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Abstract 

The aim of the present work is to produce a general, robust and efficient solver allowing to 

simulate non-continuum, multi-scale flows for diverse engineering applications. The wide 

development of MEMS application requires special methods for an investigation of the flow in 

them, since the rarefaction plays a major role in such flow and the Navier-Stokes equations even 

provided with slip boundary conditions become invalid in the whole flow field.  

The methodology used involves the decomposition of a physical domain into kinetic and 

hydrodynamic sub-domains by computing appropriate criteria, based on the local Knudsen 

number and gradients of macroparametrs. The size of sub-domains will change during the 

evolution depending on the current value of the criterion. The hybrid solver is the combination of 

a kinetic solver for the S-model of the Boltzmann kinetic equation (based on the discrete velocity 

method) and a Navier–Stokes solver based on a hybrid finite-difference finite volume scheme. 

The solution is advanced in time simultaneously in both kinetic and hydrodynamic domains and 

the coupling is achieved by matching half fluxes at the interface of the kinetic and Navier–Stokes 

sub-domains, thus taking care of the conservation of momentum, energy and mass through the 

coupling interface. Parallelization via MPI (Message Passing Interface) increases the efficiency 

of the hybrid solver, thus making simulations of complex geometry feasible. 

The hybrid solver is validated via the numerical investigation of gas flow through a slit in a 

wide range of pressure ratio, including flow into vacuum and Knudsen number from slip to 

transitional regime. The capability of hybrid solver as applied to vacuum science problems is 

demonstrated. Furthermore, the hybrid solver is applied for the investigation of the effect of the 

surface roughness. The competition between compressibility, rarefaction and roughness effects is 

analysed. The improvement in accuracy over Navier-Stokes equations and the computational 

efficiency of the proposed hybrid solver is assessed via comparison with a pure kinetic solution. 

Thus, the elaborated hybrid solver demonstrates capabilities to predict numerical results close to 

kinetic ones up to 10 times quicker.  
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Nomenclature 

Roman Symbols 

Ak   computational cell face area, m
2
 

c = ξ – V  relative speed of a single particle against a background gas, m/s 

CFL   Courant - Friedrichs - Lewy number, dimensionless 

C(t)   collision step 

cv   specific heat capacity at constant volume 

d   artificial dissipation term  

etot   macroscopic total energy, J/m
3
 

eint   macroscopic internal energy, J/kg 

f(t, x, ξ)  particle velocity distribution function, s
3
/m

6 

fr   friction coefficient, dimensionless 

F(U)   flux 

J   determinant of the Jacobian matrices 

H   height of the channel, m 

I   identity matrix  

Ic   coupling interface, m 

J(f, f)   Boltzmann collision integral 

Js(f, f)   S model of Boltzmann collision integral 

k   Boltzmann constant, 1.38.10
-23

J/K 

Kn   Knudsen number, dimensionless 

M(t, x, ξ)  Maxwellian distribution function, s
3
/m

6
 

Ma  Mach number, dimensionless 
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m   mass of the particle, kg 

n   local number density, 1/m
3
 

Nc   number of cells in physical space 

N   number of velocity nodes 

Np   number of processes 

p   pressure, Pa 

Po   Poiseuille number, dimensionless 

q   heat flux vector, W/m
2
 

R = k/m  ideal gas constant, 8.3145 J/mol K 

f
S
(t, x, ξ)  Shakhov distribution function, s

3
/m

6
 

s()   collision vector 

s   Van Albada limiter 

sT   temperature jump coefficient, dimensionless 

sp   slip coefficient, dimensionless 

t   time, s 

T   temperature, K 

T(t)   transport step 

U   vector of conservative macroscopic variables 

u, u   component of flow velocity tangential and normal to the surface, m/s 

V = (u, v,w)  macroscopic bulk velocity vector, m/s 

x = (x, y,z)  position vector, m 

 

Greek Symbols 

 = (α, )  velocity grid point indices 
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γ   specific heat ratio, dimensionless 

ij   Kronecker delta 

   rarefaction parameter, dimensionless 

ε   relative roughness, dimensionless 

  threshold value, dimensionless 

η(x)   outward normal vector, m 

   thermal conductivity, W/(m·K) 

ij   computational cell volume, m
3
 

λ  mean free path, m 

μ   gas viscosity, kg/m s 

ξ   particle velocity vector, m/s 

ξx, ξy, ξz   components of particle velocity vector, m/s 

   density, kg/m
3
 

σT   temperature accommodation coefficient  

v   part of incident particles scattered diffusely 

   shear stress tensor, N/m
2
 

ΩK   kinetic domain, m
2
  

ΩNS   Navier-Stokes domain, m
2
  

(x)   tangential vector, m 

 

Subscripts 

CE   Chapman-Enskog 

c   coupling  
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e   exit 

i   incoming 

inv   inviscid (convective)  

K   kinetic 

NS   Navier-Stokes  

o   outcoming 

p   process 

s   smooth 

v   velocity, volume 

vis   viscous (diffusive) 

w   wall  

0   total value, equilibrium state 

Superscripts 

T   transposed 

S   S-model 

 

Abbreviations 

CFD  Computational Fluid Dynamics 

CFL  Courant-Friedrichs-Lewy 

DSMC  Direct Simulation Monte-Carlo 

DVM  Discrete Velocity Method 

MEMS Micro-electro-mechanical-systems  

MUSCL  Monotonic Upstream-Centered Scheme for Conservation Laws 

TVD   Total variation diminishing  
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1. Introduction 

 Current development in micro and nano technologies have dramatically increased possible 

applications of micro scale flow simulations, from micro-electro-mechanical-systems (MEMS) 

devices to genuinely multi-scale problems. Despite the recent success in numerical/experimental 

investigation of MEMS a micro gaseous flow simulation still represents a major challenge, and is 

the main topic of several research projects at international level. 

The coexistence of rarefied and continuum flow regime areas is a typical feature of gas 

flow in micro systems. Near wall flows offer additional complexity due to appearance of highly 

rarefied region near the solid wall: the flow near a solid surface can be divided into a thin 

boundary layer, of the order of a few mean free path (so thin to be negligible for a macro 

configuration), which is a rarefied regime area and the internal core flow, which can be 

considered as continuum one. 

It is well known that, unfortunately, kinetic solvers, even for model kinetic equations, 

involve a considerable effort in terms of CPU time and memory requirements, due to the 

discretization in both physical and velocity spaces. On the other hand, hydrodynamics Euler or 

Navier–Stokes equations, describing the flow in terms of mere average gas velocity, density and 

temperature, are much more efficient, but less accurate in rarefied areas. However, the 

inaccuracy of Navier–Stokes equations in boundary layer can be partially overcome by 

introducing slip boundary and temperature jump conditions on the solid surface. Nonetheless, as 

indicated in the literature, slip conditions are valid only for local Knudsen numbers Kn less than 

0.1, and any attempts to increase their range, resorting to higher order slip boundary conditions, 

is not trivial and highly geometrical dependent.  

On the other hand, in many applications rarefied areas cover only a limited portion of the 

whole computational domain; therefore, the development of hybrid solvers applying a kinetic 

model in the region with a high rarefaction, while keeping continuum model in the rest of the 
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flow, allow us to simulate flows with an accuracy close to the full kinetic consideration and 

computational expenses close to continuum ones. The development of hybrid solvers combining 

kinetic and continuum models has become an important area of research over the last decade, 

see, e.g., [1-14].  

Potential applications of such solvers range from gas flows in complex micro systems to 

aerospace applications, such as high altitude flights. Major challenges in the development of 

hybrid code are the identification of kinetic and continuum domains and the choice of the 

coupling technique. The key parameter defining the choice of the appropriate physical model is 

usually related to some definition of a local Knudsen number, although more complex 

approaches have been suggested as well [7]. 

1.1. Hybrid solver strategies  

Different methods presented so far in the open literature can be classified into three 

categories. The first relies on the domain decomposition in a physical space: the computational 

domain is thus decomposed into kinetic and continuum sub-domains using appropriate criteria 

[1-12]. The second is based on the domain decomposition in a velocity space, where fast and 

slow particles are treated separately [13]. The third category includes hybrid models: both kinetic 

and fluid equations are solved in the entire domain, using a velocity distribution function to 

compute transport coefficients for fluid equations [14-16]. However, most of published works 

fall into the first category.  

Typically, particle methods such as Direct Simulation Monte-Carlo (DSMC) method or 

Molecular Dynamics are used in regions with strong deviation from equilibrium, and a 

continuum fluid dynamics CFD (Euler or Navier-Stokes, depending on problem features) solver 

is used elsewhere, e.g., [1-6]. Nonetheless, the direct numerical solution of kinetic equations [17-

21] is a viable alternative to the DSMC method and may be preferable to DSMC method, for 

coupling purposes, since both kinetic and continuum models use similar numerical techniques.  
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In the past few years, several attempts have been presented for coupled continuum and 

kinetic methods (see, e.g., [8-11]). It should be noticed that they are limited by applying a 

coupled methodology on a simulation with fixed chosen kinetic and continuum domains or 

special “kinetic” treatment of Navier -Stokes equations. A combination of the numerical solution 

of the Boltzmann equation and its model with kinetic schemes of continuum fluid dynamics was 

presented in [8, 9]. From the very beginning in [10, 11] a direct Boltzmann solver was combined 

with a Navier-Stokes solver using a priori decomposition of the domain, chosen on the basis of a 

previous continuum solution and not updated during the computation. Further, an improved over 

[10, 11] version of hybrid solver, including a dynamically decomposition of the physical domain 

into kinetic and continuum sub-domains by computing gradient-length Knudsen number KnGL 

based on the local Knudsen number and macroparameters gradients [6, 7] was used in [12] for a 

wall boundary independent problem (the gas flow through the slit). 

Thus, the development of the multiscale hybrid solver capable of the accurate and efficient 

simulation of non-continuum flows for engineering technologies is an open problem in scientific 

community. The multi-scalability is a main feature of micro gaseous flows and often 

encountered in actual application of practical interest, such as effect of surface roughness on the 

gas flow. In this case, the macroscales, or continuum flows are well described by Navier-Stokes 

equations provided with appropriate slip boundary conditions, while microscales are described 

by more general kinetic equations.  

1.2. Objectives of the present work  

The main challenges in the development of hybrid code are the identification of kinetic and 

continuum domains, as well as the choice of a proper coupling between these domains. The 

advantage of the present hybrid algorithm is that it allows to couple existing in-house codes for 

the numerical solution of the Boltzmann kinetic (and its models) and Navier-Stokes equations.  
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This research project is therefore aimed at the elaboration of a novel and sustainable 

multiscale solver for MEMS problems coupling a solver for the S-model of kinetic and Navier-

Stokes equations, with the objectives of: 

1. Developing multiscale coupling technique, allowing flexible changing the size of 

continuum and kinetic domains, depending on the flow regime.  

2. Increasing the efficiency of the solver by parallelization using MPI (Message Passing 

Interface) for computation on multiprocessors systems, making it tractable for complex 

two/three-dimensional flow problems; 

3. Validation of developed solver via comparison with well known problems;  

4. Application of hybrid solver for diverse engineering problems;  

5. Estimate the reliability of first order slip boundary conditions for the simulation of flows 

along of fine-textured geometries; 
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2. Hybrid solver methodology 

2.1. Coupling technique 

The coupling strategy between kinetic and continuum solvers is completely general, and 

can be applied to either the full Boltzmann kinetic equation or its different models and either 

Navier-Stokes (NS) or Euler equations. In this section the main ideas allowing to elaborate a 

hybrid solver are presented.  

The flow of rarefied gas starting from the equilibrium initial condition is described by the 

Boltzmann transport equation [22]: 

( , )B

f f
J f f

t

 
 

 
ξ

x
,          (1) 

0 0 0(0, , ) (ρ , , )x ξ cf M T .         (2) 

where f = f(t, x, ξ) is the velocity distribution function, i.e. the probability of finding a molecule 

with velocity ξ = (ξx, ξy, ξz) R
3
 in the position x = (x, y, z) at the time t, JB(f, f) is the Boltzmann 

collision integral, M(ρ0, c0, T0) is the equilibrium Maxwell distribution function, ρ0, c0 = ξ – V0 

and T0 are the equilibrium gas density, peculiar velocity, i.e., the relative speed of a single 

molecule against a background gas with bulk velocity V0 = (u0, v0 ,w0) and temperature, 

respectively.  

In kinetic description of the gas flow the macroscopic density, momentum, internal energy 

e per unit mass and heat flux are defined by integration over whole velocity space R
3
[-;] as 

following [22]:  

ρ fd  ξ  ,ρ( , ) (ξ ,ξ )T T

x yu v fd  ξ , 21
ρ

2
e fd c ξ , 2( , ) ( , )T T

x y x yq q m c c fd  c ξ  (3) 
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According to the Chapman-Enskog theory [23] Navier-Stokes equations are the first order 

approximation of the Boltzmann kinetic equation. The Chapman–Enskog (CE) velocity 

distribution function fCE(C) can be written as:  

 1( ) (ρ, , ) 1 ( ) (ρ, , ) ( )   C c C c CCEf M T f M T , 
2

m

kT
C c  (4) 

 2

3/ 2

ρ
(ρ, , ) exp

(2π / )
 c CM T

kT m
,  (5) 

* 2 *

1

2
( ) 1

5
i i ij i jf q C C C

 
   

 
C C ,   (6) 

* μ 2

3

ji k
ij ij

j i k

uu u

p x x x
 

  
       

 ,       
* 2

-i

i

m T
q

p kT x

 



  (7) 

where ρ, T and p is the gas density, temperature and pressure, respectively, c = ξ – V is the 

relative speed of a single molecule against a background gas with bulk velocity V = (u, v ,w), 

f1(C) is the correction term, τ
*
ij is the normalized shear stress tensor, ij is the Kronecker delta, qi

*
 

is the normalized heat flux vector, μ is the dynamic viscosity and κ is the thermal conductivity of 

the gas at temperature T; for monatomic gas κ can be computed as (5/2) μcv, where cv is the 

specific heat capacity at constant volume (for monatomic gas cv = 3k/2m), k is the Boltzmann 

constant. Substituting fCE(C) in equation (1) and multiplying by the collision vector 

s(ξ) = (1, ξ, ξ
2
/2), integration over the whole velocity domain R

3
[-;] recovers the usual 

conservation laws of mass, momentum and energy: 

3 3

φ 0T T

CE CE

R R

f d f s d
t

  
     

 ξ ξ ξ
x

.        (8) 

The use of fCE ensures that equation (7) is equivalent to the usual conservative form of Navier-

Stokes equations: 

0
t

 
 

 

U F(U)

x
,         (9) 



 16 

 2s ρ,ρ ,ρ( / 2)  U ξ V V
T

T

CEf d e ,      (10) 

  ( ) F U ξ s ξ ξ
T

CEf d ,         (11) 

where U is the vector of macroscopic values, F(U) is the flux vector.  

The sketch of coupling procedure between kinetic domain ΩK and continuum (NS) domain 

ΩNS is shown in Fig. 1. To solve a kinetic equation in a physical cell xi+1ΩK we need to know 

the distribution function of incoming particles from the neighbouring cell xiΩNS (see Fig. 1). 

On the coupling interface Ic this information has to be provided by the continuum solution; thus, 

assuming that equation (8) holds true in the continuum sub-domain we impose a Chapman–

Enskog distribution function fCE, equation (4): 

| ( ) ( )
cI CE if f xx        if ( ) 0 ξ η x        (12) 

where (x) is the inward normal vector to the boundary of ΩK (see Fig. 1). Macroscopic values 

ρ, V, T appearing in the CE distribution function fCE(xi) are computed at the grid point xi  ΩNS 

and the evaluation of macroparameters gradients (∂T/∂x and ∂V/∂x) involves also values in the 

neighbor to xi points, i.e. xi-1 and xi+1.  

 

Fig. 1. Hybrid coupling procedure. 

The interface Ic position depends on the value of breakdown parameter, recomputed at each 

time step (the choice of breakdown parameter and its effect on hybrid solution will be discussed 

later); thus, it may happen that some nodes considered as continuum at previous time step can 
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become kinetic ones at the current time step. In this case, the kinetic distribution function in 

“new” kinetic nodes will be initialized as the CE distribution function fCE(x) computed using 

current macroscopic values ρ, V, T and their gradients.  

Thus, at the coupling interface Ic the following boundary condition is imposed:  

( ) | ( ) ( )
cI

    i oF(U) η x F (U) η x F (U) η x       (13) 

where Fi(U)·(x) and Fo(U)·(x) are incoming and outcoming half fluxes. Thus, the coupling 

between kinetic and NS solvers is achieved by imposing into ΩNS domain the incoming half flux 

Fi(U)·(x), predicted by the kinetic solver:  

( ) 0
( ) ( ) ( , , ) ( )Tf t d

 
  i

ξ η x
F (U) η x ξ η x ξ x s ξ ξ        (14) 

where f(t, x, ξ) ≡ fK is the solution of kinetic equation for molecules exiting from ΩK. The 

outcoming flux Fo(U)·(x) from ΩNS to ΩK domain can be computed as: 

( ) 0
( ) ( ) ( , , ) ( )

 
  o

ξ η x
F (U) η x ξ η x ξ x s ξ ξ

T

CEf t d      (15) 

It can be seen, that the NS model acts on the kinetic one by imposing the incoming 

Chapman–Enskog function fCE on the coupling interface Ic, while the macroscopic parameters ρ, 

V, T and their gradients for fCE are computed locally. 

If a boundary node at the inlet/outlet falls in continuum domain the conditions are specified 

according to the Navier-Stokes statement of the problem. If an inlet/outlet boundary node falls in 

the rarefied domain the Maxwell velocity distribution function is assumed for incoming in 

computational domain particles with density, temperature and velocity specified by a considered 

problem.  

At solid wall in ΩK domain the Maxwell diffuse reflecting boundary condition with the full 

accommodation is applied, while in ΩNS subdomain the first order slip and Smoluchowski 

temperature jump boundary conditions are used.  
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2.2. Breakdown parameter  

The choice of breakdown criterion, defined the size of kinetic ΩK and ΩNS sub-domains, is 

important since the wrong domain decomposition could lead to a non-positive velocity 

distribution function or even incorrect numerical results [7]. On the other hand, the 

overestimation of kinetic domain size results in inefficiency, forcing the use of kinetic solver 

where a continuum one could have been accurate enough. Therefore, choosing a breakdown 

parameter along with a threshold value in numerical simulation we always should find the 

balance between a computational efficiency of the hybrid solver and reliability of the computed 

results.  

One of the options for the breakdown parameter proposed in the open literature is the 

gradient-length Knudsen number KnGL(x) [6, 7]: 

ρ( ) max( , , )GL GL GLV GL TKn Kn Kn Knx ,       (16) 

ρ

| ρ |
( )

ρ
GLKn Kn


x ,          (17) 

*

| |
( )

| |
GL V

Kn Kn



V

x
V

,         (18) 

| |
( )GL T

T
Kn Kn

T


x ,         (19) 

where ρ is the local density, V = (u, v, w) is the local bulk velocity and T is the local temperature. 

It should be noticed that in the present work KnGL is based on the gradient of the velocity 

magnitude |V|, rather than its components as was proposed in [6, 7]. It is clear that the new 

definition takes into account shear stresses, which are essential for near wall problems. 

Moreover, in low-speed flow regions, the velocity magnitude gradient in KnGL |V| is normalized 

by some chosen speed vmin, in order to avoid singularities where the flow velocity approaches to 

zero. This is imposed defining |V|* = |V| if |V|  vmin and |V|* = vmin if |V| < vmin. One of the 
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possible ways to define vmin is based on the isentropic velocity, i.e. uis = Mais(γRT0)
0.5

. Here, vmin 

is equal to 0.05 uis considered as sufficiently small. 

In [6] the threshold value  was chosen from the assumption that NS equations are valid 

up to local Knudsen number Kn = 0.05-0.1, therefore the kinetic solution was performed where 

gradient-length Knudsen number KnGL(x) ≥ 0.05. However, as will be reported below, the 

particular choice of the threshold value  should be supported by preliminary numerical tests.  

Another breakdown parameter, proposed in the literature, is based on the CE distribution 

function [24, 7]. When f1(C) (equation (4)) is small, then (C) slightly deviates from 1 and NS 

equations are valid; when (C) is sufficiently far from unity then NS equations may fail, and a 

kinetic approach is required. The direct evaluation of f1(C) is difficult and numerically expensive 

because it is a function of not only flow field gradients but also the random peculiar velocity C 

and therefore, either an average or maximum value of f1(C) should be evaluated over the full 

distribution function. Therefore, in [24, 7] an approximate breakdown parameter based on the 

normalized shear stress τ
*
ij and heat flux q

*
i was proposed: 

* *max( , )q ij iB q           (20) 

where normalized shear stress τ
*
ij and heat flux q

*
i are computed using eqs. (7). The kinetic 

solution is activated when Bqτ > 0.1.  

Tiwari [25] has proposed another criterion based on the norm of additional term in 

Chapman-Enskog distribution function ||f1(C)||: 

2
2

1

| |1 1 2
|| ( ) || | |

ρ 2 5
 C i

ij

q
f

RT RT
        (21) 

For the continuum approximation to hold this parameter should be much less than unity.  
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3. Hybrid solver implementation 

The elaborated hybrid solver is constructed by coupling two in-house codes for the 

solution of hydrodynamic NS equations and kinetic equation written using FORTRAN and C++ 

programming languages, respectively. The efficiency of the hybrid solver is enhanced by 

parallelization via MPI (Message Passing Interface). 

3.1. Kinetic solver 

3.1.1. Governing equations and boundary conditions 

The kinetic solver is based on the numerical solution of the Boltzmann transport equation 

(1) describing the evolution of particle velocity distribution function f = f(t, x, ξ) in six 

dimensional phase space (physical space x = (x, y, z) and velocity space ξ = (ξx, ξy, ξz)R
3
[-

;]). The general form of the Boltzmann collision integral is the following [22]:  

2π

1 1 1

0 0

( , ) ( ( ) ( ) ( ) ( )) α





     ξ ξ ξ ξ ξ
mb

BJ f f f f f f gbdbd d      (22) 

where ξ, ξ1, ξ , ξ 1 are velocities of pair of particles before and after collision, g = |ξ - ξ1| is the 

relative velocity, and b,  are impact parameters, the distance of the closest approach, bounded 

by a bm, and azimuth angle, respectively. Furthermore, the velocity distribution function 

f = f(t, x, ξ) can be treated as the probability of finding a molecule with velocity ξ = (ξx, ξy, ξz) in 

the position x = (x, y, z) at the time moment t.  

Let us consider the initial-boundary value problem for the Boltzmann transport equation 

(1) starting from the equilibrium initial condition (2). We discretize time into discrete values 

t
n
= nt, and denote by f

n
(x, ξ) an approximation of the distribution function f = f(t

n
, x, ξ). The 

standard approach to solve the kinetic equation (1) is the time splitting method, which is 
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obtained considering, in a small time interval t = t
n+1

-t
n
, the numerical solution of the transport 

step: 

* *

*

0

(0, , ) ( , )n

f f

t

f f

 
 

 
 

ξ
x

x ξ x ξ

         (23) 

and the space homogeneous collision step: 

** *
** **

** *

( , )

(0, , ) ( , , )

B

f f
J f f

t

f f t

 
 

 
  

ξ
x

x ξ x ξ

        (24) 

Denoting T(t) and C(t) as solution operators (exact or at least second order) 

corresponding respectively to the transport and collision steps, i.e. we can write: 

*(0, , ) T( ) ( , )  nf t fx ξ x ξ          (25) 

** *( , , ) ( ) ( , , )f t t f t   x ξ x ξC         (26) 

The approximated value for the velocity distribution function at next time level t
n+1

 is then 

given by: 

1 **( , ) ( , , ) ( ) ( ) ( , )n nf f t t t f     x ξ x ξ x ξC T       (27) 

It should be mentioned that a second order scheme in time can be easily derived simply by 

symmetrizing the first order scheme: 

1( , ) ( / 2) ( ) ( / 2) ( , )n nf t t t f    x ξ x ξT C T        (28) 

The computation of the Boltzmann collision integral JB(f, f) (eq. (22)) is, in general, time 

and memory consuming. For the sake of simplicity, in the present work, the full Boltzmann 

collision integral JB(f, f) is approximated by the S-model [26], which can be written as:  
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 
 

2 2

2

2 5
( , ) 1

μ 2 2 μ15ρ

   
             

S

S

p m m p
J f f M f f f

kTkT

qc c
,    (29) 

2

3/ 2

ρ
(ρ, , ) exp

(2π / ) 2

m
M T

kT m kT

 
  

 

c
V .       (30) 

f
S
(ρ, c, T) and M(ρ, c, T) are the local Shakhov and Maxwell distribution functions, respectively, 

ρ, T and p is the gas density, temperature and pressure, respectively, c = ξ – V is the relative 

speed of a single molecule with the mass m against a background gas with bulk velocity 

V = (u, v, w), q is the heat flux vector, μ is the dynamic viscosity of the gas at temperature T, 

κ = (5/2) μcv is the thermal conductivity, cv is the specific heat capacity at constant volume (for 

monatomic gas cv = 3k/2m), k is the Boltzmann constant. The S-model provides the correct 

Prandtl number Pr = 2/3 in contrast to the BGK model [27], but the H-theorem for the S-model 

was proved only for its linearized form.  

To proceed to dimensionless variables scales specified by equilibrium values are 

introduced. The specific choice of reference values is dictated by the particular problem under 

consideration and will be additionally indicated further for each considered in the present work 

problems. Generally speaking we can introduce the following equilibrium values as reference 

ones: number density n0, temperature T0, most probable velocity v0 = (2kT0/m)
0.5

, reference 

dynamic viscosity μ0, reference length L, time t0 = L/v0. Thus, we have the following 

dimensionless variables: 

0 0= / , = / , = /x x ξ ξL v t t t          (31) 

0 0 0 0 0 0ρ=ρ / , / , / , / , /mn T T T v p p p p v   V V q q     (32) 

3

0 0 0μ=μ / μ , / ρf fv          (33) 

Further, for simplicity the tildes above dimensionless variables are omitted.  

In kinetic gas theory the one of the most important parameters is the Knudsen number Kn 

characterized the rarefaction level of the gas flow and defined as the ration between 

characteristic length of the flow to mean free path λ. Here, the reference Knudsen number Kn is 



 23 

the ratio between the reference length L and the mean free path λ0 at reference conditions. 

Choosing the hard-sphere molecular model, for the present study, the mean free path is defined 

as:  

0
0

0 0

16μ

5ρ 2π

m

kT
  .         (34) 

Another rarefaction parameter , characterized rarefaction of the gas flow, can be introduced as:  

0

0 0

8
δ

μ 5 π

p H

v Kn
  ,         (35) 

Using dimensionless variables, the transport kinetic equation (1) with S-model collision integral 

and initial condition (2) can be rewritten as following [20, 21]:  

 δ ρ
 

  
 

Sf f
T f f

t
ξ

x
,        (36) 

(0, , ) (1, ,1)x ξ cif M           (37) 

2

2

4 2 5
(ρ, , ) (ρ, , ) 1 (1 Pr)

5 ρ 2

  
     

  

Sf T M T
T T

qc c
c c ,     (38) 

2

3/ 2

ρ
(ρ, , ) exp

(π )

 
  

 

c
cM T

T T
,       (39) 

Moreover, for monatomic gas the dimensionless viscosity coefficient, for hard-sphere molecular 

model, is μ = T
0.5

 and thermal conductivity is κ = (15/4) μ.  

The dimensionless macroscopic (bulk) distributions of number density, velocity vector, 

temperature and heat flux, respectively, are computed using the following formulas:  

ρ fd  ξ , ρ( , ) (ξ ,ξ )T T

x yu v fd  ξ , 23
ρ

2
T fd c ξ , 21

( , ) ( , )
2

T T

x y x yq q c c fd  c ξ  (40) 

Replacing the Boltzmann collision integral JB(f, f) by the S-model and taking into account 

two-dimensionality of the flow (problems considered in the present work are two-dimensional) 
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we can eliminate z component of the molecular velocity by the projection procedure, thus, 

essentially decrease the CPU time and the memory requirement in comparison with the solution 

of the full Boltzmann equation in which the velocity space is always three–dimensional. This is 

performed by introducing the new reduced distribution functions: 

φ( , ,ξ ,ξ ) ( , , ) ξx y zt f t d





 x x ξ          (41) 

2ψ( , ,ξ ,ξ ) ( , , )ξ ξx y z zt f t d





 x x ξ         (42) 

Multiplying equation (36) by 1 and z and integrating with respect to dz we obtain the following 

coupled set of integro-differential equations: 

φ φ
δσ(ρ, )( )ST f

t

 
   

 
ξ

x
         (43) 

ψ ψ
δσ(ρ, )( )ST f

t

 
   

 
ξ

x
        (44) 

where the reduced Shakhov and Maxwell distribution functions are read as: 

24
1 (1 Pr)( )( 2)

5

S

M x x y yc c
 

       
 

c        (45) 

21 4
1 (1 Pr)( )( 1)

2 5

S

M x x y yT c c
 

        
 

c       (46) 

2ρ
exp

π
M

T T

 
   

 

c
, 

2
M M

T
   , 

3/ 2

2

ρ

i
i

q

T
         (47) 

The Maxwell diffuse reflecting boundary condition with the full accommodation at walls is 

applied, i.e. in the kinetic subdomain ΩK. Incident molecules are assumed to be absorbed by the 

wall and re-emitted with the wall temperature Tw and with a random velocity, according to the 

Maxwell distribution function centred on the velocity of the wall Vw: 

| ( , , ) ω( ) (1, , ), η( ) 0  x ξ x c ξ xw w wf t M T        (48) 
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where (x) is the vector normal to the wall (direct toward the gas), and (x) is determined so as 

to avoid a mass flux across the wall [18]: 

η( )<0

η( )>0

η( ) ( , , )
ω( ) ,

η( ) (1, , )

x

w w
x

f t d

M T d






 







ξ

ξ

ξ x x ξ ξ
x

ξ x V ξ
       (49) 

At inlet/outlet boundary conditions the Maxwell velocity distribution function is imposed, 

as well, for incoming in the computational domain particles. The density, temperature and bulk 

velocity, defining Maxwell distribution function, are specified by considered problem. At the 

symmetry line the specular boundary condition is imposed.  

3.1.2. Numerical scheme 

The system of kinetic equations (43) and (44) is solved by using the discrete velocity 

method (DVM). The obtained system of two equations are discretized on a 2D grid in velocity 

space {} = (ξx
α
 = -vmax + αΔξx, ξy


= -vmax + βΔξy), α = 1,.., αmax, β = 1,…, βmax, where 

 = (α, )  N = αmax×βmax defines velocity grid point indices. In general, the velocity grid is the 

Cartesian uniform one, but there are other opportunities to discretize velocity space. For 

example, if velocity space nodes are located at Gaussian abscissas, Gaussian integration may be 

performed via proper Gaussian weight function.  

Denoting 
n
Г and 

n
Г as the approximations of (t

n
, ξ, x) and (t

n
, ξ, x), respectively, 

the obtained set of equations for 
n
Г and 

n
Г is numerically solved explicitly/implicitly in time 

[28, 29]: 

1
1 1 1φ φ φ

δσ ( φ )
n n n

n n n

S
t


   

   
 

Γ Γ Γ
Γ Γξ

x
       (50) 

1
1 1 1ψ ψ ψ

δσ ( ψ )
n n n

n n n

S
t


   

   
 

Γ Γ Γ
Γξ

x
       (51) 
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or  

1
1 1

1 1

φ1 δσ
φ φ

1 δσ 1 δσ

n n
n n n

Sn n

t
t

t t


 

 

  
    

    

Γ
Γ Γ Γξ

x
     (52) 

1
1 1

1 1

ψ1 δσ
ψ ψ

1 δσ 1 δσ

n n
n n n

Sn n

t
t

t t


 

 

  
    

    

Γ
Γ Γ Γξ

x
    (53) 

where 
n+1

 = (
n+1

, T
n+1

). In spite of the collision part is written at time moment t
n+1

 

macroscopic quantities: density 
n+1

, bulk velocity V
n+1

 and temperature T
n+1

 can be obtained 

explicitly:  

 
 

3

1
φ,ψ3

(ρ,ρ , ρ ) ( ) φ,ψ
2

n

nn T

R

T t d
 
  
 
 

V s ξ ξ ξ
x

     (54) 

where s(ξ) = (1, ξ, ξ
2
/2) is the collision vector. Thus, allow us to compute reduced Shakhov 

functions S
n+1

, S
n+1

 and 
n+1

 [29]. 

The transport term in equations (52) and (53) is treated explicitly and approximated by a 

standard finite volume TVD scheme. Introducing in the physical space a 2D, uniform Cartesian 

grid defined by nodes (xi, yj) = (ix, jy), for i = 1,…,imax and j = 1,…,jmax and Nc = imaxjmax and 

cells (xi-1/2, xi+1/2)(yj-1/2, yj+1/2) centred around each node. Assuming 
n
Г,i,j and 

n
Г,i,j are the 

approximations of (t
n
, ξ, xi, yj) and (t

n
, ξ, xi, yj) and distribution function values are known at 

time t
n
 = nt the numerical solution of the transport step can be written as: 

   1

, , , , 1/ 2, 1/ 2, , 1/ 2 , 1/ 2φ φ (φ ) (φ ) (φ ) (φ )n n n n n n

i j i j i j i j i j i j

t t
F F F F

x y



   

 
    

 
Γ Γ Γ Γ Γ Γ ,  (55) 

The similar solution can be written for the second reduction function 
n
Г,i,j. 

Numerical fluxes 1/ 2, (φ )n

i jF Γ  and , 1/ 2 (φ )n

i jF  Γ  are defined as following: 
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    α α

1/2, , 1, , , , 1/2, , 1/2,

1
(φ ) ξ φ φ ξ φ

2
       n n n n n

i j x i j i j x i j i jF Γ Γ Γ Γ Γ
,    (56) 

    β β

, 1/2 , , 1 , , , , 1/2 , , 1/2

1
(φ ) ξ φ φ ξ φ

2
       n n n n n

i j y i j i j y i j i jF Γ Γ Γ Γ Γ
,    (57) 

, 1/ 2, , 1, , ,φ φ φn n n

i j i j i j   Γ Γ Γ , , , 1/ 2 , , 1 , ,φ φ φn n n

i j i j i j   Γ Γ Γ .      (58) 

, 1/ 2,

n

i j   is the flux limiter function provided a second order of the scheme. For the most part of 

computations the minmod limiter function is used [30, 31]: 

 , 1/ 2, , 1/ 2, , 1/ 2, , 3/ 2,min mod φ , φ , φn n n n

i j i j i j i j       Γ Γ Γ Γ
     (59) 

where the minmod function can be computed as: 

 
1 2 3

1 2 3

min , if ( ) ( ) ( ),
min mod , ,

0, otherwise

i
i

a sign a sign a sign a
a a a

  
 


   (60) 

The high order scheme, the third order MUSCL scheme with the Van Albada limiter is 

used for computations as well [32, 33]. The numerical flux 1/ 2, (φ )n

i jF Γ  (formula for , 1/ 2 (φ )n

i jF  Γ  

flux is similar and not presented here) can be rewritten in different form:  

, 1/ 2,

1/ 2,

, 1/ 2,

(φ ) ,  ξ 0
(φ )

(φ ) ,ξ 0

L i j xn

i j n

R i j x

F











 
 



Γ

Γ

Γ

        (61) 

where L and R are the distribution functions on the left and right side of the interface 

(i + 1/2, j). They are determined by the third order MUSCL with the smooth limiter to 

extrapolate the value of 
n
Г,i,j on the two sides of an interface:  

, 1/ 2, , ,

, 1, , 1,

1

(φ ) φ ((1 ) (1 ) ) ,
4

(φ ) φ ((1 ) (1 ) ) ,
4

L i j i j

i

R i j i j

i

s
ks ks

s
ks ks

  

   



  
        

 


           

Γ Γ

Γ Γ

    (62) 
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where k = 1/3 and s is the Van Albada limiter [34]: 

2

2 2

2 θ

θ
s  

 

  

  

.         (63) 

Here θ is a small number (θ = 10
-6

) preventing division by zero in the region of null gradient and 

, 1, , ,( ) φ φi i j i j   
Γ Γ

,   , , , 1,( ) φ φi i j i j   
Γ Γ

      (64) 

The transport time step follows the condition:  

 max max/ maxt CFL v x v y     ,        (65) 

where CFL is the Courant - Friedrichs - Lewy number, vmax is an upper boundary of the velocity 

space and Δx and Δy are the mesh sizes in the x and y directions, respectively.  

Complex geometries may require a more general nonuniform structured mesh, which 

should be treated with a curvilinear mesh. To approximate space derivatives on 2D curvilinear 

grid the following curvilinear coordinates (x, y) and (x, y) are used [17]. Thus, the transport 

equation for 2D case can be rewritten as: 

ζ η

φ1 ζ η
( φ ) ( φ ) 0

J t J J

  
    



Γ
Γ Γ Γ Γ
ξ ξ ,      (66) 

where ζ=( ζ , ζ )x y   , η=( η , η )x y    and = ζ η ζ ηx y y xJ      is the determinant of the Jacobian 

matrices of the transformation. If we define a uniform grid ( = i, j = j), then a scheme 

similar to (55) can be used: 

   1

, , , , 1/ 2, 1/ 2, , , 1/ 2 , 1/ 2 ,φ φ (φ ) (φ ) (φ ) (φ )
ζ η

n n n n n n

i j i j i j i j i j i j i j i j

t t
F F J F F J

   

 
    

 
Γ Γ Γ Γ Γ Γ  (67) 

The numerical fluxes 1/ 2, (φ )n

i jF Γ  and , 1/ 2 (φ )n

i jF  Γ  are defined as following: 

   1/2, , 1, , , , 1/2, , 1/2,

1/2, 1/2,

1 ζ ζ
(φ ) φ φ φ

2

n n n n n

i j i j i j i j i j

i j i j

F
J J

   

 

     
               

Γ Γ Γ Γ Γ Γ Γξ ξ , (68) 
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   , 1/2 , , 1 , , , , 1/2 , , 1/2

, 1/2 , 1/2

1 η η
(φ ) φ φ φ

2

n n n n n

i j i j i j i j i j

i j i j

F
J J

   

 

     
               

Γ Γ Γ Γ Γ Γ Γξ ξ , (69) 

Geometric coefficients 1/ 2,( ζ/ )i jJ  , , 1/ 2( η/ )i jJ   and Ji,j are standard approximations used in 

order to preserve the free stream [17]. This scheme has the same properties as scheme (55) (i.e., 

positivity, conservation of moments, and dissipation of entropy), provided that a CFL condition 

similar to formula (65) is satisfied. 

3.2. Navier-Stokes solver 

3.2.1. Governing equations and boundary conditions 

For the continuum regime, the standard approach used to describe the gas flow is based on 

continuum Navier-Stokes equations. These equations describe the flow in terms of mere average 

flow velocity, gas density and temperature, thus are much more efficient than kinetic equations, 

but much less accurate in critical rarefied areas. The inaccuracy of NS equations in the boundary 

layer can be partially overcome by introducing slip boundary and temperature jump conditions 

on the solid surface. However, as indicated in the literature, slip conditions are valid only for the 

local Knudsen number Kn  0.1, and any attempts to increase their range, resorting to higher 

order slip boundary conditions, is not trivial and highly geometrical dependent. 

The governing equations of the flow are viscous, compressible two-dimensional NS 

equations which can be written in terms of conservative variables as: 

0
t

 
 

 

U F(U)

x
 ,         (70) 

 ρ,ρ ,ρ toteU V ,  
2= / 2tote eV       (71) 

where etot is the total energy per unit mass.  
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The flux vector F(U) may be decomposed into the convective (inviscid) and diffusive 

(viscous) components as following: 

inv vis F F F            (72) 

 ρ ,ρ , (ρ )
T

inv totp e p  F V VV I V        (73) 

 0, ,
T

vis   F τ τ V q          (74) 

As in any compressible flow solver, viscous dissipation term ·V is included in the energy 

equation. Pressure p and total energy per unit mass etot are linked by the equation of state for 

ideal gas:  

 ρ γ-1
2

totp e
 

  
 

2
V

        (75) 

The inlet/outlet boundary conditions are standard and specify the inlet total temperature T0, 

total pressure p0 and flow direction, and the static pressure pe at the outlet. The compressibility 

effect of the gas is monitored via the local value of Mach number Ma and the isentropic exit 

Mach number Mais (i.e., Ma that would arise from an isentropic flow with the same pressure 

ratio as the real one): 

γ/(γ 1)

20 γ 1
1

2
is

e

p
Ma

p


 

  
 

         (76) 

20 γ 1
1

2
is

e

T
Ma

T

 
  
 

          (77) 

0 0 0ρ /p RT            (78) 

At solid wall, i.e. in continuum domain ΩNS, the Maxwell first order slip boundary 

condition is imposed [10, 11]: 
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ζ( ) η( )

η( ) ζ( )
gas w p

u u
u u = s Kn

  
  

  

x x

x x
        (79) 

 
2π

1 0.1366
2

v
p v

v

s






          (80) 

where (x) and (x)are unit vectors normal and tangential to the solid wall, respectively. In 

computations sp is around one (i.e., the fraction v of incident particles scattered diffusely is set 

equal to one). The additional derivative along the tangential direction is essential in capturing 

even the qualitative behaviour of the slip flow along curved walls.  

A Dirichlet temperature boundary condition is imposed at the wall. The wall temperature is 

fixed at the inlet total temperature value to minimize the effect of viscous dissipation. In the 

energy equation, the Smoluchowski temperature jump is used: 
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T
T T = s Kn
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where sT is the temperature jump coefficient. Since the flow is considered isothermal the 

temperature accommodation coefficient σT equals to one. At the symmetry line the specular 

boundary condition is imposed.  

3.2.2. Numerical scheme 

Navier-Stokes equations are solved by employing a finite difference and finite volume 

method. The numerical method is described in detail in [35] and has formal second order 

accuracy in space and time. Thus, here it is only briefly outlined.  

Adopting a curvilinear, structured mesh we may define a computational cell of volume ij 

with faces Ak, k = 1,…, 4 around each node. At each of these computational cells the flux 

balance offers: 
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Fluxes are defined via neighboring value averaging, and an artificial dissipation term d is 

added to prevent checker boarding and numerical instabilities. Thus, considering a face located 

at i+1/2 we get: 
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
 

F (U) F (U)
F (U)        (84) 

Artificial dissipation term d are given by a blend of second and fourth order differences, scaled 

by the maximum eigenvalue of jacobian matrix of vectors Finv, as suggested in (Pulliam [36]). 

Second order terms are switched on near discontinuities, as in Pulliam [36]. Viscous flux vectors 

are evaluated with second order finite differences at i+1/2. The solution is advanced in time via 

Crank Nicolson integration scheme, and the resulting matrices are decomposed via the spatially 

factored ADI scheme originally proposed by Beam and Warming (see Hirsh [37]). Following 

such scheme, two series of block tridiagonal algebraic systems are solved at each time step, 

rather than the original sparse matrix arising from the flux discretization.  

3.3. MPI parallelization  

The hybrid code is parallelized in order to improve its efficiency using MPI message 

passing protocol. In a message passing paradigm, several separate processes used to complete the 

overall computation. Since two different solvers are coupled in the hybrid solver, different 

algorithms are used for S-model and NS parallelization.  

Nowadays, there are a lot of works devoted parallelization of kinetic equations, see e.g. 

[38, 39], here the following parallel strategy is applied.  

The solution of kinetic equations system (52), (53) is local in the velocity node Г = (, β), 

and therefore completely parallelizable in the velocity space. For parallelization purpose 

distribution functions arrays for 
n
Г,i,j and 

n
Г,i,j are stored first by space indexes i,j and then by 
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velocity ones Г = (, β), as following: 
n
Г,i,j = (

n
,i,j)Г and 

n
Г,i,j = (

n
,i,j)Г. At initialization stage, 

these huge distribution function arrays of size Nc×N are subdivide to smaller ones of the size 

Nc×N/Np (Np is the total number of processes chosen by user). Thus, at each time step a process 

solves only smaller part of system (52), (53).  

In order to avoid the transfer of large array of distribution function data between processes, 

macro values are partially (since each processor has data of size (Nc×N/Np), i.e. only for part of 

the velocity space) computed by each process using formulas (40). The real macroparameters are 

finally computed by summation of data coming from all processors. This is carried out using the 

collective command MPI_Allreduce [40].  

The solution of Navier-Stokes equation can be parallelized as well. At each time step series 

of block tridiagonal algebraic systems are solved sequentially, thus the solution of each system 

may be considered as independent on one of the physical coordinate, e.g., x one. This allows us 

naturally parallelize the code using MPI. In this scheme, Np concurrent processes are created, 

having the same copy of the data involved in the calculation. i-process solves a part of system of 

NS equations, i.e., for space points from xi to xi+imax/Np (imax is the maximum number of grid 

points in streamwise direction x). Since there is no shared data, in order to solve the following 

system (for y coordinate) each process needs data held by other ones, therefore, the data must be 

exchanged between processes, in order to each process has a full intermediate solution. The 

unknown parts of data, (result of the first system solution), from other processes are gathered by 

each process using the collective command MPI_Allgather [40].  

The software code was written in C++ and Fortran with the use of MPI. Computations 

were carried out on Multi Core system consisting of 2 quad core processors, Intel(R) Xeon(R) 

E5520 CPU, 2.27 (2.93) GHz, 8 MB Cache, for a maximum of 8 concurrent cores.  
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4. Validation: gas flow through the slit  

4.1. Introduction  

The gas flow through a slit is a relatively simple flow configuration representative of 

several real engineering applications, encountered, e.g., in vacuum equipment, micro/nano 

devices, spacecraft design, and metrology of gas flow. In addition, the flow through the slit is a 

popular numerical benchmark test for the validation of numerical methods. Despite its 

geometrical simplicity, in fact, the numerical study of the pressure-driven gas flow through the 

slit is not a trivial task due to possible local transition from continuum to rarefied regimes in the 

flow near the slit, requiring the use of hybrid simulation methods. Since the pressure drop ratio 

may vary from 1 to thousands (flow into vacuum), the molecular mean free path changes 

correspondingly from tens of nanometers to millimetres.  

In the open literature kinetic approaches, allowing to describe all flow regimes from 

continuum to free-molecular, are commonly adopted to study the slit flow. In particular, 

numerical solutions of linearized BGK and S model kinetic equations for the slit problem have 

been reported in [41, 42]. Nonlinear BGK and S-model kinetic equations were implemented for 

the simulation of the flow through the slit into vacuum in [43] and at arbitrary pressure ratios in 

[44, 45], ranging from free-molecular to hydrodynamic regime. The rarefied gas flow through a 

slit was studied on the basis of the direct simulation Monte Carlo (DSMC) method at an arbitrary 

pressure ratio including flow to the vacuum over the whole range of gas rarefaction in [46]. 

Moreover, in [43] it was stated that nonlinear BGK and S-models provide a solution close to 

DSMC results, at a lower computational cost and avoiding the statistical scattering typical of 

DSMC solutions in the case of small flow velocities.  

The direct numerical solution of the Boltzmann equation was compared with BGK results 

in [44] and with S-model ones in [45] for the gas rarefaction range from the free-molecular to the 
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hydrodynamic regime and for the reservoir pressure ratios leading to either the subsonic or 

supersonic outflow. It was shown that nonlinear BGK and S-model equations provide the same 

value of the mass flow rate as the Boltzmann equation within the relative difference of the order 

of 1%. 

In [4] a hybrid CFD/DSMC solver was applied to predict gas flow and pressure in 

axisymmetric micro-thruster nozzles for the throat Knudsen number varying from 0.008 to 

0.125. It was shown that CFD simulations, even when thermal and velocity slip at the walls were 

accounted for boundary conditions, could not properly predict gas velocities and pressures in 

micro-nozzles. The high efficiency of solver was demonstrated: simulations can be performed in 

5–25% of the CPU time required for a full DSMC simulation whereas predicted outflow macro 

parameters (pressures and velocities) differed less than 1–2%. The hybrid Euler/DSMC solver 

has been applied for unsteady evolution of a jet from a slit subjected to a pressure differential in 

[5]. The approach allowed one to resolve complicated transient flow structures. In [9] an 

adaptive hybrid kinetic–fluid solver was implemented for pressure-driven flow through a slit for 

a rarefaction level ranging from transition to slip regime and pressure ratios 0.9 and 0.99.  

The accuracy and computational efficiency of the proposed approach are assessed via 

comparison with both Navier-Stokes and pure kinetic solutions for the test case problem: gas 

flow through the slit at pressure ratio of 0.1, 0.5 and 0.9, plus flow into vacuum and Knudsen 

number from slip to transitional regime. The size of continuum and kinetic domains is here 

dynamically updated during the transient depending on the current KnGL. The solution is 

advanced in time simultaneously in both kinetic and continuum domains: the coupling is 

achieved by matching half fluxes at the interface of kinetic and NS domains, thus taking care of 

the conservation of momentum, energy and mass through the interface.  
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4.2. Statement of the problem 

The planar monoatomic gas flow through a slit of height H cut in an infinitely thin partition 

at the plane x = 0 separating two containers (see Fig. 2) is considered. The gas far from the slit is 

in equilibrium at pressures p0 in the inlet plenum and pe in the outlet one, with p0 > pe, and the 

same temperature T0. The slit is considered as infinite in the z direction. Since the main aim of 

the work is the assessment of the coupling procedure, only a monatomic pure gas consisting of 

hard sphere molecules is considered. Any extension to mixtures or polyatomic gas, although in 

principle possible, is thus outside the scope of the work and not yet considered or discussed here.  

Two large areas of radius R before and after the slit are included in the computation, 

simulating upstream and downstream reservoirs. Thus, the computational domain has the shape 

of a circle of radius R surrounding a slit of size H. Due to the symmetry of the problem about 

y = 0 only a half of the circle and a slit (-H/2 ≤ y ≤ 0), shown in Fig. 2, will be considered. The 

bold line Ic in Fig. 2 is the moving interface between kinetic and NS sub-domains, and its 

position is updated during the computation. 

 
Fig. 2. Computational domain sketch. 

The difference between upstream p0 and downstream pe reservoirs pressures induces mass 

flow through the slit. The static inlet pressure pi is the result of computation, although, due to the 

low inlet velocity, it almost coincides with total inlet pressure p0. A global characteristic of the 

flow, namely dimensionless mass flow rate W, is introduced as: 
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where 
fmm  is the analytically deduced mass flow rate in the limit of free molecular regime and 

the mass flow rate through the slit is computed at the slit position x = 0 as:  

0
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
   .       (86) 

The problem is recast in terms of non-dimensional variables using inlet reservoir 

equilibrium values as reference ones: e.g., density ρ0, temperature T0, most probable velocity 

v0 = (2kT0/m)
0.5

 (m is the particle mass), reference dynamic viscosity μ0, height of the slit H.  

4.3. Parameters of modelling 

Computations have been carried out at pressure ratios pe/p0 = 0.1, 0.5, 0.9 plus flow to the 

vacuum (pe/p0 = 0), and a rarefaction  from 100 (slip regime) to 1 (transition regime). The 

computational domain shown in Fig. 2 represents half of circle of radius R = 40H [10, 44]. The 

use of circular sectors as inlet and outlet reservoirs, rather than the more common square shape, 

allows for larger size with a relatively smaller number of grid points, while preserving a strong 

refinement near the slit.  

A non uniform structured curvilinear grid of 320 nodes in the streamwise direction 

(dimensionless minimum grid spacing near the slit 0.017) and 40 nodes in the transverse 

direction is used for moderate and large pressure ratios pe/p0 = 0.5, 0.9, while a finer grid with 

40060 nodes was used for lower ratios pe/p0 = 0.1 and 0.  

The size of uniform two-dimensional velocity grid should be selected large enough to 

capture all of important features of the problem: thus, the velocity space boundary satisfies the 

following condition vmax ≥ max(|u|, |v|) + 3.5Tmax
0.5

. For most of computations the number of grid 

points for each velocity component is 24 and velocity space is bounded by vmax ≈ 5.2. In case of 
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the high gradient flow, i.e. pe/p0 = 0.1 and 0, the number of points is increased from 48 to 64 and 

vmax from 7.6 to 12, respectively.  

The grid independence test has been done comparing a mass flow rate value computed 

using a coarse grid with 240  40 nodes. The mass flow difference between fine and coarse 

meshes is less than 1%. The optimal number of grid points in the velocity space was chosen 

checking that doubling velocity points produces a change in the mass flow rate lower than 1-

1.5%.  

The time step is unique for both solvers and it should satisfy the stricter stability (or 

accuracy) constraint Δt = min(ΔtK, ΔtNS). The kinetic time step should be limited by the condition 

(65) with CFL = 0.4, while ΔtNS is arbitrary.  

The solution is considered to be converged when the following criterion is fulfilled:  

2

1|| ||n n

L

   U U           (87) 

where U is the vector of macroscopic conservative variables, the L2 norm is used, Δ = 10
-7

. 

Table 1. Dimensionless mass flow rate at pe/p0 = 0.5 and  = 1: 

effect of threshold parameter . 
   

 Wh WBGK 

0.05 0.653  

0.1 0.653  

0.5 0.643 0.653 

1 0.624  

2 0.597  

 

As was mentioned above the choice of threshold value  decomposing computational 

domain into kinetic and continuum sub-domains affects the computed flow field, e.g., in [6, 7] 

 = 0.05 was suggested. In Table 1 dimensionless mass flow rates Wh obtained by hybrid solver 

for different switching criteria  at fixed  = 1 and pe/p0 = 0.5 are shown. As can be seen, for 

large  > 0.1, the mass flow rate is quite different from the kinetic value, WBGK = 0.653. The 

mass flow rate Wh converges to the correct value when  is less or equal to 0.1. However, 
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following [6, 7] for further slit computations we used threshold value  = 0.05, in order to be on 

the safe side, since high gradient flow (including flow into vacuum) is considered, but even the 

use of the higher value  = 0.1 would produce a correct solution.  

4.4. Results and discussion 

Table 2. Comparison of dimensionless mass flow rate computed by different 

methods at pe/p0 varies from 0 to 0.9 and  from 100 to 1. 
      

pe/p0  Wh WS WDSMC, [46] WNS 

 100 1.581 1.581 1.568 1.577 

 50 1.580 1.580 1.568 1.534 

0 20 1.549 1.546 1.541 1.458 

 10 1.466 1.482 1.479 1.309 

 5 1.373 1.385 1.381  

 1 1.148 1.154 1.148  

 100 1.569 1.565 1.561 1.566 

 50 1.560 1.558 1.560 1.550 

0.1 20 1.523 1.524 1.531 1.470 

 10 1.450 1.462 1.467 1.307 

 5 1.337 1.344 1.349 0.943 

 1 1.072 1.076 1.060  

 100 1.42 1.402 1.383 1.430 

 50 1.396 1.394 1.384 1.401 

0.5 20 1.35 1.350 1.344 1.330 

 10 1.233 1.235 1.237 1.115 

 5 1.011 1.015 1.015 0.700 

 1 0.655 0.657 0.640  

    WBGK, [43]  

 100 0.736 0.730 0.7293 0.74 

 50 0.709 0.710 0.7097 0.7138 

0.9 20 0.596 0.593 0.591 0.580 

 10 0.406 0.405 0.4058 0.3355 

 5 0.267 0.267 0.2686 0.172 

 1 0.1418 0.1436 0.1419  
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In Table 2 dimensionless mass flow rates W computed using kinetic approaches (DSMC 

[46], BGK [43] and S-model equations); continuum NS equations and hybrid solver are given for 

the pressure ratio of 0, 0.1, 0.5 and 0.9 and rarefaction parameter  ranging from 1 to 100. 

Assuming the kinetic solution as the reference one, we may define the relative error induced by 

other approaches as: 

1 h
h S

S

W
W

W
   , 1 NS

NS S

S

W
W

W
          (88) 

These relative differences of NS equations and hybrid method computed mass flow rates from 

kinetic values at different pressure ratios pe/p0 and rarefaction parameters  are shown in Fig. 3.  

One can see that the flow rate W given in Table 2 tends to a constant value depending only on 

the pressure ratio pe/p0 in the slip regime (δ > 50). For the rarefaction parameter δ from 1 to 50 

and all pressure ratios pe/p0 a significant variation of the mass flow rate W can be observed. The 

relative variation of the mass flow rate increases with a pressure ratio increase. In the case of 

outflow into vacuum (pe/p0 = 0), the value of the flow rate W in the slip regime (δ ≈ 100) is 1.34 

times larger than its value in the transition regime (δ = 1), while for the pressure ratio pe/p0 = 0.9 

the flow rate increase is 5 times.  

 

Fig. 3. ΔWNS-S (solid symbol) and ΔWh-S (empty symbol) via  at different pe/p0.  
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For high pressure ratios (pe/p0 = 0.5 and 0.9) and rarefaction in the slip regime ( ≥ 20) 

mass flow rates obtained by hybrid, kinetic and NS solvers are close to each other: maximum 

difference between results is less than 2%. When gradients of macroparameters become higher 

the local Knudsen number can drastically increase: thus, at the same rarefaction parameter , we 

can have higher local Knudsen for lower pressure ratio (close to vacuum); e.g., for pressure ratio 

pe/p0 = 0.1 and  = 20 the difference between NS and kinetic results is 3.6%; for flow into 

vacuum the difference is already around 3% at  = 50 and 6% at  = 20. For smaller  the 

difference between NS and kinetic mass flow strongly increases up to 31% (pe/p0 = 0.1 and 0.5) 

and slightly higher around 35% (at pe/p0 = 0.9) for δ = 5. On the other hand, the hybrid code 

always successfully produces mass flow rates close to kinetic data (difference within 1%).  

(a) (b)  

(c)  

Fig. 4. (a): density ρ/ρ0; (b): axial velocity u; (c): temperature T/T0 along the symmetry axis 

y = 0,  = 50, pe/p0 = 0. 
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 (a) (b)  

(c)  

Fig. 5. (a): density ρ/ρ0; (b): axial velocity u; (c): temperature T/T0 along the symmetry axis 

y = 0,  = 20, pe/p0 = 0.1. 

Profiles of dimensionless density, temperature, normalized by inlet values, and velocity along 

the symmetry axis y = 0 are shown in Figures 4-7 for pe/p0 = 0 and  = 50; pe/p0 = 0.1 and  = 20; 

pe/p0 = 0.5 and  = 10; pe/p0 = 0.9 and  = 5. The combination of pe/p0 and  for each case was 

chosen in order to demonstrate noticeable difference between NS and S-model solutions.  

(a) (b)  
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(c)  

Fig. 6. (a): density ρ/ρ0; (b): axial velocity u; (c): temperature T/T0 along the symmetry axis 

y = 0,  = 10, pe/p0 = 0.5. 

(a) (b)  

(c)  

Fig. 7. (a): density ρ/ρ0; (b): axial velocity u; (c): temperature T/T0 along the symmetry axis 

y = 0,  = 5, pe/p0 = 0.9. 

Coupled solutions are compared with both pure kinetic S -model and NS results. Upstream 

of the slit, for all cases we have a strong acceleration of the flow, and the corresponding decrease 

in density and temperature (thus, in pressure, not shown in the pictures). Downstream of the slit, 

we have different flow regimes, depending on the pressure ratio. As will be confirmed by Mach 

number maps, at vacuum condition we have a monotone supersonic expansion, while at the 
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highest ratio pe/p0 = 0.9 we have a subsonic flow everywhere and a nearly symmetric behaviour 

upstream and downstream of the slit. At intermediate pressure ratios, downstream of the slit we 

have first a supersonic expansion/acceleration followed by a subsonic pressure 

recovery/decelaration. Coupled solutions are satisfyingly close to the kinetic ones for all values 

of pressure ratio pe/p0 and rarefaction parameter . On the other hand, NS results, under any set 

of condition, from slip to transition regime, consistently underestimate downstream velocities, 

and overestimate temperature levels. This seems due to an overestimation of the friction effect 

on the flow. At higher rarefaction NS results show even significant discrepancy with kinetic ones 

ahead of the slit, and as has been shown there is a difference also in mass flow rate.  

 

 

Fig. 8. Dimensionless density (top) and Mach number (bottom) contours (solid line) near the slit 

at  = 50 and pe/p0 = 0; dashed line shows kinetic region at convergence. 
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Contour lines of density and Mach number (solid line) near the slit region for different 

rarefaction are presented in Figures 8-11, together with the extension of the kinetic region at 

convergence (dashed line). 

 

 

Fig. 9. Dimensionless density (top) and Mach number (bottom) contours (solid line) near the slit 

at  = 20 and pe/p0 = 0.1; dashed line shows kinetic region at convergence. 

For small rarefaction  = 50 (Fig. 8), flow into vacuum, the local Knudsen number near the 

coupling boundary varies from 0.035 to 0.078. The local Knudsen number, despite the low value 

of , increases downstream, due to the supersonic expansion, and reaches the maximum value, 

far from the slit, around of 60. For rarefaction  = 10 and pe/p0 = 0.5, Fig. 10, the local Knudsen 

number near the coupling boundary varies from 0.067 to 0.4, while the maximum local Knudsen 

number occurs near the slit and is equal to 1.53. 
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Fig. 10. Dimensionless density (top) and Mach number (bottom) contours (solid line) near the 

slit at  = 10 and pe/p0 = 0.5; dashed line shows kinetic region at convergence. 

For the smaller rarefaction parameter value,  = 5, and pe/p0 = 0.9, shown in Fig. 11, the 

local Knudsen near the boundary is higher, varying from 0.195 to 0.178, and its maximum value 

is 0.21 near the slit. Nevertheless, despite of high value of local Knudsen near the coupling 

boundary in cases pe/p0 = 0.5 and 0.9 the coupling between kinetic and NS solutions shows a 

smooth transition along the contour lines crossing the domains interface, especially for the Mach 

number contour. Moreover, as can be seen in Figs. 4-7 NS equations do not give appropriate 

solution especially for velocity and temperature.  

CPU time per time step of hybrid code th is the sum of the time required for the solution of 

the S-model equation in NK kinetic points (NK is estimated from converged hybrid solution), of 

NS equations and the coupling procedures. Since the sum of CPU times relative to NS solution 

and coupling computation is quite small in comparison to the kinetic solution requirements, time 

th is essentially dictated by the number of NK kinetic points should be solved during computation.  
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Fig. 11. Dimensionless density (top) and Mach number (bottom) contours (solid line) near the 

slit at  = 5 and pe/p0 = 0.9; dashed line shows kinetic region at convergence. 

Figure 12 presents the CPU time per step of hybrid code th normalized to CPU time per 

step of pure kinetic S-model code tK as a function of the ratio of kinetic points NK to the total 

number of grid points Ntotal. It can be seen that if the number of kinetic points NK with respect to 

total number of computational points Ntotal is small, th is 10-15 times smaller than CPU time 

needed for the full kinetic solution tK. When the number NK increases CPU hybrid time th tends 

to the kinetic time tK. Obviously, the highest CPU time gains (up to 85%) occurs at low 

rarefaction, when the kinetic region is small, and thus, even the pure NS solution could give a 

reasonably good accuracy. For example, pure kinetic computation at pe/p0 = 0.5 and  = 50 on 

physical mesh of 32040 and velocity mesh of 2424 costs 0.745 s, while hybrid time step th is 

only 0.120 s (number of kinetic points NK = 1150) and the NS step is tNS = 0.029 s. Nonetheless, 

the hybrid code offers a CPU time gain of at least 30-40% under any condition, even those where 

Navier –Stokes solution would be completely inadequate. In case flow into vacuum pe/p0 = 0 and 



 48 

high rarefaction level  =5 (mesh of 40060 nodes in physical space, 6464 in velocity space are 

used) pure kinetic time step tK required 10 s, while th only 6.3 s (NK = 14600). The Navier –

Stokes time step tNS in this case is almost negligible 0.08 s. 

Furthermore, Fig. 12 also reports the speed up per time step achieved close to convergence, 

when the kinetic region size is stable. The total CPU advantage over the whole computation, 

with the dynamic coupling, is thus appreciably greater, since at the beginning of the computation 

the kinetic area is typically much smaller than at converged state. It should be noticed that for 

comparison reason the size of inlet/outlet reservoirs around slit is the same for all solvers. 

Further acceleration of hybrid solver can be reached by decreasing the size of reservoirs, since 

for the continuum solver it is easier to specify inlet/outlet boundary conditions at sections closer 

to the slit. This accelerates convergence of NS solver in NS region which is important for slow 

flow caused by high pressure ratio (pe/p0 ≥ 0.5).  

Points for all pressure ratios are aligned along a single line, with the only exception of the 

case pe/p0 = 0 (flow into vacuum), where the hybrid code offers an even better advantage. This is 

due to the need for a larger grid in velocity space (6464) in the kinetic solution, and the 

corresponding increase in CPU time; the computation of NS equation and coupling part becomes 

thus almost negligible in comparison with a kinetic part.  

 

Fig. 12. Relative CPU time for hybrid simulations: ◊ - pe/p0 = 0; □- pe/p0 = 0.1; Δ - pe/p0 = 0.5; 

○ - pe/p0 = 0.9. 
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Moreover, using dynamic coupling results with the same level of accuracy can be obtained 

with lower number of kinetic points. As an example, in [10] using the static coupling, a ratio of 

kinetic points to the total number of points in computational domain up to 0.2 (pe/p0 = 0.5 and 

δ = 100) was necessary, while for dynamic coupling comparable results were achieved with a 

significant lower ratio (0.01, in converged state).  

It should be mentioned that parallelization in the velocity space allow us to uniformly 

distribute kinetic points between processors. Each processor works with the same number of 

kinetic points in physical space, allowing for good process balance and parallelization efficiency. 

Now the speed up of hybrid code is 7.45 running on 8 processors estimated for the case of  = 50 

and pe/p0 = 0.  

4.5. Conclusions 

A hybrid algorithm based on the direct numerical solution of the S-model kinetic equation 

coupled with a Navier-Stokes solution was applied for the modeling gas flow through a slit for 

arbitrary pressure ratios, including the extrema of flow into vacuum and subsonic flow, within a 

range of Knudsen number from the slip flow to transition regime. It was shown that the hybrid 

code gives results close to full kinetic results for flow regimes, where the Navier-Stokes solution 

completely fails. The CPU time savings, with respect to the full S -model solution, are 

significant, although, as expected, strongly depend on the size of the kinetic region. It should be 

noticed that the dynamic coupling is more effective than static one, allowing to capture and 

describe properly kinetic regions even when they appear, during the convergence transient, in 

areas not easy to predict a-priori. This allows for satisfying results even with the smaller number 

of kinetic points.  
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5. Near wall modelling 

5.1. Introduction 

The numerical simulation of the gas flow near the wall offers additional challenges to 

numerical methods due to an appearance a wall – gas interaction. Moreover, at microscale the 

rarefaction effect becomes significant in the near-wall region. It is well known that the flow near 

a solid surface can be subdivided into a thin boundary layer, of the order of a few mean free path 

(so thin to be negligible for a macro configuration), which is a rarefied regime area and the 

internal core flow, which is continuum one. The rarefied domain is naturally described by kinetic 

equation which is time and memory consuming, due to the discretization in both physical and 

velocity space. On the other hand, the continuum domain is well described by the fluid Navier-

Stokes (NS) equations coupled with slip boundary and temperature jump conditions on the solid 

surface. However, as indicated in the literature, the first order slip condition is valid only for 

local Knudsen number Kn lower than 0.1, and any attempt to increase their range, resorting to 

higher order slip boundary conditions, is not trivial and highly geometrical dependent. 

In the previous section it was shown that the hybrid solver successfully reproduce results 

for the gas flow through the slit, but for this kind of flow the wall boundary effect is almost 

negligible [29, 30]. However, near-wall modeling, such as, for example, the gas flow through the 

channel, is dominated by the wall boundary effect. Thus, in order to have reliable apparatus 

applicable for the wide range of practical interest problems it is important to validate developed 

hybrid solver for the near wall modeling as well.  

It is well known that in MEMS fabrication due to the small scale it is nearly impossible to 

create an actual smooth surface. On the other hand, a surface roughness may have a significant 

impact on microchannel performances, both in terms of pressure drop and heat transfer. 

Therefore, several experimental and numerical studies have been devoted, in the recent past, to 

the estimation of roughness effect in MEMS.  
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Earlier experimental results for microchannels showed a significant scattering, and a 

roughness effect was often suggested as a possible explanation even for discrepancies in 

continuum, uncompressible flow. Mala and Li [47] have observed that for rough microchannels 

(relative roughness height from 0.7 to 3.5%) the pressure drop was higher than that predicted by 

the classical theory, and increased with Reynolds number increase. Wu and Little [48, 49] 

measured huge increases in friction factors for both laminar and turbulent flows in miniaturized 

channels etched in silicon and glass and attributed their anomalous results to the large relative 

(and asymmetric) roughness of test channels. Choi et al. [50] measured friction factors of 

nitrogen flow in microtubes of diameter ranging from 3 to 81 mm and found it to be consistently 

smaller than those predicted by the macro scale correlation in macro tubes. 

More recent papers have demonstrated that roughness effect in a laminar, incompressible 

flow can be described by means of standard macroscale equations and correlations [51], taking 

into account proper scaling effects and via a proper definition of the hydraulic diameter. 

Artificial saw tooth roughness effects have been investigated in [52]. Results, obtained in the 

laminar regime, showed that experiments fit the constant Poiseuille number rule for smooth 

tubes, provided that the reference length was defined with respect to the constrained diameter 

measured at the top of ridges. A further discussion on the definition of hydraulic diameter, on the 

basis of numerical simulations for different rough shapes in incompressible flow, was given in 

[53]. 

However, for gas microflows, in particular when rarefaction effects appear, there are still 

open problems. Furthermore, at such small scales it is quite difficult to experimentally pick out 

the actual effect of roughness, which is often masked by several uncertainty sources. For 

example, Turner et al. [54] remarked that any roughness effect was within experimental error 

bar, and Lorenzini et al. [55] notice no significant roughness effect at low rarefaction levels, 

while compressibility effect was more notable. Nonetheless, Demsis et al. [56] analysis of 

experimental data strongly suggested that roughness can affect Poiseuille number in a 
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microchannel rarefied flow, although an experimental uncertainty did not allow a definitive 

answer yet; furthermore, Tang et al. [57] have found that roughness matters if higher than 1%.  

The numerical modeling, on the other hand, offers an appealing alternative to experiment, 

allowing a detailed description of surface imperfections, where the roughness effect can be easily 

separated from other microscale effects. The roughness problem has been first addressed, both 

via direct numerical analysis and simplified modeling, mainly in the incompressible, no-slip flow 

regime. Numerical simulations of the pressure driven flow in the presence of different, regular or 

random roughness shapes were carried out in [57-60]. In [61] the use of an equivalent porous 

layer in the rough region along the wall was proposed. This concept was extended to the heat 

transfer problem in [62]. Numerical computations have been compared with such simplified 

models in [59]. 

Results for rarefied flows have been obtained in [63, 64] using DSMC method. Knudsen 

numbers in the range from 0.02 to 0.12 were considered, in the presence of very large roughness 

geometries, from 5% up to 12%. In both papers, the low Mach number level prevented any 

compressibility effect. In [65] the coupled effect of rarefaction and roughness, neglecting 

compressibility, has been considered via the Lattice Boltzmann equation.  

The interaction with compressibility was taken into account in [66], in which the influence 

of roughness in the slip flow regime with the second order slip boundary conditions for the exit 

Mach number up to 0.5 has been studied. The roughness was simulated as rectangular elements 

on two parallel plates and it was shown that the effect of wall roughness was reduced with 

Knudsen number increase. The prediction of roughness effect on a pressure drop for gaseous 

flow, in the presence of compressibility up to chocked flow conditions and/or rarefaction effects, 

has been analyzed in [67-69] using NS equations coupled with a standard first-order slip 

boundary condition. It should be mentioned that the surface texture is also affected heat transfer 

performances [70]. Few more references summarized in [71] confirm that a proper assessment of 

roughness effect is necessary for accurate heat transfer analysis. 
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Kinetic approach based on the solution of S-model equation for analysis a 2D compressible 

gas flow through a rough microchannel was used in [72]. The effect of roughness modeled as a 

series of triangular obstructions was considered for wide ranges of Mach (up to choked flow) and 

Knudsen numbers (from slip to transition regime). It was found that the surface roughness has a 

significant influence on a friction factor. The compressible gas flow was also sensitive to the 

height of the wall roughness element, but the compressibility effect is stronger than roughness 

one. For a highly rarefied gas flow rarefaction enhances roughness effect despite the fact that Po 

number decreases with Kn number increase. 

Furthermore, the use of NS equations for the simulation of roughness effect may be critical 

due to the fact that a Knudsen number based on the hydraulic diameter is chosen as a measure of 

the rarefaction effect in standard smooth microchannels. At the same time, the roughness scale is 

much smaller, typically a few per cent, of the hydraulic diameter. Thus, the choice of most 

appropriate length scale, i.e. the hydraulic diameter, for the description of the roughness effect is 

not obvious. In principle, the applicability of the continuum numerical approach based on the 

solution of NS equations should be limited to flows, where the roughness size is much smaller 

than the mean free path of the gas. This condition may not be fulfilled in actual application of 

practical interest; thus, even if the use of appropriate slip boundary conditions allows to partially 

overcome this limitation, a correct description of the gas-roughness interaction should require an 

expensive kinetic numerical approach, at least near the rough surface.  

Here, the hybrid solver is applied to the simulation of the rarefied gas flow through the 

channel of finite length caused by an arbitrary pressure ratio. The effect of applying different 

breakdown criteria on the flow field is considered. Hybrid results are compared with pure kinetic 

and NS solutions, for different pressure ratios and a Knudsen number in the slip regime. 

Obtained results are discussed in terms of both accuracy and computational efficiency. 

Further, the hybrid solver was used to study the actual engineering problem: effect of the 

surface roughness on the gaseous flow in MEMS. Moreover, the reliability of the first order slip 
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boundary condition for the simulation of flows along rough fine-textured surface geometries is 

estimated. Although the analysis here is limited to the effect on pressure drop and Poiseuille 

number, an assessment of the validity of slip flow condition for fine textured geometries is also 

an essential prerequisite for reliable heat transfer computations.  

5.2. Statement of the problem 

The two-dimensional pressure–driven monatomic gas flow through a planar microchannel 

of width H and length l = 10H connecting two reservoirs of size Lx  Ly is considered. The gas in 

reservoirs far from the channel is in equilibrium at constant pressures p0 and pe, (p0 > pe), and 

temperature T0. The temperature of the walls Tw is equal to the temperature in reservoirs T0. 

Since the flow is symmetric about y = 0 only a half of the domain, shown in Fig. 13 is simulated.  

For sake of computational efficiency only a small channel part of length Lr = 3.15 H placed 

near the channel exit is modelled as a rough one, while the rest of the channel and reservoirs 

walls are smooth, see Fig. 13a. Thus, at low pressure ratio (low Ma), the inlet smooth region 

allows for fully developed flow approaching the rough region. The wall roughness, shown in 

Fig. 13b, is modelled as a series of triangular obstructions with a sharp angle of 45 degrees. The 

height of a single peak is h = εH and the distance between peaks is s = 5h. Several relative 

roughness values ε have been considered: 1.25%, 2.5% and 5%. Hence, the rough region of 

3.15H long includes 12 roughness ridges for ε = 5%, and 24 ridges for ε = 2.5% and 48 ridges 

for ε = 1.25%. It should be noticed that the interface Ic between kinetic and NS sub-domains is 

dynamically updated during the computation. 

The gas flows due to a pressure ratio pe/p0 between upstream and downstream reservoirs. 

The static inlet pressure pi is the result of computation, although, due to the low inlet velocities, 

it almost coincides with inlet total pressure p0. The gas flow is also determined by the rarefaction 

parameter  (or Knudsen number Kn).  
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(a)  

(b)  

Fig. 13. Sketch of computational domain and rough elements details. 

The channel global and local performance in terms of the Poiseuille number Po and 

dimensionless mass flow rate W defined as eq. (85) will be presented. The mass flow rate 

through the channel is constant and computed at channel mid-section x = 1/2L using formula 

(86). The friction factor fr is defined as an average value either over a portion of rough channel 

section or over a single geometrically periodic roughness element of length s. In both cases, fr is 

computed as: 
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       (89) 

where Dh is the hydraulic diameter, Dh = 2H, overbar means averaged values over cross section, 

 and av are the difference and the averaged between inlet and outlet values. The Poiseuille 

number Po is then written in terms of the local Re as: 
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Due to the conservation of mass flow rate, Re will change only slightly along the channel, 

because of the  variation with temperature. 

Unless otherwise stated, Po is computed between the inlet and outlet section of a rough 

sector Lr of length L
*
 = 2.25 H, (i.e., skipping small regions both at the inlet and exit of a rough 

sector in order to avoid entrance and exit effects), i.e. including 9, 18 and 42 rough modules, for 

relative roughness height ε = 5%, ε = 2.5% and ε = 1.25%, respectively. Po number for smooth 

channel (ε = 0) is computed over the same section L
*
 = 2.25 H.  

For incompressible flow through a smooth channel with the first order slip boundary 

condition there is an analytical expression for the Poiseuille number:  
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         (92) 

For either compressible or rough surface flows no analytical solution is available. However, a 

few correlations have been proposed recently in the literature. In particular, an expression for 

rough surfaces, based on results obtained by Lattice Boltzmann computations, was proposed in 

[65]: 

20.9 (1 0.8 2ε 24 (2ε) )     sPo Po       (93) 

It should be noticed that Lattice Boltzmann results computed for roughness modelled as 

rectangular obstacles and hydraulic diameter was computed as Dh = 2H-ε, where H is height of 

half channel and relative roughness height is ε = h/H.  

Asako et al. [69] suggested a local Po correlation for a developing compressible flow:  

296 4.55 274.8compPo Ma Ma            (94) 



 57 

The problem is recast in terms of non-dimensional variables using inlet reservoir 

equilibrium values as reference ones: density ρ0, temperature T0, most probable velocity 

v0 = (2kT0/m)
0.5

 (m is the particle mass), reference dynamic viscosity μ0 and height of the channel 

H.  

5.2. Parameters of modelling 

Series of computations have been carried out at pressure ratios pe/p0 = 0.1, 0.5, 0.33 and 

0.9 and a rarefaction parameter  from 100 to 10. The computational domain shown in Fig. 13a 

represents bottom half of inlet and outlet square shape reservoirs connected by the channel of 

length 10. For pure kinetic computations the size of reservoirs should be large enough, thus it is 

chosen equal to Lx  Ly = 30  15 [45]. Using hybrid solver allows to essentially decrease the 

size of reservoirs in comparison with a pure kinetic consideration, up to Lx  Ly = 5  3, thus 

significantly decrease computational time due to quicker convergence of NS solver.  

In the physical space for smooth channel computations, a non uniform structured single 

block curvilinear grid of 360 nodes in the streamwise direction with a dimensionless minimum 

grid spacing 0.02 and 40 nodes in the transverse direction (dimensionless minimum grid spacing 

0.008 near the wall) is used. Grid independence test has been done using a coarse grid with 

240  30 nodes. The mass flow difference between finer and coarse meshes is less than 1%.  

In order to accurately model rough geometry 712 nodes in the streamwise direction 

(dimensionless minimum grid spacing is 0.004) and 40, 45 and 50 nodes in the transverse 

direction have been used for ε =5%, 2.5% and 1.25%, respectively. Minimum grid spacing close 

to the wall is around 0.003. Decreasing the minimum grid spacing near the wall up to 0.001 

introduces maximum differences for the Poiseuille number and the mass flow rate less than 0.8% 

and 0.2%, respectively, for all (NS, kinetic and hybrid) solvers. 

The size of uniform two-dimensional velocity grid should be selected large enough to 

capture all of the important features of the problem: thus, the velocity space boundary should 
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satisfy the following condition: vmax ≥ max(|u|, |v|) + 3.5Tmax
0.5

. For most of computations the 

number of grid points for each velocity component is 24 and velocity space is bounded by 

vmax ≈ 5. In case of very high gradient flow, i.e. pe/p0 = 0.1, the number of points is increased up 

to 40 and velocity space boundary vmax up to 7.2. The optimal number of grid points in the 

velocity space was chosen checking that doubling velocity points produces a change in mass 

flow rate lower than 1-1.5%.  

The time step is unique for both solvers and it should satisfy the stricter stability (or 

accuracy) constraint Δt = min(ΔtK, ΔtNS). The explicit kinetic time step should be limited by the 

CFL condition with CFL = 0.4, while ΔtNS is arbitrary. The solution is considered to be 

converged when the criterion ||U
n+1

-U
n
||L2 < Δ is fulfilled with L2 norm and Δ = 10

-7
. 

5.3. Breakdown criteria comparison 

As was shown in [12] for the flow through the slit breakdown criterion based on the 

gradient length Knudsen number KnGL, equation (16), with threshold value   0.1 guaranteed 

the difference between hybrid and kinetic solutions less than 1% (see Table 1). Here, we estimate 

the effectiveness of modified KnGL (using gradient of velocity magnitude |V|) and two more 

complex criteria Bqτ (eq. (20)) and ||f1(C)|| (eq. (21)) applying them to the near wall modelling 

and comparing hybrid solutions with the full Boltzmann computations [45]. It should be noticed 

that in low-speed regions of the flow, the velocity magnitude gradient in KnGL |V|* (see eq. (18)) 

is normalized using the velocity magnitude |V|*, where |V|* = |V| if |V|  vmin and |V|* = vmin if 

|V| < vmin, in order to avoid singularities in the region where the flow velocity approaches to zero. 

Here, vmin is taken equal to 5% of isoentropic velocity uis, where uis = Mais(0.5γT0)
0.5

.  

The Poiseuille number Po, defined by equation (90), is estimated as an averaged value over 

a channel section of L ≈ 9 (i.e., skipping small regions l ≈ 0.5 both at the inlet and exit of 

channel to avoid entrance and exit effects). 
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Table 3. Comparison of different criteria for a hybrid solver 

 Criterion NK Wh WBE, [45] Po Po,kin 

 KnGL( = 0.1) 5640 0.1840  52.3  

pe/p0 = 0.5 Bqτ( = 0.015) 5640 0.1844 0.184 52.2 51.3 

 = 10 ||f1||( = 0.05) 5700 0.1843  52.16  

 KnGL( = 0.1) 3030 0.515  92.47  

pe/p0 = 0.5  Bqτ( = 0.015) 6800 0.515 0.51 92.4 91.6 

 = 50 ||f1||( = 0.05) 5300 0.511  92.38  

 KnGL( = 0.1) 7050 0.277  47.26  

pe/p0 = 0.1 Bqτ( = 0.015) 8160 0.280 0.280 46.95 46.2 

 = 10 ||f1||( = 0.05) 7050 0.280  47.16  

 KnGL( = 0.1) 4270 0.604  103  

pe/p0 = 0.1 Bqτ( = 0.015) 7770 0.605 0.604 102.8 102.5 

 = 50 ||f1||( = 0.05) 8268 0.6045  102.8  

 

In Table 3 mass flow rate Wh and global Poiseuille number Po using different criterion at 

pressure ratio pe/p0 = 0.1 and 0.5 and rarefaction level  = 10 and 50 are presented. At pe/p0 = 0.5 

and  = 10 for each criterion threshold value  was chosen such as to provide a hybrid solution 

close to a kinetic one while using the same number of kinetic points NK. For further 

computations chosen threshold value  is kept for each criterion, i.e.:  = 0.1 for KnGL, 

 = 0.015 for Bqτ and  = 0.05 for ||f1(C)||. For both pressure ratios the maximum deviation of 

hybrid computed results from kinetic ones is around 1% for mass flow rate W and 2% for Po 

number. At the same time the difference between hybrid solutions computed with different 
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criteria is less than 1%. It should be noticed that for a low rarefaction level ( = 50) the use of 

more complicated criteria ||f1(C)|| and Bqτ generates larger number of kinetic points in 

comparison with criterion KnGL, although the obtained accuracy is of the same order. Fig. 14, 

shows the kinetic region boundary and the coloured map of local gradient length Knudsen 

number for pe/p0 = 0.5. At  = 10 or Kn 0.1 (see Fig. 14a), all criteria create almost identical 

kinetic regions. On the other hand, for lower rarefied flow,  = 50 (Fig. 14b) criterion ||f1(C)|| and 

Bqτ unexpectedly create significantly larger kinetic region: 6800 points for ||f1(C)||, 5300 for Bqτ 

in comparison with 3030 points for KnGL. Thus, the use of gradient length Knudsen number with 

threshold value  = 0.1 as breakdown parameter allows to produce hybrid results close to kinetic 

ones, while creating the smallest kinetic sub-domain. Therefore, for further near-wall 

computations modified KnGL with  = 0.1 will be used.  

 

(a)  

(b)  

Fig. 14. Domain decomposition: KnGL (dashed dotted), Bqτ (dashed), ||f1|| (dotted) for pe/p0 = 0.5, 

 = 10 (a);  = 50 (b). 
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5.4. Hybrid results discussion 

5.4.1. Smooth channel 

In Table 4 dimensionless mass flow rates W and averaged over the channel section of 

L ≈ 9 Poiseuille numbers Po (see eq. (87)) computed using kinetic approach (S-model 

equation), continuum NS equations and hybrid solver are given for the pressure ratio of 0.1, 

0.33, 0.5 and 0.9 and rarefaction parameter  ranging from 10 to 100. It should be noticed that S-

model results for mass flow rate are in a good agreement (the maximum difference within 2%) 

with pure kinetic Boltzmann and BGK results [45]. 

Assuming the kinetic solution based on the S-model equation as the reference one, we can 

estimate the relative difference between the pure kinetic and hybrid method and NS equations as: 

( , )
( , ) 1

( , )
  

S

W Po
W Po

W Po
,        (95) 

in terms of global mass flow rate W and Poiseuille number Po.  

These relative differences (from S-model results): ΔWNS, ΔPoNS, ΔWh and ΔPoh in percent 

at considered pressure ratios pe/p0 and rarefaction parameter are shown in Fig. 15. In the slip 

regime ( ≥ 50) mass flow rates and Po obtained by hybrid, kinetic and NS solvers are close to 

each other: maximum difference between results is less than 2%. Starting from  = 20 the 

difference becomes noticeable and larger than 5%. Further, when rarefaction increases  > 20 the 

difference increases and reaches 10-14% at  = 10.  

When gradients of macroparameters become higher the local Knudsen number increases, 

thus, at the same given rarefaction parameter , we can have higher local Knudsen (higher 

rarefaction level) for higher pressure ratio. For example, for  = 10 the difference between NS 

and kinetic results is around 10% for pressure ratio pe/p0 = 0.5, but increases to 12% and 14% at 

pe/p0 = 0.33 and pe/p0 = 0.1, respectively. On the other hand, the hybrid solver successfully 
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reproduces mass flow rate W and Po number close to kinetic data (difference within 1% and 2%, 

respectively).  

Table 4. Comparison of mass flow rate W and Poiseuille number Po computed by different 

methods at pe/p0 varies from 0.1 to 0.9 and  from 100 to 10. 

pe/p0  Wh Poh WS Pos WNS PoNS 

 100 0.81 137.6 0.81 137.82 0.81 136.58 

 50 0.604 102.3 0.604 102.31 0.603 103.7 

0.1 40 0.540 93.68 0.543 93.09 0.536 94.96 

 30 0.470 82.9 0.472 82.34 0.457 84.8 

 20 0.383 68.67 0.383 68.17 0.359 71.89 

 15 0.333 59.5 0.333 58.81 0.302 63.6 

 10 0.280 47.15 0.282 46.2 0.239 52.5 

 100 0.788 129.3 0.783 129.14 0.790 129.48 

 50 0.573 97.43 0.570 96.76 0.574 98.36 

 40 0.507 89.64 0.505 88.9 0.5 90.9 

0.33 30 0.426 80.48 0.427 79.82 0.419 82.44 

 20 0.332 68.88 0.335 68.2 0.319 71.86 

 15 0.285 61 0.285 60.1 0.263 64.69 

 10 0.23 50 0.232 49 0.203 54.64 

 100 0.72 116.2 0.718 116.2 0.724 116.2 

 50 0.502 92.47 0.50 91.6 0.503 93 

 40 0.44 87.07 0.439 86.3 0.441 88 

0.5 30 0.362 79.4 0.361 78.9 0.358 81.2 

 20 0.278 69.6 0.277 69.04 0.266 72.44 

 15 0.232 62.67 0.231 61.76 0.217 65.93 

 10 0.184 52.3 0.185 51.3 0.166 56.52 

 100 0.257 92.6 0.254 92 0.257 92.6 

 50 0.143 86 0.141 85.92 0.143 86.65 

 40 0.116 83.1 0.115 82.95 0.116 84 

0.9 30 0.091 79.4 0.091 78.95 0.091 80.89 

 20 0.065 72.68 0.067 71.88 0.065 74.81 

 15 0.053 66.9 0.055 66.1 0.052 69.34 

 10 0.039 57.2 0.043 56.5 0.04 61.2 
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(a)  

(b)  

Fig. 15. Δ(W, Po)NS (solid symbols) and Δ(W, Po)h (empty symbols) via  at different pe/p0. 

Profiles of dimensionless density, temperature, normalized by inlet values, and velocity 

along the symmetry axis y = 0 are shown in Fig. 16 for pe/p0 = 0.1 and  = 20; in Fig. 17 for 

pe/p0 = 0.33 and  = 15; in Fig. 18 for pe/p0 = 0.5 and  = 10. The combination of pe/p0 and  for 

each case was chosen in order to demonstrate noticeable difference between NS and hybrid 

solutions.  

Density (or pressure) variations are qualitatively similar in all cases. Before and after the 

channel the density tends to upstream and downstream conditions, while decreasing in the 

channel (see Figs. 16-18 a). 
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(a) (b)

(c)  

Fig. 16. (a): density ρ/ρ0; (b): axial velocity u; (c): temperature T/T0 along the symmetry line 

y = 0, pe/p0 = 0.1,  = 20. 

At high pressure ratio the density profile is nonlinear. As can be seen in Figs. 16-18 b the 

axial velocity tends to zero in large reservoirs, while growing along the channel reaches the 

maximum value near the channel exit. Accordingly, the temperature decreases through the 

channel, while in the low velocity reservoirs it approaches to the reference temperature (see 

Figs. 16-18 c). The maximum variations of macroparameters appear for the lowest pressure ratio 

pe/p0 = 0.1 (Fig. 16). The hybrid solutions are close enough to the kinetic ones for all values of 

rarefaction and pressure ratios, while NS equations do not give appropriate solution especially 

for velocity and temperature.  
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(a) (b)   

(c)  

Fig. 17. (a): density ρ/ρ0; (b): axial velocity u; (c): temperature T/T0 along the symmetry line 

y = 0, pe/p0 = 0.33,  = 15. 

(a) (b)  

(c)  

Fig. 18. (a): density ρ/ρ0; (b): axial velocity u; (c): temperature T/T0 along the symmetry line 

y = 0, pe/p0 = 0.5,  = 10. 
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Fig. 19. Dimensionless pressure (top) and Mach number (bottom) contours at  = 20 and 

pe/p0 = 0.1; dashed dotted line shows interface Ic at convergence. 

 

 

Fig. 20. Dimensionless pressure (top) and Mach number (bottom) contours at  = 15 and 

pe/p0 = 0.33; dashed dotted line shows interface Ic at convergence. 
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Contour lines of pressure and Mach number along the channel for different rarefaction are 

presented in Figs. 19-21, together with the extension of the kinetic region at convergence. It is 

also interesting to note the local Kn levels along the interface Ic. For low rarefaction  = 20 

(Fig. 19), but lowest pressure ratio 0.1, the local Kn near the coupling boundary Ic (dashed dotted 

line) varies from 0.045 at the inlet of the channel to 0.14. Under the same condition maximum 

local Kn is 0.5 at the exit of the channel. For higher rarefaction  = 15 and pe/p0 = 0.33, Fig. 20, 

the local Knudsen number near the coupling boundary varies from 0.06 to 0.16, while the 

maximum local Kn occurs at the exit is equal to 0.2.  

 

 

Fig. 21. Dimensionless pressure (top) and Mach number (bottom) contours at  = 10 and 

pe/p0 = 0.5; dashed dotted line shows interface Ic at convergence. 

For the smaller rarefaction parameter value,  = 10, and higher pe/p0 = 0.5, shown in 

Fig. 21, the local Knudsen near the boundary is slightly higher, varying from 0.092 to 0.17, and 

its maximum value is 0.19 near the exit. Thus, as might be expected, for all of these 

configurations the interface is always located roughly at the same level of Kn, despite large 

variation of Kn in the core flow region. The coupling between kinetic and NS solutions shows a 
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smooth transition along the contour lines crossing the domains interface for both Mach number 

and pressure contours.  

As was written in previous section the CPU time per time step of hybrid code th is the sum 

of the time required for the solution of the S-model equation in NK kinetic points (NK is estimated 

from converged hybrid solution), of NS equations and the coupling procedures. Since the sum of 

CPU times relative to NS solution and coupling computation is quite small in comparison to the 

kinetic solution requirements, time th is essentially dictated by the number of NK kinetic points to 

be solved during computation. Figure 22 shows a hybrid code speedup compared to the pure 

kinetic S-model code as a function of rarefaction parameter. The hybrid code offers a CPU time 

speedup ranging from 2, at a rarefaction level, where NS solution would be completely 

inadequate, up to 5 in the slip flow regime. For example, pure kinetic computation at pe/p0 = 0.1 

and  = 20 on physical mesh of 36040 and velocity mesh of 4040 requires 2.51 s, while hybrid 

time step th is 1.3 s (number of kinetic points NK = 7050) and the NS step is tNS = 0.14 s. The 

total CPU advantage over the whole computation, with the dynamic coupling, is however 

appreciably greater, since at the beginning of the computation the kinetic area is typically much 

smaller than at converged state. It can be seen in Fig. 22 that with a decrease in  the speedup 

decreases, since the number of kinetic points in ΩK increases.  

 

Fig. 22. Speedup for hybrid simulations: □- pe/p0 = 0.1; ○ - pe/p0 = 0.33;Δ - pe/p0 = 0.5; - 

pe/p0 = 0.9. 
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Furthermore, additional advantage of the hybrid solver is reached by decreasing the size of 

inlet/outlet reservoirs in comparison with requirement for the pure kinetic solver. This allows 

quicker convergence in the inlet/outlet reservoirs for NS solver.  

5.4.2. Flow over a rough surface 

As shown in the previous section the best choice of breakdown parameter for the near-wall 

modelling is the modified gradient length Knudsen number KnGL(x, y) (eq. (16)). Moreover, the 

hybrid solver produced reliable results with acceptable level of accuracy if the kinetic solution 

was activated for physical space points satisfied the condition KnGL(x, y) ≥ 0.1.  

Table 5. Comparison of dimensionless global mass flow rate W computed by different 

methods at pe/p0 varies from 0.33 to 0.9 and  from 100 to 10. 

 ε 5% 2.5% 1.25% smooth 

pe/p0  WNS Wh WNS Wh WNS Wh WNS Wh 

 100 0.752 0.764 0.770 0.783 0.781 0.792 0.797 0.801 

 50 0.524 0.546 0.538 0.560 0.544 0.568 0.568 0.575 

0.33 40 0.456 0.480 0.465 0.492 0.473 0.500 0.498 0.505 

 30 0.368 0.398 0.378 0.409 0.385 0.416 0.412 0.422 

 20 0.272 0.302 0.277 0.312 0.283 0.319 0.313 0.324 

 100 0.700 0.708 0.718 0.725 0.725 0.734 0.740 0.743 

 50 0.467 0.484 0.480 0.497 0.486 0.504 0.504 0.509 

0.5 40 0.400 0.420 0.407 0.430 0.416 0.436 0.434 0.438 

 30 0.319 0.340 0.328 0.350 0.332 0.354 0.412 0.420 

 20 0.228 0.252 0.236 0.260 0.239 0.265 0.261 0.268 

 10 0.131 0.160 0.132 0.161 0.137 0.167 0.163 0.180 

 100 0.241 0.243 0.248 0.250 0.252 0.253 0.257 0.257 

 50 0.130 0.132 0.135 0.137 0.137 0.139 0.143 0.143 

0.9 40 0.1067 0.1096 0.110 0.113 0.111 0.114 0.116 0.117 

 30 0.0824 0.0854 0.0849 0.0881 0.086 0.0895 0.091 0.092 

 20 0.0577 0.0614 0.0594 0.0636 0.060 0.065 0.0652 0.0675 

 10 0.0322 0.0369 0.0332 0.0386 0.0337 0.0395 0.0390 0.0421 
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It should be noticed that a global Poiseuille number Po is computed over the rough section, 

skipping small regions both at the inlet and exit of section in order to avoid entrance and exit 

effects. Hence, the actual length of a rough sector using in computations of global Poiseuille 

number is L
*
 = 2.25 (see Fig. 13) and includes 9, 18 and 42 rough modules, for ε = 5%, ε = 2.5% 

and ε = 1.25%, respectively. For the smooth channel flow global Po number is estimated over 

the same section of length L
*
 = 2.25.  

Table 6. Comparison of global Poiseuille number Po computed by different methods at 

pe/p0 varies from 0.33 to 0.9 and  from 100 to 10. 

 ε 5% 2.5% 1.25% smooth 

pe/p0  PoNS Poh PoNS Poh PoNS Poh PoNS Poh 

 100 207 199.67 188.13 180 176.5 168.62 158.4 158.4 

 50 144.87 129.81 132.68 118.74 126.4 111.73 105.63 104.44 

0.33 40 130.57 113.42 121.54 104 114.73 97.3 93.6 91.95 

 30 120.06 97.43 110.96 89.2 104.8 83.48 80.98 78.27 

 20 109.14 80.50 102.15 73.7 96.76 68.72 67 62.9 

 100 167.78 161.8 150.7 145.04 141.64 135.78 128 128 

 50 128.55 116.5 117.67 106.5 111.78 99.45 95.95 93.94 

0.5 40 120.15 105.93 110.19 96.83 104.96 90.7 88.3 86.17 

 30 113.67 95.55 104.37 87.36 99.7 81.68 79.88 77 

 20 107.82 83.0 99.35 75.69 95.31 70.6 69.38 65.97 

 10 102.18 61.73 95.22 56.34 91.62 52.52 52 47.63 

 100 115.64 113.2 104.49 102.35 98.42 95.84 92.3 92 

 50 112.48 106.39 101.76 95.42 95.76 90.71 86.65 85.98 

0.9 40 109.93 102.16 100.44 92.9 95.15 87.89 84 83.1 

 30 108.57 98.03 99.24 89.66 94.96 84.3 80.89 79.4 

 20 106.73 90.77 97.76 83.55 93.65 78.8 74.81 72.68 

 10 103.7 72.6 95.61 65.5 92.42 62.5 61.2 57.2 

 

In Table 5 and 6 dimensionless global mass flow rate W and Poiseuille number Po, 

respectively, computed using continuum NS equations and hybrid solver are given for the 

pressure ratio of 0.33, 0.5 and 0.9 and rarefaction parameter  ranging from 10 to 100 and 

relative roughness ε = 5%, ε = 2.5%, ε = 1.25% and ε = 0 (smooth channel). 
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According Table 5 and 6 for fixed pressure ratio a mass flow rate and Poiseuille number 

reach their maximum values at weakly rarefied flow ( = 100) and minimum at highly rarefied 

one ( = 10 or 20). Opposite tendency can be observed for Poiseuille number and mass flow rate 

with variation of relative roughness height: Po number decreases when relative roughness height 

tends to 0, due to decrease of friction effect of the wall, while mass flow rate increases. The 

increase of rarefaction ( decrease), on the other hand, decreases the values of Po number and 

mass flow rates. The competition between roughness, rarefaction and compressibility effect will 

be discussed in details lately. 

 

Comparison of hybrid solution with other methods 

In order to neglect compressibility effect and keep only rarefaction one a series of 

computations have been carried out at high pressure ratio pe/p0 = 0.9 and rarefaction parameter δ 

from 100 to 10. Measuring pressures at the entrance p'i and at the exit p'e of the rough section 

L
*
 = 2.25 we have even higher pressure ratio p'e/p'i = 0.96. Such high pressure ratio allows to 

investigate a nearly incompressible flow condition while varying the rarefaction level. 

Additional local rarefaction parameter, exit Knudsen number Kne, based on the exit of rough 

section mean free path and channel height H can be computed as:  

λ 32 γ

5 2π Re
 e e

e

e

Ma
Kn

H
        (96) 

and varies from 0.01 to 0.1 (slip regime).  

In Fig. 23 comparison of hybrid and NS computed global Poiseuille number with pure 

kinetic S-model results from [72] for highest relative roughness height ε = 5% and smooth 

channel is shown. It should be noticed that S-model Poiseuille numbers were recomputed 

according to the non dimensionalization defined in the present work, which introduces around 

6.53% difference from the results presented in [72]. As can be seen, hybrid and kinetic computed 

Po numbers are in a good agreement for both rough and smooth channels and decrease with 
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Knudsen number increase (rarefaction effect). Thus, the hybrid solver can be considered as a 

reliable solver for further computations. At the same time NS solver significantly overestimates 

Po for rough wall channel flow, while for smooth channel produces data in a good agreement 

with both pure kinetic and hybrid solvers.  

 

Fig. 23. Global Poiseuille number Po via exit Knudsen number Kne for relative roughness 

ε = 5% (circles) and smooth ε = 0 (diamonds): pe/p0 = 0.9 

 

Fig. 24. Slip velocity uslip for relative roughness ε = 5% and smooth ε = 0: NS, solid symbols; 

hybrid, empty symbols; 

Moreover, as can be seen in Fig. 23, a rough surface Poiseuille number is significantly 

larger than for smooth one. Indeed, looking at slip velocities distribution over rough and smooth 
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surface, presented in Fig. 24, it can be seen that a slip velocity reaches its maximum around the 

rough peak and forms minimum “velocity plateau” in the region between peaks, while smooth 

surface slip velocity in the same region is constant and is larger than the average rough surface 

channel slip velocity. 

In order to quantitatively estimate the applicability of NS solver coupled with the slip 

boundary condition for near incompressible flow regime the relative difference between NS and 

hybrid solutions in terms of global mass flow rate W and Poiseuille number Po is computed as 

following:  

( , )
( , ) 1

( , )

NS
h NS

h

W Po
W Po

W Po
   ,        (97) 

The relative differences Wh-NS and Poh-NS in percent are shown in Fig. 25 for relative 

roughness height ε of zero (smooth channel), 1.25%, 2.5% and 5%. In case the flow through the 

rough surface channel we have a larger difference between NS and hybrid solutions in terms of 

Poiseuille number than in mass flow rate, probably, due to the additional dependence of 

Poiseuille number on not only density and velocity, but also viscosity (see eq. (90)). It should be 

noticed that for the flow through the smooth channel even for a highly rarefied condition 

(Kne = 0.1) the relative difference between NS and hybrid solutions does not exceed 5-7% for 

both mass flow rate W and Poiseuille number Po. On the other hand, when the surface roughness 

is taken into consideration the Poiseuille number difference between NS and hybrid solutions 

ΔPoh-NS already exceeds 5% for a relatively low rarefaction, Kne ≈ 0.02 (δ = 50), and reaches 

around 48% for highest Kne = 0.1 (δ = 10). For mass flow rate difference Wh-NS the critical Kne 

when the difference becomes larger than 5% is higher, around 0.04, while the maximum Wh-NS 

is smaller and equal to 14.5% for Kne = 0.1. It should be noticed that both mass flow rate and Po 

number differences show only weak dependence on the value of relative roughness ε, but a 

strong dependence on the rarefaction level, i.e. Knudsen number (or δ). In particular, for a 

relatively low rarefaction level, Kne = 0.02 (δ = 50) the mass flow difference Wh-NS is around 
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2% and ΔPoh-NS varies from 4.7% to 8% when the relative roughness ε decreases from 5% to 

1.25%. On the other hand, for higher rarefaction, Kne = 0.1 (δ = 10), at the same values of 

roughness the mass flow difference Wh-NS increases to 12.5% and 14.5%, and Po number 

difference ΔPoh-NS from 45.5% to 48%.  

(a)  

(b)  

Fig. 25. Δ(W, Po)h-NS via exit Knudsen number Kne at pe/p0 = 0.9.  

Thus, it can be concluded that the widely used first-order slip boundary condition can not 

properly describe the flow behaviour in the vicinity of rough surface even when a flow, in 

general, could be considered as weakly rarefied one in terms of the Knudsen based on the height 

of the channel (or the hydraulic diameter, which has the same order of magnitude). In fact, NS 

equations coupled with slip condition produces reasonably good results for smooth surface flow 
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up to exit Kn = 0.1, but their accuracy for rough channel is already questionable above exit 

Kn = 0.02-0.03.  

 

 

Fig. 26. KnGL for ε = 5% (flood) and ε = 0% (black contour lines), Kne = 0.02 (δ = 50).  

To clarify such inconsistency let us consider the flow details in terms of local gradient 

Knudsen number KnGL map in the vicinity of rough region shown in Fig. 26. A highly rarefied 

local regions appears near the top of the rough surface elements, with higher values in 

comparison with smooth surface KnGL ones (black contour lines). When a small peak size is of 

the order of the local mean free path molecules may just skip peaks and the global effect of the 

rough wall in comparison with the smooth one is reduced. Moreover, as indicated in [11, 59] for 

the smooth surface channel this is consistent with the low values of the H based Knudsen 

number, falling within the slip flow regime, while the details of the flow (i.e., local Knudsen 

number) around the smaller scale roughness elements may exceed these limits.  

 

Comparison of hybrid solution with literature results 

It is interesting to compare hybrid solution with literature available results. In Fig. 27 the 

distribution of global rough Poiseuille number Poε as a function of the local exit Knudsen 

number Kne is presented for different relative roughness heights ε and compared with analytical 

expression for the Poiseuille number eq. (92) and a correlation based on Lattice Boltzmann 
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results [65], eq. (93) with ε = 5%. It can be seen that smooth surface channel Po number 

demonstrates good agreement with an analytic expression eq. (92) up to Kne = 0.05, while Po 

number for rough surface channel with ε = 5% slightly deviates from correlation eq. (93), 

probably due to the different obstacle geometry using in [65].  

As expected, the increase of the height of wall roughness elements results in an increase of 

Poiseuille number in comparison with the smooth one due to increase of wall friction effect. On 

the other hand, the increase of rarefaction significantly affects the Poiseuille number. Although 

the Poiseuille number for each Knudsen number increases as the relative roughness ε increases, 

the value of Poiseuille number is larger at lower Knudsen number and decreases as Kne increases 

(see also Table 5). 

 

Fig. 27. Poε via exit Knudsen number Kne for different relative roughness ε. 

In particular, for ε = 5% the highest Poε = 112 is for lowest Kne = 0.01 and the lowest Poε = 72 

for highest Kne = 0.1. When the rarefaction increases the local mean free path of particles in the 

gas flow increases resulting in decrease of interactions between particles and hence, reduction of 

global Po number for both rough and smooth channel flows (see Fig. 27). The same decrease of 

Poε with Knudsen number increase has also been observed in [59, 63, 64, 72].  
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Roughness rarefaction competition  

Furthermore, it is interesting to estimate the competition of rarefaction and roughness 

effects via a deviation of rough surface Poiseuille number Poε (or mass flow rate Wε) from 

smooth one Pos (or Ws), which can been computed as following: 

( , )
( , ) 1

( , )
s

s

W Po
W Po

W Po


             (98) 

In Fig. 28 deviations ΔWε-s and ΔPoε-s as a function of relative roughness height ε for 

different level of rarefaction is presented. For fixed rarefaction level (Kn number) when relative 

roughness ε decreases Poiseuille number Poε decreases, while a mass flow rate Wε increases, and 

both tend to the smooth channel values. In particular, for Kne = 0.01 the deviation ΔPoε-s grows 

from 4.2% for ε = 1.25% up to 23% for maximal relative wall roughness ε = 5%, while for 

highest Kne = 0.1 ranges from 9.3% to 29%, respectively. Thus, for fixed rarefaction level 

considered here the roughness of surface significantly increases Po number with respect to the 

smooth one. On the other hand, the hybrid computed mass flow rate deviations ΔWε-s are 

significantly smaller: from 0.5% for ε = 1.25% up to 4.2% for ε = 5% when Kne = 0.01 and from 

6% to 11.6% when Kne = 0.1. This is due to the additional dependence of Poiseuille number (see 

eq. (90)) on viscosity.  

It should be noticed that for the considered range of Knudsen number (slip regime) the 

deviation between rough and smooth surface Poiseuille number ΔPoε-s is weakly dependent on 

Knudsen number in hybrid computations, despite the significant deviation between rough and 

smooth values that is reported by the continuum solution. Thus, even in these apparently low 

rarefied regimes, the continuum computation offers qualitatively misleading results.  
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(a)  

(b)  

Fig. 28. ΔWε-s and ΔPoε-s via relative roughness ε at pe/p0 = 0.9: NS, solid symbols; hybrid, 

empty symbols. 

Moreover, as can be seen in Fig. 28a, NS solver overestimates mass flow rate deviation 

ΔWε-s as well, especially for high Knudsen number, although this overestimation is not so 

dramatical as for Poiseuille number: maximum ΔWε-s for ε = 5% and Kne = 0.1 equals 17.4% 

while Poiseuille number deviation ΔPoε-s is 70%.  

In order to have a full picture and observe a larger rarefaction effect on the flow over a 

rough surface, the S-model results from [72] in terms of Poiseuille number deviation ΔPoε-s for 

Kne up to 0.83 are shown in Fig. 29 along with hybrid and NS computed Po number deviations. 

As can be seen the deviation ΔPoε-s of rough surface channel Poiseuille number (for ε = 5%) 
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from smooth one increases with Knudsen number increase and reaches 42% for Kne = 0.83. 

Thus, the rarefaction enhances roughness effect; it can be more noticeable in transition regime 

for Kn > 0.1. Indeed, for highly rarefied region molecules interactions with a wall start playing 

more important role than collisions between molecules; therefore the gas flow becomes very 

sensitive to imperfection of the wall and hence a deviation of rough surface Po number from 

smooth value (ΔPoε-s) increases, while the Poiseuille number value (for both smooth and rough 

surface) decreases with Kn number increase.  

 

Fig. 29. ΔPos-ε via exit Knudsen number Kne for ε = 5%: NS, solid symbols; hybrid, empty 

symbols; S-model [72], stars 

Moreover, as can be seen in Figs. 28 and 29, NS solver essentially overestimates the 

roughness effect in comparison with hybrid results already starting from exit Kne = 0.02, while in 

this case local Knudsen in the vicinity of rough peaks is 25 times higher (see Fig. 26). In 

particular, for Kne = 0.1 (δ = 10) NS computed deviation ΔPoε-s increases up to 70%, while for 

weakly rarefied gas Kne = 0.01 (δ = 100) it is around 25% and close to the hybrid solver 

computed deviation.  

Further investigation of the different roughness geometries on flow field for highly rarefied 

flow is of great interest, but at this moment out of the scope of the present work. A similar 

behaviour was observed in computation of Cao at al. [64], considering the results for relative 
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roughness height ε = 4.1%, the Poiseuille number increase with respect to the smooth case at 

Kn = 0.6 was much higher than that at Kn = 0.2.  

It should be noticed that in the case of highly rarefied flow all channel is within Knudsen 

layer, i.e. the kinetic domain size for a hybrid solver becomes too larger, thus making an 

application of hybrid solver is not so interesting (in terms of computational efficiency) in 

comparison with pure kinetic one.  

 

Compressibility effect 

The compressibility effect may play an important role in micro flows, thus it is interesting 

to take it into account in this analysis. Figures 28 shows the hybrid computed Poiseuille number 

Poε averaged over a whole rough sector of length L
*
 = 2.25 as a function of exit averaged cross 

section Mach number Mae (computed at the end of rough sector L
*
) at pressure ratios pe/p0 = 0.33 

and 0.5, respectively. As can be seen Poiseuille number Poε growth with Mae increase from 

nearly incompressible flow (Mae = 0.1) up to choked flow (Mae = 0.62). The maximum variation 

of Poε due to the roughness effect, i.e. increase of relative roughness height, is around 27% (for 

Mae ≈ 0.61) while the variation of Poε due to increase of Mae (from 0.25 to 0.61) is almost 2.5 

times.  

(a)  
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(b)  

Fig. 30. Averaged Poiseuille number Poε via averaged Re: (a) pe/p0 = 0.33, (b) pe/p0 = 0.5. 

This clearly suggests that compressibility effect plays a dominant role for a considered 

geometry. It should be noticed that the change of slope of Poε plot can be observed at low values 

of Mach number (see Fig. 30b), probably, due to an increase of the rarefaction effect on a gas 

flow.  

In addition, Fig. 31 shows the hybrid Poε averaged over a whole rough sector L
*
 as a 

function of Reynolds number Re averaged over the same sector at pressure ratios pe/p0 = 0.33 

and 0.5, respectively. Poiseuille number increases with Re; due to eq. (90), this also means, 

considering the relationship between Re and Kn (eq. (96)), an increase in Poiseuille number 

related to a decrease in Knudsen number.  

(a)  
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(b)  

Fig. 31. Averaged Poiseuille number Poε via averaged Re: (a) pe/p0 = 0.33, (b) pe/p0 = 0.5. 

For a lower pressure ratio (i.e. higher actual Ma), but comparable width of Re range, 

averaged Poiseuille number plot shows a much steeper slope. This also confirms that 

compressibility is a dominant factor. 

For deeper understanding of the compressibility effect it is worth to analyse the behaviour 

of local Poiseuille number. In Fig. 32, the Poiseuille number averaged over each rough element 

for relative roughness ε = 5% and pressure ratios pe/p0 = 0.33 and 0.5, compared with smooth 

surface channel Po, is plotted as a function of the cross section averaged Mach number. The 

local Po is computed using formula (90) applied between the inlet and outlet sections of each 

rough module. Since the Mach number increases along the channel, we have the lowest Ma 

corresponds to the inlet of the rough sector, while the highest Ma is located at its exit. At the 

rough sector inlet the developing flow yields a quick decrease in Poiseuille number. As soon as 

this transition is completed (i.e., the minimum in the Poiseuille number Po curve), Po becomes a 

monotone function of Ma.  

As can be seen in Fig. 32 the computed data lie in a relatively narrow band, especially for 

relatively low Knudsen numbers, thus confirming that Mach number is the dominant parameter, 

as suggested in [59, 63, 64] as well. Similar behaviour of local Poiseuille number vs. Mach 

number was also observed in [72] using a pure kinetic S-model solver. 
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(a)  

(b)  

Fig. 32. Averaged over each rough element Poiseuille number Po via cross section averaged 

Mach number Ma at pe/p0 = 0.33 (a) and 0.5 (b) for  = 0 and  = 5%: NS, solid symbols; hybrid, 

empty symbols 

Furthermore, the comparison with a correlation equation (94) for smooth channel of Asako 

et al. [44] shows good agreement for Ma in the range from 0.3 to 0.63 and low values of Kne. 

When Knudsen number increases the difference becomes larger and local Po are lower than that 

obtained from the Asako’s expression. This is due to the rarefaction effect, which is not included 

in the Asako’s model [44], since, as was shown in Fig. 27, the rarefaction alleviates the friction 

effect of the wall on the gas flow.  
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As was demonstrated previously in Figs. 30 the impact of compressibility, especially at 

low pressure ratios is much more significant than the variation due to the roughness effect. The 

plots of local Poiseuille number Po vs. Ma shown in Fig. 32 confirm this observation: in 

particular, local Po at Ma  0.66 is two times higher than at Ma  0.3, while the increase of Po 

value between rough (with  = 5%) and smooth surface channels at the same Ma  0.3 is at most 

25%.  

It should mention that the difference between hybrid and NS solutions grows with 

Knudsen number. As demonstrated in Fig. 32, for low values of Kn, Kne = 0.017 and 0.022, 

hybrid and NS computed local Poiseuille numbers for both smooth and rough channels are close 

to each other. For higher Kn values, Kne = 0.034 and 0.047, there is appreciable difference 

between NS and hybrid plots of rough surface Po number, while Po plots for smooth surface 

channel for both NS and hybrid solvers almost coincide.  

Thus, for weakly rarefied flow, and for the same value of local Ma both hybrid and NS 

solutions offer the same value of Po, for both smooth and rough channels. On the other hand, for 

higher rarefaction NS solver overestimates the roughness effect.  

(a)  
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(b)  

Fig. 33. ΔWε-s and ΔPoε-s via relative roughness ε at Kne = 0.017-0.0217: NS, solid symbols; 

hybrid, empty symbols 

To quantitatively estimate the coupling effect of compressibility and roughness a deviation 

for global mass flow rate and Poiseuille number (W, Po)ε-s (see eq. (98)) in percent for different 

pressure ratios and few rarefaction level are shown in Figs. 33-35. As expected, the maximum 

deviation for both mass flow rate and Poiseuille number occurs for largest relative roughness 

height ε = 5%. Starting from smooth channel values the increase of roughness height ε results in 

a decrease of mass flow rate and an increase of the Poiseuille number, due to an increase of 

friction effect of the wall on the gas flow. 

(a)  
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(b)  

Fig. 34. ΔWε-s and ΔPoε-s via relative roughness ε at Kne = 0.047-0.05: NS, solid symbols; 

hybrid, empty symbols. 

As was mentioned before, when the roughness height growth the Poiseuille number 

variation is much more significant than the variation in the mass flow rate. In particular, for 

Kne ≈ 0.02 (see Fig. 33) maximum mass flow rate deviation Wε-s is 6% while Poiseuille number 

deviation Poε-s is 26%. Further, with Knudsen number increase (see Figs. 34 and 35) maximum 

deviations increase up to 12.4% for mass flow rate and around 30% for Poiseuille number.  

(a)  
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(b)  

Fig. 35. ΔWε-s and ΔPoε-s via relative roughness ε at Kne = 0.083-0.11: NS, solid symbols; 

hybrid, empty symbols. 

As can be seen in Figs. 33-35 the compressibility effect alleviates the friction effect of the 

rough wall on the flow in terms of the mass flow rate. For low pressure ratios pe/p0 = 0.33 and 

0.5 a deviation due to increase of relative roughness height for mass flow rate Wε-s is smaller 

than for nearly incompressible flow (pe/p0 = 0.9). In particularly, for lowest pressure ratio 

pe/p0 = 0.33 the minimum deviation Wε-s is 4.5% (see Fig. 33) and further increases up to 6.6% 

when rarefaction level increase (Fig. 35). For nearly incompressible flow (pe/p0 = 0.9) Wε-s is 

higher and equals 6% even for low Kn and increase up to 12.3% when Kn number increases 

(Fig. 35). Thus, the compressibility effect acts in opposite to the rarefaction effect direction (see 

Fig. 28) reducing a friction effect of the rough wall, thus, resulting in the less increase of mass 

flow rate deviation from smooth surface values when Kn number increase.  

As was shown before the Poiseuille number variation in compressible flow is much more 

sensitive to Mach number increase than the roughness variation. Indeed, the maximum deviation 

Poε-s (for  = 5%) from smooth channel Po weakly depends on the pressure ratio value, except 

a lowest rarefied flow case (see Fig. 33), when a maximum deviation Poε-s is around 26% for 

pe/p0 = 0.33 and 0.5 and around 22% for pe/p0 = 0.9. When Knudsen number increases (see 

Figs. 34 and 35) the maximum deviation Poε-s growth up to 27-30% and is of the same order 
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for all considered pressure ratios. Thus, for the considered range of Knudsen number and 

pressure ratios a roughness effect on the flow in terms of Poiseuille number weakly depends on 

pe/p0. This confirms previous conclusion (see Fig. 30-32), that for compressible flow the effect 

of compressibility (increase of Po with Ma) is more visible than the roughness effect. It should 

be noticed that as in the case for mass flow rate the compressibility effect reduces rarefaction 

effect on Po number deviation. Indeed, for incompressible flow pe/p0 = 0.9 maximum Poε-s 

varies from 22% for local exit Kne = 0.02 to 30% for Kne = 0.1, while for lowest pressure ratio 

pe/p0 = 0.33 Poε-s varies from 26% for Kne = 0.0217 to 27.8% for Kne = 0.11. 

As expected, NS solver overestimates Poiseuille number and underestimates mass flow 

rate when relative roughness height  growth. Even for relatively low Kne equals 0.0217 and 

pe/p0 = 0.33 NS solver offers deviation from smooth surface channel data around 6% for mass 

flow rate and 32% for Po number.  

Figure 36 quantitatively demonstrates the difference between hybrid and NS solvers as 

function of local exit Knudsen number. It can be seen that a deviation of NS solution from 

hybrid one exceeds 5% for mass flow rate at Kne = 0.05 and significantly earlier for Poiseuille 

number at Kne = 0.016. It should be noticed that in case channel with a smooth surface 

deviations for both mass flow rate and Po number are less than 5% up to Knudsen number 

around 0.1, i.e. in the region where first order slip boundary condition is commonly used.  

(a)  
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(b)  

Fig. 36. Δ(W, Po)h-NS via exit Knudsen number Kne: pe/p0 = 0.33, empty symbols; 

pe/p0 = 0.5, solid symbols.  

5.5. Conclusion 

A hybrid solver based on the direct numerical solution of the S-kinetic equation coupled to 

a Navier-Stokes model was applied for the near wall modelling. It was found that the breakdown 

criterion based on the modified gradient length Knudsen number is more suitable for the 

boundary value problems.  

For the smooth channel flow it was shown that hybrid code gives results close to full 

kinetic solutions for flow regimes where the Navier-Stokes solution fails. The obtained speed up, 

with respect to full S -model solutions, is between 2 and 5, although strongly depends on the size 

of the kinetic region.  

Investigation of the roughness effect under Mach numbers from nearly incompressible to 

chocked flow conditions 0.001 ≤ Ma ≤ 0.62 and exit Knudsen number ranging from 0.01 to 

0.166 using hybrid solver has been done. It was found that rarefaction enhance roughness effect, 

especially in transitions regime. The compressibility is more dominant effect in comparison with 

the roughness one. Moreover, if a surface roughness is taken in to consideration even for 

relatively low values of the Knudsen number (Kn = 0.02) based on the channel height, the 

accuracy of the NS solution provided with first order slip boundary conditions is questionable, 
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probably, due to the smaller scale effects related to the roughness peaks, while for a smooth 

surface the NS solution is reliable for Kn up to 0.05 (deviation from kinetic solution not exceed 

5%).  

Thus, the use of a hybrid solver, coupling a kinetic solution in the near wall region around 

the roughness peaks with a “cheaper” Navier - Stokes solution for the core flow, allows for a 

decrease of the computational expenses in comparison with pure kinetic solutions, while 

preserving a correct description of the gas-rough solid surface interaction.  
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Conclusions 

In the present work a sustainable multiscale solver based on the coupling solvers for the S-

model kinetic equation and Navier-Stokes equations, allowing flexible changing the size of 

continuum and kinetic domains (depending on the flow regime) was elaborated. The code is 

accelerated by parallelization using MPI (Message Passing Interface) for computation on 

multiprocessors systems, thus making it tractable for complex two -dimensional flow problems. 

The present solver has been validated by applying to a well known problem: gas flow through 

the slit for a wide range of pressure ratios (including flow into vacuum) and Knudesen numbers. 

For the considered problem the hybrid solution was proved to be reliable even for regimes where 

Navier-Stokes solution completely fails.  

The good efficiency of hybrid solver (CPU time reduction from 10 to 1.4 times) was 

demonstrated in comparison with pure kinetic solutions, although it strongly depends on the size 

of the kinetic region. It should be noticed that the use of the full Boltzmann equation instead its 

S-model would obviously provide even higher computational efficiency due to higher dimension 

of velocity space for the Boltzmann equation.  

Furthermore, the hybrid solver has been applied for a classical engineering problem: 

compressible gas flow through the channel with a rough surface. Hybrid results demonstrated 

good agreement with open literature data. In particularly, it was observed, the increase of 

Poiseuille number with relative roughness size increase and decrease of Poiseuille number with 

Knudsen number increase. Moreover, the compressibility is more dominant effect in comparison 

with the roughness one.  

The reliability of first order slip boundary conditions for the simulation of flows along of 

fine-textured geometries was estimated. It was found that if surface roughness is taken in to 

consideration even for relatively low values of the Knudsen number (Kn = 0.02) based on the 

channel height, the accuracy of the NS solution coupled with the first order slip boundary 
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conditions is questionable, probably, due to the smaller scale effects related to the roughness 

peaks, while for smooth surface the NS solution is reliable for Kn up to 0.05 (deviation from 

kinetic solution not exceed 5%).  

It can be concluded that the elaborated hybrid solver is very promising tool for different 

engineering problems starting from MEMS to aerospace applications, since it provides solution 

with accuracy close to a pure kinetic one while computational expenses in terms of time and 

memory requirements are significantly lower. It should be noticed that an optimization (increase 

of efficiency) of hybrid solver is in author’s opinion still open issue. Moreover, although the 

present work is devoted to MEMS application, it will be interesting to apply developed solver to 

other problems, e.g. hypersonic compressible flow.  
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