
09 April 2024

Università degli studi di Udine

Original

Model Checking for Fragments of the Interval Temporal Logic HS at the Low
Levels of the Polynomial Time Hierarchy

Publisher:

Published
DOI:10.1016/j.ic.2018.09.006

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/1130801 since 2021-03-25T18:04:06Z

Model Checking for Fragments of the Interval Temporal Logic HS

at the Low Levels of the Polynomial Time HierarchyI

Laura Bozzellia, Alberto Molinarib, Angelo Montanarib, Adriano Perona, Pietro Salac

aDepartment of Electronic Engineering and Information Technologies, University of Napoli “Federico II”,
Italy

bDepartment of Mathematics, Computer Science, and Physics, University of Udine, Italy
cDepartment of Computer Science, University of Verona, Italy

Abstract

Some temporal properties of reactive systems, such as actions with duration, accomplish-
ments, and temporal aggregations, which are inherently interval-based, can not be properly
dealt with by the standard, point-based temporal logics LTL, CTL and CTL*, as they give a
state-by-state account of system evolution. Conversely, interval temporal logics—which fea-
ture intervals, instead of points, as their primitive entities—are highly expressive formalisms
for temporal representation and reasoning that naturally allow one to deal with them.

In this paper, we study the model checking (MC) problem for Halpern and Shoham’s
modal logic of time intervals (HS), interpreted on Kripke structures, under the homogeneity
assumption, according to which a proposition letter holds over a finite computation path
(interval) if and only if it holds at all of its states. HS is the best known interval-based
temporal logic, which has one modality for each of the 13 possible ordering relations between
pairs of intervals (the so-called Allen’s relations), apart from equality. We focus on the MC
problem for some HS fragments featuring modalities for (a subset of) Allen’s relations meet,
met-by, started-by, and finished-by, showing that it is in PNP, a class to which other point-
based logics (e.g., CTL+ and FCTL) are known to belong. Additionally, we provide some
complexity lower bounds to the problem. All the algorithms we propose can be efficiently
implemented by means of a polynomial-time procedure which iteratively invokes a SAT-
solver, enabling us to directly exploit the great speed of SAT-solvers.

Keywords: Interval Temporal Logic, Model Checking, Computational Complexity
2010 MSC: 03B70, 68Q60

1. Introduction

Our dependence on hardware and software systems is continuously increasing under many
aspects of our everyday life. Embedded systems are employed for critical applications, e.g.,

IThis paper is an extended and revised version of [40] and [10].
Email addresses: lr.bozzelli@gmail.com (Laura Bozzelli), molinari.alberto@gmail.com (Alberto

Molinari), angelo.montanari@uniud.it (Angelo Montanari), adrperon@unina.it (Adriano Peron),
pietro.sala@univr.it (Pietro Sala)

Preprint submitted to Information and Computation April 14, 2018

air traffic and railway control systems, telephone networks, and nuclear plants monitoring.
Security protocols are at the basis of e-commerce websites and services, and are exploited in
all applications which have to ensure user privacy. Biomedical instruments and equipment
are endowed with automatic or proactive functionalities, and are supposed to help humans
and to prevent human error. Thus, the essential requirements of safety, reliability, and
correctness for these systems suggest to support their development steps, namely, design,
implementation, verification, and testing, by structured methodologies possibly founded on
formal methods—some of them are even becoming integral part of standards—as well as by
suitable specification languages and automatic verification techniques and tools.

A well known technique in this setting is model checking. Model checking (MC) allows
one to verify the desired properties of a system against a model of its behaviour [19]. Prop-
erties are usually specified by means of temporal logics, such as LTL and CTL, and systems
are represented as labelled state-transition graphs (Kripke structures). MC algorithms per-
form, in a fully automatic way, an (implicit or explicit) exhaustive enumeration of all the
states reachable by the system, and either terminate positively—proving that all properties
are met—or produce a counterexample—witnessing that some behavior falsifies a property,
which is extremely useful for debugging purposes.

MC can be applied during the early stages of the development cycle, allowing one to ana-
lyze even partial specifications, in such a way that it is not necessary to completely describe
a system before information can be obtained regarding its correctness. MC has been applied
in a variety of practical scenarios, including, for instance, communication and security pro-
tocols [2, 3], embedded reactive systems [18], computer device drivers [57], database-backed
web applications [24], concurrency control and transaction atomicity [35], automated veri-
fication of UML design of applications [20], testing of railway control systems [5, 44], and
verification of clinical guidelines [22].

The MC problem has been investigated for a long time only in the context of point-based
temporal logics, like LTL, CTL, and CTL∗, which predicate over single system/computation
states [21, 46, 47, 51]. For instance, LTL allows one to reason about changes in the truth
value of formulas in a Kripke structure over a linearly-ordered temporal domain, where
each moment in time has a unique possible future. More precisely, one has to consider all
possible paths in a Kripke structure and to analyse, for each of them, how proposition letters,
labelling the states, change from one state to the next one along the path. A systematic
investigation of MC for interval temporal logics has been initiated very recently.

Interval temporal logics (ITLs) [27, 53, 54] feature intervals, instead of points, as their
primitive entities. This makes them a highly expressive formalism for temporal representa-
tion and reasoning, with the ability of easily “mastering” advanced temporal features, such
as actions with duration, accomplishments, and temporal aggregations, which can not be
properly dealt with by standard, point-based temporal logics. ITLs have been applied in
a variety of computer science fields, including artificial intelligence (reasoning about action
and change, qualitative reasoning, planning, multi-agent systems, and computational lin-
guistics), theoretical computer science (formal verification), and databases (temporal and
spatio-temporal databases) [6, 23, 25, 34, 43, 48, 58]. However, the great expressiveness of
ITLs is a double-edged sword: in most cases, the satisfiability problem for ITLs turns out to

2

be undecidable, and, in the few decidable ones, the standard proof machinery, like Rabin’s
theorem, is usually not applicable.

The best known ITL is Halpern and Shoham’s modal logic of time intervals (HS, for
short) [27], which has one modality for each of the 13 possible ordering relations between
pairs of intervals (the so-called Allen’s relations [1]), apart from equality. In [27], the authors
prove that the satisfiability problem for HS, interpreted over all relevant (classes of) linear
orders, is undecidable. The investigation has been later extended to many HS fragments,
leading to the conclusion that undecidability prevails over them as well (see [12] for an up-
to-date account of undecidable fragments). However, meaningful exceptions exist, including
the interval logic of temporal neighbourhood AA and the interval logic of sub-intervals D [13,
14, 15, 41, 42].

In this paper, we focus on the MC problem for HS, which has entered the research agenda
only recently [31, 32, 33, 36, 37, 38, 39] (it is worth pointing out that, in contrast to the case
of point-based, linear temporal logics, there is no easy reduction from the MC problem to
validity/satisfiability for ITL). In interval-based MC, in order to verify interval properties of
computations, one needs to collect information about the states of a system into computation
stretches. To this aim, we interpret each finite path of a Kripke structure (a trace) as an
interval, and we define the labelling of an interval on the basis of the proposition letters
which hold on the sequence of states that compose it. Different ways of defining interval
labeling have been proposed in the literature. A short account of them is given in the related
work section below.

1.1. Related work

In [36], Molinari et al. gave a first characterization of MC for full HS interpreted over finite
Kripke structures, under the homogeneity assumption [49], according to which a proposition
letter holds over an interval if and only if it holds at all its states. In that paper, the authors
showed that finite Kripke structures can be suitably mapped into interval-based structures,
called abstract interval models, over which HS formulas can be interpreted. Then, they
proved a small model theorem showing (with a non-elementary procedure) the decidability
of MC for full HS, which was later proved to be EXPSPACE-hard by Bozzelli et al. in [8].1

The MC problem for some large fragments of HS was studied in [8, 37, 38]. In [38],
Molinari et al. devised an EXPSPACE MC algorithm for the HS fragment AABBE (resp.,
AAEBE) of Allen’s relations meets, met-by, starts, finishes, and started-by (resp., finished-by),
which exploits the possibility of finding, for each trace (of unbounded length), an equivalent
bounded-length trace representative in such a way that, while checking a property, the

1It is worth pointing out that the homogeneity assumption, which allows us to interpret HS formulas
on Kripke structures in a fairly natural way, changes the status of the satisfiability problem for HS and its
fragments. In particular, in [9] Bozzelli et al. showed that, when interpreted over the (infinite) fullpaths of
a finite Kripke structure (which is not the way we interpret it here), LTL and HS have the same expressive
power, but the latter is provably at least exponentially more succint. As a byproduct, the satisfiability
problem for full HS, under such a trace-based semantics, turns out to be decidable. Thus, under the
homogeneity assumption, the relevant issue for the satisfiability problem of HS and its fragments becomes
its complexity, rather than its decidability. We addressed it for the interval logic of sub-intervals D in [11].

3

algorithm only needs to consider traces whose length does not exceed the given bound. The
PSPACE-hardness of the problem was proved in [37]. In [8], Bozzelli et al. showed that MC
for the fragment AABB (resp., AAEE) obtained from AABBE (resp., AAEBE) by removing
the modality for the Allen relation finished-by (resp., started-by) is PSPACE-complete.

In [31, 32, 33], Lomuscio and Michaliszyn addressed the MC problem for some fragments
of HS extended with epistemic modalities. Their semantic assumptions are different from
those made in [36], making a systematic comparison of the two research lines quite difficult.
In both cases, formulas of HS are evaluated over finite paths/intervals of a Kripke structure;
however, while in [36] homogeneity is assumed, in [31, 32] truth of proposition letters over
an interval depends only on its endpoints.

In [31], the authors focused on the HS fragment BED of Allen’s relations started-by,
finished-by, and contains (since modality 〈D〉 is definable in terms of modalities 〈B〉 and 〈E〉,
BED is actually as expressive as BE), extended with epistemic modalities. They considered
a restricted form of MC, which verifies a given specification against a single (finite) initial
computation interval. Their goal was indeed to reason about a given computation of a
multi-agent system, rather than on all its admissible computations. They proved that the
considered MC problem is PSPACE-complete; furthermore, they showed that the same
problem restricted to the pure temporal fragment BED, that is, the one obtained by removing
epistemic modalities, is in P. These results do not come as a surprise: modalities 〈B〉 and
〈E〉 allow one to access only sub-intervals of the initial one, whose number is quadratic in
the length (number of states) of the initial interval.

In [32], they showed that the picture drastically changes with other HS fragments that
allow one to access infinitely many intervals. In particular, they proved that the MC problem
for the fragment ABL of Allen’s relations meets, starts, and before (since modality 〈L〉 is
definable in terms of modality 〈A〉, ABL is actually as expressive as AB), extended with
epistemic modalities, is decidable with a non-elementary upper bound. Note that, thanks
to modalities 〈A〉 and 〈B〉, formulas of ABL can possibly refer to infinitely many (future)
intervals.

Finally, in [33], Lomuscio and Michaliszyn showed how to use regular expressions in
order to specify the way in which intervals of a Kripke structure get labelled. Such an
extension leads to a significant increase in expressiveness, as the labelling of an interval is
no more determined by that of its endpoints only, but it depends on the ordered sequence of
states the interval consists of. They also proved that there is no corresponding increase in
computational complexity, as the bounds given in [31, 32] still hold with the new semantic
variant: MC for BED is still in PSPACE, and it is non-elementarily decidable for ABL.

1.2. Main contributions

In this paper, we study the MC problem for some of the HS fragments featuring (a subset
of) Allen’s relations meet, met-by, started-by, and finished-by, namely, A, A, AA, AB, AB,
AE, AE, AAB, and AAE. All these fragments have a similar computational complexity, as
their MC problem settles in one of the lowest levels of the polynomial-time hierarchy, PNP,
or below. Such a class consists of the set of problems decided by a deterministic polynomial-
time-bounded Turing machine, with the “support” of an oracle for the class NP, that is, a

4

tool which decides, in one computation step, whether an instance of a problem belonging to
NP is positive or not. PNP is also referred to as P relative to NP (relativization).

Though the fragments in the considered set are similar, some differences can be marked.
In particular, the fragments A, A, AA, AB, and AE are actually “easier”than the other ones,
since they require the P Turing machine to perform just O(log2 n) queries to the NP oracle,
for an input size n, instead of O(nk) queries, for some constant k ≥ 0, as it is required in the
general case for a polynomial running time machine. The MC problem for the considered
subset of fragments witnesses a “non-standard” complexity class in the polynomial-time
hierarchy, called bounded-query class, that will be presented in more detail below.

More formally, we first prove that MC for AB, AE, AAB, and AAE is a PNP-complete
problem. To this end, we design an PNP algorithm exploiting a small-model theorem proved
in [8] and we prove a matching complexity lower bound.2

Next, we devise a second MC algorithm for all the remaining fragments, that is, A, A,
AA, AB, and AE, via a reduction to the problem TB(SAT)1×M [50] (a problem complete
for the above-mentioned bounded-query class), whose instance is a complex circuit in which
some of the gates are endowed with NP oracles.

Finally, we identify a lower bound, which shows that at least log n queries are needed to
solve the problem. Notice that, unfortunately, such a lower bound does not exactly match
the upper bound leaving open the question whether the problem can be solved by o(log2 n)
(i.e., strictly less than O(log2 n)) queries to an NP oracle, or a tighter lower bound can be
proved (or both).

It is worth noting that, no matter what the precise number of NP queries to be performed
is, both the MC algorithms we propose can be efficiently implemented in practice by means
of a polynomial-time procedure which iteratively invokes a SAT-solver. Such a procedure
just generates some suitable Boolean formulas, feeds the SAT-solver, and stores the results.
The modular and repetitive structure of the required Boolean formulas allows us both to
efficiently generate them and to exploit the warm-restart technique of SAT-solvers to quickly
solve formulas following a common structural pattern.

1.3. Organization of the paper

In Section 2, we provide some background knowledge. More precisely, we introduce HS
(Subsection 2.1), abstract interval models, and the MC problem for HS (Subsection 2.2).
Then, we recall some basic notions about the complexity classes that come into play in the
paper (Subsection 2.3). Finally, we sketch the picture of known and new complexity results
for the MC problem for HS (Subsection 2.4).

In Section 3, we describe a PNP MC algorithm for AAB (and AAE). In Section 4, we
provide a different MC algorithm for the fragments AA, AB, and AE, whose computational
complexity is lower, as it requires only O(log2 n) queries to a NP oracle.

In Section 5, we prove a PNP lower bound for AB (resp., AE) MC.The bound immediately
propagates to AAB (resp., AAE), closing the complexity gap and proving that the MC

2In this paper, we use LOGSPACE many-one reductions for the proofs of hardness.

5

Table 1: Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example

x y

v z
v z

v z
v z
v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v
before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB[v, z] ⇐⇒ x = v ∧ z < y
finished-by 〈E〉 [x, y]RE[v, z] ⇐⇒ y = z ∧ x < v
contains 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y
overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

problem for AB, AE, AAB, and AAE is PNP-complete. In Section 6, we prove that MC for
A and A formulas requires at least log n queries to a NP oracle: this bound propagates to
AA, AB, and AE.

Conclusions summarize the work done and outline some directions for future research.

2. Preliminaries

2.1. The interval temporal logic HS

An interval algebra to reason about intervals and their relative order was originally
proposed by Allen in [1]. Some years later, Halpern and Shoham began a systematic logical
study of interval representation and reasoning by introducing the interval temporal logic
now known as HS, which has one modality for each Allen interval relation but equality [27].
Table 1 depicts 6 of the 13 Allen’s relations, together with the corresponding HS (existential)
modalities. The other 7 relations are the 6 inverses and equality. Given a binary relation
R , the inverse R is such that bR a if and only if aR b. Notationally, if 〈X〉 is the modality
for R , we denote by 〈X〉 the modality for R .

The HS language consists of a set of proposition letters AP , the Boolean connectives ¬
and ∧, and a temporal modality for each of the (non trivial) Allen’s relations, that is, 〈A〉,
〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉, 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, and 〈O〉.

HS formulas are defined by the grammar:

ψ ::= p | ¬ψ | ψ ∧ ψ | 〈X〉ψ | 〈X〉ψ,

where p ∈ AP and X ∈ {A,L,B,E,D,O}. In the following, we shall also exploit as abbrevi-
ations the standard logical connectives for disjunction ∨, implication→, and equivalence↔.
Furthermore, for any existential modality 〈X〉ψ (resp., 〈X〉ψ), the dual universal modality
[X]ψ (resp., [X]ψ) is defined as ¬〈X〉¬ψ (resp., ¬〈X〉¬ψ). Finally, given any subset of
Allen’s relations {X1, . . . , Xn}, we denote by X1 · · ·Xn the HS fragment featuring existential
(and universal) modalities for X1, . . . , Xn only.

W.l.o.g., we assume the non-strict semantics of HS, which admits intervals consisting
of a single point.3 Under such an assumption, all HS modalities can be expressed in terms

3All the results we prove in the paper hold for the strict semantics as well.

6

of modalities 〈B〉, 〈E〉, 〈B〉, and 〈E〉 [27]. HS can thus be seen as a multi-modal logic with
these four primitive modalities and its semantics can be defined over a multi-modal Kripke
structure, called abstract interval model, where intervals are treated as atomic objects and
Allen’s relations as binary relations between pairs of intervals. Since later we shall focus
on some HS fragments not including 〈B〉 and 〈E〉, we add both 〈A〉 and 〈A〉 to the set of
considered HS modalities.

Definition 1 ([36]). An abstract interval model is a tuple A = (AP , I, AI, BI, EI, σ), where

• AP is a set of proposition letters,

• I is a possibly infinite set of atomic objects (worlds),

• AI, BI, and EI are three binary relations over I, and

• σ : I 7→ 2AP is a (total) labeling function, which assigns a set of proposition letters to
each world.

In the interval setting, I is interpreted as a set of intervals and AI, BI, and EI as the Allen’s
relations A (meets), B (started-by), and E (finished-by), respectively; σ assigns to each
interval in I the set of proposition letters that hold at it.

Given an abstract interval model A = (AP , I, AI, BI, EI, σ) and an interval I ∈ I, the
truth of an HS formula over I is inductively defined as follows:

• A, I |= p if and only if p ∈ σ(I), for any p ∈ AP ;

• A, I |= ¬ψ if and only if it is not true that A, I |= ψ (also denoted as A, I 6|= ψ);

• A, I |= ψ ∧ φ if and only if A, I |= ψ and A, I |= φ;

• A, I |= 〈X〉ψ, for X ∈ {A,B,E}, if and only if there exists J ∈ I such that I XI J and
A, J |= ψ;

• A, I |= 〈X〉ψ, for X ∈ {A,B,E}, if and only if there exists J ∈ I such that J XI I and
A, J |= ψ.

2.2. Kripke structures, abstract interval models, and model checking

In the context of model checking, finite state systems are usually modelled as Kripke
structures. Following the approach in [36], we define a mapping from Kripke structures to
abstract interval models, that allows one to specify interval properties of computations by
means of HS formulas.

Definition 2. A finite Kripke structure is a tuple K = (AP ,W, δ, µ, w0), where AP is a set
of proposition letters, W is a finite set of states, δ ⊆ W ×W is a left-total relation4 between
pairs of states, µ : W 7→ 2AP is a total labelling function, and w0 ∈ W is the initial state.

4A relation δ ⊆ W × W is left-total if, for all w ∈ W , there exists at least one w′ ∈ W such that
(w,w′) ∈ δ.

7

v0
p, q

v1
q

v2
p

Figure 1: The Kripke structure K3.

For all w ∈ W , µ(w) is the set of proposition letters that hold at the world w, while δ is
the transition relation that describes the evolution of the system over time.

Example 1. Figure 1 depicts the finite Kripke structure K3 = ({p, q}, {v0, v1, v2}, δ, µ, v0),
where δ = {(v0, v0), (v0, v1), (v0, v2), (v1, v0), (v1, v1), (v2, v2)}, µ(v0) = {p, q}, µ(v1) = {q}
and µ(v2) = {p}. The initial state v0 is marked by a double circle.

A trace ρ over a finite Kripke structure K = (AP ,W, δ, µ, w0) is a finite sequence of states
v1 · · · vn, with n ≥ 1, such that (vi, vi+1) ∈ δ for i = 1, . . . , n− 1. Let TrcK be the (infinite)
set of all traces over a finite Kripke structure K . For any trace ρ = v1 · · · vn ∈ TrcK , we
define:

• |ρ| = n, and for 1 ≤ i ≤ |ρ|, ρ(i) = vi;

• fst(ρ) = v1, lst(ρ) = vn;

• states(ρ) = {v1, . . . , vn} ⊆ W ;

• ρ(i, j) = vi · · · vj, with 1 ≤ i ≤ j ≤ |ρ|, is the subtrace of ρ bounded by i and j;

• Pref(ρ) = {ρ(1, i) | 1 ≤ i ≤ |ρ| − 1} and Suff(ρ) = {ρ(i, |ρ|) | 2 ≤ i ≤ |ρ|} are the sets
of all proper prefixes and suffixes of ρ, respectively.

Given ρ, ρ′ ∈ TrcK , we denote by ρ · ρ′ the concatenation of the traces ρ and ρ′. Finally, if
fst(ρ) = w0 (the initial state of K), ρ is called an initial trace.

An abstract interval model (over TrcK) can be naturally associated with a finite Kripke
structure K by considering the set of intervals as the set of traces of K . Since K has loops
(δ is left-total), the number of traces in TrcK , and thus the number of intervals, is infinite.

Definition 3. The abstract interval model induced by a finite Kripke structure K = (AP ,W,
δ, µ, w0) is AK = (AP , I, AI, BI, EI, σ), where

• I = TrcK ,

• AI = {(ρ, ρ′) ∈ I× I | lst(ρ) = fst(ρ′)},

• BI = {(ρ, ρ′) ∈ I× I | ρ′ ∈ Pref(ρ)},
8

• EI = {(ρ, ρ′) ∈ I× I | ρ′ ∈ Suff(ρ)},

• σ : I 7→ 2AP is such that, for all ρ ∈ I, σ(ρ) =
⋂

w∈states(ρ)

µ(w).

Relations AI, BI, and EI are interpreted as the Allen’s relations A,B, and E, respectively.
Furthermore, according to the definition of σ, a proposition letter p ∈ AP holds over ρ =
v1 · · · vn if and only if it holds over all the states v1, . . . , vn of ρ. This conforms to the
homogeneity principle, according to which a proposition letter holds over an interval if and
only if it holds over all its subintervals [49]. Satisfiability of an HS formula over a Kripke
structure can be given in terms of induced abstract interval models.

Definition 4. Let K be a finite Kripke structure and ψ be an HS formula. We say that a
trace ρ ∈ TrcK satisfies ψ, denoted as K , ρ |= ψ, if and only if it holds that AK , ρ |= ψ.

Furthermore, we say that K models ψ, denoted as K |= ψ, if and only if for all initial
traces ρ′ ∈ TrcK it holds that K , ρ′ |= ψ. The MC problem for HS over finite Kripke
structures is the problem of deciding whether K |= ψ.

It is worth pointing out that every Kripke structure K induces an abstract interval model,
and that only interval models arising from Kripke structures are considered in the MC
problem. Such a problem is not trivially decidable, as the set TrcK of traces of K is infinite.

Remark 1. We would like to draw attention to the branching semantics of modalities 〈A〉
and 〈A〉: 〈A〉 (resp., 〈A〉) allows one to “move” to any trace branching on the right (resp.,
left) of the considered one. As an example, with reference to the Kripke structure K 3 in
Figure 1, given the trace ρ = v0v0v0, it holds that ρAI v0v1, ρAI v0v2, ρAI v0v1v1, ρAI v0v2v2,
and so on. Thus, K 3, ρ |= 〈A〉 q∧〈A〉 p∧〈A〉 ¬q∧〈A〉 ¬p, since K 3, v0v1 |= q, but K 3, v0v1 6|= p,
and K 3, v0v2 |= p, but K 3, v0v2 6|= q.

We conclude the section with a simple example (a simplified version of the one given
in [36]), showing that the fragments investigated in this paper can express meaningful prop-
erties of state transition systems in a very compact way, compared to their formulation in
standard point-based temporal logics.5

Example 2. In Figure 2, we give an example of a finite Kripke structure KSched that models
the behaviour of a scheduler serving three processes which are continuously requesting the
use of a common resource. The initial state (denoted by a double circle) is v0: no process
is served in that state. In the states vi and vi, with i ∈ {1, 2, 3}, the i-th process is served
(this is denoted by the fact that pi holds in those states). For the sake of readability, edges
are marked either by ri, for request(i), or by ui, for unlock(i). Edge labels do not have
a semantic value, that is, they are neither part of the structure definition, nor proposition

5We systematically compared the expressive power of interval temporal logic model checking with that
of point-based temporal logic one in [9]. We refer the interested reader to such a publication.

9

v0

∅

v2
p2

v1
p1

v3
p3

v1
p1

v2
p2

v3
p3

r1

r2

r3

u1 u2 u3

r2

r3

r1 r3

r1

r2

Figure 2: The Kripke structure KSched.

letters; they are simply used to ease reference to edges. Process i is served in state vi. Then,
after “some time”, a transition ui from vi to vi is taken. Subsequently, process i cannot be
served again immediately, as vi is not directly reachable from vi (the scheduler cannot serve
the same process twice in two successive rounds). A transition rj, with j 6= i, from vi to vj
is then taken and process j is served. This structure can easily be generalised to a higher
number of processes.

We now show how some meaningful properties to be checked over KSched can be expressed
in the HS fragment AE. In all the following formulas, we state the validity of the consid-
ered properties over all legal computation sub-intervals by using the modality [E] (as all
computation sub-intervals are suffixes of at least one initial trace of the Kripke structure):

• KSched |= [E]
(
〈E〉3> → (χ(p1, p2) ∨ χ(p1, p3) ∨ χ(p2, p3))

)
,

where χ(p, q) = 〈E〉 〈A〉 p ∧ 〈E〉 〈A〉 q;

• KSched 6|= [E](〈E〉10> → 〈E〉 〈A〉 p3);

• KSched 6|= [E](〈E〉5 → (〈E〉 〈A〉 p1 ∧ 〈E〉 〈A〉 p2 ∧ 〈E〉 〈A〉 p3)).

The first formula requires that at least 2 proposition letters are witnessed in any suffix
with length at least 4 of an initial trace. Since a process cannot be executed twice in a row,
the formula is satisfied by KSched.

The second formula requires that, in any suffix with length at least 11 of an initial trace,
process 3 is executed at least once in some internal states (non starvation). KSched does not
satisfy the formula, because the scheduler can defer the execution of a process ad libitum.

The third formula requires that, in any suffix having length at least 6 of an initial trace,
p1, p2, and p3 are all witnessed. The only way to satisfy this property would be to force the

10

scheduler to execute the three processes in a strictly periodic manner (strict alternation),
that is, pipjpkpipjpkpipjpk · · · , for i, j, k ∈ {1, 2, 3} and i 6= j 6= k 6= i, but KSched does not
meet such a requirement.

Before summarizing known complexity results about MC for HS and its fragments (under
the homogeneity assumption), we recall some relevant notions of complexity theory and we
give a short account of some not that well known complexity classes.

2.3. Some complexity classes in the polynomial-time hierarchy

For the sake of completeness, we briefly recall here some notions concerning the polynomial-
time hierarchy exploited in the paper.

The polynomial-time hierarchy, denoted by PH, was introduced by Stockmeyer in [52],
and is defined as

PH =
⋃
k∈N

∆p
k,

where ∆p
0 = Σp

0 = Πp
0 = P, and, for all k ≥ 1, ∆p

k = PΣp
k−1 , Σp

k = NPΣp
k−1 , Πp

k = co-Σp
k.

In particular, we have that ∆p
1 = P, Σp

1 = NP, and ∆p
2 = PNP. A well-known example of

complete problem for Σp
k (resp., Πp

k) is to decide the truth of fully-quantified formulas of the
form Q1x1Q2x2 · · ·Qnxnφ(x1, x2, . . . , xn), where φ(x1, x2, . . . , xn) is a quantifier-free Boolean
formula, whose variables range in the set {x1, x2, . . . , xn}, Qi ∈ {∃,∀}, for all 2 ≤ i ≤ n,
Q1 = ∃ (resp., Q1 = ∀), and there are k − 1 quantifier alternations, that is, k − 1 different
indexes j > 1 such that Qj 6= Qj−1. On the contrary, ∆p

k does not feature very popular
complete problems. As an example, for each k ≥ 1, a ∆p

k+1-complete problem is to decide
whether, given a true quantified Boolean formula of the form

∃x1 · · · ∃xr∀xr+1Qr+2xr+2 · · ·Qnxnφ(x1, . . . , xn),

with k−1 quantifier alternations, the lexicographically maximum truth assignment υ to the
variables 〈x1, . . . , xr〉 such that

∀xr+1Qr+2xr+2 · · ·Qnxnφ(υ(x1), . . . , υ(xr), xr+1, . . . , xn)

is true assigns 1 to xr [26].
As a particular case, given a satisfiable Boolean formula φ(x1, . . . , xn), the problem of

deciding whether the lexicographically maximum truth assignment to 〈x1, . . . , xn〉 satisfying
φ assigns 1 to xn is complete for ∆p

2 = PNP. For other examples of PNP-complete problems
(many of them are related to MC) we refer the reader to [4, 28, 29, 30].

Above NP and co-NP, but below PNP, is the class PNP[O(logn)], introduced by Pa-
padimitriou and Zachos in [45], which is the set of problems decided by a deterministic P
algorithm (Turing machine) which requires only O(log n) queries to an NP oracle (being

n the input size). Analogously, PNP[O(log2 n)] is the set of problems decided by a P algo-
rithm requiring O(log2 n) queries to an NP oracle.6 These complexity classes (and all others

6Here and in the following, we assume that the polynomial hierarchy PH is not collapsing, and that

PNP, PNP[O(log n)], and PNP[O(log2 n)] are distinct, as it is widely conjectured.

11

which set a bound on the number of allowed queries) are called bounded query classes. Note

that PNP, PNP[O(logn)] and PNP[O(log2 n)] are closed under complementation, as well as under
LOGSPACE (many-one) reductions.

As for PNP[O(logn)], it has been proved (see [16, 56]) that PNP[O(logn)] = LOGSPACENP

= PNP
‖ , where PNP

‖ is the class of problems decided by a deterministic P algorithm which
performs a single round (or a constant number of rounds) of parallel queries to an NP oracle.
By parallel queries, it is intended that each query is independent of the outcome of any
other or, equivalently, that all queries have to be formulated before the oracle is consulted.
Obviously, the constraint of parallelism is not necessarily fulfilled in the class PNP, where
a query to the oracle may be adaptive, that is, it may depend on the results of previously
performed queries. An example of complete problem for PNP[O(logn)] is PARITY(SAT):
given a set of Boolean formulas Γ = {φ1, . . . , φn}, the problem is to decide if the number of
satisfiable formulas in Γ is odd or even [55].

As for PNP[O(log2 n)], it has been proved in [17] that PNP[O(log2 n)] = PNP
‖O(logn), (in PNP

‖O(logn)

a succession of O(log n) parallel query rounds are allowed). To the best of our knowledge,
the first complete problems for this class were introduced in [50]. Among these complete
problems, a detailed account of the problem TB(SAT)1×M will be given in Section 4.

2.4. The general picture

In this section, we give an overview of both known and new results about the complexity
of the MC problem for full HS and its proper fragments (under the homogeneity assumption).
The results are summarized in Figure 3.

In [36], Molinari et al. proved that, given a Kripke structure K and a bound k on the
structural complexity of HS formulas, that is, on the nesting depth of 〈E〉 and 〈B〉modalities,
it is possible to obtain a finite representation for AK , which is equivalent to AK with respect
to satisfiability of HS formulas with structural complexity less than or equal to k. Then, by
exploiting such a representation, they proved that the MC problem for (full) HS is decidable,
providing an algorithm with non-elementary complexity. In [8], EXPSPACE-hardness of
the fragment BE, and thus of full HS, has been shown.

The fragments AABBE and AAEBE have been investigated in [38]. For each of them, an
EXPSPACE MC algorithm has been devised that, for any trace of the Kripke structure,
finds a satisfiability-preserving trace of bounded length (trace representative). In this way,
the MC algorithm needs to check only traces with a given maximum length. PSPACE-
hardness of MC for AABBE and AAEBE has been proved in [37] (if a succinct encoding of
formulas is exploited, the algorithm remains in EXPSPACE, but a NEXP lower bound
can be given [38]). In addition, it has been shown that formulas satisfying a constant bound
on the nesting depth of 〈B〉 (resp., 〈E〉) can be checked in polynomial working space [38].

Finally, the MC problem has been shown to be PSPACE-complete for the HS fragments
AABE [37], AABB and AAEE [8], and B and E [40], and co-NP-complete for the HS fragments
B and E (the same complexity as MC for the purely propositional HS fragment Prop [37]).
In all these cases, the computational complexity turns out be comparable with or lower than
that of LTL MC, which is known to be PSPACE-complete [51]. A comparison of different

12

AABE PSPACE-complete 2,3 B PSPACE-complete 5

E PSPACE-complete 5

AAEE PSPACE-complete 4AABB PSPACE-complete 4

AA
PNP[O(log2 n)]

PNP[O(logn)]-hard
A, A

PNP[O(log2 n)]

PNP[O(logn)]-hard
AB, AE

PNP[O(log2 n)]

PNP[O(logn)]-hard

AAB PNP-complete AAE PNP-complete

AB PNP-complete AE PNP-complete

B co-NP-complete 4

E co-NP-complete 4

Prop co-NP-complete 3

AABBE
EXPSPACE 2

PSPACE-hard 3

succinct AABBE
EXPSPACE 2

NEXP-hard 2
BE

nonELEMENTARY 1

EXPSPACE-hard 4

full HS
nonELEMENTARY 1

EXPSPACE-hard 4

hard

hard

hard

hard

upper-b.

hard

hard

hard

hard
hard

hard

upper-b.

hard

upper-b.

1 [36], 2 [38], 3 [37], 4 [8], 5 [40]

Figure 3: The computational complexity of MC for HS and its fragments: known results are depicted in
white boxes, new ones in gray boxes.

semantics for HS, that is, state-based (the one adopted here), linear, and computation-tree-
based, together with an expressiveness comparison with the point-based temporal logics
LTL, CTL, and CTL∗, can be found in [9].

In this paper, we complete the analysis of the sub-fragments of AABB (respectively,
AAEE), which are still expressive enough to capture meaningful interval properties of state
transition systems and whose MC problem has a computational complexity markedly lower
than that of full HS (see Figure 4). More precisely,

• in Section 3, we devise a PNP MC algorithm for AAB (resp., AAE);

• in Section 4, we provide a PNP[O(log2 n)] MC algorithm for AA, AB, and AE;

• in Section 5, we prove that MC for AB (resp., AE) is PNP-hard, from which it follows
that MC for AB, AAB, AE, and AAE is PNP-complete;

• in Section 6, we show that MC for A and A is PNP[O(logn)]-hard; such a lower bound
immediately propagates to AA, AB and AE showing that MC for these five fragments
is in between PNP[O(log2 n)] and PNP[O(logn)].

13

B A A B

AB AA AB AB AB BB

AAB ABB AAB ABB

AABB

Prop

co-NP PNP[O(log2 n)] PNP PSPACE

Figure 4: The computational complexity of MC for the sub-fragments of AABB.

It is worth pointing out that the fragment AB belongs to a lower complexity class than the
fragment AB (the same holds for the symmetric fragments AE and AE). Such a difference
can be intuitively explained by the different expressiveness of the two fragments. Let us
consider an AB formula of the form 〈B〉 〈A〉 θ. A trace ρ satisfies 〈B〉 〈A〉 θ if there exists
a prefix ρ̃ of ρ from which a branch, i.e., a trace starting from lst(ρ̃), satisfying θ departs.
Hence, AB allows one to state specific properties of the branches departing from a state
occurring in a given path. Such an ability will be exploited in Section 5 to prove the PNP-
hardness of AB. This kind of properties cannot be expressed in the fragment AB. Indeed,
for any given trace ρ, modality 〈A〉 only allows one to “select” traces leading to the first
state of ρ, and modality 〈B〉 is of no help: if we consider a prefix ρ̃ of ρ, the set of traces
leading to its first state is exactly the same as the set of those leading to the first state of
ρ, as fst(ρ̃) = fst(ρ). Therefore, pairing 〈A〉 and 〈B〉 does not give any advantage in terms
of expressiveness. Finally, since A, A, and AA are devoid of modalities for prefixes (and

suffixes), they analogously belong to PNP[O(log2 n)].

3. A PNP MC algorithm for the HS fragments AAB and AAE

In this section, we present an MC algorithm for AAB formulas (see the procedure MC

reported in Algorithm 1) with complexity in the class PNP. W.l.o.g., we restrict our attention
to AAB formulas devoid of occurrences of conjunctions and universal modalities (definable,
as usual, by means of disjunctions, negations, and existential modalities).

The MC procedure MC for a formula ψ against a Kripke structure K exploits two global
vectors, VA and VA, which can be seen as the tabular representations of two Boolean functions
taking as arguments a subformula φ of ψ and a state v of K . The function VA(φ, v) (resp.,

14

Algorithm 1 MC(K , ψ,direction)

1: for all 〈A〉φ ∈ ModSubfAA(ψ) do
2: MC(K , φ, forward)

3: for all 〈A〉φ ∈ ModSubfAA(ψ) do
4: MC(K , φ,backward)

5: for all v ∈ W do
6: if direction is forward then
7: VA(ψ, v)← Success(Oracle(K , ψ, v, forward, VA ∪ VA))
8: else if direction is backward then
9: VA(ψ, v)← Success(Oracle(K , ψ, v,backward, VA ∪ VA))

VA(φ, v)) returns > if and only if there exists a trace ρ ∈ TrcK starting from the state v
(resp., leading to the state v) such that K , ρ |= φ. MC is initially invoked with parameters
(K ,¬ψ, forward). During the execution, it instantiates the entries of VA and VA, which
are exploited in order to answer the MC problem K |= ψ. In the end, this is equivalent to
checking whether VA(¬ψ,w0) = ⊥, where w0 is the initial state of K .

Let us consider MC in more detail. Along with the Kripke structure K and the formula ψ,
MC features a third parameter, direction, which can be assigned the value forward (resp.,
backward), that is used in combination with the modality 〈A〉 (resp., 〈A〉) for a forward
(resp., backward) unravelling of K . MC is applied recursively (lines 1–4) on the nesting of
modalities 〈A〉 and 〈A〉 in the formula ψ (in the base case, ψ features no occurrences of
〈A〉 or 〈A〉). In order to instantiate the Boolean vectors VA and VA, an oracle is invoked
(lines 5–9) for each state v of the Kripke structure. Such an invocation is syntactically
represented by Success(Oracle(K , ψ, v,direction, VA ∪ VA)), and it returns > whenever
there exists a computation of the non-deterministic algorithm Oracle(K , ψ, v,direction,
VA ∪ VA) returning >, namely, whenever there is a suitable trace starting from, or leading
to v (depending on the value of the parameter direction), and satisfying ψ.

We define now the set of AA-modal subformulas of ψ (ModSubfAA(ψ)) used to “direct”
the recursive calls of MC (lines 1–4).

Definition 5. The set ModSubfAA(ψ) of AA-modal subformulas of an AAB formula ψ is the
set of subformulas of ψ either of the form 〈A〉ψ′ or of the form 〈A〉ψ′, for some ψ′, which
are not in the scope of any 〈A〉 or 〈A〉 modality.

As an example, it holds that

• ModSubfAA(〈A〉 〈A〉 q) = {〈A〉 〈A〉 q}, and

• ModSubfAA
((
〈A〉 p ∧ 〈A〉 〈A〉 q

)
→ 〈A〉 p

)
= {〈A〉 p, 〈A〉 〈A〉 q}.

MC is recursively called on each formula φ such that 〈A〉φ or 〈A〉φ belongs to the set
ModSubfAA(ψ) (lines 1–4). In this way, we can recursively gather in the Boolean vectors VA
and VA, by increasing nesting depth of the modalities 〈A〉 and 〈A〉, the oracle answers for
all the formulas ψ′ such that 〈A〉ψ′, or 〈A〉ψ′, is a subformula (be it maximal or not) of ψ.

15

Algorithm 2 Oracle(K , ψ, v,direction, VA ∪ VA)

1: ρ̃← A trace(K , v, |W | · (2|ψ|+ 1)2,direction)/ a trace of K from/to v having length
≤ |W | · (2|ψ|+ 1)2

2: for all 〈A〉φ ∈ ModSubfAA(ψ) do
3: for i = 1, · · · , |ρ̃| do
4: T [〈A〉φ, i]← VA(φ, ρ̃(i))

5: for all 〈A〉φ ∈ ModSubfAA(ψ) do
6: for i = 1, · · · , |ρ̃| do
7: T [〈A〉φ, i]← VA(φ, fst(ρ̃))

8: for all subformulas ϕ of ψ, not contained in (or equal to) AA-modal subformulas of ψ,
by increasing length do

9: if ϕ = p, for p ∈ AP then
10: T [p, 1]← p ∈ µ(fst(ρ̃))
11: for i = 2, · · · , |ρ̃| do
12: T [p, i]← T [p, i− 1] and p ∈ µ(ρ̃(i))

13: else if ϕ = ¬ϕ1 then
14: for i = 1, · · · , |ρ̃| do
15: T [ϕ, i]← not T [ϕ1, i]

16: else if ϕ = ϕ1 ∨ ϕ2 then
17: for i = 1, · · · , |ρ̃| do
18: T [ϕ, i]← T [ϕ1, i] or T [ϕ2, i]

19: else if ϕ = 〈B〉ϕ1 then
20: T [ϕ, 1]← ⊥
21: for i = 2, · · · , |ρ̃| do
22: T [ϕ, i]← T [ϕ, i− 1] or T [ϕ1, i− 1]

23: return T [ψ, |ρ̃|]

Let us now consider the non-deterministic polynomial time procedure Oracle(K , ψ, v,
direction, VA ∪ VA) (see Algorithm 2), which is used as the “basic engine” by the oracle
in the aforementioned MC Algorithm 1. The idea underlying Algorithm 2 is to first non-
deterministically generate a trace ρ̃ by unravelling the Kripke structure K according to the
parameter direction, and then to verify ψ over ρ̃. Such a procedure actually exploits a
result proved in [8], which states a “polynomial-size model-trace property” for formulas of
the fragment AABB:

Proposition 1 ([8], consequence of Theorem 10). Let ρ be a trace of a Kripke struc-
ture K = (AP ,W, δ, µ, w0) and φ be an AABB formula such that K , ρ |= φ. Then, there exists
ρ′ ∈ TrcK such that |ρ′| ≤ |W | · (2|φ|+ 1)2, fst(ρ) = fst(ρ′), lst(ρ) = lst(ρ′), and K , ρ′ |= φ.

This property guarantees that, in order to check the satisfiability of a formula φ, it is enough
to consider traces whose length is bounded by |W | · (2|φ|+ 1)2.

16

An execution of Oracle(K , ψ, v,direction, VA ∪ VA) starts (line 1) by non-determin-
istically generating a trace ρ̃ (having length at most |W | · (2|ψ| + 1)2), with v as its first
(resp., last) state if the direction parameter is forward (resp., backward). The trace
is generated by visiting the unravelling of K (resp., of K with transposed edges). The
remaining part of the algorithm deterministically checks whether K , ρ̃ |= ψ or not. Such a
verification is performed in a bottom-up way: for all the subformulas φ of ψ (starting from
the minimal ones) and for all the prefixes ρ̃(1, i) of ρ̃, with 1 ≤ i ≤ |ρ̃| (starting from the
shorter ones), the procedure establishes if K , ρ̃(1, i) |= φ, and this result is stored in the
entry T [φ, i] of a Boolean table T . Note that if the considered subformula of ψ is an element
of ModSubfAA(ψ), the algorithm does not need to perform any verification, since the result
is already available in the Boolean vectors VA and VA (as a consequence of the previously
completed calls to the procedure Oracle), and the table T is updated accordingly (lines
2–7). For the remaining sub-formulas, the entries of T are computed, as we already said, in
a bottom-up fashion (lines 8–22). The result of the overall verification is stored in T [ψ, |ρ̃|]
and returned (line 23).

Such an algorithm for checking formulas of AAB can trivially be adapted to check formulas
of the symmetric fragment AAE.

The next lemma states soundness and completeness of the procedure Oracle, see Algo-
rithm 2 (its proof is in the Appendix A.1).

Lemma 2. Let K = (AP ,W, δ, µ, w0) be a finite Kripke structure, ψ be an AAB formula,
and VA(·, ·) and VA(·, ·) be two Boolean arrays. Let us assume that

1. for each 〈A〉φ ∈ ModSubfAA(ψ) and v′ ∈ W , VA(φ, v′) = > if and only if there exists
ρ ∈ TrcK such that fst(ρ) = v′ and K , ρ |= φ, and

2. for each 〈A〉φ ∈ ModSubfAA(ψ) and v′ ∈ W , VA(φ, v′) = > if and only if there exists
ρ ∈ TrcK such that lst(ρ) = v′ and K , ρ |= φ.

Then, Oracle(K , ψ, v,direction, VA ∪VA) features a successful computation (returning >)
if and only if:

• there is ρ ∈ TrcK such that fst(ρ) = v and K , ρ |= ψ, when direction is forward;

• there is ρ ∈ TrcK such that lst(ρ) = v and K , ρ |= ψ, when direction is backward.

The following theorem states soundness and completeness of the model checking proce-
dure MC (Algorithm 1).

Theorem 3. Let K = (AP ,W, δ, µ, w0) be a finite Kripke structure, ψ be an AAB formula,
and VA(·, ·) and VA(·, ·) be two Boolean arrays. If MC(K , ψ,direction) is executed, then for
all v ∈ W :

• if direction is forward, VA(ψ, v) = > if and only if there exists ρ ∈ TrcK such
that fst(ρ) = v and K , ρ |= ψ;

17

• if direction is backward, VA(ψ, v) = > if and only if there exists ρ ∈ TrcK such
that lst(ρ) = v and K , ρ |= ψ.

Proof. The proof is by induction on the number n of occurrences of 〈A〉 and 〈A〉 modalities
in ψ.
If n = 0, since ModSubfAA(ψ) = ∅, conditions 1 and 2 of Lemma 2 are satisfied and the
thesis trivially holds.
Otherwise, n > 0 and the formula ψ contains at least an 〈A〉 or an 〈A〉 modality, and thus
ModSubfAA(ψ) 6= ∅. Since each recursive call to MC (either at line 2 or 4) is performed on a
formula φ featuring a number of occurrences of 〈A〉 and 〈A〉 which is strictly less than the
number of their occurrences in ψ, we can apply the inductive hypothesis. As a consequence,
when the control flow reaches line 5, it holds that:

1. for each 〈A〉φ ∈ ModSubfAA(ψ) and v′ ∈ W , VA(φ, v′) = > if and only if there exists
ρ ∈ TrcK such that fst(ρ) = v′ and K , ρ |= φ;

2. for each 〈A〉φ ∈ ModSubfAA(ψ) and v′ ∈ W , VA(φ, v′) = > if and only if there exists
ρ ∈ TrcK such that lst(ρ) = v′ and K , ρ |= φ.

This implies that conditions 1 and 2 of Lemma 2 are fulfilled. Hence (assuming that di-
rection is forward), it holds that, for v ∈ W , VA(ψ, v) = > if and only if there exists
ρ ∈ TrcK such that fst(ρ) = v and K , ρ |= ψ. The case for direction = backward is
symmetric, and thus omitted. �

As an immediate consequence, we have that the procedure MC solves the MC problem
for AAB formulas with an algorithm belonging to the complexity class PNP.

Corollary 4. Let K = (AP ,W, δ, µ, w0) be a finite Kripke structure and ψ be an AAB for-
mula. If MC(K ,¬ψ, forward) is executed, then VA(¬ψ,w0) = ⊥ if and only if K |= ψ.

Corollary 5. The MC problem for AAB formulas over finite Kripke structures is in PNP.

Proof. Given a finite Kripke structure K = (AP ,W, δ, µ, w0) and an AAB formula ψ, the
number of recursive calls performed by MC(K ,¬ψ, forward) is at most |ψ|. Each one costs
O(|ψ| + |W | · (|K | + |ψ| + |ψ| · |W |)), where the first addend it is due to the search of ψ
for its modal subformulas (lines 1–4), and the second one to the preparation of the input
for the oracle call, for each v ∈ W (lines 5–9). Therefore, its (deterministic) complexity is
O(|ψ|2 · |K |2).

As for Oracle(K , ψ, v,direction, VA∪VA), its (non-deterministic) complexity is O(|ψ|3 ·
|K |), where |ψ| is a bound to the number of subformulas and O(|ψ|2 · |K |) is the number
of steps necessary to generate and check ρ̃. �

By a straightforward adaptation of the procedure Oracle, it is easy to prove that also
the MC problem for the symmetric fragment AAE is in PNP. As we will show in Section 5,
both problems are actually complete for PNP.

18

B

∃V1.F1(Y, V1)

G1

∃V2.F2(Y, V2)

G2

· · · ∃Vp.Fp(Y, Vp)

Gp
x1 x2 xp

E1(X) E2(X) · · · Ek(X)

z : z1 z2 zk

y1:y1
1 y

1
2 · · · y1

k · · · ym1 y
m
2 · · ·ymkym:

(a) General form of a block.

B1

B2 B3

B4 B5 B6 B7

(b) A tree of blocks (B5 has degree m = 0).

Figure 5: A block (a) and a tree of blocks (b).

4. A PNP[O(log2 n)] MC algorithm for the HS fragments AA, AB, and AE

In this section, we first propose an MC algorithm for the fragment AA with complexity
PNP[O(log2 n)], thus lower than the complexity of the one described in the previous section for
AAB. As a matter of fact, we do not directly devise an MC algorithm; we proceed instead
via a reduction to a PNP[O(log2 n)]-complete problem, namely, TB(SAT)1×M (a restriction
of TB(SAT), see [50]), whose instances are complex circuits where some of the gates are
endowed with NP oracles.

4.1. The problem TB(SAT)1×M

In order to introduce TB(SAT), we need to preliminarily describe its basic component,
which is the block. A block B (see Figure 5a) is a circuit whose input lines are organized in
m bit vectors y1, . . . ,ym, each of which has k entries, namely yi = (yi1, . . . , y

i
k). The values

m and k are respectively called the degree and the width of B. The input lines are connected
to p internal gates G1, . . . , Gp. Each gate Gi features a Boolean formula Fi(Y, Vi) associated
with it, where Y = {yjs | j = 1, . . . ,m, s = 1, . . . , k} and Vi is a set of private variables of Fi,
not occurring in any other Fj, with j 6= i, that is, Vi ∩ Vj = ∅ for j 6= i. The gate Gi queries
a SAT oracle in order to decide whether the associated Boolean formula is satisfiable. The
output of Gi is denoted by xi, and it evaluates to > if and only if Fi(Y, Vi) is satisfiable.
Finally, k classic circuits (without oracles) E1, . . . , Ek compute, from X = {x1, . . . , xp},
their outputs z1, . . . , zk, which are also the final k outputs of the block B.

The size of B is defined as the total number of gates, plus the lengths of all the associated
Boolean formulas. In the following, to make clear that a gate Gi (respectively, input yi, block
output zi, gate output xi) is an element of a block B, we write B(Gi) (respectively, B(yi),
B(zi), B(xi)).

Given the k · m input bits, determining the output value of any zi is a PNP
‖ problem:

the p queries associated with the oracle gates—which determine the outputs xj’s—can be
performed in parallel (they are independent of each other) and then the value of the block
output zi can be calculated in deterministic polynomial time.

Blocks of the same width can be combined together to form a tree-structured complex
circuit, called a tree of blocks. See Figure 5b for an example. Every block in the tree-

19

structure has a level: blocks which are leaves of the tree are at level 1; a block Bi whose
inputs depend on (at least) a block Bj at level d− 1 and possibly on other blocks at levels
less than d, is at level d. In Figure 5b, B4, B5, B6, B7 are at level 1, B2 and B3 at level 2,
and B1 at level 3. If the root of the tree-structure T is at level d, the k outputs of T can be
determined by d rounds of parallel queries: all the queries relative to blocks placed at the
same level d′ can be answered in parallel once all those at level d′ − 1 have been answered.

TB(SAT) is the problem of deciding whether a specific output zi of (the root of) a tree-
structure of blocks T is > or ⊥, given the values for the inputs (of the leaf blocks) of T . As
proved in [50], the problem TB(SAT) is PNP-complete.

The problem TB(SAT)1×M is a constrained version of TB(SAT): any Boolean formula
(SAT query) associated with a block B of the tree-structure must have the following form:

∃`1, . . . , `m ∈ {1, . . . , k} ∃V ′i .Fi(y1
`1
, . . . , ym`m , `1, . . . , `m, V

′
i),

where m and k are respectively the degree and the width of B. This amounts to say that
Fi can use only one bit from each input vector of B (no matter which), hence “1 ×M”.
The existential quantification over the indexes `1, . . . , `m is an abuse of notation borrowed
from [50]: ∃`j ∈ {1, . . . , k} is just a shorthand for k bits (belonging to the set of private
variables) “`j = 1”, . . . , “`j = k”, among which exactly one is >. In the formula above, V ′i
is Vi deprived of such bits.

In [50], it is proved that TB(SAT)1×M is a PNP[O(log2 n)]-complete problem. In particular,

the proof of membership to PNP[O(log2 n)] exploits the squeeze technique of [26] applied to
TREE(SAT) instances. The particular form “1×M” of the queries allows us to “reshape”
the tree-structure of blocks, in such a way that the height becomes logarithmic in the number
of blocks. Therefore, only O(log n) rounds of parallel queries are needed, allowing us to prove

the membership of the problem to PNP
‖O(logn) = PNP[O(log2 n)].

4.2. The reduction of the MC problem for AA formulas to TB(SAT)1×M

Let us show now how to reduce the MC problem for AA formulas to TB(SAT)1×M . As
in the previous section, w.l.o.g., we assume that only existential modalities occur in the
AA formula ψ to be checked over a Kripke structure K = (AP ,W, δ, µ, w1), with W =
{w1, . . . , w|W |}.7 We consider its negation ¬ψ and build from it a tree-structure of blocks
TK ,¬ψ. Each block of TK ,¬ψ has a type, forward or backward, and it is associated with
a subformula of ¬ψ. The root block, Broot, is always of type forward and it is associated
with ¬ψ. Each block B has an output line zi for each state wi ∈ W , thus the width of all
blocks is k = |W |.

Starting from Broot, TK ,¬ψ is built by recursive applications of the following basic step,
which are guided by the AA-modal subformulas (recall Definition 5): if some (generic) block
B is associated with a formula ϕ, then

7Here, for technical reasons, we assume an arbitrary order of the states of the Kripke structure,
w1, . . . , w|W |, where w1 is the initial state.

20

• for every φ ∈ ModSubfAA(ϕ), where φ = 〈A〉 ξ, we create a forward child B′ of B
associated with ξ, and

• for every φ′ ∈ ModSubfAA(ϕ), where φ′ = 〈A〉 ξ′, we create a backward child B′′ of
B associated with ξ′.

Then, the basic step is recursively applied to all the generated children of B, terminating
when ModSubfAA(ϕ) = ∅. Note that a block B associated with a formula ϕ has degree
m = |ModSubfAA(ϕ)|.

In such a way, we determine the tree-structure of blocks TK ,¬ψ. We now describe the
internal structure of blocks.

As a preliminary step, we suitably transform AA formulas ϕ into Boolean ones by re-
placing all the occurrences of proposition letters and modal subformulas in ϕ by Boolean
variables, as described by the next definition.

Definition 6. Let K = (AP ,W, δ, µ, w1) be a finite Kripke structure and let χ be an AA
formula. We define χ(VAP , VmodSubf), where VAP = {vp | p ∈ AP} and VmodSubf = {vχ′ | χ′ ∈
ModSubfAA(χ)} are sets of Boolean variables, as the Boolean formula obtained from χ by
replacing

• each (occurrence of a) AA-modal subformula χ′ ∈ ModSubfAA(χ) by the variable vχ′ ,

• and then each (occurrence of a) proposition letter p ∈ AP by the variable vp.

Given a trace ρ ∈ TrcK and an AA formula χ, it is easy to prove (by induction on the
complexity of χ(VAP , VmodSubf)) that if ω is an interpretation of the variables of VAP∪VmodSubf
such that ω(vp) = > ⇐⇒ K , ρ |= p, for all p ∈ AP , and ω(vχ′) = > ⇐⇒ K , ρ |= χ′, for all
χ′ ∈ ModSubfAA(χ), then it holds that K , ρ |= χ ⇐⇒ ω(χ(VAP , VmodSubf)) = >.

We are now ready to describe the internal structure of a block B for a formula ϕ in TK ,¬ψ.
Let us assume that B has type forward and let us refer to the block depicted in Figure 5a
for the description. The block features a gate Gi, with 1 ≤ i ≤ |W |, for each state of K .
Each output line zi of B is directly linked to the output xi of the oracle gate Gi, avoiding
the use of circuits E1, . . . , Ek.

Now, let Fi(Y, V) be the Boolean formula for the gate Gi, with 1 ≤ i ≤ |W | (for the
sake of simplicity, we write V instead of Vi). The basic idea is that Fi(Y, V) is satisfi-
able if and only if there is a trace having length at most |W |2 + 2, starting from the i-th
state of W , which satisfies ϕ(VAP , VmodSubf), where ϕ is the formula associated with the
block B. To check the existence of such a witness trace, we need a set of private variables

Vtrace = {v1
1, . . . , v

1
|W |, v

2
1, . . . , v

2
|W |, . . . , v

|W |2+2
1 , . . . , v

|W |2+2
|W | }. In particular, the subset of vari-

ables vj1, . . . , v
j
|W |, with 1 ≤ j ≤ |W |2 + 2, is used to “encode” the state in the j-th position

of the trace. The encoding requires that exactly one variable vjk of the subset is assigned
to >, for 1 ≤ k ≤ |W |, meaning that the k-th state of K occurs in the j-th position of the
sequence. Moreover, we use a set of private variables Vlast = {v1, v2, . . . , v|W |} which are

21

used to encode the last state of the witness trace (note that the length of the witness trace
can be actually less than the bound |W |2 + 2).

In detail, the Boolean formula trace(Vtrace, Vlast, VAP), which ensures that a truth as-
signment of the private variables Vtrace properly encodes a trace ρ of K of length `, for
1 ≤ ` ≤ |W |2 + 2, is as follows.

trace(Vtrace, Vlast, VAP) =

|W |2+2∨
`=1

[∧̀
t=1

onet(v
t
1, v

t
2, . . . , v

t
|W |) ∧

`−1∧
t=1

edget(v
t
1, . . . , v

t
|W |, v

t+1
1 , . . . , vt+1

|W |) ∧
|W |∧
t=1

(v`t ↔ vt)︸ ︷︷ ︸
(1)

∧

∧
p∈AP

((
vp →

∧̀
t=1

|W |∧
j=1

(vtj → V AL(wj, p))
)
∧
(
¬vp →

∨̀
t=1

|W |∧
j=1

(vtj → ¬V AL(wj, p))
))

︸ ︷︷ ︸
(2)

]
.

For any 1 ≤ t ≤ `, being ` the length of the witness trace, the Boolean formula
onet(v

t
1, v

t
2, . . . , v

t
|W |) “checks” that the variables vt1, v

t
2, . . . , v

t
|W | encode (exactly) one state

for the t-th element of the trace:

onet(v
t
1, v

t
2, . . . , v

t
|W |) =

(|W |∨
j=1

vtj

)
∧
(|W |∧
j=1

|W |∧
k=j+1

¬(vtj ∧ vtk)
)
.

Then, for any 1 ≤ t ≤ `− 1, the formula edget(v
t
1, . . . , v

t
|W |, v

t+1
1 , . . . , vt+1

|W |) checks that if wk

and wj are states which occur consecutively in the encoded trace (vtk and vt+1
j are set to >),

then (wk, wj) ∈ δ:

edget(v
t
1, . . . , v

t
|W |, v

t+1
1 , . . . , vt+1

|W |) =
∨

(wk,wj)∈δ

(vtk ∧ vt+1
j).

Then, conjunct (1) ensures that the private variables in Vlast encode the last state of the
witness trace, that is, the `-th state. Finally, conjunct (2) enforces the homogeneity assump-
tion, ensuring that a variable vp ∈ VAP evaluates to > if and only if p holds over all the states
of the witness trace (V AL(wj, p) is just a shorthand for > if p ∈ µ(wj), and ⊥ otherwise).

Now, taking the set of private variables V = Vlast ∪ Vtrace ∪ VAP ∪ VmodSubf , the Boolean
formula Fi(Y, V) for the gate Gi is formally defined as:

Fi(Y, V) = v1
i ∧ ϕ(VAP , VmodSubf) ∧ trace(Vtrace, Vlast, VAP)∧∧

〈A〉 ξ∈ModSubfAA(ϕ)

(
v〈A〉 ξ ↔

|W |∨
j=1

(vj ∧ yξj)
)
∧

∧
〈A〉 ξ′∈ModSubfAA(ϕ)

(
v〈A〉 ξ′ ↔

|W |∨
j=1

(v1
j ∧ y

ξ′

j)
)

22

The first conjunct of Fi(Y, V) requires that the witness trace starts with the i-th state of
K . The fourth one requires that each private variable v〈A〉 ξ, for 〈A〉 ξ ∈ ModSubfAA(ϕ) has

exactly the same truth assignment as the j-th output, yξj , of the block for ξ (which is a child
of B)—provided that the final state of the trace is the j-th state of K . Since exactly one
among the variables of Vlast = {v1, . . . , v|W |} is set to >, it is guaranteed that at most one
bit for every child-block is considered by B, thus fulfilling the restriction of TB(SAT)1×M .
The last conjunct of Fi(Y, V) forces the symmetric constraint for modal subformulas of the
form 〈A〉 ξ′.

The formula Fi(Y, V) for a gate Gi in a backward block is very similar: we just need
to replace the first conjunct v1

i by vi.
The following proposition states the correctness of the encoding for traces.

Proposition 6. Given a trace ρ ∈ TrcK , with |ρ| ≤ |W |2+2, there exists a truth assignment
ω to the variables in V which satisfies the formula trace(Vtrace, Vlast, VAP), and

• for any 1 ≤ t ≤ |ρ| and 1 ≤ j ≤ |W |, ρ(t) = wj ⇐⇒ ω(vtj) = > and ω(v
|ρ|
j) = ω(vj);

• for any p ∈ AP , ω(vp) = > ⇐⇒ K , ρ |= p.

Conversely, if a truth assignment ω to the variables in V satisfies the s-th disjunct of
trace(Vtrace, Vlast, VAP), then there exists a trace ρ ∈ TrcK , with |ρ| = s, such that

• for any 1 ≤ t ≤ |ρ| and 1 ≤ j ≤ |W |, ρ(t) = wj ⇐⇒ ω(vtj) = >;

• for any p ∈ AP , K , ρ |= p ⇐⇒ ω(vp) = >.

The following theorem states the correctness of the construction of TK ,¬ψ (the proof is
given in Appendix A.2).

Theorem 7. Let ψ be an AA formula and K = (AP ,W, δ, µ, w1) be a finite Kripke structure.
For every block B of TK ,¬ψ, if B is associated with an AA formula ϕ, then

• if B is a forward block, for all i ∈ {1, . . . , |W |}, B(zi) = > if and only if there exists
a trace ρ ∈ TrcK such that fst(ρ) = wi and K , ρ |= ϕ;

• if B is a backward block, for all i ∈ {1, . . . , |W |}, B(zi) = > if and only if there
exists a trace ρ ∈ TrcK such that lst(ρ) = wi and K , ρ |= ϕ.

The two next corollaries immediately follow.

Corollary 8. Let ψ be an AA formula, K be a finite Kripke structure, and Broot be the root
block of TK ,¬ψ. Then, it holds that Broot(z1) = ⊥ ⇐⇒ K |= ψ.

Corollary 9. The MC problem for AA formulas over finite Kripke structures belongs to
PNP[O(log2 n)].

Proof. The result follows from Corollary 8 and the fact that the instance of TB(SAT)1×M
generated from an AA formula ψ and a Kripke structure K is polynomial in |ψ| and |K |. �

23

4.3. The reduction of the MC problem for AB (resp., AE) formulas to TB(SAT)1×M

We conclude the section by showing that it is possible to adapt the above-described
reduction to the fragment AB and the symmetric fragment AE. Let us focus on AB (the case
for AE can be dealt with in an analogous way).

Having in mind that AB is a fragment of AAB, by removing the case for the modality 〈A〉
in Algorithm 2, we get a procedure for which Lemma 2 still holds. Since Algorithm 2 is in
NP, there must exist a reduction to SAT, that is, given an instance (K , ψ, v,direction, VA)
for Oracle, there exists a Boolean formula Ψ(K ,ψ,v,direction,VA), which depends on (K , ψ, v,
direction, VA), that is satisfiable if and only if Oracle(K , ψ, v,direction, VA) admits a
successful computation on the given input. By Lemma 2, this is the case if and only if:

• there exists ρ ∈ TrcK such that fst(ρ) = v and K , ρ |= ψ, in the case direction is
forward;

• there exists ρ ∈ TrcK such that lst(ρ) = v and K , ρ |= ψ, in the case direction is
backward,

provided that for each 〈A〉φ ∈ ModSubfAA(ψ) and v′ ∈ W , VA(φ, v′) = > if and only if there
exists ρ′ ∈ TrcK such that lst(ρ′) = v′ and K , ρ′ |= φ.

The idea is that such a formula Ψ(K ,ψ,v,direction,VA) can be used as a SAT query for an or-
acle gate Gi in a generic block associated with the formula ψ. The role of the global Boolean
vector VA is instead played by the local communication among blocks in the tree-structure;
Ψ(K ,ψ,v,direction,VA) basically has the same structure as the Boolean formula Fi(Y, V), with
some minor differences which are outlined below.

First of all, we observe that Algorithm 2 works with traces whose length is bounded by
|W | · (2|ψ| + 1)2 (instead of |W |2 + 2 as in Fi(Y, V)). A trace is then encoded exactly as
in Fi(Y, V) by using a set of private variables Vtrace = {vtj | j = 1, . . . , |W |, t = 1, . . . , |W | ·
(2|ψ|+1)2}; Ψ(K ,ψ,v,direction,VA) has also to encode the Boolean table T of Oracle with entries
T [ϕ, i], where ϕ is a subformula of ψ, and 1 ≤ i ≤ |W | · (2|ψ|+ 1)2 is the length of a prefix
of the considered trace. Therefore, there is a variable xϕ,i in Ψ(K ,ψ,v,direction,VA) for each
entry T [ϕ, i], with the intuitive meaning that xϕ,i is assigned > if and only if T [ϕ, i] = >.
Actually, in this encoding we do not need any entry for a modal subformula 〈A〉 ξ, whose
truth value is conveyed by yξj , namely, the j-th input connected to the child block for the
subformula ξ (assuming that the starting state of the trace is the j-th state of K). It is
worth noting that this construction is possible since all the prefixes of the trace ρ encoded
by the assignment to Vtrace, and ρ itself, share the same starting point, and thus agree on
the truth value of any A-modal subformula. The most relevant consequence of this property
is that the constraint of TB(SAT)1×M on the form of SAT queries is respected.

As for the construction of TK ,¬ψ, it is exactly as before where, in particular, the root
block Broot has type forward, and all the other blocks have type backward. The following
result can be stated.

Theorem 10. The MC problem for AB (resp., AE) formulas over finite Kripke structures

belongs to PNP[O(log2 n)].

24

The construction we have sketched cannot be adapted to the fragment AB. This is due
to the fact that the right endpoints of the prefixes of a trace differ in general, and thus they
do not necessarily agree on the truth value of A-modal subformulas, hence the restriction of
TB(SAT)1×M on the form of SAT queries cannot be respected. In the next section, we will
prove that MC for AB formulas is indeed inherently more difficult than MC for AB.

5. PNP-hardness of MC for the HS fragments AB and AE

In this section, we show that the PNP-complete problem of Sequentially Nested SATis-
fiability (SNSAT, [28]) can be reduced to the MC problem for formulas of the fragment AB
(and similarly AE) thus proving that the problem is hard for the class PNP. SNSAT is a
logical problem with nested satisfiability questions defined as follows.

Definition 7. An instance I of SNSAT consists of a set of n Boolean variables X =
{x1, . . . , xn} and a set of n Boolean formulas

{F1(Z1), F2(x1, Z2), . . . , Fn(x1, . . . , xn−1, Zn)},

where, for i = 1, . . . , n, Fi(x1, . . . , xi−1, Zi) features variables in {x1, . . . , xi−1} and in the set
of private variables Zi = {z1

i , . . . , z
ji
i }, that is, Zi ∩ Zj = ∅, for j 6= i, and X ∩ Zi = ∅. We

denote by |I| the size |X| = n.
Let vI be a truth-assignment of the variables in X defined as follows:

vI(xi) = > ⇐⇒ Fi(vI(x1), . . . , vI(xi−1), Zi) is satisfiable

(by a suitable truth-assignment to the private variables z1
i , . . . , z

ji
i ∈ Zi).

SNSAT is the problem of deciding, given an instance I with |I| = n, whether vI(xn) = >.
In such a case, we say that I is a positive instance of SNSAT.

Given an SNSAT instance I, with |I| = n, the truth-assignment vI is unique and it can
be easily computed by a PNP algorithm as follows. A first query to a SAT oracle determines
whether vI(x1) is > or ⊥, since vI(x1) = > if and only if F1(Z1) is satisfiable. Then, we
replace x1 by the value vI(x1) in F2(x1, Z2) and another query to the SAT oracle is performed
to determine whether F2(vI(x1), Z2) is satisfiable, yielding the value of vI(x2). This step is
iterated other n− 2 times, finally obtaining the value of vI(xn).

Let I be an instance of SNSAT, with |I| = n. We now show how to build a finite Kripke
structure K I and an AB formula ΦI , by using logarithmic working space, such that I is a
positive instance of SNSAT if and only if K I |= ΦI . Such a reduction is inspired by similar
constructions from [28].

Let Z =
⋃n
i=1 Zi and let R = {ri | i = 1, . . . , n} and Ri = R\{ri} be n+1 sets of auxiliary

variables. The Kripke structure K I consists of a suitable composition of n instances of a
gadget (an instance for each variable x1, . . . , xn ∈ X). The structure of the gadget for xi,
with 1 ≤ i ≤ n, is shown in Figure 6a, assuming that the labeling of states (nodes) is defined
as follows:

25

wxi si wxi

wz1i wz1i

wz2i wz2i

w
z
ji
i

w
z
ji
i

ch
oice

Z
i

(a) The gadget for xi.

wx1

s1

wx1

choice
Z

1

wxn

sn

wxn

choice
Z
n

wx2

s2

wx2
choice

Z
2

s0

(b) Kripke structure K I associated with an SNSAT instance I,
with |I| = n. Note that the states sn and wxn are unreachable.

Figure 6: A gadget (a) and the resulting Kripke structure (b).

• µ(wxi) = X ∪ Z ∪ {s, t} ∪Ri, and µ(wxi) = (X \ {xi}) ∪ Z ∪ {s, t} ∪Ri ∪ {pxi};

• for ui = 1, . . . , ji, µ(wzuii
) = X ∪ Z ∪ {s, t} ∪Ri, and

µ(wzuii
) = X ∪ (Z \ {zuii }) ∪ {s, t} ∪Ri;

• µ(si) = X ∪ Z ∪ {t} ∪Ri.

The Kripke structure K I is obtained by sequentializing (adding suitable edges) the n
instances of the gadget (in reverse order, from xn to x1), adding a collector terminal state
s0, with labeling µ(s0) = X ∪ Z ∪ {s} ∪R, and setting wxn as the initial state. The overall
construction is reported in Figure 6b. Formally, we have

K I = (X ∪ Z ∪ {s, t} ∪R ∪ {pxi | i = 1, . . . , n},W, δ, µ, wxn).

The Kripke structure K I features the following properties:

• any trace satisfying s does not pass through any si, for 1 ≤ i ≤ n;

• any trace not satisfying t has s0 as its last state;

• any trace not satisfying ri passes through some state of the i-th gadget, for 1 ≤ i ≤ n;

• the only trace satisfying pxi is wxi (note that |wxi| = 1), for 1 ≤ i ≤ n.

A trace ρ ∈ TrcK I induces a truth assignment of all the proposition letters, denoted by
ωρ, which is defined as ωρ(y) = > ⇐⇒ K I , ρ |= y, for any letter y. In the following, we
shall write ωρ(Zi) for ωρ(z

1
i), . . . , ωρ(z

ji
i). In particular, if ρ starts from some state wxi or

wxi , and satisfies s ∧ ¬t (that is, it reaches the collector state s0 without visiting any node
sj, for 1 ≤ j ≤ i), ωρ fulfills the following conditions: for 1 ≤ m ≤ i,

• if wxm ∈ states(ρ), then ωρ(xm) = >, and if wxm ∈ states(ρ), then ωρ(xm) = ⊥;

26

• for 1 ≤ um ≤ jm, if wzumm
∈ states(ρ), then ωρ(z

um
m) = >, and if wzumm

∈ states(ρ), then
ωρ(z

um
m) = ⊥.

It immediately follows that K I , ρ |= Fm(x1, . . . , xm−1, Zm) if and only if Fm(ωρ(x1), . . . ,
ωρ(xm−1), ωρ(Zm)) = >. Finally, let FI = {ψk | 0 ≤ k ≤ n + 1} be the set of formulas
defined as:

ψ0 = ⊥ and, for k ≥ 1,

ψk = 〈A〉

(s ∧ ¬t) ∧

∧n
i=1

(
(xi ∧ ¬ri)→ Fi(x1, . . . , xi−1, Zi)

)
∧

[B]
(

(
∨n
i=1 〈A〉 pxi)→ 〈A〉

(
¬s ∧ `=2 ∧ 〈A〉(`=2 ∧ ¬ψk−1)

))

︸ ︷︷ ︸
ϕk

,

where `=2 = 〈B〉>∧ [B] [B]⊥ is satisfied only by traces of length 2. The first conjunct of ϕk,
i.e, s∧¬t, forces the trace to reach the collector state s0, without visiting any state sj. The
second conjunct checks that if the trace assigns the truth value > to xm passing through
wxm , with 1 ≤ m ≤ n, then Fm(x1, . . . , xm−1, Zm) is satisfied by ωρ (which amounts to say
that the SAT problem connected with Zm has a positive answer, for the selected values of
x1, . . . , xm−1). Conversely, the third conjunct ensures that if the trace assigns the truth value
⊥ to some xm by passing through wxm , then, intuitively, the SAT problem connected with
Zm has no assignment satisfying Fm(x1, . . . , xm−1, Zm). As a matter of fact, if ρ satisfies ϕk,
for some k ≥ 2, and assigns ⊥ to xm, then there is a prefix ρ̃ of ρ ending in wxm . Since∨n
i=1 〈A〉 pxi is satisfied by ρ̃, 〈A〉

(
¬s ∧ `=2 ∧ 〈A〉(`=2 ∧ ¬ψk−1)

)
must be satisfied as well.

The only possibility is that the trace sm ·wxm does not model ψk−1, as wxm ·sm has to model
〈A〉(`=2 ∧¬ψk−1). However, since ψk−1 = 〈A〉ϕk−1, this holds if and only if K , wxm 6|= ψk−1.

The following theorem states the correctness of the construction. Its proof can be found
in Appendix A.3.

Theorem 11. Let I be an instance of SNSAT, with |I| = n, and let K I and FI be defined
as above. For all 0 ≤ k ≤ n+ 1 and all r = 1, . . . , n, it holds that:

1. if k ≥ r, then vI(xr) = > ⇐⇒ K I , wxr |= ψk;

2. if k ≥ r + 1, then vI(xr) = ⊥ ⇐⇒ K I , wxr |= ψk.

The correctness of the reduction from SNSAT to MC for AB follows as a corollary.

Corollary 12. Let I be an instance of SNSAT, with |I| = n, and let K I and FI be defined
as above. Then,

vI(xn) = > ⇐⇒ K I |= [B]⊥ → ψn.

Proof. By Theorem 11, vI(xn) = > ⇐⇒ K I , wxn |= ψn. If vI(xn) = > then K I , wxn |=
ψn and, since wxn is the only initial trace satisfying [B]⊥ (this formula is satisfied by traces
having length equal to 1 only), K I |= [B]⊥ → ψn. Conversely, if K I |= [B]⊥ → ψn, then
K I , wxn |= ψn, allowing us to conclude that vI(xn) = >. �

27

Eventually we can state the complexity of the problem.

Corollary 13. The MC problem for AB formulas over finite Kripke structures is PNP-hard
(under LOGSPACE reductions).

Proof. The result follows from Corollary 12 considering that, for an instance of SNSAT I,
with |I| = n, K I and ψn ∈ FI have a size polynomial in n and in the length of the formulas
of I. Moreover, their structures are repetitive, hence they can be built by using logarithmic
working space. �

We can prove the same complexity lower bound for the symmetric fragment AE, just by
transposing the edges of K I , and by replacing [B] with [E] and 〈A〉 with 〈A〉 in the definition
of ψn. This hardness result immediately propagates to the bigger fragments AAB and AAE.

Finally, we summarize the PNP-completeness results that can be obtained by putting
together Corollary 5 in Section 3 and Corollary 13.

Corollary 14. The MC problem for AB, AE, AAB, and AAE formulas over finite Kripke
structures is PNP-complete.

In the next section, we shall prove a different complexity lower bound for the fragments
A, A, AA, AB, and AE, to which the present one does not apply.

6. PNP[O(logn)]-hardness of MC for the HS fragments A and A

In this section, we prove that the MC problem for formulas of the fragment A (and of A,
respectively) over finite Kripke structures is PNP[O(logn)]-hard, by reducing to it the problem
PARITY(SAT) [55], a problem complete for PNP[O(logn)]. The problem PARITY(SAT) is
to decide, for a set of Boolean formulas Γ, if the number of satisfiable formulas in Γ is odd
or even. The hardness of the MC problem for A and A, immediately propagates to AA, AE,
AA and AB.

Let Γ be a set of n Boolean formulas {φi(xi1, . . . , ximi
) | 1 ≤ i ≤ n, mi ∈ N}. We provide

a Kripke structure K Γ
PAR and an A-formula ΦΓ such that K Γ

PAR |= ΦΓ if and only if the
number of satisfiable Boolean formulas in Γ is odd.

We start by defining a Boolean formula, parity(F,Z), over two sets of Boolean variables,
F = {f1, . . . , fn} and Z = {z1, . . . , zt}, with t = 3 · (n − 1) + 1. Such a formula allows
one to decide the parity of the number of variables in F that evaluate to >. Z is a set of
auxiliary variables, whose truth values are functionally determined by those assigned to the
variables in F . Given a truth assignment, the number of variables in F set to > is even
if parity(F,Z) evaluates to >, and, in particular, its last variable zt evaluates to >. The
formula parity(F,Z) is defined as follows:

parity(f1, . . . , fn, z1, . . . , zt) = zt ∧ parn(f1, . . . , fn, z1, . . . , zt),

where t = 3 · (n − 1) + 1 and, for i ≥ 1, pari(f1, f2, . . . , fi, z1, . . . , z3(i−1)+1) is inductively
defined as:

par1(f1, z1) = ¬f1 ↔ z1, and, for alli ≥ 2,

28

q0

sf1

sf1

sf2

sf2

sfn

sfn

sz1

sz1

szt

szt

s

ZF

s1 s2 sn

sx11 sx11
sx21 sx21 sxn1 sxn1

sx1m1
sx1m1

sx2m2
sx2m2

sxnmn
sxnmn

. . .

. . .

Figure 7: The Kripke structure K Γ
PAR.

pari(f1, f2, . . . , fi, z1, . . . , zα+3) =(
zα+1 ↔ (fi ∧ ¬zα)

)
∧
(
zα+2 ↔ (¬fi ∧ zα)

)
∧
(
zα+3 ↔ (zα+2 ∨ zα+1)

)
∧

pari−1(f1, f2, . . . , fi−1, z1, . . . , zα),

with α = 3 · (i− 2) + 1.
Each assignment satisfying pari has to set zα to the parity value for the set of Boolean

variables f1, f2, . . . , fi−1. Such a value is then possibly changed according to the truth of fi
and “assigned” to zα+3. Note that the length of parity(F,Z) is polynomial in n.

We now show how to build the Kripke structure K Γ
PAR depicted in Figure 7, such that a

subset of its traces encode all the possible truth assignments to the variables of F ∪Z and to
all the variables occurring in formulas of Γ. K Γ

PAR features a pair of states for each Boolean
variable in F ∪ Z as well as for all the variables of formulas in Γ (one state for each truth
value). Each path from the initial state q0 to the state s represents a truth assignment to the
variables in F ∪ Z. Then, the structure branches into n substructures, each one modeling
the possible truth assignments to the variables of a formula in Γ.

Formally, K Γ
PAR = (AP ,W, δ, µ, q0), where

• AP = {p, q} ∪ F ∪ Z ∪ {auxi | 1 ≤ i ≤ n} ∪ {xiji | 1 ≤ i ≤ n, 1 ≤ ji ≤ mi},

• W = {q0} ∪ {sfi , sfi | 1 ≤ i ≤ n} ∪ {sz, sz | z ∈ Z} ∪ {s} ∪ {si | 1 ≤ i ≤ n}∪
{sxiji , sxiji | 1 ≤ i ≤ n, 1 ≤ ji ≤ mi},

29

• δ = {(q0, sf1), (q0, sf1)} ∪ {(sfi , sfi+1
), (sfi , sfi+1

), (sfi , sfi+1
), (sfi , sfi+1

) | 1 ≤ i < n}∪
{(sfn , sz1), (sfn , sz1), (sfn , sz1), (sfn , sz1)}∪
{(szi , szi+1

), (szi , szi+1
), (szi , szi+1

), (szi , szi+1
)|1 ≤ i < t}∪

{(szt , s), (szt , s)} ∪ {(s, si), (si, sxi1), (si, sxi1) | 1 ≤ i ≤ n}∪
{(sxiji , sxiji+1

), (sxiji
, sxiji+1

), (sxiji
, sxiji+1

), (sxiji
, sxiji+1

)|1 ≤ i ≤ n, 1 ≤ ji < mi}∪
{((sximi

, sximi
), (sximi

, sximi
)|1 ≤ i ≤ n},

• and the labeling function µ is defined as follows:

– µ(q0) = {p, q} ∪ F ∪ Z;

– for all 1 ≤ i ≤ n, µ(sfi) = {p, q} ∪ F ∪ Z; µ(sfi) = {p, q} ∪ (F \ {fi}) ∪ Z;

– for all z ∈ Z, µ(sz) = {p, q} ∪ F ∪ Z; µ(sz) = {p, q} ∪ F ∪ (Z \ {z});
– µ(s) = {q} ∪ F ∪ Z ∪ {auxi | 1 ≤ i ≤ n} ∪ {xiji | 1 ≤ i ≤ n, 1 ≤ ji ≤ mi};
– for all 1 ≤ i ≤ n, µ(si) = {auxi} ∪ {xiji | 1 ≤ ji ≤ mi};
– for all 1 ≤ i ≤ n, 1 ≤ ki ≤ mi, µ(sxiki

) = {auxi} ∪ {xiji | 1 ≤ ji ≤ mi}, and

µ(sxiki
) = {auxi} ∪ {xiji | 1 ≤ ji ≤ mi} \ {xiki}.

According to the definition of K Γ
PAR, it holds that:

1. Each trace ρ from q0 to s encodes a truth assignment to the proposition letters in F ∪Z
(for all y ∈ F ∪ Z, y is > in ρ if and only if y ∈

⋂
w∈states(ρ) µ(w)). Conversely, for

each truth assignment to the proposition letters in F ∪ Z, there exists an initial trace
ρ, reaching the state s, encoding such an assignment. Note that, among the initial
traces, the ones leading to s are exactly those satisfying q ∧ ¬p.

2. An initial trace leading to s satisfies parity(F,Z) if the induced assignment sets an
even number of fi’s to >, and every z ∈ Z to the truth value which is functionally
implied by the values of the fi’s.

3. A trace ρ̃ starting from s and ending in a state s, si, sxij or sxij , with 1 ≤ i ≤ n and

1 ≤ j ≤ mi, encodes a truth assignment to the proposition letters x1, . . . , xmi
(if the

trace ends in s or si, all the variables are assigned to >; if it ends in sxij or sxij , in

particular all the variables xij+1, . . . , x
i
mi

are assigned to >, by homogeneity).

4. A Boolean formula φi(x
i
1, . . . , x

i
mi

) ∈ Γ is satisfiable if and only if there exists a trace
ρ̃ starting from s and ending in a state s, si, sxij or sxij , for some j = 1, . . . ,mi, such

that K Γ
PAR, ρ̃ |= φi(x

i
1, . . . , x

i
mi

).

Finally, let us consider the A formula

ψ = q ∧ ¬p ∧ parity(F,Z) ∧
n∧
i=1

(
fi ↔ 〈A〉(auxi ∧ φi(xi1, . . . , ximi

))
)
.

In view of the above observations, ψ is satisfied by an initial trace ρ if (and only if) (i) ρ
leads to s, (ii) ρ induces an assignment which sets an even number of fi’s to > and all z ∈ Z

30

accordingly, and (iii) for all 1 ≤ i ≤ n, fi is > if and only if there exists a trace ρ̃ starting
from s and ending in a state s, si, sxij or sxij , such that K Γ

PAR, ρ̃ |= φi(x
i
1, . . . , x

i
mi

). Note that

the length of ψ is polynomial in the input size.
Let us now assume we are given an instance of PARITY(SAT) Γ with an even number of

satisfiable Boolean formulas. Then, there exists an initial trace ρ ending in s such that, for
all i, sfi ∈ states(ρ) if φi(x

i
1, . . . , x

i
mi

) is satisfiable, and sfi ∈ states(ρ) otherwise. Moreover,
ρ can be chosen in such a way that K Γ

PAR, ρ |= parity(F,Z). It immediately follows that,
for all i, K Γ

PAR, ρ |= fi if and only if K Γ
PAR, ρ |= 〈A〉(auxi ∧ φi(xi1, . . . , ximi

)), concluding that
K Γ
PAR, ρ |= ψ.

Conversely, let ρ be an initial trace such that K Γ
PAR, ρ |= ψ. It holds that ρ ends in s

and sets an even number of fi’s to >. Furthermore, if K Γ
PAR, ρ |= fi, then there exists ρ̃

starting from s and ending in s, si, sxij or sxij , such that K Γ
PAR, ρ̃ |= φi(x

i
1, . . . , x

i
mi

), hence

φi(x
i
1, . . . , x

i
mi

) is satisfiable. If K Γ
PAR, ρ |= ¬fi, then there exists no ρ̃ starting from s and

ending in s, si, sxij or sxij , such that K Γ
PAR, ρ̃ |= φi(x

i
1, . . . , x

i
mi

). Thus φi(x
i
1, . . . , x

i
mi

) is

unsatisfiable. Hence, Γ contains an even number of satisfiable formulas.
Therefore we have proved that the number of satisfiable Boolean formulas of Γ is even if

and only if there exists an initial trace ρ such that K Γ
PAR, ρ |= ψ. This amounts to say that

Γ contains an odd number of satisfiable Boolean formulas (the PARITY(SAT) problem) if
and only if K Γ

PAR |= ΦΓ, where ΦΓ = ¬ψ (the MC problem). The next theorem immediately
follows.

Theorem 15. The MC problem for A formulas over finite Kripke structures is PNP[O(logn)]-
hard (under LOGSPACE reductions).

A similar proof can be given for A (roughly speaking, we replace all the occurrences of
〈A〉 in ΦΓ by 〈A〉, and we stick the n substructures of K Γ

PAR—after transposing all their
edges—on q0, instead of s).

Finally, we observe that the PNP[O(logn)]-hardness of A and A immediately propagates to
AA, AB and AE, yielding, together with Corollary 9 and Theorem 10, the following result.

Theorem 16. The MC problem for A, A, AA, AB and AE formulas over finite Kripke
structures is in PNP[O(log2 n)] and it is hard for PNP[O(logn)].

This result leaves open the question whether MC for the above fragments can be solved
by o(log2 n) (i.e., strictly less than O(log2 n)) queries to an NP oracle, or a tighter lower
bound can be proved, or both (e.g., the problem may be complete for PNP[O(logn log logn)]).
As a matter of fact, any attempt to reduce TB(SAT)1×M to MC for A, AE, or AA failed,
because in such “reduction” we need an HS formula of length Θ(nlogn), which clearly cannot
be generated in polynomial time.

7. Conclusions and future work

In this paper, we have studied the complexity of MC for some fragments of the Halpern
and Shoham’s interval temporal logic HS (under the homogeneity assumption), interpreted
over finite Kripke structures.

31

First, we have proved that the fragments AB, AE, AAB, and AAE are complete for PNP,
thus joining other (point-based) temporal logics, e.g., CTL+, FCTL, and ECTL+, whose
MC problem is complete for that class [28]. Among these fragments, AB turns out to be
quite significant. In particular, as far as expressiveness is concerned, when interpreted over
discrete linear orders, it captures LTL [9].

In addition, we have shown that MC for A, A, AA, AB, and AE has a lower complexity
placed in between PNP[O(logn)] and PNP[O(log2 n)]. This result has been proved by reducing
MC to TB(SAT)1×M , the problem of deciding the output value of a complex circuit, where
some gates are endowed with NP oracles.

The fragments we have considered are somehow “halfway” between AABB, AAEE, and
AABE, which are PSPACE-complete [8, 37, 38], and Prop, B, and E, that are co-NP-
complete [8, 37]. All MC procedures we propose can be easily implemented with the support
of SAT-solvers, whose extreme efficiency may be “imported” in this context in a straight-
forward way.

Even though the homogeneity assumption is a natural choice in a number of application
domains, we have recently explored alternative semantics. In particular, inspired by the work
in [33], we have managed to relax it by defining interval labelling via regular expressions
that allow one to specify the behaviour of proposition letters on each interval on the basis
of its component states [7]. We have studied how complexity changes under such a semantic
variant of HS, and it turns out that MC for full HS is still (nonelementarily) decidable, but all
sub-fragments of AABB and AAEE become complete for PSPACE (even the complexity of
the simple fragments Prop, B, and E is “pushed” to PSPACE as a result of the introduction
of regular expressions).

As for future work, we are looking for possible improvements to known complexity results
for MC of full HS. We know that it is EXPSPACE-hard (we proved the EXPSPACE-
hardness of its fragment BE [8]), while the only available decision procedure is nonelementary.

In addition, we want to study the MC problem for HS over visibly pushdown systems
(VPS), which have the ability of modelling recursive programs and infinite state systems.

Last but not least, we are thinking of inherently interval-based models of systems. Kripke
structures, being based on states, are naturally oriented to the description of point-based
properties of systems, and of how they evolve state-by-state. We want to come up with
suitable (and practical) description paradigms for systems, which allow us to directly model
them on the basis of their interval behavior/properties. Only after devising these models
(something that seems to be extremely challenging), a really general interval-based MC will
be possible.

Acknowledgements

We would like to thank the reviewers for their useful comments and suggestions. The
work by Alberto Molinari and Angelo Montanari has been supported by the GNCS project
Logics and Automata for Interval Model Checking.

32

References

[1] Allen, J. F., 1983. Maintaining knowledge about temporal intervals. Communications of the ACM 26
(11), 832–843.

[2] Armando, A., Carbone, R., Compagna, L., 2007. LTL Model Checking for Security Protocols. In: CSF.
pp. 385–396.

[3] Basin, D., Cremers, C., Meadows, C., 2015. Model checking security protocols.
URL http://www-oldurls.inf.ethz.ch/personal/basin/pubs/security-modelchecking.pdf

[4] Batzold, T., Morin, G., Pecoraro, J., 2009. Completeness in the Σp
2 Hierarchy—A Compendium.

URL http://act.buaa.edu.cn/caoyang/files/notes/completeness in Delta 2 p hierarchy A

compendium.pdf

[5] Benerecetti, M., Guglielmo, R. D., Gentile, U., Marrone, S., Mazzocca, N., Nardone, R., Peron, A.,
Velardi, L., Vittorini, V., 2017. Dynamic state machines for modelling railway control systems. Science
of Computer Programming 133, 116–153.

[6] Bowman, H., Thompson, S. J., 2003. A decision procedure and complete axiomatization of finite interval
temporal logic with projection. Journal of Logic and Computation 13 (2), 195–239.

[7] Bozzelli, L., Molinari, A., Montanari, A., Peron, A., 2017. An in-Depth Investigation of Interval Tem-
poral Logic Model Checking with Regular Expressions. In: SEFM. pp. 104–119.

[8] Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P., 2016. Interval Temporal Logic Model
Checking: the Border Between Good and Bad HS Fragments. In: IJCAR. LNAI 9706. Springer, pp.
389–405.

[9] Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P., 2016. Interval vs. Point Temporal Logic
Model Checking: an Expressiveness Comparison. In: FSTTCS. pp. 26:1–26:14.

[10] Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P., 2016. Model Checking the Logic of Allen’s
Relations Meets and Started-by is PNP-Complete. In: GandALF. pp. 76–90.

[11] Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P., 2017. Satisfiability and model checking for
the logic of sub-intervals under the homogeneity assumption. In: ICALP. LIPIcs 80. Schloss Dagstuhl,
pp. 120:1–120:14.

[12] Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G., 2014. The dark side of inter-
val temporal logic: marking the undecidability border. Annals of Mathematics and Artificial Intelligence
71 (1–3), 41–83.

[13] Bresolin, D., Goranko, V., Montanari, A., Sala, P., 2010. Tableaux for logics of subinterval structures
over dense orderings. Journal of Logic and Computation 20 (1), 133–166.

[14] Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G., 2009. Propositional interval neighborhood
logics: Expressiveness, decidability, and undecidable extensions. Annals of Pure and Applied Logic 161
(3), 289–304.

[15] Bresolin, D., Montanari, A., Sala, P., Sciavicco, G., 2011. What’s decidable about Halpern and
Shoham’s interval logic? The maximal fragment ABBL. In: LICS. pp. 387–396.

[16] Buss, S., Hay, L., 1991. On truth-table reducibility to SAT. Information and Computation 102, 86–102.
[17] Castro, J., Seara, C., 1992. Characterizations of some complexity classes between Θp

2 and ∆p
2. In:

STACS. Springer, pp. 303–317.
[18] Cimatti, A., 2001. Industrial Applications of Model Checking. Springer, Ch. 6, pp. 153–168.
[19] Clarke, E. M., Grumberg, O., Peled, D. A., 2002. Model Checking. MIT Press.
[20] Donini, F., Mongiello, M., Ruta, M., Totaro, R., 2006. A model checking-based method for verifying

web application design. Electronic Notes in Theoretical Computer Science 151 (2), 19–32.
[21] Emerson, E. A., Halpern, J. Y., 1986. “Sometimes” and “not never” revisited: on branching versus

linear time temporal logic. Journal of the ACM 33 (1), 151–178.
[22] Giordano, L., Terenziani, P., Bottrighi, A., Montani, S., Donzella, L., 2006. Model checking for clinical

guidelines: an agent-based approach. In: AMIA. pp. 289–293.
[23] Giunchiglia, F., Traverso, P., 1999. Planning as model checking. In: ECP. LNCS 1809. Springer, pp.

1–20.

33

[24] Gligoric, M., Majumdar, R., 2013. Model Checking Database Applications. Springer, Ch. 1, pp. 549–
564.

[25] Goranko, V., Montanari, A., Sciavicco, G., 2004. A road map of interval temporal logics and duration
calculi. Journal of Applied Non-Classical Logics 14 (1–2), 9–54.

[26] Gottlob, G., 1995. NP Trees and Carnap’s Modal Logic. Journal of the ACM 42 (2), 421–457.
[27] Halpern, J. Y., Shoham, Y., 1991. A propositional modal logic of time intervals. Journal of the ACM

38 (4), 935–962.
[28] Laroussinie, F., Markey, N., Schnoebelen, P., 2001. Model checking CTL+ and FCTL is hard. In:

FOSSACS. pp. 318–331.
[29] Laroussinie, F., Markey, N., Schnoebelen, P., 2002. On model checking durational Kripke structures.

In: FOSSACS. Springer, pp. 264–279.
[30] Laroussinie, F., Meyer, A., Petonnet, E., 2010. Counting CTL. Springer, Ch. 1, pp. 206–220.
[31] Lomuscio, A., Michaliszyn, J., 2013. An epistemic Halpern-Shoham logic. In: IJCAI. pp. 1010–1016.
[32] Lomuscio, A., Michaliszyn, J., 2014. Decidability of model checking multi-agent systems against a class

of EHS specifications. In: ECAI. pp. 543–548.
[33] Lomuscio, A., Michaliszyn, J., 2016. Model checking multi-agent systems against epistemic HS specifi-

cations with regular expressions. In: KR. pp. 298–308.
[34] Lomuscio, A., Qu, H., Raimondi, F., 2009. MCMAS: A model checker for the verification of multi-agent

systems. In: CAV. Springer, pp. 682–688.
[35] Mentis, A., Katsaros, P., 2012. Model checking and code generation for transaction processing software.

Concurrency and Computation: Practice and Experience 24 (7), 711–722.
[36] Molinari, A., Montanari, A., Murano, A., Perelli, G., Peron, A., 2016. Checking interval properties of

computations. Acta Informatica 53 (6–8), 587–619.
[37] Molinari, A., Montanari, A., Peron, A., 2015. Complexity of ITL model checking: some well-behaved

fragments of the interval logic HS. In: TIME. pp. 90–100.
[38] Molinari, A., Montanari, A., Peron, A., 2015. A model checking procedure for interval temporal logics

based on track representatives. In: CSL. pp. 193–210.
[39] Molinari, A., Montanari, A., Peron, A., 2018. Model checking for fragments of Halpern and Shoham’s

interval temporal logic based on track representatives. Information and Computation. In Press.
[40] Molinari, A., Montanari, A., Peron, A., Sala, P., 2016. Model Checking Well-Behaved Fragments of

HS: the (Almost) Final Picture. In: KR. pp. 473–483.
[41] Montanari, A., Puppis, G., Sala, P., 2010. Maximal decidable fragments of Halpern and Shoham’s

modal logic of intervals. In: ICALP. LNCS 6199. Springer, pp. 345–356.
[42] Montanari, A., Puppis, G., Sala, P., 2015. A decidable weakening of compass logic based on cone-shaped

cardinal directions. Logical Methods in Computer Science 11 (4).
[43] Moszkowski, B., 1983. Reasoning about digital circuits. Ph.D. thesis, Stanford University, Stanford,

CA.
[44] Nardone, R., Gentile, U., Benerecetti, M., Peron, A., Vittorini, V., Marrone, S., Mazzocca, N., 2016.

Modeling Railway Control Systems in Promela. Springer, Ch. 1, pp. 121–136.
[45] Papadimitriou, C. H., Zachos, S. K., 1982. Two remarks on the power of counting. Theoretical Computer

Science: 6th Gl-Conference, 269–275.
[46] Pnueli, A., 1977. The temporal logic of programs. In: FOCS. IEEE Computer Society, pp. 46–57.
[47] Pnueli, A., 1981. The Temporal Semantics of Concurrent Programs. Theoretical Computer Science 13,

45–60.
[48] Pratt-Hartmann, I., 2005. Temporal prepositions and their logic. Artificial Intelligence 166 (1–2), 1–36.
[49] Roeper, P., 1980. Intervals and tenses. Journal of Philosophical Logic 9, 451–469.
[50] Schnoebelen, P., 2003. Oracle circuits for branching-time model checking. In: ICALP. LNCS 2719.

Springer, pp. 790–801.
[51] Sistla, A. P., Clarke, E. M., 1985. The complexity of propositional linear temporal logics. Journal of

the ACM 32 (3), 733–749.
[52] Stockmeyer, L. J., 1976. The polynomial-time hierarchy. Theoretical Computer Science 3 (1), 1–22.

34

[53] Venema, Y., 1990. Expressiveness and completeness of an interval tense logic. Notre Dame Journal of
Formal Logic 31 (4), 529–547.

[54] Venema, Y., 1991. A modal logic for chopping intervals. Journal of Logic and Computation 1 (4),
453–476.

[55] Wagner, K. W., 1987. More complicated questions about maxima and minima, and some closures of
NP. Theoretical Computer Science 51 (1), 53–80.

[56] Wagner, K. W., 1990. Bounded query classes. SIAM Journal of Computation 19 (5), 833–846.
[57] Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G., 2007. Model checking concurrent Linux

device drivers. In: ASE. pp. 501–504.
[58] Zhou, C., Hansen, M. R., 2004. Duration Calculus—A Formal Approach to Real-Time Systems. Mono-

graphs in Theoretical Computer Science. Springer.

Appendix A. Appendix

Appendix A.1. Proof of Lemma 2

Lemma 2. Let K = (AP ,W, δ, µ, w0) be a finite Kripke structure, ψ be an AAB formula,
and VA(·, ·) and VA(·, ·) be two Boolean arrays. Let us assume that

1. for each 〈A〉φ ∈ ModSubfAA(ψ) and v′ ∈ W , VA(φ, v′) = > if and only if there exists
ρ ∈ TrcK such that fst(ρ) = v′ and K , ρ |= φ, and

2. for each 〈A〉φ ∈ ModSubfAA(ψ) and v′ ∈ W , VA(φ, v′) = > if and only if there exists
ρ ∈ TrcK such that lst(ρ) = v′ and K , ρ |= φ.

Then, Oracle(K , ψ, v,direction, VA∪VA) features a successful computation (returning >)
if and only if:

• there is ρ ∈ TrcK such that fst(ρ) = v and K , ρ |= ψ, when direction is forward;

• there is ρ ∈ TrcK such that lst(ρ) = v and K , ρ |= ψ, when direction is backward.

Proof. It is easy to check that if ρ̃ is the trace non-deterministically generated by A trace

at line 1, then, for i = 1, · · · , |ρ̃|, it holds that K , ρ̃(1, i) |= φ ⇐⇒ T [φ, i] = >, either by
hypothesis, when φ occurs in ModSubfAA(ψ) (lines 2–7), or by construction, when φ does
not occur in ModSubfAA(ψ) (lines 8–22).

Let us now assume that the value of the parameter direction is forward (the proof
for the other direction is analogous).

(⇒) If Oracle(K , ψ, v, forward, VA∪VA) features a successful computation, it means that
there exists a trace ρ̃ ∈ TrcK (generated at line 1) such that fst(ρ̃) = v and T [ψ, |ρ̃|] = >
implying that K , ρ̃ |= ψ.

(⇐) If there exists ρ ∈ TrcK such that fst(ρ) = v and K , ρ |= ψ, by Proposition 1 there
exists ρ̃ ∈ TrcK such that K , ρ̃ |= ψ, fst(ρ̃) = fst(ρ), and |ρ̃| ≤ |W | · (2|ψ| + 1)2. It
follows that in some non-deterministic instance of Oracle(K , ψ, v, forward, VA∪VA),
A trace(K , v, |W | · (2|ψ|+ 1)2, forward) returns such ρ̃ (at line 1). Finally, we have
that T [ψ, |ρ̃|] = > as K , ρ̃ |= ψ, and hence the considered instance of Oracle(K , ψ, v,
forward, VA ∪ VA) is successful. �

35

Appendix A.2. Proof of Theorem 7

Theorem 7. Let ψ be an AA formula and K = (AP ,W, δ, µ, w1) be a finite Kripke structure.
For every block B of TK ,¬ψ, if B is associated with an AA formula ϕ, then

• if B is a forward block, for all i ∈ {1, . . . , |W |}, B(zi) = > if and only if there exists
a trace ρ ∈ TrcK such that fst(ρ) = wi and K , ρ |= ϕ;

• if B is a backward block, for all i ∈ {1, . . . , |W |}, B(zi) = > if and only if there
exists a trace ρ ∈ TrcK such that lst(ρ) = wi and K , ρ |= ϕ.

Proof. The proof is by induction on the level L ≥ 1 of the block B. The proof of the base
case for L = 1 is a simpler version of the the inductive step and it is therefore omitted.
Assume that B is a forward block at level L ≥ 2 associated with a formula ϕ (the
backward case is symmetric).

We first prove the implication (⇐). We have to show that if there exists a trace ρ ∈ TrcK

such that fst(ρ) = wi (for some i ∈ {1, . . . , |W |}) and K , ρ |= ϕ, then B(zi) = > that is,
there exists a truth assignment ω to the variables in V satisfying the formula Fi(Y, V)
of Gi. In [38], it is proved that if ϕ is an AA formula and K , ρ |= ϕ (as in this case),
there exists a trace ρ′ ∈ TrcK , with |ρ′| ≤ |W |2 + 2, such that fst(ρ) = fst(ρ′) = wi,
lst(ρ) = lst(ρ′), and K , ρ′ |= ϕ. Thus, by Proposition 6, there exists a truth assignment
ω to the variables in V , that satisfies trace(Vtrace, Vlast, VAP), such that for all 1 ≤ r ≤ |ρ′|
and 1 ≤ j ≤ |W |, ρ(r) = wj ⇐⇒ ω(vrj) = > and ω(v

|ρ|
j) = ω(vj), and for all p ∈ AP ,

ω(vp) = > ⇐⇒ K , ρ′ |= p (?).
Since L ≥ 2, it holds that ModSubfAA(ϕ) 6= ∅. Let us consider a forward child B′

of B (if any), at a level lower than L, associated with some formula ξ such that 〈A〉 ξ ∈
ModSubfAA(ϕ). By the inductive hypothesis, for all j, B′(zj) = > if and only if there exists
a trace ρ ∈ TrcK such that fst(ρ) = wj and K , ρ |= ξ. Thus, K , ρ′ |= 〈A〉 ξ if and only if
there exists ρ̃ ∈ TrcK , with fst(ρ̃) = lst(ρ′) = wj, for some j, and K , ρ̃ |= ξ if and only

if B′(zj)(= yξj) = >. So if K , ρ′ |= 〈A〉 ξ, then yξj = >, and ω(vj) ∧ yξj = >. Now, to
satisfy Fi(Y, V), the truth assignment ω has to be such that ω(v〈A〉 ξ) = >. If K , ρ′ 6|= 〈A〉 ξ,
then yξj = ⊥, thus

∨|W |
s=1(ω(vs) ∧ yξs) is false, and ω must be such that ω(v〈A〉 ξ) = ⊥.

To conclude, K , ρ′ |= 〈A〉 ξ if and only if ω(v〈A〉 ξ) = > (??). The symmetric reasoning
can be applied to backward children of B. Since K , ρ′ |= ϕ, by (?) and (??), we have
ω(ϕ(VAP , VmodSubf)) = >.

We prove now the implication (⇒). If B(zi) = >, then there exists a truth assignment
ω of V satisfying Fi(Y, V). In particular, ω satisfies trace(Vtrace, Vlast, VAP) and v1

i , thus,
by Proposition 6, there exists a trace ρ ∈ TrcK such that fst(ρ) = wi, lst(ρ) = wj, for
some j, and K , ρ |= p ⇐⇒ ω(vp) = >, for any p ∈ AP . By inductive hypothesis, for
all the formulas 〈A〉 ξ ∈ ModSubfAA(ϕ), K , ρ |= 〈A〉 ξ if and only if ω(v〈A〉 ξ) = >, and
symmetrically, for all 〈A〉 ξ′ ∈ ModSubfAA(ϕ), K , ρ |= 〈A〉 ξ′ if and only if ω(v〈A〉 ξ′) = >.
Since ω(ϕ(VAP , VmodSubf)) = >, then K , ρ |= ϕ. �

36

Appendix A.3. Proof of Theorem 11

Theorem 11. Let I be an instance of SNSAT with |I| = n, and let K I and FI be defined
as above. For all 0 ≤ k ≤ n+ 1 and all r = 1, . . . , n, it holds that:

1. if k ≥ r, then vI(xr) = > ⇐⇒ K I , wxr |= ψk;

2. if k ≥ r + 1, then vI(xr) = ⊥ ⇐⇒ K I , wxr |= ψk.

Proof. The proof is by induction on k ≥ 0. If k = 0, the thesis trivially holds. Therefore,
let us assume that k ≥ 1. We first prove the (⇐) implication for both item 1 and item 2.

• (Item 1) Assume that k ≥ r and K I , wxr |= ψk. Thus, there exists ρ ∈ TrcK I such
that ρ = wxr · · · s0 does not pass through any sm, for 1 ≤ m ≤ r, and K I , ρ |= ϕk. We
show by induction on 1 ≤ m ≤ r that ωρ(xm) = vI(xm).

– Let us consider first the case where ρ passes through wxm , implying that ωρ(xm) =
>; thus K I , ρ |= xm ∧ ¬rm and K I , ρ |= Fm(x1, . . . , xm−1, Zm). If m = 1 (base
case), since F1 is satisfiable, then vI(x1) = >. If m ≥ 2 (inductive case), by the
inductive hypothesis ωρ(x1) = vI(x1), . . . , ωρ(xm−1) = vI(xm−1). Since K I , ρ |=
Fm(x1, . . . , xm−1, Zm) or, equivalently, Fm(ωρ(x1), . . . , ωρ(xm−1), ωρ(Zm)) = >,
it holds that Fm(vI(x1), . . . , vI(xm−1), ωρ(Zm)) = > and, by definition of vI ,
vI(xm) = >.

– Conversely, let us consider the case where ρ passes through wxm , implying that
ωρ(xm) = ⊥ and m < r, as we are assuming fst(ρ) = wxr . In this case, the prefix
wxr · · ·wxm of ρ satisfies both

∨n
i=1 〈A〉 pxi and 〈A〉

(
¬s∧ `=2∧〈A〉(`=2∧¬ψk−1)

)
.

Therefore, K I , wxm ·sm |= 〈A〉(`=2∧¬ψk−1) and K I , sm ·wxm 6|= ψk−1, with ψk−1 =
〈A〉ϕk−1. Hence K I , wxm 6|= ψk−1. Since 1 ≤ m < r, we have 1 ≤ m < r ≤ k,
thus k′ = k − 1 ≥ m ≥ 1. By the inductive hypothesis (on k′ = k − 1), we get
that vI(xm) = ⊥.

Therefore vI(xr) = ωρ(xr) and, since wxr ∈ states(ρ), we have that ωρ(xr) = > and
then vI(xr) = > proving the thesis.

• (Item 2) Assume that k ≥ r + 1 and K I , wxr |= ψk. The proof follows the same
steps as the previous case and it is thus only sketched: there exists ρ ∈ TrcK I such
that ρ = wxr · · · s0 does not pass through any sm, for 1 ≤ m ≤ r, and K I , ρ |= ϕk.
The only difference is that the prefix wxr satisfies

∨n
i=1 〈A〉 pxi , thus as before we get

K I , wxr 6|= ψk−1. Now, k′ = k − 1 ≥ r ≥ 1 and, by the inductive hypothesis (on
k′ = k − 1), vI(xr) = ⊥.

We prove now the converse implication (⇒) for both items 1 and 2.

• (Item 1) Assume that k ≥ r and vI(xr) = >. Let us consider the trace ρ ∈ TrcK I ,
ρ = wxr · · · s0 never passing through any sm, for 1 ≤ m ≤ r, such that wxm ∈ states(ρ)
if vI(xm) = >, and wxm ∈ states(ρ) if vI(xm) = ⊥, for 1 ≤ m ≤ r. Such a choice
of ρ ensures that vI(xm) = ωρ(xm). In addition, the choice of ρ has to induce also

37

the proper truth-assignment of private variables, that is, if vI(xm) = >, then for 1 ≤
um ≤ jm, wzumm

∈ states(ρ) if Fm(vI(x1), . . . , vI(xm−1), Zm) is satisfied for zumm = >,
and wzumm

∈ states(ρ) otherwise. Note that such a choice of ρ is always possible. We
have to show that K I , ρ |= ϕk, hence K I , wxr |= ψk.

– For all 1 ≤ m ≤ r such that vI(xm) = >, it holds that Fm(vI(x1), . . . , vI(xm−1),
Zm) is satisfiable. Hence, by our choice of ρ, Fm(ωρ(x1), . . . , ωρ(xm−1), ωρ(Zm)) =

>, or, equivalently, K I , ρ |= Fm(x1, . . . , xm−1, Zm). Thus, K I , ρ |=
∧n
i=1

(
(xi ∧

¬ri)→ Fi(x1, . . . , xi−1, Zi)
)

.

– Conversely, for all 1 ≤ m < r such that vI(xm) = ⊥ (m 6= r as, by hypothesis,
vI(xr) = >), it holds that wxm ∈ states(ρ). Since m < r, we have k ≥ r > m
and k − 1 ≥ m ≥ 1. By the inductive hypothesis, K I , wxm 6|= ψk−1. It follows
that K I , sm ·wxm |= ¬ψk−1∧ `=2, K I , wxm · sm |= ¬s∧ `=2∧〈A〉(¬ψk−1∧ `=2) and
K I , wxm |= 〈A〉(¬s∧`=2∧〈A〉(¬ψk−1∧`=2)). Hence, K I , ρ |= [B]((

∨n
i=1 〈A〉 pxi)→

〈A〉(¬s ∧ `=2 ∧ 〈A〉(¬ψk−1 ∧ `=2))).

Combining the two cases, we can conclude that K I , ρ |= ϕk.

• (Item 2) Assume that k ≥ r + 1 and vI(xr) = ⊥. The proof is as before and it is
only sketched. In this case, we choose a trace ρ = wxr · · · s0. Since k′ = k − 1 ≥ r, by
the inductive hypothesis, K I , wxr 6|= ψk−1, and we can prove that K I , wxr |= 〈A〉(¬s∧
`=2 ∧ 〈A〉(¬ψk−1 ∧ `=2)). �

38

