
 

 

UNIVERSITY OF UDINE 

Department of Electrical, Management and Mechanical Engineering  

 

PhD in Industrial and Information Engineering 

 

CYCLE XXVIII 

PHD THESIS 

 

MODELING AND CONTROL OF FLEXIBLE MECHATRONIC SYSTEMS 

 

Supervisor:  

Professor Alessandro Gasparetto 

 

By: 

Erfan Shojaei Barjuei 

 

 

December-2015 



i 

 

 

MODELING AND CONTROL OF FLEXIBLE 

MECHATRONIC SYSTEMS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

 

 

TO ALL WHOM WE LIKE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Acknowledgement  

I would like to thank the people at department of electrical, mechanical and managerial 

engineering of the University of Udine especially my supervisor, Prof. Alessandro Gasparetto, 

for his help, support and interest in my works. 

It is difficult to overstate my gratitude to Dr. Renato Vidoni and Dr. Paolo Boscariol. With their 

enthusiasm, their inspiration, and their great efforts to explain things clearly and simply, 

throughout my thesis-writing period, they provided encouragement, sound advice, good teaching, 

good company, and lots of good ideas. I would have been lost without them. 

Lastly, and most importantly, I wish to thank my parents and my brother. They bore me, raised 

me, supported me, taught me, and loved me. To them I dedicate this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

CONTENTS 

Abstract viii 

  

1 Introduction 1 

1.1 Introduction 2 

1.2 Contribution 8 

 

2 Complaint Manipulator Dynamics 10 

2.1 Introduction 11 

2.2 Nonlinear Dynamic Model 11 

2.2.1 Kinematics  12 

2.2.2 Dynamics 14 

2.2.3 Linearized Model 16 

2.2 Reference Mechanism 17 

2.4  Accuracy of the Linearized Model 19 

2.5 State Observer 21 

  

3 Linear Quadratic Optimal Control 24 

3.1 Introduction 25 

3.2 Synthesis of the Optimal Control 25 

3.3 Results 28 

3.4 Conclusion 30 

  

4 Model Predictive Control 32 

4.1 Introduction 33 

4.2 General Concept of MPC 33 

4.3 Prediction and Control Horizons 34 

4.4 Model Prediction and Cost Function 34 

4.5 Result of Model Predictive Control with Constraint 36 

4.5.1 Effects of fc on the Closed-loop System 36 

4.5.2 Effects of 𝐻𝐶 and 𝐻𝑃 on the Closed-loop System 38 



vi 

 

4.6 Robustness 39 

4.7 MPC Controller vs. PID Controller  42 

4.8 Conclusion 42 

  

5 Robust Control 44 

5.1 Introduction  45 

5.2 Sensitivity of the Linearized Model 45 

5.3 Linear Model Reduction 49 

5.4 Synthesis of Robust Controller 53 

5.4.1 𝐻∞ Loop Shaping 53 

5.4.2 𝜇-synthesis 55 

5.5 Results 57 

5.5.1 Design of 𝐻∞ Loop Shaping Controller 58 

5.5.1.2 Response of 𝐻∞ Loop shaping to Disturbance 60 

5.5.2 Design of the μ-Synthesis Controller  61 

5.5.2.1 Response of the μ-Synthesis to Disturbance 64 

5.6 Comparison between Controllers 65 

5.6.1 Comparison through μ-analysis 65 

5.6.2 Comparison through Frequency Response  66 

5.7 Conclusion 67 

  

6 Hybrid Position/Force Control  68 

6.1 Introduction 69 

6.2 External Force Estimation 69 

6.3 Hybrid Position/Force Control 73 

6.4 Results 74 

6.5 Conclusion 76 

  

7 Linear Quadratic Optimal Control of Cable-Driven Parallel Robots 77 

7.1 Cable Robots 77 

7.2 Dynamics of the System  78 



vii 

 

7.3 Synthesis of the Optimal Controller  80 

7.4 Experimental Results 82 

7.5 Conclusion 87 

  

8 Conclusion 88 

  

Bibliography 92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

Abstract 

This thesis deals with modelling and control of flexible mechatronic systems. The flexible 

mechatronic systems under consideration are a spatial L-shape flexible mechanism and a cable 

driven parallel robot. Deformation of these mechatronic systems, which contain flexible parts, 

effect the behaviour of the whole mechatronic system. A finite element model, based on the 

equivalent rigid link system (ERLS) theory, is used in order to describe accurately the dynamic 

behaviour of the flexible mechanism. The Feriba-3 which is 3-DOF planar robot for description 

of cable driven robot is considered as a benchmark. 

The model of the flexible mechanism has been validated through the experimental tests in order 

to apply the linear quadratic (LQ) optimal controller, the constrained model predictive control 

(MPC), the robust control based on 𝐻∞ loop shaping and 𝜇-Synthesis and the hybrid 

position/force control for both position control and vibration damping in a spatial flexible L-

shape mechanism and to regulate the external force applied to the mechanism as well with taking 

gravity force into account. In the purpose of applying linear quadratic (LQ) optimal controller on 

cable-driven parallel robots the kinematic equations of the system are developed. 

The synthesis of the controllers, used in this work for both spatial L-shape flexible mechanism 

and cable driven parallel robot, are described and the most important experimental results are 

presented and discussed. 

 

  

 



   

1 

 

CHAPTER 1 
 

 

Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Introduction 

2 

 

1.1 Introduction 

A mechatronic system usually consist of a precise mechanical system, actuators, sensors and 

control system. The special software is used for traditional development of individual 

subsystems and the simulation modelling of the whole system goes several development cycles 

where the results of individual models from different software are connected with feedback of 

the system. The behaviour of several mechatronic systems, especially in machine tools [1], 

robotics [2], application of precision mechanics [3], etc., is affected by deformation of several 

components and flexible parts [4]. A spatial flexible L-shape mechanism and a cable driven 

parallel robot are the systems which are investigated in this thesis. 

Developing lightweight manipulators leads to improvement of industrial robots performance and 

operation speed. Given the increase of link elasticity caused by weight reduction, modelling and 

control of the flexible manipulators become a difficult and complicated issue. Consequently, this 

research area, especially in the 3D system and their control, is still an open field of investigation 

[5]–[10].  

Flexible link robots have an important role in automated manufacturing systems and industrial 

robots due to their speed and capabilities. The majority of employed industrial robots work with 

simple position-controlled manipulators that use joint position feedback to close the control 

loops. The application of position control is in the tasks where the robot is not constrained by 

objects in the workspace. Spray painting [11] and pick-and-place [12] tasks are examples of 

position control in industrial robot applications.  

Modelling and control of flexible mechanisms has a variety of applications appearing, from 

micro-nano flexible devices [13] to medical needle steering [14] and large structures in space 

[15]. Real-time dynamic simulation is still a challenge for multi-body flexible systems [16], as 

well as the combination of distributed flexibility with closed kinematic chains. From the control 

point of view, stabilization with distributed actuators and sensing is still a hot topic, whereas 

rest-to-rest manoeuvres in finite, assigned time (and no residual vibration), time or energy 

optimal feedback control, and perfect tracking of output trajectories in case of non-minimum 

phase input-output characteristics remain all challenging topics, especially in the presence of 

truly nonlinear dynamics (e.g., for robots with multiple actuated joints and flexible links).  
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Vibration control of flexible mechanisms as a subset of robot motion control  is still an open 

issue in scientific researches [6]. A mount of work has been carried out in the field of flexible 

mechanism modelling, analysis, and control since the early 1970s. The consequence of accurate 

modelling and controlling the vibration phenomenon in the flexible mechanisms is designing and 

building lighter robot manipulator that is desired criteria in robots performance. For multi-body 

rigid flexible-link robotic systems, many dynamics models and methods have been proposed so 

far. Most researchers have concentrated their investigation on the describing of accurate 

mathematical models both for single body and multi-body system [6], [8], [17], [18]. 

In multibody dynamics, the classical approach is based on the rigid body dynamical model of the 

mechanism, then the elastic deformation are introduced to take the flexibility into account. The 

elastic deformation of the bodies are influenced by the rigid gross motion and vice versa. The 

resultant complete dynamic formulation is a highly nonlinear and coupled set of partial 

differential equations.   

In modelling flexible link manipulators, the most widely used methods to generate spatially 

discrete models are the Assumed-Mode Method (AMM), and the Finite Element Method (FEM). 

The accuracy of the dynamical model derived from the analytical formulation is highly 

dependent upon the adopted mode shapes of the link deformation and their number. 

In the AMM, the shape functions are typically Eigen functions of a closely related simpler 

problem with standard boundary conditions (BCs). For example, the Euler-Bernoulli beam in one 

of the following configurations [19]: clamped-free, pinned-free, clamped mass, or pinned-mass. 

In the FEM, the shape functions, known as interpolation functions, are simple polynomials that 

verify the continuity conditions between two adjacent elements or nodes. Examples of 

interpolation functions are Hermite cubics [20], cubic splines [21] and cubic B-splines [22] 

The classical approaches applied in flexible multi-body systems deal with mechanisms featuring 

large displacement and small deformations. Two main technique have been adopted in literature 

[8], [23]–[27]: the finite element method (nodal approach) and the assumed mode method (modal 

approach). Rigid body and elastic motion coupling effects have been considered in different 

works and approaches, firstly by considering only the effect of the rigid body motion on the 

elastic deformation [23] and then by considering also the effect of the elastic deformation on the 

rigid body motion [24]. Floating Frame of Reference (FFR) formulation [28]is the consequence 
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of these works. In the FFR formulation a first set of coordinate expresses the location and 

orientation of a local reference attached to each link, and a second set describes the deformation 

of the body with respect to its coordinate system. With this description a system of coupled 

differential equations is obtained being no separation between the rigid body motion and the 

elastic deformation of the flexible body. A possible drawback of this approach is that the 

constraint conditions, i.e. the connection between different deformable bodies, are defined in the 

global coordinate system: the resulting constraint equations are coupled and do not have an 

immediate and easy formulation. Moreover, they are usually introduced into the dynamics 

equations, which depend both on the elastic deformation and on the reference rigid motion of the 

deformable bodies (e.g. through a vector of Lagrange multipliers).  

The problem of control of mechanisms includes on finding an approach to compute the 

generalized forces that the actuator should apply in the purpose of performing with prescribed 

accuracy and precision a pre-defined task. This task is very important in modern robotics, where 

high-speed motion, precision, low power consumption and safety are ever crucial aims. As it 

should be clear, the design of proper control techniques are even more important for mechanisms 

with deformable elements (links and/or joints), since their non-minimum phase behaviour [29] 

and their being in most cases under actuated system [30] make their control issue a challenge if 

high performance is needed. 

In most cases the tasks for mechanical systems are specified in the operative space, i.e. using a 

set of kinematic quantities (position, velocity, and acceleration) referred to the end-effector of 

the manipulator. On the other hand, the motion of the mechanisms is implemented using the 

actuators, which are mounted often on the joints of the mechanisms. The two tasks are 

completely different, because in the two cases different problems must be surpassed [31]. Hence 

in the literature the two problems are studied and investigated as control in the operative space 

and control in the joint space [32].  

A control system for flexible systems manipulators should be able to effectively afford with the 

adverse effects of transient of vibrations and link deflections due to external loads. Both nodal 

and modal techniques of flexible systems have been applied to design the appropriate control 

scheme. Generally, the control of flexible link manipulator may be divided in four control 

objectives [33]: 
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 End-effector position regulation. 

 Rest to rest end-effector motion in fixed time. 

 Trajectory tracking in the joint space (tracking of a desired angular trajectory). 

 Trajectory tracking in the operational space (tracking of a desired end-effector trajectory).  

Many control schemes have been used and adapted to flexible robots from above objectives: 

Input/output linearization via static state feedback [34], proportional-derivative regulator [35], 

adaptive control [36], neural network [37], lead-lag controller [38], sliding mode control [39], 

optimal and robust control [40],  optimal trajectory planning [41].  

Model Predictive Control (MPC) is a class of computer control algorithms that is based on 

constructing controllers that are able to adjust the control action before a variation in the 

occurrence of the output set point. At each control interval the MPC algorithm attempts to 

optimize future plant performance by computing a sequence of future manipulated variable 

adjustment. An MPC algorithm can be tuned according to a cost function, constraints on 

controlled and control variables and to a model of the process to be controlled. 

MPC is gaining a lot of usages in different industrial applications, an interesting report about this 

specific case can be found in [42]. This kind of control has been first employed in large chemical 

factories, but in recent years has experienced a wider diffusion to other industrial fields. For 

examples Chen [43] has  proposed the application of MPC control in a ball mill grinding process, 

while Perez in [44] deals with controlling of a rudder roll stabilization control for ships. Other 

interesting results on MPC control of high-bandwidth systems can be found in [45], [46] and 

[47]. An experimental validation of MPC as position and vibration control for flexible 

mechanism is available in [20]. Also several works have proposed the use of Model Predictive 

Control (MPC) as an effective and suitable solution to the problem of damping vibration in 

flexible link mechanisms and structure [48]–[50].  

Robustness is one of the most important factor in control systems design because of difference 

between real systems and mathematical models. Modelling of flexible link mechanisms causes 

difficulty in controlling due to distributed parameters in the plant. The mathematical models have 

various uncertain parameters, each on affecting the system performance. Moreover, high-level 

performance as well as robustness of the closed loop system is influenced by the inherent non 
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minimum phase behaviour of the plant; hence, the importance of synthesis of the robust 

controller for flexible manipulators is quite evident. As a result, some researchers have 

developed in recent years in order to design and apply robust controller to flexible link 

mechanisms and manipulators. For example, Caracciolo introduced a mixed 𝐻2/𝐻∞ controller 

for a planar flexible mechanism without taking into account the gravity force effects in [40], 

robust 𝐻∞ vibration control in [51] and in [52], design of robust controller based on 𝜇-synthesis 

in [53], [54]  and other types of robust controllers such as Lyapunov based [55] and neural 

network [56]. Lyapunov’s second method in [17] and neural networks in [18] are also used to 

improve the robustness of position control of flexible-link manipulators. 

The work in this area is of paramount importance, considering that gravity can be neglected only 

in space applications and in the limited cases of a planar mechanism moving along a horizontal 

plane. In all, a spatial flexible-link mechanism can swing in 3D environment in terms of 

generalized coordinates and elastic displacements such as mechanisms studied in [57], [58]. It is 

also worth to mention that the majority of works in this area, not only for testing robust 

controllers, but also other tasks such trajectory planning, [21] and model predictive control[61] 

have been developed with reference to planar mechanisms, often moving in the horizontal plane, 

thus without considering gravity. 

Moreover, many controllers designed for this class of mechanisms are based on linearized and 

reduced-order models [40]: in this cases the improved robustness brought by a specifically 

designed robust control can solve the problem of the additional plant-model mismatch introduced 

by a linearized model, whose accuracy can be guaranteed only in the neighbourhood of the 

linearization point [19]. 

The research on force control of rigid link-manipulators started as early as 1960’s but the 

algorithm was developed over 1970’s to 1980’s. The approaches systemized are basically 

divided into hybrid position/force control schemes and impedance control schemes [48], [62]. So 

far force control of rigid manipulators has been one of the striking research issues, however, the 

same for flexible manipulators just initiated  in 1985 by Fukuda [63]. Chiou and Shahinpoor 

have mentioned that the link flexibility is the main reason of dynamic instability. They have 

extended their research from one-link flexible manipulator in planar environment to two-link 

manipulator through analysing their stability by applying hybrid position/force control approach 
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[64]. Matsuno and Yamamoto presented a quasi-static hybrid position/force control approach and 

dynamic hybrid position/force control technique for a planar two-DOF manipulator with flexible 

second link [65]. For force control of flexible manipulators, the inverse kinematic dynamics is 

principal, and has been proposed by Svinin and Uchiyama in [66].  

So far several force control solutions for flexible link mechanisms have been proposed and for 

example, Payo introduces a force control approach for a flexible link manipulator based on 

coupling torque feedback in [67], while a force control for a two link rigid-flexible manipulator 

using neural network technique has been developed by Borowiec in [68]. Liu in [69] has 

proposed the use of a feedback an parallel linear compensation, with the re-definition of the 

output to overcome the non-minimum phase behaviour of flexible manipulators, while a feed 

forward solution obtained form an inverse dynamic model has been proposed in [12]. 

Since the majority of investigation of controlling of flexible systems has been done in the plane 

with neglecting the gravity effect due to dealing with nonlinear terms and inertia coupling 

between rigid-body motion and vibration phenomena, accurate modelling and controlling of 

these systems in spatial environment with consideration of gravity effect is still an open issue for 

studying. 

Cable robots are also recognized as a kind of flexible mechatronic systems. In fact, the majority 

of cables are flexible. A major challenge is the nonlinear behavior of the cables. Cables are 

usually flexible and have to encounter some unavoidable situations such as elongation because of 

the cable driven robot character. This flexibility may lead to position and orientation errors. 

Moreover, the system might be exposed to undesirable disturbances which may lead to vibration, 

and cause the whole system to be uncontrollable. In recent years, many investigations have been 

done on cable-driven parallel robots due to their advantages over serial and conventional parallel 

kinematics. High structural stiffness, payload, good precision, vast workspace and high speed 

performance are some examples of these benefits; however, low stiffness of the robots due to 

cable application may decrease the accuracy of motion. On the other hand, optimal linear 

quadratic regulator (LQR) controller provides all the states of the system for the feedback such 

as position and velocity. Application of such optimal controller in cable-driven parallel robots 

can result in more efficient and accurate motion of the system. One of the aim of this thesis is to 

present an approach to apply optimal linear quadratic regulator (LQR) controller on cable-driven 
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parallel robots. In this thesis, the kinematic model of the system is briefly explained. In order to 

employ the classical optimal control theory, the kinematic equations of the system are developed. 

The chapter 3 of this thesis is about developing a linear quadratic regulator for a spatial L-shape 

flexible mechanism. In the chapter 4, a model predictive control (MPC) with constrains is 

proposed to control the position and minimize the amplitude the mechanical vibration during the 

motion of a 3D flexible L-shape mechanism. There are some motivating reasons for choosing 

this controller: first, the prediction ability based on an internal model can be a very effective 

advantages in fast-dynamic systems. Then MPC is well applicable to MIMO plants, because the 

outputs are calculated by solving a minimization problem which can take in consideration of 

several variables. Another remarkable advantages of this control scheme is its competences to 

perform constrains on both control and controlled variables [70]. The aim of chapter 5 is to 

design two types of robust controllers based on  𝐻∞ loop shaping and 𝜇-Synthesis for position 

control and vibration damping for a spatial flexible mechanism to provide a feasible solution that 

can deal with the uncertainties in the model parameters and nonlinearities imposed by the 

presence of the gravity force. The main goal of chapter 6 is to present a dynamic hybrid 

position/force control approach for a spatial flexible L-shape mechanism, with consideration of 

gravity force into dynamic modelling formulation of the mechanism. Consequently, the main 

objective is to allow the tip of the mechanism to safety contact objects in an uncertain 

environment.  Finally, the aim of the chapter 7 is to design a linear quadratic optimal controller 

(LQR) for a planar cable-driven parallel robot. The dynamic model of the system is presented in 

terms of state space equation form. From control point of view, a classical optimal controller is 

applied. The defined performance index accounts for the position and velocity of the end effector 

as well as applied torques by electric motors during the trajectory tracking. In order to minimize 

the performance index of the controller. 

 

1.2 Contribution 

This thesis builds upon and adds to the general body of knowledge surrounding flexible 

mechatronic systems, focusing on dynamic modelling and control of spatial flexible mechanisms 

and cable-driven robots. Specifically, this thesis contributes to the following: 
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 Provides a simulation framework for the development of the linear quadratic regulator 

optimal controller (LQR) for the flexible link mechanisms in 3D environment. 

 

 Provides a simulation framework for the development of the model predictive controller 

(MPC) for the flexible link mechanisms in 3D environment. 

 Provides a simulation framework for the development of the robust controller based on 

𝐻∞ and  𝜇-synthesis for the flexible link mechanisms in 3D environment. 

 

 Provides a simulation framework for the development of the hybrid force/position control 

for the flexible link mechanisms in 3D environment. 

 

 Provides a simulation framework and an experimental validation for the development of 

the linear quadratic optimal controller (LQR) for the cable-driven robots.  

 



 

10 

 

 

CHAPTER 2 
 

 

Complaint Manipulator Dynamics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 



Chapter 2: Complaint Manipulator Dynamics 

11 

 

2.1 Introduction 

The high productivity, high-technology system required by the modern mechanical industry need 

high performance speeds, robust reliability, appropriate performance, light weights and high-

precision machinery. In the purpose of obtaining high speed operation and increase efficiency, 

weights of many components in industrial robots and various machines are reduced. As operating 

speed grows up and weights of components reduced, a rigid-body model is not suitable anymore. 

Hence, these components cannot be considered as rigid links, they become flexible. High speed-

lightweight link-manipulators can be an example of flexible multibody system.  

Accurate modelling of flexible mechanisms is an open issue to investigate, and different 

approaches have been presented since the 1970s. In this chapter, an approach for modelling of 

three-dimensional flexible mechanisms is presented, based on an equivalent rigid-link system, 

based on which elastic deformations are defined and computed. Concepts of three-dimensional 

kinematics are used in order to define an effective relationship between the rigid body and the 

elastic motion. The model is based on a compact kinematic formulation and, there is no 

requirement for customizing the formulation. By using the principle of virtual work, a coupled 

dynamic formulation is found. An important advantage of this method is that it is not necessary 

to explicitly formulate the compatibility equations expressing the link connections, because they 

are included in the matrices of the system dynamics. 

 

2.2 Nonlinear Dynamic Model 

One of the most studied topics in flexible multi-body systems is dynamic modelling which is still 

an open issue to investigate. In comparison with rigid mechanisms, the elastic behaviour of 

flexible mechanism makes the mathematical formulation of the models, which influence and 

regulate the real physical behaviour of the system, quite complex. 

The approach used here for modelling of the systems with large displacements and small elastic 

deformation is based on Equivalent Rigid Link System (ERLS) concepts which first was 

introduced for a planer mechanisms by Giovagnioni in [71], and then expanded to 3D 

environment by Vidoni in [5], [72] which is briefly explained in this section . 
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One of the main advantages of the ERLS approach in is that the standard mechanisms definitions 

and concepts of 3D kinematics could be adopted to formulate and solve the ERLS dynamic 

model. 

 

 

Fig 2.1 Kinematic definition of the ERLS 

 

2.2.1 Kinematics  

As shown in Figure 2.1, each flexible link of the mechanism can be divided into finite elements. 

Being {X, Y, Z} a constant global reference frame, let us consider ui and ri  as the vector of the 

nodal elastic displacements of the i-th finite element and the vector of nodal position and 

orientation for the i-th  element of the ERLS, respectively. Moreover position vector of the 

generic point of the i-th element of the ERLS and its elastic displacement are wi and vi 

respectively. Hence, the absolute nodal position and orientation of the i-th finite element bi with 

respect to the global reference frame is: 

𝑏𝑖 = 𝑟𝑖 + 𝑢𝑖                                                                           (2-1) 

The absolute position pi of generic point inside the i-th finite element is: 

𝑝𝑖 = 𝑤𝑖 + 𝑣𝑖                  (2-2) 

For each finite element {xi, yi, zi} is the local reference frame that follows the ERLS motion. 

Given this, it can be defined a block-diagonal global-to-local transformation matrix 𝑇𝑖(𝑞)and a 
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local-to-global transformation matrix 𝑅𝑖(𝑞) can be defined. Therefore it is possible to reform 

Equation 2-2 as follows: 

𝑝𝑖 = 𝑤𝑖 + 𝑅𝑖(𝑞)𝑁𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)𝑇𝑖(𝑞)𝑢𝑖                                      (2-3) 

Where Ni(xi,yi,zi) is the shape function matrix for the interpolation of the i-th finite element 

defined in local frame, and q is the vector of the generalized coordinates.  

It can demonstrated that the expression for the virtual displacement 𝛿𝑝𝑖 in the constant reference 

frame is: 

𝛿𝑝𝑖 = 𝑅𝑖(𝑞)𝑁𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑇𝑖(𝑞)𝛿𝑟𝑖𝛿𝑅𝑖(𝑞)𝑁𝑖(𝑥𝑥 , 𝑦𝑥, 𝑧𝑥)𝑇𝑖(𝑞)𝑢𝑖 + 𝑅𝑖(𝑞)𝑁𝑖(𝑥𝑥, 𝑦𝑥, 𝑧𝑥)𝛿𝑇𝑖(𝑞)𝑢𝑖 +

𝑅𝑖(𝑞)𝑁𝑖(𝑥𝑥, 𝑦𝑥 , 𝑧𝑥)𝑇𝑖(𝑞)𝛿𝑢𝑖                                        (2-4) 

Twice differentiating Equation 2-3 leads to the expression of the acceleration of a generic point 

inside the i-th finite element as: 

𝑝̈𝑖 = 𝑅𝑖(𝑞)𝑁𝑖(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)𝑇𝑖(𝑞)𝑟̈𝑖 + 𝑅𝑖(𝑞)𝑁𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑇𝑖(𝑞)𝑢̈𝑖 + 2(𝑅̇𝑖(𝑞)𝑁𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑇𝑖(𝑞) +

𝑅𝑖(𝑞)𝑁𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑇̇𝑖(𝑞)) 𝑢̇𝑖 + (𝑅̈𝑖(𝑞)𝑁𝑖(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)𝑇𝑖(𝑞) + 2𝑅̇𝑖(𝑞)𝑁𝑖(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)𝑇̇𝑖(𝑞) +

𝑅𝑖(𝑞)𝑁𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑇̈𝑖(𝑞))𝑢𝑖                                                                                                        (2-5)  

If the kinematic entities of all the finite elements are gathered into one vector, differentiating 

Equation 2-1 with respect to time leads to: 

𝑑𝑏 = 𝑑𝑢 + 𝑑𝑟                                      (2-6) 

The configuration of the ERLS (as well as its velocity and acceleration) basically depends upon 

on the vector q of the free coordinates. This can be reformulated as: 

𝑑𝑟 = 𝑆(𝑞)𝑑𝑞                                                    (2-7) 

S(q) is the matrix of the sensitivity coefficients for all the nodes. Finally, by substituting 

Equation 2-7 into Equation 2-6 the following equation in matrix form can be obtained: 

𝑑𝑏 = [
𝐼 𝑆𝑖𝑛

0 𝑆0
] [

𝑑𝑢𝑖𝑛

𝑑𝑞
]                  (2-8) 
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2.2.2 Dynamics 

The dynamic equations of the system can be obtained by applying the principle of virtual works: 

𝛿𝑊𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝛿𝑊𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝛿𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 0                           (2-9) 

Which can also be written as: 

∑ 𝛿𝑢𝑖
𝑇𝑀𝑖(𝑟̈𝑖𝑖 + 𝑢̈𝑖) + 2∑ 𝛿𝑢𝑖

𝑇(𝑀𝐺1𝑖 + 𝑀𝐺2𝑖)𝑖 𝑢̇𝑖 + ∑ 𝛿𝑢𝑖
𝑇(𝑀𝐶1𝑖 + 2𝑀𝐶2𝑖 + 𝑀𝐶3𝑖)𝑢𝑖 +𝑖

∑ 𝛿𝑢𝑖
𝑇𝐾𝑖𝑢𝑖 = ∑ 𝛿𝑢𝑖𝑓𝑔𝑖 + 𝛿𝑢𝑇𝑓𝑖𝑖                                    (2-10) 

In which the mass matrix of the i-th element is: 

∫ 𝑇𝑖
𝑇𝑁𝑖

𝑇𝑅𝑖
𝑇𝑅𝑖𝑁𝑖𝑇𝑖𝑣𝑖

𝜌𝑖𝑑𝑣 = 𝑀𝑖                       (2-11) 

The stiffness matrix of the i-th element is: 

∫ 𝑇𝑖
𝑇

𝑣𝑖
𝐵𝑖

𝑇𝐷𝑖𝐵𝑖𝑇𝑖𝑑𝑣 = 𝐾𝑖                      (2-12) 

The vector of the equivalent nodal loads due to gravity is: 

∫ 𝑇𝑖
𝑇𝑁𝑖

𝑇𝑅𝑖
𝑇

𝑣𝑖
g 𝜌𝑖𝑑𝑣 = 𝑓𝑔𝑖                                 (2-13) 

The Coriolis terms are related to: 

∫ 𝑇𝑖
𝑇𝑁𝑖

𝑇𝑅𝑖
𝑇𝑅̇𝑖𝑁𝑖𝑇𝑖𝑣𝑖

𝜌𝑖𝑑𝑣 = 𝑀𝐺1𝑖                      (2-14) 

∫ 𝑇𝑖
𝑇𝑁𝑖

𝑇𝑅𝑖
𝑇𝑅𝑖𝑁𝑖𝑇̇𝑖𝑣𝑖

𝜌𝑖𝑑𝑣 = 𝑀𝐺2𝑖                        (2-15) 

The centrifugal stiffness terms are: 

∫ 𝑇𝑖
𝑇𝑁𝑖

𝑇𝑅𝑖
𝑇𝑅̈𝑖𝑣𝑖

𝑁𝑖𝑇𝑖𝜌𝑖𝑑𝑣 = 𝑀𝐶1𝑖                     (2-16) 

∫ 𝑇𝑖
𝑇𝑁𝑖

𝑇𝑅𝑖
𝑇2𝑅̇𝑖𝑁𝑖𝑇̇𝑖𝑣𝑖

𝜌𝑘𝑑𝑣 = 2𝑀𝐶2𝑖          (2-17) 

∫ 𝑇𝑖
𝑇𝑁𝑖

𝑇
𝑣𝑖

𝑁𝑖𝑇̈𝑖𝜌𝑖𝑑𝑣 = 𝑀𝐶3𝑖                      (2-18) 

Being 𝛿∅𝑖 the block-diagonal matrix which contains the virtual angular displacement and 𝐵𝑖 the 

strain displacement matrix, the following equations holds: 

𝛿𝑇𝑖
𝑇 = 𝛿∅𝑖𝑇𝑖

𝑇                        (2-19) 
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Since the virtual nodal elastic displacements 𝛿𝑢 and virtual displacement of the ERLS 𝛿𝑟 are 

independent from each other and taking into account the damping trough Rayleigh model using α 

and β damping constants, Equation 2-10 can be subdivided in two equations: 

𝑀(𝑟̈ + 𝑢̈) + 2(𝑀𝐺1 + 𝑀𝐺2)𝑢̇ + 𝛼𝑀𝑢̇ + 𝛽𝐾𝑢̇ + (𝑀𝐶1 + 2𝑀𝐶2 + 𝑀𝐶3)𝑢 + 𝐾𝑢 = 𝑓𝑔 + 𝑓    (2-20) 

𝑆𝑇𝑀(𝑟̈ + 𝑢̈) + 2𝑆𝑇(𝑀𝐺1 + 𝑀𝐺2)𝑢̇ + 𝛼𝑆𝑇𝑀𝑢 + 𝑆𝑇(𝑀𝐶1 + 2𝑀𝐶2 + 𝑀𝐶3)𝑢 = 𝑆𝑇(𝑓𝑔 + 𝑓)   (2-21) 

Dynamic equations, after the substitution of the second order differential equations of the ERLS, 

can be grouped and rearranged in matrix from after discarding the equations for elastic degrees 

of freedom that have been zeroed: 

[
𝑀 𝑀𝑆

𝑆𝑇𝑀 𝑆𝑇𝑀𝑆
] [

𝑢̈
𝑞̈
] =

[
−2(𝑀𝐺1 + 𝑀𝐺2) − 𝛼𝑀 − 𝛽𝐾 −𝑀𝑆̇ −(𝑀𝐶1 + 2𝑀𝐶2 + 𝑀𝐶3) − 𝐾

𝑆𝑇(−2(𝑀𝐺1 + 𝑀𝐺2) − 𝛼𝑀) −𝑆𝑇𝑀𝑆̇ −𝑆𝑇(𝑀𝐶1 + 2𝑀𝐶2 + 𝑀𝐶3)
] [

𝑢̇
𝑞̇
𝑢
] + [

𝑀 𝐼
𝑆𝑇𝑀 𝑆𝑇] [

𝑔
𝑓]                    

(2-22) 

Then, taking 𝑥 = [𝑢̇ 𝑞̇ 𝑢 𝑞] as the augmented state vector, and rearranging the matrices, the 

system expressing the dynamics of the mechanism can be written also as: 

[

𝑀 𝑀𝑆 0 0
𝑆𝑇𝑀 𝑆𝑇𝑀𝑆 0 0
0 0 𝐼 0
0 0 0 𝐼

] [

𝑢̈
𝑞̈
𝑢̇
𝑞̇

] =

[

−2𝑀𝐺 − 𝛼𝑀 − 𝛽𝐾 −𝑀𝑆̇ −(𝑀𝐶1 + 2𝑀𝐶2 + 𝑀𝐶3 ) − 𝐾 0

𝑆𝑇(−2(𝑀𝐺1 + 𝑀𝐺2) − 𝛼𝑀) −𝑆𝑇𝑀𝑆̇ −𝑆𝑇 (𝑀𝐶1 + 2𝑀𝐶2 + 𝑀𝐶3 ) 0
𝐼 0 0 0
0 𝐼 0 0

] [

𝑢̇
𝑞̇
𝑢
𝑞

] +

[

𝑀 𝐼
𝑆𝑇𝑀 𝑆𝑇

0 0
0 0

] [
𝑔
𝑓]                                                                                                                        (2-23) 

The values of acceleration can be computed at each step by solving the Equation 2-22, while the 

values of velocities and of displacements can be obtained by an appropriate integration scheme 

(e.g. the Runge-Kutta algorithm) and, hence, the dynamic behaviour of the system can be 

simulated. 

 



Chapter 2: Complaint Manipulator Dynamics 

16 

 

5.5.3 Linearized Model 

The dynamic model represented by Equation 2-23 is nonlinear, due to the quadratic relation 

between the nodal acceleration and the velocities of the free coordinates. Thus it cannot be used 

to design a linear-model based control. In order to develop a state-space form linearized version 

of the dynamic system of Equation 2-23 a linearization procedure has been developed. First of 

all, Equation 2-23 can be written in the following form, by defining a state vector x(t) and an 

input vector v(t): 

𝑨(𝒙(𝑡))𝒙̇(𝑡) = 𝑩(𝒙(𝑡))𝒙(𝑡) + 𝑪(𝒙(𝑡))𝒗(𝑡)                                           (2-24) 

In which matrices A, B and C do not depend on v(t). If xe is a steady equilibrium point for the 

system in Equation 2-23, a linearization procedure can be set by applying a Taylor series 

expansion: 

𝑨(𝒙𝑒 + ∆𝒙(𝑡))(𝒙̇𝑒 + ∆𝒙̇(𝑡)) = 𝑩(𝒙𝑒 + ∆𝒙(𝑡))(𝒙𝑒 + ∆𝒙(𝑡)) + 𝑪(𝒙𝑒 + ∆𝒙(𝑡))(𝒗𝑒 + ∆𝒗(𝑡))      

                                                                                                                            (2-25) 

Since xe(t) is an equilibrium point for the system, the following equation holds: 

𝑩(𝒙𝑒)𝒙𝒆 + 𝑪𝑒(𝒙𝑒)𝒗𝒆 =  𝑨(𝒙𝑒)𝒙̇𝑒 = 0                                                       (2-26) 

Therefore the system linearized around the equilibrium point can be written as: 

 𝑨(𝒙𝑒)∆𝒙̇(𝑡) = [𝑩(𝒙𝑒) + (
𝜕𝑩

𝜕𝒙
|
𝒙=𝒙𝑒

× 𝒙𝑒) + (
𝜕𝑪

𝜕𝒙
|
𝒙=𝒙𝑒

× 𝒗𝑒)] ∆𝒙(𝑡) + 𝑪(𝒙𝑒)∆𝒗(𝑡)             (2-27) 

The matrices in Equation 2-27 are constant, so we have obtained a linear model in the form: 

𝑨∆𝒙̇(𝑡) = 𝑩∆𝒙(𝑡) + 𝑪∆𝒗(𝑡)                                                       (2-28) 

The constant matrices A and B can be evaluated as: 

𝑨 = [

𝑴 𝑴𝑱 0 0

𝑱𝑇𝑴 𝑱𝑇𝑴𝑱 0 0
0 0 𝑰 0
0 0 0 𝑰

]

𝒙=𝒙𝑒

                                           (2-29) 

𝑩 = [

−2𝑴𝐺 − 𝛼𝑴 − 𝛽𝑲 0 −𝑲 𝑩14

𝑱𝑇(−2𝑴𝐺 − 𝛼𝑴 − 𝛽𝑲) 0 0 𝑩24

𝑰 0 0 0
0 𝑰 0 0

]

𝒙=𝒙𝑒

                     (2-30) 
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In which: 

𝑩14 = −
𝜕𝑲

𝜕𝒒
× 𝒖𝑒 +

𝜕𝑭g

𝜕𝒒
              (2-31) 

𝑩24 = −
𝜕𝑱𝑇

𝜕𝒒
× 𝑭𝑔 + 𝑱𝑇 ×

𝜕𝑭g

𝜕𝒒
                        (2-32) 

Matrix C remains unchanged after the linearization process, since it is composed of only zeros 

and ones. Equation 2-28 can be brought to the most common form of a Linear Time Invariant 

(LTI) model by using the simple relations 𝑭𝑙𝑖𝑛 = 𝑨−1𝑩 and 𝑮𝑙𝑖𝑛 = 𝑨−1𝑪: 

{
∆𝒙̇(𝑡) = 𝑭𝑙𝑖𝑛∆𝒙(𝑡) + 𝑮𝑙𝑖𝑛𝒗(𝑡)
𝒚(𝑡) = 𝑯𝑙𝑖𝑛𝒙(𝑡) + 𝑫𝑙𝑖𝑛𝒗(𝒕)

                                                                                

(2-33) 

A comprehensive linearization procedure explanation for a planar flexible mechanism based on 

ERLS approach is available in [73].  

 

2.3 Reference Mechanism 

The mechanism chosen as the basis of the simulations is a flexible L-shape mechanism, made 

by two steel rods, connected by a rigid aluminium joint (Figure 2.2). The rotational motion of 

the first link, which is connected to the chassis, can be imposed through a torque-controlled 

actuator. The whole mechanism can swing in 3D environment and therefore gravity forces 

affects both the rigid and elastic motion of the mechanism.  

Each finite element has 12 degrees of freedom; consequently, whole the mechanism is described 

with 30 nodal elastic degrees of freedom and one generalized coordinate (angular position 𝑞). 

After assembling 2 links and considering the constraints fixed by the kinematic couplings and 

neglecting one of the nodal displacements in order to make the system solvable [5]. The 

resulting flexible link system is described by 24 nodal elastic displacements and one rigid 

degree of freedom. 

The mechanical parameters of the L-shape mechanical components are reported in Table 2.1. 
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A software program for simulating the dynamics behaviour of a flexible-link has been 

developed, according to the dynamic model presented in section 2. The structure of the 

mechanism has been modelled, with four finite elements (Figure 2.3). 

Each finite element has 12 degrees of freedom; consequently, whole the mechanism is described 

with 30 nodal elastic degrees of freedom and one generalized coordinate (angular position 𝑞). 

After assembling 2 links and considering the constraints fixed by the kinematic couplings and 

neglecting one of the nodal displacements in order to make the system solvable [5]. The resulting 

flexible link system is described by 24 nodal elastic displacements and one rigid degree of 

freedom. 

 

Fig 2.2: The mechanism built in the laboratory for experimental validation of the model 
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 Fig 2.3: Elastic displacement in L-shape mechanism 

 

 

Table 2.1 - Kinematics and dynamics characteristic of the reference mechanism 

 Symbol Value 

Young’s modulus E 2 × 1011 [𝑃𝑎] 

Flexure inertia moment J 11.102 × 10−10 [𝑚4] 

Poisson’s coefficient v 0.33 

Beam width a 30 ×  10−3 [𝑚] 

Beam thickness b 10 ×  10−3 [𝑚] 

Density       𝜑 7850 [𝐾𝑔/𝑚3] 

First link length 𝐿1 0.5 [𝑚] 

Second link length 𝐿2 0.5 [𝑚] 

Rayleigh damping 

constant 

α 7 × 10−4 [𝑠−1] 

β 2.13 ×  10−7 [𝑠] 

 

 

2.4 Accuracy of the Linearized Model 

In this subsection, a simple comparison test in order to evaluate the extracted accuracy linearized 

model has been described. The mechanism, introduced in section 2.5, has been fed with 5 Nm 
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torque impulse with 0.05 sec delay in the initial configuration of 𝑞0 = 90°, i.e. starting from the 

vertical position; however, it should be mentioned that the test can be implemented to any 

mechanism configuration with similar results. 

From the Figure 2.4 (A) and (B) it can be inferred that linearized model has a very high level of 

precision as well as the rotation motion of q is considered. As can be seen from the Figure 4, the 

response of the linear and nonlinear models of q as the generalized coordinate is very close and 

similar to each other; however, the difference between them increases when moves away from 

the equilibrium point. Additionally, it can be inferred from Figure 2.4. (B) that the error on q 

increases slowly as the error after 0.4 s is around 0.06%. 

Figure 2.5 (A) shows a comparison of the responses of nonlinear and linearized system 

impulsive on the subject of nodal displacements u11. According to Figures 2.5 (A), the difference 

between the linear and nonlinear modelling of u11 are negligible while the mechanism moves 

from the equilibrium configuration as far as u11 is concerned. Figures 2.5 (B) shows the 

modelling error on u11, which is very small at beginning of the motion and grows slowly during 

the mechanism manoeuvre. 

 

  

(A) (B) 

Fig 2.4: A) Comparison between linear and nonlinear impulsive response: angular position 𝑞. B) 

Comparison between linear and nonlinear impulsive response: percentage error on angular position 𝑞 
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(A) (B) 

Fig 2.5: A) Comparison between linear and nonlinear impulsive response: elastic displacement 𝑢11. B) 

Comparison between linear and nonlinear impulsive response: error in radian on elastic displacement 𝑢11 

 

2.5 State Observer 

Fundamentally, a state observer estimates the state variables by means of measuring a subset of 

the output and control variables in order to reconstruct the state of a system where the 

measurement is difficult or even impossible in some specific situations. 

A brief explanation of the Kalman observer used in our system, is summarized here. For more 

details about methodology and designing refer to [74]. 

Basically an observer design depends upon on two basis, a linear time invariant dynamic model 

of the system and linear relation between the state variables and the sensed outputs. The dynamic 

of the overall system is described very briefly by the following system of equations: 

∆𝑥̂̇ = 𝐹∆𝑥̂ + 𝐺 ∆𝑢 + 𝐿(∆𝑦 − ∆𝑦̂)                                              (2-34) 

𝑦̂ = 𝐻∆𝑥̂                                                                                          (2-35) 

∆𝑧 = −𝑊∆𝑥̂                             (2-36) 

e = ∆𝑥̂ − ∆𝑥                (2-37) 

Where e and L are the vector of the errors of the state variable estimates (𝑥̂) and the time 

invariant gain matrix of the asymptotic Kalman estimator, respectively. 
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Additionally W is the time invariant gain vector of linear regulator and F and H matrices are used 

to assess the system observability as well. The control vector is shown by u while y and 𝑦̂  

present the real output signals and estimated ones respectively. G is a matrix which is related to 

the linearized model of the equilibrium configuration. However, it should be noticed that these 

equations only hold in the neighbourhood of an equilibrium configuration. 

In order to evaluate our system observer, a similar test described in the previous subsection with 

the same input and configuration has been implemented. In this test knowledge about nodal 

displacement u19 and generalized coordinate q are available by the measurement in the purpose 

of estimating all states of the system. 

From the Figure 2.6 (A) and (B), it can be concluded that the Kalman observer has a good 

accuracy for estimating the generalized coordinate q as a one system state. Regarding the Figure 

2.6 (A), the impulsive response of nonlinear and observer are very similar; although, more far 

from the equilibrium point, more differences among the responses. Particularly, Figure 2.6 (B) 

shows the error on q that is, after 0.4 sec the error between nonlinear and estimator is still so 

small and converge to zero. 

Figure 2.7 (A) illustrates the comparison between the impulsive respond of actual measurement 

of displacement u19 and estimated u19 by Kalman observer. As it can be seen from Figure 2.7 (B) 

the difference is not so significant during the transient. Nevertheless they increase as the 

mechanism moves from the equilibrium configuration. In particular the difference on u19 

between the nonlinear system and the observer are so small as long as the motion from the 

original position is kept.  
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(A) (B) 

Fig 2.6: A) Comparison between measured and estimated angular position q. B) Percentage error on 

estimation of angular position q 

 

 

 

 

 
 

(A) (B) 

Fig 2.7: A) Comparison between response of impulsive response of nonlinear and estimated u19 . B) error 

in radian on estimation of elastic displacement u19 
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 3.1 Introduction  

Optimal control emerged as a distinct filed of investigation in the 1950s. Beyond the traditional 

analytical and computational technique, referring in a unique mode of optimization problem 

arising in listing and the control of engineering devices and equipment [75].  

The theory of optimal control is concerned with operating a dynamic system at minimum cost. 

The case where the system dynamics are described by a set of linear differential equations and 

the cost is described by a quadratic function is called the LQ problem. One of the main results in 

the theory is that the solution is provided by the linear-quadratic regulator (LQR), a feedback 

controller whose equations are given below. The LQR is an important part of the solution to 

the LQG (Linear-Quadratic-Gaussian) problem. Like the LQR problem itself, the LQG problem 

is one of the most fundamental problems in control theory [76]. 

 

5.6 Synthesis of the Optimal Control 

In this section a brief explanation of the optimal linear quadratic regulator (LQR) is given [77]. 

The synthesis has been done for the spatial flexible mechanism explained in Section 2.5. The 

linearized dynamic model of the system, obtained in Section 2.3, leads to the following state-

space for the system under investigation:  

𝑥̇(𝑡) = 𝐹𝑥(𝑡) + 𝐺𝜏(𝑡)

𝑦(𝑡) = 𝐻𝑥(𝑡)
                                                                   (3-1) 

In order to perform the simulations tests, the output vector y was defined to be the full state 

vector (i.e. H was taken as the identify matrix). 

We can use optimal control theory to design a feedback law 𝑢 =  𝛼(𝑥) that stabilizes a given 

equilibrium point. Generally speaking, we do this by continuously re-solving the optimal control 

problem from the current state 𝑥(𝑡) and applying the resulting input 𝑢(𝑡). Of course, this 

approach is impractical unless we can solve explicitly for the optimal control.  

The controller synthesis has been carried out by designing an optimal LQR for the system 

represented in the sate-space form of Equation 3-1. The goal is to determine the control 

vector 𝜏(𝑡), which allows minimizing the performance index J, defined as: 

https://en.wikipedia.org/wiki/Optimal_control
https://en.wikipedia.org/wiki/Dynamic_system
https://en.wikipedia.org/wiki/Linear_differential_equation
https://en.wikipedia.org/wiki/Quadratic_polynomial
https://en.wikipedia.org/wiki/Functional_(mathematics)
https://en.wikipedia.org/wiki/Linear-quadratic-Gaussian_control
https://en.wikipedia.org/wiki/Control_theory
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𝐽 = ∫ [𝑦𝑇(𝑡)𝑄𝑦(𝑡) + 𝜏𝑇(𝑡)𝐿𝜏(𝑡)]𝑑𝑡 = ∫ [𝑥𝑇(𝑡)𝐻𝑇𝑄𝐻𝑥(𝑡) + 𝜏𝑇(𝑡)𝐿𝜏(𝑡)]𝑑𝑡
∞

0

∞

0
                    (3-2) 

Where 𝑄𝑥 ≥  0,  𝑄𝑢 >  0, 𝑃1  ≥  0 are symmetric, positive (semi-) definite matrices. Note the 

factor of 
1

2
 is usually left out, but we included it here to simplify the derivation. 

To find the optimal control, the maximum principle has been applied. Hence, the Hamiltonian H 

can be written as: 

𝐻 =
1

2
𝑥𝑇𝑄𝑥𝑥 +

1

2
𝑢𝑇𝑄𝑢𝑢 + 𝜆𝑇(𝐴𝑥 + 𝐵𝑢)                                                                                 (3-3) 

By applying maximum principle Theorem, the necessary condition can be obtained:  

𝑥̇ = (
𝜕𝐻

𝜕𝜆
)𝑇 = 𝐴𝑥 + 𝐵𝑢, 𝑥(0) = 𝑥0

−𝜆̇ = (
𝜕𝐻

𝜕𝑥
)
𝑇

= 𝑄𝑥 + 𝐴𝑇𝜆, 𝜆(𝑇) = 𝑃1 = 𝑥(𝑇) 

0 =
𝜕𝐻

𝜕𝑢
= 𝑄𝑢 + 𝜆𝑇𝐵

                     (3-4) 

The optimal controller can be obtained from the last condition. 

𝑢 = −𝑄𝑢
−1𝐵𝑇𝜆              (3-5) 

The above equation can be substituted into the dynamic equation (3-5). In order to solve the 

latter equation for the optimal control, two point boundary value problems using the initial 

condition 𝑥(0) and the final condition 𝜆(𝑇) should be solved. Unfortunately, solving such 

problems in general is very difficult. 

Given the linear nature of the dynamics, for finding a solution by setting 𝜆(𝑡) = 𝑃(𝑡)𝑥(𝑡) where 

𝑃(𝑡) ∈ ℝ𝑛×𝑛. By substituting this into the necessary condition, following equation can be 

obtained: 

  𝜆̇ = 𝑃̇𝑥 + 𝑃𝑥̇ = 𝑃̇𝑥 + 𝑃(𝐴𝑥 − 𝐵𝑄𝑢
−1𝐵𝑇𝑃)𝑥 ⟹ −𝑃̇𝑥 − 𝑃𝐴𝑥 + 𝑃𝐵𝑄𝑢

−1𝐵𝑃𝑥 = 𝑄𝑥 + 𝐴𝑇𝑃𝑥 

By finding 𝑃(𝑡), the above equation is satisfied.  

−𝑃̇ = 𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑄𝑢
−1𝐵𝑇𝑃 + 𝑄𝑥,  𝑃(𝑇) = 𝑃1                                                                   (3-6) 

Equation 3-6 represents a matrix differential equation that defines the elements of 𝑃(𝑡) from a 

final value 𝑃(𝑇). Solving it is conceptually no different than solving the initial value problem for 

vector-valued ordinary differential equations, except that we must solve for the individual 

elements of the matrix 𝑃(𝑡) backwards in time. Equation 3-6 is called the Riccati ODE. 
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An important property of the solution to the optimal control problem when written in this form is 

that 𝑃(𝑡) that can be solved without knowing either 𝑥(𝑡) or 𝑢(𝑡). This leads to the two point 

boundary value problems which should be separated into first solving a final-value problem and 

then solving a time-varying initial value problem. More specifically, given 𝑃(𝑡) satisfying 

Equation 3-6, the optimal input can be applied 𝑢(𝑡) = −𝑄𝑢
−1𝐵𝑇𝑃(𝑡)𝑥 and then solving the 

original dynamics of the system forward in time from the initial condition 𝑥(0)  =  𝑥0. Note that 

this is a (time-varying) feedback control that describes how to move from any state to the origin. 

An important variation of this problem is the case when 𝑇 =  ∞ and eliminate the terminal cost 

(set 𝑃1  =  0). This brings up the cost function 

𝐽 = ∫ (𝑥𝑇𝑄𝑥𝑥 + 𝑢𝑇𝑄𝑢𝑢)𝑑𝑡
∞

0
                                                                               (3-7) 

Since there is no the terminal cost, there is any constraint on the final value of 𝜆 or, equivalently 

𝑃(𝑡). Thus, it is possible seeking to find a constant 𝑃 satisfying Equation 3-6. In other words, we 

seek to find P such that 

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑄𝑢
−1𝐵𝑇𝑃 + 𝑄𝑥 = 0             (3-8) 

This equation is representation of the algebraic Riccati equation. Given a solution, the input is 

chosen as 𝑢 = −𝑄𝑢
−1𝐵𝑇𝑃𝑥. This represents a constant gain 𝐾 = 𝑄𝑢

−1𝐵𝑇𝑃 where 𝑃 the solution 

of the algebraic Riccati equation. 

The implications of this result are interesting and important. First, Noticing that if 𝑄𝑥 >  0 and 

the control law corresponds to a finite minimum of the cost, then obtaining lim
t↦∞

x(t) = 0, 

otherwise the cost will be unbounded. This means that the optimal control for moving from any 

state 𝑥 to the origin can be obtained by applying a feedback 𝑢 =  −𝐾𝑥 for 𝐾 chosen as 

described as above and letting the system evolve in closed loop. Furthermore, the gain matrix 𝐾 

can be expressed in the terms of the solution to a (matrix) quadratic Equation 3-8. 

In our system for spatial L-shape flexible mechanism, in Equation 3-7 the first term of inside the 

integral minimizes the absolute values of the elastic displacements (which represent the 

amplitude of vibrations) and velocities at the nodes, as well as displacements and velocities of 

the free coordinates. The second term minimizes the absolute values of the system input, i.e. the 

motor torques. Matrices 𝑄𝑢 and 𝑄𝑥 contain the weight attributed to the system output (vibration 
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amplitude) and to the control input (motor torques), respectively. Minimization of the 

performance index J is achieved if the system input is taken to be the result of a linear feedback 

from the output.  

Figure 3.1 shows a schematic representation of the synthesized control system.  It should be 

mentioned that the maximum value of torque that can be provided by the available motors is 20 

Nm and also the technique described above is based on a linearization and is only valid in a 

vicinity of the equilibrium point. 

 

 

Fig 3.1: The control system 

 

5.7 Results 

In this section the results of the application of the designed LQR controller in Section 3.1 to the 

flexible L-shape mechanism, described in Section 2.5, has been presented. The system for 

obtaining the defined position and vibration reduction has been tested in order to check its 

operation. The initial position of the L-shape mechanisms is taken as 𝑞 =  90𝑜. A step reference 

input with amplitude ∆𝑞 = 4°  with 0.05 sec delay was given to the mechanisms actuator which 

is an electrical motor. Four displacement directions on the four nodes of mechanisms has been 

considered. The displacements are 𝑢7,𝑢17,𝑢24 and 𝑢25 including both axial and angular 

displacement are shown in Figure 2.3.  

Our aim is to reach the defined position for generalized coordinate and reduce the amplitude of 

vibrations. To this end, we consider the optimal control described in the previous section. The 

size of matrices 𝑄𝑢 and 𝑄𝑥 is [50×50] and [1×1], respectively. Synthesizing the optimal 

controller is just a matter of choosing the values of the diagonal elements of matrices 𝑄𝑢 and 𝑄𝑥.  
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A sound feature of this type of controller is that we can consider only the displacements whose 

vibrations we want to reduce, and set the values of the corresponding diagonal elements, leaving 

to zero all the others. Thus, if displacement in 𝑢7 is considered, the corresponding element is 𝑞26 

(axial 𝑋 displacement). The other diagonal element of matrix 𝑄𝑥 can then be set to zero, with the 

exception of the last element (𝑞50), which is the weight of the free coordinate. 

𝑄𝑥 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0

⋱
𝑞26

0
⋱

𝑞36

0
⋱

𝑞43

𝑞44

0
⋱

𝑞50]
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝑄𝑢 = [𝑙1]                                                            (3-9) 

 

The nonzero elements of the Q and L matrices have been given the following values: 

𝑞26 = 𝑞36 = 𝑞43 = 𝑞44 = 108, 𝑞50 = 104  

𝑙1 = 1                                                                                                                          (3-10) 

 

 

Fig 3.2: A) step response of free coordinate. B) The applied torque by motor 
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Figure 3.2 (A) shows the step response of the free coordinate and Figure 3.2 (B) demonstrates 

the torque produced by the actuator which could not provide larger than 20 Nm. Consequently, 

the plots in Figure 3.3 and Figure 3.4 illustrate a considerable reduction of the amplitude of 

vibrations: actually, vibrations are suppressed after 0.05 sec approximately. 

 

Fig 3.3: Vibration reduction achieved through optimal control for 𝑢7 and 𝑢17 

 

 

Fig 3.4: Fig. 9 Vibration reduction achieved through optimal control for 𝑢24 and 𝑢25 

 

5.8 Conclusion  

In this chapter an optimal linear quadratic regulator for the linear model described in Section 2.3 

has been designed and tested. Linear quadratic (LQ) optimal control is one of the optimal control 

techniques, which takes into account the states of the dynamical system and control input to 
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make the optimal control decisions. The nonlinear system states are fed to LQ which is designed 

using a linear state-space model.  

A model design procedure has been applied to build a Linear quadratic (LQ) optimal control 

position and vibration control. The results are satisfactory and illustrate that the synthesized 

Linear quadratic (LQ) optimal control approve a remarkable and fast response of free coordinate 

and also the reduction of the amplitude of the mechanism vibrations. The applied torque by the 

motor is always kept below the maximum limit. 
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4.1 Introduction 

Model predictive controller (MPC) is traced back to the 1970s. It started to emerge in the industry in  

1980s as IDCOM [78] and DMC [79]. The initial IDCOM and MPC algorithms represented the first 

generation of MPC approach. In general, MPC is the type of controllers in which there is a direct use 

of an explicit identifiable model. It is also described as a class of computer control schemes that uses 

a process model for two principal tasks:  

- Definite prediction of future plant behavior  

- Computation of appropriate corrective control action needed to drive the predicted output as 

close as possible to the reference target value.  

Control design techniques based on MPC concept have found wide acceptance in industrial 

applications and have been studied by academia. It is currently the most widely utilized of all 

advanced control methodologies in industrial applications. The main reason for such popularity 

is the ability of MPC design to reach high performance control systems which are capable of 

operating without expert intervention for long periods of time. In this section a short introduction 

to constrained MPC is given. For further reading on constrained MPC see [80].  

 

4.2 General Concept of MPC 

 

Fig 4.1: Block Diagram of MPC Implementation 
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Block diagram for the MPC implementation is depicted in Figure 4.1. As shown in the figure, a 

process model is used in parallel to the plant. MPC uses a dynamic model of the process in the 

purpose of predicting the controlled variable. The predicted controlled variable is fed back to the 

controller where it is used in an on-line optimization procedure, which minimizes a proper cost 

function to define the manipulated variable. The controller output is applied in real time and then 

the procedure is repeated every sampling time with actual process data. The difference between 

the plant measurement, 𝑦𝑝 and the model output 𝑦𝑚 is also fed to the controller in order to 

eliminate steady state offset. Usually the cost function depends on the quadratic error between 

the future reference variable and the future controlled variable within limited time horizon. 

 

4.3 Prediction and Control Horizons 

Prediction horizon 𝐻𝑃   is the number of samples over which a prediction of the plant outputs is 

evaluated at each iteration of the controller, while control horizon 𝐻𝐶   is the number of samples 

over which the control variables can change their value. 

As it can be seen in Figure 4.2, the MPC controller performs a prediction from current time step 

k to the future time step  𝑘 + 𝐻𝑃.  In the same figure it is shown that the control action can 

change only over the time interval [𝑘, 𝑘 + 𝐻𝐶]. The control action is chosen in order to minimize 

a given cost function. The first value of the optimal control sequence is actually fed to the plant, 

and the whole calculation is be repeated at subsequent control intervals. Prediction horizon is 

moving forward for every iteration in time and the MPC controller predicts the plant output 

again. 

 

4.4 Model Prediction and Cost Function 

A discrete time state-space model is often used to provide predictive capability in MPC 

controller:  

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑤𝑘                                            (4-1) 
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Fig 4.2: A discrete MPC controller scheme 

 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑤𝑘                                                                                    (4-2) 

The MPC controller computes a sequence of the predicted a new control input vector in order to 

minimize a cost function. Often used cost function in MPC is the linear quadratic function: 

𝐽 = ∑ (𝑦̂ − 𝑟)𝑇𝑄(𝑦̂
𝐻𝑃
𝑘=0 − 𝑟) + ∑ ∆𝑤𝑇𝑅1∆𝑤 + ∑ 𝑤𝑇𝑅2𝑤

𝐻𝐶
𝑘=0

𝐻𝑐
𝑘=0                                         (4-3) 

in which  𝑦̂, r, ∆𝑤, 𝑤 are the predicted plant outputs, the reference signal for outputs, the change 

rate of control action and the control action, respectively. 𝑄, 𝑅1and 𝑅2 are the weighting matrices 

used to tune the control performance. 𝑄 is used to penalize the tracking error, while 𝑅1 and 𝑅2 

are used to penalize the change rate and the absolute value of control action, respectively. In 

general, Equation 4.3 is used in MIMO systems (Multiple Input and Multiple Outputs) and also 

could be expanded to MISO systems (Multiple Input and Single Output) such as our case, a 

system with 50 inputs (states) and one output (torque). 

Constrained MPC controller has ability to take into account constraints of physical systems in its 

future control performance calculations. The formulation used in this paper allows to define 

constraints as follows: 

𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥                                            (4-4) 

And inputs constrains can be defined as: 

∆𝑤𝑚𝑖𝑛 ≤ ∆𝑤 ≤ ∆𝑤𝑚𝑎𝑥                           (4-5) 
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𝑤𝑚𝑖𝑛 ≤ 𝑤 ≤ 𝑤𝑚𝑎𝑥                           (4-6) 

 

4.5 Result of Model Predictive Control with Constraint 

In this section the results of several numerical tests are provided and discussed to show the 

capabilities of the MPC controller for position and vibration control of flexible mechanisms. The 

tuning of the MPC controller depends on weight on 𝑢19 weight on 𝑞, sampling time (𝑇𝑆), 

prediction horizon (𝐻𝑃) and control horizon (𝐻𝐶). 

In practical applications, the values of 𝑇𝑆, 𝐻𝑃 and 𝐻𝐶  should be selected on the basis of the 

available computational resources. The computational cost of solving the optimization problem 

of each iteration of the controller depends on both 𝐻𝑃 and 𝐻𝐶. 

Generally speaking, longer 𝐻𝐶 results in aggressive control action while longer 𝐻𝑃  causes more 

damped response and more precise reference tracking [61]. 

The whole behaviour of the controller relies on a large set of variables. Constraints on actuation 

torque are chosen to comply with the physical limitations of the actuator. Other parameters can 

be tuned quite freely. In this case, constraints can be imposed on elastic displacement (𝑢), 

angular position (𝑞) and input torque (𝜏) as: 

𝑢𝑘𝑚𝑖𝑛
≤ 𝑢𝑘 ≤ 𝑢𝑘𝑚𝑎𝑥

  , k = 1… 24                                                                                            (4-7) 

𝑞𝑚𝑖𝑛 ≤ 𝑞 ≤ 𝑞𝑚𝑎𝑥                                                                                                                        (4-8) 

𝜏𝑚𝑖𝑛 ≤ 𝜏 ≤ 𝜏𝑚𝑎𝑥                                                                                                                       (4-9) 

It should be mentioned that in our system just the constraint on torque, which is  −8 ≤ 𝜏 ≤ 8 

𝑁𝑚, is active. 

In the following the effects of choosing different values for tuning parameters of MPC controlled 

are discussed by means of numerical tests. 

 

4.5.1 Effects of fc on the Closed-loop System 

Figure 4.3 (A) and (B) demonstrate the response of angular position q and elastic displacement 

u12 with different sampling frequency. In all the tests reported in this work, the mechanisms 
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performs a 30 degree of rotation in counter-clockwise direction starting from the horizontal 

position. 

It can be seen from Figure 4.3 (A) that the performance of the angular position response for both 

values of sampling frequency 100 𝐻𝑧 and 1k 𝐻𝑧 are very similar; however, it should be 

mentioned that  the values of 𝐻𝑃 and 𝐻𝐶 are chosen 20 and 5 for 𝑓𝑐  =  100 𝐻𝑧 and 200 and 50 

for 𝑓𝐶 = 1𝑘 𝐻𝑧, respectively. The vibration amplitude for the system with 𝑓𝐶 = 100 𝐻𝑧 is bigger 

than the system with 𝑓𝐶 = 1𝑘 𝐻𝑧 during the transient as it is depicted in Figure 4.3 (B) for elastic 

displacement u12. The more effective vibration damping achieved by the 1k 𝐻𝑧 control can be 

explained by taking into consideration the faster control has a sufficient bandwidth to take into 

account all the significant vibration modes of the flexible mechanism. 

From the Figure 4.4 it can be inferred that applied torque by the control system is within the 

range defined by the constraint. 

 

  

(A) (B) 

Fig 4.3: A) Response of the Angular position q at with different sampling frequency, 1 kHz and 100 kHz. 

B) Effect analysis of different sampling frequency (fc) on the elastic displacement u12  

 

 



Chapter 4: Model Predictive Control  

38 

 

 

Fig 4.4: Applied torque to the mechanism 

 

4.5.2 Effects of 𝑯𝑪 and 𝑯𝑷 on the Closed-loop System 

In Figure 4.5 (A) and (B) the effects of choosing different control horizon has been investigated. 

It can be inferred that tuning the 𝐻𝐶 parameter has a limited effect on the response of the closed 

loop system. Consequently, 𝐻𝐶 can be increased up to 𝐻𝑃 but the performance of the controller 

will not be improved significantly. In most cases 𝐻𝐶 should be kept quite small, since a longer 

control horizon increases the computational effort required to solve the minimization problem 

defined by Equations 4-1 to 4-3. 

Regarding Figure 4.6 (A) and (B), changing the value of the prediction horizon (𝐻𝑃) has a 

significant effect on the performance of the controller. As it can be inferred from Figure 4.6 (A), 

selecting bigger value for 𝐻𝑃 causes more damped response for angular position 𝑞; conversely, 

smaller value for 𝐻𝑃 result in more aggressive response. A similar consideration can be achieved 

by analysing the Figure 4.6 (B), which reports the time evolution of elastic displacement 𝑢12. 

Again, higher values of the prediction horizon leads to a higher damping of vibrations.  

Therefore we can conclude that the prediction horizon should be set as high as the computational 

resources allows it. Since the performance of the closed-loop system are less sensitive to the 

choice of the control horizon, 𝐻𝐶 can be set to a low value to reduce the computational effort 

required to solve the optimization problem.   
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(A) (B) 

Fig 4.5: A) Effect analysis of different control horizon (Hc) on angular position q. B) Effect analysis of 

different control horizon (Hc) on elastic displacement u12  

 

 

  

(A) (B) 

Fig 4.6: A) Effect analysis of different control horizon (Hc) on elastic displacement u12. B) Effect analysis 

of different control horizon (Hp) on angular position q 

 

4.6 Robustness 

In this section the results of two tests which are implemented in order to evaluate robustness of 

the proposed control scheme are discussed.  
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Several simulations have been performed with applying the same control system on the nonlinear 

model with different parameters. The tests have been done with uncertainties of different sign 

(𝑖. 𝑒. +20%,−20%) on the mechanism links lengths (𝐿 = 𝐿1 + 𝐿2) and on the Young’s elastic 

modulus 𝐸. These tests that have been developed in order to evaluate the robustness properties of 

the proposed control scheme, using an approach already reported in other works such as [70], 

[81]. 

In Figure 4.7 (A) the effects of changing the mechanism length (L=L1+L2) of the mechanism 

have been shown. According to the Figure 4.7 (B), the tolerance in the mechanism length does 

not bring the closed loop to instability. If the actual length of the links is 20% larger than the 

nominal value, the response of the system will be more damped. On the other hand, by 

decreasing by 20% the mechanism length, the overshoot of angular position 𝑞 is increased with 

respect to the nominal case. 

In Figure 4.7 (A) the effects of changing the mechanism length (𝐿 = 𝐿1 + 𝐿2) of the mechanism 

have been shown. According to the Figure 4.7 (A), the tolerance in the mechanism length does 

not bring the closed loop to instability. If the actual length of the links is 20% larger than the 

nominal value, the response of the system will be more damped. On the other hand, by 

decreasing by 20% the mechanism length, the overshoot of angular position 𝑞 is increased with 

respect to the nominal case. 

Thus it can be inferred that the developed controlled is quite robust to this kind of uncertainty, as 

far as angular position tracking is concerned. It can be seen in Figure 4.7 (B) that also vibration 

damping is influenced by mismatches in mechanism length. If mechanism length is under-

estimated, a more effective vibration damping can be achieved, since the overall response of the 

closed-loop system is slower.  

According to Figure 4.8 (A) and (B), changing the value of elastic modulus 𝐸 of a + 30% does 

not alter significantly  the performance of the control scheme, thus the designed MPC controller 

is also robust respect to changes in the vibration models of the plant. 
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(A) (B) 

Fig 4.7: A) Robustness analysis of the change in the mechanisms links lengths (L=L1+L2) on angular 

position q. B) Robustness analysis of the change in the mechanisms links lengths (L=L1+L2) on elastic 

displacement u12 

 

 

 

  

(A) (B) 

Fig 4.8: A) Robustness analysis of the change of elastic modulus E on angular position q. B) : 

Robustness analysis of the change of elastic modulus E on elastic displacement u12 
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4.7 MPC Controller vs. PID Controller  

In this section a comparison between results of MPC and PID controller has been made and 

discussed. While PID controller are applied in single loop controllers, MPC controller are used 

for overall system. PID controllers support only a single input put system but MPC are 

applicable in multi input and multi output systems (MIMO system). 

As is shown at Figure 4.9 (A) PID controller follow the target reference with high speed and low 

error but with remarkable overshoot (≈ 35%). The tuning of the PID control has been chosen to 

provide for a similar rise time. Moreover, it can be inferred from the Figure 4.9 (B) that the 

amplitude of elastic displacement 𝑢12 is significantly larger if a simple PID controller is used. 

It can be therefore inferred that in this case MPC control outperforms PID, which is currently the 

most widely used control technology in industrial applications. 

 

  

(A) (B) 

Fig 4.9: A) Response of the closed loop system with PID and MPC controller on angular position q. B) 

Response of the closed loop system with PID and MPC controller on elastic displacement u12 

 

4.8 Conclusion 

In this chapter, a model predictive control with constrains for a 3D L-shape mechanism has been 

designed and tested. The proposed control scheme allows to minimize a performance index 

which takes into consideration both the amplitude of vibrations and the angular position of the 

mechanism. Meanwhile two tests on different perturbed plants has been implemented in order to 
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analyse the robustness performance of the proposed control scheme. Finally a comparison 

between performance of the standard PID controller and MPC controller performance has been 

done and the results show that MPC controller not only is very effective for both reference 

position tracking and vibration suppression but also represent a high level of robustness to 

uncertainties on the plant. 
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5.1 Introduction  

Flexible link manipulators possess many advantages over the traditional bulky manipulators. The 

most important benefits include high payload-to arm weight ratio, fast motion, safer operation, 

improved mobility, cheapness, larger workspace and better energy efficiency, etc. Although, the 

reduction of weight leads to the increase of the link elasticity that significantly makes the control 

of the manipulator a difficult task. The difficulty in control is due to the fact that the link model 

is a distributed parameter plant. In this case, several elastic modes are needed to reach adequately 

high accuracy. Furthermore, the plant has several uncertain parameters (payload mass, hub and 

structural damping factors, etc.) that effect remarkably the performance of the system [82].  

The control of uncertain systems is often accomplished using either robust control or an adaptive 

control approach. In the adaptive technique, one designs a controller that attempts to “learn” the 

uncertain parameters of the system and, if properly designed, will consequently be a “best” 

controller for the plant. In the robust approach, the controller has a constant structure that yields 

“acceptable” performance for a class of plants which contain some uncertainties. Generally 

speaking, the adaptive approach is applicable to a wide range of uncertainties, but robust 

controller is simpler to perform and no time is required to “tune” the controller for a particular 

plant.  

 

5.2 Sensitivity of the Linearized Model 

In order to evaluate the sensitivity of the linearized model for synthesizing of robust controllers, 

comparison test in the frequency domain is explained in this section through the simulation 

environment. According to Equation 2-28, the linear model in state space formulation includes 

50 states and one input which is the torque applied by the motor; in other words, the flexible L-

shape mechanism has been modelled with four finite elements, one rigid and 24 elastic degrees 

of freedom.  Consequently, the system can recognized as a SIMO (single input, multi output) 

system. By considering ±20% uncertainty in the elasticity (𝐸) and mass density (𝑚) of the 

system, frequency response of the linearized model in open loop system has been investigated. 

Two transfer functions have been employed in this test, one from the input torque (𝜏) to the 

elastic displacement 𝑢25 (44𝑡ℎ state) as output and the other from input torque (𝜏) to output 

angular position 𝑞 (50𝑡ℎ  state) as output. 
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Fig 5.1: Frequency response of the linear model from input torque (𝜏) to output angular position (𝑞) with 

±20% uncertainty in mass density (𝑚) 

 

 

Fig 5.2: Frequency response of the linear model from input torque (𝜏) to output 𝑢25(elastic displacement) 

with ±20% uncertainty in mass density (𝑚). 
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Figure 5.1 and Figure 5.2 illustrate the frequency response of the linear models from input torque 

(𝜏) to output angular position (𝑞) and input torque (𝜏) to output 𝑢25 (displacement) respectively, 

with ±20% uncertainty in the mass density. Regarding these figures, both systems have several 

resonance frequencies between the frequencies of 200 𝑟𝑎𝑑/𝑠𝑒𝑐 and 10 𝑟𝑎𝑑/𝑠𝑒𝑐. 

As can be seen from the Figure 5.1 and Figure 5.2, decreasing in the mass density results in 

higher aptitude in mechanism vibrations as well as operating in higher frequencies.  

 

Fig 5.3: Frequency response of the linear model from input torque (𝜏) to output angular position (𝑞) with 

±20% uncertainty in elasticity (𝐸). 

 

Figure 5.3 and Figure 5.4 shows frequency response of the linear models with input torque (𝜏) to 

angular position (𝑞) and input torque (𝜏) to output 𝑢25 (elastic displacement) with ±20% 

uncertainty in the elasticity respectively. As it can be seen from both diagrams, the sensitivity of 

both linear models increase by increment of the frequency however the sensitivity of the first 

linear model (from torque to angular position) is very small at low frequencies. Moreover, the 

amplitude of resonance frequencies decline by increasing of the frequency for the both models.  
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Fig 5.4: Frequency response of the linear model from input torque (𝜏) to output 𝑢25 (elastic displacement) 

with ±20% uncertainty in elasticity (𝐸). 

 

 

Fig 5.5: Frequency response of the linear model from input torque (𝜏) to angular position (𝑞) with ±20% 

uncertainty in elasticity (𝐸) and mass density (𝑚). 
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Fig 5.6: Frequency response of the linear model from input torque (𝜏) to output 𝑢25 (elastic displacement) 

with ±20% uncertainty in elasticity (𝐸) and mass density (𝑚). 

 

The frequency response of the linear model from torque to angular position 𝑞 and to elastic 

displacement of 𝑢25  as the system outputs with ±20% uncertainty in the elasticity (𝐸) and mass 

density (𝑚) are shown in Figure 5.5 and Figure 5.6 respectively. From both figures, it can be 

concluded that the sensitivity of these linear systems respect to variations in the elasticity (𝐸) and 

mass density (𝑚) is extended to the whole frequency range.     

 

5.3 Linear Model Reduction 

In order to apply modern control techniques such as 𝐻∞ and 𝐿𝑇𝑅, linear controllers whose order 

are at least equal or higher to order of the models are used. Although the application of high-

order controllers with the existence of advance microprocessors and microcontrollers is not a 

difficult task, the use of low-order controllers are still desirable for control designers due to 

practical issues.  

The linear model extracted from Equation 2-33 has been reduced with the use of Hankel-Norm 

theory [83] which is briefly restated in this section. In control theory, the eigenvalues express the 
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stability of the system while the Hankel singular values demonstrate the energy of the system 

states. The Hankel singular values can be defined as follows: 

𝜎𝐻 = √𝜆𝑖(𝑃𝑄)                                                                                           (5-1) 

Where 𝑃 and 𝑄 are the controllability and observability Gramian matrix that satisfy: 

𝐴𝑃 + 𝑃𝐴𝑇 + 𝐵𝐵𝑇 = 0                                                                                          (5-2) 

𝐴𝑇𝑄 + 𝑄𝐴 + 𝐶𝑇𝐶 = 0                                                                     (5-3) 

And (𝐴, 𝐵, 𝐶, 𝐷) are state space matrices of the system. The Hankel singular values of the plant, 

computed by 𝑀𝑎𝑡𝑙𝑎𝑏 𝑇𝑀, are shown in Figure 5.7. 

Based on Figure.14, a model with order of 24 for estimating and obtaining an accurate reduced 

model is chosen since the extracted system has the most energy in the first 24 states and the 

states from 25 to 50 have been removed from calculations. 

The algorithm based on Hankel singular values for reducing order of linear model can be 

described as follows:  

If the quadratic stable transfer function 𝐺(𝑠) has the following Hankel singular values:  

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑘 ≥ 𝜎𝑘+1 = 𝜎𝑘+2 = ⋯ = 𝜎𝑘+1 > 𝜎𝑘+1+1 ≥ ⋯ 𝜎𝑛 > 0                             (5-4) 

The 𝑘𝑡ℎ order of optimal Hankel-Norm of the transfer function of the plant can be shown 

as 𝐺𝑎
𝑘(𝑠). If (𝐴, 𝐵, 𝐶, 𝐷) are the matrices of state space equation form of 𝐺(𝑠) and are arranged 

based on Hankel singular values so the Gramian matrix of the system is: 

∑ = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … , 𝜎𝑘, 𝜎𝑘+𝑙+1, … , 𝜎𝑘+1) = 𝑑𝑖𝑎𝑔(∑ , 𝜎𝑘+𝑙𝐼1 )                                         (5-5) 

If we partition (𝐴, 𝐵, 𝐶, 𝐷) with accordance of ∑, the following equation can be obtained:  

𝐴 = [
𝐴11 𝐴12

𝐴21 𝐴22
], 𝐵 = [

𝐵1

𝐵2
] and  𝐶 = [𝐶1 𝐶2]                                                      (5-6) 

And (𝐴̂, 𝐵̂, 𝐶̂, 𝐷̂) can be defined as: 

𝐴̂ = Γ−1(𝜎𝑘+1
2 𝐴11

𝑇 + ∑ 𝐴11 ∑ −𝜎𝑘+1𝐶1
𝑇𝑈𝐵1

𝑇)11                                                       (5-7) 

𝐵̂ = Γ−1(∑ 𝐵1 + 𝜎𝑘+1𝐶1
𝑇𝑈) 1                                                                                (5-8) 
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Fig 5.7: Hankel singular values of the linear model  

 

𝐶̂ = 𝐶1 ∑ +𝜎𝑘+1𝑈𝐵1
𝑇

1                                                                                          (5-9) 

𝐷̂ = 𝐷 − 𝜎𝑘+1𝑈                                                                                                    (5-10) 

Where 𝑈 is a singular matrix that satisfies the following equation:  

𝐵2 = −𝐶2
𝑇𝑈                                                                             (5-11) 

And 

 Γ = ∑ −𝜎𝑘+1
22

1 𝐼                                                                              (5-12) 

Where matrix 𝐴̂  has 𝑘 eigenvalues in the left side of complex plane and the rest of them are 

reminded in the right side; therefore: 

𝐺𝑎
𝑘(𝑠) + 𝐹(𝑠) = [

𝐴̂ ⋮ 𝐵̂
⋯ ⋮ ⋯
𝐶̂ ⋮ 𝐷̂

]                                                                            (5-13) 

In which 𝐺𝑎
𝑘(𝑠) is an estimation of 𝑘𝑡ℎ order of stable Hankel norm and 𝐹(𝑠) is transfer function 

of instability with the poles in right hand side of complex plan with order of   𝑛 − 𝑘 − 1. Hankel 

norm of the error between 𝐺 and optimum estimation 𝐺𝑎
𝑘 is equal to 𝑘 + 1 Hankel singular value 

of 𝐺:  
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‖𝐺 −𝐺𝑎
𝑘(𝑠)‖∞ = 𝜎𝑘+1(𝐺)                                                                                        (5-14) 

  

Fig 5.8: Bode diagram of the original model and reduced model from input torque (𝜏) to output angular 

position (𝑞) with use of Hankel theory 

 

Fig 5.9: Bode diagram of the original model and reduced model from input torque (𝜏) to output 𝑢25 

(elastic displacement) with use of Hankel theory 
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The frequency response of the model of the reduced linear system with input torque (𝜏) to output 

angular position (𝑞) and 𝑢25 (elastic displacement) are shown Figure 5.8 and Figure 5.9 

respectively.  

According to Figure 5.8 and Figure 5.9 the diagram of frequency response of original linear 

models and state reduced models match each other very closely. Consequently, the reduced 

model can be a proper choice for the synthesis of robust control systems.  

 

5.4 Synthesis of Robust Controller 

A controller that has ability to assurance the performance of the system controlling respect to 

changes in plant dynamic within predefined variations is named robust controller. In this section, 

a brief description of 𝐻∞ loop shaping and 𝜇-synthesis is presented. 

 

5.4.1 𝑯∞ Loop Shaping 

 

 

Fig 5.10: The standard 𝐻∞ configuration 

 

The basic idea of the design method is to construct the system 𝑃𝑚(𝑠) in the form of: 

(𝑧ℎ
𝑦ℎ

) = (
𝑃𝑚11

(𝑠) 𝑃𝑚12
(𝑠)

𝑃𝑚21
(𝑠) 𝑃𝑚22

(𝑠)
) (𝑤ℎ

𝑢ℎ
) = 𝑃𝑚(𝑠) (𝑤ℎ

𝑢ℎ
)                             (5-15) 
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By appending the open loop system 𝑦ℎ = 𝐺ℎ(𝑠)𝑢ℎ with the weights 𝑊𝑢(𝑠),𝑊𝑆(𝑠) and 𝑊𝑇(𝑠), 

the system 𝑧ℎ = 𝐹𝑙(𝑃𝑚, 𝐾ℎ∞
)𝑤ℎ shown in Figure 5.10, can be expressed as: 

𝐹𝑙(𝑃𝑚, 𝐾ℎ∞
) = (

𝑊𝑢(𝑠)𝐺𝑤𝑢(𝑠)

−𝑊𝑇(𝑠)𝑇𝑀𝑠
(𝑠)

𝑊𝑆(𝑠)𝑀𝑠(𝑠)

) ,                                                                (5-16) 

Where  𝑀𝑠(𝑠) = (𝐼 + 𝐺ℎ(𝑠)𝐾ℎ∞
)−1 is the sensitivity function, 𝑇𝑀𝑠

(𝑠) = 𝐼 − 𝑀𝑠(𝑠) is the 

complementary sensitivity function and 𝐺𝑤𝑢(𝑠) = −𝐾ℎ∞
(𝐼 + 𝐺ℎ(𝑠)𝐾ℎ∞

)−1 is the transfer 

function from 𝑤ℎ to 𝑢ℎ. 

Minimizing the 𝐻∞-norm of the system 𝐹𝑙(𝑃𝑚, 𝐾ℎ∞
)  brings up the 𝐻∞-controller; In other 

words,   ‖𝐹𝑙(𝑃𝑚, 𝐾ℎ∞
)‖

∞
< 𝛾. By using Equation (27), the following equations can be obtained:  

|𝑊𝑢(𝑖𝑤𝑓)𝐺𝑤𝑢(𝑖𝑤𝑓)| < 𝛾 ,∀𝑤𝑓                                                                   (5-17) 

|𝑊𝑇(𝑖𝑤𝑓)𝑇𝑀𝑠
(𝑠)(𝑖𝑤𝑓)| < 𝛾,∀𝑤𝑓                                                                   (5-18) 

|𝑊𝑆(𝑖𝑤𝑓)𝑀𝑠(𝑖𝑤𝑓)| < 𝛾      ,∀𝑤𝑓                                                                                        (5-19) 

The transfer function 𝐺𝑤𝑢(𝑠), 𝑀𝑠 (s) and  𝑇𝑀𝑠
 (s) can now be employed for assuring the 

requirements by choosing the weights 𝑊𝑢(𝑠), 𝑊𝑠(𝑠) and 𝑊𝑇(𝑠) at each frequency 𝜔𝑓. The goal 

is to achieve value of 𝛾 close to 1 because of achieving the robust stability. More details about 

designing approach are available in [84].  

 

Fig 5.11: System description for loop shaping 
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Consequently, the system 𝐺′(s) is pre-and post-multiplied with weights 𝑊1(𝑠) and 𝑊2(𝑠)in 

standard 𝐻∞ loop shaping [85]. As it can be seen from Figure 5.11, shaped system 𝐺𝑠(𝑠) =

𝑊2(𝑠)𝐺
′(𝑠) 𝑊1(𝑠) has the desired properties. 𝐾𝑠(𝑠) can be acquired using the method described 

in [86] applied on the system 𝐺′(s) . Finally, the controller 𝐾ℎ∞
 can be written as: 

𝐾ℎ∞
= 𝑊1(𝑠)𝐾𝑠(𝑠)𝑊2(s)                                                                    (5-20) 

System in Figure 5.10 for loop shaping can be reconstructed for a standard 𝐻∞ problem with 

accordance of Figure 5.11, refer to [87] for more details.  

 

5.4.2 𝝁-synthesis 

A basic framework for robustness analysis of linear system is shown in Figure 5.12. Any linear 

interaction of control inputs  𝑢𝑐, measured output 𝑦𝑐, disturbance 𝑑’, controlled outputs (error 

signals) 𝑒’, perturbations 𝑤𝑐 = ∆𝑧𝑐 and a controller 𝐾𝑐 can be explained through this frame work.  

The robust control problem can then be modelled to design and synthesize a controller 𝐾𝑐 in the 

case that the perturbed closed loop system is stable and the error signal 𝑒’ is hold “small” in the 

presence of disturbance 𝑑’ and perturbations 𝑤𝑐.  

The general framework analysis and synthesis can be subdivided into two special cases as 

depicted in Figure 5.12 such that scaling and weights are involved into the transfer function 𝑁𝑐 in 

order to consider the normalization of 𝑑’, 𝑒’ and 𝛥 to norm of 1. The transfer function 𝐹𝑢 from 𝑑’ 

to 𝑒’ for purpose of robust analysis may be partitioned as linear fractional transformation as 

follows: 

𝑒′ = 𝐹𝑢(𝑀𝑐, ∆)𝑑′ = [𝑀𝑐22
+ 𝑀𝑐21

∆(𝐼 − 𝑀𝑐11
∆)−1𝑀𝑐12

]𝑑′                                        (5-21) 
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Fig 5.12: The basic framework with emphasis on analysis and synthesis [88] 

 

Here 𝛥 is a member of the bounded subset: 

𝐁𝒔𝚫 = {∆∈ 𝚫|σ̅(∆) < 1}                                                                             (5-22) 

Where 𝜎  specifies the largest singular value and 𝚫 is expressed by: 

𝚫 = {diag (δ1
rIr1, … , δmr

r Irmr
, δ1

cIrmr+1
, … , δmc

c Irmr+mc
, ∆1, … , ∆n) |δi

r ∈ 𝕽, δi
c ∈ 𝕴, ∆𝑗∈

𝕴𝑟𝑚𝑟+𝑚𝑐+𝑗×𝑟𝑚𝑟+𝑚𝑐+𝑗}                                                                                                                (5-23) 

Defining also the corresponding complex perturbation set 𝜟𝑐 as:   

𝚫c = {diag(δ1
cIr1

, … , δmr+mc
c Irmr+mc

, ∆1, … , ∆n|δi
c ∈ 𝕴, ∆𝐣∈ 𝕴𝒓𝒎𝒓+𝒎𝒄+𝒋×𝒓𝒎𝒓+𝒎𝒄+𝒋}                 (5-24) 

The definition of the positive real-valued function 𝜇 is as follows: 

𝜇∆(𝑀𝑐) ≜
1

min{𝜎̅(∆):∆𝜖𝚫,det(I−M𝑐∆)=0}
                                                                 (5-25) 

Unless no ∆𝜖𝚫  forms 𝐼 − 𝑀𝑐∆ singular, in which case 𝜇∆(𝑀𝑐) = 0.  

Regarding multiple local maxima because of the implementation of the optimized problem, 

Equation 5-25 is not a proper choice for computing 𝜇. Though upper and lower bounds for 𝜇  

might be calculated for both complex and mixed perturbation sets effectively. Several algorithms 
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have been presented in the literature for computing these bounds [89], [90]. Evaluating robust 

stability and robust performance now may be done by following two theorems: 

Theorem 5.3.2.1: The controlled system is stable for all ∆∈ 𝐁𝒔𝚫  iff: 

‖𝜇𝚫(𝑀𝑐11
)‖

∞
≤ 1                                                                    (5-26) 

Where: 

‖𝜇𝚫(𝑀𝑐11
)‖

∞
≜ 𝜇 (𝑀𝑐11

(𝑗𝑤𝑓))𝑤𝑓  
𝑠𝑢𝑝                                                                                (5-27) 

Theorem 5.3.2.2: Taking into consideration a 𝐻∞ performance specification given on the transfer 

function from 𝑑’ to 𝑒’ which is a type of weighted sensitivity function in the form of: 

‖𝐹𝑢(𝑀𝑐, ∆)‖∞ = 𝜎𝑤  
𝑠𝑢𝑝 (𝐹𝑢(𝑀𝑐, ∆)) < 1                                                                           (5-28) 

Hence 𝐹𝑢(𝑀𝑐, ∆) is stable and ‖𝐹𝑢(𝑀𝑐, ∆)‖∞ < 1 ∀∆ ∈  𝐁𝒔𝚫 iff   

‖𝜇∆̃(𝑀𝑐)‖∞ ≤ 1                                             (5-29) 

Where the perturbation set is appended via a full complex performance block: 

 𝚫̃ = {diag(∆, ∆𝑝)|∆∈ 𝚫, ∆𝒑∈ 𝕴𝒌×𝒌, 𝜎(∆𝑝) < 1}                                                    (5-30) 

Theorem 5.3.2.2 is the real payoff for performance measurement with reference to the ∞-norm 

and the uncertainty in the bounding model similarly. There is the possibility of evaluating both 

the robust stability and the robust performance in a neoconservative manner by using 𝜇. Indeed, 

if the uncertainty is modelled precisely by 𝛥, i.e. if all plants in the norm-bounded set can 

actually take place in practice, the 𝜇 condition satisfies  the necessity and sufficiency of the 

robust performance [88] .  

 

5.5 Results 

The reduced linearized model, obtained in section. 5.2, can be used to design 𝐻∞ loop shaping 

and 𝜇-synthesis controller. The performance of mentioned robust controllers on the mechanism 

considering ±20% uncertainty in the elasticity (𝐸) and mass density (𝑚) of the system has been 

investigated in this section. 𝑀𝑎𝑡𝑙𝑎𝑏𝑇𝑀 Software has been used in this work in order to 

synthesize the controllers.   
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Fig 5.13: Common block diagram of the setting weight functions for a robust controller 

 

5.5.1 Design of 𝑯∞ Loop Shaping Controller 

In this section, synthesis of 𝐻∞ loop shaping controller for applying on a spatial flexible L-shape 

mechanism has been discussed. The goal is to achieve a controller that guarantee not only robust 

stability but also proper performance, it is worth to mention that weighting function 𝑊𝑠(𝑠) 

and 𝑊𝑇(𝑠) represent sensitivity and complimentary sensitivity function respectively and 

determine the behavior of the system. Furthermore, 𝑊𝑢(𝑠) is the control effort weighting 

function and is related to the amplitude of input signal to plant.  These weighting functions are 

chosen as follows:  

𝑊𝑠(𝑠) = [
0.025

(𝑠+5)

(𝑠+0.05)
0

0 0.025
(𝑠+5)

(𝑠+0.05)

]                                                     (5-31) 

𝑊𝑇(𝑠) = [
2

(𝑠+1)

(𝑠+100)
0

0 2
(𝑠+1)

(𝑠+100)

]                                                      (5-32) 

𝑊𝑢(𝑠) = [
10−3 (𝑠+0.1)

(𝑠+1)

10−3 (𝑠+0.1)

(𝑠+1)

]                                                                                        (5-33) 
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Fig 5.14: Step response of the angular position 𝑞 considering ±20% uncertainty in elasticity (𝐸) and 

mass density (𝑚) with use of  𝐻∞ loop shaping controller 

 

 

Fig 5.15: Step response of the elastic displacement 𝑢25 considering uncertainty and disturbance with use 

of 𝐻∞ loop shaping controller 
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Figure 5.14 shows the step response of the closed loop system in terms of angular position with 

±20% uncertainty on the elasticity (𝐸) and mass density (𝑚). It can be clearly seen that the 

angular position is tracked with high accuracy and high speed.  

Figure 5.15 shows the response to the same test in terms of elastic displacement 𝑢25. As it can be 

seen, elastic vibration are very effectively damped. However, 𝑢25 cannot reach zero value, due to 

the effects of the gravity. 

 

5.5.1.2 Response of 𝑯∞ Loop shaping to Disturbance 

In this section the response of synthesized 𝐻∞ loop shaping controller to disturbance in the 

closed loop system have been discussed. One pulse signal with amplitude of 30 𝑚 𝑟𝑎𝑑 , pulse 

width of 5 𝑠𝑒𝑐 and 15  𝑠𝑒𝑐 time delay has been added to the measurement of the angular position 

𝑞 during mechanism maneuverer. Figure 5.16 and Figure.24 demonstrate the effect of the 

disturbance to plant output on the angular position 𝑞 and on the elastic displacement 𝑢25 

respectively.  It can be inferred from Figure.23 and Figure.24 that the controller has clearly 

attenuated the effect of the disturbance while retaining not only precise tracking performance but 

also proper vibration damping.  

 

Fig 5.16: Step response of the angular position 𝑞 considering uncertainty and disturbance with 𝐻∞ loop 

shaping controller in closed loop system 
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Fig 5.17: Step response of the elastic displacement 𝑢25 considering uncertainty and disturbance with 𝐻∞ 

loop shaping controller in closed loop system 

 

 

5.5.2 Design of the μ-Synthesis Controller  

 

 

Fig 5.18: Structure of closed-loop system for 𝜇-Synthesis controller 
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The block diagram of the closed-loop system used in the 𝜇-Synthesis is depicted in Figure 5.18. 

According to the explanation reported in Section 2.3 and Section 2.4, the linear plant model of 

the flexible L-shape mechanism has 50 states, 2 outputs and one inputs (SIMO). Uncertainties (in 

the form of parameter variations) are considered on elasticity (𝐸) and mass density (𝑚) with 

±20% variation for all the links of the mechanism. 

Being 𝑃𝑡𝑓(𝑠) the transfer function matrix of the input and two outputs of the open loop system 

and considering block structure of the uncertainty matrix ∆𝑝  is specified as: 

∆𝑝≔ {[
∆ 0
0 ∆𝐹

]} : ∆∈ ℜ7×7, ∆𝐹∈ ℑ2×3                                                                (5-34) 

The first block ∆ of the matrix ∆𝑝 is diagonal and corresponds to the parametric uncertainties in 

the flexible mechanism. Another diagonal block,  ∆𝐹 is a fictitious uncertainty block, which is 

used to introduce the performance requirements in the 𝜇-Synthesis design framework. Stabilizing 

controller 𝐾𝜇(𝑠) is a necessary condition to assure robust performance. Based on that, at each 

frequency 𝜔𝑓 over the relevant frequency range, the following equation of the structured singular 

value must holds: 

𝜇∆𝑝[𝐹𝐿(𝑃𝑡𝑓 , 𝐾𝜇)(𝑗𝜔𝑓)] < 1                                                                                        (5-35) 

The robust performance of the closed-loop system can be guaranteed with above condition [91] .   

In our system the perturbation parameter and weighting functions are chosen as follows:  

∆ =
1

𝑆
                                                                      (5-36) 

𝑊𝑢 = [
0.4 × 10−3 100𝑠+0.05

𝑠+10

0.4 × 10−3 100𝑠+0.05

𝑠+10

]                                                                  (5-37) 

𝑊𝑝 = [
0.15

𝑠2+1.8𝑠+5

(𝑠+0.001)(0.01𝑠+1.2)(𝑠+1)
0

0 0.15
𝑠2+1.8𝑠+5

(𝑠+0.001)(0.01𝑠+1.2)(𝑠+1)

]                           (5-38) 

Results of the 𝜇-Synthesis on the spatial flexible mechanism have been demonstrated in 

following figures. Figure 5.19 and Figure 5.20 show the step response of angular position 𝑞 and 
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elastic displacement 𝑢25 with ±20% uncertainty in the elasticity (𝐸) and mass density (𝑚) 

values respectively.  

 

 Fig 5.19: Step response of the angular position 𝑞 considering ±20% uncertainty in elasticity (𝐸) 

and mass density (𝑚) with 𝜇-Synthesis controller 

 

 

Fig 5.20: Step response of the elastic displacement 𝑢25 considering ±20% uncertainty in elasticity (𝐸) 

and mass density (𝑚) with 𝜇-Synthesis controller 
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According to Figure 5.19, angular position of the mechanism starts from the vertical position (90 

degree) and moves to reference position (95 degrees). As it can be seen, the flexible mechanism 

has a desired maneuverer with overshoot near to 30 % and approximate settling time of 8 𝑠𝑒𝑐. 

From Figure 5.20, it can be seen that the amplitude of the vibration is small during the 

mechanism motion and the existence of steady state error is due to the gravity force.  

 

5.5.2.1 Response of the μ-Synthesis to Disturbance 

In order to evaluate the disturbance rejection 𝜇-Synthesis controller, a test similar to the one 

developed in section 5.4.1.2 has been done in this section. The amplitude, pulse width and time 

delay of the disturbance signals are equal to previous ones. The results are depicted in Figure 

5.21 and Figure 5.22 for both angular position 𝑞 and elastic displacement  𝑢25 . 

 

 

Fig 5.21:  Step response of the angular position q considering disturbance signal and ±20% uncertainty in 

elasticity (𝐸) and mass density (𝑚) with 𝜇-Synthesis controller 
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Fig 5.22: Step response of the elastic displacement 𝑢25 considering disturbance signal and ±20% 

uncertainty in elasticity (𝐸) and mass density (𝑚) with 𝜇-Synthesis controller 

 

As it can be seen from the above figures, the 𝜇-Synthesis controller has attenuates the 

disturbance effect properly for both angular position and elastic displacement and the steady 

state error of disturbance signal is close to zero.  

 

5.6 Comparison between Controllers 

This section reports a comparative analysis of the robust performance of the synthesized 

controllers for the spatial flexible mechanism through the 𝜇-analysis and the frequency response.  

 

5.6.1 Comparison through μ-analysis 

The result of the 𝜇-analysis on the two controllers is shown in Figure 5.23. As it can be inferred 

from Figure 5.23, the 𝜇-Synthesis controller guarantees robust performance of the system in 

wider frequency range since the gain of the 𝜇-Synthesis controller is less than one for all range of 

frequencies except 2-10 𝑟𝑎𝑑/𝑠𝑒𝑐; however, the 𝐻∞ loop shaping controller has better robust 

performance at low frequencies. 
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Fig 5.23: Robust performance of the synthesized controllers through 𝜇-analysis 

 

5.6.2 Comparison through Frequency Response  

In order to make a comparison among the controllers, their frequency response have been 

evaluated here. It should be mentioned that controller for the linear plant from torque (input) to 

angular position (output) has been taken into account. Regarding Figure 5.24, the controller gain 

for 𝐻∞ loop shaping is higher than the gain of the 𝜇-Synthesis controller for frequencies, which 

results in higher controller effort and more precise tracking. 

 

Fig 5.24: Robust performance of the synthesized controllers through frequency response 
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5.7 Conclusion 

In this chapter the synthesis of two robust controllers for a spatial L-shape flexible mechanism, 

which has been modelled with high accuracy FEM-based approach, has been investigated and 

presented. The model has been implemented 𝑀𝐴𝑇𝐿𝐴𝐵𝑇𝑀 simulation environment for the 

purpose of testing robust controllers, namely 𝐻∞ loop shaping and 𝜇-synthesis, for both position 

control and vibration damping in a spatial flexible L-shape mechanism under gravity. In order to 

implement the robust controller, a linearization procedure and model reduction of linearized 

model for state-space model of the dynamic system has been developed. These linearized and 

reduced models demonstrate highly precision approximation of mechanism dynamic behaviour. 

The 𝐻∞ loop shaping and 𝜇-Synthesis robust controllers have been employed for controlling 

both the position and the vibrations of the flexible mechanism. The optimal performance of each 

controller considering ±20% uncertainty in the elasticity (𝐸) and mass density (𝑚) and 

perturbed plant for 𝜇-Synthesis have been tested. Finally, the performance of these controllers 

have been compared to each other through 𝜇-analysis and frequency analysis. The 𝜇-Synthesis 

has proved to have a good level of robustness to uncertainties and can compensate the first two 

resonant frequencies; moreover, the 𝐻∞ loop shaping requires a higher control effort but also 

provides faster position tracking and has ability dampen the first six resonance frequencies. 
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6.1 Introduction 

For some specific tasks by robot manipulators, such as moving payloads or painting objects, 

position controllers provides enough performance because these types of tasks only need the 

manipulator to follow a desired trajectory. Although, during grinding or an assembly task, the 

robot manipulator comes in contact with the environment; consequently, interaction forces 

appear between the robot manipulator and the environment. Therefore, these interaction forces, 

as well as the end effector position, should be controlled. 

To motivate the need of the combination of force and position control, consider the problem of 

controlling a manipulator to write a sentence on a blackboard. To shape the letters in the 

sentence, the end-effector position or, equivalently, the position of the chalk should be 

controlled. Regarding to the experience of writing on a blackboard, the force with which one 

presses on the blackboard must also be controlled. That is, pressing too lightly can cause letters 

that are not easily readable, while pressing too hard can result in broken chalk. This example 

shows that many robotic applications will need that a desired positional trajectory and a desired 

force trajectory must be defined. In this chapter, the hybrid position/force control for the spatial 

L-shape flexible mechanism in order to control the manipulator end-effector position based on 

the applied eternal force.  

The main concept of hybrid position/force control is based on subjecting the end effector of the 

manipulator to external constraints which are experienced in the form of interaction forces when 

the manipulator interacts with the environment. Accordingly, interaction forces should be 

accommodated rather than resisted which occur in disturbance compensator [92] so the control 

approach should handle tracking error properly to improve the contact.  

 

6.2 External Force Estimation 

In order to develop a hybrid position/force control for the L-shape mechanism, an external force 

measurement or estimation is required. Often force/torque sensors mounted at the robot wrist are 

used for this task [93]. Some approaches for force estimation by means of the signals obtained 

from strain measurements have been presented [94] as well. 
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In this section, an approach to the external force estimation based on the comparison between the 

motion of the flexible mechanism and its rigid counterpart is presented. Figure 6.1 shows a 

schematic view of the proposed approach. As it can be seen from Figure 6.1, while the external 

force and torque produced by the electrical motor are applied to the flexible mechanism, only the 

torque produced by the electrical motor is applied to the rigid mechanism; furthermore, joint 

accelerations of both of the mechanisms are measured and compared to each other. It should be 

mentioned that the main assumption in this work is considering the external force applies to the 

tip of the mechanism along the tangential direction of the first link motion.  

 

 

Fig 6.1: Schematic view of the external force estimation approach 

 

By assuming that the external force is applied on the tip of the mechanism along the tangential 

direction of the first link motion, the dynamic model states in Equation 6-1, can be rewritten as: 

𝑴𝐸𝑅𝐿𝑆(𝑞, 𝑞̇) [
𝒖̈

𝑞̈𝑓𝑙𝑒𝑥
] = 𝑨(𝒖, 𝒖̇, 𝑞, 𝑞̇) [

𝒖̇
𝑞̇
𝒖
] + 𝑩(𝑞, 𝑞̇) [

𝒈
𝒇]                                          (6-1) 

So that: 

[
𝒖̈

𝑞̈𝑓𝑙𝑒𝑥
] = 𝑴𝐸𝑅𝐿𝑆

−1 (𝑞, 𝑞̇)𝑨(𝒖, 𝒖̇, 𝑞, 𝑞̇) [
𝒖̇
𝑞̇
𝒖
] + 𝑴𝐸𝑅𝐿𝑆

−1 (𝑞, 𝑞̇)𝑩(𝑞, 𝑞̇) [
𝒈
𝒇]                              (6-2)     

Equation 6-2 is the explicit from of the flexible mechanism dynamic model, which can be used 
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to evaluate the joint acceleration (𝒒̈𝑓𝑙𝑒𝑥). The vector of external forces (𝒇) in Equation 6-1 

includes both the torque (𝜏𝑚) provided by the actuator and the external force (𝑓𝑒𝑥𝑡) applied on 

the tip of the mechanism. 

The dynamics of the rigid counterpart of the flexible mechanism is represented by following 

expression: 

𝐽𝑞̈𝑟𝑖𝑔𝑖𝑑 = 𝜏𝑚                                                                                                           (6-3) 

In the equation above, 𝑞̈𝑟𝑖𝑔𝑖𝑑  accounts for the joint acceleration of the rigid link-mechanism. 

According to Equation 6-2, joint acceleration 𝑞̈𝑓𝑙𝑒𝑥 can be expressed as: 

𝑞̈𝑓𝑙𝑒𝑥 = 𝒇(𝑞, 𝑞̇, 𝒖, 𝒖̇, 𝜏𝑚, 𝑓𝑒𝑥𝑡)                                                                   (6-4) 

By neglecting the effects of flexibility in Equation 6-4, 𝑞̈𝑓𝑙𝑒𝑥 can be written as: 

𝑞̈𝑓𝑙𝑒𝑥 ≃
1

𝐽
𝜏𝑚 +

1

𝐽
𝐿1𝑓𝑒𝑥𝑡                                                                                                              (6-5) 

where 𝐿1 is the length of the first link and 𝐽 represents the moment of inertia of the mechanism. 

Finally, an estimation of the external force 𝑓𝑒𝑥𝑡 acting on the tip of the mechanism along the 

tangential direction can be achieved by comparing 𝑞̈𝑓𝑙𝑒𝑥 and 𝑞̈𝑟𝑖𝑔𝑖𝑑 as follows: 

𝑓𝑒𝑥𝑡 = (𝑞̈𝑓𝑙𝑒𝑥 − 𝑞̈𝑟𝑖𝑔𝑖𝑑).
𝐽

𝐿1
                                                                                  (6-6) 

When neglected, link flexibility can lead to large estimation errors [95]. Figure 6.2 illustrates the 

comparison between the actual and the estimated force applied on the tip of the mechanism along 

the tangential. It can be clearly seen that a pronounced error is introduced by the neglected 

flexibility of the estimation model. Therefore, a second order low pass filter with cut-off 

frequency of 20 𝑟𝑎𝑑/𝑠 has been used to improve the accuracy of the external force estimation.  
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Fig 6.2: Comparison between non-filtered estimated and actual external force applied on the tip of 

mechanism 

 

 

Fig 6.3: Comparison between estimated and actual external force applied on the tip of mechanism  

 

Figure 6.3 shows a comparison of the estimated and actual force applied on the tip of mechanism 

when using a low pass filter. The lagging difference between two curves is due to the low-pass 

filtering action included in the force estimator.   
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6.3 Hybrid Position/Force Control 

In this section a short description of the hybrid position/force control for the L-shape flexible 

mechanism is given. Hybrid position/force control combines position and force data into the 

control loop, for moving the mechanism in a nondeterministic environment. The main 

advantages of hybrid control is that the position and force data are analyzed independently to 

benefit of well-known control approach for each one [96].  

 

 

Fig 6.4: Hybrid position/force control scheme for spatial L-shape flexible mechanism 

 

The block diagram of hybrid position/force control approach used in this work is shown in 

Figure 6.4; accordingly, the main idea is to separate the position control from force control and 

to combine the achieved data. While the angular position of the mechanism (𝑞) is gathered from 

an encoder and compared to the reference position signal in order to measure the position error, 

the joint acceleration of the mechanism (𝑞̈𝑓𝑙𝑒𝑥) is used for estimating the external force applied 

to the tip of the mechanism according to the technique explained in Section 6.1. The estimated 

external force is used in the following control law: 

∆(𝑡) = ∫ 𝑓𝑒𝑥𝑡 Θ 𝑑ψ
ψ

0
                                                                                (6-7) 

where 𝑓𝑒𝑥𝑡 is the estimation of the external is applied force to the tip of the mechanism, Θ is a 

positive constant with value of 5 
𝑑𝑒𝑔

𝑁.𝑡
. In fact, ∆(𝑡) is used to change the reference position based 
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on the direction and the magnitude of the external force applied to the tip of the flexible 

mechanism. The value of Θ can be chosen arbitrarily based on the desired performance.  

If ∆(𝑡) is equal to zero, the control loop in Figure 6.4 acts as tracking joint position control based 

on PID controller. Other types of position controller can be used as well [97]. If ∆(𝑡) is either 

positive or negative, the joint reference position is altered in order to regulate to zero the contact 

force.   

For example, by applying a 1 𝑁 force for 2 𝑠𝑒𝑐 to the tip of the mechanism along the tangential 

direction of the first link motion, the mechanism should be moved by 10 𝑑𝑒𝑔 from its initial 

configuration in the same direction of the force.  

 

6.4 Results 

In this section, the results of the application of the hybrid position/force control approach to the 

L-shape flexible mechanism in 3D environment are presented. Hence, a force signal with pulse 

width of 1 𝑠𝑒𝑐 and amplitude of −2 𝑁, shown in Figure 6.3, is applied to the tip of the 

mechanism; meanwhile, the initial angular position reference is set to 90 𝑑𝑒𝑔. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.5: The response of the flexible mechanism to applied external force in terms of angular position 
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Fig 6.6: Percentage error on difference between mechanism angular position and reference position 

Fig 6.7: Torque profile 

 

As it can be seen from Figure 6.5, the mechanism starts to move in the same direction of the 

external force as soon as the latter is applied. The angular displacement of the mechanism is 

equal to 10 𝑑𝑒𝑔; in other words, the mechanism moves from its initial configuration (90 𝑑𝑒𝑔) to 

the configuration of 80 𝑑𝑒𝑔 such displacement is determined by the control law in Equation 6-7. 

As it can be seen from Figure 6.6, the control-loop has a fast response with a highly accurate 
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tracking behavior. From Figure 6.6, it can be inferred that the position controller has a good 

accuracy in terms of trajectory tracking and the error between the actual joint position and the 

reference position is very small.  

Furthermore, according to from Figure 6.7, the overall torque produced by electric motor always 

within the ±2.5 𝑁 range.  

 

6.5 Conclusion 

In this chapter, in order to implement the hybrid position/force control, an external force 

estimation approach has been presented. The estimation technique is based on the comparison 

between the actual joint acceleration and the joint acceleration computed through a simplified 

rigid model. 

The control scheme is composed by two loops: one performs the angular position tracking, while 

the other is responsible for the indirect regulation of the interaction forces between the tip of the 

mechanism and the environment. Hence the reference position, fed to the position controller, can 

be changed according to a control law which depends on the direction and the amplitude of the 

external force. The controller demonstrates good trajectory tracking performance and an accurate 

external force regulation.  
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7.1 Cable Robots 

Cable-driven parallel robots are a special type of parallel robots with adjustable actuated cables, 

and an end-effector. These robots can be made lighter, stiffer, safer, and more economical than 

traditional serial manipulators since their structure consists of lightweight and high load-bearing cables. 

Very large workspace and high acceleration due to less mass and inertia are some advantages of 

such robots. however inaccuracy and necessity of cables to be kept in tension can be considered 

as disadvantages [98]. Therefore, modeling, workspace analysis, and design of cable robots are 

different from parallel manipulators. Cable driven robots have been used in many applications such 

SkyCam [99], rehabilitation [100], and high speed manipulation [101]. 

In the dynamic modelling of cable driven robots, it should be considered that a quite dynamic 

model for cable driven robots is very complicated task. Additionally, because the extracted 

model shall be used in controller design, moreover make simplifications are required. Hence, in 

practice attitude, it is proposed to only include the dominant effects in the dynamic analysis. For 

this reason in many robotic applications, cable mass is ignored and cable is considered as a rigid 

element [103], [104]. Regarding to these assumptions the dynamics of cable driven robot is 

reduced and summarized to the end-effector dynamics. 

Cables are usually flexible and show elongation under tension. This flexibility may lead to 

position and orientation errors. Moreover, the system may encounter unavoidable vibrations 

which may cause uncontrollability of the robot. Cable induced vibration may be a major concern 

for applications which require high bandwidth or high stiffness [104] 

The aim of this chapter is to design a linear quadratic optimal controller for a planar cable-driven 

parallel robot. The statics modelling of the system is presented and the dynamics equations are 

obtained in terms of state space equation form. From the control point of view, an optimal 

controller is designed and applied by defining a performance index which accounts for the 

position and velocity of the end-effector as well as applied torques by electric motors during the 

trajectory tracking. 

 

7.2 Dynamics of the System  
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The Feriba-3 is a 3-DOF planar robot with 4 cables and a circular end-effector. Each cable is 

fixed to the lateral side of the end-effector which is able to wind around it. The other end of the 

cable is wound around a pulley, which is directly connected to a motor shaft. A sheet of glass is 

fixed on the base and a flux of compressed air is blown towards the glass through a series of little 

holes drilled in the lower side of the end-effector to eliminate end-effector friction. The radius of 

the pulleys are same as end-effector, which makes easier solution for the kinematics of the robot. 

The kinematics and stability of the system has been discussed in [105]. Figure 7.1 illustrates the 

robot built in the laboratory.  

The static equilibrium of a 𝑛 − 𝐷𝑂𝐹 cable driven robot, manipulated by 𝑚 cables, can be 

expressed by the following linear equation system: 

 S𝑇 = 𝐹                                                                                                                                      (7-1) 

where 𝑆 ∈ ℝ𝑛×𝑚  is the structure matrix of the robot which is related to the geometrical 

configuration of the system, 𝑇 ∈ ℝm is cable tension vector, and 𝐹 ∈ ℝ𝑛  is the wrench acting on 

the end-effector. In force-closure workspace, vector T can be calculated as sum of a particular 

(𝑇𝑝) and kernel solution (𝑇𝑘).  

 𝑇 =  𝑇𝑝 + 𝑇𝑘 = 𝑇𝑝 + 𝑁𝜆(𝑇𝑚𝑖𝑛)                                                                                               (7-2) 

where 𝑁 ∈ ℝ𝑚×(𝑚−𝑛)  is a basis of structure matrix kernel; 𝜆 ∈ ℝ𝑚−𝑛 is the weights of the linear 

combination of columns of 𝑁 yielding 𝑇𝑘. By changing 𝑇𝑚𝑖𝑛  based on system constraints, a 

proper vector of 𝑇 can be calculated. 

In the case of four cable-driven robot with 3 degrees of freedom, the following results can be 

obtained:  

S =  [
cos 𝜂1 cos 𝜂2

cos 𝜂3 cos 𝜂4

sin 𝜂1 sin 𝜂2 sin 𝜂3 sin 𝜂4

𝑟 −𝑟 𝑟       −𝑟
]                                                                                    (7-3)                                                         

𝑇 = [

𝑇1

𝑇2

𝑇3

𝑇4

]                                                                                                                             (7-4) 

𝐹 = [
𝐹𝑥

𝐹𝑦

𝑀

]                                                                                                                                    (7-5) 
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where 𝑟 is the end-effector and pulleys radius. The directional and rotational frictions are ignored 

due to very low quantities. In order to apply linear quadratic optimal control, the standard 

mathematical form of the system in terms of state space formulation is developed which is a set 

of 6 coupled first-order ordinary differential equations.  

[
 
 
 
 
 
𝑞̇1

𝑞̇2

𝑞̇3

𝑞̇4

𝑞̇5

𝑞̇6]
 
 
 
 
 

=

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑞6]
 
 
 
 
 

+ 

[
 
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
1

𝑚
0 0

0 0 0 0
1

𝑚
0

0 0 0 0 0
1

𝐼 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
0
0
0
𝐹𝑥

𝐹𝑦

𝑀]
 
 
 
 
 

                                           (7-6) 

 

 

Fig 7.1: Feriba-3 overall view (a), and manipulability analysis [105] (b) 

 

where 𝑚, and 𝐼 are the end-effector mass, and moment of inertia respectively. 𝑞1, . . , 𝑞6  are states 

variables of the system. In our system the values of 𝑟,𝑚 and 𝐼 are equal to 3 ×

10−2 𝑚, 0.1 𝐾𝑔 and 4.5 × 10−5 𝐾𝑔.𝑚2 respectively.  

 

7.3 Synthesis of the Optimal Controller  

In this section a very brief explanation of the optimal linear quadratic regulator (LQR) is given 

(see [106] for more details). The dynamic model of the system, obtained from Equation 7-6, 

brings on the following state-space form for the system under study: 

 {
𝑞̇(𝑡) = 𝐴𝑞(𝑡) + 𝐵𝑇(𝑡)

𝑦(𝑡) = 𝐶𝑞(𝑡)
                                                                                                            (7-7) 
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The input vector 𝑇(𝑡) = [𝑇1𝑇2𝑇3𝑇4]
𝑇contains the torques produced by four electrical motor 

shafts. The system state vector 𝑞 can be specified as: 

 𝑞𝑇 = [𝑝𝑥𝑝𝑦 𝜃 𝑣𝑥𝑣𝑦 𝜔]                                                                                                              (7-8) 

Where 𝑝𝑥 , 𝑝𝑦 , 𝑣𝑥 and 𝑣𝑦 are linear positions and velocities of the end effector in 𝑥 and 𝑦 

directions, 𝜃 and 𝜔 are the angular position and angular velocity of the end effector respectively; 

hence, the actual size of the system state variable is six. Due to reason of the brevity, the 

dependence from the time has been removed. The output vector 𝑦 is considered to be a full state 

vector due to implementation of the experimental tests. In other words, the matrix 𝐶 is took into 

account as an identity matrix. 

The controller design is based on optimal linear quadratic regulator (LQR) for the modelled 

system stands on the state-space form presented by Equation 7-6. The aim is to determine 𝑇(𝑡) 

as the control function in order to minimize the performance index  𝐽 , which is the integral of a 

quadratic function of the system output variables 𝑦(𝑡) and control function 𝑓(𝑡). The 

performance index is described as follows: 

 𝐽 = ∫ [𝑦𝑇(𝑡)𝑄𝑦(𝑡) + 𝑇𝑇(𝑡)𝐿𝑇(𝑡)]𝑑𝑡 = ∫ [𝑞𝑇(𝑡)𝐶𝑇𝑄𝑞(𝑡) + 𝑇𝑇(𝑡)𝐿𝑇(𝑡)]𝑑𝑡
∞

0

∞

0
                 (7-9) 

Q and L are weighting matrices related to the system output and to the control input respectively. 

The index takes both the tracking error of the end effector and the control effort. The first term 

inside the integral in Equation 7-10, minimizes the entire values related to the end effector linear 

and angular positions. The second term reduces the absolute values related to the system inputs 

which are forces calculated via CTC and applied by electrical motors. 

Performance index 𝐽 is minimized, if the system input is taken to be the result of a linear 

feedback from the output [58].         

 𝑇(𝑡) = −𝐾𝑦(𝑡) = −𝐾𝐶𝑞(𝑡)                                                                                                              (7-10) 

where the optimal value of 𝐾 is obtained by:  

 𝐾 = 𝐿−1𝐵𝑇𝑃                                                                                                                                           (7-11) 

And 𝑃 is achieved by solving Riccarti’s equation:  

   −𝐴𝑇𝑃 − 𝑃𝐴 + 𝑃𝐵𝐿−1𝐵𝑇𝑃 − 𝐶𝑇𝑄𝐶 = 0                                                                                       (7-12) 
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Fig 7.2 The block diagram of the control system 

 

By including the optimal controller, the equations of the system are written as:  

  {
𝑞̇(𝑡) = (𝐴 − 𝐵𝐾𝐶)𝑞(𝑡)

𝑦(𝑡) = 𝐶𝑞(𝑡)
                                                                                                                    (7-13) 

Figure 7.2, shows the block diagram of the designed controller system. The required wrench 

quantity is calculated based on inverse dynamic equations of the system and controller with 

respect to reference. The estimated wrench is inserted to CTC (Cable Tension Calculation) 

block. Regarding to the required wrench on the end-effector, CTC calculates proper cable 

tensions based on Equation 7-1 and 7-2 to be applied by the actuators (electrical motors). Both 

linear and angular position and velocity of the end-effector is obtained with respect to data from 

motors encoders through forward kinematics in a closed loop system. 

 

7.4 Experimental Results 

In this section, the results of experimental tests are provided and discussed to show the 

capabilities of the proposed LQR controller for position and velocity control of Feriba-3 cable 

robot. The tuning of the LQR controller depends on displacement and velocity along X and Y 

direction, and also the angular rotation of the end-effector. Our aim is to track the reference 

trajectory with the least error in displacement and velocity. To this end, we considered the 

optimal control described in the previous section with following weighting matrices: 
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 𝑄 =

[
 
 
 
 
 
 
𝑞𝑥 0 … 0

0 𝑞𝑦

𝑞𝜃 ⋮

⋮ 𝑞𝑣𝑥

𝑞𝑣𝑦
0

0 … 0 𝑞𝑣𝜃]
 
 
 
 
 
 

                                                                                     (7-14) 

𝐿 = [

𝑙1 0 0
0 𝑙2 0
0 0 𝑙3

]                                                                                                 (7-15)  

The size of diagonal matrices 𝑄 and 𝐿 are [6×6] and [3 × 3], respectively. To synthesize the 

optimal controller, values of the diagonal elements of the matrices 𝑄 and 𝐿 should be selected 

properly. Parameters 𝑞𝑥 , 𝑞𝑦,  𝑞𝜃 correspond to linear and angular positions, while 𝑞𝑣𝑥
 , 𝑞𝑣𝑦

,  𝑞𝑣𝜃
 

are related to linear and angular velocities. 

Two different reference trajectories were designed to test the proposed optimal control 

algorithm. The first one is a combination of linear and circular trajectory in 𝑥 − 𝑦 plane and also 

a rotation. The end-effector starts from the center of the plane where (𝑥, 𝑦) = (0,0), then a 

motion in 𝑥-direction based on an 3𝑟𝑑  order time-function polynomial occurs which locates the 

end-effector in the surroundings of a circle where (𝑥, 𝑦) = (𝑟, 0). In the next step, a 360 degree 

counter clockwise circular motion in 𝑥 − 𝑦 plane happens, and the end-effector returns to the 

former position of (𝑥, 𝑦) = (𝑟, 0). Last step of the motion dedicates to another 𝑥 −direction 

motion based on a 3𝑟𝑑 order time-function polynomial to move the end-effector back to the 

(𝑥, 𝑦) = (0,0). In all periods of 𝑥 − 𝑦 motion, rotation of end-effector occurs based on a time 

sinusoidal reference. 

The second reference trajectory includes four linear motions in 𝑥 − 𝑦 plane, and a sinusoidal 

function of time as the rotational motion. The 𝑥 − 𝑦 linear motions in 𝑥 and 𝑦 directions are 

planned considering a trapezoidal velocity profile. The end-effector starts from the center of the 

plane and after the designed trajectories returns to the initial position. 

For the combination of linear and circular reference trajectory in 𝑥 − 𝑦 plane and a sinusoidal 

rotation, the nonzero elements of the 𝑄 and  𝐿 matrices were selected the following values: 

𝑞𝑥 , 𝑞𝑦 = 2.5 × 106    , 𝑞𝜃 = 1.8 × 103, 𝑞𝑣𝑥
 , 𝑞𝑣𝑦

= 1.6 × 103 , 𝑞𝑣𝜃
= 3                                (7-16) 
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𝑙1 = 𝑙2 = 𝑙3 = 1 

On this basic, the matrix of the optimal value of the controller is: 

𝐾 = [
1581.84 0 0 43.77 0 0

0 1581.4 0 0 43.77 0
0 0 42.43 0 0 2.07

]                                                    (7-17) 

And for the combination of trapezoidal velocity profiles, the nonzero elements of the 𝑄 and 𝐿 

matrices were given as follows: 

𝑞𝑥 , 𝑞𝑦 = 1.6 × 106  , 𝑞𝜃 = 3.9 × 103, 𝑞𝑣𝑥
 , 𝑞𝑣𝑦

= 1 × 103 ,  𝑞𝑣𝜃
= 5                                    (7-18) 

𝑙1 = 𝑙2 = 𝑙3 = 1 

Therefore, the optimal value of the controller can be written achieved as:  

𝐾 = [
1264.91 0 0 35.40 0 0

0 1264.91 0 0 35.40 0
0 0 62.45 0 0 2.62

]                                                 (7-19) 

Figures 7.3 (a-c) show the reference trajectory and also the response of the both closed loop 

employed LQR controller and the open loop system for just circular part of trajectory in terms of 

end-effector linear and angular motion. It is clear that the open-loop control system tracks the 

reference with high errors. According to Figures 7.3 (d-e), the LQR controller made the system 

tracks the reference efficiently with very low error. 

 Figures 7.4 (a-c) depict the reference trajectory and the results of the response of the both LQR 

controller and open loop system for the trapezoidal reference trajectory in terms of end-effector 

linear and angular motion. Like the former experiment, open loop application presents 

unsatisfactory results, however employing LQR controller results in outstanding conclusions. 

The errors of trajectory tracking are very small which is depicted in Figures 7.4 (d-f) as well.  

In Figures 7.5 and 7.6, the cable tensions in four cables through circular and trapezoidal 

trajectories have been shown respectively. The minimum tension in cables was set to 0.5 𝑁. The 

motors have torque of maximum 3.5 𝑁. According to these figures, the overall torque applied to 

control the cable-driven parallel robot for each motor does not exceeds the range of 1.8 N which 

is much lower than desired limit (3.5 N) for both circular and trapezoidal trajectory. 
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Fig 7.3:Comparison of open loop and LQR methods for position of circular reference trajectory (x-y 

plane) tracking for x-axis (a), y-axis (b), and sinusoidal rotation 𝜽 (c). Reference tracking error on LQR 

controller in terms of x-axis (d), y-axis (e) and sinusoidal rotation 𝜽 (f). 

 

 

Fig 7.4: Comparison of open loop and LQR methods for trapezoidal reference trajectory for x-axis (a), y-

axis (b), and sinusoidal rotation  𝜽 (c). Reference tracking error on LQR controller in terms of x-axis (d), 

y-axis (e) and sinusoidal rotation 𝜽 (f). 
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Fig 7.5: Cable tension in four cables for circular reference trajectory (x-y plane) and sinusoidal rotation 

 

 

Fig 7.6: Cable tension in four cables for trapezoidal trajectory and sinusoidal rotation 
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7.5 Conclusion 

In this chapter, an optimal linear quadratic regulator (LQR) for both position and velocity control 

of a Parallel cable-driven robot has been designed and experimentally tested. The dynamic 

behaviour of the Parallel cable-driven robot has been modelled and in order to implement the 

control system, the state equations of the dynamic system have been written. 

The application of proposed control leads to minimizing a performance index which takes into 

consideration both the “tracking error” of the system output variables and the control effort. 

Riccati’s equations is solved in order to obtain the optimal value of the cable tensions. 

Appropriate weights have been associated with the most significant elements of the output 

vector, which are linear and angular positions and velocities of the end-effector.  

The optimal controller has been tested both on circular position and trapezoidal velocity 

trajectories for both linear and angular position. The performance of this control system have 

been compared to the ones that can be achieved with open loop controller. The results are quite 

satisfactory and the synthesized LQR proved to be effective both for linear and angular reference 

position tracking by the desired time. Furthermore, the torques applied on cables are always kept 

well-below the design limit. 
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This thesis focuses on modeling and control of flexible mechatronic systems. A spatial flexible 

L-shape mechanism and a cable driven parallel robot are the systems which are investigated in 

this thesis.The problem of dynamic modeling and simulation of the flexible mechanism has been 

approached using a highly accurate nonlinear dynamic model based on finite element model 

(FEM) and equivalent rigid link system (ERLS). The Feriba-3 which is 3-DOF planar cable 

robot is chosen for the purpose of dynamic modeling of the cable robot.  

The application of an optimal controller, a model predictive controller (MPC), the robust 

controllers (𝐻∞ loop shaping and 𝜇-Synthesis), a hybrid position/force control sequentially in 

order to control the position and reduce the vibrations of the flexible L-shape mechanism and to 

regulate the external force applied to the mechanism as well has been discussed and described. 

Moreover, the synthesis of a linear quadratic optimal controller for both position and velocity 

control of a parallel cable-driven robot has been designed and experimentally tested. 

Linear quadratic (LQ) optimal control and model predictive control (MPC) are recognized as the 

optimal controllers which can guarantee the closed-loop stability. While the linear quadratic 

(LQ) optimal control optimize a true performance index of the closed-loop control system, MPC 

controllers explicitly takes into account constraints on the parameters in the system, which is an 

important feature in many industrial processes. Although the archived result from the both 

controllers are satisfactory and illustrate fast and accurate response of free coordinate and also 

the reduction of the amplitude of the mechanism vibrations, the MPC can provide stability and 

robust stability during the robot motion as the additional pros with respect to LQ. The applied 

torque by the motor(s) is always kept below the maximum limit with use of the both controllers.  

Robust control deals with uncertainty in its method to controller design. Controllers designed 

using robust control methods tend to be able to overcome with differences between the true 

system and the nominal model used for design. Both robust controllers were robust with respect 

to a range of uncertain parameters and will guarantee the blondeness of the position-tracking 

error in present of the disturbance. The question of which robust control method to choose for 

the flexible mechanism is difficult to answer analytically, but the following guideline is 

suggested. While the 𝜇-Synthesis controller guarantees robust performance of the system in 

wider frequency range, employing 𝐻∞ loop shaping for complaint mechanisms results in higher 

controller effort and more precise tracking. 

 

http://en.wikipedia.org/wiki/Robust_control
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The purpose of the hybrid position/force control is for some complex application of robot 

manipulators. It is often necessary to not only control the position of the manipulator but also 

regulate the force exerted by the end effector on an object. While it has been generally 

recognized that force control may cause unstable behaviour during contact with environment, the 

stability of hybrid position/force control can be pre-investigated in order to avoid instability in 

control parts with different situations.   

The summary of application of different controllers to flexible mechatronic systems is reported 

in Table 8.1.  

 

Table 8.1 – Summary of different controllers’ application to flexible mechatronic systems 

CONTROLLER MAIN PURPOSE MAIN ADVANTAGE 

LQR Position control and vibration reduction 
Good performance in position control 

and vibration reduction 

MPC Position control and vibration reduction 

Good performance in position control 

and vibration reduction 

Stability and robust stability during 
motion 

𝝁-synthesis Dealing with uncertainty in the system 
Guarantees robust performance of the 

system in the wider frequency range 

𝑯∞ loop shaping Dealing with uncertainty in the system Precise trajectory tracking 

Hybrid 

Position/Force 

control 

Regulating the external force System stability can be pre-investigated 
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 Future development of this work could include: 

- Designing and development of a real-time dynamic simulator for a complex 3D multi-

body flexible mechanisms with taking into account some parametric mismatches, 

nonlinearities, noise, gravity force effect, etc. to simulation model.  

 

- Applying some feedback control strategies on the bench-mark mechanism in order to 

position control, vibration reduction along the flexible links and regulation of external 

forces applied on the links during the mechanism manoeuvre and validating the results 

from real-time simulator through experimental tests.   
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