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Abstract

This dissertation deals with two aspects of mathematical finance. The first is
the pricing of options in a jump-diffusion setting, with lognormal jumps, ac-
cording to the model proposed by Merton in 1976 [50]. The American option
pricing procedure by Hilliard and Schwartz [38], that has been modified by
Dai et al. [21] reducing the computational complexity from O(n3) to O(n2.5),
is here further improved to a computational complexity of O(n2 log n), by
trimming of the bivariate tree while keeping the error in check, and then to an
O(n2) unidimensional procedure. These results are discussed in the joint works
by Gaudenzi, Spangaro and Stucchi [33] and [34]. The other issue addressed
in this dissertation is the performance evaluation of investments under differ-
ent reward to risk ratios. Different portfolio performance measures have been
compared applied to asset class indexes with a distribution far from normality:
Omega, Sortino, Reward-to-VaR, STARR, Rachev ratio are correlated. Even
though the values the various performance measures attribute to each invest-
ment differ, both in the cases analysed by Eling and Schuhmacher [28] and in
that by Spangaro and Stucchi [73] many of them express good rank correlation
with Sharpe ratio. The results draw heavily on the joint work Spangaro and
Stucchi [73].
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Introduction

The usefulness of the tree structure in the discretisation and also visualisation
of random processes, and the simplicity of its concept, are probably the reasons
for its popularity in Mathematical Finance. In 1979, Cox, Ross and Rubin-
stein [20] introduced this powerful tool in the option pricing scenario, giving
a discrete model which allowed at the same time both to derive the Black
and Scholes model [10] and to construct a procedure for the pricing of those
options, such as the American ones, where the possibility of early exercises
influences the evaluation.

Since then, many tree structures and lattices have been developed in order
to accomodate different situations, increase the precision of the results and
recover other models of the dynamic of a stock or interest rates.

The jump-diffusion model proposed by Merton in 1976 [50], where the
not-deterministic behaviour of the logreturn of the underlying is due to the
presence of both a Brownian motion and a Poissonian arrival of discontinuities
with lognormal amplitude, captures the leptokurtic behaviour one can observe
in the market data, which can hardly be explained with the Black and Scholes
assumptions. Merton’s model has been discretised by Amin [5] with the use
of an infinite lattice of possible states for the underlying, while Hilliard and
Schwartz [38] interpreted it as a bivariate tree where the binomial branching of
the CRR tree is combined with a multiple branching which mimes the jumps.
Dai et al. [21] modified this bivariate tree introducing a trinomial structure, in
order to limit the growth in the number of the nodes, reducing the computa-
tional complexity from O(n3) to O(n2.5). Gaudenzi, Spangaro and Stucchi [33]
formulated a procedure that draws on the algorithm by Hilliard and Schwartz,
and provides a method for the trimming of the bivariate tree while keeping the
error in check, further reducing the computational complexity to O(n2 log n).
Moreover, we devised a solution for the unification of the effects of the jump
and the diffusion branching, which allows for an even faster computation (due
to the reduction of the nodes of the tree) while maintaining the accuracy (see
[34]).

This aim of simplification and optimisation is also the main point in the

v
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performance evaluation issue.
In the development of finance as a science, the concept of a rational choice

of investment has evolved, from the initial comparison between the returns
of the different alternatives of investment (eventually taking into account the
different times at which the profits would be obtained) to the estimation of the
value of an investment that also depends on the risk one needs to undertake
when making that specific investment instead of another. This means we are
not comparing the return as it is anymore, but a risk adjusted return.

In literature, the risk has been incorporated in the evaluation of an invest-
ment (be it assets, hedge funds, mutual funds, etc.) in many different ways.
The first contributions, in the mean-variance setting proposed by Markowitz
[48], considered the standard error (see [59]) or the volatility (see [76]) as the
selected measure of risk. The Sharpe ratio, introduced by Sharpe [63] both for
portfolio selection (in its ex ante formulation) and for performance measure
(in its ex post version), encountered rapid diffusion but also criticism for its
normal-distribution setting and its use of a risk-free asset as a touchstone for
the analysed portfolio, which brought to an update of the definition by the
same author [66], but also to the exploration of different measures of risk that
could better suit non-normal distributions. Amongst those, the VaR and the
CVaR, chosen for their focus on the left side of the return distribution, gave
rise to new performance ratios ([24], [4], [57], [9]), and the higher and lower
partial moments (of the return with respect to a minimum acceptable return)
allowed for the definition of a whole new family of performance ratios, e.g.
the Sortino and the Omega ratio ([71], [62]). While the normality assump-
tion made Sharpe ratio obsolete in contrast to the more refined measures, it
has been observed by Eling and Schuhmacher [28] that many of these different
measures appear positively correlated to each other and give approximately the
same ranking in the case of hedge funds. Spangaro and Stucchi [73] investigate
further this hypothesis in the case of 12 asset class indexes from Europe, US,
Russia and China in the period 2003-2015. We come to the conclusion that the
evaluation performed by more refined performance measures does not conflict
with the traditional Sharpe ratio, which stands adequate and preferable in its
simplicity.

The plan of the thesis is as follows.
Chapter 1 gives a brief overview of models for the dynamics of a stock and

numerical methods adopted in option pricing, contextualises Johnson’s system
of transformations and its implementations and then focuses on the pricing
of options via lattices when the underlying follows Merton’s jump-diffusion
model, starting with the Johnson binomial tree by Simonato [68]. Then var-
ious discretisations of Merton’s process, the works by Amin [5], Hilliard and
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Schwartz [38], Dai et al. [21] are described and compared, and the method
developed by Gaudenzi, Spangaro and Stucchi ([33], [34]) upon the Hilliard
and Schwartz’s one is detailed.

Chapter 2 analyses the performance evaluation for asset class indices: we
start with a description of a various range of ranking criteria, from the histor-
ical (much simpler) ones to the more recent and refined. This work draws on
the paper by Spangaro and Stucchi [73].

The Appendix includes a collection of well-known formulas which are nec-
essary to understand ours and other authors’ work.



Chapter 1

Option pricing in a Merton
jump-diffusion model

1.1 Options

An option is a financial derivative instrument, that is, its value depends on the
changes in the price of some other underlying asset. It is a contract between two
parts, the buyer of the option and the writer of the option, that guarantees
the buyer a right, while constitutes an obligation for the writer: this is the
reason why the buyer shall correspond to the writer a price, or premium, for
the option. The most simple financial options are called vanilla options and
can be divided into European and American, call and put option.

A European call option is a contract that allows the owner of the option
to purchase a prescribed asset, which is referred to as the underlying, at a
prescribed time, the maturity or expiry date of the option, at a prescribed
price, the strike.

On the converse, a European put option is a contract that allows the owner
of the option to sell the underlying, at a given maturity, at a prescribed strike.

American call and put options differ from their European counterparts in
that the right of buying/selling the underlying can be exercised at any given
time before maturity, and not only at the expiry date.

Options can be used as an hedging technique: their possess in combination
with long or short positions in shares of the underlying can limit losses.

The fundamental characteristic of the option contract is that the owner
can choose to exercise their right if convenient (if the strike price is preferable
to the current price of the underlying) while simply letting the option expire
if not.

More refined “exotic” kinds of options have been formulated, such as binary

1



1.2 Models for the dynamics of the underlying 2

or compound options, and also path dependent options, whose price depends
on the whole history of the underlying from the writing of the contract (with
barriers, Asian, lookback), but the focus of this work is on European and
American options.

The major problem is how to determine the premium of an option, knowing
its style and characteristics (maturity, strike, underlying asset). Since the value
of the underlying is random (in the sense that it can’t be computed determin-
istically), so is the gain one can obtain from exercising the option. Therefore
the price of the option must take care of the different possible evolutions in
the price of the underlying. We know the current price of the underlying, but
we cannot predict what the price of the underlying will be in the future. We
will need to take into account its volatility, that is a measure of the standard
deviation of the returns. The price of the option will also be a function of the
time from the writing of the contract to maturity, since we can suppose that
given a larger amount of time, a larger variation in the price of the underlying
is possible.

Often the absence of transaction costs and taxes is taken as an hypothesis,
and arbitrage-free or equilibrium assumptions are made.

In order to find a fair price for the option, we need to devise a stochastic
model for the behaviour of the underlying.

1.2 Models for the dynamics of the underlying

In order to study financial phenomena, in which a large part of what happens
appears to be random, many different hypothesis, some largely shared among
the experts in the field, some not, have been made on the characteristics of
the random components. Also, many suggestions have taken place, trying to
define the dynamics that should appropriately model the objects we deal with
in the market.

First of all, the process that informs the behaviour of the stock price is
supposed to be a Markov chain, i.e. its future is only supposed to depend
on the present value, regardless of what happened in the past (we would say,
“with no memory”).

Imposing other characteristics has given birth to different models, some
preferable for their tractability, others for a better fit of specific situations.

1.2.1 Black and Scholes

The first attempt to model a stock price dynamics with a random walk has
been made by a French mathematician, Louis Bachelier, in his doctoral thesis
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in 1900. Afterwards the model has been modified by Samuelson attributing
that same characteristic to the logreturn.

The classical hypothesis is for the logreturns of the underlying to be nor-
mally distributed with constant mean and variance. The dynamic of the under-
lying asset price is then to be represented by the following stochastic differential
equation:

dS = Sµdt+ σSdB

where µdt gives the deterministic part of the price variation, with µ the (con-
stant) continuously compounded rate, while the Brownian motion B is respon-
sible for the random variation, and σ indicates the (constant) volatility. The
stock price S is a stochastic process that is said to follow a Geometric Brownian
motion.

Assuming that the underlying follows a GMB and pays no dividends, Black
and Scholes [10] obtain via Itô’s Lemma that the value V of an option on S
must satisfy the following partial differential equation:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (1.1)

for 0 ≤ t ≤ τ with τ the maturity, r the riskless rate, σ the standard deviation,
and S(t) ≥ 0 is the price of the underlying at time t. Given the boundary
condition that fixes the payoff of the option, that in the call case is V (τ) =
(S(τ)−K0)

+, where K0 is the strike, they identify an explicit formula for the
European call option price on a stock:

C(t, S, τ,K0, r, σ
2) = S(t)N(d1)−K0e

−r(τ−t)N(d2) (1.2)

where d1, d2 are computed according to the following equations

d1 =
log(S(t)/K0) + (r + σ2/2)(τ − t)

σ
√
τ − t

d2 =
log(S(t)/K0) + (r − σ2/2)(τ − t)

σ
√
τ − t

.

The price of the European put option on the same underlying, with the
same maturity and strike price, is then obtained via the put-call parity, which
states that for the values of the call option C(t) and the put option P (t) written
on the same underlying S(t) with the same maturity τ and strike K one has:

C(t)− P (t) = S(t)−K0e
−r(τ−t)

for any 0 ≤ t ≤ τ .
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The simplicity of the model and the comfort of a solid theoretical result
explain why it is still largely used both among scholars and practitioners (cf.
[82] and [85]).

Appreciate that the riskless rate r, which has also been taken as a con-
stant, appears in Equations (1.1)-(1.2), whereas the expected return µ does
not impact on the correct price for the option. This is a consequence of the
definition of a risk-neutral measure, that grants the independence of the price
from the risk preferences of the investors.

Black and Scholes model can be generalised to the cases of non constant
but deterministic interest rate r(t) and with a dividend yield d(t).

Nevertheless, there are some drawbacks to assuming the hypotheses from
the Black and Scholes model; namely, the following three characteristics ob-
served in the market cannot be theoretically justified:

• the probability distribution of the logreturn of the stock, according to
the market data, shows asymmetric leptokurtic features and higher peaks
and thicker tails than one would expect from a normal distribution;

• the volatility doesn’t appear to be constant, but to oscillate, creating the
so called volatility smile;

• new informations can have a strong impact on the market, causing ample
variations in the prices.

These real world difficulties have spurred the creation and development
of many different models, for example the introduction of stochastic volatil-
ity models (see Heston [35]), GARCH models, or the Constant Elasticity of
Variance model (see [19]), which are not in the scope of this dissertation. Here-
after, we will focus on the jump-diffusion models, and we will work on the case
where the jump dynamics is regulated by a compound Poisson of i.i.d. log-
normal variables. Jump-diffusion models are a special case of Lévy processes
(for which we refer to Cont, Tankov [16]) and can also be expanded to include
stochastic volatility (see Duffie et al. [25]) and inserted in regime-switching
models (see Costabile et al. [18]), that are also not in the scope of this work.

1.2.2 Merton’s jump-diffusion model

When the observations of the underlying asset display oscillations, spikes or
heavy-tailed distributions, the lognormal diffusion process does not provide an
adequate model for the data.
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The market data suggest that the variations in the value of stocks shouldn’t
be considered continuous, since external events, such as new arrivals of infor-
mation, can cause significant variations in small amounts of time, which we
will call “jumps”.

Cox and Ross [19] proposed to model the dynamics of the underlying as
a series of discontinuous jumps, which could be expressed via a simple or
compound Poisson process.

Merging the jump process approach with the traditional diffusion one, in
order to describe a dynamic that could incorporate the possibility of disconti-
nuities, but also the continuous small variations, Merton [50] provided a jump-
diffusion model, where the dynamics of the price of the underlying are not only
subjected to variations due to a Brownian process, but also to possible, if rare,
greater variations.

To model the random arrival of rare events, a random variable distributed
as a Poisson, independent from the Brownian motion, is used. Each event
causes a jump in the value of the price. The random variables that model
the amplitude of the single jumps are supposed to be each one independent
from the other and identically distributed. Various distributions for the jump
have been studied in literature, for reasons of simplicity and relevance. In the
following, the major results obtained by Merton [50], Kou [42] with different
specifications of the distribution are highlighted; though the distribution we
will be especially interested in is the lognormal one, as in [50], [5], [38].

The dynamics of the underlying according to the Merton model, under the
assumptions stated above, is given by the equation:

dS

S
= (r − v − λj̄)dt+ σdz + Jdq (1.3)

where we used the same notation as in the previous section for the diffusion part
of the dynamics: r is the risk-free interest rate, v is the continuous dividend
yield, σ2 is the Brownian portion of the variance (i.e. the variance of the
return under the condition that no jumps occur). The additional parameters
characterise the jump part of the dynamics: λ is the intensity of the Poisson
process that models the arrival of jumps (i.e. λ equals the average number of
arrivals in a time unit), dq assumes values 1 or 0 according to the presence or
absence of a jump, J is the random amplitude of the jump, whose expected
value is equal to j̄ = E(J).

Applying Itô’s Lemma in a formulation that also accounts for jumps (see
[49]), we can express the solution of Equation (1.3) as:

S = S0e
(r−v−λj̄−σ2

2
)t+σz(t)

m(t)∏

i=0

(1 + Ji) (1.4)
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where m(t) is a Poisson process of parameter λ, J0 = 0 and the Ji’s, for i ≥ 1,
are independent identically distributed random variables.

In the following, for clarity purposes we will consider the logarithmic return
as divided in two components Xt and Yt, where

Xt = αt+ σz(t),

with α = r−v−λj̄− σ2

2
the so-called “drift”, is the diffusion component, while

Yt =

m(t)∑

i=0

log(1 + Ji) (1.5)

is the jump component. We will focus on understanding the behaviour of Yt.
Yt is a compound Poisson process, whose probability density function can

be recovered via the characteristic functions:

ϕYt
(x) = eλt(ϕlog(1+J)(x)−1). (1.6)

The presence of the jumps causes the market to be incomplete, thus there
is not a unique choice for the risk-neutral probability measure for the pricing of
the options. One cannot apply directly the no arbitrage argument that allows
for the pricing of the options in the Black and Scholes case.

Nevertheless, under the Black and Scholes [10] assumptions on the Brow-
nian component and considering a compound Poisson process for the jump
part, Merton reasons that the jump will be uncorrelated with the market (rep-
resenting non-systematic risk) and obtains a series solution for the price of a
European call option with time to maturity τ and strike K0:

V =
+∞∑

j=0

e−λτ (λτ)j

j!
EY(j)

(C(0, SY(j)e
−λj̄τ , τ,K0, r, σ

2)) (1.7)

with C(0, SY(j)e
−λj̄τ , τ,K0, r, σ) as defined in Equation (1.2), Y(0) ≡ 1, Y(j) is

the sum of j i.i.d. random variables Y(j) =
∑j

i=0 log(1 + Ji) and EY(j)
denotes

the expectation over the distribution of Y(j).
For example, if the random variables log(1+ Ji) represent immediate ruin,

that is log(1 + Ji) ≡ 0, the Equation (1.7) reduces to a Black and Scholes
solution with a larger interest rate:

V = C(0, S, τ,K, r + λ, ν2j ).
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Lognormal jumps

From here on, except when explicitly stated otherwise, we will consider the
random variable J of Equation (1.3) to follow a lognormal distribution such
that log(J + 1) ∼ N(γ′, δ2).

Under this hypothesis, in the solution

S = S0e
(r−v−λj̄−σ2

2
)t+σz(t)

m(t)∏

i=0

(1 + Ji) (1.8)

of Equation 1.3 we have J0 = 0 and log(1+ Ji) ∼ N(γ′, δ2) for i ≥ 1, therefore
the compound Poisson process Yt of Equation 1.5 has the following character-
istic function:

ϕYt(x) = e
λt

(

eixγ
′
−

δ2x2

2 −1

)

(1.9)

and the following function of probability density:

p(x) =
+∞∑

k=1

e−λt (λt)
k

k!

1√
2πkδ2

e−
(x−kγ′)2

2kδ2 + δ0(x)e
−λt (1.10)

where δ0(x) is the Dirac delta function.
If the random variables log(1 + Ji) are normally distributed, the Equation

(1.7) articulates into:

V =
+∞∑

j=0

e−λ′τ (λ′τ)j

j!
C(0, S, τ,K0, rj, ν

2
j )

with λ′ = λ(1 + j̄), ν2j = σ2 + jδ2

τ
and rj = r − λj̄ + jγ

τ
, where γ = γ′ + δ2

2
.

Since determining the price of several types of path-dependent options re-
quires the study of the first passage of an horizontal level, the adoption of
a jump-diffusion process for the dynamics of the underlying gives rise to the
problem of dealing with the correlation between this first passage and the pos-
sible overshoot of the barrier, therefore an analytic solution is not available.

There have been a lot of attempts to obtain a discretisation of the Merton
model with tree or lattice methods in order to price American or more complex
options, which we will see in the dedicated Section (cfr. Section 1.5).

Double exponential jumps

As an example of another popular jump-diffusion model, we present the double
exponential model proposed by Kou [42]. Here the stock price is supposed to
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satisfy the Equation (1.3) but the jump amplitudes are no more regulated by
lognormal variables.

The value of the stock price S is given by

S = S0e
(r−v−λj̄−σ2

2
)t+σz(t)

m(t)∏

i=0

(1 + Ji)

where the processes (1+Ji) are i.i.d. such thatWi = log(1+Ji) have an asym-
metric double exponential distribution, represented by the following probabil-
ity density function:

fW (w) =:=

{
pη1e

−η1w for w ≥ 0,

(1− p)η2e
η2w for w < 0.

with 0 ≤ p ≤ 1 and η1 > 1 (to ensure that the underlying price has finite
expectation) and η2 > 0.

Within this model, Kou andWang [43] recover an analytic approximation of
the finite-horizon American option, for the put and the call case, and analytical
solutions for lookback, barrier and perpetual American options.

1.3 Numerical methods for option pricing

As we have seen in the previous Section, Black and Scholes [10] develop their
momentous option pricing formula when the underlying asset is a stock and its
price follows a lognormal diffusion process. Nevertheless, frequently, financial
derivatives cannot be priced by closed-form formulas.

When a closed-form formula for the option price is not available or compu-
tationally costly, the alternative is to resort to numerical methods that allow
for an approximation of the solution.

In this section we offer a brief overview of the numerical methods that are
usually applied for the evaluation of option prices.

We will be interested specifically in the last of the family of methods pre-
sented, the lattice methods. Other numerical methods that do not belong to
these families but have been specifically introduced in the evaluation of op-
tions with an underlying following Merton’s jump-diffusion process exist, but
are not in the scope of this work; for a brief panoramic see Chiarella and Ziogas
[15].

The concerns in using a numerical method are the following:

• we need to discretise a continuous model in order to construct an appro-
priate algorithm;
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• we would like the algorithm to provide an approximate evaluation that
is arbitrarily close to the correct one, that is, we want some convergence
results; usually we divide the time to expiry in n steps, and we would
like for the algorithm to converge to the exact solution for n→ +∞.

• we are interested in efficient algorithms, that provide an acceptable result
in as short a time as possible, and using the smallest amount of computer
memory as possible. The speed of the algorithm depends on the number
of operations needed to perform the algorithm, and is usually expressed
as a O(f(n)) where n is the number of steps.

1.3.1 Monte Carlo simulations

Monte Carlo methods are based on the numerical generation of a large quantity
of realisations of random walks that satisfy the equation of the considered
model. The series of stock value trajectories can then be used to estimate
the option value (with the risk-neutral assumption that allows to calculate the
price as the discounted expected value).

Monte Carlo simulation has been first applied to option pricing by Boyle
[12], who also suggested its use in the evaluation of options where the under-
lying follows a mixture of stochastic processes. In particular, Boyle provided a
description of how to treat specifically Merton’s one, generating realisations for
the three different random processes involved in Merton’s model: the Brown-
ian motion, the Poisson process regulating the number of the jumps occurring,
and the amplitude of the jumps (that need not be restricted to the lognormal
case thanks to the flexibility of Monte Carlo simulations).

Monte Carlo simulation has the advantage of being a general and conver-
gent method, but is also computationally expensive and slow (the error is of
the order of the inverse square root of the number of simulations) and there is
the concern of the implementation of a non-biased random number generator.
There are also difficulties in incorporating in the algorithms the early exercise
feature that is typical of American options: Longstaff and Schwarz proposed
a solution to this problem with the Least Squares Monte Carlo method [46].

1.3.2 Finite difference methods

Finite difference methods have been introduced in the pricing of options by
Brennan and Schwartz in 1978.

These methods involve starting from a partial differential equation that
the function we are interested in must satisfy and substituting the partial
derivatives with finite differences. In other words, where we would have ∂f

∂x
,
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that is defined as a limiting difference

∂f

∂x
(x, t) = lim

h→0

f(x+ h, t)− f(x, t)

h
,

we would consider a difference quotient with a small but not infinitesimal
h > 0. Several choices are available, there is the forward difference

f(x+ h, t)− f(x, t)

h
,

the backward difference
f(x, t)− f(x− h, t)

h
,

and the central difference

f(x+ h/2, t)− f(x− h/2, t)

h
.

Central differences in particular are used in the Crank-Nicholson method.
Since there are three possible ways of defining the finite difference for the
first derivative, and the second derivative itself can be defined in the same
three possible ways with respect to the first derivative, there is a plethora of
possibilities for the definition of the finite difference representing the second
derivative ∂2f

∂x2 ; usually the choice falls on the formulas that provide simmetry,
as:

f(x+ h, t)− 2f(x, t) + f(x− h, t)

h2
.

Accuracy of the approximation provided by the finite difference can be
obtained via Taylor’s theorem (for a sufficiently differentiable function f).

The (x, t) space is then divided into a grid, not necessarily equally spaced,
and we look for the solutions of the finite differences equations relative to the
points of the grid. When the technique allows for a direct computation of the
solution, we are dealing with explicit finite differences schemes, when instead
the solution of a system of algebraic equations is required we are implementing
an implicit finite difference scheme.

Finite difference schemes need to be developed according to the problem at
hand. For example, in order to simplify the application of the method to the
Black and Scholes model, one can employ an appropriate change of variable
in order to reduce the partial differential equation relative to the option value
into the diffusion equation:

∂v

∂t
=
∂2v

∂x2
.

Finite difference methods have been applied to the pricing of options with
jump-diffusion underlying for example by Zhang [84] and Cont and Voltchkova
[17].
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1.3.3 Lattice methods

The umbrella name of lattice methods includes all the methods where lat-
tices and recombining trees are implemented in order to price a derivative.
According to the branching of each node, these methods are categorised into
binomial, trinomial or multinomial trees. They spring from the idea of discrete
time stochastic models, that can be written as a list of difference equations.

These methods are efficient for simple call and puts, less efficient when we
are dealing with more complicated options. Results of convergence are not
obvious and need to be investigated in the various models and discretisations.

Binomial trees have been proposed for the first time by Cox, Ross and
Rubinstein [20].

Their framework is based on an interpretation of the stock price as a dis-
crete multiplicative binomial process that in a single time step, from t to t+∆t,
can only acquire two possible values. Starting from the value S at the begin-
ning of the period, at the end the stock price will either assume value uS with
probability p or value dS with probability 1− p.

Their main concern is the pricing of a call option on such an underlying S
with strike K0. They adopt the same assumptions of the Black and Scholes
model: a constant riskless interest rate of return r, the absence of transaction
costs or taxes; they allow for the investor to sell short any security. Based on
the no-arbitrage principle, they require u > er∆t > d.

Supposing that the option expires after only one period, they obtain a
pricing for the option by considering the composition of a replicating portfolio
containing only ∆ shares of the underlying stock S and a certain amount B
of bonds: the quantity of bonds and shares are obtained by imposing that the
value of the portfolio after a period coincides with the value of the option in any
case, whether S has an up-tick and assumes value uS (and then the option will
assume value Cu = (uS −K)+, since the holder of the option would choose to
exercise it only when it is profitable, that is when uS > K) or has a down-tick
and assumes value dS (and then the option will have value Cd = (dS−K)+) .

Solving the resulting system of two equations in two unknowns, one obtains
that ∆ = Cu−Cd

(u−d)S
≥ 0 and B = uCd−dCu

(u−d)er∆t ≤ 0.
The value of the call option, provided that it can only be exercised at

maturity (European option), needs to be equal to the value of this hedging
portfolio, that is

∆S +B =
Cu − Cd

(u− d)
+
uCd − dCu

(u− d)er∆t
= e−r∆t

(
er∆t − d

u− d
Cu +

u− er∆t

u− d
Cd

)
.

By defining π = er∆t−d
u−d

the equation above can be written as C = e−r∆t(πCu+
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(1− π)Cd) and therefore the price of the European call option appears as the
discounted expected value of the option at maturity under a measure given
by π, which can be interpreted as a probability, for it is 0 ≤ π ≤ 1. This
measure does not depend on the probability p we assigned to the up-tick of
the underlying, therefore it does not depend on the suppositions the investors
may have on such a probability, neither does it depend on their risk-aversion,
instead it is the value p would have in a risk-neutral world (where the expected
rate of return of the stock is equal to the riskless interest rate).

The authors extend recursively the same reasoning to a European call op-
tion with expiry date after an arbitrary number n of time intervals, supposing
the up and down factors and the branching probabilities are constant in time
and do not depend on the value of the stock.

Since udS = duS, if the stock has an up tick and a down tick in the following
period it reaches the same value that it would with a down tick followed by
an up tick. This means that the possible developments in the value of the
option may be represented with a recombining binomial tree, where every
parent node has two children, that will have a children in common. After n
steps, the terminal nodes of the tree are not 2n, as we would expect from a
structure where the possibilities are doubled at every step, but n + 1, due to
the recombination effect.

In such a setting, the European call option price turns out to be the
discounted expected value in a risk-neutral world of the payoffs at maturity
τ = n∆t, that is

C = e−rτ

n∑

j=0

(
n

j

)
πj(1− π)n−j(Sujdn−j −K0)

+,

since the possible values of the stock at maturity Sn are given by Sujdn−j.
One can show that for r > 0 American call options (where exercise of the

option is allowed at any time before expiry) do not differ in price from the
European ones, since the early exercise strategy is never to be preferred.

If we are interested instead in the price of an American put, then we are not
going to use only the payoffs at maturity, but we will start from the values at
maturity and proceed backwards, at every node assigning to the put option the
maximum value between the payoff at that node and the discounted expected
value of the children. This comparison between the value of holding the option
and that of immediate exercise is the way of taking into account the possibility
of early exercise embedded in American options.

If instead of adding up periods, we consider a fixed time to maturity τ and
subdivide it in a number n of time intervals ∆t = τ

n
, Cox, Ross and Rubinstein

show that for n → +∞ the price of the call option obtained via the binomial
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method for an appropriate choice of the values u, d, p, approximates the price
given by the Black and Scholes formula.

Such values are found by asking the logreturn of the discrete variable repre-
sented by the binomial process to have an expected value and a variance that
approach those of the logreturn of the stock of the Black and Scholes model.
The expected value and variance of the discrete logreturn are as follows:

E

(
log

Sn

S

)
= E(j log u+ (n− j) log d) = log

u

d
E(j) + n log d = n

(
log

u

d
p+ log d

)

V ar

(
log

Sn

S

)
= E

((
j log

u

d
− log

u

d
E(j)

)2
)

= log
u

d
V ar(j) = log

u

d
np(1− p)

since log Sn

S
= j log u+ (n− j) log d, E(j) = np and V ar(j) = np(1− p).

The desired conditions are

n
(
log

u

d
p+ log d

)
→ µτ

n log
u

d
p(1− p) → σ2τ

for n→ +∞. A set of values for u, d and p that attains these conditions is

u = eσ
√
∆t d = e−σ

√
∆t p =

1

2
+

1

2

µ

σ

√
∆t

Note that ud = 1.
Only approaching the mean and variance would not guarantee that the

probability distribution of the discrete process approaches that of the continu-
ously compounded return, but Cox, Ross and Rubinstein show that a version
of the central limit theorem is applicable in this case, making higher-order
properties negligible as n→ +∞.

Alternative choices for u, d and p have been proposed. As an example, we
recall the Jarrow Rudd risk-neutral model, which imposes:

u = e

(

r−σ2

2

)

∆t+σ
√
∆t

d = e

(

r−σ2

2

)

∆t−σ
√
∆t

p =
er∆t − d

u− d
.

This work focuses on the application of lattice methods to the pricing of
options in Merton’s jump-diffusion model with jumps of lognormal amplitude,
where the simple CRR binomial tree is no longer trustworthy. In the next
Section, after an introduction on parametric models necessary to understand
it, we will describe Simonato’s [68] Johnson trees. Then, in the following
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Section, we will describe the “rectangular” lattice provided by Amin [5], the
multinomial lattice by Hilliard and Schwartz [38], the trinomial structure by
Dai et al. [21] and our methods.

1.4 Johnson’s system and option evaluation

In this Section we will describe the major parametric models that have been
introduced and became popular in mathematical finance for the modelling of
the underlying distributions, and then we will focus on the characteristics, use-
fulness and application of the Johnson’s family of distributions in the pricing
of options, as studied by Simonato [68].

1.4.1 Parametric models

We start by recalling that parametric modelling pertains to statistical infer-
ence: we are interested in identifying from the data what sort of probability
distribution may have generated them. One of the possible ways to do this
is to refer to a parametric model, which is a family of distributions that can
be described using a finite number of parameters. Common examples of such
a family are, in the discrete, the Bernoulli distribution (where all elements
in the family are described by the probability p of a positive result) and the
Binomial distribution (two parameters: the probability p and the number n of
tosses); in the continuous the Poisson distribution (where in order to specify
a distribution we only need to know the intensity of the arrival of events, λ)
and the normal distribution (where every element of the family can be fully
described by two parameters, the mean µ of the distribution and its variance
σ2). The parameters are chosen to belong to a given parameter space.

The importance of the parametric models is that, provided the model can
satisfactorily fit the data - that is, provided we are correct in the assumption
on the family the distribution should belong to - we can draw on the theory of
the corresponding model and the predictions we obtain are extremely accurate
and precise. Historically, the well-known theory about normal distribution has
made it one of the preferred parametric models, probably also due to its usage
in the social sciences.

Antithetical to parametric models are non parametric models, which are
collections of distributions that cannot be described by a finite set of pa-
rameters: this means they are more flexible but also less accurate in their
predictions.
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1.4.2 Pearson’s family of curves

The Pearson’s system is a family of continuous distribution curves. They
belong to the group of the skew frequency curves, created in order to treat
cases where the sampling distribution of the data seems too skewed to be
satisfactorily interpreted with a normal distribution. The Pearson system, as
the Charlier and Johnson systems we will see later on, can be used in order to
approximate theoretical distributions whose first four (and in some special case,
even fewer) moments are known, for example in order to create simulations by
generating random values from the fitted distribution.

We will give a brief scan of the characteristics of the family, based on Stuard
and Ord [74].

Let a, b0, b1, b2 be real numbers. The frequency curves of the Pearson sys-
tem are defined via the following differential equation regarding the probability
density function f :

df(x)

dx
=

(x− a)f(x)

b0 + b1x+ b2x2
. (1.11)

This request may seem less obscure if we think that the discrete version of
this condition,

f(xj+1)− f(xj)

f(xj)

df(x)

dx
=

xj − a

b0 + b1xj + b2x2j
,

is satisfied by binomial, Poisson and hyperbolic distributions (see [74] vol. 1
pp. 171).

All solutions of Equation (1.11) have the following properties:

• their derivative vanishes at x = a, therefore a is a stationary point (the
mode), and at f(x) = 0, which means that the pdf has smooth contact
with the x-axis

• β2 > β1 + 1

• every moment can be recursively computed from the lower order ones
according to the following formula:

µ′
n+1 =

(a− b1(n+ 1))µ′
n − nb0µ

′
n−1

(n+ 2)b2 + 1

which implies that the four parameters a, b0, b1 and b2 can be determined
from the first four (central) moments:

b1 = a =−
√
µ2γ1(β2 + 3)

A′ (1.12)
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b0 =− µ2(4β2 − 3β1)

A′ (1.13)

b2 =− (2β2 − 3β1 − 6)

A′ (1.14)

where A′ = 10β2−12β1−18, β1 = γ21 , where γ1 is the third standardized
moment, or Fisher-Pearson coefficient of skewness, and β2, the fourth
standardized moment, also introduced by Pearson as a measure of kur-
tosis. From these Equations one can see that b1 6= 0, while b0 = 0 if
β1 = 0 (for example when we deal with a symmetric distribution)

• differentiating Equation (1.11) we obtain that possible points of inflection

must satisfy (x − a)2 =
b0 + a2(1 + b2)

(b2 − 1)
, which implies that in any case

there are no more than two and, if both solutions to the previous equation
fall in to the range of variation of the distribution, they must be at equal
distance from the mode a.

The distributions belonging to this family assume many different aspects:
unimodal (either with a fall on either side of the mode of the probability density
function, or J-shaped, that is with a monotonic density function) or U-shaped
(with maxima at both ends of the distribution and a minimum in between).

Rewriting Equation (1.11) with the change of variable X = x−a we obtain

df(x)

dx
=

Xf(x)

B0 +B1X +B2X2
(1.15)

with

B0 =b0 + a2(1 + b2) (1.16)

B1 =a(1 + 2b2) (1.17)

B2 =b2. (1.18)

The polynomial B0 + B1X + B2X
2 allows for a classification of the types

the Pearson curves are divided into. Its solutions may be real of the same sign,
real of opposite sign, complex, which can be determined from the value of

K =
B2

1

4B0B2

. (1.19)

Some of the Types individuated by Pearson have fallen out of use, here we
will see the most implemented ones.
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We call Type I, or Beta distributions of the first kind, the variables that sat-
isfy (1.15) where the polynomial in the denominator has real roots of opposite

sign, that is K =
B2

1

4B0B2
≤ 0.

Their range is limited, and their name is due to the fact that their distri-
bution function is the Incomplete Beta function, while the probability density
function is given by:

f(x) =
Γ(p+ q)

Γ(p)Γ(q)
xp−1(1− x)q−1 (1.20)

for 0 ≤ x ≤ 1, p, q > 0.
All moments of Type I distributions exist, and can be expressed by:

µ′
n =

Γ(p+ q)Γ(p+ n)

Γ(p)Γ(p+ q + n)
.

Type II is the special subcase of Type I with K = 0, that is B1 = 0, or
β1 = 0.

Type III, which we obtain for B2 = 0, is the so called Gamma distribution,
since its distribution function is the Incomplete Gamma function.

Its pdf is given by

f(x) =
1

Γ(p)
xp−1e−x

for x ≥ 0 and p > 0. If 0 < p ≤ 1, the distribution is J-shaped.
We call Type IV the variables that satisfy (1.15) where the polynomial in

the denominator has complex roots, that is 0 ≤ K < 1.
All distributions in this group are unimodal and of unlimited range, and

their density function is given by:

f(x) = k

(
1 +

x2

a2

)−m

e−ν arctan x
a

with m > 1
2
. The existence of the first four moments is guaranteed by m > 5

2
.

Type VII is the special subcase of Type IV with K = 0, and coincides with
(non-standardised) Student’s t distribution.

Another special case (B1 = B2 = 0) is the normal distribution.
Type V random variables have probability density function:

f(x) =
1

Γ(p)

e−
1
x

xp−1

for x > 0.
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We call Type VI, or Beta distributions of the second kind, the variables
that satisfy (1.15) where the polynomial in the denominator has distinct real

roots of the same sign, that is K =
B2

1

4B0B2
> 0.

Its name is due to the fact that the probability density function

f(x) =
Γ(p+ q)

Γ(p)Γ(q)

xp−1

(1 + x)p+q

for x ≥ 0, p, q > 0 can be related to (1.20) by a change of variable. Its moment
of order n is only available for n < q, when it can be obtained by:

µ′
n =

Γ(p+ q)Γ(q − n)

Γ(p)Γ(q)
.

The fitting of a distribution can be then implemented as such: starting
from the data, estimates of the first four moments and indexes of skewness and
kurtosis are computed. Then, Equations (1.16)-(1.19) are used to classify the
distribution in the appropriate Type. The parameters of the specific Type are
then recovered either by matching of the moments or by maximum likelihood
estimation.

1.4.3 Gram-Charlier’s system of frequency curves

Also Gram-Charlier’s system of curves has different subspecies of distributions,
but the most used is Type A, which has been defined as follows.

Let α(x) be the standardized normal distribution function α(x) = 1√
2π
e−

x2

2 ,

and let Hj(x) for j ∈ N be the Chebyshev-Hermite polynomials, that is:

α(x)Hj(x) = − ∂j

∂xjα(x).
Gram-Charlier Type A is the family of distributions whose pdf can be

written as a series of derivatives of α(x), that is

f(x) =
+∞∑

j=0

cjHj(x)α(x) (1.21)

The evaluation of the constants cj by means of a procedure similar to that
used with Fourier series provides the following expression for the first terms of
the series:

f(x) = α(x)

(
1 +

1

2
(µ2 − 1)H2(x) +

1

6
µ3H3(x) +

1

24
(µ4 − 6µ2 + 3)H4(x) + . . .

)
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The problems with such a representation are the inadequacy in obtaining
a useful approximation of a pdf considering only a finite number of terms in
the series. In particular, there is no guarantee that the series, stopped after
a finite number of terms, gives a non-negative function. Moreover, increasing
the number of terms does not necessarily give a better approximation. The
expression we have reported above is proved to provide a unimodal density
function only for values of skewness and kurtosis close enough to 0 [74]. This
also means that when our interest is in a better approximation of the behaviour
on the tails, other families of functions are preferable.

Gram-Charlier’s Type B is defined as the family of distributions whose pdf
can be expressed as a series of derivatives of the Poisson distribution (with
respect to the λ parameter) α(λ) = e−λ λx

x!
.

1.4.4 Johnson’s family of probability distributions

As we have already highlighted, the usefulness of the normal distribution, the
importance of theoretical results like the central limit theorems, and the avail-
ability of the tabulations for functions associated to it, made it an interesting
tool in statistical modelling. Nevertheless, in many situations the data suggest
a distribution far from normality, be it “skewed” or with heavier or thinner
tails. In those cases, one of the viable options is to study how big a deviation
there is from the normality results. Another is to deal with those distributions
referring them back to the Gaussian bell by applying some sort of transforma-
tion.

In 1898, Edgeworth [26] introduced the Method of Translation, which con-
sisted in using transformations on random variables such that the probability
distribution of the output variable would be a normal distribution. This al-
lowed to draw, from the many results on normal distributions (e.g. the statis-
tical significance test), conclusions on a more wide group of functions, thanks
to the relation between the normal random variable and the transformed. The
drawback was that Edgeworth’s method only considered polynomial types of
transformation, and this restriction meant that only a limited number of curves
could be included in this analysis. Therefore, the Pearson’s method was pre-
ferred to the Method of Translation. The latter has been since then improved
and generalised, from the first proposal of only using polynomials as trans-
formations, to considering more general transformations. Kapteyn and Van
Uven [41] and Baker [7] showed that every continuous distribution can be
transformed into a normal distribution.

This means that, given a standard normal variable Z, one could consider
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the system of all random variables X such that

f(X) = Z (1.22)

with f being a not better specified function; nevertheless, in the interest of
obtaining something treatable, the function f needs to be specified and bound
to a finite number of parameters.

Johnson [39] proposed an application of Edgeworth’s Method to transform
the observed distributions into normal distributions, when the data do not
allow to consider the analysed variables as normally distributed (for example
in the case of non zero skewness, i.e. when the data distribution is asymmetric
with respect to its average), focusing in particular on the logarithmic transfor-
mations, which had previously been investigated, among others, by Wicksell
[81] and Rietz [58].

The reason for the interest in logarithmic transformation is the properties of
the distributions that can be obtained in this way from the normal distribution.

Johnson restricts Eq. 1.22 to the case

a+ b · f
(
X − c

d

)
= Z (1.23)

with f (for practical convenience) a non-decreasing function of x, not depend-
ing on any parameters; and b, d > 0.

The parameters c and d permit a shift and a dilation / contraction of the
random variable X, providing a function Y = X−c

d
with a distribution of the

same shape ofX, a mean equal to E(Y ) = E(X)−c
d

and a variance V (Y ) = V (X)
d2

.
The parameters a and b are instead related to the skewness and kurtosis of Y .

The estimation of the parameters a ,b, c, d is obtained by fitting the mo-
ments of the observed distribution up to the fourth: the realised skewness and
kurtosis bind the values of a and b, and - once those are fixed - the appropriate
values c and d are recovered from the average and the actual variance.1

Obviously, a bad estimation of the parameters (provided that the model is
correct) brings to the wrong distribution.

In order for the system to be worthwhile, Johnson asks of f to be a function
easy to calculate, with image equal to R and domain appropriate to interact
with the distributions usually encountered in the data.

1Johnson [39] notes that the method of percentile points and the method of maximum
likelihood can also be used.
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SL family and selection criteria

When we choose f(y) = log y in Equation (1.59), we obtain the lognormal
transformation:

a+ b log

(
X − c

d

)
= Z. (1.24)

In addition to the results in mathematical finance, the application of the
lognormal transformation are several, in many fields, since it can be considered
whenever there is a growth process that can be described as the cumulative re-
sult of percentage modifications of the previous value (see for example Limpert
et al. [45]).

Applying a change of variable to the normal probability density function,
we can obtain the probability density function for Y = e

Z−a
b using the formula

fY (y) = fZ(v(y))|v′(y)|, where v(y) = a+ b log y:

fY (y) =
b√
2πy

e−
(b log y+a)2

2 . (1.25)

Wicksell [81] provided the formulas for the moments of Y . The nth-moment
of Y is given by:

µ′
n =

∫ +∞

−∞
yn(z)fZ(z) dz =

∫ +∞

−∞
e

n(z−a)
b

1√
2π
e−

z2

2 dz = e
n2

2b2
−na

b

∫ +∞

−∞

1√
2π
e−

(z−n
b
)2

2 dz

= e
n2

2b2
−na

b (1.26)

Taking ω = e
1
b2 , with the same notation used by Johnson [39], and con-

sidering the standard relationship between the central moments µj and the
ordinary ones µ′

j, which is given by:

µn =
n∑

j=0

(−1)j
(
n

j

)
µ′
n−jµ

′j
1
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where we consider µ′
0 = 1, we can write:

µn =
n∑

j=0

(−1)j
(
n

j

)
e

(n−j)2

2b2
− (n−j)a

b e
j

2b2
− ja

b =

=
n∑

j=0

(−1)j
(
n

j

)
e

(n−j)2+j

2b2
−na

b = e−
na
b

n∑

j=0

(−1)j
(
n

j

)
e

(n−j)2+j

2b2 =

= e−
na
b

n∑

j=0

(−1)j
(
n

j

)
ω

(n−j)2+j

2

(1.27)

from which we have

µ2 = µ′
2 − µ′2

1 = e−
2a
b

2∑

j=0

(−1)j
(
2

j

)
ω

(2−j)2+j

2

= e−
2a
b

(
ω2 − ω

)
= e−

2a
b ω (ω − 1)

µ3 = µ′
3 − 3µ′

2µ
′
1 + 2µ′3

1 = e−
3a
b

3∑

j=0

(−1)j
(
3

j

)
ω

(3−j)2+j

2

= e−
3a
b

(
ω

9
2 − 3ω

5
2 + 2ω

3
2

)
= e−

3a
b ω

3
2 (ω − 1)2(ω + 2)

µ4 = µ′
4 − 4µ′

3µ
′
1 + 6µ′

2µ
′2
1 − 3µ′4

1 = e−
4a
b

4∑

j=0

(−1)j
(
4

j

)
ω

(4−j)2+j

2

= e−
4a
b

(
ω8 − 4ω5 + 6ω3 − 3ω2

)
= e−

4a
b ω2(ω − 1)2(ω4 + 2ω3 + 3ω2 − 3).

We can express the skewness and the kurtosis of the resulting distribution Y
via the indicators β1 = γ21 , where γ1 is the third standardized moment, for the
skewness, and β2, that is the fourth standardized moment, for the kurtosis, in
the following way:

β1 =
(µ3

σ3

)2

=

(
µ3

µ
3
2
2

)2

=

(
e−

3a
b ω

3
2 (ω − 1)2(ω + 2)

(e−
2a
b ω(ω − 1))

3
2

)2

=

=
(ω − 1)4(ω + 2)2

(ω − 1)3
= (ω − 1)(ω + 2)2 (1.28)

β2 =
µ4

σ4
=
e−

4a
b ω2(ω − 1)2(ω4 + 2ω3 + 3ω2 − 3)

e−
4a
b ω2 (ω − 1)2
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= ω4 + 2ω3 + 3ω2 − 3. (1.29)

By the properties of the logarithm, the functions in the lognormal system
only need three parameters to be described, since:

a+ b log

(
X − c

d

)
= a− b log d+ b log(X − c) = â+ b log(X − c) (1.30)

and we have made no request on a.
In giving formulas for the estimation of the â, b, c parameters, in his 1949

paper Johnson [39] draws on a procedure by Wicksell [81] that uses the con-
nection between the moments µ′

j of Y = X−c and the central moments µi,X of
X. For simplicity we will keep using the indexes β1, β2 and the moments µ′

i,X ,
µi,X of X even when their estimates based on the data shall be used instead; it
will be clear from the context when we are considering the latter or the former
ones.

µ′
1 = µ′

1,X − c

µ′
2 = µ2,X + (µ′

1,X − c)2

µ′
3 = µ3,X + 3µ2,X(µ

′
1,X − c) + (µ′

1,X − c)3

We can write the following system of equations:





kω
1
2 = µ′

1,X − c
k2ω2 = µ2,X + (µ′

1,X − c)2

k3ω
9
2 = µ3,X + 3µ2,X(µ

′
1,X − c) + (µ′

1,X − c)3

where µ′
1, µ

′
2 and µ′

3 have been substituted from the previous equations with

the respective values obtained with Equation (1.26), k = e−
â
b and we recall

that â = a− b log c.
By isolating ω and k in the first two equations and substituting them in

the following yields:

(µ2,X + (µ′
1,X − c)2)3

(µ′
1,X − c)3

= µ3,X + 3µ2,X(µ
′
1,X − c) + (µ′

1,X − c)3

which gives:

µ3
2,X + 3µ2

2,X(µ
′
1,X − c)2 = µ3,X(µ

′
1,X − c)3.
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Dividing by µ
3
2
2,X we obtain that we can retrieve

t =

√
µ2,X

µ′
1,x − c

as the only real root in the third degree equation: t3+3t = γ1, where we know
there is only one real root since the discriminant β1

4
+ 1 is positive. Obtaining

t for the γ1 of the data distribution allows to compute the estimates for the â,
b, c parameters.

A more immediate strategy of estimating the parameters is expressed in
[27] and then implemented in the algorithm by Hill, Hill and Holder [37].
Considering Equation (1.30), for the moments of X we can write:

µ′
1,X = e−

â
b

√
ω + c (1.31)

µ2,X = e−
2â
b ω (ω − 1) (1.32)

µ3,X = e−
3â
b ω

3
2 (ω − 1)2(ω + 2) (1.33)

µ4,X = e−
2â
b ω2(ω − 1)2(ω4 + 2ω3 + 3ω2 − 3) (1.34)

and we can see that β1 and β2 of X are exactly the same as those of Y .
This means that we can retrieve the value of ω for the X distribution by

solving the equation x3 + 3x2 − 4 = β1 or equivalently x3 − 3x − 2 = β1.
Applying Cardano’s formula to the latter equation we can observe that the

discriminant ∆ =
β2
1

4
+4β1 is positive, therefore there is only one real solution:

ω =
√

1 + 1
β1

+
√
β1(1 +

β1

4
) +

√
1 + 1

β1
−
√
β1(1 +

β1

4
)− 1.

Once we obtain ω, the b = 1√
(logω)

parameter is determined, and c and â

can be recovered by Equations (1.31)-(1.32).
As we can see from the sign of µ3, Y is always right-skewed. In order to

retrieve also left-skewed functions, Hill, Hill and Holder [37] consider the d
parameter to assume values ±1 in accordance to the sign of the third moment
of the observed distribution. With this modification, the c and a parameters
can be retrieved by:

a =
b

2
log

ω(ω − 1)

µ2,X

c = µ′
1,X − d

√
ωe−

a
b .

Note that Equation (1.29) has for now not been used in determining the
parameters, since the value of β2 shall not give additional information on the
distribution if this is lognormal.



1.4 Johnson’s system and option evaluation 25

Graphically, this means that the SL family is individuated by a curve in
the (β1, β2) plane: Johnson takes this as a starting point for the definition of
his other two families, one for each of the regions the curve divides the plane
into. Excluding the area where β2 < β1 + 1, in analogy with Pearson’s family
of curves, the (β1, β2) plane is divided into an SB region, that contains the
distributions with range of variation bound at both extremities, and an SU

region, that includes the distributions that have a range unbounded at either
extremity.

In practice, this condition can serve as a criterium for the selection of the
appropriate family starting from the data, and is implemented as such in the
algorithm by Hill, Hill and Holder [37]. If the ω we obtain from Equation (1.28),
substituted in the right-hand side of 1.29, returns a value acceptably close to
the β2 we compute from the data, then the observed distribution is classified
as an element of the SL family, the distributions that can be transformed into
normal ones with the logarithmic function.

When the relation between the β1 and β2 estimated from the data does
not fit into the scheme highlighted by Equations (1.28), (1.29), one of the
other systems of curves is deemed more effective for representing the data
distribution.

In addition to the SL, SU and SB systems introduced by Johnson, Hill,
Hill and Holder [37] also consider the special cases SN of a normal distribution
(which is selected if β1 and β2 are suitably close to 0 and 3 respectively, and
corresponds to the limit of the SL case when b → +∞) and ST , the distri-
butions for which β2 = β1 + 1, which correspond to the frontier of the SB

region but can profitably be seen as a stand-alone situation for they allow a
straightforward identification of the four parameters.

When the β2 estimated from the data exceeds the value of the right-hand
side of (1.29), computed using the ω obtained from Equation (1.28), than
the SU transformation is selected, while if the β2 estimated from the data is
inferior to the computed value via the estimated ω, we must choose SB or ST

transformations.
Slifker and Shapiro [70] point out some drawbacks in such a method, namely

the fact that the β1 and β2 estimates have high variance and are biased for
small samples and greatly affected by outliers. Hence, they propose instead a
condition on percentiles in order to establish the family the sampling distribu-
tion belongs to and to provide an estimate for the parameters. Starting from
an arbitrary value z > 0, which shall be chosen empirically in order to catch
the area of most interest of the data distribution (for samples of moderate

size, the authors suggest a value near 1
2
), the percentages Pζ =

∫ ζ

−∞ fZ(x) dx
for ζ = −3z, −z, z, 3z are computed and the corresponding percentiles from
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the data are selected: if we set the data in ascending order, xζ is going to be
the observation in place nPζ +

1
2
(eventually interpolating).

Once we have obtained xz, x−z, x3z, x−3z, the following differences are
defined:

m = x3z − xz (1.35)

n = x−z − x−3z (1.36)

p = xz − x−z (1.37)

Slifker and Shapiro are guided by the intuition that, while the intervals
[−3z , −z], [−z , z] and [z , 3z] are equally spaced, not only the intervals
[x−3z , x−z], [x−z , xz] and [xz , x3z] are not, but the difference in the spacing
allows to distinguish between the bounded family, where the [x−z , xz] interval
is larger than the outer ones, and the unbounded family, where the [x−z , xz]
interval is smaller than the outer ones.

In terms of m, n and p, the above conditions translate into the following
selection criterium:

• if
mn

p2
= 1 then the SL family is selected;

• if
mn

p2
> 1 then the SU is selected;

• if
mn

p2
< 1 then the SB is selected.

Since the condition
mn

p2
= 1 has probability 0 to happen, in practice we

will set a tolerance level η around 1.
After the family selection, for each situation Slifker and Shapiro express

the parameters estimate in terms of m, n and p, generalising the results of
Aitchinson and Brown [3] on the SL system.

SB family: bounded system

The bounded system is obtained by choosing f(y) = log y
1−y

= 2 tanh−1(2y−1)

in Equation (1.59):

a+ b log

(
X − c

d−X + c

)
= Z (1.38)

The function f satisfies the previous requirements of being increasing and
having range R. Moreover, the graph of f(y) is symmetrical with respect to
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y = 1
2
, which implies that the transformed distribution Y is symmetrical too

if and only if a = 0, while Y is positively skewed when a > 0.
In order for this transformation to be well-defined, the range of values of

the distribution Y = 1

1+e−
Z−a
b

must satisfy 0 < y < 1, which translates into

c < x < c+ d.
With a further change of variable from Equation (1.25), the density prob-

ability function for the distribution Y can be expressed as:

fY (y) =
b√

2πy(1− y)
e−

(b log
y

1−y
+a)2

2 . (1.39)

The nth moment of the Y distribution is given by the following integral:

µ′
n(a, b) =

∫ +∞

−∞
yn(z)fZ(z) dz =

∫ +∞

−∞

1√
2π

e−
z2

2

1 + e−
z−a
b

dz (1.40)

which does not yield a simple formula for their calculation. The mean of
the Y process is expressed by Johnson with the following formula involving a
series:

µ′
1(a, b) =

1√
2π
e−

a2

2
1

1 + 2
∑+∞

j=1 e
−2j2π2b2 cos(2jπab)

·

·
(

1

2b
+

1

b

+∞∑

j=1

e−
j2b2

2 cosh
j(1− 2ab)

2b2
sech

j

2b2
+

−2πb
+∞∑

j=1

e−
(2j−1)2π2b2

2 sin((2j − 1)πab) csch((2j − 1)π2b2)

)
(1.41)

and the successive moments are computed applying the following recursive
formula involving partial derivatives:

µ′
n+1(a, b) = µ′

n(a, b) +
b

n

∂µ′
n(a, b)

∂a
(1.42)

or the following recursive formula involving forward differences and steps
of amplitude 1

b
in the value of a:

µ′
0(0, b) = 1 (1.43)

µ′
1(0, b) =

1

2
due to the symmetry of Y when a = 0 (1.44)
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µ′
n+1

(m
b
, b
)
= −e− 2k−1

2b2

(
µ′
n

(
m− 1

b
, b

)
− µ′

n+1

(
m− 1

b
, b

))
(1.45)

When m > n + 1 the previous formula invokes negative moments, which
are easier to compute from Equation (1.40). With further calculations (see the
Appendix in [39]) Johnson concludes that the asymptotic behaviour of µ′

n(a, b)
for a→ +∞ is given by:

µ′
n(a, b) ≃ e−

na
b
+ n2

2b2 = e−nΩω
n2

2 (1.46)

where we use the notation introduced above of ω = e
1
b2 and we write Ω = a

b
.

The previous equation can be used to clarify that the bounded system oc-
cupies in the (β1, β2) plane the whole region between the SL line and the “im-
possibility”line β2 = β1+1. In fact, Equation (1.46) and the standard relation-
ship between central and non-central moments give the following asymptotic
behaviours for the central moments and the skewness and kurtosis indices:

µ2(a, b) ≃ e−2Ωω(ω − 1) (1.47)

µ3(a, b) ≃ e−3Ωω
3
2 (ω3 − 3ω + 2) = e−3Ωω

3

2
(ω − 1)2(ω + 2) (1.48)

µ4(a, b) ≃ e−4Ωω2(ω6 − 4ω3 + 6ω − 3) = e−4Ωω2(ω6 − 4ω3 + 6ω − 3) (1.49)

β1(a, b) =
µ2
3(a, b)

µ3
2(a, b)

≃ (ω − 1)4(ω + 2)2

(ω − 1)3
= (ω + 2)2(ω − 1) (1.50)

β2(a, b) =
µ4(a, b)

µ2
2(a, b)

≃ ω4 + 2ω3 + 3ω2 − 3. (1.51)

We can differentiate Equation (1.39) and set the result to zero in order to
find the modal values of the Y distribution:

f ′
Y (y) =

b√
2πy2(1− y)2

e−
(b ln

y
1−y

+a)2

2

(
−1 + 2y − ab− b2 log

y

1− y

)
= 0

(1.52)
which yields g(y) = −1 + 2y − ab− b2 log y

1−y
= 0.

The function g(y) turns out to have either one or three zeros: in the first
case the Y distribution is unimodal, otherwise it is bimodal.

Johnson [39] shows that the Y distribution is bimodal if and only if the
following requirements are satisfied by the parameters:

|a| <
√
1− 2b2

b
− b log

√
1− 2b2

1−
√
1− 2b2

0 < b <
1√
2
.
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Considering the above conditions we can divide the bounded region of the
(β1, β2) plane in two sections, the unimodal and the bimodal one.

Johnson [39] proposes different ways to fit the data to the model, depending
on the kind of information at our disposal:

• matching of mean and variance, if both end-points of the range of varia-
tion of the variable are known (which means we know parameters c and
d) and the data are given singularly: we only need to apply the transfor-
mation g(x) = log

(
x−c

c+d−x

)
to the data and determine a and b by asking

that the estimated mean and variance of the transformed observation
match those of Z−a

b

• percentiles, if we are dealing with grouped data or we do not know both
end-points of the range. The suggested method is similar to that de-
scribed above. If we know one of the end-points then we need three
equations: we fix z and compute P = 1

2π

∫ +∞
z

e−
1
2
t2 dt, we estimate from

the data the points xM , xU and xL corresponding to the median, the
upper 100%P and lower 100%P percentiles of the observed distribu-
tion and then estimate the remaining three parameters by imposing xM ,
xU and xL to be translated into 0, z and −z via the transformation
z = a + b log

(
x−c

c+d−x

)
. If we know neither one of the end-points then we

need four equations: we consider four different values for ζ = z1, z2, z3 z4
and compute their Pζ , then we estimate the corresponding xζ from the

data and impose ζ = a+ b log
(

xζ−c

c+d−xζ

)
.

Hill, Hill and Holder [37] instead propose fitting by moments in any sit-
uation, for two main reasons: the practicality when theoretically computed
moments are known; and the possibility of reaching, by the matching of mo-
ments, if not the best estimate of the parameters at least a good starting
point for a maximum likelihood iteration (e.g. Newton-Raphson method) or
Marquardt non-linear regression.

In Hill, Hill and Holder [37] algorithm, as we have already said above,
unless β2 is near β1 + 1, SB is the selected transformation family when the
the right-hand side of (1.29), computed using the ω obtained from Equation
(1.28), exceeds the β2 estimated from the data.

In this case, the calculation of the first six moments is necessary for the de-
termination of the fourth parameters. A first approximation of the b parameter
is retrieved by numerical interpolation in the following way:

b0 =

{
0.8 · (β2 − 1) if β2 < 1.8
0.626β2−0.408
(3−β2)0.479

otherwise.
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The constants intervening in the previous expressions are obtained by the
shape of the curve for b as a function of β2 when β1 = 0. Similarly, a first
approximation for a is found depending on the initial value b0 and the estimated
β1 (using a formula by Draper). Let us call η the tolerance we allow our
estimate of β1 (in Hill, Hill and Holder [37] η = 10−4).

a0 =





0 if β1 < η

(0.7466b1.79730 + 0.5955)β0.485
1 if b0 ≤ 1

(1.0614b20 − 0.7077b0 + 0.9281)β0.0623b0+0.4043
1 if 1 < b0 ≤ 2.5

(1.0614b20 − 0.7077b0 + 0.9281)β0.0124b0+0.5291
1 if b0 > 2.5

Then we use a0 and b0 as starting values for the Newton-Raphson method,
asking for the matching of the moments of Y µ′

i up to the sixth (using the
derivatives for the moments obtained through the recursive formula by Mordell
we have seen above (1.42)).

After a and b have been successfully estimated, c and d are obtained by
matching of the first two moments:

d =
µ2,X√
µ2

(1.53)

c = µ′
1,X − dµ′

1. (1.54)

If β2 is larger than β1 + 1 but close to it, Hill, Hill and Holder [37] label it
as an SB “two-ordinate” case, and set the parameters as

a = 0 (1.55)

b =
1

2

(
1 + sgn(µ3)

√
β1

β1 + 4

)
(1.56)

d = µ′
1,X − µ2,X

√
1− b

b
(1.57)

c = µ′
1,X − µ2,X

√
b

1− b
. (1.58)

SU family: unbounded system

The unbounded system is obtained by choosing f(y) = log(y +
√
y2 + 1) =

sinh−1 y in Equation (1.59):

a+ b log


X − c

d
+

√(
X − c

d

)2

+ 1


 = Z (1.59)
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The function f satisfies the previous requirements of being increasing and
having range R and is defined for all y ∈ R.

Moreover, f is odd, since

f(−y) = log(−y+
√
y2 + 1) = − log

1

−y +
√
y2 + 1

= − log
y +

√
y2 + 1

−y2 + y2 + 1
= −f(y)

for all y ∈ R, and it is convex for y > 0.
Also in this case we focus on the moments of the distributions involved.

The nth-moment of Y is given by:

µ′
n =

∫ +∞

−∞

1√
2π
e−

z2

2

(
e

z−a
b − e−

z−a
b

2

)n

dz =

=
1

2n

∫ +∞

−∞

1√
2π
e−

z2

2

n∑

i=0

(−1)i
(
n

i

)(
e

z−a
b

)n−i (
e−

z−a
b

)i

dz = (1.60)

=
1

2n

n∑

i=0

(−1)i
(
n

i

)∫ +∞

−∞

1√
2π
e−

z2

2 ez
n−2i

b
−an−2i

b dz = (1.61)

=
1

2n

n∑

i=0

(−1)i
(
n

i

)
e

(n−2i)2

b2
−an−2i

b

∫ +∞

−∞

1√
2π
e−

(z−n−2i
b

)2

2 dz = (1.62)

=
1

2n

n∑

i=0

(−1)i
(
n

i

)
e

n−2i
b (n−2i

2b
−a) (1.63)

=
1

2n

n∑

i=0

(−1)i
(
n

i

)
ω

(n−2i)2

2 e−Ω(n−2i) (1.64)

where we used ω = e
1
b2 and Ω = a

b
as before, which gives:

µ′
1 =

1

2

√
ω
(
e−Ω − eΩ

)
=

√
ω sinh(−Ω) (1.65)

µ′
2 =

1

2

(
ω2 cosh(2Ω)− 1

)
(1.66)

µ′
3 = −1

4

√
ω
(
ω4 sinh(3Ω)− 3 sinhΩ

)
(1.67)

µ′
4 = +

1

16

(
ω8 cosh(4Ω)− 4 cosh(2Ω) + 6

)
. (1.68)

From the previous Equations we can obtain the values for the central mo-
ments and therefore the indices for skewness and kurtosis.
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µ2 =
1

2
(ω − 1) (ω cosh(2Ω) + 1) (1.69)

µ3 = −1

4

√
ω(ω − 1)2 (ω(ω + 2) sinh(3Ω) + 3 sinhΩ) (1.70)

µ4 =
1

8
(ω − 1)2

(
ω2(ω4 + 2ω3 + 3ω2 − 3) cosh(4Ω) + 4ω2(ω + 2) cosh(2Ω) + 3(2ω + 1)

)

(1.71)

β1 =
1

2

ω(ω − 1) (ω(ω + 2) sinh(3Ω) + 3 sinhΩ)2

(ω cosh(2Ω) + 1)3
(1.72)

β2 =
1

2

(ω4 + 2ω3 + 3ω2 − 3) cosh(4Ω) + 4ω2(ω + 2) cosh(2Ω) + 3(2ω + 1)

(ω cosh(2Ω) + 1)2
.

(1.73)

From Equation (1.70), we have that the sign of a determines the sign of
µ3, hence the skewness of the distribution: for a positive a we will have a
negative µ3, and the inequality mode>median>mean will be true, therefore
the function Y will be left-skewed; on the other hand a negative a will give
a positive µ3, and the converse inequality for the central tendencies will hold:
mode<median<mean, therefore the function Y will be right-skewed.

As usual, β1 and β2 are the same for X and Y . The formulas for β1 and
β2 need to be studied in order to show that the SU family covers the region of
the (β1, β2) plane delimited by the β2 axis and the SL line.

As Tuenter [78] proves, for β1 and β2 the following conditions must hold:

0 ≤ β1 < (ω − 1)(ω + 2)2 (1.74)

1

2
(ω4 + 2ω2 + 3) ≤ β2 < ω4 + 2ω3 + 3ω2 − 3 (1.75)

From the condition (1.75), considering that ω > 1, we have that β2 > 3,
which means that X is a leptokurtic distribution.

Following Johnson’s [39] justification, we can focus on the behaviour of the
β1 and β2 indices for extreme values of the a and b parameters.

For a = 0, we have Ω = 0, therefore sinh(kΩ) = 0 and cosh(kΩ) = 1 for all
k ∈ R, which means:

β1 = 0

β2 =
1

2

ω2(ω4 + 2ω3 + 3ω2 − 3) + 4ω2(ω + 2) + 3(2ω + 1)

(ω + 1)2
=

1

2
(ω4 + 2ω2 + 3).
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We can therefore identify the point (0, 1
2
(ω4 + 2ω2 + 3)) as the starting

point of the unbounded region. If b → +∞ then ω → 1 and β2 → 3 which
agrees with the corresponding lognormal couple (β1, β2) = (0, 3). If b→ 0 then
ω → +∞, and β2 → +∞.

Fixing b instead and analysing β1 and β2 behaviours for a → +∞, pro-
vides for the other limitation of the region. Using the equalities and asymp-
totic behaviours concerning the hyperbolic functions reported in the Appendix
(Section 3.2):

lim
Ω→+∞

β1 = lim
Ω→+∞

ω(ω − 1)

2

ω2(ω + 2)2e6Ω/4

ω3e6Ω/8
= (ω − 1)(ω + 2)2

lim
Ω→+∞

β2 = lim
Ω→+∞

1

2

ω2(ω4 + 2ω3 + 3ω2 − 3)e4Ω/2

ω2e4Ω/4
= ω4 + 2ω3 + 3ω2 − 3

which means that for a→ +∞ we reach the SL line.
Moreover, as Tuenter [78] points out, inequalities (1.74) and (1.75) translate

into boundaries for ω, additional to the obvious one ω > 1:

max{w0, w1} < ω ≤ w2 (1.76)

where w0, w1 and w2 are the unique positive roots of equations (ω−1)(ω+2)2 =
β1 (which can be solved via Cardano’s method), ω4 + 2ω3 + 3ω2 − 3 = β2
(which Tuenter solves by Ferrari’s method) and 1

2
(ω4+2ω2+3) = β2 (which is

straightforward). w1 < w2 since the function f1(ω) = ω4 + 2ω3 + 3ω2 − 3− β2
is increasing for ω > 0 and f1(w1) = 0 by definition, while f1(w2) = β2+2w3

2+
w2

2−6 > β2−3 since we are only considering ω > 1. Since, as we have pointed
out above, β2 > 3, we have w1 < w2.

In Tuenter’s algorithm, the condition (1.74) is checked for w1 in order to
confirm that the SU transformation is the appropriate one.

In order to estimate the value of the parameters a, b, c, d from the data,
Johnson [39] proposes the use of the matching of the mean, standard deviation,
β1, β2. Specifically, using Equations (1.72) and (1.72), he provides an abac
linking the couples (β1, β2) to the pairs (ω,Ω) that give rise to the skewness
and kurtosis estimated from the data.

Hill, Hill and Holder [37] treat the case as an SU one when the β2 esti-
mated from the data exceeds the corresponding value in the right-hand side of
Equation (1.29), computed using the ω obtained from Equation (1.28). Their
algorithm provides the parameters for the β1 = 0 case:

a = 0 (1.77)



1.4 Johnson’s system and option evaluation 34

ω =

√√
2β2 − 2− 1 ⇒ b = (logω)−

1
2 (1.78)

c = µ1,X (1.79)

d =

√
2µ2,X

(ω − 1)(ω + 1)
(1.80)

while for the β1 6= 0 case they implement the iteration presented in [40].
The iteration adopts the formulas for the indices of skewness and kurtosis as
modified by Leslie [44]:

β1 =
(ω − 1)t[4(ω + 2)t+ 3(ω + 1)2]2

2(2t+ ω + 1)3
(1.81)

β2 =
(ω − 1)(A2(ω)t

2 + A1(ω)t+ A0(ω)

2(2t+ ω + 1)2
+ 3 (1.82)

that come from Equations (1.72) and (1.73), using the hyperbolic equalities
(3.7)-(3.9) in the Appendix, with the substitution t = µ′2

1 = ω sinh2Ω and

A2(ω) = 8(ω3 + 3ω2 + 6ω + 6)

A1(ω) = 8(ω4 + 3ω3 + 6ω2 + 7ω + 3)

A0(ω) = ω5 + 3ω4 + 6ω3 + 10ω2 + 9ω + 3)

and develops as follows:

• the starting point is ω0 =
√√

2β2 − 2.8β1 − 2− 1;

• given some ωn, the solution tn of Equation

β2 − 3 =
(ωn − 1)(A2,nt

2 + A1,nt+ A0,n

2(2t+ ωn + 1)2
,

where Ai,n = Ai(ωn) for i = 0, 1, 2, is computed;

• an approximation bn of β1 based on ωn and tn is found:

bn =
tn(ωn − 1)[4(ωn + 2)tn + 3(ωn + 1)2]2

2(2tn + ωn + 1)3

• the subsequent term ωn+1 is obtained from Equation

β2 − 0.5(ω4
n+1 + 2ω2

n+1 + 3)

β1
=
β2 − 0.5(ω4

n + 2ω2
n + 3)

bn
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• the procedure stops when bn is satisfactorily close to β1.

The procedure allows to estimate b and |a|. The sign we need to attribute to
a is the opposite of µ3. Again, once the first two parameters a and b have been
estimated, the matching of the first two moments provides with the estimates
for c and d.

Johnson’s algorithm [40] has been generalised by Shenton and Bowman
[67], providing a Lagrange expansion for (ω2 + 1)2 which allows still another
iterative procedure for the approximation of ω:

• the starting point is ω0 = 1 or ω0 = w2 ;

• given some ωn, the functions

H(β1, ωn) =
+∞∑

i=1

22i(3i− 3)!

33i(2i− 1)!

(
β1

(ωn + 1)3

)i

and
g(ωn) = (ωn + 1)2(ω2

n + 2ωn + 3)

are computed;

• ωn+1 is obtained by

ωn+1 =

√
−1 +

√
2β2 − 2− 6g(ωn)H(β1, ωn)

Bowman and Shenton [11] also proposed a different procedure to estimate
ω. They followed the linearity argument used by Johnson with regard to the
contours of b and Ω in the (β1, β2) plane and showed that the function

ψ(β1, β2, ω) =
β2 − 0.5(ω4 + 2ω2 + 3)

β1
(1.83)

used in the iteration described above also has nearly linear contours in the
(β1, β2) plane for 3 < β2 ≤ 75, covering a wider area than that spanned by
Johnson’s abac (β2 ≤ 15). They proposed to approximate the function ψ with
the ratio of two third degree polynomials in β1 and β2, and they estimated the
polynomial coefficients via linear least squares using 350 points in the region
of the (β1, β2) plane delimited by the SL curve, the axis β1 = 0 and the line
β2 = 50.

Hence, Bowman and Shenton [11] procedure for the estimation of the John-
son’s SU parameters involves plugging the values β1 and β2 obtained from
the data in the polynomials, obtaining an approximation of ψ(β1, β2, ω) from
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which an approximation of ω can be computed solving (1.83); afterwards Ω
is obtained by (1.82) and c and d are recovered as usual. The error in the ω
approximation results in at most 0.006% over the spanned domain.

The obvious drawbacks of both the previous methods are the empirical
foundation on the observed linearity properties, which may only hold locally,
and also that the coefficients of the polynomials involved depend on the regions
of the (β1, β2) plane that have been investigated, and their accuracy influences
the accuracy of the parameters.

Trying to overcome these difficulties, Tuenter [78] proposes an algorithm
that also starts from Equations (1.72) and (1.73) but proposing a different
substitution:

t =
ω2 − 1

ω + 1 + 2ω sinh2Ω
. (1.84)

With the substitution (1.84) the formulas for β1 and β2 become polynomial:

β1 = (ω − 1− t)

(
ω + 2 +

t

2

)2

(1.85)

β2 = (ω2 + 2ω + 3)

(
ω2 − t2

2
− 2t

)
− 3 (1.86)

and an expression for t can be isolated from (1.86) and plugged into (1.85).

t = −2 +

√
4 + 2

(
ω2 − β2 + 3

ω2 + 2ω + 3

)
(1.87)

β1 =

(
ω + 1−

√
4 + 2

(
ω2 − β2 + 3

ω2 + 2ω + 3

))
ω + 1 +

√
4 + 2

(
ω2 − β2+3

ω2+2ω+3

)

2




2

(1.88)

From Equation (1.84) we can see that t is necessarily positive (since ω > 1)
and not greater than ω − 1. Manipulating Equation (1.87) one can see that
these conditions on t are equivalent to the conditions (1.75). Moreover, one
could observe that the proposed substitution is not injective, but if we express
ω in terms of t we obtain:

ω =
t(1 + 2 sinh2Ω)±

√
t2(1 + 2 sinh2Ω)2 + 4 + 4t

2
.
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which gives only one acceptable ω > 0 for t > 0.
Therefore the proposed substitution is bijective for ω satisfying the condi-

tions (1.76).
Tuenter proves (in the Appendix, pages 342-345) that the function f(ω)

given by the right-hand side of (1.88) is a function strictly decreasing in ω,
therefore in order to estimate the parameters one can implement the bisection
method or the Newton-Raphson method to find ω which satisfies (1.88). Such
an ω must be searched in the interval (w1, w2] (where w1 and w2 are the unique
positive roots of ω4+2ω3+3ω2−3 = β2 and

1
2
(ω4+2ω2+3) = β2 respectively).

The Newton-Raphson iteration function is given by

g(ω) = ω − f(ω)− β1
f ′(ω)

(1.89)

and w2 is an appropriate starting point. Once ω has been estimated, t is ob-
tained by Equation (1.84), and from t also Ω, taking care as usual to attribute
to Ω a sign opposite to that of the third moment. c and d are obtained from
the matching of the first two moments.

The boundaries w1 and w2 also allow Tuenter to analyse the accuracy of the
convergence of his method to the parameter value, giving for the ω computed
with n iterations of the bisection method a relative error of 0.6818 · 2−n. [78]

Relation between Pearson’s and Johnson’s curves

The SU portion of the (β1, β2)-plane covers entirely Pearson’s Type IV and part
of Pearson’s Type VI curves [27]. Johnson’s curves give a good approximation
of Pearson’s Type IV curves [39].

The SB system provides transformation of Pearson’s Types I and II that
approximate normality better than the transformation obtained via the SL

system, while the same cannot be said for Type III transformation. The SL

system was also suggested by Pearson himself as a feasible approximation of
his Type IV curves.

Since Johnson’s systems all provide distributions with all finite moments,
these system do not capture the situations where higher moments than the
fourth are infinite, while Pearson’s family can accomodate such cases.

Johnson’s system for the pricing of options

Simonato [68] started from the Edgeworth binomial tree to propose the evalu-
ation of options with an underlying characterised by Merton’s jump diffusion
process with lognormal jump amplitude.

Simonato starts from the solution for Merton’s process (see page 7)
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S = S0e
(r−v−λj̄−σ2

2
)t+σz(t)

m(t)∏

i=0

(1 + Ji)

with m(t) Poisson of parameter λ, J0 = 0 and log(1 + Ji) ∼ N(γ′, δ2)
for i ≥ 1, and uses the formulas provided by Das and Sundaram [22] for the
annualised higher moments of the cumulative asset return log(Sτ/S0).

µ2 = σ2 + λ(γ′2 + δ2)

γ1 =
1√
τ

(
λγ′(γ′2 + 3δ2)

µ
3/2
2

)

β2 = 3 +
1

τ

(
λ(γ′4 + 6γ′2δ2 + 3δ4)

µ2
2

)

Values γ1 and β2 are given as an input for the Hill et al. algorithm [37],
together with µ1,X = 0 and µ2,X = 1 (the process is standardised). The Hill
algorithm selects the function f(y) of the appropriate family in accordance to
the (β1, β2) values, and gives as an output the four parameter estimates a, b,
c, d for the Johnson transformation. Once these values are at our disposal,
we consider all possible values assumed by a binomial random variable after n
steps, that is:

zn,i =
2i− n√

n
with probability pn,i =

(
n

i

)(
1

2

)n

and we translate them (leaving the probabilities untouched) into xn,i =
c+ df−1

( zn,i−a

b

)

The discrete distribution Xn given by the xn,i and pn,i is then standardised,
and the so found new values x′n,i are used to compute the possible values of
the stock at maturity:

S(n, i) = S0e
µτ+ν

√
τx′

n,i

where µ = r − d − 1
τ

∑
i=0 npn,ie

ν
√
τx′

n,i and ν =
√
µ2 is the annualised

volatility of log(Sτ/S0).
Backward recursion allows the computation of all S(i, j) for i ≤ n, 0 ≤ j ≤

i:
S(i, j) = e−(r−d)∆t S(i+1,j+1)+S(i+1,j)

2

and at the same time permits to recover an approximation of the price of an
option written on S. The procedure’s main advantage is that the computation
is fast, alas the accuracy in the determination of the price cannot be improved
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by increasing the number of steps (that is, we do not have convergence results)
since we are using a one-dimensional lattice, that cannot adequately represent
information from both sources of variation of the price, the Brownian motion
and the jump, that are featured in the model.

This springs the research for a lattice model that can better represent the
underlying process, while allowing for a fast pricing of the derivatives.

1.5 On the discretisation of the Merton model

The aim of this Section is to analyse already known lattice procedures for the
discretisation of Merton’s jump-diffusion model. In the following Sections we
will highlight the improvements brought to the procedure by the modifications
introduced by Gaudenzi, Spangaro and Stucchi ([33] and [34]).

1.5.1 Amin

Amin proposes the following procedure for derivative pricing in a discretisation
of Merton’s jump-diffusion setting.

The jump process is considered lognormal, which means that a jump pro-
vides a variation of the stock price from S to S(1 + J), where log(J + 1) ∼
N(γ′, δ2). In Amin’s calculations the γ′ parameter, which Merton [50] defined
as γ − δ2

2
, is taken equal to − δ2

2
, i.e. γ = 0.

Consider the parameters of the logreturn as usual: r the risk-free rate, v
the dividend yield, λ the Poisson parameter that gives the frequency of the
arrival of jumps, j̄ the expectation of the jump process J , σ the volatility of
the diffusion component, α = r − v − λj̄ − σ2

2
the drift. All these values are

supposed to be constant throughout the lattice.
The time to maturity τ of the option we want to evaluate is divided in n

intervals, each of amplitude ∆t = τ
n
. In the following, we will often make an

abuse of notation and indicate by i the time i∆t. We will also take R = er∆t

and D = ev∆t, while u = eα∆t+σ
√
∆t and d = eα∆t−σ

√
∆t will stand for the

amplitude of an up and a down Brownian move respectively.
In order to recover the backward recursion formula for the price of the

option at time i, known the possible prices at time i + 1, Amin follows the
hedging argument by CRR [20] for the value Vj(i+1) at time i+1 of a portfolio
made of an option, risk-free bonds and shares of the underlying stock. At first
he considers the case of absence of jumps (j = ±1), obtaining

π =
(R−D)− d

u− d
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for the transition probability of an up Brownian move; then imposes the di-
versifiability of the jump risk, which gives that the expectation of the portfolio
in the next period must be equal to zero when taken with respect to the dis-
tribution of the rare event.2

Therefore,

0 = λEJ+1[Vj(i+ 1)] + (1− λ)V±1(i+ 1).

This gives that the option value C(i) at time i, provided that we don’t
exercise it, depends on the option values at time i+1 according to the following
formula:

C(i) =
1

R
{λEJ+1[Cj(i+ 1)] + (1− λ)p′C+1(i+ 1) + (1− λ)(1− p′)C−1(i+ 1)}

(1.90)
where

p′ =

(R−D)−λEJ+1[J+1]

1−λ
− d

u− d
.

Let us call C(i) the continuation value of the option at time i.
The probabilities p′ and λ are then those which define a risk-neutral mea-

sure Q under which the value of the option C(i) is the discounted expected
return of the values at the next time step. The distribution of J under Q is
taken to be the same as under the original probability measure.

Equation (1.90), coupled with the underlying values at maturity, allows
for a backward recursive evaluation of the option, with the following standard
caveat: if the option supports early exercise, at every time step the current
payoff of the option may exceed the expected value of detaining the option
still in the next period, which means that the rational investor would choose
to exercise it.

Therefore, while for a European option it suffices (1.90), for an American
call option with strike K0 we will need

AC(i) = max {S(i)−K0, C(i)} (1.91)

and likewise for an American put option

AP (i) = max {K0 − S(i), C(i)} . (1.92)

The definition of the probability p′ imposes some conditions on the value
of R, D, u, d, to ensure that 0 < p′ < 1.

2For details, see [5].
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It is necessary to define a discretisation Jn of the J process, and more
conditions are needed in order for the discrete process to weakly converge to
Merton’s jump-diffusion process.

At each time step i, for i = 0, . . . , n, the possible states for the value of
the stock with initial value S0 are of the kind S0e

αi∆t+jσ
√
∆t, which means that

jumps of the logreturn have a random amplitude which must be a multiple of
the Brownian move σ

√
∆t. In each time interval, the stock price can move

accordingly to the Brownian motion, i.e. the variation in the logreturn will be
α∆t± σ

√
∆t, or accordingly to a jump, which allows for any variation of the

kind α∆t+ jσ
√
∆t except j = ±1.

As a simplified approach, Amin supposes the two possible moves of the
stock price, the Brownian one and the jump one, cannot both occur in the
same interval, but this is not a restrictive request when we consider the limit
for n→ ∞.

The probability of the arrival of a jump in a given period ∆t is taken equal
to λ∆t. Conditional to the happening of a jump, the probability qk of going
from state S0e

αi∆t+jσ
√
∆t to state Seα(i+1)∆t+(j+k)σ

√
∆t is defined as follows:

• if k 6= ±1, we assign to the discrete jump of kσ
√
∆t the probability J+1

has to fall into the interval [α∆t+ (k − 1
2
)σ
√
∆t, α∆t+ (k + 1

2
)σ
√
∆t];

• if k = ±1, the probability is taken equal to 0 (this implies the ability for
the observer to distinguish between the Brownian and the rare moves: if
k = ±1, the variation is due to the diffusion process);

• if k = 0, we assign to the discrete jump of kσ
√
∆t the probability J + 1

has to fall into the interval [α∆t− 3
2
σ
√
∆t, α∆t+ 3

2
σ
√
∆t] (in this way,

the “no jump” situation absorbs the probability that has been deflected
from the neighbourhoods of the local moves).

With this specification for Jn, the value of p′ is modified into:

p =

(R−D)−λ∆tEJn+1[Jn+1]

1−λ
− d

u− d
=

1

2
+ o(∆t),

which means the error will be negligible if we take p = 1
2
, as soon as n is big

enough (Amin estimates an error on the value of p less than 10−3 for n ≥ 100).

With this notation, the transition probabilities from the state S0e
αi∆t+jσ

√
∆t

to whichever of the states S0e
α(i+1)∆t+(j+k)σ

√
∆t of the next period are:

• (1− λ∆t)p if k = +1,

• (1− λ∆t)(1− p) if k = −1,



1.5 On the discretisation of the Merton model 42

• λ∆tqk if k 6= ±1.

With these values, Amin [5] obtains the weak convergence of the (interpo-
lated) discrete time process to the continuous time process, under a risk-neutral
probability measure, which in turn guarantees the convergence of the European
option prices computed via the discrete model to the continuous ones.

The model as described so far is not immediately applicable, for we have
at every time step an infinite number of possible states: Amin restricts the
number of possibilities to a fixed M = 2n + 1 (recall that n is the number
of steps) around the value S0e

αi∆t, which results in a “rectangular” lattice,

where at time i there are M possible states spanning from S0e
αi∆t−nσ

√
∆t to

S0e
αi∆t+nσ

√
∆t, and then proceeds to truncate the jump distribution in the

following ways:

• for each state at time i, the jump will move the price of the underlying at
most n places upwards and n places downwards, in any case respecting
the borders of the “rectangular” lattice;

• given k =
⌈
max{γ′+3δ−α∆t

σ
√
∆t

, 3δ−γ′+α∆t

σ
√
∆t

}
⌉
, the distribution of the process

Jn+1 is truncated outside the interval I = [α∆t−kσ
√
∆t, α∆t−kσ

√
∆t].

This is sensible since, for the definition of k, the interval I contains
[γ′ − 3δ, γ′ + 3δ], which means that we are considering the 99.7% of the
normal distribution. The probability of the tails we are cutting out is
assigned to the extremal nodes.

At every date, the price of the option when the underlying has the lowest
possible or the highest possible value are either computed with the closed form
formula for the European option price or set at their intrinsic value.

The previous procedure for the pricing of an American option is O(n3),
since for every node we need to consider the value of the nodes it is parent
to (which can amount to a minimum of n + 1 for the border nodes up to a
maximum of 2n + 1 for the central nodes), and this needs to be repeated for
every node in the lattice, which means n(2n+ 1) times.

Amin suggests to reduce the computational time via Newton-Cotes integra-
tion: for every node, instead of considering the whole set of n to 2n+ 1 nodes
we can reach in the following period, we divide the interval in three equally
spaced subintervals (possibly enlarged with respect to the space state in order
to fit specifications), and we consider the approximation of the expected value
of the option in each of these intervals given by the 10-points Newton Cotes
integral formula. The result would be an O(n2) procedure, which nevertheless
looses in accuracy when compared to the Merton closed formula benchmark.
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1.5.2 Hilliard and Schwarz

Hilliard and Schwartz [38] point out that Amin’s discretisation is negatively
affected by the limitation imposed on the jump, to only take values which are
multiple of the Brownian move.

Considering the independency of the two processes involved in the Merton
model, the authors develop a multinomial lattice: one variable mimicking the
diffusion process Xt and the second one the log-normal jumps in the compound
Poisson process Yt.

Given τ as the time to maturity, n the number of time steps, ∆t = τ
n
as the

time interval, Hilliard and Schwartz consider σ
√
∆t as the amplitude of the

Brownian step, as per usual in binomial trees, whereas they establish a value
h, for the minimum possible amplitude of the jump, that is not dependent on
the amplitude of the Brownian step, but depends on Merton’s parameters for
the distribution of the continuous lognormal jump process.

The minimal amplitude of a jump, h, is set to:

h = b
√
γ′2 + δ2, with 0 < b ≤ 1 (1.93)

which, for b = 1, ensures weak convergence in the special case of fixed jump
amplitude (i.e. δ = 0). This encouraged the authors to use h =

√
γ′2 + δ2 also

in the general case, a choice which is supported by accurate numerical results.
A non-negative integer N , constant throughout the tree, determines the

maximum amplitude Nh of a single jump.
In order to recover a structure as faithful as possible to the jump dynamics,

Hilliard and Schwartz introduce a node for the “no jumps” situation, and then
2N additional nodes to take into consideration the possibility of a jump of
amplitude ±h, ±2h, . . ., ±Nh.

The discrete counterparts Xn and Yn of Xτ and Yτ are the algebraic sum
of n i.i.d. processes X∆ and Y∆ respectively defined as follows.

The discretisation of the Brownian motion follows the classical CRR one:
an up move of X∆ gives a +σ

√
∆t variation in the logreturn, a down move a

−σ
√
∆t variation; the probability p of an up move is taken as in the work by

Nelson and Ramaswamy [52]:

p =
1

2

(
1 +

α
√
∆t

σ

)
.

For p to be well defined, we need to impose −1 ≤ α
√
∆t
σ

≤ 1.
As for the jump part, the discretisation Jn of the process J which gives

the amplitude of a single jump is then obtained in the following way: at every
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time step, the jump can assume the value kh for k = −N, . . . , 0, . . . , N with a
probability qk.

The values for the qk are also constant in time, and are found by imposing a
moment-matching condition: the variation of the logreturn due to the jump in
the ∆t time interval shall have the same moments as its continuous counterpart
Y∆t (as defined in 1.6):





N∑

k=−N

qk = 1

N∑

k=−N

(kh)i−1qk = E{Y i−1
∆t } for i = 2, . . . , 2N + 1

(1.94)

Considering the relations intervening between moments and cumulants (cf.
Stuart and Ord [74], pp. 85 ff.), and the dependence on the amplitude of
the time interval ∆t of the cumulants of Y∆t, which can be derived from the
cumulant generating function (see Section 3.3 in the Appendix, with t = ∆t),
the moments E(Y i−1

∆t ) are proved to be equal to the relative cumulants ki−1,
up to a negligible O(∆t2) term. This allows Hilliard and Schwartz to use, in
substitution of the moments, the first 2N cumulants. Hilliard and Schwartz
test their procedure for N = 1, 2, 3, 4, therefore the cumulants they need are:

k1 = λ∆tγ′

k2 = λ∆t(γ′2 + δ2)

k3 = λ∆t(γ′3 + 3γ′δ2)

k4 = λ∆t(γ′4 + 6γ′2δ2 + 3δ4)

k5 = λ∆t(γ′5 + 10γ′3δ2 + 15γ′δ4)

k6 = λ∆t(γ′6 + 15γ′4δ2 + 45γ′2δ4 + 15δ6)

k7 = λ∆t(γ′7 + 21γ′5δ2 + 105γ′3δ4 + 105γ′δ6)

k8 = λ∆t(γ′8 + 28γ′6δ2 + 210γ′4δ4 + 420γ′2δ6 + 105δ8)

(1.95)

Note that the qk obtained as a solution of the system above, which requires
the inversion of a Vandermonde matrix, already contain the information about
the intensity of the Poisson process, λ.

The higher the choice forN , the more precise Jn will be as an approximation
of J , therefore the more refined the results. A choice of N = 1 gives a rough
approximation of the underlying and therefore of the price of the derivatives;
by choosing N = 2, 3, 4 (that is, respectively, a five-, seven-, nine-node tree)
the results are more refined. In the usual trade-off between precision and
computational costs, the choice N = 3 seems to be the best option (see [38]).
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The discretisation Y∆ is defined as:

Y∆ :=

{
kh with probability qk for −N ≤ k ≤ N ,

0 with probability 1− λ∆t.

The weak convergence of Xn to Xτ , and its consequence on the convergence
of European put and call option prices, has already been proven in literature
(see [52]); Hilliard and Schwartz prove the weak convergence of Yn to Yτ in the
special case with a fixed jump amplitude, by showing that the characteristic
function of Yn converges to the characteristic function of Yτ .

For the general case, there is no such result; we must be satisfied with the
convergence of the first 2N cumulants of Yn to those of Yτ , which the authors
show via the cumulant functions of the two processes. While comforting, this
does not guarantee convergence of the discrete option prices to the continuous
ones; we need to rely on a numerical justification only.

Hilliard and Schwartz construct a bivariate tree for the dynamic of the
logreturn.

At every time step, the nodes of the tree represent the values of the return
of the underlying considering that this is influenced both by the Brownian
motion and by the lognormal jumps.

Fixed N , at every interval we can have two possibilities for the Brownian
move (+σ

√
∆t and −σ

√
∆t) and 2N+1 possibilities for the jump. Every node

(but the terminal ones) in the tree is parent to the 2 · (2N +1) nodes given by
the combination of the up or down Brownian move with the 2N + 1 possible
moves for the jump.

We can label every node of the tree with a triplet (i, j, k), where the first
index i keeps track of the time (0 ≤ i ≤ n), j describes the effect of the
Brownian moves up to that time (0 ≤ j ≤ i) and k the result of the jump
moves (−Ni ≤ k ≤ Ni).

Let us denote by S(i, j, k) the value of the underlying on the node (i, j, k).

This means S(i, j, k) = S0e
(−i+2j)σ

√
∆t+kh.

The chosen dynamics entails that, from the state S0e
(−i+2j)σ

√
∆t+kh we can

move to:

S0e
[−(i+1)+2(j+1)]σ

√
∆t+(k+l)h with probability pql,

S0e
[−(i+1)+2j]σ

√
∆t+(k+l)h with probability (1− p)ql

for l = −N, . . . , N .
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Note that the Hilliard and Schwartz’s bivariate tree incorporates CRR’s bi-
nomial tree: indeed, from a node S0e

(−i+2j)σ
√
∆t, with probability q0 (associated

with the “no jump” situation) we go to S0e
[−(i+1)+2(j+1)]σ

√
∆t or S0e

[−(i+1)+2j]σ
√
∆t.

In order to calculate the price of an option on the stock we are considering,
we can use the following formula of backward recursion for the continuation
value of the derivative at time i, in the node (i, j, k):

V (i, j, k) = e−r∆t

N∑

l=−N

(V (i+1, j+1, k+ l)p+V (i+1, j, k+ l)(1−p))ql. (1.96)

Provided the values at maturity, which are equal to V (n, j, k) = (S(n, j, k)−
K0)

+ in the case of the call option and V (n, j, k) = (K0 − S(n, j, k))+ in the
case of the put option, for any j integer between 0 and n and k integer be-
tween −Nn and Nn, Equation (1.96) is sufficient for the evaluation of the
European options. Alternatively, the price of the option in the European case
can be evaluated as the discounted expected value on all the possible payoffs
at maturity.

Given QN(k) the probability of reaching jump value k at maturity, and

P (j) =

(
n

j

)
pj(1− p)n−j,

the formula for the European call option is:

VE = e−rτ

n∑

j=0

Nn∑

k=−Nn

(S0e
(−n+2j)σ

√
τ+hk −K0)

+P (j)QN(k) (1.97)

and similarly for the European put option we have:

PE = e−rτ

n∑

j=0

Nn∑

k=−Nn

(K0 − S0e
(−n+2j)σ

√
τ+hk)+P (j)QN(k). (1.98)

These formulas have a computational complexity of O(n2).
For the American call options we will use the backward recursion with the

analogous formula:

CV (i, j, k) = e−r∆t

N∑

l=−N

(VA(i+ 1, j + 1, k + l)p+ VA(i+ 1, j, k + l)(1− p))ql

VA(i, j, k) = max{CV (i, j, k), S(i, j, k)−K0}
(1.99)
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Figure 1.1: Hilliard and Schwartz tree for the N = 1 case. In green, the
CRR tree starting from the current value of the underlying. In black, the
children of a single node. In different colours, the +h, 0, −h jumps, every pair
individuating a ±1 Brownian move.
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with initial data VA(n, j, k) = (S(n, j, k) −K0)
+, for j integer between 0 and

n and k integer between −Nn and Nn, while for the American put option:

CP (i, j, k) = e−r∆t

N∑

l=−N

(PA(i+ 1, j + 1, k + l)p+ PA(i+ 1, j, k + l)(1− p))ql

PA(i, j, k) = max{CP (i, j, k), K0 − S(i, j, k)}
(1.100)

with initial data PA(n, j, k) = (K0 − S(n, j, k))+, for j integer between 0 and
n and k integer between −Nn and Nn.

When N = 3, i.e. the second variable is allowed a seven-node branching at
every time step, the HS procedure provides more accurate results than the one
by Amin (the benchmark in the comparison is the European Merton value).
In the application of their bivariate tree to the evaluation of American options,
Hilliard and Schwartz provide a backward procedure of time complexity O(n3).

1.5.3 Dai et al.

Dai et al. [21] build on the HS procedure reducing the complexity to O(n2.5)
by dissolving the intermediate nodes introduced by the jumps on the tree in
the nearest diffusion nodes, therefore providing a one-dimensional tree.

The theoretical setting is not different from the one described above. As
in Hilliard and Schwartz [38], Dai et al. [21] start by considering the jump-
diffusion process that represents the dynamics of the logreturn as divided into
a diffusion process Xt and a jump process Yt. Indicating as before with τ the
time to maturity, n the number of steps and ∆t the ratio τ

n
, Xτ is discretised

in the standard CRR way, while Yτ as the sum of n i.i.d. random variables
Y∆, the jump amplitude h and probabilities of which are fixed, as in Hilliard
and Schwartz, accordingly to the parameters of the jump distribution, with
the matching of the first 2N moments (Dai et al. [21] use N = 3). Contrary
to what happens in the Hilliard and Schwartz procedure, the up probability
for the Brownian process is fixed exactly as π in the CRR process,

p =
er∆t − d

u− d

where r is the risk-free rate of return, u = eσ
√
∆t and d = e−σ

√
∆t are the usual

up and down Brownian moves, but this variation has negligible effects on the
price for the data sets we have considered.

The authors then modified the procedure in the following way. Let us call
S the value of the underlying the grid is centred around; this isn’t necessarily
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S0, since one can anchor the grid so that one of the maturity nodes is precisely
aligned with the value of the strike, in order to avoid nonlinearity error. At
every step, only from each of the Brownian nodes (that is, the nodes corre-

sponding to values for the underlying of the kind Sejσ
√
∆t for some j) depart

2(2N +1) nodes, since the jump allows for N up jumps, N down jumps, and a
no jump node, and for each one of these there are both the Brownian up tick
and the Brownian down tick. The pair of no jump nodes are the usual Brow-
nian nodes we would obtain with the CRR grid. Each one of the other nodes,
which represent the situations where a jump has occurred, are reabsorbed, us-
ing a trinomial branching, into three appropriate consecutive Brownian jumps
in the following time step.

The individuation of the appropriate triple for a given jump node is de-
termined in accordance with the parameters of the process: the mean of the
logreturn µ = (r − λj̄ − σ2

2
)∆t and its variance V ar = σ2∆t. A given jump

node X in the tree represents a value for the underlying of the type:

S(X) = Sejσ
√
∆t+kh,

where k = ±1, . . . ,±N , since the reabsorption of jump nodes happens be-
fore they can further branch. The node X is linked via a trinomial struc-
ture to three consecutive nodes (A, B, C) representing the underlying values

S(C) = Se(j
′−2)σ

√
∆t, S(B) = Sej

′σ
√
∆t, S(A) = Se(j

′+2)σ
√
∆t chosen such that

the central node B has S(X)-log-price

µ̂ = log

(
S(B)

S(X)

)
= (j′ − j)σ

√
∆t− kh

as close as possible to the mean µ.
Once we have identified, for a given node X, the nodes A, B, C it should be

branching to, the probabilities pA, pB, pC are found by imposing the matching
of the mean and variance of the S(X)-log-price:





pA + pB + pC = 1
pAα + pBβ + pCγ = 0
pAα

2 + pBβ
2 + pCγ

2 = V ar

where β = µ̂− µ, α = β +2σ
√
∆t, γ = β − 2σ

√
∆t. The system above can be
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solved via Cramer’s rule, giving the following formulas for pA, pB and pC :





pA =
(βγ + V ar)(γ − β)

(β − α)(γ − α)(γ − β)

pB =
(αγ + V ar)(α− γ)

(β − α)(γ − α)(γ − β)

pC =
(βα + V ar)(β − α)

(β − α)(γ − α)(γ − β)

(1.101)

which are non negative (with sum 1), therefore valid as probabilities.
Since finding the appropriate triple may not be feasible considering only the

Brownian nodes already provided by the CRR grid, the tree will be expanded
in order to include, in every step, from the C node of the triple associated
with the lowest jump of the lowest brownian node for the time step, up to
the A node for the highest jump of the highest brownian node. The time
interval ∆t, the minimum jump amplitude h and the volatility σ are constant
throughout the tree, and the S(X)-log-price (j′ − j)σ

√
∆t− kh only depends

on the difference between the Brownian indexes (j′ − j, which will necessarily
be an odd integer) and the value k relative to the amplitude of the jump,
which means that the number of nodes we will need to add to the tree can
be computed forward at once. Counting the total number of nodes allows to
quantify the computational cost of the procedure, which can be shown to be
O(n2.5).

The same trinomial structure can also be used in order to connect the
original node at time 0, corresponding to the initial value of the underlying S0,
with three appropriate Brownian nodes at time ∆t of the grid that is aligned
with the strike.

These three nodes are obtained as follows: considering that they belong to
timestep 1, while the strike K0 needs to be aligned with the nodes at timestep
n, we know that they must have an underlying of the kind K0e

jσ
√
∆t where j

is an odd integer when n is even, and vice versa.
Once fixed a value for the strike K0, we consider, between all such nodes,

the one whose S0-log-price is the closest to µ: that node will serve as the central
node B, and those immediately above and below as A and C. The transition
probabilities between the initial value of the underlying and the three values
represented by these A, B, and C are the solution of the system in (1.101),

where β = log(S(B)
S0

)− µ and α and γ are defined as we did above.
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1.6 Establishing an appropriate cut

In order to improve computational efficiency of the Hilliard and Schwartz
method, we propose two strategies: the first - illustrated in this Section - is
establishing an appropriate cutting of the bivariate tree that prevents spending
too much computational time on too thin tails, the second (drawing on Amin’s
interpretation of the jump amplitude as a multiple of the Brownian move) - in
the following Section - is to translate the bivariate tree into an univariate tree.

In this Section, drawn from [33], we propose a O(n log n) and a O(n2 log n)
procedure respectively for the evaluation of European and American option
prices.

The main idea behind this lies on the way a European option is evaluated:
by taking the discounted expected value of the price at maturity.

More in detail, in order to find the proper truncation we start from the
evaluation of the European call option as the discounted expected payoff at
maturity, derived from the HS backward procedure, we focus on the jump
probabilities relative to every ending node and analyse the error obtained by
considering only a limited range of accumulated jumps. We consider the back-
ward procedure truncated throughout the whole tree with the same limitations,
and we obtain an upper estimation of the error. This also provides an upper
estimation of the error we get if we apply the truncation to the forward com-
putation of the jump probabilities of the terminal nodes. We show that an
error lower than 1

n
can be achieved with a number of steps proportional to

log n. In this way, we are able to construct a procedure of order O(n log n)
for the European case. Finally, we move on to the American case. The latter
procedure is of order O(n2 log n).

As a second result we develop a univariate procedure with very different
features from [21] and this new procedure improves slightly the complexity
(O(n2) instead of O(n2 log n)).

The setting is that of Hilliard and Schwartz [38], where the possible prices
at maturity are computed via a bivariate tree, and every node of the tree
is labelled with both the price and the associated probability. We use the
notation already introduced in 1.5.2.

Since the jump process and the diffusion one are supposed to be indepen-
dent, it is more profitable to us to focus on the effects of the Brownian motion
and the compound Poisson jumps separately. The probability of reaching node
(n, j, k) is given by the product of the probability P (j) of having Brownian
total balance at maturity −n + 2j (regardless of what happens to the jump
process) and the probability QN(k) of having jump total balance at maturity k
(regardless of what happens to the Brownian motion). In other words, QN(k)
is the probability of reaching whichever of the nodes (n, j′, k) for j′ ∈ {0, . . . n},
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or - that is the same - the probability for the discrete process Yn to take value
k.

The contributions of the nodes to the price of the option depend on both
the value of the option that is associated to them, and the probability we have
to reach them. We ask ourselves when it is possible to neglect part of the
nodes of the tree.

In this section we see that we can appropriately find “jump levels” on the
tree such that cutting the tree at those frontiers provides us with an O(n log n)
number of nodes at maturity, which allows for a O(n log n) procedure for the
evaluation of the European option prices and a O(n2 log n) procedure for the
evaluation of the American option prices.

First we prove theoretically the validity of the procedure in the case N = 1
with a precise estimation of the error in the European case, then we extend
the same reasoning to N = 2 and at last to the arbitrary N case. This choice
of presentation is due to the fact that the possibility of different amplitudes of
jumps allows for multiple different combinations of reaching the same “jump
level”at maturity, and analysing the N = 1, 2 steps allow for a better under-
standing of the mechanics.

We first focus on the call option, and afterwards treat the put option.
At last, we discuss the American case.
Obviously, depending on the derivative we choose, there are nodes which

do not contribute to the price.
For a European call, Equation (1.97) implies that leaves (n, j, k) such that

S0e
(−n+2j)σ

√
∆t+hk ≤ K0 have no effect on the price. This establishes a lower

bound at maturity for the jumps for call options lC : in order to have

S0e
(−n+2j)σ

√
∆t+hk > K0,

which can be written as (−n+2j)σ
√
∆t+hk > log K0

S0
, we ask for −nσ

√
∆t+

hk > log K0

S0
, which gives

k >
log K0

S0
+ nσ

√
∆t

h
= lC .

Similarly for a European put, Equation (1.98) implies that leaves (n, j, k)

such that S0e
(−n+2j)σ

√
∆t+hk ≥ K0 have no effect on the price. This establishes

an upper bound at maturity for the jumps for put options uP :

k <
log K0

S0
− nσ

√
∆t

h
= uP .
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First approach to the problem

The first idea is a very simple one: since the relevance of the contribution of
the single leaf (n, j, k) of the tree to the European option price is subjected
to the probability QN(k), we compute recursively the probability QN(k) using
the transition probabilities qi. When QN(k) is smaller than a fixed value, say
ε = 10−8, we deem the related price at maturity to be negligible, and ignore
it in the computation of our expectation.

The implementation of this technique is straightforward, but it shall not
escape our notice that the computational cost of the procedure cannot be less
than O(n2), since this is already the cost of the recursive procedure we need
for the evaluation of the QN(k) cumulated probabilities. Unfortunately, we do
not have at our disposal a formula for QN .

Moreover, there are several shortcomings of this strategy that make it -
although numerically trustworthy - theoretically unfounded: first of all the
price of a call option al level k also involves the calculation of a ehk, which
we should consider if we are to say that the contribution of a node can be
neglected; secondly, ensuring that for a given k > 0 we have QN(k) < ε does
not guarantee that QN(l) < ε for all k ≤ l ≤ Nn, so the cut may exclude not
negligible (according to our allowed error ε) nodes; lastly, if we are to exclude
the tails of the distribution from two given boundaries, we want to be sure
that the whole tail, on both sides, is negligible, and not only the nodes taken
singularly.

We are interested in the contribution to the derivative price of the values
that lie on the nodes (n, j, k) for |k| ≥ k, for some k ∈ N.

Let us consider an European call option. Recall that its value VE computed
with the Hilliard and Schwartz method is:

VE = e−rτ

n·N∑

k=−n·N

n∑

j=0

(S0e
(−n+2j)σ

√
∆t+hk −K0)

+P (j)QN(k).

In order to reduce the computational complexity of the previous formula,
we want to truncate the computation of VE to some k = −l and k = k,
committing an error smaller than ε.

Fixed k > 0 and l > 0, the sum

V T
E = e−rτ

k∑

k=−l

n∑

j=0

(S0e
(−n+2j)σ

√
∆t+hk −K0)

+P (j)QN(k),

then, would appear as the perfect candidate for an approximation of the
value VE, for appropriately chosen l and k. The problem with this is that,
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Figure 1.2: The cutting of the tree
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even if the sum over k has at most a number of terms proportional to log n,
the computational complexity of QN is O(n2). In order to reduce it, we need
to substitute QN with a computationally cheaper approximation.

This springs a new idea: we need to determine an a priori upper estimation
for QN(k) at level −Nn ≤ k ≤ Nn, which can assure us that certain nodes
and branches are negligible. We are going to prove that the probability QN(k)
is negligible for |k| > a log n+ b (for constants a and b) .

We need to define the discrete function Q̃N(k), which is constructed from
QN(k) by substitution of all q±i for i = 1, . . . , N with the maximum between
qi and q−i.

Obviously, QN(±k) ≤ Q̃N(k) = Q̃N(−k) for all −Nn ≤ k ≤ Nn.

For brevity purposes, we will refer to Q̃N(k) as to an “enlarged probability”,
even though it is not a probability measure, since the sum of all the values for
k from −Nn to Nn exceeds one.

We are going to prove that Q̃N(k) is negligible for |k| > a log n + b (for
some constants a and b depending on the derivative and on the dynamics of
the underlying), and that this translates into the negligibility of some of the
possible payoffs in the evaluation of the option, therefore providing a theoret-
ical justification for the elimination of such values in the pricing procedure.

Let us call Q̂N(k) the probability of reaching level k computed recursively
forwards without taking into account the nodes (i, j, l) with l < −l or l > k.

This means Q̂N(k) is the sum of the probabilities associated with the paths
(regardless of the Brownian moves, that is, only with respect to the jump
moves) that don’t trespass the k and −l levels. For brevity, we will refer to the
allowed region as [−l, k], i. e. all the nodes (i, j, l) on the tree with −l ≤ l ≤ k.

Let us define

V̂ T
E = e−rτ

k∑

k=−l

n∑

j=0

(S0e
(−n+2j)σ

√
∆t+hk −K0)

+P (j)Q̂N(k). (1.102)

The following is true:

V̂ T
E ≤ V T

E ≤ VE.

We will show that we can choose k and l such that computing V̂ T
E is less

computationally expensive than VE and the error VE − V̂ T
E is less than an

arbitrary ε.
If we focus, instead, on the European value obtained via backward proce-

dure, we remark that substituting the HS value in a node of the tree with 0 is
equivalent to nullify the value of all the trajectories that include that node.
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Let us call V T (i, j, l) the value obtained with the following recursion for-
mula:

V T (i, j, k) = e−r∆t

N∑

l=−N

(V T (i+ 1, j + 1, k + l)p+ V T (i+ 1, j, k + l)(1− p))ql

(1.103)
with initial data V T (n, j, k) = (S(n, j, k)−K0)

+, for j integer between 0 and
n and k integer such that −l ≤ k ≤ k, V T (n, j, k) = 0 for j integer between 0
and n and k integer such that −nN ≤ k ≤ −l − 1 or k + 1 ≤ k ≤ nN , and
imposing V T (i, j, k) = 0 for −iN ≤ k ≤ −l − 1 and k + 1 ≤ k ≤ iN .

For the put options, in the same we define the value P T (i, j, k) obtained
via backward procedure according to the following formula: P T (i, j, k) =
e−r∆t

∑N
l=−N(P

T (i+1, j+1, k+ l)p+P T (i+1, j, k+ l)(1− p))ql if k ∈ [−l, k],
0 otherwise; with initial data P T (n, j, k) = (K0 − S(n, j, k))+, for j integer
between 0 and n and k integer such that −l ≤ k ≤ k, P T (n, j, k) = 0 for
j integer between 0 and n and k integer such that −nN ≤ k ≤ −l − 1 or

k + 1 ≤ k ≤ nN , and the value P̂ T
E , defined as

P̂ T
E = e−rτ

k∑

k=−l

n∑

j=0

(K0 − S0e
(−n+2j)σ

√
∆t+hk)+P (j)Q̂N(k). (1.104)

We want to show that the value V T (0, 0, 0) (P T (0, 0, 0) for the put case)

obtained via the backward truncated procedure coincides with V̂ T
E (P̂ T

E , re-
spectively).

Lemma 1.6.1. V T (0, 0, 0) = V̂ T
E and P T (0, 0, 0) = P̂ T

E

Proof. We will write the proof for the call case; for the put options the proof

is analogous. It will help to write V̂ T
E in the following way:

V̂ T
E = e−rτ

∑

paths that reach τ
and do not trespass

prob(path) · value(path). (1.105)

where prob(path) identifies the probability of a single path and value(path)
the value of the option in the node at the end of the path.

The two expressions identify the same sum: every path that does not go
out of the borders needs to end at a level −l ≤ k ≤ k, all the path that
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end in a node (n, j, k) share the same value for the option so if we collect
in expression (1.105) all the addenda that end in the same node we obtain

(S0e
(−n+2j)σ

√
∆t+hk −K0)

+P (j)Q̂N(k).

We will show that the V̂ T
E as in (1.105) coincides with V T (0, 0, 0) for in-

duction on the number of steps n.
Let us start with n = 1. Our tree has only one step, which means that the

values at maturity of the option are given by the 2(2N+1) children of (0, 0, 0).
∆t = τ . Let 0 ≤ l, k ≤ N , that means that (0, 0, 0) is surely in the allowed
zone, while some of its children may be not. Since the value of the option on
the nodes (1, j, k) with k /∈ [−l, k] is 0, we can write:

V T (0, 0, 0) = e−rτ

N∑

l=−N

(V T (1, j + 1, l)p+ V T (1, j, l)(1− p))ql =

= e−rτ

k∑

l=−l

V T (1, j + 1, l)pql + V T (1, j, l)(1− p)ql =

= e−rτ
∑

paths that reach τ
and do not trespass

prob(path) · value(path) = V̂ T
E

where the last equality is due to the fact that in a single step the paths
that trespass are those that end outside the boundary.

Let us now suppose the thesis is true for all trees in n − 1 steps. Let
us consider a tree of n steps. ∆t = τ/n. We focus on the first step and
compute the value of the option in (0, 0, 0), with the backward procedure:
V T (0, 0, 0) = e−r∆t

∑N
l=−N(V

T (1, 1, l)p+ V T (1, 0, l)(1− p))ql.

If l /∈ [−l, k] V T (1, 1, l) = V T (1, 0, l) = 0. Otherwise, we consider the n− 1
trees that start at (1, j, l) with j = 0, 1 and l ∈ [−l, k] and end at τ . On these
smaller trees we apply induction and write that the values V T (1, j, l) as

V T (1, j, l) =

= e−rτ ′
∑

paths that go from (1, j, l) to τ
and do not trespass

prob(path’) · value(path’)

where we indicated with τ ′ the time interval τ ′ = ∆t(n − 1) and with path’
the generic path from (1, j, l) to maturity τ .

Therefore we can write
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V T (0, 0, 0) =

= e−r∆t

N∑

l=−N

l∈[−l,k]

(V T (1, 1, l)p+ V T (1, 0, l)(1− p))ql

= e−rτ

N∑

l=−N

l∈[−l,k]




∑

paths that go from (1, 1, l) to τ
and do not trespass

prob(path’) · value(path’)pql+

∑

paths that go from (1, 0, l) to τ
and do not trespass

prob(path’) · value(path’)(1− p)ql




=

= e−rτ
∑

paths that go from (0, 0, 0) to τ
and do not trespass

prob(path) · value(path)

where we used the fact that ∆t + τ ′ = τ , and we considered that if a path
that connects the node (0, 0, 0) to a node at maturity τ (without trespass-
ing) visits node (1, 0, l) and is afterwards identical to path’, we will have
value(path)=value(path’) and prob(path) = (1 − p)ql· prob(path’), while if
a path that connects the node (0, 0, 0) to a node at maturity τ (without tres-
passing) visits node (1, 1, l) and is afterwards identical to path’, we will have
value(path) = value(path’) and prob(path) = pql· prob(path’).

If we take V̂ T
E as the option price, that is if we are truncating the tree at

levels k and −l, we are losing probability contributions in two different ways:

(a) neglecting the paths that would reach - at maturity - a node outside the
allowed region, i.e. a node (n, j, k) with k > k or k < −l, for any
0 ≤ j ≤ n;

(b) neglecting the paths that, even though ending at maturity in a node inside
the allowed region, have at some point before maturity trespassed at least
one of the boundaries.
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In order to show that the difference between V̂ T
E and VE is arbitrarily

small, we need not only to establish k and l according to the probabilities of
the paths that end above level k or below level −l: we also need to understand
the difference between Q̂N(k) and QN(k), which is made of the probabilities of
the paths that reach level k, with −l ≤ k ≤ k, at maturity having previously
gone outside the [−l, k] region.

Let us consider separately the two differences: VE − V T
E and V T

E − V̂ T
E .

In both of them appears the Brownian motion; first of all we establish an
upper estimate for its contribution to these differences.

Proposition 1.6.2. With the notation introduced above,

e−rτ

n∑

j=0

eσ
√
∆t(−n+2j)P (j) ≤ e(α−r)τ .

Proof. We can write

n∑

j=0

(
n

j

)
eσ

√
∆t(−n+2j)pj(1− p)n−j =

n∑

j=0

(
n

j

)
(eσ

√
∆tp)j[e−σ

√
∆t(1− p)]n−j

= [eσ
√
∆tp+ e−σ

√
∆t(1− p)]n.

Since the greater the probability p, the higher is the value eσ
√
∆tp+e−σ

√
∆t(1−

p), the worst case scenario (since we would like to find an upper bound) is p = 1.

As we defined p as 1
2

(
1 + α

√
∆t
σ

)
, this translates into α∆t = σ

√
∆t, there-

fore:

n∑

j=0

(
n

j

)
eσ

√
∆t(−n+2j)pj(1− p)n−j ≤ (eσ

√
∆t)n

≤ (eα∆t)n = eατ ,

hence the thesis.

This means we have the following limitation for the difference VE − V T
E :

VE − V T
E = e−rτ




−l−1∑

k=−Nn

n∑

j=0

(S0e
(−n+2j)σ

√
∆t+hk −K0)

+P (j)QN(k)
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+
Nn∑

k=k+1

n∑

j=0

(S0e
(−n+2j)σ

√
∆t+hk −K0)

+P (j)QN(k)




≤ e−rτ




Nn∑

k=k+1

S0e
hk

n∑

j=0

eσ
√
∆t(−n+2j)P (j)QN(k)

+
Nn∑

k=l+1

S0e
−hk

n∑

j=0

eσ
√
∆t(−n+2j)P (j)QN(−k)




≤ e−rτS0

n∑

j=0

eσ
√
∆t(−n+2j)P (j)




Nn∑

k=k+1

ehkQ̃N(k) +
Nn∑

k=l+1

e−hkQ̃N(k)




≤ e(α−r)τS0




Nn∑

k=k+1

ehkQ̃N(k) +
Nn∑

k=l+1

e−hkQ̃N(k)


 (1.106)

with k, l > 0.

As for the difference V T
E − V̂ T

E , for simplicity’s sake, we consider separately
the probability of reaching k having gone over the k level and the probability
of reaching k having gone under the −l level; the sum of the two is obviously
greater than the probability of reaching k having surpassed at least one of the
two boundaries.

Let us define, for any −l ≤ k ≤ k, the value Qk
N(k) of the probability of a

net balance of k jumps at maturity while reaching at some point a net balance
higher than k and the value QNl(k) of the probability of a net balance of k
jumps at maturity while reaching at some point a net balance lower than −l.

According to these definitions and by Proposition 1.6.2, the difference be-

tween V T
E and V̂ T

E becomes:

V T
E − V̂ T

E = e−rτ

k∑

k=−l

n∑

j=0

(S0e
(−n+2j)σ

√
∆t+hk −K0)

+P (j)(QN(k)− Q̂N(k))

≤ e−rτS0

n∑

j=0

eσ
√
∆t(−n+2j)P (j)

k∑

k=−l

ehk(QN(k)− Q̂N(k))

≤ e(α−r)τS0

k∑

k=−l

ehk(Qk
N(k) +QNl(k)). (1.107)
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Putting Equations (1.106) and (1.107) together, we obtain that

VE−V̂ T
E ≤ e(α−r)τS0




Nn∑

k=k+1

ehkQ̃N(k) +
Nn∑

k=l+1

e−hkQ̃N(k) +
k∑

k=−l

ehk(Qk
N(k) +QNl(k))


 .

(1.108)

To proceed any further, we will relate Qk
N(k) and QNl(k) to our “enlarged

probability” Q̃N . This relation is best treated separately for the N = 1, 2, 3, . . .
cases, but before moving to the separate cases, we state a pair of results that
are applicable to all of them.

Lemma 1.6.3. If 0 ≤ x ≤ n+ 1

j
for some j, n ∈ N, j > 1,

then
∑

i≥n

xi

i!
≤ j

j − 1

xn

n!
.

Proof. Let all the terms of a summation
∞∑

n=0

an be such that ai+1 ≤
1

j
ai ∀i and

ai ≥ 0. Then
∞∑

i=0

ai ≤ a0

∞∑

i=0

1

ji
=

j

j − 1
a0.

In order to apply this to the sequence ai =
xi

i!
, we need to show that xi+1

(i+1)!
≤ xi

ji!
.

If 0 ≤ x ≤ n+ 1

j
then we have

ai+1 =
xi+1

(i+ 1)!
=
xi

i!

x

i+ 1
= ai

x

i+ 1
≤ ai

n+ 1

(i+ 1)j
,

which gives

ai+1 ≤
1

j
ai

for i ≥ n.
Therefore,

∑

i≥n

xi

i!
=

+∞∑

i=0

xn+i

(n+ i)!
≤ j

j − 1

xn

n!
.
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Lemma 1.6.4. Given c > 0, n ∈ N− {0}

log
cn

n!
< n(log c+ 1)− n log n < −n+ ce

Proof. We can write log cn

n!
as n log c− log n!.

By the Stirling series of log n! we can express it as

log n! = n log n− n+
log(2πn)

2
+

1

12n
− 1

360n3
+ . . . .

Recall that the error committed by truncating the series is of the same sign of
the first term omitted, hence we have:

log n! > n log n− n+
log(2πn)

2
> n log n− n

Therefore
n log c− log n! < n log c− n log n+ n = n(log c+ 1)− n log n

which is the first inequality we wanted to prove. In order to prove the
second inequality, we set a = log c + 1 and consider the function f(x) =
xa − x log x. This is a concave function, therefore its graph lies below the
tangent line in x = ea. Since the derivative of f is f ′(x) = a − 1 − log(x),
f(ea) = aea−aea = 0 and f ′(ea) = a−1−a = −1, the equation of the tangent
line is y = −x+ ea and we get the following inequality:

na− n log n ≤ −n+ ea = −n+ elog c+1 = −n+ ce,

hence the thesis.

1.6.1 European call options

European call option, N = 1

When N = 1, the only possible values for the jump in a ∆t period are −h, 0,
h, with probabilities q−1, q0, q1, which are the solutions of the following linear
system:




1 1 1
−1 0 1
1 0 1






q−1

q0
q1


 =




1
k1
h
k2
h2




where k1 and k2 are the first two cumulants of the compound Poisson distri-
bution (cf. Equation (1.95)). Therefore:
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q−1 =
λτ

2n

(
1− γ′

h

)
=
c−1

n

q0 = 1− λτ

n

q1 =
λτ

2n

(
1 +

γ′

h

)
=
c1
n

Defining w = max{c1, c−1}, we have q1, q−1 ≤ w
n
.

The probability Q1(k) of reaching a node (n, j, k) for some j is given by

Q1(k) =

⌊n−k
2 ⌋∑

l=0

Cn,k+2lCk+2l,lq
k+l
1 ql−1q

n−k−2l
0

which is the sum of all the probabilities of the “jump paths” with k + l up
jumps and l down jumps, for l such that k+2l ≤ n. In the previous Equation
we have used the standard notation Cn,k for the number of k−combinations
for a set of n elements.

We also need to define the discrete function Q̃1(k), which is constructed
from Q1(k) by substitution of both q−1 and q1 with the maximum of the two:
w
n
.

Q̃1(k) =

⌊n−k
2 ⌋∑

l=0

Cn,k+2lCk+2l,l

(w
n

)k+2l

qn−k−2l
0 .

As we have already said for any N , Q1(±k) ≤ Q̃1(k) for all −n ≤ k ≤ n.
From the preliminary discussion, basing on Equation (1.108) articulated in

the N = 1 case, for the difference VE − V̂ T
E the following inequality is true:

VE − V̂ T
E ≤ e(α−r)τS0




n∑

k=k+1

ehkQ̃1(k) +
n∑

k=l+1

e−hkQ̃1(k) +

+
k∑

k=−l

ehk(Qk
1(k) +Q1l(k))


 .

(1.109)

We can relate Qk
1(k) and Q1l(k) to our “enlarged probability” Q̃1(t).
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Lemma 1.6.5.
Qk

1(k) ≤ Q̃1(2k − k + 2)

Q1l(k) ≤ Q̃1(2l + k + 2)

for all
−l ≤ k ≤ k

Proof. Let us focus on the first inequality, that concerns the trespassing of the
upper boundary k.

By reflection principle (see [30]), for every path that reaches the k+1 level
at some point before maturity and ends at a level k there is a path that ends
at level 2k − k + 2.

Our intent is to recover an upper estimate of Qk
1(k) using the probability

of the “reflected” paths.
We consider a single path that reaches the k+1 level at some point before

maturity and ends at a level k with −l ≤ k ≤ k, and we define its reflection as
the path that behaves like the original path up until the first time the original
path touches the k + 1 level, and afterwards has an +1 jump when the other
has a -1 jump and viceversa. Time intervals with no jump for the original path
are intervals where the reflection has no jump too. The reflection path will
end up at 2k − k + 2.

The probabilities of both the original path and the reflection differ in that
a number l of q−1 factors in the probability of the original path need to be
substituted with l q1 factors to obtain the probability of the reflection. Both
probabilities are not greater then the value obtained by substituting all occur-
rences of q1 and q−1 with

w
n
, and the sum over all paths reaching level 2k+2−k

of these modified probabilities is Q̃1(2k + 2− k), therefore we can write

Qk
1(k) ≤ Q̃1(2k + 2− k).

Similarly, we treat the second inequality: the number of paths that reach
the −l − 1 level at some point before maturity and end at a level k with
−l ≤ k ≤ k is the same as the number of paths that end at level −2l − 2− k,
and both the probability of the original path and that of its reflection with
respect to the level −l− 1 are not greater than the modified ones, therefore it
holds:

Q1l(k) ≤ Q̃1(−2l − 2− k) = Q̃1(2l + k + 2).

The previous Lemma, applied to Equation (1.107), allows us to write:
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V T
E − V̂ T

E ≤ e(α−r)τS0

k∑

k=−l

ehk(Q̃1(2k + 2− k) + Q̃1(2l + 2 + k))

≤ e(α−r)τS0




min{2k+l,n}∑

s=k+2

eh(2k+2−s)Q̃1(s) +

min{2l+k,n}∑

s=l+2

eh(s−2l−2)Q̃1(s)




(1.110)

≤ e(α−r)τS0e
hk




min{2k+l,n}∑

s=k+2

Q̃1(s) +

min{2l+k,n}∑

s=l+2

Q̃1(s)




therefore, if we take l = k we can write Equation (1.109) as

VE − V̂ T
E ≤ e(α−r)τS0




n∑

k=k+1

ehkQ̃1(k) +
n∑

k=l+1

e−hkQ̃1(k) +

+ehk
n∑

k=k+2

Q̃1(k) + ehk
n∑

k=l+2

Q̃1(k)




≤ 2e(α−r)τS0




n∑

k=k+1

(ehk + ehk)Q̃1(k)


 . (1.111)

We could use the previous result to determine numerically the largest in-
teger l = k such that the loss is inferior to an arbitrary ε with an O(n2)
procedure.

The summation (1.111) can be computed with an O(n2) procedure: it takes

the usual recursive O(n2) procedure to compute the function Q̃1 ; once we have

Q̃1(k), we only need to start computing the addends (ehk+ehk)Q̃1(k) from the
highest reachable level (which is n for N = 1) and update this level, decreasing,
until we surpass ε

2e(α−r)τS0
, thus providing the level k.

In order to get a theoretical bound for k and l such that VE − V̂ T
E is

inferior to an arbitrary ε, we are going to prove that Q̃1(k) is negligible for
|k| > a log n+ b. We will use Lemmas 1.6.3 and 1.6.4.

Proposition 1.6.6. For k integer, 2w − 1 ≤ k ≤ n,

Q̃1(k) ≤ 2ew
wk

k!
. (1.112)
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For k integer, 2w − 1 ≤ k ≤ n:

n∑

k=k

Q̃1(k) ≤ 4ew
wk

k!
. (1.113)

For k integer, 2ehw − 1 ≤ k ≤ n:

n∑

k=k

ehkQ̃1(k) ≤ 4ew
(ehw)k

k!
. (1.114)

and for k integer, 2w − 1 ≤ k ≤ n:

n∑

k=k

e−hkQ̃1(−k) ≤ 4ew
(e−hw)k

k!
. (1.115)

Proof. Let us focus on the definition of Q̃1:

Q̃1(k) =

⌊n−k
2 ⌋∑

l=0

Cn,k+2lCk+2l,l

(w
n

)k+2l

qn−k−2l
0 .

Since q0 < 1 and

Cn,k+2lCk+2l,l

nk+2l
=

(
n

k + 2l

)(
k + 2l

l

)
1

nk+2l
=

n!

(n− k − 2l)!(k + 2l)!

(k + 2l)!

(k + l)!l!

1

nk+2l
=

=
n!

nk+2l(n− k − 2l)!(k + l)!l!
≤ 1

(k + l)!l!

for l = 0, . . . ,
⌊
n−k
2

⌋
, we can write:

Q̃1(k) ≤
⌊n−k

2 ⌋∑

l=0

Cn,k+2lCk+2l,l

nk+2l
wk+2l

≤
⌊n−k

2 ⌋∑

l=0

wk+2l

(k + l)!l!

≤ wk

k!
+

wk+1w

(k + 1)!
+

wk+2w2

(k + 2)!2!
+ ...+

w⌊n+k
2 ⌋w⌊n−k

2 ⌋
⌊
n+k
2

⌋
!
⌊
n−k
2

⌋

≤
(
wk

k!
+

wk+1

(k + 1)!
+

wk+2

(k + 2)!
+ ...+

w⌊n+k
2 ⌋

⌊
n+k
2

⌋
!

)(
1 + w +

w2

2
+ ...+

w⌊n−k
2 ⌋

⌊
n−k
2

⌋
!

)
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≤
⌊n+k

2 ⌋∑

i=k

wi

i!
ew ≤ 2ew

wk

k!

by Lemma 1.6.3 with j = 2, for 0 ≤ w ≤ k+1
2
.

Applying again Lemma 1.6.3 to
∑n

k=k 2e
w wk

k!
we obtain Equation (1.113).

A further application of Lemma 1.6.3 with x = ehw ≤ k+1
2

gives us:

n∑

k=k

ehkQ1(k) ≤ 2ew
n∑

k=k

(ehw)k

k!
≤ 4ew

(ehw)k

k!
.

for k ≥ 2ehw − 1.
Similarly for k ≥ 2w − 1 we obtain inequality (1.115).

The above results allows us to have a closed-form formula for an upper

bound for the difference VE − V̂ T
E .

Theorem 1.6.7. Given ε > 0, taking

g− = w(e−h+1 + 1) + (α− r)τ − 1 + log(4S0) + log(2 + ehw),

g+ = w(eh+1 + 1) + (α− r)τ − 1 + log(4S0) + log(2 + e−hw),
(1.116)

for

l ≥ max{− log ε+ g−, 2ehw − 3, 2w − 2}
k ≥ max{− log ε+ g+, 2ehw − 2}

(1.117)

we have
VE − V̂ T

E < ε

Proof. Combining Equations (1.106) and (1.110) we can write:

VE − V̂ T
E ≤ e(α−r)τS0




n∑

k=k+1

ehkQ̃1(k) +
n∑

k=l+1

e−hkQ̃1(k)+

+eh(2k+2)

n∑

k=k+2

e−hkQ̃1(k) + eh(−2l−2)

n∑

k=l+2

ehkQ̃1(k)


 .

By Proposition 1.6.6 we obtain:

VE − V̂ T
E ≤ e(α−r)τS0

(
4ew

(ehw)k+1

(k + 1)!
+ 4ew

(e−hw)l+1

(l + 1)!
+
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+eh(2k+2) · 4ew (e
−hw)k+2

(k + 2)!
+ eh(−2l−2) · 4ew (e

hw)l+2

(l + 2)!

)

≤ 4e(α−r)τ+wS0

(
(ehw)k+1

(k + 1)!
+

(e−hw)l+1

(l + 1)!
+ e−2h (e

hw)k+2

(k + 2)!
+ e2h

(e−hw)l+2

(l + 2)!

)

≤ 4e(α−r)τ+wS0

((
1 +

e−hw

k + 2

)
(ehw)k+1

(k + 1)!
+

(
1 +

ehw

l + 2

)
(e−hw)l+1

(l + 1)!

)

≤ 4e(α−r)τ+wS0

((
1 +

e−hw

2

)
(ehw)k+1

(k + 1)!
+

(
1 +

ehw

2

)
(e−hw)l+1

(l + 1)!

)

for k ≥ 2ehw − 2 and l ≥ max{2ehw − 3, 2w − 2}
Splitting the error ε between the upper and the lower tail, we ask:

4S0e
(α−r)τ+w

(
1 +

ehw

2

)
(e−hw)l+1

(l + 1)!
<
ε

2
(1.118)

4S0e
(α−r)τ+w

(
1 +

e−hw

2

)
(ehw)k+1

(k + 1)!
<
ε

2
(1.119)

Taking g = 4S0e
(α−r)τ+w, we obtain that Equation (1.118) is equivalent to

(e−hw)l+1

(l + 1)!
<

ε

(2 + ehw)g
,

which is guaranteed by Lemma 1.6.4 for

l > − log ε+ log[(2 + ehw)g] + e−h+1w − 1,

while Equation (1.119) is equivalent to

(ehw)k+1

(k + 1)!
<

ε

(2 + e−hw)g

which is guaranteed by Lemma 1.6.4 for

k ≥ − log ε+ log[(2 + e−hw)g] + eh+1w − 1.

Taking into account all the previous conditions, for

l ≥ max{− log ε+w(e−h+1+1)+(α−r)τ−1+log(4S0)+log(2+ehw), 2w−2, 2ehw−3}

and
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k ≥ max{− log ε+w(eh+1+1)+(α−r)τ−1+log(4S0)+log(2+e−hw), 2ehw−2}

we have the thesis.

If for some reasons we wish for a symmetric cut, since h is positive, hence
e−h < 1 < eh, we can take the more stringent condition:

l = k ≥ max{− log ε+w(eh+1+1)+(α−r)τ−1+log(4S0)+log(2+ehw), 2ehw−2}.

From the previous theorem comes the main result, which guarantees that
for appropriately chosen k and l, the value VE of the European call option can
be approximated by

V̂ T
E = e−rτ

k∑

k=−l

n∑

j=0

(S0e
(−n+2j)σ

√
∆t+hk −K0)

+P (j)Q̂1(k)

with an efficiency gain.

Theorem 1.6.8. Given ε = 1
n
> 0, and k and l the smallest integers as in

Theorem 1.6.7, the proposed procedure for V̂ T
E converges to the HS price and

its computational complexity is O(n log n).

Proof. By taking k and l the smallest integers as in Theorem 1.6.7, the error
is given by

∣∣∣∣∣∣
VE − e−rτ

k∑

k=−l

n∑

j=0

(S0e
(−n+2j)σ

√
∆t+hk −K0)

+P (j)Q̂1(k)

∣∣∣∣∣∣
< ε

for our choice of l and k.
The sum over k has at most a number of terms proportional to log n, the

approximate probability distribution Q̂1 is also computed with an O(n log n)
procedure, therefore the computational complexity of the whole procedure is
O(n log n).

The results we have seen above can also be used in dealing with the trun-
cated backward procedure, which will prove to be convenient for the extension
of our reasoning to the American case.

The value V T (0, 0, 0) obtained via the backward truncated procedure coin-

cides with V̂ T
E , hence the Theorem 1.6.7 also provides an upper bound for the

difference between V T (0, 0, 0) and V (0, 0, 0).
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Theorem 1.6.9. Given ε = 1
n
> 0, and k and l the smallest integers as in The-

orem 1.6.7, the backward procedure described above for V T (0, 0, 0) converges to
the HS price and its computational complexity is O(n2 log n).

Proof. By taking k and l the smallest integers as in Theorem 1.6.7, the error
is ∣∣V (0, 0, 0)− V T (0, 0, 0)

∣∣ < ε.

The number of nodes at maturity, depending on l and k, is at most propor-
tional to n log n, therefore the computational complexity of the procedure is
O(n2 log n).

European call option, N = 2

This part is dedicated to the results for the N = 2 case, analogous to those seen
above for N = 1. Studying this case allows to understand the problems that
arise when dealing with different possibilities for the amplitude of the jump in
a single step. Afterwards, we will be able to transfer the same mechanics to
the arbitrary N situation.

The probabilities qk associated with jumps of amplitude kh for k = 0,±1,±2
are obtained by Hilliard and Schwartz [38] from the solution of a linear system
(the formulas are reported in the Appendix). As in case N = 1, we will use
the fact that q0 < 1 and that the qk’s are inversely proportional to n. We will
denote:

ck the constant qk · n for k = ±1,±2, such that qk =
ck
n
;

wk the maximum between c+k and c−k for k = 1, 2;

W = w2
1 + w2;

Q2(k) the probability of reaching at maturity level −2n ≤ k ≤ 2n with the
jumps, i.e. of reaching a node (n, j, k) for some j = 0, . . . , n

Q̃2(k) the function obtained from Q2(k) by substituting both q1 and q−1 with
their maximum w1

n
, and q2 and q−2 with their maximum w2

n
;

Q̂2(k) the probability of reaching jump level k but excluding the branches
outside the allowed zone [−l, k];

Qk
2(k) the probability of reaching jump level k at maturity crossing the border

k at least once;

Q2l(k) the probability of reaching jump level k at maturity crossing the border
−l at least once.
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As we have already remarked in the general case, Q2(±k) ≤ Q̃2(k) for all
−2n ≤ k ≤ 2n.

We underline that qk, ck, etc. are generally not the same as in the previous
section, but we are using the same notation, since they will only be used in
separate settings and there will be no risk of confusing the two sets.

For the difference VE − V̂ T
E , articulated in the N = 2 case, the following

inequality (due to Equation (1.108)) is true:

VE − V̂ T
E ≤ e(α−r)τS0




2n∑

k=k+1

ehkQ̃2(k) +
2n∑

k=l+1

e−hkQ̃2(k)

k∑

k=−l

ehk(Qk
2(k) +Q2l(k))


 .

(1.120)

We relate Qk
2 and Q2l to Q̃2 via the following lemma.

Lemma 1.6.10.

Qk
2(k) ≤ Q̃2(2k − k + 2) + Q̃2(2k − k + 4)

Q2l(k) ≤ Q̃2(2l + k + 2) + Q̃2(2l + k + 4)

for all
−l ≤ k ≤ k

Proof. In order to prove the first inequality, let us consider a path which steps
outside the upper boundary k but re-enters the allowed region reaching level
−l ≤ k ≤ k at maturity. We define its reflection as the path that is exactly
the same as the original one up until the first moment this crosses the upper
boundary, and afterwards it moves in the exact opposite way. Since N = 2,
that is we are dealing with the possibility of ±1 and ±2 jumps, the first time
a path trespasses the upper boundary it can reach level k + 1 or level k + 2;
depending on this, its reflection will end up at level 2k − k + 2 or 2k − k + 4.

If the original path has a certain probability qa2q
b
1q

c
−2q

d
−1q

n−a−b−c−d
0 , both

the original path’s and its reflection’s probability will be less or equal then(
w2

n

)a+c (w1

n

)b+d
qn−a−b−c−d
0 , since reflecting it we exchange some of the +2 with

−2 moves and vice versa, and +1 with −1 moves and vice versa.
Knowing that for each path which reaches k surpassing k there is one who

reaches level 2k − k + 2 or 2k − k + 4, we have

Qk
2(k) ≤ Q̃2(2k − k + 2) + Q̃2(2k − k + 4).
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The same argument stands for Q2l(k), where the reflections can reach either
level −2l − k − 2 or −2l − k − 4.

Lemma 1.6.10 allows us to modify Equation (1.120) into

VE − V̂ T
E ≤ e(α−r)τS0




2n∑

k=k+1

ehkQ̃2(k) +
2n∑

k=l+1

e−hkQ̃2(k) +

+
k∑

k=−l

ehk(Q̃2(2k − k + 2) + Q̃2(2k − k + 4) + Q̃2(2l + k + 2) + Q̃2(2l + k + 4))




(1.121)

≤ e(α−r)τS0




2n∑

k=k+1

ehkQ̃2(k) +
2n∑

k=l+1

e−hkQ̃2(k) +

+ ehk
k∑

k=−l

(Q̃2(2k − k + 2) + Q̃2(2k − k + 4))+

+ ehk
k∑

k=−l

(Q̃2(2l + k + 2) + Q̃2(2l + k + 4))




≤ e(α−r)τS0




2n∑

k=k+1

ehkQ̃2(k) +
2n∑

k=l+1

e−hkQ̃2(k) +

+ ehk
min{2k+l+2,2n}∑

s=k+2

(Q̃2(s) + Q̃2(s+ 2)) + ehk
min{2l+k+2,2n}∑

s=l+2

(Q̃2(s) + Q̃2(s+ 2))




≤ e(α−r)τS0




2n∑

k=k+1

(ehk + 2ehk)Q̃2(k) +
2n∑

k=l+1

(e−hk + 2ehk)Q̃2(k)


 (1.122)

As in the N = 1 case, we can compute Equation (1.122) with a O(n2)
procedure, thus determining numerically the largest integers l and k such that
the loss is inferior to an arbitrary ε,3 but we can deepen our investigation and
find theoretical closed-form formulas for l and k.

3In the numerical computations for this work, we have considered the following less refined

conditions:
∑2n

k=k+1 3e
hkQ̃N (k) and

∑2n
k=l+1(2e

hk+1)Q̃N (k) We proceeded in the following
way. Given ε, we considered η = ε

2e(α−r)τS0
and we computed, starting from i = Nn, the
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Proposition 1.6.11. For k integer, 2W − 1 ≤ k ≤ 2n,

Q̃2(2k) ≤ 2(1 + w2
1)e

WW k

k!
(1.123)

Q̃2(2k + 1) ≤ 2w1(1 +W )eW
W k

k!
(1.124)

thus for k integer, 2⌈2W − 1⌉ ≤ k ≤ 2n,

Q̃2(k) ≤ 2ceW
W ⌊ k

2⌋
⌊
k
2

⌋
!

(1.125)

where c = max{1 + w2
1, w1(1 +W )}.

For k integer, 2⌈2W − 1⌉ ≤ k ≤ 2n

2n∑

k=k

Q̃2(k) ≤ 4CeW
W

⌊

k
2

⌋

⌊
k
2

⌋
!

(1.126)

where C = 1 + w2
1 + w1(1 +W ).

For k integer, 2⌈2e2hW − 1⌉ ≤ k ≤ 2n

2n∑

k=k

ehkQ̃2(k) ≤ 4C+eW
(We2h)

⌊

k
2

⌋

⌊
k
2

⌋
!

(1.127)

where C+ = 1 + w2
1 + ehw1(1 +W ).

For k integer, 2⌈2W − 1⌉ ≤ k ≤ 2n:

2n∑

k=k

e−hkQ̃2(−k) ≤ 4C−eW
(We−2h)

⌊

k
2

⌋

⌊
k
2

⌋
!

(1.128)

where C− = 1 + w2
1 + e−hw1(1 +W ).

Proof. In order to write an explicit upper bound for the probability of reaching
a certain level in the N = 2 setting, for clarity purposes we distinguish between
the even and the odd levels (which we indicate by 2k and 2k+1 respectively),
and for each of them we consider the possibility of achieving an even or an odd
value for the total of the down moves, the “negative total”.

sums Se
i = 3

∑2n
k=i e

hkQ̃N (k) and Si =
∑2n

k=i Q̃N (k). While Se
i < η, we keep decreasing i.

The first i we encounter such that Se
i ≥ η is our k. While Si < η, we keep decreasing i. The

first i we encounter such that Si <
η

2ehk+1
is our l.
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Let k, z ≥ 0 be integers. We focus on the case of ending on an even level
2k.

Let the negative total be −2z. If it is not entirely due to −2 moves, then
there is a residual (that must be an even number, 2i) that needs to be covered
with −1 moves. In the same way, if the positive total 2k + 2z is not entirely
due to k + z moves of the kind +2 there is a residual (that must be an even
number, 2l) that needs to be covered with +1 moves.

Once the quantities of +1, +2, −1, −2 moves are fixed, the number of
moves where a jump does not occur is automatically determined. But the
same number of +1, +2, −1, −2 jumps can be obtained with many paths,
differing in the order of the jumps. To consider all possible permutations of a
multiset of n elements: a jumps +2, b jumps +1, c jumps −2, d jumps −1 and
the rest of no-jump moves, we need to use the multinomial coefficient

B(n, a, b, c, d) :=

(
n

n− a− b− c− d, a, b, c, d

)
=

n!

(n− a− b− c− d)!a!b!c!d!
.

Notation B(n, a, b, c, d) is not standard, we introduce it for brevity.
Considering all combinations of reaching a negative total of −2z with a

mixture of −1 and −2 moves, and at the same time adding up to 2k + 2z
with a mixture of +2 and +1 moves, in at most n steps, we obtain that the
probability of ending at level 2k with a negative total of −2z is

lE∑

l=0

iE∑

i=0

n!

(n− k − l − 2z − i)!(k + z − l)!(2l)!(z − i)!(2i)!
qk+z−l
2 q2l1 q

z−i
−2 q

2i
−1q

n−k−l−2z−i
0 =

=

lE∑

l=0

iE∑

i=0

B(n, k + z − l, 2l, z − i, 2i)qk+z−l
2 q2l1 q

z−i
−2 q

2i
−1q

n−k−l−2z−i
0

with lE = min{k + z, n− k − 2z} and iE = min{z, n− k − 2z − l}.
Likewise the probability of ending at level 2k with a negative total of−2z−1

is

lO∑

l=0

iO∑

i=0

B(n, k + z − l, 2l + 1, z − i, 2i+ 1)qk+z−l
2 q2l+1

1 qz−i
−2 q

2i+1
−1 qn−k−l−2z−i−2

0

with lO = min{k + z, n − k − 2z − 2} and iO = min{z, n − k − 2z − l − 2};
here we used that both the positive and the negative totals are odd, therefore
there must be an odd number of −1 and +1 moves.



1.6 Establishing an appropriate cut 75

The possible values for the negative total depends of course on the number
of steps and on the level k: z can be at most

⌊
n−k
2

⌋
in the former case, and⌊

n−k−2
2

⌋
in the latter.

Thus:

Q2(2k) =

⌊n−k
2 ⌋∑

z=0

lE∑

l=0

iE∑

i=0

B(n, k + z − l, 2l, z − i, 2i)qk+z−l
2 q2l1 q

z−i
−2 q

2i
−1q

n−k−l−2z−i
0 +

+

⌊n−k−2
2 ⌋∑

z=0

lO∑

l=0

iO∑

i=0

B(n, k + z − l, 2l + 1, z − i, 2i+ 1)qk+z−l
2 q2l+1

1 qz−i
−2 q

2i+1
−1 qn−k−l−2z−i−2

0 .

(1.129)

We proceed similarly for level 2k + 1:

Q2(2k + 1) =

=

⌊n−k−1
2 ⌋∑

z=0

l′
E∑

l=0

i′
E∑

i=0

B(n, k + z − l, 2l + 1, z − i, 2i)qk+z−l
2 q2l+1

1 qz−i
−2 q

2i
−1q

n−k−l−2z−i−1
0 +

+

⌊n−k−2
2 ⌋∑

z=0

l′O∑

l=0

iO∑

i=0

B(n, k + z + 1− l, 2l, z − i, 2i+ 1)qk+z+1−l
2 q2l1 q

z−i
−2 q

2i+1
−1 qn−k−l−2z−i−2

0

(1.130)

with l′E = min{k+ z, n− k− 2z− 1}, l′O = min{k+ z+1, n− k− 2z− 2} and
i′E = min{z, n− k − 2z − l − 1}.

From Equations (1.129)-(1.130) we can write

Q̃2(2k) =

=

⌊n−k
2 ⌋∑

z=0

lE∑

l=0

iE∑

i=0

B(n, k + z − l, 2l, z − i, 2i)
(w2

n

)k+2z−l−i (w1

n

)2l+2i
qn−k−l−2z−i
0

+

⌊n−k−2
2 ⌋∑

z=0

lO∑

l=0

iO∑

i=0

B(n, k + z − l, 2l + 1, z − i, 2i+ 1)
(w2

n

)k+2z−l−i (w1

n

)2l+2i+2
qn−k−l−2z−i−2
0

Q̃2(2k + 1) =

=

⌊n−k−1
2 ⌋∑

z=0

l′E∑

l=0

i′E∑

i=0

B(n, k + z − l, 2l + 1, z − i, 2i)
(w2

n

)k+2z−l−i (w1

n

)2l+2i+1
qn−k−l−2z−i−1
0



1.6 Establishing an appropriate cut 76

+

⌊n−k−2
2 ⌋∑

z=0

l′O∑

l=0

iO∑

i=0

B(n, k + z + 1− l, 2l, z − i, 2i+ 1)
(w2

n

)k+2z+1−l−i (w1

n

)2l+2i+1
qn−k−l−2z−i−2
0 .

Let us start with Q̃2(2k).
First of all, q0 < 1. Then we use the fact that n!

(n−t)!nt ≤ 1 for any t integer
0 ≤ t ≤ n, which implies:

B(n, a, b, c, d)

na−b−c−d
≤ 1

a!b!c!d!
.

Q̃2(2k) <

<

⌊n−k
2 ⌋∑

z=0

lE∑

l=0

iE∑

i=0

B(n, k + z − l, 2l, z − i, 2i)
(w2

n

)k+2z−l−i (w1

n

)2l+2i

+

+

⌊n−k−2
2 ⌋∑

z=0

lO∑

l=0

iO∑

i=0

B(n, k + z − l, 2l + 1, z − i, 2i+ 1)
(w2

n

)k+2z−l−i (w1

n

)2l+2i+2

<

⌊n−k
2 ⌋∑

z=0

lE∑

l=0

iE∑

i=0

wk+2z−l−i
2 w2l+2i

1

(k + z − l)!(2l)!(2i)!(z − i)!

+

⌊n−k
2 ⌋−1∑

z=0

lO∑

l=0

iO∑

i=0

wk+z−l
2 w2l+1

1 wz−i
2 w2i+1

1

(k + z − l)!(2l + 1)!(2i+ 1)!(z − i)!

=

⌊n−k
2 ⌋∑

z=0

lE∑

l=0

wk+z−l
2 w2l

1

(k − l + z)!(2l)!

iE∑

i=0

wz−i
2 w2i

1

(z − i)!(2i)!
+

+

⌊n−k
2 ⌋−1∑

z=0

lO∑

l=0

wk+z−l
2 w2l+1

1

(k − l + z)!(2l + 1)!

iO∑

i=0

wz−i
2 w2i+1

1

(z − i)!(2i+ 1)!
.

We start from the inner summations (indexes i) and then proceed outwards.
Since iE, iO ≤ z, and 1

(2i+1)!
≤ 1

(2i)!
≤ 1

i!
, we have:

iE∑

i=0

wz−i
2 w2i

1

(z − i)!(2i)!
≤

z∑

i=0

wz−i
2 (w2

1)
i

(z − i)!i!
≤

z∑

i=0

(
z

i

)
wz−i

2 (w2
1)

i

z!
=

(w2 + w2
1)

z

z!

and
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iO∑

i=0

wz−i
2 w2i+1

1

(2i+ 1)!(z − i)!
≤ w1

z∑

i=0

(
z

i

)
wz−i

2 (w2
1)

i

z!
= w1

(w2 + w2
1)

z

z!
.

Remembering that lE, lO ≤ k + z and applying the same argument to the
sum over l, we get:

lE∑

l=0

wk+z−l
2 w2l

1

(k + z − l)!(2l)!
≤ (w2 + w2

1)
k+z

(k + z)!

and

lO∑

l=0

wk+z−l
2 w2l+1

1

(k + z − l)!(2l + 1)!
≤ w1

(w2 + w2
1)

k+z

(k + z)!
.

Therefore, taking W = w2 + w2
1,

Q̃2(2k) <

⌊n−k
2 ⌋∑

z=0

W k+z

(k + z)!

W z

z!
+ w2

1

⌊n−k
2 ⌋−1∑

z=0

W k+z

(k + z)!

W z

z!

<(1 + w2
1)

⌊n−k
2 ⌋∑

z=0

W k+z

(k + z)!

W z

z!

<(1 + w2
1)



⌊n−k

2 ⌋∑

z=0

W z

z!






⌊n−k

2 ⌋∑

z=0

W k+z

(k + z)!




<eW (1 + w2
1)



⌊n+k

2 ⌋∑

t=k

W t

t!


 .

By Lemma 1.6.3 with j = 2, for k ≥ 2W − 1 we have

Q̃2(2k) ≤ 2eW (1 + w2
1)
W k

k!
. (1.131)

For a net balance 2k + 1 we act similarly and find:

Q̃2(2k + 1) <

⌊n−k−1
2 ⌋∑

z=0

l′E∑

l=0

i′E∑

i=0

wk+2z−l−i
2 w2l+2i+1

1

(k + z − l)!(2l + 1)!(2i)!(z − i)!
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+

⌊n−k
2 ⌋−1∑

z=0

l′O∑

l=0

iO∑

i=0

wk+2z−l−i+1
2 w2l+2i+1

1

(k + z + 1− l)!(2l)!(2i+ 1)!(z − i)!

<

⌊n−k−1
2 ⌋∑

z=0

l′E∑

l=0

wk+z−l
2 w2l+1

1

(k + z − l)!(2l + 1)!

i′E∑

i=0

wz−i
2 w2i

1

(z − i)!(2i)!
+

+

⌊n−k
2 ⌋−1∑

z=0

l′O∑

l=0

wk+z+1−l
2 w2l

1

(k + z + 1− l)!(2l)!

iO∑

i=0

wz−i
2 w2i+1

1

(z − i)!(2i+ 1)!

<

⌊n−k−1
2 ⌋∑

z=0

k+z∑

l=0

w1
wk+z−l

2 (w2
1)l

(k + z − l)!l!

z∑

i=0

wz−i
2 (w2

1)
i

(z − i)!i!
+

+

⌊n−k
2 ⌋−1∑

z=0

k+z+1∑

l=0

wk+z+1−l
2 (w2

1)
l

(k + z + 1− l)!l!
w1

z∑

i=0

wz−i
2 (w2

1)
i

(z − i)!i!

<w1

⌊n−k−1
2 ⌋∑

z=0

W k+z

(k + z)!

W z

z!
+ w1

⌊n−k
2 ⌋−1∑

z=0

W k+z+1

(k + z + 1)!

W z

z!

<w1

⌊n−k−1
2 ⌋∑

z=0

W k+z

(k + z)!

W z

z!
+ w1W

⌊n−k
2 ⌋−1∑

z=0

W k+z

(k + z)!

W z

z!

<w1(1 +W )

⌊n−k−1
2 ⌋∑

z=0

W k+z

(k + z)!

W z

z!

<w1(1 +W )



⌊n−k−1

2 ⌋∑

z=0

W z

z!






⌊n−k−1

2 ⌋∑

z=0

W k+z

(k + z)!




<w1(1 +W )eW



⌊n+k

2 ⌋∑

t=k

W t

t!




and applying Lemma 1.6.3 with j = 2 for k ≥ 2W − 1, we get

Q̃2(2k + 1) ≤ 2w1(1 +W )eW
W k

k!
. (1.132)

Juxtaposing Equations (1.131) and (1.132) we obtain

Q̃2(k) ≤ 2max{1 + w2
1, w1(1 +W )}eWW ⌊ k

2⌋
⌊
k
2

⌋
!
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for k integer, 2⌈2W − 1⌉ ≤ k ≤ 2n, which is Equation (1.125).

Let us now consider the summation of all Q̃2(k) from a certain k upwards.
It is convenient to separate its even and odd terms.

2n∑

k=k

Q̃2(k) =
2n∑

k=k
even k

Q̃2(k) +
2n∑

k=k
odd k

Q̃2(k)

≤
2n∑

k=
⌊

k
2

⌋

Q̃2(2k) +
2n∑

k=
⌊

k
2

⌋

Q̃2(2k + 1)

≤
2n∑

k=
⌊

k
2

⌋

2eW (1 + w2
1)
W k

k!
+

2n∑

k=
⌊

k
2

⌋

2w1(1 +W )eW
W k

k!

≤2(1 + w2
1 + w1(1 +W ))eW

2n∑

k=
⌊

k
2

⌋

2w1(1 +W )eW
W k

k!
.

With a further application of Lemma 1.6.3 we obtain:

2n∑

k=k

Q̃2(k) ≤ 4(1 + w2
1 + w1(1 +W ))eW

W

⌊

k
2

⌋

⌊
k
2

⌋
!

for k integer, 2⌈2W − 1⌉ ≤ k ≤ 2n, which is Equation (1.126).
Let us consider now Equation (1.127). Again we separate the even and odd

terms.

2n∑

k=k

ehkQ̃2(k) =
2n∑

k=k
even k

ekhQ̃2(k) +
2n∑

k=k
odd k

ekhQ̃2(k) ≤

≤
2n∑

k=
⌊

k
2

⌋

(
e2khQ̃2(2k) + e(2k+1)hQ̃2(2k + 1)

)
≤

≤
2n∑

k=
⌊

k
2

⌋

(
e2kh2eW (1 + w2

1)
W k

k!
+ e(2k+1)h2w1(1 +W )eW

W k

k!

)
≤

≤ 2eW (1 + w2
1 + w1e

h(1 +W ))
2n∑

k=
⌊

k
2

⌋

(We2h)k

k!
.
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Let us call C+ = 1 + w2
1 + w1e

h(1 +W ); we obtain

2n∑

k=k

ehkQ̃2(k) ≤ 2C+eW
2n∑

k=
⌊

k
2

⌋

(We2h)k

k!
≤ 4eWC+ (We2h)

⌊

k
2

⌋

⌊
k
2

⌋
!

for
⌊
k
2

⌋
≥ 2We2h − 1, i.e. k ≥ 2

⌈
2We2h − 1

⌉
.

Similarly

2n∑

k=k

e−hkQ̃2(k) =
2n∑

k=k
even k

e−khQ̃2(k) +
2n∑

k=k
odd k

e−khQ̃2(k)

≤
2n∑

k=
⌊

k
2

⌋

(
e−2khQ̃2(2k) + e−(2k+1)hQ̃2(2k + 1)

)
.

For k ≥ 2
⌈
2We−2h − 1

⌉
we can apply Lemma 1.6.3, therefore

2n∑

k=k

e−hkQ̃2(k) ≤
2n∑

k=
⌊

k
2

⌋

(
e−2kh2eW (1 + w2

1)
W k

k!
+ e−(2k+1)h2w1(1 +W )eW

W k

k!

)

≤ 2eW (1 + w2
1 + e−hw1(1 +W ))

2n∑

k=
⌊

k
2

⌋

(We−2h)k

k!

≤ 4C−eW
(We−2h)

⌊

k
2

⌋

⌊
k
2

⌋
!

where C− = 1 + w2
1 + w1e

−h(1 +W ), for k ≥ 2 ⌈2W − 1⌉.

Let us now indicate with V (0, 0, 0) and V T (0, 0, 0) the European call values
we obtain via a backward procedure using Equation (1.96) with N = 2 in the
HS and in the truncated case (cf. Equation (1.103)) respectively.

Theorem 1.6.12. Given ε > 0, taking

C+ = 1 + w2
1 + w1e

h(1 +W )

C− = 1 + w2
1 + w1e

−h(1 +W )

g+ = e2h+1W + (α− r)τ +W + log(8S0) + log(C+ + (1 + e2h)e4hC−)



1.6 Establishing an appropriate cut 81

g− =e−2h+1W + (α− r)τ +W + log(8S0) + log(C− + (1 + e−2h)C+)

for

k ≥ max{2⌈g+ − log ε⌉, 2
⌈
2We2h − 1

⌉
− 1}

and

l ≥ max{2⌈g− − log ε⌉, 2
⌈
2We2h − 1

⌉
− 1},

we have ∣∣V (0, 0, 0)− V T (0, 0, 0)
∣∣ < ε.

Proof. We apply Proposition 1.6.11 to Equation (1.121).

VE − V̂ T
E ≤e(α−r)τS0




2n∑

k=k+1

ehkQ̃2(k) +
2n∑

k=l+1

e−hkQ̃2(k) +

+

min{2k+l+2,2n}∑

s=k+2

eh(2k+2−s)Q̃2(s) +

min{2k+l+4,2n}∑

s=k+4

eh(2k+4−s)Q̃2(s)

+

min{2l+k+2,2n}∑

s=l+2

eh(−2l−2+s)Q̃2(s) +

min{2l+k+4,2n}∑

s=l+4

eh(−2l−4+s)Q̃2(s)




≤e(α−r)τS0




2n∑

k=k+1

ehkQ̃2(k) +
2n∑

k=l+1

e−hkQ̃2(k) +

+ eh(2k+2)

min{2k+l+2,2n}∑

s=k+2

e−hsQ̃2(s) + eh(2k+4)

min{2k+l+4,2n}∑

s=k+4

e−hsQ̃2(s)

+eh(−2l−2)

min{2l+k+2,2n}∑

s=l+2

ehsQ̃2(s) + eh(−2l−4)

min{2l+k+4,2n}∑

s=l+4

ehsQ̃2(s)




≤e(α−r)τS0




2n∑

k=k+1

ehkQ̃2(k) +
2n∑

k=l+1

e−hkQ̃2(k) +

+ (1 + e2h)eh(2k+2)

min{2k+l+2,2n}∑

s=k+1

e−hsQ̃2(s)
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+(1 + e−2h)eh(−2l−2)

min{2l+k+2,2n}∑

s=l+1

ehsQ̃2(s)




≤4eW e(α−r)τS0


C+ (We2h)

⌊

k+1
2

⌋

⌊
k+1
2

⌋
!

+ C− (We−2h)

⌊

l+1
2

⌋

⌊
l+1
2

⌋
!

+

+ (1 + e2h)eh(2k+2)C− (We−2h)

⌊

k+1
2

⌋

⌊
k+1
2

⌋
!

+(1 + e−2h)eh(−2l−2)C+ (We2h)

⌊

l+1
2

⌋

⌊
l+1
2

⌋
!




for k, l ≥ 2
⌈
2We2h − 1

⌉
− 1.

Since k + 1 ≤ 2
⌊
k+1
2

⌋
+ 1 and −l − 1 ≤ −2

⌊
l+1
2

⌋
we can write:

VE − V̂ T
E ≤4e(α−r)τ+WS0


C+ (We2h)

⌊

k+1
2

⌋

⌊
k+1
2

⌋
!

+ C− (We−2h)

⌊

l+1
2

⌋

⌊
l+1
2

⌋
!

+

+ (1 + e2h)e4hC− (We−2he4h)

⌊

k+1
2

⌋

⌊
k+1
2

⌋
!

+

+(1 + e−2h)C+ (We2he−4h)

⌊

l+1
2

⌋

⌊
l+1
2

⌋
!




≤4e(α−r)τ+WS0


(C+ + (1 + e2h)e4hC−)

(We2h)

⌊

k+1
2

⌋

⌊
k+1
2

⌋
!

+

+(C− + (1 + e−2h)C+)
(We−2h)

⌊

l+1
2

⌋

⌊
l+1
2

⌋
!


 .

(1.133)

If we want an error less than ε to be equally shared between the elimination
of the upper and lower regions of the tree on the whole period, retracing our
steps in Theorem 1.6.7, we want to determine under which conditions on k
and l we have:
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(C+ + (1 + e2h)e4hC−)
(We2h)

⌊

k+1
2

⌋

⌊
k+1
2

⌋
!

≤ ε

8e(α−r)τ+WS0

and

(C− + (1 + e−2h)C+)
(We−2h)

⌊

l+1
2

⌋

⌊
l+1
2

⌋
!

≤ ε

8e(α−r)τ+WS0

.

By Lemma 1.6.4, in order for the inequality

(We2h)

⌊

k+1
2

⌋

⌊
k+1
2

⌋
!

≤ ε

8e(α−r)τ+WS0(C+ + (1 + e2h)e4hC−)

to stand, it suffices to ask

−
⌊
k + 1

2

⌋
+ e2h+1W ≤ log

ε

8e(α−r)τ+WS0(C+ + (1 + e2h)e4hC−)

i. e.

k ≥ 2
⌈
e2h+1W − log ε+ (α− r)τ +W + log(8S0) + log(C+ + (1 + e2h)e4hC−)

⌉
−1.

In the same way, inequality

(We−2h)

⌊

l+1
2

⌋

⌊
l+1
2

⌋
!

≤ ε

8e(α−r)τ+WS0(C− + (1 + e−2h)C+)

is guaranteed for

−
⌊
l + 1

2

⌋
+ e−2h+1W ≤ log

ε

8e(α−r)τ+WS0(C− + (1 + e−2h)C+)

i. e.

l ≥ 2
⌈
e−2h+1W − log ε+ (α− r)τ +W + log(8S0) + log(C− + (1 + e−2h)C+)

⌉
−1.

Collecting all the requirements on k and l, we have the thesis.
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If for some reasons we wish for a symmetric cut, since h is positive, hence
e−h < 1 < eh and C− < C+, we can take the more stringent condition:

l = k ≥ max{2
⌈
2We2h − 1

⌉
− 1,

2
⌈
e2h+1W − log ε+ (α− r)τ +W + log(8S0) + log(C+(1 + e4h + e6h))

⌉
− 1}.

The previous theorem allows to extend to N = 2 the result of Theorem
1.6.8 and Theorem 1.6.9, which guarantee that for appropriately chosen k and
l, the value VE of the European call option (or the value V (0, 0, 0) obtained
via the backward procedure, that is the same) can be approximated by

V̂ T
E = e−rτ

k∑

k=−l

n∑

j=0

(S0e
(−n+2j)σ

√
∆t+hk −K0)

+P (j)Q̂1(k)

and with the value V T (0, 0, 0) obtained through the backward truncated pro-
cedure.

Theorem 1.6.13. Given ε = 1
n
> 0, and k and l the smallest integers as in

Theorem 1.6.12, the proposed procedure for V̂ T
E converges to the HS price and

its computational complexity is O(n log n).

Theorem 1.6.14. Given ε = 1
n
> 0, and k and l the smallest integers as in

Theorem 1.6.12, the backward procedure described above for V T (0, 0, 0) con-
verges to the HS price and its computational complexity is O(n2 log n).

The proofs of Theorems 1.6.13 and 1.6.14 coincide with those of Theorems
1.6.8 and 1.6.9.

European call option, arbitrary N

In this Section the results are generalised to an arbitrary N . Similarly to what
we have previously done, we will denote:

qk the probability of a jump of amplitude kh for k integer, −N ≤ k ≤ N , in
a ∆t time interval;

ck as the constant qk · n for k 6= 0, −N ≤ k ≤ N ;

wk as the maximum between c+k and c−k for 1 ≤ k ≤ N .

We also define recursively
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W1 = w1

Wi+1 = wi+1 +W
i+1
i

i

(1.134)

and

Mi = max{Wi,W
−i+1

i

i }. (1.135)

Recall that QN(k) will indicate the probability of reaching level k with

the jumps, while Q̃N(k) is the “enlarged probability” with q+i and q−i both

substituted by their maximum, and Q̂N(k) is the probability of reaching level k
computed recursively forwards without taking into account the nodes (i, j, k′)
with k′ < −l or k′ > k.

We also recall the limitation (1.108) we had obtained on the difference
between the Hilliard and Schwartz European call option price VE and the

price V̂ T
E obtained cutting the tree at levels −l and k (cf. Equation (1.102)).

VE−V̂ T
E ≤ e(α−r)τS0




Nn∑

k=k+1

ehkQ̃N(k) +
Nn∑

k=l+1

e−hkQ̃N(k) +
k∑

k=−l

ehk(Qk
N(k) +QNl(k))




The following Lemma relates Qk
N and QNl with Q̃N .

Lemma 1.6.15.

Qk
N(k) ≤

N∑

i=1

Q̃N(2k − k + 2i)

QNl(k) ≤
N∑

i=1

Q̃N(2l + k + 2i)

for all
−l ≤ k ≤ k

Proof. The proof is similar to that of Lemma 1.6.10: the original path, at the
first moment it trespasses the k level, can reach level k + 1, k + 2, . . . , k +
N , depending on the amplitude of the jump that steps over the boundary.
Therefore the reflection of the path can end at level 2k− k+2, 2k− k+4, . . .,
2k − k + 2N . Likewise for the paths that cross the −l level.

By Lemma 1.6.15 we have

V T
E − V̂ T

E ≤ e(α−r)τS0




k∑

k=−l

ehk
N∑

i=1

Q̃N(2k − k + 2i) +
k∑

k=−l

ehk
N∑

i=1

Q̃N(2l + k + 2i)



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≤ e(α−r)τS0




min{2k+l+2,Nn}∑

s=k+2

eh(2k−s+2)

N−1∑

i=0

Q̃N(s+ 2i)+

min{2l+k+2,Nn}∑

s=l+2

eh(s−2l−2)

N−1∑

i=0

Q̃N(s+ 2i)


 . (1.136)

Since the first sum is over k + 2 ≤ s ≤ 2k + l+ 2, we have eh(2k−s+2) ≤ ehk

and likewise for l + 2 ≤ s ≤ 2l + k + 2 we have eh(s−2l−2) ≤ ehk.

V T
E − V̂ T

E ≤

≤ e(α−r)τehkS0




min{2k+l+2,Nn}∑

s=k+2

N−1∑

i=0

Q̃N(s+ 2i) +

min{2l+k+2,Nn}∑

s=l+2

N−1∑

i=0

Q̃N(s+ 2i)




(1.137)

≤ e(α−r)τehkS0




N−1∑

i=0

min{2k+l+2,Nn}∑

s=k+2

Q̃N(s+ 2i) +
N−1∑

i=0

min{2l+k+2,Nn}∑

s=l+2

Q̃N(s+ 2i)




≤ e(α−r)τehkS0


N

min{2k+l+2,Nn}∑

s=k+2

Q̃N(s) +N

min{2l+k+2,Nn}∑

s=l+2

Q̃N(s)


 . (1.138)

Combining Equations (1.106) and (1.138) we obtain:

VE − V̂ T
E ≤ e(α−r)τS0




Nn∑

k=k+1

ehkQ̃N(k) +
Nn∑

k=l+1

e−hkQ̃N(k)+

ehkN
Nn∑

k=k+2

Q̃N(k) + ehkN
Nn∑

k=l+2

Q̃N(k)


 . (1.139)

As in the N = 1 case, we can compute (1.139) with a O(n2) procedure,
thus determining numerically the largest integers l and k such that the loss is
inferior to an arbitrary ε, 4 but we are interested in obtaining a closed formula
for l and k.

4In the numerical computations for this work, we have considered the following less

refined conditions:
∑Nn

k=k+1(N + 1)ehkQ̃N (k) and
∑Nn

k=l+1(Nehk + 1)Q̃N (k) We proceeded
in the following way. Given ε, we considered η = ε

2e(α−r)τS0
and we computed, starting from

i = Nn, the sums Se
i = (N + 1)

∑Nn

k=i e
hkQ̃N (k) and Si =

∑Nn

k=i Q̃N (k). While Se
i < η, we

keep decreasing i. The first i we encounter such that Se
i ≥ η is our k. While Si < η, we

keep decreasing i. The first i we encounter such that Si <
η

Nehk+1
is our l.
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Let us denote G = 2N max{WN , 1}eWN
∏N−1

i=1 M2
i .

Proposition 1.6.16. For k ≥ N⌈2WN − 1⌉

Q̃N(k) ≤ G
W

⌊ k
N ⌋

N⌊
k
N

⌋
!
. (1.140)

For k ≥ N⌈2WN − 1⌉

Nn∑

k=k

Q̃N(k) ≤ 2GN
W

⌊

k
N

⌋

N⌊
k
N

⌋
!
. (1.141)

For k ≥ N⌈2eNhWN − 1⌉

Nn∑

k=k

ehkQ̃N(k) ≤ 2G
(ehNWN)

⌊

k
N

⌋

⌊
k
N

⌋
!

N−1∑

r=0

ehr.

For k ≥ N⌈2WN − 1⌉:

Nn∑

k=k

e−hkQ̃N(−k) ≤ 2G
(e−hNWN)

⌊

k
N

⌋

⌊
k
N

⌋
!

N−1∑

r=0

e−hr.

Proof. We focus on the probability QN(k) of reaching level k ≥ 0 in the jump
dynamics at maturity. Level k can be reached in n time steps with a variety of
possible combinations of jumps, therefore, in order to consider all the possible
paths, we distinguish between the positive and the negative jumps: if k ≥ 0 is
the total balance, when the sum of all negative jumps is −l, with l ≥ 0, then
the sum of all positive jumps must be k + l. In short, QN(k) is the sum over
all possible non negative l, subject to the condition of a total of n moves, of
all probabilities of reaching balance level k with a negative balance of −l.5

For k ≥ 0, the probability QN(k) is given by:

QN(k) =
∑

l

∑

e+N ,...,e+1

∑

e−N ,...,e−1

C(e+N , e
−
N , e

+
N−1, e

−
N−1, . . . , e

+
1 , e

−
1 )q

e+N
+N · · · qe

+
1

+1q
e−N
−N · · · qe

−

1
−1q

e0
0

where the indexes of the summations are non negative integers that individuate
the number of jumps of each kind: e+i is the number of +i jumps and e−i is the

5We will be more precise with regard to this condition in the following.
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number of −i jumps, while e0 is the number of no-jump moves. All summations
are limited by the conditions

e0 +
N∑

i=1

e−i +
N∑

i=1

e+i = n

and
N∑

i=1

i(e+i − e−i ) = k.

C(e+N , e
−
N , e

+
N−1, e

−
N−1, . . . , e

+
1 , e

−
1 ) denotes the number of combinations of

the n factors, once the exponents are fixed, and is equal to

C(e+N , e
−
N , e

+
N−1, e

−
N−1, . . . , e

+
1 , e

−
1 ) =

n!

e+N !e
−
N !e

+
N−1!e

−
N−1! . . . e

+
1 !e

−
1 !e0!

.

By Euclidean division we can write l as a multiple of N plus a remainder
0 ≤ r−N ≤ N − 1: l = Nz + r−N . This means that the negative balance −l is
due to at most z jumps of the −N kind, and the difference between Nz and l
shall be covered with smaller jumps.

Instead of summing over all possible l’s, then, it will be easier in order
to express the limitations for the indexes, to consider the summation over all
possible z and 0 ≤ r−N ≤ N − 1.

For any fixed z and r−N , we will have at most z jumps of the −N kind,
therefore e−N needs to vary between 0 and z. The same idea is to be followed
for the positive balance: given k, the values t and 0 ≤ rN ≤ N − 1 such that
k = Nt + rN are uniquely determined; therefore for any given pair of z and
r−N the positive balance can be written as N(t + z) + rN + r−N . This provides

the limitation for e+N , which must be at most t + z +
⌊
rN+r−N

N

⌋
. The choice of

every e+i (e−i ) imposes further conditions on the possible values for e+i−1 (e−i−1,
respectively).

A change in perspective in the summations will permit to better express
the relationships and mutual limitations existing between the exponents.

For any fixed z, we have 0 ≤ e−N ≤ z. Let us define bN−1 = z−e−N . The value
bN−1 ( 0 ≤ bN−1 ≤ z) will represent the part of −Nz that needs to be covered
with jumps not greater than N−1. Of the negative balance −(Nz+r−N), then,
−Ne−N will be covered by −N jumps and the rest, −(NbN−1 + r−N), by jumps
of smaller amplitude.

Once z, r−N and e−N are fixed, we have a negative balance of −(NbN−1+ r
−
N)

to cover with negative jumps of amplitude at most N − 1. In order to find
the limitation for e−N−1, we compute the Euclidean division of NbN−1 + r−N by
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N − 1: the quotient zN−1 = ⌊NbN−1+r−N
N−1

⌋ is an upper bound for e−N−1 (we shall
consider as limitation for the summation the more stringent between this value
and the condition of a total of n moves), and we call r−N−1 the remainder. Once
again, instead of summing over e−N−1, we sum over bN−2 = zN−1 − e−N−1.

We operate in the same way repeatedly using Euclidean division in order
to find upper bounds for all e−j , and similarly for the positive jumps, where we
introduce the aj and r

+
j values.

To recap, the indices ai (bi) are indicators of how much of the total positive
(respectively, negative) balance is due to moves of amplitude at most i, and
are related to the exponents in the following way:

e−N = z − bN−1

e−N−1 =

⌊
NbN−1 + r−N

N − 1

⌋
− bN−2

. . .

e−i =

⌊
(i+ 1)bi + r−i+1

i

⌋
− bi−1 for i < N

where r−i is the remainder of
(i+ 1)bi + r−i+1

i
for i < N

. . .

e−2 =

⌊
3b2 + r−3

2

⌋
− b1

e−1 = 2b1 + r−2

e+N = t+ z +

⌊
rN + r−N

N

⌋
− aN−1

e+N−1 =

⌊
NaN−1 + r+N

N − 1

⌋
− aN−2

where r+N is the remainder of
rN + r−N

N
. . .

e+i =

⌊
(i+ 1)ai + r+i+1

i

⌋
− ai−1 for i < N

where r+i is the remainder of
(i+ 1)ai + r+i+1

i
for i < N

. . .

e+2 =

⌊
3a2 + r+3

2

⌋
− a1
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e+1 = 2a1 + r+2

The probability QN(k) of reaching at maturity level k ≥ 0 for the jump
dynamics can then be written as:

QN(k) =
N−1∑

r−N=0

∑

z

∑

aN−1

· · ·
∑

a1

∑

bN−1

· · ·
∑

b1

C(e+N , e
−
N , e

+
N−1, e

−
N−1, . . . , e

+
1 , e

−
1 )

q
e+N
+N · · · qe

+
1

+1q
e−N
−N · · · qe

−

1
−1q

e0
0 .

Substituting c±i with wi, we obtain

Q̃N(k) =
N−1∑

r−
N
=0

∑

z

∑

aN−1

· · ·
∑

a1

∑

bN−1

· · ·
∑

b1

n!

e+N !e
−
N !e

+
N−1!e

−
N−1! . . . e

+
1 !e

−
1 !e0!

w
e+
N

N · · ·we+1
1 w

e−N
N · · ·we−1

1

n
∑N

i=1 e
+
i +

∑N
i=1 e

−

i

qe00 .

Since q0 ≤ 1 and n!

e0!n
∑N

i=1
e
+
i

+
∑N

i=1
e
−

i

≤ 1:

Q̃N(k) ≤
N−1∑

r−N=0

∑

z

∑

aN−1

· · ·
∑

a1

∑

bN−1

· · ·
∑

b1

w
e+N
N · · ·we+1

1 w
e−N
N · · ·we−1

1

e+N !e
−
N !e

+
N−1!e

−
N−1! . . . e

+
1 !e

−
1 !
.

We treat separately the positive and the negative parts, and we work from
the inside outwards. The summation over the negative jumps is given by:

∑

bN−1

w
e−
N

N

e−N !
· · ·

∑

b3

w
e−4
4

e−4 !

∑

b2

w
e−3
3

e−3 !

∑

b1

w
e−2
2

e−2 !

w
e−1
1

e−1 !
=

=
∑

bN−1

w
e−N
N

e−N !
· · ·

∑

b3

w
e−4
4

e−4 !

∑

b2

w
e−3
3

e−3 !

∑

b1

w

⌊

3b2+r
−

3
2

⌋

−b1

2(⌊
3b2+r−3

2

⌋
− b1

)
!

w
2b2+r−2
1

(2b1 + r−2 )!

≤
∑

bN−1

w
e−N
N

e−N !
· · ·

∑

b3

w
e−4
4

e−4 !

∑

b2

w
e−3
3

e−3 !
w

r−2
1

(w2 + w2
1)

⌊

3b2+r
−

3
2

⌋

⌊
3b2+r−3

2

⌋
!

.

Since r−2 is the remainder of
3b2+r−3

2
, it can only assume the values 0 or 1;

therefore we can write:

∑

bN−1

w
e−
N

N

e−N !
· · ·

∑

b3

w
e−4
4

e−4 !

∑

b2

w
e−3
3

e−3 !
w

r−2
1

(w2 + w2
1)

⌊

3b2+r
−

3
2

⌋

⌊
3b2+r−3

2

⌋
!

≤



1.6 Establishing an appropriate cut 91

≤
∑

bN−1

w
e−N
N

e−N !
· · ·

∑

b3

w
e−4
4

e−4 !

∑

b2

w

⌊

4b3+r
−

4
3

⌋

−b2

3(⌊
4b3+r−4

3

⌋
− b2

)
!
max{w1, 1}

(w2 + w2
1)

3b2+r
−

3 −r
−

2
2

3b2+r−3 −r−2
2

!
.

According to the definitions in 1.134, max{w1, 1} = max{W 1
1 ,W

0
1 } = M1,

and w2 + w2
1 = W2. Therefore we can write the previous formula as:

M1

∑

bN−1

w
e−
N

N

e−N !
· · ·

∑

b3

w
e−4
4

e−4 !

∑

b2

w

⌊

4b3+r
−

4
3

⌋

−b2

3(⌊
4b3+r−4

3

⌋
− b2

)
!

(W
3
2
2 )

b2

b2!
·W

r
−

3 −r
−

2
2

2 .

Since −1
2
≤ r−3 −r−2

2
≤ 1 we have thatW

r
−

3 −r
−

2
2

2 ≤ max{W− 1
2

2 ,W2} =M2, and

M1

∑

bN−1

w
e−N
N

e−N !
· · ·

∑

b3

w
e−4
4

e−4 !

∑

b2

w

⌊

4b3+r
−

4
3

⌋

−b2

3

(
⌊
4b3+r−4

3

⌋
− b2)!

(W
3
2
2 )

b2

b2!
·W

r
−

3 −r
−

2
2

2 ≤

≤M1M2

∑

bN−1

w
e−N
N

e−N !
· · ·

∑

b3

w
e−4
4

e−4 !

(w3 +W
3
2
2 )

⌊

4b3+r
−

4
3

⌋

⌊
4b3+r−4

3

⌋
!

=

=M1M2

∑

bN−1

w
e−N
N

e−N !
· · ·

∑

b3

w
e−4
4

e−4 !

W

⌊

4b3+r
−

4
3

⌋

3⌊
4b3+r−4

3

⌋
!
.

In general, we take care of the sum over bi−1, for 2 ≤ i < N , in the following
way:

i−2∏

j=1

Mj

∑

bi−1

w

⌊

(i+1)bi+r
−

i+1
i

⌋

−bi−1

i(⌊
(i+1)bi+r−i+1

i

⌋
− bi−1

)
!

W

⌊

ibi−1+r
−

i
i−1

⌋

i−1⌊
ibi−1+r−i

i−1

⌋
!
=

=
i−2∏

j=1

Mj

∑

bi−1

w

⌊

(i+1)bi+r
−

i+1
i

⌋

−bi−1

i(⌊
(i+1)bi+r−i+1

i

⌋
− bi−1

)
!

W
ibi−1+r

−

i
−r

−

i−1
i−1

i−1⌊
ibi−1+r−i

i−1

⌋
!

≤

≤
i−2∏

j=1

Mj

∑

bi−1

w

⌊

(i+1)bi+r
−

i+1
i

⌋

−bi−1

i(⌊
(i+1)bi+r−i+1

i

⌋
− bi−1

)
!

(W
i

i−1

i−1 )
bi−1

bi−1!
W

r
−

i
−r

−

i−1
i−1

i−1 ≤
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≤
i−2∏

j=1

Mj

∑

bi−1

w

⌊

(i+1)bi+r
−

i+1
i

⌋

−bi−1

i(⌊
(i+1)bi+r−i+1

i

⌋
− bi−1

)
!

(W
i

i−1

i−1 )
bi−1

bi−1!
max{Wi−1,W

− i−2
i−1

i−1 } =

=
i−1∏

j=1

Mj

(wi +W
i

i−1

i−1 )

⌊

(i+1)bi+r
−

i+1
i

⌋

⌊
(i+1)bi+r−i+1

i

⌋
!

=
i−1∏

j=1

Mj
W

⌊

(i+1)bi+r
−

i+1
i

⌋

i⌊
(i+1)bi+r−i+1

i

⌋
!
.

For i = N we apply the same reasoning:

N−2∏

j=1

Mj

∑

bN−1

w
z−bN−1

N

(z − bN−1)!

W

⌊

NbN−1+r
−

N
N−1

⌋

N−1⌊
NbN−1+r−

N

N−1

⌋
!
=

≤
N−2∏

j=1

Mj

∑

bN−1

w
z−bN−1

N

(z − bN−1)!

(W
N

N−1

N−1 )
bN−1

bN−1!
W

r
−

N
−r

−

N−1
N−1

N−1 =

≤
N−2∏

j=1

Mj

∑

bN−1

w
z−bN−1

N

(z − bN−1)!

(W
N

N−1

N−1 )
bN−1

bN−1!
max{WN−1,W

−N−2
N−1

N−1 } =

=
N−1∏

j=1

Mj

(wN +W
N

N−1

N−1 )
z

z!

=
N−1∏

j=1

Mj
W z

N

z!
.

We can deal with the sum over ai−1, for 2 ≤ i ≤ N in the same way.
Bringing together the positive jump and negative jump parts, we obtain:

Q̃N(k) ≤
N−1∏

j=1

M2
j

N−1∑

r−
N
=0

∑

z

W z
N

z!

W
t+z+

⌊

rN+r
−

N
N

⌋

N(
t+ z +

⌊
rN+r−N

N

⌋)
!

≤
N−1∏

j=1

M2
j

∑

z

W z
N

z!

W t+z
N

(t+ z)!

N−1∑

r−
N
=0

W

⌊

rN+r
−

N
N

⌋

N

≤
N−1∏

j=2

M2
j

∑

z

W z
N

z!

∑

z

W t+z
N

(t+ z)!

N−1∑

r−N=0

max{WN , 1}
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≤ N max{WN , 1}
N−1∏

j=2

M2
j e

WN · 2W
t
N

t!

for t ≥ 2WN − 1. Denoting G = 2N max{WN , 1}
∏N−1

j=2 M
2
j e

WN we have Equa-
tion (1.140) for k ≥ N⌈2WN − 1⌉.

Now we apply the Equation (1.140) to the summation
∑Nn

k=k Q̃N(k) for
k ≥ N⌈2WN − 1⌉.

Nn∑

k=k

Q̃N(k) ≤
Nn∑

k=k

G
W

⌊ k
N ⌋

N⌊
k
N

⌋
!

≤ 2GN
W

⌊

k
N

⌋

N⌊
k
N

⌋
!

provided that k ≥ N⌈2WN − 1⌉.
Applying Equation (1.140) to the summation

∑Nn
k=k e

hkQ̃N(k) for k ≥
N⌈2WN − 1⌉, instead, we get:

Nn∑

k=k

ehkQ̃N(k) ≤
Nn∑

k=k

ehkG
W

⌊ k
N ⌋

N⌊
k
N

⌋
!

≤ G
Nn∑

t=
⌊

k
N

⌋

N−1∑

r=0

ehNt+hrW
t
N

t!

≤ G
N−1∑

r=0

ehr
Nn∑

t=
⌊

k
N

⌋

(ehNWN)
t

t!

≤ 2G
(ehNWN)

⌊

k
N

⌋

⌊
k
N

⌋
!

N−1∑

r=0

ehr

for k ≥ N⌈2eNhWN − 1⌉.
Similarly, we obtain the analogous inequality for

∑Nn
k=k e

−hkQ̃N(−k) with
k ≥ N⌈2WN − 1⌉.
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Now let us consider the value V (0, 0, 0) we obtain via backward recursion
from Equation (1.96) with a fixed, arbitrary N , and V T (0, 0, 0) the value we
obtain via backward recursion from Equation (1.103) for some k, l.

We can extend the result from Theorem 1.6.7 to the difference between
V (0, 0, 0) and V T (0, 0, 0).

Let Wi, Mi be as defined in Equations (1.134) and (1.135), and recall

G = 2N max{WN , 1}eWN

N−1∏

i=1

M2
i .

Theorem 1.6.17. Given ε > 0, taking

C+ =
N−1∑

r=0

ehr +N max{W 2
N , 1}e2hN

N−1∑

r=0

e−hr

C− =
N−1∑

r=0

e−hr +N max{W 2
N , 1}

N−1∑

r=0

ehr

g+ = ehN+1WN + log(4S0G) + (α− r)τ + logC+

g− = e−hN+1WN + log(4S0G) + (α− r)τ + logC−

and the value V T (0, 0, 0) obtained via truncation of the tree at levels k and
−l, where k and l are the smallest integers which satisfy:

k ≥ max{N
⌈
g+ − log ε

⌉
− 1, N

⌈
2ehNWN − 1

⌉
− 1} (1.142)

l ≥ max{N
⌈
g− − log ε

⌉
− 1, N

⌈
2ehNWN − 1

⌉
− 2, N ⌈2WN − 1⌉ − 1}

(1.143)

it holds true:

∣∣V (0, 0, 0)− V T (0, 0, 0)
∣∣ < ε

Proof. Combining Equations (1.106) and (1.136) the difference between VE

and V̂ T
E is less or equal than the sum of four discarded parts:

VE − V̂ T
E ≤ e(α−r)τS0




Nn∑

k=k+1

ehkQ̃N(k) +
Nn∑

k=l+1

e−hkQ̃N(k) +

+ eh(2k+2)

Nn∑

s=k+2

e−hs

N−1∑

i=0

Q̃N(s+ 2i)+
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+eh(−2l−2)

Nn∑

s=l+2

ehs
N−1∑

i=0

Q̃N(s+ 2i)


 .

By Proposition 1.6.16:

VE − V̂ T
E ≤e(α−r)τS0G


2

(ehNWN)

⌊

k+1
N

⌋

⌊
k+1
N

⌋
!

N−1∑

r=0

ehr + 2
(e−hNWN)

⌊

l+1
N

⌋

⌊
l+1
N

⌋
!

N−1∑

r=0

e−hr+

(1.144)

+eh(2k+2)

Nn∑

s=k+2

e−hs

N−1∑

i=0

W
⌊ s+2j

N ⌋
N⌊
s+2j
N

⌋
!
+ eh(−2l−2)

Nn∑

s′=l+2

ehs
′

N−1∑

i=0

W

⌊

s′+2j
N

⌋

N⌊
s′+2j
N

⌋
!




(1.145)

where G = 2N max{WN , 1}eWN
∏N−1

i=1 M2
i , for k ≥ N⌈2ehNWN − 1⌉ − 1 and

l ≥ N⌈2WN − 1⌉ − 1.

Since
⌊

s
N

⌋
≤

⌊
s+2j
N

⌋
≤

⌊
s
N
+ 2

⌋
, we have that

W
⌊ s+2j

N ⌋
N

⌊ s+2j
N ⌋! ≤ W

⌊ s
N ⌋

N

⌊ s
N ⌋! ·max{W 2

N , 1}:

VE − V̂ T
E ≤ 2e(α−r)τS0G


(ehNWN)

⌊

k+1
N

⌋

⌊
k+1
N

⌋
!

N−1∑

r=0

ehr +
(e−hNWN)

⌊

l+1
N

⌋

⌊
l+1
N

⌋
!

N−1∑

r=0

e−hr


+

+ e(α−r)τS0GN max{W 2
N , 1}


eh(2k+2)

Nn∑

s=k+2

e−hsW
⌊ s

N ⌋
N⌊
s
N

⌋
!
+ eh(−2l−2)

Nn∑

s=l+2

ehs
W

⌊ s
N ⌋

N⌊
s
N

⌋
!


 =

≤ 2e(α−r)τS0G


(ehNWN)

⌊

k+1
N

⌋

⌊
k+1
N

⌋
!

N−1∑

r=0

ehr +
(e−hNWN)

⌊

l+1
N

⌋

⌊
l+1
N

⌋
!

N−1∑

r=0

e−hr


+

+ e(α−r)τS0GN max{W 2
N , 1}eh(2k+2)

N−1∑

r=0

e−hr

n∑

t=
⌊

k+2
N

⌋

e−hNtW
t
N

t!
+

+ e(α−r)τS0GN max{W 2
N , 1}eh(−2l−2)

N−1∑

r=0

ehr
n∑

t=
⌊

l+2
N

⌋

ehNtW
t
N

t!
=

=2e(α−r)τS0G


(ehNWN)

⌊

k+1
N

⌋

⌊
k+1
N

⌋
!

N−1∑

r=0

ehr +
(e−hNWN)

⌊

l+1
N

⌋

⌊
l+1
N

⌋
!

N−1∑

r=0

e−hr


+
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+ 2e(α−r)τS0GN max{W 2
N , 1}


eh(2k+2) (e

−hNWN)

⌊

k+1
N

⌋

⌊
k+1
N

⌋
!

N−1∑

r=0

e−hr

+eh(−2l−2) (e
hsWN)

⌊

l+1
N

⌋

⌊
l+1
N

⌋
!

N−1∑

r=0

ehr




for k ≤ N⌈2ehNWN − 1⌉ − 1 and l ≥ max{N⌈2WN − 1⌉ − 1, N⌈2ehNWN −
1⌉ − 2}.

Since we also have hs ≤ hN
⌊

s
N

⌋
+hN and −hs ≤ −hN

⌊
s
N

⌋
, we can write:

VE − V̂ T
E ≤ 2e(α−r)τS0G


(ehNWN)

⌊

k+1
N

⌋

⌊
k+1
N

⌋
!

N−1∑

r=0

ehr +
(e−hNWN)

⌊

l+1
N

⌋

⌊
l+1
N

⌋
!

N−1∑

r=0

e−hr

+N max{W 2
N , 1}


e2hN (ehNWN)

⌊

k+1
N

⌋

⌊
k+1
N

⌋
!

N−1∑

r=0

e−hr +
(e−hNWN)

⌊

l+1
N

⌋

⌊
l+1
N

⌋
!

N−1∑

r=0

ehr






≤2e(α−r)τS0G


(ehNWN)

⌊

k+1
N

⌋

⌊
k+1
N

⌋
!

(
N−1∑

r=0

ehr +N max{W 2
N , 1}e2hN

N−1∑

r=0

e−hr

)
+

+
(e−hNWN)

⌊

l+1
N

⌋

⌊
l+1
N

⌋
!

(
N−1∑

r=0

e−hr +N max{W 2
N , 1}

N−1∑

r=0

ehr

)
 .

In order to have the desired inequality, VE − V̂ T
E < ε, we ask for:

(ehNWN)

⌊

k+1
N

⌋

⌊
k+1
N

⌋
!

(
N−1∑

r=0

ehr +N max{W 2
N , 1}e2hN

N−1∑

r=0

e−hr

)
<

ε

4e(α−r)τS0G

and

(e−hNWN)

⌊

l+1
N

⌋

⌊
l+1
N

⌋
!

(
N−1∑

r=0

e−hr +N max{W 2
N , 1}

N−1∑

r=0

ehr

)
<

ε

4e(α−r)τS0G
.

Let us call

C+ =
N−1∑

r=0

ehr +N max{W 2
N , 1}e2hN

N−1∑

r=0

e−hr
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C− =
N−1∑

r=0

e−hr +N max{W 2
N , 1}

N−1∑

r=0

ehr.

With this notation our requests become:

(ehNWN)

⌊

k+1
N

⌋

⌊
k+1
N

⌋
!

<
ε

4e(α−r)τS0GC+

and

(e−hNWN)

⌊

l+1
N

⌋

⌊
l+1
N

⌋
!

<
ε

4e(α−r)τS0GC− .

Using Lemma 1.6.4 we impose:

ehN+1WN −
⌊
k + 1

N

⌋
≤ log ε− log(4S0G)− (α− r)τ − logC+

e−hN+1WN −
⌊
l + 1

N

⌋
≤ log ε− log(4S0G)− (α− r)τ − logC−

which means

k ≥ N
⌈
g+ − log ε

⌉
− 1

and

l ≥ N
⌈
g− − log ε

⌉
− 1

for

g+ = ehN+1WN + log(4S0G) + (α− r)τ + logC+

g− = e−hN+1WN + log(4S0G) + (α− r)τ + logC−

These conditions must be compared with those we needed in order to re-
peatedly apply Proposition 1.6.16, therefore:

k ≥ max{N
⌈
g+ − log ε

⌉
− 1, N

⌈
2ehNWN − 1

⌉
− 1}

l ≥ max{N
⌈
g− − log ε

⌉
− 1, N⌈2WN − 1⌉ − 1, N⌈2ehNWN − 1⌉ − 2}.
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The previous theorem allows to extend to arbitraryN the result of Theorem
1.6.8 and Theorem 1.6.9, which guarantee that for appropriately chosen k and
l, the value VE of the European call option (or the value V (0, 0, 0) obtained
via the backward procedure, that is the same) can be approximated by

V̂ T
E = e−rτ

k∑

k=−l

n∑

j=0

(S0e
(−n+2j)σ

√
∆t+hk −K0)

+P (j)Q̂1(k)

and with the value V T (0, 0, 0) obtained through the backward truncated pro-
cedure.

Theorem 1.6.18. Given ε = 1
n
> 0, and k and l the smallest integers as in

Theorem 1.6.17, the proposed procedure for V̂ T
E converges to the HS price and

its computational complexity is O(n log n).

Theorem 1.6.19. Given ε = 1
n
> 0, and k and l the smallest integers as in

Theorem 1.6.17, the backward procedure described above for V T (0, 0, 0) con-
verges to the HS price and its computational complexity is O(n2 log n).

The proofs of Theorems 1.6.18 and 1.6.19 coincide with those of Theorems
1.6.8 and 1.6.9.

1.6.2 European put options

European put option, N = 1

With similar notation to the call case, we take:

PE = e−rτ

n∑

k=−n

n∑

j=0

(K0 − S0e
(−n+2j)σ

√
∆t+hk)+P (j)Q1(k)

P T
E = e−rτ

k∑

k=−l

n∑

j=0

(K0 − S0e
(−n+2j)σ

√
∆t+hk)+P (j)Q1(k)

P̂ T
E = e−rτ

k∑

k=−l

n∑

j=0

(K0 − S0e
(−n+2j)σ

√
∆t+hk)+P (j)Q̂1(k)

and we consider separately the differences PE − P T
E and P T

E − P̂ T
E .
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Discarding the value of the underlying, we obtain:

PE − P T
E =e−rτ

−l−1∑

k=−n

n∑

j=0

(K0 − S0e
(−n+2j)σ

√
∆t+hk)+P (j)Q1(k)+

+ e−rτ

n∑

k=k+1

n∑

j=0

(K0 − S0e
(−n+2j)σ

√
∆t+hk)+P (j)Q1(k)

≤ e−rτK0

n∑

k=k+1

Q1(k)
n∑

j=0

P (j) + e−rτK0

n∑

k=l+1

Q1(k)
n∑

j=0

P (j)

≤ e−rτK0




n∑

k=k+1

Q̃1(k) +
n∑

k=l+1

Q̃1(k)


 (1.146)

while Lemma 1.6.5 gives

P T
E − P̂ T

E ≤ e−rτK0




k∑

k=−l

Q̃1(2k + 2− k) +
k∑

k=−l

Q̃1(−2l − 2− k))




≤ e−rτK0




min{2k+l,n}∑

s=k+2

Q̃1(s) +

min{2l+k,n}∑

s=l+2

Q̃1(s)


 (1.147)

Combining Equations (1.146) and (1.147) we obtain:

PE − P̂ T
E ≤ e−rτK0




n∑

k=k+1

Q̃1(k) +
n∑

k=l+1

Q̃1(k) +
n∑

k=k+2

Q̃1(k) +
n∑

k=l+2

Q̃1(k)




(1.148)
which can be brought to

PE − P̂ T
E ≤ 4e−rτK0

n∑

k=k+1

Q̃1(k)

taking l = k.
Applying Proposition 1.6.6 we obtain that, when k ≥ 2w − 1,
provided that

4ew
wk+1

(k + 1)!
≤ ε

4e−rτK0

,

we have
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4e−rτK0

n∑

k=k+1

Q̃1(k) ≤ ε.

By Lemma 1.6.4 this means that k is the appropriate level for the cut when
−k − 1 + ew ≤ log ε

16e−rτ+wK0
i.e.

k ≥ max{−1 + ew − log ε+ log(16K0)− rτ + w, 2w − 1}

European put option, arbitrary N

With the same notation as before,

PE = e−rτ

n·N∑

k=−n·N

n∑

j=0

(K0 − S0e
(−n+2j)σ

√
∆t+hk)+P (j)QN(k)

P T
E = e−rτ

k∑

k=−l

n∑

j=0

(K0 − S0e
(−n+2j)σ

√
∆t+hk)+P (j)QN(k).

and

P̂ T
E = e−rτ

k∑

k=−l

n∑

j=0

(K0 − S0e
(−n+2j)σ

√
∆t+hk)+P (j)Q̂N(k)

Discarding the value of the underlying, as we did in the N = 1 case, we
obtain:

PE − P T
E ≤ e−rτK0




Nn∑

k=k+1

Q̃N(k) +
Nn∑

k=l+1

Q̃N(k)


 (1.149)

while recalling that Qk
1(k) and Q1l(k) are the probabilities of reaching at ma-

turity the “jump level”k trespassing level k and −l respectively, we can write

P T
E − P̂ T

E = (1.150)

= e−rτ

k∑

k=−l

n∑

j=0

(K0 − S0e
(−n+2j)σ

√
∆t+hk)+P (j)(QN(k)− Q̂N(k)) (1.151)

≤ e−rτK0

k∑

k=−l

(QN(k)− Q̂N(k)) (1.152)
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≤ e−rτK0

k∑

k=−l

(Qk
N(k) +QNl(k)) (1.153)

≤ e−rτK0




k∑

k=−l

N∑

i=1

Q̃N(2k + 2i− k) +
k∑

k=−l

N∑

i=1

Q̃N(2l + 2i+ k))




≤ e−rτK0




min{2k+l+2,Nn}∑

s=k+2

N−1∑

i=0

Q̃N(s+ 2i) +

min{2l+k+2,Nn}∑

s=l+2

N−1∑

i=0

Q̃N(s+ 2i)




≤ e−rτK0N




Nn∑

s=k+2

Q̃N(s) +
Nn∑

s=l+2

Q̃N(s)


 . (1.154)

Combining Equations (1.149) and (1.154) we obtain:

PE − P̂ T
E ≤ e−rτK0(N + 1)




Nn∑

k=k+1

Q̃N(k) +
Nn∑

k=l+1

Q̃N(k)


 (1.155)

≤ 2e−rτK0(N + 1)
Nn∑

k=k+1

Q̃N(k) (1.156)

supposing we take l = k.
As in the call case, we can compute (1.155) with a O(n2) procedure, thus

determining numerically the largest integers l and k such that the loss is inferior
to an arbitrary ε.6

For the theoretical bounds we need the following result.

Theorem 1.6.20. Given ε > 0, taking G = 2N max{WN , 1}
∏N−1

i=1 M2
i e

WN ,

the value P̂ T
E obtained via truncation of the tree at levels k and −k, with k the

smallest integer which satisfies:
k ≥ max{N⌈2WN−1⌉−1, N⌈WNe− log ε−rτ+log(4N(N+1)K0G)⌉−1},

we have

∣∣∣PE − P̂ T
E

∣∣∣ < ε

Proof. Applying Equation (1.141) to Equation (1.156) we obtain:

6Given ε, we consider η = ε
2e−rτK0(N+1) and we compute, starting from i = Nn and

proceeding backwards, the sum Si =
∑Nn

k=i Q̃N (k). While Si < η, we keep decreasing i. The
first i we encounter such that Si ≥ η is our k = l.
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PE − P̂ T
E ≤ 2e−rτK0(N + 1)

Nn∑

k=k+1

Q̃N(k)

≤ 4e−rτK0(N + 1)GN
W

⌊

k+1
N

⌋

N⌊
k+1
N

⌋
!

for k ≥ N⌈2WN − 1⌉ − 1.
We ask k ≥ N⌈WNe − log ε − rτ + log(4N(N + 1)KG)⌉ − 1, in order to

have

4e−rτK0(N + 1)GN
W

⌊

k+1
N

⌋

N⌊
k+1
N

⌋
!
< ε.

Collecting all the requirements on k, we get that for
k ≥ max{N⌈2WN −1⌉−1, N⌈WNe− log ε− rτ +log(4N(N +1)KG)⌉−1}

we have
|PE − P̂ T

E | < ε.

We can then state the following results.

Theorem 1.6.21. Given ε = 1
n
> 0, and k and l the smallest integers as in

Theorem 1.6.20, the proposed procedure for P̂ T
E converges to the HS price and

its computational complexity is O(n log n).

Theorem 1.6.22. Given ε = 1
n
> 0, and k and l the smallest integers as in

Theorem 1.6.20, the backward procedure described above for P T (0, 0, 0) con-
verges to the HS price and its computational complexity is O(n2 log n).

The proofs of Theorems 1.6.21 and 1.6.22 coincide with those of Theorems
1.6.8 and 1.6.9.

1.6.3 American case

In the following, we extend the results on the backward procedure for the
evaluation of the European derivatives to the American put option pricing, by
showing that the truncation error for the American case must be less or equal
then the error in the European case.
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We define the value V K(i, j, k) obtained via backward procedure according
to the following formula: V K(i, j, k) = e−r∆t

∑N
l=−N(V

K(i+ 1, j + 1, k + l)p+

V K(i + 1, j, k + l)(1 − p))ql if k ∈ [−l, k], K0 otherwise; with initial data
V K(n, j, k) = (S(n, j, k) −K0)

+, for j integer between 0 and n and k integer
such that −l ≤ k ≤ k, V K(n, j, k) = K0 for j integer between 0 and n and k
integer such that −nN ≤ k ≤ −l − 1 or k + 1 ≤ k ≤ nN .

We also consider value V̂ K
E , defined as

V̂ K
E = V̂ T

E +
∑

paths that reach τ and trespass

prob(path) ·K0e
−r∆ti(path)

(1.157)
where prob(path) identifies the probability of a single path and i(path) the

time 0 < i ≤ n of the first exit of the path from the allowed zone.
For the put options, similarly we call PK(i, j, k) the value obtained via

backward procedure according to the following formula:
PK(i, j, k) = e−r∆t

∑N
l=−N(P

K(i+1, j+1, k+l)p+PK(i+1, j, k+l)(1−p))ql
if k ∈ [−l, k], K0 otherwise; with initial data PK(n, j, k) = (K0 − S(n, j, k))+,
for j integer between 0 and n and k integer such that −l ≤ k ≤ k, PK(n, j, k) =
K0 for j integer between 0 and n and k integer such that −nN ≤ k ≤ −l − 1

or k + 1 ≤ k ≤ nN , and P̂K
E the value

P̂K
E = P̂ T

E +
∑

paths that reach τ and trespass

prob(path) ·K0e
−r∆ti(path).

(1.158)

Lemma 1.6.23. V K(0, 0, 0) = V̂ K
E and PK(0, 0, 0) = P̂K

E

Proof. Since from now on we will focus on the put option, we will write the
proof for the put case for induction on the number of steps n; for the call
options the proof is analogous.

Let us start with n = 1. Our tree has only one step, which means that the
values at maturity of the option are given by the 2(2N+1) children of (0, 0, 0).
∆t = τ . Let 0 ≤ l, k ≤ N , that means that (0, 0, 0) is surely in the allowed
zone, while some of its children may be not. Since the value of the option on
the nodes (1, j, k) with k /∈ [−l, k] is K0, we can write:

PK(0, 0, 0) = e−rτ

N∑

l=−N

(PK(1, j + 1, l)p+ PK(1, j, l)(1− p))ql =
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=e−rτ

k∑

l=−l

(PK(1, j + 1, l)pql + PK(1, j, l)(1− p)ql) + e−rτ

−l−1∑

l=−N

K0 + e−rτ

N∑

l=k+1

K0 =

=e−rτ
∑

paths that reach τ and do not trespass

prob(path) · value(path)+

+
∑

paths that reach τ and trespass

prob(path) ·K0e
−r∆ti(path)

=P̂ T
E+

+
∑

paths that reach τ and trespass

prob(path) ·K0e
−r∆ti(path)

where we take into account the fact that in a single step the paths that trespass
are those that end outside the boundaries.

Let us now suppose the thesis is true for all trees in n − 1 steps. Let
us consider a tree of n steps. ∆t = τ/n. We focus on the first step and
compute the value of PK(0, 0, 0) with the backward procedure: PK(0, 0, 0) =
e−r∆t

∑N
l=−N(P

K(1, 1, l)p+ PK(1, 0, l)(1− p))ql.

If l /∈ [−l, k], PK(1, 1, l) = PK(1, 0, l) = K0. Otherwise, we can consider
the n − 1 tree that starts at (1, j, l) for j = 0, 1 and l /∈ [−l, k] and ends at
maturity τ . We apply induction and write that the value PK(1, j, l) for this
smaller tree is given by

PK(1, j, l) =

=e−rτ ′
∑

paths that go from (1, j, l) to τ
and do not trespass

prob(path’) · value(path’)+

+
∑

paths that go from (1, j, l) to τ
and trespass

prob(path’) ·K0e
−r∆ti(path’)

where τ ′ indicates τ ′ = τ −∆t, ∆t′ = τ ′/(n− 1) and path’ indicates a generic
path going from (1, j, l) to τ . Therefore

PK(0, 0, 0) =

=e−r∆t

N∑

l=−N

l∈[−l,k]

(PK(1, 1, l)p+ PK(1, 0, l)(1− p))ql + e−r∆t

N∑

l=−N

l /∈[−l,k]

K0ql =



1.6 Establishing an appropriate cut 105

=e−rτ

N∑

l=−N



pql

∑

paths that go from (1, 1, l) to τ
and do not trespass

prob(path’) · value(path’)+

+ pql
∑

paths that go from (1, 1, l) to τ
and trespass

prob(path’) ·K0e
−r∆ti(path’)+

+ (1− p)ql
∑

paths that go from (1, 0, l) to τ
and do not trespass

prob(path’) · value(path’)+

+(1− p)ql
∑

paths that go from (1, 0, l) to τ
and trespass

prob(path’) ·K0e
−r∆ti(path’)




+

+ e−r∆t

N∑

l=−N

l /∈[−l,k]

K0ql =

=e−rτ

N∑

l=−N

l∈[−l,k]

(
pqlP

T (1, j, l) + (1− p)qlP
T (1, 0, l)+

+ pql
∑

paths that go from (1, 1, l) to τ
and trespass

prob(path’) ·K0e
−r∆ti(path’)+

+(1− p)ql
∑

paths that go from (1, 0, l) to τ
and trespass

prob(path’) ·K0e
−r∆ti(path’)




+

+ e−r∆t

N∑

l=−N

l /∈[−l,k]

K0ql

where we used Lemma 1.6.1 in order to use the values P T (1, j, l). Now we con-
sider a path starting from the node (0, 0, 0), visiting node (1, j, l) and reaching
maturity trespassing the barriers, following a path which we call path’. If
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j = 0 then prob(path)= (1− p)ql prob(path’), while if j = 1 prob(path)= pql
prob(path’). If l /∈ [−l, k], then i(path)=1, otherwise i(path)=i(path’)+1. This
means we can write

PK(0, 0, 0) = P T (0, 0, 0)+

+
∑

paths that trespass
after first step

prob(path) ·K0e
−r∆ti(path)+

+
∑

paths that trespass
in the first step

prob(path) ·K0e
−r∆ti(path) =

=P̂K
E

Substituting 0 with K0 in the nodes above the barrier increases the value
of the option, therefore we have V K(0, 0, 0) ≥ V T (0, 0, 0) and PK(0, 0, 0) ≥
P T (0, 0, 0). Since for the put options we also have P (i, j, k) ≤ K0 for every
(i, j, k), we have that PK(0, 0, 0) ≥ P (0, 0, 0) ≥ P T (0, 0, 0).

Therefore

|PK(0, 0, 0)− P (0, 0, 0)| ≤ |PK(0, 0, 0)− P T (0, 0, 0)| = |P̂K
E − P̂ T

E |.

In order to control P̂K
E − PE we only need to control P̂K

E − P̂ T
E .

Theorem 1.6.24. Given ε > 0, taking G = 2N max{WN , 1}
∏N−1

i=1 M2
i e

WN ,
the values PK(0, 0, 0) and P T (0, 0, 0) obtained via truncation of the tree at
levels k and −k, with k the smallest integer which satisfies:

k ≥ max{N⌈2WN − 1⌉ − 1, N⌈WNe − log ε + log(4N(N + 1)K0G)⌉ − 1},
we have

∣∣PK(0, 0, 0)− P T (0, 0, 0)
∣∣ < ε

Proof.

PK(0, 0, 0)−P T (0, 0, 0) =
∑

paths that reach τ and trespass

prob(path)·K0e
−r∆ti(path)

Therefore:
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PK(0, 0, 0)− P T (0, 0, 0) ≤
∑

paths that exit [−l,k]

prob(path) ·K0

≤ K0

Nn∑

k=−Nn

∑

paths that exit [−l,k]

and end up in k

prob(path)

≤ K0

−l−1∑

k=−Nn

∑

paths that exit [−l,k]

and end up in k

prob(path) +K0

k∑

k=−l

∑

paths that exit [−l,k]

and end up in k

prob(path)+

+K0

Nn∑

k=k+1

∑

paths that exit [−l,k]

and end up in k

prob(path)

≤ K0

−l−1∑

k=−Nn

∑

paths that end up in k

prob(path) +K0

k∑

k=−l

∑

paths that exit [−l,k]

and end up in k

prob(path)+

+K0

Nn∑

k=k+1

∑

paths that end up in k

prob(path)

≤ K0

−l−1∑

k=−Nn

QN(k) +K0

Nn∑

k=k+1

QN(k)+

+K0

k∑

k=−l

∑

paths that exit −l

and end up in k

prob(path) +K0

k∑

k=−l

∑

paths that exit k

and end up in k

prob(path)

≤ K0

Nn∑

k=l+1

Q̃N(k) +K0

Nn∑

k=k+1

Q̃N(k) +K0

k∑

k=−l

QNl(k) +K0

k∑

k=−l

QN
k(k).

Therefore we have

PK(0, 0, 0)− P T (0, 0, 0) ≤ K0(N + 1)




Nn∑

k=l+1

Q̃N(k) +
Nn∑

k=k+1

Q̃N(k)



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≤ 2K0(N + 1)
Nn∑

k=k+1

Q̃N(k)

≤ 4K0(N + 1)GN
W

⌊

k+1
N

⌋

N⌊
k+1
N

⌋
!

for l = k ≥ N⌈2WN − 1⌉ − 1 and applying Equation (1.141).
We ask k ≥ N⌈WNe− log ε+ log(4N(N + 1)K0G)⌉ − 1, in order to have

4K0(N + 1)GN
W

⌊

k+1
N

⌋

N⌊
k+1
N

⌋
!
< ε.

Collecting all the requirements on k, we get that for
k ≥ max{N⌈2WN − 1⌉ − 1, N⌈WNe− log ε+ log(4N(N + 1)K0G)⌉ − 1}
we have

∣∣PK(0, 0, 0)− P T (0, 0, 0)
∣∣ < ε.

Theorem 1.6.25. Let PA = PA(0, 0, 0) the binomial price, evaluated with
the backward procedure, in the American put case. Fixed k and l, let PK

A =
PK
A (0, 0, 0) the binomial price, evaluated with the backward procedure with the

truncation and substitution of the value outside the allowed zone with the strike,

in the American case. Let P̂K
E and PE the European prices as above. One has:

|PK
A − PA| ≤ |P̂K

E − PE|.

Proof. We consider PK(i, j, l), PK
A (i, j, l), j = 0, ..., i, the backward procedures

which have value K0 for l under the −l and over the k barrier for all the time
steps i, running from 0 to n. We consider P (i, j, l), PA(i, j, l), j = 0, ..., i the
standard HS backward procedures.

We claim that

|PK
A (i, j, l)− PA(i, j, l)| ≤ |PK(i, j, l)− P (i, j, l)|

for all i, j, l.
Since the American put price is not smaller than the European price and

it is not larger than K0, out of the barriers the claim is true. Inside the
boundaries, we prove it for induction on the step i.
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Let i = n. On all the nodes at maturity the error is the same, since
PK
A (i, j, l) = PK(i, j, l) and PA(i, j, l) = P (i, j, l).
Consider now the case i− 1.
We set the continuation value CK

A (i−1, j, l) = e−r∆t
∑N

k=−N(P
K
A (i, j+1, l+

k)p+PK
A (i, j, l+ k)(1− p))qk and CA(i− 1, j, l), CK

E (i− 1, j, l), CE(i− 1, j, l),
similarly. Consider the nodes inside the barriers. The truncation value PK

A (i−
1, j, l) is then given by

PK
A (i− 1, j, l) = max

[
CK

A (i− 1, j, l), K0 − S(i− 1, j, l)
]

(1.159)

One has CA(i, j, l) ≤ CK
A (i, j, l) for every i, j, l.

Only the following cases are possible:

• CK
A (i− 1, j, l) ≤ K0 − S(i− 1, j, l)

This means PK
A (i − 1, j, l) = K0 − S(i − 1, j, l) = PA(i − 1, j, l), and

|PK
A (i− 1, j, l)− PA(i− 1, j, l)| = 0.

• CA(i− 1, j, l) ≤ K0−S(i− 1, j, l) and CK
A (i− 1, j, l) ≥ K0−S(i− 1, j, l)

This means PA(i − 1, j, l) = K0 − S(i − 1, j, l) and PK
A (i − 1, j, l) =

CK
A (i− 1, j, l), and

|PK
A (i− 1, j, l)− PA(i− 1, j, l)| = CK

A (i− 1, j, l)− (K0 − S(i− 1, j, l))

≤ CK
A (i− 1, j, l)− CA(i− 1, j, l)

≤e−r∆t

N∑

k=−N

(PK
A (i, j + 1, l + k)p+ PK

A (i, j, l + k)(1− p))qk+

− e−r∆t

N∑

k=−N

(PA(i, j + 1, l + k)p+ PA(i, j, l + k)(1− p))qk

=e−r∆t

N∑

k=−N

[(PK
A (i, j + 1, l + k)− PA(i, j + 1, l + k)]pqk+

+ e−r∆t

N∑

k=−N

[PK
A (i, j, l + k)− PA(i, j, l + k)](1− p)qk

Either the nodes (i, j+1, l+k) and (i, j, l+k) are outside the boundaries,
and then the claim is true, or we can use induction, therefore: PK

A (i, j +
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1, l+ k)− PA(i, j + 1, l+ k) ≤ PK(i, j + 1, l+ k)− P (i, j + 1, l+ k), and
PK
A (i, j, l + k)− PA(i, j, l + k) ≤ PK(i, j, l + k)− P (i, j, l + k). Hence:

|PK
A (i− 1, j, l)− PA(i− 1, j, l)| ≤

≤e−r∆t

N∑

k=−N

[(PK(i, j + 1, l + k)− P (i, j + 1, l + k)]pqk

+ e−r∆t

N∑

k=−N

[PK(i, j, l + k)− P (i, j, l + k)](1− p)qk

≤e−r∆t

N∑

k=−N

(PK(i, j + 1, l + k)p+ P (i, j, l + k)(1− p))qk+

− e−r∆t

N∑

k=−N

(PK(n, j + 1, l + k)p+ P (i, j, l + k)(1− p))qk

≤PK(i, j, l)− P (i, j, l).

• CA(i− 1, j, l) ≥ K0 − S(i− 1, j, l)

This means PK
A (i − 1, j, l) = CK

A (i − 1, j, l) and PA(i − 1, j, l) = CA(i −
1, j, l), and

|PA(i− 1, j, l)− PK
A (i− 1, j, l)| = CK

A (i− 1, j, l)− CA(i− 1, j, l)

which we have already considered in the previous case.

Hence, by Theorem 1.6.9 we can state the following analogous result in the
American case.

Theorem 1.6.26. Given ε = 1
n
> 0, and k = l the smallest integer as in Theo-

rem 1.6.24, the backward procedure described in Theorem 1.6.25 for PK
A (0, 0, 0)

converges to the HS price and its computational complexity is O(n2 log n).

1.7 One-dimensional procedure

A further reduction of the computational complexity is possible, and in this
Section we show how it can be obtained by modifying the previous procedure
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in order to make it one-dimensional. Our strategy is to start from a given
ε > 0 (we took a ε = 10−6 for the Tables provided in this work) and to specify
a recursive backward step that only has a computational cost of order O(n) -
which in turn entails that the procedure as a whole will have a computational
complexity of O(n2) - and that gives us a price, both in the European and the
American case, with an error smaller than ε with respect to the price obtained
via the Hilliard and Schwartz procedure described in Section 1.5.2.

In order to do this, we modify our tree by modelling both the Brownian
moves and the jumps with only one variable. This feature has been proposed
before - we have seen an example of it by Amin [5] - but with a very different
strategy and a loss in precision which we want to avoid by the limitation of
the error. We first address the particular case in which the jump nodes are
nodes of the CRR tree (eventually extended). We will then show how to deal
with the more general situation in which that is not the case. This section is
based on Gaudenzi, Spangaro, Stucchi [34].

1.7.1 Jump is a multiple of the Brownian node distance

As a first step in transforming the bivariate tree in a tree with only one di-
mension for the random variable, we will suppose the minimal amplitude h of
a jump to be a multiple of the distance between two Brownian nodes at the
same height in the tree, that is, a multiple of 2σ

√
∆t.

Let m be the (integer) ratio h
2σ

√
∆t
, i. e. h = 2mσ

√
∆t.

We will then consider a tree where every node is labelled with a pair of
indexes (i, j); the index i, for i integer between 0 and n, denotes the nodes at
time i∆t, the index j, for j integer between 0 and (2Nm + 1)i, indicates the

value S0e
(−i(2Nm+1)+2j)σ

√
∆t for the underlying.

With the same notation as above, p will represent the probability of an
“up” Brownian move (therefore 1 − p will be the probability of a “down”
Brownian move), and qk, for k integer between −N and +N , will constitute
the probability of a kh jump; since we assume that h is 2m times the Brownian
move, qk will be the probability of having a jump of amplitude 2kmσ

√
∆t .

Hence, from the node (i, j) we can reach the nodes:
(i+ 1, j) with probability (1− p)q

−N
,

(i+ 1, j + 1) with probability pq
−N
,

(i+ 1, j +m) with probability (1− p)q
−(N−1)

,
(i+ 1, j + 1 +m) with probability pq

−(N−1)
,

...
(i+ 1, j + 2Nm) with probability (1− p)q

N
,

(i+ 1, j + 1 + 2Nm) with probability pq
N
.
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In the European case, the backward procedure for the evaluation of the call
option price is obtained via the recursion formula

V (i, j) = e−r∆t

N∑

k=−N

(V (i+1, j+1+(k+N)m)p+V (i+1, j+(k+N)m)(1−p))qk

(1.160)
with initial data V (n, j) = (S(n, j) − K0)

+, for j integer between 0 and
n(2Nm+ 1).

In the American case we use the same initial data but replace the previous
recursion formula by:

CV (i, j) = (1.161)

=
N∑

k=−N

e−r∆t(VA(i+ 1, j + 1 + (k +N)m)pqk + VA(i+ 1, j + (k +N)m)(1− p)qk)

(1.162)

VA(i, j) = max{S(i, j)−K0, CV (i, j)}. (1.163)

Similarly, we define P (i, j), CP (i, j) and PA(i, j) for the put case. The
highest node at time i∆t is given by j = (2Nm + 1)i, which we reach with a
maximum amplitude jump and an up Brownian move at every time step up
to time i∆t, which can be written as i(2N h

√
n

2σ
√
τ
+ 1), since m = h

2σ
√
∆t

= h
√
n

2σ
√
τ
.

Considering all the possible nodes between the highest and the lowest, we
have at most i · (2N · h

√
n

σ
√
τ
+1)+ 1 nodes at every time step (when m > 2i this

number also includes nodes that can never be reached). Therefore our tree has
at most a total of

1 +
n∑

i=1

[
i ·

(
2 ·N · h

√
n

σ
√
τ
+ 1

)
+ 1

]
= 1 +

(
2 ·N · h

√
n

σ
√
τ
+ 1

) n∑

i=1

i+ n =

= 1+

(
2 ·N · h

√
n

σ
√
τ
+ 1

)(
n(n+ 1)

2

)
+n = 1+

(
N · h

√
n

σ
√
τ
+ 2

)
(n(n+ 1))+n

nodes, and the computational complexity of the backward procedure is O(n2.5).

1.7.2 Jump not a multiple of twice a Brownian

When the value
√
γ′2 + δ2 that we usually take as the minimal amplitude of

a jump is not a multiple of twice the amplitude of the Brownian step, we can
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recover the previous reasoning by introducing a transformation in the value b
which intervenes in the definition of the jump amplitude h = b

√
γ′2 + δ2 (see

Equation (1.93)).
Instead of taking b = 1, we will define a bn which depends on the number of

steps n, and converges to b = 1 as n goes to infinity, such that hn = bn
√
γ′2 + δ2

is a multiple of 2σ
√
∆t. The value of the option is then computed as in the

previous section. In order to show that this procedure is sound, we prove some
convergence results of this modified process to Yτ .

At first let us suppose
√
γ′2 + δ2 >

3

2
σ
√
∆t. Since γ′ and δ are parameters

of the process and do not depend on n, this is going to be true if we take big
enough values for n; however, for completeness, later we will see how we can

treat the case
√
γ′2 + δ2 ≤ 3

2
σ
√
∆t.

Given n, let us define k as the nearest integer of the ratio between
√
γ′2 + δ2

and 2σ
√
∆t:

k =

∣∣∣∣∣

∣∣∣∣∣

√
γ′2 + δ2

2σ
√
∆t

∣∣∣∣∣

∣∣∣∣∣

This implies (k−1)·2σ
√
∆t ≤ h ≤ (k+1)·2σ

√
∆t. Since we are considering√

γ′2 + δ2 >
3

2
σ
√
∆t, k must be at least 1.

Let us call bn the positive value such that bn
√
γ′2 + δ2 = k · 2σ

√
∆t, that

is

bn = k
2σ

√
∆t√

γ′2 + δ2
.

We are not guaranteed the above value of bn respects the HS prescribed bound-
aries of being between 0 and 1, but we are going to focus on its behaviour in
the limit for n→ +∞.

For n→ +∞, we have bn =

∣∣∣∣
∣∣∣∣
√

γ′2+δ2

2σ
√
∆t

∣∣∣∣
∣∣∣∣ 2σ

√
∆t√

γ′2+δ2
→ 1. In fact,

|bn − 1| < ε⇔ 1− ε <

∣∣∣∣∣

∣∣∣∣∣

√
γ′2 + δ2

2σ
√
∆t

∣∣∣∣∣

∣∣∣∣∣
2σ

√
∆t√

γ′2 + δ2
< 1 + ε

⇔ (1− ε)

√
γ′2 + δ2

2σ
√
∆t

<

∣∣∣∣∣

∣∣∣∣∣

√
γ′2 + δ2

2σ
√
∆t

∣∣∣∣∣

∣∣∣∣∣ < (1 + ε)

√
γ′2 + δ2

2σ
√
∆t

⇔ (1− ε)

√
γ′2 + δ2

√
n

2σ
√
τ

<

∣∣∣∣∣

∣∣∣∣∣

√
γ′2 + δ2

√
n

2σ
√
τ

∣∣∣∣∣

∣∣∣∣∣ < (1 + ε)

√
γ′2 + δ2

√
n

2σ
√
τ

.
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Since
√
γ′2 + δ2

√
n

2σ
√
τ

− 1

2
<

∣∣∣∣∣

∣∣∣∣∣

√
γ′2 + δ2

√
n

2σ
√
τ

∣∣∣∣∣

∣∣∣∣∣ ≤
√
γ′2 + δ2

√
n

2σ
√
τ

+
1

2

if, given ε > 0, we want |bn − 1| < ε,
we only need

√
γ′2 + δ2

√
n

2σ
√
τ

+
1

2
< (1 + ε)

√
γ′2 + δ2

√
n

2σ
√
τ

and

(1− ε)

√
γ′2 + δ2

√
n

2σ
√
τ

<

√
γ′2 + δ2

√
n

2σ
√
τ

− 1

2
,

which are both guaranteed by n >
σ2τ

ε2(γ′2 + δ2)
.

In analogy to the two dimensional case, we will still call Yn the discrete
process we obtain from the sum of n random variables Y

(n)
∆ obtained with this

variation from the original process from Hilliard and Schwartz:

Y
(n)
∆ :=

{
kbn

√
γ′2 + δ2 with probability q

(n)
k for −N ≤ k ≤ N ,

0 with probability 1− λ∆t.
(1.164)

We will call hn the minimal amplitude bn
√
γ′2 + δ2 of a single jump. Once

the value hn is fixed, imposing the matching of the moments for the discrete
and the continuous process, as in Equation (1.94), we obtain the probabilities

q
(n)
k for −N ≤ k ≤ N .

Even when using Y
(n)
∆ instead of Y∆, the same results of convergence hold:

there is weak convergence of Yn to Yτ in the case δ = 0 and γ′ > 0 (as in
Hilliard and Schwartz) and convergence of the first 2N cumulants of Yn to
those of Yτ in the general case.

These results, heavily based on those by Hilliard and Schwartz, are de-
scribed below.

Theorem 1.7.1. If the amplitude of the jump is fixed (δ = 0), the discrete

process Yn, sum of n i.i.d. Y
(n)
∆ defined as in Eq.(1.164), weakly converges to

the continuous process Yτ .

Proof. We are going to prove that the characteristic functions of Yn converge
pointwise to the characteristic function of Yτ . Therefore, by Lévy’s continuity
theorem, Yn converges in distribution to Yτ .
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Since we take δ = 0 and γ′ > 0, the only possible values for Y
(n)
∆ are bnγ

′

(with probability λ∆t) and 0 (with probability 1− λ∆t).

The characteristic function of Y
(n)
∆ is therefore given by

ϕ
Y

(n)
∆

(x) = λ∆teibn|γ
′|x + (1− λ)∆te0.

Since Yn is the sum of n i.i.d. random variables Y
(n)
∆ , the characteristic

function of the discrete process Yn can be computed as the nth power of the
characteristic function of Y

(n)
∆ :

ϕYn
(x) =

(
ϕ
Y

(n)
∆

(x)
)n

=

(
1 +

λτ
(
eibnγ

′x − 1
)

n

)n

.

Recalling Eq.(1.9), the characteristic function of the continuous process Yτ
is given by:

ϕYτ
(x) = e

λτ

(

eixγ
′
−

δ2x2

2 −1

)

(1.165)

which, for δ = 0, gives:

ϕYτ
(x) = e

λτ
(

eixγ
′−1

)

.

We need to show that for n→ +∞, ϕYn
(x) → ϕYτ

(x).
Define zn = λτ

(
eibnγ

′x − 1
)
. For n → +∞ we have bn → 1 and zn → z =

λτ
(
eiγ

′x − 1
)
by continuity of the function f(t) = λτ

(
eiγ

′xt − 1
)
. This also

means that there is a value c ∈ R such that |zn| < c for all n ∈ N.
Moreover, ezn → ez.

In order to see that
(
1 +

zn
n

)n

tends to ez as n goes to +∞, we use the

triangle inequality:

∣∣∣
(
1 +

zn
n

)n

− ez
∣∣∣ =

∣∣∣
(
1 +

zn
n

)n

− ezn + ezn − ez
∣∣∣

≤
∣∣∣
(
1 +

zn
n

)n

− ezn
∣∣∣+ |ezn − ez|

≤
∣∣∣∣∣

n∑

k=0

(
n

k

)
zkn
nk

−
+∞∑

k=0

zkn
k!

∣∣∣∣∣+ |ezn − ez|

≤
∣∣∣∣∣

n∑

k=0

(
n!

(n− k)!nk
− 1

)
zkn
k!

−
+∞∑

k=n+1

zkn
k!

∣∣∣∣∣+ |ezn − ez|
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≤
∣∣∣∣∣

n∑

k=0

(
n!

(n− k)!nk
− 1

)
zkn
k!

∣∣∣∣∣+
∣∣∣∣∣

+∞∑

k=n+1

zkn
k!

∣∣∣∣∣+ |ezn − ez|.

Now we choose M such that
+∞∑

k=M+1

ck

k!
<
ε

3
. Then, for all n > M we have

that

∣∣∣
(
1 +

zn
n

)n

− ez
∣∣∣ ≤

≤
M∑

k=0

∣∣∣∣
n!

(n− k)!nk
− 1

∣∣∣∣
ck

k!
+

n∑

k=M+1

∣∣∣∣
n!

(n− k)!nk
− 1

∣∣∣∣
ck

k!
+

+
+∞∑

k=n+1

ck

k!
+ |ezn − ez|

≤
M∑

k=0

∣∣∣∣
n!

(n− k)!nk
− 1

∣∣∣∣
ck

k!
+

n∑

k=M+1

ck

k!
+

+∞∑

k=n+1

ck

k!
+ |ezn − ez|

≤
M∑

k=0

∣∣∣∣
n!

(n− k)!nk
− 1

∣∣∣∣
ck

k!
+
ε

3
+ |ezn − ez|

since 0 < n!
(n−k)!nk ≤ 1, hence

∣∣∣ n!
(n−k)!nk − 1

∣∣∣ ≤ 1.

Choosing M ′ ≥M such that |ezn − ez| < ε

3
and

∣∣∣∣
n!

(n− k)!nk
− 1

∣∣∣∣ <
ε

3ec
for

all n > M ′ and k ≤M , we obtain |
(
1 + zn

n

)n − ez| < ε.
Therefore, the characteristic function of Yn converges to the characteristic

function of Yτ .

This, joined with the weak convergence of Xn to Xτ , which is a standard
result, is sufficient to guarantee the convergence of European prices.

Theorem 1.7.2. The first 2N cumulants of the discrete process Yn converge
to the respective cumulants of the continuous process Yτ .

Since hn and q
(n)
k for k = −N, . . . ,+N are constructed in order to have the

matching of the first 2N moments, the proof is exactly the same as in Hilliard
and Schwartz [38] and will be omitted.
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Jump smaller than twice a Brownian

When
√
γ′2 + δ2 ≤ 3

2
σ
√
∆t for a certain n, let us define k as the nearest integer

of the ratio σ
√
∆t√

γ′2+δ2
:

k =

∣∣∣∣∣

∣∣∣∣∣
σ
√
∆t√

γ′2 + δ2

∣∣∣∣∣

∣∣∣∣∣

Let us call bn the positive value such that bn
√
γ′2 + δ2 = 1

k
σ
√
∆t, that is

bn =
1

k

σ
√
∆t√

γ′2 + δ2
.

Again, we are not guaranteed the above value of bn respects the prescribed
boundaries of being between 0 and 1, but this case is only considered when we
have a small n, while for a larger number of steps we will use the procedure
described previously.

Defining hn = bn
√
γ′2 + δ2 we obtain that the Brownian step is a multiple

of the minimal amplitude of the jump.
This means that the jumps are going to fit in the original grid, not expand-

ing it but enriching it with extra nodes between the Brownian ones, if k is not
greater than N .

1.7.3 Univariate cut

European case

Without loss of generality, we will suppose h = 2mσ
√
∆t with m ∈ N.

Here we consider the backward procedure introduced at page 112, where the
European call option value is obtained via the recursion formula (1.160) with
initial data V (n, j) = (S(n, j)−K0)

+, for j integer between 0 and n(2Nm+1).
Applying the truncation method, the procedure is modified as follows:

V T (i, j) =

= e−r∆t

N∑

k=−N

(V T (i+1, j+1+(k+N)m)p+V T (i+1, j+(k+N)m)(1−p))qk

(1.166)

for 0 ≤ i ≤ n and max{0,−lm+Nmi} ≤ j ≤ min{km+i(Nm+1), (2Nm+
1)i}, with initial data V T (n, j) = (S(n, j)−K0)

+, for j integer between −lm+
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Nmn ≤ j ≤ km+ n(Nm+1), while V T (n, j) = 0 for 0 ≤ j < −lm+Nmn or
km+n(Nm+1) < j ≤ (2Nm+1)n, and V T (i, j) = 0 for 0 ≤ j < −lm+Nmi
and km+ i(Nm+ 1) < j ≤ i(2Nm+ 1).

Similarly, we define P T (i, j) for the put option.
Therefore, in our procedure we only need to consider the nodes (i, j) with

j between max{0,−lm+Nmi} and min{km+ i(Nm+1), (2Nm+1)i}, for a
number of nodes (at time i) inferior to (k + l)m+ i.

Theorem 1.7.3. Given ε = 1
n
> 0, and k and l the smallest integers as in

Theorem 1.6.17, in the one-dimensional case the backward procedure described
above converges to the HS price and its computational complexity is O(n2).

Proof. We focus on the call option, for the put option the proof is analo-
gous. We are interested in how the value V T (0, 0) obtained via the back-
ward truncated procedure differs from V T (0, 0, 0). The value V T (0, 0) is not
equal to V T (0, 0, 0) since by substituting all the values outside the boundaries
max{0,−lm + Nmi} and min{km + i(Nm + 1), (2Nm + 1)i} with zero we
are deleting the contribution of paths which at some point in time have surely
made k up jumps or l down jumps, but we are not necessarily excluding all
such paths. The following is true:

V T (0, 0, 0) ≤ V T (0, 0) ≤ VE.

Therefore, |V T (0, 0)−VE| ≤ |V T (0, 0, 0)−VE| ≤ 1
n
for k and l as in Theorem

1.6.17.
From the definition of k and l, the number of nodes at maturity is at most

proportional to (log n)
√
n + n, while at any time i ≤ n it is proportional to

(log n)
√
n+ i; therefore, by summing on all the time steps, we obtain that the

computational complexity of the procedure is O(n2).

As we did in the bivariate case, we can also compute the European call
price via the discounted expected payoff at maturity, substituting the jump
probabilities with the truncated ones, obtained with a forward procedure.

Given ε = 1
n
> 0, and k and l as in Theorem 1.6.17, the procedure for

the computation of the truncated probabilities is O(n log n), and so is the
correct attribution of the probabilities to the nodes, therefore also in the one-
dimensional case the truncated procedure for the computation of the European
price as the discounted expected payoff at maturity as described above con-
verges to the HS price and its computational complexity is O(n log n).
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American case

Again, we will suppose h = 2mσ
√
∆t with m ∈ N.

Here we consider the backward procedure introduced at page 112, where
the American put option value PA(i, j) is obtained via the recursion formula
(1.161) with initial data PA(n, j) = (K0−S(n, j))+, for j integer between 0 and
n(2Nm+ 1), and its difference with the corresponding truncated procedure:

CK
A (i, j) = (1.167)

=
N∑

k=−N

e−r∆t(PK
A (i+ 1, j + 1 + (k +N)m)pql + PK

A (i+ 1, j + (k +N)m)(1− p)qk)

(1.168)

PK
A (i, j) = max{K0 − S(i, j), CK

A (i, j)} (1.169)

for 0 ≤ i ≤ n and −lm + Nmi ≤ j ≤ km + i(Nm + 1), with initial data
PK
A (n, j) = (K0 − S(n, j))+, for j integer between −lm + Nmn ≤ j ≤ km +
n(Nm + 1), while PK

A (n, j) = K0 for 0 ≤ j < −lm +Nmn or km + n(Nm +
1) < j ≤ (2Nm + 1)n, and PK

A (i, j) = K0 for 0 ≤ j < −lm + Nmi and
km+ i(Nm+ 1) < j ≤ i(2Nm+ 1).

Since procedure PK(i, j) fixes to K0 less nodes than those fixed to K0 by
the corresponding bivariate PK(i, j, k), we have:

P T (0, 0, 0) ≤ P T (0, 0) ≤ PE ≤ PK(0, 0) ≤ PK(0, 0, 0)

therefore
PK(0, 0)− PE ≤ PK(0, 0, 0)− P T (0, 0, 0).

Retracing the argument in Theorem 1.6.25, one can prove that

|PK
A (i, j)− PA(i, j)| ≤ |PK(i, j)− P (i, j)|

for every 0 ≤ i ≤ n, 0 ≤ j ≤ (2Nm+ 1)n.
This gives the following Theorem.

Theorem 1.7.4. Given ε = 1
n
> 0, and k and l the smallest integers as in

Theorem 1.6.24, in the one-dimensional case the backward procedure described
above converges to the HS price and its computational complexity is O(n2).

1.8 Tables

We compare our results with the ones obtained by the procedures described by
Hilliard and Schwartz [38], Amin [5], and Dai et al. [21], and closed formula
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by Merton, reporting the calculation times and the values k and l relative to
the cutting of the tree with respect to the number of steps considered, in order
to highlight the advantage provided by our procedures.

Table 1 represents European put prices for an option on an underlying
with current value S0 = 40, time to maturity τ = 1 year, Poisson parameter
λ = 5.0. In Table 2 we fix γ = 0 and δ2 = 0.05, with n = 400, but we allow τ
to vary.

We may note that Dai et al. method is sensitive to the value of σ, while
our method is sensitive to the increasing time to maturity.

In Tables 3 and 4 we compare our results in the bivariate (HScutB) and
univariate (HScutU) cases with those of Simonato [68], Amin [5], Hilliard and
Schwartz [38] and Dai et al. [21], for European and American call options.
The benchmark for the American case in Table 4 is taken from Chiarella and
Ziogas [15]. We see that the numerical results for the American call options
present the same precision as in the case of put option, even in the absence of
a theoretical result.
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Table 1

Strike Steps European puts

Amin Dai HS HScut Merton

Panel A: γ = 0, δ2 = 0.05, σ2 = 0.05
200 2.6253 (0.22) 2.6207 (0,47) 2.6215 (1.01) 2.6215 (0.08)

30 400 2.6233 (1.70) 2.6209 (2.70) 2.6217 (8.04) 2.6217 (0.28)
800 2.6223 (13.5) 2.6210 (14.1) 2.6213 (63.9) 2.6213 (1.05) 2.6211

200 6.7102 (0.22) 6.6972 (0.46) 6.6982 (1.01) 6.6982 (0.09)
40 400 6.7029 (1.70) 6.6976 (2.70) 6.6070 (7.98) 6.6970 (0.29)

800 6.6995 (13.5) 6.6964 (14.1) 6.6968 (63.8) 6.6968 (1.05) 6.6970

200 12.5486 (0.23) 12.5247 (0.45) 12.5260 (1.00) 12.5260 (0.09)
50 400 12.5360 (1.69) 12.5243 (2.66) 12.5249 (7.88) 12.5249 (0.29)

800 12.5301 (13.3) 12.5241 (13.9) 12.5247 (61.2) 12.5247 (1.03) 12.5238

Panel B: γ = 0, δ2 = 0.09, σ2 = 0.01
200 3.7542 (0.20) 3.9151 (1.24) 3.9154 (0.98) 3.9154 (0.08)

30 400 3.9086 (1.79) 3.9138 (7.66) 3.9141 (8.03) 3.9141 (0.30)
800 3.9220 (13.8) 3.9131 (41.2) 3.9132 (62.4) 3.9132 (1.09) 3.9184

200 8.3061 (0.22) 8.4652 (1.23) 8.4654 (0.98) 8,4654 (0.09)
40 400 8.4547 (1.69) 8.4620 (7.59) 8.4621 (8.01) 8.4621 (0.30)

800 8.4648 (13.3) 8.4603 (41.3) 8.4604 (61.8) 8.4604 (1.10) 8.4578

200 14.3182 (0.22) 14.4825 (1.24) 14.4831(0.96) 14.4831 (0.09)
50 400 14.4621 (1.69) 14,4793 (7.61) 14.4795 (7.88) 14.4795 (0.30)

800 14,4697 (13.3) 14,4778 (41.4) 14.4778 (61.9) 14.4778 (1.11) 14.4604

Panel C: γ = 0, δ2 = 0.05, σ2 = 0.0025
200 1,4498 (0.23) 2.1887 (1.82) 2.1888 (0.96) 2.1888 (0.09)

30 400 1.9766 (1.68) 2.1883 (11.3) 2.1884 (7,94) 2.1884 (0.29)
800 2,1502 (13.3) 2.1881 (60.6) 2.1881 (62.0) 2.1881 (1.05) 2.1720

200 5.2298 (0.24) 6.0039 (1.83) 6.0040 (0.97) 6.0040 (0.10)
40 400 5.7905 (1.68) 6.0014 (11.3) 6.0015 (7.94) 6.0015 (0.29)

800 5.9625 (13.3) 6.0014 (60.6) 6.0002 (62.2) 6.0002 (1.03) 5.9800

200 11.0203 (0.23) 11.7862 (1.82) 11.7866 (0.98) 11.7866 (0.09)
50 400 11.5728 (1.68) 11.7839 (11.3) 11.7841 (8.01) 11.7841 (0.28)

800 11.7414 (13.3) 11.7828 (60.6) 11.7829 (62.1) 11.7829 (1.05) 11.7556
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Table 2

Strike European puts

Amin Dai HScut Merton

Panel A: Maturity τ = one year, σ2 = 0.05
30 2.6233 (1.70) 2.6209 (2.70) 2.6217 (0.28) 2.6211
40 6.7029 (1.70) 6.6976 (2.70) 6.6970 (0.29) 6.6970
50 12.5360 (1.69) 12.5243 (2.66) 12.5249 (0.29) 12.5238

Panel B: Maturity τ = one year, σ2 = 0.01
30 2.2486 (1.68) 2.2448 (5.72) 2.2451 (0.27) 2.2436
40 6.1124 (1.68) 6.1029 (5.72) 6.1032 (0.27) 6.0995
50 11.9013 (1.68) 11.8860 (5.72) 11.8864 (0.27) 11.8819

Panel C: Maturity τ = 5 years, σ2 = 0.05
30 5.6850 (1.68) 5.6178 (1.28) 5.6200 (0.50) 5.6013
40 9.5178 (1.68) 9.4120 (1.28) 9.4143 (0.50) 9.3861
50 13.8861 (1.68) 13.7415 (1.27) 13.7446 (0.50) 13.7055

Panel D: Maturity τ = 5 years, σ2 = 0.01
30 5.0466 (1.68) 4.9361 (2.64) 4.9374 (0.50) 4.9198
40 8.6917 (1.68) 8.5266 (2.64) 8.5281 (0.50) 8.5003
50 12.9203 (1.68) 12.7024 (2.64) 12.7042 (0.50) 12.6657

Panel E: Maturity τ = 10 years, σ2 = 0.05
30 5.4517 (1.68) 5.2829 (0.93) 5.2857 (0.73) 5.2834
40 8.3314 (1.68) 8.0925 (0.93) 8.0972 (0.73) 8.0927
50 11.4521 (1.68) 11.1450 (0.94) 11.1495 (0.73) 11.1450

Panel F: Maturity τ = 10 years, σ2 = 0.01
30 4.9085 (1.68) 4.6494 (1.89) 4.6516 (0.73) 4.6491
40 7.6451 (1.68) 7.2843 (1.89) 7.2874 (0.73) 7.2832
50 10.6468 (1.68) 10.1889 (1.89) 10.1926 (0.73) 10.1872
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Table 3

Maturity European calls
γ′ = −0.02, δ2 = 0.01, r = 0.05, d = 0, σ2 = 0.04, λ = 5, n = 150

Simonato Amin Dai HScutB HScutU Merton

Panel A: K0 = 45
30/365 5.4304 5.4429 5.4430 5.4435 5.4436 5.4582
90/365 6.4372 6.4263 6.4367 6.4389 6.4393 6.4607
270/365 8.8432 8.7390 8.8323 8.8362 8.8369 8.8668

Panel B: K0 = 50
30/365 1.7306 1.6952 1.6960 1.6961 1.6958 1.7038
90/365 3.2149 3.1879 3.1952 3.1964 3.1954 3.2119
270/365 5.9859 5.8932 5.9731 5.9773 5.9730 6.0041

Panel C: K0 = 55
30/365 0.3030 0.3026 0.3023 0.3031 0.3031 0.2936
90/365 1.3251 1.3111 1.3152 1.3176 1.3172 1.3147
270/365 3.8720 3.7975 3.8632 3.8682 3.8705 3.8850

Table 4

Stock American calls
τ = 0.5 year, r = 0.05, d = 0.03, σ2 = 0.16, λ = 1, n = 150, K0 = 100

Simonato Dai HS HScutB HScutU Benchmark

Panel A: γ′ = 0.0000, δ = 0.1980,
80 4.0966 4.0839 4.0956 5.0956 4.0940 4.0500
100 12.7026 12.6936 12.6912 12.6912 12.6862 12.6800
120 26.2072 26.2035 26.2015 26.2015 26.1978 26.2200

Panel B: γ′ = 0.0488, δ = 0.1888,
80 4.2107 4.1867 4.1983 4.1983 4.1763 4.1200
100 12.7409 12.7344 12.7312 12.7312 12.7265 12.6800
120 26.1668 26.1624 26.1591 26.1591 26.1565 26.1400

Panel C: γ′ = −0.0513, δ = 0.2082,
80 4.0685 4.0722 4.0836 4.0836 4.0828 4.0700
100 12.8002 12.7887 12.7868 12.7868 12.7813 12.8300
120 26.3915 26.3809 26.3794 26.3794 26.3755 26.4600



Chapter 2

Performance evaluation

In this chapter we will discuss performance evaluation. The main issue in
determining a performance measure is connected to the problem of measuring
risk. The somewhat intuitively clear concept of risk in finance - namely, the
possibility of losing some of the initial investment - can be expressed formally
in a variety of ways, and therefore quantified taking into account different risk
factors.

We will then focus on different ranking methods, analysing their character-
istics and comparing their performances in an ex post evaluation of asset class
indices. We will first describe some predecessors of the performance measures
currently used, and then we will concentrate on the traditional Sharpe index,
followed by its modifications which take into account the Value at Risk and
the CVaR. We will also include in our analysis two of the methods which use
higher and lower partial moments with the aim of an even better estimation
of the risk, the Omega ratio and the Sortino ratio. The last in the series is the
Rachev ratio, which instead of modifying the risk evaluation intervenes on the
profitability measure.

We will show the performances of three macro asset class indices (12 in-
dices) in the period 2003-2015 for these six different rankings, and how strongly
these are correlated. This brings to the idea that the information the more
refined systems introduce is not capital to the analysis of the behaviour of the
asset class indices.

2.1 Ranking criteria for portfolio selection and

performance evaluation

The idea of a ranking criterium for portfolios spurs from two separate necessi-
ties or points of view. The first is the ex ante point of view: the main purpose

124
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is to find an objective way to select the best portfolio for an investment, which
involves trying to predict the future behaviour of a portfolio and also trying
to predict how the actual realisation of the investment is likely to differ from
our forecasts (based on historical information); this practice is usually called
risk adjustment, and it is also important for allocation of capital and setting
position limits.

The choice is trivial when one of the alternatives dominates the others:
higher return for the same or lower level of uncertainty, or lower uncertainty
for the same or higher level of return; it becomes trickier when the alternative
that provides higher expected returns allows for higher uncertainty.

The other reason for such a measurement is performance evaluation: the
necessity to assess ex post the performance of a portfolio, for example in order
to judge the portfolio management and appropriately reward virtuous traders.

In answer to these problems, many different measures and ranking criteria
for risk adjustment and performance evaluation have been proposed. In this
section we are going to recall the first historical contributions, describe some
of the choices that have been favoured in time, and approach the measures
that are currently used.

2.1.1 First proposals: Roy’s ratio and the Treynor In-
dex.

In 1952 the economist Arthur Roy, in an attempt to give a theoretical basis
to analyse the aggregate market behaviour, opposes the view of maximum
expected gain and states the principle of Safety First: an individual, in financial
decision making, has the main aim of reducing the chance of what they perceive
as catastrophic loss. In his own words:

Decisions taken in practice are less concerned with whether a little
more of this or of that will yield the largest net increase in satisfac-
tion than with avoiding known rocks of uncertain position or with
deploying forces so that, if there is an ambush round the next cor-
ner, total disaster is avoided. If economic survival is always taken
for granted, the rules of behaviour applicable in an uncertain and
ruthless world cannot be discovered.

That the rational investor would follow this principle gives, according to the
author, a better explanation of the observed behaviour, particularly of the
customary practice of diversification of resources among a wide range of assets.

Roy proposes then to choose one’s assets in a way as to minimise the (upper
bound of the) probability that the asset reaches the “disaster level” d, which
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is shown to be equivalent to maximise the ratio

Roy =
E(RP )− d

sP

where E(RP ) is the expected gross return of the portfolio and sP its stan-
dard error (that is, the standard deviation of the sampling distribution of the
mean). These are supposed to be known (while in reality they must be esti-
mated analysing time series) and also to be the only information we can infer
on every possible action we can choose, which is, as Roy himself pointed out,
rather optimistical, since it relates to a normal distribution of the return (recall
Chapter 1.4).

Roy’s ratio therefore provides a measure of the performance of an asset
by relating its excess return and its variability. The level d is, nevertheless,
arbitrary, and shall be chosen by the investor accordingly to their preferences
(which also means, Roy highlights, that a bigger excess return may make us
overlook a more negative loss). In the following we will see that the concept
introduced above of a minimum level will be then recovered by other authors,
for example in the Minimal Acceptable Return, or MAR, by Sortino [71].

In the same year as Roy’s paper, an article by Markowitz [48] changed the
paradigm of economic science building the mean-variance framework, or, as it
has been baptised, the Modern Portfolio theory.

In his paper How to Rate Management of Investment Funds, James Treynor
ponders the problem of a satisfactory way to measure the performance of a
fund manager, considering that the performance of the fund itself is influenced
by two types of risk: the risk due to fluctuations of the market in general and
that due to fluctuations of the specific securities held by the fund. While the
latter kind of risk tends to average out with an appropriate diversification of
the fund, there is no averaging out for the former kind of risk.

The sought measure needs to take into account risk-aversion, but also to be
constant even if there are market fluctuations, as long as the management per-
formance is constant, which is why once again it is not feasible to concentrate
only on the average return.

For the above reasons, he introduces what he calls the Slope Angle. First
of all he plots the percent annual rate of return of the fund against the percent
annual rate of return for a general market average (in his paper, the Dow-Jones
Industrial Average), for a decade. The resulting points tend to distribute in a
straight line, which Treynor calls the characteristic line and can be fitted sta-
tistically: the slope of the characteristic line is a measure of the fund volatility.
Excess deviations from this line either show an insufficient diversification of
the securities held by the fund or are a symptom of an alteration in the fund
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volatility; a shift in the characteristic line instead is an indication for a drastic
change in fund performance without any variation in its volatility.

A fund F can also be represented as a point in an expected rate of return
vs volatility diagram. In such a diagram a risk-free asset (e.g. a government
bond) B will be represented by a point on the vertical axis, and the straight
line going through points B and F is the set of all possible combinations for
an investor that sets a portfolio with the riskless asset and the fund. This line
is called the portfolio-possibility line, and the measure Treynor proposes for
a fund performance is the tangent of the angle α the portfolio-possibility line
forms with the horizontal axis.

The slope angle value is given by:

SA = tanα =
µF − µ∗

βF

where µF is the expected fund rate of return at a particular market rate of
return, µ∗ is the expected rate of return of the riskless security, and βF is the
volatility of the fund (slope of the characteristic line).

2.1.2 CAPM and Sharpe ratio

In 1966 William Sharpe [64] builds on Treynor’s ideas with the reward-to-
variability ratio, a performance measure for an investment based on the ratio
between reward - represented by the excess return - and risk - expressed as the
standard deviation of return.

Applying the developing theory to mutual funds, Sharpe remarks on the
impossibility for the manager of a mutual fund to detect the expected return
risk combination the investor prefers, and therefore the necessity for the mutual
fund manager to select a certain attitude in advance and then draw in investors
who share that preference; this gives further reason for a shared definition of
performance measure.

The excess return of an investment with respect to the return of a risk-free
asset is interpreted as the reward for bearing risk.

In constructing the predictory, ex ante version of the ratio, Sharpe uses the
two measures of the expected rate of return EP and the standard deviation σP .
Referring to its work on market equilibrium [63], he states that if information
and prediction about future performance of the securities is agreed upon by
all investors, and all investors are able to invest or borrow funds at a common
risk-free rate, then for all efficient portfolios it holds true that

EP = µ∗ + b · σP
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where the value b > 0 represents the risk premium.
On the (E, σ) plane, every possible combination of positions in the riskless

security and in the portfolio P is represented by the straight line

E = µ∗ +

(
E(RP )− µ∗

σ(RP )

)
σ.

The Sharpe ratio, defined as the slope of this line, allows to find the efficient
portfolio P which gives the best boundary of (E, σ) combinations.

Sharpeex ante(P ) =
E(RP )− µ∗

σ(RP )

Higher expected returns or lower standard deviations determine a higher
Sharpe ratio, while lower expected returns or higher standard deviations cause
the Sharpe ratio to be lower; therefore the preferable portfolio is the one that
gives the greatest Sharpe ratio. In case there is more than one efficient port-
folio, all such portfolios must belong to the same line in the (E, σ) plane and
therefore share the same Sharpe ratio.

Predicting the performance of a fund needs the evaluation of E(RP ) and
σ(RP ), which can only be done through estimation.

Changing perspective, the ex post Sharpe ratio is initially defined [64] as
derived from the previous coefficient by substituting the expected rate of return
with the average A(RP ) over n historically observed rate of returns of the
portfolio rP (i) in a given period of time, and the standard deviation of the
rate of return with its observed counterpart1, which Sharpe calls variability,
V (RP ).

A(RP ) =
1

n

n∑

i=1

rP (i) (2.1)

V (RP ) =

√√√√ 1

n− 1

n∑

i=1

(rP (i)− A(RP ))2 (2.2)

The Sharpe ratio with these modifications becomes:

Sharpeex post(P ) =
A(RP )− µ∗

V (RP )
(2.3)

which can be interpreted as the reward per unit of variability, hence the
name Sharpe initially gave to the measure.

1for the estimator of the standard deviation of an aleatory variable see for example [80]
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Sharpe argued that this index was preferable to Treynor’s in the ex post
analysis of a portfolio performance because, by considering variability instead
of volatility, it also captured the unsystematic risk which is due to the lack
of diversification of the securities in the fund. At the same time, if one is
concerned about the usefulness of the indexes as predictors for future perfor-
mance, the focus of the Treynor index on the volatility, which is the systematic
risk, alone, can mean that its ranking of a fund is not distorted by transitory
effects and can give a better decision criterium, provided the fund is sufficiently
diversified.

Though Harry Markowitz, William Sharpe and Merton Miller received the
Nobel prize in Economic Sciences in 1990, “for their pioneering work in the
theory of financial economics”, in particular respectively for the theory of
portfolio choice, the CAPM and the contribution to the theory of corporate
finance, there has been a lot of criticism in literature for the very restrictive
hypothesis at the foundation of these theories.

In 1994, as an answer to some of the criticism his first measure received (as
we will see in the following), Sharpe generalises the Sharpe Ratio, introducing
the idea of differential return, which is the difference between the return of the
fund we are considering and the return of a chosen benchmark. The updated
Sharpe ratio in the ex ante version is then the ratio between the expected
differential return and its standard deviation.

Sharpe′ex ante(P ) =
E(RP −RB)

σ(RP −RB)
(2.4)

The selection of the benchmark shall be done by the investor accordingly
to the aim of the evaluation. In literature, many different proposals for bench-
mark have been studied: a combination of riskless securities and the market
portfolio [77], funds with specified factor loadings [61], or with an investment
style similar to that of the considered fund [65].

If we take as a benchmark the risk-free asset, which has variability equal
to zero, this definition coincides with the original one.

In the same way, the generalised ex post Sharpe ratio is the ratio between
the average over n historically observed differential returns and its standard
deviation.

Sharpe′ex post(P ) =
A(RP −RB)

V (RP −RB)
(2.5)

William Sharpe himself underlined the limitations of the use of Sharpe
ratio, since it is very simple, it doesn’t convey information about, for example,
the correlation of the fund with other assets.
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The pros of adopting such a measure for investment performance are nev-
ertheless many: it can be interpreted as the evaluation of a zero-investment
strategy, with RP being the acquired asset financed through the short position
in RB, which makes it scale independent; a simple formula for the change of
the time period is available; the Sharpe ratio alone provides a means of strat-
egy selection when choosing which fund to add to an up-to-that time riskless
portfolio. Even when we are dealing with a risky portfolio, where choosing the
fund with the greatest ratio is not sufficient to provide an optimal strategy
on its own, Sharpe [66] shows that if the funds we are comparing have similar
correlations with the other assets of our investment, we still shall select the
fund with the highest Sharpe ratio.

2.1.3 Refining risk evaluation: Value at Risk

Just as the ratios we have seen above were created in order to enlarge the
valuation of the desirability of an investment, from the focus on the return, to
a more risk-averse mindset, other authors tried to come to a better definition
which could benefit from more information on the behaviour of the considered
assets.

This line of reasoning spurred the development of several different perfor-
mance ratios, which proposed ways of including additional pieces of informa-
tion in the risk evaluation part of the performance measure.

The problem of correlations has been addressed by Dowd [24], who inves-
tigated the situation of an investor who needs to decide whether or not to
add an investment to their already acquired portfolio. In his work, a correct
adjustment for risk of the expected return requires a generalised Sharpe ratio,
defined on the different portfolios achievable with the choices feasible to the
investor.

If an investor needs to choose whether to buy an additional asset to include
in their portfolio, they will compare the Sharpe ratio of the old portfolio and
the Sharpe ratio of the portfolio with the additional asset included (for a
given proportion a of the total portfolio), and choose the solution with the
higher Sharpe ratio. With this stratagem, Dowd builds on the validity of the
traditional Sharpe ratio in the instance of non correlation between the feasible
options and the rest of the investor’s portfolio, simply because the feasible
options - defined as seen above - do include all of the portfolio.

Initially, in his discussion, Dowd refers to the original Sharpe ratio, where
the benchmark is supposed to be risk-free. The comparison between the old
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and the new portfolio Sharpe ratio will compel us to invest in the new asset if

E(RP − µ∗)

σP
≤ E(aRA + (1− a)RP − µ∗)

σnew
(2.6)

where RP and σP are the (aleatory) return and standard deviation of the
portfolio already acquired by the investor, RA is the return of the new asset
and σnew is the standard deviation of the new portfolio. This means there is a
threshold the reward of the new asset has to surpass in order for the investor
to be profitable to include it in the portfolio, and this threshold depends on
the new asset’s contribution to the overall portfolio risk:

E(RA) ≥ E(RP ) +

(
σnew
σP

− 1

)
E(RP )

a
(2.7)

This decision rule quantifies the idea that an addition to our portfolio is
worthwhile if it brings diversification: we will accept lower returns with the
acquisition of the new asset if it helps lowering the risks, while if this acquisition
carries with it a higher risk (e.g. when the new asset is positively correlated
with those in our portfolio) we need a higher expected return as an incentive
to buy it.

Dowd remarks that using the traditional Sharpe ratio instead of the gener-
alised one brings miscalculations in the threshold, which will be underestimated
in the case of positive correlation and overestimated in the case of negative
correlation between the new asset and the old portfolio.

The rule for the optimal portfolio choice can be expressed in terms of the
VaR (Value at Risk).

Given a fixed (for the purpose of it, low) probability (1 − c), the V aR1−c

represents the opposite of the level of return of an investment such that there
is a (1 − c) probability the random return realizations of the investment will
fall under it. We can write this with the following formula:

V aR1−c(P ) = −F−1
R (1− c) (2.8)

Assuming that the return of the portfolio P is normally distributed, the
V aR1−c of the portfolio is equal to

V aR1−c(P ) = −α1−cσPW (2.9)

where α1−c is the confidence parameter associated with the confidence level
c and W is a scale parameter reflecting the size of the portfolio.

Going back to Equations (2.6) and (2.7), assuming that the returns of the
portfolio with and without the new asset are both normally distributed, given
that the scale parameter W and the confidence parameter α1−c are the same
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for both portfolios, we can substitute the ratio σnew

σP
with V aR1−c(Pnew)

V aR1−c(P )
. This

also means the generalised Sharpe ratio in the normal distributed case can be
written as:

GSharpe(P ) =
E(RP − µ∗)

V aR1−c(P )
(2.10)

and in order to apply it to the problem of adding a new investment to our
portfolio we need to compare GSharpe(P ) and GSharpe(Pnew).

In his paper Dowd also considered the more general case of a noncash
benchmark, for example the opportunity cost of funds. Equations (2.6)-(2.10)
are modified accordingly:

E(RP −RB)

σ′
P

≤ E(aRA + (1− a)RP −RB)

σ′
new

E(RA −RB) ≥ E(RP −RB) +

(
σ′
new

σ′
P

− 1

)
E(RP −RB)

a

GSharpe′(P ) =
E(RP −RB)

BV aR1−c(P )

where RB is the return of the benchmark, σ′
P and σ′

new are the standard
deviation ofRP−RB and of aRA+(1−a)RP−RB respectively andBV aR1−c(P )
is the benchmark-VaR as defined by Dembo [23].

Dowd remarks the difficulties that intervene in dealing with this generalised
version of the Sharpe ratio: the choice of the benchmark is crucial in the
determination of the optimal strategy: choosing the benchmark incorrectly
not only can give different values for the measure, but also different rankings
of the choices.

Also in these cases, the ex ante risk adjustment ratio has an ex post coun-
terpart, where the expectations are substituted with the statistical estimators.
Alexander and Baptista investigated the use of this measure for portfolio eval-
uation, and they baptised it the reward to VaR ratio. In their own words, it
represents

the additional average [periodic] rate of return that investors would
have earned if they had borne an additional percentage point of
VaR by moving a fraction of wealth from the risk-free security to
the portfolio of risky securities that they have selected.[4]

The previous hypothesis that the portfolio characteristics can be comprised
in terms of mean and variance, (which is justifiable only with normally or, more
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in general, elliptically distributed returns) encountered strong criticism, and
with their paper Alexander and Baptista motivate the validity of the reward to
VaR ratio showing its better performance in the case of heavy-tailed returns.

V aR1−c(P ) can be easily computed from n historical data by ordering
the set of realizations and choosing the value corresponding to the (1 − c)nth

position.
With the previous notations, the Reward to V aR ratio associated with

probability c is:

V aRR1−c(P ) =
A(RP )− µ∗

V aR1−c(P )
(2.11)

Alexander and Baptista remark that the difference in ranking of a portfolio
between the traditional Sharpe evaluation and the reward to VaR evaluation
can be taken as a distress signal of the non-normality of the distribution of the
rate of return.

The numerical analysis in their paper stresses the similarities and differ-
ences between the Sharpe ratio and the reward to VaR ratio, highlighting how
the latter one is a judge of the performance of a portfolio in the case of fat
tails but also pointing out that different confidence levels of VaR give different
measures and different rankings.

2.1.4 Diverting attention from the mean: Omega and
Sortino

Alexander and Baptista were not the first to point out how restrictive the
mean-variance framework is.

In 1991, Sortino and van der Meer [71] tried to devise a risk measure that
could better take into account the asymmetric, skewed, more pointy and fat-
tailed distribution the market data seemed to report.

In their paper, the authors appealed to the meaning of the word “risk” to
criticise the traditional mean-variance framework. According to them, there is
no point in considering risky the deviation the return may have from the mean
in the positive direction: such a deviation is beneficial for the investor. The
dispersion from the mean that is harmful to the investor is the one which brings
the portfolio return to an unacceptably low level. This Minimal Acceptable
Return should be fixed by the investor according to their established goals (e.g.
the cost of capital in a corporate planning), and given the MAR the volatility
shall be divided into a “good” volatility, which would be the dispersion above
the MAR level, and “bad”volatility, the dispersion below. Therefore we are
interested in measuring risk using the bad volatility. Comparing various such
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measures (the shortfall or downside probability, the shortfall magnitude by
Baumol [8] and Downside Variance by Fishburn [29]), Sortino and van der Meer
state the supremacy of the Downside Variance (which has been afterwards
renamed downside deviation), defined as

DV (P ) =

∫ M

−∞
(M − r)2f(r)dr (2.12)

where r represents the return of the portfolio, whose continuous probability
density f(r) needs to be estimated (for example by fitting a three-parameters
lognormal distribution to the data, as Sortino himself proposes in [72], us-
ing the tenth, fiftieth and ninetieth percentile. For a discussion on fitting
parametric distribution, see Chapter 1.4). The downside deviation had been
incorporated by Van Harlow and Rao [79] in the CAPM model, and it also
has the advantage of being consistent with second- and third-degree stochas-
tic dominance and expected utility theory, and compatible with the Modern
Portfolio Theory, while shortfall magnitude is not.

The authors propose an optimisation strategy that constructs the mean-
downside deviation efficient frontier, and show that in several cases in different
Countries (Netherlands, Canada and UK) this strategy allows for better re-
sults than mean-variance one, provided that the investor has “near perfect”
forecasting ability, that is, they are able to forecast what will happen in each
quarter, knowing the average historical risk-return characteristics for each as-
set.

The concept of downside risk becomes so popular that in a short time sev-
eral variations of it are born, and Sortino and Price [72] feel the need to clarify
that only in particular cases the downside deviation can be calculated with re-
spect to the mean of each asset (and can then take the name of semivariance);
more in general the performances of each asset must be computed with the
same reference point (that can be the risk-free asset, the mean return of the
index, or some other level according to the investor’s preferences).

The definition of the downside deviation as a risk measure allows for the
creation of another performance measure, the Sortino ratio:

Sortino(P ) =
E(RP −MAR)

DD(P )
(2.13)

Sortino and Price [72] also cite a Fouse index, which can be defined calling
on utility theory. Setting a V parameter that incorporates the degree of risk-
aversion of the investor, the Fouse index is given by

Fouse(P ) = E(RP )− V ·DD2(P ) (2.14)
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The larger the value of V , the more risk-averse is the investor (V = 1
identifies a somewhat aggressive investor, who would require the risk premium
of an equity to be greater than 200 basis points to prefer it to the riskless
asset).

This index, defined in relation with the utility function U(P ) = RP − V ·
DD2(P ) studied by Fishburn [29], has the additional plus that it can capture
the investor’s degree of risk-aversion.

Sortino ratio can be generalised by considering the higher and lower partial
moments of order n.

Given a level MAR below which the investor feels the investment is not
worthwhile, the lower partial moment of order n of the return of a portfolio
P with respect to the MAR is given by the nth root of the expected value
of the nth power of the difference between the return of the portfolio and the
Minimal Acceptable Return.

LPMn(MAR,P ) = n
√
E(((MAR−RP )+)n) (2.15)

For n = 2, this reduces to Sortino’s downside deviation.
Similarly, we can define the higher partial moment:

HPMn(MAR,P ) = n
√
E(((RP −MAR)+)n) (2.16)

Both the previous expressions can be interpreted in an ex post situation
by substituting the expected value with the average:

LPMn(MAR,P ) = n

√√√√ 1

N

N∑

i=1

((MAR− ri)+)n (2.17)

HPMn(MAR,P ) = n

√√√√ 1

N

N∑

i=1

((ri −MAR)+)n (2.18)

Since, from the point of view of an investor, realisations above the MAR
are good and those below are bad, higher partial moments can be considered
as profitability indicators and, on the contrary, lower partial moments can play
the role of risk indicators.

Depending on the degree n we focus on for the computation of the higher
and lower partial moments, a wide variety of performance ratios of the kind
HPM/LPM are feasible. The order of the moments shall be chosen accordingly
to the level of investor risk aversion.
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The Omega ratio (see [62]) is the performance measure we obtain by setting
n = 1

Omega(P ) =
HPM1(MAR,P )

LPM1(MAR,P )
=

E(RP −MAR)

LPM1(MAR,P )
+ 1. (2.19)

2.1.5 Conditional Value at Risk as a risk measure

On the same wake, Agarwal and Naik [2] focus on hedge funds, whose non-
linear payoff resembles - according to the evidence provided by the authors -
that of a short position in a put option. Fung and Hsieh [32] had proposed
to abandon the mean-variance framework in the case of portfolio construction
with hedge funds, unless a quadratic preference of the investor or a normal
distribution of the portfolio return is presumed. The option-like behaviour
of the hedge fund return means that, in considering the risk, we may want
to beware of left-tail risk, and the selected tool for such an analysis is the
Conditional Value at Risk, or CVaR, which not only considers the chance of a
liability below a certain level, but also has the additional feature of considering
also the size of possible extreme losses. Moreover, VaR doesn’t have useful
properties such as subadditivity, convexity or differentiability, while CVaR is
more treatable in that respect.

The CVaR, or Expected Shortfall, at a given level 1 − c has been defined
by Artzner et al. [6] as the opposite of the expected value of the return RP of
the portfolio, conditional to the values of return below V aR1−c. This can be
written as:

CV aR1−c(P ) = −E(RP |RP ≤ −V aR1−c(P )) = −
∫ −V aR1−c(P )

−∞ rf(r)dr

1− c
(2.20)

In other words, CVaR provides the mean restricted to the return worst values.
According to the authors [2], opposite to what Sortino and van der Meer [71]
observed, in this case obtaining f(r) by fitting a parametrised distribution
to the historical data doesn’t provide a good estimation of the risk, for the
approximation may not be trustworthy in the tails, therefore the empirical
distribution is used instead.

Starting from historical data,CV aR1−c can be evaluated as the opposite of
the arithmetic mean of the observed values smaller than V aR1−c.

Following the example of Palmquist, Uryasev and Krokhmal [53], Agarwal
and Naik construct the mean-CVaR efficient frontier and compare the aver-
age returns and the CVaR of those portfolios with those of the mean-variance
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efficient frontier. While the CVaR of a portfolio grows with its volatility and
its level of confidence (which means setting the critical value more the left),
the ratio between the CVaR of a portfolio on the mean-variance frontier and
the CVar of a portfolio on the M-CVaR frontier grows with the level of confi-
dence but is lower the higher the volatility, suggesting that in high volatility
portfolios the estimation of the loss via the mean variance method is not far
from the results of the more refined M-CVaR optimisation, which is instead of
paramount importance in a low volatility situation.

The Conditional Value at Risk allows for a variation of the reward to VaR
ratio which gives a new portfolio performance measure, the Conditional Sharpe
ratio or STARR ratio [57]:

CV aRR1−c(P ) =
E(RP )− µ∗

CV aR1−c(P )
(2.21)

2.1.6 Refining reward: Conditional Value at Risk with
a twist

Building on the idea the VaR is a boundary that divides the losses for the
investor from the possible profits, Rachev [56] and Biglova et al. [57] propose
to consider a “good CV aR”, that is the expected value of return, conditional
to the values of return greater than V aR1−c1 , as profitability index:

Rachev(P ) =
E(RP |RP > V aR1−c1(P ))

CV aR1−c1(P )
(2.22)

2.2 Empirical Results

Eling and Schuhmacher [28] compare the Sharpe ratio with twelve other per-
formance measures in the risks assessment of hedge funds. Contrary to what
we would expect, their findings support the thesis that the Sharpe ratio is
adequate for the ranking of hedge funds, regardless the non normality of their
returns. Indeed, they argue that there is virtually no difference in the ranking
one would obtain with Sharpe ratio instead of other more refined measures. In
order to further investigate this hypothesis in the case of asset class indexes, we
focus on six performance measures: the Sharpe index, the VaRR and CVaRR,
the Sortino, the Omega and the Rachev ratio.
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2.2.1 Data and Main Statistics

In our analysis, we have considered three main asset classes: equities, fixed
income and real estate, for a total of 12 indexes, relative to Europe, US,
Russia and China. Monthly data of closing adjusted prices from the period
2003 - 2015 from Bloomberg2 database have been used, exception made for
the Russian real estate index, which are given only quarterly. As for the other
indexes considered, in the database they are quoted daily, weekly, monthly and
so on. Namely, the indexes involved in our examination are the following:

• STOXX Europe 600 Price Index EUR (Bloomberg ticker: SXXP Index):
a derivation of the STOXX Europe Total Market Index that has 600 com-
ponents and represents large-, mid- and small-capitalization companies
across 18 European countries;

• S&P 500 Index (SPX): a capitalization-weighted index of 500 US stocks;

• MSCI Russia Index (MXRU): a float-weighted equity index that cap-
tures the performance of the large- and mid-capitalization segments of
the Russian market, covering approximately 85% of the float-adjusted
market capitalization in Russia;

• Hong Kong Hang Seng Index (HSI): a float-weighted equity index of a
selection of companies from the Stock Exchange of Hong Kong;

• EUG5TR Index: a Bloomberg/EFFAS (European Federation of Finan-
cial Analysts’ Societies) long term European government bond index;

• USG5TR Index: the analogous of the EUG5TR index for US;

• Russian Government Bond Index (RGBI): a weighted index of Russian
government bonds;

• FGGYCN1 Index: a FTSE index of medium- and long-term Chinese
government bonds;

• Bloomberg Europe 500 Real Estate Index (BEREALE): a capitalization-
weighted index of all companies that are in the real estate sector of the
Bloomberg Europe 500 Index;

• Bloomberg NA REITs (BBREIT): a weighted index of US Real Invest-
ment Trusts with capitalization not less than $15 millions;

2Bloomberg Finance L.P.
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• Russia Housing Prices New Apartments (RUPHNRF): the index of changes
in residential property prices, developed by the Russian Federal Service
of Statistics;

• Hang Seng Property (HSP): a weighted index of Chinese Real Investment
Trusts.

For each of these indices, we evaluated the logarithmic return. In the
estimation of its moments, we obtained for skewness a minimum value equal to
-2.59 and a maximum equal to 2.39, while for the excess kurtosis a minimum
of 1.13 and a maximum of 10.75 (in this analysis we excluded Russian real
estate, since it is quoted quarterly and presents excess kurtosis anomalies).
High values in both skewness and kurtosis bring us to assume the observed
return does not have a normal distribution.

In evaluating indices we have imposed µ∗ = MAR = 0. For V aR and
CV aR in V aRR, CV aRR and Rachev ratio, a value of c equal to 99% has
been used, while for the “good” CV aR in the Rachev ratio c1 is taken equal
to 50%.

2.2.2 Ranking Correlation

In order to quantify the relation between the performance measures, we have
evaluated the Spearman rank correlation coefficients year by year.

Table 1 and 2 report the Spearman rank correlation coefficients related to
the year with the minimum (2015) and the maximum (2013). All performance
measures, except for Rachev ratio, display good rank correlation with respect
to the Sharpe ratio, between 0.028 (CVaR ratio, 2015) and 0.979 (Omega ratio,
2013). It should be noted that the CV aR ratio in 2015 shows a low level of
correlation with any of the other performance ratios, which is probably due to
the scarce amount of historical data considered in the CV aR evaluation. On
average, the rank correlation of the Sharpe ratio in relation to the other exam-
ined performance measures over the years amounts to 0.642. In general, there
is also a good correlation between the other pairs of performance ratios, ex-
cept sometimes for the Rachev ratio and the VaR ratio. Our analysis partially
confirm the results obtained by Eling and Schuhmacher [28], who find a very
high rank correlation of the examined performance measures with respect to
the Sharpe ratio and also in relation with each other. A more refined analysis,
where monthly data are substituted by weekly or daily data would probably
give more precise answers and results strictly close to those shown by Eling
and Schuhmacher.
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Figure 2.1: Table 1

2015 SR VaRR CVaRR Omega Sortino Rachev

SR 1 0.811 0.028 0.804 0.741 0.783
VaRR 1 0.056 0.993 0.923 0.958
CVaRR 1 0.077 0.154 0.014
Omega 1 0.951 0.972
Sortino 1 0.951
Rachev 1

Figure 2.2: Table 2

2013 SR VaRR CVaRR Omega Sortino Rachev

SR 1 0.951 0.951 0.972 0.979 0.951
VaRR 1 0.888 0.979 0.951 0.986
CVaRR 1 0.937 0.909 0.895
Omega 1 0.951 0.979
Sortino 1 0.930
Rachev 1

2.2.3 Visualising the performance of the indexes

The similarities we have found in all the rankings can be perhaps better ex-
plained with an analogy: the different performance indexes can be considered
as thermometers calibrated with different degrees; the values may differ but
they all give the same ranking. In order to give a visual representation of this
result and a more immediate analysis, we have used Excel contour charts. Year
by year, the white areas cover the two best performing asset classes (the top),
the grey areas represent the five medium performing asset classes, while the
five worst performing asset classes are painted in black. Hereafter we report
the graphs for every performance indicator.

The graphs shown above are very different only at first glance, because
there are interesting similarities that are worthy of note. For example, the
“black snake” on the right (in Picture 2.9 the detail from the Sortino graph)
is everywhere evident (even though less so in the CV aR ratio). This shows
that from 2012 to 2015 American, Russian and Chinese fixed income indices
have been the worst performers, whatever performance measure we choose.
Another shared feature, except for CV aR ratio, is the “giraffe” on the bottom
left, shown in Picture 2.10 . This can be interpreted as the supremacy of
Chinese fixed income and European and American real estate in the years
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Figure 2.3: Sharpe

Figure 2.4: VaRR
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Figure 2.5: CVaRR

Figure 2.6: Sortino
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Figure 2.7: Omega

Figure 2.8: Rachev
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2003-2008. Lastly, the black trapezoid in the upper part of almost all graphs
(in Picture 2.11) corresponding to the year 2008 suggests US and European
stock indices as the worst performers in that period, which we can easily relate
to the financial crisis.

Figure 2.9: Detail from Sortino contour graph

Figure 2.10: Detail from Sortino contour graph

Figure 2.11: Detail from Sortino contour graph

Our analysis, both through Spearman rank correlation and visual means,
suggest the opportunity to rely on the Sharpe ratio, despite the criticism its
simplicity often encountered in literature. Indeed, this widely used ratio man-
ages to capture the evolution in the financial period of 2003-2015 in Europe,
US, Russia and China; and in doing so agrees with the more refined measures
that have been described for a more precise valuation of risk. Moreover, this
supports their use in ex ante risk assessment and portfolio selection, provided
that an appropriate stochastic modelling of the return dynamics is available.



Chapter 3

Appendix

3.1 Formulas for the single jump probabilities

3.1.1 Probabilities in the N = 2 case

In the N = 2 case the possibilities for the amplitude of the jump are 0, ±h
and ±2h; therefore we require five probabilities q−2, q−1, q0, q1, q2. The values
of the probabilities q−2, q−1, q0, q1, q2 are obtained by matching the first 4
moments of the discrete single step random variable with the local moments
(substituted by cumulants as already justified) of the continuous counterpart,
and are thus the solutions of the following linear system:




1 1 1 1 1
−2 −1 0 1 2
4 1 0 1 4
−8 −1 0 1 8
16 1 0 1 16







q−2

q−1

q0
q1
q2




=




1
k1
h
k2
h2

k3
h3

k4
h4




where k1, k2, k3 and k4 are the first four cumulants of the compound Poisson
distribution (cf. page 150).

Therefore:

q−2 =
αjλτ

12hn
− λτ

24n
−

(α3
j + 3αjδ

2)λτ

12h3n
+

(α4
j + 6α2

jδ
2 + 3δ4)λτ

24h4n
=:

c−2

n

q−1 = −2αjλτ

3hn
+

2λτ

3n
+

(α3
j + 3αjδ

2)λτ

6h3n
−

(α4
j + 6α2

jδ
2 + 3δ4)λτ

6h4n
=:

c−1

n

q0 = 1− 5λT

4n
+
λT (α4

j + 6α2
jσ

2
j + 3σ4

j )}
4h4n

< 1− λT

2n
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q1 =
2αjλτ

3hn
+

2λτ

3n
−

(α3
j + 3αjδ

2)λτ

6h3n
−

(α4
j + 6α2

jδ
2 + 3δ4)λτ

6h4n
=:

c1
n

q2 = −αjλτ

12hn
− λτ

24n
+

(α3
j + 3αjδ

2)λτ

12h3n
+

(α4
j + 6α2

jδ
2 + 3δ4)λτ

24h4n
=:

c2
n

where we introduced the constants ck in order to highlight the fact that
the qk’s are inverse proportional to the number of steps n.

3.1.2 Probabilities in the N = 3 case

In the N = 3 the definition of seven probabilities requires the matching of the
first six moments. The value of the probabilities q−3, q−2, q−1, q0, q1, q2, q3 are
thus the solutions of the following linear system:




1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3
9 4 1 0 1 4 9

−27 −8 −1 0 1 8 27
81 16 1 0 1 16 81

−243 −32 −1 0 1 32 243
729 64 1 0 1 64 729







q−3

q−2

q−1

q0
q1
q2
q3




=




1
k1
h
k2
h2

k3
h3

k4
h4

k5
h5

k6
h6




where k1, k2, k3, k4, k5 and k6 are the first six cumulants of the compound
Poisson distribution (cf. page 150).

The solutions are as follows, and again we define the coefficients ck in order
to explicitate the dependence of the qk on n.

q−3 =− γ′ λ τ

60hn
+

(
γ′3 + 3 δ2 γ′

)
λ τ

48h3n
−

(
γ′4 + 6 δ2 γ′2 + 3 δ4

)
λ τ

144h4n
+

−
(
γ′5 + 10 δ2 γ′3 + 15 δ4 γ′

)
λ τ

240h5n
+

+

(
γ′6 + 15 δ2 γ′4 + 45 δ4 γ′2 + 15 δ6

)
λ τ

720h6n
+

λ τ

180n
=:

c−3

n

q−2 =
3 γ′λτ

20hn
−

(
γ′3 + 3 δ2 γ′

)
λτ

6h3n
+

(
γ′4 + 6 δ2 γ′2 + 3 δ4

)
λτ

12h4n
+

+

(
γ′5 + 10 δ2 γ′3 + 15 δ4 γ′

)
λτ

60h5n
+

−
(
γ′6 + 15 δ2 γ′4 + 45 δ4 γ′2 + 15 δ6

)
λτ

120h6n
− 3λτ

40n
=:

c−2

n
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q−1 =− 3 γ′λτ

4hn
+

13
(
γ′3 + 3 d2 γ′

)
λτ

48h3n
− 13

(
γ′4 + 6 δ2 γ′2 + 3 δ4

)
λτ

48h4n
+

−
(
γ′5 + 10 δ2 γ′3 + 15 δ4 γ′

)
λτ

48h5n
+

+

(
γ′6 + 15 δ2 γ′4 + 45 δ4 γ′2 + 15 δ6

)
λτ

48h6n
+

3λτ

4n
=:

c−1

n

q0 =
7
(
γ′4 + 6 δ2 γ′2 + 3 δ4

)
λτ

18h4n
−

(
γ′6 + 15 δ2 γ′4 + 45 δ4 γ′2 + 15 δ6

)
λτ

36h6n
− 49λτ

36n
+ 1

and we have

q0 =
7
(
3γ′4 + 6 δ2 γ′2 + 3 δ4 − 2γ′4

)
λτ

18h4n
+

−
(
15γ′6 + 45 δ2 γ′4 + 45 δ4 γ′2 + 15 δ6 − 14γ′6 − 30 δ2 γ′4

)
λτ

36h6n
− 49λτ

36n
+ 1 =

=1− 49λτ

36n
+

7 · 3h4λτ
18h4n

− 15h6λτ

36h6n
− 7 · 2γ′4λτ

18h4n
+

(
14γ′6 + 30 δ2 γ′4

)
λτ

36h6n
=

= 1− 11λτ

18n
− γ′4λτ

9h4n

(
7γ′2 − δ2

)

2h2

= 1− 10λτ

18n
− λτ

18n

h6 + γ′4
(
7γ′2 − δ2

)

2h6

= 1− 5λτ

9n
− λτ

18n

h6 + γ′4
(
7γ′2 − δ2

)

2h6
< 1− 5λτ

9n
< 1− λτ

2n

q1 =
3 γ′λτ

4hn
− 13

(
γ′3 + 3 δ2 γ′

)
λτ

48h3n
− 13

(
γ′4 + 6 δ2 γ′2 + 3 δ4

)
λτ

48h4n
+

+

(
γ′5 + 10 δ2 γ′3 + 15 δ4 γ′

)
λτ

48h5n
+

+

(
γ′6 + 15 δ2 γ′4 + 45 δ4 γ′2 + 15 δ6

)
λτ

48h6n
+

3λτ

4n
=:

c1
n

q2 =− 3 γ′λτ

20hn
+

(
γ′3 + 3 δ2 γ′

)
λτ

6h3n
+

(
γ′4 + 6 δ2 γ′2 + 3 δ4

)
λτ

12h4n
+

−
(
γ′5 + 10 δ2 γ′3 + 15 δ4 γ′

)
λτ

60h5n
+

−
(
γ′6 + 15 δ2 γ′4 + 45 δ4 γ′2 + 15 δ6

)
λτ

120h6n
− 3λτ

40n
=:

c2
n

q3 =
γ′λτ

60hn
−

(
γ′3 + 3 δ2 γ′

)
λτ

48h3n
−

(
γ′4 + 6 δ2 γ′2 + 3 δ4

)
λτ

144h4n
+

−
(
γ′5 + 10 δ2 γ′3 + 15 δ4 γ′

)
λτ

240h5n
+
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+

(
γ′6 + 15 δ2 γ′4 + 45 δ4 γ′2 + 15 δ6

)
λτ

720h6n
+

λτ

180n
=:

c3
n

3.2 Equalities concerning the hyperbolic func-

tions

By straightforward calculation from the definition of sinh x and cosh x we have:

sinh2 x =
1

2
(cosh(2x)− 1) ≃ e2x

4
(3.1)

sinh3 x =
1

4
(sinh(3x)− 3 sinh x) ≃ e3x

8
(3.2)

sinh4 x =
1

8
(cosh(4x)− 4 cosh 2x+ 3) ≃ e4x

16
(3.3)

cosh2 x =
1

2
(cosh(2x) + 1) ≃ e2x

4
(3.4)

cosh3 x =
1

4
(cosh(3x) + 3 cosh x) ≃ e3x

8
(3.5)

cosh4 x =
1

8
(cosh(4x) + 4 cosh 2x+ 3) ≃ e4x

16
(3.6)

Combining the previous formulas:

cosh(2x) = 2 sinh2 x+ 1 (3.7)

sinh(3x) = 4 sinh3 x+ 3 sinh x (3.8)

cosh(4x) = 8 sinh4 x+ 8 sinh2 x+ 1 (3.9)

3.3 Cumulants of Yt obtained via the charac-

teristic function

The ith cumulant of Yt is the ith coefficient of the Maclaurin expansion of
ln(ϕYt

)(x) =
∑

n=0 ki
(ix)n

n!
. Therefore, in order to compute the first 2N coeffi-

cients, we need to evaluate the first 2N derivatives of lnϕYt
(x) in x = 0.

In this work we used the first 8 cumulants (in order to approximate the
jump process with 4 up and 4 down jumps), therefore we needed up to the
eight derivative of lnϕYt(x).

f(x) = lnϕYt(x) = λt
(
eixγ

′− δ2x2

2 − 1
)
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f(0) =0

f ′(x) =λt(iγ′ − δ2x)
(
eixγ

′− δ2x2

2

)
= λtg′(x)

f (n)(x) =λtg(n)(x)

where we defined: g(x) = eixγ
′− δ2x2

2 , and of course g(0) = 1 and g′(0) = iγ′.
We are then only interested in the derivatives of g(x).

g′′(x) =g(x)[(iγ′ − δ2x)2 − δ2]

g′′(0) =− γ′2 − δ2

g′′′(x) =g′(x)[(iγ′ − δ2x)2 − δ2] + g(x) · (−2)δ2(iγ′ − δ2x) = g′(x)[(iγ′ − δ2x)2 − 3δ2]

g′′′(0) =− iγ′[γ′2 + 3δ2]

g(4)(x) =g′′(x)[(iγ′ − δ2x)2 − 3δ2] + g′(x) · (−2)δ2(iγ′ − δ2x) =

=g(x){[(iγ′ − δ2x)2 − δ2][(iγ′ − δ2x)2 − 3δ2]− 2δ2[(iγ′ − δ2x)2]}
=g(x){[(iγ′ + δ2x)4 − 6δ2(iγ′ + δ2x)2 + 3δ4]} =

g(4)(0) =γ′4 + 6γ′2δ2 + 3δ4

g(5)(x) =g′(x){[(iγ′ − δ2x)4 + 6δ2(iγ′ − δ2x)2 + 3δ4]}+
+ g(x){−4δ2[(iγ′ − δ2x)3 − 12δ4(iγ′ − δ2x)]} =

=g′(x)[(iγ′ − δ2x)4 − 10δ2(iγ′ − δ2x)2 + 15δ4]

g(5)(0) =iγ′(γ′4 + 10δ2γ′2 + 15δ4)

g(6)(x) =g′′(x)[(iγ′ − δ2x)4 − 10δ2(iγ′ − δ2x)2 + 15δ4]+

+ g′(x)[−4δ2(iγ′ − δ2x)3 + 20δ4(iγ′ − δ2x)] =

=g(x)[(iγ′ − δ2x)2 − δ2][(iγ′ − δ2x)4 − 10δ2(iγ′ − δ2x)2 + 15δ4]+

+ g(x)(iγ′ − δ2x)[−4δ2(iγ′ − δ2x)3 + 20δ4(iγ′ − δ2x)] =

=g(x)[(iγ′ − δ2x)6 − 15(iγ′ − δ2x)4δ2 + 45(iγ′ − δ2x)2δ4 − 15δ6]

g(6)(0) =− γ′6 − 15γ′4δ2 − 45γ′2δ4 − 15δ6

g(7)(x) =g′(x)[(iγ′ − δ2x)6 − 15(iγ′ − δ2x)4δ2 + 45(iγ′ − δ2x)2δ4 − 15δ6]+

+ g(x)[−6δ2(iγ′ − δ2x)5 + 60δ4(iγ′ − δ2x)3 − 90− δ6(iγ′ − δ2x)] =

=g′(x)[(iγ′ − δ2x)6 − 21(iγ′ − δ2x)4δ2 + 105(iγ′ − δ2x)2δ4 − 105δ6]

g(7)(0) =iγ′(−γ′6 − 21γ′4δ2 − 105γ′2δ4 − 105δ6)

g(8)(x) =g′′(x)[(iγ′ − δ2x)6 − 21(iγ′ − δ2x)4δ2 + 105(iγ′ − δ2x)2δ4 − 105δ6]+

+ g′(x)[−6δ2(iγ′ − δ2x)5 + 84δ4(iγ′ − δ2x)3 − 210δ2(iγ′ − δ2x)] =

=g(x)[(iγ′ − δ2x)2 − δ2][(iγ′ − δ2x)6 − 21(iγ′ − δ2x)4δ2 + 105(iγ′ − δ2x)2δ4 − 105δ6]+



3.3 Cumulants of Yt obtained via the characteristic function 150

+ g(x)(iγ′ − δ2x)[−6δ2(iγ′ − δ2x)5 + 84δ4(iγ′ − δ2x)3 − 210δ2(iγ′ − δ2x)] =

=g(x)[(iγ′ − δ2x)8 − 28(iγ′ − δ2x)6δ2 + 210(iγ′ − δ2x)4δ4 − 420(iγ′ − δ2x)2δ6 + 105δ8]

g(8)(0) =γ′8 + 28γ′6δ2 + 210γ′4δ4 + 420γ′2δ6 + 105δ8

Since
∑

n=0
f (n)(0)xn

n!
=

∑
n=0 ki

(ix)n

n!
, in order to compute ki we only need

to multiply f (n)(0) by (−i)n.
The first 8 cumulants for Yt are then:

k1 =− i · f ′(0) = −i · iγ′λt = γ′λt

k2 =− f ′′(0) = λt(γ′2 + δ2)

k3 =if
′′′(0) = λtγ′(γ′2 + 3δ2)

k4 =f
(4)(0) = λt(γ′4 + 6γ′2δ2 + 3δ4)

k5 =− if (5)(0) = λtγ′(γ′4 + 10γ′2δ2 + 15δ4)

k6 =− f (6)(0) = λt(γ′6 + 15γ′4δ2 + 45γ′2δ4 + 15δ6)

k7 =if
(7)(0) = λtγ′(γ′6 + 21γ′4δ2 + 105γ′2δ4 + 105δ6)

k8 =f
(8)(0) = λt(γ′8 + 28γ′6δ2 + 210γ′4δ4 + 420γ′2δ6 + 105δ8)

(3.10)
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3.4 Integration formulas

3.4.1 Newton-Cotes

The following formulas, necessary for Amin’s algorithm, are taken from Abramowitz
and Stegun ([1]), section 25.4.

closed, 5 points, also known as Boole’s rule If the interval [a, b] is equally
divided in 4 segments, each long h = b−a

4
, such that a = x0 and b = x4

then

∫ x4

x0

f(x)dx =
2h

45
(7(f(x0) + f(x4)) + 32(f(x1) + f(x3)) + 12f(x2))−

8f (6)(ξ)h7

945

closed, 10 points If the interval [a, b] is equally divided in 9 segments, each
long h = b−a

9
, such that a = x0 and b = x9 then

∫ x9

x0

f(x)dx =
9h

89600
(2857(f(x0) + f(x9))+

+15741(f(x1)+f(x8))++1080(f(x2)+f(x7))+19344(f(x3)+f(x6))+

+5778(f(x4) + f(x5)))−
173f (10)(ξ)h11

14620
(3.11)
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[13] Charlier C.V.L. (1905) Über die Darstellung willkürlicher Funktionen.
Arkiv för matematik, astronomi och fysik, vol. 2, no. 20

[14] Cheang G.H.L. and Chiarella C. (2011) A modern View on Merton’s Jump
Diffusion Model

[15] Chiarella C. and Ziogas A. (2005) Pricing American Options on Jump-
Diffusion Processes Using Fourier Hermite Series Expansion Quantitative
Finance Research Centre Research Paper 145

[16] Cont R., Tankov P. (2003). Financial Modeling with Jump Processes. CRC
Press.

[17] Cont R., Voltchkova E. (2003) A finite difference scheme for option pricing
in jump diffusion and exponential Lévy models Rapport Interne CMAP
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