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Abstract

In this thesis the behaviour of passive and active particles in a turbulent

open channel flow has been investigated. The surface of the turbulent open

channel has been treated as a flat free-slip surface that bounds a three-

dimensional volume in which the flow is turbulent. This configuration

mimics the motion of active/passive ocean surfactants (e.g. phytoplank-

ton, floaters or drifters) when surface waves and ripples are absent. The

investigation include the study for stable stratified open channel flow.

The nature of the surface turbulence is crucial for the dynamics of parti-

cles which float in the upper layers. Surface turbulence has been analysed in

terms of energy transfer among the scales and the role of surface compress-

ibility has been included in this analysis. An extensive campaign of Direct

Numerical Simulations (DNS) coupled with Lagrangian Particle Tracking

(LPT) is used to study these phenomena. The governing equations are

solved using a pseudo-spectral method for the specific case of turbulent

water flow in a channel.

Results show that free-surface is characterised by an inverse energy cas-

cade which becomes persistent at higher Reynolds number. Surface is forced

by means of upwellings which appear as two-dimensional sources for the

surface-parallel fluid velocity and alternate to sinks associated with down-

drafts of fluid from the surface to the bulk. Consequently, surface compress-

ibility is increased.

Passive buoyant particles reach the surface by means of upwellings and

form highly concentrated filaments in downwelling regions. They cluster at

large scales and persist for long time. In case of stratification, the surfacing

is influenced by the presence of internal gravity waves and the clustering at

the surface is destroyed. Finally, the case of self propelled active particles

which mimics the behaviour of gyrotactic phytoplankton, has been exam-

ined. The main preliminary result is that the presence of stratification is

able to make the vertical migration more unstable and to delay the surfacing

of the swimming cells.
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1
Introduction

Turbulent fluid flow is a complex, nonlinear multiscale phenomenon which

leaves open some of the most fundamental problems in classical physics.

Most of the natural and industrial flows are turbulent and contain dispersed

inclusion (“particles”). Understanding the mechanisms of transport and

mixing processes is central to the study, for example, of the weather, the

circulation of the atmosphere and the oceans. This is a challenging problem

both from the theoretical point of view (the study of diffusion and chaos in

geophysical systems) and for pratical issues (plankton dynamics or the fate

of pollutant spills) [36, 18].

In this thesis, the turbulence of free-surface flows and its effect on the dis-

persion of floaters like nutrients or pollutants in sea water will be examined.

Their dynamics have effects on marine life and on the environment.

Among all, plankton species are known to inhabit the upper sunlit layer of

almost all oceans and bodies of fresh water. They obtain energy through

the process of photosynthesis and must therefore live in the well-lit surface

layer of an ocean, sea, lake or any other body of water, contributing to half

of all photosynthetic activity on Earth.

One way to classify different plankton species is by the presence or absence

of motility. While some types of phytoplankton are incapable of swimming

(referred to as passive particles hereinafter) and remain at the whim of am-

bient flows, other types of plankton can actively propel themselves through

the water flow (referred to as active particles hereinafter).

Assigning realistic and robust values to the many associated parameters

in global circulation models is an active area of research. Moreover, since

global warming has effects on the changes of vertical stratification of water

column, it is fundamental to investigate how thermal stratification affects



2 1. Introduction

the dynamics of passive and active self propelled particles, which is still an

open question.

In the next sections some of the well known characteristics of turbulent

flows will be reviewed from a phenomenological point of view . In particular,

the differences between three and two dimensional turbulence, with empha-

sis given to surface turbulence, will be discussed. At last, some general

consideration about the clustering of particles in turbulence will be given.

1.1 The skeleton of the free-surface turbu-

lence

In the last few years new methodologies have been developed on the La-

grangian description of transport and mixing, coming from the tools of

nonlinear dynamics.

The main useful tool to investigate and map the flow into regions of mixing

and unmixing is the technique based on Local Lyapunov Exponents which

measures the relative dispersion of transported particles [17, 64, 30]. The

Local Lyapunov Exponent is a scalar value which characterises the amount

of stretching about the trajectory of a point over time and it can be used

to study the dispersion in turbulent flow fields.

These exponents are a generalization of Lyapunov Exponents defined for

dynamical systems. The Lyapunov Exponent is defined as the exponential

rate of separation, averaged over infinite time, of particles trajectories ini-

tially separated infinitesimally. Consider x(t0) and x(t) = x(t0) + δ(t) as

two particle trajectories separated initially by a distance δ(t0) the Lyapunov

Exponent is defined by:

λ = lim
t→∞

lim
δ(t0)→0

1

t
ln

||δ(t)||
||δ(t0)||

.

This exponent can be either positive or negative indicating exponentially

diverging or converging pairs of trajectories. Negative values of λ are char-

acteristic of stable solutions of dissipative systems: Such systems exhibit

asymptotic stability. If λ is positive, the orbit is unstable and chaotic and

nearby points will diverge to any arbitrary separation.

The Lyapunov Exponent is quite useful in the study of time-independent

dynamical systems. However, in the reality, fluids are time-dependent and

experimental data are only known over a finite interval of time and space.
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To deal with experimental data and to evaluate the previous coefficient by

means of numerical simulations, the concept of Finite-Size Lyapunov Expo-

nents (FSLE) has been recently introduced ([3, 2]).

For their simplicity in computing and growing number of applications from

the oceanographic to atmospheric flows, these tools have attracted the at-

tention of the oceanic community. The main interest is due to the fact that

these coefficients are able to identify the dynamical structures in the fluid

transport from the submesoscale to the mesoscale. They detect and display

the presence of Lagrangian Coherent Structures (LCSs) which act as a bar-

rier to the mixing properties of flows. These structures are the “skeleton”

of the fluid.

In figure 1.1 the Finite Size Lyapunov Exponents (FSLE) at the surface of

a turbulent free-surface channel flow are shown (the details of geometry will

be provided in Chap. 2). To measure the FSLE at a point r, a reference

particle is started from r at time t, simultaneously with another particle at

a distance d0 from r.

Figure 1.1 – Finite Size Lyapunov Exponents computed at turbulent free-surface

The time τ required to reach the separation df is measured and the
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FSLE is defined as

λ(r, t, d0, df ) =
1

τ
ln

df
d0

.

From the definition it is clear that large values of FSLE indicate regions

in which two particles tend to be stretched by the flow and reach rapidly

the distance df . These regions are very sensitive to the initial conditions

and consequently, the flow is chaotic (the so-called Lagrangian chaos ([36]).

Regions of high FSLE values are organized in filamentary structures and

indicate the unstable manifold that is the largest stretching direction in

the fluid. Between the filaments of high FSLE values, there are “valleys”

of lower values in which the mixing is poor. The shape of filaments and

the extent of the regions with low FSLE values change with time and both

depend on the Eulerian characteristics of the flow in a non-trivial way.

The aim of the thesis is to understand the causes of such behaviour and the

role of turbulence structures which force the surface.

1.1.1 Phenomenology of free-surface turbulence

As mentioned in the introduction, turbulence is a multiscale non linear phe-

nomenon. The way in which the different scales interact plays a key role in

determining how the energy flows.

Few studies of turbulence have been more important than the phenomenol-

ogy of Kolmogorov-Richardson direct cascade.

To briefly explain this phenomenological picture, it is necessary to start

from the Navier Stokes equation

∂tv + v · ∇v = −1

ρ
∇p+ ν∆v + f

where f is an external driving force, ν and ρ are the viscosity and density

of the fluid respectively, p is the pressure. The forcing term is acting on a

characteristic scale L and injects energy at an average rate < f · v >= ε,

where the brackets indicate the average over space and time. The nonlinear

terms (v · ∇v and ∇p) preserve the total energy and thus simply redis-

tribute it among the modes, i.e. the different scales. Finally, the viscous

term dissipates energy at an average rate ν
∑

i,j

〈(
∂jvi

)
2 〉 . The dissi-

pation term is proportional to
(
∂jvi

)
2 which, in Fourier space, means a

term proportional to the square of wave number (k2). This term becomes
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important at large wave numbers and thus at very small scales. At statis-

tically stationary states, the rate of energy dissipation balances the input

rate ν
∑

i,j

〈(
∂jvi

)
2 〉∼ ε .

According to the Kolmogorov-Richardson cascade, the system is forced

at scale L (the injection scale) and due to nonlinear terms, large scale struc-

tures break into smaller and smaller eddies. This cascade ends at scales lD

which are dominated by dissipation. The scales lD � l � L are known

as inertial range since the main contributions comes from the non-linear

(inertial) terms. A first way to look at the distribution of energy among

the scales is by looking at the kinetic energy of the Fourier modes in an

infinitesimal shell of wave-numbers (E(k)dk). It is known from experimen-

tal and numerical simulations that the energy spectrum exhibits a universal

behaviour which closely follows a power law E(k) ∝ k−5/3 over the inertial

range (figure 1.2(a)).

Figure 1.2 – Energy spectra for the case of 3D turbulence (a) and 2D turbulence (b)

This power law seems to be independent of the fluid and the detailed ge-

ometry of forcing (with a correction due to intermittency introduced in the

multifractal model by Parisi and Frisch in 1985). The two crossovers in fig-

ure 1.2(a) are respectively the scale at which the energy is forced (L ∼ k−1
L )

and the scale at which the energy is dissipated (lD ∼ k−1
D ). For k < kL

the spectrum depends on the forcing or boundary condition, for k > kL it

shows a power law decay.

In two-dimensional flows the situation is rather different due to the simulta-

neous conservation of kinetic energy and enstrophy. As consequence there

is an inverse energy cascade from small to larger scales.
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The interest in 2D turbulence is supported by the fact that the reversal

of the energy flux has been observed in geophysical flows subjected to the

Earth’s rotation [66, 43] as well as in shallow fluid layer [9, 72] and thermal

stratified flows.

In 1967 Kraichnan [34] posed the basis for a theory in 2D flows. The

basic idea is that the energy and the enstrophy are injected at a scale LI

(figure 1.2(b)) at a rate < f · v >= ε̄ and < (∇∧ f)ω >= η̄ respectively.

Then a double cascade establishes due to nonlinear transfer of energy and

enstrophy among the scales: energy flows toward the larger scales (l > LI)

(inverse cascade) while enstrophy towards the smaller scales (l < LI) (direct

cascade). In figure 1.2(b) the energy of spectra for the 2D case is shown

. From dimensional analysis and theoretical derivations, it is known that

for 1/L(t) � k � kI , the power spectrum behaves as in 3D turbulence:

E(k) ≈ k−5/3ε̄−2/3 while for kI < k < kD it is obtained: E(k) ≈ k−3η̄−2/3.

It is clear from previous discussion that three- and two-dimensional flows

are driven by different phenomenologies. Moreover, three-dimensional tur-

bulence is characterized by anomalous scaling and small-scale intermittency

[27], whereas the inverse cascade is apparently self-similiar [7]. The transi-

tion between the two behaviours has been mainly investigated in models of

turbulence where the dimension was introduced as formal parameter [10].

In Chap. 3 how the confinement induced by the presence of the free-

surface, causes a direct or inverse cascade, will be discussed. From exper-

iments of free-surface Rashidi and Banerjee [54] as well as from numerical

simulation of Pan and Banerjee [48], it was observed that the turbulence

near the surface is dominated by upwellings: blobs of fluid impinging on the

surface originated from the hairpin vortex in the bottom boundary layer.

These regions are separated by downwellings and spiral vortices attached

at the surface in a process known as vortex connection. In figure 1.3(a) the

vectorial field of velocity at the surface is shown and in figure 1.3(b) a zoom

visualise a strong upwelling with the nearby convergent regions.

As discussed in a review article by Sarpakaya [61], the phenomenology

of vortex connection is linked to the hairpin vortex ejected from the turbu-

lent bottom boundary layer and approaching the surface. These structures

break into sections which remain attached to the surface. The dynamics

of upwellings and downwellings guides the energy transfer close to the free

surface as observed by Perot and Moin [51, 52] and Nagaosa [45]. Up-
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Figure 1.3 – Velocity vector field at the surface underlying the upwelling and down-
welling (a), (b) shows a zoom of the inset in (a)
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wellings are associated to stagnation points at surface with high pressure

and a negative gradient of the normal velocity. In a stagnation point, the

pressure has a maximum. This leads to a negative vertical component of

the pressure-strain correlation. Momentum is transfered to surface-parallel

fluctuations. In downwelling, the situation is reversed and energy is trans-

fered from horizontal to vertical fluctuations. Magnaudet [40] showed that

these phenomena depends on anisotropy of the turbulence below the free-

surface underlying that this behaviour could not be reproduced completely

by isotropic decaying turbulence. It remains to understand if the turbulence

at the surface is mainly three-dimensional or two-dimensional. Pan and

Banerjee [48] noted that the one-dimensional velocity spectra shows a scal-

ing region ∼ k−3 which is consistent with the prediction of two-dimensional

turbulence by Kraichnan. However, Walker [71] showed that the contribu-

tion to the production of normal surface vorticity by vortex-stretching has

its maximum near the free-surface. This process could not develop, by defi-

nition, in two-dimensional flows and it shows a three-dimensional nature of

surface.

1.1.2 Phenomenology of particle clustering in turbu-

lence

In this section some general considerations linked to the advection and clus-

tering of particles in flows will be discussed. In particular the analysis will
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be focused on a simple model: particles are considered pointwise and their

dynamics are driven by viscous and buoyancy forces (as it will be done in

Chap. 4). Their motion is driven by the following equations:

dxp

dt
= vp ,

dvp

dt
=

(ρp − ρf )

ρp
g +

(u@p − vp)

τp
, (1.1.1)

where ρp is the density of particles, ρf is the density of fluid, τp =
ρpd

2
p

18ρfν

is the Stokes response time based on particle diameter dp (ν is the fluid

viscosity). Note that if ρp = ρf the first term is zero and corresponds to

neutrally buoyant particles, if ρp < ρf the first term is negative and it is

the case of particles lighter than surrounding fluid, while if ρp > ρf is the

case of particles heavier than fluid.

When the particles are small and their densities are comparable with

the carrying fluid they usually follow the local fluid motion. If any of these

conditions are not fulfilled, the dynamics of the particles deviate from those

of the fluid. Such particles are generically called “inertial particles”. The

situation becomes more complicated if the particles are “active”, e.g. if

they can self-propel, such as microorganisms in the ocean (which will be

discussed in Chap. 5), or if the particles exchange mass, momentum or

energy with the carrying fluid, such as water droplets in clouds. Here the

case of inertial particles will be considered.

In real situations, the fluid evolves with Navier-Stokes equation and

the most interesting feature which arises for inertial particles, is the parti-

cle clustering namely strongly inhomogeneous distributions. By following

Cencini et al. [11] and Bec [5], an explanation of such phenomenology could

be done using the dynamic system theory. The previous equations 1.1.1

could be written in a more compact form dz
dt = F(z, t) where z = (x,v)

and F =
[
v,

ρp−ρf

ρp
g + u−v

τp

]
. In a 3-dimensional flow (or in general d-

dimensional flow), particles live in a 6-phase space (2d in general) and if an

attractor exists, it will have a fractal dimension ν̄ < 6 where in the simple

model that we have considered ν̄ is only function of τp and the ratio be-

tween the density of the particles and the density of the flow. If we do the

divergence of F we have that ∇ · F = − 3
τp

which means that phase-space

volumes contract with rate −3/τp [11].

In the limit case in which τp → 0 the contraction ∇ ·F = −∞. In this case

the dynamics of particles correspond to that of tracers and ν̄ = 3: the at-
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tractor space coincides with the coordinate space. No clustering occurs and

particles will sample uniformly the space (note that this is in the hypothe-

sis in which particles are advected by an incompressible flow). In the other

limit case St → ∞ it results ∇ · F = 0 which correspond to a conservative

dynamics in the full 6− dimensional space. Also in this case no clustering

occurs. Between these two limits, it could happen that clustering is ob-

served ([11], [5]) and the effective velocity field of particles is compressible

even if the underlying fluid field is incompressible. Inertial particles form

clusters so that their ensemble behaves like a compressible fluid.

Based on this observation, an original way to compute the local concentra-

tion of particles by means of the Jacobian (J(t)) of particle path, evalu-

ated along the trajectory of each single particle, was proposed in [53, 31].

Given the initial conditions of particles X0, the Jacobian J(t) is equal to

the det
[
∂Xp,i(X0,t)

∂X0,j

]
and quantifies the dilatation/compression of the initial

volume associated to the particles.

Starting from an uniform distribution (J(t = 0) = 1), J(t) gives a map of

particle field. Moreover J(t) can be related to the divergence of the particle

velocity field:
d ln|J(t)|

d t
= ∇ · up.

The divergence of the particle velocity field represents the relative rate of

change of the dilatation/compression following a particle path [1]. The

authors in [53, 31] find that inertial particles sample preferentially flow

regions in which their local concentration is higher with respect to the initial

conditions.

On the other hand, clustering could occur also in the case in which particles

(even tracers) are advected by a compressible flow and follow the streamline

(Boffetta et al [8]). The picture which arises is that the clustering is a general

consequence of compressibility.

Surface Eulerian compressibility will be introduced in Chap. 3 and its

effect on the dynamic of the buoyant passive particles, which float on the

surface, will be shown in Chap. 4.
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Thesis outline

The present work is structured as follows:

• Chap. 2: the governing equations and the numerical method are re-

ported and discussed in detail; in the first section, the geometry of

problem and the equation for the neutrally buoyant and stable strat-

ified turbulence, are reported. In the second and third sections the

numerical approach and the solution procedure are provided; in the

third and fourth sections the spectral approximation of the solution

is shown and the discretized set of equations is reported. In the last

section information about lagrangian particle tracking is provided.

• Chap. 3: turbulence of free-surface is investigated. In the first section

once the flow field statistics for the neutrally buoyant turbulent open

channel flow are provided, the spectral energy fluxes and the effect of

compressibility at the free surface, will be exposed. In the last section,

the case of stable stratification and the main statistics to characterize

the surface will be discussed in detail.

• Chap. 4: the transport of passive buoyant particles in turbulent open

channel flow will be discussed. In the first section the problem is posed

and the details of the simulations are provided; in the second section

the clustering of particles at surface and their temporal persistence are

discussed in detail for the case of neutrally buoyant flow. In the last

section, the phenomena of surfacing and clustering in stable stratified

open channel flow, will be discussed in detail.

• Chap. 5: the behaviour of self-propelled particles in turbulent open

channel flow will be introduced. In the first section the problem is

described, providing the details of the simulations. In the remaining

part of chapter preliminary results, linked to the dynamics of active

particles and their interaction with the stratification, will be exposed.

The results presented in this thesis are partially reproduced from the

following pubblications:

• S. Lovecchio, C. Marchioli, and A. Soldati, “Time persistence of floating-

particle clusters in free-surface turbulence”, Physical Review E 88,(2013):

033003;
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• S. Lovecchio, F. Zonta, and A. Soldati, “Influence of thermal stratifi-

cation on the surfacing and clustering of floaters in free surface tur-

bulence”, Advances in Water Resources 72, (2014);

• S. Lovecchio, F. Zonta, and A. Soldati, “Inverse energy cascade and

flow topology in free surface turbulence”, accepted in Physical Review

E (2015);

• S. Lovecchio, and A. Soldati, “Effects of thermal stratification on phy-

toplankton surfacing”, in preparation.
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I
Methodology





2
Governing equations &

Numerical methods

In the first part of this chapter the equations used to describe the dynamics

of an incompressible viscous fluid flow with heat transfer are derived. In

the second part of the chapter the numerical method employed to solve the

balance equations is presented and discussed in detail. In the third section

the Lagrangian Particle Tracking algorithm is introduced.

2.1 Governing equations

In the continuum approach the dynamics of fluids are governed by the bal-

ance equations of mass, momentum and energy. These equations, together

with the constitutive laws for the stress tensor and for the conductive heat

flux, can describe the motion of any kind of fluid flow. With reference

to the schematic of Fig.2.1, we consider an incompressible and Newtonian

turbulent flow of water in a plane channel with differentially-heated walls.

The reference geometry consists of two infinite flat parallel walls; the

origin of the coordinate system is located at the center of the channel and

the x, y and z−axis point in the streamwise, spanwise and wall-normal

directions. Indicating with h the channel height, the size of the channel is

2πh× πh× h, in x−, y− and z− axis respectively.

For the fluid velocity, no-slip (resp. no-stress) boundary conditions are

enforced at the bottom (resp. top) boundary.

For the fluid temperature, a constant heat flux (resp. adiabatic condi-

tion) is enforced at the top (resp. bottom) boundary (Taylor et al., 2005).

Note that periodicity is applied in x and y for both velocity and temperature.
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Figure 2.1 – Sketch of the computational domain

Due to the free surface heating there is a negative temperature difference

between the bottom and the top layers of the channel which causes a stable

buoyancy effect (the gravitational acceleration g acting downward along the

wall-normal direction).

The governing equations are non-dimensionalised with the channel height

h, the friction velocity uτ =
√

τw
ρref

, and the value of the imposed free-surface

temperature gradient ∂θ
∂z

∣∣∣
s
where subscript s indicates the position of sur-

face.

The shear stress τw used to define the friction velocity is the horizontally

averaged value of τ at the wall which must balance the vertically integrated

pressure gradient for the steady state.

With the previous choices the governing balance equations in dimension-

less form read as:

∂ui

∂xi
= 0 , (2.1.1)

∂ui

∂t
= Si +

1

Reτ

(
∂2ui

∂xj
2

)
− ∂p

∂xi
, (2.1.2)

∂θ

∂t
= Sθ +

1

ReτPr

(
∂2θ

∂xj
2

)
− βT (2.1.3)

where ui is the ith component of the velocity vector.

The S-terms contain the non-linear convective terms, the dimensionless
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mean pressure gradient and the buoyancy term:

Si = −uj
∂ui

∂xj
+ δi,1 + δi,3

Gr

Re2τ
θ, (2.1.4)

Sθ = −uj
∂θ

∂xj
. (2.1.5)

In the above equations, δi,1 is the mean pressure gradient that drives the

flow in the streamwise direction while δi,3 is the Kronecker delta (used to

account for the buoyancy term in the wall-normal direction).

Eqs. 2.1.1-2.1.3 are subject to the following boundary conditions:

@ Wall: ux = uy = uz = 0,
∂θ

∂z
= 0 (2.1.6)

@ Free-surface:
∂ux

∂z
=

∂uy

∂z
= uz = 0,

∂θ

∂z
= 1 (2.1.7)

The dimensionless Reynolds, Grashof and Prandtl numbers are defined

as

Reτ =
uτh

ν
, Gr =

gβh3

ν2
∂θ

∂z

∣∣∣
s
, P r =

µcp
λ

. (2.1.8)

where µ and ν are the dynamic and the kinematic viscosity, β is the thermal

expansion coefficient, cp is the specific heat and λ is the thermal conductiv-

ity.

The key parameter for stratified flows is the shear Richardson number

Riτ = Gr/Re2τ , which is the ratio between buoyancy and inertia. Note that

βT = 1/(ReτPr) in Eq. 2.1.3, and depends on the specific flow configuration

considered here (an open channel flow with a constant surface heating).

Specifically, the temperature field inside the channel may be written as:

θ = θ1(t) + θ(x, t), (2.1.9)

where θ1 is the deterministic temperature field (which increases in time

owing to the imposed surface heating), while θ(x, t) is the turbulent tem-

perature field (statistically steady). The substitution of Eq. 2.1.9 into the

energy equation
∂θ

∂t
= −uj

∂θ

∂xj
+

1

ReτPr

∂2θ

∂x2
j

. (2.1.10)
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gives
dθ1
dt

+
∂θ

∂t
= −uj

∂θ

∂xj
+

1

ReτPr

∂2θ

∂x2
j

. (2.1.11)

Using the Reynolds average, Eq. 2.1.11 becomes

dθ1
dt

= −∂〈θ′w′〉
∂z

+
1

ReτPr

∂2〈θ〉
∂z2

. (2.1.12)

The right-hand side (rhs) of Eq. 2.1.12 is only a function of space (since

θ(x, t) is a statistically steady field) while the left-hand side (lhs) is only a

function of time. Consequently Eq. 2.1.12 is satisfied only when rhs and

lhs are constant. To compute the value of the constant, we integrate Eq.

2.1.12 from z = 0 (wall, subscript w) to z = 1 (free-surface, subscript s):∫ 1

0

dθ1
dt

dz =
1

ReτPr

[
∂θ

∂z

∣∣∣
s
−∂θ

∂z

∣∣∣
w

]
. (2.1.13)

Using the boundary conditions (see Eq. 2.1.6-2.1.7), we obtain

dθ1
dt

=
1

ReτPr
(2.1.14)

and

θ1(t) =
t

ReτPr
+ C. (2.1.15)

From Eq. 2.1.15 we note that the deterministic temperature field θ1 in-

creases lineraly in time. Since we are interested in the behavior of the tur-

bulent temperature field θ only, we subtract the temperature changes due

to θ1 from the energy balance equation. Therefore, the governing balance

equation for the temperature field (Eq. 2.1.3) becomes:

∂θ

∂t
+ uj

∂θ

∂xj
=

1

ReτPr

(
∂2θ

∂xj
2

)
− βT , (2.1.16)

where βT = dθ1/dt = 1/ReτPr.

It is evident that Eqs. 2.1.1-2.1.5 include buoyancy effects. However,

the same equations can be used to analyse neutrally-buoyant flows, simply

assuming a vanishing Grashof number (Gr = 0).

Eqs. 2.1.1-2.1.3 are discretized using a pseudo-spectral method based

on transforming the field variables into the wavenumber space, through a

Fourier representation for the periodic (homogeneous) directions x and y,
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and a Chebychev representation for the wall-normal (non- homogeneous)

direction z. A two-level explicit Adams-Bashfort scheme for the non-linear

terms and an implicit Crank-Nicolson method for the viscous terms are

employed for the time advancement. As commonly done in pseudospec-

tral method, the convective non-linear terms are first computed in physical

space and then transformed in the wavenumber space using a de-aliasing

procedure based on the 2/3-rule; derivatives are evaluated directly in the

wavenumber space to maintain spectral accuracy. Further details will be

provided in next section.

2.2 Numerical approach

Throughout this thesis we will analyse different physical problems (strati-

fied/unstratified flows). However, the structure of the governing equations

does not change from one situation to another, as we have observed in Sec.

2.1. As a consequence, a unique numerical scheme can be adopted to anal-

yse all the problems. Without loss of generality, we will take the simulations

with thermal stratification as reference. Indeed, the numerical approach de-

veloped for the solution of Eqs.(2.1.1)-(2.1.3) is discussed. In this section it

is preferred to refer to x,y,z (streamwise, spanwise and wall normal direction

respectively) to as x1, x2, x3 and the same is true for ux, uy, uz which will

be referred to as u1, u2, u3.

2.3 Solution procedure

The present scheme solves for the balance equations of motion (Eqs. 2.1.1-

2.1.3) through the elimination of pressure. The pressure field can be re-

moved upon taking the curl of Eq. (2.1.2), to give:

∂ωk

∂t
= εijk

∂Sj

∂xi
+

1

Re
∇2ωk, (2.3.1)

where ωk = εijk
∂uj

∂xi
is the k− th component of the vorticity vector. Taking

twice the curl of Eq. (2.1.2) and using Eq. (2.1.1) together with the vectorial

identity ∇× (∇× v) = ∇(∇ · v)−∇2v, a 4th-order equation in ui can be

obtained:
∂(∇2ui)

∂t
= ∇2Si −

∂

∂xi

(
∂Sj

∂xj

)
+

1

Re
∇4ui. (2.3.2)



20 2. Governing equations & Numerical methods

Eqs. (2.3.1)-(2.3.2) can be written with respect to the normal components,

i.e. for ω3 and u3:

∂ω3

∂t
=

∂S2

∂x1
− ∂S1

∂x2
+

1

Re
∇2ω3. (2.3.3)

∂(∇2u3)

∂t
= ∇2S3 −

∂

∂x3

(
∂Sj

∂xj

)
+

1

Re
∇4u3. (2.3.4)

These two equations are numerically solved for ω3 and u3. With ω3 and

u3 known, u1 and u2 can be obtained by solving the following equations

simultaneously
∂u1

∂x1
+

∂u2

∂x2
= −∂u3

∂x3
, (2.3.5)

∂u2

∂x1
− ∂u1

∂x2
= ω3. (2.3.6)

Here, Eqs. (2.3.5) and (2.3.6) derive, respectively, from continuity and from

the definition of vorticity. Although not needed for the time advancement of

the solutions, pressure can be obtained by solving a Poisson-type equation

after all velocity components have been found:

∇2p =
∂Sj

∂xj
. (2.3.7)

Once the velocity field is known, the temperature field can be obtained from

the solution of the energy balance equation:

∂θ

∂t
= Sθ +

1

ReτPr

(
∂2θ

∂xj
2

)
− βT . (2.3.8)

2.4 Spectral representation of solutions

To represent the solution in space, finite Fourier expansion in the homoge-

neous (x1 and x2) directions is used:

f(x1, x2, x3) =

N1
2∑

|n1|

N2
2∑

|n2|

f̂(k1, k2, x3)e
i(k1x1+k2x2), (2.4.1)

where f̂ represents the Fourier coefficients of a general dependent function,

i =
√
−1, N1 and N2 are the number of Fourier modes retained in the series,
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and the summation indices n1 and n2 are chosen so that −N1

2 +1 ≤ n1 ≤ N1

2

and −N2

2 + 1 ≤ n2 ≤ N2

2 . The wavenumbers k1 and k2 are given by:

k1 =
2πn1

L1
(2.4.2)

k2 =
2πn2

L2
, (2.4.3)

with L1 and L2 being the periodicity lengths in the streamwise and spanwise

directions. Because of the orthogonality of the Fourier functions, the Fourier

transform f̂ can be obtained as:

f̂(k1, k2, x3) =
1

N1N2

N1
2∑

|n1|

N2
2∑

|n2|

f(x1, x2, x3)e
−i(k1x1+k2x2), (2.4.4)

where x1 and x2 are chosen to be the transform locations

x1 =
n1

N1
L1 (2.4.5)

x2 =
n2

N2
L2. (2.4.6)

In the cross-stream (wall-normal) direction x3, Chebyshev polynomials are

used to represent the solution,

f̂(k1, k2, x3) =

N ′
3∑

n3=0

a(k1, k2, n3)Tn(x3), (2.4.7)

where the prime denotes that the first term is halved. The Chebyshev

polynomial of order n3 in x3 is defined as

Tn3(x3) = cos(n3 arccos(x3)), (2.4.8)

with −1 ≤ x3 ≤ 1. Orthogonality also exist for Chebyshev polynomials,

which leads to the following inverse transformation:

â(k1, k2, n3) =
2

N3

N ′
3∑

n3=0

â(k1, k2, x3)Tn3(x3). (2.4.9)
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In physical space the collocation points along the cross-stream direction are

related to Chebyshev indexes in the following way:

x3 = cos

(
n3π

N3

)
. (2.4.10)

The advantage of using Chebyshev polynomials to represent the solution in

the cross-stream direction is that such a representation gives very good res-

olution in the regions close to the boundaries, because the collocation points

bunch up there 1. For in-depth discussion on Chebyshev polynomials and

their applications in numerical analysis, see Fox and Parker [26]. Therefore

the spectral representation (in all three directions) of a generic dependent

variable takes the final form

f(x1, x2, x3) =

N1
2∑

|n1|

N2
2∑

|n2|

N ′
3∑

n3=0

â(k1, k2, n3)e
i(k1x1+k2x2)Tn3(x3). (2.4.11)

2.5 Discretization of the equations

Momentum equations

With the spectral representation given by Eq.(2.4.1), Eq.(2.3.4) can be writ-

ten as:

∂

∂t

(
∂2

∂x2
3

− k2
)
û3 =

(
∂2

∂x2
3

− k2
)
Ŝ3

− ∂

∂x3

(
ik1Ŝ1 + ik2Ŝ2 +

∂

∂x3
Ŝ3

)
+

1

Re

(
∂2

∂x2
3

− k2
)(

∂2

∂x2
3

− k2
)
û3,

(2.5.1)

where k2 = k21 + k22. Time advancement of Eq. (2.5.1) is done using a two-

level explicit Adams-Bashfort scheme for the convective terms and an im-

plicit Crank-Nicholson method for the diffusion terms. The time-differenced

1In wall bounded flows, resolution close to the wall is very important, since large
gradients of the solutions occur there
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form of Eq. (2.5.1), based on the above schemes, is(
∂2

∂x2
3

− k2
)

(ûn+1
3 − ûn

3 )

∆t
=
3

2

(
∂2

∂x2
3

− k2
)
Ŝn
3 − 1

2

(
∂2

∂x2
3

− k2
)
Ŝn−1
3

− ∂

∂x3
ik1(

3

2
Ŝn
1 − 1

2
Ŝn−1
1 )

− ∂

∂x3
ik2(

3

2
Ŝn
2 − 1

2
Ŝn−1
2 )

− ∂2

∂x2
3

(
3

2
Ŝn
3 − 1

2
Ŝn−1
3 )

+
1

Re

(
∂2

∂x2
3

− k2
)(

∂2

∂x2
3

− k2
)

(ûn+1
3 + ûn

3 )

2
,

(2.5.2)

where superscripts n− 1, n and n+ 1 indicate three successive time levels.

By defining γ = ∆t
2 Re we can rearrange Eq. (2.5.2):[
1− γ

(
∂2

∂x2
3

− k2
)](

∂2

∂x2
3

− k2
)
ûn+1
3 =

− k2(
3

2
Ŝn
3 − 1

2
Ŝn−1
3 )∆t

− ∂

∂x3
ik1(

3

2
Ŝn
1 − 1

2
Ŝn−1
1 )∆t

− ∂

∂x3
ik2(

3

2
Ŝn
2 − 1

2
Ŝn−1
2 )∆t

+ (γ
∂2

∂x2
3

+ (1− γk2))

(
∂2

∂x2
3

− k2
)
ûn
3 .

(2.5.3)

Introducing β2 = 1+γk2

γ and recalling that ∂û3

∂x3
= −ik1û1 − ik2û2 from

continuity, we can manipulate the last term on the rhs of Eq. (2.5.3):

− γ

(
∂2

∂x2
3

− β2

)(
∂2

∂x2
3

− k2
)
ûn+1
3 =

− k2(
3

2
Ŝn
3 − 1

2
Ŝn−1
3 )∆t− k2(γ

∂2

∂x2
3

+ (1− γk2))ûn
3

− ∂

∂x3
ik1(

3

2
Ŝn
1 − 1

2
Ŝn−1
1 )∆t− ∂

∂x3
ik1(γ

∂2

∂x2
3

+ (1− γk2))ûn
1

− ∂

∂x3
ik2(

3

2
Ŝn
2 − 1

2
Ŝn−1
2 )∆t− ∂

∂x3
ik2(γ

∂2

∂x2
3

+ (1− γk2))ûn
2

.

(2.5.4)
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By introducing the historical terms:

Ĥn
1 = (

3

2
Ŝn
1 − 1

2
Ŝn−1
1 )∆t+ (γ

∂2

∂x2
3

+ (1− γk2))ûn
1 ,

Ĥn
2 = (

3

2
Ŝn
2 − 1

2
Ŝn−1
2 )∆t+ (γ

∂2

∂x2
3

+ (1− γk2))ûn
2 ,

Ĥn
3 = (

3

2
Ŝn
3 − 1

2
Ŝn−1
3 )∆t+ (γ

∂2

∂x2
3

+ (1− γk2))ûn
3 ,

(2.5.5)

Eq. (2.5.4) becomes:(
∂2

∂x2
3

− β2

)(
∂2

∂x2
3

− k2
)
ûn+1
3 =

1

γ
(k2Ĥn

3 +
∂

∂x3
(ik1Ĥ

n
1 + ik2Ĥ

n
2 )).

(2.5.6)

If we put Ĥn = k2Ĥn
3 + ∂

∂x3
(ik1Ĥ

n
1 + ik2Ĥ

n
2 ) we come to the final form of

the equation: (
∂2

∂x2
3

− β2

)(
∂2

∂x2
3

− k2
)
ûn+1
3 =

Ĥn

γ
. (2.5.7)

Defining φ̂ =
(

∂2

∂x2
3
− k2

)
ûn+1
3 the above fourth-order equation becomes a

system of two second-order equations:(
∂2

∂x2
3

− β2

)
φ̂ =

Ĥn

γ
, (2.5.8)

(
∂2

∂x2
3

− k2
)
ûn+1
3 = φ̂. (2.5.9)

These equations are solved with the following four boundary conditions:

ûn+1
3 (±1) = 0 (a)

∂ûn+1
3

∂x3
(+1) = 0 (b)

∂2ûn+1
3

∂x2
3

(−1) = 0 (c)

(2.5.10)

where x3 = z = +1 indicates the wall and x3 = z = −1 indicates

the surface. The conditions (b) and (c) are obtained from applying the
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continuity equation at the wall (condition (b)) and its derivative in x3 at

the free-slip surface (condition c).

The lack of real boundary conditions for φ̂ can be circumvented by de-

composing it into three parts:

φ̂ = φ̂1 + Âφ2 + B̂φ3, (2.5.11)

where constants Â and B̂ are to be determined. These three individual

components of φ̂ satisfy:(
∂2

∂x2
3

− β2

)
φ̂1 =

Ĥn

γ
, φ̂1(1) = 0, φ̂1(−1) = 0;(

∂2

∂x2
3

− β2

)
φ2 = 0, φ2(1) = 0, φ2(−1) = 1;(

∂2

∂x2
3

− β2

)
φ3 = 0, φ3(1) = 1, φ3(−1) = 0.

(2.5.12)

Likewise ûn+1
3 can be splitted into:

û3 = û3,1 + Âu3,2 + B̂u3,3. (2.5.13)

Once the solution of Eqs. (2.5.12) has been carried out, we can solve:(
∂2

∂x2
3

− β2

)
û3,1 = φ̂1, û3,1(1) = 0, û3,1(−1) = 0,(

∂2

∂x2
3

− β2

)
u3,2 = φ2, u3,2(1) = 0, u3,2(−1) = 0,(

∂2

∂x2
3

− β2

)
u3,3 = φ3, u3,3(1) = 0, u3,3(−1) = 0.

(2.5.14)

Finally the unknown constants Â and B̂ are determined by applying the

boundary conditions of Eq. (2.5.10b) to ûn+1
3 written in terms of its com-

ponents:

∂û3,1

∂x3
(1) + Â

∂u3,2

∂x3
(1) + B̂

∂u3,3

∂x3
(1) = 0,

∂û3,1

∂x3
(−1) + Â

∂u3,2

∂x3
(−1) + B̂

∂u3,3

∂x3
(−1) = 0.

(2.5.15)

With Â and B̂ determined, ûn+1
3 is fully known. The above system of

equations are solved using a Chebyshev method so the solutions ûn+1
3 will
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be represented by Chebyshev coefficients in the wall normal direction x3.

Therefore, the solution ûn+1
3 will be function of k1, k2 and n3:

ûn+1
3 = ûn+1

3 (k1, k2, n3), (2.5.16)

where 0 < n3 < N3, N3 being the number of coefficients and collocation

points in the wall-normal direction. Recalling Eq.(2.4.1), the solution in

space will read as:

un+1
3 (x1, x2, x3) =

N1
2∑

|n1|

N2
2∑

|n2|

N
′
3∑

n3=0

ûn+1
3 (k1, k2, n3)e

i(k1x1+k2x2)Tn3(x3),

(2.5.17)

The other two velocity components will be determined through the normal

vorticity component ω̂3. Following a discretization procedure similar to that

of Eq. (2.3.4) we can write:(
∂2

∂x2
3

− β2

)
ω̂n+1
3 = − (ik1Ĥ

n
2 − ik2Ĥ

n
1 )

γ
, (2.5.18)

with boundary conditions:

ω̂n+1
3 = ik1û2 − ik2û1 = 0 x3 = +1, (2.5.19)

∂ω̂n+1
3

∂x3
= ik1

∂û2

∂x3
− ik2

∂û1

∂x3
= 0 x3 = −1. (2.5.20)

Once vorticity is known, ûn+1
1 and ûn+1

2 can be determined from solving:

−ik2û
n+1
1 + ik1û

n+1
2 = ω̂n+1

3 , (2.5.21)

ik1û
n+1
1 + ik2û

n+1
2 = −∂ûn+1

3

∂x3
, (2.5.22)

that come from the definition of ω̂3 and from continuity equation, respec-

tively. Pressure can be calculated by the transformed Poisson equation Eq.

(2.3.7): (
∂2

∂x2
3

− β2

)
p̂n+1 = ik1Ŝ

n+1
1 + ik2Ŝ

n+1
2 +

∂Ŝn+1
3

∂x3
. (2.5.23)
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Boundary conditions for p̂n+1 can be obtained by the transformed form of

Eq. (3.3.2) in the x3 direction applied at x3 = ±1.

The above scheme is used to evaluate the solutions in Fourier-Chebyshev

space for k2 6= 0. The case k2 = 0 corresponds to the solution averaged over

an x1 − x2 plane. In this case the solution procedure is simpler: upon time

discretization the x1 and x2 components of Eq. (2.1.2) in Fourier-Chebyshev

space after time discretization give:(
∂2

∂x2
3

− 1

γ

)
ûn+1
1 = −Ĥ1

γ
, (2.5.24)

(
∂2

∂x2
3

− 1

γ

)
ûn+1
2 = −Ĥ2

γ
, (2.5.25)

that can be solved by applying the following boundary conditions:

ûn+1
1 = ûn+1

2 = 0 x3 = +1 (2.5.26)

∂ûn+1
1

∂x3
=

∂ûn+1
2

∂x3
= 0 x3 = −1. (2.5.27)

Using the continuity equation, Eq.(2.5.22), with k1 = k2 = 0 and the

condition ûn+1
3 (±1) = 0 one can show that ûn+1

3 = 0. To calculate p̂n+1 it

is necessary to recall the transformed momentum equation, Eq.(2.1.2), in

the x3 direction for k2 = 0 and ûn+1
3 = 0: we have p̂n+1 = −( ̂un+1

3 un+1
3 ).

Energy equation

Once the velocity field is given the thermal field can be computed solving

Eq. (2.1.3). The convective term ST is advanced in the time integration by

the second order explicit Adams-Bashfort scheme, while the implicit Crank-

Nicolson method is used to advance the diffusion term. The time differenced

energy equation (Eq.3.3.3) is therefore given by:

θ̂n+1
i − θ̂ni

∆θ
=

3

2
Ŝn
θ − 1

2
Ŝn−1
θ +

1

PrReτ

∂2

∂xj∂xj

(
θn+1
i + θni

2

)
(2.5.28)

All n and n− 1 terms are grouped into the historical term

Ĥθ =

[
γθ

∂2

∂z2
+
(
1− γθk

2
)]

θ̂n +∆θ

(
3

2
Ŝn
θ − 1

2
Ŝn−1
θ

)
, (2.5.29)
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where k2 = k21 + k22, γθ = ∆t
2Pr·Reτ

. Upon rearrangement the following

differential equation for the temperature field can be obtained:(
∂2

∂z2
− 1 + γ2

θ

γθ

)
θ̂ = −Ĥθ

γθ
, (2.5.30)

as an unknown for each Fourier wave number pair (k1, k2). Eq.(2.5.30) can

be solved with a Chebishev-Tau method to obtain the new temperature

field.

2.6 Lagrangian Particle Tracking

The dynamics of the floaters is described by a set of ordinary differential

equations for the position, xp, and the velocity, vp, of the floaters. In vector

form:
dxp

dt
= vp , (2.6.1)

dvp

dt
=

(ρp − ρ)

ρp
g +

(u@p − vp)

τp
(1 + 0.15Re0.687p ) , (2.6.2)

where u@p is the fluid velocity at the position of the floater, interpo-

lated with 6th-order Lagrange polynomials, whereas τp = ρpd
2
p/18ρν is

the relaxation time of the floater based on the density ρp and the diam-

eter dp of the floater. The Stokes drag coefficient is computed using a

standard non-linear correction when the Reynolds number of the floater

Rep = |u@p − vp| dp/ν > 0.2. For thermally-stratified flows, the fluid den-

sity ρ in the equation of particle motion Eq.2.6.2 depends on the temper-

ature. However, the variation of ρ with temperature is smaller compared

with the difference between the particle density and the fluid reference den-

sity. This suggests that the variation of the fluid density in Eq.(2.6.2) is

negligible, and ρ can be considered constant. Note also that, for the present

choice of the physical parameters, the dynamics of the particles is not in-

fluenced by the lift force (Giusti et al., 2005; Molin et al., 2012). Floaters

are treated as pointwise non-rotating rigid spheres (point-particle approach)

and are injected into the flow at a concentration low enough to consider di-

lute system conditions: the effect of the floaters on turbulence is neglected

(one-way coupling approach) as well as the inter-floaters collisions. Peri-

odic boundary conditions are imposed on the floaters moving outside the

computational domain in the homogeneous directions. In the wall-normal



2.6. Lagrangian Particle Tracking 29

direction, the floaters reaching the free surface still obey the buoyancy force

balance, whereas elastic rebound is enforced at the bottom wall. A 4th-order

Runge-Kutta scheme is used to advance Eqs.(2.6.1)-(2.6.2) in time.
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II
Results





3
Free-surface turbulent flow

In this chapter the turbulence of free-surface is investigated.

This chapter is divided in two main sections: the first part the case of

flow without thermal stratification will be studied. In this section, once

the velocity profiles and statistics are shown and discussed, how energy

flows across the scales at the surface will be examined . The phenomenon

of energy transfer will be introduced and analysed by means of spectral

energy flux. The effect of surface compressibility will be also introduced

and discussed and it will be compared with the theoretical predictions. In

the second part will be discussed the case of turbulence affected by thermal

stratification.

3.1 Introduction: problem definition

Accurate prediction of transfer fluxes of heat, momentum and chemical

species at the ocean-atmosphere interface is of paramount importance for

sizing environmental issues and for depicting future climate change sce-

narios. For non breaking interfaces, transfer fluxes are strictly controlled

by the dynamics of free-surface turbulence. Albeit constrained onto a two-

dimensional space, free surface turbulence exhibits features which are barely

described by simplified two-dimensional modelling. Via Direct Numerical

Simulation of the fully three dimensional free surface channel flow it will be

demonstrated that energy transfer near the surface is characterized by an in-

verse cascade from the smaller to the larger flow scales. The two-dimensional

surface divergence (∇2D) and compressibility (C) are used to show that re-

gions of direct and inverse energy cascade are associated to the local flow

structures. It will be demonstrated and quantified that surface compress-
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ibility is a direct measure of the transition from a fully three-dimensional

turbulence to a surface turbulence indicating the predominance of the in-

verse energy cascade and suggesting guidelines for large scale modelling of

free-surface turbulent flows.

3.2 Turbulence at the free-surface

A sketch of the simulated flow configuration is shown in 3.1, together with

the boundary conditions for the fluid (water). The flow field is calculated

by integrating incompressible continuity and Navier-Stokes equations. The

equation for the flow in dimensionless form are here recalled:

∂ui

∂xi
= 0 ,

∂ui

∂t
= −uj

∂ui

∂xj
+

1

Reτ

∂2ui

∂xj∂xj
− ∂p

∂xi
+ δ1,i (3.2.1)

with ui the ith component of the fluid velocity, p the fluctuating kinematic

pressure, δ1,i the mean pressure gradient driving the flow, and Reτ = huτ/ν

the shear Reynolds number based on the channel depth h and the shear

velocity uτ =
√
h| δ1,i| /ρ.

Results presented in this section are relative to two values of the shear

Reynolds number: ReLτ = 171 and ReHτ = 509 corresponding, respectively,

to shear velocity uL
τ = 0.00605 ms−1 and uH

τ = 0.018 ms−1. The size of the

computational domain in wall units is L+
x ×L+

y ×L+
z = 2πReτ×πReτ×Reτ ,

discretized with 128 × 128 × 129 grid points (kx = i2π/Lx, ky = j2π/Ly

with i, j = 1, ..., 128, and Tn(z) = cos[n · cos−1(z/h)] with n = 1, ..., 129

before de-aliasing) at ReLτ and with 256× 256× 257 grid points (i, j = 256

and n = 257 before de-aliasing) at ReHτ .

3.2.1 Flow field statistics

For validation purposes, Fig. 3.2 shows the mean and RMS (Root Mean

Square) fluid velocity profiles for both Reynolds numbers: results compare

well with those reported in previous studies (see e.g. [46], not shown). Figs.

3.2(a) and 3.2(c) indicate that the free surface does not alter significantly

the mean velocity profile, but also does not influence near-wall turbulence.

The strong effect of the free surface on turbulence is revealed by the increase

of the streamwise and spanwise components of the RMS near the surface
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Figure 3.1 – Sketch of the computational domain with boundary conditions for the
fluid.

itself (see Figs. 3.2(b) and 3.2(d)), indicating the presence of an anisotropic

velocity layer [46].

3.2.2 Characterization of free-surface turbulence through

energy spectra

Turbulent flow structures near the free surface of an open channel have

been investigated in several previous studies [32, 48, 33, 54, 62, 46, 47],

as discussed in Chap. 1. All these studies show that surface structures

are generated and sustained by bursting phenomena that are continuously

produced by wall shear turbulence inside the buffer layer. Bursts emanate

from the bottom of the channel and produce upwelling motions of fluid as

they are convected toward the free surface. Near the surface, turbulence is

restructured and nearly two-dimensionalized due to damping of vertical fluc-

tuations [61]: upwellings appear as two-dimensional sources for the surface-

parallel fluid velocity and alternate to sinks associated with downdrafts of

fluid from the surface to the bulk. Through sources fluid elements at the

surface are replaced with fluid from the bulk, giving rise to the well-known

surface-renewal events [33]. Whirlpool-like vortices may also form in the

high-shear region between closely-adjacent upwellings. This phenomenology

has been long recognized to produce flow with properties that differ from

those typical of two-dimensional incompressible Navier-Stokes turbulence

[35, 23]. These properties can be quantified examining the energy spectra

of the fluid velocity fluctuations on the surface [46], shown in Fig. 3.3 for the

case of statistically-steady turbulence. To emphasize direction-related as-
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Figure 3.2 – Fluid velocity statistics: mean streamwise velocity, u+
m (panels (a) and

(c)); and Root Mean Square components, RMS(ui) (panels (b) and (d)). Panels (a-b)
refer to the ReHτ simulation, panels (c-d) refer to the ReLτ simulation. The insets in
panels (a) and (b) compare the mean velocity profile to the wall law u+

m = z+ and to
the logarithmic law u+

m = 2.5 ln(z+) + 5.5 in lin-log scale.

pects of the energy spectra, results for the surface-parallel velocities are ex-

amined in isolation: Panels (a) and (c) in Fig. 3.3 show the one-dimensional

streamwise spectra of the streamwise velocity Ex(kx) computed at the free

surface (z+ = 0, circles) and at the channel center (z+ = 254.6 at ReHτ ,

z+ = 85.5 at ReLτ , squares) in the ReHτ and ReLτ simulations, respectively;

panels (b) and (d) show the spectra of the spanwise velocity Ey(kx) in the

same two regions. Solid lines represent the slope of the spectrum within the

inertial regimes predicted by the Kraichnan-Leith-Batchelor (KLB) phe-

nomenology of two-dimensional turbulence [34, 4]: k
−5/3
x , representing in-

verse cascade of energy to large flow scales and k−3
x , representing direct
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cascade of enstrophy to small flow scales. A collective analysis of spectra

shown in Fig. 3.3 reveals clear deviations from two-dimensionality. First, no

evident −5/3 range is observed except for few of the lowest wavenumbers:

this can be attributed to the intermittent nature of turbulence associated

with spatial fluctuations in the rate of energy dissipation. A relatively larger

range of high wavenumbers can be identified over which spectra exhibit a

−3 scaling: In the present flow configuration, however, this corresponds to

up-cascading of energy from large to small wavenumbers, namely to merg-

ing of smaller flow structures into larger structures. Such findings cannot

be reconciled with the KLB theory for 2D turbulence.

Examining Ex(kx), we notice that the spectrum at the free surface is

always below that in the center of the channel. Also, energy in the high-

wavenumber portion of the spectrum decays more rapidly [46], roughly as

k−6: This tendency is particularly evident at ReHτ and indicates that only

large-scale surface structures survive to the detriment of small-scale ones.

Examining Ey(kx), we observe that redistribution of energy from small to

large scales in proximity of the free surface determines a cross-over between

spectra at low wavenumbers (for both Reynolds numbers): this finding con-

firms further that small scale structures play little role in determining tur-

bulence properties in this region of the flow.

3.2.3 How energy flows across the scales and compress-

ibility effects at free surface

To investigate further on the direct/inverse cascade of the energy flux across

turbulent scales a filtering approach similar to that presented in [48, 73] is

used. A filtered flowfield u(∆) is obtained applying a low-pass Gaussian filter

Gl(k) = exp(−|k|2∆2/24), in which ∆ is the filter size, to the field variables

written in the wavenumber space (k). The scales of the velocity field are

thus divided into scales larger than ∆ (unfiltered) and scales smaller than

∆ (filtered). Turbulence kinetic energy transport equation for the scales

larger than a given ∆ (q = ui
(∆)ui

(∆)) is thus [48, 73] :

∂q

∂t
+

∂qui
(∆)

∂xj
=

∂

∂uj

(
−2p(∆)uj

(∆) − 2ui
(∆)τij +

1

Re

∂q

∂xj

)
− 2

Re

∂ui
(∆)

∂xj

∂ui
(∆)

∂xj
+ 2τijSij

(∆)
,

(3.2.2)
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Figure 3.3 – One-dimensional (streamwise) energy spectra of the streamwise (Ex(kx),
panels (a) and (c)) and spanwise (Ey(kx), panels (b) and (d)) surface-parallel velocity
fluctuations. Spectra are computed at the free surface (z+ = 0, circles) and at the
channel center (z+ = 254.6 at ReHτ , z+ = 85.5 at ReLτ , squares). Panels (a) and (b)
refer to the ReHτ simulation, panels (c) and (d) refer to the ReLτ simulation.

where τij = uiuj
(∆)−ui

(∆)uj
(∆) is the stress and Sij

(∆)
= 1/2(∂ui

(∆)/∂xj)

is the rate-of-strain tensor. The dissipation for the scales smaller than ∆ is

Π(∆) = −τijSij
(∆)

= −
[
uiuj

(∆) − ui
(∆)uj

(∆)
] ∂ui

(∆)

∂xj
.

This quantity is the energy flux between small and large scales across the

filter size. In particular, Π(∆) > 0 indicates the direct energy cascade from

larger to smaller scales, whereas Π(∆) < 0 is the inverse energy cascade

from smaller to larger scales. We can explicitely compute the contribution

of the direct and inverse energy flux to the total energy flux as Π
(∆)
+ =

1
2 (Π

(∆) + |Π(∆)|) and Π
(∆)
− = 1

2 (Π
(∆) − |Π(∆)|), respectively. Note that

Π(∆), Π
(∆)
+ and Π

(∆)
− are function of the cut-off filter size ∆: by varying the

filter size ∆, we obtain the characteristic energy flux at different scales.

The behavior of time and plane averaged energy fluxes for both Reynolds

numbers is demonstrated in Fig. 3.4.

Results, which are relative to the channel surface, are shown as a func-
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Figure 3.4 – Time-average of the energy flux Π(∆) as a function of the Gaussian filter
size (∆) at the channel surface (z = 0) for ReLτ (solid line, −) and ReHτ (dashed line,

−−). The contribution of the positive energy flux (direct cascade, Π
(∆)
+ ) and of the

negative energy flux (inverse cascade, Π
(∆)
− ) are also shown in the inset.
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tion of the dimensionless filter size, ∆/Ly, and are normalized by the plane

averaged absolute value of the viscous dissipation ε0 = (2/Re)SijSij [48].

For the low Reynolds number ReLτ (solid line in Fig. 3.4), we observe that

the energy flux peaks at ∆/Ly ' 0.1, and then monotonically decreases to

zero when the filter size ∆ increases. The energy flux is indicating the pre-

dominance of the direct energy cascade mechanism across the entire scale

range. Note that in physical space the peak corresponds to the size of the

most energetic surface structures like plumes, upwellings and time-persistent

recirculation regions.

The behaviour of the energy flux for the high Reynolds number ReHτ (dashed

line in Fig. 3.4) appears richer: the maximum is reached approximately at

the same location ∆/Ly ' 0.1 observed for ReLτ but the energy flux becomes

negative for ∆/Ly > 0.2. This indicates a strong and persistent inverse en-

ergy cascade occurring at larger scales.

To deepen the analysis, it is observed the behavior of the single positive

(Π
(∆)
+ ) and negative (Π

(∆)
− ) contributions to the overall energy flux in order

to establish the relative importance of direct and inverse energy cascade

mechanisms for all scales. As shown in the inset of Fig. 3.4, for low and

high Reynolds numbers both cascades exist in the entire range of scales.

However, for ReLτ the contribution of the inverse energy cascade is not suf-

ficient to dominate the dynamics of turbulence: it is always Π
(∆)
+ > Π

(∆)
− .

By contrast, for ReHτ the inverse cascade is proportianally more important,

with a peak value occurring for scales which are larger (∆/Ly ' 0.25) than

those corresponding to the peak of the direct cascade (∆/Ly ' 0.1). Over-

all, it is observed a competion between the direct and the inverse cascade

mechanism which produces a non-monotonic behavior. For ∆/Ly < 0.2,

Π
(∆)
+ prevails yelding to the direct energy cascade. For ∆/Ly > 0.2, Π

(∆)
−

dominates, producing a remarkable inverse energy cascade. This inverse

energy cascade controls the dynamics of the large and persistent (in time

and space, see [61]) scales, with important implications for all transport

phenomena for which these scales are significant.

3.2.4 Flow topology & Energy Cascade

The physical mechanism leading to direct or inverse energy cascades is still

an open question, with new promising theories (for two dimensional turbu-

lence) supporting the importance of large scale strain and vortex thinning in

the dynamics of the inverse energy cascade [73]. At the surface of our three
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dimensional numerical experiment, turbulence is continuously regenerated

by upwellings advecting energy at the surface, where turbulence dynamics

appears somehow two-dimensionalized and characterized by strongly differ-

ent features [61]. To explore surface turbulence it is studied the behavior of

the two dimensional surface divergence ∇2D = ∂u
∂x + ∂v

∂y . This topological

flow feature provides information about the exchange of mass and momen-

tum between the surface and the bulk of the flow. Regions characterized

by ∇2D > 0 are regions of local flow expansion, generated by bulk flow

upwellings. Regions characterized by ∇2D < 0 are regions of local flow

compression leading to downwellings. Contour maps of the instantaneous

energy flux Π(∆) (computed for ∆/Ly = 0.2, a scale at which inverse and

direct cascades are both significant for the two Reτ examined) and of the

instantaneous two dimensional surface divergence ∇2D are shown vis-a-vis

for low and high Reynolds numbers in Fig. 3.5 and Fig. 3.6 respectively.

Local energy fluxes and flow sources/sinks have a distinctly inhomogeneous

pattern distribution exhibiting a remarkably strong correspondence, which

can give a possible explanation of surface turbulence mechanisms.

Regions of direct cascade (Π(∆) > 0) seem to correspond to regions of

flow expansion (upwellings, ∇2D > 0), whereas regions of inverse cascade

(Π(∆) < 0) seem to correspond to regions of flow compression (downwellings,

∇2D < 0). We can try to measure this correspondence via the following

spatial correlations computed for the same filter size ∆/Ly = 0.2:

〈∇+
2DΠ

(∆)
+ 〉 =

〈∇+
2D(x− x′, y, zsurf )Π

(∆)
+ (x, y, zsurf )〉

∇+
2D,rms(zsurf )Π

(∆)
+,rms(zsurf )

and

〈∇−
2DΠ

(∆)
− 〉 =

〈∇−
2D(x− x′, y, zsurf )Π

(∆)
− (x, y, zsurf )〉

∇−
2D,rms(zsurf )Π

(∆)
−,rms(zsurf )

,

where zsurf represents the position of the free surface. Results are shown

in Fig. 3.7 for Reτ = 171 and in Fig. 3.8 for Reτ = 509.

The correlation between Π
(∆)
+ and ∇+

2D and between Π
(∆)
− and ∇−

2D, is

strong for both ReLτ and ReHτ for a length roughly corresponding to the

filter width and then drops to almost zero for scales larger than the fil-

ter size. This strong spatial correlation suggests a causal relation between

the direct/inverse energy cascade and the surface renewal mechanism based
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Figure 3.5 – Contour maps of the energy flux Π(∆) (panel a) and of the two-
dimensional surface divergence ∇2D (panel b) computed at the free surface for
Reτ = 171.
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on upwellings and downwellings [61, 48]. To show this striking correspon-

dence, in Figs. 3.7b-c and in Figs. 3.8b-c we present a zoom of the small

squares area depicted in Figs. 3.5-3.6. Contour maps of Figs. 3.7b-c show

an almost perfect coincidence of direct/inverse energy cascade regions with
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Figure 3.6 – Contour maps of the energy flux Π(∆) (panel a) and of the two-
dimensional surface divergence ∇2D (panel b) computed at the free surface for
Reτ = 509.
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the expansion/compression regions: the overlapping streamlines complete

the self evidence of the flow topology with the surface regeneration mech-

anism. The same correlations are even better depicted in Figs. 3.8b-c.

The occurence of downscale/upscale energy transfer can be directly linked
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Figure 3.7 – Correlation coefficient 〈∇+
2DΠ∆

+〉 (solid line, −) and 〈∇−
2DΠ∆

−〉 (dashed

line, −−) between the positive (resp. negative) energy flux Π∆
+ (resp. Π∆

−) and

the positive (resp. negative) two dimensional surface divergence ∇+
2D (resp. ∇−

2D)

computed along the streamwise direction x and averaged in time for ReLτ = 171 (panel
a). We also show the spatial distribution of Π(∆) (panel b) and ∇2D (panel c) on
the rectangular region indicated in Fig. 3.5. Flow streamlines have been superposed
to each contour map to highlight regions of local flow expansion (flow sources) and
regions of local flow compression (flow sinks).

(b) (c)

to the behavior of the third order structure function, S3 =
〈
(δru)

3〉 , with
δru = [u(x+r)−u(x)] being the longitudinal velocity increments. In partic-

ular, the sign of S3 indicates the direction of the energy flux: for negative S3,

energy goes from large to small scales (downscale energy transfer), whereas

for positive S3 energy goes from small to large scales (upscale energy trans-

fer). Our results on the behavior of S3 at the channel center and at the free

surface are shown (as a function of r/Ly ) in Fig. 3.9 for both ReLτ and

ReHτ .

At the channel center (Fig. 3.9a), S3 is always negative for both Reτ ,



3.2. Turbulence at the free-surface 45

0.

0.2

0.4

0.6

 0  0.1  0.2  0.3  0.4 x/Ly

〈∇2DΠ
∆〉

(a)

Figure 3.8 – Correlation coefficient 〈∇+
2DΠ∆

+〉 (solid line, −) and 〈∇−
2DΠ∆

−〉 (dashed

line, −−) between the positive (resp. negative) energy flux Π∆
+ (resp. Π∆

−) and

the positive (resp. negative) two dimensional surface divergence ∇+
2D (resp. ∇−

2D)

computed along the streamwise direction x and averaged in time for ReLτ = 509
(panel a). We also show the spatial distribution of Π (panel b) and ∇2D (panel c) on
the rectangular region indicated in Fig. 3.6. Flow streamlines have been superposed
to each contour map to highlight regions of local flow expansion (flow sources) and
regions of local flow compression (flow sinks).
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indicating the predominance of the downscale energy transfer: in the bulk,

energy flows from large to small scales only. A similar behavior is observed

at the free surface for ReLτ (Fig. 3.9b, triangles), with only a narrow range of

scales (around r/Ly ' 0.1) were S3 is positive (i.e. a limited upscale energy

transfer). The situation changes for ReHτ at the free surface ( Fig. 3.9b,

circles): S3 is negative at small length scales but turns positive (displaying

a plateau) for r/Ly > 0.1. This indicates the occurrence of a downscale

energy transfer for r/Ly < 0.1, which is replaced by a persistent upscale

energy transfer for r/Ly > 0.1. The length scale at which S3 changes sign
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Figure 3.9 – Third order structure function S3(r) computed at the channel center
(panel a) and at the free surface (panel b) for both ReLτ = 171 and ReHτ = 509. S3 is
shown as a function of r/Ly .
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(r/Ly ' 0.1) can be regarded as the average size of an upwelling. This

may be understood from a simple physical interpretation of the third order

structure function. By drawing an imaginary circle around a given flow field,

the radial vector of the velocity difference between the center of the circle

and its circumference indicates the energy direction: the energy flows out

of the circle, if the circle encloses an upwelling, whereas the energy flows

in, if the circle encloses a downwelling. The upscale energy transfer has
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been recently associated ([7]) also to the behavior of the second-order S2 =〈
(δru)

2〉 and forth-order S4 =
〈
(δru)

4〉 structure functions. In particular,

structure functions were found to scale as Sp ' rp/3 in the inertial range.

Here, we try to quantify the behavior of S2(r) and S4(r) in free surface

flows, where no clear indication of these behaviors is available [29].
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Figure 3.10 – Second (S2(r), panel a) and forth (S4(r), panel b) order structure
functions for ReLτ = 171 expressed as a function of r/Ly and computed at the surface
and at the center of the channel. The solid lines indicate the observed scaling in the
inertial range. At the channel center (mid channel, empty circles), S2 ' r2/3 and
S4 ' r4/3
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Figure 3.11 – Second (S2(r), panel a) and forth (S4(r), panel b) order structure
functions for ReHτ = 509 expressed as a function of r/Ly and computed at the surface
and at the center of the channel. The solid lines indicate the observed scaling in the
inertial range. At the channel center (mid channel, empty circles), S2 ' r2/3 and
S4 ' r4/3

(a)

(b)

Our results are shown in Figs. 3.10-3.11 as a function of the dimension-

less displacement r/Ly and for both ReLτ and ReHτ .
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Specifically, we compare the behavior of the structure functions at the

free surface (filled circles) and at the channel center (empty circles) .

The range of scales where we observe an algebraic scaling, although

not extremely large, is however sufficient to propose a trend behavior. As

expected, where turbulence is three dimensional (channel center) Sp ' rp/3

for both ReLτ and ReHτ .

To quantify carefully the scaling behavior of the structure functions at

the free surface, we use the Extended Self Similarity (ESS) representation

[6].

The slope (ξp ) of the p-th order structure function (Sp ' rξp ) is ob-

tained by plotting 〈(δru)p〉 versus
〈
(δru)

3〉 on a log-log plot, and by com-

puting ξp = dlogSp/dlogS3 . The value of ξp measured for p ≤ 6 is shown

in Fig. 3.12 and compared with the Kolmogorov p/3 scaling (dotted line).

Deviations from the Kolmogorov scaling are seen for p ≥ 4 for both ReLτ and

ReHτ (with larger deviations for ReHτ ), and are likely due to intermittency

phenomena occurring at the free surface.

0.6
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1.4

1.8

1 2 3 4 5 6p

ξp

Reτ=509

Reτ=171

p/3

Figure 3.12 – Structure function scaling exponent ξp at the free surface for both ReLτ
and ReHτ . The dotted line indicates the classical Kolmogorov scaling p/3.

3.2.5 Flow compressibility

These results lead to infer the following scenario for the dynamics of di-

rect/inverse energy cascades in free surface turbulence. Direct energy cas-

cade is associated with regions of local flow expansion (∇2D > 0) caused
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by upwellings reaching the free surface from below. Since upwellings are

produced by the full three dimensional flow field, they follow the basic laws

of three dimensional turbulence: this behavior is kept also in the initial

stage of their joining the surface. This sort of fossil three dimensional tur-

bulence explains the regions of direct energy cascade observed at the free

surface. Once attached at the free surface, upwellings gradually loose their

three dimensionality and move according to the basic laws of two dimen-

sional turbulence (hence following the inverse energy cascade). The relative

strength of the inverse energy cascade mechanism is small for low Reτ but

increases for increasing Reτ . At higher Reτ , the free surface dynamics is

decoupled from the three dimensional dynamics of the bulk, hence becoming

closer to the classical two-dimensional turbulence.

However, surface models based on two dimensional turbulence theories

and simulations cannot but partially reproduce the much richer physics

exhibited by surface turbulence [63]. As an example, the two dimensional

divergence cannot be used as flow topology indicator in two dimensions

since it is locally zero. In previous works [23, 63, 8] the flow compressibility

rather than the two dimensional divergence, was used to characterize the

behavior of three dimensional turbulence onto two dimensional planes. The

degree of compressibility is quantified by the dimensionless compressibility

factor

C =
〈(∇ · v)2〉
〈|∇v|2〉

=

=
〈(∂xux + ∂yuy)

2〉
〈(∂xux)2〉+ 〈(∂xuy)2〉+ 〈(∂yux)2〉+ 〈(∂yuy)2〉

.

(3.2.3)

The value of C as a function of the vertical direction z/h is shown in Fig. 3.13

for both ReLτ (Fig. 3.13a) and ReHτ (Fig. 3.13b). The range of abscissae in

Fig. 3.13 is limited to the top half of the channel from the free surface down

to the channel centerline (z/h = 0.5). For both Reτ , compressibility peaks

close to the surface and drops down almost asymptotically to C = 0.16

(dashed line in Fig. 3.13) at the channel half height, a value indicating the

theoretical prediction of C for homogeneous isotropic turbulence [8].

In the present case, it is clear that the behavior of C far from the free

surface approaches the limiting behavior of three dimensional homogeneous

isotropic turbulence. The line C = 0.5 in Figure is the theoretical predic-

tion based on the Kraichnan compressible flow as reported in [34, 8]. This



50 3. Free-surface turbulent flow

0.15

0.3

0.45

0.6

 0  0.1  0.2  0.3  0.4  0.5
z/h

C

0.15

0.3

0.45

0.6

 0  0.1  0.2  0.3  0.4  0.5

C

z/h

Figure 3.13 – Behavior of the compressibility factor C along the wall-normal direc-
tion z/h for ReHτ and for ReLτ (inset). Note that z = 0 represents the free surface.
Values of the compressibility factor for a two dimensional cut of a three dimensional
homogeneous isotropic turbulent flow (C ' 1/6) and for a compressible Kraichnan
flow (C = 0.5) are also shown ([8]).

value represents the upper limit of the compressibility factor as computed

from three dimensional simulations of homogeneous isotropic turbulence

with suitable boundary conditions [63, 8]. Our data show for the first time

the compressibility of a three dimensional free surface channel flow and

report values for the compressibility factor C trespassing the theoretical

threshold value C = 0.5. In accordance with previous works [28, 12] in

which an increase of the compressibility factor C was associated with an

inverse energy cascade prevailing over a direct energy cascade, we find that

compressibility is larger for larger Reτ (hence when a strong inverse energy

cascade occurs). It is important to observe that a compressibility factor

larger than the critical value C = 0.5 is of significant importance: it suggets

the occurrence of extreme events (velocity source and sinks, associated to

point-like structures) which which may have strong influence on the dis-

persion of chemical species and particles in free surface flows (as it will be

discussed estensively in next Chap. 4).
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3.3 Stratified turbulence at the surface

In this section the influence of thermal stratification on the free surface

turbulent channel flow, will be investigated.

The reference geometry is the same of previous section with a stable

stratification obtained by imposing a constant heat flux at the surface and

an adiabatic condition at the wall (see Fig. 2.1).

The system of equations resolved are here recalled in dimensionless form:

the conservation of mass, momentum and energy of the fluid is described

by the following set of three-dimensional time-dependent equations:

∇ · u = 0 , (3.3.1)

∂u

∂t
+ u · ∇u =

1

Reτ
∇2u−∇p+

Gr

Re2τ
θδg + δp, (3.3.2)

∂θ

∂t
+ u · ∇θ =

1

ReτPr
∇2θ − βT , (3.3.3)

where u = (ux, uy, uz) is the velocity vector, p is the fluctuating kine-

matic pressure, δp = (1, 0, 0) is the mean pressure gradient that drives the

flow in the streamwise direction, θ is the temperature field and δg = (0, 0, 1)

is necessary to compute the buoyancy term only in the wall-normal direc-

tion.

For the fluid velocity, no-slip (resp. no-stress) boundary conditions are

enforced at the bottom (resp. top) boundary.

The dimensionless Reynolds, Grashof and Prandtl number are defined

as

Reτ =
uτh

ν
, Gr =

gβh3

ν2
∂θ

∂z

∣∣∣
s
, P r =

µcp
λ

. (3.3.4)

where µ and ν are the dynamic and the kinematic viscosity, β is the thermal

expansion coefficient, cp is the specific heat and λ is the thermal conductiv-

ity. In the definition of Reτ and Gr, uτ = (h |δp| /ρ)1/2 is the shear velocity

(ρ being the fluid density) whereas ∂θ/∂z|s is the imposed free-surface heat-

ing.

An extensive campaign of Direct Numerical Simulations (DNS) is per-

formed to investigate the role of the fluid stratification. All the simula-

tions are run at reference Prandtl number Pr = 5 and Reynolds number
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Reτ = 171. Three different values of the Grashof number are considered

in this study: Gr = 0, Gr = 3.02 × 105 and Gr = 9.15 × 105. As a con-

sequence, the numerical simulations are run at three different values of the

shear Richardson number Riτ = Gr/Re2τ , which measures the importance

of buoyancy compared to inertia: Riτ = 0, Riτ = 165 and Riτ = 500. Note

that Gr is changed by changing the temperature gradient at the free sur-

face. The spatial resolution of each simulation (128× 128 × 257) is chosen

to fulfill the requirements imposed by DNS (Tiselj et al., 2001 [70]).

3.3.1 Flow field statistics

First how the stable stratification of the fluid influences the mean flow field

in free-surface turbulence will be considered.

In Fig. 3.14a the mean streamwise velocity profile 〈ux〉 (in wall units) is

shown for the three regimes of stratification as a function of the wall-normal

coordinate z+ = zuτ/ν. Brackets indicate time and space average. The av-

eraging procedure is done using snapshots of velocity and temperature fields

separated in time exceeding the correlation time and in space exceeding the

integral scale.

Since the simulations are run keeping the driving pressure gradient con-

stant, the slope of the velocity profile at the bottom wall is invariant among

the different simulations. For increasing stratification, however, we observe

a clear separation of the domain into two different regions: a turbulent re-

gion near the bottom wall (z+ < 80), where the usual near wall-turbulence is

maintained, and a buoyancy-affected region near the free surface (z+ > 80),

where the stratification becomes important and the flow velocity increases.

The flow velocity and the corresponding mass flow rate increase near the

free surface for increasing Riτ : this is due to a reduction of the wall-normal

momentum transport, and in particular of the wall shear stress (the driving

pressure gradient being constant in all the simulations). In Fig. 3.14b we

show the behavior of the mean temperature profiles as a function of the

wall-normal coordinate z+.

Regardless of the value of Riτ , we observe a region of large temperature

gradient (near the free surface) topping a region where the temperature

gradient is small and almost uniform (z+ < 80). This region of well-mixed

temperature near the bottom wall is due to the existence of active turbulence

which effectively stirs the flow. The region near the free surface, charac-

terized by the large temperature gradient and low mixing is usually called
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Figure 3.14 – Mean fluid streamwise velocity and temperature for stably-stratified
free surface turbulence at Riτ = 0 (solid line), Riτ = 165 (dashed line) and Riτ =
500 (dotted line). Panels: (a) mean fluid streamwise velocity, 〈ux〉; (b) mean fluid
temperature, 〈(θ − θS)/∆θ〉.
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thermocline: the thickness of the thermocline increases with Riτ , possibly

indicating that mixing is increasingly reduced. Fluid parcels approaching

the thermocline from the lower turbulent region do not have enough mo-

mentum to trespass the gravitational potential barrier created by the steep

temperature gradient of the thermocline.

To observe the influence of the stable stratification on mixing and tur-

bulence characteristics, the statistics of the fluid velocity and temperature

fluctuations are examined. The root mean square (rms) of the fluid velocity

fluctuations in each direction is shown in Fig. 3.15a-c.

For unstratified turbulence (Riτ = 0), the velocity fluctuations near the

bottom wall (where turbulence production is maximum) are similar to those

observed in standard closed channel simulations, indicating that the near

wall turbulence is not influenced by the presence of a free-slip top boundary

(Lam and Banerjee [37]). The largest effect of the free surface on turbulence

is the increase of 〈u′
x,rms〉 and 〈u′

y,rms〉 near the surface itself. Correspond-
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ingly, 〈u′
z,rms〉 is largely reduced at the free surface and turbulence is nearly

two-dimensional. For stratified turbulence (Riτ > 0) we observe that the

profiles of the velocity fluctuations are not altered in the near-wall region

z+ < 40, where the typical dynamics of the wall turbulence is maintained.

A different situation occurs in the upper part of the domain (z+ > 90), and

in particular near the free surface. In this region, 〈u′
x,rms〉 and 〈u′

y,rms〉
decrease significantly as Riτ increases. This is due to the stabilizing effect

induced by the fluid stratification, which reduces the turbulence fluctuations

(turbulent kinetic energy is lost to potential energy). By contrast, 〈u′
z,rms〉

is less influenced by the fluid stratification near the free surface, owing to

the strong constraint on u′
z imposed by the assumption of an undeformable

free surface. This turbulence modulation has an impact on the distribution

of temperature inside the free-surface channel. The rms of the temperature

fluctuations, θ′rms/∆θ, is shown in Fig. 3.15d. For neutrally buoyant and

weakly-stratified flows (Riτ = 0 and Riτ = 165, respectively), the temper-

ature fluctuations have a maximum at the free surface, or very close to it.

This is due to the specific boundary condition prescribed for the energy

equation (Eq. 3.3.3): owing to the constant heat flux condition, there is

no constraint on the temperature value at the interface, thus producing a

maximum on the temperature fluctuations. This situation changes when

the fluid stratification becomes stronger. For Riτ = 500, we observe a peak

value for the temperature fluctuations occurring at z+ ' 150 (and not at

the free surface). Higher temperature fluctuations below the free surface

are not due to the turbulence structures; rather, they are the consequence

of the large scale IGW occurring in this region when Riτ increases (see also

the following discussion on flow structures). We also observe that θ′rms/∆θ

decreases with increasing Riτ .

Flow visualizations are now considered to identify specific flow structures

in free-surface stratified turbulence. In particular, we use contour maps of

the temperature field, since the temperature distribution is a clear marker

of the underlying flow field structure. Results, obtained for simulations run

at Riτ = 0, Riτ = 165 and Riτ = 500, are shown in Fig. 3.16.

The mean flow is from left to right (positive x direction). For Riτ = 0

(unstratified flow), temperature is passively advected by the velocity field.

Bursts emanate from the bottom wall and produce upwelling motions of

fluid traveling towards the free surface (blue regions in Fig 3.16a). To re-

place the fluid carried by upwellings, downward motions (downwellings) are
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produced at the free surface and move towards the bulk region (red regions

in Fig.3.16a). These mechanisms for the velocity/temperature distribution

change when considering a stratified flow. Stratified flows can sustain a

variety of wavy motions which have no counterpart in unstratified flows.

The reason is the tendency for the vertical motions to be suppressed by

buoyancy: a fluid particle which is displaced in the vertical direction by

the velocity fluctuations tends to be restored to its original position; it may

overshoot inertially and oscillate about this position (Zonta et al., 2012b

[75]). This oscillation (IGW) is clearly visible near the free surface in Fig.

3.16c. In the remaining part of the domain, intermittent bursts associated

with the near-wall turbulence are seen. Note that the region where the

internal waves are observed coincides with the region where a thermocline

exists (see Fig. 3.14b), proving that the internal waves may be produced in

a thermocline (Ferziger et al., 2002 [25]).
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Figure 3.16 – Contour maps (three dimensional visualizations) of the temperature
field. Panels: (a) simulation of unstratified turbulence (Riτ = 0); (b) simulation of
stratified turbulence (Riτ = 165); (c) simulation of stratified turbulence (Riτ = 500);

(a) Unstratified turbulence, Riτ = 0

(b) Thermally-stratified turbulence, Riτ = 165

(c) Thermally-stratified turbulence, Riτ = 500
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4
Passive particles in turbulent

free-surface flow

In this chapter the dispersion of light particles floating on a flat shear-free

surface of a turbulent open channel is examined. Direct numerical simula-

tions of turbulence coupled with Lagrangian particle tracking are performed,

considering different values of the shear Reynolds number (Reτ = 171 and

509), shear Richardson number, namely of stratification, (Riτ = 0, 165 and

500) and of the Stokes number (0.06 < St < 1 in viscous units).

In the first section the problem is posed and the details of the simulations

are provided; in the second section the cluster dynamics are discussed in

detail via the time evolution of the cluster correlation dimension for the

case of unstratified turbulent flow.

Results show that particle buoyancy induces clusters that evolve towards

a long-term fractal distribution in a time much longer than the Lagrangian

integral fluid time scale, indicating that such clusters over-live the surface

turbulent structures which produced them.

In the third section it will examined in detail how the modification of

turbulence due to the thermal stratification strongly influences the settling

velocity of floaters in the bulk of the flow and the phenomena of clustering

at the surface.

4.1 Introduction: problem definition

Buoyant particles transported by three-dimensional incompressible turbu-

lence are known to distribute non-uniformly within the flow [23, 13, 38, 39].

In the particular case of light tracer particles (referred to as floaters here-
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inafter) in free-surface turbulence, non-uniform distribution is observed on

the surface, where floaters form clusters by accumulating along patchy and

string-like structures [38]. Clustering occurs even if floaters have no iner-

tia, and in the absence of floater-floater interaction, surface tension effects,

or wave motions [38]. Differently from the case of inertial particles, in

which clustering is driven by inertia and arises when particle trajectories

deviate from flow streamlines, clusters are controlled by buoyancy, which

forces floaters on the surface. The physical mechanism governing buoyancy-

induced clustering is closely connected to the peculiar features of free-surface

turbulence (discussed in Chap. 3), which is characterized by sources (resp.

sinks) of fluid velocity where the fluid is moving upward (resp. downward)

[23] . Once at the surface, floaters follow fluid motions passively and leave

quickly the upwelling regions gathering in downwelling regions: here, fluid

can escape from the surface and sink whereas floaters can not, precisely

because of buoyancy [38].

In a series of recent papers [13, 38, 39] it was shown that floater clusters

in free-surface turbulence form a compressible system that evolves towards

a fractal distribution in several large-eddy turnover times (measured at the

free-surface) and at an exponential rate. The macroscopic manifestation of

this behaviour is strong depletion of floaters in large areas of the surface and

very high particle concentration along narrow string-like regions, which are

typical of scum coagulation on the surface of the sea [39]. From a statistical

viewpoint, this is reflected by a peaked probability distribution function of

particle concentration with power-law tails. A proper description of such

power-law distribution requires a clear understanding of the mechanism by

which floaters are segregated into filamentary clusters.

In the next section such mechanisms will be examined from a phe-

nomenological point of view, and the cluster dynamics will be examined

in connection with the characteristic timescale of the surface vortices. This

analysis is of fundamental interest since it quantifies the temporal persis-

tence of clusters with respect to the dominant surface flow scales, but reflects

practically towards modeling of dispersion in many surface transport phe-

nomena, such as the spreading of phytoplankton, pollutants and nutrients

in oceanic flow [39].

Once these dynamics will be explained in the case of neutrally buoyant
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turbulent open channel flow, the effect of a thermal stratification on such

mechanisms will be examined.

4.2 Behaviour in the turbulent open channel

4.2.1 Simulation parameters

The physical problem considered in this study is floater dispersion at the

free surface of a turbulent open channel flow. A sketch of the simulated

flow configuration is shown in 3.1 in Sect. 3.2, together with the boundary

conditions for the fluid (water). The flow field is calculated by integrating

incompressible continuity and Navier-Stokes equations (3.2.1 in Sect. 3.2).

Floaters motion is described by a set of ordinary differential equations

for velocity vp and position xp at each time step. In vector form:

dxp

dt
= vp , (4.2.1)

dvp

dt
=

(ρp − ρf )

ρp
g +

(u@p − vp)

τp
(1 + 0.15Re0.687p ) , (4.2.2)

where u@p is the fluid velocity at the floater position, interpolated with 6th-

order Lagrange polynomials, ρp (resp. ρf ) is the floater (resp. fluid) density,

and τp =
ρp d2

p

18 ρfν
is the floater relaxation time based on the diameter dp. The

Stokes drag coefficient is computed using the Schiller-Naumann non-linear

correction, required to ensure accurate evaluation of the drag force exerted

on floaters with Reynolds number Rep = |u@p−vp| dp/ν > 0.2. To calculate

individual trajectories, periodic boundary conditions are imposed on floaters

moving outside the computational domain in the homogeneous directions.

In the wall-normal direction, particles reaching the free-slip surface still

obey the buoyancy force balance, whereas elastic rebound is enforced at the

no-slip bottom wall. It is remarked here that the buoyancy force balance

does not automatically enforce particles to stay at the free surface. The

details of numerical scheme are discussed in Chap. 2.

Samples of N = 2 · 105 floaters characterized by specific density S =

ρp/ρf = 0.5 and diameter dp = 250 µm (a value in the size range of large

phytoplankton cells [55]) were considered. The corresponding values of the

non-dimensional response time (Stokes number) St = τp/τf with τf = ν/u2
τ

the viscous timescale of the flow, are StL = 0.064 at ReLτ and StH = 0.562 at
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ReHτ . Floaters with density much less than that of the fluid were considered

on purpose to confine their motion to the free surface and produce a behavior

which resembles not at all that of neutrally buoyant, non-inertial particles.

4.2.2 Characterization of particle clustering through

surface divergence

Most of the analyses for geophysical flows have been conducted considering

two-dimensional incompressible homogeneous isotropic turbulence [69]. In

such flows the divergence of the velocity field is zero by construction. How-

ever, the divergence in real surface flows introduced in Sect. 3.2.3, is defined

as:

∇2D =
∂u

∂x
+

∂v

∂y
= −∂w

∂z
, (4.2.3)

and does not vanish. Therefore floaters, forced to stay on surface by buoy-

ancy, probe a compressible two-dimensional system [13], where velocity

sources are regions of local flow expansion (∇2D > 0) generated by sub-

surface upwellings and velocity sinks are regions of local compression (∇2D <

0) due to downwellings [23]. In Fig. 4.1 a qualitative characterization of

floater clustering on the free surface is proved by correlating the instanta-

neous particle patterns with the colormap of ∇2D.

Due to buoyancy, floaters reaching the free surface can not retreat from

it following flow motions: they can only leave velocity sources (red areas

in Fig. 4.1) and collect into velocity sinks (blue areas in Fig. 4.1). Once

trapped in these regions, floaters organize themselves in clusters that are

stretched by the fluid forming filamentary structures. Eventually sharp

patches of floater density distribution are produced, which correlate very

well with the rapidly-changing patches of ∇2D, as clearly shown by Fig.

4.1. Similar behavior (formation of clusters with fractal mass distribution)

has been observed in previous studies [38, 13] for the case of Lagrangian

tracers in surface flow turbulence without mean shear.

4.2.3 Time scaling of floaters clustering

Due to the close phenomenological connection between clustering and sur-

face turbulence, the cluster length and time scales are expected to depend

on local turbulence properties. In particular, one can quantify the tempo-

ral coherence of surface flow structures through their Lagrangian integral
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Figure 4.1 – Correlation between floater clusters and surface divergence ∇2D: floaters
segregate in ∇2D < 0 regions (in blue, footprint of sub-surface downwellings) avoiding
∇2D > 0 regions (in red, footprint of sub-surface upwellings). Panels: (a) ReHτ ,
t+ = 180 upon floater injection; (b) ReLτ , t+ = 121. The rectangle in panel (a)
renders the relative domain size in the ReLτ simulation; the rectangle in panel (b)
highlights the floater cluster shown in Fig. 4.3.

(a)

(b)

∇2D

∇2D

timescale (or, equivalently, their eddy turnover time [23]):

TL,ij =

∫ ∞

0

Rf,ij(t,xf (t))dt , (4.2.4)

where:

Rf,ij(t,xf (t)) =
〈u′

f,i(t,xf (t)) · u′
f,j(t0,xf (t0))〉

〈u′
f,i(t0,xf (t0)) · u′

f,j(t0,xf (t0))〉
(4.2.5)
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is the correlation coefficient of velocity fluctuations. Correlation coefficients

were obtained upon ensemble-averaging (denoted by angle brackets) over all

N fluid tracers released within the flow domain. Subscript f denotes the de-

pendence of Rf,ij on the instantaneous tracer position xf (t). Velocity fluc-

tuations were computed as u′
f,i(t,xf,i(t)) = uf,i(t,xf,i(t))− ūf,i(t,xf,i(t))

, with ūf,i(t,xf,i(t)) the space-averaged Eulerian fluid velocity. Estimation

of TL,ij is crucial to parameterize particle spreading rates and model large-

scale diffusivity in bounded shear dispersion [68]. To compute TL,ij the

channel height is divided into 50 uniformly-spaced bins filled with tracers.

For each tracer the instantaneous value of the diagonal elements of Rf,ij

is computed with their integral over time to get TL,11, TL,22 and TL,33.

Finally, these were ensemble-averaged within each bin using only tracers

initially located within the bin.

In Figure 4.2 are shown, for both ReHτ and ReLτ , the wall-normal behav-

ior of the Lagrangian integral timescale of the fluid (symbols), obtained as

TL = [〈TL,11〉+ 〈TL,22〉+ 〈Tf,33〉] /3. Note that 〈TL,33〉 ' 0 at the surface.

For comparison purposes, the Kolmogorov timescale, 〈τK〉, is also shown

(dot-dashed line). The value of TL changes significantly with the distance

from the wall: in the ReHτ simulation, TL ' 120 at the surface, a value 10

times larger than that near the wall (where TL ' 14) indicating that the

characteristic lifetime of surface structures is significantly longer than that

of near-wall structures. It is also evident that TL is everywhere larger than

〈τK〉, confirming clear scale separation between large-scale surface motions

and small-scale dissipative structures.

To correlate the typical lifetime of surface motions with that of floater

clusters, it is examined the time-evolution of the local correlation dimension

of clusters, D2(t) [39]. The same observable was studied experimentally also

by Larkin et al. [39, 38] as a measure of the fractal dimension of floater

distribution. Their main finding is that 〈D2(t)〉 decays at an exponential

rate from 〈D2(t = 0)〉 ' 2 to 〈D2(t → ∞)〉 ' 1, the decay time being

approximately one surface eddy turnover time (defined as the typical time

for the ”largest” eddies to significantly distort in a turbulent flow). In this

work, D2(t) for several surface clusters is computed, one of which is followed

in time in Fig. 4.3. This particular cluster was generated by past upwelling

motions, which it survived (Fig. 4.3(a)), and is now found sampling a region

of the free-surface reached by another upwelling motion (Fig. 4.3(b), red

area). Floaters are swept from the velocity source and redistribute at its
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Figure 4.2 – Lagrangian integral fluid timescale (TL, symbols) and Kolmogorov
timescale (〈τK〉, lines) in open channel flow at ReHτ (squares) and at ReLτ (circles), as
function of the wall-normal coordinate z+. The inset compares the behavior of 〈τK〉
in open channel flow with that in closed channel flow (at Recτ = 150 and 300, solid
lines).

edges maintaining the cluster spatial connection, as shown in Fig. 4.3(c). As

time progresses (Fig. 4.3(d)), the cluster reshapes generating sharp density

fronts.

Upon isolating the floaters sub-sample Φj for each cluster forming on

the surface, the conditioned correlation dimension is computed at each time

step D2(Φj , t). The instantaneous value of D2(Φj , t) for the specific cluster

examined in Fig. 4.3 is given in each figure panel and shows a decrease in

time associated to the formation of filamentary clusters: D2(Φj , t) ' 1.67

at relatively short times (t ' 0.7TL, Fig. 4.3(a)); and D2(Φj , t) ' 1.14 at

much larger times (t ' 3.9TL, Fig. 4.3(d)). These values are also included

as circles in panel (b) of Fig. 4.4, where it is shown the time behavior

of the ensemble-averaged correlation dimension: 〈D2(t)〉 =
∑Nc

j=1 D2(Φj , t)

(red line), with Nc the number of clusters over which averaging was made

(Nc = 10 for the profiles shown in Fig. 4.4). To render the intermittency

of the clustering phenomenon, and to quantify the uncertainty associated

with our measurement, is also plotted the standard deviation from 〈D2(t)〉
(error bars). The black line in each panel represents the estimate of 〈D2(t)〉
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Figure 4.3 – Time evolution of the floater cluster highlighted in Fig. 4.1(b). The
cluster is examined following its Lagrangian path, with Eulerian coordinates in each
snapshot changing accordingly. Upon reaching the surface within an upwelling, floaters
start to collect into a neighboring downwelling (blue region) at time t+ ' 36 ' 0.7TL.
Then, they are hit by a subsequent upwelling (red region) at time t+ ' 121 ' 2.4TL
(a), and scattered around at time t+ ' 145 ' 2.9TL (b). Eventually, they form a
highly-concentrated filamentary pattern at time t+ ' 193 ' 3.9TL (c). This pattern
exhibits strong time persistency and over-lives several surface-renewal events.

(a) (b)

(c) (d)

obtained assuming an exponential decay rate [39, 38]. In the present flow

configuration, the decay time is given as proportional to the value of TL

at the free-surface. The best fit to the data is given by a relation of the

type 〈D2(t)−D2(∞)〉 ∝ exp(−t/αTL) with α ' 5 for both ReHτ and ReLτ .

This result proves the long-time persistency of surface clusters, that evolve

in a time significantly larger than TL to a steady state where the measured

〈D2(t)〉 approaches a value approximately equal to 1, in agreement with the

formation of filament-like structures observed in Fig. 4.3. Present findings

confirm qualitatively those of Larkin et al. [39, 38] but show a slower decay

time (larger than TL and, in turn, larger than one eddy turnover time). This

may be due to the different 3D flow instance considered below the 2D free

surface. 〈D2(t)〉 has an asymptotic behavior because of the non-interacting

point-particle assumptions adopted. More realistic physical modelling for



4.2. Behaviour in the turbulent open channel 67

particles interacting with surface forces could lead to different long-time

behavior.
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Figure 4.4 – Time evolution of the cluster correlation dimension 〈D2(t)〉 at the free
surface. Circles in panel (b) represent the instantaneous values of D2 for the floater
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with α ' 5 for both ReHτ and ReLτ . The red area represents the standard deviation
from 〈D2(t)〉. Time is given as proportional to the Lagrangian integral timescale of
the flow at the free-surface.
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4.3 Influence of thermal stratification on the

surfacing and clustering of floaters

In this section the influence of thermal stratification on the particles dy-

namics studied in the previous section, will be examined.

4.3.1 Simulation parameters

The reference geometry is the same of previous section with a stable strat-

ification obtained by imposing a constant heat flux at the surface and an

adiabatic condition at the wall (see Fig. 2.1).

The system of equations resolved, recalled in Sect. 3.3 dimensionless

form, are the conservation of mass 3.3.1, momentum 3.3.2 and energy 3.3.3

of the fluid.

For the fluid velocity, no-slip (resp. no-stress) boundary conditions

are enforced at the bottom (resp. top) boundary and the dimensionless

Reynolds, Grashof and Prandtl number are defined in Sect. 3.3.

Direct Numerical Simulations (DNS) coupled with Lagrangian Particle

Tracking were performed to investigate the role of the fluid stratification on

the dispersion of the floaters with different inertia (see Table 4.1). As ins

Sect. 3.3, all the simulations are run at reference Prandtl number Pr = 5,

Reynolds number Reτ = 171 and three different values of the Richardson

number are considered in this study Riτ = Gr/Re2τ , which measures the

importance of buoyancy compared to inertia: Riτ = 0, Riτ = 165 and

Riτ = 500.

To analyse the problem of the dispersion of the floaters, samples of

NP = 105 floaters characterised by dp = 250µm (a value in the size range

of large phytoplankton cells, Ruiz et al., 2004) and by four different specific

densities S = ρp/ρf : S = 0.5, S = 0.7, S = 0.8 and S = 0.9 are consid-

ered. The corresponding values of the non-dimensional response time of the

floaters (Stokes number St = τp/τf , with τf = ν/u2
τ the viscous timescale

of the flow) ranges within St = 0.06÷ 0.11. A summary of the simulations

parameters is provided in Table 4.1.

4.3.2 Floater surfacing

Floaters are initially positioned at the bottom wall and, being lighter than

the fluid, rise towards the free surface. To quantify the surfacing process, the
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Simulation Reτ Riτ S = ρp/ρf St = τp/τf
0.5 0.063

S1 171 0 0.7 0.089
0.8 0.102
0.9 0.114
0.5 0.063

S2 171 165 0.7 0.089
0.8 0.102
0.9 0.114
0.5 0.063

S3 171 500 0.7 0.089
0.8 0.102
0.9 0.114

Table 4.1 – Floater surfacing and clustering in stratified free-surface turbulence: sum-
mary of the simulation parameters.

number of floaters n (normalized by the total number of floaters NP ) that

have reached the free surface is counted as a function of time t expressed in

wall units (t+ = tu2
τ/ν). The quantity n/NP for each value of the specific

density S is computed. The first case considered is the case of floaters

moving in neutrally buoyant turbulence (Riτ = 0, Fig. 4.5a). Obviously,

according to their specific density, those floaters with the lowest density are

the first to reach the free surface. The surfacing process can be considered

complete at t+ ' 400 for S = 0.5, at t+ ' 600 for S = 0.7, at t+ ' 1000 for

S = 0.8 and at t+ > 1400 for S = 0.9.

The effect of the thermal stratification on the surfacing of the floaters

is shown in Fig. 4.5b just for the two cases in which the floaters have

maximum and minimum rise velocity: S = 0.5 and S = 0.9. Since the effect

of the fluid stratification on the surfacing of the floaters is more evident for

the floaters with S = 0.9, the discussion is limited to this case.

In the first part of the surfacing process, the fluid stratification prevents

a larger number of floaters from reaching the free surface: at t+ ' 400,

n/NP ' 0.3 for Riτ = 0 and n/NP ' 0.15 for Riτ = 500 (a value half the

size). In the second part of the surfacing process the situation reverses with

the fluid stratification enhancing the number of the floaters that reach the

free surface: at t+ > 1000, n/NP ' 0.8 for Riτ = 0 and n/NP ' 0.9 for

Riτ = 500. From a physical point of view, these results suggest that (i)

the rise velocity of the faster floaters (those reaching the free surface before

t+ = 400) is reduced by the fluid stratification and that (ii) the rise velocity
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Figure 4.5 – Time behavior of the normalized number of floaters (n/NP ) settling at
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in unstratified turbulence (Riτ = 0); (b) the effect of thermal stratification (Riτ ) on
n/NP for S = 0.5 and S = 0.9.
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of the slower floaters is enhanced by the fluid stratification (those reaching

the free surface after t+ = 1000). This observation is necessarily related

to the changes in the structure of turbulence, which is known to influence

the rise velocity of light particles (Maxey, 1987 [42]; Ruiz et. al [55], 2005;

Marchioli et al., 2007 [41]).

To characterize further the surfacing process, the time taken by each

floater to reach the free surface te is quantified explicitly. The probability

distribution function (pdf) of te (expressed in wall units, t+e ) is shown in

Fig. 4.6. The abscissa of the maximum of the pdf(t+e ) is the expected value.
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For Riτ = 0 (Fig. 4.6a), the expected value decreases for decreasing S (i.e.

for increasing the buoyancy of the floater): the lower the density of the

floater, the larger its buoyancy drift and the shorter the time taken to reach

the surface (see also Fig. 4.5a). In particular, t+e ' 320, 220, 200 and 150

for S = 0.9, 0.8, 0.7 and 0.5, respectively.
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Figure 4.6 – Probability density function (pdf) of floaters exit time (t+e ). Panels:
(a) the effect of floaters specific density (S) on pdf(t+e ) in unstratified turbulence
(Riτ = 0); (b) the effect of thermal stratification (Riτ ) on pdf(t+e ) for S = 0.9.
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It could be noted that, as the floater density becomes closer to that of the

fluid (S → 1), the pdf(t+e ) becomes broader, with decreasing max{pdf(t+e )}
and higher tails: max{pdf(t+e )} ' 0.25, 0.15, 0.08 and 0.05 for S = 0.5, 0.7, 0.8

and 0.9, respectively. The dynamics of the floaters with a stronger buoyancy

is less influenced by the turbulence fluctuations and the dispersion of the

exit time (the tails of the pdf(t+e )) is reduced. Fig. 4.6b shows the distri-

bution of the exit time of the floaters for S = 0.9 and different Richardson

number Riτ (different fluid stratification): arrows point in the direction

of increasing stratification (increasing Riτ ). The expected value of t+e in-

creases for increasing stratification: from t+e = 350 for Riτ = 0 to t+e = 500

for Riτ = 500. Also, the value of max{pdf(t+e )} increases for increasing

the fluid stratification, ranging from max{pdf(t+e )} ' 0.45 for Riτ = 0 to

max{pdf(t+e )} ' 0.55 for Riτ = 500. These results indicate that the ve-

locity of the faster floaters (those reaching the free surface at short times)

in unstratified turbulence is larger compared to the corresponding value in

stratified turbulence (but the number of floaters associated to this value of
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t+e increases for increasing Riτ ). Finally, a crossover between the pdf(t+e )

curves occurring at t+e ' 900 is observed: for unstratified turbulence, there

is a significant number of floaters reaching the free surface at large time

(t+e > 900).

4.3.3 Floater clustering

Once at the free surface, floaters cannot escape from it (due to their buoy-

ancy) and their dynamics is closely related to the local structure of the

velocity field. Turbulence at the free surface is nearly two dimensional, and

can be characterized by the divergence of the velocity field (Schumacher,

2003 [63]; Eckhard and Schumacher, 2001 [23]):

∇2D =
∂u′

∂x
+

∂v′

∂y
= −∂w′

∂z
. (4.3.1)

In the present flow configuration ∇2D 6= 0 at the free surface. Therefore,

floaters moving on the free surface probe a compressible system (Cressman

et al., 2004 [13]), where velocity sources are regions of local flow expansion

(∇2D > 0) generated by upwellings, and velocity sinks are regions of local

flow compression (∇2D < 0). In Fig. 4.7 a qualitative characterization of

the clustering of the floaters on the free surface is provided by correlating

the instantaneous position of the floaters with the contour maps of ∇2D.

In particular, the behaviour of floaters with S = 0.5 (left panels) and

S = 0.9 (right panels) for Riτ = 0 (Fig. 4.7a-b) is considered, Riτ = 165

(Fig. 4.7c-d) and Riτ = 500 (Fig. 4.7e-f).

To compare the results obtained with the same number of floaters settled

at the free surface, the distribution of the floaters in Fig. 4.7 are computed

at different t+, depending on the specific density of the floaters: t+ ' 200

for S = 0.5 and t+ ' 1000 for S = 0.9 (this corresponds to n/NP ' 0.8,

see Fig. 4.5b). For Riτ = 0 (Fig. 4.7a-b) it is observed that the floaters

escape velocity sources (red areas in Fig. 4.7a-b) and collect into veloc-

ity sinks (blue areas in Fig. 4.7a-b). Once trapped in these regions, the

floaters organize in clusters that are stretched by the fluid forming fila-

mentary structures: these filaments of floaters correlate very well with the

behavior of ∇2D < 0 . The situation changes when considering a strati-

fied fluid. Upwellings/downwellings at the free surface are less intense and

the filamentary structures less evident, floaters being homogeneously dis-

tributed (Figs. 4.7c-f). To quantify these observations, the probability of
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Figure 4.7 – Correlation between floater clusters and surface divergence ∇2D for
Riτ = 0, 165 and 500 and for floater specific density S = 0.5 and S = 0.9. Panels:
(a) Riτ = 0 and S = 0.5; (b) Riτ = 0 and S = 0.9; (c) Riτ = 165 and S = 0.5; (d)
Riτ = 165 and S = 0.9; (e) Riτ = 500 and S = 0.5; (f) Riτ = 500 and S = 0.9.
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finding a floater in a flow region characterised by a specific value of ∇2D,

pdf(∇2D) is computed. For Riτ = 0 (Fig. 4.8a), floaters accumulate in

regions of ∇2D < 0 (downwellings). This result does not depend on the

floater buoyancy since, for all values of S, max{pdf(∇2D)} ' 0.25 occurs

for ∇2D ' −0.02. The effect of the fluid stratification on the clustering

of the floaters at the surface is shown in Fig. 4.8b-c, where the behavior

of pdf(∇2D) at varying Riτ and for the specific densities S = 0.5 (in Fig.

4.8b) and S = 0.9 (in Fig. 4.8c) is presented. As Riτ increases, a clear

displacement of the maximum of the pdf towards larger values of ∇2D (Fig.

4.8b-c) is observed. This corresponds to a physical situation in which the

accumulation of the floaters into downwellings (∇2D) does not occur, and

the floaters are distributed more homogeneously over the free surface.

To quantify further the segregation of the floaters observed in Fig. 4.7,

the Voronoi diagram (Monchaux et al., 2010 [44]) is used. The Voronoi

diagram is a decomposition of the 2D surface into independent cells built

around each floater. The area of each cell is therefore a measure of the

local particle concentration: small areas indicate high concentration of the

floaters, whereas large areas indicate low concentration of the floaters (see

Fig. 4.9). In Fig. 4.10, it is shown the probability distribution function

(pdf) of the Voronoi areas obtained by applying a Voronoi tessellation to

the distribution of floaters shown in Fig.4.7.

In particular, Fig. 4.10a refers to the situation observed in Fig. 4.7a,c,e

(S = 0.5), whereas Fig. 4.10b refers to the situation observed in Fig.

4.7b,d,f (S = 0.9). Regardless of the value of S, it is obtained similar

trends for the probability distribution function of the Voronoi areas. For

Riτ = 0, the maximum of the pdf curves occurs for very small areas. This

reflects a situation in which floaters cluster in regions characterized by a

very high concentration. For increasing stratification, the situation changes

and the values of the Voronoi areas increase, thus meaning that the clus-

tering of the floaters is damped (i.e. the area surrounding each floater is

larger). This confirms the qualitative observation (Fig. 4.7) that the ther-

mal stratification imposed throughout the channel reduces the clustering of

the floaters at the surface.

Finally, the topology of the clusters at the free surface is characterised

by computing the time evolution of the correlation dimension of clusters,

D2(t) (Fig. 4.11). The correlation dimension is a measure of the topo-

logical features of the distribution of the floaters. For simple geometrical
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Figure 4.8 – Probability density function (pdf) of surface divergence ∇2D computed
at floaters position. Panels: (a) the effect of floaters specific density (S) on pdf(∇2D)
in unstratified turbulence; (b) the effect of thermal stratification (Riτ ) on pdf(∇2D)
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Figure 4.9 – Application of the Voronoi tessellation to the analysis of the clusters
formed by the floaters. Voronoi diagram corresponding to the small box indicated in
Fig. 4.1b.

10-3

10-2

10-1

10-2 10-1 100 101

P
df

Area

S=0.5

Riτ = 0  
Riτ=165
Riτ=500

10-3

10-2

10-1

10-2 10-1 100 101
Area

S=0.9

Riτ = 0  
Riτ=165
Riτ=500

(a) (b)

Figure 4.10 – Probability distribution function (pdf) of the Voronoi areas computed
at the free surface for different Riτ . Panels: (a) pdf for floaters with specific density
S = 0.5; (b) pdf for floaters with specific density S = 0.9.

structures like points, lines and surfaces, D2(t) = 0, 1, 2 respectively. The

behavior of D2(t) for the floaters with S = 0.5 and S = 0.9 and for all the

values of Riτ is computed, starting the calculation when the floaters reach

the free surface (t+ > 50 for S = 0.5 and t+ > 150 for S = 0.9, see Fig.

4.5b). Thr discussion will be focused considering S = 0.5 (Fig. 4.11a). For

Riτ = 0, D2(t)(@t = 0) ' 1.4 and decays in time almost exponentially
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towards D2(t) ' 1. The initial value of D2(t)(@t = 0) is lower than in

neutrally buoyant case showed in previous section, because here floaters are

released from a plane close to the bottom wall and arrive at the free sur-

face already segregated. Therefore, a segregation due to inertia is observed

during the surfacing process. Once at the free surface, floaters segregate

due to buoyancy. In a long-term limit D2(t) ' 1, meaning that the floaters

accumulate into filaments, i.e line-like structures (see also Fig. 4.7a-b for

a clear visualization of this result). For Riτ > 0, D2(t)(@t = 0) ' 1.5

and does not decay in time. This reflects the physical observation that the

filaments of the floaters in thermally-stratified flows are hardly seen (see

also Fig. 4.7c-f) and the distribution of the floaters remains roughly two

dimensional (D2(t) ' 1.5).
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Figure 4.11 – Time evolution of the cluster correlation dimension 〈D2(t)〉 at the free
surface for different Riτ . Panels: (a) 〈D2(t)〉 for floaters with specific density S = 0.5;
(b) 〈D2(t)〉 for floaters with specific density S = 0.9.

The segregation of the floaters into filaments for unstratified turbulence

is due to the combined dynamics of upwelling/downwelling events. For

stratified turbulence, upwellings and downwellings lose momentum to tres-

pass the potential barrier created near the free surface by the temperature

gradient. Therefore, it is clear that the homogeneous distribution of the

floaters for stratified turbulence stems from the weakening of upwellings

and downwellings.
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5
Active particles in turbulent

free-surface flow

In this chapter Direct Numerical Simulation of turbulent open channel flow

is used in order to describe and analyse active particle systems and the

complex dynamics which arises.

Preliminary results will be discussed for the case of shear Reynolds num-

ber Reτ = 171 and different values of shear Richardson number (Riτ = 0,

165 and 500).

In the first section the model for the active particles and the details of

the simulations are provided. In the second section the cluster dynamics

are discussed for the case of turbulent open channel flow.

In the third section the effect of thermal stratification will be examined.

It will be shown how the dynamics of micro-swimmer in marine stratified

turbulence could be affected by the thermocline layer.

5.1 Introduction: problem definition

In recent years, a whole class of biological and physical systems which may

be referred to as active matter or active particles, has been studied the-

oretically and experimentally [56, 67]. Examples of such systems are the

self-propelled particles as phytoplankton cells, whose interaction with the

leading fluid is non trivial.

A wide variety of external factors including nutrient concentration, gravity,

and the rate of strain of the fluid affect the orientation of the swimming

velocity of the cells [22, 21]. The resulting distribution is far from uniform.

Gradients in concentration of plankton span a wide range of length scales,
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ranging from regions of persistent upwelling at the equator with length scales

of thousands of kilometres to microscale patchiness that occurs at the scale

of centimetres.

To deal with aquatic flows, motile micro-organisms have developed many

ways of adaptation [22]. One of those tends to orient the cell’s swimming di-

rection upward against gravity. The resulting balance between gravitational

torque due to the asymmetric distribution of density and the hydrodynamic

torque is known as gyrotaxis and will be examined in this chapter.

Gyrotaxis was discovered in 1985 by John Kessler [50, 49] by showing

that phytoplankton cells tend to collect along the centerline of a laminar

Poiseuille flow. Recent experimental observation shows that gyrotactic al-

gae cells could be trapped in horizontal layers in laminar vertical shear. The

phenomenon called ‘gyrotactic trapping’ [22, 21] occurs when vertically mi-

grating cells accumulate where vertical gradients in horizontal velocity ex-

ceeds a critical shear threshold, causing cells to tumble end over end.

Only recently it was demonstrated that phytoplankton clustering could oc-

cur also in turbulence [20, 14, 15, 74, 16]. Numerical simulations have shown

that gyrotactic algae generate small-scale clusters with fractal distibution

[20, 74].

Shear, in the form of vertical gradients in horizontal fluid velocity, can be

generated by tidal currents [60], wind stress, and internal waves and is often

enhanced within thin layers. Moreover it is interesting to investigate how

modulation of turbulent fluctuations controlled by thermal stratification,

could affect the dynamics of phytoplankton cells. Next sections are devoted

to understand these dynamics.

5.1.1 Governing equations for particles and parameters

of simulation

The dynamics of a population of N = 105 swimming micro-organisms is

simulated. Each micro-swimmmer is modelled as a spheroidal particle whose

position x evolves according to

dx

dt
= u(X) + vsp, (5.1.1)

where vs is the mean cell’s swimming speed, u the velocity of fluid in the po-

sition of swimmer and p the particle orientation. The orientation p of each
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swimmer evolves in response to the biasing torques acting upon it. Under

the assumptions that the microswimmers cells have a spheroidal geometry,

the reorientation rate of the organisms is defined by the following balance

of forces (Fig. 5.1):

dp

dt
=

1

2B
[k− (k · p)p] + 1

2
ω ∧ p (5.1.2)

where k = [0, 0, 1] is a unit vector in the vertical upwards direction,

ω = ∇ ∧ u is the fluid vorticity and B = µα⊥/(2hρg) is the gyrotactic

reorientation time (h denotes the centre-of-mass offset relative to the centre-

of-buoyancy, α⊥ is the dimensionless resistance coefficient for rotation about

an axis perpendicular to p, ρ and µ are the fluid density and viscosity,

respectively). B is a key parameter for the dynamic of the cells since it

represents the characteristic time a perturbed cell takes to return to vertical

if ω = 0. The first term on the right hand side of equation 5.1.2 describes

the tendency of a cell to remain aligned along the vertical direction due to

bottom-heaviness while the second term captures the tendency of vorticity

to overturn a cell by imposing a viscous torque on it.

Figure 5.1 – Gyrotactic microorganisms swim with velocity Vs in a direction given by
the orientation vector p set by a balance of torques. The torque due cell asymmetry
(bottom heaviness: Tgrav ) tends to align the cell to its preferential orientation along
the vertical direction k whereas the torque due to flow (Tvisc) tends to rotate the
cell.

Cell positions and swimming direction were integrated using the non-
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dimensional form of equations 5.1.1 and 5.1.2

dx∗

dt∗
= u∗(X∗) + Φp, (5.1.3)

dp

dt∗
= Ψ [k− (k · p)p] + 1

2
ω∗ ∧ p (5.1.4)

where time, lengths and velocity were non-dimensionalised by using the

friction velocity uτ and fluid viscosity ν. Dimensionless parameters are

Φ = vs/uτ and Ψ = 1
2B

ν
u2
τ
. At each time step of the simulation, the local

fluid velocity and vorticity at the particle positions, were calculated using

Lagrangian interpolation (Chap. 2).

The reorientation timescale while known only for handful species, gen-

erally spans the range B ' 0.1 − 10s and phytoplankton’s swimming ve-

locities are often in the range Vs ' 10 − 1000µm/s. In next simulations a

fixed value of the swimming velocity equals to 100µm/s is used (the corre-

sponding dimensionless value is Φ = 0.048) which is a parameter based on

Chlamydomonas augustae [14, 20]. While this specie has a value of the gyro-

tactic time scale equals to 3.4s, simulations were performed by investigating

the range B ' 0.1 − 10s in particular B = 0.1, 1, 10s which correspond to

ΨH = 1.13, ΨI = 0.113, ΨL = 0.0113.

5.2 Turbulent open channel flow

Since the main mechanism which significantly affects the transport of swim-

ming gyrotactic microorganisms in suspension is the interaction with the

local variation of vertical gradient of streamwise fluid velocity (∂u/∂z), in

figure 5.2 the trend of mean strain rate in turbulent open channel flow is

shown. The value of mean strain rate (∂u/∂z) is higher at wall region and

within ' 40 wall units, it drops to zero toward the surface (z+ = 0).

Particles were initially released at the center of the channel with random

initial orientations.

In figure 5.3 the trends of normalized concentrations along wall normal

distance for the three values of Ψ are shown.

The domain was divided into wall-parallel slabs, of volume Vslab = Lx ·
Ly ·δzslabi , where zslabi is the thickness of the slab, equally spaced. Particles

contained in each slab were counted and the normalized concentration C/C0

was computed as: C
C0

=
npslabi

Vslabi

Vtot

nptot
where npslabi is the number of particles
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contained in the i-th volume Vslabi , nptot is the number of total particles

and Vtot = Lx · Ly · Lz is the total volume of the domain.

Figure 5.3(a) shows the case for ΨL, 5.3(b) shows the case for ΨI and
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5.3(c) the case for ΨH .

The trends show a depletion of wall region and an increasing of concen-

tration at the surface. Particles will tend to align with the vertical direction

and reach the surface due to gyrotaxis. This trends will be more important

at higher value of Ψ (or equivalently at lower values of B): plankton cells

will react more rapidly to the perturbation due to local fluctuations and the

result is a more stable vertical migration.

In the inset of figures 5.3 the number of particles which reach the upper

layer (z+ < 1) in time (solid curve) is shown with the number of particles

which reach the surface in regions of upwelling (positive values of surface

divergence)(see Chap. 4) and regions of downwelling (negative values of sur-

face divergence). The trend is to sample mostly the regions of downwelling.

This result was already obtained in laminar downwelling flows [50] and

generalised in homogeneous isotropic turbulence (HIT) [20]. In HIT, Durham

and coworkers have motivated the clustering of gyrotactic particles in down-

welling regions due to compressibility of the cell velocity. They argued that,

since the velocity of cells is the superposition of the flow velocity u and of

the swimming velocity Φp, it could be obtained that

∇ · v = Φ∇ · p = −ΨΦ∇2uz

(where uz is the vertical component of the velocity of fluid in the position of

particles). The last expression was obtained in the limit of a large stabilizing

torque (B � 1) and assuming that in this limit, the cell orientation reaches

an equilibrium with local vorticity.

The slope of the curve n/Ntot increases as Ψ increases showing that

the number of particles which reach the surface is proportional to their ten-

dency to be aligned upward. In the case of ΨH the number of plankton cells

monotonically increases in time: particles in this case reach the surface and

will not escape from it. Since the simulations are performed in the hypoth-

esis of dilute system (one way coupling), the simulations are shown until

t+ ≈ 1000 when almost the 10% of total number of particles have reached

the surface. Again the number of particles which reach the upper layer in

upwelling is stationary after a certain temporal window, while it is not true

for the particles which arrive already segregated into downwellings or which

are moving from upwellings. In figure 5.4 the instantaneous configuration

of particles at the surface for t+ ≈ 1000 and the different Ψ are shown.
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Figure 5.4 – Surface clustering of gyrotactic particles at the same instant for ΨL (a),
ΨI (b) and ΨH (c)
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The clustering is more evident for ΨI and ΨH , with filamentary struc-

tures which resemble that of passive particles (Chap. 4). In figure 5.5 the

trend of < pz > in function of wall distance is shown, for the three values

of Ψ. As done for the concentration, also in this case the particles were

selected accordingly to their positions and the mean values were computed

in each horizontal slab. For the ΨH it could be noted that within 20 wall

units from the wall (away from the maximum shear) the mean value of pz

tends to the maximum value which means that particles have a persistent

tendency to swim upward as expected.

As we decrease Ψ, this tendency decrease which is intuitive since lower

values of Ψ cause higher tendency of this particles to be driven away from

vertical upward.

In figure 5.5(b) the mean value of the vertical total velocity of particles

along wall normal distance is shown. It is related to the value of pz: the

higher the value of Ψ, the higher the mean value of uz. Interestingly, for the

case of ΨL and ΨI within the wall region, the mean value of uz of particles

is negative or close to zero. Even if the statistics in this layer are affected
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by the small number of particles (see figure 5.3), it could be related to the

phenomenon of tumbling: the vertical motion is destroyed by the presence

of high value of shear which causes particles to tumble end over end [21].

5.3 Stratified open channel flow

Thermal stratification induces at the surface an increase of the mean stream-

wise velocity (Chap. 3). This causes a different trend in the mean strain

rate which is shown in figure 5.6 in function of the Richardson shear number.
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As we increase the stratification (namely the value of Richardson num-

ber), the mean strain rate is not still constant but shows a maximum which
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appears for z+ ≈ 20 at Riτ = 500. This region is the region of thermocline,

rapid variation of temperature profile in which internal gravity waves could

form. In figure 5.6 the mean profile of spanwise vorticity is shown. By

definition an increase of mean strain rate cause an increase of the spanwise

vorticity ωy = ∂zu + ∂xw which drops to zero at surface for the imposed

condition of free-slip.

Results are shown in figure 5.7 in which the mean profiles of concentra-

tion is presented in wall distance for the different stratifications (the case

of neutrally buoyant flow is reported here as reference).
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Figure 5.7 – Concentration in log-linear scale for ΨL (a),ΨI (b),ΨH (c) in the wall
normal direction. Riτ = 0 is shown in solid curve, Riτ = 165 is shown in dashed lines,
and Riτ = 500 in dots
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The trend is similar for the three values of Ψ: as we increase stratifica-

tion, the regions closed to the surface are depleted. Particles will be driven

away from vertical upward and this will be more evident at lower values of

Ψ. In fact the width of the “depletion layer” increases as we decrease the

value of Ψ since the mean strain rate induced by the presence of stratifica-

tion will have more influence. In particular for ΨH the value at which the

concentration drops to zero is nearly equal to z+ ≈ 20 which corresponds

to the maximum value of strain rate.

To investigate what happen in the thermocline layer, in figure 5.8 the
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profile of probability density function of the orientations at different Richard-

son number for the reference case of ΨI are shown for particles in a layer of

20 < z+ < 40.

It can be noted that the dashed curves which represent the pdf of span-

wise orientations are unaffected by stratification since they show a symmet-

ric profile with a peak around zero: No preferential orientations in spanwise

direction. The story is different for the solid curves which represent the

pdf of the streamwise orientations: in this case the curve shift toward right

as we increase the stratification. The stratification induce an increase of

preferential orientation of particles along the streamwise direction. The

dotted curves represent the pdf of vertical orientations: the value of the

peak decrease as the Richardson increase: the stratification makes the ver-

tical migration more unstable.
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To make these analysis more quantitative, in figure 5.9 the trends of

< pz > and < px > for the three Ψ considered and for the different values

of shear Richardson number are shown. While for ΨH the trend of pz seems

to reach the vertical direction, in the case of ΨL and ΨI there is a significant
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difference with respect to the neutrally buoyant case. In fact for ΨL and

Riτ = 500 swimmers were blocked just under the maximum value of strain

rate. Interestingly, for ΨL and Riτ = 165, the trend of < pz > reaches the

asymptotic value under the maximum strain rate while the small amount of

particles which are able to overpass this maximum value, tend to orient with

the vertical direction. The same considerations could be done for ΨI . As

discussed before, the reduction in the mean vertical direction corresponds

to an increase of the mean streamwise direction. No preferential orientation

in the spanwise direction (not shown) is observed.
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Conclusions and future

developments

Direct Numerical Simulation of free surface open channel flow is used to

analyse the behaviour of the energy flux and of the local flow compress-

ibility at the free surface and the effect on the dynamics of passive and

active floaters. For sufficiently high Reynolds numbers (Reτ = 509 in the

present study), an inverse energy cascade at the free surface, characterised

by a transfer of energy from smaller to larger flow scales is observed. This

inverse energy cascade can coexists with the classical direct energy cas-

cade, with energy flowing from larger to smaller flow scales. It is found

that direct/inverse energy cascades correlate with the behaviour of the two-

dimensional surface divergence ∇2D: Direct energy cascade is linked to

regions of local flow expansion (∇2D > 0), while inverse energy cascade is

linked to regions of local flow compression (∇2D < 0). It has been also

proposed a phenomenological explanation of these results based on the dy-

namics of upwellings impinging on the free surface. Yet, the magnitude of

the inverse energy cascade increases for increasing Reτ . Despite its two-

dimensional geometry, free surface turbulence has specific features which

cannot be observed in two dimensional computations. The compressibility

factor has been computed and it is showed that regions of local flow compres-

sion/expansion are seen at the free surface of a three dimensional domain.

These findings are particularly important because they open new intriguing

perspectives to model/parametrize the dynamics of chemical species and

floaters dispersed at the free surface. It is remarked that present results

can be important also for Large Eddy Simulation (LES). In LES, the most

common subgrid-scale stress models are absolutely dissipative, i.e they can

only account for the direct energy cascade. Based on current results, it

is suggested that an inverse energy flux (inverse energy cascade) must be

taken into account to ensure accurate predictions using LES [57, 58].

For what concerns passive dynamics, this study highlights the inter-

mittent character of particle spatial distribution in free-surface turbulence
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[19, 38]. Intermittency is due to buoyancy-driven clustering effects con-

nected to the formation of sources and sinks of fluid velocity generated by

sub-surface upwelling and downwelling motions. At small time scales, clus-

ter formation is driven by the divergence of the flow field at the surface:

clusters evolve in time producing fractal-like patterns that can be charac-

terized by their correlation dimension. Results indicate that these patterns

slowly relax towards a long-term distribution with exponential decay rate,

requiring several Lagrangian integral fluid timescales. According to [33, 32],

the surface-renewal timescale, which is usually employed to quantify inter-

face scalar fluxes, is much smaller than the Lagrangian timescale and is thus

inappropriate to quantify floater distribution dynamics.

Surface compressibility plays an important role in determining the mo-

tion of passive tracers like pollutants and nutrients but also the spreading

rate of active ocean surfactants, such as phytoplankton [13, 39]. These

findings provide useful indications to parametrize the relevant timescales

characterizing dispersion of such species and therefore, can assist in devel-

oping models to predict cluster formation and evolution over several surface

renewal cycles [68]. Future developments could incorporate strict physical

connection between simulated cluster dynamics and real systems at much

longer times. In particular, effects due to particle finite size (non overlap-

ping) and surface tension (that attracts particles at the surface) [65] should

be considered.

In case of stable stratification, simulation were run at Prandtl number

Pr = 5, shear Richardson number Riτ = 0, 165 and 500 considering floaters

with specific density ratio S = 0.5, 0.7, 0.8 and 0.9. Flow statistics reveal

that stable stratification suppresses the vertical transport of momentum

and heat compared to the unstratified case, where temperature is a pas-

sive scalar. Using flow field visualization it is found that internal gravity

waves may be generated (for sufficiently high Riτ ) near the free surface,

whereas active turbulent bursting phenomena still occur near the bottom

wall. Flow field modifications induced by thermal stratification influence

both surfacing and clustering of floaters at the surface. In particular, re-

gardless of S, stratification focuses the range of values that can be attained

by the rise velocity of floaters. This indicates that the vertical spread of

the floater swarms induced by turbulence is decreased. Once at the sur-

face, stratification prevents the formation of filamentary structures (ob-

served in unstratified turbulence) and produces a nearly (two-dimensional)
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homogeneous distribution. This behavior is associated to a weakening of

upwelling/downwelling events produced by near-wall bursting phenomena.

Future developments of this work will be the analysis of floater dynam-

ics in stratified turbulence at higher Reynolds and Richardson numbers to

reproduce physical situations occurring in deeper channels and for larger

stratification. The effect of stratification on the compressibility and the en-

ergy flux will be also included.

The dynamic of self-propelled particles in turbulent open channel flow was

introduced. Preliminary results linked to the dynamics of active particles

and their interaction with the stratification demonstrated that the presence

of stratification is able to forbid and block, the surfacing of phytoplankton.

Further analysis will be done to understand deeply the formation of gyro-

tactic trapping in correspondence of thermal stratification.

Finally, it could be very interesting to study how surface waves (which effect

in this study was neglected) could modify the distribution of active gyrotac-

tic and passive particles. Recent experimental and numerical works [59, 24]

have shown that non trivial behaviour arises when small sphere are floating

on a water-air interface in which stationary waves are present. Collective

dynamics could induce clustering in the node (point that undergo no ver-

tical displacements) or in the antinode (points in which fluid purely moves

in vertical direction) of the waves.
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