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Università degli Studi di Udine
Via delle Scienze, 206
33100 Udine
Italia

mailto:emanuele.frittaion@uniud.it


To my parents





Abstract

We investigate the reverse mathematics of several theorems about partial orders. We
mainly focus on the analysis of scattered (no copy of the rationals) and FAC (no infinite
antichains) partial orders, for which we consider many characterization theorems (for
instance the well-known Hausdorff’s theorem for scattered linear orders).

We settle the proof-theoretic strength of most of these theorems. If not, we provide
positive and negative bounds (for instance showing that the statement is provable in WKL0

but not in WWKL0).
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1
Introduction

1.1 Background

The effective content of partial orders has been extensively studied in computability
theory (see [Spe55, Har68, Ros82, Roy90, Dow98, Her01, Mon07, CDSS12]) and re-
verse mathematics (see [Clo89, FH90, Mar93, Hir94, DHLS03, CMS04, Mar05, Mon06,
MM09, MS11]). We focus on the reverse mathematics of partial orders, in particular
scattered and FAC partial orders.

A good reference for order theory is Fräissé’s monograph [Fra00]. The main reference
for reverse mathematics is Simpson’s book [Sim09].

The goal of reverse mathematics is to measure the proof-theoretical strength of math-
ematical theorems by classifying which set-existence axioms are needed to establish their
proofs. In practice, we work with fragments, or subsystems, of second-order arithmetic,
finding the weakest system S that suffices to prove a given theorem τ : this means that S
proves τ and all the axioms of S are provable from τ over a weaker system S0. It is worth
noticing that second-order arithmetic allows only the study of statements about countable
(or countably coded) objects. Therefore, most set-theoretic techniques cannot be used in
this context, and we often need to find a new proof when the classical proof heavily relies
on stronger set existence axioms.

Historical note. Second-order arithmetic was first introduced and developed by Hilbert
and Bernays [HB44a, HB44b]. In the sixties Harvey Friedman [Fri67, Fri69, Fri70,
Fri71a, Fri71b] began a metamathematical investigation of subsystems of second-order
arithmetic aiming to show the necessary use of strong set-theoretic assumptions in ordi-
nary mathematics. Thereafter Friedman [Fri75, Fri76] initiated the program of reverse
mathematics in order to address the following question:

Which are the “proper axioms” to prove theorems in mathematics?
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Later on Friedman, Simpson and many others pursued the theme of reverse mathematics
bringing forth several works (see Simpson’s book [Sim09] for an accurate bibliography).
Nowadays reverse mathematics is a lively and active field of research in the area of com-
putability theory and proof theory.

1.2 Outline

In Chapter 1, we introduce reverse mathematics and the main systems of second-order
arithmetic. We point up a few standard reverse mathematics and computability-theoretic
results which will be used throughout the thesis. Then we give the main definitions for
partial orders and fix notation and conventions.

In Chapter 2, we analyze a structure theorem due to Bonnet which characterizes FAC
partial orders in terms of initial intervals. We also consider a theorem due to Erdös and
Tarski about strong antichains. It turns out that (one direction of) Bonnet theorem and
Erdös-Tarski theorem are equivalent from the viewpoint of reverse mathematics: in fact
they are both equivalent to ACA0 (we notice that the classical proof of Bonnet theorem
makes use of Erdös-Tarski result). For the other direction of Bonnet theorem we provide
a partial result showing that such implication lies below WKL0 and strictly above RCA0.

In Chapter 3, we consider four classically equivalent definitions of scattered FAC
partial orders and provide a reverse mathematics analysis similar to that for well-partial
orders given in [CMS04]. The analysis leads us to consider a partition theorem on the
rationals due to Erdös and Rado. On the side, we also improve some results of [CMS04].

In Chapter 4, we study another theorem by Bonnet which gives a characterization of
scattered FAC partial orders. This theorem says that a countable partial order is scattered
and FAC if and only if there are countably many initial intervals. We show that one
direction (left to right) is equivalent to ATR0 while the other is provable in WKL0, but not
in RCA0. Once again, we are not able to settle the exact reverse mathematics strength of
the latter statement, which turns out to be an interesting problem from the viewpoint of
reverse mathematics.

In Chapter 5, we consider several results about scattered linear orders due to Haus-
dorff. In particular (Section 5.5), we analyze Hausdorff’s classification theorem for scat-
tered linear orders and prove its equivalence with ATR0.

In Chapter 6, we consider two classification theorems which are the analogue of Haus-
dorff’s theorem for scattered linear orders with respect to the class of scattered FAC partial
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orders and the class of countable FAC partial orders respectively. In either case we provide
a proof in Π1

2-CA0 for the hard direction and a proof in ACA0 for the easy one.

In Chapter 7, we study the relation between partial orders and their linear extensions
introducing the notion of linearizability. We then consider the statement “τ is lineariz-
able” for the order types ω, ω∗, ω + ω∗ and ζ and obtain equivalences with BΣ0

2 and
ACA0.

1.3 Reverse Mathematics

The language of second-order arithmetic has symbols 0, 1,+, · , <, set membership ∈,
and two types of variables: number variables n,m, . . . for the natural numbers and set
variables X, Y, . . . for sets of natural numbers. Generally, we use ω to mean the standard
natural numbers, while we define N by the formula (∀n)(n ∈ X).

We define a hierarchy of formulas by starting with Σ0
0 (Π0

0) formulas, which are the
ones with only bounded quantifiers ∃n < m and ∀n < m. We then define inductively
Σ0
n+1 (Π0

n+1) formulas ∃nϕ (∀nϕ) where ϕ is Π0
n (Σ0

n). The formulas so defined are
called arithmetical. We extend the hierarchy by defining Σ1

n (Π1
n) formulas. The arith-

metical formulas are Σ1
0 (Π1

0). A formula ∃Xϕ (∀Xϕ) is Σ1
n+1 (Π1

n+1), where ϕ is Π1
n

(Σ1
n).

A comprehension axiom for second order arithmetic is

(∃X)(∀n)(n ∈ X ⇔ ϕ(n)),

where ϕ is a formula not mentioning X . Basically, we are saying that the set of natural
numbers satisfying the property ϕ exists.

Comprehension for Πi
n formulas (i = 0, 1) is defined by taking ϕ over all the Πi

n

formulas. Comprehension for ∆i
n formulas is defined by

(∀n)(ϕ(n)⇔ ψ(n)) =⇒ (∃X)(∀n)(n ∈ X ⇔ ϕ(n)),

where ϕ is any Σi
n formula and ψ is any Πi

n formula.

We briefly recall the main subsystems of second order arithmetic (known as “the
big five”). In order of increasing strength, they are: RCA0, WKL0, ACA0, ATR0, and
Π1

1-CA0. Each system contains the algebraic axioms of Peano Arithmetic (i.e. the axioms
for 0, 1,+, · , <).
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RCA0 is the usual base system over which we prove equivalences. We restrict com-
prehension to ∆0

1 formulas and induction to Σ0
1 formulas. RCA0 roughly corresponds to

computable or constructive mathematics. The next, WKL0, consists of RCA0 plus Weak
König’s lemma: “every infinite binary tree has an infinite path”. ACA0, Arithmetical Com-
prehension, is the system obtained by allowing comprehension for arithmetical formulas.
ATR0, Arithmetical Transfinite Recursion, allows iterations of arithmetical comprehen-
sion along any well-order. Π1

1-CA0 is obtained from RCA0 extending comprehension
to Π1

1 formulas. We refer the reader to Simpson [Sim09] for a detailed description of
second-order arithmetic.

We routinely use the following equivalences when proving our results.

Theorem 1.3.1 ([Hir87]). Over RCA0, the following are equivalent:

(1) BΣ0
2 (Σ0

2 bounding principle) : for every Σ0
2 formula ϕ,

(∀i < n)(∃m)ϕ(i, n,m) =⇒ (∃k)(∀i < n)(∃m < k)ϕ(i, n,m);

(2) RT1
<∞ (Infinite Pigeonhole Principle) : (∀n)(∀f : N→ n)(∃A ⊆ N infinite)(∃c <

n)(∀m ∈ A)(f(m) = c).

Theorem 1.3.2 ([Sim09], Lemma IV.4.4). Over RCA0, the following are equivalent:

(1) WKL0;

(2) Σ0
1 separation: for all Σ0

1 formulas ϕ(n), ψ(n), if (∀n)¬(ϕ(n) ∧ ψ(n)), then there

exists a set Z such that

(∀n)(ϕ(n) =⇒ n ∈ Z) and (∀n)(ψ(n) =⇒ n /∈ Z).

(3) for all one-to-one (total) functions f, g : N → N, if (∀n,m)(f(n) 6= g(m)), then

there exists a set Z such that

ran(f) ⊆ Z and Z ∩ ran(g) = ∅.

Theorem 1.3.3 ([Sim09], Lemma III.1.3). Over RCA0, the following are equivalent:

(1) ACA0;

(2) Σ0
1 comprehension;
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(3) for every one-to-one (total) function f : N → N the set {n : (∃m)f(m) = n}
exists.

The following is [Sim09, Theorem V.5.2].

Theorem 1.3.4 ([Sim09]). Over RCA0, the following are equivalent:

(1) ATR0;

(2) for any sequence of trees {Ti : i ∈ N} such that every Ti has at most one path, the

set {i ∈ N : [Ti] 6= ∅} exists.

Theorem 1.3.5 ([Sim09]). The following are pairwise equivalent over ACA0:

(1) ATR0;

(2) if an analytic set A is uncountable, then A has a non-empty perfect subset;

(3) if a tree T ⊆ 2<N has uncountably many paths, then T has a non-empty perfect

subtree;

(4) if a tree T ⊆ N<N has uncountably many paths, then T has a non-empty perfect

tree.

1.4 Computability theory and ω-models

The following basic facts will be used to establish a few unprovability results via ω-
models. In particular we show that some statements are not provable in WKL0 and
WWKL0 (see subsection 3.6).

Definition 1.4.1. An ω-model is a model for the language of second-order arithmetic of
the form (ω, S), where S ⊆ P(ω) and the interpretation of 0, 1,+, · , < is standard.

We assume familiarity with the main concepts of computability theory (for an intro-
duction see for instance [DH10, Chapter 2]). We mention that computability-theoretic
results are often used to build ω-models (by relativization and iteration) and separate one
principle from another (for instant the Low Basis Theorem yields an ω-model of WKL0

which is not a model of ACA0).

Theorem 1.4.2 ([Sco62]). For every set X of Peano degree there exists a model M of

WKL0 such that (∀Y ∈M)Y ≤T X .
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Theorem 1.4.3 ([JS72]). There is a low set of Peano degree.

Theorem 1.4.4 ([YS90]). For every Martin-Löf random set X there exists a model M of

WWKL0 such that (∀Y ∈M)Y ≤T X .

Theorem 1.4.5 ([ML66]). The class of Martin-Löf random reals has measure 1.

1.5 Terminology, notation and basic facts

All definitions in this section are made within RCA0.

1.5.1 Partial orders

A partial order is a pair (P,≤P ), where P ⊆ N and ≤P is a reflexive, antisymmetric and
transitive binary relation on P . We usually refer to (P,≤P ) simply as P and we use � or
other symbols instead of ≤P when there is no danger of confusion.

• We say that x, y ∈ P are comparable if x � y or y � x. If x and y are incomparable
we write x ⊥ y.

• If x ∈ P , we let P (⊥ x) = {y ∈ P : x ⊥ y} and define the upper and lower cones

determined by x setting

P (� x) = {y ∈ P : x � y} and P (� x) = {y ∈ P : y � x}.

P (� x) and P (≺ x) are defined in the obvious way.

• If X ⊆ P we write ↓X for the downward closure of X , i.e.
⋃
x∈X P (� x). Notice

that the existence of ↓X as a set is equivalent to ACA0 over RCA0.

• A linear order (or a chain) is a partial order such that all elements are pairwise
comparable.

• A subset A ⊆ P is an antichain if all its elements are pairwise incomparable, i.e.
(∀x, y ∈ A)(x 6= y =⇒ x � y ∧ y � x).

• A partial order is called FAC (for finite antichain condition) if it does not contain
infinite antichains.
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• A linear order P is dense if for all x, y ∈ P such that x ≺ y there exists z ∈ P with
x ≺ z ≺ y.

• We say that x, y ∈ P are compatible in P if there is z ∈ P such that x � z and
y � z. A subset S ⊆ P is a strong antichain in P if its elements are pairwise
incompatible in P , i.e. (∀x, y ∈ S)(∀z ∈ P )(x, y � z =⇒ x = y).

• A subset I ⊆ P is an initial interval of P if (∀x, y ∈ P )(x � y ∧ y ∈ I =⇒ x ∈
I). An initial interval A of P is an ideal if every two elements of A are compatible
in A, i.e. (∀x, y ∈ A)(∃z ∈ A)(x � z ∧ y � z).

• P is well-founded if it contains no infinite descending sequences. By an infinite
descending sequence we mean a function f : N → P such that f(i) � f(j) for all
i < j.

• A well-order is a well-founded linear order. We use set-theoretic notation and de-
note well-orders by α, β, γ . . .. We write β < α to mean that β is an element of
α;

• P is said to be a well-partial order if for every function f : N → P there exist
i < j such that f(i) � f(j). There are many equivalent classical definitions of
well-partial order. In particular a well-partial order is a well founded partial order
with no infinite antichains.

• An order-preserving map of a partial order P into a partial order Q is a function
f : P → Q such that x ≤P y implies f(x) ≤Q f(y) for all x, y ∈ P . Notice that an
order-preserving map is a one-to-one function.

• An embedding of a partial order P into a partial order Q is a function f : P → Q

such that x ≤P y if and only if f(x) ≤Q f(y) for all x, y ∈ P . Notice that an
embedding is a one-to-one function. If P is embeddable into Q we write P � Q.

• An isomorphism is an onto embedding. If P is isomorphic to Q we write P ∼= Q.

• Let α, β be well-orders. A strong embedding of α into β is an embedding f : α→ β

such that ran(f) is an initial interval of β.

• P is called scattered if Q does not embed into P .

• The inverse (or reverse) of P is P ∗ = (P,�).
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• A restriction of P is S ⊆ P equipped with the ordering induced by P , namely
x ≤S y if and only if x � y for all x, y ∈ S.

• A partial extension (or simply extension) of P is a partial order P ′ = (P,�′) such
that x � y implies x �′ y for all x, y ∈ P .

• If B is a partial order and {Px : x ∈ B} is a sequence of partial orders indexed by
B we define the lexicographic sum (or simply sum) of the Px along B, denoted by∑

x∈B Px, to be the partial order P on the set {(x, y) : x ∈ B ∧ y ∈ Px} defined by

(x, y) ≤P (x′, y′) ⇐⇒ x <P x
′ ∨ (x = x′ ∧ y ≤Px y′).

• The sum along the n-element chain is denoted by
∑

i<n Pi. Similarly, the disjoint

sum
⊕

i<n Pi is the sum along the n-element antichain.

Lemma 1.5.1 (RCA0). The following are equivalent:

(1) BΣ0
2;

(2) the sum of FAC partial orders along a FAC partial order is FAC.

Proof. (1) ⇒ (2). By Theorem 1.3.1, we may assume RT1
<∞. Let P =

∑
x∈B Px

and suppose that P is not FAC. Let A ⊆ P be an infinite antichain. Then the set {x ∈
B : (∃y)(x, y) ∈ A} is an antichain ofB. Such a set is Σ0

1 and so might not exist in RCA0.
However, provably in RCA0, any infinite Σ0

1 set contains an infinite ∆0
1 set, and hence we

may assume that such a set is finite, since otherwise we could define an infinite antichain
of B. Let n ∈ N be such that (x, y) ∈ A implies x < n. Fix a one-to-one enumeration
g : N → N of A. Define f : N → n by letting f(i) = x where g(i) = (x, y) ∈ A. By
RT1

<∞, there exists x < n such that {(x, y) ∈ A : y ∈ N} is infinite. It follows that
{y ∈ N : (x, y) ∈ A} is an infinite antichain of Px and Px is not FAC.

(2) ⇒ (1). By Theorem 1.3.1 again, we prove RT1
<∞. Let f : N → n be a function

and define the partial order P =
⊕

i<n Pi, where each Pi = {x ∈ N : f(x) = i} is viewed
as an antichain. Suppose that Pi is finite for all i < n. Therefore, P is the sum of FAC
partial orders along a FAC partial order and by (2) is FAC. Then P is finite, which is a
contradiction.

Lemma 1.5.2 (RCA0). The following hold:

(1) every sum of scattered partial orders along a scattered partial order is scattered;
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(2) the reverse of a scattered partial order is scattered;

(3) every well-order is scattered;

(4) every well-partial order is scattered.

Proof. (1) Let P =
∑

x∈B Px and suppose that P is not scattered. Fix an embedding
f : Q → P . First suppose that for some i <Q j and x ∈ P we have f(i) = (x, y) and
f(j) = (x, z). Then, the composition of f with the projection on the second coordinate
is an embedding of the rational interval (i, j)Q into Px. Since Q embeds into its open
intervals, Px is not scattered. Otherwise, composing f with the projection on the first
coordinate, we obtain an embedding of Q into B, and P is not scattered.

(2) Let P be a partial order and suppose thatQ embeds into P ∗ via f . SinceQ embeds
into any dense linear order, let g be an embedding of Q into Q∗. Therefore f ◦ g is an
embedding of Q into P and P is not scattered.

(3) Suppose P is not scattered and let f : Q → P be an embedding. Composing f
with a descending sequence of Q, we obtain a descending sequence of P .

(4) follows from (3).

1.5.2 Trees

We use σ, τ, η, . . . to denote finite sequences of natural numbers, that is elements of N<N.
The set of finite binary sequences is denoted by 2<N.

• Let |σ| be the length of σ and list it as 〈σ(0), . . . , σ(|σ| − 1)〉. In particular 〈〉 is the
unique sequence of length 0.

• We write σ ⊆ τ to mean that σ is an initial segment of τ , while σaτ denotes the
concatenation of σ and τ .

• By σ � k we mean the initial segment of σ of length k and similarly, when f is a
function, f � k is the finite sequence 〈f(0), . . . , f(k − 1)〉.

• Let σ ∩ τ be the longest common initial segment of σ and τ , that is σ � k, where k
is unique such that (∀i < k)σ(i) = τ(i) and σ(k) 6= τ(k).

• A tree T is a set of finite sequences such that τ ∈ T and σ ⊆ τ imply σ ∈ T . A
path in T is a function f such that for all n the finite sequence f �n belongs to T .
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• We write [T ] to denote the collection of all paths in T : [T ] does not formally exists
in second order arithmetic but f ∈ [T ] is a convenient shorthand.

• A tree T is perfect if for all σ ∈ T there exist τ0, τ1 ∈ T such that σ ⊆ τ0, τ1 and
neither τ0 ⊆ τ1 nor τ1 ⊆ τ0 hold.

• A tree T has countably many paths if there exists a sequence {fn : n ∈ N} (coded
by a single set) such that for every f ∈ [T ] there exists n ∈ N such that f = fn.
If T does not have countably many paths then we say that it has uncountably many

paths.

• The Kleene-Brouwer order on finite sequences is the linear order defined by σ ≤KB

τ if either τ ⊆ σ or σ(i) < τ(i) for the least i such that σ(i) 6= τ(i).

• If T is a tree, let KB(T ) be the restriction of ≤KB to T .

By [Sim09, Theorem V.5.5] ATR0 is equivalent to the perfect tree theorem, stating
that every tree with uncountably many paths contains a perfect subtree. The following
straightforward diagonal argument shows in RCA0 that a nonempty perfect tree has un-
countably many paths.

Lemma 1.5.3 (RCA0). A non-empty perfect tree T ⊆ N<N has uncountably many paths.

Proof. Let T ⊆ N<N be a non-empty perfect tree and {fn : n ∈ N} be a sequence of
functions. We aim to prove that there exists a path f of T such that (∀n)(f 6= fn). By
recursion, we define a sequence of elements σn ∈ T such that σn ⊆ σn+1 and for all
n ∈ N

(∃i < |σn+1|)(σn+1(i) 6= fn(i)).

Let σ0 = 〈〉. To define σn+1, search for the ω-least triple 〈τ, p, q〉 ∈ N<N × N × N such
that σn ⊆ τ , τa〈p〉, τa〈q〉 ∈ T and fn(|τ |) 6= p. Then, let σn+1 = τa〈p〉.

Since T is perfect, we always find such triples. Now, the function f =
⋃
n∈N σn is ∆0

1

definable and is as desired.

The main feature of ≤KB is that, provably in ACA0, its restriction to a tree T is a
well-order if and only if T has no paths ([Sim09, Lemma V.1.3]).

Theorem 1.5.4 ([Hir94]). Over RCA0, ACA0 is equivalent to the statement “a tree T ⊆
N<N has no paths if and only if KB(T ) is well-ordered.”
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We notice that the above theorem is not explicitly stated and proved in [Hir94], al-
though the idea of the reversal is already contained in the proof of [Hir94, Theorem 2.6].
To be precise, Hirst shows that ACA0 is equivalent to the statement

(∀f)(KB(T (f)) is not well-founded),

where T (f) is a finitely branching tree which is ∆0
1 definable (in f ). The key point is

that, provably in RCA0, any descending sequence through KB(T (f)) computes a path in
T (f) and any path of T (f) computes ran(f) (see also [Sim09, Theorem III.7.2]). We
thus provide a proof of the reversal.

Proof. By Theorem 1.3.3, we show that the range of a given one-to-one function f : N→
N exists. Define T = T (f) ⊆ N<N by τ ∈ T if and only if for all m < |τ |:

• τ(m) > 0 =⇒ f(τ(m)− 1) = m and

• τ(m) = 0 =⇒ (∀n < |τ |)f(n) 6= m.

It is clear that T has at most one path and that if h is a path in T , then m ∈ ran(f) if and
only if h(m) > 0.

We modify T as follows. For σ ∈ N<N, let evn(σ) = 〈σ0, σ2, σ4, . . .〉 and odd(σ) =

〈σ1, σ3, σ5 . . .〉. Thus, let T ∗ = {σ ∈ N<N : evn(σ) ∈ 2<N ∧ odd(σ) ∈ T}.
Notice that a path in T ∗ yields a path in T . In fact, if g ∈ [T ∗] then odd(g) ∈ [T ],

where odd(g)(n) = g(2n+ 1) for all n.
We aim to show that KB(T ∗) is not well-ordered.
For τ ∈ T , let τ ∗ be the unique σ ∈ T ∗ such that |σ| is even, odd(σ) = τ and

evn(σ)(m) = 0 ⇔ τ(m) > 0 for all m < |τ |. For all k ∈ N, we define τk ∈ T of length
k by letting, for all m < k, τk(m) = 0 if f(n) 6= m for all n < |σ|, τk(m) = n + 1 if
n < k and f(n) = m (since f is one-to-one, n is unique). It is not difficult to see that
(τ ∗k ) is a descending sequence through KB(T ∗).

Note on finite sets

A set F is finite if (∃k)(∀n)(n ∈ F =⇒ n < k). Within RCA0, one can prove that any
finite set F has a unique code, a natural number n such that (∀i)(i ∈ X ⇔ θ(i, n)), where
θ(i, n) is a Σ0

0 formula (see [Sim09, Theorem II.2.5]). Besides, checking that n ∈ N is
a code is Σ0

0. From now on, we sometimes identify a finite set F with its code so that a
formula containing only set variables for finite sets is actually arithmetical.
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Antichains and initial intervals1

2.1 Introduction

The following theorem can be found in Fraı̈ssé’s monograph [Fra00, § 4.7.2], where it is
attributed to Bonnet [Bon75].

Theorem 2.1.1. A partial order is FAC if and only if every initial interval is a finite union

of ideals.

In [PS06] Theorem 2.1.1 is attributed to Erdös and Tarski because its ‘hard’ (left to
right) direction can be deduced from the following result, which is part of [ET43, Theorem
1]:

Theorem 2.1.2. If a partial order P has no infinite strong antichains then there are no

arbitrarily large finite strong antichains in P .

(One should notice that Erdös and Tarski work with what we would call filters and
final intervals.)

An intermediate step between Theorems 2.1.2 and 2.1.1 is the following characteriza-
tion of partial orders with no infinite strong antichains:

Theorem 2.1.3. A partial order P has no infinite strong antichains if and only if P is a

finite union of ideals.

Since Theorems 2.1.1 and 2.1.3 are equivalences, we study separately the two impli-
cations, which turn out to have different axiomatic strengths.

In section 2.3, we prove, over RCA0, the equivalence of ACA0 with each of the fol-
lowing statements:

1The content of this chapter appears in [FM14]
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(1) in a countable partial order with no infinite antichains every initial interval is a
finite union of ideals;

(2) in a countable partial order with no infinite strong antichains there is a bound on
the size of the strong antichains;

(3) every countable partial order with no infinite strong antichains is a finite union of
ideals.

In the last two sections we deal with the “easy” (right to left) direction of Theorem
2.1.1. In section 2.4, we show that the statement is provable in WKL0 (the obvious proof
goes through ACA0). Finally, in section 2.5, we show that the statement fails in the ω-
model of computable sets and hence cannot be proved in RCA0. Our results do not settle
the reverse mathematics strength of the statement, leaving open the possibility that it lies
between RCA0 and WKL0. On the other hand, RCA0 easily suffices to show that every
countable partial order which is a finite union of ideals has no infinite strong antichains
(Lemma 2.4.1).

2.2 Preliminaries

We recall the following definitions from subsection 1.5.1.

Definition 2.2.1. Let P be a partial order. A subset A ⊆ P is an antichain if all its
elements are pairwise incomparable, i.e.

(∀x, y ∈ A)(x 6= y =⇒ x � y ∧ y � x).

A subset S ⊆ P is a strong antichain in P if its elements are pairwise incompatible in P ,
i.e.

(∀x, y ∈ S)(∀z ∈ P )(x, y � z =⇒ x = y).

A set I ⊆ P is an initial interval of P if

(∀x, y ∈ P )(x � y ∧ y ∈ I =⇒ x ∈ I).

An initial interval A of P is an ideal if every two elements of A are compatible in A, i.e.

(∀x, y ∈ A)(∃z ∈ A)(x � z ∧ y � z).
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2.2.1 Essential union of sets

In this section we prove a technical result that is useful in the remainder of the chapter.
This result deals with finite union of sets and will be applied to finite unions of ideals.

Definition 2.2.2 (RCA0). Let I ⊆ N. A family of sets {Ai : i ∈ I} is essential if

(∀i ∈ I)(Ai *
⋃

j∈I,j 6=i

Aj).

The union of such a family is called an essential union.

Not every family of sets can be made essential without loosing elements from the
union. The simplest example is a sequence {An : n ∈ N} of sets such that An ⊂ An+1 for
every n. However the following shows that, provably in RCA0, every finite family of sets
can be made essential.

Lemma 2.2.3 (RCA0). For every family of sets {Ai : i ∈ F} with F finite there exists

I ⊆ F such that {Ai : i ∈ I} is essential and⋃
i∈F

Ai =
⋃
i∈I

Ai.

Proof. Let n be ω-least such that there exists (a code of) a finite set I such that I ⊆ F ,
|I| = n and

⋃
i∈F Ai =

⋃
i∈I Ai. One can check that such property is Π0

1 (see also
subsection 1.5.2). By Σ0

1-induction, since the code of F satisfies such property, n exists
in RCA0. Let I ⊆ F be a witness of n. Then

⋃
i∈F Ai =

⋃
i∈I Ai). Moreover, by the

minimality of n, it is easy to see that {Ai : i ∈ I} is essential.

2.2.2 WKL0 and initial interval separation

The following provides an equivalence with WKL0, inspired by the usual Σ0
1 separation.

Lemma 2.2.4. Over RCA0, the following are equivalent:

(1) WKL0;

(2) Σ0
1 initial interval separation. Let P be a partial order and ϕ(x), ψ(x) be Σ0

1

formulas with one distinguished free number variable.
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If (∀x, y ∈ P )(ϕ(x) ∧ ψ(y) =⇒ y � x), then there exists an initial interval I of

P such that

(∀x ∈ P )((ϕ(x) =⇒ x ∈ I) ∧ (ψ(x) =⇒ x /∈ I)).

(3) Initial interval separation. Let P be a partial order and suppose A,B ⊆ P are

such that (∀x ∈ A)(∀y ∈ B)y � x. Then there exists an initial interval I of P

such that A ⊆ I and B ∩ I = ∅.

Proof. We first assume WKL0 and prove (2). Fix the partial order P and let ϕ(x) ≡
(∃m)ϕ0(x,m) and ψ(n) ≡ (∃m)ψ0(x,m) be Σ0

1 formulas with ϕ0 and ψ0 Σ0
0. Assume

(∀x, y ∈ P )(ϕ(x) ∧ ψ(y) =⇒ y � x).
Form the binary tree T ⊆ 2<N by letting σ ∈ T if and only if σ ∈ T (P ) and for all

x, y < |σ|:

(i) (∃m < |σ|)ϕ0(x,m) =⇒ σ(x) = 1, and

(ii) (∃m < |σ|)ψ0(x,m) =⇒ σ(x) = 0.

To see that T is infinite, we show that for every k ∈ N there exists σ ∈ T with |σ| = k.
Given k let

σ(x) = 1 ⇐⇒ x ∈ P ∧ (∃y,m < k)(ϕ0(y,m) ∧ x � y)

for all x < k. It is easy to verify that σ ∈ T . By weak König’s lemma, T has a path f .
By Σ0

0 comprehension, let I = {x : f(x) = 1}. It is straightforward to see that I is as
desired.

(3) is the special case of (2) obtained by considering the Σ0
0, and hence Σ0

1, formulas
x ∈ A and x ∈ B.

It remains to prove (3) ⇒ (1). It suffices to derive in RCA0 from (3) the existence
of a set separating the disjoint ranges of two one-to-one functions (see Theorem 1.3.2).
Let f, g : N → N be one-to-one functions such that (∀n,m ∈ N)f(n) 6= g(m). Define a
partial order on P = {an, bn, cn : n ∈ N} by letting cn � am if and only if f(m) = n,
bm � cn if and only if g(m) = n, and adding no other comparabilities. Let A = {an : n ∈
N} and B = {bn : n ∈ N}, so that (∀x ∈ A)(∀y ∈ B)y � x. By (3) there exists an initial
interval I of P such that A ⊆ I and B ∩ I = ∅. It is easy to check that {n : cn ∈ I}
separates the range of f from the range of g.
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2.2.3 Decomposition into ideals

In this section we prove a technical result about countable partial orders. We first notice
that every partial order is (provably in RCA0) a union of ideals: consider, for instance, the
principle ideals. Here we show that for every countable partial order there is a countable
collection of ideals such that the partial order is a finite union of ideals exactly when such
collection is finite. Moreover, there is an effective procedure (arithmetical in the partial
order) to produce such collection of ideals.

Lemma 2.2.5 (ACA0). Let P be a partial order. Then there is a sequence (σn)n∈N of

elements of P<N such that for all n ∈ N and for all i < |σn|:

(1) |σn| ≤ |σn+1|;

(2) σn(i) � σn+1(i);

(3) {σn(i) : i < |σn|} is a strong antichain;

(4) {σn(i) : n ∈ N, i < |σn|} is cofinal in P .

Proof. Let P = {xn : n ∈ N} be an infinite partial order. By arithmetical recursion we
define σn ∈ P<N for all n. We let σ0 = 〈〉. Assume that we have already defined σn and
consider xn. If

(∃i < |σn|)(xn is compatible with σn(i)),

let (i, z) be the least natural number such that i < |σn|, z ∈ P and both xn and σn(i) are
� z. Let |σn+1| = |σn|, σn+1(i) = z, and σn+1(j) = σn(j) for j 6= i. Otherwise, let
σn+1 = σn

a〈xn〉.
It is clear that (1) and (2) hold. By arithmetical induction it is straightforward to verify

condition (3). By construction, for all n ∈ N there is i < |σn+1| such that xn � σn+1(i),
and then (4) also holds.

Corollary 2.2.6 (ACA0). Let P be a partial order. Then there exists a family {Ai : i ∈ I}
of ideals of P such that:

(a) P =
⋃
i∈I Ai;

(b) I is finite if and only if there is a finite bound on the size of strong antichains in P .

In particular, P is a finite union of ideals if and only if I is finite.
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Proof. Let P be a partial order and (σn)n∈N be as in Lemma 2.2.5. We then define in
ACA0 a set {Ai : i ∈ N} of subsets of P by letting:

Ai = {x ∈ P : (∃n)(i < |σn| ∧ x � σn(i)}

for all i ∈ N. By conditions (1) and (2) of Lemma 2.2.5, every Ai is an ideal of P . If we
let I = {i ∈ N : (∃n)(i < |σn|)}, it follows by (4) that P =

⋃
i∈I Ai. Hence, (a) holds.

We now show (b). If there are arbitrarily large finite strong antichains, then P cannot
be the union of finitely many ideals, for otherwise we would find two incompatible ele-
ments in the same ideal, which is clearly a contradiction, and so I must be infinite. On
the other hand, if I is infinite, then by (3) the sequence (σn)n∈N provides arbitrarily large
finite strong antichains.

2.3 Equivalences with ACA0

We consider the following equivalence, which includes Theorems 2.1.2 and 2.1.3.

Theorem 2.3.1. Let P be a countable partial order. Then the following are equivalent:

(1) P is a finite union of ideals;

(2) there is a finite bound on the size of the strong antichains in P ;

(3) there is no infinite strong antichain in P .

We notice that (1) ⇒ (2) and (2) ⇒ (3) are easily provable in RCA0. We show that
(2) ⇒ (1) and (3) ⇒ (2) are provable in ACA0. Note that (3) ⇒ (2) is false if we
consider antichains in place of strong antichains.

We start with implication (2)⇒ (1).

Lemma 2.3.2 (ACA0). Let P be a partial order with no arbitrarily large finite strong

antichains. Then P is a finite union of ideals.

Proof. Let ` ∈ N be the maximum size of a strong antichain in P and let S be a strong
antichain of size `. For every z ∈ S define by arithmetical comprehension

Az = {x ∈ P : x and z are compatible}.
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Since S is maximal with respect to inclusion it is immediate that P =
⋃
z∈S Az and it

suffices to show that each Az is an ideal.

Fix z ∈ S and x, y ∈ Az. Let x0, y0 be such that x � x0, y � y0, and z � x0, y0.
It suffices to show that x0 and y0 are compatible in Az. If this is not the case, x0 and y0
are incompatible also in P (because P (� x0) ⊆ P (� z) ⊆ Az). Moreover for each w ∈
S \ {z} each of x0 and y0 is incompatible with w in P because z and w are incompatible
in P . Thus (S \ {z}) ∪ {x0, y0} is a strong antichain of size `+ 1, a contradiction.

To obtain (3) ⇒ (2) of Theorem 2.3.1 we are going to use the existence of max-
imal (with respect to inclusion) strong antichains. We first show that this statement is
equivalent to ACA0.

Lemma 2.3.3. Over RCA0, the following are equivalent:

(1) ACA0;

(2) every strong antichain in a partial order extends to a maximal strong antichain;

(3) every partial order contains a maximal strong antichain.

Proof. We show (1) ⇒ (2). Let P be a partial order and S ⊆ P a strong antichain. By
primitive recursion, we define a maximal strong antichain T ⊇ S in P . Suppose we have
defined Ty = T ∩ {x ∈ P : x < y}. Then y ∈ T if and only if S ∪ Ty ∪ {y} is a strong
antichain.

Implication (2) ⇒ (3) is trivial. To show (3) ⇒ (1), we argue in RCA0 and derive
from (3) the existence of the range of any one-to-one function. Given f : N → N one-
to-one consider P = {an, bn, cn : n ∈ N}. For all n,m ∈ N let an � cm if and only
if bn � cm if and only if f(m) = n, and add no other comparabilities. By (3), let
S ⊆ P be a maximal strong antichain. Then, n belongs to the range of f if and only if
an /∈ S ∨ bn /∈ S, and the range of f exists by Σ0

0 comprehension.

The following is implication (3)⇒ (2) of Theorem 2.3.1, i.e. our formalization of the
left to right direction of Theorem 2.1.2.

Lemma 2.3.4 (ACA0). Let P be a partial order with no infinite strong antichains. Then

there are no arbitrarily large finite strong antichains in P .
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Proof. Suppose for a contradiction that P has arbitrarily large finite strong antichains but
no infinite strong antichains (the existence of such a pair is proved below). We define by
recursion a sequence of elements (xn, yn) ∈ P 2.

Let (x0, y0) be a pair such that x0 and y0 are incompatible in P and P (� x0) contains
arbitrarily large finite strong antichains. Suppose we have defined xn and yn. Using
arithmetical comprehension, search for a pair (xn+1, yn+1) such that xn � xn+1, yn+1,
xn+1 and yn+1 are incompatible in P , and P (� xn+1) contains arbitrarily large finite
strong antichains.

To show that the recursion never stops assume that U ⊆ P is a final interval with
arbitrarily large finite strong antichains (U = P at stage 0, U = P (� xn) at stage n +

1). By Lemma 2.3.3 there exists a maximal strong antichain S ⊆ U with at least two
elements. By hypothesis, S is finite and we apply the following claim:

Claim. There exists x ∈ S such that P (� x) contains arbitrarily large finite strong an-
tichains.

Proof of claim. Let n = |S|. We first show that for every k ≥ 1 there exists u ∈ S such
that P (� u) contains a strong antichain of size k.

Given k ≥ 1, let T be a strong antichain of size n · k. Since S is maximal, every
element y ∈ T is compatible with some element of S. For any y ∈ T let (u(y), v(y))

be the least pair such that u(y) ∈ S and u(y), y � v(y). Then {v(y) : y ∈ T} is again
a strong antichain of size n · k. As y 7→ u(y) defines a function from T to S, it easily
follows that for some u ∈ S the upper cone P (� u) contains at least k elements of the
form v(y) with y ∈ T .

Now, for all k ≥ 1, let uk ∈ S be such that P (� uk) contains a strong antichain of
size k. Since S is finite, by the infinite pigeonhole principle (which is provable in ACA0),
there exists x ∈ S such that x = uk for infinitely many k. The upper cone P (� x) thus
contains arbitrarily large finite strong antichains.

In particular, xn � ym for all n < m and xn and yn are incompatible in P . It follows
that yn is incompatible with ym for all n < m. Then {yn : n ∈ N} is an infinite strong
antichain, for the desired contradiction.

The following Theorem shows that our use of ACA0 in several of the preceding Lem-
mas is necessary and establish the reverse mathematics results about Theorem 2.1.2 and
the left to right directions of Theorems 2.1.1 and 2.1.3 (these are respectively conditions
(3), (5), and (4) in the statement of the Theorem). We also show that apparently weaker
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statements, such as the restriction of Theorems 2.1.1 and 2.1.3 to well-partial orders, re-
quire ACA0.

Theorem 2.3.5. Over RCA0, the following are pairwise equivalent:

(1) ACA0;

(2) every partial order with no arbitrarily large finite strong antichains is a finite union

of ideals;

(3) every partial order with no infinite strong antichains does not contain arbitrarily

large finite strong antichains;

(4) every partial order with no infinite strong antichains is a finite union of ideals;

(5) if a partial order is FAC then every initial interval is a finite union of ideals;

(6) every well-partial order is a finite union of ideals.

Proof. (1) ⇒ (2) is Lemma 2.3.2 and (1) ⇒ (3) is Lemma 2.3.4. The combination of
Lemma 2.3.4 and Lemma 2.3.2 shows (1) ⇒ (4). Since a strong antichain in a subset of
a partial order is an antichain, (4) ⇒ (5) holds. For (5) ⇒ (6), recall that, provably in
RCA0, a well-partial order has no infinite antichains.

It remains to show that each of (2), (3) and (6) implies ACA0. Reasoning in RCA0 fix
a one-to-one function f : N → N. In each case we build a suitable partial order P which
encodes the range of f .

We start with (2) ⇒ (1). Let P = {an, bn : n ∈ N} ∪ {c}. We define a partial order
on P by letting:

• an � c for all n;

• bn � bm for n ≤ m;

• an � bm if and only if (∃i < m)f(i) = n;

and adding no other comparabilities. It is easy to verify that every strong antichain in P
has at most 2 elements. By (2) P is a finite union of ideals A0, . . . , Ak. By Lemma 2.2.3,
we may assume that this union is essential. Let us assume b0 ∈ A0.

By Σ0
1-induction (actually Σ0

0) we prove that (∀m)(bm ∈ A0). The base step is obvi-
ously true. Suppose bm ∈ A0 and bm+1 /∈ A0. Then A0 = {x ∈ P : x � bm} (because
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every element � bm is � bm+1). Suppose bm+1 ∈ A1. Then A0 ⊆ A1 and the decom-
position is not essential, a contradiction. Therefore, A0 contains all the bm’s. Now, it is
straightforward to see that (∃m)f(m) = n if and only if an ∈ A0, so that the range of f
can be defined by ∆0

0 comprehension.

To prove (3) ⇒ (1) we exploit the notion of false and true stage. Recall that n ∈ N
is said to be a false stage for f (or simply false) if f(k) < f(n) for some k > n and true

otherwise. We may assume to have infinitely many false stages, since otherwise the range
of f exists by ∆0

1 comprehension. On the other hand, there are always infinitely many
true stages (i.e. for every m there exists n > m which is true), because otherwise we can
build an infinite descending sequence of natural numbers.

Let P = {an, bn : n ∈ N} and define

• bn � bm for all n < m;

• an � bm if and only if f(k) < f(n) for some k with n < k ≤ m (i.e. if at stage m
we know that n is false);

and there are no other comparabilities.

Notice that the bn’s and the an’s with n false are pairwise compatible in P . Therefore
every infinite strong antichain in P consists of infinitely many an’s with n true and at
most one bn or an with n false. Possibly removing that single element we have an infinite
set of true stages. From this in RCA0 we can obtain a strictly increasing enumeration of
true stages i 7→ ni. Since (∃n)f(n) = m if and only if (∃n ≤ nm)f(n) = m, the range
of f exists by ∆0

1 comprehension. Thus the existence of an infinite strong antichain in P
implies the existence of the range of f in RCA0.

To apply (3) and conclude the proof we need to show that P contains arbitrarily large
finite strong antichains. To do this apparently we need Σ0

2-induction (which is not avail-
able in RCA0) to show that for all k there exists k distinct true stages.

To remedy this problem (with the same trick used for this purpose in [MS11, Lemma
4.2]) we replace each an with n + 1 distinct elements. Thus we set P ′ = {ain, bn : n ∈
N, i ≤ n} and substitute (ii) with ain ≤P ′ bm if and only if f(k) < f(n) for some k with
n < k ≤ m. Then also the existence of an infinite strong antichain in P ′ suffices to define
the range of f in RCA0. However the existence of arbitrarily large finite strong antichains
in P ′ of the form {ain : i ≤ n} follows immediately from the existence of infinitely many
true stages.
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We now show (6)⇒ (1). We again use false and true stages and as before we assume
to have infinitely many false stages. The idea for P is to combine a linear order P0 =

{an : n ∈ N} of order type ω + ω∗ with a linear order P1 = {bn : n ∈ N} of order type
ω. The false and true stages give rise respectively to the ω and ω∗ part of P0, and every
false stage is below some element of P1. We proceed as follows.

Let P = {an, bn : n ∈ N}. For n ≤ m, set

(i) an � am if f(k) < f(n) for some n < k ≤ m (i.e. if at stage m we know that n
is false);

(ii) am � an if f(k) > f(n) for all n < k ≤ m (i.e. if at stage m we believe n to be
true).

When condition (i) holds, we also put an � bm. Then we linearly order the bm’s by putting
bi � bj if and only if i ≤ j. There are no other comparabilities.

It is not difficult to verify that P is a partial order with no infinite antichains. Note
that if n is false and m > n is such that f(m) < f(n), then {i : ai � an} ⊆ {i : i < m}
is finite, while if n is true, then {i : an � ai} ⊆ {i : i ≤ n} is finite. This explains our
assertion that P0 has order type ω + ω∗.

First assume that P is not a well-partial order. By definition, there exists g : N → P

such that i < j implies g(i) � g(j). As for every false n there are only finitely many
x ∈ P such that an � x, we must have g(i) 6= an for all i and for all false n. We may
assume that g(i) 6= bn for all i, n, since there are finitely many bm such that bn � bm. We
thus have g(i) = ani with ni true for all i. Since am � an and n < m imply n false, the
map i 7→ ni is a strictly increasing enumeration of true stages. As before, the range of f
exists by ∆0

1 comprehension.

We now assume that P is a well-partial order. Apply (6), so that P =
⋃
{Ai : i < k}

is a finite union of ideals. By Lemma 2.2.3 we may assume that the union is essential so
that there exists an ideal, say A0, that contains all the bm’s.

We claim that n is false if and only if an ∈ A0. To see this, let n be false. Thus
an � bm for some m, and hence an ∈ A0. Conversely, if an ∈ A0 then it is compatible
with, for instance, b0, and yet again it is � bm for some m. Hence, the set of true stages is
{n : an /∈ A0}, and the conclusion follows as before.
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2.4 Proofs in WKL0

We start with a simple observation about the right to left direction of Theorem 2.1.3.

Lemma 2.4.1 (RCA0). Every partial order which is a finite union of ideals has no infinite

strong antichains.

Proof. Since an ideal does not contain incompatible elements if the partial order is the
union of k ideals we have even a finite bound on the size of strong antichains.

We now look at the right to left direction of Theorem 2.1.1, which states that every
partial order with an infinite antichain contains an initial interval that cannot be written as
a finite union of ideals. The proof can be carried out very easily in ACA0: just take the
downward closure of the given antichain. We improve this upper bound by showing that
WKL0 suffices. We first point out that RCA0 proves a particular instance of the statement.

Lemma 2.4.2 (RCA0). Let P be a partial order with a maximal (with respect to inclusion)

infinite antichain. Then there exists an initial interval that is not a finite union of ideals.

Proof. Let D be a maximal infinite antichain of P . The maximality of D implies that for
all x ∈ P we have

(∃d ∈ D)x � d ⇐⇒ ¬(∃d ∈ D)d ≺ x.

Therefore the downward closure of D is ∆0
1 definable and thus exists in RCA0. Letting

I = {x ∈ P : (∃d ∈ D)x � d}, we obtain an initial interval which is not finite union of
ideals, since distinct elements of D are incompatible in I .

To use Lemma 2.4.2 in the general case we need to extend an infinite antichain to
a maximal one. While it is easy to show that RCA0 proves the existence of maximal
antichains in any partial order, the statement that every antichain is contained in a maximal
antichain is equivalent to ACA0, and thus does not help in our case.

Lemma 2.4.3. Over RCA0, the following are equivalent:

(1) ACA0;

(2) every antichain in a partial order extends to a maximal antichain.

Proof. We first show (1)⇒ (2). Let P be a partial order and D ⊆ P be an antichain. By
recursion, we define f : N → {0, 1} by letting f(x) = 0 if and only if either x /∈ P or
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x is comparable with some element of (D \ {x}) ∪ {y ∈ P : y < x ∧ f(y) = 1}. Then
E = {x : f(x) = 1} is a maximal antichain with D ⊆ E.

For the reversal argue in RCA0 and fix a one-to-one function f : N → N. Let P =

{an, bn : n ∈ N} and define the partial order by letting bm � an if and only if f(m) = n,
and adding no other comparabilities. Then apply (2) to the antichain D = {bm : m ∈ N}
and obtain a maximal antichain E such that D ⊆ E. It is immediate that (∃m)f(m) = n

if and only if an /∈ E, so that in RCA0 we can prove the existence of the range of f .

We now show how to prove the right to left direction of Theorem 2.1.1 in WKL0.

Theorem 2.4.4 (WKL0). Every partial order with an infinite antichain contains an initial

interval that cannot be written as a finite union of ideals.

Proof. We reason in WKL0. Let P be a partial order such that every initial interval is a fi-
nite union of ideals. Suppose towards a contradiction that there exists an infinite antichain
D.

Let ϕ(x) and ψ(x) be the Σ0
1 formulas x ∈ D and (∃y)(y ∈ D ∧ y ≺ x) respectively.

It is obvious that (∀x, y ∈ P )(ϕ(x)∧ψ(y) =⇒ y � x). By Σ0
1 initial interval separation

(Lemma 2.2.4), there exists an initial interval I ⊆ P such that

(∀x ∈ P )((ϕ(x) =⇒ x ∈ I) ∧ (ψ(x) =⇒ x /∈ I)).

Therefore, I contains D and no element above any element of D. To see that I cannot
be the union of finitely many ideals notice that distinct x, x′ ∈ D cannot belong to the
same ideal A ⊆ I , for otherwise there would be z ∈ I such that x, x′ � z, which implies
ψ(z).

We do not know whether the statement of Theorem 2.4.4 implies WKL0. However,
the proof above uses the existence of an initial interval I containing the infinite antichain
D and no elements above any element of D. We now show that even the existence of an
initial interval I containing infinitely many elements of the antichain D and no elements
above any element of D is equivalent to WKL0. Therefore a proof of the right to left
direction of Theorem 2.1.1 in a system weaker than WKL0 must avoid using such an I .

Lemma 2.4.5. Over RCA0, the following are equivalent:

(1) WKL0;
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(2) if a partial order P contains an infinite antichain D, then P has an initial interval

I such that D ⊆ I and (∀x ∈ D)(∀y ∈ I)x ⊀ y;

(3) if a partial order P contains an infinite antichain D, then P has an initial interval

I such that I ∩D is infinite and (∀x ∈ D)(∀y ∈ I)x ⊀ y.

Proof. The proof of (1) ⇒ (2) is contained in Theorem 2.4.4 and (2) ⇒ (3) is obvious,
so that we just need to show (3) ⇒ (1). Fix one-to-one functions f, g : N → N such that
(∀n,m ∈ N)f(n) 6= g(m). Let P = {an, bn : n ∈ N} the partial order defined by letting

• an � bm if m = g(n);

• bk � an if (∃i < n)(i < g(n) ∧ f(i) = k), i.e. k enters the range of f before stage
min{n, g(n)};

• bk � bm if (∃i < m)(f(i) = k ∧ (∀j < i)f(j) 6= m), i.e. k enters the range of f
before stage m and when m has not entered the range of f yet,

and adding no other comparabilities.

To check that P is indeed a partial order we need to show that it is transitive. The
main cases are the following:

• If bk � an � bm we have m = g(n) and the existence of i < min{n,m} such that
f(i) = k. By the hypothesis on f and g we have f(j) 6= m for every j, and in
particular for every j < i, so that bk � bm follows.

• If bk � bm � b` there exist i < m and i′ < ` such that f(i) = k, (∀j < i)f(j) 6= m,
f(i′) = m, and (∀j < i′)f(j) 6= `. The second and third condition imply i ≤ i′, so
that i < `, (∀j < i)f(j) 6= ` and we obtain bk � b`.

• If bk � bm � an there exist i < m and i′ < n such that f(i) = k, (∀j < i)f(j) 6=
m, i′ < g(n), and f(i′) = m. Again we obtain i ≤ i′, so that i < min{n, g(n)} and
we can conclude bk � an.

The set D = {an : n ∈ N} is an infinite antichain. Applying (3) we obtain an initial
interval I of P which contains infinitely many elements of D and no elements above any
element of D. We now check that {k ∈ N : bk ∈ I} separates the range of f from the
range of g.

If k = g(n) it is immediate that an ≺ bk so that bk /∈ I .
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On the other hand suppose that k = f(i). The set A = {n : g(n) ≤ i} is finite by the
injectivity of g and we can let m = max({i} ∪ A). Since D ∩ I is infinite there exists
n > m such that an ∈ I . Then we have i < n and i < g(n) (because n /∈ A), so that
bk � an. Therefore bk ∈ I .

We notice that another weakening of statement (2) of Lemma 2.4.5 which is equivalent
to WKL0 is the following: “if a partial order P contains an infinite antichain D, then there
exists an initial interval I such that D ⊆ I and (∀y ∈ I)(∃∞x ∈ D)x ⊀ y” (the proof
of the reversal uses the partial order of the proof above equipped with the inverse order).
However this statement does not imply the statement of Theorem 2.4.4.

2.5 Unprovability in RCA0

In this section we show that RCA0 does not suffice to prove the right to left direction of
Theorem 2.1.1.

Lemma 2.5.1. There exists a computable partial order P with an infinite computable

antichain such that any computable initial interval of P is the downward closure of a

finite subset of P .

Before proving Lemma 2.5.1 we show how to deduce from it the unprovability result.

Theorem 2.5.2. RCA0 does not prove that every partial order such that all its initial

intervals are finite union of ideals is FAC.

Proof. It suffices to show that the statement fails in REC, the ω-model of computable
sets. Let P the computable partial order of Lemma 2.5.1 and let I be a computable initial
interval of P . Let F be a finite set such that P = ↓F . Then I =

⋃
x∈F P (� x) and each

P (� x) is a computable ideal.

Thus all initial intervals of P which belong to REC are finite union of ideals also
belonging to REC. On the other hand, P has an infinite antichain in REC, showing the
failure of the statement.

Proof of Lemma 2.5.1. We build P by a finite injury priority argument. We let P =

{xn, yn : n ∈ ω} and ensure the existence of an infinite computable antichain by making
the xn’s pairwise incomparable.
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We further make sure that, for all e ∈ ω, P meets the requirement:

Re : (∃y)
(
(Φe(y) = 1 =⇒ (∀∞z ∈ P )z � y) ∧ (Φe(y) = 0 =⇒ (∀∞z ∈ P )y � z)

)
.

Here, as usual, Φe is the function computed by the Turing machine of index e and ∀∞

means ‘for all but finitely many’.

We first show that meeting all the requirements implies that P satisfies the statement
of the Lemma. If I is a computable initial interval of P with characteristic function Φe, fix
y given byRe. We must have Φe(y) ∈ {0, 1}. If Φe(y) = 0 then, byRe, (∀∞z ∈ P )y � z.
As y /∈ I , this implies that I is finite and hence I = ↓ I is the downward closure of a finite
set. If Φe(y) = 1, then by Re we have (∀∞z ∈ P )z � y. Thus P \ P (� y) and hence
I \ P (� y) are finite. As y ∈ I , I = ↓ ({y} ∪ (I \ P (� y))) is the downward closure of
a finite set.

Our strategy for meeting a single requirement Re consists in fixing a witness yn and
waiting for a stage s+ 1 such that

Φe,s(yn) ∈ {0, 1}.

If this never happens, Re is satisfied. If Φe,s(yn) = 0, we put every xm and ym withm > s

above yn. If Φe,s(yn) = 1, we put every xm and ym with m > s below yn. In this way Re

is obviously satisfied.

To meet all the requirements, the priority order is R0, R1, R2, . . .. At every stage s,
we define a witness for Re via an index ne,s and mark the requirements by a {0, 1}-valued
function r(e, s) such that r(e, s) = 0 if and only if Re might require attention at stage s.

Construction.
Stage s = 0. For all e, ne,0 = e and r(e, 0) = 0.

Stage s + 1. We say that Re requires attention at stage s + 1 if e ≤ s, ne,s ≤ s,
r(e, s) = 0 and Φe,s(yne,s) ∈ {0, 1}. If no Re requires attention, then let ni,s+1 = ni,s

and r(i, s+ 1) = r(i, s) for all i. Otherwise, let e be least such that Re requires attention.
Then Re receives attention at stage s + 1 and n = ne,s is activated and declared low if
Φe,s(yn) = 0, high if Φe,s(yn) = 1. Let ne,s+1 = ne,s and r(e, s + 1) = 1. For i < e,
ni,s+1 = ni,s and r(i, s+ 1) = r(i, s). For i > e, ni,s+1 = s+ i− e and r(i, s+ 1) = 0.

The following two properties are easily seen to hold:

1. every n is activated at most once;
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2. if n is activated at stage s, then no m such that n < m < s is activated after s.

We define � by stipulating that for all n < m:

(i) xn is incomparable with each of yn, xm and ym;

(ii) yn � (�) xm, ym if and only if n is activated at some stage s such that n < s ≤ m,
is declared low (high) and no k < n is activated at any stage t such that s < t ≤
m.

When (ii) occurs, it follows by (2) that no k < n is activated at any stage t such that
n < t ≤ m.

Claim 1. P is a partial order.

Proof of claim. We use zn to denote one of xn and yn.
To show antisymmetry, suppose for a contradiction that zn � zm and zm � zn with

n < m. By (i) zn must be yn. Since n can be activated only once, it follows that n is
activated at some stage s with n < s ≤ m and, by (ii), is declared both low and high, a
contradiction.

To check transitivity, let zn ≺ zm ≺ zp. Notice that n, m and p are all distinct. We
consider the following cases:

• n < m, p. Then zn = yn and n is activated and declared low at some stage s such
that n < s ≤ m. It is easy to verify that no k < n is activated at any stage t such
that n < t ≤ p, and thus yn � zp.

• m < n, p. Then zm = ym and m is declared both high and low, contradiction.

• p < n,m. Then zp = yp and p is activated and declared high at some stage s such
that p < s ≤ m. As in case (a), it is easy to check that no k < p is activated at any
stage t such that p < t ≤ n, and so zn � yp.

Claim 2. Every Re receives attention at most finitely often and is satisfied.

Proof of claim. As usual, the proof is by induction on e. Let s be the least such that no Ri

with i < e receives attention after s. Let n = ne,s. Then n = ne,t for all t ≥ s, because
a witness for a requirement changes only when a stronger priority requirement receives
attention. Similarly, r(e, t) = 0 for all t ≥ s such that Re has not received attention at any
stage between s and t. If Φe(yn) /∈ {0, 1},Re is clearly satisfied. Suppose that Φe(yn) = 0
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(case 1 is similar) and let t be minimal such that t ≥ max{s, e, n} and Φe,t(yn) = 0. Then
Re receives attention at stage t+ 1, n is activated and declared low and no m < n will be
activated after stage t + 1 (because ni,u > n for all i > e and u > t). Then yn � xm, ym

for all m > t and so Re is satisfied.

Claim 2 completes the proof of the Lemma.

2.5.1 Other unprovability results

Ludovic Patey [BPS] improved our result and showed that WWKL0 does not imply the
statement of Theorem 2.4.4 by modifying the proof of Lemma 2.5.1 and proving:

Theorem 2.5.3 (Patey). There exists a computable partial order P with an infinite com-

putable antichain such that the set of reals computing an initial interval which is not the

downward closure of a finite set is null.

Corollary 2.5.4. WWKL0 does not prove that that every partial order such that its initial

intervals are finite union of ideals is FAC.

Proof. It follows by Theorem 1.4.5 and Theorem 2.5.3 that there exists a Martin-Löf
random real X such that any initial interval of P computed by X is the downward closure
of a finite set. On the other hand, by Theorem 1.4.4, there exists an ω-model M of
WWKL0 such that any set in the model is computable in X . Since M ⊇ REC, P ∈ M
and P is not FAC in M . The argument showing that in M every initial interval of P is a
finite union of ideals is the same as in the proof of Theorem 2.5.2.

We do not know whether RT2
2 implies the right to left direction of Theorem 2.1.1.

However, by the following conservation result, we obtain that COH (Cohesive Principle),
which is a consequence of RT2

2, cannot imply it.

Theorem 2.5.5 ([HS07]). COH is conservative over RCA0 for Π1
2 statements of the form

(∀X)(θ(X) =⇒ (∃Y )ϕ(X, Y )), where θ is arithmetical and ϕ is Σ0
3.

Corollary 2.5.6. Over RCA0, COH does not imply the statement that every partial order

such that all its initial intervals are finite union of ideals is FAC.

Proof. We cannot apply directly the above conservation result, because our statement is
indeed Π1

3. However, it follows by Lemma 2.5.1 that RCA0 does not even prove the
weaker Π1

2 statement “every partial order containing an infinite antichain has an initial
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interval which is not the downward closure of a finite set”. The latter is of the form
required and hence COH does not prove it. Therefore, COH does not prove our statement
either.
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3
Well-scattered partial orders and

Erdös-Rado theorem

3.1 Introduction

We consider a characterization theorem for scattered FAC partial orders (Theorem 3.1.2)
analogous to that for well-partial orders (Theorem 3.1.3). For the sake of analogy and for
notational convenience, we give the following definition.

Definition 3.1.1. A partial order P is a well-scattered partial order (wspo) if for every
function f : Q→ P there exist x <Q y such that f(x) ≤P f(y).

The theorem below provides four classically equivalent definitions for well-scattered
partial orders.

Theorem 3.1.2 ([BP69]). Let P be a partial order. The following are equivalent:

wspo(ant) P is scattered and FAC;

wspo(ext) every linear extension of P is scattered;

wspo P is a well-scattered partial order;

wspo(set) for every function f : Q → P there exists an infinite set A ⊆ Q such that x <Q y

implies f(x) ≤P f(y) for all x, y ∈ A.

We aim to study the reverse mathematics of Theorem 3.1.2. To do this, we con-
sider one statement for every pair of equivalent conditions. For instance, wspo(ant) →
wspo(ext) denotes the statement “for every partial order P , if P is scattered and FAC,
then every linear extension of P is scattered”.

As said before, we have similar conditions for well-partial orders.
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Theorem 3.1.3. Let P be a partial order. Then the following are equivalent:

wpo(ant) P is well-founded and has no infinite antichains;

wpo(ext) every linear extension of P is well-founded;

wpo P is a well-partial order, i.e. for every function f : N → P there exist x < y such

that f(x) ≤P f(y);

wpo(set) for every function f : N → P there exist an infinite set A ⊆ N such that x < y

implies f(x) ≤P f(y) for all x, y ∈ A.

The reverse mathematics of Theorem 3.1.3 was studied in [CMS04] (see Table 1).
Here we strengthen a few results by showing that most statements are equivalent to CAC

(see Table 2).

→ wpo(ant) wpo(ext) wpo wpo(set)

wpo(ant) CAC⇒
REC 6|=
[CMS04, 3.10]
WKL0 0
[CMS04, 3.19]

CAC⇒
REC 6|=
[CMS04, 3.9]
WKL0 0
[CMS04, 3.11]

⇔ CAC

[CMS04, 3.3]
WKL0 0

wpo(ext) WKL0 `
REC 6|=
[CMS04, 3.21]

WKL0 `
[CMS04, 3.17]
REC 6|=
[CMS04, 3.21]

⇒ RT1
<∞

WKL0 + CAC `
REC 6|=
WKL0 0

wpo CAC⇒
⇒ RT1

<∞

[CMS04, 2.5]
REC 6|=
[CMS04, 3.7]
WKL0 0

wpo(set)

Table 1: Known results for well-partial orders1

1The entry row→column contains the results for the corresponding statement, while an empty entry
stands for a statement provable in RCA0.
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→ wpo(ant) wpo(ext) wpo wpo(set)

wpo(ant) ⇔ CAC (3.5.4) ⇔ CAC (3.5.4)

wpo(ext) WWKL0 0
(3.6.4)

⇒ CAC

wpo ⇔ CAC (3.5.5)

Table 2: New results for well-partial orders

As for well-scattered partial orders, it turns out that a partition theorem for rationals
that we call ER2

2 (after Erdös-Rado) plays the role of RT2
2 in the reverse mathematics of

Theorem 3.1.2.

Theorem 3.1.4 ([ER52], Theorem 4, p. 427). The partition relationQ→ (ℵ0,Q)2 holds.

The theorem says that for every coloring c : [Q]2 → 2 there exists either an infinite
0-homogeneous set or a dense 1-homogeneous set.

Actually, we shall consider semitransitive versions of ER2
2 (namely st-ER2

2 and st-
ER2

3). Table 3 below contains our results.

→ wspo(ant) wspo(ext) wspo wspo(set)

wspo(ant) ⇔ st-ER2
2

(3.5.9, 3.5.10)
REC 6|= (3.6.6)
⇒ RT1

<∞

WKL0 0

st-ER2
3⇒

⇒ st-ER2
2

REC 6|=
⇒ RT1

<∞

WKL0 0

⇔ st-ER2
3

(3.5.10)
⇒ st-RT2

2

REC 6|=
⇒ RT1

<∞

WKL0 0
wspo(ext) WKL0 `

REC 6|= (3.6.2)
WWKL0 0
(3.6.5)

WKL0 ` (3.4.4)
REC 6|=
WWKL0 0

⇒ st-RT2
2

WKL0 + st-ER2
3 `

wspo st-ER2
3⇒

⇒ st-RT2
2 (3.5.9)

wspo(set)

Table 3: Results for well-scattered partial orders
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3.2 Erdös-Rado partition relation

In this section we focus on the proof of Erdös-Rado theorem and we draw some computability-
theoretic and reverse mathematics consequences. Recall the statement:

Theorem 3.2.1. For every coloring c : [Q]2 → 2 there exists either an infinite 0-homogeneous

set or a dense 1-homogeneous set.

Definition 3.2.2. We say that A ⊆ Q is locally dense if A is dense in some open interval
of Q (i.e. A is locally dense in the order topology of the rationals).

Notice that if A ∪ B is locally dense then either A or B is locally dense. Thus,
the collection of non-locally dense subsets of Q is an ideal on P(ω). Therefore we call
positive any locally-dense set and small any non-positive set.

Proof of Theorem 3.2.1. Let c : [Q]2 → 2 be given. For any x ∈ Q, let R(x) = {y ∈
Q \ {x} : c(x, y) = 0} and B(x) = {y ∈ Q \ {x} : c(x, y) = 1}. A subset A ⊆ Q is said
to be red-admissible if there exists x ∈ A such that A ∩R(x) is positive

Case (1). Every positive subset of Q is red-admissible. Let A0 = Q. Clearly, A0

positive. Then, by hypothesis, A0 is red-admissible and hence there exists x0 ∈ A0 such
that A1 = A0 ∩R(x0) = R(x0) is positive. Then A1 is red-admissible and so there exists
x1 ∈ A1 such that A2 = A1 ∩ R(x1) = R(x0) ∩ R(x1) is positive. Suppose we have
defined An =

⋂
k<nR(xk) such that An is positive. Then there exists xn ∈ An such that

An+1 = An ∩ R(xn) is positive. Therefore, for all n, xn ∈ An =
⋂
k<nR(xk). Hence,

{xn : n ∈ N} is an infinite 0-homogeneous subset of Q.

Case (2). There is a positive subset A of Q which is not red-admissible. Suppose A is
dense in the open interval I . Fix an enumeration (In) of all open intervals contained in I .
Notice that A intersects every In.

Let x0 ∈ A ∩ I0. Suppose we have defined xk ∈ A ∩ Ik for all k < n. Since none
of the sets A ∩ R(xk) is positive, it follows that

⋃
k<nA ∩ R(xk) = A ∩

⋃
k<nR(xk)

is small. Let J ⊆ In be such that J ∩ A ∩
⋃
k<nR(xk) ∪ {xk} = ∅. Since A is dense

in I , we can find xn ∈ A ∩ J . It follows that xn ∈
⋂
k<nB(xk). Therefore, for all n,

xn ∈ In ∩
⋂
k<nB(xk). Hence, {xn : n ∈ N} is a dense 1-homogeneous subset of Q.

A straightforward effectivization of the proof of Theorem 3.2.1 yields the following:

Lemma 3.2.3. Every computable coloring of pairs of rationals has a ∆0
3 solution.
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Proof. Let c : [Q]2 → 2 be a computable coloring. (Here, Q is a computable presentation
of the rationals on ω.)

Case (1). Every computable positive set is red-admissible. Computably enumerate all
pairs (x, I), where x ∈ Q and I is an open interval ofQ. Look for (x0, I0) such thatR(x0)

is dense in I0. We can ask 0′′ whether R(x0) is dense in I0, the question being Σ0
2. Keep

on looking for pairs (xn, In) such that xn ∈
⋂
k<nR(xk) and

⋂
k<n+1R(xk) is dense in

In for all n. We can make the infinite set {xn : n ∈ ω} computable in 0′′ by searching for
pairs (xn, In) with xn < xn+1. Therefore, we have a ∆0

3 infinite 0-homogeneous set.

Case (2). There exists a computable positive set A that is not red-admissible. Fix
an open interval I such that A is dense in I and computably enumerate all open intervals
contained in I . The proof of the theorem shows that we can find xn ∈ A∩In∩

⋂
k<nB(xk)

for all n. The search is computable in A and the enumeration. Therefore, we have a
computable dense 1-homogeneous set.

Denote by ER2
2 the statement of Theorem 3.2.1.

Lemma 3.2.4. ER2
2 is provable in ACA0 and implies RT2

2 over RCA0.

Proof. The proof of Theorem 3.2.1 above can be formalized in ACA0. The second impli-
cation is trivial (order the natural numbers like Q, apply ER2

2 and forget the order).

3.3 Σ0
1 dense chains

It is well-known in computability theory that an infinite Σ0
1 set contains a computable

infinite subset. This is provable in RCA0 and hence any partial order containing an infinite
Σ0

1 chain (or antichain) contains an infinite ∆0
1 chain (or antichain). We next show that

the same holds for dense chains.

Lemma 3.3.1 (RCA0). Let f : Q → N be a one-to-one function. Then there exists an

embedding g : Q→ Q such that ran(f ◦ g) exists.

Proof. Let f : Q→ N be as above. We then define g : Q→ Q by recursion. Suppose we
have defined g(k) for all k < n. We assume by Σ0

0 induction that for all j, k < n

j <Q k =⇒ g(j) <Q g(k), and

j < k =⇒ f(g(j)) < f(g(k)).
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Search for the least m ∈ N such that for all k < n

k <Q n if and only if g(k) <Q m (∗)

and f(g(k)) < f(m). Since there are infinitely many m such that (∗) holds and f is
one-to-one, the search will succeed. Then let g(n) = m.

The function g so defined is clearly an embedding from Q to itself. Also, ran(f ◦ g)

is ∆0
1 definable and so exists in RCA0.

Corollary 3.3.2 (RCA0). A partial order is scattered if and only if it does not contain any

dense subchain.

Proof. The left to right direction is immediate because RCA0 suffices to carry out the
usual back-and-forth argument. For the other direction, if f : Q → P is an embedding,
f is one-to-one and by Lemma 3.3.1 there is an embedding g : Q → Q such that D =

ran(f ◦ g) exists. Therefore D is the range of an embedding ofQ into P and so is a dense
subchain of P .

As a result, we also obtain the following two results:

Corollary 3.3.3 (RCA0). Let P be a partial order. Then the following are equivalent:

(1) for every f : Q→ P there exist x <Q y such that f(x) ≤P f(y) (i.e. wspo);

(2) every restriction of P has no dense linear extensions.

Proof. (1)⇒ (2). We prove the contrapositive. Let X ⊆ P and suppose that L is a dense
linear extension of X . By Corollary 3.3.2, there exists an embedding f : Q → L. It is
easy to check that f contradicts wspo.

(2) ⇒ (1). Once again we prove the contrapositive. Let f : Q → P be such that
f(x) �P f(y) for all x <Q y. In particular, f is one-to-one, and hence satisfies the
hypothesis of Lemma 3.3.1. We thus may assume that ran(f) exists. Let X = ran(f)

and define a dense linear extension L of X by letting x <L y if and only if f−1(x) >Q

f−1(y).

Corollary 3.3.4. Over RCA0, the following are equivalent:

(1) every linear extension of a scattered FAC partial order is scattered

(i.e. wspo(ant)→ wspo(ext));
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(2) every linear extension of a scattered FAC partial order is not dense.

Proof. Straightforward.

3.4 Proof-theoretic upper bounds

Lemma 3.4.1. RCA0 proves:

(1) wspo(set)→ wspo;

(2) wspo→ wspo(ant);

(3) wspo→ wspo(ext).

Proof. (1) is trivial. For (2) and (3), let us consider the contrapositives. If P contains an
infinite antichain A, let f be any one-to-one function from Q to A. If P is non-scattered,
let f be an embedding of Q∗ into P . Finally, if P has a non-scattered linear extension L,
let f be an embedding of Q∗ into L. In either case f contradicts wspo.

Fact provable in WKL0

Lemma 3.4.2 ([CMS04]). Over RCA0, the following are equivalent:

(1) WKL0;

(2) every acyclic relation can be extended to a partial order.

Corollary 3.4.3. WKL0 proves that every acyclic relation can be extended to a linear

order.

Proof. RCA0 suffices to prove that every partial order has a linear extension.

Theorem 3.4.4. WKL0 proves wspo(ext)→ wspo.

Proof. Let P be a partial order such that any linear extension of P is scattered. Suppose
for a contradiction that there is a function f : Q→ P such that

x <Q y implies f(x) ⊥ f(y) or f(x) >P f(y) for all x, y ∈ Q. (∗)
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In particular, f is injective and by Lemma 3.3.1 we may assume that ran(f) exists. We
thus define a binary relation R ⊆ P 2 by letting uR v if and only if

u >P v or x = f(u) ∧ y = f(v) for some x <Q y.

We claim that R is acyclic, i.e. there is no sequence u0 Ru1 Ru2 . . .Run with un Ru0.
We show this by Π0

1 induction on n ∈ N.

If n = 1, since ≤P is antisymmetric, we may assume u0 = f(x) and u1 = f(y) for
some x, y ∈ Q. Now, u0 Ru1 implies x <Q y and u1 Ru0 implies x >Q y, a contradiction.
Let n > 1 and set u−1 = un and un+1 = u0. If uk /∈ ran(f) for some 0 ≤ k ≤ n, then
uk−1 >P uk+1 and so u0 R . . . uk−1 Ruk+1 R . . .Run is a cycle of length n − 1 and the
induction hypothesis applies. Otherwise, for all 0 ≤ k ≤ n, let xk ∈ Q be the unique
x ∈ Q such that f(x) = uk. Therefore x0 <Q . . . <Q xn and xn <Q x0, a contradiction
again.

By Corollary 3.4.3, R extends to a linear order L. It is straightforward to verify that L
is an extension of P and f is an embedding of Q∗ into L, contrary to assumption.

Corollary 3.4.5. WKL0 proves wspo(ext)→ wspo(ant).

Proof. Immediate from Lemma 3.4.1.

Facts provable in ACA0

Theorem 3.4.6. Over RCA0, ER2
2 implies wspo(ant)→ wspo(set).

Proof. Let P be a scattered FAC partial order and let f : Q → P . We aim to show that
there exists an infinite setA ⊆ Q such that x <Q y implies f(x) ≤P f(y) for all x, y ∈ A.
Let c : [Q]2 → 2 defined by letting

c(x, y) :=

0 if f(x) ⊥P f(y),

1 otherwise.

Apply ER2
2 to c. If B ⊆ Q is an infinite 0-homogeneous set, then the range of f �B

is an infinite antichain. Since any Σ0
1 infinite antichain contains a ∆0

1 infinite antichain,
this contradicts P FAC. Then there must exist a dense 1-homogeneous set B. Consider
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d : [B]2 → 2 defined by letting

d(x, y) :=

0 if x <Q y ⇔ f(x) ≤P f(y),

1 otherwise.

Apply ∗ER2
2 to d. If A ⊆ B is a dense 1-homogeneous set, then f �A is an embedding of

A∗ into P , contradicting P scattered. It follows that there is an infinite 0-homogeneous
set A for d. Therefore A is as desired.

Corollary 3.4.7. Over RCA0, ER2
2 implies wspo(ant)→ wspo and wspo(ant)→ wspo(ext).

Proof. Immediate from Lemma 3.4.1.

3.5 Semitransitive colorings

In [CMS04] it is shown that CAC is equivalent to wpo(ant) → wpo(set) (see table 1).
In [HS07] the authors define the notion of semitransitive coloring and prove that CAC is
equivalent to the semitransitive version of RT2

2. By using the latter result, we show that
CAC is equivalent to other three statements involving well-partial orders.

Definition 3.5.1 ([HS07], Definition 5.1). A coloring c : [N]2 → n is transitive on i < n

if c(x, y) = c(y, z) = i implies c(x, z) = i for all x < y < z. A coloring c : [N]2 → n is
semitransitive if it is transitive on every i > 0.

We also isolate the corresponding notion of semitransitive coloring for pairs of ratio-
nals and prove a few results about well-scattered partial orders.

The following generalization will apply to colorings of rationals.

Definition 3.5.2. Let L be a linear order. A coloring c : [L]2 → n is transitive on i < n

if c(x, y) = c(y, z) = i implies c(x, z) = i for all x <L y <L z. We say that c is
semitransitive if it is transitive on every i > 0.

Application to well-partial orders

For all n ≥ 2, let:

st-RT2
n: every semitransitive coloring c : [N]2 → n has an infinite homogeneous set.
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Theorem 3.5.3 ([HS07], Theorem 5.2). For all n ≥ 2, RCA0 proves CAC⇔ st-RT2
n.

Theorem 3.5.4. Over RCA0, the following are equivalent:

(1) CAC;

(2) wpo(ant)→ wpo;

(3) wpo(ant)→ wpo(ext).

Proof. (1) ⇒ (2) is [CMS04, Corollary 3.5] (see also table 1). (2) ⇒ (3) is immediate
since wpo→ wpo(ext) is provable in RCA0.

We next show (3) ⇒ (1). Assume (3). By Theorem 3.5.3, it is enough to prove
st-RT2

2. Let c : [N]2 → 2 be a semitransitive coloring. By definition, c is transitive on
1 and so we can define a partial order P by letting x ≤P y if and only if x = y or
x > y and c(x, y) = 1. Since x ≤P y implies x ≥ y, ω∗ is a linear extension of P
and so P has a non-well-founded linear extension. Now, an infinite antichain on P is an
infinite 0-homogeneous set and an infinite descending sequence of P yields an infinite
1-homogeneous set.

Theorem 3.5.5. Over RCA0, the following are equivalent:

(1) CAC;

(2) wpo→ wpo(set).

Proof. (1)⇒ (2) is [CMS04, Corollary 3.4]. For the other direction, let us show st-RT2
2.

Let c : [N]2 → 2 be semitransitive. Define a partial order P by letting x ≤P y if and only
if x = y or x < y and c(x, y) = 1. Suppose first that P is not wpo and let f : N → P

be a witness. This means that x < y implies f(x) �P f(y) for all x, y ∈ N. We can
assume without loss of generality that f(x) < f(y) for all x < y. It follows that x < y

implies c(f(x), f(y)) = 0 and so the range of f , which exists by ∆0
1 comprehension, is an

infinite 0-homogeneous set. Suppose instead that P is wpo. By (2), P satisfies wpo(set).
Let f : N → P be the identity. The conclusion of wpo(set) gives an infinite set A such
that x < y implies x ≤P y for all x, y ∈ A. Therefore A is an infinite 1-homogeneous
set.

Corollary 3.5.6. Over RCA0, wpo(ext)→ wpo(set) implies CAC.

Proof. It follows from Theorem 3.5.5 since wpo→ wpo(ext) is provable in RCA0.
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Application to well-scattered partial orders

For all n ≥ 1, we consider the statement:

st-ER2
n+1: every semitransitive coloring c : [Q]2 → n+ 1 has either an infinite i-homogeneous

set for some i < n or a dense n-homogeneous set.

Question 3.5.7. Over RCA0, is st-ER2
2 equivalent to st-ER2

n+1 for all n ≥ 1?

We establish the following facts about st-ER2
n+1. In particular, the principle for n = 2

(3 colors) is equivalent to that for n ≥ 2.

Lemma 3.5.8. RCA0 proves:

(1) (∀n ≥ 1)(st-ER2
n+2⇒ st-ER2

n+1);

(2) st-ER2
3⇔ st-ER2

2 ∧ st-RT2
2;

(3) st-ER2
3⇒ st-ER2

n+1, for all n ≥ 1;

(4) st-ER2
2⇒ RT1

<∞.

Proof. We argue in RCA0 and we first prove (1). Let n ≥ 1 and assume st-ER2
n+2. Let

c : [Q]2 → n+1 be semitransitive and define d : [Q]2 → n+2 by setting d(x, y) = c(x, y)

if c(x, y) < n and d(x, y) = n + 1 if c(x, y) = n. It is immediate to see that d is
semitransitive and so we can apply st-ER2

n+2 to d. A dense n + 1-homogeneous set for d
is a dense n-homogeneous set for c. Suppose we have an infinite i-homogeneous set A
for some i < n+ 1. Then i < n and A is an infinite i-homogeneous set for c.

Let us show (2). We first consider the left to right direction. By (1), it is enough to
show that st-ER2

3 implies st-RT2
2 Let c : [N]2 → 2 be a semitransitive coloring and define

d : [Q]2 → 3 by letting for all x <Q y

d(x, y) :=


0 if c(x, y) = 0,

1 if c(x, y) = 1 ∧ x < y,

2 if c(x, y) = 1 ∧ x > y.

It is straightforward to see that d is semitransitive. Now, any homogeneous set for d,
infinite or dense, is an infinite homogeneous set for c. We next consider the other direc-
tion. Suppose st-ER2

2 and st-RT2
2 and let c : [Q]2 → 3 be semitransitive. We thus define
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d : [Q]2 → 2 by setting for all x <Q y

d(x, y) :=

0 if c(x, y) < 2,

1 if c(x, y) = 2.

It is easy to see that d is semitransitive as well and so we can apply st-ER2
2. If D is a

dense 1-homogeneous set for d, then D is a dense 2-homogeneous set for c and we are
done. Suppose now A ⊆ Q is an infinite 0-homogeneous set. Therefore x <Q y implies
c(x, y) < 1 for all x, y ∈ A. Since c is semitransitive, we can define a partial order
on A by letting x ≤A y if and only if x = y or x <Q y and c(x, y) = 1. By CAC,
which is equivalent to st-RT2

2, A contains either an infinite antichain, which is an infinite
0-homogeneous set for c, or an infinite chain, which is an infinite 1-homogeneous set for
c.

(3) is proved by induction on n. The argument is similar to the right to left direction
of (2) by using the fact that st-ER2

3 implies st-RT2
2.

Finally we show (4). Assume st-ER2
2 and let f : N → k. Define a semitransitive

coloring c : [Q]2 → 2 by letting c(x, y) = 0 if f(x) 6= f(y) and c(x, y) = 1 otherwise.
By the finite pigeonhole principle, which is provable in RCA0, c does not have an infinite
antichain. It follows that there is a dense 1-homogeneous set D ⊆ Q. In particular, D
is an infinite set and f(x) = f(y) for all x, y ∈ D. Therefore f−1(i) is infinite where
i = f(x) for some (any) x ∈ D.

Lemma 3.5.9. Over RCA0, wspo→ wspo(set) implies st-RT2
2 and wspo(ant)→ wspo(ext)

implies st-ER2
2.

Proof. Suppose wspo → wspo(set). Let c : [N]2 → 2 be semitransitive. Define a partial
order P by setting x ≤P y if and only if x = y or x < y and c(x, y) = 1. If P is
wspo(set), let f : Q → P be the identity. Then there exists an infinite set A such that
x <Q y implies x ≤P y for all x, y ∈ A. Hence, c(x, y) = 1 for all x, y ∈ A with x 6= y

and A is an infinite 1-homogeneous set. Suppose P is not wspo(set) and so is not wspo.
By definition, there is a function f : Q → P such that x <Q y implies f(x) �P f(y) for
all x, y ∈ Q. Provably in RCA0, we can define an infinite set A ⊆ Q such that x < y

implies x <Q y and f(x) < f(y) for all x, y ∈ A. It follows that x <Q y implies
c(f(x), f(y)) = 0 and so f(A) is an infinite 0-homogeneous set. Notice that f(A) is ∆0

1

and so exists in RCA0.
We next assume wspo(ant) → wspo(ext) and show st-ER2

2. Let c : [Q]2 → 2 be
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semitransitive. By definition c is transitive on 1 and hence we can define a partial order
P by letting x ≤P y if and only if x = y or x <Q y and c(x, y) = 1. Consequently
x ≤P y implies x ≤Q y and so Q is a linear extension of P showing that P does not
satisfy wspo(ext). Therefore P does not satisfy wspo(ant). An infinite antichain of P
is an infinite 0-homogeneous set. On the other hand, a dense subchain of P is a dense
1-homogeneous set.

Theorem 3.5.10. Over RCA0,

(1) st-ER2
3 is equivalent to wspo(ant)→ wspo(set);

(2) st-ER2
2 is equivalent to wspo(ant)→ wspo(ext).

Proof. We argue in RCA0 and show (1). We first assume st-ER2
3 and prove wspo(ant)→

wspo(set). Let P be a scattered FAC partial order and f : Q → P . Define a coloring
c : [Q]2 → 3 by letting for all x <Q y

c(x, y) :=


0 if f(x) ⊥P f(y),

1 if f(x) ≤P f(y),

2 if f(x) >P f(y).

It is easy to see that c is transitive on 1 and 2 and so is semitransitive. Apply st-ER2
3. An

infinite 0-homogeneous set yields an infinite antichain, contradicting P FAC, and a dense
2-homogeneous set yields an embedding of Q∗ into P contradicting P scattered. There-
fore we get an infinite 1-homogeneous set A which satisfies the conclusion of wspo(set).

We now consider the other direction. By theorem 3.5.9, since wspo → wspo(ant)

and wspo(set)→ wspo(ext) are provable in RCA0, wspo(ant)→ wspo(set) implies both
st-RT2

2 and st-ER2
2. By Lemma 3.5.8 (2), wspo(ant)→ wspo(set) implies st-ER2

3.

Let us consider (2). The right to left direction is proved in Lemma 3.5.9. Assume st-
ER2

2 and let P be a partial order. We prove the contrapositive of wspo(ant)→ wspo(ext).
So let L be a nonscattered linear extension of P and f : Q→ L be an embedding. Let us
define a semitransitive coloring c : [Q]2 → 2 by letting for all x <Q y

c(x, y) :=

0 if f(x) ⊥P f(y),

1 if f(x) <P f(y).
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If A ⊆ Q is an infinite 0-homogeneous set, then ran(f) is an infinite antichain of P .
Provably in RCA0, any Σ0

1 infinite set contains a ∆0
1 infinite subset and hence ran(f)

contains an infinite antichain. Suppose we have a dense 1-homogeneous set D. Then the
restriction of f to D is an embedding of a dense linear order into P showing that P is not
scattered. This completes the proof.

Corollary 3.5.11. Over RCA0, wspo(ant)→ wspo(ext) implies RT1
<∞ and hence WKL0

does not prove wspo(ant)→ wspo(ext).

Proof. Recall that WKL0 does not prove RT1
<∞ because WKL0 is Π1

1-conservative over
RCA0 (Harrington, see for instance [Sim09, Theorem IX.2.1]) and RT1

<∞ is a Π1
1 state-

ment.

3.6 Unprovability

Consider the following result from [CMS04].

Theorem 3.6.1. There exists a computable partial order P such that P has a computable

infinite antichain and every computable linear extension is computably well-ordered.

Corollary 3.6.2. REC does not satisfy wspo(ext) → wspo(ant) and hence RCA0 does

not prove wspo(ext)→ wspo(ant).

Proof. Let P as in Theorem 3.6.1. P clearly does not satisfy wspo(ant) in REC. On the
other hand, every computable linear extension of P is computably well-ordered, and in
particular computably scattered. Hence, P satisfies wspo(ext) in REC.

We show how to modify the proof of Theorem 3.6.1 to obtain that WWKL0 does not
prove wpo(ext)→ wpo(ant).

Theorem 3.6.3. There exists a computable partial order P with an infinite computable

antichain such that the set of reals computing a linear extension L of P and an infinite

descending sequence in L is null.

Proof. We want to define a computable partial order P = (ω,�) such thatA =
⋃
e,i∈ωAe,i

is null, where Ae,i is the set of X ∈ 2ω such that ΦX
e is a linear extension of P and ΦX

i

is an infinite descending sequence in ΦX
e . We also ensure the existence of a computable

infinite antichain by making 3n ⊥ 3m for all n 6= m.
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The construction of P is finite injury. We fix a rational δ with 4
5
≤ δ < 1 and we meet

the requirement Re,i: µ(Ae,i) ≤ δ for all e, i ∈ ω. This is enough to ensure that A is null.
In fact, suppose µ(A) > 0 and fix 0 ≤ δ < 1. Let e′, i′ be such that µ(Ae′,i′) > 0. By the
Lebesgue density theorem, there is σ ∈ 2<ω such that µ(Ae′,i′∩[σ]) > δ·2−|σ|. Now let e, i
be such that for all X , ΦX

e = ΦσaX
e′ and ΦX

i = ΦσaX
i′ . Then µ(Ae,i) = 2|σ|µ(Ae′,i′) > δ.

At each stage s+1 we add three new points 3s, 3s+1, 3s+2 and define the restriction
of P to {0, 1, . . . , 3s + 2}. We make the new points pairwise incomparable and place
them between two points us+1, vs+1 (the ones taking care of higher priority requirements),
where us+1 ≺ vs+1 if both defined. This means that if i < 3s and j ∈ {3s, 3s+1, 3s+2},
then

• i � j if and only if us+1 is defined and i � us+1;

• j � i if and only if vs+1 is defined and vs+1 � i.

We meet a single requirement Re,i by fixing two incomparable points x and y of the
form 3n+ 1 and 3n+ 2 respectively and waiting for a stage s+ 1 such that:

µ({X : ΦX
e (x, y)[s] ↓ 1}) ≥ δ/2 or µ({X : ΦX

e (x, y)[s] ↓ 0}) ≥ δ/2.

If this never happens, then µ({X : ΦX
e is a linear extension of P}) ≤ δ and Re,i is satis-

fied. Otherwise, if at stage s + 1 we see µ({X : ΦX
e (x, y)[s] ↓ 1}) ≥ δ/2 (the other case

is similar), then we start building below x waiting for a stage t+ 1 such that

µ({X : (∃n < t)ΦX
i (n)[t] ↓� x}) ≥ δ.

If we never see such a stage, then (∀∞z)(z � x). Therefore,

µ({X : ΦX
i is a descending sequence in ΦX

e }) ≤ µ(X : (∃n)ΦX
i (n) ↓� x}) ≤ δ

and Re,i satisfied. Otherwise, after stage t+ 1 we start building above y for the rest of the
construction so that (∀∞z)(y � z). Therefore,

µ(Ae,i) = µ(Ae,i ∩ {X : ΦX
e (x, y) ↓ 1}) + µ(Ae,i ∩ {X : ΦX

e (x, y) ↓ 0}) ≤

1− µ{X : (∃n)ΦX
i (n) ↓� x}) + µ({X : ΦX

e (x, y) ↓ 0}) ≤ (1− δ) + (1− δ/2) ≤ δ,

and Re,i is satisfied again.
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Construction.
Stage s = 0. Let u0, v0 be undefined and r0(e, i) = 0 for all e, i ∈ ω.

Stage s+1. Search for the least (e, i) < s such thatRe,i has witnesses x = 3n+1, y =

3n+ 2 and one of the following holds:

a) rs(e, i) = 0 and either

µ({X : ΦX
e (x, y)[s] ↓ 1}) ≥ δ/2 or µ({X : ΦX

e (x, y)[s] ↓ 0}) ≥ δ/2;

b) rs(e, i) = z ∈ {x, y} and µ({X : (∃n < s)ΦX
i (n)[s] ↓� z}) ≥ δ.

If there is no requirement as above, let all the parameters unchanged. Otherwise,Re,i acts.

Suppose a) holds. If µ({X : ΦX
e (x, y)[s] ↓ 1}) ≥ δ/2, let vs+1 = rs+1(e, i) = x,

otherwise let vs+1 = rs+1(e, i) = y. In either case, let us+1 = un+1.

Suppose b) holds. Let us+1 = y if rs(e, i) = x and us+1 = x otherwise. In either case,
let vs+1 = vn+1 and rs+1(e, i) = −1.

Then cancel all witnesses of lower priority requirements, and let rs+1(e
′, i′) = 0 for

(e′, i′) > (e, i) and rs+1(e
′, i′) = rs(e

′, i′) for (e′, i′) < (e, i). Finally, attach witnesses
3s + 1 and 3s + 2 to the least requirement with no witnesses and add 3s, 3s + 1, 3s + 2

accordingly.

Claim. For all n 6= m, 3n ⊥P 3m.

It is quite straightforward to verify by induction that every point marked us and vs is
of the form 3n + 1 or 3n + 2 and us 6= vt for all s, t. Besides, again by induction, it is
easy to check that:

• i < j and i � j implies i = us for some s;

• i < j and i � j implies i = vs for some s.

It follows that 3n ⊥ j for all n and for all j > 3n. The claim thus follows.

Claim. Every requirement acts finitely often and is satisfied.

The usual inductive argument shows that the strategy for a single requirement suc-
ceeds in the full construction.

Corollary 3.6.4. WWKL0 does not prove wpo(ext)→ wpo(ant).
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Proof. The same argument of Corollary 2.5.4 applies. Let P be as in Theorem 3.6.3 and
X be a Martin-Löf random real such that every linear extension of P computed by X has
no descending sequences computable in X . Now let M be an ω-model of WWKL0 such
that any set in M is computable in X . It is clear that in M the partial order P is not FAC
and yet every linear extension is well-founded.

Corollary 3.6.5. WWKL0 does not prove wspo(ext)→ wspo(ant).

Proof. The same ω-model of WWKL0 works since any dense chain on a partial order
computes a descending sequence.

We finally show that wspo(ant)→ wspo(ext) fails in REC.

Theorem 3.6.6. REC does not satisfy wspo(ant) → wspo(ext) and hence RCA0 does

not prove wspo(ant)→ wspo(ext).

Proof. Fix a computable presentation of the rationals Q = (ω,≤Q). We build a com-
putable partial order P = (ω,≤P ) such that Q is a linear extension of P . Thus, whenever
we make two elements P -comparable, we do this consistently with Q.

We build P in stages. At stage s + 1, we define the restriction to {0, 1, . . . , s}. We
make sure that P is scattered and has no infinite antichains in REC by meeting the
following requirements:

R2e: if We is infinite, then We is not an infinite antichain on P ;

R2e+1: if We is an infinite chain on P , then We is not dense.

The priority order is R0, R1, R2, . . . A requirements acts by choosing a witness. A
witness of R2e is single point x, while a witness of R2e+1 is a pair of points (y0, y1) such
that y0 <P y1. We call a witness for R2e positive. The idea is that we force new points
to be comparable with the positive ones: at stage s + 1 we make s comparable with
z < s if and only if there exists a positive point x < s such that either s <Q x ≤P z or
z ≤P x <Q s. We guarantee transitivity at each stage. To make P computable, at each
stage we ensure that the positive points are pairwise comparable, otherwise we would
force incomparable points to become comparable at a later stage.

We satisfy R2e by making sure that if We is infinite then there exists x ∈ We such that
x is eventually positive. We satisfy R2e+1 by making sure that if We is an infinite chain
then there exist y0 <P y1 in We such that (y0, y1)P is finite.
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We say that a requirement R2e requires attention at stage s + 1 if e < s, R2e has no
witness and there exists x ∈ We,s such that x is comparable with any positive point of
higher priority and for no witness (y0, y1) of higher priority y0 ≤P x ≤P y1.

We say that a requirement R2e+1 requires attention at stage s + 1 if e < s, R2e+1 has
no witness and there exist y0, y1 ∈ We,s such that y0 <P y1 and for no positive point x of
higher priority y0 ≤P x ≤P y1.

Construction.
Stage s = 0. Do nothing. In particular, no requirement has a witness.

Stage s+1. Search for the highest priority requirementRi which requires attention. If
there is no such requirement, do nothing. Otherwise, such requirement acts by choosing
the ω-least witness for which it requires attention. This means that R2e picks the ω-least
x and R2e+1 picks the ω-least pair (y0, y1).

Initialize all lower priority requirements by canceling their witnesses (if any). Add s
accordingly.

Claim. Every requirements Ri requires attention finitely often and is satisfied.

By induction on i. Suppose that every requirement of priority higher than Ri does
not require attention after stage s and let s be the least. Then Ri is initialized at stage s
and it requires attention at most once after stage s. Moreover, witnesses of higher priority
requirements never change after stage s. So let Ai be the set of positive points x of higher
priority andNi be the set of witnesses (y0, y1) of higher priority at the end of stage s. Then
every point ≥ s is comparable with any point of Ai. We may assume by induction that
there is no x ∈ Ai such that y0 ≤P x ≤P y1 with (y0, y1) ∈ Ni. In particular, (y0, y1)P

does not contain points ≥ s for every (y0, y1) ∈ Ni.

Case i = 2e. Suppose We is infinite. Then We contains a point ≥ s. In particular,
We contains a point x which is comparable with any point of Ai and does not belong to
(y0, y1)P for all (y0, y1) ∈ Ni. Let t > e, s be least such that We,t contains a point x
as above. Then Re receives attention at stage t + 1 and picks the ω-least x ∈ We,t with
the desired property. After stage t + 1, R2e is never initialized and so every point > t is
comparable with x.

Case i = 2e+ 1. Suppose We is an infinite chain. Since |Ai| ≤ e and We has ≥ e+ 2

comparable points, by the finite pigeonhole principle there must be y0, y1 ∈ We such that
y0 <P y1 and for no x ∈ Ai we have y0 ≤P x ≤ y1. Let t > e, s be least such that
We,t contains y0, y1 as above. Then R2e+1 acts at stage t + 1 by choosing the ω-least
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pair (y0, y1) as required. Every lower priority requirement is initialized at stage t + 1.
Moreover, by induction hypothesis, at stage t + 1 there are no positive points of higher
priority in (y0, y1)P . After stage t + 1, R2e+1 is never initialized and so no point x such
that y0 ≤P x ≤P y1 is declared positive. Therefore the interval (y0, y1)P does not contain
positive points after stage t + 1 and so no point > t is placed between y0 and y1. Hence
(y0, y1)P is finite.

Notice that in either case the induction hypothesis is preserved by construction.
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4
Cardinality of initial intervals1

4.1 Introduction

Bonnet [Bon75] proves the following result, which is also featured in Fraı̈ssé’s monograph
[Fra00, §6.7]:

Theorem 4.1.1. If an infinite partial order P is scattered and FAC, then the set of initial

intervals of P has the same cardinality of P .

The converse is in general false, but it holds when |P | < 2ℵ0 , and in particular when
P is countable. Therefore we study the reverse mathematics strength of the following:

Theorem 4.1.2. A countable partial order P is scattered and FAC if and only if the set of

initial intervals of P is countable.

It turns out that the “hard” direction (left to right) of Theorem 4.1.2 is equivalent to
ATR0 (over ACA0), and the easy one (right to left) is provable in WKL0 but not in RCA0.
As for Theorem 2.1.1, we are not able to prove the equivalence with WKL0, and thus we
obtain an interesting statement from the point of view of reverse mathematics.

4.2 Preliminaries

4.2.1 The set of initial intervals

For a partial order P , let I(P ) be the set of initial intervals of P . In Second Order
Arithmetic, I(P ) does not formally exist. Therefore, I ∈ I(P ) is a shorthand for the
formula “I is an initial interval of P ”.

1The content of this chapter appears in [FM14]
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We say that the partial order P has countably many initial intervals if there exists a
sequence {In : n ∈ N} such that for every I ∈ I(P ) there exists n ∈ N such that I = In.
Otherwise, we say that P has uncountably many initial intervals.

Within ACA0 (but apparently not in weaker systems) we can prove that if P has count-
ably many initial intervals there exists a sequence {In : n ∈ N} such that I ∈ I(P ) if and
only if there exists n ∈ N such that I = In. In this case we write I(P ) = {In : n ∈ N}.

The partial order P has perfectly many initial intervals if there exists a nonempty
perfect tree T ⊆ 2<N such that [T ] ⊆ I(P ), that is, for all f ∈ [T ], the set {x ∈
N : f(x) = 1} ∈ I(P ).

A useful tool for studying the notions we just defined is the tree of finite approxima-

tions of initial intervals of the partial order P . We define the tree T (P ) ⊆ 2<N by letting
σ ∈ T (P ) if and only if for all x, y < |σ|:

• σ(x) = 1 implies x ∈ P ;

• σ(y) = 1 and x � y imply σ(x) = 1.

Lemma 4.2.1 (RCA0). Let P be a partial order.

(1) P has countably many initial intervals if and only if T (P ) has countably many

paths;

(2) P has perfectly many initial intervals if and only if T (P ) contains a perfect subtree.

Proof. Immediate once we notice that the paths in T (P ) are exactly the characteristic
functions of the initial intervals of P .

In particular, the formula “P has perfectly many initial intervals” is provably Σ1
1

within RCA0. Moreover, RCA0 proves that a nonempty perfect tree has uncountably many
paths (see Lemma 1.5.3). Therefore we have that RCA0 proves that a partial order with
perfectly many initial intervals has uncountably many initial intervals. Using the perfect
tree theorem (see Theorem 1.3.5) we obtain that ATR0 proves that a partial order with un-
countably many initial intervals has actually perfectly many initial intervals. This implies
that the formula “P has uncountably many initial intervals” is provably Σ1

1 within ATR0.
Let us recall the following result due to Peter Clote [Clo89]:

Theorem 4.2.2 (ACA0). The following are equivalent:

(1) ATR0;
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(2) any countable linear order has countably many or perfectly many initial intervals;

(3) any scattered linear order has countably many initial intervals.

Clote actually states the equivalence of ATR0 only with (2), but his proofs yield also
the equivalence with (3).

4.2.2 The system ATRX
0

Recall that, by [Sim09, Theorem VIII.3.15], ATR0 is equivalent over ACA0 to the state-
ment

(∀X)(∀a ∈ OX)(HX
a exists)

where OX is the collection of (indices for) X-computable ordinals and HX
a codes the

iteration of the jump along a starting from X . This naturally leads to consider lightface
versions of ATR0, as in [Tan89], [Tan90], and [Mar91]. Here we make explicit mention of
the set parameter we use (rather then deal only with the parameterless case and then invoke
a relativization process) and let ATRX

0 be ACA0 plus the formula (∀a ∈ OX)(HX
a exists).

In ATRX
0 one can prove arithmetical transfinite recursion along any X-computable well-

order.

By checking the proof of the perfect tree theorem in ATR0 one readily realizes that
ATRX

0 proves the theorem for X-computable trees:

Theorem 4.2.3 (ATRX
0 ). Every X-computable tree T ⊆ N<N with uncountably many

paths contains a perfect subtree.

The following is [Sim09, Lemma VIII.4.19]:

Theorem 4.2.4 (ATRX
0 ). There exists a countable coded ω-model M such that X ∈ M

and M satisfies Σ1
1-DC0.

We will use the following corollary:

Corollary 4.2.5 (ATR0). For allX and Y there exists a countable coded ω-modelM such

that X, Y ∈M , and M satisfies both Σ1
1-DC0 and ATRX

0 .

Proof. We argue in ATR0 and let X and Y be given. By Σ1
1-AC0, which is a consequence

of ATR0, the main axiom of ATRX
0 is equivalent to a Σ1

1 formula (∃Z)ϕ(Z,X) with ϕ
arithmetic. This formula is true in ATR0, and hence we can fix Z such that ϕ(Z,X). By
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Theorem 4.2.4 there exists a countable coded ω-model M of Σ1
1-DC0 such that X ⊕ Y ⊕

Z ∈ M . In particular, X, Y ∈ M and, as Z ∈ M and M is a model of Σ1
1-DC0 (hence

also of Σ1
1-AC0), M satisfies ATRX

0 .

4.3 Equivalences with ATR0

We consider the left to right direction of Theorem 4.1.2, i.e. the statement every countable
scattered FAC partial order has countably many initial intervals. We start with a technical
Lemma:

Lemma 4.3.1 (ACA0). If a partial order P has perfectly many initial intervals, then there

exists x ∈ P such that either

(1) P (⊥ x) has uncountably many initial intervals, or

(2) both P (≺ x) and P (� x) have uncountably many initial intervals.

Proof. Let P be a partial order with perfectly many initial intervals. Let T ⊆ T (P ) be a
perfect tree.

We first show that there exist x ∈ P such that both

{I ∈ I(P ) : x /∈ I} and {I ∈ I(P ) : x ∈ I}

are uncountable. Let τ ∈ T be such that both τ0 = τa〈0〉 and τ1 = τa〈1〉 belong to T .
Let x = |τ | and notice that x ∈ P . For i < 2 define Ti = {σ ∈ T : σ ⊆ τi ∨ τi ⊆ σ}. The
trees T0 and T1 are perfect and witness the fact that the two collections of initial intervals
are uncountable.

Now, suppose that condition (1) fails and let I(P (⊥ x)) = {Jn : n ∈ N}. We aim to
show that (2) holds.

Suppose for a contradiction that P (≺ x) has countably many initial intervals and let
I(P (≺ x)) = {In : n ∈ N}. Then it is not difficult to show that

{I ∈ I(P ) : x /∈ I} = {In ∪ ↓ Jm : n,m ∈ N}.

This contradicts the fact that {I ∈ I(P ) : x /∈ I} is uncountable.
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Similarly, suppose that P (� x) has countably many initial intervals and let I(P (� x)) =

{In : n ∈ N}. Then, it is not difficult to show that

{I ∈ I(P ) : x ∈ I} = {↓({x} ∪ In ∪ Jm) : n,m ∈ N}.

This contradicts the fact that {I ∈ I(P ) : x ∈ I} is uncountable. Therefore, condition
(2) holds.

Theorem 4.3.2 (ATR0). If a countable partial order P is scattered and FAC, then P has

countably many initial intervals.

Proof. Let P be a countable partial order with uncountably many initial intervals.

Let Fin(P ) the set of (codes for) finite subsets of P . For all F,G,H ∈ Fin(P ), let

PF,G,H =
⋂
x∈F

P (≺ x) ∩
⋂
x∈G

P (� x) ∩
⋂
x∈H

P (⊥ x).

We want to define a pruned tree T ⊆ 3<N and a function f : T → Fin(P )3 such that
the following hold (we write f(σ) = (Fσ, Gσ, Hσ) and Pσ = Pf(σ)):

(i) f(〈〉) = (∅, ∅, ∅);

(ii) for all σ ∈ T , σa〈0〉 ∈ T if and only if σa〈1〉 ∈ T if and only if σa〈2〉 /∈ T (in
other words there are two possibilities: either exactly σa〈0〉 and σa〈1〉 belong to
T , or only σa〈2〉 ∈ T );

(iii) if σa〈0〉 ∈ T , then f(σa〈0〉) = (Fσ ∪ {x}, Gσ, Hσ) and f(σa〈1〉) = (Fσ, Gσ ∪
{x}, Hσ) for some x ∈ Pσ;

(iv) if σa〈2〉 ∈ T , then f(σa〈2〉) = (Fσ, Gσ, Hσ ∪ {x}) for some x ∈ Pσ.

We first show that if there exist T and f as above, then P is not scattered or it contains
an infinite antichain.

First suppose there exists a path g ∈ [T ] such that g(n) = 2 for infinitely many n.
Then let

A =
⋃
n∈N

Hg �n.

It is easy to check, using (iv) and the definition of PF,G,H , that A is an infinite antichain.



58 4. Cardinality of initial intervals

If there are no paths g ∈ [T ] such that g(n) = 2 for infinitely many n then it is easy
to see, using (ii), that T is perfect. For all σa〈0〉 ∈ T , let xσ be the unique element of
Fσa〈0〉 \ Fσ. We claim that

D = {xσ : σa〈0〉 ∈ T}

is a dense subchain of P .
We first note that xσ 6= xτ for σ, τ ∈ T with σ 6= τ . Now fix distinct xσ, xτ ∈ D with

the goal of showing that they are comparable in P and that there exists an element of D
strictly between them. First assume that σ and τ are comparable as sequences, let us say
σ ⊂ τ . Then, using (iii), xτ � xσ if σa〈0〉 ⊆ τ and xσ � xτ if σa〈1〉 ⊆ τ . Suppose
xτ � xσ (the other case is similar) and let η ∈ T so that τa〈1〉 ⊆ η and xη ∈ D. Then
xτ ≺ xη ≺ xσ by (iii). Suppose now that σ and τ are not one initial segment of the other.
We may assume that ηa〈0〉 ⊆ σ and ηa〈1〉 ⊆ τ , where η is the longest common initial
segment of σ and τ . Then xη ∈ D and, using (iii) again, xσ ≺ xη ≺ xτ .

It remains to show that we can define T and f satisfying (i)–(iv).
By Theorem 4.2.2, P has perfectly many initial intervals. Let U be a perfect subtree

of T (P ). By Corollary 4.2.5, there exists an ω-model M of Σ1
1-DC0 such that P,U ∈ M

and M satisfies ATRP
0 .

We recursively define T and f by using M as a parameter. Let 〈〉 ∈ T and f(〈〉) =

(∅, ∅, ∅) as required by (i). Note that M satisfies “T (P〈〉) contains a perfect subtree”. Let
σ ∈ T and assume by arithmetical induction that M satisfies “T (Pσ) contains a perfect
subtree”. SinceM is a model of ACA0, by Lemma 4.3.1 applied to Pσ, there exists x ∈ Pσ
such that either

(a) M satisfies “T (Pσ ∩ x⊥) has uncountably many paths”, or

(b) M satisfies “both T (Pσ ∩ P (� x)) and T (Pσ ∩ P (� x)) have uncountably many
paths”.

Search the least xwith this arithmetical property. If (a) holds (and we can check this arith-
metically outside M ), use ATRP

0 within M to apply Theorem 4.2.3 to the P -computable
tree T (Pσ ∩ x⊥). We obtain that M satisfies “T (Pσ ∩ x⊥) contains a perfect subtree”.
Thus, let σa〈2〉 ∈ T and set f(σa〈2〉) = (Fσ, Gσ, Hσ ∪ {x}). If (b) holds, then argu-
ing analogously we obtain that M satisfies “both T (Pσ ∩ P (� x)) and T (Pσ ∩ P (� x))

contain perfects subtrees”. Thus let σa〈0〉, σa〈1〉 ∈ T and set

f(σa〈0〉) = (Fσ ∪ {x}, Gσ, Hσ) and f(σa〈1〉) = (Fσ, Gσ ∪ {x}, Hσ).
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In any case, (ii)-(iv) are satisfied and the induction hypothesis that M satisfies “T (Pσ)

contains a perfect subtree” is preserved.

Theorem 4.3.3. Over ACA0, the following are equivalent:

(1) ATR0;

(2) every countable scattered partial order with no infinite antichains has countably

many initial intervals;

(3) every countable scattered linear order has countably many initial intervals.

Proof. Assume ACA0. We wish to prove ATR0. By [Sim09, Theorem V.5.2], ATR0 is
equivalent (over RCA0) to the statement asserting that for every sequence of trees {Ti : i ∈
N} such that every Ti has at most one path, there exists the set {i ∈ N : [Ti] 6= ∅}. So
let {Ti : i ∈ N} be such a sequence. Let us order each Ti with the Kleene-Brouwer order
≤KB and define the linear order L =

∑
i∈N Ti

We aim to show that L is scattered. By Lemma 1.5.2, it suffices to prove that every Ti
is scattered. To this end, we show that if a tree T has at most one path then the Kleene-
Brouwer order on T is of the form

X +
∑
n∈ω∗

Yn, (∗)

where X and the Yn are (possibly empty) well-orders. Applying Lemma 1.5.2 again, we
obtain that T is scattered.

If T has no path, then ACA0 proves that ≤KB well-orders T , and hence we can take
X = T and the Yn’s empty. Now let f be the unique path of T . Let X = {σ ∈
T : (∀n)σ ≤KB f �n} and Yn = {σ ∈ T : f �n + 1 ≤KB σ ≤KB f �n}, for all n ∈ N.
It is straightforward to see that (∗) holds. We now claim that X is a well-order. Suppose
not, and let (σn)n∈N be an infinite descending sequence in X . Form the tree T0 = {σ ∈
T : (∃n)σ ⊆ σn}. Then T0 is not well-founded and so it has a path. As T0 is a subtree
of T , this path must be f . Let i ∈ N be such that σ0 � i = f � i and σ0(i) < f(i) (such
an i exists because σ0 ∈ X). On the other hand, f � i + 1 ∈ T0, and thus f � i + 1 ⊆ σn

for some n ∈ N. It follows that σ0 ≤KB σn, a contradiction. To show that each Yn is a
well-order notice that Yn = {σ ∈ T : f �n ⊂ σ ∧ f(n) < σ(n)} ∪ {f �n}.

Apply (3) to L and let I(L) = {In : n ∈ N}. It is easy to check that Ti has a path if
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and only if

(∃n)
(⋃
j<i

Tj ⊆ In ∧ Ti * In ∧ L \ In has no least element
)
.

Therefore, the set {i ∈ N : [Ti] 6= ∅} exists by arithmetical comprehension.

It is worth noticing that a natural weakening of condition (3) of Theorem 4.3.3 is
provable in RCA0:

Lemma 4.3.4 (RCA0). Every linear order with perfectly many initial intervals is not scat-

tered.

Proof. Let L be a linear order and T ⊆ T (L) be a perfect tree. Define

D = {x ∈ L : (∃σ ∈ T )(|σ| = x ∧ σa〈0〉, σa〈1〉 ∈ T )}.

The argument showing that Q is a dense subchain of L is similar to the one in the proof
of Theorem 4.3.2.

4.4 A proof in WKL0 and unprovability results

The next goal is to show that WKL0 suffices to prove the right to left direction of The-
orem 4.1.2, which states that every partial order with countably many initial intervals is
scattered and FAC. Indeed, RCA0 proves the first half of the right to left direction:

Theorem 4.4.1 (RCA0). Every partial order with countably many initial intervals is scat-

tered.

Proof. We show that if P is not scattered, then P has perfectly many initial intervals. By
Lemma 3.3.2 we may assume that P contains a dense linear order D.

We define by recursion an embedding f : 2<N → T (P ). Thus T0 = {τ ∈ T (P ) : (∃σ ∈
2<N)τ ⊆ f(σ)} is a perfect subtree of T (P ). Since τ ∈ T0 if and only if (∃σ ∈
2<N)(|σ| = |τ | ∧ τ ⊆ f(σ)), T0 exists in RCA0.

We say that x ∈ P is free for τ ∈ T (P ) if

(∀y < |τ |)((τ(y) = 1 =⇒ x � y) ∧ (τ(y) = 0 =⇒ y � x)).
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In other words, x is free for τ if and only if there exist τ0, τ1 ∈ T (P ) with τ ⊂ τi and
τi(x) = i. Since T (P ) is a pruned tree this means that there exist two initial intervals of
P whose characteristic function extends τ , one containing x and the other avoiding x.

Let f(〈〉) = 〈〉. Suppose we have defined f(σ) = τ . Assume by Σ0
1 induction that D

contains at least two (and hence infinitely many) elements that are free for τ . Then search
for u ≺ x ≺ v in D that are free for τ . We will define τ0, τ1 ∈ T (P ) which are extensions
of τ with |τi| = x + 1 and τi(x) = i. Thus τ0 and τ1 are incompatible and we can let
f(σa〈i〉) = τi.

We show how to define τ0 (to define τ1 replace u with x and x with v). Since {y ∈
P : y < x} is finite, we can find u′, v′ ∈ D with u ≺ u′ ≺ v′ ≺ x such that u′, v′ > x, and
for no y ∈ P with y < x we have u′ ≺ y ≺ v′. Given y < |τ0| we need to define τ0(y),
and we proceed by cases (notice that the first three conditions are determined by the fact
that we want τ0 ∈ T (P ) and τ0 ⊇ τ ):

• if y /∈ P let τ0(y) = 0;

• if y ∈ P is not free for τ because there exists z < |τ | such that τ(z) = 0 and z � y

let τ0(y) = 0;

• if y ∈ P is not free for τ because there exists z < |τ | such that τ(z) = 1 and y � z

let τ0(y) = 1;

• if z is free for τ we define τ0(z) according to the following cases:

(i) if z ≺ u′, let τ0(z) = 1;

(ii) if z � v′, let τ0(z) = 0;

(iii) otherwise, let τ0(z) = 0.

It is not difficult to check that τ0 extends τ , τ0(x) = 0 and both u′ and v′ are free for τ0,
preserving the induction hypothesis.

With regard to the other half, RCA0 proves the following.

Lemma 4.4.2 (RCA0). An infinite antichain has perfectly many initial intervals.

Proof. If P is an antichain then the tree T (P ) consists of all σ ∈ 2<N such that x /∈ P
implies σ(x) = 0. If P is infinite it is immediate that this tree is perfect and thus Lemma
4.2.1 implies that P has perfectly many initial intervals.
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We now show that WKL0 suffices to prove the half of the right to left direction which
is not provable in RCA0 (see Theorem 4.4.1). In other words, we study the statement
that every partial order with countably many initial intervals is FAC. To do this, we first
consider the relation between initial intervals of partial orders contained one into the other.

Lemma 4.4.3. Over RCA0, the following are equivalent:

(1) WKL0;

(2) Let Q and P be partial orders and f be an embedding of Q into P . Then

I(Q) = {f−1(J) : J ∈ I(P )};

(3) Let Q be a subset of a partial order P . Then I(Q) = {J ∩Q : J ∈ I(P )}.

Proof. We start with (1)⇒ (2). Let f : Q→ P be an embedding. It is easy to check that
if J ∈ I(P ) then f−1(J) ∈ I(Q), so that the right to left inclusion is established even in
RCA0.

For the other inclusion fix I ∈ I(Q). Let ϕ(x) and ψ(x) be the Σ0
1 formulas (∃y ∈

Q)(y ∈ I ∧ x = f(y)) and (∃y ∈ Q)(y /∈ I ∧ x = f(y)) respectively. Since f is an
embedding and I is an initial interval, we have

(∀x, y ∈ P )(ϕ(x) ∧ ψ(y) =⇒ y �P x).

Apply Σ0
1 initial interval separation (Lemma 2.2.4) to get J ∈ I(P ) such that f(I) ⊆ J

and J ∩ f(Q \ I) = ∅. It is immediate to see that I = f−1(J).

Since the implication (2) ⇒ (3) is obvious, it remains to show (3) ⇒ (1). Instead of
WKL0, we prove statement (3) of Lemma 2.2.4, i.e. initial interval separation. Let P be a
partial order and A,B ⊆ P such that (∀x ∈ A)(∀y ∈ B)(y �P x). Let Q = A ∪ B ⊆ P

and notice that A ∈ I(Q). By (3) there exists J ∈ I(P ) such that A = J ∩Q. It is easy
to see that A ⊆ J and J ∩B = ∅, completing the proof.

Notice that the obvious proof of the nontrivial direction of (2), namely given I ∈ I(Q)

let J be the downward closure of f(I), uses arithmetical comprehension.

Corollary 4.4.4 (WKL0). Let P and Q be partial orders such that Q embeds into P . If P

has countably many initial intervals, then Q does.
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Proof. Fix an embedding f : Q → P . Let {Jn : n ∈ N} be such that for all J ∈ I(P )

there exists n with J = Jn. For every n let In = f−1(Jn) (this can be done in RCA0).
Then for all I ∈ I(Q) there exists n with I = In, showing that Q has countably many
initial intervals.

We can now prove in WKL0 the part of the right to left direction of Theorem 4.1.2 we
are interested in.

Theorem 4.4.5 (WKL0). Every partial order with countably many initial intervals has no

infinite antichains.

Proof. Immediate from Lemma 4.4.2 and Corollary 4.4.4.

Finally, we show that the the right to left direction of Theorem 4.1.2 is not provable in
RCA0. The proof uses the same computable partial order of Lemma 2.5.1.

Theorem 4.4.6. RCA0 does not prove that every partial order with countably many initial

intervals is FAC.

Proof. We show that the statement fails in REC. Let P be the computable partial order of
Lemma 2.5.1. Recall that P contains an infinite computable antichain and all computable
initial intervals of P are downward closures of finite subsets of P .

Since the downward closures of finite subsets of P are uniformly computable, there
exists a set {In : n ∈ N} in REC which lists all computable initial intervals of P . There-
fore REC satisfies that P has countably many initial intervals. Since P has an infinite
antichain in REC, the conclusion follows.

Note. Theorem 2.5.3 implies that WWKL0 does not prove that every partial order with
countably many initial intervals is FAC. In fact, by the same argument of Corollary 2.5.4,
there exists a computable partial order P and an ω-model M of WWKL0 such that P has
a computable infinite antichain (and hence is not FAC in M) and every initial interval of
P which belongs to M is the downward closure of a finite set (and hence P has countably
many initial intervals in M ).



64 4. Cardinality of initial intervals



5
Hausdorff’s analysis of scattered

linear orders

5.1 Introduction

In [Hau08], Hausdorff proved the following theorem.

Theorem 5.1.1. The class of scattered linear orders is the least class which contains the

empty set, singletons and is closed under sums along Z.

Along with the above classification theorem, Hausdorff proved that a linear order L is
scattered if and only if rkH(L) exists. Here, rkH(L) denotes the Hausdorff rank of L. He
also proved that, for every ordinal α, rkH(L) ≤ α if and only if L is embeddable into Zα,
where Zα generalizes ordinal exponentiation. For a general discussion on Hausdorff rank
and powers of Z see [Ros82, chapter 5, §4].

In the context of reverse mathematics, Clote [Clo89] proved the following:

Theorem 5.1.2 (ATR0). If L is a scattered linear order, then rkH(L) ≤ α for some well-

order α.

Theorem 5.1.3 (ATR0). Every scattered linear order embeds into Zα for some well-order

α.

In section 5.3, we supply the details of the proof of Theorem 5.1.3 and show its equiv-
alence with ATR0. In section 5.4, we show that ATR0 proves the following theorem
featured in [Fra00, §5.3.2].

Theorem 5.1.4. If L is a countable scattered linear order, then there exists a countable

ordinal which does not embed into L
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Notice that the theorem is not true if L is uncountable: for instance ω1 is an uncount-
able scattered linear order but any countable ordinal embeds into it.

Finally, in section 5.5, we prove that Hausdorff’s classification theorem (Theorem
5.1.1) is equivalent to ATR0.

5.2 Preliminaries

Recall from [Hir05] the definition of ordinal exponentiation in RCA0.

Definition 5.2.1 (RCA0). Let α be a well-order. We define ωα to be the set

{δ : α→ ω | δ(β) = 0 for all but finitely many β < α},

linearly ordered by δ ≤ λ if and only if δ = λ or δ(β) < λ(β) for the largest β < α such
that δ(β) 6= λ(β).

Formally, an element of ωα is a sequence 〈(β0, n0), . . . (βk, nk)〉, where βi+1 < βi < α

and ni ∈ N \ {0}. We usually denote 〈(β0, n0), . . . (βk, nk)〉 by ωβ0n0 + . . .+ ωβknk.

The empty sequence corresponds to the the constant function δ(β) = 0 for all β < α

and is denoted by 0.

We will use the following known fact later.

Theorem 5.2.2 ([Hir05]). Over RCA0, the following are equivalent:

(1) ACA0;

(2) If α and β are well-orders, then so is αβ;

(3) If α is a well-order, then so is 2α.

Along the same lines (see also [Ros82]), we define Zα.

Definition 5.2.3 (RCA0). Let α be a well-order. We define Zα to be the set

{x : α→ Z | x(β) = 0 for all but finitely many β},

linearly ordered by x ≤ y if and only if x = y or x(β) <Z y(β) for the largest β < α

such that x(β) 6= y(β).
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We write x <β y for x(β) <Z y(β) and x(γ) = y(γ) for all β < γ < α. For all
x ∈ Zα and β < α, let

Z(x)β = {y ∈ Zα : y(γ) = x(γ) for all γ such that β ≤ γ < α}.

If x = 0, we write Zβ instead of Z(0)β . We also let Z(x)α = Zα.

Definition 5.2.4 (RCA0). Let α be a well-order. The ordinal sum between elements of ωα

is defined by the rules:

• ωβn+ ωγm = ωγm for β < γ;

• ωβn+ ωβm = ωβ(n+m).

We also let δ + ωα = ωα for δ < α.

So, for instance, (ω75 + ω42 + ω32 + 4) + (ω45 + ω29) = ω75 + ω47 + ω29.

Lemma 5.2.5 (RCA0). Let α be a well-order. Then for all β < α and δ < ωα there is an

isomorphism between {λ < ωα : λ < ωβ} and [δ, δ + ωβ).

Proof. Straightforward.

We point out the following useful fact. Remember that in RCA0 we have Π0
1 induction.

Lemma 5.2.6. RCA0 proves Π0
1 transfinite induction, i.e. for every Π0

1 formula ϕ(n)

RCA0 proves that for any well-order α

(∀β < α)
(
(∀γ < β)ϕ(γ) =⇒ ϕ(β)

)
=⇒ (∀β < α)ϕ(β).

Proof. Given a well-order α, suppose (∀β < α)
(
(∀γ < β)ϕ(γ) =⇒ ϕ(β)

)
and ¬ϕ(β0)

for some β0 < α. Then define by recursion an infinite descending sequence (βn) in α by
letting βn+1 be the ω-least β < βn such that ¬ϕ(β). Use Σ0

1 induction to ensure ¬ϕ(βn)

for all n.

Lemma 5.2.7 (RCA0). For every well-order α, Zα is scattered.

Proof. Let α be a well-order. Aiming for a contradiction, let f : Q → Zα be an embed-
ding. Let β < α be the least such that

(∃i, j ∈ Q)(i <Q j ∧ f(i) <β f(j)).
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By Lemma 5.2.6, every Σ0
1 subset of a well-order has a least element and so β exists. Then

seek for i, j ∈ Q so that f(i) <β f(j) and |(f(i)(β), f(j)(β))Z| = n ∈ N is ω-least. By
Π0

1 induction, such i, j exist.

Let k ∈ Q with i <Q k <Q j and set x = f(i), y = f(j) and z = f(k). It follows that
x(γ) = z(γ) = y(γ) for all β < γ < α and x(β) ≤Z z(β) ≤Z y(β). By the minimality
of n, either x(β) = z(β) or z(β) = y(β). Suppose x(β) = z(β). Then x <γ z for some
γ < β, contrary to the minimality of β. Similarly for z(β) = y(β). Each case leads to a
contradiction.

Lemma 5.2.8 (RCA0). For every countable well-order α, Zα has countably many initial

intervals.

Proof. Let α be given and let L = Zα. It is not difficult to see that, for all x ∈ L and
β < α, ↓Z(x)β = Z(x)β ∪ L(� x). Then every ↓Z(x)β is Σ0

0 definable and thus exists
in RCA0. We thus set out to prove that

I(Zα) = {∅} ∪ {↓Z(x)β : x ∈ Zα ∧ β < α} ∪ {Zα}.

Let I be a nontrivial initial interval. Let us show that I = ↓Z(x)β for some x ∈ I and
β < α. Let β < α be the least such that

x <β y for some x ∈ I and y /∈ I. (∗)

Then, search for x0, y0 ∈ Zα so that (∗) holds and |(x0(β), y0(β))Z| = n ∈ N is ω-least
(in this case n = 0). We claim that I = ↓Z(x0)

β .

Let z ∈ I . If z ≤ x0, then z ∈ L(� x0) ⊆ ↓Z(x0)
β . Assume x0 < z < y0. It follows

that x0(β) ≤Z z(β) ≤Z y0(β). The case z(β) = y0(β) contradicts the minimality of β.
Then x0(β) = z(β) and hence z ∈ Z(x0)

β . For the converse, if z ≤ x0, then z ∈ I . So let
z ∈ Z(x0)

β with x0 < z. By definition, x ≺γ z for some γ < β. Then, by the minimality
of β, z ∈ I .

5.3 Hausdorff’s rank

We first review the notion of Hausdorff’s rank in the framework of reverse mathematics.
Then we provide a proof of Theorem 5.1.3 by following the hint in [Clo89, Theorem 16].
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Definition 5.3.1 (ATR0). Let L be a linear order and α be a well-order. By arithmetical
transfinite recursion on β ≤ α, we define a binary relation ∼β on L by letting x ∼β y if
and only if x = y or for some γ < β there exists a finite set F ⊆ L such that for every
z ∈ [x, y]L there is w ∈ F with z ∼γ w.

In the second case, we say that the interval [x, y]L is finite modulo γ and define the
cardinality of [x, y]L modulo γ as the least cardinality of a witness F .

Lemma 5.3.2 (ATR0). Let L be a linear order and α be a well-order. Then for all β ≤ α

the following hold:

• x ∼β y imply y ∼β x;

• if x ∼β y and x <L z <L y, then x ∼β z and z ∼β y;

• the relation ∼β is an equivalence relation;

• every equivalence class of ∼β is an interval of L.

Proof. Straightforward.

Definition 5.3.3 (ATR0). Let L be a linear order and α a well-order. We say that L has
Hausdorff rank at most α and write rkH(L) ≤ α if x ∼α y for all x, y ∈ L.

Proof of Theorem 5.1.3. Let L be a scattered linear order. By Theorem 5.1.2, let α be a
well-order such that rkH(L) ≤ α. By arithmetical transfinite recursion we define for all
β ≤ α a function fβ : L→ Zβ = Z(0)β such that:

(∗) x <L y implies fβ(x) < fβ(y) for all x, y ∈ L with x ∼β y.

For β = α, we obtain an embedding of L into Zα as desired.
Let β ≤ α and suppose we have defined fγ for all γ < β. Let x ∈ L be given and

xβ ∈ L be ω-least such that x ∼β xβ . If x = xβ , let fβ(x) = 0. Otherwise, let γ < β

be least such that the interval [x, xβ]L is finite modulo γ and let n >Z 0 be its cardinality
modulo γ. Now let

fβ(x) =

〈(γ, n)〉afγ(x) if xβ <L x;

〈(γ,−n〉afγ(x) otherwise.

It remains to prove that every fβ is a function from L to Zβ and satisfies (∗). We prove
this by arithmetical transfinite induction on β ≤ α. Suppose the properties hold for all
γ < β. It immediately follows that fβ is a function from L to Zβ .
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Now, let x ∼β y with x <L y. By minimality, z = xβ = yβ . There are several cases
to consider, but the only interesting ones are x <L y <L z and z <L x <L y. We consider
the case x <L y <L z and leave the others to the reader.

Notice that if [x, z]L is finite modulo γ via F , then so is [y, z]L.
Let,

fβ(x) = 〈(γ0,−n)〉afγ0(x) and fβ(y) = 〈(γ1,−m)〉afγ1(y),

where γ0, γ1 < β and n,m >Z 0 are defined as above.
By the minimality of γ1, γ1 ≤ γ0. If γ1 < γ0, then by definition fβ(x) < fβ(y).

Suppose γ = γ0 = γ1. Therefore, by minimality again, m ≤Z n.
If m <Z n, then fβ(x) < fβ(y) by definition. Then suppose m = n. We claim that

x ∼γ y so that the induction hypothesis applies yielding fγ(x) < fγ(y) and thus

fβ(x) = 〈(γ,−n)〉afγ(x) < 〈(γ,−n)〉afγ(y) = fβ(y).

Let F ⊆ L be of cardinality n such that [x, z]L is finite modulo γ via F . As noted
before, F witnesses that [y, z]L is finite modulo γ too. Since n = m, for all w ∈ F there
exists u ∈ [y, z]L such that u ∼γ w. Now take w ∈ F such that x ∼γ w and u ∈ [y, z]L

such that u ∼γ w. Since ∼γ is an equivalence relation, we have x ∼γ u. The claim now
follows from the fact that the equivalence classes are intervals.

As a consequence of Lemma 5.2.8, we obtain the following:

Corollary 5.3.4. Over ACA0, the following are equivalent:

(1) ATR0;

(2) every scattered linear order embeds into Zα for some well-order α.

Proof. (1) ⇒ (2) is Theorem 5.1.3. (2) ⇒ (1) follows from Theorem 4.3.3 and Lemma
5.2.8 since WKL0 (and hence ACA0) shows that if a partial order has countably many
initial intervals then any other partial order embeddable into it has countable many initial
intervals (see Theorem 4.4.4).

5.4 A theorem in ATR0

In this section, we prove Theorem 5.1.4. The proof comes down to show that every
embedding of ωα into Zα is cofinal.
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Lemma 5.4.1 (ACA0). If α is a well-order, then every embedding f : ωα → Zα is cofinal.

Proof. Let f be an embedding of ωα into Zα. By arithmetical transfinite induction on
β < α, we prove that for all β ≤ α, δ < ωα and x ∈ Zα, if f maps [δ, δ+ωβ) into Z(x)β ,
then the restriction of f to [δ, δ + ωα) is cofinal on Z(x)β .

Let β < α and assume the property holds for all γ < β. Suppose now that f maps
[δ, δ+ωβ) noncofinally into Z(x)β . Then there exist y, z ∈ Z(x)β such that y ≤ f(λ) ≤ z

for all λ ∈ [δ, δ+ωβ). Let γ < β be so that y <γ z. It follows that, for all λ ∈ [δ, δ+ωβ),

i) y(γ′) = f(λ)(γ′) = z(γ′) for all γ < γ′ < α and

ii) y(γ) ≤Z f(λ)(γ) ≤Z z(γ).

By (ii), there must be λ ∈ [δ, δ + ωβ) such that n = f(λ)(γ) is Z-greatest. Let y = f(λ).
By (i) and the maximality of n, f maps [λ, λ + ωβ) into Z(y)γ . Therefore, f maps
[λ, λ+ ωγ) noncofinally into Z(y)γ , contrary to the induction hypothesis.

For β = α, δ = 0 and x = 0 we obtain the conclusion.

Theorem 5.4.2 (ATR0). If L is a scattered linear order, then there exists a well-order

which does not embed into L.

Proof. Let L be a scattered linear order. By Theorem 5.1.3, there is a well-order α such
that L embeds into Zα. By Lemma 5.4.1, ωα + 1 is not embeddable into Zα, and thus
does not embed into L. On the other hand, by Theorem 5.2.2, ωα + 1 is a well-order. This
completes the proof.

5.5 Hausdorff’s classification theorem for scattered lin-
ear orders

We aim to study the following classification theorem by Hausdorff.

Theorem 5.5.1 ([Hau08]). The class of countable scattered linear orders is the least class

which contains the empty set, singletons and is closed under lexicographic sums along Z.

This theorem does not translate directly in second-order arithmetic. Our formalization
is quite standard (see for instance the coding of Borel sets in [Sim09]): we use well-
founded trees to code the construction of a given scattered linear order.
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Definition 5.5.2 (RCA0). A code (for a countable scattered linear order) is a well-founded
tree T ⊆ N<N.

If T ⊆ N<N is a tree, let E(T ) be the set of end-nodes of T . Notice that E(T )

exists in ACA0. Nonetheless, in RCA0 we can write σ ∈ E(T ) as a shorthand for σ ∈
T ∧ (∀n)σa〈n〉 /∈ T .

Definition 5.5.3 (ATR0). Let T be a code. For σ ∈ T , let Lσ be the restriction of Z to
{n ∈ N : σa〈n〉 ∈ T}. By arithmetical recursion on σ ∈ T , we define a linear order Lσ

by:

Lσ =

{0} if σ ∈ E(T );∑
n∈Lσ L

σa〈n〉 otherwise.

Finally, we set L(T ) = L〈〉.

We then formalize Hausdorff’s theorem as follows.

Theorem 5.5.4. Let L be linear order. Then L is scattered if and only if there exists a

code T such that L is isomorphic to L(T ).

We will show that Theorem 5.5.4 is provable in ATR0. Notice that we cannot reverse
this theorem to ATR0, because the statement does not make sense in a weaker system.
However, given a code T , it is possible to define, this time in ACA0, another linear order
which, provably in ATR0, is isomorphic to L(T ). With this definition in hand, we state
Hausdorff’s theorem in ACA0 and show that it is equivalent to ATR0 over ACA0.

5.5.1 Hausdorff’s theorem in ACA0

Definition 5.5.5 (ACA0). For σ, τ ∈ N<N, let σ ≤ τ if and only if σ ⊇ τ or n <Z m,
where n,m are unique such that ηa〈n〉 v σ and ηa〈m〉 v τ .

If T is a code, let E(T ) be linearly ordered by ≤.

Lemma 5.5.6 (ATR0). If T is a code, then L(T ) ∼= E(T ).

Proof. For all σ ∈ T , let Tσ = {τ : σaτ ∈ T}. By arithmetical recursion on σ ∈ T , we
define an isomorphism fσ : Lσ → E(Tσ). The case σ ∈ E(T ) is immediate to handle,
since Lσ = {0} and E(T ) = {〈〉}. For σ ∈ T \E(T ), it is enough to notice that E(Tσ) ∼=∑
{n∈Z : σa〈n〉∈T}E(Tσa〈n〉) and the isomorphism is arithmetically definable (uniformly in

σ).
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We then consider the following formulation of Hausdorff’s theorem.

Theorem 5.5.7. Let L be linear order. Then L is scattered if and only L is isomorphic to

E(T ) for some code T .

We will show that the left-to-right direction of Theorem 5.5.7 reverses to ATR0 over
ACA0, while the right-to-left direction is already provable in ACA0 (Theorem 5.5.9).

5.5.2 Proofs in ACA0 and equivalence with ATR0

Lemma 5.5.8 (ACA0). If T is a code, then E(T ) is scattered.

Proof. By way of contradiction, suppose T is a code and E(T ) is not scattered. Let
f : Q→ E(T ) be an embedding and for all σ ∈ N<N, let Eσ = {τ ∈ E(T ) : σ v τ}. By
Π0

1 transfinite induction on σ ∈ T (see Lemma 5.2.6), we prove

(∀σ ∈ T )(∀i, j ∈ Q)(i 6= j =⇒ f(i) /∈ Eσ ∨ f(j) /∈ Eσ).

Hence, for σ = 〈〉, we have a contradiction. If σ ∈ E(T ), then Eσ = {σ}, and so the
property is obviously satisfied. Now, let σ ∈ T \ E(T ). Notice that Eσ =

⋃
n∈ZEσa〈n〉.

Let i, j ∈ Q so that i <Q j and suppose f(i), f(j) ∈ Eσ. Since f is order preserv-
ing, f(i) < f(j) and so f(i) ∈ Eσa〈n〉 and f(j) ∈ Eσa〈m〉 for some n ≤Z m with
σa〈n〉, σa〈m〉 ∈ T . Since any finite set is scattered, there exists i0, j0 ∈ Q and k ∈ Z
with σa〈k〉 ∈ T such that i ≤Q i0 <Q j0 ≤Q j, n ≤Z k ≤Z m and f(i0), f(j0) ∈ Eσa〈k〉,
contrary to the induction hypothesis.

As a corollary, we obtain the following:

Theorem 5.5.9 (ACA0). Let L be a linear order. If there exists a code T such that L ∼=
E(T ), then L is scattered.

Proof. Immediate from the above lemma since isomorphisms preserve (provably in RCA0)
scattered linear orders.

We now show the hard direction of Theorem 5.5.7.

Theorem 5.5.10 (ATR0). Every scattered linear order is isomorphic to E(T ) for some

code T .
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Proof. Let L be a countable scattered linear order. It clearly suffices to show that there
exists a well-founded tree T ⊆ N<N such that L is embeddable in E(T ).

By Theorem 5.1.3, L embeds into Zα for some well-order α. We may therefore as-
sume L = Zα. If x ∈ Zα, let deg(x) be the largest β < α such that x(β) 6= 0. For β ≤ α,
we also define Zβ = {x ∈ Zα : deg(x) < β}.

By arithmetical transfinite recursion on β ≤ α, we define for all β ≤ α

• a tree Tβ ⊆ N<N, a function rβ : Tβ → β + 1 and

• a function fβ : Zβ → E(Tβ).

Case β = 0. Let T0 = {〈〉}, r0(〈〉) = 0 and f0(0) = 〈〉.
Case β+1. Define Tβ+1 = {〈〉}∪{〈n〉aσ : n ∈ N∧σ ∈ Tβ}. We define rβ+1 by letting

rβ+1(〈〉) = β + 1 and rβ+1(〈n〉aσ) = rβ(σ). We then define fβ+1 : Zβ+1 → E(Tβ+1) by
letting

fβ+1(x) =

〈0〉afβ(x) if x ∈ Zβ;

〈x(β)〉afβ(x � β) if deg(x) = β.

Case λ limit. Let γ0 < γ1 < γ2 < . . . be cofinal in λ and (nk), (mk) be two sequences
in Z such that . . . <Z n1 <Z n0 = m0 <Z m1 <Z . . . Define

Tλ = {〈〉} ∪ {〈n〉aσ : (∃k)(n ∈ {nk,mk} ∧ σ ∈ Tγk)}.

We define rλ by letting rλ(〈〉) = λ and rλ(〈n〉aσ) = rγk(σ), where n ∈ {nk,mk}. We
finally define fλ : Zλ → E(Tλ) by letting for x ∈ Zγ and β = deg(x):

fλ(x) =


〈n0〉afγ0(x) if β < γ0;

〈nk+1〉afγk+1
(x) if γk ≤ β < γk+1 and x(β) <Z 0;

〈mk+1〉afγk+1
(x) if γk ≤ β < γk+1 and x(β) >Z 0;

It is not difficult to verify by arithmetical transfinite induction on β ≤ α that for all β ≤ α,

• if σ, τ ∈ Tβ and σ ⊃ τ then rβ(σ) > rβ(τ) and hence Tβ is well-founded;

• fβ is an embedding of Zβ into E(Tβ).

For β = α, we have the desired conclusion.
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Corollary 5.5.11 (ATR0). Every scattered linear order is isomorphic to L(T ) for some

code T .

Proof. Immediate from Lemma 5.5.6 and Theorem 5.5.10.

Theorem 5.5.12. Over ACA0, the following are equivalent:

(1) ATR0;

(2) every scattered linear order is isomorphic to E(T ) for some code T .

Proof. (1) ⇒ (2) is Theorem 5.5.10. For (2) ⇒ (1), it is enough to prove by Theorem
4.3.3 and Corollary 4.4.4 that E(T ) has countably many initial intervals for any code T .

Let T be a code and L = E(T ). For σ ∈ T , let Iσ = {τ ∈ L : τ ≤ σ}. We claim that

I(L) = {∅} ∪ {Iσ : σ ∈ T} ∪ {L}.

Clearly, every Iσ is an initial interval. Let I ⊆ L be a nontrivial initial interval. By Π0
1

transfinite induction, let σ ∈ T be minimal such that

(∃τ0, τ1 ∈ L)(τ0 ∈ I ∧ τ1 /∈ I ∧ σ = τ0 ∩ τ1),

where τ0 ∩ τ1 is the longest common initial segment of τ0 and τ1. By Π0
1 induction, there

exists n <Z m such that (n,m)Z = ∅ and

(∃τ0, τ1 ∈ L)(τ0 ∈ I ∧ τ0 ⊇ σa〈n〉 ∧ τ1 /∈ I ∧ τ1 ⊇ σa〈m〉).

Let us prove I = Iσa〈n〉. Fix τ0 and τ1 as above.
Let τ ∈ I . We may assume τ0 < τ < τ1. It follows the definition that either

τ ⊇ σa〈n〉 or τ ⊇ σa〈m〉. The minimality of σ leaves out the second case. Then
τ ≤ σa〈n〉.

Let τ ∈ Iσa〈n〉, that is τ ∈ L and τ ≤ σa〈n〉. If τ ≤ τ0, we are done. Hence, assume
τ0 < τ . By the definition of ≤, it follows that τ0 ∩ τ ⊇ σa〈n〉. By the minimality of σ
again, τ ∈ I .
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6
Hausdorff-like theorems

6.1 Introduction

Let us recall Hausdorff’s theorem for scattered linear orders.

Theorem 6.1.1 ([Hau08]). The class of countable scattered linear orders is the least class

which contains the empty set, singletons and is closed under lexicographic sums along Z.

In this chapter, we study the reverse mathematics of two classification theorems, which
are the analogue of Hausdorff’s theorem for the class of scattered FAC partial orders (The-
orem 6.1.3) and the class of countable FAC partial orders (Theorem 6.1.4) respectively.

Recall the following definitions from subsection 1.5.1.

Definition 6.1.2 (RCA0). Let (P,�) be a partial order.

• The inverse (or reverse) of P is P ∗ = (P,�);

• A restriction of P is S ⊆ P equipped with the ordering induced by P , namely
x ≤S y if and only if x � y for all x, y ∈ S;

• An extension of P is a partial order P ′ = (P,�′) such that x � y implies x �′ y
for all x, y ∈ P .

Theorem 6.1.3 ([AB99]). Let B be the class of wpo’s and reverse wpo’s. The class

of scattered FAC partial orders is the least class which contains B and is closed under

extensions and sums with index set in B.

Theorem 6.1.4 (§7, [ABC+12]). Let B be the class of countable partial orders which are

either wpo’s, reverse wpo’s or linear orders. The class of countable FAC partial orders

is the least class which contains B and is closed under extensions and sums with index set

in B.
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As for Hausdorff’s theorem for scattered linear orders we need to formalize each of
the above theorems in second-order arithmetic. In other words, given B, we have to define
the least class C(B) which contains B and is closed under extensions and sums over B.
We do this by means of well-founded trees labeled with partial orders in the class B (see
section 6.2).

It turns out that the easy direction of each theorem is provable in ACA0. By the easy
direction we mean the statement “if B is the class of wpo’s and reverse wpo’s (wpo’s,
reverse wpo’s and linear orders) and P ∈ C(B), then P is scattered FAC (FAC)”. For the
hard direction, we provide a proof in Π1

2-CA0. This upper bound is not the best possible
because each statement is Π1

3 and by standard arguments a Π1
3 statement cannot imply

Π1
2-CA0. Therefore we do not completely succeed in answering the reverse mathematics

question about the strength of these theorems and further investigation needs to be done.

6.2 Codes

In general, it is not difficult to show that a partial order obtained by iterating sums and
extensions can be equivalently obtained by iterating only sums and then applying exactly
one extension at the end. We code iterated sums as follows:

Definition 6.2.1 (ATR0). A code is a well-founded tree T ⊆ N<N labeled with partial
orders {Pσ : σ ∈ T} such that Pσ is a partial order on {x : σa〈x〉 ∈ T} for every interior-
node σ ∈ T .

Given a code {Pσ : σ ∈ T}, by transfinite recursion on σ ∈ T we define the partial
order P σ by letting:

P σ =

Pσ if σ is an end-node;∑
x∈Pσ P

σa〈x〉 otherwise.

Finally, we set P (T ) = P 〈〉.

The above inductive definition can be “spelled out” as follows.

Definition 6.2.2 (ACA0). Let {Pσ : σ ∈ T} be a code. We define
∑

σ∈T Pσ to be the
partial order

∑
σ∈E(T ) Pσ, where E(T ) (the set of end-nodes of T ) is ordered by letting

σ ≤ τ if and only if σ = τ or x <Pµ y, where µa〈x〉 ⊆ σ and µa〈y〉 ⊆ τ .
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This definition in ACA0 can be thought of as an order-theoretic operation that given
a code {Pσ : σ ∈ T} outputs a new partial order

∑
σ∈T Pσ. We now show that the two

definitions are equivalent:

Lemma 6.2.3 (ATR0). Let {Pσ : σ ∈ T} be a code. Then P (T ) ∼=
∑

σ∈T Pσ.

Proof. For all σ ∈ T , let Tσ = {τ : σaτ ∈ T} and Pσ,τ = Pσaτ for all τ ∈ Tσ. By
arithmetical transfinite recursion on σ ∈ T , it is not difficult to define an isomorphism
fσ : P σ →

∑
τ∈Tσ Pσ,τ . For σ = 〈〉 we have the desired isomorphism.

As a consequence, we can set aside the inductive definition and use the more conve-
nient, although less intuitive, definition in ACA0.

Definition 6.2.4 (ACA0). Let B be a class of partial orders and P be a partial order.

• We say that {Pσ : σ ∈ T} is a B-code if Pσ ∈ B for every σ ∈ T .

• We write P ∈ C(B) if there exists a B-code {Pσ : σ ∈ T} such that P is isomorphic
to an extension of

∑
σ∈T Pσ. In other words, there exists an order-preserving map

from
∑

σ∈T Pσ onto P .

Observation 6.2.5. If B is Π1
1, then C(B) is Σ1

2. Besides, the statement “every scattered
FAC (FAC) partial order is in C(B)” is Π1

3.

6.3 Closure properties

Let B be a class of partial orders. We show that codes “are closed” under inverses, restric-
tions and sums over B.

Remark 6.3.1 (RCA0). Let B be the class of wpo’s and reverse wpo’s (wpo’s, reverse
wpo’s and linear orders). Then B is closed under inverses and restrictions.

Lemma 6.3.2 (ACA0). Suppose B is closed under inverses and let 〈Pσ : σ ∈ T 〉 be a

B-code. Then 〈P ∗σ : σ ∈ T 〉 is a B-code and (
∑

σ∈T Pσ)∗ =
∑

σ∈T P
∗
σ .

Proof. Straightforward. Notice that, since B is closed under inverses, 〈P ∗σ : σ ∈ T 〉 is a
B-code.

Lemma 6.3.3 (ACA0). Suppose B is closed under restrictions and let {Pσ : σ ∈ T} be a

B-code. If S is a restriction of
∑

σ∈T Pσ, then S =
∑

σ∈T Sσ for some B-code {Sσ : σ ∈
T}.
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Proof. Let 〈Pσ : σ ∈ T 〉 and S be as above. Define for σ ∈ T :

Sσ =

{x ∈ Pσ : (σ, x) ∈ S} if σ is an end-node,

Pσ otherwise.

As B is closed under restrictions, 〈Sσ : σ ∈ T 〉 is a B-code. It is immediate to verify that
S =

∑
σ∈T Sσ.

Lemma 6.3.4 (ACA0). Let B ∈ B and {Px,σ : σ ∈ Tx} be a B-code for each x ∈ B. Then

P =
∑

x∈B Px
∼=
∑

σ∈T Pσ for some B-code {Pσ : σ ∈ T}, where Px =
∑

σ∈Tx Px,σ for

all x ∈ B.

Proof. Define a B-code {Pσ : σ ∈ T} by letting:

• T = {〈〉} ∪ {〈x〉aσ : x ∈ B ∧ σ ∈ Tx};

• P〈〉 = B and P〈x〉aσ = Px,σ.

Clearly we have defined a B-code. We next define an isomorphism f between P =∑
x∈B Px and

∑
σ∈T Pσ by letting f(x, (σ, y)) = (〈x〉aσ, y) for all x ∈ B, σ ∈ E(Tx)

and y ∈ Px,σ. It is not difficult to check that f is an isomorphism.

Lemma 6.3.5 (ACA0). Let B be a class of partial orders. Then C(B) is closed under

extensions. Moreover, if B is closed under under inverses and restrictions, then C(B) is

closed under inverses and restrictions as well.

Proof. Closure under extensions is trivial because if f : P → P ′ is order-preserving and
P ′′ extends P ′ then f is still order-preserving with respect to P and P ′′.

Suppose B is closed under under inverses and restrictions. Suppose P ∈ C(B) and
S ⊆ P . To show that P ∗ ∈ C(B), notice that an order-preserving map from

∑
σ∈T Pσ

onto P is order-preserving with respect to the inverse of
∑

σ∈T Pσ and P ∗. By Lemma
6.3.2 (

∑
σ∈T Pσ)∗ has a B-code. Similarly, by using Lemma 6.3.3, one shows that S ∈

C(B).

Lemma 6.3.6 (Σ1
2-AC0). Let B be a Π1

1 class of partial orders. Then C(B) is closed under

sums over B.

Proof. Let P =
∑

x∈B Px be a sum such that B ∈ B and Px ∈ C(B) for all x ∈ B. As
noted before, C(B) is Σ1

2 and so we can apply Σ1
2 choice to fix a B-code for every Px.

Finally, use Lemma 6.3.4 to obtain the conclusion.



6.4. Proofs in ACA0 81

Recall that Σ1
2-AC0 is equivalent to ∆1

2-CA0 and to Π1
2 separation. In particular, it is

available in Π1
2-CA0.

Corollary 6.3.7 (Π1
2-CA0). If B is Π1

1 class of partial order closed under inverses and

restrictions (such as the class of scattered FAC and the class of FAC partial orders), then

C(B) is closed under extensions, inverses, restrictions and sums over B.

6.4 Proofs in ACA0

Theorem 6.4.1 (ACA0). If B consists of FAC partial orders and P ∈ C(B), then P is

FAC.

Proof. Since isomorphisms preserve FAC partial orders and every extension of a FAC par-
tial order is FAC, it suffices to prove that for every B-code 〈Pσ : σ ∈ T 〉 the partial order∑

σ∈T Pσ is FAC. Provably in ACA0, every sum of FAC partial orders along a FAC partial
order is FAC (see Lemma 1.5.1). It thus suffices to show that E(T ) is FAC. Suppose not
and let A ⊆ E(T ) be an infinite antichain.

Form the tree S = {τ ∈ T : (∃σ ∈ A)τ ⊆ σ}. It is easy to see that S is finitely
branching, otherwise there would be τ ∈ S such that Pτ is not FAC. Then S is well-
founded (being a subtree of T ) and finitely branching. By König’s lemma, S is finite,
contradicting A ⊆ S.

Theorem 6.4.2 (ACA0). If B consists of scattered FAC partial orders and P ∈ C(B), then

P is scattered FAC.

Proof. Let 〈Pσ : σ ∈ T 〉 be a B-code such that P is isomorphic to an extension of∑
σ∈T Pσ. By the proof of the previous theorem,

∑
σ∈T Pσ is FAC and so P is FAC.

Since provably in ACA0 (see Corollary 3.4.7) every extension of a scattered FAC par-
tial order is scattered, it suffices to show that

∑
σ∈T Pσ is scattered. Also, RCA0 shows

that every sum of scattered partial orders along a scattered partial order is scattered (see
Lemma 1.5.2). Therefore it is sufficient to show that E(T ) is scattered. Suppose not and
let D ⊆ E(T ) be a dense chain. Let τ ∈ T be minimal such that τ has two incomparable
extensions σ0, σ1 ∈ D. Fix σ0, σ1 ∈ D such that σ0 < σ1 and τ ⊆ σi for all i < 2. Now
let x0, x1 ∈ Pτ such that τa〈xi〉 ⊆ σi for i < 2. It is not difficult to show that

D′ = {x ∈ Pτ : x0 <Pτ x <Pτ x1 ∧ (∃σ ∈ A)τa〈x〉 ⊆ σ}
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is a dense chain on Pτ , against the assumption about B.

6.5 Sum decomposition for FAC partial orders

In this section we prove a sum decomposition theorem for FAC partial orders which will
be used later on.

Theorem 6.5.1 (Π1
2-CA0). If P is a FAC partial order, then there exist a cofinal (coinitial)

restriction B ⊆ P and a partition {Px : x ∈ B} such that B is a wpo (reverse wpo),

x ∈ Px ⊆ P (� x) (x ∈ Px ⊆ P (� x)) for every x ∈ B and P extends
∑

x∈B Px.

We first prove a technical lemma. We need the following definition.

Definition 6.5.2. Let θ(n,X) be an arithmetical formula. Define Hθ(α, f) to be the for-
mula f : α → N ∧ (∀β < α)((∃n)θ(n, f [β]) =⇒ θ(f(β), f [β])), where f [β] = {n ∈
N : (∃γ < β)f(γ) = n}.

Lemma 6.5.3 (Π1
2-CA0). Let θ(n,X) be an arithmetical formula. Then Π1

2-CA0 proves

(∃α)(∃f)(Hθ(α, f) and f is not one-to-one).

Proof.

Claim (ACA0). Suppose Hθ(α, f) and Hθ(β, g). If h : α → β is a strong embedding,
then f = g ◦ h. In particular f [α] ⊆ g[β].

By arithmetical transfinite induction we prove (∀γ < α)f(γ) = g ◦ h(γ). Assume
by induction f � γ = g ◦ h � γ. We want to show f(γ) = g ◦ h(γ). By the assumption
H(α, f) ∧ H(β, g), we get θ(f(γ), f [γ]) and θ(g(h(γ)), g[h(γ)]). By induction, f [γ] =

(g ◦ h)[γ]. Since h is a strong embedding, (g ◦ h)[γ] = g[h(γ)]. The thesis follows by
uniqueness.

Claim (ATR0). For every well-order α there exists f such that Hθ(α, f).

By arithmetical transfinite recursion on β < α, let f(β) be the ω-least x such that
θ(x, f [β]). If such x does not exist, let f(β) = 0. This completes the proof of the claim.

By Σ1
2 comprehension, let Ω = {n : (∃α)(∃f)(H(α, f) ∧ n ∈ f [α])}. By Σ1

2-AC0,
which is available in Π1

2-CA0, there exists a sequence (αn)n∈N of well-orders such that
(∀n ∈ Ω)(∃f)(H(αn, f) ∧ n ∈ f [αn]).
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Let α =
∑

n∈ω αn and f so that H(α, f). We first claim f [α] = Ω. One direction
follows by definition. Let n ∈ Ω. Then (∃g)(H(αn, g) ∧ n ∈ g[αn]). Since αn � α, by
the claim, g[αn] ⊆ f [α], and hence n ∈ f [α].

Finally, let β so that α ≺ β and g such thatH(β, g). We show that g is not one-to-one.
Let h : α→ β be a strong embedding. By the claim, f = g ◦ h. Since α ≺ β, f [α] ⊆ g[δ]

for some δ < β. Since f [α] = Ω, there exists γ < α such that g(δ) = f(γ). Since
f = g ◦ h, g(δ) = g(h(γ)). Now h(γ) < δ, and so g is not one-to-one. This completes
the proof.

Proof of Theorem 6.5.1. Let P be a FAC partial order. For x ∈ P and X ⊆ P , we say
that x is minimal over X if and only if

x /∈ ↓X ∧ (∀y � x)(y /∈ ↓X =⇒ (∀z ∈ X)(z � x =⇒ z � y)).

Claim. For all X ⊆ P , if X is not cofinal in P then there exists x ∈ P which is minimal
over X .

Suppose X is not cofinal but there are no minimal elements over X . Then we can
define by arithmetical recursion a sequence (xn, zn) of elements of P 2 such that for all n:

• xn /∈ ↓X and zn ∈ X;

• xn � xn+1;

• zn ≺ xn and zn ⊥ xn+1.

Since X is well-founded and P is FAC, X is a well-partial order. Therefore, there exists
n < m such that zn � zm. It follows that zn � zm ≺ xm � xn+1, against zn ⊥ xn+1.
This completes the proof of the claim.

Let θ(x,X) be the arithmetical formula which says that x ∈ P , X ⊆ P and either X
is cofinal in P or x is minimal over X .

By Lemma 6.5.3, there exist a well-order α and a function f : α→ P so that H(α, f)

and f is not one-to-one. Let β < α be least such that f [β] is cofinal. By the claim above,
since f is not one-to-one, such β exists because otherwise f(β) is minimal over f [β] and
so f(β) /∈ f [β] for all β < α. As a consequence f(γ) is minimal over f [γ] for all γ < β.

Let B = f [β] and Pf(γ) = {x � f(γ) : x � f(δ) for all δ < γ}. Clearly, B is well-
founded because f(δ) ≺ f(γ) implies δ < γ for all δ < γ < β. Also, x ∈ Px for all
x ∈ B.
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We next check that P extends
∑

x∈B Px. We must show that x ∈ Pf(γ), y ∈ Pf(δ) and
f(γ) ≺ f(δ) imply x ≺ y. Since f(γ) is minimal over f [γ], γ < δ and so f(γ) ∈ f [δ].
Since f(δ) is minimal over f [δ], f(γ) ≺ y. It follows that x � f(γ) ≺ y.

6.6 Hausdorff for scattered FAC partial orders

Let B be the class of wpo’s and reverse wpo’s. We aim to show the following:

Theorem 6.6.1 (Π1
2-CA0). If P is scattered FAC then P ∈ C(B).

We first prove a technical lemma.

Lemma 6.6.2 (Π1
2-CA0). Let P be a FAC partial order. Then:

(1) P ∈ C(B) if and only if P (� x) ∈ C(B) for every x ∈ P if and only if P (� x) ∈
C(B) for every x ∈ P ;

(2) P ∈ C(B) if and only if P (� x) ∈ C(B) or P (� x) ∈ C(B) for every x ∈ P

Proof. (1) The left to right direction follows from the fact that C(B) is closed under re-
strictions. Let us show that P ∈ C(B) if P (� x) ∈ C(B) for every x ∈ P . Since P is
FAC, by Theorem 6.5.1, P extends

∑
x∈B Px, where B ⊆ P is well-founded (and hence

a wpo) and Px ⊆ P (� x) for all x ∈ B. Since C(B) is closed under restrictions, each
Px ∈ C(B). As C(B) is closed under sums along wpo’s,

∑
x∈B Px ∈ C(B). Finally, C(B)

is closed under extensions and hence P ∈ C(B).
(2) Consider the right to left direction. Assume that P = P0 ∪ P1, where P0 = {x ∈

P : P (� x) ∈ C(B)} and P1 = {x ∈ P : P (� x) ∈ C(B)}. Note that P0 and P1 are Σ1
2

definable. We must prove that P ∈ C(B). By Σ1
2 reduction (which is equivalent to Π1

2

separation and to ∆1
2 comprehension), there existsA ⊆ P0 such thatB = P \A ⊆ P1. We

claim that A,B ∈ C(B). For every x ∈ A, A(� x) ⊆ P (� x) and hence A(� x) ∈ C(B),
because C(B) is closed under restrictions. It follows by (1) that A ∈ C(B). The case of
B is analogous. Since P extends A ⊕ B and C(B) is closed under extensions and sums
along finite antichains, P ∈ C(B).

Proof of Theorem 6.6.1. Let P be a FAC partial order and suppose that P /∈ C(B). We
aim to show that P is not scattered.

Add to P a least element x0 and a greatest element x1. Let D = { n
2m

: 0 ≤ n ≤
2m and m ∈ N} be the set of dyadic rationals in

[
0, 1
]
.
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By recursion, we define an embedding f of D into P . Let f(0) = x0 and f(1) = x1.
By hypothesis, [x0, x1]P /∈ C(B). Suppose we have defined f(d) for every d ∈ D with
denominator < 2m and fix d = n

2m
so that f(d) has not been defined yet. In particular n

is odd. Let d0 = n−1
2m

and d1 = n+1
2m

. By induction, assume that [f(d0), f(d1)]P /∈ C(B).
By part (2) of Lemma 6.6.2, we can choose an element f(d) ∈ [f(d0), f(d1)]P such that
[f(d0), f(d)]P /∈ C(B) and [f(d), f(d1)]P /∈ C(B).

6.7 Hausdorff for FAC partial orders

Let B be the class of (countable) partial orders which are either wpo’s, reverse wpo’s or
linear orders. We aim to show the following:

Theorem 6.7.1 (Π1
2-CA0). If P is FAC then P ∈ C(B).

Definition 6.7.2 (ACA0). Let P be a FAC partial order. We define A(P ) to be the set of
(codes of) finite antichains of P .

Lemma 6.7.3 (ACA0). A partial order P is FAC if and only A(P ) ordered by reverse

inclusion is well-founded (i.e. there are no infinite sequences A0 ⊂ A1 ⊂ A2 ⊂ . . . of

antichains of P ).

Lemma 6.7.4 (ACA0). Let P be a partial order and x ∈ P . Suppose that P0 = P (⊥ x)

and P1 = P \ P (⊥ x) are both in C(B). Then P ∈ C(B).

Proof. Clearly P extends P0 ⊕ P1, which belongs to C(B) since C(B) is closed under
sums along finite antichains.

Proof of Theorem 6.7.1. Let P be a FAC partial order. By transfinite induction on A ∈
A(P ) we prove P (⊥ A) ∈ C(B). For A = ∅, P (⊥ A) = P and so P ∈ C(B).

Actually, for simplicity of notation, we shall assume P (⊥ x) ∈ C(B) for every x ∈ P
and show that P ∈ C(B).

By Σ1
2 comprehension, define a binary relation ∼ on P by letting x ∼ y if and only if

x ⊥ y or (x, y)P ∈ C(B).

Claim. The relation ∼ is an equivalence relation.

Reflexivity and symmetry are immediate. Thus, we check transitivity. Suppose x ∼ y

and y ∼ z with x, y, z distinct. If x ⊥ z, x ∼ z by definition. So, we may assume x ≺ z.
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We let I = (x, z)P and prove I ∈ C(B). There are four cases:
Case 1: y ∈ I . As I0 = I(⊥ y) = I ∩ P (⊥ y) and by induction hypothesis P (⊥ y) ∈
C(B), I0 ∈ C(B) because C(B) is closed under restrictions. On the other hand, I1 =

I \ I0 = (x, y)P + {y} + (y, z)P and so I1 ∈ C(B) because C(B) is closed under sums
along linear orders. By Lemma 6.7.4, I ∈ C(B).
Case 2: x ≺ y and y ⊥ z. We define I0 = (x, z)P ∩ (x, y)P and I1 = (x, z)P \ (x, y)P .
Thus, I extends I0 ⊕ I1. Now, I0, I1 ∈ C(B) because I0 ⊆ (x, y)P , I1 ⊆ P (⊥ y) and
C(B) is closed under restrictions. Then I ∈ C(B).
Case 3: x ⊥ y and y ≺ z. This is like case 2.
Case 4: x ⊥ y and y ⊥ z. The claim follows from I ⊆ P (⊥ y).

Claim. Each equivalence class is convex.

If x ≺ y ≺ z and x ∼ z, then clearly x ∼ y since (x, y)P is a restriction of (x, z)P

and C(B) is closed under restrictions.

Claim. Each equivalence class is in C(B).

Let C be an equivalence class and z ∈ C. By Lemma 6.5.3, since P (⊥ z) ∈ C(B)

by induction hypothesis, it suffices to show that L = C0 = {x ∈ C : x ≺ z} and
C1 = {x ∈ C : z ≺ x} are both in C(B). We just argue that C0 ∈ C(B), the argument for
C1 being symmetric.

Since C0 is FAC, by Theorem 6.5.1 there exist a coinitial subset B ⊆ C0 and a par-
tition {C0,x : x ∈ B} of C0 such that B is a reverse wpo, x ∈ C0,x ⊆ C0(� x) and C0

extends
∑

x∈B C0,x.
Since C is an equivalence class, (x, z)P ∈ C(B) for all x ∈ B. Moreover, C0,x is a

restriction of {x}+(x, z)P and hence belongs to C(B). It follows by the closure properties
of C(B) that C0 ∈ C(B).

Claim. If C and D are distinct equivalence classes then either C ≺ D or D ≺ C.

Since incomparable elements are equivalent, every element of C is comparable with
every element of D. Suppose for a contradiction that x ≺ y ≺ x′ with x, x′ ∈ C and
y ∈ D. Since equivalence classes are convex, y ∈ C, a contradiction.

Therefore, we can can write P as the sum of its equivalence classes along a linear
order. It follows by the closure properties of C(B) that P ∈ C(B).



7
Linear extensions1

7.1 Introduction

We introduce the notion of τ -like partial order, where τ is one of the linear order types ω,
ω∗, ω + ω∗, and ζ . For example, being ω-like means that every element has finitely many
predecessors, while being ζ-like means that every interval is finite. We consider state-
ments of the form “any τ -like partial order has a τ -like linear extension” and “any τ -like
partial order is embeddable into τ”. Working in the framework of reverse mathematics,
we show that these statements are equivalent either to BΣ0

2 or to ACA0 over the usual base
system RCA0.

Szpilrajn’s Theorem ([Szp30]) states that any partial order has a linear extension. This
theorem rises many natural questions, where in general we search for properties of the
partial order which are preserved by some or all its linear extensions. For example it is
well-known that a partial order is a well partial order if and only if all its linear extensions
are well-orders.

A question which has been widely considered is the following: given a linear order
type τ , is it the case that any partial order, which does not embed τ , can be extended to a
linear order which does not embed τ either? If the answer is affirmative, τ is said to be
extendible, while τ is weakly extendible if the same holds for any countable partial order.
For instance, the order types of the natural numbers, of the integers, and of the rationals are
extendible. Bonnet ([Bon69]) and Jullien ([Jul69]) characterized all countable extendible
and weakly extendible linear order types respectively.

We are interested in a similar question: given a linear order type τ and a property
characterizing τ and its suborders, is it true that any partial order which satisfies that
property has a linear extension which also satisfies the same property? In our terminology:

1The content of this chapter also appears in [FM12]
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does any τ -like partial order have a τ -like linear extension? Here we address this question
for the linear order types ω, ω∗ (the inverse of ω), ω + ω∗ and ζ (the order of integers).
So, from now on, τ will denote one of these.

Definition 7.1.1. Let (P,≤P ) be a countable partial order. We say that P is

• ω-like if every element of P has finitely many predecessors;

• ω∗-like if every element of P has finitely many successors;

• ω + ω∗-like if every element of P has finitely many predecessors or finitely many
successors;

• ζ-like if for every pair of elements x, y ∈ P there exist only finitely many elements
z with x <P z <P y.

The previous definition resembles Definition 2.3 of Hirschfeldt and Shore ([HS07]),
where linear orders of type ω, ω∗ and ω + ω∗ are introduced. The main difference is that
the order properties defined by Hirschfeldt and Shore are meant to uniquely determine
a linear order type up to isomorphism, whereas our definitions apply to partial orders in
general and do not determine an order type. Notice also that, for instance, an ω-like partial
order is also ω + ω∗-like and ζ-like.

We introduce the following terminology:

Definition 7.1.2. We say that τ is linearizable if every τ -like partial order has a linear
extension which is also τ -like.

With this definition in hand, we are ready to formulate the results we want to study:

Theorem 7.1.3. The following hold:

(1) ω is linearizable;

(2) ω∗ is linearizable;

(3) ω + ω∗ is linearizable;

(4) ζ is linearizable.
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A proof of the linearizability of ω can be found in Fraı̈ssé’s monograph ([Fra00,
§2.15]), where the result is attributed to Milner and Pouzet. (2) is similar to (1) and
the proof of (3) easily follows from (1) and (2). The linearizability of ζ is apparently a
new result (for a proof see Lemma 7.3.2 below).

In this chapter we study the statements contained in Theorem 7.1.3 from the stand-
point of reverse mathematics (the standard reference is [Sim09]), whose goal is to char-
acterize the axiomatic assumptions needed to prove mathematical theorems. We assume
the reader is familiar with systems such as RCA0 and ACA0. The reverse mathematics
of weak extendibility is studied in [DHLS03] and [Mon06]. The existence of maximal
linear extensions of well partial orders is studied from the reverse mathematics viewpoint
in [MS11].

Our main result is that the linearizability of τ is equivalent over RCA0 to the Σ0
2

bounding principle BΣ0
2 when τ ∈ {ω, ω∗, ζ}, and to ACA0 when τ = ω + ω∗. For more

details on BΣ0
2, including an apparently new equivalent (simply asserting that a finite

union of finite sets is finite), see §7.2 below.
The linearizability of ω appears to be the first example of a genuine mathematical

theorem (actually appearing in the literature for its own interest, and not for its metamath-
ematical properties) that turns out to be equivalent to BΣ0

2.

To round out our reverse mathematics analysis, we also consider a notion closely
related to linearizability:

Definition 7.1.4. We say that τ is embeddable if every τ -like partial order P embeds into
τ , that is there exists an order preserving map from P to τ .2

It is rather obvious that τ is linearizable if and only if τ is embeddable. Let us
notice that RCA0 easily proves that embeddable implies linearizable. Not surprisingly,
the converse is not true. In fact, we show that embeddability is strictly stronger when
τ ∈ {ω, ω∗, ζ}, and indeed equivalent to ACA0. The only exception is given by ω + ω∗,
for which both properties are equivalent to ACA0.

We use the following definitions in RCA0.

Definition 7.1.5 (RCA0). Let ≤ denote the usual ordering of natural numbers. The linear
order ω is (N,≤), while ω∗ is (N,≥).

2To formalize this definition in RCA0, we need to fix a canonical representative of the order type τ ,
which we do in Definition 1.5.
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Let {Pi : i ∈ Q} be a family of partial orders indexed by a partial order Q. The
lexicographic sum of the Pi along Q, denoted by

∑
i∈Q Pi, is the partial order on the set

{(i, x) : i ∈ Q ∧ x ∈ Pi} defined by

(i, x) ≤ (j, y) ⇐⇒ i <Q j ∨ (i = j ∧ x ≤Pi y).

The sum
∑

i<n Pi can be regarded as the lexicographic sum along the n-element chain.
In particular P0 + P1 is the lexicographic sum along the 2-element chain (and we have
thus defined ω + ω∗ and ζ = ω∗ + ω).

Similarly, the disjoint sum
⊕

i<n Pi is the lexicographic sum along the n-element
antichain.

7.2 Σ0
2 bounding and finite union of finite sets

Let us recall that BΣ0
2 (standing for Σ0

2 bounding, and also known as Σ0
2 collection) is the

scheme:

(∀i < n)(∃m)ϕ(i, n,m) =⇒ (∃k)(∀i < n)(∃m < k)ϕ(i, n,m), (BΣ0
2)

where ϕ is any Σ0
2 formula.

It is well-known that RCA0 does not prove BΣ0
2, which is strictly weaker than Σ0

2 in-
duction. Neither of WKL0 and BΣ0

2 implies the other and Hirst ([Hir87], for an accessible
proof see [CJS01, Theorem 2.11]) showed that RT2

2 (Ramsey theorem for pairs and two
colors) implies BΣ0

2.

A few combinatorial principles are known to be equivalent to BΣ0
2 over RCA0.

Hirst ([Hir87], for an accessible proof see [CJS01, Theorem 2.10]) showed that, over
RCA0, BΣ0

2 is equivalent to the infinite pigeonhole principle, i.e. the statement

(∀n)(∀f : N→ n)(∃A ⊆ N infinite)(∃c < n)(∀m ∈ A)(f(m) = c). (RT1
<∞)

(The notation arises from viewing the infinite pigeonhole principle as Ramsey theorem
for singletons and an arbitrary finite number of colors.)

Chong, Lempp and Yang ([CLY10]) showed that a combinatorial principle PART

about infinite ω + ω∗ linear orders, introduced by Hirschfeldt and Shore ([HS07, §4]), is
also equivalent to BΣ0

2. More recently, Hirst ([Hir12]) also proved that BΣ0
2 is equiva-
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lent to a statement apparently similar to Hindman’s theorem, but much weaker from the
reverse mathematics viewpoint.

We consider the statement that a finite union of finite sets is finite:

(∀i < n)(Xi is finite) =⇒
⋃
i<n

Xi is finite. (FUF)

Here “X is finite” means (∃m)(∀x ∈ X)(x < m). This statement can be viewed as
a second-order version of Π0 regularity, which in the context of first-order arithmetic is
known to be equivalent to Σ2 bounding (see e.g. [HP93, Theorem 2.23.4]).

Lemma 7.2.1. Over RCA0, BΣ0
2 is equivalent to FUF.

Proof. First notice that FUF follows immediately from the instance of BΣ0
2 relative to the

Π0
1, and hence Σ0

2, formula (∀x ∈ Xi)(x < m).

For the other direction we use Hirst’s result recalled above: it suffices to prove that
FUF implies RT1

<∞. Let f : N → n be given. Define for each i < n the set Xi =

{m : f(m) = i}. Clearly
⋃
i<nXi = N is infinite. By FUF, there exists i < n such that

Xi is infinite. Now Xi is an infinite homogeneous set for f .

7.3 Equivalences with BΣ0
2

Notice that Szpilrajn’s Theorem is easily seen to be computably true (see [Dow98, Obser-
vation 6.1]) and provable in RCA0. We use this fact several times without further notice.

We start by proving that BΣ0
2 suffices to establish the linearizability of ω, ω∗ and ζ .

Lemma 7.3.1. RCA0 proves that BΣ0
2 implies the linearizability of ω and ω∗.

Proof. We argue in RCA0 and, by Lemma 7.2.1, we may assume FUF. Let us consider
first ω. So let P be an ω-like partial order which, to avoid trivialities, we may assume to
be infinite. We recursively define a sequence zn ∈ P by letting zn be the least (w.r.t. the
usual ordering of N) x ∈ P such that (∀i < n)(x �P zi).

We show by Σ0
1 induction that zn is defined for all n ∈ N. Suppose that zi is defined

for all i < n. We want to prove (∃x ∈ P )(∀i < n)(x �P zi). Define Xi = {x ∈
P : x ≤P zi} for i < n. Since P is ω-like, each Xi is finite. By FUF,

⋃
i<nXi is also

finite. The claim follows from the fact that P is infinite.
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Now define for each n ∈ N the finite set

Pn = {x ∈ P : x ≤P zn ∧ (∀i < n)(x �P zi)}.

It is not hard to see that the Pn’s form a partition of P , and that if x ≤P y with x ∈ Pi and
y ∈ Pj , then i ≤ j. Then let L be a linear extension of the lexicographic sum

∑
n∈ω Pn.

L is clearly a linear order and extends P by the remark above. To prove that L is ω-like,
note that the set of L-predecessors of an element of Pn is included in

⋃
i≤n Pi, which is

finite, by FUF again.
For ω∗, repeat the same construction using ≥P in place of ≤P , and let L be a linear

extension of
∑

n∈ω∗ Pn.

Lemma 7.3.2. RCA0 proves that BΣ0
2 implies the linearizability of ζ .

Proof. In RCA0 assume FUF. Let P be a ζ-like partial order, which we may again assume
to be infinite. It is convenient to use the notation [x, y]P = {z ∈ P : x ≤P z ≤P y∨y ≤P
z ≤P x}, so that [x, y]P 6= ∅ whenever x and y are comparable.

We define by recursion a sequence zn ∈ P by letting zn be the least (w.r.t. the ordering
of N) x ∈ P such that

x /∈
⋃
i,j<n

[zi, zj]P .

As before, since P is infinite and ζ-like, one can prove using Σ0
1 induction and FUF

that zn is defined for every n ∈ N. It is also easy to prove that

P =
⋃
i,j∈N

[zi, zj]P .

Define for each n ∈ N the set

Pn =
⋃
i<n

[zi, zn]P \
⋃
i,j<n

[zi, zj]P .

By FUF, the Pn’s are finite. Moreover, they clearly form a partition of P . Note also that
zn ∈ Pn and every element of Pn is comparable with zn. Furthermore, every interval
[x, y]P is included in some [zi, zj]P . Notice that the same holds for any partial order
extending ≤P .

We now extend ≤P to a partial order �P such that any linear extension of (P,�P ) is
ζ-like. We say that n is left if zn ≤P zi for some i < n; otherwise, we say that n is right.
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Notice that, since zn ∈ Pn, n is right if and only if zi ≤P zn for some i < n or zn is
incomparable with every zi with i < n.

The order �P places Pn below or above every Pi with i < n depending on whether n
is left or right. Formally, for x, y ∈ P such that x ∈ Pn and y ∈ Pm let

x �P y ⇐⇒ (n = m ∧ x ≤P y) ∨ (n < m ∧m is right) ∨ (m < n ∧ n is left).

We claim that �P extends ≤P . Let x ≤P y with x ∈ Pn and y ∈ Pm. If n = m,
x �P y by definition. Suppose now that n < m, so that we need to prove that m is right.
As x ∈ Pn, zi ≤P x for some i ≤ n. Since y ∈ Pm, y is comparable with zm. Suppose
that zm <P y. Then y ≤P zj for some j < m, and so zi ≤P x ≤P y ≤P zj with
i, j < m, contrary to y ∈ Pm. It follows that y ≤P zm and thereby zi ≤P zm with i < m.
Therefore, m is right, as desired. The case n > m (where we need to prove that n is left)
is similar.

We claim that (P,�P ) is still ζ-like. To see this, it is enough to show that for all
i, j < n

{x ∈ P : zi �P x �P zj} ⊆
⋃
k<n

Pk

and apply FUF. Let x ∈ Pk be such that zi ≺P x ≺P zj . Suppose, for a contradiction,
that k ≥ n and hence that i, j < k. By the definition of �P , zi ≺P x implies that k is
right. At the same time, x ≺P zj implies that k is left, a contradiction.

Now let L be any linear extension of (P,�P ) and hence of (P,≤P ). We claim that L
is ζ-like. To prove this, we show that for all i, j ∈ N

{x ∈ P : zi ≤L x ≤L zj} = {x ∈ P : zi �P x �P zj}.

One inclusion is obvious because ≤L extends �P . For the converse, observe that the zn’s
are �P -comparable with any other element.

We can now state and prove our reverse mathematics results.

Theorem 7.3.3. Over RCA0, the following are pairwise equivalent:

(1) BΣ0
2;

(2) ω is linearizable;

(3) ω∗ is linearizable;
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(4) ζ is linearizable.

Proof. Lemma 7.3.1 gives (1) ⇒ (2) and (1) ⇒ (3). The implication (1) ⇒ (4) is
Lemma 7.3.2.

To show (2)⇒ (1), we assume linearizability of ω and prove FUF. So let {Xi : i < n}
be a finite family of finite sets. We define P =

⊕
i<n(Xi + {mi}), where the mi’s are

distinct and every Xi is regarded as an antichain. P is ω-like, and so by (2) there exists
an ω-like linear extension L of P . Let mj be the L-maximum of {mi : i < n}. Then⋃
i<nXi is included in the set of L-predecessors of mj , and is therefore finite because L

is ω-like.

The implication (3) ⇒ (1) is analogous. For (4) ⇒ (1), prove FUF by using the
partial order

⊕
i<n({`i}+Xi + {mi}).

We now show that the linearizability of ω + ω∗ requires ACA0.

Theorem 7.3.4. Over RCA0, the following are equivalent:

1. ACA0;

2. ω + ω∗ is linearizable.

Proof. We begin by proving (1)⇒ (2). Let P be an ω+ω∗-like partial order. In ACA0 we
can define the set P0 of the elements having finitely many predecessors. So P1 = P \ P0

consists of elements having finitely many successors. Clearly, P0 is ω-like and P1 is ω∗-
like. Since ACA0 is strong enough to prove BΣ0

2, by Lemma 7.3.1, P0 has an ω-like linear
extension L0 and P1 has an ω∗-like linear extension L1. Since P0 is downward closed
and P1 is upward closed, it is not difficult to check that the linear order L = L0 + L1 is
ω + ω∗-like and extends P .

For the converse, let f : N → N be a one-to-one function. We set out to define an
ω + ω∗-like partial order P such that any ω + ω∗-like linear extension of P encodes
the range of f . To this end, we use an ω + ω∗-like linear order A = {an : n ∈ N}
given by the false and true stages of f . Recall that n ∈ N is said to be true (for f )
if (∀m > n)(f(m) > f(n)) and false otherwise, and note that the range of f is ∆0

1

definable from any infinite set of true stages.

The idea for A comes from the well-known construction of a computable linear order
such that any infinite descending sequence computes ∅′. This construction can be carried
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out in RCA0 (see [MS11, Lemma 4.2]). Here, we define A by letting an ≤ am if and only
if either

f(k) < f(n) for some n < k ≤ m, or

m ≤ n and f(k) > f(m) for all m < k ≤ n.

It is not hard to see that A is a linear order. Moreover, if n is false, then an has
finitely many predecessors and infinitely many successors. Similarly, if n is true, then
an has finitely many successors and infinitely many predecessors. In particular, A is an
ω + ω∗-like linear order.

Now let P = A ⊕ B where B = {bn : n ∈ N} is a linear order of order type ω∗,
defined by letting bn ≤ bm if and only if n ≥ m. It is clear that P is an ω+ω∗-like partial
order. By hypothesis, there exists an ω + ω∗-like linear extension L of P . We claim that
n is a false stage if and only if it satisfies the Π0

1 formula (∀m)(an <L bm).
In fact, if n is false and bm ≤L an, then bm has infinitely many successors in L, since

an has infinitely many successors in P and a fortiori in L. On the other hand, bm has
infinitely many predecessors in P , and hence also in L, contradiction. Likewise, if n is
true and an <L bm for all m, then an has infinitely many successors as well as infinitely
many predecessors in L, which is a contradiction again.

Therefore, the set of false stages is ∆0
1, and so is the set of true stages, which thus

exists in RCA0. This completes the proof.

7.4 Equivalences with ACA0

We turn our attention to embeddability. As noted before, RCA0 suffices to prove that
“τ is embeddable” implies “τ is linearizable”. The converse is true in ACA0. Actually,
embeddability is equivalent to ACA0. We thus prove the following.

Theorem 7.4.1. The following are pairwise equivalent over RCA0:

(1) ACA0;

(2) ω is embeddable;

(3) ω∗ is embeddable;

(4) ζ is embeddable;
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(5) ω + ω∗ is embeddable;

Proof. We first show that (1) implies the other statements. Since BΣ0
2 is provable in

ACA0, it follows from Theorem 7.3.3 that ACA0 proves the linearizability of ω, ω∗ and ζ .
By Theorem 7.3.4, ACA0 proves the linearizability of ω+ω∗. We now claim that in ACA0

“τ is linearizable” implies “τ is embeddable” for each τ we are considering. The key fact
is that the property of having finitely many predecessors (successors) in a partial order, as
well as having exactly n ∈ N predecessors (successors), is arithmetical. Analogously, for
a set, and hence for an interval, being finite or having size exactly n ∈ N is arithmetical
too. (All these properties are in fact Σ0

2.)
We consider explicitly the case of ω + ω∗ (the other cases are similar). So let L be a

ω + ω∗-like linear extension of a given ω + ω∗-like partial order. We want to show that L
is embeddable into ω + ω∗. Define f : L→ ω + ω∗ by

f(x) =

(0, |{y ∈ L : y <L x}|) if x has finitely many predecessors,

(1, |{y ∈ L : x <L y}|) otherwise.

It is easy to see that f preserves the order.

For the reversals, notice that (5)⇒ (1) immediately follows from Theorem 7.3.4.
As the others are quite similar, we only see (2) ⇒ (1). Let f : N → N be a given

one-to-one function. We want to prove that the range of f exists. We fix an antichain
A = {am : m ∈ N} and elements bnj for n ∈ N and j ≤ n. The partial order P is obtained
by putting for each n ∈ N the n + 1 elements bnj below af(n). Formally, bnj ≤P am when
f(n) ≤ m, and there are no other comparabilities.

P is clearly an ω-like partial order. Apply the hypothesis and obtain an embedding
h : P → ω. Now, we claim that m belongs to the range of f if and only if (∃n <

h(am))(f(n) = m). One implication is trivial. For the other, suppose that f(n) = m. By
construction, am has at least n+ 1 predecessors in P , and thus it must be h(am) > n.



A
A.1 Erdös-Rado

The following diagram summarizes our state of knowledge about ER2
2 . We do not know

whether the implications are strict.

ER2
2

RT2
2 st-ER2

3

st-RT2
2 st-ER2

2

RT1
<∞

wspo(ant)→ wspo(set)

wspo(ant)→ wspo(ext)
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