
Università degli Studi di Udine

Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis

Exploring the use of GPGPUs in
Constraint Solving

Candidate:

Federico Campeotto

Supervisors:

Prof. Agostino Dovier

Prof. Enrico Pontelli

Academic Year December 9, 2014

Author’s e-mail: campe8@nmsu.edu

Author’s address:

Dipartimento di Matematica e Informatica
Università degli Studi di Udine
Via delle Scienze, 206
33100 Udine
Italia

This Thesis is dedicated to whom it may concern.

Abstract

This dissertation presents an experimental study aimed at assessing the feasibility of parallelizing
the constraint solving process using Graphical Processing Units (GPU s). GPUs support a form
of data parallelism that appears to be suitable to the type of processing required to cycle through
constraints and domain values during consistency checking and propagation. The dissertation also
illustrates an implementation of a constraint solver capable of hybrid propagations (i.e., alternating
CPU and GPU) and parallel search, and demonstrates the potential for competitiveness against
sequential implementations. We consider the Protein Structure Prediction problem as a hard
combinatorial real-world problem as case study to show the advantages of combining parallel search
and parallel constraint propagation on a GPU architecture. We present the formalization and
implementation of a novel class of constraints to support a variety of different structural analysis
of proteins, such as loop modeling and structure prediction.. We demonstrate the suitability of a
GPU approach to implement such MAS infrastructure, with significant performance improvements
over the sequential implementation and other methods.

Acknowledgments

I thank my advisors Agostino Dovier and Enrico Pontelli for their guidance and encouragement in
my research and for making this Thesis possible.

Contents

1 Introduction 1

INTRODUCTION 1
1.1 Research Objectives . 1
1.2 Main Results . 2
1.3 Thesis structure . 2

1.3.1 Constraint Programming:
Definitions and Challenging Applications 2

1.3.2 Parallel Constraint Solving . 3
1.3.3 Parallel Constraint Solving: Case Study . 3

I Constraint Programming:
Definitions
and
Challenging Applications 5

2 Background 7
2.1 Introduction . 7
2.2 Constraint Programming . 7
2.3 Search and Labeling . 9

2.3.1 Backtracking . 9
2.4 Consistency Techniques and Constraint Propagation 10

2.4.1 Node Consistency. 11
2.4.2 Arc Consistency. 11
2.4.3 k-Consistency. 12

2.5 Intelligent Backtracking . 12
2.5.1 Look-back Methods. 12
2.5.2 Look-ahead Methods. 13

2.6 Local Search . 13
2.6.1 Hill-climbing. 14
2.6.2 Tabu Search. 15
2.6.3 Large Neighborhood Search. 15

3 Protein Structure Prediction 17
3.1 Biological Background, General Context,

and Related Work . 19
3.1.1 Biological Background . 19
3.1.2 Context Of The Proposed Work . 20
3.1.3 Protein Structure Prediction . 22
3.1.4 Protein Loop Modeling . 23

3.2 Constraint Solving with 3D Fragments . 24
3.2.1 Some Terminology . 24
3.2.2 Variables And Domains . 27
3.2.3 Constraints . 28

3.3 The FIASCO Constraint Solver . 30
3.3.1 Constraint Solving . 30

ii Contents

3.3.2 Constraint Propagation . 32

3.3.3 Multiple JM Constraints . 37

3.4 Experimental Results . 38

3.4.1 Loop Modeling . 38

3.4.2 An Application in Protein Structure Prediction 43

3.4.3 Comparison of FIASCO with State-of-the-Art Constraint Solvers 49

3.5 Summary . 51

II Parallel Constraint Solving 55

4 Background 57

4.1 Parallel Computing . 57

4.1.1 Metrics . 58

4.2 Parallel Consistency in Constraint Programming 59

4.3 Parallel Search in Constraint Programming . 61

4.3.1 Combining Parallel Search with Parallel Constraint Propagation 62

4.3.2 Distributed Constraint Programming . 63

4.4 CUDA Computing . 65

4.4.1 Parallel Search on GPU . 66

5 GPU-based Propagation 69

5.1 The Framework . 69

5.2 Parallelizing the Constraint Engine . 70

5.2.1 Domain representation . 72

5.2.2 State of the computation . 72

5.2.3 Data transfers . 73

5.2.4 MiniZinc constraints encoding . 73

5.2.5 Propagators . 74

5.3 Results . 74

5.3.1 Comparison with Gecode and JaCoP . 75

5.3.2 Comparing GPU vs CPU . 75

5.3.3 The inverse constraint . 76

5.3.4 The table constraint . 77

5.3.5 Examples containing table and inverse constraints 77

5.4 Summary . 79

6 GPU-based Search 81

6.1 Solver Design and Implementation . 81

6.1.1 Structure of the Solver . 81

6.1.2 Exploiting GPU Parallelism. 83

6.1.3 Some Technical Details . 85

6.2 Local Search Strategies . 85

6.3 Experiments . 86

6.3.1 CPU vs GPU: solving CSPs . 87

6.3.2 CPU vs GPU: evaluating LS strategies . 87

6.3.3 Comparison with standard CP . 87

6.3.4 Comparison with Standard LNS . 89

6.4 Summary . 90

Contents iii

7 GPU & DCOPs 91

7.1 Background . 91

7.1.1 DCOPs . 91

7.1.2 DPOP . 92

7.1.3 MCMC Sampling . 93

7.2 GPU-based Distributed MCMC Framework . 94

7.2.1 GPU Data Structures . 96

7.2.2 Local Sampling Process . 96

7.2.3 Theoretical Properties . 97

7.3 Experimental Results . 98

7.4 Summary . 101

III Parallel Constraint Solving:
Case Study 103

8 The Protein Structure Prediction Problem on GPU 105

8.1 Introduction . 105

8.2 Problem Formalization . 106

8.2.1 Variables and domains . 106

8.2.2 Constraints . 106

8.2.3 The Cost Function E . 107

8.3 A Multi-Agent System Architecture . 108

8.3.1 The Supervisor Agent . 109

8.3.2 The Worker Agent . 110

8.3.3 The Structure Agent . 110

8.3.4 The Coordinator Agent . 110

8.4 General search schema . 110

8.4.1 ICM . 112

8.4.2 Monte Carlo . 112

8.4.3 Gibbs sampling . 113

8.4.4 The LNS general schema . 113

8.5 Some Implementation Details . 114

8.5.1 Constraints . 114

8.5.2 Energy . 115

8.5.3 Subroutines of the Search Algorithms . 115

8.5.4 General details about CUDA . 116

8.6 Results . 117

8.6.1 GPU vs. CPU . 118

8.6.2 Longer Proteins . 123

8.6.3 Comparison with other Systems . 125

8.6.4 A Case of Study: 3BHI . 128

8.6.5 Comparing different GPUs . 128

8.7 Summary . 129

9 Conclusions 131

9.1 Constraint Programming: Definitions and Challenging Applications 131

9.1.1 Future work . 131

9.2 Parallel Constraint Solving . 132

9.2.1 Future work . 132

9.3 Parallel Constraint Solving: Case Study . 132

9.3.1 Future work . 133

iv Contents

A JM Constraint: Complexity Analysis 135
A.1 Complexity Analysis . 135

B A Distributed MCMC Framework for Solving Distributed Constraint Optimiza-
tion Problems with GPUs 145
B.1 Introduction . 145
B.2 Background: Finite Markov Chains . 145

B.2.1 MAP to DCOP Mapping . 146
B.3 Theoretical Properties . 147

Bibliography 151

List of Figures

2.1 Example of a solution for the 8-Queens problem. 8
2.2 Forward checking (left) and MAC (right) on the 4-Queens problem. 14

3.1 A schematic sequence of two amino acids showing the amino acid backbone and
their side chains. The arrow from C ′ to N denotes the peptidic bond. 19

3.3 Secondary structure elements: α-helix, β-sheets, loops, and turns. 20
3.4 Amino acid concatenation in the 5@ model . 21
3.5 Overlap of two fragments in the plane. 25
3.6 Examples of bodies, multi-bodies, and rigid bodies. 26
3.7 A schematic representation of a rigid body. The joints connecting two adjacent

fragments are emphasized. The points in points(B) of each fragment are represented
by circles. 26

3.8 Fragments are assembled by overlapping the plane βR, described by the rightmost
C ′, O,N atoms of the first fragment (left), with the plane βL, described by the
leftmost C ′, O,N atoms of the second fragment (right), on the common nitrogen atom 29

3.9 Graphical representation of the propagation of a JM constraint. 35
3.10 The effect of a distance constraint ||P−Q|| ≤ d propagation. Empty boxes represent

the original PVs domains and the full boxes represent the reduced PVs domains after
the effect of constraint propagation. 36

3.11 An example of loop computed by FIASCO. 39
3.12 Number of different fragments (after clustering) per amino acid in the dataset . . 40
3.13 RMSD comparison for each Loop Set (x-axis: the 30 protein targets) 41

3.14 RMSD comparison for loop sampling on loops of length 12 using fragments of length
3, 6, and 9. 42

3.15 Comparison of the best RMSD values and execution times at varying of the kmax
clustering parameter for β = 60. 44

3.16 Comparison of the best RMSD values and execution times at varying of the kmax
clustering parameter for β = 120. 45

3.17 Comparison of the best RMSD values and execution times at varying of the kmax
clustering parameter for β = 360. 46

3.18 Top: RMSD (best and average) and Time (average and worst) values increasing the
number of JM constraints that completely cover a target loop of length 15. Bottom:
Average (dotted line) and best (solid line) RMSD for the targets 1LE0 of length 12
(top), 1MXN of length 16 (medium), and 1FDF of length 25 (low). 47

3.19 Comparison of RMSD and Execution Time between TUPLES and FIASCO 52

4.1 Example of parallel search combined with parallel constraint propagation. 62
4.2 Example of Distributed CSP. x1 and x2 are value-sending agents, and x3 is a

constraint-evaluating agent. 64
4.3 CUDA Logical Architecture. 65
4.4 Parallel models for local search methods. 68

6.1 Parallel exploration of subsets Ni of variables. A LS strategy explores the space of
Ni in parallel from different starting points SPij . 83

6.2 Concurrent computations between host and device. 84
6.3 Thread partition within a block. 85

vi List of Figures

7.1 Example DCOP - Constraint graph (left) and Pseudo-Tree (right). 92
7.2 Parallelization Illustration . 97
7.3 Experimental Results: Meeting Scheduling. (a) - top, (b) - bottom. 99
7.4 Experimental Results: Meeting Scheduling. (c) - top, (d) - bottom. 100

8.1 Rotation of the vector Cα–N (angle φ) or the vector Cα–C (angle ψ) 107
8.2 Basic structure of an agent and Multi-Agent System architecture 109
8.3 Time vs number of samples for the Gibbs sampling algorithm 121

A.1 Rigid blocks for SAW (from left to right, block 1, . . . , 7) 135
A.2 A special planar graph G. There are four loops with nodes of degree 3 and 9 paths

of length 2, connecting nodes that belong to distinct loops. 136
A.3 Gadget for a loop of size 4. Starting nodes are represented by empty circles.

p1, p2, p3, p4 are the output nodes. The two templates T1 and T2 are emphasized
on the right . 137

A.4 Two aligned gadgets. 138
A.5 Square spiral paths used to connect output nodes with their copies on different levels.138
A.6 The ml (merge-loops) gadget. 139
A.7 Minimum distance between paths connecting different loops. 139
A.8 Overlapping planes defined on rigid blocks (a). Two overlapped rigid blocks: K2 on

K1 (b). 140
A.9 18 rigid blocks defined on the bi-dimensional plane (x, y). These templates are used

as elements domains for the compatible JM-constraint. 141
A.10 18 rigid blocks defined on 3D plane (x, y, z). These templates are used as elements

domains for the compatible JM-constraint. 142
A.11 α and ζ nodes in a l2l . 142
A.12 Loops in G and G′; Observe that the Hamiltonian paths in G cannot touch half of

the extra nodes added in loops in G′ . 143
A.13 Example of a case where the 4th point of rigid block doesn’t match the relative point

in G′. 143
A.14 Example of a case where the rigid block leave out 2 nodes of G′ (left), and one of

the cases s.t. the path S defined by σ enters and exits loops in G′ (right). 144

List of Tables

3.1 Loop Modeling settings and average running times (in seconds) and number of
solutions generated. 39

3.2 Comparison of loop sampling methods . 41
3.3 JM default parameters . 48
3.4 Ab initio prediction with FIASCO. 48
3.5 Comparison of the execution times of FIASCO and Gecode, for increasing number

of solutions and with different sets of considered constraints. 50
3.6 Number of solutions, time, best RMSD, and average RMSD on the set of structures

found by FIASCO and Gecode after a complete enumeration of the solution space
using different constraints . 50

3.7 Ab initio prediction with FIASCO. 51

5.1 Comparison between i-solv (sequential (CPU) and parallel (GPU) versions), Gecode,
and JaCoP for the n-Queens benchmarks . 75

5.2 Comparison between i-solv (sequential (CPU) and parallel (GPU) versions), Gecode,
and JaCoP for the Schur benchmark . 75

5.3 Comparison between i-solv (sequential (CPU) and parallel (GPU) versions), Gecode,
and JaCoP for the propagation stress benchmark. 76

5.4 Influence of the upper bound parameter on the Golomb ruler problem. 76
5.5 Time comparison for the inverse constraint. 77
5.6 Time comparison for the table constraint with random values. 77
5.7 Time comparison for the Three-barrels problem and the Black-hole game 78
5.8 Positive table constraint benchmarks. 78

6.1 CPU vs GPU: solving CSP . 87
6.2 MKCP benchmark using six LS strategies (maximization) 88
6.3 Minizinc benchmarks (minimizazion problems, save Knapsack). 88
6.4 Quadratic Assignment Problem (minimization) . 89

7.1 Example DCOP - Utilities. 92
7.2 Example UTIL Phase Computations . 93
7.3 Experimental Results: Smart Grid Networks . 100

8.1 CPU vs GPU: Secondary Structure predictions for the set BS1. 118
8.2 CPU vs GPU: Secondary Structure predictions for the set BS2. 118
8.3 Time (sec.), quality, and energy values averaged on 20 runs for the set of proteins

BS1. Coordinator agent uses Monte Carlo algorithm. 119
8.4 Time (sec.), quality, and energy values averaged on 20 runs for the set of proteins

BS1. Coordinator agent uses Gibbs sampling algorithm. 120
8.5 Quality w.r.t. number of samples for the Gibbs sampling strategy. 121
8.6 Quality evaluation: RMSD as objective function. 122
8.7 Time (sec.), quality, and energy values averaged on 20 runs for some proteins of

different length and type. Coordinator agents use Monte Carlo algorithm to explore
conformations. CG constraint has been enabled. 123

8.8 Time (sec.), quality, and energy values averaged on 20 runs for some proteins of
different length and type. Coordinator agents use Gibbs sampling algorithm to
explore conformations. CG constraint has been enabled. 124

8.9 Longer proteins (125, 150, 175, 200): time and quality evaluation using Gibbs sampling.124

viii List of Tables

8.10 Longer proteins (125, 150, 175, 200): time and quality evaluation using Gibbs sam-
pling with the CG constraint enabled. 125

8.11 Longer proteins (125, 150, 175, 200): time and quality evaluation using the Monte
Carlo search strategy. 125

8.12 Longer proteins (125, 150, 175, 200): time and quality evaluation using the Monte
Carlo search strategy and CG constraint. 125

8.13 Quality evaluation: best results of GMAS systems against Rosetta. 126
8.14 Quality evaluation: best results of GMAS systems against I-TASSER. 127
8.15 Quality evaluation: best results of GMAS systems against FIASCO. 127
8.16 Case of Study: 3BHI (276 amino acids) . 128
8.17 Comparison between different GPUs - Monte Carlo and Gibbs sampling. 129

1
Introduction

Constraint programming (CP) is a declarative paradigm that aims to provide a general and high-
level framework for solving combinatorial search problems. Based on strong theoretical foundations,
it is attracting widespread commercial interest and it is now becoming the method choice for
modelling many types of optimization problems [135]. Three main components characterize a
constraint programming model: (1) variables, (2) variables’ domains, and (3) relations among
variables stated in the form of constraints. Differently from classical imperative approaches, there
is no need to specify a sequence of steps to execute in order to find a solution for a given problem.
Instead, the user specifies a set of properties that the solution must satisfy by posting constraints
among variables. Then, a constraint solver explores the search space in order to find variable
assignments that are consistent with all constraints. A solution is found when all variables have
been assigned and all constraints are satisfied.

Different techniques from artificial intelligence, computer science, operations research, program-
ming languages, and databases have been used to prune the search space and to find admissible
assignments. These techniques try to overcome the inherent complexity of problems that usually are
NP-hard, proving effective and allowing the constraint programming paradigm to be successfully
applied to scheduling, bioinformatics, networks, configuration, and planning problems. Neverthe-
less, the cost of solving hard combinatorial real-world problems still motivates the exploration of
new techniques to improve the exploration of the search space; parallelism has been recognized as
a strong contender, especially with the wider availability of multi-core and cluster platforms.

The overall purpose of this dissertation is to show that the use of the General-Purpose Com-
puting on Graphics Processing Units (GPGPU s) computational power in the form of Single-
Instruction Multiple-Threads (SIMT) parallelism can improve the performance of constraint solvers
providing a powerful parallel infrastructure at an affordable cost.

1.1 Research Objectives

In recent years, the computing industry has been involved in an architectural shift, increasing
the number of computing cores and processors instead of the processor frequencies [77]. In the
constraint solving domain, the wider availability of multi-core platforms raises the question of how
to exploit this computational power and how to scale the current solving techniques. This disser-
tation aims to make a contribution to the domain of parallel constraint solving, by exploring ways
of using Single-Instruction Multiple-Threads (SIMT) parallelism to reduce the cost of constrain
propagation and search space exploration during the constraint solving process. Almost all modern
desktops and laptops provide a powerful GPU, and there are several popular methods of utilizing
GPUs, including CUDA [140] and OpenCL [159]. One of the aspects that has been brought to light
is that GPUs are not a silver bullet, and direct ports of existing algorithms to a GPU architecture
often perform poorly [85]. Nevertheless, this dissertation demonstrates the potential for using
GPGPUs to speedup the constraint solving process. This is, to the best of our knowledge, the
first comprehensive study investigating the use of GPGPUs in constraint solving (i.e., constraint
propagation combined with parallel search); this study opens the doors to an alternative way to

2 1. Introduction

enhance performance of constraint solvers, through the unexploited computational power offered
by GPUs.

1.2 Main Results

The typical constraint solving process is carried out by alternating two steps: (1) assigning values
to variables (labeling), and (2) propagating constraints to prune the search space (constraint prop-
agation). In this dissertation we present a feasibility study about the use of GPUs to speedup the
constraint solving process.

GPU devices provide thousands of parallel cores and a well-structured multilevel data parallel
decomposition represented by parallel blocks (coarse-grain parallelism) and parallel threads within
each block (fine-grain parallelism). We consider this multilevel parallel decomposition to describe
frameworks for parallel constraint solvers where the GPU computational power is exploited for
both labeling and constraint propagation, leading to significant gains in terms of execution time.
Our experimental results show that the use of GPUs in the constraint solving process can lead to
remarkable speedups, outperforming corresponding sequential system and other implementations.

The combination of parallel search and parallel constraint propagation shows its major advan-
tages when considering hard combinatorial real-world problems where the search space is usually
large and the model is characterized by many hard global constraints (i.e., constraints defined on
groups/sets of variables). As a real-world case study we considered the Protein Structure Predic-
tion problem (PSP problem), i.e., the problem of predicting the three-dimensional structure of a
protein given its amino acid sequence. PSP is one of the most important and complex problems in
bioinformatics and theoretical chemistry. Suboptimal solutions computed by fast algorithms would
be highly beneficial in biotechnology, and drug design. In this dissertation, we present a parallel
constraint-based technology aimed at supporting structural studies of proteins. The solver relies on
GPGPU computation to perform parallel local search and parallel constraint propagation. Our ap-
proach to the problem applies a Multi-Agent System (MAS) perspective, where concurrent agents
explore the folding of different parts of a protein, leading to significant performance improvements
(e.g., up to 100×) over the sequential implementation and other methods.

1.3 Thesis structure

The focus of this dissertation is on the study of a particular computing architecture (i.e., GPU
architecture) to speed up the constraint solving process. Many hard, real-world combinatorial
problems lend themselves to modeling as constraint satisfaction or optimization problems. Our
efforts are then motivated by the need of efficient solvers for such diverse application domains
as the areas of planning, job scheduling and bioinformatics [135]. We also consider a specific
challenging constraint problem—the Protein Structure Prediction problem—as case study to test
the implementation of a parallel constraint framework and assess the potential of GPU on a real-
world problem. This dissertation is divided into three main parts organized as follows:

1.3.1 Constraint Programming:
Definitions and Challenging Applications

In the first part of this dissertation (Chapter 2), we present some background information related
to constraint problems and the constraint solving process in general. We introduce the notion of
constraint problem, constraint engine and some techniques that are usually adopted to solve con-
straint satisfaction and optimization problems (e.g., arc-consistency notions, local search strategies,
large neighborhood search). We also introduce the protein structure prediction problem, after a
brief review of some basic biology notions (Chapter 3). In the last part of Chapter 3 (Section 3.2)
we describe a sequential constraint resolution engine aimed at structural studies of proteins. The
solver is suitable to address protein structure analysis studies, requiring the generation of a set of

1.3. Thesis structure 3

unbiased sampled diverse conformations which satisfy certain given constraints. The purpose of
developing a sequential constraint solver for a challenging application is twofold. First, by describ-
ing a constraint solver we enter in detail in the aspects that characterize the solving process. The
goal is to understand what kind of issues must be addressed in developing a solver and, in partic-
ular, which aspects of the solver can be parallelized in order to increase performance. Second, by
considering an open research problem such as the PSP, we demonstrate the potential of constraint
programming in a real-world problem.

1.3.2 Parallel Constraint Solving

In the second part (Chapter 4), we focus on parallel constraint solving. To this end, we introduce
some notions about parallelism (e.g., metrics as speedup, efficiency, etc.), parallel constraint consis-
tency (e.g., parallel AC-3, parallel AC-4, etc.), and parallel search in constraint programming. We
will also touch some aspects regarding DIStributed Constraint Satisfaction Problems (Dis-CSP)
and, in particular, Distributed Constraint Optimization Problems (DCOP) (Section 4.3). GPU
computation and architecture, and the CUDA environment (i.e., the programming model used in
this dissertation) are also presented as a part of background notions (Section 4.4).

The rest of the second part is organized as follows. In Chapter 5, we consider GPU-based
propagation, presenting the structure of a constraint engine capable of hybrid propagation (i.e.,
alternating CPU and GPU) within a sequential exploration of the search space. Results are dis-
cussed with emphasis on the aspects that characterize the potential for effective exploitation of
parallelism in the case of constraint propagation.

In Chapter 6, we analyze GPU-based local search in the domain of constraint programming.
In particular, we focus on a parallel version of a popular local search method refereed to as Large
Neighborhood Search (LNS). We describe a novel design and implementation of a constraint solver
performing parallel search as well as a general framework that exploits SIMT parallelism to speedup
local search strategies. We will present different local search strategies that can be used to explore in
parallel multiple large neighborhoods. These strategies are implemented by making very localized
changes in the definition of a neighborhood, namely, specifying the structure of a neighborhood.
The main result of this section is a hybrid method for solving constraint optimization problems that
uses local search strategies on large neighborhoods of variables. Usually, large neighborhood are
explored using standard CP techniques. Instead, we present an approach based on local search to
find the neighborhood that improves the objective function the most among a large set of different
neighborhoods. Exploration of neighborhoods is performed in parallel on the GPU, leading to
significant speedups in terms of time if compared with sequential implementation, standard CP,
and standard LNS.

The second part of this dissertation ends by presenting some result on the use of GPUs in
the domain of DCOPs (Chapter 7). DCOPs are defined as Distributed Constraint Optimization
Problems, i.e., optimization problems where (sets of) variables represented by agents need to
coordinate their value assignments to maximize the sum of resulting constrain utilities. We show
that also in this context, the use of GPU computational power can lead to significant gains in
terms of time and quality of the results when compared with standard methods.

1.3.3 Parallel Constraint Solving: Case Study

In the third part (Chapter 8), we re-consider the Protein Structure Prediction problem presented
in Chapter 3 as case study for a parallel constraint solver that performs both parallel search
and constraint propagation on GPU. We describe the design of the solver—based on a Multi-
Agent System (MAS) infrastructure—and its implementation. The solver uses different agents
for different parts of the protein performing parallel large neighborhood search, where spatial and
geometric constraint are propagated and enforced on the protein structure using parallel threads.
We show that our approach leads to remarkable speedups and is competitive with the state-of-the-
art tools for protein structure prediction.

4 1. Introduction

We conclude this dissertation (Chapter 9) summarizing the main results presented in the pre-
vious chapters and some research directions for future work.

I
Constraint Programming:

Definitions
and

Challenging Applications

2
Background

2.1 Introduction

The set of conceptual tools provided by a programming language determines the way the program-
mer conceive and perceives the program. However, it is the way in which a programming problem is
addressed that has a direct impact on the choice of the programming paradigm and the techniques
used to solve it. Different programming paradigms, in fact, differ in the set of abstractions and
tools available to the the programmer for representing the elements of the program (e.g., functions,
objects, variables, constraints, etc.) and the procedures for processing the data.

Constraint Programming (CP) [135] is a declarative programming methodology that has gained
a predominant role in addressing large scale combinatorial and optimization problems. As a
paradigm, CP provides the tools necessary to guide the modeling and resolution of search problem–
in particular, it offers declarative problem modeling (in terms of variables and constraints), the
ability to rapidly propagate the effects of search decisions, and flexible and efficient procedures to
explore the search space of possible solutions. In this chapter we consider a challenging constraint
problem as case study to show several aspect related to the constraint programming paradigm.

We start by introducing the Constraint Programming paradigm 2.2, we present notions and
definitions regarding constraint satisfaction and optimization problems, as well as the techniques
and algorithms that are usually implemented in a constraint solver. Then, we focus our attention
on the Protein Structure Prediction problem. We start by introducing the Constraint Programming
paradigm (Section 2.2), we present notions and definitions regarding constraint satisfaction and
optimization problems, as well as the techniques and algorithms that are usually implemented in a
constraint solver. In Section 2.3 we focus our attention on strategies for solving constraint problems.
We introduce the notions of consistency techniques and constraint propagation (Section 2.4). In
Section 2.5 we present some backtracking techniques that are usually implemented in constraint
solvers. We conclude the Chapter by presenting some background notions about local search
strategies in Section 2.6.

2.2 Constraint Programming

Constraint satisfaction is the task of finding assignments to variables such that the assignments
satisfy the constraints imposed on the variables. A Constraint Satisfaction Problem (CSP) P [135]
is a triple (X,D,C) defined as follows:

• X = 〈x1, . . . , xn〉 is an n-tuple of variables;

• D = 〈Dx1 , . . . , Dxn〉 is an n-tuple of finite domains, each associated to a distinct variable in
X;

• C is a finite set of constraints on variables in X, where a constraint c on the m variables
xi1 , . . . , xim , denoted as c(xi1 , . . . , xim), is a relation c(xi1 , . . . , xim) ⊆ ×mj=1D

xij . The set
of variables {xi1 , . . . , xim} is referred to as the scope of c (scp(c)). If m = 1 or m = 2, the
constraint is referred to as unary or binary constraint respectively. If m > 2 the constraint
is referred to as global constraint.

8 2. Background

A solution s of a CSP is a tuple 〈s1, . . . , sn〉 ∈×ni=1D
xi s.t. for each c(xi1 , . . . , xim) ∈ C, we have

〈si1 , . . . , sim〉 ∈ c(xi1 , . . . , xim). P is (in)consistent if it has (no) solutions.

A Constrain Optimization Problem (COP) is a pair Q = (P, g), where P = (X,D,C) is a CSP
and

g :×ni=1D
xi → R

is a cost function. Given Q, we seek a solution s of P such that g(s) is maximal among all solutions
of P.

Example 2.2.1 In the well-known n-Queens problem the task is to place n queens on a n × n
chess board so that none of them can attack any other in one move. This problem can be modelled
as a CSP as follows:

• X = 〈x1, . . . , xn〉 represents the rows of the chessboard;

• D = 〈Dx1 , . . . , Dxn〉, where for 1 ≤ i ≤ n,Dxi = {1, . . . , n} represents the column indexes
of each queen placed on the chess board;

• C = {|xi − xj | 6= |i− j| ∧ xi 6= xj : i = 1..n− 1, j = 1..n} is the set of constraints used to
impose that two queens cannot be placed on the same row, column or diagonal.

Figure 2.1 shows a solution for the 8-Queens problem (solution 〈1, 7, 5, 8, 2, 4, 6, 3〉).

Figure 2.1: Example of a solution for the 8-Queens problem.

Typical CSP solvers alternate two steps:

1. Selection of a variable and non-deterministic assignment of a value from its domain (labeling);

2. Propagation of the assignment through the constraints, to reduce the admissible values of
the remaining variables and possibly detect inconsistencies (constraint propagation).

These two steps are alternated during the whole constraint solving process until either a variable’s
domain is empty or a solution is found. Let us observe that a variable assignment x = d ∈ Dx

implicitly defines a new decision node in a search tree by replacing the current CSP with another
CSP where Dx = {d}. More formally, let us consider a CSP P = (X,D,C). We define the search
tree for P as a tree defined as follows [6]:

• the nodes of the tree are CSPs;

• the root is P;

• the nodes at an even level have exactly one child;

• if P1, . . . ,Pm, where m ≥ 1, are direct descendants of P0, then the union of P1, . . . ,Pm is
equivalent w.r.t. X to P0.

2.3. Search and Labeling 9

It turns out that the resolution process is a sequence of transformations between CSPs that starts
from the initial CSP and terminates when all the domains of a CSP are singletons or there is at
least one that is empty [6]. It is possible to (informally) describe this process by means of proof
rules. For example, the following rule

φ

ψ1| . . . |ψn
represents the transformation of the CSP φ to the CSPs ψ1, . . . , ψn. Here, the “|” symbol represents
an alternative choice between the possible transformations of φ, representing different nodes of the
search tree.

Given a CSP (X,D,C), the labeling of a variable xi ∈ X where Dxi = {d1, . . . , dm}, is
represented by the following proof rule:

(X,D,C)

(X,D,C ∪ {xi = d1})| . . . |(X,D,C ∪ {xi = dm})
.

Alternatively, the same labeling can be represented as follows:

(X,D,C)

(X, 〈Dx1 , . . . , Dxi = {d1}, . . . , Dxn〉, C)| . . . |(X, 〈Dx1 , . . . , Dxi = {dm}, . . . , Dxn〉, C)
.

COP solvers use the same solving process scheme (i.e., alternation between labeling and con-
straint propagation) but they explore the space of possible solutions of the problem in order to find
the optimal one (e.g., using branch and bound techniques). A complete COP solver stops whenever
exploration is complete, while an incomplete COP solver might stop when a given limit is reached
(e.g., time/number of improving solutions), returning the best solution found so far [135].

2.3 Search and Labeling

The most straightforward strategy that can be used to solve a CSP is the Generate and Test
(G&T) search strategy. G&T is a very simple algorithm that guarantees to find a solution if
one exists. It works as follows: it first generates a possible solution, i.e., a complete labeling of
variables, checking whether constraints are satisfied. If a solution is found it returns the solution.
Else, it generates another possible solution. The main drawback of this algorithm is its efficiency
since it exhaustively explores the search space and eventually discovers inconsistencies on complete
assignments of the variables. For example, given a CSP P = (X,D,C) such that P is inconsistent,
|X| = n, and d is the maximum size of the domains, the G&T technique will explore O(dn) possible
complete labelling before discovering that no solution for P exists. More efficient techniques are
presented in what follows.

2.3.1 Backtracking

Backtracking strategies [125] combine the generation of solutions with consistency checking. A
solution is incrementally constructed by starting from partial assignments of values to variables
and backtracking to previous assignments as soon as the current assignment does not satisfy one
or more constraints.

Example 2.3.1 Let us consider an n-Queens problem instance where k < n queens have been al-
ready placed on the chessboard, i.e., the variables x1, . . . , xk have been labeled and the current partial
assignment satisfies all constraints. Instead of labeling all the remaining variables xk+1, . . . , xn and
then checking for the consistency of the solution, a backtracking strategy first labels the variable
xk+1 with a value di ∈ Dxk+1 , then it checks for consistency of constraints. If all constraints are
satisfied by the current partial assignment, the search continues labeling the variables xk+2, . . . , xn,
otherwise a new assignment for xk+1 is tried. If none of the assignments for xk+1 is a valid as-
signment (i.e., it satisfies all constraints), the search backtracks to xk and the process is repeated.
Eventually, either the search backtracks to the first variable or a solution is found.

10 2. Background

Backtracking strategies are the “framework” in which labeling strategies usually operate: sev-
eral choices can be made both for the next variable to label and for the value to assign to it. Simple
enumeration of values usually performs poorly and different heuristics are provided by constraint
solvers. Informally, a heuristic is a rule that is used to choose one of many alternatives. In the
context of search in CSPs, a heuristic usually provides the rules to determine: (a) which variable
to label, and (b) which value to select. For example, a heuristic can select the variable that has the
smaller domain among all the other variables, or the variable that appears in the largest number
of constraints. Another heuristic for selecting the value can choose always the minimum or the
maximum element of a domain. There are a number of heuristics and, beside standard heuristics,
they usually differ with the specific implementation of the constraint solver.

Although backtracking improves G&T algorithm by eliminating a large number of assignments
that do not satisfy the constraints, there are two main issues that could dramatically decrease the
performance of standard backtracking: (1) late detection of conflicts, and (2) repeated failures due
to the same reason (e.g., a prefix of the current partial assignment may have the same property
that leads to a failure). The former can be avoided using consistency techniques (see Section 2.4)
to detect inconsistent partial assignment sooner, while the latter can be partially avoided by some
kind of intelligent backtracking such as Backjumping or Backmarking (see Section 2.5).

2.4 Consistency Techniques and Constraint Propagation

The constraint programming solving process can be described by a sequence of transformations
among equivalent CSPs (see Section 2.2).
Given two CSPs P1 = (X1, D1, C1) and P2 = (X2, D2, C2) and the set of variables X∩ = X1 ∩X2,
we say that P1 and P2 are equivalent w.r.t. X∩ if:

• For every solution s1 of P1, ∃s2 solution for P2 such that s2|X∩ = s1|X∩ ;

• For every solution s2 of P2, ∃s1 solution for P1 such that s1|X∩ = s2|X∩ ;

where s|X is the projection of the tuple s on the variables in X. The above definition can be
further generalized for a sequence of CSPs P1 = (X1, D1, C1), . . . ,Pn = (Xn, Dn, Cn) w.r.t. the
set of variables X∩ =

⋂n
i=1Xi and P1, if P1 and Pi are equivalent w.r.t. X∩, for 2 ≤ i ≤ n.

During the constraint solving process, a constraint solver performs constraint propagation in
order to create a sequence of CSPs which are equivalent to the original CSP but “simpler”. The
definition of “simpler” depends on the application but a CSP is usually considered simpler when its
domains become smaller. This process is called constraint propagation and it is based on algorithms
referred to as constraint propagation algorithms or constraint propagators. Constraint propagation
is performed by repeatedly reducing domains while maintaining equivalence, i.e., they guarantee
some form of “local consistency”, ensuring that some subset of variables are consistent.

Example 2.4.1 Let us consider a simple CSP

P = (〈x1, x2〉, 〈[lx1
, ux1

], [lx2
, ux2

]〉, {x1 < x2}),

where the domains of x1 and x2 are represented by the intervals of integers [l..u]. Then, the
constraint propagation algorithm for x1 < x2 is represented by the following rule:

x1 < x2; Dx1 = [lx1
, ux1

], Dx2 = [lx2
, ux2

]

x1 < x2; Dx1 = [lx1
,min(ux1

, ux2
− 1)], Dx2 = [max(lx2

, lx1
+ 1), ux2

]
.

that transforms both domains to smaller ones, while preserving the equivalence of the two CSPs.
For the sake of clarity, here we used a simplified but more intuitive version of the proof rule syntax
defined in Section 2.2.

Consistency techniques are often based on the notion of constraint graphs. Given a CSP
P = (X,D,C), a constraint graph for P is a graph (V,E), where V = X and E = C, i.e., nodes

2.4. Consistency Techniques and Constraint Propagation 11

correspond to variables and arcs (edges) represent constraints. Notice that the above definition
assumes that all constraints are unary or binary. This is not a restriction since any global con-
straints can replaced by a semantically equivalent set of binary constraints introducing auxiliary
variables [12].

2.4.1 Node Consistency.

The simplest notion of local consistency is called node consistency. We say that a CSP P =
(X,D,C) is node consistent if for every variable x ∈ X, Dx is consistent with every unary constraint
c on x:

• ∀a ∈ Dx, a ∈ c(x);

A simple algorithm that achieves node consistency removes values from variables’ domains that
are inconsistent with unary constraints. It is easy to see that node consistency can be achieved in
O(nd) time [109], where n is the number of variables and d the maximum size among all variables’
domains.

2.4.2 Arc Consistency.

The most common notion of local consistency is Arc Consistency (AC). Let us consider a binary
constraint c ∈ C, where scp(c) = {xi, xj} and xi, xj ∈ X. We say that c is arc consistent if:

• ∀a ∈ Dxi , ∃b ∈ Dxj (a, b) ∈ c(xi, xj);
• ∀b ∈ Dxj , ∃a ∈ Dxi(a, b) ∈ c(xi, xj).

Given a value a ∈ Dxi (b ∈ Dxj), the corresponding value b ∈ Dxj (a ∈ Dxi) s.t. (a, b) ∈ c is
referred to as the support of a(b) in Dxj (Dxi) w.r.t. the constraint c. A CSP is arc consistent if
all its binary constraints are arc consistent.

Example 2.4.2 Consider the following CSP P:

(〈x1, x2〉, 〈Dx1 = [5, 10], Dx2 = [3, 7]〉, {x1 < x2}).

Then, P is not arc consistent. For example, for x1 = 8,@b ∈ Dx2 s.t. 8 < b.

There are several algorithms to achieve arc consistency. These algorithms usually perform an
iterative process that consider one edge of the constraint graph at a time, reducing the domains
of the variables corresponding to the pair of adjacent nodes. The process iterates until the CSP is
arc consistent (i.e., no further reduction is possible) or some domain is empty

The popular AC-3 algorithm [108] ensures arc consistency following the same iterative process,
as reported in Algorithm 1.

Algorithm 1 AC-3(X,C)

1: Q← {(xi, c) | c ∈ C, xi ∈ scp(c)};
2: while Q 6= ∅ do
3: select and remove (xi, c) from Q;
4: if revise(xi, c) then
5: if Dxi = ∅ then return False;
6: else Q← Q ∪ {(xj , c′) | c′ ∈ C ∧ c′ 6= c ∧ xi, xj ∈ scp(c′) ∧ j 6= i};
7: end if
8: end while
9: return True;

A queue of constraints Q, referred to as constraint queue, is initially filled with all the arcs
of the CSP (line 1). Then the algorithm “revises” the arcs and adds to the queue those that are
affected by previous revisions (line 6). Arcs are revised by the revise function, which tests for
consistency along the arc, (i, j) for every adjacent node j (line 4). This function removes any value

12 2. Background

in Dxi that has no support in Dxj w.r.t. the constraint c. If at least one domain has been changed
by the revise function, the constraint queue is updated accordingly. The procedure ends when
either the constraint queue or some domain is empty. AC-3 ensures arc consistency in O(ed3) time
where e is the number of binary constraints in the CSP [109] and d is the maximum size of the
domains.

Another popular algorithm for arc consistency is the AC-4 [135] algorithm. The difference
between AC-3 and AC-4 is on the way they revise the arcs. In particular, AC-4 keeps tracks of
the supports of each value for each node w.r.t. corresponding arcs. As long as a label l at a node
i has some support from one or more labels at all other nodes, l is considered a valid label for i.
To check whether l has a support, the algorithm uses additional data structures: a counter that is
used to count the number of supports for each label of each variable, and a support set of labels
to update every time a label has been deleted. AC-4 improves AC-3 since it runs in O(ed2) in the
worst case.

2.4.3 k-Consistency.

The general notion of consistency is Hyper-arc consistency also referred to as k-consistency [135].
Hyper-arc consistency is defined as follows. A constraint c defined on k variables x1, . . . , xk is
k-consistent if:

• ∀a ∈ Dxi1 ≤ i ≤ k, ∃d1 ∈ Dx1 , . . . , di−1 ∈ Dxi−1 , di+1 ∈ Dxi+1 , . . . , dk ∈ Dk s.t.
〈d1, . . . , di−1, a, di+1, . . . , dk〉 ∈ c(x1, . . . , xk).

This notion of consistency generalize arc consistency and, if applied systematically on a constraint
graph, it can prune large portions of the search space. Nevertheless, achieving hyper-arc consis-
tency requires O(dne) time, which is unacceptable for most problems. Therefore, it is usually
preferred to apply some approximated forms of constraint consistency (i.e., there may still remain
some inconsistent values) and use consistency techniques together with backtracking search strate-
gies. For example, constraint solvers usually implement global constraints through functions that
perform approximated propagation in polynomial time (e.g., for NP -hard constraints) still pruning
considerable part of the search space (e.g., see [135], Chapter 6). Moreover, when the domains of
the variables are integer sets of values, another form of consistency referred to as bound consistency
can be defined. This form of consistency regards only the extreme values of the domains (i.e., min-
imum and maximum values) but it can be forced by efficient propagators. Bound consistency is
usually adopted for arithmetic constraints and several global constraints on finite integer domains.

2.5 Intelligent Backtracking

Backtracking can be combined with constraint propagation, leading to more complex forms of
search methods that are specific for constraint programming. These techniques are usually called
intelligent backtracking.

2.5.1 Look-back Methods.

Look-back methods perform consistency checks on variables that have been already labelled, avoid-
ing useless explorations of the search tree. The idea is to learn information while searching (i.e.,
learning from search failures), in order to avoid the repetition of the same mistakes. There are two
general Look-back methods strategies [59]: (1) backjumping and (2) backmarking.

When using backjumping we allow the backtracking process to jump further back in the tree
than just to the parent node. More precisely, whenever a failure is found, the current state of the
search phase is analysed in order to identify the partial assignment that causes inconsistency, and
the search process “jumps back” to the most recent conflicting variable rather than the immediately
preceding variable.

2.6. Local Search 13

Example 2.5.1 Consider the following CSP P:

(〈x1, x2, x3, x4, x5〉, 〈[1, 4], [1, 4], [1, 4], [1, 4], [1, 3]〉, {x2 = 1→ x5 > 3, . . .}).

Let us assume that at a certain point of the search process the variables x1, x2, x3, x4 are labeled
with the following values: x1 = 2, x2 = 1, x3 = 1, x4 = 1 and the search performs simple backtrack.
Since no value for x5 can satisfy the constraint x2 = 1 → x5 > 3 the search process backtracks to
x4 trying a different assignment, then to x3, and eventually to x2. On the other hand, if the search
performs backjumping, the current partial assignment and the set of constraints are “analyzed”
(i.e., the algorithm checks the prefixes of the current partial assignment w.r.t. the constraints
involving the corresponding variables), proving that the assignment x2 = 1 is not part of any
solution. Therefore, the search process backtracks directly to the labeling of x2.

Different algorithms use different techniques to identify the variable to jump to (e.g., analysis
of the constraint graph, analysis of the violated constraints w.r.t. the domains of the variables in
their scope, etc.) with different costs (see [45]).

Backmarking [135] improves backtracking by maintaining information about instantiated vari-
ables and changes that happened before each labeling. This information is used for every label to
determine incompatible assignments for the other variables, avoiding some consistency checks. Let
us observe that backmarking does not reduce the search space but it may only reduce the number
of operations needed to find a solution.

2.5.2 Look-ahead Methods.

Look-back methods guide the search process by retrieving information from previous failures.
Nevertheless, they do not prevent inconsistency from occurring.

Look-ahead methods are used to prevent future conflicts by suggesting the next variable to
label and the sequence of values to try for that variable [119]. The simplest look-ahead technique
is called forward checking (FC) and it is based on a weak form of arc consistency. It performs
arc consistency only on the arcs that connect the assigned variables and the unassigned variables.
If full arc consistency is used after each labeling step on all constraints, then this type of look-
ahead is also referred to as Maintaining Arc Consistency (MAC). In other terms, AC enforces arc
consistency on a constraint graph, while MAC refers to a backtracking scheme where after each
labeling, arc consistency is maintained (or enforced) on the new CSP [103]. Let us observe that
MAC prunes the search tree more than FC but at a higher computational cost.

Example 2.5.2 Figure 2.2 shows how Forward Checking (left) and MAC (right) can prune the
search space on the 4Queens problem. Filled dots represent the current partial assignment of the
variables. The two algorithms propagate the constraints and filter the variables’ domains w.r.t. the
current partial assignment. Inconsistent values are represented by the symbol “x”.

2.6 Local Search

Given a sufficient amount of time, a complete search strategy finds (all) the solution(s) of a given
problem (if there are any) by systematically exploring each path (or parts of it) of the search
tree. However, in hard combinatorial problems the search space is usually large [22] and faster but
incomplete methods are preferred to complete methods. Therefore, local search strategies have
become popular.

Local Search (LS) techniques [1, 135] deal with constraint problems and optimization problems
in general, and are based on the idea of iteratively improving a candidate solution s by minor
“modifications” in order to reach another solution s′ from s. The set of allowed modifications is
called the neighborhoods of s and it is often defined by means of a neighborhood function η applied
to s. LS methods rely on the existence of a candidate solution. Most problems typically have a
naive (clearly not optimal) solution. If this is not the case, some constraints can be relaxed, i.e.,

14 2. Background

Figure 2.2: Forward checking (left) and MAC (right) on the 4-Queens problem.

an assignment is a solution whenever it satisfies all constraints but the relaxed ones. The cost
function is therefore modified in order to take into account the number of unsatisfied constraint:
when a solution of cost 0 is found, it will be used as a starting point for the original COP. Other
techniques (e.g., a constraint solver) might be used to determine the initial candidate solution.

To ensure that the search process does not get stuck in a local optima or in an unsatisfactory
solution, some kind of randomness is often used during the search. These algorithms are referred
to as Stochastic Local Search methods.

Local search strategies are very effective for solving optimization problems, even though their
effectiveness usually depends on the type and the landscape of the optimization problem [158]. On
the flip side, their implementation usually requires few lines of code and their algorithmic structure
is often relatively easy. In what follows we introduce some well-known local search algorithms.

2.6.1 Hill-climbing.

The simplest local search strategy is most probably the Hill-climbing technique [125]. Starting
from an initial random assignment s = 〈x1 = d1, . . . , xi = di, . . . , xn = dn〉, the neighborhood of s
corresponds to all possible new assignments for any one variable xi:

η(s) =

n⋃
i=1

{〈x1 = d1, . . . , xi = a, . . . , xn = dn〉 | a ∈ Dxi}.

The cost function g(·) is used to select an improving labeling w.r.t. s, i.e., a new complete assign-
ment of variable s′ randomly chose in η(s) such that g(s′) < g(s). If a local minimum is reached,
then it restarts from another initial random assignment. The algorithm stops as soon as the global
minimum is found or it has reached some stopping criteria (e.g., time-out). Let us observe that the
Hill-climbing re-labeling step is usually implemented by either a random selection of the variable
or by a sequential scanning through all the variables.

The cost function g(·) is usually defined based on the specific problem/application. A common
choice for CSP problems is to the Min-conflict heuristic by defining g(·) to prefer assignments that
minimize the number of violated constraint. The heuristic iteratively evaluates the conflict set for
the current assignment, i.e., the set of all variables that appear in an unsatisfied constraint. A
variable from the conflict set is chosen randomly and it is re-labeled with a value that reduces
the number of violated constraints or a random one if no value improves the cost function. To
escape from local optima, the value of the cost function calculated by g(·) can be multiplied by a

2.6. Local Search 15

worsening factor with probability p:

g(s)′ =

{
g(s), if r ≥ p
g(s) ∗ k, if r < p

where g(·)′ is the modified version of the function g(·) that takes into account worsening labellings,
r ∈ [0..1] is a random value, and k < 1 is a constant that increases the value of g(s).

2.6.2 Tabu Search.

Tabu search [65] strategies guide the search process avoiding being trapped in local optima. A
Tabu search technique is based on the notion of forbidden states, i.e., a “short term memory” list
of assignments to avoid in order to guide the search process always to new or non-recent nodes of
the search tree. The term “non-recently” depends on the length k of the list of forbidden states.
More precisely, the algorithm avoids partial assignments that have already been considered. This
check is performed from the current state of the search process on, for the next k iterations. This
strategy ensures that the search cannot being trapped in short term cycles and allows the search
process to go beyond local optimality.

Tabu search can be combined with the Min-conflict heuristic. The Min-conflict Heuristic with
Tabu Search generally performs better that both Min-conflict and Tabu search alone [160]. This al-
gorithm works exactly as the Min-conflict technique, except that whenever a variable x is re-labeled
with a new value d, the pair (x, d) is inserted in the Tabu list. This prevents the search process to
re-consider previous labellings for the next k steps, unless such labellings lead to improvements.

2.6.3 Large Neighborhood Search.

LNS [144, 78] is an incomplete technique that hybridizes CP and LS to solve optimization problems.
It is a particular case of local search where η(s) generates a (random) neighborhood larger than
those typically used in LS. The difference is that these sets of candidate solutions are explored
using constraint based techniques, and the best improving solution is looked for. If after a timeout
an improving solution is not found, a new random neighborhood is attempted. The process iterates
until some stop criteria are met. Technically, all constraints among variables are considered, but
the effect of η(s) is to destroy the assignment for a set of variables. The stop criteria can include
a global timeout or a maximum number of consecutive choices of η(s) that have not lead to any
improvements.

16 2. Background

3
Protein Structure Prediction

Constraint Programming is a declarative programming methodology that has gained a predominant
role in addressing large scale combinatorial and optimization problems. The declarative nature of
CP enables fast and natural modeling of problems, facilitating not only development, but the rapid
exploration of different models and resolution techniques (e.g., modeling choices, search heuristics).

In recent years, several research groups have started appreciating the potential of constraint
programming within the realm of Bioinformatics. The field of Bioinformatics presents a number
of open research problems that are grounded in critical exploration of combinatorial search space,
highly suitable to be manipulated through constraint-based search. Constraint methodologies
have been applied to analyze DNA sequences for instance, to locate Cis-regulatory elements [68],
to DNA restriction maps construction [174], and to pair-wise and multiple sequence alignment [172,
173, 165]. Constraint methodologies have been applied to biological networks [31, 96, 133, 60, 61]
and to other biological inference problems, such as Haplotype inference [67, 50], and phylogenetic
inference [49].

A particular area of Bioinformatics that has witnessed an extensive use of CP techniques is the
domain of structural biology—i.e., the branch of molecular biology and biochemistry that deals with
the molecular structure of nucleic acids and proteins, and how the structure affects behavior and
functions. Constraint Programming has progressively gained a pivotal role in providing effective
ways to explore the space of conformations of macromolecules, to address problems like secondary
and tertiary structure prediction, flexibility, motif discovery, docking [9, 93, 164, 39, 112, 149, 94,
41, 24, 178]. Two comprehensive surveys on the use of constraint-based methods in structural
Bioinformatics have been recently proposed [37, 11].

Our focus in this chapter is on the use of constraint-based technology to support structural
studies of proteins. We considered a challenging constraint problem as case study to introduce
and analyze several aspects regarding the implementation of a constraint solver. We present the
techniques adopted for propagating constraints and exploring the search space as well as their
implementation.

Overview of the Chapter. Proteins are macromolecules of fundamental importance in the
way they regulate vital functions in all biological processes. Their structural properties are critical
in determining the biological functions of proteins [155, 10] and in investigating protein-protein
interactions, which are central to virtually all cellular processes [3]. We refer to the Protein
Structure Prediction (PSP) problem as the problem of determining the tertiary structure of a
protein from knowledge of its primary structure and/or from knowledge of other structures (e.g.,
secondary structure components, templates from homologous proteins). The PSP problem is also
often broken down to specialized classes of problems related to specific aspects of the tertiary
structure of a protein, such as side-chain geometry prediction [48], loop modeling prediction [66,
170, 137, 156], and protein flexibility investigation [14].

All these classes of problems share common roots—the need to track the possible conformations
of chains of amino acids. The variations of the problem relate to factors like the length of the chain
being considered (from short peptides in the case of loop modeling to entire proteins in the general
PSP case) and the diverse criteria employed in the selection of the solutions, as, for instance, the

18 3. Protein Structure Prediction

lowest basin of the effective energy surface, composed by the intra-molecular energy of the protein
plus the solvation free energy [88, 98].

Modeling the variability of a protein chain involves many degrees of freedom which are needed
to represent different protein conformations. Tracking this variability requires the exploration of
a vast conformational space. Model simplifications can be adopted to reduce such computational
cost, for instance backbone-only models represent only the backbone of proteins, the side-chain
representation could be simplified to a single central point (centroid) describing its center of mass,
or one can adopt approximated representation of the space though lattice models.

Nevertheless, even under strong simplifications, the search space remains intractable and pre-
vents the use of brute-force search methods in the space of possible conformations [33].

Constraint programming methodologies have found natural use in addressing PSP and related
problems—where structural and chemical properties have been modeled in terms of constraints
over spatial positions of atoms, transforming the search of conformations into a constraint satis-
faction/optimization problem. The proposed approaches range from pure ab initio methods [9, 39]
to methods based on NMR data [95] to methods based on fragments assembly [42]. In spite of all
these efforts, the design of effective approaches to filter the space of conformations and lead to a
feasible search remains a challenging and open problem.

In this chapter we present a constraint solver targeted at modeling a general class of protein
structure studies. In particular our solution is suitable to address protein structure analysis study,
requiring the generation of a set of unbiased sampled diverse conformations which satisfy certain
given restraints. One of the unique features of the solution presented in this work is its capability
to generate a uniformly distributed sampling of target protein regions among a given portion of
Cartesian space and with selected granularity—accounting both for spatial and rotational proper-
ties.

We abstract the problem as a general multi-body system, where each composing body is con-
strained by means of geometric properties and it is related to other bodies through joint relation-
ships. Each body can represent an entity in the protein, such as an individual amino acid or a
small peptide (e.g., a protein fragment). Bodies relate to the spatial positions and organization of
individual atoms composing it.

The view of the exploration of protein structures as multi-body systems suggests a number of
different constraints, that can be used to model different classes of structural studies and applied
to filter infeasible (or unlikely) conformations. We propose an investigation of several classes of
constraints, in terms of both their theoretical properties and practical use for filtering. Particular
emphasis is given to the Joined-Multibody (JM) constraint, whose satisfaction we prove to be NP-
complete. Realistic protein models require the assembly of hundreds of different body versions,
making the problem intractable. We study an efficient approximated propagator, called JM fil-
tering (JMf), that allows us to efficiently compute classes of solutions, partitioned by structural
similarity and controlled tolerance for error. This perspective is novel and holds strong potential.
The structural problems we are investigating are computationally intractable; the use of global
constraints specifically designed to meet their needs enables a more effective exploration of the
search space and a greater potential for effective approximations.

The multi-body model provides an interesting perspective in exploring the space of conforma-
tions –while the actual search operates on discrete sets of alternatives (e.g., sets of fragments), the
filtering process avails of reasoning processes that operates with continuous domain; this allows
the propagation and filtering to be effective.

The proposed multi-body constraints and filtering techniques constitute the core of the reso-
lution engine of FIASCO (Fragment-based Interactive Assembly for protein Structure prediction
with COnstraints), an efficient C++-based constraint solver. We demonstrate the flexibility and
efficiency of FIASCO by using its engine to model and solve a class of problems derived from loop
modeling instances. Throughout the paper we show the ability of FIASCO of providing a uni-
form and efficient modeling platform for studying different structural properties (that have been,
so far, addressed only using significantly distinct methods and tools). The declarative nature of
constraint-based methods supports a level of elaboration tolerance that is not offered by other

3.1. Biological Background, General Context,and Related Work 19

N
Cα

C'

H H O

side
chain

N
Cα C'

H H O

side
chain

Figure 3.1: A schematic sequence of two amino acids showing the amino acid backbone and their
side chains. The arrow from C ′ to N denotes the peptidic bond.

frameworks for protein structure prediction, facilitating the integration of additional knowledge in
guiding the studies (e.g., availability of information about secondary structure elements).

The rest of the chapter is organized as follows. In Section 3.1, we provide a high-level back-
ground on the biological and chemical properties of proteins and review the most commonly used
approaches to address structural studies. In Section 3.2, we develop the constraint framework for
dealing with fragments and multi-body structures. Section 8.2.2 describes the implementation of
the constraints and their propagation schemes in the FIASCO system. In Section 3.4 we report the
experimental results from using FIASCO on a collection of benchmarks on loop modeling. Section
3.5 provides some concluding remarks.

3.1 Biological Background, General Context,
and Related Work

In this section we will briefly review some basic Biology notions, introduce the problems we are
tackling in this chapter and refer to a selection of the related literature.

3.1.1 Biological Background

A protein is a molecule made of smaller building blocks, called amino acids. One amino acid can be
connected to another one by a peptidic bond. Several amino acids can be pairwise connected into
a linear chain that forms the whole protein. The backbone of a protein, as illustrated in Figure 3.1,
is formed by a sequence of N–Cα–C ′ atoms contained in each amino acid. The backbone is rather
flexible and it allows a large degree of freedom to the protein.

Each amino acid is characterized by a variable group of atoms that influences the specific
physical and chemical properties. This group, named side chain, ranges from 1 to 18 atoms and
connects to the Cα atom of each amino acid. There are 20 kinds of amino acids found in common
eukaryotic organisms.

Proteins can be made of 10 up to 1, 000 amino acids, while an average globular protein is
about 300 amino acids long. Each amino acid contains 7–24 atoms, therefore the number of atoms
and arrangements in the space can grow very easily beyond any computational power. Since the
beginning of protein simulation studies, different algorithms for exploring the conformations have
been devised, such as molecular dynamics, local search, Monte Carlo, genetic algorithms, constraint
approaches, as well as different geometric representations [121].

In the literature, several geometric models for proteins have been proposed. One choice that
influences the quality and the complexity of computational approaches is the number of points that
describe a single amino acid.

20 3. Protein Structure Prediction

The simplest representation is the one where each amino acid is represented by one point,
typically the Cα atom, given its robust geometric property: the distance between the Cα atoms of
two consecutive amino acids is preserved with a low variance (roughly 3.81Å). Usually, volumetric
constraints are enforced over those points, in order to simulate the average occupancy of each
amino acid. This representation can be visualized as a chain of beads that can be moved in the
space.

More refined representation models store some (or all) the points of the backbone, plus a
centroid of mass (CG) that represents the whole side chain that connects to the Cα atom. In these
models, each amino acid is described by different Cα–CG distances and CG volumes. The centroid
is an approximation of the side-chain flexibility and allows for more refined energetic models, while
the number of points to be taken care of is still low. In this dissertation we use a particular case of
these simplified models, the “5@” model, described precisely below. This is a particular instance
of coarse-grained protein models [28, 146]. At the end of the spectrum, each atom in the amino
acid is represented by one point. This representation is the most accurate, and at the same time
allows for the most accurate energetic considerations. The drawback is that the computational
demand for handling backbone and side-chain flexibility increases significantly. In Figure 3.3 we
report three representations for the same protein.

In this work we select the intermediate representation for amino acids where the atomsN,Cα, C
′

of the backbone and the centroid of the side chain
(CG) are accounted for. We also include an oxy-
gen (O) atom attached to the C ′ atom, because this
atom together with the C ′ and N identifies a trian-
gle that is chemically stable along the backbone and
it is used for the assembly of amino acids (see below
for a complete formalization). The position of the
two H atoms in the backbone can be deduced by the
position the other atoms and we will not deal with
them explicitly. In conclusion, we deal with 5 atomic
elements per amino acid: the 4 atoms NCαC

′O and
the centroid CG. We briefly refer to this represen-
tation as to the “5@” model. Figure 3.4 illustrates
how these atoms are involved in the concatenation of
two consecutive amino acids. Inter-atomic distances
between consecutive atoms are fixed—due to their
chemical bonds; thus, the differences between these
structures are identified by the differences between
the angles involved. It is common to find substruc-
tures of a protein where consecutive amino acids are
arranged according to repeated and characteristic
patterns. This property is found in almost every pro-
tein; we refer to these typical patterns as secondary
structure elements. The most common examples are
α-helices and β-sheets (see Figure 3.3).

Figure 3.3: Secondary structure elements: α-
helix, β-sheets, loops, and turns.

3.1.2 Context Of The Proposed Work

In this chapter we present a tool for assembling and reasoning about amino acids in the space. As
in other similar approaches (e.g, [154]), the system relies on a set of admissible elementary shapes
(or fragments) that represent the spatial dictionary of arrangements for every part of a protein.

Each element of the dictionary is general enough to describe the specific atomic structure of
either a single amino acid or a longer sequence (even hundreds of amino acids long). For each
amino acid sequence, several alternative arrangements are expected to populate the database, so
that to offer various hypothesis about the local shape of the sequence. The protein is partitioned
into contiguous fragments that can be arranged according to one of the possible shapes recorded

3.1. Biological Background, General Context,and Related Work 21

Figure 3.4: Amino acid concatenation in the 5@ model

in the database.

A sequence of amino acids is free to rotate its bonds in the space (typically two degrees of
freedom along the backbone and several others along the side chain); however, due to chemical
properties and physical occupancy that are specific to the types of amino acids involved and the
surrounding environment, some arrangements are impossible and/or unlikely. The core assumption
in assembling approaches is to rely on a statistical database of arrangements to describe local and
feasible behavior, in order to direct the search to candidates that have high probability and are
energetically favorable. The presence of multiple candidate fragments for every part of the protein
requires a combinatorial search among the possible choices that, once assembled together, leads
to alternative putative configurations for the protein. The search process is in charge of verifying
the feasibility of each assembly, since the combination of local arrangements could generate a non-
feasible global shape, e.g., one that leads to a spatial clash between atoms from different fragments.
If one (or more) fragment is described by one single arrangement, that part of the protein is rigidly
imposed. This particular degenerate case can be exploited to describe rigid parts of the protein.
A specific combination of fragment length and number of instances for each fragment determines
the type of protein problem being modeled. We can range from complete backbone flexibility
(fragments made of hundreds of choices for each amino acids) to secondary structure - loop models
(interleaving of longer fragments modeling helices/β-strands and shorter fragments).

The library of fragments is usually derived from the content of the Protein Data Bank (PDB,
www.pdb.org) that contains more than 96,000 protein structures. The design adopted in our
study is parametric on the choice of the library of fragments to use. For example, our experi-
ments use a library of fragments derived from a subset of the PDB known as top-500 [105], which
contains non-redundant proteins and preserves statistical relevance. Alternative libraries of frag-
ments can be obtained through the use of sophisticated protein database search algorithms, such
as FREAD [26]. We retrieve information depending on the specific amino acid sequence, since local
properties greatly influence the typical arrangements observed. Moreover, we build libraries for
different sequences lengths h, even if for longer sequences the statistical coverage becomes weak.
Nevertheless, [114] conjectured that a relatively small set of fragment shapes (a few dozens) of
length 5, is able to describe virtually any protein. [73] demonstrates how the size and the structure
of the search space is affected by the choice of the fragment length and how this can be used to
optimize the search process. Similar considerations have been explored by others [76]. Recent work
show how to efficiently build such dictionaries [54]. These models can be easily accommodated
into our framework.

Each considered sequence is associated to several configurations of 5@ models, placed according
to a standardized coordinate system. In this activity, we also consider the C ′O group of the
preceding amino acid and the N atom of the following amino acid. This extra information is
needed for fragments combination, assuming that the fragment will be connected by two peptidic

22 3. Protein Structure Prediction

bonds. Therefore, for a specific sequence, we store all the occurrences of

C ′O NCαC
′O︸ ︷︷ ︸

h times

N

and relative positions. In order to reduce the impact of the specific properties of the database
used, we cluster this set in such a way that if two fragments have a Root Mean Square Deviation
(RMSD) value less than a given threshold, just one of them is stored. For example, for length
h = 1 and a RMSD threshold of .2Å, we can derive a fragment database of roughly 90 fragments
per amino acid. The RMSD captures the overall similarity in space of corresponding atoms, by
performing an optimal roto-translation to best overlap the two structures.

The CG information is added later using statistical considerations about side-chain mobility,
that are not accounted for during the clustering described above [55].

3.1.3 Protein Structure Prediction

In the protein structure prediction problem, the sequence of amino acids composing a protein
(known as the primary structure) is given as input; the task is to predict the three dimensional
(3D) shape (known as the native conformation or tertiary structure) of the protein under standard
conditions.

The common assumption, based on Anfinsen’s work [5], is that the 3D structure which min-
imizes some given energy function modeling the atomic force fields, is the candidate that best
approximates the functional state of a protein. In such setting, the choice of the number of atoms
used to represent each amino acid controls the quality and the computational complexity.

Moreover, the spatial domains where the protein’s “points” (e.g., atoms, centroids) can be
placed have an impact on the type of algorithms and search that can be performed. The domain
can be either continuous, often represented by floating point coordinates, or discrete, often derived
from a discretization of the space based on a crystal lattice structure.

Once the geometric model has been determined, it is necessary to introduce an energy function,
mostly based on the atoms considered and their distances. In the structure prediction problem,
the energy function is used to assign a score to each geometrically feasible candidate; the candidate
with the optimal score represents the solution of the prediction problem.

Let us briefly review some popular approaches to this problem, with a particular emphasis on
solutions that rely on constraint programming technology.

The natural approach of investigating protein conformations through simulations of physical
movements of atoms and molecules is, unfortunately, beyond the current computational capabilities
[84, 13, 90]. This has originated a variety of alternative approaches, many based on comparative
modeling—i.e., small structures from related protein family members are used as templates to
model the global structure of the protein of interest [86, 57, 154, 101, 87]. In these methods, often
referred to as fragments assembly, a protein structure is assembled using small protein subunits
as templates that present relevant sequence similarities (homologous affinity) w.r.t. the target
sequence.

In the literature, Constraint Programming (CP) techniques have shown their potential: the
structural variability of a protein can be modeled as constraints, and constraint solving is performed
in order to infer the optimal structure [8, 11, 35, 42]. CP has been used to provide approximated
solutions for ab-initio lattice-based modeling of protein structures, by using local search and large
neighboring search [150, 47]; exact resolution of the problem on lattice spaces using CP, along with
with clever symmetry breaking techniques, has also been investigated [8]. These approaches solve
a constraint optimization problem based on a simple energy function (HP). A more precise energy
function has been used by [35, 39], where information on secondary structures (i.e., α-helices, β-
sheets) is also taken into consideration. Due to the approximation errors introduced by lattice
discretization, these approaches do not scale to medium-size proteins. Off-lattice models, based on
the idea of fragment assembly, and implemented using Constraint Logic Programming over Finite
Domains, have been presented [42, 36], and applied not only to structure prediction but also to

3.1. Biological Background, General Context,and Related Work 23

other structural analysis problems. For instance, [41] use this approach to generate sets of feasible
conformations for studies of protein flexibility. The use of CP to analyze NMR data and the related
problem of protein docking has also been investigated [11].

In the context of ab-initio prediction, a recent work [127] has shown that increasing the complex-
ity of the conformational search space—by using a more refined fragment library—in combination
with a sampling strategy, enhances the generation of near-native structure sets. The work of
[145] and [117] illustrates various enhancement to the fragment-based assembly process leading to
faster computations and an improved sampling of the conformation space—e.g., using tree-based
methods inspired from motion planning to guarantee progress towards minimal energy conforma-
tions while maintaining geometrically separate conformations. In terms of energy landscape, the
native state has generally lower free energy than non-native structures, but it is extremely diffi-
cult to locate. Hence, a targeted conformational sampling may aid protein structure prediction
in that different near-native structure can be used to guide the search; several schemes based on
Monte Carlo movements in sampling conformation space through fragments assembly have been
proposed [151, 171, 44]. Methods based on non-uniform probabilistic mass functions (derived from
previously generated decoys) have been proposed to aid in this problem [152]. Sampling, however,
remains a great challenge for protein with complex topologies and/or large sizes [89, 151].

It is widely accepted that proteins, in their native state, should be considered as dynamic
entities instead of steady rigid structures. Indeed, in recent years the research focus has shifted
towards prediction schemes that take into account the non-static nature of proteins, supported by
recent observations based on magnetic resonance techniques. Processes such as enzyme catalysis,
protein transport and antigen recognition rely on the ability of proteins to change conformation
according to the required conditions. This dynamic nature can be visualized as a set of different
structures that coexist at the same time. The generation of such sets that capture non-redundant
structures (in pure geometric terms) is a great challenge [89]. Robotics and inverse kinematics
methods have been extensively explored both in sampling proteins’ conformational space [179, 32]
and for molecular simulations [2, 116, 126, 91].

A motivation for our work is to provide the ability of generating a protein set that contains
optimal and sub-optimal candidates, in order to capture dynamic information about the behavior
of a protein. A desirable property is that the conformations returned in the pool are sufficiently
diverse and uniformly distributed in the 3D space.

3.1.4 Protein Loop Modeling

The protein loop modeling problem is a restricted version of the structure prediction problem.
We will use this problem as a working example in the remaining part of the dissertation. In this
context, the protein structure is already partially defined, e.g., a large number of atoms are already
placed in the space. Usually, this common scenario derives from an X-ray crystallography analysis,
where the spatial resolution of atoms degenerates in presence of some regions of the protein that
are exposed on the surface and presents an increased instability. Since a crystal contains several
copies of a protein in order to perform the measurement, such regions appear as more fuzzy, and
therefore the placement of atoms in these regions may be ambiguous. Usually, these regions,
referred to as loops, are not involved in secondary structures, which are instead more stable. When
dealing with homology modeling, the same protein found in another organism, typically shows
some variations in the sequence due to evolution, especially in the loop regions, since they are
less essential for protein stability and functionality. Hence, starting from an homologous protein
structure, usually loops need to be recomputed with a specialized loop modeling approach and the
use of minimization techniques.

The length of a loop is typically in the range of 2 to 20 amino acids; nevertheless, compared to
secondary structures, the flexibility of loops produces very large, physically consistent, conforma-
tion search spaces. Constraints on the mutual positions and orientations (dihedral angles) of the
loop atoms can be deduced and used to simplify the search. Such restrictions are defined as the loop
closure constraints. In Figure 3.3, we have a (simple) possible scenario where two macro-structures
(two helices) are connected by a loop. In this setting, we can assume to know the position of the

24 3. Protein Structure Prediction

two helices, while the loop atoms are to be determined.
A procedure for protein loop modeling typically consists of 3 phases: sampling, filtering, and

ranking [83]. Sampling is commonly based on a loop candidate generation, using dihedral angles
sampled from structural databases [51], and subsequent candidate modification in order to satisfy
the loop closure constraints. These conformations are checked w.r.t. the loop constraints and the
geometries from the rest of the structure, and the loops that are detected as physically infeasible,
e.g., causing steric clashes, are discarded by a filtering procedure.

Popular methods used for loop modeling include the Cyclic Coordinate Descent (CCD) method
[21], the algorithms based on inverse kinematics [92, 147], the Self-Organizing (SOS) algorithm [104],
which can simultaneously satisfy loop closure and steric clash restrictions by iteratively superim-
posing small fragments (amide and Cα) and adjusting distances between atoms, and the Wriggling
method [18], that employs suitably designed Monte Carlo local moves to satisfy the loop closure
constraints. Multi-method approaches have also been proposed—e.g., [102] proposes a loop sam-
pling method which combines fragment assembly and analytical loop closure, based on a set of
torsion angles satisfying the imposed constraints. Ab initio methods [132, 53, 81, 157, 43, 51, 170]
and methods based on templates extracted from structural databases [26] have been explored.

Finally, a ranking step—e.g., based on statistical potential energy, like in DOPE [148], DFIRE
[182], or the one proposed in [56]—is used to select the best loop candidates.

The sampling and filtering procedures should work together and direct the search towards
structurally diverse and admissible loop conformations, in order to maximize the probability of
including a candidate close to the native one and to reduce the time needed to analyze the can-
didates. Our work is motivated by the need of controlling the properties of the resulting set of
candidates. In particular, we model structural diversity both in distance and orientation of the
backbone and make the sampling phase guided by the loop constraints.

Fragment-based assembly methods have also been investigated in the context of loop modeling
[102, 180]. [147] review in great detail loop modeling techniques.

3.2 Constraint Solving with 3D Fragments

In this Section, we introduce the formalization of an effective solution to tackle practical ap-
plications concerning with the placement of 3D fragments. Such applications are described as
combinatorial problems, modeled as a set of variables, representing the entities the problem deals
with, and a set of constraints, representing the relationships among the entities. In the context
of a constraint programming system, variables and constraints are adopted to provide a solution
for the CSP, that is, an assignment to the variables that satisfies all the constraints. We extend
this concept by enabling the constraint solver to find a representative solution for the CSP that
satisfies some additional properties expressed among the variables of the whole solution set.

3.2.1 Some Terminology

A fragment B is composed of an ordered list of at least three (distinct) 3D points, denoted by
points(B). The number of points of a fragment is referred to as its length. The front- and end-
anchors of a fragment B, denoted by front(B) and end(B), are the two lists containing the first
three and the last three points of points(B) (we consider three 3D points in order to uniquely
identify a plane in the space). With B(i) we denote the i-th point of the fragment B. For
two ordered lists of points ~p and ~q, we write ~p _ ~q if they can be perfectly overlapped by a
rigid coordinate translation and/or rotation (briefly, a roto-translation)—see Figure 3.5 (let us
assume the z coordinate is 0 for all points and omitted for simplicity). In 3.5 (left) there are two
fragments B1 (light grey) and B2 (dark grey) such that points(B1) = ((0, 0), (1, 0), (1, 1), (2, 1))
and points(B2) = ((4, 0), (3, 0), (3, 1), (4, 1), (4, 2)). The arrows address their initial points. In 3.5
(right) an overlap of the two fragments is obtained by rotating B2 of 90 degrees and then translating
it by -3 units on the x-axis, the last three points of B1 (last(B1)) and the first three points of B2

(first(B2)). Thus, end(B1) _ front(B2).

3.2. Constraint Solving with 3D Fragments 25

Figure 3.5: Overlap of two fragments in the plane.

A non-empty set of fragments with the same length is called a body. A body can be used to
model a set of possible shapes for a sequence of points. We say that a body has length k if each
fragment it contains has length k.

A multi-body is a sequence S1, . . . , Sn of bodies.
Given a multibody ~S = S1, . . . , Sn, a rigid body from ~S is a sequence of fragments B1, . . . , Bn,

where Bi ∈ Si for i = 1, . . . , n and end(Bi) _ front(Bi+1), for all i = 1, . . . , n − 1. A rigid
body is uniquely identified by the sequence B1, . . . , Bn; however, when consecutive fragments are
overlapped, the rigid body can be alternatively identified by a list of points that form a spatial
shape. In Figure 3.6 we report examples of bodies, multi-bodies, and rigid bodies. As in the
previous example, we assume that the z coordinate is 0 for all points. From left to right, top to
bottom of Figure 3.6: the body S1 composed by an unique fragment, and the bodies S2 and S3

composed by two fragments each. Arrows address the initial points of fragments. All the three
bodies have length 4. ~S = S1, S2, S3 constitutes a multi-body. In the bottom-rightmost figure
we report the spatial shapes associated to the four rigid bodies that can be obtained from the
multi-body ~S. One of them is identified by full lines, the other three by dashed lines. Observe that
the rigid body identified by ((0, 0), (1, 0), (1, 1), (2, 1), (2, 0), (3, 0)) can be obtained by a rotation
of 180 degrees of the fragment ((2, 0), (3, 0), (3, 1), (4, 1)) of S2 on the x axis (flipping) and by a
translation of −1 units on x and of +1 units on y. Observe moreover that the rigid body identified
by ((0, 0), (1, 0), (1, 1), (2, 1), (2, 0), (1, 0)) contains the same point (1, 0) twice.

Example 3.2.1 (Working Example) These concepts are related to the loop-modeling problem.
Points are atoms. A fragment is a spatial shape of some atoms. If the last three atoms of one
fragment overlap with the first three atoms of another fragment, we can join them. A body is a
set of admissible shapes for a given list of atoms. A multi-body S1, . . . , Sn is a sequence of these
elements, corresponding to a sequence of atoms (of amino acids). The idea is that the last three
atoms of a body Si are the same as the first three of the successive body Si+1. A rigid body is a
possible complete shape of those atoms, provided the last three atoms of the fragment selected in
the set Si overlap with the first three atoms of the fragment selected in Si+1.

The overlapping points end(Bi) and front(Bi+1) constitute the i-th joint of the rigid body. The
number of rigid bodies that can be obtained from a single multi-body S1, . . . , Sn is bounded by
Πn
i=1|Si|. Figure 3.7 provides a schematic general representation of a rigid body.

A rigid body is defined by the overlap of joints, and relies on a chain of relative roto-translations
of its fragments. Each points in points(Bi) is therefore positioned according to the (homogeneous)
coordinate system associated to a fragment Bi−1. Note that once the reference system for B1 is
defined, the whole rigid body is completely positioned. With the exception of the case where all
points of a joint are collinear. Points p1, . . . , pn, with n ≥ 3 are collinear if the points p3, p4, . . . , pn

26 3. Protein Structure Prediction

Figure 3.6: Examples of bodies, multi-bodies, and rigid bodies.

Figure 3.7: A schematic representation of a rigid body. The joints connecting two adjacent frag-
ments are emphasized. The points in points(B) of each fragment are represented by circles.

3.2. Constraint Solving with 3D Fragments 27

belongs to the straight line containing the two points p1 and p2. The relative positions of two
consecutive fragments Bi−1 and Bi of a rigid body (2 ≤ i ≤ n) can be defined by a transformation
matrix Ti ∈ R4×4. Each matrix depends on the standard Denavit-Hartenberg parameters [75]
obtained from the start and end of the fragments—the reader is referred to the work of [97] for
details. We denote the product T1 · T2 · . . . · Ti · (x, y, z, 1)T by Ti(x, y, z).

Let us analyze the first matrix T1. The fragment B1 can be forced to start in a given point
and oriented in a given way; in this case the matrix T1 defines the roto-translation of B1 fulfilling
these constraints. In the absence of such constraints, we assume that B1 is normalized by T1—i.e.,
its first point is (0, 0, 0), the second point is aligned along the z axis and the third belongs to the
plane formed by the x and z axes. This orientation is referred as the reference system Γ0.

For i = 1, . . . , n, the coordinate system conversion (x′, y′, z′), for a point (x, y, z) ∈ points(Bi)
into the coordinate system of B1, is obtained by:

(x′, y′, z′, 1)T = T1 · T2 · . . . · Ti · (x, y, z, 1)T = Ti(x, y, z) (3.1)

Homogeneous transformations are such that the last value of a tuple is always 1.

In the rest of the chapter, we focus on the 5@ model; however the proposed formalization and
methods can be used also for other models, e.g., the Cα–Cα model. In the latter case, points(Bi)
contains at least 3 amino acids, and the joints are guaranteed to be non-colinear, due to the
chemical properties of the backbone. When combining Cα fragments, the specific rotational angles
of the full-atom backbone are lost and a more imprecise multi-body assembly is produced.

A fragment is a body associated to a sequence of amino acids. A fragment for a sequence of
h ≥ 1 amino acids is described by a body of length 4h+3, modeling the concatenation of the atoms
represented by the regular expression: C ′O(NCαC

′O)hN . In such representation the first and last
sequence of C ′ON atoms coincide with the front- and end-anchor, respectively, and are employed
during the process of assembling consecutive fragments (i.e., they are used in the roto-translation).

A discretized R3 space can be represented as a regular lattice, composed of cubic cells with side
length equal to a given parameter k. Each cell is referred to as a 3D voxel (or, simply, voxel); we
assume that each voxel receives a unique identifier. We denote with voxel(p, k) the identifier of the
voxel that contains the 3D point p in the context of a discretization of the space using cubes with
side length equal to k. This spatial quantization allows an efficient treatment of the approximated
propagation required by some of the geometric constraints introduced in the following sections.

3.2.2 Variables And Domains

Let us now define the variables adopted to describe the entities of a problem with fragments. The
domain of a variable V is the set of allowable values for V , and it will be denoted by DV . To deal
with fragments placements in the 3D space we adopt two distinct types of variables:

Finite Domain Variables (FDVs): The domain of a finite domain variable is a finite set of non
negative integer numbers.

Point Variables (PVs): These variables will assume the coordinates of a 3D point in R3. Their
domains are, initially, 3D boxes identified by two opposite vertices 〈min,max〉, as done in
the discrete solver COLA [38, 39].

Example 3.2.2 (Working Example) Following Example 3.2.1, FDVs are the identifiers of the
various fragments in a body, while PVs are used to represent the 3D coordinates assigned to the
various structural points (e.g., atoms, centroids) of interest for each molecule being considered.
Clearly, the values of PVs will depend deterministically on the values of FDVs (and vice-versa).

A variable is assigned if its domain contains a unique value; in the case of point variables, this
happens if DV = 〈min,max〉 and min = max.

28 3. Protein Structure Prediction

3.2.3 Constraints

In this section, we formalize the constraints that define the fragments placement, that can be used
to describe Protein Structure problems in the context of fragment assembly.

Distance Constraints.

Distance constraints model spatial properties of point variables operating in the 3D space. Point
variables P and Q can be related by a distance constraint of the form

‖P −Q‖ op d (3.2)

where ‖ · ‖ is the Euclidean norm, d ∈ R+ and op is ≤ or ≥.
The global constraint alldistant associates a minimal radius di to each point variable Pi

(i = 1, . . . , n) and ensures that spheres surrounding each pair of point variables do not intersect:

alldistant(P1, . . . , Pn, d1, . . . , dn), (3.3)

This constraint is equivalent to the constraints ‖Pi−Pj‖ ≥ di+dj for all i, j ∈ {1, . . . , n}, i < j. It
is used to avoid steric clashes among different atoms (and centroids), which have different volumes.
Checking consistency of the alldistant constraint (given the domains of the variables Pi) is NP-
complete [40]—the proof is based on an encoding of the bin-packing problem using the alldistant
constraint, and holds true even in this particular setting, where the point variables have intervals
of R3 as domains.

The alldistant constraint is introduced to avoid clashes when a rigid body is obtained from
the multi-body S1, . . . , Sn. The distance constraints are useful when some extra information is
known (e.g., one might have inferred by biological arguments that a pair of amino acid should stay
within a certain distance).

Fragment Constraint.

Fragment constraints relate finite domain variables and point variables. Let us assume we have a
database F of fragments, where F [i] represents the i-th fragment in the database. Thus, given an
FDV variable V , F [V] denotes the fragment indexed by V when V is instantiated. The fragments
are stored in F as an ordered list of 3D points.

Given a list of point variables ~P , the constraint:

fragment(V, ~P , F) (3.4)

states that there exists a roto-translation Rot such that ~P = Rot ·F [V]—namely, if V = i then the

list of points ~P should take the form of the fragment F [i]. For simplicity, we will omit the database
F when clear from the context. Intuitively, these constraints ensure that any fragment choice will
reproduce the correct shape for the associated 3D point, regardless of the space orientation of
the fragment. The orientation is determined by the joined multi-body constraint presented in a
following section.

Centroid Constraint.

The centroid constraint enforces a relation among four PVs. Intuitively, the first three of them are
associated to the atoms N,Cα, C

′ of an amino acid and the fourth is related to the centroid CG.
The constraint is parametric w.r.t. the type a of an amino acid and deterministically establishes
the position of CG depending on the position of the other points:

centroid(PN , PCα , PC′ , PCG, a) (3.5)

In Figure 3.8 the centroids are displayed along the backbone as purple circles and labeled “CG.”
This constraint can be used when the database of fragment contains only full backbone information.

3.2. Constraint Solving with 3D Fragments 29

Figure 3.8: Fragments are assembled by overlapping the plane βR, described by the rightmost
C ′, O,N atoms of the first fragment (left), with the plane βL, described by the leftmost C ′, O,N
atoms of the second fragment (right), on the common nitrogen atom

The centroid information is used in place of the missing full-atom side chain. The side-chain
centroid is computed by taking into account the average Cα-side-chain center of mass distance,
the average bend angle formed by the side-chain center-of-mass-Cα-C ′, and the torsional angle
formed by the N -Cα-C ′-side-center of mass [55]. This abstraction allows us to reduce the number
of fragments to consider, removing fragments that would geometrically conflict with the position
of the CG. Consider that a single side chain may have up to 100 main configurations (rotamers).

Table Constraint.

This constraint is used to restrict the assignments of a set of FDVs (representing fragments) to
specific tuples of choices. This is useful when modeling a specific local and collaborative behavior
that involves more than one fragment; for example, this happens when modeling a secondary
structure multiple arrangements of underlying amino acids.

Let F be a set of k-tuples of integer values and ~V a k-tuple of FDVs. A table (or combinatorial)
constraint, of the form

table(~V , F) (3.6)

requires that the list of variables ~V assumes values restricted to the tuples listed in F , i.e., there
exists t ∈ F such that ~V [i] = t[i], with i in 0, . . . , k − 1.

Example 3.2.3 (Working Example) Going back to the loop-modeling problem, the role of the
fragment constraint is evident: it relates the (IDs of the) selected fragments of a multi-body with
the 3D positions of the various atoms involved. The centroid constraint is instead introduced to
add the position of the centroid that represents the side chain in the 5@ representation. table

constraint is a common constraint in constraint languages and it is useful when some info on
consecutive fragments in a rigid body is known due to external knowledge.

Joined Multibody Constraint.

The Joined Multibody (JM) constraint enforces a relation over a list of FDVs encoding a multibody.
It limits the spatial domains of the various fragments composing the multibody in order to retain
those fragments that assemble properly and that do not compenetrate. The joined-multibody (JM)

constraint is described by a tuple: J = 〈~S, ~V , ~A, ~E , δ〉, where:

• ~S = S1, . . . , Sn is a multi-body. Let B = {B1, . . . , Bk} be the set of all fragments in ~S, i.e.,
B =

⋃n
i=1 Si.

• ~V = V1, . . . , Vn is a list of FDVs, with domains DVi = {j : Bj ∈ Si}.
• ~A = A1,A2,A3, and ~E = E1, . . . , E3n are lists of sets of 3D points such that:

◦ A1 ×A2 ×A3 is the set of admissible points for front(B), with B ∈ S1;

30 3. Protein Structure Prediction

◦ E3i−2 × E3i−1 × E3i is the set of admissible points for end(B), with B ∈ Si, i = 1, . . . , n;

• δ is a constant, used to express a minimal distance constraint between different point.

A solution for the JM constraint J is an assignment σ : ~V 7→ {1, . . . , |B|} s.t. there exist matrices
T1, . . . , Tn (used in T) with the following properties:

Domain: For all i = 1, . . . , n, σ(Vi) ∈ DVi .

Joint: For all i = 1, . . . , n− 1, let (a1, a2, a3) = end(Bσ(Vi)) and (b1, b2, b3) = front(Bσ(Vi+1)), then
it holds that (for j = 1, 2, 3):

Ti(ajx, ajy, ajz) = Ti+1(bjx, b
j
y, b

j
z)

Spatial Domain: Let (a1, a2, a3) = front(Bσ(V1)), then T1 · aj ∈ Aj × {1} (the product ×{1}
is necessary as we use homogeneous coordinates). For all i = 1, . . . , n, let (e1, e2, e3) =
end(Bσ(Vi)) then

Ti(ejx, ejy, ejz) ∈ E3(i−1)+j × {1}
where 1 ≤ j ≤ 3 and T2, . . . , Ti (in Ti) are the matrices that overlap end(Bσ(Vi−1)) and
front(Bσ(Vi))

Minimal Distance: For all j, ` = 1, . . . , n, j < `, and for all points a ∈ points(Bσ(Vj)) and b ∈
points(Bσ(V`)), it holds that:

‖Tj(ax, ay, az)− T`(bx, by, bz)‖ ≥ δ
Let us observe that this is a weak form of the alldistant constraint where different distances
for each point are allowed. It is, in a sense, closer to the alldifferent constraint.

It has been proved that establishing consistency—i.e., existence of a solution—of JM constraints
is NP-complete [20]. We have also proved that it remains NP-complete even assuming that all the
fragments of the problem have the same three atoms with the same spatial position, and that the
same holds for the last three atoms (of course fragments are allowed to contain more than three
atoms otherwise the problem is trivial). The proof is reported in Appendix A.

Example 3.2.4 (Working Example) The JM constraint contains exactly all the ingredients

needed for modeling a loop problem. We have a multi-body ~S, and the corresponding FDs ~V ,
we have a set of possible 3D points where the loop starts ~A and a set of possible 3D points where
the loop ends ~E and a weak version of the alldistant constraint between pair of atoms that avoid
clashes, the solutions are the (non clashing) rigid bodies that starts in ~A and ends in ~E.

Let us observe that the JM constraint does not explicitly forbid spatial positions to PVs variables
(save for the first three and the last three points of the loop). However, these additional constraints
can be explicitly required during domain definition of the PVs variables used for the encoding.

Remark 3.2.5 The choice of using three points of overlap resembles the method proposed by [92].
On the other hand, we should observe that it is only a technical exercise to modify the JM constraints
and so that they allow a parametric overlap between contiguous fragments.

3.3 The FIASCO Constraint Solver

We present the overall structure and implementation of a hybrid constraint solver capable of
handling the classes of constraints described in the previous section.

3.3.1 Constraint Solving

A distinctive feature of FIASCO is the possibility to handle continuous domains at the cost of
keeping a discrete library of choices (finite domain variables). The handling of fragments allows us
to reason about spatial properties in a more efficient and descriptive way than the pure 3D domain
modeling adopted in previous proposals. Moreover, FIASCO allows the solver to uniformly sample
the search space by means of a spatial equivalence relation that is used to control the tradeoff

3.3. The FIASCO Constraint Solver 31

between accuracy and efficiency. This is particularly effective when the finite domains are heavily
populated, and is a critical component to model real-world problems.

The constraint solver builds on the classical prop-labeling tree exploration where constraint
propagation phases are interleaved with non-deterministic branching phases used to explore dif-
ferent value assignments to variables [6]. The solver is able to handle both point variables and
finite domain variables—this is the reason why we refer to it as an hybrid solver. In particular, the
assignments to finite domain variables guide the search; their values imply assignments of the point
variables, that in turn may propagate and reduce the domains of both point variables and finite
domain variables. Moreover, the “propagation” technique implemented for the JM constraint is
not a classical filtering technique—it is an approximated technique that we describe later.

The presence of point variables allows, in principle, an infinite number of domain values in R3.
However, we noted that the information carried by assembling fragments (encoded by finite domain
variables) is much more informative than any complex and demanding model for 3D continuous
space (e.g., Oct-trees, CSG, no-goods). In particular, the direct kinematics encoded by a JM
constraint is able to efficiently identify a set of admissible regions of a point variable in a fast,
approximated, and controlled way. Therefore, the point variables can be seen as an internal aid to
propagation. These variables are updated during the JM propagation phase and can interact with
the JM propagator to prune the corresponding fragment variables. Distance constraints on point
variables are included in a standard AC3 propagation loop for domains updates.

The other aspect that extends the classical solver structure is the capability of controlling the
amount of the search tree to be explored. The search tree contains a large number of branches
that are very similar, from the point of view of the geometric distance between corresponding
point variables. The goal is to produce a subset of feasible solutions that exhibit significant 3D
differences between themselves.This is accomplished by introducing the possibility to explore a
subtree of a given depth, by enumerating a specific and limited number of branches, rather than
following the standard recursion of propagation and expansion. To achieve this behavior, it is
necessary to selectively interfere with the standard recursive call to the solver, and implement
a non-deterministic assignment of partial tuples of finite domain variables. This resembles the
implementation of a table constraint, which is dynamically created during the search. This strategy
allows us to significantly reduce the number of branches explored in the subtree, and produces
significant results when the selection of the branches is controlled by an adequate partitioning
function. In this work, we propose an effective partitioning function based on a measure of 3D
similarity for point variables; this is used to direct the search along specific branches of controlled
depth that are adequately “separated” by the partitioning function. This is practically realized by
introducing a form of look-ahead, controlled by the JM propagator, that returns a set of partial
assignments as well as the filtered domains for the finite domain variables.

The general structure of the solver is highlighted in Algorithm 2. The solver is designed to
process a list ~V = v1, . . . , vn of finite domains variables, together with the domains Dv1 , . . . , Dvn

for them. Intuitively, each domain is a set of indices for the set of fragments. Moreover, the solver
receives a list ~P = p1, . . . , p5n of 5∗n point variables, where the variables p4∗i, . . . , p4∗i+4 are related
to the fragment in the domain Dvi . Each point variable pj has, in turn, a spatial domain Dpj . C
represents the constraints between elements of ~V and ~P . Finally, the solver receives also as input
the “current” level ` in the exploration of the search tree (set to 1 the first time the procedure is
called). For the sake of simplicity, the choice of variables to be assigned is based on their ordering
in the input list (more sophisticated selection strategies can be easily introduced). When we enter
the level `, we assume that the variables v1, . . . , v`−1 have already been assigned.

Let us briefly describe the algorithm. If all the variables in ~V have already been assigned (lines
1–4), then the search algorithm terminates and returns the computed solution, represented by the

values assigned to the variables ~P . Otherwise, we non-deterministically select a fragment index
in the domain of the variable v` and assign it to the variable. Lines 6–7 indicate the execution
of a standard constraint propagation step (using AC-3). If the propagation step fails, then we
assume that another non-deterministic choice is made, if possible. Every reference to a non-
deterministic choice in the algorithm corresponds to the creation of a choice-point that will be the

32 3. Protein Structure Prediction

Algorithm 2 search(~V , ~P , ~D, C, `)
Require: ~V , ~P , ~D, C, `
1: if ` > |~V | then

2: output (~P)
3: return
4: end if
5: for each fragment index f in Dv` do

6: if AC-3(C ∪ {v` = f}, ~V , ~P , ~D) then
7: Tn×m ← get table from JM()
8: if n > 0 then
9: Non-deterministically select i in 1..n

10: for j = 1..m do
11: C ← C ∪ {v`+j = T [i][j]}
12: end for
13: search(~V , ~P , ~D, C, `+m)
14: else
15: search(~V , ~P , ~D, C, `+ 1)
16: end if
17: end if
18: end for

target of backtracking in case of failure (for simplicity, we assume chronological backtracking). If

it succeeds, leading to a possible reduction of the domains ~D, then the computation will proceed.
A table constraint might be produced during the propagation of the JM constraint in the AC-3
procedure (see below for details). If this is the case (lines 8–9), some (m) variables are non-
deterministically assigned with the values in the table (lines 9–12), and the search continues with
m less variables to be assigned (line 13). If this is not the case, then the search will continue with
only one less variable (v`) to be assigned (line 15).

A peculiar feature of our constraint solver (not reported in the abstract algorithm just defined)
is that it can be used to avoid the search of solutions “too similar” to each others. Let us assume
that the 3D space is partitioned in cubic voxels of size kÅ. Then, given a list of FDVs ~V and a list
of PVs ~P , the user can state:

uniqueseq(~V , ~P , k) (3.7)

This constraint forces the solver to prune the search tree in the following way. Given a partial
assignment σ, let v ∈ ~V be the variable to be assigned at the next step and p1, . . . , ph ∈ ~P the
PVs to be consequently instantiated. The constraint ensures that for any two assignments σ1, σ2

extending σ to v, p1, . . . , ph it holds that there exists at least one i ∈ {1, . . . , h} such that σ1(pi)
and σ2(pi) do not belong to the same voxel.

3.3.2 Constraint Propagation

In this section, we discuss the propagation rules associated to the various constraints introduced
in Section 8.2.2; these are applied within the call to the AC-3 procedure (Section 2.4)(line 6 of
Algorithm 2). The constraint propagation is used to reduce the domain size of the PVs and FDVs,
ensuring constraint consistency.

Joined Multibody Constraint.

The JM constraint is a complex constraint that is triggered when the leftmost points involved in
the constraint (anchors) are instantiated. The JM propagation (JMf) is based on the analysis
of the distribution in the space of the points involved. The goal of the propagation is to reduce
the domains of the FDVs through the identification of those fragments that cannot contribute to

3.3. The FIASCO Constraint Solver 33

the generation of a rigid body that is compatible with the corresponding Point Variable domains.
This can be viewed as a form of hyper-arc consistency over a set of fragments. Moreover, due
to complexity and precision considerations, this propagator is approximated by the use of a spa-
tial equivalence relation (∼), that identifies classes of tuples of fragments; these classes have the
property to be spatially “different” from one another.

This allows a compact handling of the combinatorics of the multi-body, while a controlled error
threshold allows us to select the precision of the filtering. The equivalence relation captures those
rigid bodies that are geometrically similar, allowing the search to “compact” small differences
among them.

Algorithm 3 The JMf algorithm.

Require: ~S, ~V , ~A, ~E , δ,G,∼
Ensure: Tab
1: n← |~V |; Tab = ∅

2: R1 ←

(B, T1) B ∈ S1,∃T1

T1 · start(B) ∈ A1 ×A2 ×A3 ∧
T1 · end(B) ∈ E1 × E2 × E3 ∧
∀p ∈ points(B).∀q ∈ G. ‖(T1 · p)− q‖ ≥ δ ∧
∀c ∈ C involving p.consistent(c))

3: P1 ← {T1 · end(B) | (B, T1) ∈ R1}
4: for each i = 2, . . . , n do
5: Pi = ∅; Ri = ∅;
6: for each E ∈ Pi−1/∼ do

7: Ri ← Ri ∪

B ∈ Si
T = ρ(E, start(B)) ∧ T 6= fail ∧
T · end(B) ∈ E3i−2 × E3i−1 × E3i ∧
∀p ∈ points(B).∀q ∈ G. ‖(T · p)− q‖ ≥ δ ∧
∀c ∈ C involving p.consistent(c))

8: Pi ← {ρ(E, start(B)) · end(B) | B ∈ Ri}
9: end for

10: compute Pi/∼ and filter Ri accordingly
11: end for
12: for each representative L of Pn/∼ do
13: Tab = Tab ∪ η(L)
14: end for

The JMf algorithm (Alg. 3) receives as input a JM-constraint 〈~S, ~V , ~A, ~E , δ〉, along with

• A set G of points that are not available for the placement of bodies, and

• The equivalence relation ∼.

For the sake of readability, we assume that the domain information for variables are available. The
algorithm builds a table constraint table (~V ,Tab). In this process, the algorithm makes use of a

function ρ (lines 7 and 8); this function takes as input two lists ~a and ~b of 3D points, and computes

the homogeneous transformation to overlap ~b on ~a. A call to this function will fail if ~a 6_~b. For
simplicity, the fourth component (always 1) of the homogeneous transformation is not explicitly
reported in the algorithm.

For i = 1, . . . , n = |~V |, the algorithm computes the sets Ri and Pi, that will respectively
contain the fragments from Si that can still lead to a solution, and the corresponding allowed 3D
positions of their end-points. For each fragment B ∈ Ri+1 we denote with parent(B) the set of
fragments B′ ∈ Ri such that end(B′) _ front(B) via ρ. For each fragment B, we denote with
label(B) the corresponding FD value associated.

In computing/updating Ri and Pi, only fragments that have end-anchors contained in the
bounds E3i−2, E3i−1, E3i are kept. Fragments that would cause points to collapse—i.e., due to a
distance smaller than δ from previously placed points—are filtered out (lines 2 and 7). Moreover,
the spatial positions of the points of the first fragment are validated against A (line 2); finally, we
enforce the consistency check of each constraint c ∈ C involving points in points(B) ∈ Si to retain

34 3. Protein Structure Prediction

only those points that can potentially reach the admissible positions (lines 2 and 7).

The algorithm performs |~V | − 1 iterations (lines 4–11). First Ri and Pi are computed on the
basis of the sets of end-anchors of the previous level Pi−1 and the starting point of a selected
fragment B, filtering out those that are not overlapping and those that lead to wrong portions of
space (lines 7–8). The filtering based on ∼ is applied (line 10). During this step, the set of triples
of 3D points Pi is clustered using ∼. A representative of each equivalence class is chosen (within
Pi) and the corresponding fragment in Ri is identified; all the other (non-identified) fragments are
filtered out from Ri. Let us also note that the filtering based on clustering is not performed for
the initial step P1, as typically this is already captured by the restrictions imposed by A.

Once the fragments reachable at last iteration are determined and their representatives selected,
we populate the Tab with the set of tuples associated to each representative L. The function η(L)

returns the assignments to ~V that allows us to overlap the last point to L.

The JMf algorithm is parametric w.r.t. the clustering relation and the function selecting the
representative; they both express the degree of approximation of the rigid bodies to be built. The
proposed clustering relation for loop modeling takes into account two factors: (a) The positions
of the end-anchors in the 3D space and (b) The orientation of the plane formed by the fragment’s
anchor βL w.r.t. a fixed reference system Γ0 adopted by FIASCO (c.f. Figure 3.8). This combination
of clusterings allows to capture local geometrical similarities, since both spatial and rotational
features are taken into account.

The spatial clustering (a) used is the following. Given a set of fragments, three end points C ′ON
(end anchors) of each cluster are considered, and the centroid of the triangle C ′ON is computed.
We use three parameters: kmin, kmax ∈ N, kmin ≤ kmax, and r ∈ R, r ≥ 0. We start by selecting a
set of kmin fragments, pairwise distant at least 2r. These fragments are selected as representatives
of an equivalence class for other fragments that fall within a sphere of radius r centered in the
centroid of the representative. This clustering ensures a rather even initial distribution of clusters,
however some fragments may not fall within the kmin clusters. We allow to create up to kmax−kmin
new clusters, each of them covering a sphere of radius r. Remaining fragments are then assigned
to the closest cluster. The employed technique is a variant of the k-means clustering algorithm
called leader clustering algorithm [17]; it allows a fast implementation and acceptable results.

The orientation clustering (b) partitions the fragments according to their relative orientation of
planes βR w.r.t. Γ0. A plane spatial orientation is described by the Euler angles φ, θ, ψ of its frame
w.r.t. Γ0. This algorithm produces a variable number of partitions depending on β. In particular,
given a threshold β > 0 there are 3 ·(360/β) possible partitions describing equal regions on a sphere
though the interval (φ±/β2 , θ±/

β
2 , ψ±/

β
2). Each fragment is allotted to the partition determined

by β.

The final cluster is the intersection of the two partitioning algorithms. This defines an equiva-
lence relation ∼ depending on kmin, kmax, r, and β. The representative selection function selects
the fragment for each partition according to some preferences (e.g., most frequent fragment, closest
to the center, etc.).

Note that for r = 0, β = 360, and kmax unbounded, no clustering is performed and this would
cause the combinatorial explosion of every possible end-anchor on the whole problem. The spatial
error introduced depends on r and β. With β = 360, the error introduced at each step can be
bounded by 2r for each dimension. At each iteration the errors are linearly increased, since a new
fragment is placed with an initial error gathered from previous iterations, thus resulting in a 2nr
bound for the last end-anchor. Clearly this bound is very coarse, and on average the experimental
results show better performances. Similar considerations can be argued for rotational errors,
however the intersection of the two clusterings, provide, in general, a much tighter bound.

Figure 3.9 is a graphical representation of the propagation of a JM constraint over the variables
Vi, . . . , Vi+3. (a) A simultaneous placement of all the elements in the domain of the variable Vi+1 is
simulated, by overlapping each corresponding fragment with the end-anchor of the fragment asso-
ciated to the element in the domain of Vi. The set of points Pi+1 is computed and clustered using
the relation ∼ (points within the dotted ellipses). For each cluster one fragment representative is
hence chosen (highlighted fragments with filled rightmost circle). The collection of representatives

3.3. The FIASCO Constraint Solver 35

F. Campeotto et al.

Figure 9: A graphical representation of the propagation of a JM constraint over the variables Vi, . . . , Vi+3.
(a) A simultaneous placement of all the elements in the domain of the variable Vi+1 is simulated, by
overlapping each corresponding fragment with the end-anchor of the fragment associated to the element in
the domain of Vi. The set of points Pi+1 is computed and clustered using the relation ⇠ (points within
the dotted ellipses). For each cluster one fragment representative is hence chosen (highlighted fragments
with filled rightmost circle). The collection of representatives constitutes the set Ri+1 (b) The previous
step is performed again on the basis of the end-anchors related to the fragments representatives chosen in
the previous level. The filled box, represents the set of points G that are not available for the placement
of bodies (for instance due to a distance constraint). and the fragment falling in such area are discarded.
(c) In the last iteration of the JMf algorithm the set of points Pi+3 is not clustered, but only those that
reach the desired position are retained, for instance the front-anchor associated to the fragment of the next
variable, and the sequence of fragments able to lead to such condition (marked by thick lines) are selected
to populate the table Tab.

24

Figure 3.9: Graphical representation of the propagation of a JM constraint.

36 3. Protein Structure Prediction

P

Q

||P-Q||≤d

Figure 3.10: The effect of a distance constraint ||P −Q|| ≤ d propagation. Empty boxes represent
the original PVs domains and the full boxes represent the reduced PVs domains after the effect of
constraint propagation.

constitutes the set Ri+1 (b) The previous step is performed again on the basis of the end-anchors
related to the fragments representatives chosen in the previous level. The filled box, represents the
set of points G that are not available for the placement of bodies (for instance due to a distance
constraint). and the fragment falling in such area are discarded. (c) In the last iteration of the JMf
algorithm the set of points Pi+3 is not clustered, but only those that reach the desired position
are retained, for instance the front-anchor associated to the fragment of the next variable, and
the sequence of fragments able to lead to such condition (marked by thick lines) are selected to
populate the table Tab.

Distance Constraints.

The propagation of the distance constraints is an approximated technique that reduces the size of
the box domains. We introduce the following operations over PVs box domains of two variables P
and Q that will be used to describe the propagation rule in this and in the following subsections:

Domain intersection: DP ∩ DQ = 〈max(Pmin, Qmin), min(Pmax, Qmax)〉
Domain union: DP ∪ DQ = 〈min(Pmin, Qmin), max(Pmax, Qmax)〉

Domain dilatation: DP + d = 〈Pmin − d, Pmin + d〉

where max(P,Q) = (max(Px, Qx),max(Py, Qy),max(Pz, Qz)), (and similarly for min), and P+d =
(Px + d, Py + d, Pz + d).

Given two point variables P and Q, with domains DP and DQ, respectively, the simplification
rule for the constraint ||P −Q|| ≤ d updates the domains as follows:

DP = ((DQ + d) ∩ DP) DQ = ((DP + d) ∩ DQ) (3.8)

which ensures that the points in DP and DQ are positioned within an approximation of a sphere
of radius d. The sphere is approximated by considering the box inscribing it (a cube of side 2d),
as illustrated in Figure 3.10.

The propagation of the constraint ||P − Q|| ≥ d is harder as the coarse representation of the
box domains adopted in this work to model PVs does not allow the description of more complex
polyhedron. We hence apply a simple form of bound consistency described by the following rule:

||P −Q|| ≥ d :

{
(DP ∪ DQ) = 〈l, u〉, ||u− l|| < d

}{
DP = ∅,DQ = ∅

} (3.9)

that establishes unsatisfiability of the constraint.

3.3. The FIASCO Constraint Solver 37

Fragment Constraint.

The propagation of a fragment constraint fragment(V, ~P , T) is exploited during the solution search
to enforce the assembly process of the fragment T [V] along the point variables P1, . . . , Pn of
~P . Recall that DV is the domain of V containing the references {j1, . . . , jk} to the database of
fragments T .

fragment(V, ~P , T) :

{
DP1 ={p1}, DP2 ={p2}, DP3 ={p3},DV = {j1, . . . , jk}

}
n∧
i=1

DPi = DPi ∩
jk⋃
f=j1

{ρ((p1, p2, p3), T [f]) · T [f](i)}

(3.10)

where ρ((p1, p2, p3), T [f]) is the roto-translation to be applied to overlap the first three points of
the fragment T [f] with the start-anchor (p1, p2, p3).

The conjunction in the bottom part of the rule re-evaluates the domains for P1, P2, P3, and
it may reduce the singleton domains to empty whenever there is no compatible ρ for the selected
fragment.

Centroid Constraint.

When the positions of the atomsN , Cα and C ′ for an amino acids a are determined, the propagation
algorithm enforces the value for the PV PCG involved in the centroid constraint.

centroid(PN , PCα , PC′ , PCG, a) :

{
DPN ={pN}, DCα ={pCα}, DPC′ ={pC′}

}{
DPCG = (DPCG ∩ {cg(pN , pCα , pC′ , a)})

} (3.11)

where cg(pN , pCα , pC′ , a) is a support function which returns the center of the mass for the side
chain of the amino acid a by considering the points pN , pCα , pC′ , as described in Sect. 3.2.3.

Some Implementation Details

The proposed solver relies on an efficient C++ implementation, and it is carefully designed to
allow additional tailored solving capabilities without the need of reshaping the core structures.

The internal representation of the domains of the finite domain variables can be abstracted by
two arrays of the same length of the size of the initial domain. One array points to the values and
the other is a Boolean bit-mask that states whether a value is still in the domain. If all flags are
set to 0, the current partial assignment cannot be a part of a solution of the overall constraint; if
exactly one is set to 1, then the variable is assigned to a value. This representation implies a linear
scan of the domains during the propagation but it is justified by the reasonably small size of the
domains of the target application (typically less than 100 values). The internal representation of
the domains for point variables is simply a pair 〈min,max〉 that uniquely characterizes a 3D box in
R3. Since these variables are used mostly in distance constraints, this representation is expressive
enough (Oct-trees have been considered but with no significant advantage).

Point Variables propagation has been described above; these variables are instantiated after
fragment selection.

For the management of the uniqueseq property (3.7) we implemented a dedicated data struc-
ture based on hash tables. Every time a PV is assigned, its value is mapped into a 3D voxel of fixed
size. The 3D grid is implemented via a hash table with voxel indexes as keys and points contained
in such voxels as values. All the operations can be performed in Õ(1) (amortized complexity).

3.3.3 Multiple JM Constraints

We briefly describe how we have modeled two problems with FIASCO. The JM constraint is able
to model geometrically assembly of fragments and therefore it is used for every protein model. A

38 3. Protein Structure Prediction

single JM that covers a protein ensures its flexibility, however for long proteins some computational
and precision issues arise. It can be beneficial to model a protein by multiple JM constraints, e.g.,
JM(i, j) and JM(j, k) so that the amino acids from i to j are covered and the JM constraints
overlap on a common amino acid. This practical choice improves the approximate search and
allows us to increase the number of different solutions produced. In practice, each protein section
handled by a JM constraint is potentially combined to the different arrangements for the other
sections. Therefore, it is expected that the number of solutions found grows exponentially in the
number of JM constraints. The other JM constraint parameters can be used to control clustering
precision and number of conformations found.

3.4 Experimental Results

We report on the experimental results obtained with the FIASCO system (available at http:

//www.cs.nmsu.edu/fiasco). Experiments are performed on a Linux Intel Core i7 860, 2.5 GHz,
memory 8 GB, machine. The solver has been implemented in C++.

The fragment database adopted is the FREAD database which has been shown to be effective in
loop structure prediction [26]. For the parameters analysis 3.4.1 we use a database of fragments of
length 1. These fragments are classified by their amino acid class and their frequency of occurrence
over the whole top-500.

We set the system to model the two applications described below. In particular, in Section 3.4.1
we analyze the loop modeling scenario and we focus on the performances of JM filtering by exam-
ining the filtering power and computational costs. Next, we compare the quality of the loop
conformations generated, by measuring the RMSD of the proposed loop with respect to the native
conformation. We then present some relationships among the JM parameters to control quality
and efficiency.

In Section 3.4.2 we show some examples of ab-initio protein structure prediction and we conclude
with a comparison of FIASCO against other constraint solvers, for protein models that can be
described by a common subset of constraints.

3.4.1 Loop Modeling

The loop modeling problem is formalized by the presence of two known (large) fragments that are
both fixed in the space. A sequence of amino acids of length n is given for connecting these two
parts of the protein. A JM constraint is defined over the sequence, with particular attention to the
starting and ending points that are fixed. The start of the first fragment and the end of the last
fragment, namely a sequence C ′ON (initial points) of coordinates ~a = (a1, a2, a3), and a sequence
C ′ON (final points) of coordinates ~e = (e1, e2, e3) are known. There is one caveat about the end
points: due to the discrete nature of fragment assembly, it is unlikely to exactly reach the final
points. We accommodate for some errors, and require that the JM constraint produces results that
fall within some threshold from the corresponding final points.

In Figure 3.11 we show an example of loop computed by FIASCO (the parts of the protein to
be connected are shown on the left and the connecting loop on the right).

Additional spatial constraints about points (e.g., no-good regions determined by presence of
other atoms) are given. The constant δ (now δ = 1.5Å) asserts a minimum distance between pairs
of atoms.

Filtered Search Space And Performances.

We selected 30 protein targets from a set of non-redundant X-ray crystallography structures as
done by [21]. We partitioned the proteins into 3 classes according to their loop region lengths
(n = 4, 8, and 12). We model a CSP that uses fragment assembly to model the loop, in particular
using the JM constraint over the loop region.

To assess the filtering capabilities of FIASCO, we perform an exhaustive search generating all
the solution for each of the protein targets. Using a clusterization of 0.2Å, a number of different

3.4. Experimental Results 39

Figure 3.11: An example of loop computed by FIASCO.

fragments of length 1 is found for each amino acid (see Fig. 3.12). The size of the domains for the
corresponding FDVs is bound by 100—this is an adequate sample size to describe a reasonable
amino acid flexibility. In those cases where the number of fragments exceeds 100, the 100 most
frequent ones are kept.

A loop of length n generates an exponential search space of size bounded by 100n. The selected
variable is the leftmost one. Fragments are selected in decreasing frequency order. The clustering
parameters are set as follows: the kmin value is equal to the size of the domains, while we have
used different values for kmax based on loop lengths. The values for r and β are set to 120 and 0.5
in each setting. A summary of the parameters is listed in Table 3.1.

In Table 3.1 we report the average times needed to exhaustively explore the loop search space,
and the average number of solutions generated. Let us observe that times and number of solutions
increase with the lengths of the loops. Therefore, the kmax value is decreased to keep “acceptable”
running times for longer loops.

n JM Parameters Full JM
JM kmin kmax β r # Solutions Time (s)

4 1 100 1000 120 0.5 597 3.13
8 2 100 500 120 0.5 98507 10.12
12 3 100 100 120 0.5 328309 28.87

Table 3.1: Loop Modeling settings and average running times (in seconds) and number of solutions
generated.

JM Approximated Propagator Quality

Even if the approximated JM produces a small set of solutions, we show here that this is a good
representation of the overall variability of the protein structure. For this test, we compare the
solutions by means of RMSD from the original structures. The experiments were carried out with
the same 30 protein targets and settings described in Table 3.1, with the only exception of kmax
for the loop set of size 12, which was set to 500.

In Figure 3.13 we show the bar chart for the RMSD of the predictions for each protein loop
within the group of targets analyzed. Precisely, in the x-axis there are the 30 (10 for each loop

40 3. Protein Structure Prediction

Amino acids

N
. o

f d
iff

er
en

t F
ra

gm
en

ts

0
20

40
60

80
10

0
12

0
14

0

A C D E F G H I K L M N P Q R S T V W Y

Figure 3.12: Number of different fragments (after clustering) per amino acid in the dataset

length) protein targets. Each bar reports the best RMSD (dark), the average RMSD (grey), and
the worst RMSD (light grey) found. Numbers over the bars represent the number of loops found
(multiplied by the factors indicated underneath). The results are biased by the fragment database
in use: we excluded from it the fragments that belong to the deposited protein targets. Therefore,
it is not possible to reconstruct the original target loop and none of the searches are expected to
reach a RMSD equal to 0.

For loops of length 8 and 12, the exploration of the whole conformational search space using
a simple search procedure would result in an excessively long computation time. For example,
consider the search space for loops of length 12 and domains of size 100, that is 10012. This
enforces the need for a propagator such as JM, as its filtering algorithm successfully removes
redundant conformations and it allows us to cover the whole search space in a short period of time.

In Fig. 3.13 loop predictions are calculated using fragments of length 1. To study how this
choice affects both time and accuracy of the sampling we also model the loops of length 12 using
fragment of length 3, 6, and 9. Best RMSDs are reported in Figure 3.14. For these experiments
we kept the settings used above (kmax = 500). Moreover, each JM constraint is imposed on
the fragments in order to cover the whole fragment (e.g, for fragments of length 3 we set a JM
constraint every three consecutive amino acids) and we set a time-out of 3600 Seconds.

Notice that increasing the length of the fragments the accuracy decreases due to the reduced
size of the domains. Nevertheless, the time is also reduced since the sampling is performed on a
smaller search space and the JM constraints cover longer sequences of amino acids. The average
times are: 1580.14, 0.98, and 0.74 seconds using fragments of length 3, 6, and 9 respectively.

Comparison With State-of-the-art Loop Samplers.

In this section, we compare our method to three state-of-the-art loop samplers: the Cyclic Coor-
dinate Descent (CCD) algorithm [21], the Self-Organizing algorithm (SOS) [104], and the FALCm
method [102].

Table 3.2 shows the average of the best RMSD for the benchmarks of length 4, 8 and 12 as

3.4. Experimental Results 41
R

M
S

D
 (

A
ng

st
rö

m
)

Best Rmsd
Avg Rmsd
Worst Rmsd

0.
52 0.
71

0.
2

0.
31

0.
77 0.
68 0.
64 0.

65

0.
83 0.
67

1.
3

0.
92

0.
19

1.
3

1.
1 0.
96

1.
3

0.
59

1.
3

0.
78

4.
7

6

5.
6

0.
3

1.
1

0.
38

3.
7

0.
15

2.
1

2.
9

. 103 . 105 . 1070
2

4
6

8

Length 4 Length 8 Length 12

Figure 3.13: RMSD comparison for each Loop Set (x-axis: the 30 protein targets)

computed by the four programs. We report the results as given in Table 2 of [21] for the CCD,
Table 1 of [104] for SOS, Table II of [102] for the FALCm method, and the RMSD’s obtained
adopting the settings for JMf that provided the best results in the previous section (see also
Subsection 3.4.1). It can be noted that our results are competitive with those produced by the
other systems.

Loop Average (best) RMSD
Length CCD SOS FALCm JMf

4 0.56 0.20 0.22 0.27
8 1.59 1.19 0.72 0.93
12 3.05 2.25 1.81 1.58

Table 3.2: Comparison of loop sampling methods

The execution time we reported appear to be very competitive (e.g., see [156]).

JM Parameters Analysis.

In this section, we analyze the impact of the JM parameters on the quality of the best solutions
found and on the execution times. In particular, the aim of these experiments is to shed light on
the relationship between the JM constraint settings and the results.

In Figure 3.15, 3.16, 3.17, we analyze the impact of the kmax on the execution times (left)
and on the precision (right) of the filtering of the JM constraint. From top to bottom, we use
β = 60, 120, 360. The tests are performed over the protein loops of length 4 (see section above),

42 3. Protein Structure Prediction

Len3 Len6 Len9

R
M

S
D

 (
A

n
g

st
rö

m
)

0
1

2
3

4
5

Figure 3.14: RMSD comparison for loop sampling on loops of length 12 using fragments of length
3, 6, and 9.

3.4. Experimental Results 43

adopting as cluster parameters, r in {0.5, 1.0, 3.0, 5.0}, and kmin = 100. Each dot in the plots
represents the average of the best RMSD found by each predictions (left) and the average execution
time (right). The RMSD values tend to decrease for smaller clustering parameters r and β and as
the number of clusters increases, while the filtering time increases as kmax increases.

In Figure 3.18 we study the relation between the RMSD and both the number of JMs that
cover a given target loop or protein and the voxel-side parameter. For these experiments we used
the values {100, 250, 500, 800, 1000} for the kmax, we set r = 1, β = 120, and we averaged the
RMSDs values on the resulting sample set of structures. The relation between the RMSD and
number of JM as well as the average and worst computational times are shown in Fig. 3.18 left.
Here we use a medium-length loop taken from the protein 1XPC (res. 216-230) and we vary the
number of JMs that cover the loop (the side of the voxel has been set to 3Å). From the figure
we observe that increasing the number of JMs (i.e. covering less amino acids with a single JM)
the RMSD decreases but the computational cost is higher. Notice that the best RMSD is given
when the loop is covered by 4 JM constraint (i.e., a JM constraint each four consecutive amino
acids). As a rule of thumb we suggest to use a JM constraint to cover from 3 to 4 consecutive
amino acids since this setting produces the best results within an acceptable time. In Fig. 3.18
right we report the best RMSD (solid line) and the average RMSD (dotted line) of the structures
found using multiple JM constraints that cover sequences of 4 consecutive amino acids through the
whole target proteins. Namely, if the protein target has length n, we set the JM constraints from
i to i + 3, where i = 3 · j, 0 ≤ j < n/3. For these experiments, we considered three proteins of
relatively short length, in order to obtain a complete exploration of the search space in reasonable
computational time: 1LE0 (length 12), 1MXN (length 16), and 1FDF (length 24). Moreover we
used the values {3, 5, 10, 20, 30, 50, 100} for the side of the voxels used for the clustering.

From the Figure 3.18 we observe that the voxel size (enabled by the uniqueseq) has an impact
on the clustering for values lower than 30Å (recall that these proteins have a diameter less than
30Å). For voxel sides lower than 3Å we observe no substantial improvement in terms of quality,
while the time required by the solver to compute the solutions increases exponentially.

Results Summary and Default Parameters.

We now provide some guidelines that may be helpful to tune the JM parameters for a given protein
modeling problem. We suggest several levels of parametrization that might be used according to
the user needs with respect to running time or prediction accuracy. We stress that these are
merely guidelines, outlined from our empirical evaluations, and that several tests should be done
to establish the desired tuning.

We suggest to set a JM to model a sequence of at least 3 amino acids and in general not longer
than 8, to payoff the computational load of the JM clustering. The default choice for kmin is set
to be the average size of the variable domains involved in a JM constraint, while we suggest to set
kmax to be at least as kmin and not greater than 10, 000. The latter, together with the number of
consecutive JM constraints, will have the greatest impact on the computational cost and prediction
accuracy. Computational costs will grow as the number of consecutive JM increases, and at the
same time it will also produce in general higher accuracy. The same trend is exhibited by the
growing kmax parameter. Table 3.3 illustrates five basic settings that could be used incrementally
to establish a trade off between running times and prediction accuracy. The first level (Lev. 1)
is associated to faster computational times and lower accuracy while the last one (Lev. 5) is the
slowest but also the most accurate. The second column of the table indicates the length of the
amino acid sequence modeled by a single JM.

3.4.2 An Application in Protein Structure Prediction

In the protein structure prediction problem, we model a generic backbone through multiple JM
constraints. In principle, an unique JM constraint can model the whole problem. As in the previous
cases, we split it into smaller parts, moreover, the presence of secondary structure is a valid help
in the placement of JM constraints that can handle loops between each consecutive pair. A simple

44 3. Protein Structure Prediction

●

●

●

●

JM kmax

R
M

S
D

 (A°)

100 1000 5000 10000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

●

r

0.5
1.0
3.0
5.0

●

●

●

●

JM kmax

T
im

e
(s

)

100 1000 5000 10000

0.5

1.0

10.0

50.0

●

r

0.5
1.0
3.0
5.0

Figure 3.15: Comparison of the best RMSD values and execution times at varying of the kmax
clustering parameter for β = 60.

3.4. Experimental Results 45

●

●

●

●

JM kmax

R
M

S
D

 (A°)

100 1000 5000 10000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

●

r

0.5
1.0
3.0
5.0

●

●

●

●

JM kmax

T
im

e
(s

)

100 1000 5000 10000

0.5

1.0

10.0

50.0

●

r

0.5
1.0
3.0
5.0

Figure 3.16: Comparison of the best RMSD values and execution times at varying of the kmax
clustering parameter for β = 120.

46 3. Protein Structure Prediction

●

●

● ●

JM kmax

R
M

S
D

 (A°)

100 1000 5000 10000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

●

r

0.5
1.0
3.0
5.0

●

●

● ●

JM kmax

T
im

e
(s

)

100 1000 5000 10000

0.5

1.0
●

r

0.5
1.0
3.0
5.0

Figure 3.17: Comparison of the best RMSD values and execution times at varying of the kmax
clustering parameter for β = 360.

3.4. Experimental Results 47

1 2 3 4 5

0
2

4
6

8

11
.7

3
(1

8.
42

)

9.
53

 (
19

.5
4)

19
4.

70
 (

41
1.

95
)

11
05

.6
3

(2
05

7.
83

)

20
91

.7
2

(3
21

6.
94

)

N.of JM

R
M

S
D

0 20 40 60 80 100

0
1

2
3

4
5

6
7

R
M

S
D

Voxel−Side

1LE0
1MXN
1FDF

Figure 3.18: Top: RMSD (best and average) and Time (average and worst) values increasing the
number of JM constraints that completely cover a target loop of length 15. Bottom: Average
(dotted line) and best (solid line) RMSD for the targets 1LE0 of length 12 (top), 1MXN of length
16 (medium), and 1FDF of length 25 (low).

48 3. Protein Structure Prediction

Lev. n.JM kmin kmax β r Speed Accuracy
1 8 |D| 500 120 5 ∗ ∗ ∗ ∗ ∗
2 8 |D| 1000 120 3 ∗ ∗ ∗ ∗ ∗
3 6 |D| 100 120 3 ∗ ∗ ∗ ∗ ∗
4 4 |D| 500 120 3 ∗ ∗ ∗ ∗ ∗
5 4 |D| 1000 120 1 ∗ ∗ ∗ ∗ ∗

Table 3.3: JM default parameters

search can generate a pool of conformations, then energy scoring can select the best candidate. We
have used a statistical energy function developed for the 5@ model, but any other energy function
can be used instead.

In this section, we study the applicability of FIASCO to the protein structure prediction prob-
lem. In particular, we consider prediction problems where the secondary structure elements of
the protein are given. Furthermore, in order to assess the potential structure, we introduce an
energy function—the same that we have adopted in previous studies, and more precisely described
in http://www.cs.nmsu.edu/fiasco.

For the modeling, we have used the information about the location and the type of the sec-
ondary structure elements on the primary sequence provided directly by the Protein Data Bank.
We have imposed a sequence of JM constraints between every consecutive pair of secondary struc-
ture elements. The number of consecutive JM constraints varied according to the length of the
unstructured sequence being modeled, covering at most 5 amino acids with a single JM constraint.
In addition one JM constraint was imposed from the first amino acid to the beginning of the first
secondary structure element and another from the end of the last secondary structure element and
the last amino acid (the tails of the protein). The domains for the initial and end points of the
JM constraints are the set of all admissible points (a box large enough to contain the protein). In
the search phase, the “first” secondary structure is deterministically set in the space. Then the
labeling proceeds with the JM constraint attached to it leading to the next secondary structure
and so on. Tails are instantiated at the end.

The propagation of the constraints generates a set of admissible structures, that represents the
possible folds of the target protein. From this set, we select the structure with minimum energy;
we extract also the structure with minimum RMSD, in order to evaluate the quality of the energy
function. For these tests we adopt the FREAD database. Table 3.4 reports the best energy values
found by FIASCO. In the RMSD columns is reported the corresponding RMSD associated to the
conformation with best energy found by the solver. The #JM column reports the total number
of JM used to model each protein, together with the maximum number of consecutive JM adopted
to model a contiguous sequence of amino acids (within parentheses).

Protein ID Len. # JM Energy RMSD Time (Min.)
1ZDD 35 4(2) −100513 2.05 11.42
2GP8 40 4(2) −138110 6.28 8.55
2K9D 44 5(2) −204693 2.52 2.69
1ENH 54 4(1) −309896 8.21 31.67
2IGD 60 7(2) −295882 10.50 26.47
1SN1 63 7(3) −358874 5.55 14.82
1AIL 69 4(1) −411077 4.59 4.46
1B4R 79 11(2) −313590 6.11 8.41
1JHG 100 7(1) −572950 4.51 4.50

Table 3.4: Ab initio prediction with FIASCO.

3.4. Experimental Results 49

The results show that the quality of the predictions computed by FIASCO (6.3 as average
RMSD) is competitive (and, as shown in the following section, at par or better than what produced
by other methods). The results are particularly encouraging for proteins of longer length, where
the sampling of the search space aids in development of admissible structures. The time required
by FIASCO to completely explore the search space depends strongly on the type and the mutual
arrangement of secondary structure elements of the target. For example, the protein 2K9D and
the protein 1ENH have the same length, but FIASCO is significantly faster on the first protein
than on the second one. The same observation can be made for the proteins 2IGD and 1SN1.
The results reported in Table 3.4 are promising and they suggest that this is a feasible approach
to solve the ab initio prediction problem. As a future work, we will explore the integration of
local search techniques (e.g., large-neighboring search), in order to sample the search space and to
further decrease the time needed to explore it.

3.4.3 Comparison of FIASCO with State-of-the-Art Constraint Solvers

In this section, we motivate our choice of designing an ad-hoc solver instead of using a general-
purpose constraint solver. In particular we provide a comparison between FIASCO and state-
of-the-art constraint solving. The results justify the choice of implementing a new solver from
scratch instead of using an available constraint programming library or a constraint programming
language. The solver chosen for this comparison is Gecode [62], a very efficient solver and the
winner of the most recent MiniZinc challenges [120].

Gecode has introduced (in version 4.0) the handling of floating point variables. Nevertheless,
since Gecode is the fastest solver for FD variables, we have first encoded the PSP by discretizing
fragments and positions. In particular, we multiplied each real number by a scaling factor (100)
to obtain integer values. Each spatial position is encoded by a triple of variables, representing the
coordinates of the point. Each operation (e.g., multiplications) applied to such variables requires
re-scaling of the result; this unfortunately leads to ineffective propagation. This is particularly
evident when dealing with distance constraints, that require the implementation of Euclidean
distance between pairs of triples of variables.

In order to understand the solvers capabilities to propagate constraints on the placement of
overlapping fragment we implemented three versions of the code, that considered a different number
of constraints, precisely:

1. An implementation that uses only JM constraint (JM only);

2. An implementation that adds the alldistant constraint;

3. An implementation that adds the alldistant and centroid constraints.

In all cases we use a complete search (in particular, the clustering and tabling constraints of lines
10 and 12–14 of Algorithm 3 are disabled).

In Table 3.5, we report the execution times required by FIASCO and by Gecode (with the same
considered constraints) to determine an increasing number of solutions, from 1, 000 to 1, 000, 000.
These solutions are computed for the target protein 1ZDD which has length 35. Table 3.5 shows
that the execution time of both solvers increases proportionally with the number of solutions found.
However, FIASCO is one order of magnitude faster than Gecode in the unconstrained case, and
two orders of magnitude faster in the other cases. The main reason is that FIASCO is specifically
developed to handle the finite domains and 3D point variables, while these are approximated
by FD variables in Gecode. Constraints on these approximations propagate poorly and slowly.
Moreover, the approximation of fragments using finite domain variables introduces approximation
errors, that grow during the search phase (and consequently, less solutions are returned in the
constrained cases). These errors may result in final structures that are relatively imprecise when
the coordinates of the atoms are converted back into real values.

In Table 3.6, we consider a small sequence of four amino acids (SER TRP THR TRP—the first
four amino acids of the protein 1LE0), and we generate all solutions. We report the values of the

50 3. Protein Structure Prediction

Number of FIASCO Gecode
solutions JM only alldistant alldistant + centroid JM only alldistant alldistant + centroid

1000 0.030 0.051 0.059 0.358 2.531 3.807
10000 0.312 0.476 0.612 2.571 21.056 35.370
100000 3.006 4.794 6.040 25.407 209.569 347.831
1000000 29.859 47.669 61.385 252.815 2186.83 3632.39

Table 3.5: Comparison of the execution times of FIASCO and Gecode, for increasing number of
solutions and with different sets of considered constraints.

best and the average RMSD among the structures of the sets of solutions computed using FIASCO
and the Gecode implementation after a complete enumeration of the domains. We can observe
that FIASCO is significantly faster in exploring the search space, moreover, the approximation
introduces errors that leads to the loss of feasible solutions.

FIASCO Gecode
N. sol. Time (sec.) RMSD Avg. RMSD N. sol Time (sec.) RMSD Avg. RMSD

JM only 810000 20.493 0.167 1.570 810000 181.102 0.190 1.596
alldistant 805322 33.493 0.167 1.564 774463 252.974 0.190 1.591

alldistant + centroid 805322 38.953 0.167 1.564 169441 140.644 0.580 1.880

Table 3.6: Number of solutions, time, best RMSD, and average RMSD on the set of structures
found by FIASCO and Gecode after a complete enumeration of the solution space using different
constraints

We have encoded the same constraint satisfaction problem using the new version of Gecode
that allows to employ float variables. We labeled the finite domain variables that allow to select
fragments, while values for the point variables are obtained by constraint propagation. Since
constraint propagation of float variables is based on interval arithmetics, it turns out that after
few amino acids these intervals are too large for being able of reconstructing the protein and or
evaluating the energy value. For instance, after a complete assignment of the variables related to
fragments of protein 1ZDD, while the domains of the float variables associated with the position
of the first two amino acids are singletons, those related to the tenth amino acids are intervals
with size from 1 to 2 Å; even worse, the domains of the atoms of the eleventh amino acids are
unbounded. A further stage of labeling of the float variables required computational time of orders
of magnitude higher than those reported in Table 3.6 for the finite domain Gecode implementation.

Constraint solvers like ECLiPSe [23] and Choco [25] also support the mixed use of integer
and real variables. ECLiPSe is a Prolog-based language which handles integer and real variables
together. However, the great number of matrix operations required in our application does not
fit well with a Prolog implementation. Furthermore, the current trend of ECLiPSe is to replace
a direct constraint solving with a translation to FlatZinc. In the case of Choco, the current
support of floating point variables is still under development (c.f. http://choco.sourceforge.

net/userguide.pdf—page 3). Things may change with the next releases.

We also experimented with another constraint solver, by implementing the multi-body con-
straints using the JaCoP library [82], in a similar way as done for Gecode. Eventually, we tested
the same protein used for the results reported in Table 3.5, and we did not observe any substantial
difference in terms of execution time, from the Gecode implementation.

In terms of protein structure prediction, the design of FIASCO has been influenced by our own
previous work on the TUPLES system [36]. TUPLES is also a constraint solver for protein structure
prediction, based on fragments assembly. Figure 3.19 compares the performance of TUPLES
and FIASCO on the same set of proteins discussed in Section 3.4.2. To make the comparison
fair, we make use of the same energy function in both systems and assume that the secondary

3.5. Summary 51

structure elements are known. Note that there are some important differences between the two
systems. TUPLES is implemented using constraint logic programming techniques, specifically,
SICStus Prolog [162]; TUPLES does not make use of floating point variables; on the other hand,
TUPLES introduces a heuristic search mechanism based on large neighboring search.

The results show that the quality of the predictions computed by FIASCO (6.3 as average
RMSD) is better than the quality of the predictions computed by TUPLES (9.4 as average RMSD).
The complete sampling of the search space allows us to obtain better results for the proteins of
longer length in the benchmark (≥ 63). Instead, for shorter proteins, we obtain comparable
results. The similarity of the quality depends on the use of the same energy function for both
the systems. Notice that the energy function used is designed for the simpler model adopted in
TUPLES (Cα–Cα). Moreover, TUPLES is based on a Prolog implementation and hence each value
must be rounded and approximated. These aspects explain both the quality differences between the
RMSD and the Best RMSD found by FIASCO and the behavior for which for some proteins (e.g.,
1ZDD, 2GP8) the (energy) RMSD values are better in FIASCO even if their corresponding energy
(RMSD) values are higher than in TUPLES. The execution times of FIASCO are significantly
faster than TUPLES, in spite of FIASCO’s lack of a sophisticated search heuristic.

We also performed a comparison with the state-of-the-art online Robetta predictor [131] for
the first four proteins of Table 3.6. We built the dictionary for 3 and 9 amino acid long peptides
through the Robetta interface, and we disabled any homology inference, in order to maintain a fair
comparison. The results are reported in table 3.7. It can be noted that our results are comparable
with Robetta predictor.

Robetta FIASCO
Protein ID Len. RMSD Time (Sec.) RMSD Time (Sec.)

1ZDD 35 5.92 21.00 2.05 11.42
2GP8 40 5.44 16.00 6.28 8.55
2K9D 44 4.65 22.00 2.52 2.69
1ENH 54 2.74 39.00 8.21 31.67

Table 3.7: Ab initio prediction with FIASCO.

Let us conclude this section mentioning that the results reported in the this section (where we
compared FIASCO with TUPLES) provide also an implicit comparison with another off-the-shelf
solver, the SICStus Prolog constraint logic programming solver [162].

3.5 Summary

In the first part of this chapter, we introduced some notions related to the constraint programming
paradigm. As a paradigm, CP provides the tools necessary to guide the modeling and resolution
of search problemsin particular, it offers declarative problem modeling (in terms of variables and
constraints), the ability to rapidly propagate the effects of search decisions, and flexible and efficient
procedures to explore the search space of possible solutions. We presented several aspects related
to the constraint solving process such as complete and incomplete search strategies, constraint
propagation, and consistency notions.

In the second part of the chapter, we presented a real-world problem tackled with constraint
programming techniques, namely the problem of predicting the three-dimensional structure of a
protein given its sequence of amino acids. We described a novel constraint (joined-multibody) to
model rigid bodies connected by joints, with constrained degrees of freedom in the 3D space. We
presented a polynomial time approximated filtering algorithm of the joined-multibody constraint,
that exploits the geometrical features of the rigid bodies. In particular, the filtering algorithm is
combined with search heuristics that can produce a pool of admissible solutions that are uniformly
sampled. This allows for a direct control of the quality and number of solutions. The filtering

52 3. Protein Structure Prediction

Figure 3.19: Comparison of RMSD and Execution Time between TUPLES and FIASCO

3.5. Summary 53

algorithm is based on a 3D clustering procedure that is able to cope with a high variability of rigid
bodies, while preserving the computational cost. The practical advantages of the joined-multibody
constraint are shown by an extensive set of real protein simulations for two main categories: protein
loop reconstruction and structure prediction (ab-initio). The tests showed how the parameters of
the constraint are able to control effectively the quality and computational cost of the search.
In conclusion, the constraint solver FIASCO is able to model effectively various common protein
case-studies analyses.

In the last part of this dissertation, we shall describe the porting of FIASCO within a GPU-
based framework. The CP model adopted for FIASCO will remain the same but propagation
algorithms and search space exploration will take advantage of GPU computation, leading to a
significant speed-up in terms of computational time.

54 3. Protein Structure Prediction

II
Parallel Constraint Solving

4
Background

Constraint programming has gained prominence as an effective and declarative paradigm for mod-
eling and solving complex combinatorial problems. In spite of the natural presence of concurrency,
there has been relatively limited effort to use novel massively parallel architectures to speedup con-
straint programming algorithms. Recent technological trends have made massive parallel platforms
and corresponding programming models available to the broad users community—transforming
high performance computing from a specialized domain for complex scientific computing into a
general purpose model for everyday computing. One of the most successful efforts is represented
by the use of modern Graphical Processing Units (GPU s) for general purpose parallel computing:
General Purpose GPUs (GPGPUs). Several libraries and programming environments (e.g., the
Compute Unified Device Architecture (CUDA) created by NVIDIA) have been made available to
allow programmers to access GPUs and exploit their computational power. Nevertheless, obtain-
ing good speed-ups from parallel algorithms that run on GPU architectures is not an easy task.
While it is relatively simple to develop correct CUDA programs (e.g., by incrementally modifying
an existing sequential program), it is challenging to design an efficient solution. Direct porting of
sequential algorithms often perform poorly and new strategies must be adopted in order to reduce
the drawbacks inherently associated with the use of a GPU architecture (e.g., small amount of
shared memory between threads, slow communication channel between CPU and GPU, etc.), and
maximize the benefits of having thousands of parallel threads running in parallel. Thus, optimiza-
tion of CUDA programs require a thorough understanding of the hardware characteristics of the
GPU being used, as well as an accurate design of the algorithms to run in parallel.

In the second part of this dissertation we focus our attention on parallel constraint program-
ming. To this end, we start by reviewing some aspects regarding parallelism and parallel complex-
ity notions (Section 4.1). We present parallel and distributed algorithms for arc consistency and
constraint propagation, and we evaluate their efficiency w.r.t. their sequential counterparts. In
Section 4.3 we describe parallel search strategies. In particular, we focus on parallel local search
algorithms which have been proven to be efficient on real-world problems. We also report on multi-
agent search, where a problem is solved by a collection of agents that exchange messages in order to
solve distributed versions of constraint satisfaction and optimization problems. We conclude this
background review with a brief introduction on GPU computation and the CUDA programming
environment.

4.1 Parallel Computing

Parallel computing is a form of computation based on the principle that complex computational
tasks can be broken down in many simpler ones, which can be solved concurrently. There are
different forms of parallelism, according to the criteria used to classify it. For example, it is possible
distinguish between parallelism at the level of instructions, data or task; multi-core parallelism (i.e.,
using shared memory), distributed computation, or combinations of both. In a multiprogramming
context, it is also possible to classify parallelism as Single Instruction, Multiple Data (SIMD)
parallelism (i.e., the same set of instructions performed in parallel on different data) or Multiple

58 4. Background

Instruction, Multiple Data (MIMD) parallelism (i.e., different instructions performed in parallel
on different data) [167].

GPUs offer (a variant of) SIMD parallelism on shared memory architectures, at the level of
data. Therefore, they entail the restriction of providing data level parallelism but not concurrency
(i.e., multiple instructions at a given moment). On the other hand, thousands of parallel thread
are available as computational units at the same time, with no context switch in a well-defined
multi-dimensional hierarchical organization.

This form or parallelism shows its major advantages on embarrassingly parallel problems. A
problem is referred to as embarrassingly parallel or perfectly parallel, when there is minimal or no
communication between runs and little to no effort for load balancing. It follows that, usually,
little effort is required to decompose it in many parallel task. Problems in which there is no com-
munication or dependency between parallel tasks are usually embarrassingly parallel. For example,
given n inputs values x1, . . . , xn, output variables y1, . . . , yn, and f1, . . . , fn pure functions (i.e., no
side effects) taking the corresponding input values as parameters, the following n assignments:

yi = fi(xi), 1 ≤ i ≤ n

can be performed in parallel by n different threads and represent an embarrassingly parallel task
(e.g., if f1 = · · · = fn the above assignment corresponds to the C++ STL function std::map).
Other examples of embarrassingly parallel problems suitable for GPU computation—and actually
used—are: brute force searches in cryptography, rendering i computer graphics, sum/min/max
reductions, parallel implementations of genetic algorithms, and parallel samplings (e.g., Monte
Carlo sampling) [46].

4.1.1 Metrics

Speedup. The first question we are interested in when we develop a parallel algorithm is how
much faster the algorithm is compared to its sequential implementation, i.e., how much speedup
we gain from parallel computation. The most common definition of speedup is the ratio of the
computational time (T1) taken by an algorithm executed on a single processor machine to the time
taken by a parallel version of the same algorithm on a p-processors machine (Tp) [167]:

S(p) =
T1

Tp
.

Let us observe that usually T1 corresponds to the time taken by the fastest known sequential
algorithm for the given problem. The definition above is a good indicator about the performance of
a parallel implementation. Nevertheless it does not give any hint regarding how the execution times
T1 and Tp should be calculated. For example, the value T1 depends on the actual implementation
and the structure of the sequential algorithm, which may differ significantly from the structure
of parallel algorithm used to calculate Tp. Let us observe that in the worst case scenario, the
sequential algorithm has a completely different structure w.r.t. its parallel implementation.

In a theoretical analysis, a more accurate indicator of the speed-up gained by using a parallel
machine is given by the ratio of the number of computational steps using one processor (C1) to
the number of parallel computational steps with p processors (Cp):

S(p) =
C1

Cp
.

This measure takes into account the differences of the structure between the two implementations
(i.e., sequential and parallel), but it does not consider the communication costs between parallel
processes that are, usually, more expensive than computational steps.

Linear speed up & Efficiency. The upper bound on the maximum achievable speedup is
usually a linear speedup, i.e., a speedup of p using p processors:

S(p) ≤ T1

T1/p
= p.

4.2. Parallel Consistency in Constraint Programming 59

Linear speed up can be obtained on embarrassingly parallel problems or, in general, when the
parallel task running on p processors can be divided in p processes of equal-duration and with no
additional overhead.

Sometimes, a super linear speedup (i.e., S(p) > p) can be also obtained. This usually happens
when the ratio is calculated on a sub-optimal implementation of the sequential algorithm [167].

The ratio between the speedup obtained and the total number of processors used by the algo-
rithm is called efficiency and it indicates how effectively the processors are used:

η =
S(p)

p
× 100%

Higher efficiency means better utilization and, vice-versa, better utilization of the parallel archi-
tecture increases the speed up.

Inherent parallelism indicates how much speed up can be expected from a parallel algorithm.
The inherent parallelism is based on the notion of unbounded parallel complexity of an algorithm
A, i.e., the time taken by the algorithm given an infinite number of processors, and it is defined as
follows:

IP (A) =
Sequential complexity of A

Unbounded parallel complexity of A
.

IP (·) represents the amount of parallelism intrinsic to the problem, and larger values usually mean
large amount of computation that can be performed in parallel.

Amdahl’s law. Amdahl’s law [4] is a simple observation regarding the maximum expected speed
up achievable on a parallel machine. The Amdahl’s law relates the percentage b of a program
that must be executed sequentially to the remaining 1 − b part that admits an arbitrary level of
parallelism. Therefore, the expected speed up is:

S(p) =
T1

Tp
=

T1

T1 ∗ b+ T1∗(1−b)
p

=
1

b+ 1−b
p

.

Let us observe that, according to Amdahl’s law, as p tends to infinity the maximum speed up tends
to the constant 1/b.

Example 4.1.1 Let us suppose that a given (sequential) algorithm can be parallelized by a factor
of 95% w.r.t. its original sequential code. It follows that b = 5/100 = 1/20 is the percentage of
inherently sequential computational steps and therefore, applying the Amdahl’s law, the maximum
achievable speed up is 20, regardless of the number of available processors.

This argument was one of the reasons that encouraged hardware development away from multi-
processor and towards faster processors. Let us observe that Amdahl’s law is overly pessimistic [70,
79] and it does not reflect the actual performance of the system. Amdahl’s law shows the general
trend but it does not take into account real systems and some non-trivial processes. Amdahl’s law
assumes that given infinite number of cores the parallel part is executed instantly. This assumption
is accurate but not true due to both software scheduling policies and hardware characteristic
of the parallel architectures. Moreover, Amdahl’s law does not take into account the effect of
critical section, atomic operation, barrier synchronization, and other inter process communication
methods. Therefore, in order to calculate the expected speed-up, it is usually simpler to plot the
Amdahl’s curve by measuring the performance of the parallel application and comparing it with
the theoretical results.

4.2 Parallel Consistency in Constraint Programming

Exploitation of multi-processors architectures for parallel arc consistency has led to different results,
varying from to 2× to quasi-linear speedups. In order to parallelize constraint propagation different

60 4. Background

strategies have been adopted. In what follows we present two main parallel strategies for arc
consistency and constraint propagation: (1) parallelism at the level of constraints in the constraint
queue using shared memory, and (2) distributed computation and message passing protocols for
arc consistency algorithms.

Parallel AC algorithms. Constraint propagation can be easily parallelized by implementing
the parallel versions of the sequential algorithms for node and arc consistency. In [139] Samal
and Henderson present a parallel implementation for AC-3, and AC-4 called PAC-3, and PAC-
4 respectively. The strategy adopted in these algorithms consist on the concurrent call of the
revise function for all the arcs in the constraint queue (see Section 2.4). Algorithm 4 shows the
pseudo-code for PAC-3. In algorithm 4, the statement

forall i← 1 to m do f(i)

is used to represent the execution of m parallel tasks; the ith task executing f(i).

Algorithm 4 PAC-3(X,C)

1: Q← {(xi, c) | c ∈ C, xi ∈ scp(c)};
2: repeat
3: forall (xi, c) ∈ Q do {Parallel loop.}
4: if revise(xi, c) then
5: add arcs(xi, c);
6: end if;
7: end for;
8: until Q = ∅;

Both the procedures revise and add arcs can be done in parallel; the former checks supports
for all the labels in parallel (up to the square of the maximum size of the domains), while the
latter updates the queue of constraints and checks whether a domain has become empty. If d is
the maximum size of domains, up to d2 processors are needed. The function add arcs can be
executed in constant time by representing the queue of constraints through a Boolean array of size
e shared between the parallel processes, and a global flag to indicate an empty domain.

The algorithm requires up to ed2 processors since there could be the case where all the e arcs
are revised in parallel, and the revise functions has to check every possible combination of values
for each arc. Let us observe that there are at most nd labels and at least one label is deleted in
each loop iteration. Therefore, PAC-3 runs in O(nd) time, and its inherent parallelism is equal to
O(ed3)/O(nd) = O(ed2/n).

Using a similar implementation strategy it is possible to show that PAC-4 reduces the com-
plexity of AC-4 from O(ed2) to O(ed), using O(d2n2) processors [139]. The inherent parallelism is
IP = O(ed/n).

Other implementations of parallel constraint propagation schemes split the queue of constraint
in small queues local to each parallel process [27]. Synchronization is used to update domains after
each local propagation, possibly discovering inconsistencies. This version leads to higher speedups
on average (up to 6×) but it could be more vulnerable to synchronization costs.

Distributed AC algorithms. A different strategy for parallelizing arc consistency is through
distributed computation, i.e., performing concurrent propagation of constraints on a message-
passing infrastructure (e.g., a network of workstations).

A distributed version of AC-4 for binary CSPs, referred to as DisAC-4, is presented in [124].
DisAC-4 is based on message passing protocols and variables that are distributed among concurrent
agents. Each agent performs AC-4 on its local subset of variables, communicating with other
agents as soon as a domain becomes empty. The system reaches a global fix-point when all the
agents terminate their local AC-4. Experimental results show linear speedup w.r.t. the number of
processors.

4.3. Parallel Search in Constraint Programming 61

An improvement of DisAC-4 referred to as DisAC-9 is presented in [71]. The strategy adopted
in DisAC-9 is similar to the one used for DisAC-4 but the algorithm is optimal w.r.t. the number
of messages exchanged between agents, therefore, increasing the speedup (the authors show that
DisAC-9 actually outperforms its sequential implementation).

4.3 Parallel Search in Constraint Programming

Parallel search in constraint programming has been investigated more extensively than parallel con-
straint propagation since, in general, search algorithms can be “easily” parallelized, outperforming
their sequential implementation [142].

A common strategy for parallelizing the search process splits the search tree into many (disjoint)
subtrees. Each subtree is then assigned to a different processor and the search process on the entire
search tree is performed in parallel. This intuitive strategy requires special attention to ensure that
the whole search space is partitioned in a balanced manner between parallel processes, in particular
when the search process is based on backtracking techniques.

Some issues related parallel search strategies involving backtracking can be easily addressed
considering the properties of the AND-OR structure of the search trees common in the context of
logic programming [29]. Let us observe that the ideas are also applicable to the OR-trees common in
constraint solving. An AND-OR tree is a tree representing the structure of a (logic) program where
a node is either labeled as AND-node or OR-node: the former is solved once all its descendants
are solved (in terms of logic unification), while the latter represents an alternative choice for a
possible solution. This node classification is used to split the search process between independent
paths, assigned to different processors and distinguishing respectively between And-parallelism
or OR-parallelism. This schema avoids the overhead due to shared memory or communication
contentions (e.g., copies of computation states between processors) but it also leads to duplicate
work (e.g., when two paths share the same structure for at most of their length and they differ
only at the bottom). A comprehensive survey of the issues arising in parallel execution of logic
programming languages along with the most relevant approaches explored to date in the field can
be found in [58]. The authors focus mostly on the challenges emerging from the parallel execution
of Prolog programs, describing the major techniques used for shared memory implementation of
And-parallelism, Or-parallelism, and combinations of the two.

Shared memory approaches define communication layers through shared memory between par-
allel processes, in order to create a “global view” of the current state of the search process. In [129]
the author applies this technique on the top of the commercial solver ILOG [80]. The nodes of
the search tree are split among the following three different sets: (1) the set of open nodes (or
search frontier), (2) the set of closed nodes, and (3) the set of unexplored nodes. Shared memory is
used to move nodes from one set to another. This framework is general enough to allow the user
to implement many search algorithms and to assign different search nodes to different processors
with relatively ease. Each processor performs its own sequential search on a portion of the tree
and communicates with other processors through shared memory, ensuring load balancing and
termination detection.

Constraint problems can be solved in a distributed environment by systems that combine con-
straint reasoning, concurrency, and message-passing communication protocols. The Mozart [166]
implementation of Oz [34] is a concurrent language that supports distribution and programming of
search engines from computation spaces [143]. Mozart provides a simple, high-level, and reusable
design for parallel search on a network of computers [142].

Better performance are obtained by parallelizing local search strategies for solving constraint
problems. The constraint solver COMET [113] explores the search space by a constraint-based
local search strategy (see Section 2.6). Different initial solutions are distributed among different
machine on a distributed system. Each parallel process therefore tries to improve its correspondent
solution using local search techniques and the best solution among all processes is collected and
imposed as global solution. A further level of parallelization is given by a transparent multi-core
parallel search shared between machines. Each processor is associated to a worker agent. When

62 4. Background

a worker expands a node, it generates a set of new unexpanded nodes. These nodes are added to
a central pool ; workers that run out of work take unexpanded nodes from the pool, and in case of
optimization problems they also communicate new improvements for the evaluation function. To
keep the exploration of the search space consistent, communications from and to the central pool
are synchronized among the workers. In [113] the authors report speedups about 3.41 and 3.08
with four machines.

4.3.1 Combining Parallel Search with Parallel Constraint Propagation

Parallelizing the entire solving process in a constraint programming environment is not an easy task
since parallel search and parallel consistency typically suit different types of problems. If a problem
is highly constrained, parallel search can slow down the solving process due to communication
costs between parallel branches and resources issues. On the other hand, if a problem is highly
constrained, there will be many inconsistent branches for which parallel search cannot be fully
exploited [134].

In [134], the authors present a framework that combines parallel search with parallel constraint
propagation. The strategy adopted by the authors is to distinguish between search threads and con-
sistency threads and to associate every search thread several consistency threads. Search threads
deal with variable assignments, while consistency threads are in charge of propagating constraints
considering the current labeling performed by their corresponded search thread.

Example 4.3.1 Figure 4.1 shows the combination of parallel search and parallel consistency within
the same framework. The domain Dx1 = [0, 9] is split between 2 parallel processors p1 and p2.
Constraints c1, c2 involving x1 are propagated in parallel after the assignment by p1 and p2, and
two more available processors p3 and p4.

Figure 4.1: Example of parallel search combined with parallel constraint propagation.

The domain of each variable is divided among threads using a depth first search strategy. It
follows that there is no data dependency between the different parts of the search space. Moreover,
the set of constrains to propagate is split among consistency threads, rather then parallelizing the
propagation of a single constraint. Note that search threads can be used as consistency threads as
soon as they make an assignment, since consistency is performed after each labeling.

The experiments presented in [134] consider up to 8 parallel search and consistency threads
on the Sudoku and n-queens problems. The speedups obtained are of 2 on average. The authors
identify several drawback of their system design, in particular related to inefficiency in parallel
consistency, synchronization of pruning, memory contention, and processor cache.

4.3. Parallel Search in Constraint Programming 63

4.3.2 Distributed Constraint Programming

Here we present a slightly different view of parallel constraint solving, by introducing the notion of
Distributed Constraint Satisfaction Problems [135]. The main difference from standard constraint
satisfaction problems lies on the fact that every variable is controlled by a corresponding agent, and
the solving process involves communication between agents, usually located on different machines.
Agents do not have a global view of the problem or knowledge about the solving process as a
whole. Instead, each agent holds private information and other agents only see information they
are required to see for the solving process.

A distributed algorithm generally requires a high amount of messages exchange between agents,
which slows down the overall solving process w.r.t. a centralized version. Nevertheless, there are a
number of reasons why a distributed framework may be necessary, such as the dynamic nature of
the problem (e.g., some agents may disappear while other may appear), privacy-security policies,
fault-tolerant computations, etc.

A Distributed Constraint Satisfaction Problem (DisCSP) is a quadruple (X,D,C,A) defined
as follows:

• X = 〈x1, . . . , xn〉 is an n-tuple of variables;

• D = 〈Dx1 , . . . , Dxn〉 is an n-tuple of finite domains, each associated to a distinct variable in
X;

• C is a finite set of constraints on variables in X, where a constraint c on the m variables
xi1 , . . . , xim , denoted as c(xi1 , . . . , xim), is a relation c(xi1 , . . . , xim) ⊆×imj=i1Dxj ;

• A = {a1, . . . , am} is a set of m agents.

Let us observe that the original definition of DisCSP includes a function that maps each variable
to an agent. Here we assume an implicit mapping where each variable is mapped to exactly on
agent and vice-versa. It is assumed that each agent ai knows Dxi and all constraints involving xi.
The definition of Distributed Constraint Optimization Problem (DCOP) is similar to the definition
of DisCSP but with the set of constraint C representing a set of cost functions c1, . . . , cm s.t. for
0 ≤ i ≤ m, ci : ×ni=1D

xi → R ∪ {−∞,+∞}. The cost of a solution s for a DCOP is therefore
calculated aggregating all the values given by the cost functions evaluated on s. An optimal solution
is a solution with minimum cost.

Solving DisCSPs

A simple algorithm for solving DisCSPs is the synchronous backtracking search algorithm [177].
Synchronous backtracking is the distributed extension of the backtracking algorithm used for solv-
ing CSPs (see Sec. 2.2). More precisely, given an ordering among the agents (known to all agents),
partial assignments are passed from agent to agent. Whenever an agent receives a partial solution
from the previous agent, it instantiates its variable and it performs consistency. If no instantiation
can satisfy its constraints, then it sends a backtracking message to the previous agent in the or-
dering. Otherwise it sends the extended partial solution to the next agent. While this algorithm
preserves the simple schema of its sequential counterpart, it cannot take advantage of parallelism.

Asynchronous backtracking (ABT) [177] allows agents to run concurrently and asynchronously.
It requires a total order among agents, inducing a direction in the constraints from value sending
agent to constraint-evaluating agent, according with the order (see Figure 4.2).

Example 4.3.2 Figure 4.2 shows a DisCSP with three agents x1, x2, and x3, which is also the
variable ordering. Domains are Dx1 = {1, 2}, Dx2 = {2}, Dx3 = {1, 2}, while the constraints are
x1 6= x2, x2 6= x3.

To ensure asynchronicity and completeness, each agent keeps two different data structures: (1)
a set of values that the agent believes are assigned to higher priority agents (i.e., assignments of
the variables held by value sending agents), referred to as self or agent view, and (2) a set of
conjunctions of assignments variable-value that does not satisfy one or more constraint, refereed
to as the set of nogoods. Two agents xi < xj exchange four types of messages during search:

64 4. Background

Figure 4.2: Example of Distributed CSP. x1 and x2 are value-sending agents, and x3 is a constraint-
evaluating agent.

• OK?(i, j, val): agent xi informs agent xj that xi has taken value val;

• NGD(j, i, ng): agent xj informs agent xi that a nogood ng that involves xi has been detected;

• ADDL(i, j): agent xi asks agent xj to set up a link from xj to xi;

• STOP (i, j): agent xi informs agent xj that there is no solution since an empty nogood has
been generated.

When ABT starts, each agents chooses the assignment for its variables and communicates the
choice to the low priority agents using an OK? message. On the other hand, whenever an agent
receives an OK? message, first it updates its self view, it removes nogoods that are inconsistent
with the new assignment and it checks for consistency with its new updated agent view. If an
agent receives a NGD message, it checks if the nogoods are consistent with its current agent view.
If it is the case it updates its nogood set and it searches for a new variable assignment. When the
agent cannot find any value consistent with its self and nogood sets, new nogoods are generated
and sent to the lowest higher priority agents in its agent view. ADDL(i, j) messages are used
whenever an agent xi finds that is not connected with an agent xj and xj appears in a nogood for
xi.

Solving DCOPs

In DCOPs, agents communicate and coordinate while looking for an optimal solution through
messages.

One of the reference algorithm for solving DCOPs optimally is the Asynchronous Distributed
OPTimization with quality guarantees (ADOPT) algorithm [115]. ADOPT is a polynomial-space
algorithms where, agents execute asynchronously and in parallel, finding the globally optimal
solution. The key idea is to use a weak form of backtracking, namely, the backtrack condition is
related to the value of the lower bound of the current assignment. Moreover, it uses an efficient
reconstruction of abandoned solutions based on the notion of backtrack threshold. This requires
polynomial space in the worst case, instead of exponential space as needed for memorizing partial
solutions. Computational times of ADOPT can be improved by BnB-ADOPT [175] algorithm,
where the optimal solution is obtained by propagating upper bounds on the quality of the solutions.
In BnB-ADOPT, agents are organized in a DFS pseudo-tree, i.e., an arrangement of the constraint
graph such that it does not contains cycles and variables involved in the same cost function appear
in the same branch of the tree. Once the DFS pseudo-tree is defined, BnB-ADOPT performs
an asynchronous depth-first-branch-and-bound search until an optimal solution is found. Three
different messages are exchanged between two agents xi, xj :

• V ALUE(i, j, val, th): agent xi informs agent xj that it has assigned the value val to its
variable xi with a threshold th, representing the value used for pruning (see [175] for a
formal definition of threshold).

4.4. CUDA Computing 65

• COST (i, j, ctx, lb, ub): agent xi informs agent xj about its lower and upper bounds lb, ub for
the current set of assignments ctx involving xi’s ancestors;

• TERMINATE(i, j): agent xi informs agent xj about termination.

Each agent executes a loop: it first assigns a value to its variable, and then it sends a V ALUE
message to each child and a COST message to its parent. Based on these information items
the other agents modify their assignment in order to reduce the difference between lower and
upper bound. TERMINATE message is sent from parents to children to inform that the optimal
solution has been found, i.e., each agent has assigned the optimum value for its variable.

4.4 CUDA Computing

Modern graphic cards (Graphics Processing Units) are multiprocessor devices, offering hundreds of
computing cores and a rich memory hierarchy for graphical processing (e.g., DirectX and OpenGL).
Efforts like NVIDIA’s CUDA—Compute Unified Device Architecture [140] aim at enabling the use
of the multicores of a GPU to accelerate general applications—by providing programming models
and APIs that enable the full programmability of the GPU. In this dissertation, we consider the
CUDA programming model. The underlying conceptual model of parallelism supported by CUDA
is Single-Instruction Multiple-Thread (SIMT), a variant of the SIMD (Single-Instruction Multiple
Data) model. In SIMT, the same instruction is executed by different threads that run on identical
cores, while data and operands may differ from thread to thread. CUDA’s architectural model is
summarized in Figure 4.3.

HOST
GLOBAL MEMORY

CONSTANT MEMORY

Shared
memory

Thread Thread

regs regs

Block

Shared
memory

Thread Thread

regs regs

Block

GRID

Figure 4.3: CUDA Logical Architecture.

Different NVIDIA GPUs provide varying numbers of cores, their organization, and amounts of
memory. The GPU is constituted by a series of Streaming Multi-Processors (SMs); the number of
SMs depends on the specific class of GPUs—e.g., the Fermi architecture provides 16 SMs. In turn,
each SM contains a number of computing cores (each with a fully pipelined ALU and floating-point
unit); the number of cores per SM may range from 8 (in the older G80 platforms) to 32 (e.g., in the
Fermi platforms). Each GPU provides access to on-chip memory (for thread registers and shared
memory) and off-chip memory (L2 cache, global memory and constant memory).

66 4. Background

CUDA introduces a logical view of computations, allowing programmers to define abstract
parallel work and to schedule it among different hardware configurations (see Fig. 4.3). A typical
CUDA program is a C/C++ program that includes parts meant for execution on the CPU (referred
to as the host) and parts meant for parallel execution on the GPU (referred as the device). A
parallel computation is described by a collection of kernels. Each kernel is a function to be executed
by several threads. Threads spawned on the device to execute a kernel are hierarchically organized
to facilitate the mapping of the threads to the (possibly multi-dimensional) data structures being
processed: threads are organized in a 3-dimensional structure (called block), and blocks themselves
are organized in 2-dimensional tables (called grids). CUDA maps blocks (coarse-grain parallelism)
to the SMs for execution; each SM schedules the threads in a block (fine-grain parallelism) on
its computing cores in chunks of 32 threads at a time (called warps), thus allowing group of
threads in a block to use the computing resources while other threads of the same block might be
waiting for information (e.g., completing a slow memory request). Threads have access to several
memory levels, each with different properties in terms of speed, organization (e.g., banks that
can be concurrently accessed) and capacity. Each thread stores its private variables in very fast
registers (anywhere from 8K to 64K per SM); threads within a block can communicate by reading
and writing a common area of memory (called shared memory). Communication between blocks
and with the host is realized through a large global memory (up to several gigabytes).

The kernel, invoked by the host, is executed by the device and it is written in standard C-code.
The number of running blocks (gridDim) and the number of threads of each block (blockDim) are
specified in the call executing the kernel, with the following syntax:

Kernel ≪ gridDim, blockDim ≫(param1, . . . , paramn);

In order to perform a computation on the GPU, it is possible to move data between the host
memory and the device memory. By using the specific identifier of each block (blockIdx—providing
x, y coordinates of the block in the grid), its dimension (blockDim) and the identifier of each
thread (threadIdx—providing x, y, z coordinates for the thread within the block), it is possible to
differentiate the data accessed by each thread and the corresponding code to be executed. For
example, the following code fragment shows a kernel and the corresponding call from the host.
Each element of a two dimensional matrix is squared, and each thread is in charge of one element
of the matrix. The matrix A is represented by a pointer in the device’s global memory. CUDA
provides functions (e.g., cudaMemCopy) to transfer data between the host and the device’s global
memory.

int main() {

...

dim3 thrsBlock(n,n);

sqMatrix<<<1,thrsBlock>>>(A);

...

__global__ sqMatrix(float *Mat){

int i=threadIdx.x;

int j=threadIdx.y;

Mat[i][j] = Mat[i][j]*Mat[i][j];

}
While it is relatively simple to develop correct CUDA programs (e.g., by incrementally modify-

ing an existing sequential program), it is challenging to design an efficient solution. Several factors
are critical in gaining performance. The SIMT model requires active threads in a warp to execute
the same instruction—thus, diverging flow paths among threads may reduce the amount of actual
concurrency. Memory levels have significantly different sizes (e.g., registers are in the order of
dozens per thread, while shared memory is in the order of a few kilobytes per block) and access
times; different cache behaviors are applied to different memory levels (e.g., constant memory is a
cached read-only global memory) and various optimization techniques are used (e.g., accesses to
consecutive global memory locations by contiguous threads can be coalesced into a single memory
transaction).

4.4.1 Parallel Search on GPU

Several studies have addressed the problem of parallelizing the search process using GPU architec-
tures obtaining different results. Naive implementations of well-known search algorithms such as
depth first search or breadth first search on GPU often perform poorly [85, 106], whereas exploiting

4.4. CUDA Computing 67

GPU parallelism for local search strategies speed ups the search of several factors, and solves large
scale problems.

In [106], the authors present a GPU implementation of the breadth first search (BFS) algorithm
achieving up to 10× speed up. The algorithm considers a standard BFS but instead of exploring
the queue of nodes sequentially, it explores all the nodes in the frontier in parallel (i.e., parallel
exploration of each level of the search tree).

In order to avoid sequential computation due to the insertion of the nodes in the queue, the
authors define two different types of queue: one queue local to each block (implemented in shared
memory), and one queue shared among all blocks of the kernel (implemented in global memory).
Local queues are explored in parallel by each thread, and the whole frontier is then copied on
global memory by each block according to specific offsets. This strategy avoids collisions between
threads of different blocks, ensuring parallel writes into global memory.

Parallel depth first search on GPU is not promising as parallel BFS. In [85], the authors
report on the investigation of backtracking paradigms on GPUs. The authors propose two levels of
parallalelization: (1) a tree-level parallelization assigning different kernel blocks to different subtrees
of the search three, and (2) a node-level parallelization where multiple threads expand the nodes
of each subtree. Despite of a double level of parallelization, the GPU implementation performs
poorly w.r.t. the corresponded CPU implementation: different sub trees have different structures
and, therefore, divergent computational paths, forcing threads to a sequential computation.

Local Search on GPU. Local search strategies move from solution to solution trying to max-
imize a criterion among a number of candidate solutions. These iterative methods can exploit
the computational power of GPUs in order to perform massively parallel exploration of the search
space, without being constrained to complete-search schemes.

A guideline for design and implementation of LS strategies on GPUs is presented in [107, 163].
The authors describe a general methodology for implementing local search methods on GPU:
parallelism is exploited at the iteration level (i.e., parallel evaluation of neighborhoods), while
CPU performs the iterative process of selecting and updating the current solution with the specific
local search strategy. Three major GPU encodings for neighborhood representation are considered:

• Binary representation: this representation is used for binary problems (i.e., binary domains)
mapping each neighborhood to a different set of GPU threads according to a given Hamming
distance (the Hamming distance between two strings of equal length is the number of positions
at which the corresponding symbols are different).

• Discrete vector representation: this representation extends the binary one to an alphabet of
size greater than two. The mapping between GPU threads and neighborhood is similar to
the one used for binary representations considering a Hamming distance of 1.

• Permutation representation: this representation identifies neighborhoods by a pairwise ex-
changing of values. Since a permutation can be identified by the two indexes of the swapped
elements, threads are mapped to permutations by a bijective function N→ N×N. Therefore,
each thread identifier is used to calculate the pair of values to swap within a neighborhood.

Let us observe that it is possible to identify three general parallel models for local search
methods (see Figure 4.4):

• solution-level : parallel evaluation of a solution;

• iteration-level : parallel exploration of a neighborhood;

• algorithmic-level : parallel exploration of the search space through different local search strate-
gies.

It is possible to combine the three models in order to obtain a higher level of parallelization, at
the cost of a more complex framework and several classes of new potential software bugs (e.g.,
synchronization between the models).

68 4. Background

Figure 4.4: Parallel models for local search methods.

Local Search for Constraint Problems. There are few studies in literature about the use
GPU architecture and constraint programming. In [7] the authors present a GPU implementation
of a parallel local search strategy for solving CSPs and COPs. Parallelism is exploited at two
different levels: (1) solution level, where multiple copies of the search process run at the same
time, each associated to a different CUDA block, and (2) iteration-level, where the threads of each
block explore the neighborhood in parallel.

Local search guides the search process considering the number of violated constraints. This
value is calculated using an error function that takes a complete assignment of variables and returns
the number of violated constraint. To reduce the error value a min-conflict heuristic is applied
(see Sec. 2.6). Let us observe that it is not guaranteed that the assignment found by the iterative
process satisfies all the constraints (i.e., it represents a solution). Speed ups mostly depend on the
exploitation of solution level parallelism and they vary from 3× to 17×.

5
GPU-based Propagation

This chapter presents an experimental study aimed at assessing the feasibility of parallelizing con-
straint propagation—with particular focus on arc-consistency—using GPUs. GPUs support the
form of data parallelism (i.e., SIMT parallelism) that appears to be suitable to the type of pro-
cessing required to cycle through constraints and domain values during consistency checking and
propagation. We describe an implementation of a constraint solver capable of hybrid propaga-
tions (i.e., alternating CPU and GPU), and demonstrate the potential for competitiveness against
sequential implementations.

The choice of SIMT parallelism has two driving motivations. First of all, it is our belief that
this form of parallelism is suitable to the type of processing that constraints are subjected to
during consistency checking. Second, SIMT is the style of parallelism that is natively supported by
moderns GPUs which provide hundreds of computing cores at an affordable cost. Exploiting the
parallelism offered by GPUs is not trivial—the cores are often significantly slower than CPU cores,
they impose restrictions on branching, and provide a complex memory hierarchy with differences
in speed, size, and concurrency of accesses.

In this chapter we propose a methodology to map constraints, variables, and domain elements to
threads running on GPU cores, thus enabling the concurrent analysis of arc and bound-consistency
and removal of inconsistent domain values. The methodology is implemented in an experimental
solver, and shown to produce performance enhancements even in its simple and unoptimized form.
The prototype demonstrates also the strengths and weaknesses of GPU parallelism in constraint
solving.

5.1 The Framework

CSP solvers (e.g., Algorithm 5) alternate labeling, and constraint propagation to reduce the set
of admissible values of the variables and possibly detect inconsistencies (see Section 2.2). Thus,
at the core of a CSP solver there is a constraint propagation engine, that repeatedly propagates
information based on the available constraints; its basic component s a function, from domains to
domains, referred to as propagator [142].

Given two n-tuples of domains D1 and D2, we say that D1 v D2 if, ∀x ∈ X, it holds that
Dx

1 ⊆ Dx
2 . A propagator f is a monotonically decreasing function: f(D) v D and f(D1) v f(D2)

whenever D1 v D2. Each constraint c ∈ C is implemented by a set of propagators prop(c) that
operate on the m-tuple of domains of the variables in scp(c). We denote by F the set of all
propagators considered. If f(D) = D′ ∧ D′ = D for all f ∈ F then D′ is a fixpoint of F . A
propagation solver i-solv for a set of propagators F and an initial domain D finds the greatest
fixpoint of F . i-solv starts its computation from a subset F0 ⊆ F of propagators and the current
domains.

The procedure i-solv (Algorithm 6) iteratively invokes the propagators until the greatest fix-
point is reached. Two general decisions have to be made in order to reach the fixpoint: (1) Which
propagators should be executed, and (2) In which order they should be executed. These decisions
are based on the notion of events: an event is a change in the domain of a variable. We distinguish
five types of events: (1) failed event : there is a variable x such that D′x = ∅. (2) empty event :

70 5. GPU-based Propagation

Algorithm 5 search(X,D,C, `)

1: if ` > |X| then
2: output D;
3: return true;
4: end if
5: for all d in Dx` do
6: D′ ← 〈Dx1 , . . . , Dx`−1 , {d}, Dx`+1 , . . . , Dx|X|〉;
7: F0 ← {prop(c) : c ∈ C ∧ x` ∈ scp(c)};
8: if i-solv(F0, D

′) ∧ search(X,D′, C, `+ 1) then
9: return true;

10: end if
11: end for
12: return false;

no event happened, i.e., D′x = Dx for all variables considered. (3) sing event : there is a vari-
able x such that |D′x| = 1. (4) bc event : there is a variable x such that minD′x > minDx or
maxD′x < maxDx. (5) dmc event : there is a variable x such that D′x ⊂ Dx. These events are
used to invoke the necessary propagators only, based on the changes to the variables’ domains that
occurred.

Algorithm 6 i-solv(Q,D)

1: D′ ← D;
2: while Q 6= ∅ do
3: for all f ∈ Q do
4: D′′ ← f(D);
5: if failed event then return false; end if
6: D ← D′′;
7: end for
8: Q← new(Q,D′, D′′);
9: end while

10: return true;

The pseudo code in Algorithm 6 is similar to the well-known AC-3 algorithm (Section 2.2): the
while loop (lines 2–9) propagates the constraints in the queue of propagators Q until no changes
happen in the domains, i.e., D is a fixpoint for the propagators invoked, or some domain is empty.
The procedure new(Q,D′, D′′) chooses the new propagators to be inserted in the queue, based
on the changes between the original domain D′ and the final domain D′′ and on the propagators
already in Q. As a side-effect, the procedure modifies the values of the calling domain variable in
the search procedure.

5.2 Parallelizing the Constraint Engine

In this section we describe our approach to GPU-based execution of the i-solv procedure presented
in Section 5.1. The corresponding pseudo-code is reported in Algorithm 7.

Our model encodes three different types of parallelism for constraint propagation. Recall that
constraint propagation is monotonic, therefore the order in which the data is analyzed does not
influence the result (while it might affect the number of operations performed to reach the fixpoint).

Constraints: Given a set C of constraints for which propagation and consistency checks are to
be performed, a natural form of parallelism is to delegate the processing of each constraint
c ∈ C to a different parallel computation. In particular, it is convenient to map a block of
threads (Bc) to the handling of each c, in order to exploit the various parallel GPU’s SMs.

5.2. Parallelizing the Constraint Engine 71

A kernel with a number of blocks of the size of the current constraint queue C is invoked.
Up to 232 blocks can be used on NVIDIA 2.x cards.

Variables: A second level of parallelism is applied to the processing of a constraint c assigned to a
block Bc. Domain reductions for the variables involved in the constraint (namely x ∈ scp(c))
can be performed in a parallel fashion. In particular, each variable can be handled by a
different thread that executes the domain filtering. This level of parallelization is suitable
to global constraints, such as element, inverse, or table constraint—while it would not bring
benefit to constraints that admit efficient propagation algorithms.

CPU and GPU: Host and device are capable of independent and parallel work, that can be syn-
chronized by specific programming constructs. We designed a third level of parallelism for
constraint propagation, by partitioning the set of propagators in two queues: one to be pro-
cessed by the CPU and another one by the GPU. Constraints with efficient propagators (e.g.
small scope), are executed on the host, while the others are delegated to the GPU. During
the evolution of the propagation, exchanges of information between host and device ensure
to reach the fixpoint faster.

Let us describe the main components of Algorithm 7.

Algorithm 7 i-solv(F0, D)

1: T ←max{|scp(c)| : c ∈ C};
2: 〈Qhost,Qdev 〉 ← split(F0);
3: while Qhost ∪Qdev 6= ∅ do
4: if Qdev 6= ∅ then
5: cudaMemcpy(Ddev, D);
6: gpu propagate<<< |Qdev|, T >>> (Qdev, Ddev);
7: cudaMemcpy(D′, Ddev);
8: if failed event then return false; end if
9: end if

10: if Qhost 6= ∅ then
11: for f ∈ Qhost do
12: D′′ ← cpu propagate(f,D);
13: if failed event then return false; end if
14: end for
15: end if
16: Daux ← D;D ← D′ ∩D′′;
17: 〈Qhost,Qdev 〉 ← split(props(D,Daux,Qhost ∪Qdev));
18: end while
19: return true;

At each invocation of the i-solv procedure, the set of initial propagators F0 is split between
host and device by the function split that initializes the queues of constraints Qhost and Qdev

(host and device constraints), based on the type of constraints to be propagated in line 2. The
default distribution, based uniquely on the type, can be changed by the split function according
to two internal thresholds: (1) If the number of CPU-propagators is higher than a given upper
bound, they are all moved to Qdev; (2) If the number of GPU-propagators is lower than a given
lower bound, they are moved to Qhost.

By varying these bounds, it is possible to force the computation completely on the CPU (huge
lower bound) or completely on the GPU (upper bound = 0). These bounds are used to handle the
cases where a large number of efficient propagators are assigned to the CPU, while they could take
advantage of parallel propagation or, vice-versa, very few expensive propagators are assigned to
the GPU, where the time required by memory transactions between host and device would likely
offset the advantages of a parallel propagation. The only exception to these rules is for complex
constraints (such as the table constraint) that are always delegated to the GPU.

72 5. GPU-based Propagation

Every loop iteration analyzes and modifies the propagators in Qhost and in Qdev. If Qdev

is not empty, parallel propagation is performed by invoking the kernel gpu propagate (line 6),
with as many blocks as the size of Qdev, and as many threads per block as the maximum scope
size among all constraints. The kernel function gpu propagate is sketched in Algorithm 8 and
explained later. If Qhost is not empty sequential propagation is performed by invoking the function
cpu propagate (line 12). If both propagations succeed, the new states D′ and D′′, produced
respectively by the GPU and the CPU, are merged (line 16) and the function props() determines
the minimal sets of propagators that are not at their fixpoint for the domain D (line 17). The
function props() is based on the notion of events. It calculates the events based on status Daux

of the previous iteration and the current status D (evts(D,Daux)), and updates the queue of
propagators accordingly:

props(D,Daux, Q) = {f ∈ F : evt set(f) ∩ evts(D,Daux) 6= ∅} \ fix(Q,D)
where the set evt set(f) is the set of events related to the propagator f , and fix(Q,D) = {f ∈
Q : f(D) = D}. This set of events is computed by analyzing the differences between D and Daux.

Algorithm 8 gpu propagate(Q,D)

1: c id← Q[blockIdx];
2: get propagators[get type(c id)](c id,D);

Let us briefly discuss Algorithm 8. This kernel invokes a propagator per block. The identifier
of the block (blockIdx) is used as index on the queue Q to retrieve the identifier c id of the
constraint to propagate. The function get propagators returns a pointer to the device function
that implements the (set of) propagators for the constraint c indexed by its type get type(c id).
The constraint identifier c id is also used by the propagator to identify the scope and any parameters
of the constraint to propagate. The relationships between constraints and variables (constraint
graph) is stored in the device memory, to limit the information exchange between CPU and GPU. A
failed event is generated when there is an empty domain. If this is the case, then the propagation
will fail and the i-solve procedure will return false; this will cause the search to backtrack (line
9).

The propagation on the host is similar; the kernel invocation is replaced by a for loop that
iterates over all the propagators in Qhost (lines 12-15). Let us note that, differently from the prop-
agation on the device, the failed event is checked every time a propagator has been considered.
Let us discuss some details related to the CPU and GPU implementations of these algorithms.

5.2.1 Domain representation

Domains are represented using bit-masks stored in k unsigned int 32-bit variables. More precisely,
we restrict the domains of the variables to subsets of {0, . . . , 32k − 1}, therefore representing each

domain D as
∑32k−1
i=0 2ibi, where if i ∈ D then bi = 1, else bi = 0. Negative numbers can be

implemented using an appropriate offset value. Three extra variables are used: two for storing the
domain bounds (minD and maxD) and one for storing the current event associated to D. We
denote with M = k + 3 the number of variables used. For instance, for storing domains included
in [0..927] we use M = 32 unsigned int variables.

5.2.2 State of the computation

The state of the computation at every node of the search tree is represented by a vector of M · |V |
where M is as described above. This representation of the status reduces the total number of
accesses to the global memory, since every consecutive 32 domain values are grouped together in
a single integer value. The choice of M as a multiple of 32 integers allows us to take advantage of
the device cache, since global memory accesses are cached and served as part of 128-byte memory
transactions. Moreover, using the same array of data for both the bit-mask and the domain bounds

5.2. Parallelizing the Constraint Engine 73

increases the coalesced memory accesses, i.e., the accesses to the global memory are coalesced for
contiguous locations in global memory, increasing access performance.

5.2.3 Data transfers

The memory dataflow is designed in order to optimize memory throughput. Since applications
should strive to minimize data transfers between the host and the device (i.e., data transfers with
low bandwidth), at each parallel propagation step we transfer the minimum information needed
to represent the current state in the search tree. Namely, we copy into the global memory of the
GPU the previous decisions performed in the current exploration of the search tree, and only the
domains of the variables that have not been assigned yet. These domains still ensure a correct
execution of the propagation algorithm, as we are interested in reducing only the domains of the
variables that have not been labeled yet. In order to allow concurrent computations on the host
and the device, every cudaMemcpy is performed as an asynchronous data transfer. A call to
the CUDA function cudaDeviceSynchronize(), used to synchronize the host and the device, is
requested only when the CPU has finished its sequential propagation.

5.2.4 MiniZinc constraints encoding

In this work we considered the finite domain constraints that are available in the MiniZinc/FlatZinc
modeling language [120].

MiniZinc is a medium-level constraint modelling language. MiniZinc allows one to express most
CSPs/COPs with relatively easy, but is low-level enough that it can be interfaced easily to different
(existing) backend solvers. This is done by transforming the constraint problem expressed using
MiniZinc syntax into a FlatZinc model. FlatZinc models consist of variable declaration, constraint
definitions and a definition of the objective function if the problem is an optimization problem.
The translation from MiniZinc to FlatZinc can be specialized by the backend solvers in order to
control what form of constraints end up in. For example, MiniZinc allows the specification of global
constraint by decomposition.

A MiniZinc problem specification has two parts: (1) the model, which describes the structure
of a class problem; and (2) the data, which specifies one particular problem within this class. The
pairing of a model with a particular data set is a model instance.

Example 5.2.1 The n-Queens problem can be modelled in MiniZinc as follows:

int: n;

array[1..n] of var 1..n: queens;

constraint all_different(queens);

constraint all_different([queens[i]+i | i in 1..n]) :: domain;

constraint all_different([queens[i]-i | i in 1..n]) :: domain;

solve satisfy;

The all different constraint is defined as:

all different(x1, . . . , xn) = {(d1, . . . , dn) | di ∈ Dxi , di 6= dj for i 6= j}

where x1, . . . , xn are variables with respective finite domains Dx1 , . . . , Dxn .
Given n = 20, the above MiniZinc model is then translated in the following corresponding

FlatZinc model:

array [1..20] of var 1..20: queens;

constraint int_lin_ne([1, -1], [queens[1], queens[2]], -1);

constraint int_lin_ne([1, -1], [queens[1], queens[2]], 1);

...

74 5. GPU-based Propagation

constraint int_ne(queens[1], queens[2]);

constraint int_ne(queens[1], queens[3]);

...

solve satisfy;

Given a MiniZinc model, we translate it and produce an input for our solver in three steps:

1. We read the MiniZinc file to identify the global constraints being used;

2. We translate the model into a FlatZinc model without considering the global constraints (we
use the compiler available in the MiniZinc distribution);

3. The FlatZinc translation is given as input to a parser that produces the input for the solver.

5.2.5 Propagators

We have implemented the propagators for the FlatZinc constraints plus specific propagators for
some global constraints that take advantage of GPU parallelism. As described earlier, every prop-
agator is implemented as a specific device function invoked by a single block. For example, let us
consider an all different constraint c on the variables x1, . . . , xn, naively encoded as a quadratic
number of binary 6= constraints. It can be implemented by a set of n propagators p1, . . . , pn,
such that the propagator pi takes care of the constraints xi 6= xj where j 6= i (see Algorithm 9).
The propagator is typically activated for one i at a time. A sequential implementation of this
propagator requires time O(n), while the parallel version requires O(1).

Algorithm 9 pi(c id,D)

1: xi ← scp(c id)[i];
2: label← min Dxi ; {min Dxi = max Dxi since xi is the current labeled variable}
3: n← scp(c id).size(); {Constraints information on device global memory}
4: if threadIdx < n ∧ threadIdx 6= i then
5: temp← scp(c id)[threadIdx];
6: Dtemp[label]← 0;
7: end if

Some other constraints require more than one block to fully exploit the parallel computation.
This is the case, for example, of the table constraint (see Sec. 5.3). To handle these cases, we
modified Algorithm 7 in order to further split the queue Qdev in two queues: one for constraints
that are propagated using one block per propagator, and one for constraints that use more than
one block. This information is stored in a lookup table, accessed any time the constraint queue
must be filled with the current constraints to propagate. The solver first runs the propagators for
the constraints that require one block per constraint in order to find possible inconsistencies. If no
inconsistency is found, the solver runs the propagators for the constraints that require more than
one block (one kernel call per constraint).

5.3 Results

We experimentally evaluated our solver using several classical benchmarks. Benchmarks are en-
coded in MiniZinc and compiled automatically by the solver. In particular, we compare the
performance of our solver (in terms of execution time) with two state-of-the-art solvers, namely
Gecode [62] and JaCoP [82]. Our solver does not include advanced search strategies at this time—
therefore, for a fair comparison, we use Gecode and JaCoP with a naive “leftmost” strategy with
increasing value assignment. In order to measure parallel performance, we analyze the speed-ups
and limitations of the GPU version against a purely CPU execution of our code—as mentioned

5.3. Results 75

earlier, this can be realized by modifying the bounds used to manage the constraint queues. Thus,
while the first set of comparisons gives us an idea about the baseline performance of our core solver
(including an indication of the overhead introduced to support parallelism), the second set of data
measures the improvements gained by using parallelism. We have aimed at creating a core solver
that is efficient and competitive with the state-of-the-art in constraint solving, containing overhead
to the minimum. All tests have been performed on the following hardware: the Host is an AMD
Opteron 270, 2.01GHz, RAM 4GB, while the Device is an NVIDIA GeForce GTS 450, 192 cores
(4MP), Processor Clock 1.566GHz, OS Linux.

5.3.1 Comparison with Gecode and JaCoP

We start by evaluating the performance of our solver w.r.t. the solvers Gecode and JaCoP on
some classical benchmarks, specifically n-Queens, Schur (numbers 1, . . . , N in B blocks), and the
propagation stress benchmarks (see, e.g., the MiniZinc benchmarks folder [120]). Let us remark that
the all different constraints is implemented in a “quadratic way” in all these problem instances—
this explains the relatively slow running times for n-Queens. As expected, there are instances
that better fit one solver, and other instances that better fit others (see Tables 5.1, 5.2, and 5.3—
running times in seconds). We report the times (sec.) for the sequential (CPU column) and the
parallel version of our solver (GPU column). For this experiment, let us focus on the GPU column
(the CPU column is used in the following experiments). or a fair comparison, we modified the
hybrid and adaptive recomputation parameters of Gecode. In particular we switched off cloning
(i.e., the option that allows the solver to store search nodes during the solving process instead of
recomputing them to speed up backtracking) by setting the value cd (commit distance) greater
than the expected depth of the search tree.

Let us observe that the solver we are proposing is, on average, comparable with the state-of-
the-art.

N CPU GPU Gecode JaCoP
24 6.273 9.699 7.094 47.59
26 5.975 8.773 7.438 47.55
28 50.88 68.47 66.88 442.6
30 930.3 1278 1407 9600

Table 5.1: Comparison between i-solv (sequential (CPU) and parallel (GPU) versions), Gecode,
and JaCoP for the n-Queens benchmarks

N B CPU GPU Gecode JaCoP
40 4 88.59 84.75 19.02 2.570
41 4 92.92 90.71 19.54 2.610
42 4 97.03 95.41 20.54 2.700
43 4 108.4 98.75 21.35 2.850

Table 5.2: Comparison between i-solv (sequential (CPU) and parallel (GPU) versions), Gecode,
and JaCoP for the Schur benchmark

5.3.2 Comparing GPU vs CPU

In this section we compare the GPU parallel version of the solver w.r.t. a purely sequential version.
The core of the propagators are implemented in the same way (i.e., they use the same C encoding).
The main drawbacks of the GPU computations are primarily related to data transfers, due to the
GPU memory latency and coalesced access patterns, and to the difference between the GPU clock
and the CPU clock.

76 5. GPU-based Propagation

k n m CPU GPU Gecode JaCoP
10 20 200 0.043 0.053 0.696 2.550
10 20 300 0.068 0.082 1.740 4.730
10 20 400 0.175 0.159 3.155 8.460
10 20 500 0.339 0.306 4.968 13.94

Table 5.3: Comparison between i-solv (sequential (CPU) and parallel (GPU) versions), Gecode,
and JaCoP for the propagation stress benchmark.

Table 5.1, Table 5.2, and Table 5.3 show that the running times are comparable for the se-
quential and parallel executions. Similar considerations hold for other “small” instances. We used
the upper bound (UB) parameter to move constraints from the host queue to the device queue.
UB is calculated empirically, and it is automatically set by the solver in a preprocessing step, by
considering the average numbers of global memory accesses w.r.t. the type of propagators involved
in the model. For example, if there is an average of 3 memory accesses for each propagator, and
each propagator requires O(1) time, then the upper bound will be set to at least 900, since each
global memory access requires about 300 clock cycles. Table 5.4 shows how the UB affects the
execution time on the Golomb ruler problem for a ruler of 20 integers. Notice that the solver with
an appropriate upper bound performs better than both the CPU and the GPU without upper
bound (UB = 0, all constraints propagated on device). The model comprise both O(1) and O(n)
propagators.

CPU UB = 0 UB = 100 UB = 500 UB = 1000 UB = 1500 UB = 2000
266.4 223.4 216.4 214.2 210.4 207.8 208.2

Table 5.4: Influence of the upper bound parameter on the Golomb ruler problem.

Significant performance improvements emerge when more complex constraints are considered.
As explained in Section 5.2, the GPU is delegated to large sets of non trivial propagators. Using
the CUDA framework, the CPU and the GPU can execute concurrently, since the kernels and the
memory copy operations between host and device can be performed asynchronously. Let us focus
on two “expensive” constraints, namely the inverse and the combinatorial table constraint.

5.3.3 The inverse constraint

This constraint ties two arrays of variables using the global inverse property. Given two lists
X = [x1, . . . , xn] and Y = [y1, . . . , yn] of integer variables, where Dxi = Dyi = [1..n], the constraint
inverse(X,Y) holds iff (∀i ∈ [1..n])(∀j ∈ [1..n])(xi = j ↔ yj = i). The FlatZinc implementation of
this constraint uses n2 Boolean variables and 2n2 reified equality constraints:∧

i,j xi = j ↔ Bij ∧
∧
i,j yj = i↔ Bij

The GPU version of this constraint is implemented by 2n propagators. Namely, n propagators are
used for the “→” (resp., “←”) direction of the constraint, considering the labeling of one variable
in X (resp., in Y). Since we expand the relation xi = j ↔ yj = i either on the left or the right side
depending on the labeled variable, we do not need to explicitly use the Boolean variables Bij to
link the binary equality constraints. These constraints are propagated by n threads. For example,
let us assume that x1 = 2 after the labeling of x1; the constraint engine invokes the propagator
inverse(x1, Y) where the thread whose threadIdx = 2 propagates the constraint y2 = 1 (i.e, B12 =
true), while the other threads propagate the constraints yi 6= 1, where i ∈ {1, 3, 4, . . . , n− 1, n}.

Table 5.5 compares the sequential and the parallel implementations of the inverse constraints,
by increasing the number n of variables in its scope.

For n = 100 there is a poor speedup, since the CPU cores are faster than the GPU cores and
the instance of the problem is small. The speedup increases for bigger instances (i.e., n > 200)

5.3. Results 77

n CPU GPU Speedup
100 0.030 0.026 1.15
250 0.338 0.152 2.22
500 2.456 0.744 3.30
750 7.855 2.142 3.66

Table 5.5: Time comparison for the inverse constraint.

where the parallel computations offset the difference of speed between CPU and GPU cores. We
have verified that the FlatZinc encoding of the inverse constraint is sensibly slower; for instance,
if n = 100, the CPU takes time 3.583 seconds, while the GPU 3.334 seconds.

The inverse constraint is employed in several encodings, such as the black hole problem, and
it is also used to create the dual models of problems.

5.3.4 The table constraint

A table constraint is an extensional constraint defined by explicitly listing (a set of n) m-tuples of
values that are either allowed (positive table constraint) of disallowed (negative table constraint)
for the variables in its scope. Table constraints arise naturally in configuration problems where
they represent available combinations of options. For some applications, compatibility between
resources, e.g., persons or machines, can be expressed by tables. Tabular data may also come from
databases: the results of database queries are sometimes expressed as tables that have large arity.

A table constraint c represented by a n×m matrix and the Generalized Arc Consistency (GAC)
[135] is maintained through propagation. Precisely, focusing on a variable xi ∈ {x1, . . . , xm} =
scp(c) a support for all the values in Dxi is searched. This is realized by iterating over the n
allowed tuples until a valid one is found. This algorithm ensures consistency in time O(nm) (a
faster, but more complex, algorithm is presented in [100]).

Using the GPU, it is possible to reduce this time to (parallel) time O(1), by performing the
GAC test as follows: we assign each row to a kernel block, and each column to a different thread
within the block. For table constraints with scope size larger than 1024, we split the computation
among multiple kernels. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, thread tij checks whether the value
contained in the cell cij is valid w.r.t. the domain Dxj . The domains of the variables involved in
the constraint are then replaced with the (new) domains, containing only those values that still
might lead to a solution, as determined by each block.

We impose a specific ordering among propagated constraints: we first propagate binary con-
straints and constraints that have a fast propagator, that may eventually lead to a failure; more
expensive propagators are executed last.

Table 5.6 compares the times for the propagation of the table constraint varying the number
of rows n, the number of columns m, and the size of the domains of the variables. The tables are
filled with random values, where |D| is the size of the domain; note that larger domains produce
fewer valid tuples after the labeling of a variable involved in the constraint.

n×m | D | CPU GPU Speedup
100× 100 2 0.002 0.001 2.00
250× 250 2 0.007 0.003 2.30
500× 500 2 0.026 0.010 2.60

n×m | D | CPU GPU Speedup
100× 100 50 0.001 0.001 1.00
250× 250 50 0.003 0.001 3.00
500× 500 50 0.013 0.004 3.25

Table 5.6: Time comparison for the table constraint with random values.

5.3.5 Examples containing table and inverse constraints

Three-barrels problem. is a planning problem, where the state of the world is represented by
three barrels of wine, whose capacities are n (even number), n/2 + 1, and n/2 − 1, respectively.

78 5. GPU-based Propagation

At the beginning, the largest barrel is full of wine, while the other two are empty. The goal is to
reach a state in which the two largest barrels contain the same amount of wine. Moreover, the only
admissible action is to pour wine from one barrel to another, until the latter is full or the former
is empty. We encoded this problem as a decision problem, by imposing an upper bound ` on the
number of actions and evaluating whether the goal state can be reached in ` steps. In this setting,
we have 3(` + 1) variables, with domains {1, . . . , n}, representing the sequence of states, and `
variables with domains {0, . . . , 5}, representing the 6 possible “pouring” actions. The labeling is
done on the action variables, and ` table constraints tie the ith state with the successor i + 1th

state. Table 5.8 (left) shows the results for the Three-barrels problem considering a number of
actions ` equal to n, that was experimentally found to be the length of the shortest successful
plan. The speedup is slowly increasing due to the size of the tables (r × 7, with r proportional to
n) and the number of valid rows at each labeling (at most 6 given the current state), that reduce
the propagation time to O(r).

Black-hole is a card game problem derived from [64]. A MiniZinc model is also present in the
benchmark folder of the MiniZinc distribution [120], using both the global constraints inverse and
table. The former is used to relate card values and positions in the sequence, while the latter is
used to impose matching constraints among consecutive cards. The “<” (less than) constraints
impose an order between played cards, and are always propagated on the host. Table 5.8 (right)
shows the results for the Black-hole game problem. Since the game is devised for 52 cards, the
set of order constraints for instances 104 and 208 are artificially introduced. The table shows an
increasing speedup. The GPU is faster even on small instances, since the two expensive constraints
are propagated in parallel on the GPU.

Three-Barrels Problem

n CPU GPU Speedup
100 176.5 160.8 1.09
120 364.9 324.3 1.12
140 679.6 588.8 1.15

Black-hole Problem

n. cards CPU GPU Speedup
52 7.637 7.694 0.99
104 68.14 51.08 1.33
208 73.77 42.66 1.72

Table 5.7: Time comparison for the Three-barrels problem and the Black-hole game

Positive table constraint benchmarks The following benchmark problems are defined using
only positive table constraints.1. They include some well-known problems, such as the crossword
game, the Langford problem, several synthetic problems, and some other real-world problems, such
as the modified Renault problem. A speedup of at least 2 is obtained in all the problem instances,
showing that the use of the GPU pays off on large instances and real problems.

Instance CPU GPU Speedup Instance CPU GPU Speedup

CW-m1c-lex-vg4-6 0.015 0.005 3.00 langford-2-50 44.06 15.16 2.94

CW-m1c-uk-vg16-20 1.488 0.225 6.61 ModRen 0 0.381 0.154 2.74

CW-m1c-lex-vg7-7 209.4 43.87 4.77 ModRen 49 0.317 0.117 2.74

langford-2-40 136.4 46.39 2.90 RD k5 n10 d10 m15 0.138 0.053 2.60

Table 5.8: Positive table constraint benchmarks.

1These benchmarks can be downloaded from http://becool.info.ucl.ac.be/resources/

positive-table-constraints-benchmarks

5.4. Summary 79

5.4 Summary

In this chapter, we presented a feasibility study exploring the potential for exploitation of fine-
grained GPU-level parallelism from the process of constraint propagation. The investigation has
been grounded in a prototype (with competitive performance with the state-of-the-art), demon-
strating the potential for enhanced performance, especially in the context of complex global con-
straints. This is not an easy task, and the speedups proposed are in-line with results observed for
parallelization of other classes of problems on GPUs.

Let us conclude with a final observation: the overall strategy for handling constraint propaga-
tion reported in Algorithm 6 is designed for efficient sequential implementation, and indeed is at
the core of the state-of-the-art constraint solvers. Alternative schemes (e.g., AC-3), that can be
found in several other implementations, provide a lower level of sequential performance, but they
are also more amenable for GPU-level parallelization. Unfortunately, the difference in sequential
performance effectively defeats the advantages gained from parallelism.

80 5. GPU-based Propagation

6
GPU-based Search

Constraint programming as declarative approach allows one to model a broad class of optimization
problems with ease. These problems are often characterized by huge search spaces (e.g., [22])
and heterogeneous constraints. In this case, incomplete search strategies (e.g., local search) are
preferred w.r.t. exact approaches that require prohibitive time to find an optimal solution.

In this chapter, we propose the design and implementation of a novel constraint solver that
exploits parallel Local Search (LS) using GPU architectures to solve constraint optimization prob-
lems. The optimization process is performed in parallel on multiple large promising regions of
the search space, with the aim of improving the quality of the current solution. The local search
model pursued is a variant of Large Neighborhood Search (LNS) (see Section 2.6). LNS is a local
search techniques characterized by an alternation of destroy and repair methods. A solution is
partially destroyed and an exploration of its (large) neighborhood is performed until the solution
is repaired with a new one. Each neighborhood is explored using local search strategies and the
best neighborhood (i.e, the one that better improves the quality of the solution) is selected to
update the variables accordingly. The use of GPUs allows us to speed-up this search process and
represents an alternative way to enhance performance of constraint solvers. In this chapter we
present three main contributions on the current state-of-the-art:

1. Novel design and implementation of a constraint solver performing parallel search. Unlike
the traditional approaches to parallelism, we take advantage of the computational power of
GPUs for solving any Constraint Optimization Problem expressed as a MiniZinc model. To
the best of our knowledge this is the first general constraint solver system that uses GPU to
perform parallel local search.

2. A general framework that exploits Single-Instruction Multiple-Threads (SIMT) parallelism to
speed-up local search strategies. We will present six different local search strategies that can
be used to explore in parallel multiple large neighborhoods. These strategies are implemented
by making very localized changes in the definition of a neighborhood. Hence, the user
needs only to specify the structure of a neighborhood without modifying the structure of
the underlying parallel computation.

3. A hybrid method for solving constraint optimization problems that uses local search strate-
gies on large neighborhoods of variables. Usually, large neighborhood are explored using
standard CP techniques. Instead, we present an approach based on local search to find the
neighborhood that improves the objective function the most among a large set of different
neighborhoods.

6.1 Solver Design and Implementation

6.1.1 Structure of the Solver

The structure of the constraint solver is based on the general framework described in Chapter 5—
where a GPU architecture is used to perform parallel constraint propagation within a traditional

82 6. GPU-based Search

event-driven constraint propagation engine [142]. We adopt this design to compute a first feasi-
ble solution to be successively improved via LNS (an initial solution as input, if known, can be
specified).

Domains and Constraints. Variable’s domains are represented using bit-masks stored in `
unsigned int 32-bit variables (for a suitable `), while the status of the computation at every node
of the search tree is represented by a vector of bit-masks corresponding to the current domains of
all the variables in the model (see Section 5.2).

The supported constraints correspond to the set of finite domain constraints that are available
in the MiniZinc/FlatZinc modeling language [120]. We modify the solve directive of FlatZinc to
specify the local search strategy to be used during the neighborhood exploration.

Variables. The solver manages two types of variables: (1) Standard Finite Domain (FD) vari-
ables and (2) Auxiliary (Aux) variables. Aux variables are introduced to represent FlatZinc
intermediate variables and they are used to compute the objective function. Their domains are
initially set to all allowed integer values. We denote with xauxfobj the Aux variable that represents
the cost of the current solution. The search is driven by assignments of values to the FD variables
of the model. The value of Aux variables is assigned by constraint propagation.

Search strategy. After a solution s is found, a neighbor is computed using η(s), by randomly
selecting a set of variables to be “released” (i.e., unassigned). The use of a GPU architecture allows
us to concurrently explore several of these sets N1, . . . ,Nt, all of them randomly generated by η(s).
Let m be a fixed constant; we compute m initial assignments for the variables in the set Ni—these
are referred to as the (LS) starting points SPi,j (i = 1, . . . , t and j = 1, . . . ,m) and can be computed
in two ways. In the first option (random), each SPi,j is obtained by randomly choosing values from
the domains of the variables in Ni. This random assignment might not produce a solution of the
constraints. However, for problems with a high number of solutions, this choice can be an effective
LNS starting point. In the second option (CP), a random choice is performed only for the first
variable in Ni; this choice is followed by constraint propagation, in order to reduce the domains of
other variables; in turn, a random choice is made for the second variable, using its reduced domain,
and so on. If this process leads to a solution, then such solution is used as a starting point SPi,j .
Otherwise a new attempt is done. It is of course possible to implement other heuristics for the
choices of the variables and their values (e.g., first-fail, most-constrained). If the process leads to
failure for a given number of consecutive attempts, only the already computed SPi,j (if any) are
considered.

GPU mapping. A total of 128 · k (1 ≤ k ≤ 8) threads (a block) are associated to each SPi,j
belonging to the correspondent setNi. These threads will perform LS starting from SPi,j (Fig. 6.1).
The value of k depends on the architecture and it is used to split the computation within each
starting points, as described in what follows.

When all the threads end their computations—according to a given LS algorithm (see Sec.
6.2)—we select among all of them the solution σ that optimizes the value xauxfobj among all solutions
σi,j computed. This solution is compared with the previous one and, in case, σ is stored as the
new best solution found so far.

This process is repeated for h Iterative Improving (II) steps, each restarting from the best
found so far, but changing the randomly generated subsets of variables Ni. After h IIs, the process
restarts from the initial solution and is repeated for s restarts or until a given time-out limit is
reached. In the end, the best solution found during the whole search process is restored.

Example 6.1.1 The directives:
lns(50, 2, 4, 10, Gibbs, 100, 600);

solve minimize fobj;

written in the model cause the solver to select t = 2 subsets Ni, each containing 50% of the whole

6.1. Solver Design and Implementation 83

Initial
solution for X

N1 N2 Nt

SPt,1 SPt,m

128ᐧk
threads

Large
Neighborhood

Random
Starting Points

128ᐧk
threads

Figure 6.1: Parallel exploration of subsets Ni of variables. A LS strategy explores the space of Ni
in parallel from different starting points SPij .

set of variables X (randomly chosen), with m = 4 SP per subset, s = 100 restarts, and a time-out
limit of 600 sec. The solver tries to improve the value of xauxfobj in h = 10 II using Gibbs sampling
as LS strategy—see Sect. 6.2.

6.1.2 Exploiting GPU Parallelism.

Let us describe more in detail how we divide the workload among parallel blocks, i.e, the mapping
between the subsets of variables Ni and CUDA blocks. The complete set of constraints, including
those involving the auxiliary variable, and the initial domains are static entities; these are com-
municated to the GPU once at the beginning of the computation. We refer to the status as the
current content of the domains of the variables—in particular, an assigned variable has a singleton
domain. As soon as the solver finds a feasible solution, we copy the status into the global memory
of the device, as well as the t subsets of variables representing the neighborhoods to explore. The
CPU is in charge to launch the sequence of kernels with the proper number of blocks and threads.
In what follows we focus on a single II step since the process remains the same for each restart s
(the CPU stores the best solution found among all restarts). At each iterative improving step r,
0 ≤ r ≤ h, the CPU launches the kernel Kr

1 with t ·m blocks, where each block is assigned its own
SPi,j . Each block contains 128k threads, depending on the architecture (e.g., k = 4 is usually a
good choice, see Paragraph 6.1.1). A kernel of type K1 starts a local search optimization process
from each starting point in order to explore different parts of the search tree at the same time.
The current global status will be updated w.r.t. the best neighborhood selected among all.

After the kernel Kr
1 has been launched by the host, the control goes back immediately to

the CPU which calls a second kernel Kr
2 that will start the computation on GPU as soon as

Kr
1 has finished. This kernel is in charge of performing a parallel reduction on the array of

costs computed by Kr
1 . It can be the case that in some blocks, the LS strategy implemented

is unable to find a solution; in this case the corresponding value is set to ±∞ (according to
minimization/maximization). Moreover, Kr

2 updates the status with the new assignment σ of
values for the variables in the subsets N r

i that has led to the best improvement of xauxfobj.

At each II, r is incremented. If r ≤ h then the CPU will select t new subsets of variables N r+1
i

for the following cycle. Also this operation is performed asynchronously w.r.t. the GPU, i.e., the
new subsets of variables are copied to the global memory of the device by a call to an asynchronous
cudaMemcpy instruction. As a technical note, the array containing the new subsets is allocated on
the host using the so-called pinned (i.e., host-locked) memory that is necessary in order to perform
asynchronous copies between host and device.

When the time limit is reached or r > h, host and device are synchronized by a synchronous

84 6. GPU-based Search

copy of the current status from the GPU to the CPU (Fig. 6.2). If the time limit is not reached
and another restart has to be performed, the current solution is stored (if it improves the current
objective value), the objective function is relaxed, and the whole process is repeated.

Determine New
N

CUDA Async
Copy N

LNS Iterative
Improving r

Update Global
Status Copy LNS Iterative

Improving r+1

C
PU

G
PU

LaunchLaunch
K1

r K2
r

Launch
K1

r+1
Launch
K2

r+1 …

…

Costs
Large Neighborhoods

Update Global Status

New sets N

r+1
1..t

r+1
1..t

r+1
1..t

Figure 6.2: Concurrent computations between host and device.

A portion of the global memory of the GPU is reserved to store the status, the array representing
the sets N , and an array of size (1 + |N |) · t ·m of 32 bits unsigned integer, to store the assignment
and the correspondent cost for each starting point.

As anticipated above, an additional level of parallelism is exploited using the threads belonging
to the same block focused on the LS part (kernel Kr

1). Precisely, Kr
1 is launched with 128k threads

(i.e., 4k warps) per block. We use parallelism at the level of warp to avoid divergent computational
branches for threads belonging to the same warp. Divergent branches do not fit into the SIMT
model, and cause a decrease of the real parallelism achieved by the GPU.

First, all of the threads are used to speed-up the copy of the current status from the global to
the shared memory, and to restore the domains of the Aux variables. The queue of constraints
to be propagated is partitioned among warps, according to the kind of variables involved: (1)
FD variables only, (2) FD variables and one Aux variable, (3) two or more Aux variables, and
(4) xauxfobj. Since the process starts with SPi,j , the constraints of type (1) are only used to check
consistency when random option for SP is used. This is done using the first two warps (i.e.,
threads 0 . . . 64k − 1). Observe that the use of a thread per constraint might lead to divergent
computations, when threads have to check consistency of different constraints. As soon as a warp
finds an inconsistent assignment, it sets the value of the xauxfobj variable to ±∞ in the shared
memory, as well as a global flag to inform the other threads to exit. Constraints of type (2)
propagate information to the unique Aux variable involved. This can be done in parallel by the
other two warps (i.e., threads 64k . . . 128k − 1).

If no failure has been found, all threads are synchronized in order to be ready to propagate
constraints of type (3). This propagation phase requires some sequential analysis of a queue of
constraints and a fixpoint computation. To reduce the numbers of scans of this queue, we use the
following heuristic: we sort the queue in order to consider first constraints that involve variables
that are also present in constraints of type (2), and only later constraints that involve only Aux
variables. The idea is that Aux variables that are present in constraints of type (2) are already
assigned after their propagation and can propagate to the other Aux variables. We experimentally
observed that this heuristic reduces the number of scans to a single in most of the benchmarks.
We use all warps to propagate this type of constraints. In practice, we divide the queue in 4k
chunks, and we loop on these chunks until all variables are ground or an inconsistent assignment
is detected. Finally, threads are synchronized and the value of the variable xauxfobj is computed
propagating the last type of constraints. (Fig. 6.3).

6.2. Local Search Strategies 85

Figure 6.3: Thread partition within a block.

6.1.3 Some Technical Details

Since the whole process is repeated several times, some FD variables and Aux variables need to be
released. This process is done exploiting CUDA parallelism, as well. In our experiments we set k =
4, and hence we use 512 threads per blocks for splitting the constraints. The splitting is parametric
w.r.t. k A greater (or lower) number of threads is, of course, possible since kernel invocations and
splitting are parametric w.r.t. the value k. The reason behind 512 depends on the specific GPU we
are using and the number of SMs available. In particular, a larger number of threads would require
more resources on the device, leading to a slower context switch between on blocks. Experiments
allowed us to observe that for our hardware 512 threads is a good compromise between parallelism
and resources allocated to each block. However, this is a compile-time parameter that can be
changed for other platforms.

We also introduce an additional level of parallelism based on the size of the domains—suitable
to support some of the LS strategies discussed in Sect. 6.2 (e.g., ICM). These strategies may
explore the whole domain of a FD variable in order to select the best assignment. This exploration
can be done in parallel, by assigning 64k threads to the first half of the domain and 64k threads
to the second half (i.e., the queues of constrains will be spit in 64k chunks instead of 128k).

The design presented so far does not depend on the local search strategy adopted, as long as it
guarantees that each variable is assigned a value. We also require that the status does not exceed
49KB, since this is a typical limit for the shared memory of a block in the current GPUs. If the
size of the problem is greater than this threshold, we copy chunks of status into the local memory
according to the variables involved in the current queue of constraints to propagate.

6.2 Local Search Strategies

We have implemented six LS strategies for testing our framework. These strategies lead from a
solution s to s′ by repeatedly applying η on the set N of variables that can be re-assigned. After

86 6. GPU-based Search

the action, constraints consistency is checked and xauxfobj is computed. New strategies can be added
as long as they implement a function η starting from s and from a subset of variables N . We
stress that the primary purpose of the LS presented in this section is to show how these methods
can take advantage of the underlying parallel framework, more than the quality of the results they
produce. Ad-hoc LS strategies should be implemented based on the problem to solve.

1. The Random Labeling (RL) strategy randomly assigns to the variables of N values drawn
from their domains. Each thread is assigned to a variable in N and chooses a random value
invoking the random number generator provided by CUDA. This strategy might be effective
when we consider many sets N , and the COP is not very constrained. It can be repeated a
number p of times.

2. The Random Permutation (RP) strategy performs a random permutation (e.g., using Knuth’s
shuffling algorithm) of the values assigned to the variables in N in s and updates the values
according. We use only one thread to perform the (sequential) random permutation of values,
using the random number generator provided by CUDA. All threads are then synchronized
in order to check the consistency of the (random) permutation. It can be used on problems
where the domains of the variable are identical (e.g., TSP). It can be repeated p times.

3. The Two-exchange permutation (2P) strategy swaps the values of one pair of variables in N
(using one thread). The neighborhood size is n = |N |(|N |+1)

2 , and we force the number m of
starting points to be ≤ n.

4. The Gibbs Sampling (GS) strategy [17] is a simple Markov Chain Monte Carlo algorithm
commonly used to solve the maximum a-posteriori estimation problem. We use it for COPs
in the following way. Let ν be the current value of xauxfobj. The function f is defined as follows:
for each variable x in N , we choose a random candidate d ∈ Dx \ {s(x)}; then we determine

the new value ν′ of xauxfobj, and accept or reject the candidate d with probability ν′

ν . We
use one thread for selecting the random candidate while all threads are used to propagate
constraints and then check consistency. This process is repeated for p samplings steps; for p
large enough, the process converges to the a local optimum for the large neighborhood.

5. The Iterated Conditional Mode (ICM) [17] can be seen as a greedy approximation of Gibbs
sampling. The idea is to consider one variable x ∈ N at the time, and evaluate the cost
of the solution for all the assignments of x satisfying the constraints, keeping all the other
variables fixed. Then x is assigned with the value that minimize (maximize) the costs. To
speed-up this process, all values for x are evaluated in parallel, splitting the domain of Dx

between two groups of 2k warps each.

6. The Complete Exploration (CE) enumerates all the possible combination of values of the

variables in N . Given an enumeration ~d1, . . . , ~de of these values, each ~di is assigned to a
block i, and the corresponding cost function is evaluated. The assignment with the best
solution is returned. This method can be adopted when the product of the size of domain’s
variables of N is not huge.

6.3 Experiments

We implemented CPU and GPU versions of the LNS-based solver called CPU/GPU-LNS respec-
tively. We first compare the two versions of the solver. Then, we compare the GPU-LNS against
a pure CP approach in JaCoP [82], and a LNS implementation in OscaR [128]. We run our ex-
periments on a CPU AMD Opteron (TM), 2.3GHz, 132 GB memory, Linux 3.7.10-1.16-desktop
x86 64, and GPU GeForce GTX TITAN, 14 SMs, 875MHz, 6 GB global memory, CUDA 5.0 with
compute capability 3.5. In this Thesis we report only the most significant results. The interested
reader can visit http://clp.dimi.uniud.it/sw/cp-on-gpu/ for a more extensive set of tests and
benchmarks. In all tables t (|N |) denotes the number (size) of large neighbors, m the number of
SP per neighbor, times are reported in seconds, and best results are boldfaced.

6.3. Experiments 87

6.3.1 CPU vs GPU: solving CSPs

We compared CPU and GPU on randomly generated CSPs defined by 6= constraints between pairs
of variables. We used this benchmark to test the performance of GPU-LNS on finding feasible
starting points SP (see option CP, Sect. 6.1). Therefore, we used a random-generated instance of
the graph coloring problem in order to avoid any particular structure on the constraint graph that
could affect the choice of some particular neighborhoods.

Table 6.1 reports the results in seconds for a CSP consisting of 70 variables and 200 constraints.
In these experiments, SP are generated considering one variable at a time, assigning it randomly
with a value in its domain and subsequently propagating constraints to reduce domains of the
other variables. When the number of SPi,j increases, speedups of one order of magnitude w.r.t.
the sequential implementation are obtained. A high number of parallel tasks compensate both
the different speed of the GPU cores w.r.t. the CPU cores and the memory latency of the device
memory.

|N | t m CPU-LNS(s) GPU-LNS(s) Speedup

20 1 1 0.216 0.218 0.99
20 50 50 1.842 0.379 4.86
20 100 100 6.932 0.802 8.64
30 1 1 0.216 0.218 0.99
30 50 50 2.460 0.377 6.52
30 100 100 8.683 0.820 10.58

Table 6.1: CPU vs GPU: solving CSP

6.3.2 CPU vs GPU: evaluating LS strategies

CPU and GPU solvers have been compared considering the LS strategies of Sect 6.2. As benchmark
we considered a Mod ified version of the k-Coloring Problem (MKCP). The goal is to maximize the
difference of colors between adjacent nodes, i.e. max

∑
(i,j)∈E |xi−xj |, where xi (xj) represents the

color of the nodes i (j), provided pairs of adjacent nodes are constrained to be different. Here we
report the results concerning on one instance (1-Insertions 4.col from http://www.cs.hbg.

psu.edu/txn131/graphcoloring.html Other tests are available on-line.) of a graph with 67 nodes
and 232 edges, that requires 4423 Aux variables and 4655 constraints. The initial solution (value
2098 with domains of size 30) is found by a leftmost strategy with increasing value assignment (this
time has not been considered in the table). Since in this experiments our goal is just to compare
CPU and GPU times, we run tests with the same pseudo-random sequence, h = 10 and s = 0.
Results are reported in Table 6.2. For the LS and RP we considered p = 5 repetitions (for the RP
strategy we slightly modified the model transforming the coloring benchmark into a permutation
problem). Better speedups are observed for larger neighborhoods and in particular for the RL
method and the CE method which are the less demanding strategies (GPU cores receive simple
but numerous task to execute). On the other hand, the higher speedups are obtained by the CE
strategy. Using CE we considered only one neighborhood reducing its size to 2, 3 and varying the
domains’s size from 10 to 30.

6.3.3 Comparison with standard CP

In this section we evaluate the performance of the GPU-LNS solver on some Minizinc benchmarks,
comparing its results against the solutions found by the state-of-the-art CP solver JaCoP. We
present results on medium-size problems which are neither too hard to be solved with standard
CP techniques nor too small to make a local search strategy useless.

We considered the following four problems:

88 6. GPU-based Search

LS |N | t m Max CPU-LNS(s) GPU-LNS(s) Speedup

RL 20 1 1 22828 0.206 0.359 0.57
RL 20 50 50 28676 9.470 0.603 15.70
RL 20 100 100 29084 35.22 1.143 30.81
RL 30 1 1 20980 0.218 0.258 0.84
RL 30 50 50 27382 7.733 0.615 12.57
RL 30 100 100 29028 43.24 1.394 31.01

RP 20 1 1 15902 0.046 0.069 0.66
RP 20 50 50 17586 13.59 4.154 3.27
RP 20 100 100 17709 53.32 16.28 3.27
RP 30 1 1 16489 0.045 0.068 0.66
RP 30 50 50 17375 13.49 4.187 3.22
RP 30 100 100 17527 53.88 16.46 3.27

2P 10 1 1 15073 0.151 0.062 2.43
2P 10 20 20 16541 1.231 0.381 3.23
2P 10 50 50 16636 2.839 0.832 3.41
2P 20 1 1 15083 0.285 0.119 2.39
2P 20 20 20 16628 4.597 1.351 3.40
2P 20 50 50 16646 11.11 3.267 3.40

GS 10 1 1 26486 0.546 1.910 0.28
GS 10 10 10 29308 28.09 12.15 2.31
GS 10 50 50 30810 724.2 279.6 2.59
GS 30 1 1 24984 1.053 4.880 0.21
GS 30 10 10 27722 78.59 33.84 2.32
GS 30 50 50 28546 1982 747.92 2.65

ICM 5 1 1 31718 0.644 1.637 0.39
ICM 5 10 10 32204 32.23 7.650 4.21
ICM 5 20 20 32296 120.8 26.50 4.55
ICM 20 1 1 31948 0.993 2.522 0.39
ICM 20 10 10 32202 25.55 4.636 5.51
ICM 20 20 100 32384 92.68 13.26 6.98

CE 2 1 100 8004 0.692 0.324 2.13
CE 3 1 1000 9060 3.932 0.829 4.74
CE 2 1 400 17812 2.673 0.279 9.58
CE 3 1 8000 20020 43.26 1.298 33.32
CE 2 1 900 24474 3.444 0.817 4.21
CE 3 1 27000 29262 83.06 2.159 38.47

Table 6.2: MKCP benchmark using six LS strategies (maximization)

System Benchmark First Sol Best Sol(sd) Time(s)

JaCoP Transportation 6699 6640 600
JaCoP TSP 10098 6307 600
JaCoP Knapsack 7366 15547 600
JaCoP Coins grid 20302 19478 600

GPU-LNS Transporation 7600 5332 (56) 57.89
GPU-LNS TSP 13078 6140 (423) 206.7
GPU-LNS Knapsack 0 48219 (82) 6.353
GPU-LNS Coins grid 20302 16910 (0) 600

Table 6.3: Minizinc benchmarks (minimizazion problems, save Knapsack).

6.3. Experiments 89

System q First Sol Best Sol (sd) Time(s)

OscaR 15 79586 9086 (0) 63.09
OscaR 32 430 254 (0) 126.2
OscaR 64 300 212 (0) 1083

GPU-LNS 15 83270 0 (0) 0.242
GPU-LNS 32 368 199.6 (9.66) 1.125
GPU-LNS 64 254 121.6 (2.87) 2.764

Table 6.4: Quadratic Assignment Problem (minimization)

1. The Trasportation problem, with only 12 variables but the optimal solution is hard to find
using CP. The heuristics used for JaCoP is the first fail, indomain min, while for GPU-
LNS we used the RL method. We used t = 100 neighborhoods of size 3, m = 100 SP each,
and h = 500.

2. The Travelling Salesman Problem with 240 cities and some flow constraints. The heuristics
used for JaCoP is the same as above, RP strategy is used in GPU-LNS with p = 1. We use
t = 100 neighborhood of size 40, m = 100, and h = 5000.

3. The Knapsack problem. We considered instances of 100 items.1 The strategy adopted
in JaCoP is input order, indomain random, while for GPU-LNS we used the RL search
strategy, with t = 50 neighborhoods of 20 variables, m = 50, and h = 5000.

4. The Coins grid problem. We considered this problem to test our solver on a highly con-
strained problem. For this benchmark we sightly modified the LS strategy: first we set
η(s) = s, then we used CP (option 2) to generate random SPs. The strategy adopted in
JaCoP is most constrained, indomain max, while for GPU-LNS we used the RL search
strategy, with t = 300 neighborhoods of 20 variables, m = 150, and h = 50000.

Models and corresponding description are available at http://www.hakank.org/minizinc/. Ta-
ble 6.3 reports the first solution value, the best solution found (within 10 min) and the (average on
20 runs for GPU-LNS) running times. For GPU-LNS the standard deviation of the best solution
is reported. Results show effectiveness of the GPU-LNS solver.

6.3.4 Comparison with Standard LNS

We compare GPU-LNS against a standard implementation of a LNS in OscaR. OscaR is a Java
toolkit that provides libraries for modelling and solving COP using Constraint Based Local Search
[78]. We compare the two solvers on a standard benchmark used to test LNS strategies, namely
the Quadratic Assignment Problem (QAP). The description of the problem and the model used
for OscaR are available at https://bitbucket.org/oscarlib/oscar/wiki/lns. We use three
different datasets (small / medium / large sizes). OscaR is run using adaptive LNS with Restart
techniques. For each instance we try different combinations of restarts and adaptive settings;
Results for the best combination are reported in Table 7.1, as well as GPU-LNS results with the
RP strategy, h = 10, t = 50 neighborhood of size 20, and m = 50. For both systems results are
averaged on 20 runs and standard deviation of best results is reported. Standard deviations of best
solutions are reported. The GPU-LNS version of the solver outperforms OscaR (this is mainly due
to the fact that GPU-LNS considers 2500 neighborhoods at a time). We also try to compare GPU-
LNS against OscaR on the Coins problem benchmark. We started both the LNSs from the same
initial solution found by OscaR (i.e., 123460), and we used the same setting described above for
GPU-LNS. Both system reached the time-out limit with an objective value of 25036 for GPU-LNS,
and 123262 for OscaR.

1An hard instance has been generated using the generator that can be found at http://www.diku.dk/~pisinger/
generator.

90 6. GPU-based Search

The presented results show speedups that increase with the size of the problems. However, it
is not always easy to estimate the quality of the parallelization and, in particular, to obtain linear
speedup w.r.t. GPU cores. A simple formula such as number of cores · GPU speed/CPU speed
returns an unreachable upper bound, since the GPU architecture, bank conflicts, memory speed,
GPU-CPU transfer time are major bottlenecks. These factors must be considered and different
parameters (e.g., the number of threads per block) must be tuned according to the available
architecture.

6.4 Summary

In this chapter, we presented the design of a constraint solver that uses GPU computation to
perform both parallel constraint propagation and parallel search. Large neighborhoods are explored
using LS techniques with the goal of improving the current solution evaluating a large set of
neighborhoods at a time. The choice of local search strategies is twofold: first, incomplete but fast
methods are usually preferred for optimization problems where the search space is very large but
not highly constrained. Second, with very few changes, the parallel framework adopted for a local
search method can be easily generalized to be suitable for many different local search strategies,
requiring minimal parameter tuning. Our experimental results show that the solver implemented
on GPU outperforms its sequential version. Good results are also obtained by comparing the solver
against standard CP and LNS. Moreover, we showed that many LS strategies can be encoded on
our framework by changing few parameters, without worrying about how it is actually performed
the underlying parallel computation.

7
GPU & DCOPs

In this chapter we turn our attention to Distribute Constraint Optimization Problems (DCOPs) to
show that the use of GPU computation can lead to speed ups even in a distributed environment.

In particular, we introduce a general framework that uses Markov Chain Monte Carlo (MCMC)
sampling algorithms to solve DCOPs, exploring the use of GPUs to parallelize the sampling process.
This framework, which we call GPU-based Distributed MCMC (DMCMC), emulates the compu-
tation and communication operations of DPOP [130], except that the computation of utilities is
done using MCMC sampling algorithms on GPUs. We demonstrate the generality of this frame-
work using the Gibbs [63] and Metropolis-Hastings [17] algorithms, two commonly used MCMC
algorithms, on meeting scheduling and smart grid network problem domains.

In Section 4.3 we presented some notions about DCOPs. In what follows we review some
complementary background about this formalism extending this formalism to the aspects needed
to fully understand the the algorithms presented in this chapter.

7.1 Background

7.1.1 DCOPs

A Distributed Constraint Optimization Problem (DCOP) [130, 176] is defined by 〈X ,D,F ,A, α〉,
where X = {x1, . . . , xn} is a set of variables; D = {D1, . . . , Dn} is a set of finite domains, where Di

is the domain of variable xi; F = {f1, . . . , fm} is a set of utility functions (also called constraints),
where each k-ary utility function fi : Di1 ×Di2 × . . .×Dik 7→ R ∪ {−∞,+∞} specifies the utility
of each combination of values of variables in its scope (i.e., xi1 , . . . , xik); A = {a1, . . . , ap} is a set
of agents and α : X → A maps each variable to one agent. Let us observe that F corresponds to
the set of constraints C presented in Section 2.2.

We use the notations Si to refer to the set of variables in the scope of function fi, Li to refer
to the set of (local) variables owned by agent ai, and Bi to refer to the set of (boundary) variables
owned by agent ai that share constraints with variables owned by another agent. A solution is a
value assignment for a subset of variables. Its utility is the sum of the evaluations of all utility
functions on it. A solution is complete iff it is a value assignment for all variables. The goal is to
find a utility-maximal complete solution.

A constraint graph visualizes a DCOP instance, where nodes in the graph correspond to vari-
ables in the DCOP and edges connect pairs of variables in the scope of the same utility function. A
DFS pseudo-tree arrangement has the same nodes and edges as the constraint graph and satisfies
two conditions: (i) there is a subset of edges, called tree edges, that form a rooted tree, and (ii) two
variables in the scope of the same utility function appear in the same branch of the tree. The other
edges are called backedges. Tree edges connect parent-child nodes, while backedges connect a node
with its pseudo-parents and its pseudo-children.

We use the notations Ci to refer to the set of child agents of agent ai in the pseudo-tree, Pi the
parent agent of agent ai in the pseudo-tree, and sep(ai) to refer to the separator of agent ai, which
is the set of variables owned by its ancestor agents that are constrained with variables owned by the
agent or by its descendant agents. Figure 7.1(a) shows the constraint graph of an example DCOP

92 7. GPU & DCOPs

 a2 x3 x4

 a3 x5 x6

 a1 x1 x2 x1

x2

x3

x4

x5

x6

Figure 7.1: Example DCOP - Constraint graph (left) and Pseudo-Tree (right).

xi xj Utilities
0 0 20
0 1 8
1 0 10
1 1 3

Table 7.1: Example DCOP - Utilities.

with 3 agents a1, a2, and a3, where L1 = {x1, x2}, L2 = {x3, x4}, L3 = {x5, x6}, B1 = {x2},
B2 = {x4}, and B3 = {x6}. Each variable can be assigned the values 0 or 1. Figure 7.1(b) shows
one possible pseudo-tree (the dotted line is a backedge). Figure 7.1(c) shows the utilities of all 6
utility functions.

7.1.2 DPOP

The Distributed Pseudo-tree Optimization Procedure (DPOP) [130] is a complete DCOP algorithm
with the following three phases:

• Pseudo-tree Generation Phase: DPOP calls existing distributed pseudo-tree construc-
tion methods [72] to build a pseudo-tree.

• UTIL Propagation Phase: Each agent, starting from the leaves of the pseudo-tree, com-
putes the optimal sum of utilities in its subtree for each value combination of variables in its
separator. The agent does so by summing the utilities of its constraints with the variables
in its separator and the utilities in the UTIL messages received from its child agents, and
then projecting out its own variables by optimizing over them. In our example problem,
agent a3 computes the optimal utility for each value combination of variables x2 and x4 (see
Table 7.2(a)), and sends the utilities to its parent agent a2 in a UTIL message. Agent a2

then computes the optimal utility for each value of the variable x2 (see Table 7.2(b)), and
sends the utilities to its parent agent a1 in a UTIL message. Finally, agent a1 computes the
optimal utility of the entire problem (see Table 7.2(c)).

• VALUE Propagation Phase: Each agent, starting from the root of the pseudo-tree,
determines the optimal value for its variables. The root agent does so by choosing the values
of its variables from its UTIL computations.

7.1. Background 93

x2 x4 Utilities
0 0 max(60,24,50,19) = 60
0 1 max(50,19,40,14) = 50
1 0 max(50,19,40,14) = 50
1 1 max(40,14,30, 9) = 40

(a) Computations of a3

x2 Utilities
0 max(100,66,90,61) = 100
1 max(80,51,70,46) = 80

(b) Computations of a2

Utilities
max(120, 110) = 120

(c) Computations of a1

Table 7.2: Example UTIL Phase Computations

Algorithm 10 Sampling(z)

1: z(0) ← Initialize(z)
2: for t = 1 to T do
3: if use Metropolis-Hasting sampling then
4: z∗ ← Sample(q(z∗ | z(t−1)))
5: else if use Gibbs sampling then
6: for i = 1 to n do
7: zti ← Sample(1

Zπ
π̃(zi | zt1, . . . , zti−1, z

t−1
i+1 , . . . , z

t−1
n))

8: end for
9: end if

10: z(t)←
{

z∗ with p=min(1, π̃(z∗)q(z(t−1),z∗)
π̃(z(t−1))q(z∗,z(t−1))

)

z(t−1) with 1−p
11: end for

7.1.3 MCMC Sampling

Markov Chain Monte Carlo (MCMC) sampling algorithms are commonly used to solve the Maxi-
mum A Posteriori (MAP) estimation problem. [123] shows that DCOPs can be mapped to MAP
estimation problems by mapping DCOP variables to random variables, and the cost functions to
potential function. Therefore, finding the most probable assignment to all variables in a MAP
estimation problem is equivalent to finding the complete assignment that maximizes the objective
function of the DCOP (see B). Thus, MCMC algorithms can be used to solve DCOPs as well
by sampling on the corresponding MAP problem. Let us describe two commonly used MCMC
algorithm—Gibbs [63] and Metropolis-Hastings [17].

Suppose we have a joint probability distribution π(z) over n variables, with z = z1, z2, . . . , zn,
which we would like to approximate. Moreover, as it is often the case, suppose that it is easy to
evaluate π(z) for any given z up to some normalizing constant Zπ, such that: π(z) = 1

Zπ
π̃(z),

where π̃(z) can be easily computed but Zπ may be unknown or hard to evaluate. In order to
draw the samples z to be fed to π̃(·), we use a proposal distribution q(z | z(τ)), from which we can
easily generate samples, each depending on the current state z(τ) of the process. The latter can be
interpreted as saying that when the process is in the state z(τ), we can generate a new state z from
q(z | z(τ)). The proposal distribution is thus used to generate a sequence of samples z(1), z(2), . . .,
which forms a Markov chain.

Algorithm 10 shows the pseudo-code of the Metropolis-Hastings algorithm. It first initializes z(0)

to any arbitrary value the variables z1, . . . , zn (line 1). Then, it iteratively generates a candidate
z∗ for z(t) by sampling from the proposal distribution q(z∗ | z(t−1)) (line 3). The candidate sample
is then accepted with probability p defined in line 4. If the candidate sample is accepted, then
z(t) = z∗, otherwise z(t−1) is left unchanged. This process continues for a fixed number of iterations
(i.e., parameter T in Alg. 10).

94 7. GPU & DCOPs

The Gibbs sampling algorithm is a special case of the Metropolis-Hastings algorithm (lines 6-8).
Additionally, let us observe that Gibbs requires the computation of the normalizing constant Zπ
while Metropolis-Hasting does not, as the calculation of the proposal distribution does not require
that information. This is desirable when the computation of the normalizing constant becomes
prohibitive (e.g., with increasing problem dimensionality).

Algorithm 11 DMCMC(R, T)

1: Generate pseudo-tree
2: GPU-Initialize()
3: 〈M1

i , U
1
i 〉, . . . ,〈MR

i , U
R
i 〉←GPU-MCMC-Sample(R, T)

4: UTILai ← Get-Best-Sample(〈M1
i , U

1
i 〉, . . . , 〈MR

i , U
R
i 〉)

5: if Ci = ∅ then
6: UTILai ← CalcUtils()
7: Send UTIL message (ai,UTILai) to Pi
8: end if
9: Activate UTILMessageHandler(·)

10: Activate VALUEMessageHandler(·)

Algorithm 12 VALUEMessageHandler(ak,VALUEak)

1: VALUEai ← VALUEak
2: for xji ∈ Li do

3: dj∗i ← ChooseBestValue(VALUEai)
4: end for
5: for ac ∈ Ci do
6: VALUEai ← {(x

j
i , d

j∗
i) | xji ∈ sep(ac)} ∪ {(xk, d∗k) ∈ VALUEak | xk ∈ sep(ac)}

7: Send VALUE message (ai,VALUEai) to ac
8: end for

Algorithm 13 UTILMessageHandler(ak,UTILak)

1: Store UTILak
2: if received UTIL message from each child ac ∈ Ci then
3: UTILai ← CalcUtils()
4: if Pi = NULL then
5: for xji ∈ Li do

6: dj∗i ← ChooseBestValue(∅)
7: end for
8: for ac ∈ Ci do
9: VALUEai ← {(x

j
i , d

j∗
i) | xji ∈ sep(ac)}

10: Send VALUE message (ai,VALUEai) to ac
11: end for
12: else
13: Send UTIL message (ai,UTILai) to Pi
14: end if
15: end if

7.2 GPU-based Distributed MCMC Framework

Let us now describe the GPU-based Distributed MCMC (DMCMC) framework, which extends
centralized MCMC sampling algorithms and DPOP. At a high level, its operations are similar to

7.2. GPU-based Distributed MCMC Framework 95

Algorithm 14 CalcUtils()

1: UTILsep ← utilities for all value comb. of
2: xi ∈ Bi ∪ sep(ai)
3: UTILai ← Join(UTILai ,UTILsep,UTILac)
4: for all ac ∈ Ci do
5: UTILai ← Project(ai,UTILai)
6: end for
7: return UTILai

Algorithm 15 GPU-MCMC-Sample(T,R)

1: 〈z, z∗, [q, Zπ], Gi〉 ← AssignSharedMem()
2: rid ← the thread’s row index of Mi

3: z
|Li|
⇔ Mi[rid]

4: 〈z∗, util∗〉 ← 〈z,
∑
fj∈Gi fj(z|Sj)〉

5: for t = 1 To T do

6: z
k

⇔ sample(q(z | z(t−1))) w/ prob. min{1, π̃(z)
π̃(z(t−1))

}
7: util←

∑
fj∈Gi fj(z|Sj)

8: if util > util∗ then
9: ma〈z∗, util∗〉 ← 〈z, util〉

10: end if
11: end for
12: 〈MR

i [rid], U
R
i [rid]〉 ← 〈z∗, util∗〉

the operations of DPOP except that the computation of the utility tables sent by agents during
the UTIL phase is done by sampling with GPUs. Notice that the computation of each row in a
utility table is independent of the computation in the other rows. Thus, DMCMC exploits this
independence and samples the utility in each row in parallel.

Algorithm 11 shows the pseudocode of DMCMC for an agent ai. It takes as inputs R, the
number of sampling runs to perform from different initial value assignments, and T , the number
of sampling trials. Like DPOP, DMCMC also exhibits three phases. The first phase is identical to
that of DPOP (line 1). In the second phase:

• Each agent ai calls GPU-Initialize() to set up the GPU kernel specifics (e.g., number
of threads and amount of shared memory to be assigned to each block, and to initialize
the data structures on the GPU device memory) (line 2). The GPU kernel settings are
decided according to the shared memory requirements and the number of registers used by
the successive function call, so to maximize the number of blocks that can run in parallel.

• Each agent ai, in parallel, calls GPU-MCMC-Sample() which performs the local MCMC
sampling process to compute the best utility and the corresponding solution (value assign-
ments for all non-boundary local variables xji ∈ Li \Bi) for each combination of values of the
boundary variables xki ∈ Bi (line 3). This computation process is done via sampling with
GPUs and the results are hence transferred from the device to the host (line 4).

• Each agent ai computes the utilities for the constraints between its variables and its separator,
joins them with the sampled utilities (line 6), and sends them to its parent (line 7). The
agent repeats this process each time it receives a UTIL message from a child (Alg. 12, line 7
- Alg. 13, line 10).

By the end of the second phase (Alg. 13, line 3), like in DPOP, the root agent knows the overall
utility for each combination of values of its variables xji ∈ Bi. It chooses its best value combination
that results in the maximum utility (Alg. 13, line 6), and starts the third phase by sending to each

96 7. GPU & DCOPs

child agent ac the values of variables xji ∈ sep(ac) that are in the separator of the child (Alg. 13,
lines 8-11). The MessageHandlers of lines 9-10 of Alg. 11 are activated for any new incoming
message.

7.2.1 GPU Data Structures

In order to fully capitalize on the parallel computational power of GPUs, the data structures need
to be designed in such a way to limit the amount of information exchanged between the CPU host
and the GPU devices. Each DMCMC agent stores all the information it needs in its local variables
in the global memory of the GPU devices. This allows each agent running on a GPU device to
communicate with the CPU host only once, which is at the end of the sampling process, to transfer
the results. Each agent ai maintains the following information:

• its local variables Li ⊆ X ;

• its boundary variables Bi ⊆ Li;

• the domains of its local variables, Di (for the sake of simplicity we assume these domains to
have uniform size);

• a matrix Mi of size |Di||Bi|×|Li|, where the j-th row is associated with the j-th permutation
of the boundary variable values, in lexicographic order, and the k-th column is associated
with the k-th variable in Li. The matrix columns associated to the local variables in Li are
initialized with random value assignments in [0, Di − 1]. At the end of the sampling process
it contains the converged domain values of the local variables for each value combination of
the boundary variables;

• a vector Ui of size |Di||Bi|, which stores the utilities of the solutions in Mi;

• The local constraint graph Gi, which includes the local variables Li and constraints between
local variables.

All the data stored on the GPU devices is organized in mono-dimensional arrays, so as to facil-
itate coalesced memory accesses. The set of local variables Li are ordered, for convenience, in
lexicographic order and so that the boundary variables Bi are listed first.

7.2.2 Local Sampling Process

The GPU-MCMC-Sample procedure of line 3 is the core of the local sampling algorithm, and
can be performed by any MCMC sampling method. It executes T sampling trials for the subset
of non-boundary local variables Li \ Bi of agent ai. Since the MCMC sampling procedure is
stochastic, we can run R parallel sampling processes with different initial value assignments and
take the best utility and corresponding solution across all runs. Each parallel run is executed by
a group of blocks. Independent operations within each sample are also exploited in parallel using
groups of threads within each block. For example, the proposal distribution adopted by Gibbs is
computed using |Di| parallel threads. Figure 7.2 illustrates the different parallelizations performed
by the GPU-MCMC-Sample process with Gibbs.

The general GPU-MCMC-Sample procedure is shown in lines 1-12 of Algorithm 15 and we use

the symbols ← and
k

⇔ to denote sequential (single thread) and parallel (k threads) operations,
respectively. We also denote with n the size of the state z being sampled, where n = |Li| − |Bi|.
The function takes as inputs the number of desired sampling trials T and the number of parallel
sampling runs R. It first assigns the shared memory allocated to the arrays z and z∗, which are
used to store the current and best sample of value assignments for all local variables, respectively;
the local constraint graph Gi; and, if the MCMC sampling algorithm requires computing the
normalization constant of the proposal distribution explicitly, the array q and Zπ, which are used

7.2. GPU-based Distributed MCMC Framework 97

Threads: One for
each value in Di

Groups of Threads:
One for each row of Ui

Group of Blocks: One
for each sampling run

Block 1 Block 2 Block k

Figure 7.2: Parallelization Illustration

to store the probabilities for each value of the non-boundary local variables and the normalization
constant, respectively (line 1).

Each thread identifies its row index rid of the matrix Mi, initializes its sample with the values
stored in Mi[rid], calculates the utility for that sample, and stores the initial sample and utility as
the best sample and utility found so far (lines 2-4). It then runs T sampling trials, where in each
trial, it samples a new state z from a proposal distribution q(z | z(t−1)) and updates that state
according to the accept/reject probabilities described in the MCMC background (line 6).

The proposal distribution q and the accept/reject probabilities depend on the choice of MCMC
algorithm. We now describe them for Metropolis-Hasting and Gibbs.

• Metropolis-Hastings: The proposal distribution that we adopt is a multivariate normal
distribution q ∼ N (µ, Σ), with µ being a n-dimensional vector of mean values, where

each component µ
(t)
j has the value of the corresponding component in the previous sample

z
(t−1)
j and Σ is the covariance matrix defined with the only non-zero elements being their

diagonal ones and set to be all equal to
√
Di. We compute the proposal distribution q using

n parallel threads. The proposal distribution for Metropolis-Hastings is symmetric and, thus,
the accept/reject probabilities are simplified as shown in line 6.

• Gibbs: Gibbs sequentially iterates through all the non-boundary local variable xk ∈ Li \Bi
and computes in parallel the probability q[did] of each value did according to the equation:

q(xk=did | xl ∈ Li \ {xk}) =
1

Zπ
exp

∑
fj∈Gi

fj(z|Sj)

where z|Sj is the set of value assignments for the variables in the scope Sj of constraint fj
and Zπ is the normalizing constant. We compute q using |Di| parallel threads.

To ensure that the procedure returns the best sample found, we verify whether there is an
improvement on the best utility (lines 7-9). At the end of the sampling trials, it stores its best
sample and utility in the rid-th row in the matrix Mi and vector Ui, respectively (line 40).

7.2.3 Theoretical Properties

In what follows we present some theoretical properties regarding the convergence of the sampling
process described above. Background notions about Finite Markov Chains and the proofs of the
following properties can be found in Appendix B

98 7. GPU & DCOPs

Algorithm 16 CUDA Gibbs proposal distribution calculation()

1: did ← the thread’s value index of Di

2: for k = |Bi| To |Li| − 1 do

3: q[did]
|Di|
⇔ exp

[∑
fj∈Gi fj(z|Sj)

]
4: Zπ ←

∑|Di|−1
i=0 q[i]

5: q[did]
|Di|
⇔ q[did] · 1

Zπ

6: z← sample(q(z | z(t−1)))
7: end for

Property 1 If a Markov chain with given initial state z0 = s0 is irreducible and aperiodic, then
the chain converges to a unique stationary distribution π given enough steps.

Definition 7.2.1 For an agent ai, the top αi-percentile solutions Sαi is a set of solutions for
the local variables Li that are no worse than any solution in the supplementary set Di\Sαi , and
|Sαi|
|Di| = αi. Given a list of agents a1 . . . am, the top ᾱ-percentile solutions Sᾱ is defined as Sᾱ =

Sα1
× . . .×Sαm .

Property 2 After Ni = 1
αiεi

number of samples with an MCMC, the probability that the best
solution found thus far zNi is in the top αi for an agent ai is at least 1− εi:

PT

(
zNi ∈ Sαi |Ni =

1

αi · εi

)
≥ 1− εi.

Theorem 7.2.2 Given m agents a1, . . . , am ∈ A, and a number of samples Ni = 1
αi·εi (i =

1, . . . ,m), the probability that the best complete solution found thus far zN is in the top ᾱ-percentile
is greater than or equal to

∏m
i=1(1− εi), where N =

∧m
i=1Ni. In other words,

PT (zN ∈ Sᾱ |N) ≥
m∏
i=1

(1− εi).

Property 3 The number of messages required by DMCMC is linear in the size of the agents.

Property 4 The memory requirement of each DMCMC agent is exponential in the induced width
of the problem.

7.3 Experimental Results

We consider CPU and GPU versions of the DMCMC framework with Gibbs (D-Gibbs) and
Metropolis-Hastings (D-MH) as the MCMC sampling algorithms. The CPU versions sample
in sequence while the GPU versions sample in parallel with GPUs. We compare them against
DPOP [130] (an optimal/complete algorithm), MGM and MGM2 [110] (sub-optimal/incomplete
algorithms). Let us observe that we did not compare against Distributed Gibbs as the authors’
implementation does not handle hard constraints, and we do not compare against DUCT as no
public implementation is available. We use publicly-available implementations of these algorithms,
which are implemented in the FRODO framework [99]. We run our experiments on a machine
with a 2.4GHz CPU, a 14-multiprocessor 448-core 1.15GHz GPU, and 32GB of RAM. We measure
runtime using the simulated time metric [161] and perform evaluations on meeting scheduling and
smart grid network problems.

Meeting Scheduling: In these problems, meetings need to be scheduled between members of
a hierarchical organization, taking restrictions in their availability as well as their priorities into
account [111]. Figures 7.3 and 7.4 show the average (a, c) and the median (b, d) results for 100

7.3. Experimental Results 99

10 25 50 100 250 500 1000 2500 5000 10000
0.001

0.01

0.1

1

10

100

1000

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

DPOP
D−Gibbscpu
D−Gibbsgpu
D−MHcpu
D−MHgpu

Number of samples

Si
m

ul
at

ed
 ti

m
e

(s
ec

)

0

Simulated time (sec)

Q
ua

lit
y

(ra
tio

)

0.05 0.10 0.20 0.50 1.00 2.00 5.00 10.00 20.00 50.00
0.65

0.70

0.75

0.80

0.85

0.90

0.95
1.00

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

DPOP
D−Gibbs
D−MH

Figure 7.3: Experimental Results: Meeting Scheduling. (a) - top, (b) - bottom.

runs, together with the standard deviations (vertical bars) of problem instances with a variable
number of agents and fixing each agent’s number of variables to 10, the domain size of its variables
to 12, its local constraint graph density to 0.7, and its number of boundary variables to 1.

We first compare the performance of the CPU and GPU DMCMC algorithms on an instance
of the meeting scheduling problem with 5 agents. Figure 7.3 (a) shows the runtimes of the CPU
(solid line) and GPU (dotted line) versions of DMCMC together with DPOP (solid horizontal
line). The results shows that there is a clear benefit to parallelizing the sampling operations with
GPUs, exhibiting more than one order of magnitude speed up. In the rest of the experiments, we
show the GPU version only.

Figure 7.3 (b) shows the tradeoff between quality and runtime for the D-Gibbs and D-MH for
a range of initial parameters R = {1, 10, 50, 100} and T = {100, 250, 500, 1000, 5000, 10000}. The
prediction quality increases with increasing R and T . D-Gibbs is slower than D-MH, as it requires
computing normalization constants, which is computationally expensive even when parallelized.
However, D-Gibbs finds better solutions.

Finally, we evaluate the algorithms in 14 benchmarks where we vary the number of agents
|A| from 2 to 100. We set S = 100 and R = 10 for D-Gibbs and S = 500 and R = 100 for
D-MH. Figures 7.4 (c) and (d) show the runtime and solution qualities, respectively. DPOP ran

100 7. GPU & DCOPs

Number of agents

Si
m

ul
at

ed
 ti

m
e

(s
ec

)

2 3 4 5 10 20 30 40 50 70 90

0.1

1

10

100

1000

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

DPOP
MGM2
MGM
D−Gibbs
D−MH

Number of agents

Q
ua

lit
y

(ra
tio

)

2 3 4 5 10 20 30 40 50 70 90

0.5

0.6

0.7

0.8

0.9

1.0

●
●

●
●

●
●

● ●
●

●

● ● ● ●

●

DPOP
D−Gibbs
D−MH
MGM2
MGM

Figure 7.4: Experimental Results: Meeting Scheduling. (c) - top, (d) - bottom.

out of memory for problems with more than 10 agents. The DMCMC algorithms are up to 2
order of magnitude faster than MGM and MGM2 and can find better solutions, demonstrating
the strength of sampling-based approaches over incomplete search algorithms. The results are
statistically significant (p-values < 10−10 for all parameter configurations).

Alg. |A| = 100 |A| = 250 |A| = 500

D-MH 0.025 (0.01%) 0.026 (0.02%) 0.031 (0.00%)
D-Gibbs 1.387 (1.72%) 1.285 (1.72%) 1.318 (1.71%)
DPOP 15.58 (0.00%) 59.06 (0.00%) 70.01 (0.00%)

Table 7.3: Experimental Results: Smart Grid Networks

Grid Networks. We generate smart grid network problems [69] with clustered scale-free graph
topologies, where each cluster has a few high density nodes. We generated 3 problem instances
where we vary the number of agents |A| = {100, 250, 500} and the number of local variables of
each agent depends on the number of neighboring agents. We fix the domain sizes to 11 and the

7.4. Summary 101

maximum constraint arity to 5. Table 7.3 reports the simulated runtimes (in seconds) and the
error in solution quality (in parenthesis). These results show that the DMCMC algorithms can
find close-to-optimal solutions significantly faster than DPOP. We omit MGM and MGM2 as they
always found unsatisfactory solutions due to the large number of hard constraints in the problem.

7.4 Summary

Motivated by two recent developments—(i) the recent introduction of sampling-based DCOP al-
gorithms, which have been shown to outperform existing incomplete DCOP algorithms, and (ii)
the advances in Graphical Processing Units (GPUs)—we take the first step towards harnessing
the power of parallel computation of GPUs to solve DCOPs. In this dissertation, we introduce
the GPU-based Distributed MCMC framework, which decomposes a DCOP into independent sub-
problems that can each be sampled in parallel by GPUs. Our experimental results show that it
can find reasonably good solutions up to one order of magnitude faster than MGM and MGM2.
These results demonstrate the potential for using GPUs to scale up DCOP algorithms, which is
exciting as GPUs provide access to hundreds of computing cores at a very affordable cost.

102 7. GPU & DCOPs

III
Parallel Constraint Solving:

Case Study

8
The Protein Structure Prediction

Problem on GPU

This chapter realizes the main results presented so far in this dissertation into a prototype par-
allel solver for a hard combinatorial real-world problem, namely the Protein Structure Prediction
(PSP) problem. The proposed approach relies on a Multi-Agent System (MAS) perspective, where
concurrent agents explore the folding of different parts of a protein. The strength of the approach
lies in the agents’ ability to apply different types of knowledge, expressed in the form of declarative
constraints, to prune the search space of folding alternatives. We demonstrate the suitability of a
GPU approach to implement such MAS infrastructure, with significant performance improvements
over the sequential implementation and other methods.

8.1 Introduction

In this chapter, we tackle the PSP problem using a perspective that builds on the methodologies
inherited from the Multi-Agent Systems (MAS) domain. The proposed MAS approach is used
to concurrently explore and then assemble foldings of local segments of the protein. Distinct
agents are in charge of retrieving, filtering, and coordinating local information about parts of a
protein, aiming to reach a global consensus. Relationships among substructures are described
and exploited in terms of constraints—where a constraint is a high-level and declarative specifi-
cation of required mutual relationships among entities. In our case, the proposed constraints deal
with spatial relationships among parts of proteins being configured and assembled. A strength
of constraint-based methods is their elaboration tolerance, that allows the incremental addition of
new knowledge about the protein (e.g., properties of the amino acids, knowledge about specific
substructures) without the need of redesigning the solving mechanisms. Thus, any new knowledge
about a protein can be readily integrated and used to prune the space of potential conformations.
Furthermore, constraint-based methods offer the power of propagation of any decision made during
construction of a protein conformation, immediately removing infeasible branches of search space
as each decision is performed. Indeed, the interest towards constraint-based methods for structural
bioinformatics has grown in recent years—the reader is referred to [11, 37] for recent surveys.

In what follows, we present a solver that performs a constraint-based local search, distributed
among several agents. The computation proceeds until a local minimum is found. Experimental
results confirm that the local minimum reached captures with good precision the actual shape of
the protein being studied. Agents use GPU cores to explore large portions of the search space
and to propagate constraints on the ensemble of structures produced by each agent. The solver is
capable of achieving excellent performance and demonstrates speedups over a sequential solver on
a large pool of benchmarks.

106 8. The Protein Structure Prediction Problem on GPU

8.2 Problem Formalization

Given a primary sequence ~a = a1 · · · an of a protein of length n (each ai is a symbol representing
an amino acid), we model the PSP problem as a COP Q = (〈X,D,C〉, E), where X,D,C,E are
described in the following subsections.

8.2.1 Variables and domains

X = X∪P is a set of finite domain variables, where X = {x1, y1, . . . , xn, yn}, and P = {p1, . . . , p15n}
(hence, m = |X| = 17n). The variables xi and yi (for 1 ≤ i ≤ n) are associated to the torsional
angles φ and ψ of the ith amino acid, respectively.

The variables p5(i−1)+3t+1, p5(i−1)+3t+2, p5(i−1)+3t+3 (i = 1, . . . , n and t = 0, . . . , 4) are asso-

ciated to the x, y, z coordinates of the tth atom of the ith amino acid ai. More precisely, if t = 0
then it is an N -atom, referred as ni; if t = 1 then it is the Cα-atom, referred as Cαi ; if t = 2 then
it is a C-atom, referred as ci; if t = 3 then it is an O-atom, referred as oi; and if t = 4 then it is a
H-atom, referred as hi. We will denote the above list of 15 coordinates as ~Pi = 〈ni, Cαi , ci, oi, hi〉
and we refer to these variables as point variables.

Dxi and Dyi will store sets of angles retrieved from a database of proteins using statistical
information (we use DASSD [141]). The domains for all the point variables are initially set all
equal to the range [−500000..500000], that has been experimentally proved to be large enough to
accommodate all proteins tested in our benchmarks.

8.2.2 Constraints

C is a finite set of constraints over X. These constraints describe geometric properties that the
final structure must satisfy to be a physically admissible structure. There is a strong correlation
between X and P, allowing us to infer the first from the second and vice versa. Keeping both types
of variables explicit allows the programmer to easily add specific angle or spatial constraints. In
particular, assignments of angle variables in X identify structures that are represented by ground
points in P. On the other hand, structures obtained by constraint propagation over variables in
P identify a unique sequence of pairs of angles φ and ψ for the variables in X .

Let us introduce the most relevant constraints used to encode the PSP problem.

The table Constraint

Values for variables in X are retrieved from a statistical database. These values are given as pairs
〈φ, ψ〉. Therefore, for each i = 1, . . . , n, we consider a table constraint that associates 〈xi, yi〉 to
the possible admissible pairs for those angles. As a result, during the search, the assignment of xi
and yi is done simultaneously according to the table.

The alldistant Constraint

This constraint has been originally introduced by [40]. Given a list of 3k variables P = (p1, . . . , p3k),

and a list of k positive values ~d, the constraint alldistant(P, ~d) imposes a distance relation
between each pair of 3D points identified by the variables in P, i.e., ∀i ∈ {1, . . . , k − 1} and
∀j ∈ {i+ 1, . . . , k}:

‖ (p(i−1)3+1, p(i−1)3+2, p(i−1)3+3)︸ ︷︷ ︸
A

− (p(j−1)3+1, p(j−1)3+2, p(j−1)3+3)︸ ︷︷ ︸
B

‖ ≥ di + dj

where ‖ · ‖ is the Euclidian norm. di and dj can be seen as the radii of two spheres centered in the
points A and B, respectively. The constraint states that these two spheres cannot intersect.

We use this constraint to model the fact that the various atoms have a minimum distance
each other. In particular, the value di is chosen as the radius of a sphere containing the atom of
coordinates (p(i−1)3+1, p(i−1)3+2, p(i−1)3+3). An additional alldistant constraint, that considers

8.2. Problem Formalization 107

only the Cα atoms of the amino acids, can also be added, imposing a minimum distance that
depends on the the radii of sphere that contain their respective amino acids. These radii are
computed from an average analysis in a database of known proteins.

The Single Angle (sang) Constraint

Given the list X of 2n FD variables and the list P of 15n point variables, and given i ∈ 2, . . . , n,
the single angle constraint sang(i,X ,P) imposes a relation between the lists of points of the 15

variables ~Pi−1 and the subsequent 15 variables ~Pi so as to satisfy:

~Pi ∈ {Rot(~Pi−1, φ, ψ) : 〈φ, ψ〉 ∈ Dxi ×Dyi}
where Rot(·) is the roto-translation matrix needed to properly align the amino acid structure

described by the angles 〈φ, ψ〉 with the position of the previously placed atoms in ~Pi−1 (see Fig. 8.1).
We use this constraint to model the relative positions of consecutive tuples of atoms related to
amino acids i− 1 and i according to the angles selected.

Figure 8.1: Rotation of the vector Cα–N (angle φ) or the vector Cα–C (angle ψ)

8.2.3 The Cost Function E

Since our aim is to find the tertiary structure that minimizes the free energy of the protein, we
used as cost function a protein energy function already used in literature (e.g., the one adopted
in [36]), composed of three components, described below:

1) Hydrogen component: Hydrogen bonding potentials are calculated from pairs of atoms N–H of
amino acid i (ni, hi) and an O atom of another amino acid j (oj), that are located within a certain
distance threshold; an auxiliary statistical table tabh is used [118]. This contribution is calculated
by a function Hydro(X) defined as follows:

Hydro(X) =

n∑
i=1

n∑
j=1,j 6=i

hc(X, i, j)

where hc(·) returns the energy potential of one hydrogen bond:

hc(X, i, j) =

{
tabh(δ(X, i, j),Θ(X, i, j),Ψ(X, i, j),Γ(X, i, j)) if 1.75 ≤ δ(X, i, j) ≤ 2.60
0 otherwise

where: δ(X, i, j) = ‖hi − oj‖, Θ(X, i, j) is the bond angle ôj hi ni, Ψ(X, i, j) is the bond angle
̂Cαj oj hi, and Γ(X, i, j) is the torsional angle identified by ni, hi, Cαj , oj .

108 8. The Protein Structure Prediction Problem on GPU

2) Contact component: it calculates the contribution of the contact of each pair of centroids of
the side chain using the statistical table of contact energies tabc [16]. This component considers a
threshold distance equal to the sum of the Van der Walls radii of the side chains of the amino acids
involved (the van der Waals radius of an atom is the radius of an imaginary hard sphere which
can be used to model atoms) If the distance is greater than such threshold, the potential decreases
quadratically. The contact component Cont(X,~a) is defined as follows:

Cont(X,~a) =

n−1∑
i=2

n−1∑
j=i+1

contact(γ(X, i, ai), γ(X, j, aj), ai, aj)

where ~a is the sequence of amino acids and the function γ(X, i, a) returns the position of the side
chain centroid of the amino acid i, which is dependent on the type of the amino acid a and the
points Cαi−1 , Cαi , Cαi+1 . Let us observe that the first and the last centroids of the structure are
not taken into account since the tails of the protein do not contribute significantly to the energy
value. The contact(·) function returns the contact potential computed in [16], retrieved by the
indexing function tabc:

contact(p, q, a, a′) =

tabc(a, a

′) If ‖p− q‖ ≤ VdW(a, a′)

tabc(a, a
′)VdW(a,a′)2

‖p−q‖2 Otherwise

where VdW (a, a′) is the sum of the Van der Walls radii of amino acids a, a′.

3) Correlation component : Let Λi be the torsional angle determined by the Cα atoms Cαi , Cαi+1
,

Cαi+2
, Cαi+3

. Two statistically computed tables tabt1 and tabt2 are are used as auxiliary functions.
The first one retrieves information from one torsional angle Λi parametrized by the type of the
amino acids ai+1 and ai+2. The second table retrieves information from the pair of torsional angles
Λi−1 and Λi independently of the amino acids’ types. The correlation component is computed as
follows (see [56] for the physical backgrounds of this component):

Corr(X,~a) =

n−4∑
i=2

tabt1(Λi, ai+1, ai+2) + tabt2(Λi−1,Λi)

Finally, we set:
E(X,~a) = w1Hydro(X) + w2Cont(X,~a) + w3Corr(X,~a)

Experimental training on the top500 dataset (trying to reduce the standard deviation of the
energies calculated w.r.t. each component) produces the following values: w1 = 8, w2 = 0.1, w3 = 7
for predicting α/β structures, and w1 = 8, w2 = 22, w3 = 7 for predicting turns and loops. All
auxiliary tables used are available in http://www.cs.nmsu.edu/fiasco/.

The literature on precise energy functions for assessing protein foldings is extensive (see, e.g.,
[74, 148, 138]). Our approach is completely parametric w.r.t. the energy function.

8.3 A Multi-Agent System Architecture

A Multi-Agent System (MAS) is a system composed of several agents in an environment, each with
a certain degree of autonomy, and collaborating with other agents to solve a common problem [168].
These agents have only a local and partial view of the global system, which is too complex to be
handled by a single agent. The basic structure of an agent is shown in Figure 8.2 (left). Usually,
an agent receives information from the external environment, it processes the information, and it
uses a predefined strategy to determine which action to perform—the action has the potential to
affect the environment, by making changes to it.

In this work, we use a multi-level MAS to compute the folding process. We define four types of
agents: (1) A Supervisor agent, which is the highest level agent in the system, and it coordinates
all of the other agents, (2) Structure agents, and (3) Coordinator agents, which are associated
to the secondary structure elements of the target protein; both the structure and coordinator

8.3. A Multi-Agent System Architecture 109

Agent
Perception of

the world

Behavior &
Capabilities

New
Action EN

VI
RO

NM
EN

T

Supervisor

Structure Coordinator

Workers Workers

Figure 8.2: Basic structure of an agent and Multi-Agent System architecture

agents implement their own search methods; (4) Worker agents, which are associated to the X
variables of the constraint model. The worker agents are in charge of propagating constraints and
labeling the associated variables and, therefore, they are implemented as device kernel functions.
The communication between agents passes through the Supervisor agent, since it is the only agent
that has complete knowledge about the folding process during the complete search phase. The
Supervisor agent as well as the Structure and Coordinator agents are implemented on the host.
Figure 8.2 (right) shows the architecture of the multi-agent system with the four types of agents.
Let us consider a target protein of length n with s secondary structures elements involving p
amino acids. s structure agents will be activated and coordinated by the supervisor agent. The
supervisor agent will also activate one coordinator agent to take care of the remaining s−1 internal
loops/turns and of the initial and final tails. More than one coordinator agents (e.g., one for each
loop or turn) could be specified by the user to the supervisor agent as input parameter. n worker
agents are created, one for each amino acid ai, assigned as auxiliary agents for the corresponding
structure/coordinator agent. At each instant of the computation either p (if we are computing
secondary structures elements) or n − p (if we are coordinating structures looking for loops and
turns) workers will run in parallel.

8.3.1 The Supervisor Agent

The Supervisor agent is the intermediary between the external world (e.g., user, external knowl-
edge) and the other agents. It represents the highest level of abstraction in the framework and
it holds global spatial information about the protein structure during the complete folding pro-
cess. Its main task is to assign different sub-sequences of the primary sequence to the immediately
underlying types of agents—the coordinator and the structure agents—and to supervise them, in
order to guide the entire folding process towards a stable global configuration.

It is also responsible for creating the set of worker agents associated to the coordinator agents
and to the structure agents. Moreover, it imposes both the search strategies and the constraints
to be propagated on the other agents.

The supervisor agent sets a priority order among the agents. First, each “highly constrained”
secondary structure (α-helix/β-sheet) is computed by the structure agents; afterwards, the coor-
dinator agents are invoked to model the whole tertiary structure by moving loops or turns. In
this work, we will restrict to a single coordinator agent. The supervisor agent must ensure also
that the structures determined by each structure agent can be combined in order to obtain the
global structure that can be effectively folded by the coordinator agent. To discard symmetric
equivalent solutions, the secondary structure ai · · · aj with the lowest i among those computed is
deterministically placed in the 3D space. The positions of all other points are obtained starting
from it, as soon as the angles are assigned to variables x, y.

The location in the primary sequence and the type of the secondary structure elements is
done by the supervisor agent using some of the capabilities of the secondary structure prediction
algorithm JNet [30]. We remark that only the location is delegated to external knowledge, while

110 8. The Protein Structure Prediction Problem on GPU

the actual folding process is performed by the structure agents.

8.3.2 The Worker Agent

Worker agents are the lowest-level agents in the system. Each worker agent is associated either to a
coordinator agent or to a structure agent and takes care of a particular amino acid ai. In particular,
it assigns all admissible values to the pair of variables xi, yi and executes consequent constraint
propagation possibly rejecting inconsistent assignments. Precisely, propagation is performed to the
portion of the constraint problem delegated to the structure/coordinator agent associated with it.
A set of admissible structures (i.e., a set of structures that satisfy all the constraints the agent can
see) is returned to the agent at the higher level.

This separation between high-level agents and worker agents allows us to not worry about how
effectively the propagation is performed (e.g., choosing between CPU and GPU), but to solely
invoke the propagation function of the worker agent from the structure or the coordinator agent,
and choosing the best labeling according to an appropriate criterion and the type of constraint
imposed on the variable associated to the worker agent.

8.3.3 The Structure Agent

This agent models secondary structure elements, such as α-helices and β-sheets. There is a struc-
ture agent for each secondary structure element of the target protein. Thus, each structure agent
works exclusively on a specific part of the overall structure—i.e., it solves a folding problem on a
limited subsequence of amino acids. It is not the task of the structure agent to maintains rela-
tions between the assigned subsequence and the rest of the structure (this will be handled by the
coordinator agents).

The agent implements a coordinate-wise gradient descent method (e.g., see [17]). We call this
search strategy Iterated Conditional Mode (ICM), implemented by Algorithm 18. This search
strategy iterates to “greedily” refine a first feasible solution, as described in the next sections.
This greedy strategy is suitable to secondary structure elements, since α-helices and β-sheets are
“highly constrained” structures presenting a strong energy correlation between pairs of atoms; this
implies a strong gap between geometrically stable structures and unfolded structures. Let us recall
that our solution uses an independent system for secondary structure prediction to suggest type
and locations of secondary structures.

8.3.4 The Coordinator Agent

The coordinator agent folds the protein by determining loops and turns that connect the secondary
structure elements. xi, yi variables in already computed helices and sheets from the structure agents
are already assigned; their related Cartesian variables Pi are instead unassigned: this allows to
“move” structures as rigid objects. Since loops and turns are, in general, poorly structured, thus
generating an intractable search space, the folding process is driven by a sampling of the search
space. We compute the energy values of a set of structures to obtain more discriminant energy
values. Coordinator agents adopt a search strategy that generalizes the one used by the structure
agents and it is summarized in Algorithm 18 of Sect. 8.4.1. In particular, two sub-strategies have
been implemented: a variant of the Gibbs [17] sampling search strategy, and a Monte Carlo search
strategy (see Sections 8.4.2–8.4.3).

8.4 General search schema

The structure and coordinator agents execute a large neighborhood search on a COP. The general
schema of the LNS is implemented by Algorithm 17. The inputs provided to the algorithm are:
the list X of 2n variables for angles, the list P of 15n point variables, and a list of atom sizes ~d.
Let us observe that each agent receives only a part of the whole protein, thus n is, in this case,
not the number of amino acids of the whole protein, but only of a sub-part of it.

8.4. General search schema 111

The first step of the algorithm (lines 3–7) is to post all the constraints required for the resolution
of the problem—i.e., the table constraints that relate pairs of angles for variables xi, yi, the sang

constraints that link point variables and corresponding FD variables, and an alldistant constraint
over the set of point variables. Let us observe that this step is done only once, before the search
begins.

The next step is to compute a first solution for the set of constraints (line 8)—this is a rather
trivial task, e.g., by determining a solution that connects the most “straight” fragments; this allows
us to satisfy the alldistant constraint in a trivial manner. The energy of this initial solution is
computed in line 9.

Algorithm 17 Search(X ,P, ~d)

1: - Constraints:
2: n← |X |/2;
3: post table 〈φ, ψ〉 constraint on |X |;
4: post constraint: alldistant(P, ~d);
5: for i← 2 to n do
6: post constraint: sang(i,X ,P);
7: end for
8: S ← first solution(X ,P);
9: current energy← compute energy(S); {Other parameters are omitted}

10: - Search:
11: if (Agent = Structure) then
12: repeat
13: best energy← current energy;
14: (S, current energy)← icm(X ,P);
15: until (current energy ≥ best energy)
16: else if (Agent = Coordinator) ∧ (Search = Montecarlo) then
17: repeat
18: best energy← current energy;
19: (S, current energy)←mc(X ,P);
20: until (current energy ≥ best energy for k consecutive times)
21: else if (Agent = Coordinator) ∧ (Search = Gibbs) then
22: S∗ ← S;
23: best energy← current energy;
24: for i← 1 to m do
25: mc(X ,P); {Prepare a new starting point (X ,P)}
26: for t← 1 to n samples do
27: (S, current energy)← gibbs(X ,P);
28: if current energy < best energy then
29: best energy← current energy
30: S∗ ← S;
31: end if
32: end for
33: end for
34: S ← S∗;
35: end if
36: return S;

The search phase starts at line 10. The code is slightly different in the case of structure agent
and the case of coordination agent.

112 8. The Protein Structure Prediction Problem on GPU

8.4.1 ICM

The search strategy adopted for the Structure agents is described by the loop in lines 12–15, that
invokes the ICM algorithm (Algorithm 18) and it terminates when the energy value cannot be
further improved.

Algorithm 18 icm(X ,P)

1: for i← 1 to n do
2: wrk ← get worker agent(i);
3: X ← choose best label(wrk,X ,P); {Label xi, yi again}
4: S ← compute structure[X]; {Structure Updating}
5: current energy← compute energy(S);
6: end for
7: return (S, current energy)

The ICM search strategy takes one pair of variables xi, yi at a time, it evaluates the energy
for all their possible assignments, and they are assigned to the value that returns lowest energy.
This task is performed by the worker agent i which runs the choose best label function (line 3).
This function implements the strategy for selecting a new solution and it is performed in parallel
on the GPU. Precisely, the variables xi, yi are assigned with all the elements (pair of angles) in

their domains that satisfy the table constraint—variables ~Pi are deterministically assigned by
propagating the sang constraint. For each new assignment the variables xi, yi and the variables
~Pi, ~Pi+1, . . . , ~P|X| are uninstantiated. All the resulting structures consistent with the alldistant

constraint are energetically evaluated, and the one providing the minimum value is kept in X .

Observe that the starting configuration is in the set of structures scanned by the ICM algo-
rithm and, therefore, a solution is ensured to exists and the energy cannot increase. Although,
in principle, two structures with the same minimum energetic value might emerge in the above
step, the fine-grained energy model employed makes this situation highly unlikely; as a result, in
practice the algorithm converges deterministically towards a local minimum. In the case in which
two equivalent structures emerge, the first one encountered is chosen.

8.4.2 Monte Carlo

The Monte Carlo search strategy is implemented by the loop in lines 17–20 of Algorithm 17.
Termination is forced after k consecutive loop iterations without any energy improvement, where
k is a user-selectable parameter. The search space is sampled by the function mc described by the
Algorithm 19.

Algorithm 19 mc(X ,P)

1: for i← 1 to n do
2: wrk ← get worker agent(i);
3: X ← choose best label random(wrk,X ,P); {Label xi, yi again}
4: (t2i−1, t2i)← (xi, yi);
5: end for
6: if (solution check(~t) = true) then
7: X ← ~t {Update consistently}
8: else
9: X ← assignment from(S); {Retrieve previous value (*)}

10: end if
11: S ← compute structure[X]; {Structure Updating}
12: current energy← compute energy(S); {End of Coordination Agent}
13: return (S, current energy)

8.4. General search schema 113

The for loop scans through all the variables associated to the agent and it focuses on one
pair of variables, xi, yi, at a time to determine a better structure. All the variables (related to
loops and turns) assigned to the coordinator are uninstantiated. The worker agent implements
the choose best label random function (line 3). If xi, yi are not allocated to the coordinator
agent, then the procedure halts immediately, leaving their values unchanged; otherwise, every
admissible assignment to the pair xi, yi is attempted (for each attempt all the variables assigned to
the coordinator and all the variables P are uninstantiated). A fixed number of random assignments
(samples) for the other variables xj , yj is attempted for each assignment of xi, yi. The values of
xi, yi that is part of the sample returning the best energetic value is retained. In our experiments,
we set the number of samples to 1,000. As before, the values to be assigned to the point variables P
are obtained by propagation. The values t2i−1, t2i for xi, yi that allows us to obtain the best (i.e.,
minimal) energetic value are kept (lines 3–4). The list ~t = (t1, . . . , t2n) of these values constitutes a
new possible solution. If this assignment (and the subsequent propagation to P driven by the sang

constraint) satisfies the alldistant constraint (line 6—solution check), the energy is evaluated
and updated (line 7), otherwise, a new iteration of the loop in lines 17–20 of Algorithm 17 is
started.

Variants of this method include also the possibility of worsening solutions with some fixed
probability or with a probability decreasing over time (i.e., as in simulated annealing). The changes
to the code to achieve these variants are minimal—these will be explored as future work. Moreover,
if the test in line 6 fails, then some small changes in the solution will be attempted before deciding
to restart from the previous solution. In particular, the algorithm considers other s solutions
(default s = 2) sorted in ascending order of energy value before performing a new iteration of the
loop in lines 17–20 (Algorithm 17). If there are any admissible assignment, the first one is used as
new possible solution.

8.4.3 Gibbs sampling

Gibbs sampling mixes the ICM search strategy with the Monte Carlo sampling as follows. It uses
two “meta” parameters: m (the number of starting points) that controls the number of iterations in
lines 24–33 and n samples (the number of sampling steps) that controls the number of iterations in
lines 26–32. The coordinator agent invokes the function gibbs (line 27 of Algorithm 17) to sample
one variable at a time based on the current assignment of the other variables. Each starting point
is a valid random assignment of values to variables computed by invoking the mc function (see,
Alg. 19). Algorithm 20 tries to improve the initial random point as follows.

Initially, the current (random) structure is computed and energetically evaluated (lines 2–
3). Then, for each pairs of variables xi, yi, the corresponding worker agent invokes the function
choose label random to randomly select a pairs of elements from their domains that satisfies
the table constraint. If the selected assignment (and the subsequent propagation to P driven
by the sang constraint) satisfies the alldistant constraint (line 6—solution check), the new
energy is evaluated on an auxiliary structure S∗ (lines 7–8). The random choice is then accepted
with a probability value q that depends on the ratio between the previous energy value and the
current one (lines 6–14). If the random assignment does not satisfy the alldistant constraint the
previous assignment is retrieved from S (line 15).

At each step of the Gibbs sampling algorithm the assignment is updated according to a Metropo-
lis sampling process (i.e., a random assignment is accepted with probability that depends on the
previous energy value—lines 9–10). Variants of this method includes also the possibility of chang-
ing the acceptance ratio in line 9 by multiplying the energy values by a temperature factor that
varies over time. Moreover, the set of starting points can be partitioned in subsets of equal size,
each represented by a different temperature factor.

8.4.4 The LNS general schema

Let us show how Algorithm 17, together with its auxiliary algorithms, implements a LNS schema.
After one solution is computed (line 8 of Algorithm 17), a loop looking for improving solutions is

114 8. The Protein Structure Prediction Problem on GPU

Algorithm 20 gibbs(X ,P)

1: for i← 1 to n do
2: S ← compute structure[X];
3: current energy← compute energy(S);
4: wrk ← get worker agent(i);
5: X ← choose label random(wrk,X ,P); {Label xi, yi again}
6: if (Solution check(X) = true) then
7: S∗ ← compute structure[X]; {Auxiliary structure updating}
8: current energy∗ ← compute energy(S∗);

9: q ←min

(
1, exp(−current energy∗)

exp(−current energy)

)
;

10: r ← rand();
11: if r ≤ q then
12: X ← assignment from(S); {Reject the new state}
13: end if
14: else
15: X ← assignment from(S); {Retrieve previous value (*)}
16: end if
17: end for
18: S ← compute structure[X];
19: current energy← compute energy(S);
20: return (S, current energy)

entered.
In the case of the structure agent, the auxiliary procedure 18 generates sequentially n “neighbor-

hoods”, each obtained by releasing the assignments of the 17 variables corresponding to amino-acid
i; neighbors are the set of assignments for such variables that satisfy all the constraints.

In the case of the coordination agent, we have two options: with Monte Carlo and with Gibbs.
As far as Monte Carlo is concerned, the situation is similar to the structure agent case, with the
difference that we do not optimize the neighbor at every step, but simply obtain an optimum of a
sample of a subset of the neighbors. With a large number of samples (e.g. 1,000) this guarantees
good results. As far as Gibbs is concerned, the situation is again similar: an improving solution
(if any) is selected.

In this framework, GPU is used to speedup the exploration of large neighborhoods. The use of
GPUs architectures is not new for speeding up LNS strategies. For example, a guideline for design
and implementation of LNS strategies on GPUs is presented in [107].

8.5 Some Implementation Details

We implemented, in C++, a constraint solver that exploits parallelism on GPUs to explore the
search space, following the previously described multi-level MAS model. As anticipated, locations
of secondary structures are computed by a secondary structure prediction algorithm based on
neural networks and sequence similarity alignments—specifically, the JNet application (http://
www.compbio.dundee.ac.uk/www-jpred/advanced.html). This descriptions can be provided by
other secondary structure alignments tools (e.g., PSIPRED, see http://bioinf.cs.ucl.ac.uk/

psipred/) or by the user. In this section, we provide some implementation details about this
solver.

8.5.1 Constraints

The table constraint is simply used for pairs of simultaneous assignments to variables xi and yi.
Let us make some observations regarding how the other constraints can be efficiently handled on

8.5. Some Implementation Details 115

a GPU.
The alldistant constraint is checked on the whole set of point variables representing a protein

structure. Using a sequential algorithm, the test of consistency of this constraint on a list of 3D
coordinates of length n requires time O(n2). In our implementation, we map this consistency
check and constraint propagation to distinct cores of the GPU—by enabling each core to serve as
representative of a different quintuple of atoms, that defines each amino acid of the structure. This
allows us to reduce the complexity to O(n).

The propagation of the sang constraint relies on a kernel that is invoked with n threads, if the
constraint is imposed on a list of 15n point variables. Each thread deals with a different quintuple of
point variables, reducing the computation from O(n) to O(1) time. Further parallelism is obtained
by calling the subroutine by all threads generating viable candidates within the implementation of
the ICM search procedure.

8.5.2 Energy

The implementation of the energy function used in this work (see Sect. 8.2.3) as a CUDA kernel
requires the introduction of two levels of parallelism:

1. Given a set of admissible structures, the energy value of each structure is calculated in parallel
by a number of blocks equal to the size of the set, and

2. For a given structure, each energy field is calculated in parallel by a thread within the block.

To obtain a linear time computation for the contact and the hydrogen potentials, we adopt the
same strategy used for the alldistant constraint: if we consider a structure of length n, then we
use n threads for both the contact potential and the hydrogen bond potential, while we use a single
thread for the correlation potential. The total energy value is calculated in O(n) time. Further
parallelism is obtained by calling the subroutine by all threads generating viable candidates.

8.5.3 Subroutines of the Search Algorithms

Subroutines are executed with references to an amino acid i = 1, . . . , n. Let k be the number of
pairs that can be assigned to variables xi, yi. Then the function choose best label is implemented
by a CUDA kernel invoked with with a number of blocks equal to k and a number of threads equal
to n (the average number of the pairs of angles allowed is k = 107). Each kernel block b = 1, . . . , k

considers an assignment 〈φb, ψb〉 and each thread j computes the alignment for the jth atoms ~Pj .
Let us observe that the alignment of the atoms ~Pj w.r.t. the previously placed atoms ~Pj−1 is

deterministic, provided the positions of at least one list of points ~Pl, for 1 ≤ l ≤ n (see Sect. 8.2.2).
Hence, the roto-translation matrices Rot(·) can be computed independently by each thread once

any 15-tuple of point ~Pl variables is assigned. The cost of this subroutine is then O(1) time instead
of O(kn) time of a sequential implementation.

A similar idea is applied for the subroutine choose best label random. Let k be the number
of pairs that can be assigned to variables xi, yi. Then a kernel CUDA is invoked a number of
blocks m ≥ k equal to the number of random samplings to be performed. Let us observe that the
average number of the pairs of angles allowed is 389. We have tested values of k from 500 to 3000
and we have observed that the best behavior for the system is for values for k close to 1000. The
first k blocks performs exactly the same computation as the choose best label function—thus,
simply exploring the impact of modifying only the angles associated to the xi, yi variables. The
remaining m − k blocks are subdivided in k groups, each corresponding to a different possible
assignment of the variables xi, yi; these m− k blocks are in charge of the actual random sampling.
Each one of these blocks starts with the initial configuration of the variables xi, yi—determined by
which of the k groups the block belongs to. The block then continues by determining the random
assignments for all the other pairs of variables xj , yj , with i 6= j (among those variables allocated
to the coordinator agent), as described in Sect. 18. The roto-translation matrices Rot(·) differ

116 8. The Protein Structure Prediction Problem on GPU

every time the alignment for a new list of point variables ~Pj+1 is computed based on the previous

list of point variables ~Pj . The block makes use of two threads to speed-up such computation. In
particular, we use one thread to perform the sequential alignment on the lists of point variables
~P1, . . . , ~Pj−1, while the second thread performs the sequential alignment on the lists of point

variables ~Pj+1, . . . , ~Pn, according to the two angles 〈φ, ψ〉 randomly selected for the variables
xj , yj . This subroutine runs in O(n) time using this organization in blocks and threads, instead
of the O(k · v · m) required by a sequential implementation, where v is the number of variables
assigned to the coordinator agent, and m is the number of random samplings.

As mentioned earlier, given a set of instantiated point variables, calculated by either the
choose best label function or the choose best label random function, the energy values of
the corresponding structures are calculated in parallel on the GPU. Once a list of energy values
(for each of the structures determined by the choose best label/choose best label random)
has been determined, we delegate the computation of the minimal energy to the host—using a
simple linear scan of the list of energy values of the various structures. We do not use a logarith-
mic reduction to compute the minimal energy, since the cost of invoking a kernel CUDA plus the
costs of the memory transactions between host and device would exceed the time required by the
sequential scan.

As far as the Gibbs sampling strategy is concerned, the for of lines 24–33 of Alg. 17 is delegated
to a CUDA kernel invoked with m blocks, where each block is assigned to a different starting point.
Starting points are computed as described above by the choose best label random function
considering k = 1 and forcing the random assignment of the variables associated to the agent
(i.e., it will be performed the same computation performed by one of the blocks ≥ (m − k) of
the choose best label random function). The for-loop that iterates on the number of samples
(Alg. 17—line 26-32) and the for-loop that iterates on the number of worker agents (Alg. 20—lines
1-17) are kept as sequential loops due to the correlation of consecutive samples (i.e., consecutive
samples define a Markov chain). Energy values are calculated in parallel on the GPU at each
iteration of the two nested loops on all the set of (updated) starting points.

8.5.4 General details about CUDA

We present some details related to the implementation of the CUDA kernels described in the
previous sections. In particular, due to the features of the architectural model of CUDA, we must
consider three main aspects that can affect the performance of the parallel computations: (1)
The maximum number of threads per block; (2) The maximum number of threads that can be
physically executed in parallel on each processor of the GPU (also known as the warp size); (3)
The information stored on the device memory and the copies of data to and from the host memory.

Let us consider a (typical) hardware where the maximum number of threads per block is limited
to 1024, and the size of a warp is 32. The first restriction could potentially limit the maximum
size of the target protein to 1024, when we use one thread per amino acid (e.g., to implement
the alldistant constraint). To avoid such restriction we can split the computation in multiple
executions of the same kernel. For each invocation we simply consider a different window of 1024
consecutive amino acids, until we cover the whole protein. However, protein typical size is less
than 1024, so this further stage is normally not needed.

The second restriction is important when we allow threads of the same warp to diverge to
different computational branches. Since kernel instructions are issued not to each thread, but to
each warp, to solve the divergences the compiler of CUDA generates code that will run sequentially
one branch after the other, causing a delay in the execution of the entire warp. We solved this
problem by splitting the parallel computation of different parts of the kernel code among warps
of 32 threads. For example, considering the energy function instead of 2n + 2 threads per block,
we invoke the kernel with 2m + 64 threads per block, where m = d n32e. Hence, 2m threads are
used to compute the contact potential and the hydrogen bond potential, and 64 threads are used
to compute the correlation and torsional potential.

The final aspect regards the optimization of the memory usage in order to achieve maximum

8.6. Results 117

memory throughput. CUDA has different types of memory spaces. Each thread block has access
to a small amount of a fast shared memory within the scope of the block. In turn, all threads
have access to the same global memory. Global memory is slower than shared memory but it can
store more data. Since applications should strive to minimize data transfers between the host and
the device (i.e., data transfers with low bandwidth), we reserve in the global memory an array
of size equal to the maximum number of structures expected for the sampling of the coordinator
agent multiplied the size of a structure. Moreover, we reserve an array of Boolean values for
the admissible structures and an array of doubles for the energy values. Each kernel receives the
number of structures to be considered and the pointers to the arrays in the global memory, in order
to properly overwrite them considering only the memory area affected by the kernel function. The
memory transfers to and from the CPU are made at each labeling step by copying the array of
structures produced by the propagation of constraints and the array of the energy values. Again,
only the elements affected by the computation of the kernel are transferred into the host memory.

To optimize the computation on the device, we store all the structures to rotate, the structures
on which to perform the consistency checks for the alldistant constraint, and those on which
to calculate the energy values in the shared memory of the GPU—paying particular care to not
exceed the maximum size available for the device in use. The shared memory can be a limitation
when we manage a large number of structures or very long proteins. Nevertheless, this is not a
problem if we consider that the size of our domains is about 300, and the proteins are typically
200-300 amino acids long. These numbers are compatible with the characteristics of CUDA (e.g.,
maximum number of threads per block), which makes this architecture particularly efficient on our
model.

8.6 Results

We report some experimental results obtained from the GPU implementation of the multi-agent
system (briefly, GMAS). We run our experiments on a CPU AMD Opteron 2.3GHz, 132 GB
memory, Linux 3.7.10-1.16-desktop x86 64, and GPU GeForce GTX TITAN, 14 SMs, 875MHz, 6
GB global memory, CUDA 5.0 with compute capability 3.5. To evaluate the speedup gained from
exploiting parallelism on the GPU, we implement a sequential version of the multi-agent system
(briefly, CMAS). Since coordinator agents use randomized search strategies, we report the results
averaged over 20 runs per protein, as well as their standard deviation (sd). Computational times
are reported in second. To assess the quality of our predictions we use the Root Mean Square
Deviation (RMSD) as an indicator of how close is the predicted structure w.r.t. the correspondent
(known) structure deposited in the protein data bank (the lower the better). Energy and RMSD
values are averaged on the sets of results produced by both the CPU and the GPU implementations.
“SUp” denotes Speedup in tables.

For following experiments we considered two different benchmark set of proteins selected from
the Protein Structure Databank [15]. The first benchmark set, BS1, is composed by 27 proteins
divided in 9 sets based on their length. In particular for x = 1, . . . , 9 we we randomly selected an
α protein, a β protein, and an αβ protein of length n ∈ {10x+ 1, . . . , 10(x+ 1)}.

The second benchmark set, BS2, is composed by 12 proteins of length that ranges from 125
to 200 residues, split into 4 subsets (where n = 125, 150, 175, 200). For each subset we randomly
selected an α protein, a β protein, and an αβ protein. The symbol “*” marks some proteins’
IDs that represents difficult targets due to their supersecondary structure conformation. A super-
secondary structure is a compact three-dimensional protein structure of several adjacent elements
of secondary structure that is smaller than a protein domain or a subunit. For both benchmark
sets we will consider a structure agent per secondary structure element and one coordinator agent
(default options).

In all CMAS/GMAS experiments we set a global timeout of 5000 seconds. This situation is
reported as “5000 (-)” in the tables. Let us observe that in these cases, the best solution found in
the time allowed is returned.

In Section 8.6.4 we analyze the system on a long protein as a case of study; for this test we

118 8. The Protein Structure Prediction Problem on GPU

used more coordinator agents. In Section 8.6.3 for the comparison with I-TASSER and FIASCO
we considered the benchmark sets presented in the publications concerning those tools. Globally
the GMAS tool has been tested on 65 proteins. The CPU and the GPU versions of the multi-agent
system, the set of proteins, the input files, and the best results computed by the MAS tool can be
found at http://www.cs.nmsu.edu/fiasco/.

8.6.1 GPU vs. CPU

Structure agents and secondary structure elements: In Table 8.1 and 8.2 we compare
GMAS and CMAS w.r.t. the times required by Structure agents to fold α-helices and β-sheets
for the benchmark sets BS1 and BS2, respectively. SS denotes the total length of the secondary
structures in the protein of length n. Let us observe that Structure agents use the ICM algorithm
to fold secondary structures.

Protein ID Type SS/n CPU GPU SUp

2CZP α 11/15 0.065 (0.001) 0.011 (0.0) 5.9
1LE0 β 6/12 0.006 (0.001) 0.010 (0.0) 0.6
2H2D αβ 9/18 0.003 (0.0) 0.007 (0.0) 0.4
2L5R α 20/23 0.367 (0.001) 0.060 (0.0) 6.1
1E0N β 13/27 0.103 (0.001) 0.037 (0.0) 2.7
1YYP αβ 12/31 0.046 (0.001) 0.019 (0.0) 2.4
1ZDD α 25/35 0.675 (0.001) 0.062 (0.0) 10.8
1E0L β 12/37 0.054 (0.001) 0.035 (0.0) 1.5
1PNH αβ 19/31 0.181 (0.003) 0.061 (0.0) 2.9
2K9D α 33/44 0.973 (0.001) 0.075 (0.0) 12.9
1YWI β 16/41 0.125 (0.001) 0.050 (0.0) 2.5
1HYM αβ 18/45 0.575 (0.001) 0.072 (0.0) 7.9
1YZM α 41/51 2.729 (0.001) 0.149 (0.0) 18.3
2CRT β 27/60 1.014 (0.001) 0.176 (0.0) 5.7
2HBB αβ 28/51 1.101 (0.011) 0.069 (0.0) 15.9
1AIL α 59/69 6.986 (0.005) 0.395 (0.005) 17.6
1PWT β 31/61 2.117 (0.001) 0.141 (0.0) 15.0
2IGD αβ 40/61 4.267 (0.021) 0.345 (0.002) 12.3
1OF9 α 53/77 4.816 (0.010) 0.242 (0.002) 19.9
1SPK β 27/72 0.994 (0.001) 0.111 (0.0) 8.9
1VIG αβ 42/71 3.022 (0.001) 0.213 (0.002) 14.1
1I11 α 44/81 2.707 (0.001) 0.202 (0.0) 13.4
1TEN β 48/87 7.258 (0.036) 0.556 (0.004) 13.0
1DCJ αβ 43/81 2.943 (0.002) 0.204 (0.0) 14.4
1JHG α 82/100 16.12 (0.003) 0.557 (0.003) 28.9
1WHM β 38/92 7.309 (0.002) 0.342 (0.006) 21.3
2CJO αβ 41/97 7.955 (0.001) 0.296 (0.005) 26.8

Table 8.1: CPU vs GPU: Secondary Structure predictions for the set BS1.

Protein ID Type SS/n CPU GPU SUp

1A0B α 98/125 40.15 (0.103) 1.223 (0.007) 32.8
1H10 β 56/125 24.12 (0.083) 0.730 (0.003) 33.0
1F98 αβ 74/125 18.96 (0.010) 0.574 (0.002) 33.0
2CJ5 α 116/150 71.78 (0.021) 1.155 (0.012) 62.1
1STB β 72/150 36.46 (0.040) 0.748 (0.005) 48.7
1LEO αβ 89/150 39.15 (0.157) 0.763 (0.001) 51.3
1BGD α 113/175 80.73 (0.283) 1.311 (0.005) 61.5
1FNL β 92/175 48.24 (0.024) 1.073 (0.008) 44.9
1T8A αβ 130/175 95.44 (0.017) 1.592 (0.006) 59.9
1IB1 α 165/200 113.4 (0.108) 2.851 (0.002) 39.7
2GH2 β 100/200 63.60 (0.115) 1.264 (0.008) 50.3
1RR9 αβ 114/200 86.50 (0.023) 1.147 (0.005) 75.4

Table 8.2: CPU vs GPU: Secondary Structure predictions for the set BS2.

8.6. Results 119

The speedups increase as SS increases. In particular, the higher speedups in most sets are
obtained on Structure agents associated to proteins of type α. This is due to the highly constrained
structure of the helices where the (rather greedy) search strategy reaches a local minima without
iterating many times on the set of variables associated to the agent. β-sheets are less constrained
structures and they require more iterations to converge to the local minima. For the GMAS
implementation point of view, more iterations leads to more information exchanged between host
and device (e.g., memory copies) resulting in a decrease in performance.

AB-Initio Prediction using Monte Carlo: Ab-Initio prediction is performed by the Supervisor
agent by managing Structure agents and Coordinator agents. In Table 8.3 we report the comparison
between CMAS and GMAS considering one Coordinator agent using the Monte Carlo search
strategy on the benchmark set BS1. Running time are inclusive of secondary structure prediction
(by structure agents), while the external computation using JNet of the possible segments where
looking for secondary structures is not considered. For each of the following experiments regarding
Monte Carlo we considered a sample set of 1000 structures, a number of improving steps k = 4
(parameters found experimentally considering a trade-off between time and quality of predictions)
and a time-out limit of 10800 seconds (3 hours). Speedups range from 4.5 to 17.3. For each protein

ID n CPU (sd) GPU (sd) SUp RMSD (sd) Energy (sd) Best

2CZP 15 0.559 (0.128) 0.046 (0.010) 12.1 0.8 (0.0) -490.5 (2.55) 0.8
1LE0 12 1.923 (0.176) 0.337 (0.020) 5.7 1.2 (0.2) -344.2 (23.50) 0.5
2H2D 18 1.815 (0.118) 0.275 (0.073) 6.6 1.2 (0.0) -263.3 (6.76) 1.2
2L5R 23 1.603 (0.222) 0.188 (0.028) 8.5 1.4 (0.0) -1482.54 (0.00) 1.4
1E0N 27 63.80 (14.180) 10.73 (1.463) 5.9 2.4 (0.6) -1945.00 (41.17) 1.5
1YYP 22 8.479 (2.262) 1.473 (0.482) 5.7 1.7 (0.3) -1205.24 (31.23) 1.2
1ZDD 35 39.40 (7.801) 4.343 (1.263) 9.0 1.1 (0.2) -2472.0 (27.79) 0.9
1E0L 37 20.76 (3.230) 1.816 (0.257) 11.4 2.7 (0.6) -959.366 (70.40) 1.9
1PNH 31 24.15 (3.037) 2.865 (0.301) 8.4 2.7 (0.3) -2611.61(40.20) 2.3
2K9D 44 87.46 (10.81) 13.67 (5.427) 6.3 1.5 (0.4) -6162.405 (150.29) 0.9
1YWI 41 32.23 (4.690) 3.523 (0.959) 9.1 3.4 (0.3) -1295.636 (14.75) 2.7
1HYM 45 81.10 (5.193) 9.309 (1.033) 8.7 3.5 (0.2) -2258.224 (71.90) 3.0
1YZM 51 32.45 (4.361) 1.871 (0.279) 17.3 2.6 (0.4) -4963.852 (63.70) 1.6
2CRT 60 1213 (166.45) 163.2 (20.70) 7.4 3.7 (0.6) -9514.056 (271.25) 2.6
2HBB* 51 476.3 (37.86) 64.42 (6.383) 7.3 3.6 (0.5) -6175.155 (217.69) 3.0
1AIL 69 88.10 (15.37) 6.546 (0.593) 13.4 3.2 (0.6) -10443.04 (251.59) 2.3
1PWT 61 512.8 (45.63) 66.61 (12.23) 7.6 4.1 (0.6) -7983.511 (238.57) 3.2
2IGD* 61 681.4 (50.13) 92.79 (12.55) 7.3 6.2 (0.8) -7928.462 (218.74) 5.0
1OF9* 77 750.6 (82.15) 133.9 (32.54) 5.6 4.3 (0.7) -17063.19 (480.68) 3.3
1SPK 72 1343 (149.27) 174.4 (28.00) 7.7 4.1 (0.4) -8457.154 (334.07) 3.6
1VIG 71 977.1 (107.20) 164.8 (34.63) 5.9 4.9 (0.7) -9295.76 (296.07) 3.7
1I11 81 296.7 (23.22) 38.70 (10.75) 5.6 4.4 (0.4) -7852.049 (251.77) 3.8

1TEN* 87 2995 (466.99) 1014 (86.20) 2.9 5.2 (0.8) -13955.71 (686.41) 4.1
1DCJ* 81 1590 (139.66) 310.7 (43.92) 5.1 4.5 (0.4) -15398.04 (606.98) 3.7
1JHG 100 1168 (123.86) 187.0 (33.59) 6.2 5.7 (1.0) -23687.56 (360.45) 4.0
1WHM 92 2796 (414.802) 611.5 (63.32) 4.5 4.5 (0.7) -17220.98 (525.289) 3.3
2CJO* 97 9195 (547.22) 1988 (162.6) 4.6 4.6 (0.2) -15785.77 (318.45) 4.2

Table 8.3: Time (sec.), quality, and energy values averaged on 20 runs for the set of proteins BS1.
Coordinator agent uses Monte Carlo algorithm.

we also report the best result found in 20 runs in terms of RMSD (column “Best”). Let us observe
that RMSD values are rather low: for proteins of length 100 we are in an average of 5Å.

AB-Initio Prediction using Gibbs: Coordinator agents can use the Gibbs sampling algorithm
to model loops and turns and hence to fold the entire protein. In terms of time, the Gibbs
sampling algorithm has a more stable behavior than Monte Carlo since the former runs for a fixed
number of iterations, while the latter runs until a local minimum (or a given time-out) is reached.
Computation of secondary structures are performed by structure agents as described in the previous
experiment. In Table 8.4 we report the comparisons between CMAS and GMAS using the Gibbs

120 8. The Protein Structure Prediction Problem on GPU

sampling strategy for the Coordinator agent, considering a number of samples n samples = 50,
and m = 1000 starting points. The number of sampling steps has been found experimentally and
it has been chosen as a good compromise between computational time and quality of predictions,
as discussed in what follows.

Protein ID n. CPU (sd) GPU (sd) SUp RMSD (sd) Energy (sd) Best

2CZP 15 1.243 (0.001) 0.219 (0.002) 5.6 0.8 (0.0) -490.461 (1.965) 0.8
1LE0 12 2.674 (0.001) 0.557 (0.009) 4.8 1.4 (0.1) -308.881 (4.903) 1.3
2H2D 18 2.210 (0.018) 0.513 (0.009) 4.3 1.5 (0.3) 235.4091 (7.062) 1.1
2L5R 23 5.009 (0.154) 0.356 (0.006) 14.0 1.4 (0.0) -1482.54 (0.0) 1.4
1E0N 27 69.69 (0.167) 3.379 (0.025) 20.6 2.7 (0.6) -1724.791 (41.558) 1.7
1YYP 22 19.12 (0.14) 1.450 (0.009) 13.1 1.8 (0.4) -1203.736 (11.868) 1.2
1ZDD 35 57.64 (0.09) 2.639 (0.013) 21.8 1.1 (0.1) -2470.327 (26.436) 0.9
1E0L 37 27.06 (0.459) 1.895 (0.014) 14.2 2.5 (0.4) -894.690 (55.465) 2.0
1PNH 31 33.99 (0.104) 1.793 (0.020) 18.9 2.3 (0.1) -2538.936 (25.54) 2.1
2K9D 44 144.0 (1.282) 4.687 (0.020) 30.7 1.7 (0.7) -5883.502 (102.288) 0.9
1YWI 41 41.48 (0.221) 2.251 (0.011) 18.4 3.4 (0.3) -1168.549 (13.060) 2.9
1HYM 45 74.58 (1.250) 3.478 (0.049) 21.4 3.5 (0.5) -2037.445 (39.651) 2.8
1YZM 51 56.04 (0.719) 1.800 (0.015) 31.3 2.8 (0.2) -4993.436 (27.578) 2.4
2CRT 60 665.7 (10.23) 17.93 (0.320) 37.1 4.0 (0.7) -8289.048 (166.152) 2.7
2HBB* 51 372.6 (1.628) 11.68 (0.116) 31.9 4.0 (0.2) -5309.193 (101.03) 3.7
1AIL 69 156.0 (3.019) 3.889 (0.017) 40.1 3.5 (0.3) -11275.98 (190.78) 3.2
1PWT 61 474.4 (0.345) 12.70 (0.611) 37.3 4.7 (0.6) -6942.941 (146.546) 3.6
2IGD* 61 550.4 (2.870) 14.15 (0.231) 38.8 5.1 (0.9) -7029.251 (86.943) 4.4
1OF9* 77 780.5 (10.87) 18.50 (0.429) 42.1 4.0 (0.8) -14739.77 (335.616) 2.5
1SPK 72 700.3 (1.521) 18.42 (0.353) 38.0 4.6 (0.5) 7071.708 (80.60) 4.0
1VIG 71 750.0 (2.161) 23.00 (0.288) 32.6 5.1 (1.0) -8015.638 (130.803) 3.4
1I11 81 433.1 (1.244) 10.11 (0.122) 42.8 3.9 (0.6) -7544.959 (114.85) 2.8

1TEN* 87 1841 (2.742) 50.93 (1.611) 36.1 5.5 (0.5) -12576.83 (413.913) 4.6
1DCJ* 81 1021 (1.246) 26.18 (1.077) 38.9 5.2 (0.6) -13061.12 (174.81) 3.9
1JHG 100 1462 (1.344) 32.63 (1.255) 44.8 4.9 (1.3) -21332.2 (258.721) 3.3
1WHM 92 1035 (1.281) 37.19 (0.262) 27.8 4.9 (0.6) -13953 (237.5671) 4.3
2CJO* 97 2024 (2.149) 56.41 (1.274) 35.8 5.2 (0.6) -12964.17 (170.607) 4.3

Table 8.4: Time (sec.), quality, and energy values averaged on 20 runs for the set of proteins BS1.
Coordinator agent uses Gibbs sampling algorithm.

The standard deviations of running times are smaller than those obtained using Monte Carlo.
Speedups are higher than in the previous experiments; this is due to the fact that Gibbs algorithm
updates the initial set of starting points in parallel considering one structure at a time for each
sampling step, while Monte Carlo produces a new sampling set for each variable associated to the
agent at each iteration step.

Time vs. Number of Samplings: The time needed to fold the structures and their quality
are two factors that are strongly correlated to the number of samples when using the Gibbs
sampling search strategy. Although it is quite difficult to relate the upper bound on the number
of samples with an upper bound on the quality of the results (e.g., see [122]), it is easy to study
how the computational time varies w.r.t. the number of samples and the length of the proteins.
In particular, since the coordinator agent invokes the gibbs function for a fixed number of times
(see Alg. 17, lines 26–35), the computational time varies linearly w.r.t. the number of samples. We
report this analysis in Figure 8.3 for the computationally most demanding protein of each subset,
varying the number of samples from 1 to 50, and comparing GMAS with CMAS.

In order to study how the quality of the solution changes w.r.t. the number of samples we
selected the longer protein of the benchmark set (i.e., 2CJO, with n = 97 but with 48 amino acids
delegated to the Coordinator agent) and we varied the number of samples from 1 to 50. Table 8.5
reports the results in terms of RMSD and standard deviation w.r.t. the number of samples.

Our choice of setting 50 as upper bound on the number of sampling for the benchmarks set BS1
is motivated by the two following observations: (1) for n ≥ 30 the improvements on the quality of

8.6. Results 121

0 10 20 30 40 50

0
1

2
3

4

Ti
m
e(
s)

Samples

GPU
CPU

1LE0 (n=12)

0 10 20 30 40 50
0

40

Ti
m
e(
s)

Samples

GPU
CPU

1E0N (n=27)

0 10 20 30 40 50

0
20

40
60

Ti
m
e(
s)

Samples

GPU
CPU

1ZDD (n=35)

0 10 20 30 40 50

0
50

15
0

Ti
m
e(
s)

Samples

GPU
CPU

2K9D (n=44)

0 10 20 30 40 50

0
20
0

Ti
m
e(
s)

Samples

GPU
CPU

2HBB (n=51)

0 10 20 30 40 50
0

20
0

50
0

Ti
m
e(
s)

Samples

GPU
CPU

2IGD (n=61)

0 10 20 30 40 50

0
40
0

80
0

Ti
m
e(
s)

Samples

GPU
CPU

1OF9 (n=77)

0 10 20 30 40 50

0
10
00

Ti
m
e(
s)

Samples

GPU
CPU

1TEN (n=87)

0 10 20 30 40 50

0
10
00

25
00

Ti
m
e(
s)

Samples

GPU
CPU

2CJO (n=97)

Figure 8.3: Time vs number of samples for the Gibbs sampling algorithm

Number of Samples
Protein ID 1 10 20 30 40 50

2CJO 6.3 (0.9) 5.8 (0.2) 5.5 (0.4) 5.4 (0.6) 5.4 (0.5) 5.2 (0.6)

Table 8.5: Quality w.r.t. number of samples for the Gibbs sampling strategy.

122 8. The Protein Structure Prediction Problem on GPU

the structures are relatively small, and (2) 2CJO can be implicitly considered as a representative
protein for all the other targets in BS1, since it has the larger set of amino acids assigned to a
coordinator agent (51 residues). Therefore, we have conjectured that this value is suitable for the
whole set. Other, not reported, experiments have confirmed this hypothesis. Let us conclude this
analysis by observing that the observed linearity guarantees that using less than 50 sampling steps
would preserve the speedups.

Quality evaluation: using RMSD as Objective Function: The quality of the predicted
structure strongly depends on the energy function adopted in the model. The energy function can
be changed as a black box and without affecting the overall structure of the system. In this test,
we evaluated the differences in terms of RMSD between the Gibbs sampling and the Monte Carlo
algorithm using the RMSD w.r.t. the native known structure as objective function for both the
structure and the coordinator agents. Of course this function cannot be used for still unknown
proteins; however we experiment it in order to see if our tool is, in principle, able to compute the
native structure if the “real” protein energy function would be know. Table 8.6 shows the results
in terms of average and best RMSD computed for the benchmark set is BS1. Best results are
reported in boldfont.

Protein ID n Gibbs (sd) Best MC (sd) Best

2CZP 15 1.0 (0.0) 1.0 1.0 (0.0) 1.0
1LE0 12 1.0 (0.0) 1.0 0.9 (0.9) 0.9
2H2D 18 0.5 (0.0) 0.5 1.2 (0.0) 1.2
2L5R 23 1.4 (0.0) 1.4 1.1 (0.1) 1.0
1E0N 27 1.3 (0.2) 1.0 0.9 (0.0) 0.8
1YYP 22 0.9 (0.0) 0.9 1.5 (0.1) 0.8
1ZDD 35 1.6 (0.1) 1.5 1.5 (0.1) 1.4
1E0L 37 3.4 (0.1) 3.1 3.5 (0.3) 2.8
1PNH 31 2.8 (0.4) 2.1 2.9 (0.2) 2.7
2K9D 44 2.0 (0.3) 1.5 1.9 (0.1) 1.7
1YWI 41 2.5 (0.4) 1.9 2.5 (0.2) 2.2
1HYM 45 2.4 (0.3) 1.6 2.4 (0.2) 2.1
1YZM 51 1.5 (0.0) 1.5 1.5 (0.1) 1.4
2CRT 60 4.3 (0.3) 3.9 4.5 (0.2) 4.1
2HBB* 51 2.6 (0.3) 2.1 1.8 (0.3) 1.4
1AIL 69 2.0 (0.3) 1.5 2.8 (0.7) 1.7
1PWT 61 3.5 (0.3) 2.9 2.7 (0.4) 2.1
2IGD* 61 3.0 (0.2) 2.6 2.9 (0.3) 2.6
1OF9* 77 2.2 (0.3) 2.1 1.7 (0.1) 1.5
1SPK 72 4.3 (0.5) 3.8 4.2 (0.3) 3.7
1VIG 71 5.0 (0.5) 4.2 5.8 (0.4) 4.9
1I11 81 2.9 (0.4) 2.3 2.4 (0.1) 2.2

1TEN* 87 6.3 (0.4) 5.8 6.5 (0.4) 5.8
1DCJ* 81 4.6 (0.7) 3.8 4.3 (0.3) 3.8
1JHG 100 5.7 (0.5) 5.1 5.7 (0.6) 4.3
1WHM 92 5.2 (0.9) 4.1 4.8 (0.2) 4.5
2CJO* 97 4.8 (0.5) 4.1 4.2 (0.4) 3.5

Table 8.6: Quality evaluation: RMSD as objective function.

As expected, the average quality of the results is better than using the original energy function,
since both search strategies try to minimize the spatial difference between the native structure
and the target. Nevertheless, RMSD values are not close to zero since the variables’ domains are
created to be used for predicting unknown structures. Therefore, they do not necessary contain
the true pair of angles of the amino acids of each target.

Let us observe that an objective function based on the RMSD value can be adopted for new
search strategies. For example, minimization of the RMSD distance between (parts of) the target
and a corresponding set of templates can be useful in template-based modeling techniques [52].

Adding constraints while preserving speedup: In this section we show that the system is
highly modular and that we can introduce additional geometric constraints that allows to reduce
the search space while preserving the speedup.

8.6. Results 123

We consider the case of modeling the side-chain of each amino acid. This can be done by
defining a new constraint that relates the position of each Cα atom with the group R defined on it.
The centroid (CG) constraint enforces a relation among four triples of real variables ~p1, ~p2, ~p3, and
~p4. This relation establishes the value to assign to the variables ~p4 representing the coordinates
of the side chain defined on the carbon atom Cαi , given the bend angle formed by the carbon
atoms ~p1 7→ Cαi−1

, ~p2 7→ Cαi , and ~p3 7→ Cαi+1
, and the average Cαi–side chain distance [55].

The coordinates of ~p1, ~p2, and ~p3 are already present in our modeling, while the coordinates of
~p4 are considered only here. Moreover, this constraint checks the minimum distance between side
chains and all the other atoms of the structure in order to avoid steric clashes, as in the case of
the alldistant constraint. Note that, using a sequential algorithm, it is possible to check the
consistency of this constraint for a given assignment of values to the variables in P in time O(n2).
We adopt the same strategy used for the alldistant constraint to obtain O(n) time in the parallel
implementation.

In Table 8.7 (resp., 8.8) we report the times for CMAS and GMAS on the protein set BS1 for
the Monte Carlo (reps., Gibbs sampling strategies), using the alldistant constraint and the CG

constraint.

Protein ID n CPU (sd) GPU (sd) SUp RMSD (sd) Energy (sd) Best

2CZP 15 0.760 (0.158) 0.075 (0.017) 10.1 0.8 (0.0) -487.009 (0.0) 0.8
1LE0 12 2.225 (0.247 0.489 (0.047) 4.5 1.4 (0.1) -310.5714 (15.03) 1.3
2H2D 18 2.112 (0.340) 0.425 (0.042) 4.9 1.3 (0.2) -258.0266 (4.655) 1.1
2L5R 23 2.072 (0.525) 0.281 (0.109) 7.3 1.4 (0.0) -1482.54 (0.0) 1.4
1E0N 27 72.46 (9.620) 14.18 (2.458) 5.1 2.3 (0.4) -1723.076 (49.3655) 1.7
1YYP 22 10.94 (2.793) 1.695 (0.114) 6.4 1.4 (0.2) -1190.033 (36.27) 1.2
1ZDD 35 45.799 (7.169) 5.284 (1.378) 8.6 1.7 (0.2) -2272.059 (55.53058) 1.5
1E0L 37 24.85 (3.285) 4.493 (0.271) 5.5 2.6 (0.6) -882.369 (37.0802) 1.8
1PNH 31 27.25 (4.602) 3.370 (0.387) 8.0 3.4 (0.6) -2518.261 (52.135) 2.1
2K9D 44 95.42 (9.547) 12.68 (1.798) 7.5 3.0 (1.3) -5258.283 (114.113) 1.4
1YWI 41 29.07 (5.566) 3.940 (1.688) 7.3 3.1 (0.5) -1152.215 (40.8021) 2.2
1HYM 45 97.96 (18.16) 10.29 (0.964) 9.5 3.5 (0.3) -2113.299 (85.986) 2.9
1YZM 51 36.69 (10.11) 2.406 (0.330) 15.2 2.7 (0.3) -4393.806 (39.639) 2.4
2CRT 60 1280 (110.4) 187.5 (22.14) 6.8 4.0 (0.3) -8346.851 (264.8791) 3.5
2HBB* 51 562.2 (91.53) 67.66 (12.38) 8.3 3.9 (0.8) -5471.265 (67.6792) 2.8
1AIL 69 132.5 (9.236) 7.575 (0.653) 17.4 3.8 (0.8) -8880.202 (227.2679) 2.7
1PWT 61 554.5 (40.66) 67.75 (4.649) 8.1 4.1 (0.6) -7034.326 (178.9961) 3.0
2IGD* 61 717.7 (135.3) 82.09 (12.19) 8.7 5.3 (1.0) -7126.439 (224.9547) 4.1
1OF9* 77 768.2 (100.4) 140.0 (33.79) 5.4 3.5 (0.7) -14429.41 (342.4358) 2.6
1SPK 72 1317 (103.3) 175.7 (9.452) 7.4 4.2 (0.5) -7189.066 (264.136) 3.4
1VIG 71 1176 (184.4) 160.3 (34.90) 7.3 4.7 (0.9) -8118.327 (181.7243) 3.3
1I11 81 322.7 (18.45) 49.91 (5.924) 6.4 4.0 (0.7) -6870.417 (151.4574) 3.1

1TEN* 87 5330 (564.8) 1128 (148.1) 4.7 6.0 (0.8) -13505.96 (204.369) 5.1
1DCJ* 81 1623 (209.8) 292.0 (52.30) 5.5 5.2 (0.7) -12866.59 (445.7158) 4.4
1JHG 100 1417 (101.7) 179.8 (28.56) 7.8 6.1 (0.9) -20293.91 (404.9333) 4.8
1WHM 92 2829 (250.4) 968.9 (189.5) 2.9 5.1 (0.8) -14676.57 (484.0556) 3.8
2CJO* 97 8248 (748.3) 1967 (262.8) 4.1 5.4 (0.8) -13916.12 (395.8187) 4.4

Table 8.7: Time (sec.), quality, and energy values averaged on 20 runs for some proteins of different
length and type. Coordinator agents use Monte Carlo algorithm to explore conformations. CG
constraint has been enabled.

8.6.2 Longer Proteins

After experimented the speedup of GMAS w.r.t. CMAS, in this section we show the results of
GMAS on the set of larger proteins BS2. Table 8.9 shows the results in terms of time, RMSD,
energy, and best RMSD when using the Gibbs algorithm for the Coordinator agent (1 Coordinator
agent, 50 sampling steps). Times vary from 40.4 to 376.6 seconds, while the best RMSD values are
always under 8.0Å. In Table 8.10 the CG constraint is added to the encoding. Quality of results

124 8. The Protein Structure Prediction Problem on GPU

Protein ID n CPU (sd) GPU (sd) SUp RMSD (sd) Energy (sd) Best

2CZP 15 2.006 (0.001) 0.314 (0.029) 6.3 0.8 (0.0) -491.458 (1.022) 0.8
1LE0 12 4.114 (0.007) 0.806 (0.077) 5.1 1.4 (0.1) -300.8306 (6.789) 1.3
2H2D 18 3.300 (0.039) 0.758 (0.060) 4.3 1.7 (0.7) -244.392 (7.862) 0.9
2L5R 23 6.787 (0.070) 0.521 (0.047) 13.0 1.4 (0.0) -1482.54 (0.000) 1.4
1E0N 27 93.61 (10.66) 4.964 (0.118) 18.8 3.0 (0.6) -1517.871 (28.7422) 2.3
1YYP 22 25.71 (0.062) 2.100 (0.099) 12.2 1.7 (0.5) -1183.739 (9.5) 1.1
1ZDD 35 81.41 (0.500) 3.384 (0.065) 24.0 1.6 (0.1) -2378.678 (61.27) 1.5
1E0L 37 39.52 (0.782) 2.692 (0.017) 14.6 2.8 (0.6) -849.1835 (35.66) 2.0
1PNH 31 47.02 (0.205) 2.451 (0.034) 19.1 2.8 (0.4) -2440.618 (55.42) 2.1
2K9D 44 186.9 (15.24) 5.311 (0.069) 35.1 2.0 (0.4) -5191.226 (247.499) 1.6
1YWI 41 52.96 (0.211) 3.203 (0.090) 16.5 3.0 (0.5) -1072.859 (16.79) 2.3
1HYM 45 110.7 (0.198) 4.646 (0.093) 23.8 3.9 (0.7) -1905.429 (62.30) 2.9
1YZM 51 70.85 (0.770) 2.575 (0.007) 27.5 2.6 (0.1) -4533.8 (46.809) 2.5
2CRT 60 636.3 (4.732) 18.29 (0.331) 34.7 3.8 (0.6) -7252.04 (247.893) 3.1
2HBB* 51 578.2 (4.624) 13.77 (0.208) 41.9 4.3 (0.4) -4818.446 (54.610) 3.6
1AIL 69 226.8 (0.356) 6.403 (0.651) 35.4 3.7 (0.7) -9842.159 (227.2839) 2.4
1PWT 61 524.7 (173.7) 11.60 (1.573) 45.2 4.2 (0.7) -6173.182 (109.042) 3.3
2IGD* 61 361.7 (29.61) 16.94 (0.347) 21.3 5.4 (0.9) -6185.173 (151.216) 4.0
1OF9* 77 1077 (23.35) 18.18 (0.615) 59.2 4.8 (0.9) -12970 (212.057) 3.0
1SPK 72 554.2 (28.9) 15.08 (0.597) 36.7 4.9 (0.5) -6151.49 (128.4445) 4.1
1VIG 71 644.6 (19.86) 22.70 (0.765) 28.3 5.0 (0.6) -6995.402 (223.483) 3.9
1I11 81 461.9 (106.3) 13.56 (0.177) 34.0 4.0 (0.7) -6747.406 (94.80) 2.8

1TEN* 87 3348 (15.58) 62.29 (0.354) 53.7 6.3 (0.9) -11030.24 (311.69) 4.8
1DCJ* 81 1065 (392.9) 19.51 (1.196) 54.5 5.9 (0.9) -11330.29 (271.17) 3.5
1JHG 100 1556 (63.96) 15.80 (0.347) 98.4 5.2 (0.8) -19074.76 (579.9539) 4.0
1WHM 92 1879 (0.431) 30.18 (1.693) 62.2 5.2 (1.0) -12364.63 (199.9923) 3.7
2CJO* 97 1795 (148.7) 45.30 (0.742) 39.6 5.8 (0.9) -11197.55 (188.3018) 4.7

Table 8.8: Time (sec.), quality, and energy values averaged on 20 runs for some proteins of different
length and type. Coordinator agents use Gibbs sampling algorithm to explore conformations. CG
constraint has been enabled.

Protein ID Time (sd) RMSD (sd) Energy (sd) Best RMSD

1A0B 40.44 (0.99) 5.2 (1.1) -23592.9 (1007.557) 3.5
1H10* 69.18 (3.278) 7.6 (1.0) -14041.22 (1010.967) 6.9
1F98* 84.37 (3.410) 6.9 (0.9) -21683.44 (760.408) 6.0
2CJ5 100.6 (4.546) 6.4 (0.8) -35302.44 (1062.648) 5.2
1STB* 118.0 (5.452) 7.5 (1.1) -19563.05 (910.6381) 5.6
1LEO 101.6 (8.208) 6.7 (0.9) -32627.28 (909.583) 5.4
1BGD* 135.5 (7.360) 8.1 (1.5) -47544.61 (1441.902) 5.2
1FNL* 376.6 (26.34) 8.4 (0.7) -40839.9 (1424.246) 7.2
1T8A 214.8 (12.56) 7.9 (1.0) -44482.65 (1107.889) 6.3
1IB1 208.7 (10.80) 8.4 (1.0) -50007.91 (1047.775) 6.4

2GH2* 84.75 (0.851) 9.8 (1.5) -38321.71 (1283.365) 7.5
1RR9* 298.8 (17.93) 8.4 (1.1) -45074.02 (1959.957) 7.0

Table 8.9: Longer proteins (125, 150, 175, 200): time and quality evaluation using Gibbs sampling.

8.6. Results 125

are slightly decreased due to the poor approximation of the side chain with a single atom, while
computational times are reduced since more structures have been pruned.

Protein ID Time (sd) RMSD (sd) Energy (sd) Best RMSD

1A0B 32.33 (1.424) 7.8 (1.3) -21292.37 (708.0099) 5.6
1H10* 49.76 (2.648) 7.3 (1.1) -13354.67 (184.2466) 5.0
1F98* 51.56 (2.795) 7.1 (1.0) -19554.71 (751.1157) 5.9
2CJ5 75.33 (7.619) 6.5 (1.2) -30636.26 (218.7721) 5.6
1STB* 58.00 (3.399) 7.2 (1.5) -17567.47 (862.4277) 4.5
1LEO 60.32 (5.187) 7.3 (0.8) -28359.66 (658.0844) 6.1
1BGD* 83.57 (9.395) 9.0 (1.2) -42451.74 (942.5947) 7.8
1FNL* 101.9 (15.99) 10.5 (1.7) -34714.2 (2204.668) 7.9
1T8A 113.6 (4.960) 8.8 (1.7) -39357.61 (862.8464) 5.5
1IB1 112.6 (10.07) 9.1 (1.2) -42539.18 (1545.187) 7.3

2GH2* 118.5 (20.11) 12.4 (1.2) -33937.24 (2317.069) 11.1
1RR9* 144.3 (18.84) 8.8 (1.2) -38644.9 (1474.511) 6.9

Table 8.10: Longer proteins (125, 150, 175, 200): time and quality evaluation using Gibbs sampling
with the CG constraint enabled.

Protein ID Time (sd) RMSD (sd) Energy (sd) Best RMSD

1A0B 285.9 (61.19) 4.1 (0.4) -25588.58 (717.2202) 2.7
1H10* 1693 (300.3) 5.8 (0.6) -18914.5 (459.4581) 5.1
1F98* 2987 (598.4) 5.8 (0.9) -26607.36 (721.812) 4.7
2CJ5 1583 (230.9) 7.0 (1.4) -41436.0 (1558.731) 5.5
1STB* 5392 (625.9) 6.5 (0.2) -25676.32 (1207.134) 6.2
1LEO 5145 (609.2) 5.8 (0.3) -40749.62 (1038.819) 5.4

1BGD* 5000 (-) 6.2 (1.3) -38185.23 (1199.362) 5.1
1FNL* 5000 (-) 6.0 (0.4) -45450.2 (1014.597) 5.7
1T8A 5000 (-) 4.7 (0.7) -39630.5 (922.132) 4.2
1IB1 4436 (543.1) 3.4 (0.2) -43938.1 (907.0643) 3.1

2GH2* 5000 (-) 7.2 (0.7) -49686.63 (503.952) 6.7
1RR9* 5000 (-) 5.8 (1.2) -45133.57 (640.239) 4.6

Table 8.11: Longer proteins (125, 150, 175, 200): time and quality evaluation using the Monte Carlo
search strategy.

Protein ID Time (sd) RMSD (sd) Energy (sd) Best RMSD

1A0B 240.6 (44.56) 7.1 (1.8) -22661.39 (242.603) 5.1
1H10* 1659 (247.8) 6.4 (0.5) -13641.52 (5259.107) 5.9
1F98* 2287 (240.3) 6.3 (0.8) -22783.95 (530.0175) 5.2
2CJ5 1547 (149.6) 13.5 (2.9) -35356.96 (660.8399) 8.6
1STB* 4891 (372.8) 7.0 (0.6) -21351.42 (440.864) 6.1
1LEO 4125 (402.6) 6.1 (0.9) -33733.4 (164.6203) 5.2
1BGD* 6.6 (1.1) -40615.83 (870.601) 5.4
1FNL* 5000 (-) 6.3 (1.0) -44714.47 (382.754) 5.1
1T8A 4.6 (0.5) -38881.8 (997.4146) 4.1
1IB1 3625 (538.4) 4.8 (0.3) -43085.2 (934.407) 4.5

2GH2* 5000 (-) 9.2 (0.4) -47081.13 (1051.74) 9.5
1RR9* 5000 (-) 6.3 (1.0) -40543.97 (1206.53) 5.6

Table 8.12: Longer proteins (125, 150, 175, 200): time and quality evaluation using the Monte Carlo
search strategy and CG constraint.

8.6.3 Comparison with other Systems

Comparison with Rosetta: We compared the quality of the proposed tool in terms of RMSD
against the state-of-the-art Rosetta tool, initially presented in [153] and continuously evolved since
then. For each protein of benchmark set SB1 and SB2 we built the dictionary for 3 and 9 amino

126 8. The Protein Structure Prediction Problem on GPU

acid long peptides previous sequence alignment using the PSIPRED online server (http://bioinf.
cs.ucl.ac.uk/psipred). We followed the examples in the Rosetta distribution. Let us observe
that our tool uses e a generic database of angles whereas Rosetta uses a database of fragments
created based on the target sequence. To be as fair as possible in comparing the tools we run them
considering their default settings. Moreover, we run the Rosetta tool on a host machine equipped
with 8 processors Intel(R) Core(TM) i7-2600 CPU, 3.40GHz.

Table 8.13 show the results in terms of RMSD and time as given by Rosetta. For each protein
we report also the RMSD corresponding to the best structure found by Rosetta and the RMSD
corresponding to best structure found by GMAS among all the previous experiments using Monte
Carlo (MC) and Gibbs sampling as well as the corresponding times. Best results are reported in
boldfont.

Rosetta GMAS
Protein ID n RMSD (sd) Time (sd) Best MC Time (sd) Gibbs Time (sd)

2CZP 15 0.4 (0.1) 2.700 (0.483) 0.2 0.8 0.046 (0.010) 0.8 0.219 (0.002)
1LE0 12 0.7 (0.2) 2.600 (0.516) 0.3 0.5 0.337 (0.020) 1.3 0.557 (0.009)
2H2D 18 1.3 (0.3) 3.428 (0.534) 0.9 1.1 0.425 (0.042) 0.9 0.758 (0.060)
2L5R 23 1.1 (0.0) 3.500 (0.547) 1.1 1.4 0.188 (0.028) 1.4 0.356 (0.006)
1E0N 27 2.7 (0.4) 7.100 (1.523) 2.0 1.5 10.73 (1.463) 1.7 3.379 (0.025)
1YYP 22 2.5 (0.4) 7.857 (0.690) 2.1 1.2 1.473 (0.482) 1.1 2.100 (0.099)
1ZDD 35 1.3 (0.4) 11.00 (0.942) 0.8 0.9 4.343 (1.263) 0.9 2.639 (0.013)
1E0L 37 3.5 (0.6) 11.70 (2.540) 2.3 1.8 4.493 (0.271) 2.0 1.895 (0.014)
1PNH 31 3.2 (0.8) 11.20 (1.549) 1.8 2.1 3.370 (0.387) 2.1 1.793 (0.020)
2K9D 44 2.8 (1.3) 12.30 (2.057) 1.6 0.9 13.67 (5.427) 0.9 4.687 (0.020)
1YWI 41 2.5 (0.4) 9.222 (1.715) 2.8 2.2 3.940 (1.688) 2.3 3.203 (0.090)
1HYM 45 4.2 (0.9) 15.10 (0.567) 3.1 2.9 10.29 (0.964) 2.8 3.478 (0.049)
1YZM 51 0.9 (0.4) 10.75 (1.035) 0.5 1.6 1.871 (0.279) 2.4 1.800 (0.015)
2CRT 60 4.5 (0.8) 20.75 (1.035) 3.5 2.6 163.2 (20.70) 2.7 17.93 (0.320)
2HBB 51 3.4 (0.7) 17.11 (1.452) 2.2 2.8 67.66 (12.38) 3.6 13.77 (0.208)
1AIL 69 4.1 (1.4) 26.33 (0.707) 1.7 2.3 6.546 (0.593) 2.4 6.403 (0.651)
1PWT 61 3.9 (0.7) 23.12 (0.640) 2.8 3.0 67.75 (4.649) 3.3 11.60 (1.573)
2IGD 61 5.6 (0.6) 20.75 (3.615) 4.7 4.1 82.09 (12.19) 4.0 16.94 (0.347)
1OF9 77 11.5 (0.1) 18.33 (1.032) 10.9 2.6 140.0 (33.79) 2.5 18.50 (0.429)
1SPK 72 4.6 (0.6) 25.12 (1.246) 3.7 3.4 175.7 (9.452) 4.0 18.42 (0.353)
1VIG 71 5.5 (1.2) 25.25 (1.281) 4.1 3.3 160.3 (34.90) 3.4 23.00 (0.288)
1I11 81 4.8 (1.1) 25.00 (1.322) 2.9 3.1 49.91 (5.924) 2.8 10.11 (0.122)
1TEN 87 6.8 (0.6) 34.50 (1.511) 5.7 4.1 1014 (86.20) 4.6 50.93 (1.611)
1DCJ 81 5.3 (0.9) 30.87 (1.807) 4.0 3.7 310.7 (43.92) 3.5 19.51 (1.196)
1JHG 100 5.0 (0.7) 38.25 (6.273) 3.8 4.0 187.0 (33.59) 3.3 32.63 (1.255)
1WHM 92 6.4 (0.5) 35.00 (1.772) 5.8 3.3 611.5 (63.32) 3.7 30.18 (1.693)
2CJO 97 4.7 (0.8) 38.62 (2.924) 3.5 4.2 1988 (162.6) 4.3 56.41 (1.274)
1A0B 125 6.0 (1.4) 45.25 (2.964) 4.4 2.7 285.9 (61.19) 3.5 40.44 (0.99)
1H10 125 7.1 (1.4) 47.50 (5.830) 5.4 5.1 1693 (300.3) 5.0 49.76 (2.648)
1F98 125 5.8 (1.0) 55.00 (3.681) 4.5 4.7 2987 (598.4) 5.9 51.56 (2.795)
2CJ5 150 7.1 (1.9) 62.77 (5.540) 4.8 5.5 285.9 (61.19) 5.2 100.6 (4.546)
1STB 150 6.3 (0.7) 62.80 (5.329) 4.8 6.1 4891 (372.8) 4.5 58.00 (3.399)
1LEO 150 6.5 (1.0) 69.50 (5.380) 4.9 5.2 4125 (402.6) 5.4 101.6 (8.208)
1BGD 175 7.8 (1.2) 59.10 (9.085) 5.8 5.1 5000 (-) 5.2 135.5 (7.360)
1FNL 175 6.8 (1.2) 60.70 (4.056) 5.1 5.1 5000 (-) 7.2 376.6 (26.34)
1T8A 175 6.8 (1.2) 86.40 (6.380) 5.0 4.1 5000 (-) 5.5 113.6 (4.960)
1IB1 200 7.8 (1.5) 129.0 (9.297) 6.4 3.1 4436 (543.1) 6.4 208.7 (10.80)
2GH2 200 8.0 (1.0) 101.9 (6.297) 6.9 6.7 5000 (-) 7.5 84.75 (0.851)
1RR9 200 7.1 (1.8) 86.40 (12.33) 4.8 4.6 5000 (-) 6.9 144.3 (18.84)

Table 8.13: Quality evaluation: best results of GMAS systems against Rosetta.

The quality of the structures predicted by GMAS is in line with the results of Rosetta. On the
other hand, Rosetta tends to be faster on longer proteins (e.g., ≥ 150 amino acids). This is due
to several factors such as a better energy function that can lead sooner to a local minimum, the
computation of the fragments database for each target, and the various heuristics encoded in that

8.6. Results 127

tool during the years.

Comparison with I-TASSER: We compared GMAS with another state-of-the-art protein struc-
ture prediction system, namely the Iterative TASSER (I-TASSER) tool [181, 136]. I-TASSER is a
threading-based system that builds protein structures from primary sequences considering already
known homologous proteins. Table 8.14 presents the comparison between I-TASSER and GMAS.
For comparing I-TASSER with GMAS we considered the complete benchmark set of 16 proteins
presented in [169] (benchmark 1). For each protein we report the best result found by I-TASSER
(as reported in their work), as well as the best results found by GMAS using Monte Carlo without
the GC constraint and Gibbs with the CG constraints, that previous experiments proved to be the
best combinations. The running time of I-TASSER computations are those reported in the 2007
paper. However, we have re-launched some of them with our machine obtaining similar (slightly
worse) results with their timeout of five hours. The RMSD results shows that our tool (considering
our best result with the two options) has results comparable to I-TASSER (and obtained in shorter
time).

I-TASSER GMAS
MC Gibbs

ID n RMSD RMSD Time (sd) RMSD Time (sd)

1B72 A 49 3.1 2.4 20.56 (3.863) 3.1 7.437 (0.081)
1SHF A 59 1.7 3.0 144.2 (11.63) 3.7 17.92 (0.096)
1TIF 59 7.0 3.9 45.11 (4.230) 3.6 9.350 (0.665)

2REB 2 60 4.7 4.1 17.78 (3.393) 2.4 7.023 (0.018)
1R69 61 1.9 3.5 124.5 (15.06) 3.5 15.58 (0.164)
1CSP 67 2.1 4.4 248.0 (46.72) 4.8 22.26 (1.124)
1DI2 A 69 2.3 4.8 41.23 (5.382) 5.4 13.09 (0.273)
1N0U A4 69 4.4 4.7 128.3 (16.03) 3.7 19.63 (0.950)
1MLA 2 70 2.7 3.6 61.75 (14.83) 4.6 16.95 (0.241)
1AF7 72 4.2 3.4 60.39 (7.870) 3.4 14.92 (0.109)

1OGW A 72 1.1 4.3 485.1 (66.16) 3.5 30.40 (0.518)
1DCJ A 73 10.0 3.7 267.5 (42.02) 3.9 24.40 (1.267)
1DTJ A 74 1.7 4.3 247.8 (23.99) 3.1 25.41 (0.172)
1O2F B 77 5.2 3.6 228.5 (16.91) 3.4 22.82 (1.262)

1MKY A3 81 4.5 3.8 545.7 (88.16) 4.9 35.20 (0.551)
1TIG 88 4.4 4.7 196.4 (30.92) 5.6 31.73 (0.301)

Table 8.14: Quality evaluation: best results of GMAS systems against I-TASSER.

Comparison with FIASCO: We compared GMAS with another CP-based tool FIASCO ([19]
—Table 8.15). FIASCO is a C++-based constraint solver targeted at modeling a general class of
protein structure studies that relies on fragment assembly techniques. The benchmark set used
for these experiments is the same used in [19]. For GMAS we report the best results among 20
runs for each combination using Monte Carlo and Gibbs without the CG constraints, that previous
experiments proved to be the best combinations. Let us observe that GMAS is a clear winner in
this case.

FIASCO GMAS
MC Gibbs

ID n RMSD Time RMSD Time (sd) RMSD Time (sd)

1ZDD 35 2.0 685.2 0.9 4.343 (1.263) 0.9 2.639 (0.013)
2GP8 40 6.2 376.8 1.3 1.916 (0.226) 1.3 2.070 (0.180)
2K9D 44 2.5 513.0 0.9 13.67 (5.427) 0.9 4.687 (0.020)
1ENH 54 8.2 1900 2.3 13.75 (5.731) 1.3 10.86 (1.301)
2IGD 61 10.5 1588 4.1 82.09 (12.19) 4.0 16.94 (0.347)
1SN1 63 5.5 889.2 4.1 47.35 (10.41) 3.0 46.40 (9.726)
1AIL 69 4.5 267.6 2.3 6.546 (0.593) 2.4 6.403 (0.651)
1B4R 79 6.1 504.6 4.1 462.1 (97.58) 4.0 479.8 (47.01)
1JHG 100 4.5 270.0 4.0 187.0 (33.59) 3.3 32.63 (1.255)

Table 8.15: Quality evaluation: best results of GMAS systems against FIASCO.

128 8. The Protein Structure Prediction Problem on GPU

8.6.4 A Case of Study: 3BHI

In this section we consider a specific long protein as representative for a case of study to assess
the capabilities of our solver on “hard” proteins. We selected the protein 3BHI with n = 276, and
its secondary structure contains 6 α-helices, 3 β-sheets, and 7 turns. First of all we compute the
offsets of the secondary structure elements on the primary sequence using JNet that will produce
a text file containing the desired alignment:

SSGIHVALVTGGNKGIGLAIVRDLCRLFSGDVVLTARDV . . .
−−−−EEEE−−−−−HHHHHHHHHHHHH−−−EEEEE−−−H . . .

JNet requires few seconds to generate the alignment and hence it does not affect the overall
computational time. However, this input file might be also generated by other tools or on-line
servers (e.g., http://bioinf.cs.ucl.ac.uk/psipred/). Once the alignment has been generated
we run the solver specifying the Gibbs algorithm as search strategy for the Coordinator agents,
with 150 sampling steps, and the file containing the alignment as input file. We used the Gibbs
option in the coordinator that proved to be the faster for long proteins in our previous experiments.
We increased the number of samples to 150 since we experimentally observed a convergence of the
quality of the solutions after 150 samples, running the system considering 50, 100, 150 and 200
samples. Results are reported in Table 8.16 - Default row.

Experiment Time (sd) RMSD (sd) Energy (sd) Best RMSD

Default 3885 (178.4) 12.15 (2.0) -83854.05 (3060.509) 10.8
Default-CG 908.2 (60.83) 11.40 (1.4) -74065.95 (2979.682) 10.1

Multi-Coordinators 1317 (2.146) 10.175 (2.1) -86866.9 (4447.796) 8.3
Multi-Coordinators-CG 939.8 (3.024) 11.17 (1.2) -76466.71 (5154.601) 9.8

Table 8.16: Case of Study: 3BHI (276 amino acids)

Then we have introduced the CG constraint: Default-CG row shows that time is reduced from
3885 to 908.2 seconds. Let us observe that also the quality of the solution is improved from 12.15Å
to 11.40Å although the energy value is increased. This means that the energy function and, in
particular, the weights of the energy components are not completely precise.

To further improve the prediction we used more than one coordinator agent, in particular one
for each sequence of amino acids between a pair of consecutive secondary structures. Results
are reported in column Multi-Coordinators column. With these new settings we improved the
quality of the predictions (i.e., the structure is more compact since loops and turns are better
simulated) and we reduced the computational time (since coordinator agents are associated to few
variables). Finally we use both these facilities and results are reported in Multi-Coordinators-CG

row. The time is further reduced but the average RMSD is increased due to the side chain centroids
that forbid structures that are too compact.

8.6.5 Comparing different GPUs

In this section, we compare three different GPUs with different computational capabilities in
order to evaluate how much the architecture affects execution times. We report the details of the
various hardware used (CPU and GPU). (1) is the hardware used in previous experiments: TITAN:
Host AMD Opteron Processor 6376, 2.3GHz, Device GeForce GTX TITAN, 2688 cores@875MHz
(14SM); (2) Quadro: Host Intel Core i7-3770, 3.4GHz, Device Quadro 600, 96 cores@640 MHz
(2SM); (3) Tesla: Host Intel Xeon, 2.4GHz, Device Tesla C2075, 448 cores@1.15 Ghz (14SM).

Table 8.17 compare these three different architectures on three different predictions using the
MC algorithm and Gibbs sampling considering default settings, without the CG constraint. We
report running time and speed-ups in any of the three machines. It emerges clearly that the
approach benefits from better GPUs either in the running time or in the speed-up. Let us observe
that we still have speedups also for the Quadro device that is the less powerful graphic card among
the three devices, whit 2 SM and 96 cores (whereas the host has 3.4GHz w.r.t. 2.3 GHz of TITAN

8.7. Summary 129

host and Tesla host). Speedups are in the order of 2 ∼ 3 when considering the Gibbs sampling
algorithm that has been proven in the previous experiments to be the more effective for longer
proteins.

Protein ID n Time
TITAN Quadro Tesla

CMAS (sd) GMAS (sd) SUp CMAS (sd) GMAS (sd) SUp CMAS (sd) GMAS (sd) SUp
1E0N 27 63.80 10.73 (1.463) 5.9 59.92 (5.050) 152.3 (27.07) 0.3 87.92 (12.24) 23.98 (4.681) 3.6
2HBB 51 476.3 64.42 (6.383) 7.3 329.9 (45.69) 873.6 (146.9) 0.3 523.2 (52.55) 163.0 (19.51) 3.2
1JHG 100 1168 187.0 (33.59) 6.2 1175 (82.02) 1719 (414.7) 0.6 1414 (137.3) 270.2 (76.11) 5.2 Monte Carlo
1E0N 27 69.69 3.379 (0.025) 20.6 67.80 (0.037) 33.16 (0.458) 2.0 74.89 (0.147) 7.362 (0.073) 10.1
2HBB 51 372.6 11.68 (0.116) 31.9 405.8 (1.574) 150.9 (2.008) 2.6 433.3 (0.800) 26.72 (0.246) 16.2
1JHG 100 1462 32.63 (1.255) 44.8 1602 (11.15) 433.8 (12.02) 3.6 1674 (0.957) 71.96 (2.411) 23.2 Gibbs

Table 8.17: Comparison between different GPUs - Monte Carlo and Gibbs sampling.

8.7 Summary

In this chapter we presented a novel perspective for addressing the Protein Structure Prediction
Problem. We used a declarative approach for ab-initio simulation, implementing a multi agent
system. Moreover, we used a GPU architecture to efficiently explore the search space and to
propagate constraints. The results are remarkable; the use of GPU allows us to obtain speedups
up to 75. The system can fold proteins of small-medium length with a low computational time (in
the order of minutes) and quality of the results comparable with the state-of-the-art systems.

130 8. The Protein Structure Prediction Problem on GPU

9
Conclusions

In this dissertation we presented a feasibility study exploring the potential of fine-grained GPU-
level parallelism in the context of constraint solving. We addressed several aspects regarding the
constraint solving process and how to speed up a constraint engine by using GPGPU computation.
This study has resulted in the development of several solver prototypes, e.g., FIASCO (see Sec-
tion 3) or the parallel multi-agent system (see Section 8). We showed that the constraint solving
process can be effectively improved by the use of GPU architectures, obtaining remarkable speed
ups, especially on hard combinatorial real-world problems.

The dissertation is divided in three main parts; in what follows we recap the main results of
each part and we suggest some possible extensions as future work.

9.1 Constraint Programming: Definitions and Challenging
Applications

In the first part of this dissertation we introduced the constraint programming paradigm. We pre-
sented some definitions and general notions about constraint satisfaction and optimization prob-
lems, constraint propagation, and search strategies. This introductory notions have been realized
in a prototype constraint solver targeted at modeling a general class of protein structure stud-
ies. We considered a real-world problem–the protein structure prediction problem–to assess the
strengths and the weaknesses of constraint-based technologies on hard combinatorial problems.
The purpose of this part of the dissertation was to enter in detail on the aspects that characterize
the solving process, in particular, on the aspects that could potentially take advantage from a par-
allel implementation. From a practical point of view, we presented the FIASCO (Fragment-based
Interactive Assembly for protein Structure prediction with COnstraints) resolution engine, an effi-
cient C++-based constraint solver. We presented a novel constraint (joined-multibody) to model
model rigid bodies connected by joints, with constrained degrees of freedom in the 3D space. We
presented a polynomial time approximated filtering algorithm of the joined-multibody constraint,
that exploits the geometrical features of the rigid bodies. In particular, the filtering algorithm is
combined with search heuristics that can produce a pool of admissible solutions that are uniformly
sampled. This allows for a direct control of the quality and number of solutions. The filtering
algorithm is based on a 3D clustering procedure that is able to cope with a high variability of
rigid bodies, while preserving the computational cost. The tests showed how the parameters of the
constraint are able to control effectively the quality and computational cost of the search.

9.1.1 Future work

As future work, from the applications side, we plan to explore the protein loop closure problem,
with the use of specific databases and scoring functions. For the close problem of protein flexibility,
we plan to use FIASCO solver to generate the conformational space of long scale movements for
nuclear receptors. Finally, we plan to use FIASCO in the general context of protein structure
prediction with the combination of local search methods and protein-ligand spatial constraints

132 9. Conclusions

(e.g., implementing the Large Neighborhood Search technique). From the constraint side, we plan
to integrate the JM filtering algorithm with other distance constraints, in order to generate more
accurate clusters; we plan to integrate spatial constraints inferred from bounds on energy terms
(e.g., the favorable contributions provided by pairing secondary structure elements translate into
energy bounds and distance constraints). We plan to investigate the use of multiple JM constraints
to model super-secondary structures placement, which are useful to capture important functional
and structural protein features. The latter can be thought of as imposing several spatial path
preferences to a given chain of points. Finally, we intend to integrate the constraint solver with a
visual interface to make it easily available to Biologist and other practitioners.

9.2 Parallel Constraint Solving

In the second part of this dissertation we moved our attention to parallel constraint solving. We
introduced some literature review on parallel constraint consistency (e.g., ParAC-3) and parallel
search, with particular attention to parallel local search strategies that have been proved effective
in solving hard combinatorial problems. We then focus on the two main aspects regarding parallel
constraint solving, namely GPU-based propagation and GPU-based search. GPU-based propaga-
tion regards the parallelization of a constraint engine using GPU architectures. We presented the
structure of a constraint solver capable of hybrid propagation (i.e., alternating CPU and GPU)
within a sequential exploration of the search space. We showed that SIMT parallelism is suitable
to the type of processing that constraints are subject to during consistency checking. In particular,
parallel constraint propagation on GPU is effective in the context of complex global constraints
(e.g., table constraint, see Chapter 5).

In GPU-based search we proposed the design and implementation of a novel constraint solver
that exploits parallel Local Search (LS) using GPGPU architectures to solve constraint optimiza-
tion problems. The optimization process is performed in parallel on multiple large promising
regions of the search space, with the aim of improving the quality of the current solution. Large
neighborhoods are explored using LS techniques with the goal of improving the current solution
evaluating a large set of neighborhoods at a time. The choice of local search strategies was twofold:
first, incomplete but fast methods are usually preferred for optimization problems where the search
space is very large but not highly constrained. Second, with very few changes, the parallel frame-
work adopted for a local search method can be easily generalized to be suitable for many different
local search strategies, requiring minimal parameter tuning. Experimental results showed that the
solver implemented on GPU outperforms its sequential version. Good results were also obtained by
comparing the solver against standard CP and LNS. Moreover, we showed that many LS strategies
can be encoded on our framework by changing few parameters, without worrying about how it is
actually performed the underlying parallel computation.

9.2.1 Future work

As future work, we plain to exploit a deeper integration within LNS and constraint propagation.
The framework should be general enough to allow the user to combine kernels in order to design
any search strategy, in a transparent way w.r.t. the underlying parallel computation. Combining
kernels to define different (local/complete) search strategies should be done using a declarative
approach, i.e., we plan to extend the MiniZinc language to support the above features.

9.3 Parallel Constraint Solving: Case Study

In the third part of this dissertation we considered a real-world problem as case of study for inves-
tigating the effective potential of GPGPU computation in constraint programming. In particular,
we address the Protein Structure Prediction Problem presented in the first part of this dissertation
through a declarative approach for ab-initio simulation, implementing a multi agent system. Differ-
ently from the sequential version of the solver FIASCO, we used a GPU architecture to efficiently

9.3. Parallel Constraint Solving: Case Study 133

explore the search space and to propagate constraints. The results are remarkable; the use of GPU
allows us to obtain speedups up to 75. The system can fold proteins of small-medium length with
a low computational time (in the order of minutes) and quality of the results comparable with the
state-of-the-art systems.

9.3.1 Future work

As future work, we plan to improve the search strategies of the agents. In particular, we shall try
to make use of dynamic priorities between agents. These priorities are set by the supervisor agent,
and dynamically modified on the base of the current partial results computed by the structure and
the coordinator agents. Moreover, the prediction of the area where secondary structures might
occur, currently delegated to the external tool JNet, will be incorporated in the system (as initial
module of the supervisor agent).

An interesting direction is the study of an implementation of the multi-agent system on a
multi-GPU environment. Different GPUs can be assigned to different structure and coordinator
agents, which can exchange information during the whole folding process. The entire search phase
is governed by the supervisor agent which assigns jobs to and retrieves results from processes
running on different GPUs. We are also developing a visual interface that allows the use of the
tool outside the community of computer scientists.

134 9. Conclusions

A
JM Constraint: Complexity Analysis

A.1 Complexity Analysis

JM constraint. The problem of establishing consistency—i.e., existence of a solution—of JM
constraints is NP-complete. To prove this fact, we start from the NP-completeness of the consis-
tency problem of the constraint Self-Avoiding-Walk (SAW-constraint) in a discrete lattice, proved
in [40]. In particular, we will use the 3D cubic lattice, where the problem can be stated as fol-

lows. Let ~X = X1, . . . , Xn be a list of variables. Each variable has a finite domain D(Xi) ⊆ Z3.

σ : ~X −→ Z3 is a solution of the SAW constraint if:

• For all i = 1, . . . , n: σ(Xi) ∈ D(Xi),

• For all i = 1, . . . , n− 1: ‖σ(Xi)− σ(Xi+1)‖ = 1,

• For all i, j = 1, . . . , n, i < j, it holds that ‖σ(Xi)− σ(Xj)‖ ≥ 1.

As emerges from the proof in [40], the problem is NP complete even if the domains of D(X1) and
D(X2) are singleton sets. Without loss of generality we can concentrate on SAW problems where
D(X1) = {(0, 0, 0)} and D(X2) = {(0, 1, 0)}—the other cases can be reduced to this one using a
roto-translation.

Theorem A.1.1 The consistency problem for the JM constraint is NP-complete.

Proof. [sketch] The proof of membership in NP is trivial; given a tentative solution, it is easy to
test it in polynomial time—the most complex task is building the rotation matrixes.

(0,0,0)

(0,1,0)

(0,2,0)

(0,3,0)

(0,0,0)

(0,1,0)

(0,2,0)

(0,0,0)

(0,1,0)

(1
,2
,0
)

(2
,1
,0
)

(1
,1
,0
)

(0,0,0)

(0,1,0)

(1
,1
,0
)

(1,0,0) (0,0,0)

(0,1,0) (1,1,0)

(1,2,0)

(0,0,0)

(0,1,0) (1,1,0)

(1,1,1)

(0,0,0)

(0,1,0) (1,1,0)

(1,1,-1)

Figure A.1: Rigid blocks for SAW (from left to right, block 1, . . . , 7)

To prove completeness, let us reduce SAW, with the further hypothesis on D(X1) and D(X2)

to JM. Let us consider an instance A = 〈 ~X,D(~X)〉 of SAW with n (n > 3) variables. We define a

equi-satisfiable instance B = 〈~S, ~V , ~A, ~E , δ〉 of JM as follows. Let us choose ~V = V1, . . . , Vn−3. We
select the sets Si of rigid blocks of the multi-body to be all identical, and consisting of all the (non
overlapping) fragments of three contiguous unitary segments of length 1, starting from (0, 0, 0) and
with bends of 0 or 90 degrees. A filtering using symmetries is made and the blocks are indicated
in Fig. A.1. For all i = 1, . . . , n− 3 we assign the following sets of 3D points to the end-effectors:

E3i−2 = D(Xi+1) ∩ Z3, E3i−1 = D(Xi+2) ∩ Z3, E3i = D(Xi+3) ∩ Z3

136 A. JM Constraint: Complexity Analysis

Moreover, let A1 = {(0, 0, 0)},A2 = {(0, 1, 0)},A3 = {(0, 2, 0), (1, 1, 0)}. Observe that all these
sets are subsets of Z3 and therefore points of the same lattice of the SAW problem. Assigning
δ = 1, the reduction is complete. It is immediate to check that SAWs in the 3D lattice and the
solutions of the JM constraint defined via reduction are the same 3D polygonal chain. �
Compatible JM constraint. We introduce the notion of compatible multi-body, i.e., a multi-
body where for all pairs of fragments B,B′ ∈ B =

⋃n
i=1 Si and for all the front- and end- anchors

points ~p, ~q ∈ {front(B), front(B′), end(B), end(B′)} it holds that ~p _ ~q. A JM constraint is said to
be compatible if the sequence of bodies S1, . . . , Sn is a compatible multi-body. Here we prove the
NP-completeness of the compatible-JM constraint where we do not make use of joints made by
collinear points. The proof of NP hardness is a reduction from the Hamiltonian Circuit (HC, for
short) problem on particular graphs (special planar graphs—SPG, for short) and it is organized
in two steps. First we show how to encode a SPG G in a discrete cubic lattice, then we define
domains and variables for a compatible-JM constraint, such that there is a solution of the HC
problem on the graph iff there is a solution for the compatible-JM constraint.

A special planar graph G = (N,E) is a planar graph composed by loops and paths. For example,
Figure A.2 represents a special planar graph with 4 loops and 9 paths. Each loop contains only
nodes of degree 3 (e.g., the nodes A, B, C, D in loop 1 of Fig. A.2) while each path has length 2
and connects nodes that belong to distinct loops. Since we look for an HC, we focus on graphs

Figure A.2: A special planar graph G. There are four loops with nodes of degree 3 and 9 paths of
length 2, connecting nodes that belong to distinct loops.

containing only loops with an even numbers of nodes. Moreover, we assume that G contains at
least 2 loops, otherwise the HC problem is trivially true.

A three dimensional cubic lattice is a graph of the form (P,A) such that P ⊆ N3 and A =
{{(x1, y1, z1), (x2, y2, z2)} ⊆ P : |x1 − x2| + |y1 − y2| + |z1 − z2| = 1}. We use auxiliary graphs,
embedded in a three dimensional cubic lattice and referred to as cubic graphs, in order to map
SPGs into cubic lattices.

As a first step, given a SPG G = (N,E), we map it into a cubic graph G′ = (N ′, E′). Let us
consider a loop li of G whose size is ni and which consists of the nodes h1, . . . , hni . We replace li in
G′ with an equivalent gadget (i.e., a subgraph of G′) which contains a number of nodes proportional
to ni. The core of the gadget has a symmetrical structure and is made of a loop of 7ni nodes. In
particular, there are ni starting nodes, connected through paths to the nodes p1, . . . , pni . These
nodes correspond to the loop nodes h1, . . . , hni and they are called output nodes of the gadget.
Figure A.3 represents a gadget corresponding to a loop of size 4: starting nodes are represented
using empty circles, while p1, p2, p3, and p4 are the output nodes of the gadget.

Let us show how to arrange starting nodes, output nodes, and the paths connecting them. Each
starting node is separated from the next one by exactly 6 nodes using two different templates (Fig.
A.3 (right)):

• The first template (T1) is used to connect two starting nodes on the upper and lower
side of the gadget. The relative coordinates of this template are: (0, 0, 0), (0, 1, 0), (2, 1, 0),

A.1. Complexity Analysis 137

Figure A.3: Gadget for a loop of size 4. Starting nodes are represented by empty circles.
p1, p2, p3, p4 are the output nodes. The two templates T1 and T2 are emphasized on the right

(2, 0, 0), (3, 0, 0), (3, 1, 0)

• The second template (T2) is used to connect the left and right side of the gadget. The relative
coordinates of this template are: (0, 0, 0), (0,−1, 0), (−1,−1, 0), (−1,−2, 0), (0,−2, 0), (0,−3, 0)

The paths from the starting nodes to the output nodes of a gadget are built in such a way to create
an angle of 90 degrees between each pair of consecutive edges (see Fig. A.3). Let us observe that
each path leading to the output nodes is at a minimum distance of 5 from each other, including
the output nodes. These distances must be taken into account when we identify a HC on the
nodes of G′—determined as the result of an overlapping of rigid blocks obtained as a solution of
the compatible-JM constraint. Rigid blocks correspond to sequences of nodes of G′ that must be
placed on the cubic lattice considering proper distances between them, as shown in the remainder
of this proof.

To complete the graph G′ let us fix one of the dimensions of the cube, for example z = 0,
and let us work on the resulting bi-dimensional plane. We consider an enumeration of the loops
l1, . . . , lk of G. Hence, we align the gadgets on the plane (x, y) according to such ordering and
setting a distance of 6 between the rightmost output node of the gadget lj and the leftmost output
node of the gadget lj+1, for 1 ≤ j ≤ k, as shown in Fig. A.4. The output nodes of the gadgets will
have y = 0, while all other nodes of the gadget will have y > 0. Note that with such arrangement
there is a minimum distance of 3 for each pair of consecutive gadgets.

Now we show how to connect the gadgets in G′ in order to mimic the topology of G. Consider,
in a lexicographical order, the loop pairs 〈la, lb〉, a < b, that are connected by edges in E. We wish
to create copies of the output nodes of la and lb in a separate plane (to avoid intersection of edges)
and recreate on this plane the connection structure of G.

Let us illustrate the process for all the pairs 〈l1, lb1〉, . . . , 〈l1, lbh〉 such that there are edges
between loop 1 and loop bi in G. In the plane i, we add copies of the “relevant” output nodes
for loop 1 and bi and we connect these copies to the output nodes of the relative gadget with a
square spiral path of side 1. For example, if an output node of loop 1 or loop bi is at coordinates
(x, y, 0), and such node is part of an edge connecting these two loops, then a copy of such node will
be created at coordinates (x, y + 1, i) together with the intermediate nodes and edges connecting
them at coordinates (x, y, 1), (x− 1, y, 1), (x− 1, y+ 1, 1), (x, y+ 1, 1), (x, y+ 1, 2), . . . , (x, y+ 1, i)

138 A. JM Constraint: Complexity Analysis

Figure A.4: Two aligned gadgets.

(Fig. A.5). Note that the “last” square created on level i for the output node of the loop 1 should
be symmetrical w.r.t the last square created on level i for the output node of the loop bi, i.e, the
missing edge of the last square should be on the right side for the loop 1 and on the left side for the
loop bi. The edges between the nodes of distinct loops of G are simulated by paths in the plane i.

Figure A.5: Square spiral paths used to connect output nodes with their copies on different levels.

Similarly to the core paths of a gadget, every pair—but possibly the last—of adjacent edges form
an angle of 90 degrees. The only difference here is that if a path starts at coordinates (x, y, z),
then its nodes can be set only on the coordinates y and y + 1. Moreover, the last pair of edges
must be considered. Due to the topology of the cubic lattice, when there is an even distance (e.g.,
6) between the output nodes of the loop 1 and the output nodes of the loop bi, we use a special
gadget formed by a square of side 1 (Fig. A.6) in order to connect them. Let us call this gadget a
ml gadget (merge-loops gadget).

Furthermore, every pair of adjacent paths in the same plane must be placed at a distance of
(at least) 3 from each other, and every path must be at a distance of 4 from every square spiral
path of the same gadget in the same level, as shown in the example of Figure A.7. Note that since
G is planar, we can connect loops using non-intersecting paths in plane i.

The above process is repeated for all the other pairs of connected loops (incrementing the plane
levels). It is immediate to prove that the size of G′ is polynomial w.r.t. the number of nodes of G.

Since G′ maintains the topology of G, it holds that a solution for the HC problem on G can be
mimicked in G′. Note also that G′ can be seen as a copy of G where the edges are “stretched” (by
adding new nodes of degree 2). We will refer to the sequences of edges connecting different loops
on G′ as l2l (loop-to-loop paths).

A.1. Complexity Analysis 139

Figure A.6: The ml (merge-loops) gadget.

Figure A.7: Minimum distance between paths connecting different loops.

140 A. JM Constraint: Complexity Analysis

We can finally state the following theorem:

Theorem The consistency problem for the compatible JM constraint is NP-complete.
Proof. The proof of membership in NP is trivial; given a tentative solution, it is easy to test it
in polynomial time—the most complex task is building the rotation matrixes.

To prove completeness, let us reduce the HC problem to an equi-satisfiable instance B =
〈~S, ~V , ~A, ~E , δ〉 of the compatible-JM constraint, and show that there exists a solution of the HC
problem iff there is a solution for B.

We select the sets Si of rigid blocks of the multi-body to be all identical, and consisting of 6
contiguous and non-colliding unitary segments of length 1 with additional constraints:

• The first three points of each rigid block are set on the coordinates (0, 0, 0), (0, 2, 0), (2, 2, 0),
respectively.

• It is possible to have bends of 0 or 90 degrees on the 3th, 4th, and 5th point of each rigid
block.

• There must be a fixed bend of 90 degree on the 6th point of each rigid block.

These constraints allow us to handle rigid blocks where there is the same overlapping plane defined
both on the anchors and the end-effectors of each rigid block. Note that the anchors and end-
effectors of each rigid block are defined by 3 non collinear points, as stated by the definition of
compatible-JM constraint. In particular, the constraints require the anchors of each rigid block
Ki to form an angle of 90 degree between the first two segments of Ki. The same angle is also
defined by the end-effectors of Ki (i.e., it is present between its last two segments). Considering
the unitary length of each segment it is easy to see that the overlapping planes are the same among
all the possible rigid blocks (Fig. A.8(a)).

Figure A.8: Overlapping planes defined on rigid blocks (a). Two overlapped rigid blocks: K2 on
K1 (b).

It follows that, given two rigid blocks K1 and K2 defined as above, it is always possible to
overlap K2 on K1 (or vice-versa) by roto-translation of K2 (K1) w.r.t. K1 (K2) (Fig. A.8(b)).
This fact was taken into account in the embedding of G into G′. In particular, G′ has an angle
of 90 degree between every pair of adjacent edges, allowing us to define an overlapping plane for
a rigid block from every node of G′ w.r.t. its two adjacent nodes. Roughly speaking, it is possible
to overlap a rigid block on every 3 consecutive points of G′. The 38 different templates of possible
rigid blocks are shown in Figure A.9 and Figure A.10 (rigid blocks defined on the bi-dimensional
plane (x, y), Fig. A.9 and rigid blocks defined on the 3D plane (x, y, z), Fig. A.10).

Now, we define the set of variables ~V = V1, . . . , Vt in such a way that it is possible to decompose
the graph G′ in t overlapping rigid blocks. The basic idea is to find a decomposition of an HC
on G′ in rigid blocks which represent a solution for an instance of the compatible JM-constraint.
Note that the number t of variables must be in relation with both the dimension of G′ and the
length of a rigid block. In particular, we must take care of the fact that since each rigid block
has length 7, and it overlaps the last 3 points of the previous rigid block, t must correspond to a
multiple of 4 (without considering the first fragment of the sequence of the overlapping fragments).

A.1. Complexity Analysis 141

Figure A.9: 18 rigid blocks defined on the bi-dimensional plane (x, y). These templates are used
as elements domains for the compatible JM-constraint.

Let G = (N,E) a special planar graph and G′ = (N ′, E′) the corresponding graph generated as
described previously. Let m = |N ′|, L be the global number of nodes in loops of G divided by 2,
R the number of gadgets ml and n = m− 6L−R− 4. Without loss of generality, we can consider
graphs where n > 10. First we define the values l ∈ {1, 2} and x ∈ {0, 1, 2, 3} as the result of the
following system of equations, which take into account that n might not be a multiple of 4:

(n− 7− x) mod 4 = 0,

l =

{
1 if x = 0

2 if x 6= 0.

Then, we calculate t as:

t = (n− 7− x)/4 + l.

To complete the definition of the instance of JM, let us fix two consecutive nodes α and ζ of
degree 2 in a l2l, as depicted in Figure A.11. Moreover, with a slight abuse of notation let us
denote each node in N ′ with its 3D position and with ζ − (+)i the coordinates of the closest ith

point to ζ(α) that precedes(follow) both ζ and α (Fig. A.11).
Then, for all i = 1, . . . , t− 1 we assign the sets of points of G′ to the end-effectors:

E7i−2 = N ′ ∩ Z3,
E7i−1 = N ′ ∩ Z3,
E7i = N ′ ∩ Z3.

Instead, for the last end-effectors, we assign the following sets:

• if x = 0:
E7t−2 = {ζ − 5} ∩ Z3,
E7t−1 = {ζ − 4} ∩ Z3,
E7t = {ζ − 3} ∩ Z3,

• if x 6= 0:

E7t−2 = {ζ − 2} ∩ Z3,
E7t−1 = {ζ − 1} ∩ Z3,
E7t = {ζ} ∩ Z3.

142 A. JM Constraint: Complexity Analysis

Figure A.10: 18 rigid blocks defined on 3D plane (x, y, z). These templates are used as elements
domains for the compatible JM-constraint.

Figure A.11: α and ζ nodes in a l2l

For the anchors, let
A1 = {α} ∩ Z3,
A2 = {α+ 1} ∩ Z3,
A3 = {α+ 2} ∩ Z3.

Observe that all these sets are subsets of Z3 and therefore points of the same lattice of G′. We
need to prove that with the last end-effector of Vt we can only reach either the point ζ or ζ − 3.
This is trivial, considering that between ζ − 3 and α there are 3 nodes in G′, and the number t
of variables Vi depends on the module of 4. Assigning δ = 1, the instance of the JM constraint is
complete.

Now, we prove that there is an HC on G if and only if there is a solution σ of the instance B of
the compatible JM-constraint. Let us assume that G has an HC. The same cycle can be mimicked
on the extended graph G′. All nodes in l2ls are traversed by this path. Moreover, consider the
Figure A.12 from left to right. Any Hamiltonian Cycle traverses the loop in a way similar to
the one depicted (Fig. A.12a). In particular, there is a corresponding cycle traversing the loop
in G′ (Fig. A.12b). However it is not Hamiltonian but 6 half of the nodes of the loop cannot be
traversed by that path, and for each gadget ml we left out exactly one node. Then we have exactly
n = m− 6L−R nodes traversed by the HC path. Choosing the nodes α and ζ at a distance of 1
from each other we can define an assignment σ of the compatible-JM constraint that decompose
G′ in t different fragments to assign to each variable in ~V (remember that we can overlap a rigid
block on every 3 consecutive points of G′). These fragments belong to the domains of templates,
each fragment is overlapped with the previous one and the minimal distance δ = 1 holds. Hence σ

A.1. Complexity Analysis 143

Figure A.12: Loops in G and G′; Observe that the Hamiltonian paths in G cannot touch half of
the extra nodes added in loops in G′

is a solution for B.
On the other hand, let σ be a solution for the compatible JM-constraint B = 〈~S, ~V , ~A, ~E , δ〉

defined on G′. We show that this solution represents an HC on G. First of all, we observe that
with σ we cannot overlap points. This is given by the δ constraint of JM (i.e., the paths defined
by the overlapping rigid blocks assigned to each variable by σ are only self-avoiding walks on G′).
Then we observe that the solution σ defines a path S of length m − 6L − R − 4 by overlapping
rigid blocks (i.e., fragments of length 6) starting from α, α+ 1, α+ 2 and ending in ζ − 2, ζ − 1, ζ.
Moreover, each rigid block has only the points of G′ as possible end-effectors (corresponding to the
anchors of the following rigid block) and, hence, S must be defined on G′. We show now that S
defines an HC on G′ and, in particular, an HC on G. In order to do this, we must prove that the
solution σ assigns rigid blocks to the variables V1, . . . , Vt avoiding to reach other “zones” of the
cubic lattice using paths not defined on graph G′. This could happen only when σ chooses a rigid
block where the 4th point of such rigid block is not set over G′, though the 5th, 6th, and 7th must
be, as depicted in the example of Fig. A.13.

Figure A.13: Example of a case where the 4th point of rigid block doesn’t match the relative point
in G′.

In particular, since G′ each path is separated from its neighbors paths by a distance of of at
least 3, it is easy to see that if a rigid block k has the 4th point not set over G′, then k must
“re-enter” on G′ with its 5th, 6th, and 7th points, in order to satisfy E7k−2, E7k−1, E7k. Note that
there are cases where a rigid block k can take a different path in G′ and left out more than 1 node

144 A. JM Constraint: Complexity Analysis

w.r.t. G′ (as show in the example of Figure A.14 - left). In such cases, there are less than t rigid
blocks used to define the path on G′ and we have a contradiction.

Figure A.14: Example of a case where the rigid block leave out 2 nodes of G′ (left), and one of the
cases s.t. the path S defined by σ enters and exits loops in G′ (right).

Now, we consider the following 3 cases about how the path S defined by σ enters and exits
each loop in G′:

1. If S enters and exists all the loops as in Figure A.12(b), then it will leave out m−6L−R−4
nodes and it is easy to see that S corresponds to an Hamiltonian Path in G starting in α and
ending in ζ. It is sufficient to add the edges (ζ, ζ + 1), . . . , (α− 1, α) to find the cycle which
corresponds to an Hamiltonian Cycle in G.

2. Since α and ζ are in the same l2l it is impossible that S starts in α and ends in ζ without
entering any loops.

3. It remains to analyze the case in which S traverses a loop in a way different from that of point
1. Assuming that such a path exists, we will nd a contradiction with its length m−6L−R−4.
In this case, there is at least one l2l with at least 20 nodes left out from a path traversing
one loop. Note that every l2l has always length ≥ 20 (e.g., considering level 1 and the l2l
connecting the closets output nodes of adjacent gadgets). Let d1, . . . , d20 be the first 20 nodes
of the l2l left out. These twenty nodes cannot be crossed by S. As a matter of fact, if one of
the 20 nodes are reached by S, there is no way to go back to ζ without repeatedly visiting
the same nodes and have a contradiction with δ of the solution σ. On the other hand, inside
the loop S visits both the points a and c adjacent to the entering point b of the analyzed
l2l. With respect to a path S of the form dealt with in point 1, S visits one additional point
in the loop but looses twenty points outside the loop (Fig. A.14 - right). This happens for
every loop and for every l2l excluded by S. Thus, more than n = m− 6L− R − 4 points of
G′ are left out, and these points can not be retrieved by other points on the cubic lattice but
the points on G′. This is a contradiction with the number t of variables in ~V defined on n.

The proposed reduction is polynomial time (and implementable using just for-loops bounded by
the size of G and if/then/else, hence is logspace) thus the consistency problem of the compatible
JM-constraint is NP-complete. �

B
A Distributed MCMC Framework for

Solving Distributed Constraint
Optimization Problems with GPUs

B.1 Introduction

This document is organized as follow: we first give some background on Markov Chains and
define the objective of Markov Chain Monte Carlo (MCMC) algorithms to our purpose. We then
introduce general properties that need to be satisfied by Markov chains to guarantee convergence to
a stationary distribution. We provide a mapping from a Maximum a Posteriori (MAP) estimation
problem to a Distributed Constraint Optimization Problem (DCOP) using general assumptions
from a broad class of MCMC algorithms. Finally, we introduce theoretical properties to relate
DCOP solution quality to MCMC sampling strategies, and provide a complexity analysis for the
DMCMC requirements. Through this document we adopt the same notation as the one used in
the main paper.

Suppose we have a joint probability distribution π(z) over n variables, with z = z1, . . . , zn,
and zi ∈ R, which we are interested to approximate. Sampling algorithms are often used to
examine posterior distributions as they provide ways of generating samples with the property
that the empirical distribution of the samples approximate the posterior distribution π. It is not
often the case that one can sample directly from the posterior distribution obtaining an i.i.d.
sample from π. When sampling directly from the posterior distribution is difficult, due to the high
dimensionality or because computing the posterior may be computationally intense, one can use
a proposal distribution q which approximates the posterior π up to some normalizing constant,
and performs a dependent sample, such as the sample path of a Markov chain. MCMC algorithms
generate a sample path from a Markov chain that has π as its stationary distribution

B.2 Background: Finite Markov Chains

Let Z = (z0, z1, . . . , zt, . . .), with zt ∈ D ⊆ R be a Markov chain with finite state space S =
{s1, s2, . . . , sL} and a L× L transition matrix T whose entries are all non-negative and such that
for each state si ∈ S,

∑
sj∈S Tij = 1, which defines the probability of transiting from one state to

another as

P (zt+1 = sj | zt = si) = Tij .

We denote with Tm the probability of moving from a state z0 to a state zm in m time steps.

We now introduce the structural properties required for a Markov Chain to guarantee conver-
gence to the posterior distribution π.

146B. A Distributed MCMC Framework for Solving Distributed Constraint Optimization Problems with GPUs

Definition B.2.1 (Irreducibility) A Markov chain is said to be irreducible if it is possible to
reach any state to any other using only transitions of positive probability. Formally,

∀si, sj ∈ S,∃m <∞ . P (zt+m = sj | zt = si)

for a given instance t.

Definition B.2.2 (Periodicy) A state si ∈ S has a period k if any return of the chain in it is
possible with multiple of k time steps. The period of a state is defined as

k = gcd{t : P (zt = si | z0 = si) > 0}

where gcd is the greatest common divisor. A state is said to be aperiodic if k = 1, that is, visits of
the Markov chain to such state can occur at irregular times: P (zt = si | z0 = si) > 0. A Markov
chain is said to be aperiodic if every state in S is aperiodic.

Note that for an irreducible Markov chain, if at least one state is aperiodic, then the whole
Markov chain is aperiodic.

Definition B.2.3 (Reaching Time) The reaching time τs of a state s ∈ S is the first (positive)
time at which a chain visits that state. Formally,

τs := min{t ≥ 1 | zt = s}

Property 5 For any states si and sj of an irreducible Markov chain, the expected first return time
for a state sj from a state si occurs in a finite amount of steps, that is

Esj (τsi) <∞.

Property 6 Given a Markov chain defined in a finite state space S, with transition matrix P, and
for a given initial state of the chain z0 = s0, if P is irreducible and aperiodic, then

∃t <∞,∀m ≥ t : s0 T
m = π

and π is unique. Moreover, for all s ∈ S, π(s) > 0 and

π(s) =
1

Es(τs)
.

That is, given enough time steps the chain converges to a unique stationary distribution π.

B.2.1 MAP to DCOP Mapping

MCMC algorithms can be used to solve the Maximum a Posteriori (MAP) probability estimation
problem—a mode of the posterior distribution—once the probability distribution has converged to
its stationary point. Recently, [123] has shown that DCOPs can be mapped to MAP estimation
problems. Thus, MCMC algorithms can be used to solve DCOPs as well. In order for this document
to be self contained, we show how to extend this mapping to the general case of multivariable DCOP
functions.

Consider a MAP problem on a Markov Random Field (MRF). An MRF is a set of random
variables having the Markov property—the conditional probability distribution of future states of
the process do not depends on other states other than the current one—and it can be described
by an undirected graph (V,E). Formally an MRF is defined by

• a set of random variables z = {zi | ∀i ∈ V }, where each random variable zi is defined over a
finite domain Di. Each random variable zi is visualized through a node i ∈ V .

• A set of potential functions θ = {θi(zk) | zk ∈ Ci}, where Ci refers to a set of nodes of V
denoting a clique which includes node i.

B.3. Theoretical Properties 147

Let the joint probability distribution π(zk = dk : zk ∈ Ci) be defined as exp[θi(zk | zk = dk ∈ Ci)].
For ease of presentation we denote as π(zk : zk ∈ Ci) the joint probability of the random variables
zk ∈ Ci and mean π(zk = dk : zk ∈ Ci).

A full-joint distribution of z has the probability:

π(z) =
1

Z

∏
Ci∈C

exp [θi(zk : zk ∈ Ci)] (B.1)

=
1

Z
exp

[∑
Ci∈C

θi(zk : zk ∈ Ci)

]
(B.2)

where C is the set of all cliques in (V,E) and Z is the normalizing constant for the density. The
objective of a MAP estimation problem is to find the mode of π(z), which is equivalent to find a
complete assignment z that maximizes the function:

F (z) =
∑
Ci∈C

θi(zk : zk ∈ Ci)

which is also objective of a DCOP, where each potential function θi correspond to a utility function
fi and the associated clique Ci to the scope of the function fi.

Therefore, if T is an MCMC sampling method that constructs a Markov chain with stationary
distribution π to solve the associated MAP estimation problem, then, we can use the complete
solution z returned to solve the corresponding DCOP.

Notice that sufficient conditions for T to converge to π are irreducibility and aperiodicity. The
Gibbs and Metropolis-Hastings sampling algorithms exhibit extremely weak sufficient conditions
to guarantee convergence [17]. Namely, the Gibbs proposal distribution needs to ensure lower
semi-contiguity at 0 and be locally bounded, while for the Metropolis Hasting, it is sufficient that
the domain of the definition of the proposal distribution q coincide with that of π.

B.3 Theoretical Properties

Below, we provide bounds on convergence rates for DMCMC algorithms based on MCMC sam-
pling. Throughout this section, we assume that the Markov chain (z0, z1, . . .) under discussion has
finite state space S, a transition matrix T that is irreducible and aperiodic, and has a stationary
distribution the posterior π.

Property 7 The expected number of samples τz∗ for a MCMC algorithm to get an optimal solution
z∗ is

Ez∗(τz∗) =
1

π(z∗)

This property is a direct consequence of Property 6.

Theorem B.3.1 The expected number of samples to find an optimal solution z∗ with an MCMC
sampling algorithm T is no greater than with a uniform sampling algorithm. In other words,

PT (z∗) ≥ Puni(z
∗)

Theorem B.3.1 is introduced by [123] and can be generalized to any MCMC sampling algorithm
that is irreducible and aperiodic as convergence is guaranteed in a finite number of time steps.

Definition B.3.2 (Top αi-Percentile Solutions) For an agent ai the top αi-percentile solu-
tions Sαi is a set containing solutions for the local variables Li that are no worse than any solution

in the supplementary set Di \ Sαi , and
|Sαi|
|Di| = αi. Given a list of agents a1, . . . , am, the top

ᾱ-percentile solutions Sᾱ is defined as Sᾱ = Sα1
× . . .× Sαm .

148B. A Distributed MCMC Framework for Solving Distributed Constraint Optimization Problems with GPUs

Property 8 After Ni = 1
αiεi

number of samples with an MCMC sampling algorithm T , the prob-
ability that the best solution found thus far zNi is in the top αi for an agent ai is at least 1− εi:

PT

(
zNi ∈ Sαi |Ni =

1

αi · εi

)
≥ 1− εi.

This property is a direct extension of Theorem 2 introduced in [123].

Theorem B.3.3 Given m agents a1, . . . , am ∈ A, and a number of samples Ni = 1
αi·εi (i =

1, . . . ,m), the probability that the best complete solution found thus far zN is in the top ᾱ-percentile
is greater than or equal to

∏m
i=1(1− εi), where N =

∧m
i=1Ni. In other words,

PT (zN ∈ Sᾱ |N) ≥
m∏
i=1

(1− εi).

Proof. Let zN denote the best solution found so far in the process resolution and zNi denote
the best partial assignment over the variables held by agent ai found after Ni samples. Let Si be
a random variable describing wether zNi ∈ Sαi . Thus:

PT(zN ∈ Sᾱ |N) (B.3a)

= PT(zN ∈ Sᾱ |N1, . . . ,Nm) (B.3b)

= PT(zN ∈ Sα1 × . . .× Sαm |N1, . . . ,Nm) (B.3c)

= PT(S1, . . . ,Sm |B1, . . . ,Bm,N1, . . . ,Nm) (B.3d)

where each Bi (i=1, . . . ,m) is a random variable describing a particular value assignment associ-
ated to the boundary variables Bi for the agent ai. They are introduced to relate each of the zNi

to each other, which are sampled independently.

Since the values sampled in the local variable of ai are dependent only of the values of the
boundary values Bi, it follows that Si is conditionally dependent of Bi but conditionally indepen-
dent of all other Bj , with j 6= i:

Si ⊥⊥ Bj |Bi

for all j = 1 . . .m and j 6= i. Noticing that, given random variables a, b, c, whenever a ⊥⊥ b | c we
can write: P (a | b, c) = P (a | c), and that P (a, b | c) = P (a | b, c), it follows that Equation (B.3d)
can be rewritten as:

PT(S1 |B1,N1) · . . . · PT(Sm |Bm,Nm)

= PT(zN1 ∈ Sα1 |B,N) · . . . · PT(zNm ∈ Sαm |B,N) (B.4a)

≥ (1− ε1) · . . . · (1− εm) (B.4b)

=

m∏
i=1

(1− εi). (B.4c)

for any of the assignments of the variables in Bi, as the utility functions involving variables in the
boundary of any two agents are solved optimally. �

Property 9 (Number of Messages) The number of messages that DMCMC needs is linear in
the size of the agents. There are |A| − 1 UTIL messages (one through each tree-edge) and |A| − 1
VALUE messages. The DFS construction, like in DPOP, also produces a linear number of messages
(usually it requires 2|A| messages). Thus, the total number of messages required is O(|A|).

Note that, unlike DPOP, no message exchange is required to solve the constraints defined over
the scope of the local variables each agent, which is achieved via local sampling.

B.3. Theoretical Properties 149

Property 10 (Space Requirements) Each agent ai ∈ A needs to store its own utilities and the
corresponding solution (value assignment for all non-boundary local variables xji ∈ Li r Bi) for
each combination of values of the boundary variables xki ∈ Bi, thus requiring O(|Di||Bi|) space.
Moreover during the UTIL propagation phase, each agent ai stores the UTIL messages of each of
its children ac ∈ Ci, which also sends messages of size O(|Di||Bc|). Joint and projection operations
can be performed efficiently within O(|Di|NSi−|Bi|) space, where NSi is the number of variables in
the separator set of ai which is involved in a constraint with some variable in Bi. Thus the memory
complexity of each agent is exponential in the induced width—the maximum number of boundary
variables of the parent of an agent involved in a constraint with the boundary variable of the agent
itself.

Exponential size messages do not represent necessary a limitation. One can bound the maxi-
mum message size and serialize big messages by letting the back-edge handlers ask explicitly for
solutions and utilities for a subset one of their values sequentially. Moreover, one could reduce the
exponential memory requirement at cost of sacrificing completeness, and propagating solutions for
a bounded set of value combinations instead of all combination of values of the boundary variables.

150B. A Distributed MCMC Framework for Solving Distributed Constraint Optimization Problems with GPUs

Bibliography

[1] E. Aarts and Jan K. Lenstra, editors. Local Search in Combinatorial Optimization. John
Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1997.

[2] I. Al-Bluwi, T. Simeon, and J. Cortes. Motion Planning Algorithms for Molecular Simula-
tions: A Survey. Computer Science Review, 6(4):125–143, 2012.

[3] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of
the Cell. Garland Science, 2007.

[4] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM.

[5] C. B. Anfinsen. Principles that Govern the Folding of Protein Chains. Science, 181:223–230,
1973.

[6] K. Apt. Principles of Constraint Programming. Cambridge University Press, 2009.

[7] Alejandro Arbelaez and Philippe Codognet. A GPU implementation of parallel constraint-
based local search. In 22nd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, PDP 2014, Torino, Italy, February 12-14, 2014, pages 648–655,
2014.

[8] R. Backofen and S. Will. A Constraint-Based Approach to Fast and Exact Structure Pre-
diction in 3-Dimensional Protein Models. Constraints, 11(1):5–30, 2006.

[9] R. Backofen, S. Will, and Erich Bornberg-Bauer. Application of Constraint Programming
Techniques for Structure Prediction of Lattice Proteins with Extended Alphabet. Bioinfor-
matics, 15(3):234–242, 1999.

[10] D. Baker and A. Sali. Protein Structure Prediction and Structual Genomics. Science, 294:93–
96, 2001.

[11] P. Barahona and L. Krippahl. Constraint Programming in Structural Bioinformatics. Con-
straints, 13(1-2):3–20, 2008.

[12] R. Bartak. On-line Guide to Constraint Programming. http://kti.mff.cuni.cz/~bartak/
constraints/, 1998.

[13] M. Ben-David, O. Noivirt-Brik, A. Paz, J. Prilusky, J. L. Sussman, and Y. Levy. Assessment
of CASP8 Structure Predictions for Template Free Targets. Proteins, 77:50–65, 2009.

[14] W. Bennett and R. Huber. Structural and Functional Aspects of Domain Motions in Proteins.
Crit. Rev. Biochem., 15:291–384, 1984.

[15] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov,
and P. E. Bourne. The Protein Data Bank. Nucleic Acids Research, 28:235–242, 2000.
http://www.rcsb.org/pdb/.

[16] M. Berrera, H. Molinari, and F. Fogolari. Amino acid empirical contact energy definitions
for fold recognition in the space of contact maps. BMC Bioinformatics, 4(8), 2003.

[17] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New
York, Inc., 2006.

152 Bibliography

[18] S. Cahill, M. Cahill, and K. Cahill. On the Kinematics of Protein Folding. Journal of
Computational Chemistry, 24(11):1364–1370, 2003.

[19] F. Campeotto, A. Dal Palù, A. Dovier, F. Fioretto, and Pontelli E. A constraint solver for
flexible protein model. J. Artif. Intell. Res. (JAIR), 48:953–1000, 2013.

[20] F. Campeotto, A. Dal Palù, A. Dovier, F. Fioretto, and E. Pontelli. A Filtering Technique
for Fragment Assembly-Based Proteins Loop Modeling with Constraints. In Michela Milano,
editor, CP, volume 7514 of Lecture Notes in Computer Science, pages 850–866. Springer,
2012.

[21] A.A. Canutescu and R.L. Dunbrack. Cyclic coordinate descent: a robotics algorithm for
protein loop closure. Protein Sci, 12:963–972, 2003.

[22] A. Caprara, M. Fischetti, P. Toth, D. Vigo, and P. Guida. Algorithms for railway crew
management. Mathematical Programming, 79(1-3):125–141, 1997.

[23] A. M. Cheadle, W. Harvey, A. J. Sadler, J. Schimpf, K. Shen, and M. G. Wallace. ECLiPSe:
An Introduction. Technical Report IC-Parc 03–1, IC-Parc, Imperial College London, 2003.

[24] G. Chelvanayagam, L. Knecht, T. Jenny, S.A. Benner, and G.H. Gonnet. A Combinatorial
Distance-Constraint Approach to Predicting Protein Tertiary Models from Known Secondary
Structure. Folding and Design, 3:149–160, 1998.

[25] Choco Team. Choco: an Open Source Java Constraint Programming Library. In Workshop
on Open-Source Software for Integer and Constraint Programming, 2008. Available from
http://www.emn.fr/z-info/choco-solver/.

[26] Y. Choi and C. M. Deane. FREAD Revisited: Accurate Loop Structure Prediction Using a
Database Search Algorithm. Proteins, 78(6):1431–40, May 2010.

[27] C. R. Christian and K. Kuchcinski. Parallel consistency in constraint programming. In Pro-
ceedings of the International Conference on Parallel and Distributed Processing Techniques
and Applications, PDPTA 2009, Las Vegas, Nevada, USA, July 13-17, 2009, 2 Volumes,
pages 638–644, 2009.

[28] C. Clementi. Coarse-grained Models of Protein Folding: Toy Models or Predictive Tools?
Curr Opin Struct Biol, 18:10–15, 2008.

[29] W.F. Clocksin and H. Alshawi. A Method for Efficiently Executing Horn Clause Programs
Using Multiple Processors. New Generation Computing, 5:361–376, 1988.

[30] C. Cole, J. D. Barber, and G. J. Barton. The Jpred 3 secondary structure prediction server.
Nucleic Acids Research, 36(Web-Server-Issue):197–201, 2008.

[31] F. Corblin, L. Trilling, and E. Fanchon. Constraint Logic Programming for Modeling a Bio-
logical System Described by a Logical Network. In Workshop on Constraint-Based Methods
for Bioinformatics, 2005.

[32] J. Cortes and I. Al-Bluwi. A Robotics Apporach to Enhance Conformational Sampling of
Proteins. In International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, volume 4, pages 1177–1186. ASME, 2012.

[33] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and M. Yannakakis. On the
Complexity of Protein Folding. In Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, pages 597–603. ACM Press, 1998.

[34] N. Cross. The Automated Architect. Pion Limited, 1977.

Bibliography 153

[35] A Dal Palù, A. Dovier, and F. Fogolari. Constraint Logic Programming Approach to Protein
Structure Prediction. BMC Bioinformatics, 5(186), 2004.

[36] A. Dal Palù, A. Dovier, F. Fogolari, and E. Pontelli. Exploring protein fragment assembly
using CLP. In Toby Walsh, editor, IJCAI, pages 2590–2595. IJCAI/AAAI, 2011.

[37] A. Dal Palù, A. Dovier, F. Fogolari, and E. Pontelli. Protein Structure Analysis with Con-
straint Programming. In Computational Approaches to Nuclear Receptors, chapter 3, pages
40–59. The Royal Society of Chemistry, 2012.

[38] A. Dal Palù, A. Dovier, and E. Pontelli. A New Constraint Solver for 3D Lattices and
Its Application to the Protein Folding Problem. In International Conference on Logic for
Programming Artificial Intelligence and Reasoning, pages 48–63. Springer Verlag, 2005.

[39] A. Dal Palù, A. Dovier, and E. Pontelli. A Constraint Solver for Discrete Lattices, its
Parallelization, and Application to Protein Structure Prediction. Software Practice and Ex-
perience, 37(13):1405–1449, 2007.

[40] A. Dal Palù, A. Dovier, and E. Pontelli. Computing Approximate Solutions of the Protein
Structure Determination Problem using Global Constraints on Discrete Crystal Lattices.
International Journal of Data Mining and Bioinformatics, 4(1):1–20, 2010.

[41] A. Dal Palù, F. Spyrakis, and P. Cozzini. A New Approach for Investigating Protein Flex-
ibility Based on Constraint Logic Programming: The First Application in the Case of the
Estrogen Receptor. European Journal of Medicinal Chemistry, 49:127–140, 2012.

[42] Alessandro Dal Palù, Agostino Dovier, Federico Fogolari, and Enrico Pontelli. CLP-based
Protein Fragment Assembly. Theory and Practice of Logic Programming, 10(4-6):709–724,
2010.

[43] C.M. Deane and T.L. Blundell. CODA. A Combined Algorithm for Predicting the Struc-
turally Variable Regions of Protein Models. Protein Sci, 10:599–612, 2001.

[44] J Debartolo, G. Hocky, M Wilde, J. Xu, K.F. Freed, and T.R. Sosnick. Protein Structure
Prediction Enhanced with Evolutionary Diversity: SPEED. Protein Science, 19(3):520–534,
2010.

[45] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2003.

[46] M. S. Delgado and C. F. Parmeter. Embarrassingly easy embarrassingly parallel processing
in r: Implementation and reproducibility. Working Papers 2013-06, University of Miami,
Department of Economics, 2013.

[47] I. Dotú, M. Cebrián, P. Van Hentenryck, and P. Clote. On Lattice Protein Structure Pre-
diction Revisited. IEEE/ACM Trans. Comput. Biology Bioinform, 8(6):1620–1632, 2011.

[48] R.L. Dunbrack. Rotamer Libraries in the 21st Century. Curr. Opin. Struct. Biol., 12(4):431–
440, 2002.

[49] E. Erdem. Applications of Answer Set Programming in Phylogenetic Systematics. In Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning, pages 415–431.
Springer Verlag, 2011.

[50] E. Erdem and F. Ture. Efficient Haplotype Inference with Answer Set Programming. In
National Conference on Artificial Intelligence (AAAI), pages 436–441. AAAI/MIT Press,
2008.

154 Bibliography

[51] A.K. Felts, E. Gallicchio, D. Chekmarev, K.A. Paris, R.A. Friesner, and R.M. Levy. Pre-
diction of Protein Loop Conformations using AGBNP Implicit Solvent Model and Torsion
Angle Sampling. J Chem Theory Comput, 4:855–868, 2008.

[52] A. Fiser. Template-based protein structure modeling. In Computational Biology, pages 73–94.
Springer, 2010.

[53] A. Fiser, R.K.G. Do, and A. Sali. Modeling of Loops in Protein Structures. Protein Sci,
9:1753–1773, 2000.

[54] F Fogolari, A. Corazza, P. Viglino, and G. Esposito. Fast Structure Similarity Searches
among Protein Models: Efficient Clustering of Protein Fragments. Algorithms for Molecular
Biology, 7:16, 2012.

[55] F. Fogolari, G. Esposito, P. Viglino, and S. Cattarinussi. Modeling of Polypeptide Chains as
Cα Chains, Cα Chains with Cβ , and Cα Chains with Ellipsoidal Lateral Chains. Biophysical
Journal, 70:1183–1197, 1996.

[56] F. Fogolari, L. Pieri, A. Dovier, L. Bortolussi, G. Giugliarelli, A. Corazza, G. Esposito, and
P. Viglino. Scoring Predictive Models using a Reduced Representation of Proteins: Model
and Energy Definition. BMC Structural Biology, 7(15):1–17, 2007.

[57] Y. Fujitsuka, G. Chikenji, and S. Takada. SimFold Energy Function for De Novo Protein
Structure Prediction: Consensus with Rosetta. Proteins, 62:381–398, 2006.

[58] M.J. Garćıa de la Banda, M. Hermenegildo, and K. Marriott. Independence in CLP Lan-
guages. ACM Transactions on Programming Languages and Systems, 22(2):269–339, March
2000.

[59] J.G. Gaschnig. Performance Measurement and Analysis of Certain Search Algorithms. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1979. AAI7925014.

[60] S. Gay, F. Fages, T. Martinez, and S. Soliman. A Constraint Program for Subgraph Epimor-
phisms with Application to Identifying Model Reductions in Systems Biology. In Workshop
on Constraint-Based Methods for Bioinformatics, 2011.

[61] M. Gebser, T. Schaub, S. Thiele, and P. Veber. Detecting Inconsistencies in Large Biological
Networks with Answer Set Programming. Theory and Practice of Logic Programming, 11(2-
3):323–360, 2011.

[62] Gecode Team. Gecode: Generic Constraint Development Environment. Available from
http://www.gecode.org, 2013.

[63] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6(6):721–741, 1984.

[64] I. Gent, C. Jefferson, I. Lynce, I Miguel, P. Nightingale, B. Smith, and A. Tarim. Search in
the patience game “black hole”. AI Communications, 20:211–226, 2007.

[65] Fred Glover. Tabu search and adaptive memory programing advances, applications and
challenges. In Interfaces in Computer Science and Operations Research, pages 1–75. Kluwer,
1996.

[66] N. Go and H.A. Scheraga. Ring Closure and Local Conformational Deformations of Chain
Molecules. Macromolecules, 3:178–187, 1970.

[67] A. Graca, J. Marques-Silva, I. Lynce, and A. Oliveira. Haplotype Inference with Pseudo-
Boolean Optimization. Annals of OR, 184(1):137–162, 2011.

Bibliography 155

[68] T. Guns, H. Sun, K. Marchal, and S. Nijssen. Cis-regulatory Module Detection Using Con-
straint Programming. In IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pages 363–368, 2010.

[69] Saurabh Gupta, Palak Jain, William Yeoh, Satish Ranade, and Enrico Pontelli. Solving
customer-driven microgrid optimization problems as DCOPs. In Proceedings of the Dis-
tributed Constraint Reasoning Workshop, pages 45–59, 2013.

[70] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533, May 1988.

[71] Y. Hamadi. Optimal Distributed Arc Consistency. Constraints, 7(3-4), 2002.

[72] Youssef Hamadi, Christian Bessière, and Joël Quinqueton. Distributed intelligent backtrack-
ing. In Proceedings of the European Conference on Artificial Intelligence (ECAI), pages
219–223, 1998.

[73] J. Handl, J. Knowles, R. Vernon, D. Baker, and S.C. Lovell. The Dual Role of Fragments in
Fragment-Assembly Methods for De Novo Protein Structure Prediction. Proteins: Structure,
Function and Bioinformatics, 80(2):490–504, 2012.

[74] M.H. Hao and H.A. Scheraga. Designing potential energy functions for protein folding. Curr.
Opin. Struct. Biol., 9:184–188, 1999.

[75] R.S. Hartenberg and J. Denavit. A Kinematic Notation for Lower Pair Mechanisms Based
on Matrices. Journal of Applied Mechanics, 77:215–221, 1995.

[76] J.A. Hegler, J. Lätzer, A. Shehu, C. Clementi, and P.G.” Wolynes. Restriction Versus
Guidance in Protein Structure Prediction. Proc Natl Acad Sci U.S.A., 106(36):15302–15307,
2009.

[77] Jim Held, Jerry Bautista, and Sean Koehl. White paper from a few cores to many: A
tera-scale computing research review, 2006.

[78] Pascal Van Hentenryck and Laurent Michel. Constraint-based local search. The MIT Press,
2009.

[79] M. D. Hill and A. J. Smith. Experimental Evaluation of On-Chip Microprocessor Cache
Memories. In 11th Annual International Symposium on Computer Architecture, pages 158–
166. IEEE Computer Society, 1984.

[80] ILOG. ILOG Solver, 4.0 edition, 1997.

[81] M.P. Jacobson, D.L. Pincus, C.S. Rapp, T.J.F. Day, B. Honig, D.E. Shaw, and R.A. Friesner.
A Hierarchical Approach to All-atom Protein Loop Prediction. Proteins, 55:351–367, 2004.

[82] JaCoP Team. JaCoP web page, visited November 2012, 2012. Available from
http://www.jacop.eu.

[83] M. Jamroz and A. Kolinski. Modeling of Loops in Proteins: a Multi-method Approach. BMC
Struct. Biol., 10(5), 2010.

[84] R. Jauch, H.C. Yeo, P. R. Kolatkar, and N. D. Clarke. Assessment of CASP7 Structure
Predictions for Template Free Targets. Proteins, 69:57–67, 2007.

[85] John Jenkins, Isha Arkatkar, John D. Owens, Alok Choudhary, and Nagiza F. Samatova.
Lessons learned from exploring the backtracking paradigm on the gpu. In Proceedings of the
17th International Conference on Parallel Processing - Volume Part II, Euro-Par’11, pages
425–437, Berlin, Heidelberg, 2011. Springer-Verlag.

[86] D. Jones. Predicting Novel Protein Folds by using FRAGFOLD. Proteins, 45:127–132, 2006.

156 Bibliography

[87] K. Karplus, R. Karchin, J. Draper, J. Casper, Y. Mandel-Gutfreund, M. Diekhans, and
R. Hughey Source. Combining local structure, fold-recognition, and new fold methods for
protein structure prediction. Proteins, 53(6):491–497, 2003.

[88] M. Karplus and E. Shakhnovich. Protein Folding: Theoretical Studies of Thermodynamics
and Dynamics. In Protein Folding, pages 127–195. WH Freeman, 1992.

[89] David E. Kim, Ben Blum, Philip Bradley, and David Baker. Sampling Bottlenecks in De
novo Protein Structure Prediction. Journal of Molecular Biology, 393(1):249 – 260, 2009.

[90] L. Kinch, S. Yong Shi, Q. Cong, H. Cheng, Y. Liao, and N. V. Grishin. CASP9 assessment
of free modeling target predictions. Proteins, 79:59–73, 2011.

[91] S. Kirillova, J. Cortes, A. Stefaniu, and T. Simeon. An NMA-Guided Path Planning Ap-
proach for Computing Large-Amplitude Conformational Changes in Proteins. Proteins:
Structure, Function, and Bioinformatics, 70(1):131–143, 2008.

[92] R. Kolodny, L. Guibas, M. Levitt, and P. Koehl. Inverse Kinematics in Biology: The Protein
Loop Closure Problem. The International Journal of Robotics Research, 24(2-3):151–163,
2005.

[93] L. Krippahl and P. Barahona. Psico: Solving Protein Structures with Constraint Program-
ming and Optimization. Constraints, 7(4-3):317–331, 2002.

[94] L. Krippahl and P. Barahona. Applying Constraint Programming to Rigid Body Protein
Docking. In Principles and Practice of Constraint Programming, pages 373–387. Springer
Verlag, 2005.

[95] Ludwig Krippahl and Pedro Barahona. Applying Constraint Programming to Protein Struc-
ture Determination. In Principles and Practice of Constraint Programming, pages 289–302.
Springer Verlag, 1999.

[96] A. Larhlimi and A. Bockmayr. A New Constraint-Based Description of the Steady-State
Flux Cone of Metabolic Networks. Discrete Applied Mathematics, 157(10):2257–2266, 2009.

[97] S.M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[98] T. Lazaridis, G. Archontis, and M. Karplus. Enthalpic Contribution to Protein Stability:
Atom-Based Calculations and Statistical Mechanics. Adv. Protein Chem., 47:231–306, 1995.

[99] T. Léauté, B. Ottens, and R. Szymanek. FRODO 2.0: An open-source framework for dis-
tributed constraint optimization. In Proceedings of the Distributed Constraint Reasoning
Workshop, pages 160–164, 2009.

[100] Christophe Lecoutre. Optimization of simple tabular reduction for table constraints. In In
Proceedings of CP08, pages 128–143, 2008.

[101] J. Lee, S.Y. Kim, K. Joo, I. Kim, and J. Lee. Prediction of Protein Tertiary Structure using
Profesy, a Novel Method Based on Fragment Assembly and Conformational Space Annealing.
Proteins, 56(4):704–714, 2004.

[102] J. Lee, D. Lee, H. Park, E.A. Coutsias, and C. Seok. Protein Loop Modeling by Using
Fragment Assembly and Analytical Loop Closure. Proteins, 78(16):3428–3436, 2010.

[103] C. Likitvivatanavong, Y. Zhang, J. Bowen, and E. C. Freuder. Arc consistency in mac: A
new perspective. In In proceedings of CPAI’04 workshop held with CP’04, pages 93–107.
Springer-Verlag, 2004.

[104] P. Liu, F. Zhu, D.N. Rassokhin, and D.K. Agrafiotis. A Self-organizing Algorithm for Mod-
eling Protein Loops. PLOS Comput Biol, 5(8), 2009.

Bibliography 157

[105] S. Lovell, I. Davis, W. Arendall, P. de Bakker, J. Word, M. Prisant, J. Richardson, and
D. Richardson. Structure Validation by Cα Geometry: φ, ψ and Cβ Deviation. Proteins,
50:437–450, 2003.

[106] L. Luo, M. Wong, and W. Hwu. An effective gpu implementation of breadth-first search. In
Proceedings of the 47th Design Automation Conference, DAC ’10, pages 52–55, New York,
NY, USA, 2010. ACM.

[107] Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. Large Neighborhood Local Search
Optimization on Graphics Processing Units. In Workshop on Large-Scale Parallel Processing
(LSPP) in Conjunction with the International Parallel & Distributed Processing Symposium
(IPDPS), Atlanta, États-Unis, 2010.

[108] Alan Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99–118,
1977.

[109] Alan K. Mackworth and Eugene C. Freuder. The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems. Artif. Intell., 25(1):65–74, Jan-
uary 1985.

[110] Rajiv Maheswaran, Jonathan Pearce, and Milind Tambe. Distributed algorithms for DCOP:
A graphical game-based approach. In Proceedings of the International Conference on Parallel
and Distributed Computing Systems (PDCS), pages 432–439, 2004.

[111] Rajiv Maheswaran, Milind Tambe, Emma Bowring, Jonathan Pearce, and Pradeep Varakan-
tham. Taking DCOP to the real world: Efficient complete solutions for distributed event
scheduling. In Proceedings of the International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 310–317, 2004.

[112] M. Mann and A. Dal Palù. Lattice Model Refinement of Protein Structures. In Workshop
on Constraint-Based Methods for Bioinformatics, 2010.

[113] L. Michel, A. See, and P. Van Hentenryck. Distributed constraint-based local search, 2006.

[114] C. Micheletti, F. Seno, and A. Maritan. Recurrent oligomers in proteins: an optimal scheme
reconciling accurate and concise backbone representations in automated folding and design
studies. proteins, 40(4):662–674, 2000.

[115] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. Adopt: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence, 161:149–
180, 2006.

[116] M. Moll, D. Schwarz, and L.E. Kavraki. Roadmap Methods for Protein Folding. Humana
Press, 2007.

[117] K. Molloy, S. Saleh, and A. Shehu. Probabilistic Search and Energy Guidance for Biased
Decoy Sampling in Ab-Initio Protein Structure Prediction. IEEE/ACM Trans. Comput.
Biology Bioinform, PrePrint, 2013.

[118] A.V. Morozov and T. Kortemme. Potential functions for hydrogen bonds in protein structure
prediction and design. Advances in Protein Chemistry, 4(72):1–38, 2005.

[119] B. A. Nadel. Tree search and arc consistency in constraint satisfaction algorithms. In L. Kanal
and V. Kumar, editors, Search in Artificial Intelligence, pages 287–342. Springer New York,
1988.

[120] N. Nethercote, P. J Stuckey, R. Becket, S. Brand, G. J Duck, and G. Tack. Minizinc: Towards
a standard CP modelling language. In Principles and Practice of Constraint Programming–
CP 2007, pages 529–543. Springer, 2007.

158 Bibliography

[121] A. Neumaier. Molecular Modeling of Proteins and Mathematical Prediction of Protein Struc-
ture. SIAM Review, 39:407–460, 1997.

[122] D. T. Nguyen, W. Yeoh, and H. C. Lau. Stochastic dominance in stochastic dcops for risk-
sensitive applications. In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 257–264, 2012.

[123] Duc Thien Nguyen, William Yeoh, and Hoong Chuin Lau. Distributed Gibbs: A memory-
bounded sampling-based DCOP algorithm. In Proceedings of the International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pages 167–174, 2013.

[124] T. Nguyen and Y. Deville. A Distributed Arc Consistency Algorithm. Science of Computer
Programming, 30(1-2), 1998.

[125] N.J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo Alto, Springer, 1982.

[126] K. Noonan, D. O’Brien, and J. Snoeyink. Protein Backbone Motion by Inverse Kinematics.
International Journal of Robotics Research, 24(11):971–982, 2005.

[127] Brian S. Olson, Kevin Molloy, and Amarda Shehu. In Search of the Protein Native State
with a Probabilistic Sampling Approach. J. Bioinformatics and Computational Biology,
9(3):383–398, 2011.

[128] OscaR Team. OscaR: Scala in OR, 2012. Available from
https://bitbucket.org/oscarlib/oscar.

[129] L. Perron. Search procedures and parallelism in constraint programming. In In Proc. of
CP-99, pages 346–360. Springer Verlag, 1999.

[130] Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint optimization. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages
1413–1420, 2005.

[131] S. Raman, R. Vernon, J. Thompson, M. Tyka, R. Sadreyev, J. Pei, D. Kim, E. Kellogg,
F. DiMaio, O. Lange, L. Kinch, W. Sheffler, B.H. Kim, R. Das, N. V. Grishin, and Baker
D. Structure Prediction for CASP8 with All-atom Refinement using Rosetta. Proteins,
77(Suppl. 9):89–99, 2009.

[132] C. S. Rapp and R. A. Friesner. Prediction of Loop Geometries using a Generalized Born
Model of Solvation Effects. Proteins, 35:173–183, 1999.

[133] O. Ray, T. Soh, and K. Inoue. Analyzing Pathways Using ASP-Based Approaches. In Al-
gebraic and Numeric Biology, 4th International Conference, pages 167–183. Springer Verlag,
2010.

[134] C.C. Rolf and K. Krzysztof. Combining parallel search and parallel consistency in con-
straint programming. In International Conference on Principles and Practice of Constraint
Programming: TRICS workshop, September 2010.

[135] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming.
Elsevier, 2006.

[136] A. Roy, A. Kucukural, and Y. Zhang. I-TASSER: a unified platform for automated protein
structure and function prediction. Nature Protocols, 5:725–738, 2010.

[137] S.D. Rufino, L.E. Donate, L.H.J. Canard, and T.L. Blundell. Predicting the Conformational
Class of Short and Medium Size Loops Connecting Regular Secondary Structures: Applica-
tion to Comparative Modeling. J. Mol. Biol., 267:352–367, 1997.

Bibliography 159

[138] D. Rykunov and A. Fiser. New Statistical Potential for Quality Assessment of Protein Models
and a Survey of Energy Functions. BMC Bioinformatics, 11:128, 2010.

[139] A. Samal and T. Henderson. Parallel Consistent Labeling Algorithms. International Journal
of Parallel Programming, 16(5):341–364, 1987.

[140] J. Sanders and E. Kandrot. CUDA by Example. An Introduction to General-Purpose GPU
Programming. Addison Wesley, 2010.

[141] D. Saravanan, D. G. Nalaka, B. Savitri, and S. Heiko. Dihedral angle and secondary structure
database of short amino acid fragments. Bioinformation, 1:78–80, 2006.

[142] C. Schulte. Parallel Search Made Simple. In N. Beldiceanu et al., editor, Proceedings of
Techniques for Implementing Constraint Programming Systems, Post-conference workshop
of CP 2000, TRA9/00, pages 41–57, University of Singapore, 2000.

[143] Christian Schulte. Programming constraint inference engines. In Proceedings of the Third
International Conference on Principles and Practice of Constraint Programming, pages 519–
533. Springer-Verlag, 1997.

[144] Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In Michael Maher and Jean-Francois Puget, editors, Principles and Practice of
Constraint Programming CP98, volume 1520 of Lecture Notes in Computer Science, pages
417–431. Springer Berlin Heidelberg, 1998.

[145] A. Shehu. An Ab-Initio Tree-Based Exploration to Enhance Sampling of Low-Energy Protein
Conformations. In Proceedings of Robotics: Science and Systems V, 2009.

[146] A. Shehu. Conformational Search for the Protein Native State, pages 431–452. John Wiley
& Sons. Inc., 2010.

[147] A. Shehu and L.E. Kavraki. Modeling Structures and Motions of Loops in Protein Molecules.
Entropy, 14:252–290, 2012.

[148] M. Shen and A. Sali. Statistical Potential for Assessment and Prediction of Protein Struc-
tures. Protein Sci, 15:2507–2524, 2006.

[149] E.S.C. Shih and M-J. Hwang. On the Use of Distance Constraints in Protein-Protein Docking
Computations. Proteins: Structure, Function, and Bioinformatics, 80(1):194–205, 2011.

[150] A. Shmygelska and H.H. Hoos. An Ant Colony Optimisation Algorithm for the 2D and 3D
Hydrophobic Polar Protein Folding Problem. BMC Bioinformatics, 6:30–52, 2005.

[151] A. Shmygelska and M. Levitt. Generalized Ensemble Methods for De Novo Structure Pre-
diction. Proceedings of the National Academy of Science (USA), 106(5):1415–1420, 2009.

[152] D. Simoncini, F. Berenger, R. Shrestha, and K.Y.J. Zhang. A Probabilistic Fragment-Based
Protein Structure Prediction Algorithm. PLOS One, 7(7):e38799, 2012.

[153] K.T. Simons, R. Bonneau, I. Ruczinski, and D. Baker. Ab initio protein structure prediction
of CASP III targets using ROSETTA. Proteins, 3:171–176, 1999.

[154] K.T. Simons, C. Kooperberg, E. Huang, and D. Baker. Assembly of Protein Tertiary Struc-
tures from Fragments with Similar Local Sequences using Simulated Annealing and Bayesian
Scoring Functions. J. Mol. Biol., 268:209–225, 1997.

[155] J. Skolnick, J. Fetrow, and A. Kolinski. Structural Genomics and its Importance for Gene
Function Analysis. Nat. Biotechnology, 18(3):283–287, 2000.

160 Bibliography

[156] C.S. Soto, M. Fasnacht, J. Zhu, L. Forrest, and B. Honig. Loop Modeling: Sampling,
Filtering, and Scoring. Proteins: Structure, Function, and Bioinformatics, 70:834–843, 2008.

[157] V.J. Spassov, P.K. Flook, and L. Yan. LOOPER: A Molecular Mechanics-based Algorithm
for Protein Loop Prediction. Protein Eng, 21:91–100, 2008.

[158] P. F. Stadler. Correlation in landscapes of combinatorial optimization problems. EPL (Eu-
rophysics Letters), 20(6):479, 1992.

[159] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming standard
for heterogeneous computing systems. IEEE Des. Test, 12(3):66–73, May 2010.

[160] Thomas Sttzle. Local search algorithms for combinatorial problems - analysis, improvements,
and new applications., volume 220 of DISKI. Infix, 1999.

[161] Evan Sultanik, Robert Lass, and William Regli. DCOPolis: a framework for simulating
and deploying distributed constraint reasoning algorithms. In Proceedings of the Distributed
Constraint Reasoning Workshop, 2007.

[162] Swedish Institute for Computer Science. SICStus Prolog Home Page. http://www.sics.

se/sicstus/, 2012.

[163] El-Ghazali Talbi. Metaheuristics - From Design to Implementation. Wiley, 2009.

[164] P. Thebault, S. de Givry, T. Schiex, and C. Gaspin. Combining Constraint Processing and
Pattern Matching to Describe and Locate Structured Motifs in Genomic Sequences. In Fifth
Workshop on Modeling and Solving Problems with Constraints, pages 53–60, 2005.

[165] Y.T. Tsai, Y.P. Huang, C.T. Yu, and C.L. Lu. MuSiC: A Tool for Multiple Sequence
Alignment with Constraints. Bioinformatics, 20(14):2309–2311, 2004.

[166] Univ. des Saarlandes, Sweedish Institute of Computer Science, and Univ. Catholique de
Louvain. The Mozart Programming System. www.mozart-oz.org.

[167] Barry Wilkinson and Michael Allen. Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1999.

[168] M. Wooldridge. An Introduction to Multi Agent Systems. John Wiley and Sons, 2002.

[169] Sitao Wu, Jeffrey Skolnick, and Yang Zhang. Ab initio modeling of small proteins by iterative
tasser simulations. BMC Biology, 5(1):17, 2007.

[170] Z. Xiang, C.S. Soto, and B. Honig. Evaluating Conformal Energies: The Colony Energy and
its Application to the Problem of Loop Prediction. PNAS, 99:7432–7437, 2002.

[171] D. Xu and Y. Zhang. Ab Initio Protein Structure Assembly Using Continuous Structure
Fragments and Optimized Knowledge-based Force Field. Proteins, 80(7):1715–1735, 2012.

[172] R. Yang. Multiple Protein/DNA Sequence Alignment with Constraints. In International
Conference on Practical Applications of Constraint Programming, 1998.

[173] R. Yap. Parametric Sequence Alignment with Constraints. Constraints, 6:157–172, 2001.

[174] R. Yap and H. Chuan. A Constraint Logic Programming Framework for Constructing DNA
Restriction Maps. Artificial Intelligence in Medicine, 5(5):447–464, 1993.

[175] William Yeoh, Ariel Felner, and Sven Koenig. Bnb-adopt: An asynchronous branch-and-
bound DCOP algorithm. CoRR, abs/1401.3490, 2014.

Bibliography 161

[176] William Yeoh and Makoto Yokoo. Distributed problem solving. AI Magazine, 33(3):53–65,
2012.

[177] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfac-
tion problem: Formalization and algorithms. IEEE Transactions on Knowledge and Data
Engineering, 10:673–685, 1998.

[178] K. Yue and K.A. Dill. Constraint Based Assembly of Tertiary Protein Structures from
Secondary Structure Elements. Proteins Science, 9(10):1935–1946, 2000.

[179] M. Zhang and L. Kavraki. A New Method for Fast and Accurate Derivation of Molecular
Conformations. Journal of Chemical Information and Computer Sciences, 42(1):64–70, 2002.

[180] Y. Zhang and K. Hauser. Unbiased, Scalable Sampling of Protein Loop Conformations
from Probabilistic Priors. BMC Structural Biology, (to appear http://www.indiana.edu/

~motion/slikmc/papers/BMC_Zhang.pdf), 2013.

[181] Yang Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics,
9(40), 2008.

[182] H. Zhou and Y. Zhou. Distance-scaled, Finite Ideal-gas Reference State Improves Structure-
derived Potentials of Mean Force for Structure Selection and Stability Prediction. Protein
Sci, 11:2714–2726, 2002.

