ TrcK , it holds that K , ρ′ |= ψ. The model checking (MC) problem
for HS consists of checking whether K |= ψ for a finite Kripke structure K and
an HS formula ψ.260

As we already pointed out, MC is not trivially decidable since TrcK is infinite.
Notice that the assumed semantics of HS is a state-based semantics which

allows branching both in the future (by modalities A and B) and in the past
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v0
∅

v2
p2

v1
p1

v3
p3

v1
p1

v2
p2

v3
p3

r1

r2

r3

u1 u2 u3

r2

r3

r1 r3

r1

r2

Figure 2: The Kripke structure KSched.

(by modalities A and E). For a comparison of different possible semantics for
HS—i.e., state-based semantics, linear semantics, and computation-tree-based265

semantics— and an expressiveness comparison with standard point-based tem-
poral logics LTL, CTL, and CTL∗, we refer the reader to [8].

Example 2.5. In Figure 2, we give an example of a finite Kripke structure
KSched that models the behaviour of a scheduler serving three processes which
are continuously requesting the use of a common resource. The initial state270

(denoted by a double circle) is v0: no process is served in that state. In any
other state vi and vi, with i ∈ {1, 2, 3}, the i-th process is served (this is denoted
by the fact that pi holds in those states). For the sake of readability, edges are
marked either by ri, for request(i), or by ui, for unlock(i). Edge labels do not
have a semantic value, that is, they are neither part of the structure definition,275

nor proposition letters, and they are simply used to ease reference to edges.
Process i is served in state vi, then, after job completion, a transition ui from
vi to vi is taken. The scheduler cannot serve the same process twice in two
successive rounds and, for that reason, vi is not directly reachable from vi. A
transition rj , with j 6= i, from vi to vj is then taken and process j is served.280

We now show how some meaningful properties to be checked against KSched
can be expressed in HS, and, in particular, by formulas of AAEE (a fragment
that will be studied in detail in Section 4). In all formulas, we force the validity
of the considered property over all legal computation sub-intervals by using
modality [E] (all computation sub-intervals are suffixes of at least one initial285

trace). The truth of the next statements can easily be checked (in the following

〈E〉k stands for k occurrences of modality 〈E〉):

• KSched |= [E]
(
〈E〉3> → (χ(p1, p2) ∨ χ(p1, p3) ∨ χ(p2, p3))

)
,

where χ(p, q) stands for 〈E〉 〈A〉 p ∧ 〈E〉 〈A〉 q;

9



• KSched 6|= [E](〈E〉10> → 〈E〉 〈A〉 p3);290

• KSched 6|= [E](〈E〉5 → (〈E〉 〈A〉 p1 ∧ 〈E〉 〈A〉 p2 ∧ 〈E〉 〈A〉 p3)).

The first formula states that in any suffix, having length at least 4, of an initial
trace at least 2 proposition letters are witnessed. KSched satisfies the formula
since a process cannot be executed twice in a row. The second formula states
that in any suffix of an initial trace having length at least 11 process 3 is executed295

at least once in some internal states (non starvation). KSched does not satisfy
the formula since the scheduler can avoid executing a process ad libitum. The
third formula requires that in any suffix of an initial trace having length at least
6 p1, p2, p3 are all witnessed. The only way to satisfy this property is to constrain
the scheduler to execute the three processes in a strictly periodic manner (strict300

alternation), that is, pipjpkpipjpkpipjpk . . ., i, j, k ∈ {1, 2, 3}, i 6= j 6= k 6= i, but
this is not the case.

2.3. The general picture
We now describe known and new complexity results about the MC problem

for HS fragments (see Figure 3 for a graphical account).305

In [27], the authors show that, given a finite Kripke structure K and a bound
k on the structural complexity of HS formulas, that is, on the (joint) nesting
depth of 〈E〉 and 〈B〉 modalities, it is possible to obtain a finite representation
for AK , which is equivalent to AK with respect to the fulfillment of HS formulas
with structural complexity less than or equal to k. Then, by exploiting such310

a representation, they prove that the MC problem for (full) HS is decidable,
providing an algorithm with non-elementary complexity. Moreover, they show
that the problem for the fragment AABE, and thus for full HS, is Pspace-hard
(Expspace-hard if a suitable succinct encoding of formulas is exploited). In [29],
the authors study the HS fragments AABBE and AAEBE, devising for both the315

fragments an Expspace MC algorithm which finds, for each trace of the input
Kripke structure, a satisfaction-preserving trace of bounded exponential length,
i.e., a trace representative. In this way, the algorithm needs to check only trace
representatives instead of traces of unbounded length. Then, in [28], they prove
that the problem for these two fragments is Pspace-hard (if a suitable succinct320

encoding of formulas is exploited, the algorithm remains in Expspace, but a
NExptime lower bound can be given [29]). Finally, they show that formulas
satisfying a constant bound on their B-nesting (resp., E-nesting) depth can be
checked in polynomial working space [29].

In [28, 30] the authors identify some well-behaved HS fragments, namely,325

AABE, B, E, AA, A, and A, which are still expressive enough to capture mean-
ingful interval properties of state-transition systems and whose MC problem has
a computational complexity markedly lower than that of full HS. In particu-
lar, they prove that the problem is Pspace-complete for the first three frag-

ments, and in between PNP[O(logn)] and PNP[O(log2 n)] [18, 37] for the last three330

(PNP[O(logn)] and PNP[O(log2 n)] are the complexity classes of the problems de-
cided by deterministic polynomial-time Turing machines, making O(log n) and
O(log2 n) queries to an NP oracle, respectively).
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AABE Pspace-complete 2,3 B Pspace-complete 4

E Pspace-complete 4

AAEE Pspace-completeAABB Pspace-complete

AA
PNP[O(log2 n)] 4

PNP[O(logn)]-hard 4
A

PNP[O(log2 n)] 4

PNP[O(logn)]-hard 4

B co-NP-complete

E co-NP-complete

Prop co-NP-complete 3

AABBE
Expspace 2

Pspace-hard 3

succinct AABBE
Expspace 2

NExptime-hard 2
BE

nonELEMENTARY 1

Expspace-hard

full HS
nonELEMENTARY 1

Expspace-hard

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness
hardness

1 [27], 2 [29], 3 [28], 4 [30]

Figure 3: Complexity of the MC problem for HS fragments: known results are depicted in
white boxes, new ones in gray boxes. In red: the line between tractable and intractable
fragments.

The first contribution of this paper to the overall picture is the strengthening
of the lower bound to the complexity of MC for full HS obtained by proving the335

Expspace-hardness of the fragment BE (Section 3).
Then, we prove Pspace-completeness of the MC problem for AABB and

AAEE, thus improving the previously-known Expspace upper bound given
in [29] (Section 4). The surprising aspect of this result is that these two frag-
ments are (from a computational point of view) as complex as the almost min-340

imal fragments B and E.
Next, we show that the one-modality fragments B and E are in co-NP, and

thus co-NP-complete, namely, they have the same computational complexity of
Prop (the pure propositional fragment of HS) [28] (Section 4).

Finally, we focus on the MC problem for the fragments AABBE and AAEBE,345

and we prove in a much simpler way (compared to that of [29]) its membership
to Expspace (Section 5).
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[dj−1
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Figure 4: A (generic) instance of the domino-tiling problem, where dij denotes f(i, j).

3. Expspace-hardness of BE

In this section, we prove that the MC problem for the HS fragment BE,
whose modalities can express properties of both interval prefixes and suffixes,350

is Expspace-hard. The result is obtained by a polynomial-time reduction from
a domino-tiling problem for grids with rows of single exponential length [20] to
the MC problem for BE. Since, MC for full HS is clearly at least as hard as MC
for BE, such a lower bound immediately propagates to full HS, improving the
known lower bound.355

We start with the definition of the domino-tiling problem. An instance I
of a domino-tiling problem for grids with rows of single exponential length is a
tuple I = (C,∆, n, dinit, dfinal), where C is a finite set of colors, ∆ ⊆ C4 is a
set of tuples (cdown, cleft, cup, cright) of four colors, called domino-types, n > 0 is
a natural number encoded in unary, and dinit, dfinal ∈ ∆ are two distinguished360

domino-types (respectively, the initial and final domino-types). The size of I is
defined as |C|+ |∆|+ n.

Intuitively, a tiling of a grid is a color labelling of the edges of each grid
square element (see Figure 4). Formally, a tiling of I is a mapping f : [0, k] ×
[0, 2n − 1]→ ∆, for some k ≥ 0, that satisfies the following constraints:365

• two adjacent cells in a row have the same color on the shared edge, namely,
for all (i, j) ∈ [0, k]× [0, 2n − 2], [f(i, j)]right = [f(i, j + 1)]left;

• two adjacent cells in a column have the same color on the shared edge,
namely, for all (i, j) ∈ [0, k− 1]× [0, 2n − 1], [f(i, j)]up = [f(i+ 1, j)]down;

• f(0, 0) = dinit (initialization) and f(k, 2n − 1) = dfinal (acceptance).370

It is well-known that checking the existence (resp., the non-existence) of a
tiling of I is an Expspace-complete problem [20].

We now show how the domino-tiling problem can be reduced in polynomial
time to the MC problem for BE. In particular, we show how to build in poly-
nomial time a finite Kripke structure KI and a BE formula ϕI such that there375
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d0
0 0 · · · 00 d0

1 1 · · · 00 · · · d0
2n−1 1 · · · 11 $ d1

0 0 · · · 00 d1
1 1 · · · 00 · · · d1

2n−1 1 · · · 11 $ · · ·
column 0 column 1 column 2n − 1 column 0 column 1 column 2n − 1

row 0 row 1

Figure 5: Encoding of a tiling as a word, where dij denotes f(i, j).

exists an initial trace of KI satisfying ϕI if and only if there exists a tiling of I.
Hence, KI |= ¬ϕI if and only if there is no tiling of I.

The encoding of tilings exploits the set of proposition letters AP = ∆ ∪
{$, 0, 1}. Proposition letters in {0, 1} are used for the binary encoding of the
value of an n-bit counter numbering the cells of one row of a tiling, while the380

proposition letter $ is used as a separator.
In particular, a cell with content d ∈ ∆ and column number j ∈ [0, 2n − 1] is
encoded by the word of length n+ 1 over AP given by d b1 · · · bn, where b1 · · · bn
is the binary encoding of the column number j (bn is the most significant bit).
A row is then represented by the word listing the encodings of cells from left385

to right, and a tiling f consisting of k + 1 rows is encoded by the finite word
r0$r1 · · · $rk, where ri is the encoding of the i-th row of f , for all i ∈ [0, k]. See
Figure 5 for a graphical account of a word encoding of a tiling.

The Kripke structure KI is trivially defined as

KI = (AP ,AP ,AP × AP , µ, dinit),

where µ(p) = {p}, for any p ∈ AP . Thus, the initial traces of KI correspond to
the finite words over AP which start with the initial domino type dinit.390

In order to build the BE formula ϕI , we use some auxiliary formulas, namely,
lengthi, beg(p), end(p), φcell, and θj(b, b

′), where i ∈ [1, 2n + 2], j ∈ [2, n + 1],
p ∈ AP , and b, b′ ∈ {0, 1}.

The formula lengthi has size linear in i and it characterizes the traces of
length i. It can be expressed as follows:

lengthi := (〈B〉 . . . 〈B〉︸ ︷︷ ︸
i−1

>) ∧ ([B] . . . [B]︸ ︷︷ ︸
i

⊥).

The formula beg(p) (resp., end(p)) captures the traces of K which start (resp.,
end) in the state p:

beg(p) := (p∧length1)∨〈B〉(p∧length1), end(p) := (p∧length1)∨〈E〉(p∧length1).

The formula φcell captures the traces of KI which encode cells:

φcell := lengthn+1 ∧
(∨
d∈∆

beg(d)
)
∧ [E](beg(0) ∨ beg(1)).

Finally, for all j ∈ [2, n+ 1] and b, b′ ∈ {0, 1}, the formula θj(b, b
′) is defined as:

θj(b, b
′) := 〈B〉(lengthj ∧ end(b)) ∧ 〈E〉(lengthn−j+2 ∧ beg(b′)).
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d d′· · ·1 0 0 1 1 1 0 1

c c′

Figure 6: Encoding of a trace ρ starting with a cell c = (d 1001) and ending with a cell
c′ = (d′ 1101) (here, n = 4). The formula θ2(1, 1) is satisfied by ρ, while θ3(1, 0) is not.

The formula θj(b, b
′) is satisfied by a trace ρ if |ρ| ≥ j + 1, |ρ| ≥ n − j + 3,

ρ(j) = b, and ρ(|ρ| − n+ j − 1) = b′. In particular, for a trace ρ starting with a395

cell c and ending with a cell c′, θj(b, b
′) is satisfied by ρ if the (j − 1)-th bit of

c is b and the (j − 1)-th bit of c′ is b′. See Figure 6 for an example.
Additionally, we use the derived operator 〈G〉 and its dual [G], which allow

us to select arbitrary subtraces of the given trace, including the trace itself:

〈G〉ψ := ψ ∨ 〈B〉ψ ∨ 〈E〉ψ ∨ 〈B〉 〈E〉ψ.

The formula ϕI is defined as follows:

ϕI := ϕb ∧ ϕreq ∧ ϕinc ∧ ϕrr ∧ ϕrc.

The conjunct ϕb checks that the given trace starts with a cell with content
dinit and column number 0, and ends with a cell with content dfinal and column
number 2n − 1:

ϕb := 〈B〉φcell ∧ beg(dinit) ∧ 〈E〉(φcell ∧ beg(dfinal)) ∧
n+1∧
j=2

θj(0, 1).

The conjunct ϕreq ensures the following two requirements: (i) each occurrence
of $ in the given trace is followed by a cell with column number 0 and (ii) each
cell c in the given trace is followed either by another cell, or by the separator
$, and in the latter case c has column number 2n − 1. The first requirement is
encoded by the formula:

[G]
(
(lengthn+2 ∧ beg($)) −→ 〈E〉(φcell ∧ [E]beg(0))

)
;

the second one by the formula:

[G]
{

(lengthn+2 ∧
∨
d∈∆

beg(d)) −→(
〈B〉φcell ∧ (end($) ∨

∨
d∈∆

end(d)) ∧ (end($) −→ [E](beg($) ∨ beg(1)))
)}
.

The conjunct ϕinc checks that adjacent cells along the given trace have consec-
utive columns numbers:

ϕinc := [G]
(
φtwo cells −→

n+1∨
j=2

[
θj(0, 1) ∧

j−1∧
h=2

θh(1, 0) ∧
n+1∧
h=j+1

∨
b∈{0,1}

θh(b, b)
])
,
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where φtwo cells is given by length2n+2 ∧ 〈B〉φcell ∧ 〈E〉φcell.
Note that ϕreq and ϕinc ensure that column numbers are correctly encoded.
The conjunct ϕrr checks that adjacent cells in a row have the same color on

the shared edge:

ϕrr := [G]
(
φtwo cells −→

∨
(d,d′)∈∆×∆|dright=d′left

(beg(d) ∧ 〈E〉(lengthn+1 ∧ beg(d′)))
)
.

Finally, the conjunct ϕrc checks that adjacent cells in a column have the same400

color on the shared edge. For this, it suffices to require that the following
condition holds:

• for each subtrace of the given one containing exactly one occurrence of $,
starting with a cell c, and ending with a cell c′, if c and c′ have the same
column number, then dup = d′down, where d (resp., d′) is the content of c405

(resp., c′).

Accordingly, the formula ϕrc is defined as follows, where we use the formulas
θj(b, b), with j ∈ [2, n+ 1] and b ∈ {0, 1}, to express that c and c′ have the same
column number:

ϕrc := [G]
{ (

φone($) ∧ 〈B〉φcell ∧ 〈E〉φcell ∧
n+1∧
j=2

∨
b∈{0,1}

θj(b, b)
)

−→
∨

(d,d′)∈∆×∆|dup=d′down

(beg(d) ∧ 〈E〉(lengthn+1 ∧ beg(d′)))
}
,

where φone($) is defined as (〈B〉 end($)) ∧ ¬(〈B〉(end($) ∧ 〈B〉 end($))).
It is worth pointing out that ϕI has size polynomial in the size of I.
By construction, a trace ρ of KI satisfies ϕI if and only if ρ encodes a tiling.

Since the initial traces of KI are the finite words over AP starting with dinit, it410

follows that there exists a tiling of I if and only if there exists an initial trace of
KI which satisfies ϕI . The above-given reduction proves the following theorem.

Theorem 3.1. The MC problem for BE formulas over finite Kripke structures
is Expspace-hard (under polynomial-time reductions).

4. A polynomial-size model-trace property for AABB and AAEE415

In this section, we show that the MC problem for the fragments AABB
and AAEE is Pspace-complete. Moreover, we prove that MC for the smaller
fragments B and E is co-NP-complete.

We first prove the membership to Pspace of the MC problem for the frag-
ments AABB and AAEE by showing that they enjoy a polynomial-size model-420

trace property, that is, we show that if a trace ρ of a finite Kripke structure K
satisfies a given formula ϕ of AAEE or AABB, then there exists a trace π, whose
length is polynomial in the sizes of ϕ and K , starting from and leading to the
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ρ

π
1 2 3 4 5

1 2 3 4 5 6 7 8 9 10

π = ρ(1)ρ(4)ρ(5)ρ(7)ρ(10)

Figure 7: A trace π induced by ρ.

same states as ρ, that satisfies ϕ. In the following, we focus on the fragment
AAEE, being the case of the fragment AABB completely symmetric.425

Let K = (AP ,W, δ, µ, w0) be a finite Kripke structure. We start by intro-
ducing the basic notions of induced trace and well-formed trace, that will be
extensively used to prove the polynomial-size model-trace property. Intuitively,
we say that a trace π ∈ TrcK is induced by a trace ρ ∈ TrcK if it can be obtained
from ρ by suitably contracting it, that is, by concatenating some subtraces of430

ρ. Well-formedness adds a condition on the suffixes of an induced trace.

Definition 4.1 (Induced and well-formed trace). Let K = (AP ,W, δ, µ, w0) be
a finite Kripke structure and let ρ ∈ TrcK , with |ρ| = n. We say that a trace
π ∈ TrcK is induced by ρ if there exists an increasing sequence of ρ-positions
i1 < . . . < ik, with i1 = 1 and ik = n, such that π = ρ(i1) · · · ρ(ik). For j =435

1, . . . , k, the π-position j and the ρ-position ij are called corresponding positions.
Moreover, we say that an induced trace π is well-formed (with respect to ρ) if for
all π-positions j, with corresponding ρ-positions ij , and all proposition letters
p ∈ AP , it holds that K , πj |= p if and only if K , ρij |= p.

As an example, let us consider Figure 7. The trace π=ρ(1)ρ(4)ρ(5)ρ(7)ρ(10)440

is induced by ρ, provided that both ρ and π are traces of a Kripke structure
K , and the positions 1, 2, 3, 4, and 5 of π correspond to the positions i1 = 1,
i2 = 4, i3 = 5, i4 = 7 and i5 = 10 of ρ. Note that if π is induced by ρ, then
fst(π) = fst(ρ), lst(π) = lst(ρ), and |π| ≤ |ρ| (|π| = |ρ| if and only if π = ρ).

Well-formedness implies that the suffix of π starting from position j and that445

of ρ starting from the corresponding position ij agree over all the proposition
letters in AP , that is, they have the same “satisfaction pattern” of proposition
letters. In particular, for all p ∈ AP , K , π |= p if and only if K , ρ |= p. It can be
easily checked that the well-formedness relation is transitive.

The following proposition shows how it is possible to contract a trace while450

preserving the same satisfaction pattern of proposition letters with respect to
suffixes. Such a criterion represents a “basic step” in a contraction process that
will allow us to prove the polynomial-size model-trace property.

Proposition 4.2. Let K = (AP ,W, δ, µ, w0) be a finite Kripke structure. For
any trace ρ ∈ TrcK , there exists a well-formed (with respect to ρ) trace π ∈ TrcK455

such that |π| ≤ |W | · (|AP |+ 1).

Proof. Let ρ ∈ TrcK , with |ρ| = n. If n ≤ |W | · (|AP | + 1), the thesis trivially
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ρ

π=ρ(1,i)?ρj

ρ(i) = ρ(j)

AP(ρ,i) = AP(ρ,j)

Figure 8: The contraction step of Proposition 4.2 (with AP(ρ, k) = {p ∈ AP | K , ρk |= p}).

holds. Let us assume n > |W | · (|AP |+ 1). We show that there exists π ∈ TrcK ,
with |π| < n, which is well-formed with respect to ρ.

Since n > |W | · (|AP | + 1), there is some state w ∈ W occurring in ρ at460

least |AP | + 2 times. Assume that for all ρ-positions i and j, with j > i, if
ρ(i) = ρ(j) = w, then there exists some p ∈ AP such that K , ρj |= p and
K , ρi 6|= p. This assumption leads to a contradiction, as the suffixes of ρ may
feature at most |AP |+1 distinct satisfaction patterns of proposition letters (due
to the homogeneity principle in Definition 2.3), while there are at least |AP |+ 2465

occurrences of w. As a consequence, there are two ρ-positions i and j, with
j > i, such that ρ(i) = ρ(j) = w and, for all p ∈ AP , K , ρj |= p if and only
if K , ρi |= p. (See Figure 8 for a graphical account.) It is easy to see that
π = ρ(1, i) ? ρ(j, n) ∈ TrcK is well-formed with respect to ρ and |π| < n. If
|π| ≤ |W | · (|AP | + 1), the thesis is proved; otherwise, the same basic step can470

be iterated a finite number of times, and the thesis follows by transitivity of the
well-formedness relation.

The next definition identifies some distinguished positions in a trace, called
witness positions. As we will see in the proof of Theorem 4.4, if we perform
a contraction (see the proof of Proposition 4.2, and its graphical account in475

Figure 8) between a pair of such positions, we get a trace which is equivalent
to the original one with respect to the satisfiability of the considered AAEE
formula. In the following, we restrict ourselves to formulas in negation normal
form (NNF), namely, formulas where negation is applied only to proposition
letters. By using De Morgan’s laws and the dual modalities [E], [E], [A], and480

[A] of 〈E〉, 〈E〉, 〈A〉, and 〈A〉, respectively, we can trivially convert in linear time
a formula into an equivalent one in NNF, having at most double length.

Definition 4.3 (Witness position). Let K = (AP ,W, δ, µ, w0) be a finite Kripke
structure, ρ ∈ TrcK , and ϕ be a formula of AAEE. Let us denote by E(ϕ, ρ)
the set of subformulas of the form 〈E〉ψ of ϕ such that K , ρ |= 〈E〉ψ. The485

set Wt(ϕ, ρ) of witness positions of ρ for ϕ is the minimal set of ρ-positions
satisfying the following constraint: for each 〈E〉ψ ∈ E(ϕ, ρ), the greatest ρ-
position i > 1 such that K , ρi |= ψ belongs to Wt(ϕ, ρ).2

It is easy to see that the cardinalities of E(ϕ, ρ) and of Wt(ϕ, ρ) are at most

2Note that such a ρ-position exists by definition of E(ϕ, ρ).
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Figure 9: Representation of the contraction step of Theorem 4.4—case (i)

|ϕ| − 1. We are now ready to prove the polynomial-size model-trace property.490

Theorem 4.4 (Polynomial-size model-trace property for AAEE). Let K =
(AP ,W, δ, µ, w0) be a finite Kripke structure, ρ, σ ∈ TrcK , and ϕ be an AAEE
formula in NNF such that K , ρ ? σ |= ϕ. Then, there exists π, induced by ρ,
such that K , π ? σ |= ϕ, and |π| ≤ |W | · (|ϕ|+ 1)2.

As a preliminary remark, we note that the theorem holds in particular if495

|σ| = 1, and thus ρ ? σ = ρ and π ? σ = π. In such a case, if K , ρ |= ϕ,
then K , π |= ϕ, where π is induced by ρ and |π| ≤ |W | · (|ϕ| + 1)2. The
more general statement of Theorem 4.4 is needed for technical reasons in the
soundness/completeness proofs of the algorithms for MC given in the following.

Proof. W.l.o.g., we restrict ourselves to the proposition letters occurring in ϕ,500

thus having |AP | ≤ |ϕ|. Let Wt(ϕ, ρ ? σ) be the set of witness positions of ρ ? σ
for ϕ, let {i1, . . . , ik} be the ordering of Wt(ϕ, ρ ? σ) such that i1 < . . . < ik,
and let i0 = 1 and ik+1 = |ρ ?σ|. Hence, 1 = i0 < i1 < . . . < ik ≤ ik+1 = |ρ ?σ|.

If |ρ| ≤ |W | · (|ϕ| + 1)2, the thesis trivially holds. Let us assume that
|ρ| > |W | · (|ϕ| + 1)2. We show that there exists a trace π induced by ρ, with505

|π| < |ρ|, such that K , π ? σ |= ϕ.
W.l.o.g., we can assume that, for some j ≥ 0, i0 < i1 < . . . < ij are ρ-

positions, while ij+1 < . . . < ik+1 are (ρ?σ)-positions not in ρ. Then, either (i)
there exists t ∈ [0, j − 1] such that it+1 − it > |W | · (|ϕ|+ 1) or (ii) |ρ(ij , |ρ|)| >
|W | · (|ϕ|+ 1). By way of contradiction, suppose that neither (i) nor (ii) holds.510

We need to distinguish two cases. If ρ ? σ = ρ, then |ρ| = (ik+1 − i0) + 1 ≤
(k+ 1) · |W | · (|ϕ|+ 1) + 1; otherwise (|ρ| < |ρ ? σ|), |ρ| = (ij − i0) + |ρ(ij , |ρ|)| ≤
j · |W | · (|ϕ|+ 1) + |W | · (|ϕ|+ 1) ≤ (k + 1) · |W | · (|ϕ|+ 1). The contradiction
follows since (k+1) · |W | · (|ϕ|+1)+1 ≤ |ϕ| · |W | · (|ϕ|+1)+1 ≤ |W | · (|ϕ|+1)2.

Let (α, β) = (it, it+1) in case (i), and (α, β) = (ij , |ρ|) in case (ii) and let515

ρ′ = ρ(α, β). In both cases, |ρ′| > |W | · (|ϕ| + 1) ≥ |W | · (|AP | + 1), being
|AP | ≤ |ϕ|. By Proposition 4.2, there exists a trace π′ of K , well-formed with
respect to ρ′, such that |π′| ≤ |W | · (|AP |+ 1) < |ρ′|. Let π be the trace induced
by ρ obtained by replacing the subtrace ρ′ of ρ by π′ (see Figure 9 for a graphical
account). Since |π| < |ρ|, it remains to prove that K , π ? σ |= ϕ.520

Let us denote π ? σ by π and ρ ? σ by ρ. Let H : [1, |π|] → [1, |ρ|] be
the function mapping positions of π into positions of ρ in such a way that
positions “outside” π′, i.e., outside the interval [α, α+ |π′|−1], are mapped into
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their original positions in ρ while those “inside” π′, i.e., in [α, α+ |π′| − 1], are
mapped into the corresponding positions in ρ′ (exploiting well-formedness of π′

with respect to ρ′):

H(m) =


m if m < α;

α+ `m−α+1 − 1 if α ≤ m < α+ |π′|;
m+ (|ρ′| − |π′|) if m ≥ α+ |π′|,

(1)

where `s is the ρ′-position corresponding to the π′-position s, with `s ∈ [1, |ρ′|]
and s ∈ [1, |π′|].

It is easy to check that the map H satisfies the following properties:

1. H is strictly monotonic, i.e., for all j, j′ ∈ [1, |π|], j < j′ iff H(j) < H(j′);

2. for all j ∈ [1, |π|], π(j) = ρ(H(j));525

3. H(1) = 1 and H(|π|) = |ρ|;
4. Wt(ϕ, ρ) ⊆ {H(j) | j ∈ [1, |π|]}, i.e., all witness positions are preserved;

5. for each j ∈ [1, |π|] and p ∈ AP , K , πj |= p iff K , ρH(j) |= p.

The fact that K , π |= ϕ is an immediate consequence of the following claim,
considering that H(1) = 1, K , ρ |= ϕ, ρ1 = ρ, and π1 = π.530

Claim. For all j ∈ [1, |π|], all subformulas ψ of ϕ, and all u ∈ TrcK , it holds
that if K , u ? ρH(j) |= ψ, then K , u ? πj |= ψ.

Proof. Assume that K , u?ρH(j) |= ψ. Note that u?ρH(j) is defined if and only if
u?πj is defined. We prove by induction on the structure of ψ that K , u?πj |= ψ.
Since ϕ is in NNF, only the following cases occur:535

• ψ = p or ψ = ¬p for some p ∈ AP . By Property 5 of H, K , πj |= p iff
K , ρH(j) |= p. Hence, K , u ?πj |= p if and only if K , u ? ρH(j) |= p, and the
result holds.

• ψ = θ1 ∧ θ2 or ψ = θ1 ∨ θ2, for some AAEE formulas θ1 and θ2: the result
directly follows from the inductive hypothesis.540

• ψ = [E]θ. We need to show that for each proper suffix η of u?πj , K , η |= θ.
We distinguish two cases:

– η is not a proper suffix of πj . Hence, η is of the form uh ?πj for some
h ∈ [2, |u|]. Since K , u ? ρH(j) |= [E]θ, then K , uh ?ρH(j) |= θ. By the
inductive hypothesis, K , uh ? πj |= θ.545

– η is a proper suffix of πj . Hence, η = πh for some h ∈ [j + 1, |π|].
By Property 1 of H, H(h) > H(j), and since K , u ? ρH(j) |= [E]θ, we
have that K , ρH(h) |= θ. By the inductive hypothesis, K , πh |= θ.

Therefore, K , u ? πj |= [E]θ.

• ψ = 〈E〉 θ. We need to show that there exists a proper suffix of u ? πj550

satisfying θ. Since K , u ? ρH(j) |= ψ, there exists a proper suffix η′ of
u ? ρH(j) such that K , η′ |= θ. We distinguish two cases:
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– η′ is not a proper suffix of ρH(j). Hence, η′ is of the form uh ? ρH(j)

for some h ∈ [2, |u|]. By the inductive hypothesis, K , uh ? πj |= θ.
Hence, K , u ? πj |= 〈E〉 θ.555

– η′ is a proper suffix of ρH(j). Hence, η′ = ρi for some i ∈ [H(j) +
1, |ρ|], and K , ρi |= θ. Let i′ be the greatest position of ρ such that

K , ρi
′ |= θ. Hence i′ ≥ i and, by Definition 4.3, i′ ∈ Wt(ϕ, ρ). By

Property 4 of H, i′ = H(h) for some π-position h. Since H(h) >
H(j), it holds that h > j (Property 1). By the inductive hypothesis,560

K , πh |= θ, and we obtain that K , u ? πj |= 〈E〉 θ.

Therefore, in both the cases, K , u ? πj |= 〈E〉 θ.

• ψ = [E]θ or ψ = 〈E〉 θ: the thesis holds as a direct consequence of the
inductive hypothesis.

• ψ = [A]θ, ψ = 〈A〉 θ, ψ = [A]θ, or ψ = 〈A〉 θ. Since u ? πj and u ? ρH(j)
565

start at the same state and lead to the same state (by Properties 2 and 3 of
H), the thesis trivially follows. This concludes the proof of the claim.

We have shown that K , π |= ϕ, with |π| < |ρ|. Now, if |π| ≤ |W | · (|ϕ|+ 1)2,
the thesis is proved; otherwise, the above contraction step can be iterated a finite
number of times, until the bound is reached, proving the thesis of Theorem 4.4.570

By exploiting the polynomial-size model-trace property stated by Theo-
rem 4.4, it is easy to define a Pspace MC algorithm for AAEE. The main
MC procedure for AAEE formulas is ModCheck(K , ψ) (Algorithm 1). All the
initial traces σ, obtained by visiting the unravelling of K from w0 up to depth575

|W | · (2|ψ|+ 3)2, are checked with respect to ψ by the function Check(K , ψ, σ)
(Algorithm 2) which decides whether K , σ |= ψ. The Check function is itera-
tively called until either some initial trace is found that does not satisfy ψ or all
bounded initial traces satisfy ψ (and thus K |= ψ). The call of Check(K , ψ, σ)
(Algorithm 2) decides whether K , σ |= ψ by recursively calling itself on the sub-580

formulas of ψ either over σ or over (bounded) traces obtained by unraveling K
forward (starting from lst(σ)) for occurrences of the modality 〈A〉 and backward
(starting from fst(σ)) for occurrences of the modalities 〈A〉 and 〈E〉.

Note that the considered bound on the length of initial traces is actually
|W |·(2|ψ|+3)2 ≥ |W |·(|NNF (¬ψ)|+1)2 (first line of the ModCheck procedure).585

The reason is that the correctness proof of the algorithm exploits the polynomial
bound of Theorem 4.4 for the formula ¬ψ that has to be reduced in NNF.

We now prove soundness and completeness of the proposed procedures start-
ing from the function Check of Algorithm 2.

Lemma 4.5. Let ψ be an AAEE formula, K be a finite Kripke structure, and590

σ ∈ TrcK . Then, Check(K , ψ, σ) = 1 if and only if K , σ |= ψ.

Proof. The proof is by induction on the structure of ψ. The base case where ψ =
p, for some p ∈ AP , directly follows from the definition (line 2 of Algorithm 2).
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Algorithm 1 ModCheck(K , ψ)

1: for all initial traces σ ∈ TrcK such that |σ| ≤ |W | · (2|ψ|+ 3)2 do
2: if Check(K , ψ, σ) = 0 then
3: return 0: “K , σ 6|= ψ” / Counterexample found

4: return 1: “K |= ψ”

The cases in which ψ = ¬ϕ and ψ = ϕ1 ∧ ϕ2 are also trivial and thus omitted.
We focus on the remaining cases.595

• ψ = 〈A〉ϕ. If K , σ |= ψ, then there exists a trace ρ ∈ TrcK such that
lst(σ) = fst(ρ) and K , ρ |= ϕ. By Theorem 4.4, there exists a trace π ∈
TrcK , with |π| ≤ |W | · (|ϕ′|+ 1)2 and fst(π) = fst(ρ)(= lst(σ)), such that
K , π |= ϕ′, where ϕ′ is the NNF of ϕ. Thus, being |π| ≤ |W | · (2|ϕ|+ 1)2,
such trace π is considered in the for-loop at line 12. By the inductive600

hypothesis, Check(K , ϕ, π) = 1 and thus Check(K , ψ, σ) = 1.

Vice versa, if Check(K , ψ, σ) = 1, then there exists a trace π ∈ TrcK ,
with lst(σ) = fst(π), such that Check(K , ϕ, π) = 1. By the inductive
hypothesis, K , π |= ϕ, hence K , σ |= ψ.

• ψ = 〈A〉ϕ is analogous to the previous case.605

• ψ = 〈E〉ϕ. If K , σ |= ψ, there exists a trace π ∈ Suff(σ) such that
K , π |= ϕ. By the inductive hypothesis, Check(K , ϕ, π) = 1. Since all the
proper suffixes of σ are checked (line 17), Check(K , ψ, σ) = 1.

Vice versa, if Check(K , ψ, σ) = 1, then for some π ∈ Suff(σ), it holds that
Check(K , ϕ, π) = 1. By the inductive hypothesis K , π |= ϕ implying that610

K , σ |= ψ.

• ψ = 〈E〉ϕ. If K , σ |= ψ, then there exists a trace ρ ∈ TrcK , with |ρ| ≥ 2,
such that K , ρ ? σ |= ϕ. By Theorem 4.4, there exists a trace π ∈ TrcK
induced by ρ, with |π| ≤ |W | ·(|ϕ′|+1)2, such that K , π ?σ |= ϕ′, where ϕ′

is the NNF of ϕ. Such trace π is considered in the for-loop at line 22, since615

|π| ≤ |W | · (2|ϕ|+ 1)2 and |π| ≥ 2 as it is induced by ρ. By the inductive
hypothesis, Check(K , ϕ, π ? σ) = 1 implying that Check(K , ψ, σ) = 1.

Vice versa, if Check(K , ψ, σ) = 1, then there exists a trace π ∈ TrcK , with
|π| ≥ 2, such that Check(K , ϕ, π ? σ) = 1. By the inductive hypothesis,
K , π ? σ |= ϕ, hence K , σ |= ψ.620

We prove now soundness and completeness of Algorithm 1.

Theorem 4.6. Let ψ be an AAEE formula and K be a finite Kripke structure.
Then, ModCheck(K , ψ) = 1 if and only if K |= ψ.

Proof. (⇐) If K |= ψ, then, for all initial traces ρ ∈ TrcK , we have that K , ρ |= ψ.
By Lemma 4.5, it follows that Check(K , ψ, ρ) = 1. Now, since the for-loop at625

line 1 considers a subset of the initial traces, it holds that ModCheck(K , ψ) = 1.
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Algorithm 2 Check(K , ψ, σ)

1: if ψ = p, for p ∈ AP then
2: if p ∈ ⋂s∈states(σ) µ(s) then
3: return 1 else return 0
4: else if ψ = ¬ϕ then
5: return 1− Check(K , ϕ, σ)
6: else if ψ = ϕ1 ∧ ϕ2 then
7: if Check(K , ϕ1, σ) = 0 then
8: return 0
9: else

10: return Check(K , ϕ2, σ)

11: else if ψ = 〈A〉ϕ then
12: for all π ∈ TrcK such that fst(π) = lst(σ), and |π| ≤ |W | · (2|ϕ|+ 1)2 do
13: if Check(K , ϕ, π) = 1 then
14: return 1
15: return 0
16: else if ψ = 〈E〉ϕ then
17: for each proper suffix π of σ do
18: if Check(K , ϕ, π) = 1 then
19: return 1
20: return 0
21: else if ψ = 〈E〉ϕ then
22: for all π ∈ TrcK s.t. lst(π) = fst(σ), and 2 ≤ |π| ≤ |W | · (2|ϕ|+ 1)2 do
23: if Check(K , ϕ, π ? σ) = 1 then
24: return 1
25: return 0
26: . . . / ψ = 〈A〉ϕ is analogous to ψ = 〈A〉ϕ

(⇒) If ModCheck(K , ψ) = 1, then, for any initial trace ρ considered by
the for-loop at line 1, that is, with |ρ| ≤ |W | · (2|ψ| + 3)2, it holds that
Check(K , ψ, ρ) = 1. Let us assume by contradiction that K 6|= ψ, that is,
there exists an initial trace ρ′ ∈ TrcK such that K , ρ′ |= ¬ψ, or, equivalently,630

K , ρ′ |= ψ, where ψ is the NNF of ¬ψ. Thus, by Theorem 4.4, there exists an
initial trace σ, with |σ| ≤ |W | · (|ψ|+1)2 ≤ |W | · (2|ψ|+3)2, such that K , σ |= ψ,
namely, K , σ 6|= ψ. By Lemma 4.5, it holds that Check(K , ψ, σ) = 0, leading to
a contradiction and proving that K |= ψ.

The model checking procedures require polynomial working space, since:635

• ModCheck needs to store only a trace no longer than |W | · (2|ψ| + 3)2

(obviously, many traces are generated while visiting the unravelling of K ,
but only one at a time needs to be stored);

• every recursive call to Check (possibly) needs space for a trace no longer
than |W | ·(2|ϕ|+1)2, where ϕ is a subformula of ψ such that |ϕ| ≤ |ψ|−1;640
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• at most one call to ModCheck and |ψ| calls to Check can be simultaneously
active.

Therefore, the maximum space needed by the given algorithms is (|ψ| + 1) ·
O(log |W |) ·(|W | ·(2|ψ|+3)2) bits, where O(log |W |) bits are needed to represent
a state of K .645

Theorem 4.6, along with the above space analysis and the fact that MC for
the fragment E is known to be Pspace-hard [30], entail the following corollary.

Corollary 4.7. The MC problem for AAEE formulas over finite Kripke struc-
tures is Pspace-complete.

The same result, that is, Pspace-completeness, clearly holds also for any650

sub-fragment of AAEE which features the modality E.

We now conclude the section by showing that the MC problem for the frag-
ments B and E is in co-NP, that is, they have the same complexity as the purely
propositional fragment Prop. We focus on the fragment E, as the case of B is
completely symmetric. As we shall see, the MC algorithm heavily rests on the655

polynomial-size model-trace property.
The algorithm is based on the non-deterministic procedure CounterExE(K ,ψ)

(Algorithm 3) which searches for counterexamples to the input E formula ψ (ini-
tial traces satisfying ¬ψ). If such a counterexample is found, clearly K 6|= ψ.
First, the procedure generates in a non-deterministic way an initial trace ρ,660

whose length is at most |W | ·(2|ψ|+3)2, by means of A trace(K , w0, |ψ|). Then,
the deterministic function CheckE(K , ψ, ρ), reported in Algorithm 4, evaluates ψ
over ρ. If CheckE returns ⊥, a counterexample has been found and CounterExE

returns Yes (thus the non-deterministic computation of the algorithm is suc-
cessful). Otherwise, it returns No (the computation fails).665

As for the function CheckE, the following statement holds.

Proposition 4.8. Let ψ be an E formula, K be a finite Kripke structure, and
ρ be a trace of K . Then, CheckE(K , ψ, ρ) = > if and only if K , ρ |= ψ.

CheckE exploits a Boolean table T with an entry for each pair consisting
of a subformula of ψ and the starting position of a suffix of ρ (the size of T670

is then |ψ| × |ρ|). The function scans all the subformulas ϕ of the input ψ by
increasing length, and it stores in the Boolean entry T [ϕ, i], for 1 ≤ i ≤ |ρ|,
whether K , ρi |= ϕ or not. Note that the result of the evaluation of ψ over ρ is
stored in T [ψ, 1], as ρ1 = ρ. Since subformulas of ψ are considered by increasing
length order, during an iteration starting at line 2, when a subformula ϕ of ψ675

is being processed, it holds that T [ξ, i] is defined, for all other subformulas ξ
processed in some previous iteration, and T [ξ, i] = > if and only if K , ρi |= ξ.
This implies that, at the end, T [ψ, 1] = > if and only if K , ρ |= ψ.

We can now prove that the procedure CounterExE is sound and complete.
If CounterExE(K , ψ) has a successful computation, then there exists an initial680

trace ρ such that CheckE(K , ψ, ρ) = ⊥. This means that K , ρ 6|= ψ, and thus
K 6|= ψ. Conversely, if K 6|= ψ then there exists an initial trace ρ such that K , ρ 6|=
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Algorithm 3 CounterExE(K , ψ)

1: ρ← A trace(K , w0, |ψ|) / a trace of K from w0 of length ≤ |W | · (2|ψ|+ 3)2

2: if CheckE(K , ψ, ρ) = ⊥ then
3: return Yes: “K , ρ 6|= ψ” / Counterexample found

4: else
5: return No: “K , ρ |= ψ” / Counterexample not found

Algorithm 4 CheckE(K , ψ, ρ)

1: T ← New Bool Table(|ψ|, |ρ|) / creates new table of |ψ| × |ρ| Boolean entries

2: for all subformulas ϕ of ψ by increasing length do
3: if ϕ = p, for p ∈ AP then
4: T [p, |ρ|]← p ∈ µ(lst(ρ))
5: for i = |ρ| − 1, . . . , 1 do
6: T [p, i]← T [p, i+ 1] and p ∈ µ(ρ(i))

7: else if ϕ = ¬ϕ1 then
8: for i = |ρ|, . . . , 1 do
9: T [ϕ, i]← not T [ϕ1, i]

10: else if ϕ = ϕ1 ∧ ϕ2 then
11: for i = |ρ|, . . . , 1 do
12: T [ϕ, i]← T [ϕ1, i] and T [ϕ2, i]

13: else if ϕ = 〈E〉ϕ1 then
14: T [ϕ, |ρ|]← ⊥
15: for i = |ρ| − 1, . . . , 1 do
16: T [ϕ, i]← T [ϕ, i+ 1] or T [ϕ1, i+ 1]

17: return T [ψ, 1]

ψ. By Theorem 4.4, there exists an initial trace π, whose length is bounded by
|W | · (|ψ′|+ 1)2 ≤ |W | · (2|ψ|+ 3)2, such that K , π |= ψ′, where ψ′ is the NNF
of ¬ψ. Now, some non-deterministic instance of A trace(K , w0, |ψ|) generates685

exactly such π, being |π| ≤ |W | · (2|ψ| + 3)2. Moreover, CheckE(K , ψ, π) = ⊥,
and thus CounterExE(K , ψ) has a successful computation.

CounterExE(K , ψ) is in NP, as the generated trace(s) ρ has (have) a length
polynomial in |W | and |ψ|, and can thus be computed in polynomial time.
Subsequently, CheckE performs a polynomial number of steps, since all it has690

to do is filling in the table T , which features |ψ| · |ρ| entries.

Corollary 4.9. The MC problem for E formulas over finite Kripke structures
is co-NP-complete.

Proof. Since CounterExE(K , ψ) has a successful computation if and only if K 6|=
ψ, and such a procedure runs in (non-deterministic) polynomial time, the MC695

problem belongs to co-NP The co-NP-hardness derives immediately from that
of the purely propositional HS fragment Prop, as proved in [28].
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5. An exponential-size model-trace property for AABBE and AAEBE

In this section, we prove that the fragments AABBE and AAEBE enjoy an
exponential-size model-trace property. Such a property ensures that, for each700

h ≥ 0 and trace ρ of a finite Kripke structure K = (AP ,W, δ, µ, w0), it is
always possible to find another trace of K induced by ρ, whose length is at most
(|W |+ 2)h+2, which is indistinguishable from ρ with respect to the satisfiability
of any AABBE (resp., AAEBE) formula ϕ with B-nesting depth dB(ϕ) (resp.,
E-nesting depth dE(ϕ)) at most h.705

To prove such a property, we first introduce the notion of h-prefix bisimilarity
(resp., h-suffix bisimilarity), which defines an equivalence relation over TrcK
ensuring that equivalent traces satisfy the same AABBE (resp., AAEBE) formulas
with B-nesting (resp., E-nesting) depth at most h.

Then, we show how to determine, for a given trace ρ, a subset of positions710

of ρ that allow us to build another trace ρ′, with length at most (|W |+ 2)h+2,
such that ρ and ρ′ are h-prefix bisimilar (resp., h-suffix bisimilar). We call such
a set of ρ-positions prefix (resp., suffix ) sampling of ρ. Intuitively, they play a
role which is analogous to that of witness positions (Definition 4.3) exploited in
the previous section.715

Let h ≥ 0. The notions of h-prefix bisimilarity and h-suffix bisimilarity
between a pair of traces ρ and ρ′ of a Kripke structure are defined as follows.

Definition 5.1 (Prefix-bisimilarity and Suffix-bisimilarity). Let h ≥ 0. Two
traces ρ and ρ′ of a finite Kripke structure K are h-prefix bisimilar if the fol-
lowing conditions inductively hold:720

• for h = 0: fst(ρ) = fst(ρ′), lst(ρ) = lst(ρ′), and states(ρ) = states(ρ′);

• for h > 0: ρ and ρ′ are 0-prefix bisimilar and for each proper prefix ν of ρ
(resp., proper prefix ν′ of ρ′), there exists a proper prefix ν′ of ρ′ (resp.,
proper prefix ν of ρ) such that ν and ν′ are (h− 1)-prefix bisimilar.

The notion of h-suffix bisimilarity is defined in a symmetric way by consid-725

ering suffixes, instead of prefixes, of traces.

As it will be proved in Proposition 5.5 below, h-prefix (resp., h-suffix) bisimi-
larity is a sufficient condition for two traces ρ and ρ′ to be indistinguishable with
respect to the satisfiability of AABBE (resp., AAEBE) formulas with B-nesting
(resp., E-nesting) depth at most h.730

The following property can be easily shown.

Property 5.2. Given a finite Kripke structure K , for all h ≥ 0, h-prefix (resp.,
h-suffix) bisimilarity is an equivalence relation over TrcK .

The following property states that h-suffix bisimilarity and h-prefix bisimi-
larity “propagate downwards”.735

Property 5.3. Let h > 0, and ρ and ρ′ be two h-prefix (resp., h-suffix) bisimilar
traces of a finite Kripke structure K . Then, ρ and ρ′ are also (h−1)-prefix (resp.,
(h− 1)-suffix) bisimilar.
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As stated by the following Proposition, the relations of h-prefix and h-suffix
bisimilarity are preserved by left and right ?-concatenation with a constant740

string. The property can be easily proved by induction on h ≥ 0.

Proposition 5.4. Let h ≥ 0, and let ρ and ρ′ be two h-prefix (resp., h-suffix)
bisimilar traces of a finite Kripke structure K . Then, for each trace ρ′′ of K ,

1. ρ′′ ? ρ and ρ′′ ? ρ′ are h-prefix (resp., h-suffix) bisimilar;

2. ρ ? ρ′′ and ρ′ ? ρ′′ are h-prefix (resp., h-suffix) bisimilar.745

By Proposition 5.4 and a straightforward induction on the structural com-
plexity of formulas, we obtain that h-prefix (resp., h-suffix) bisimilarity preserves
the satisfiability of AABBE (resp., AAEBE) formulas with B-nesting (resp., E-
nesting) depth at most h. In other words, h-prefix (resp., h-suffix) bisimilarity
is a sufficient condition for two traces to be indistinguishable with respect to750

any AABBE (resp., AAEBE) formula ψ with dB(ψ) ≤ h (resp., dE(ψ) ≤ h).

Proposition 5.5. Let h ≥ 0, and let ρ and ρ′ be two h-prefix (resp., h-suffix)
bisimilar traces of a finite Kripke structure K . Then, for each AABBE (resp.,
AAEBE) formula ψ with dB(ψ) ≤ h (resp., dE(ψ) ≤ h), it holds that K , ρ |= ψ
if and only if K , ρ′ |= ψ.755

In the remaining part of the section, we shall focus on the fragment AABBE
(the case of AAEBE is completely symmetric). We shall show how to determine
a subset of positions of a trace ρ (a prefix sampling of ρ), starting from which
it is possible to build another trace ρ′, of bounded exponential length, which
is indistinguishable from ρ with respect to the satisfiability of AABBE formulas760

up to a given B-nesting depth (exponential-size model-trace property). We start
by introducing the notions of prefix-skeleton sampling and h-prefix sampling,
and prove some related properties. In the following, we fix a finite Kripke
structure K = (AP ,W, δ, µ, w0), and, given a set I of natural numbers, by “two
consecutive elements of I” we mean a pair of elements i, j ∈ I such that i < j765

and I ∩ [i, j] = {i, j}.
Definition 5.6 (Prefix-skeleton sampling). Let ρ be a trace of K . Given two
ρ-positions i and j, with i ≤ j, the prefix-skeleton sampling of ρ(i, j) is the
minimal set P of ρ-positions in the interval [i, j] satisfying the conditions:

• i, j ∈ P ;770

• for each state w ∈ W occurring in ρ(i + 1, j − 1), the least position k ∈
[i+ 1, j − 1] such that ρ(k) = w belongs to P .

Figure 10 gives a graphical account of the prefix-skeleton sampling of a trace.
From Definition 5.6, it immediately follows that the prefix-skeleton sampling

P of (any) trace ρ(i, j) is such that |P | ≤ |W |+ 2, and if i < j, then i+ 1 ∈ P .775

Definition 5.7 (h-prefix sampling). Let ρ be a trace of K . For each h ≥ 1, the
h-prefix sampling of ρ is the minimal set Ph of ρ-positions inductively satisfying
the following conditions:
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i j

w1 w1 w1 w1 w2 w1 w3 w1 w2 w3 w1 w3

ρ(i, j)

P = {i, i+ 1, i+ 4, i+ 6, j}

Figure 10: The set P is the prefix-skeleton sampling of ρ(i, j) = w4
1w2w1w3w1w2w3w1w3.

• for h = 1: P1 is the prefix-skeleton sampling of ρ;

• for h > 1: (i) Ph ⊇ Ph−1 and (ii) for all pairs of consecutive positions i, j780

in Ph−1, the prefix-skeleton sampling of ρ(i, j) belongs to Ph.

The following upper bound to the cardinality of prefix samplings easily fol-
lows from Definition 5.7.

Property 5.8. Let h ≥ 1 and ρ be a trace of K . The h-prefix sampling Ph of
ρ is such that |Ph| ≤ (|W |+ 2)h.785

Lemma 5.10 and Theorem 5.11 below show how to derive, from any trace
ρ of the given finite Kripke structure K , another trace ρ′, induced by ρ and
h-prefix bisimilar to ρ, such that |ρ′| ≤ (|W |+ 2)h+2. By Proposition 5.5, ρ′ is
indistinguishable from ρ with respect to the satisfiability of any AABBE formula
ψ with dB(ψ) ≤ h.790

In order to build ρ′, we first compute the (h + 1)-prefix sampling Ph+1 of
ρ. Then, for all the pairs of consecutive ρ-positions i, j ∈ Ph+1, we consider a
trace induced by ρ(i, j), with no repeated occurrences of any state, except at
most the first and last ones (hence, it is no longer than |W |+ 2). The trace ρ′

is just the ordered concatenation (by means of the ?-concatenation operator) of795

all these traces. The aforementioned bound on |ρ′| holds as, by Property 5.8,
|Ph+1| ≤ (|W | + 2)h+1. Lemma 5.10 states that ρ and ρ′ are indeed h-prefix
bisimilar. The proof of such lemma exploits the following technical result.

Lemma 5.9. Let h ≥ 1, ρ be a trace of K , and let i, j be two consecutive ρ-
positions in the h-prefix sampling of ρ. Then, for all ρ-positions n, n′ ∈ [i +800

1, j] such that ρ(n) = ρ(n′), it holds that ρ(1, n) and ρ(1, n′) are (h − 1)-prefix
bisimilar.

Proof. The proof is by induction on h ≥ 1.
Base case: h = 1. The 1-prefix sampling of ρ is the prefix-skeleton sampling

of ρ. Hence, being i and j consecutive positions in this sampling, for each805

position k ∈ [i, j − 1], there is ` ≤ i such that ρ(`) = ρ(k). Since ρ(n) = ρ(n′),
it holds that states(ρ(1, n)) = states(ρ(1, n′)), and thus ρ(1, n) and ρ(1, n′) are
0-prefix bisimilar.

Inductive step: h > 1. By definition of h-prefix sampling, there are two
consecutive positions i′, j′ in the (h− 1)-prefix sampling of ρ such that i, j are810

consecutive positions of the prefix-skeleton sampling of ρ(i′, j′).
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If i = i′, then j = i+ 1, and thus, being n, n′ ∈ [i+ 1, j], we get that n = n′,
and the result trivially holds.

Let i 6= i′, thus i > i′. As in the base case, we easily deduce that ρ(1, n) and
ρ(1, n′) are 0-prefix bisimilar. It remains to show that for each proper prefix ν815

of ρ(1, n) (resp., ν′ of ρ(1, n′)), there is a proper prefix ν′ of ρ(1, n′) (resp., ν of
ρ(1, n)) such that ν and ν′ are (h− 2)-prefix bisimilar. Let us consider a proper
prefix ν of ρ(1, n) (the proof for the other direction is symmetric). It holds that
ν = ρ(1,m), for some m < n. We distinguish two cases:

• m ≤ i. Hence, ρ(1,m) is a proper prefix of ρ(1, n′) and the result follows.820

• m > i. Since i and j are consecutive positions of the prefix-skeleton
sampling of ρ(i′, j′), i > i′, and m ∈ [i + 1, j − 1] (hence m < j′), there
is m′ ∈ [i′ + 1, i] such that ρ(m′) = ρ(m) and m′ is in the prefix-skeleton
sampling of ρ(i′, j′). Let ν′ = ρ(1,m′). Clearly, ν′ is a proper prefix of
ρ(1, n′) (as n′ ≥ i + 1). Moreover, since m,m′ ∈ [i′ + 1, j′] and i′, j′ are825

consecutive positions in the (h− 1)-prefix sampling of ρ, by the inductive
hypothesis, ν = ρ(1,m) and ν′ = ρ(1,m′) are (h− 2)-prefix bisimilar.

This concludes the proof of Lemma 5.9.

Lemma 5.10. Let h ≥ 1, let ρ be a trace of K , and let ρ′ = ρ(i1)ρ(i2) · · · ρ(ik) be
a trace induced by ρ, where 1 = i1 < i2 < . . . < ik = |ρ| and Ph+1 ⊆ {i1, . . . , ik},830

with Ph+1 the (h+ 1)-prefix sampling of ρ. Then, for all j ∈ [1, k], ρ′(1, j) and
ρ(1, ij) are h-prefix bisimilar.

Note that, as a straightforward consequence, ρ and ρ′ are h-prefix bisimilar.

Proof. Let Q = {i1, . . . , ik} (hence Ph+1 ⊆ Q) and let j ∈ [1, k]. We prove by
induction on j that ρ′(1, j) and ρ(1, ij) are h-prefix bisimilar. As for the base835

case (j = 1), the result holds, since i1 = 1.
Let us assume that j > 1. We first show that ρ(1, ij) and ρ′(1, j) are 0-prefix

bisimilar. Clearly, ρ(1) = ρ(i1) = ρ′(1), ρ(ij) = ρ′(j), and states(ρ′(1, j)) ⊆
states(ρ(1, ij)). Now, if, by contradiction, there was a state w such that w ∈
states(ρ(1, ij)) \ states(ρ′(1, j)), then for all l ∈ Q, with l ≤ ij , ρ(l) 6= w.840

However, the prefix-skeleton sampling P1 of ρ is contained in Q, and the minimal
ρ-position l′ such that ρ(l′) = w belongs to P1. Since w ∈ states(ρ(1, ij)),
we have l′ ≤ ij and we get a contradiction, implying that states(ρ′(1, j)) =
states(ρ(1, ij)).

It remains to prove that:845

(1) for each proper prefix ν′ of ρ′(1, j), there exists a proper prefix ν of ρ(1, ij)
such that ν and ν′ are (h− 1)-prefix bisimilar, and

(2) for each proper prefix ν of ρ(1, ij), there exists a proper prefix ν′ of ρ′(1, j)
such that ν and ν′ are (h− 1)-prefix bisimilar.

As for (1), let ν′ be a proper prefix of ρ′(1, j). Hence, there exists m ∈ [1, j−850

1] such that ν′ = ρ′(1,m). By the inductive hypothesis, ρ′(1,m) and ρ(1, im)
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are h-prefix bisimilar, and thus (h− 1)-prefix bisimilar as well by Property 5.3.
Since ρ(1, im) is a proper prefix of ρ(1, ij), by choosing ν = ρ(1, im), (1) follows.

As for (2), assume that ν is a proper prefix of ρ(1, ij). Therefore, there exists
n ∈ [1, ij − 1] such that ν = ρ(1, n). We distinguish two cases:855

• n ∈ Ph+1. Since n < ij , there exists m ∈ [1, j − 1] such that n = im. By
the inductive hypothesis, ρ(1, n) and ρ′(1,m) are h-prefix bisimilar, and
thus (h − 1)-prefix bisimilar as well by Property 5.3. Since ρ′(1,m) is a
proper prefix of ρ′(1, j), by choosing ν′ = ρ′(1,m), (2) follows.

• n /∈ Ph+1. It follows that there exist two consecutive positions i′ and860

j′ in Ph+1, with i′ < j′, such that n ∈ [i′ + 1, j′ − 1]. By definition of
(h + 1)-prefix sampling, there exist two consecutive positions i′′ and j′′

in the h-prefix sampling of ρ, with i′′ < j′′, such that i′ and j′ are two
consecutive positions in the prefix-skeleton sampling of ρ(i′′, j′′).

First, we observe that i′ 6= i′′ (otherwise, j′ = i′+1, which contradicts the865

fact that [i′ + 1, j′ − 1] 6= ∅, as n ∈ [i′ + 1, j′ − 1]). Thus, by definition of
prefix-skeleton sampling applied to ρ(i′′, j′′), and since n ∈ [i′ + 1, j′ − 1],
there must be ` ∈ [i′′ + 1, i′] such that ρ(`) = ρ(n) and ` is in the prefix-
skeleton sampling of ρ(i′′, j′′). Hence, ` ∈ Ph+1 by definition of (h + 1)-
prefix sampling. As a consequence, since ` < n < ij , there exists m ∈870

[1, j − 1] such that ` = im. By applying Lemma 5.9, we deduce that
ρ(1, n) and ρ(1, im) are (h−1)-prefix bisimilar. Moreover, by the inductive
hypothesis, ρ(1, im) and ρ′(1,m) are (h − 1)-prefix bisimilar. Thus, by
choosing ν′ = ρ′(1,m), ν′ is a proper prefix of ρ′(1, j) which is (h − 1)-
prefix bisimilar to ν = ρ(1, n).875

This concludes the proof of Lemma 5.10.

We are now ready to prove the exponential-size model-trace property.

Theorem 5.11 (Exponential-size model-trace property for AABBE). Let ρ be a
trace of a finite Kripke structure K and let h ≥ 0. Then, there exists a trace ρ′

induced by ρ, whose length is at most (|W |+ 2)h+2, such that for every AABBE880

formula ψ with dB(ψ) ≤ h, it holds that K , ρ |= ψ if and only if K , ρ′ |= ψ.

Proof. Let Ph+1 be the (h+ 1)-prefix sampling of ρ. For all pairs of consecutive
ρ-positions i and j in Ph+1, there exists a trace induced by ρ(i, j), whose length
is at most |W |+ 2, featuring no repeated occurrences of any internal state. We
now define ρ′ as the trace of K obtained by an ordered concatenation of all these885

induced traces by means of the ?-concatenation operator. It is immediate to
see that ρ′ = ρ(i1)ρ(i2) · · · ρ(ik), for some indexes 1 = i1 < i2 < · · · < ik = |ρ|,
where {i1, . . . , ik} contains the (h+ 1)-prefix sampling Ph+1 of ρ. It holds that
|ρ′| ≤ |Ph+1| · (|W |+ 2) and since, by Property 5.8, |Ph+1| ≤ (|W |+ 2)h+1, we
obtain that |ρ′| ≤ (|W |+2)h+2. Moreover, by Lemma 5.10, ρ and ρ′ are h-prefix890

bisimilar. By Proposition 5.5, the thesis follows.
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Theorem 5.11 allows us to easily devise an Expspace MC algorithm for
AABBE formulas (and symmetrically for AAEBE formulas), which can be ob-
tained from Algorithms 1 and 2 by adapting the bounds on the length of con-
sidered traces.895

In [29], the authors proved—in a much more involved way—the existence
of a bound on the length of satisfiability-preserving traces (called there trace
representatives), which is greater than the present one, i.e., O(|W |2h+4).

It is worth observing that the polynomial-size model-trace property for
AABB/AAEE of the previous section depends on the specific formula ϕ we are900

considering (as input of the MC problem), whereas the exponential-size model-
trace property for AABBE/AAEBE states the existence of a shorter trace ρ′

equivalent to (a generic) ρ with respect to all formulas up to a given B/E-
nesting depth h. As a matter of fact, the former relies on the witness positions,
which are defined on ϕ; the latter relies on h-prefix/suffix bisimilarity and h-905

prefix/suffix samplings, which are independent of any formula (they are only
based on h, that is, the maximum B/E-nesting depth of formulas we want to
consider). Therefore, we can say that the latter small-model states a stronger
property; however, this may lead to a bound on the length of equivalent traces
higher than necessary: we proved the MC problem for AABBE/AAEBE to be in910

Expspace, but it is only known to be Pspace-hard (since E or B are enough
for the Pspace-hardness, as shown in [30]). We do not know whether this
complexity gap is due to the small-model proving a loose bound (that might
be strengthen by finding another characterization depending on the input for-
mula as well), or to a weak complexity lower-bound (here, exploiting the other915

modalities A, A and B/E, along with B and E jointly, may enable us to prove a
stronger one)—or to both at the same time.

6. Conclusions

In this paper, we have studied the complexity scenario astride the line divid-
ing tractable and intractable fragments of Halpern and Shoham’s modal logic920

of time intervals HS with respect to model checking. On one hand, we have
shown that the simultaneous presence of modalities 〈B〉 and 〈E〉 is sufficient for
any HS fragment to be Expspace-hard—therefore provably intractable—and
this lower bound immediately propagates to full HS. On the other hand, we
have studied two well-behaved, Pspace-complete fragments, AABB and AAEE,925

which are quite promising from the point of view of applications. In between,
MC for AABBE and AAEBE turns out to be in Expspace and Pspace-hard.

Membership to Pspace for the former two fragments and membership to
Expspace for the latter have been proved by means of small-models, which,
in turn, rely on suitable (depending on the specific fragment) contraction tech-930

niques applied to the traces of a finite Kripke structure. While the first result
is novel, the second slightly reduces the bounds for trace representatives given
for the same problem in [29], and substantially simplifies the constructions and
the complexity of the proofs.
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As for future work, we would like to precisely characterize the complexity of935

MC for AABBE and AAEBE. However, an even larger complexity gap is the one
for full HS: we have shown it to be Expspace-hard, but the only known upper
bound is non-elementary [27].

Finally, we want to relax the homogeneity assumption, which limits the
expressiveness of HS and its fragments. One possible direction has been outlined940

by Lomuscio and Michaliszyn in [24], where the proposition letters that hold on
an interval have been defined by means of regular expressions over the states
of a Kripke structure. We expect that, under this semantic variant, model
checking for full HS will remain decidable and that the complexity of some
fragments could increase as a combined effect of the expressive power of regular945

expressions and of HS modalities.
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