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Summary 
 

 

By 2050, the global population is expected to be 50% higher than at present and global grain demand is 

projected to double. Under current model of intensive agriculture, the productivity of crops is sustained 

by applying to cultures high amounts of industrially synthetized nitrogen fertilizer. As a consequence, 

the wide use of chemical inputs has led to negative impacts on environment and on farmer economies. 

In addition the nitrogen use efficiency (NUE) of cereal crops has declined in the last 50 years, being 

currently estimated to be around 33%. Based on these considerations, crop yield needs to be improved 

in a more cost-effective and eco-compatible way. This goal could be achieved by increasing the NUE of 

cereals and optimizing the acquisition of native and applied nitrogen.  

Since urea is the worldwide most used nitrogen fertilizer, a research topic of great interest concerns the 

capacity of crop plants to use urea per se as a nitrogen source for their development and growth. 

However, to date only a limited number of studies focused on the uptake systems and assimilation of 

urea by roots. 

 

This thesis focuses on the characterization of the urea acquisition mechanisms in maize roots at 

physiological and molecular level. Moreover, in an agricultural soil, plant roots are in contact with more 

than one source of nitrogen, i.e. urea, ammonium and nitrate, which may derived from the hydrolization 

of urea, and other organic nitrogen containing molecules; particular attention was paid to the influence 

of different nitrogen sources (N-sources) on the urea uptake system. 

 

Maize plants (Zea mays, L.; 5-day-old) were grown in hydroponic conditions. The root capacity to take 

up urea by a high-affinity transport system was evaluated at physiological level. In addition the influence 

of organic (such as urea and amino acids) and inorganic (such as nitrate) N-sources on the mechanisms 

involved in urea acquisition were investigated. This was performed by exposing for a short time (up to 

24 hours) the roots to different nitrogen forms (N-forms) and analyzing the time-course of changes in 

the uptake rates.  

To evaluate a possible link between the physiological and transcriptional response, variations in the 

gene expression were detected using two different techniques. A genome-wide microarray analysis of 

maize roots exposed to urea and/or nitrate was performed. Concerning genes involved in urea and 

nitrate transport and metabolism, the transcriptional data were confirmed and expanded to other 

growth conditions and tissues by real time RT-PCR analyses. Thus time-course gene expression 

experiments were performed on root and leaf tissues of plants exposed for short time to different N-
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forms, as urea and/or glutamine or nitrate. Besides physiological and transcriptional analyses, the 

molecular characterization of urea transporter was performed cloning the ZmDUR3-ORF sequence from 

maize roots, expressing it in heterologous systems, i.e. a yeast mutant, X. laevis oocytes and tobacco 

protoplasts and studying its urea uptake capacity and membrane localization.  

 

This thesis work reports, for the first time, the physiological characterization of urea uptake in roots of 

intact maize plants. Results indicated that at micromolar urea concentrations (up to 300 µM urea), 

maize roots were able to take up this nitrogen source, using a high-affinity and saturable transport 

system, as also reported for Arabidopsis and rice. Moreover, the urea high-affinity transport system 

appeared to be regulated by urea itself, showing the induction of the urea influx after short (few hours) 

root exposition to the molecule.  

In soil, plant roots are constantly exposed to a mix of different N-sources, such as organic and inorganic 

ones. Thus, to mimic field conditions, the influence of nitrate or glutamine on the capacity of maize 

roots to take up urea was studied. Interestingly, both N-forms exerted negative effects on urea 

acquisition, since low influx rates were detected when glutamine or nitrate were applied to the external 

medium. 

At least under the experimental conditions employed in this work, the increase capacity to take up urea 

due to urea treatment did not appear to involve variations in the transcriptional level of the high-affinity 

urea transporter gene ZmDUR3. Indeed, analysis of the transcriptomic profile revealed that the 

presence of urea in the external medium as the sole N-source, determined the up-regulation of only 

four genes. Nevertheless, as also corroborated by Real time RT-PCR, intriguing data were obtained when 

urea was applied with nitrate. Under this treatment maize roots increased further the overexpression of 

genes induced by nitrate alone, especially those involved in nitrogen assimilation, indicating a positive 

interaction between nitrate and urea on transcript abundance .  

In the last part of the present thesis, the isolation of ZmDUR3-ORF from maize roots allowed to 

functionally characterize its urea transport activity and its subcellular localization by expression in 

heterologous systems, such as in the dur3 yeast mutant, X. laevis oocytes and tobacco protoplasts. In 

particular the ability of ZmDUR3 to phenotypically complement the yeast mutant YNVWI (Δura3, Δdur3) 

by restoring the capacity to growth in presence of urea as sole N-source (≤3mM), is an undoubted proof 

that ZmDUR3 transports urea.  

The results reported in this work of thesis will help clarifying the relative contribution that uptake of 

urea can give to the overall nitrogen acquisition in maize roots and could provide a key to improving the 

use efficiency of nitrogen fertilizers in crop plants. 
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1 Introduction 
 

 

 Bioavailability of soil nitrogen 1.1

 

 

 The biogeochemical nitrogen cycle 1.1.1

 

Nitrogen is an essential element for life as component of central importance in the formation of 

biological compounds, such as amino acids and nucleotides (Taiz and Zeiger, 2006). Nitrogen, along with 

hydrogen, carbon, and oxygen, is the most abundant element in plants and for this reason it is taken up 

in the greatest amounts from the soil.  

In natural environment, nitrogen occurs for the most part in the atmosphere as molecular nitrogen gas 

(N2) accounting for over the 75% by volume. However, in this form, nitrogen is not directly available for 

plant nutrition but has to undergo transformations, known as nitrogen fixation. In the biogeochemical 

cycle (Figure 1) molecular nitrogen is naturally converted in chemical reactive forms by two main 

reactions: i) lightning and photochemical reactions, that they account for 10% of the fixed nitrogen 

(ranging between 0.5 and 30 X 1012 g nitrogen per year; Miller and Cramer, 2004) and are responsible 

for the conversion of N2 into the form of nitric acid (HNO3), which subsequently falls to Earth with rain; 

ii) biological nitrogen fixation, that it consists in the fixation of N2 into ammonium by bacteria or blue-

green algae, accounting for 90% of fixed nitrogen (ranging between 45 and 330 X 1012 g nitrogen per 

year; Miller and Cramer, 2004). An example of mutualistic nitrogen fixing bacteria is represented by 

Rhizobia, which live in symbiosis with legumes, while Azotobacter is known as being free-living nitrogen 

fixing bacteria. On global scale, in the 1990s the natural biological nitrogen fixation on land accounted 

for 110 Tg nitrogen per year while in the ocean was around 140 Tg nitrogen per year (Gruber and 

Galloway, 2008).  

Nitrogen in soil is mainly present as organic forms derived from animal and plant residues or from waste 

products. In general the organic compounds are considered to be a nitrogen source for microbial 

populations rather than plants. Indeed no evidence in the literature shows that plants are able to access 

directly complex organic matter, such as proteins, while soil microorganisms are able to break down 

proteins releasing peptides or single amino acids (Rentsch et al., 2007). Thus, depending on the rate of 

decomposition of the organic matter, the compounds, such as amino acids, nucleic acids, urea, and uric 

acid, may undergo to ammonification processes contributing to release ammonium. The bacteria and 

fungi that accomplish this process are called ammonifying organisms. The subsequent conversion of 
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ammonium into the oxidized forms nitrite and nitrate is called Nitrification process. In a first step, 

ammonium and oxygen are converted into nitrite by two groups of organisms: ammonia-oxidizing 

bacteria, Nitrosomonas sp., and ammonia-oxidizing archaea. In the second step nitrite is oxidized to 

nitrate, mainly, by bacteria of the genus Nitrobacter sp (Taiz and Zeiger, 2006). Under normal soil 

conditions, the bacterial oxidation of ammonium to nitrite is much slower than nitrite to nitrate. 

Therefore, very little nitrite is normally found in soil. As a consequence of these equilibria, in aerated 

soils, nitrogen is available for plant nutrition mainly in form of ammonium and nitrate (Gessa and 

Ciavatta, 2005) and as organic compounds, such as urea, peptides and amino acids depending on the 

degradation rate of the organic matter.  

However, in agricultural soils, the concentrations of these nitrogen forms are subjected to great 

fluctuations since agronomic practices, as fertilization events, may increase their bioavailability, 

especially that of nitrate, ammonium or urea. The inductrial production of the fertilizers is a further 

example of the atmospheric nitrogen fixation, since by Haber-Bosch process the gaseous nitrogen is 

fixed into ammonium and then is converted in the more oxidized forms of fertilizers, as nitrate or urea. 

Besides reactions that contribute to increase the soil nitrogen bioavailability other processes can occur 

in the biogeochemical cycle leading to nitrogen losses from the soil, such as denitrification, 

volatilization, nitrate leaching or erosion. 

Denitrification consists of the microbial conversion of nitrate to gaseous forms, such as nitrous oxide 

(N2O) and molecular nitrogen (N2), which go back to the atmosphere: 

NO3 
- → NO2

- → NO → N2O → N2 

The denitrifying bacteria have the ability to switch their respiration from oxygen to nitrate. Since 

respiration is more efficient using oxygen, these bacteria will only switch to nitrate if oxygen is absent, 

such as in waterlogged soils. Therefore, denitrification becomes significant when soils become 

saturated. Other environmental factors that favour denitrification include carbon availability (crop 

residues), warm soil, and neutral to alkaline pH.  

Nitrogen can be converted in gaseous form also by volatilization, leading to a physical loss of ammonia 

to the atmosphere. All ammonium-based fertilizers are subjected to volatilization when broadcastly 

applied on the surface of soils with high pH, surface lime salts, low organic matter, warm temperatures 

and dry conditions; the presence of water favours the formation of the ionic form ammonium, which is 

not susceptible to volatilization. This is the reason why it is so important to incorporate fertilizers such 

as anhydrous ammonia or urea into the dry soil.   

Other processes, such as soil erosion and nitrate leaching can contribute to limit nitrogen bioavailability. 

Estimates of total nitrogen losses by leaching from ammonium-based fertilizers range between 10 and 

150 Kg N ha-1 (based on data of International Fertilizer Industry Association: 

www.fertilizer.org/ifa/statistics.asp; Miller and Cramer, 2004).  

http://www.fertilizer.org/ifa/statistics.asp
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Moreover, in the soil, nitrogen bioavailability may be temporary limited by microbial immobilization. 

Indeed, microbes can also utilize inorganic nitrogen for their metabolism, this action resulting in a 

depletion of nitrogen availability to the plants when elevated carbon levels are provided (e.g. by 

addition of crop residues with high carbon/nitrogen ratio like straw) to support the microbial biomass 

accumulation. Anyway, the competition between plant and microorganisms for nitrogen is complex, due 

to multiple pathways through which nitrogen cycles at variable rates and in varying amounts and it is 

further complicated in case of plant-microorganism symbioses (Hodge et al., 2000). 

 

 

 
 

Figure 1.  Biogeochemical nitrogen cycle. Nitrogen cycles through the atmosphere as it changes from a gaseous 
form to reduced ions before being incorporated into organic compounds in living organisms. Some of the steps 
involved in the nitrogen cycle are shown (Taiz and Zeiger, 2006). 

 

 

 Nitrogen fertilization  1.1.2

 

Despite the great abundance in atmosphere, nitrogen is commonly deficient in agricultural soils where it 

is present mainly in form of nitrate and ammonium. 

As a consequence of the ready use of nitrate by plants and micro-organisms and its leachability, nitrate 

concentrations in the soil solution are usually very variable, typically in a range between 0.5 and 10 mM 

(Reisenauer, 1964), but it could also increase of three orders of magnitude (Crawford and Glass, 1998). 

On the other hand, ammonium is generally present in much lower amounts ranging from 20 to 200 µM 

(Owen and Jones, 2001); generally only 10% of the cation is found in solution remaining bound as an 

exchangeable cation to the negative soil surfaces. In soil it is also present an organic nitrogen fraction 



Tesi di Dottorato di Laura Zanin discussa presso l’Università degli Studi di Udine 
 

11 

corresponding to 0.1- 50% of total soil nitrogen (Barber, 1984); however, not all this fraction is available 

for root uptake since plants absorb preferentially amino acids and urea. The amino acids concentration 

in agricultural soils generally ranges between 1 and 100 µM (Owen and Jones, 2001), while urea is 

reported to occur up to 70 µM (Gaudin et al., 1987). 

So in aerated soils, nitrate is the dominant nitrogen form available for plant nutrition (Novoa and 

Loomis, 1981), although its concentration is very variable. It was estimated that most non legume plants 

require 20-50 g of nitrogen taken up by their roots to produce 1 Kg of dry biomass (Robertson and 

Vitousek, 2009). As consequence, the natural concentration of nitrogen in most agricultural soils 

represents a limiting factor for the development and growth of cultivated plants, especially for cereals 

such as maize, mainly because of their low Nitrogen Use Efficiency (NUE) (Raun and Johnson, 1999). 

Nitrogen use efficiency (NUE) can be defined as the ratio between grain yield and the total nitrogen 

taken up by the plant. It has been reported that more than one third of the total nitrogen applied for 

cereal production in the world, is removed in the grain, corresponding to a worldwide NUE around 33% 

(Raun and Johnson, 1999). In 1999, the cost of the remaining 67% accounted for 16 billion dollars (Raun 

and Johnson, 1999). 

Three cereals, wheat, rice and maize, provide 60% of human food and have become the three most 

abundant plants on Earth (Tilman et al., 2002). Concerning maize, its cultivation has acquired great 

relevance in north Italy,  especially in Friuli-Venezia-Giulia being the most cultivated crop plant in the 

last years (ISTAT 2011, Table 1).  

 

Table 1. Crop production in Friuli-Venezia -Giulia for maize, rice, sorghum and other cereal species (ISTAT 2011: 
http://agri.istat.it ). Data were collected between Nov-2011 and Apr-2012 depending on the culture. 

 Maize 

(Nov-2011) 

Rice 

(Apr-2012) 

Sorghum 

(Dic-2011) 

Other cereals 

(Dic-2011) 

Area (ha) 91,404 9 181 30 

Harvested production (Kg) 806,378,000 3,500 756,600 90,000 

     

 

In order to increase the concentration and the bioavailability of nitrogen sources, a common agronomic 

practice is to supply nitrogen fertilizers to soil. These fertilizers can be produced by natural or synthetic 

process and are mainly divided in organic and inorganic ones. The commonly used fertilizers include a 

different collection of compounds with nitrogen supplied in form of nitrate, ammonium, urea or 

combination of two of them. During 2011, world demand of nitrogen fertilizer was evaluated to be 

around 105 million tons (FAO, 2011). Since cereal yields are highly responsive to supplemental nitrogen, 

the worldwide maize cultivation lead to annual application of an estimated 10 million tons of nitrogen 

fertilizer (FAO 2004; Moose and Below, 2008). Referring to Region of Friuli-Venezia-Giulia, during the 

2010 the consumption of nitrogen fertilizers used to sustain the cultivations, such as maize, has been 

http://agri.istat.it/jsp/dawinci.jsp?q=plC020000020000073200&an=2011&ig=1&ct=244&id=15A%7C18A%7C25A
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estimated to be around 37,000 tons where urea accounted for over 60% (22,742 tons urea, ISTAT 2010: 

http://agri.istat.it ).  

Nitrogen fertilizers enable farmers to achieve the high yields that drive modern agriculture. In the last 

decades, the large consumption of fertilizer for cereal production was due to a correlation between 

cereal yields and nitrogen application rates which prevailed especially in the early of 1990s (FAO, 2000). 

As reported by Dobermann and Cassman (2005) the NUE, as the broadest measure of nitrogen use 

efficiency, is a ratio of yield to the amount of applied nitrogen (kg grain yield per kg nitrogen applied). 

Defined in this way, it appears evident as in the last 50 years the large increase in nitrogen use resulted 

in a steep decrease in the efficiency to use nitrogen in the following decades, reaching constant values 

between 1980s to 2000. Since, NUE is a ratio, it has decline from large values at small nitrogen 

application rates, in 1960s,  to small values of NUE at high nitrogen application rates, as to date situation 

(Figure 2). To date this relationship is no more sustainable since the increase in the amounts of applied 

nitrogen to cultures doesn’t leed to great benefits in terms of yields.  

 

 

Figure 2.  Trends of Global cereal yield and NUE of cereal production. Diminishing returns of fertilizer application 
imply that further applications may not be as effective at increasing yields. a: trends in average global cereal yields; 
b: trends in the nitrogen-fertilization efficiency of crop production (annual global cereal production divided by 
annual global application of nitrogen fertilizer) (Tilman et al., 2002). 

 

Moreover in the next years it has been estimated an increase in the consumption of nitrogen fertilizers 

for agricultural use. By 2050 world population will increase reaching 9.15 billion (Alexandratos and 

Bruinsma, 2012) and as consequence of this demographic growth, the increase in food demand will 

require to be sustain by higher cereal production (about +38% by 2025 according to Dobermann and 

Cassman, 2005). In this way, especially if losses of cereal cropping area will continue at the rate of the 

past 20 years (-0.33% per year) and the NUE of cereals will not be increased substantially, in the future 

the cereal demand will lead to a 60 % increase of the global nitrogen use (Dobermann and Cassman, 

2005). In the future wheat, rice and maize continue to dominate the demand for fertilizer into the next 

century. Nevertheless it has been estimated that the fertilizer use in maize production will surpass that 

of rice by 2030, as consequence of greater demand for meat in developing countries (FAO, 2000). 

http://agri.istat.it/jsp/dawinci.jsp?q=plC020000020000073200&an=2011&ig=1&ct=244&id=15A%7C18A%7C25A
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It is obvious that a similar inputs of chemical compounds will not be ecologically  and even economically 

sustainable requesting new agronomical strategy for a better use of nutrients. As pointed out by Good 

et al. (2004) plant scientists have long recognized the need to improve the nitrogen use efficiency of 

cereals developing crops that absorb and use nutrients in a more efficient way. Essential knowledge to 

improve the NUE of cultivated plants will request a deep  comprehension of soil-plant relationships and 

of plant mechanisms involved in the nitrogen uptake and utilization. In addition the new agronomical 

practices should be contribute to maintain the soil fertility minimizing as much as possible the nitrogen 

losses from the soil profile as consequence of volatilization or nitrate leaching processes. 

 

 

 Use of urea as nitrogen fertilization 1.1.3

 

As consequence of the dramatic increase of nitrogen fertilizers, these chemical inputs have a negative 

impact in the environment, affecting the biodiversity in the soil, air and water quality and also 

contributing to global climate change. Moreover It should be consider the economic sustainability, since 

the production of fertilizers is an energy-intensive process which depends by the fuel cost. Reducing the 

amount of supplemental nitrogen used in maize production will have significant positive economic and 

environmental benefits to world agriculture. In particular a combined lowering fertilizer and breeding 

plants with better nitrogen use efficiency is one of the main goals of research in plant nutrition (Hirel et 

al., 2007). 

Urea is the most frequently used nitrogen fertilizers in the world (Figure 3) with annual amount of over 

50 million tons accounting for more than 50% of the world nitrogen fertilizer consumption 

(www.fertilizer.org, 2008). The incredible increase in urea fertilizer use during the last decades is mainly 

due to its competitive price and the high nitrogen content (46% of mass), that allow reducing transport 

and distribution costs (Miller and Cramer, 2004). 

 

http://www.fertilizer.org/
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Figure 3.  World fertilizer consumption: the proportion of total nitrogenous fertilizer applied containing urea, 
ammonium and nitrate or combinations of these (data from the International Fertilizer Industry Association, 
www.fertilizer.org/ifa/statistics.asp, Miller and Cramer, 2004). 

 

Although experimental evidence reported the ability of plants to use urea per se when supplied through 

leaf application (Wittwer et al., 1963; Nicolaud and Bloom, 1998; Witte et al., 2002), a common 

agronomic practice is to supply urea to the crops by soil fertilization. In this way, at least for a short 

time, plant roots are exposed to urea as well to its hydrolysis products, such as ammonium and nitrate 

(Mérigout et al., 2008b). 

The stability of urea in the soil is dependent on the activity of the microbial urease, a nickel-dependent 

enzyme ubiquitously expressed in microorganisms and released into soil (Watson et al., 1994). This 

enzyme catalyzes the hydrolysis of urea into ammonium and its activity is proportional to the microbial 

biomass, which in turn depends on the organic matter amount and the water content of the soil. 

Moreover the extremely stable urease activity persists in the soil also after the decay of the 

microorganisms (Watson et al., 1994). So a part of the urea applied into agricultural fields is converted 

into ammonium, which could remain in this form as exchangeable cation or volatilized in form of 

ammonia. Moreover the ammonium could be also substrate of nitrification process being transformed 

into nitrate. Thus, urea fertilization may result in a simultaneous exposition of plant roots to urea, 

ammonium and nitrate, at least for short periods of time (Mérigout et al., 2008b).  

The efficiency of urea uptake could be affected by the use of urease inhibitors. Slowing the hydrolysis of 

urea, these molecules avoid a rapid and massive production of ammonium and nitrate; furthermore 

they allow the diffusion of urea far away from the application site favoring its uptake by the plant roots. 

The most promising and tested soil urease inhibitor is the N-(n-butyl) thiophosphoric triamide (nBTPT, 

trade name “Agrotain”), where the urease inhibitory activity is associated with the formation of its 

oxygen analogue (Watson, 2005). It is not unusual the marketing of urease inhibitors in combination 

http://www.fertilizer.org/ifa/statistics.asp
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with urea (Watson, 2005). However, in general little information is available on the urease inhibitors, 

whose activity could be affected by environmental factors such as pH (Hendrickson and Douglass, 1993), 

temperature (Hendrickson and O’Connor, 1987), and moisture content (Sigunga et al., 2002; Clough et 

al., 2004). In particular, an aspect that has not yet been elucidated concerns the effect of urease 

inhibitors on the capacity of roots to take up nitrogen sources, such as urea and nitrate. The 

comprehension of molecular mechanisms of urea uptake in cultivated plants could also be an important 

way to understand possible interference of nBTPT on the uptake and assimilation of nitrogen in plants. 
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 Nitrogen acquisition in plants  1.2

 

 

A lot of papers have reported the ability of the higher plants to take up nitrogen as inorganic or organic 

forms (Nacry et al., 2013; Xu et al., 2012, Figure 4). Nitrate and ammonium are the main inorganic forms 

absorbed by plants and the mechanisms of their acquisition have been well characterized (Crawford and 

Glass, 1998; Crawford and Forde, 2002; Miller and Cramer, 2004). More recent studies concern the 

capacity of plants to acquire nitrogen also in form of organic compounds, such as peptide, single amino 

acids or urea (Rentsch et al., 2007). Only in the last decade, the molecular mechanism of urea transport 

in plants has been investigated (Kojima et al., 2006), by cloning and characterizing the urea transporters 

in Arabidopsis and rice (Liu et al., 2003a; Wang et al., 2012). 

 

 

 

Figure 4. Schematic routes of N uptake from the rhizosphere. The source of N-fertilizer to be acquired, mainly in 
the form of ammonium and nitrate by roots, are included; transportation, assimilation and remobilization inside 
the plant are also indicated. The thicknesses of the arrows represent the relative amounts of nitrogen and sugar 
inside the plant. Abbreviations: AMT, ammonium transporter; AS, asparagine synthetase; Asn, asparagine; Asp, 
aspartate; GDH, glutamate dehydrogenase; Gln, glutamine; Glu, glutamate; GOGAT, glutamine-2-oxoglutarate 
aminotransferase; GS, glutamine synthetase; NAC-TF, certain transcription factors belonging to the NAC family; 
NiR, nitrite reductase; NR, nitrate reductase; NRT, nitrate transporter (Xu et al., 2012). 
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 Inorganic nitrogen uptake and assimilation 1.2.1

 

In a typical aerobic agricultural soil, nitrate and ammonium are both present, as main inorganic nitrogen 

forms available for plant nutrition. Compared to ammonium, nitrate is the major form present in the soil 

solution, as described by Wolt (1994), who reported a study of 35 agricultural soil samples where the 

mean soil solution concentration of nitrate was around 6 mM, that is 10 times more concentrated than 

ammonium. 

 

1.2.1.1 Nitrate uptake 

From soil solution nitrate is actively transported across plasma membranes of epidermal and cortical 

cells of roots, then following different fates. In the cytosol nitrate can be reduced by the nitrate 

reductase as first step of the reductive assimilation pathway that leads to the synthesis of ammonium. 

The surplus of nitrate can be stored in the vacuole or translocated to the shoot. Moreover, the net 

uptake rate of nitrate is a consequence of two components, which contribute in opposite directions: by 

influx, nitrate is actively transported inside the cells using a symport with two protons; while, by efflux, 

nitrate is released outside the cells, in the rhizosphere, by specific transporters that act as an electrically 

driven passive uniport (Crawford and Glass, 1998). 

Root cells present at least three nitrate transport systems (Glass and Siddiqi, 1995; Forde and Clarkson, 

1999), characterized by distinct kinetic parameters (Table 2). Operation of the different systems depend  

on nitrate concentration in the root external solution: the low affinity transport system (LATS) becomes 

relevant under high nitrate concentration (over 0.25 mM), while the high affinity transport systems 

(HATS) account for the uptake when nitrate is at micro- molar concentration. LATS and HATS do not 

seem to be equally distributed along the root system, indeed as reported by Bothe et al. (2006) and 

Varanini and Pinton (2007), LATS  is mainly present in the apical part of the roots while HATS in older 

root parts. 

A property of the HATS is the coexistence of two different kinds of transport components: an inducible 

(iHATS) and a constitutive one (cHATS).  

 

Table 2. Kinetic parameters of the nitrate transport systems as described by Crawford and Glass (1998). 

cHATS Km 6-20 μM; Vmax 0.3-0.82 μmol g-1 h-1 

iHATS Km 20-100 μM; Vmax 3-8 μmol g-1 h-1 

LATS Linear kinetic (up to 50 mM) 
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cHATS is characterized by very low value of Km and Vmax, corresponding to a low capacity pathway for 

nitrate absorption. However, this system is constitutively active in plants and it might be almost 

threefold upregulated by the exposure to nitrate (Aslam et al., 1992; Kronzucker et al., 1995). So, this 

system allows the plants to absorb nitrate also when it is present at very low concentration in the soil; in 

this way, the nitrate taken up in root cells allows the activation of iHATS, the inducible system. Usually 

the induction of iHATS leads to overshoot the plant demand for nitrate uptake and after the initial 

exposition to nitrate, the uptake system is rapidly down regulated (Glass and Siddiqi, 1995; Forde and 

Clarkson, 1999). As pointed out by Crawford and Glass (1998) the maximum uptake capacity of nitrate 

by iHATS is reached after hours or days of exposition to the anion, depending on its concentration in the 

external solution and on the plant species. So, iHATS is induced by nitrate while is feedback regulated at 

physiological and molecular level by downstream nitrogen metabolites, as ammonium and amino acids 

(Quesada et al., 1997; Krapp et al., 1998; Forde, 2000). In particular the induction by nitrate was 

demonstrated in maize by Santi et al. (2003), who reported that the root exposition to nitrate induced 

higher uptake rates of the anion and the overexpression of a high affinity transporter gene (ZmNRT2.1). 

At molecular level, HATS and LATS are encoded by two different gene families: NRT1 and NRT2. Both 

these families code for nitrate and protons co-transporters, whose expression can be induced by nitrate 

itself. In Arabidopsis several NRT1 and NRT2 genes have been characterized: seven NRT2 genes (Orsel et 

al., 2002; Okamoto et al., 2003) and eleven NRT1 genes (Tsay et al., 2007).  These two families appeared 

to be involved in different transport systems. Most NRT1 family members characterized so far show low 

affinity nitrate transporters with the exception of NRT1.1, which operates with both high and low 

affinity (Xu et al., 2012). On the other hand, genes that belong to the NRT2 family, code for transporters 

with high affinity; some of them require the association with a partner protein (NAR2) to transport 

nitrate (Yong et al., 2010). As regulators of nitrate acquisition, two genes encoding for nitrate-inducible 

kinases seem to be involved: AtCIPK8 and AtCIPK23 (calcineurin B-like interaction protein kinase), which 

might regulate the dual affinity of NRT1.1 (Ho et al., 2009; Hu et al., 2009). Conditions of nitrogen 

starvation, as well as the presence of nitrate, nitrogen metabolites and pH variation, may influence the 

expression of the NRT genes (Krouk et al., 2010; Feng et al., 2011). Concerning the nitrate assimilation 

metabolites, it was demonstrated in maize a negative effect of glutamine on the expression of 

ZmNRT2.1 (Vidmar et al., 2000). Thus it was suggested that while nitrate is responsible for inducing gene 

expression (Santi et al., 2003), nitrate assimilation products might be responsible for the down-

regulation of nitrate uptake (Krapp et al., 1998; Filleur and Daniel Vedele, 1999; Lejay et al., 1999) 

(Figure 5). To drive the symport of nitrate with two protons across the plasma membrane, an 

electrochemical proton gradient must be generated  by a proton-pumping ATPase (H+-ATPase). In maize 

a correlation between the nitrate uptake capacity and the PM H+-ATPase activity was reported and this 

correlation was confirmed at molecular level (Santi et al., 2003).  
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1.2.1.2 Ammonium uptake 

In aerobic soils nitrate is the major nitrogen source available for plant nutrition, and as reported above 

plant roots possess specific transporter for the uptake of the anion. Other transporters, located on the 

plasma membrane, can mediate the uptake of ammonium. It was demonstrated that plants are able to 

take up this nitrogen form, even if the root exposition to ammonium as the sole nitrogen source did not 

allow a completely healthy development of plants, expecially of leguminous and cereals (Wilkinson and 

Crawford, 1993). Arabidopsis plants showed a better growth under ammonium nitrate than ammonium 

alone when applied as unique nitrogen source, possibly reflecting the adaptation to growth in aerobic 

soils  (Helali et al., 2010). 

Several ammonium transporters (AMT) have been identified in Arabidopsis (6 AMT genes) and rice (10 

AMT genes). The AMT genes may be divided into two groups on the basis of sequences similarity: AMT1 

and AMT2 (Shelden et al., 2001; Sohlenkamp et al., 2000). The expression of some AMT1 genes in root 

hairs suggested their involvement in the ammonium uptake from the soil (Ludewig et al., 2002). 

Concerning the AMT1-type transporters it was observed also a correlation between ammonium uptake 

rate and the levels of gene expression (Kumar et al., 2003).  

Analysis of concentration-dependent influx of ammonium into intact plant revealed biphasic kinetics of 

root uptake, indicating the presence of at least two distinct components of ammonium transport: a high 

affinity transport, which showed a saturable kinetic for external ammonium concentration <1 mM, and a 

low affinity transport, showing uptake rates increasing linearly for higher concentrations of the cation 

(Ullrichet al., 1984; Kronzucker et al., 1996). 

The kinetic properties of the transport systems measured in the whole plant are highly variable and 

mainly dependent upon the nutritional status of the plant, which, in turn, is affected by environmental 

factors, such as light, temperature and previous external substrate availability. Unlike nitrate 

transporters, few days of nitrogen starvation resulted in an increased capacity of plants to take up 

ammonium (von Wirén et al., 2000). At molecular level, the expression of some AMTs genes is repressed 

by the presence of ammonium while the amounts of mRNA increase under nitrogen starvation (Yuan et 

al., 2007). 

As described for nitrate, the expression of an AMT gene and ammonium influx were suppressed when 

plants were supplied with glutamine, suggesting a negative control by nitrogen assimilation metabolites 

(Rawat et al., 1999) (Figure 5). 
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Figure 5. A model of proposed feedback processes involved in regulating nitrate and ammonium uptake. 
Glutamine (- - -) down-regulates the abundances of root NRT2 and AMT1 transcripts; cytosolic nitrate (NO3

-
) and 

ammonium (NH4
+
) concentrations (…) directly affect transporters activity. Induction of NRT2 expression by nitrate 

is also indicated. Solid lines from NRT2 and AMT1.1 indicate the pathways of transcription and translation leading 
to accumulation of high affinity nitrate and ammonium transporters (circles) in the plasma membrane (from Glass 
et al., 2001). 

 

1.2.1.3 Nitrate and ammonium assimilation 

The inorganic nitrogen, in form of nitrate and ammonium, is assimilated by plants onto carbon skeletons 

to synthetize organic nitrogen compounds, such as amino acids, nucleotides and other secondary 

metabolite that are essential to plant growth. In the past years, the nitrogen assimilation pathway has 

been extensively studied in a large variety of plant species, and the enzymes involved in the assimilation 

reactions are well known (Figure 6). 

Nitrate, absorbed by roots, is assimilated in either roots and shoots by the same pathway, where 

reductive reactions convert nitrate into ammonium. The first reaction is catalyzed by Nitrate Reductase 

(NR), which transfers two electrons from NAD(P)H to nitrate, producing nitrite:  
 

NR:  NO3
- + NAD(P)H + H+ + 2 e- → NO2

- + NAD(P)+ + H2O 
 

NR is located in the cytosol and is composed of two identical subunits. In each subunit several redox 

centers and prosthetic groups are present, such as: Flavin adenine dinucleotide (FAD), heme 

(cytochrome 557) and a molybdenum-pterin cofactor (MoCo). As electron donor this enzyme can use 

NADH or NADPH, so depending on reductant source, different forms of NR occur in plants. The most 

common form of NR uses only NADH; in roots is also present a form of NR that uses either NADH or 

NADPH. 

The expression of the genes encoding NR is tightly regulated (Crawford, 1995). In particular this enzyme 

is molecularly modulated by nitrate, in fact the transcription rate of NR gene increased in presence of 

nitrate (Ireland and Lea, 1999). Other factors, including light and carbohydrate, enhance the expression 
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of NR, whereas reduced forms of nitrogen, in particular glutamine, down-regulated its expression 

(Cheng et al. 1992; Vincentz et al. 1993). 

Subsequently, nitrite is translocated in plastids (or in chloroplasts for green tissues), where it becomes 

substrate for Nitrite Reductase (NiR). During this second reaction, nitrite is converted into ammonium by 

transfer of six electrons derived from ferrodoxin or its analogues. In maize, Suzuki et al. (1985) have 

described a ferrodoxin-like electron carrier (non-heme iron protein) for the transfer of electrons in non-

green tissues, like in roots.  
 

NiR:  NO2
- + 6 Fdred +8 H+ + 6 e- → NH4

+ + 6 Fdox + 2H2O 
  

Concerning the NiR, it was reported that its gene expression is also induced by light and nitrate, but not 

by carbohydrate and is reduced by the amino acids glutamate, glutamine, or asparagine (Back et al., 

1991; Vincentz et al., 1993).  

While nitrate can be translocated in the xylem and be assimilated also in shoots, the ammonium taken 

up by soil solution is assimilated directly in roots where, in form of organic compounds, is subsequently 

translocated to leaves. However, there are arguments in favour of a translocation of ammonium to 

leaves. Indeed Schjoerring et al. (2002) reported that when Brassica napus plants were exposed to 

ammonium as sole nitrogen source, the ammonium concentration in the xylem increased with 

increasing external concentrations and with time of expousure. 

So, ammonium, as derived either from root absorption or generated through NO3
- assimilation, is 

converted into glutamine by Glutamine Synthetase/Glutamine OxoGlutarate Aminotransferase 

(GS/GOGAT) cycle (Lea et al., 1992; Campell, 1999). GS catalyzes the ATP-dependent amination of 

glutamate to produce glutamine, than GOGAT  (Fd- or NADH-GOGAT) transfers one amide group from 

glutamine to α-chetoglutarate producing two molecules of glutamate: 
 

GS:  Glutamate + HN4
+ + ATP → Glutamine + ADP +Pi 

GOGAT:  Glutamine + α-chetoglutarate + Fdred /NADH + H+→ 2 Glutamate + Fdox/NAD+ 

 

In plants, there are two GS isoforms: one localized in the cytosol (GS1) and one in the plastids or 

chloroplasts (GS2). Numerous studies have been carried out to define the roles of these isoforms in 

nitrogen assimilation and remobilization. In roots, both GS isoforms have been found:  GS1 is more 

expressed in the vascular bundles to produce glutamine for intracellular nitrogen transport; whereas the 

GS2 generates amide nitrogen for local consumption. Concerning the GS2 in shoot chloroplasts it may 

be involved in the photorespiratory NH4
+ re-assimilation (Lam et al., 1996).  

In maize, at least five isoforms of GS1 have been identified and some of them are specifically expressed 

within the roots (Martin et al., 2006). Less information is available about GS2, which in maize was found 

to be expressed only in the early stages of plant development (Ueno et al., 2005). Light and 
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carbohydrate levels may influence the expression of the plastid forms of the enzyme, but they have little 

effect on the cytosolic GS1 (Taiz and Zeiger, 2006). 

There are two types of GOGAT that can use either NADPH or reduced Fd as the electron donor; both are 

usually located in plastids. In roots, especially root tips, Fd-GOGAT is the major form (Brugière et al., 

2001). In Arabidopsis two genes encoding for Fd-GOGAT have been identified: GLU1 and GLU2 

(Coschigano et al., 1998). GLU1 expression is low in root tissues, and most abundant in leaves, while 

GLU2 is constitutively expressed at low levels in leaves, and at higher levels in roots. NADH-GOGAT 

seems to be involved in the primary nitrogen assimilation in roots since its activity (from 2- to 25-fold 

lower than that of Fd-GOGAT) was found mainly in non–photosynthetic tissues, like roots (Ireland and 

Lea, 1999). Moreover, it was found that NADH-GOGAT is regulated by inorganic nitrogen forms, as it is 

induced by ammonium (Hirose et al., 1997) and also by nitrate (Wang et al., 2000).  

Besides the GS/GOGAT cycle, it was proposed that ammonium might be directly incorporated into 

glutamate by Glutamate Dehydrogenase (NAD(P)H-GDH), a mithocondrial enzyme that catalyzes a 

reversible reaction. Using 2-oxoglutarate and ammonium as substrate, GDH catalyzes the synthesis of 

glutamate, which may be coverted into glutamine by cytosolic GS1. Studies on source-sink relations 

have shown that GDH is induced in old leaves when nitrogen remobilization is maximal (Srivastava and 

Singh, 1987; Masclaux et al., 2000). This led to the proposal that the physiological role of GDH is to 

synthesize glutamate for translocation in senescing leaves (Miflin and Habash, 2002). However, there is 

no evidence to discern a redundant or indispensable role of GDH and GOGAT for glutamate synthesis 

and nitrogen remobilization. 
 

GDH:  2-Oxoglutarate + NH4
+ + NAD(P)H ↔ glutamate + H2O + NAD(P)+ 

 

Once assimilated in glutamine and glutamate, nitrogen may be transferred to other organic compounds 

such as the amino acids asparagine and aspartate by trans-amination reactions catalyzed by 

transaminases.  Aspartate aminotransferase (AspAT) transfers the amino group of glutamate to the 

carboxyl atom of oxaloacetate to synthetize aspartate. This amino acid may become substrate for the 

Asparagine synthetase (AS), the enzyme that converts aspartate into asparagine. In most species 

glutamine, glutamate, aspartate, and asparagine are the main free amino acids translocated as nitrogen 

carriers from roots to shoots. 
 

AspAT:  Glutamate + oxaloacetate  → aspartate + 2-oxoglutarate 

AS:  Glutamine + aspartate + ATP  → asparagine + glutamate + AMP + PPi 
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Figure 6.   Schematic representation of nitrate and ammonium assimilation pathway in plant cells. Nitrate–
proton symporters (NRT); nitrate reductase (NR); nitrite reductase (NiR); glutamine synthetase (GS) and glutamate 
synthase (GOGAT); aspartate aminotransferase (Asp-AT); asparagine synthetase (AS). The approximate amounts of 
ATP equivalents are given above each reaction (figure modified from Taiz and Zeiger, 2006). 

 

In conclusion, as pointed out by Suzuki et al. (2001), in plants cells the nitrate assimilatory genes of NR, 

NiR, GS and GOGAT are under the regulation of light and metabolites. In particular, it was reported that 

nitrogen and carbon metabolites such as nitrate, glutamine and sucrose constitute the signal 

transduction pathway in gene expression: sucrose induces Fd-GOGAT (Coschigano et al. 1998), NR 

(Cheng et al. 1992) and chloroplast GS (Edwards and Coruzzi 1989); nitrate and glutamine induce (Cheng 

et al., 1992; Rastogi et al. 1993) or repress (Vincentz et al., 1993) NR and NiR (Figure 5). 
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 Organic nitrogen uptake and assimilation  1.2.2

 

1.2.2.1 Amino acid uptake  

Among the organic nitrogen forms available for plant nutrition, single amino acids and peptides can be 

taken up by the roots. Evidence have been provided that plants possess specific transporters for amino 

acids operating at low concentrations compatible with those of soil solution (Borstlap and Schuurmans, 

1988; Bush, 1993; Soldal and Nissen, 1978). In maize Jones and Darrah (1994) reported that when 

inorganic nitrogen sources in soil were limiting, the uptake of amino acids could account for up to 90% 

the total nitrogen taken up by the roots. However, in agricultural soils, under normal conditions of high 

fertilizer inputs and low levels of organic matter in soil, the contribution of amino acids to plant nitrogen 

nutrition might still be expected to account for < 30 % of the total nitrogen taken up by the root system 

(Jones and Darrah, 1994). 

The natural occurrence and concentrations of amino acids in soils is highly variable, ranging from 0.1 to 

10 µM (Raab et al., 1996, 1999; Öhlund, 2004; Jones et al., 2005), although concentrations up to 100 µM 

have been recorded (Raab et al. 1996).  

For uptake of amino acids by roots, high and a low affinity transport system have been predicted 

(Tegeder and Rentsch, 2010). In Arabidopsis several amino acid and peptide transporters are expressed 

in roots, however a direct role in amino acid uptake has only been demonstrated for two transporters: 

amino acid permease 1 (AtAAP1, Lee et al., 2007) and lysine histidine transporter 1 (AtLHT1, Hirner et 

al., 2006). As physiological substrate for AAP1 were identified the amino acids glutamate, histidine and 

neutral amino acids, including phenylalanine; whereas aspartate, lysine and arginine were not (Lee et 

al., 2007). 

Although the direct uptake of amino acids from the soil solution by plant roots has been an ecologically 

critical issue, Lee et al. (2007) demonstrated the ability of AtAAP1 to contribute up to 50% of the amino 

acid uptake when organic nitrogen is applied at millimolar concentrations (2 and 10 mM).  

Studies about AtLHT1 and AtLHT2 suggested a high affinity transport of neutral and acidic amino acids 

(Hirner et al., 2006). 
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1.2.2.2 Urea uptake and assimilation 

 

1.2.2.2.1 Physiological evidence for the existence of urea transport in plants 

Urea in natural environment is estimated between 0.1 and 3 µM (Cho et al., 1996; Mitamura et al., 

2000a; Mitamura et al., 2000b), but in agricultural soils urea can reach higher concentration (up to 70 

µM, Gaudin et al., 1987). In the past, only few studies investigated the possible mechanisms for urea 

uptake. Due to the presence of microbial ureases and the low urea concentrations in the soil, it was 

believed that urea contributed only in minimal part to plant nutrition. For a long time, it was considered 

that roots take up urea-nitrogen mainly in form of ammonium, a product of urea hydrolysis (Polacco and 

Holland, 1993; Marschner, 1995). At most, due to the neutral character and the low molecular weight, it 

was suggested that urea moves as intact molecule across the cellular membranes by simple diffusion 

(Galluci et al., 1971). 

In the last decades the mechanism of urea acquisition in plants has become a research topic of great 

interest, mainly due to the use of urea as the most common nitrogen fertilizer for crop species in the 

world.  

The first experiment that documented the protein-mediated uptake of urea as an intact molecule was 

performed by Wilson et al. (1988). Thereafter, as listed below, other papers supported the existence of 

mechanisms of urea transport in plants: 

 

1988 Wilson et al. Protein-mediated urea uptake in algal cells (Chara australis) 
 

Using short-term 
14

C-urea influx assay and by electrophysiological voltage clamp It was 
demonstrated that urea uptake was dependent on the ATPase inhibitor DCCP or the 
protonophore CCCP, thus appearing to be coupled to the proton gradient across the 
plasma membrane. Moreover depending on urea concentration a multiphasic kinetic 
was observed, consistent with the presence of a high- and a low- affinity transport 
systems.  

 

1999 Tyerman et al. Urea permeability in membrane vesicles of wheat roots 
 

Endosomal membrane vesicles showed higher urea permeability (up to 3-fold) and 
mercure-sensitivity than plasma membrane vesicles. 

 

1999 Gerbeau et al. Urea permeability in tonoplast vesicles from suspension cells of tobacco 
 

A functional characterization of the aquaporins NtTIPa was performed by using Xenopus 
oocytes, confirming the transport specificity for water, urea and glycerol. 

 

2003a Liu et al. 14C-urea influx in suspension cells of Arabidopsis 
    

  These authors confirmed that urea transport is energy-dependent, since the uptake was 
inhibited by the protonophore CCCP dissipating the proton gradient across the plasma 
membrane.  
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2007 Kojima et al.  First experimental evidence “in planta”: short term 15N-urea influx into 
Arabidopsis  

     

At low urea concentration (micro-molar range), the kinetic followed a Michaelis-Menten 
behavior. Using dur3 Arabidopsis mutants (atdur3-1 and atdur3-3), it was demonstrated 
the role of AtDUR3 as the major transporter for high-affinity urea uptake in Arabidopsis 

(Figure 7, a). 

At high urea concentration (over 0.2 mM) a liner kinetic, typical for channel mediated 
urea transport, was observed. Aquaporins could be responsible for this type of transport 
as confirmed by Liu et al (2003b), who characterized AtTIP2;1 by heterologous 

expression in oocytes (Figure 7, b). 

 

 

Urea concentration (µM) 

Figure 7. Concentration-dependent influx of 
15

N-labeled urea into Arabidopsis roots. Disruption of AtDUR3 
decreases the capacity for high-affinity uptake of 

15
N-labeled urea. Plants of Col-0, atdur3-1 and atdur3-3 were 

cultured in nutrient solution containing 2 mM ammonium nitrate for 38 days before transfer to nitrogen deficiency 
for 4 days. (a) Urea influx into wild-type and atdur3-1 or atdur3-3 plants at an external supply of 3–200 µM urea. 
(b) Urea influx into roots of wild-type and atdur3-1 plants at an external supply of 200 – 1,200 µM urea. Symbols 
indicate means ±SD, n = 10 (Kojima et al., 2007). 

 

Other reports corroborated the above experimental evidence that led to the identification of aquaporins 

as responsible for the low affinity urea transport system in higher plants (Siefritz et al., 2001; Liu et al., 

2003b; Gaspar et al., 2003; Klebl et al., 2003). In particular to date not only members of Tonoplast 

Intrinsic Protein (TIP) family, but also Plasma-membrane Intrinsic Protein (PIP) and Nodulin 26-like 

Intrinsic Protein (NIP-like) aquaporins have been identified that allow urea permeation (Wang et al., 

2008). However, for most of these aquaporins the specific localization in subcellular membranes 

remains unclear. Besides aquaporins, urea transport activity has been identified only for orthologs of 

ScDUR3, the urea tranporter of Saccharomyces cerevisiae. In plants, two ScDUR3 orthologs have been 

isolated and functionally characterized: AtDUR3 and OsDUR3, of Arabidopsis and rice, respectively. 

Thus, as pointed out by Kojima et al. (2007), in higher plants DUR3 homologs may be the major 

transporters responsible for the high-affinity urea uptake across the plasma membrane (Figure 8). 
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Figure 8.  Model for protein-mediated urea transport pathways in plant cells. AtDUR3 mediates secondary active, 
high-affinity urea transport across the plasma membrane, while aquaporins of the PIP or TIP subfamilies mediate 
low-affinity urea transport. In particular TIPs might further transport urea across the tonoplast for transient 
storage in the vacuole or remobilization (Kojima et al., 2006). 

 

1.2.2.2.2 Low affinity urea transporter 

In addition to water transport, some plant Major Intrinsic Proteins (MIPs) were reported to mediate 

movement of small uncharged solutes, such as urea (Rivers et al., 1997; Dordas et al., 2000). Based on 

sequence homology, the plant MIPs have been classified in four subfamilies:  Plasma membrane Intrinsic 

Proteins (PIPs), Tonoplast Intrinsic Proteins (TIPs), Nodulin 26-like Intrinsic Proteins (NIPs) and Small basic 

Intrinsic Proteins (SIPs). Concerning those MIPs that facilitate the urea permeation in plant cells,  

members belonging to the subfamilies of PIPs, TIPs and NIPs were identified. Although the cellular 

localization of most PIPs and TIPs aquaporins is still unclear, in general PIPs are referred to localize in the 

plasma membrane while TIPs localize in the tonoplast. However the classification of an acquaporin to 

TIPs, or PIPs subfamilies depends on sequence similarity rather than subcellular localization, since the 

name of these protein classes is linked to an earlier nomenclature (Gaspar et al., 2003). In particular, it 

was reported a localization of some PIPs and TIPs also in subcellular membrane fractions (Barkla et al., 

1999; Schäffner, 1998). Moreover, the plasma membrane and the tonoplast vesicles isolated from 

wheat and tobacco showed different urea permeation characteristics. The urea permeability of 

tonoplast membrane vesicles was higher than the plasma membrane ones (Tyerman et al., 1999; 

Gerbeau et al., 1999).  

In order to isolate putative genes encoding for urea transporters in plants, a molecular approach was 

used, based on yeast complementation. A dur3 mutant S. cerevisiae strain, defective in the endogenous 

urea transporter ScDUR3 (ura- dur3-, YNVWI), was unable to grow on medium containing < 5 mM urea as 

sole nitrogen source (Liu et al., 2003a). Thus YNVWI mutants were transformed with a cDNA library of 

Arabidopsis and screened on 2 mM urea. In this way four putative genes involved in the low affinity urea 
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transport system were isolated: AtTIP1;1, AtTIP1;2, AtTIP2;1 and AtTIP4;1 (Liu et al., 2003b). All these 

genes encoded members of the TIPs family. Concerning the physiological characterization of AtTIP2;1 in 

Xenopus oocytes, a linear concentration dependency (up to 30 mM urea) was demonstrated, that is 

typically associated to channel-mediated substrate transport and commonly observed for low-affinity 

transporters (Liu et al., 2003b). Interestingly, by GFP localization in Arabidopsis protoplasts, these TIPs 

did not target only to the tonoplast, but a weak signal was also detected at the plasma membrane. So, a 

possible role of TIP/PIPs in the acquisition of urea from soil solution remains to be clarified.  

Urea transport by some plant MIPs was also confirmed in other species, such as tobacco (NtTIPa, 

Gerbeau et al., 1999), zucchini (CpNIP1, Klebl et al., 2003) and maize (ZmPIP1-5, Gaspar et al., 2003; 

ZmNIP2-1, ZmNIP2-4 and ZmTIP4-4, Gu et al., 2012).  

By phylogenetic analysis, most of the aquaporin sequences of maize have been identified (Chaumont et 

al., 2001). In particular, four maize aquaporins have shown to facilitate the urea transport: ZmPIP1-5b; 

ZmNIP2-1, ZmNIP2-4 and ZmTIP4-4. Furthermore, their transport activity was functionally characterized 

in Xenopus oocytes or in yeast mutant. Based on experimental evidence, the authors speculated on the 

putative roles of these aquaporins: besides the urea uptake from soil solution and translocation in 

plants, they might be involved in nitrogen homeostasis across the tonoplast (Gu et al., 2012). 

Concerning ZmPIP1-5 it was reported that the addition of nitrate to maize roots grown under nitrogen 

starvation, could induce the expression of ZmPIP1-5 (Gaspar et al., 2003). The authors suggested that 

the overexpression of this aquaporin might be involved in the response to the osmotic stress due to 

nitrate accumulation in vacuoles (Gaspar et al., 2003). However, more investigations are required to 

understand the physiological contribution of aquaporins to the overall urea transport.  

 

1.2.2.2.3 High affinity urea transporter 

To investigate plant proteins involved in urea acquisition, the Arabidopsis genome was analyzed 

searching genes showing similarity to known sequences encoding urea transporters in other organisms, 

such as mammals and microbes. One singleton sequence (At5g45380, AtDUR3) was identified which 

showed a 40% similarity with the active urea transporter ScDUR3 of Saccaromyces cerevisiae. Sumrada 

et al. (1976) described for the first time a yeast mutant strain carrying a defect in the active transport 

system of urea; the mutant locus was called “DUR3” (Degradation of URea-3). In yeast the expression of 

ScDUR3 showed to be highly sensitive to nitrogen catabolite repression and also required a functional 

ScGLN3 product (a yeast transcriptional activator of genes involved in the allantoin pathway). 

Based on sequence similarities, putative AtDUR3 homologous sequences were found in other plant 

species, such as in rice, maize, sorghum, poplar and tomato (Wang et al., 2008). However to date only 

the Arabidopsis AtDUR3 (Liu et al., 2003a) and rice OsDUR3 (GenBank ID AY463691, Wang et al., 2012) 
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have been cloned and functionally characterized by yeast mutant complementation assay and 14C- urea 

influx in Xenopus oocytes.  

The Arabidopsis and rice DUR3 genes code for 694 and 721 amino acids, respectively, sharing an amino 

acid identity of around 75%. A different number of predicted transmembrane spanning domains 

(TMSDs) were identified in DUR3 of Arabidopsis (14 TMSDs) and rice (15 TMSDs). Structurally, the plant 

DUR3 transporters belong to the Sodium Solute Symporter (SSS) superfamily. Various solutes (amino 

acids, nucleosides, vitamins, inositols and urea) have been identified to be transported by symport with 

Na+ by the SSS proteins (Jung, 2002), even if only a closely related group of molecules is usually 

substrate of an SSS-transporter (Leung et al., 2000; Reizer et al., 1994). Despite this class of transporters 

share the greatest sequence similarity within the kingdoms, no close homologues to AtDUR3 was found 

within the Arabidopsis SSS superfamily. So, to date the genome data corroborate the hypothesis that 

higher pants possess a single gene coding for urea transporter DUR3, as identified in Arabidopsis and 

rice (Wang et al., 2008). 

Yeast complementation showed that both transporters (AtDUR3 and OsDUR3) restored the ability of 

mutants (strain YNVWI, Liu et al., 2003a) to grow on media containing 2 mM urea as the sole nitrogen 

source. Moreover AtDUR3 and OsDUR3 were also characterized kinetically by heterologous expression 

in Xenopus oocytes. The 14C-urea uptake was observed to be concentration dependent (for 

concentrations up to 200 µM urea) following a Michaelis-Menten curve. The reported affinity constants 

(Km) were around 3 and 10 µM urea for AtDUR3 and OsDUR3, respectively (Liu et al., 2003a; Wang et al., 

2012). These values were in agreement with those reported for the high-affinity urea transport system 

in planta: Arabidopsis plants showed a Km of 4 µM urea (Kojima et al., 2007; Figure 7, a) whereas in rice 

it was around 7 µM urea (Wang et al., 2012).  

By heterologous expression in oocytes it was also possible to verify the substrate specificity of OsDUR3. 

Thiourea, a structural urea analog, inhibited competitively the urea uptake: in experiments with 

urea:thiourea=1:1 a decline in urea accumulation by over 50% was registered when compared to 

oocytes not exposed to thiourea. Uemura et al. (2007) analyzed the specificity of yeast urea transport 

and, besides urea, also the polyamine putrescine and spermidine were reported to be substrates for 

ScDUR3. However, concerning the rice transporter, a polyamine permeation was not supported by 

OsDUR3. 

Since DUR3 transporters belong to SSS superfamily, the transport activity was tested in the presence of 

sodium and under different pH conditions. Data showed that urea uptake capacity in AtDUR3 injected 

oocytes was not affected by 3 mM sodium in the bathing solution (Liu et al., 2003a). On the other hand 

low pH values stimulated the urea import; particularly for OsDUR3 urea uptake was strongly reduced by 

pH values over 5.0 suggesting a H+/urea symport. 
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GFP localization in Arabidopsis protoplast revealed that the fluorescent signals for both transporters, 

GFP-AtDUR3 and GFP-OsDUR3, were detectable at the plasma membrane. This data was consistent with 

the putative role of DUR3 as transporter of urea from outside into the cells (Wang et al., 2012) and 

corroborated the experimental evidence in heterologous organisms, such as oocytes and yeast. In 

addition, by gel blot analysis using antibodies against AtDUR3, it was possible to detect the signal in the 

plasma membrane enriched protein fraction extracted from nitrogen deficient roots of Arabidopsis. 

Since a weak signal was also detected in endosomal membrane fraction, the authors speculated that 

AtDUR3 is predominantly localized at the plasma membrane even if a little portion of AtDUR3 might 

reside in endosomal compartments, possibly reflecting the trafficking to or from the plasma membrane 

(Takano et al., 2005; Kojima et al., 2007). 

The physiological role of AtDUR3 and OsDUR3 was also confirmed by restoration of the capacity of dur3 

Arabidopsis mutant to grow in the presence of urea as unique nitrogen source, ranging from 0.5 to 1 

mM. This data, together with 15N-urea kinetic assay in dur3 Arabidopsis mutants (Figure 7), suggested 

that AtDUR3 also contributes to urea uptake in a millimolar concentration range. In fact, up to 1.2 mM 

urea, the influx of 15N-urea in atdur3-1 mutants was still significantly lower than in wild type plants 

(Figure 7; Kojima et al., 2007).  

Finally, both genes, AtDUR3 and OsDUR3, were found expressed in roots and in leaves of Arabidopsis 

and rice plants (Liu et al., 2003a; Wang et al., 2012). In particular the expression levels of both genes, 

AtDUR3 and OsDUR3, significantly increased in root tissues after at least two days of nitrogen starvation 

(Liu et al., 2003a; Wang et al., 2012). Furthermore the expression levels of OsDUR3 were inducible by 

substrate. Indeed the urea resupply after 2 days of N-starvation increased the amounts of OsDUR3 

transcript while the ammonium sulphate-resupply did not induce changes in the OsDUR3-mRNA levels 

(Wang et al., 2012). 

 

1.2.2.2.4 Urea as a secondary metabolite in plants 

Besides acquisition of urea from soil as nitrogen source, urea can also be accumulated in plant cells as a 

consequence of the secondary metabolism (Mérigout et al., 2008a). In particular, urea is produced as 

metabolic intermediate of nitrogen catabolism by two major biochemical processes: arginase action and 

the degradation of purines and ureides (Wang et al., 2008). 

The first pathway is involved in the protein degradation and in nitrogen re-cycle from storage 

compounds, such as arginine (Figure 9(1)). This catabolic process is frequently called “urea cycle” for its 

similarity with the animal urea synthesis, and it takes place in the mitochondrial matrix. The arginine is 

firstly broken down by arginase in two compounds: urea and ornithine. Subsequently, ornithine is 

converted into glutamate, while urea is exported to the cytosol possibly involving an aquaporin as 

membrane transporter (Soto et al., 2010). At this point urea becomes substrate of the cytosolic urease, 
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which catalyzes its hydrolysis releasing ammonium. Together with the arginine-derived glutamate, the 

ammonium is re-assimilated in the cytosol by the glutamine synthetase (GS). In this way all the nitrogen 

of arginine is re-cycled in form of glutamine for the synthesis of new proteins. An important role is 

performed by urease, which is required for the remobilization of half of the nitrogen stored in arginine. 

To date, the only other documented process that involves the ureolitic activity in plants, is the 

breakdown of urea taken up by roots.  

Developing embryos/seeds contain large amount of arginine accumulated for nitrogen store and its 

biosynthesis is located in the plastids. Upon germination arginase activity rises (Cao et al., 2010; Flores 

et al., 2008) and arginine is translocated across mitochondrial membrane for its degradation. So, during 

the germination as well as senescence, the equilibrium among arginase and urease activities becomes a 

crucial point for the re-mobilization and re-cycle of nitrogen. 

Furthermore, the synthesis of urea is connected to the polyamine metabolism and to the hydrolyzes of 

canavanine. In the polyamine pathway arginine is substrate of a cytosolic enzyme (arginine 

decarboxylase) that catalyzes the synthesis of agmatine and then, by agamtinase action, urea and 

putrescine are released  (Figure 9 (2)). These reactions constitute an alternative way to the well-known 

ornithine degradation for the synthesis of polyamine (Kusano et al., 2007).  

Canavanine is a non-proteinogenic amino acid that is accumulated in large amounts in seeds of 

leguminous species, such as in jack bean (Rosenthal, 1982). This secondary metabolite has a dual 

biological function: as nitrogen storage and also as defensive compound against herbivores. By 

canavanine hydrolase, canavanine is hydrolyzed to canaline and urea (Figure 9 (3)).  

The ureides allantoin and allantoate are nitrogen-rich compounds derived from purine catabolism. The 

exact route of allantoate degradation in plants is still a matter of debate. It is uncertain whether the 

production of ammonia and CO2 from allantoate is direct or by way of an urea intermediate. Allantoate 

is hydrolyzed into ureidoglycolate and subsequently into glyoxylate (Figure 9(4)). 

In yeast this process occur in two steps catalyzed by the enzymes allantoate amidinohydrolase and 

ureidoglycolate lyase. In total, by this way, two molecules of urea are released from allantoate 

degradation (Yoo et al., 1985; Yoo and Cooper, 1991). A different pathway was identified in Arabidopsis, 

where the breakdown of allantoate involves three enzymes: allantoate amidohydrolase, ureidoglycine 

amidohydrolase and andureidoglycolate amidohydrolase (Todd and Polacco, 2006; Werner et al., 2008). 

All these enzymes catalyze the deamination of their substrates releasing ammonia and not urea. To 

date, among higher plants, the generation of urea from allantoate has been reported only in soybean 

and tentatively assigned to ureidoglycolate lyase activity. Putative ureidoglycolate lyases have been 

purified from legumes, but the corresponding gene has not yet been identified. So in soybean, both 

degradation pathways coexist, however ureides degradation via amidohydrolases seems of major 

importance (Faye et al., 1986; Fahmy et al., 1994). 
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Figure 9.   Simplified sketch showing urea generation, transport and degradation in plant cells. Urea is derived 
either from metabolism or is taken up from the environment through high-affinity transport (HAT) and low-affinity 
transport (LAT) systems located in the plasma membrane. Urea generating enzymes are (1) arginase, (2) 
agmatinase, (3) canavanine hydrolase, and (4) amidinohydrolases, namely allantoate amidinohydrolase and urea-
lyase (for details, see Section 3). Urea could be compartmentalized between cytoplasm and vacuoles by tonoplast-
targeted transporters, such as TIPs and active urea transporters (not yet identified). However, so far it is not clear 
if urea is stored in vacuoles. The pathway for urea movement out of mitochondria is unknown. Cytosolic urea can 
be hydrolyzed by urease to ammonia, which can be assimilated by glutamine synthetase (Wang et al., 2008). 

 

1.2.2.2.5 Urea assimilation 

In higher plants, the urea, derived either from root absorption or generated by secondary metabolisms, 

can be hydrolyzed by the cytosolic nickel-dependent urease. This metalloenzyme was found in most 

ureolytic organism, except few algae, fungi and bacteria where an alternative urease-independent 

pathway hydrolyzed urea through the intermediate allophanate (Kanamori et al., 2004).  

Urease catalyzes the degradation of urea by one-step reaction that leads to ammonia and carbamate 

(Blakeley et al., 1969). By spontaneous and rapid decay, the carbamate is broken down forming a 

second molecule of ammonia and one of carbon dioxide (Carter et al., 2009) (sketch of urease reaction 

from Witte, 2011): 

 

 

Structurally all ureases are made of three subunits (UreA, UreB and UreC); in plants they are fused in 

trimeric units that may associate giving an exameric structure (Balasubramanian and Ponnuraj, 2010). 

For the formation of the active enzyme, three accessory proteins are further required (UreD, UreF and 

UreG) (Witte, 2011). The affinity constant (Km) for this enzyme range from 0.15 to 3 mM, even if more 
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often is around 0.5 mM (Cao et al., 2010; Davies and Shih, 1984), a concentration comparable with that 

determined in Arabidopsis and rice tissues (up to 0.9 mM) (Mérigout et al., 2008a; Cao et al., 2010). 

Urease activity was found in a wide variety of plants, including crop species like maize (Davies and Shih, 

1984; Gheibi et al., 2009) and barley (Chen and Ching, 1988). Further studies performed in soybean and 

potato demonstrated that its activity was ubiquitously present in all plant tissues (Witte et al., 2001; 

Torisky and Polacco, 1990; Polacco and Winkler, 1984); in Arabidopsis it was also shown that the 

transcription of the urease gene occurs in all tissues (Witte, 2011). 

Among higher plants, experimental data suggest that only one single gene codes for urease (as in 

Arabidopsis, rice, maize and in most other sequenced plants), while in soybean almost two isoforms 

were identified (Witte, 2011). Furthermore, in maize genome two putative sequences have been 

identified, that may encode for accessory proteins: UreF (EU953829.1) and UreG(EU956120.1) (from 

MaizeGDB: http://www.maizegdb.org); however their functionality  is not yet characterized. 

Despite a constitutive urease activity in roots, other studies reported urea accumulation in xylem sap or 

in leaves when urea was used as sole nitrogen source to roots (Hine and Sprent, 1988; Gerendas et al., 

1998), indicating that at least part of the root absorbed urea is translocated to shoots before urea 

degradation. However, it remains unclear in which way urea is transported across intercellular 

membranes and also across intracellular compartments, as mitochondria and vacuole (Kojima et al., 

2007). 

Concerning the urease regulation, at both physiological and molecular level, is not clear if this enzyme is 

inducible by urea. Gheibi et al. (2009) analyzed the enzymatic activity in maize roots exposed for several 

weeks (up to 6) to different nitrogen sources. After two weeks of treatment, the urea-fed plants showed 

a 2-fold increase of the urease activity when compared to ammonium nitrate treated roots. Although 

this data were confirmed also by several other studies, as listed by Polacco and Holland (1993), other 

reports were in contradiction with this evidence. Witte et al. (2002) analyzed the effect of urea leaf 

fertilization in potato showing that in leaves the urease activity was not induced by urea. 

At molecular level, urea doesn’t seem to induce the transcription of urease gene. Indeed, Mérigout et al. 

(2008a) performed a microarray study on Arabidopsis plants that were exposed to urea as sole nitrogen 

source, and no transcriptional regulation by urea was reported for urease gene or genes coding for urea 

cycle enzymes. In a recent study performed in Brassica napus, it has been reported that in shoots and 

roots the expression of urease responded to nickel-deficiency (Arkoun et al., 2012a). After 7 days of urea 

treatment, nickel deficient plants showed higher amounts of urease transcripts than nickel sufficient 

plants.  

 

 

  

http://www.maizegdb.org/
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 Effect of nitrogen sources on their uptake system 1.2.3

 

Three main nitrogen forms are present in soil as native sources or as applied fertilizers: ammonium, 

nitrate and urea. Their relative amount and bioavailability under field conditions are obviously 

influenced by biogeochemical reactions; however, at least for a short time, plant roots are exposed to a 

combination of these three nitrogen sources (Mérigout et al., 2008b). Experimental evidence has 

demonstrated that higher plants are able to take up either nitrate, ammonium or urea when supplied as 

sole nitrogen source, and possess dedicated transmembrane transport systems in root cells for each 

form (Forde, 2000; Liu et al., 2003a). 

The study of the interactions among different nitrogen sources may have great relevance in order to 

improve the comprehension and the optimization of nitrogen nutrition in plants. However, to date only 

a limited number of works have focused on the reciprocal influence of nitrogen sources on the root 

uptake (Bradley et al., 1989; Criddle et al., 1988; Mérigout et al., 2008b; Garnica et al., 2009; Arkoun et 

al., 2012b). 

A preliminary study was performed by Kirkby and Mengel (1967), who measured the ionic balance in 

different tissues of tomato plants supplied with nitrate, ammonium, or urea in hydroponic conditions. 

The plant growth was strongly affected by the ammonium treatment, since, in comparison to nitrate, 

small leaves with very poorly developed stubby root system was observed. On the other hand, plants 

fed with nitrate grew better and were characterized by a great development of the root system. 

Intermediate size was observed in urea fed plants, even if the root system was quite well developed. 

Also in terms of dry weight, urea showed intermediate values between nitrate and ammonium. These 

data were also corroborated by Houdusse et al. (2005), who reported that in wheat and pepper 

ammonium nutrition and, to a lesser extent, urea nutrition determined reductions in plant growth in 

comparison to nitrate treatment. 

Several authors have demonstrated that the root exposition to a combination of different nitrogen 

sources, led to positive effects on the nutritional status of crop plants (Houdusse et al., 2005; Britto and 

Krozucker, 2002; Garnica et al., 2009; Arkoun et al., 2012b). In particular the negative effects associated 

to ammonium or urea nutrition were corrected by the addition of nitrate to the nutrient solution. 

Anyway, to date the physiological and molecular mechanisms of this beneficial influence remain mostly 

unknown.  

Garnica et al. (2009) performed experiments feeding wheat plants (up to 96 hours) with nutrient 

solutions containing ammonium (A), nitrate (N) or urea (U) (each source: 0.5 mM nitrogen) applied 

singularly or in combination (A, N, U, UA, UN, ANU). Uptake patterns observed under A, N, U,AU, UN and 

ANU treatments (Figure 10) showed that when the sources were applied singularly (A, N, U), the amount 

of nitrogen that was taken up by urea-fed plants was lower than that of nitrate- or ammonium-fed 
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plants. Interestingly, the simultaneous presence of two or more nitrogen forms favored urea absorption: 

indeed when urea was supplied with nitrate or ammonium (UA or UN) its uptake rates increased. This 

effect was much more evident in UN-fed plants between 24 and 96 hours. 

Further, Garnica et al. (2009), analysing shoots and roots urea content, observed that urea hydrolysis 

and ammonia assimilation were enhanced when nitrate was also present in the nutrient solution (UN 

treatment). This positive effect of nitrate on urea assimilation was prevented by ammonium (UAN 

treatment), suggesting that ammonium might regulate urease by feedback inhibition (Garnica et al., 

2009).  

 

 

Figure 10. Time course of ammonium (-•-), nitrate (-□-) and  urea (-Δ-) uptake from the (a) A, (b) N, (c) U, (d) UA, 
(e) UN and (f) ANU treatments of wheat plants. Two uptake rates were noted during the treatment: a higher rate 
that takes place during the first 24 hours (1–24 h), and a lower rate after the first day of the treatment until the 
end of the period of time of the study (24–96 h) (from Garnica et al., 2009). 

In a molecular and physiological study, Mérigout et al. (2008a) reported the influx rates of nitrate, 

ammonium and urea in Arabidopsis plants exposed for 7 days to different nitrogen sources (urea, (U), 

ammonium nitrate (AN), ammonium nitrate and urea (ANU)) or under nitrogen starvation (Ctr). 

Interestingly, the urea uptake was observed to be somehow regulated by urea itself since the urea influx 

reached the highest level when plants were fed with urea as sole nitrogen source (U); on the other 

hand, the root exposition to urea in conjunction with ammonium nitrate (ANU) determined uptake rates 
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comparable to those observed in plants grown under ammonium nitrate (AN) or under conditions of 

nitrogen starvation (Ctr). Moreover urea, when supplied as unique nitrogen source, influenced positively 

also the uptake of ammonium showing influx rates intermediate between plants grown in nitrogen 

starvation (Ctr, the highest value) and plants exposed to ammonium nitrate (AN and ANU, the lowest 

values). On the other hand the presence of urea along with ammonium nitrate (ANU) did not exerted 

negative effect on nitrate uptake since influx was comparable to ammonium nitrate fed plants (AN) 

(Mérigout et al., 2008a).  

However the use efficiency of nitrogen forms depends also on the plant species. For example Mérigout 

et al. (2008b) performed a study comparing the nitrogen use efficiency in maize and wheat plants. 

Plants were fed for three weeks with urea or ammonium nitrate or ammonium sulfate as sole nitrogen 

source and, after 7, 14, 21 days, the urea content was analyzed in roots and shoots. The authors 

observed a different behavior between maize and wheat to cope with urea. Maize growth was not 

strongly affected by the different nitrogen sources. In contrast the wheat growth was highest under 

ammonium nitrate and lowest under urea treatment, whereas urea enhanced the root development. 

The authors hypothesized that the limiting factor for the use of urea as a nitrogen source was its low 

absorption.  

Arkoun et al. (2012b) measured in Brassica napus the accumulation of 15N-fertilizer taken up by 

nitrogen-starved plants fed for 15 days with (as sole nitrogen source): urea (U), nitrate (N), urea and 

nitrate (UN) or ammonium and nitrate (AN); or maintained in nitrogen deficiency (Ctr). In this work the 

authors did not found a positive effect of nitrate on urea uptake as well on the uptake of ammonium, 

respectively under the UN and AN treatments. This data was in contradiction with that reported by 

Garnica et al. (2009) who showed in wheat plants a significant enhancement of urea and ammonium 

uptake rates when nitrate was supplied to the plants. However, as observed also in wheat by Garnica et 

al. (2009), in oilseed rape the presence of urea greatly delayed nitrate uptake. 

These physiological results suggest that response to urea is dependent on plant species (wheat, maize, 

Arabidopsis or oilseed rape).  

Thus, although Garnica et al. (2009) and Mérigout et al. (2008b), as well other several authors (Britto 

and Kronzucker, 2002; Cruz et al., 2003; Houndusse et al., 2005; Arkoun et al., 2012b), pointed out the 

importance of the combination of nitrogen forms supplied to the plant and, in turn, of the types of 

fertilizer that are applied to the soil for improving the NUE of a specific crop, further studies are needed 

to better understand the mechanisms that are involved in the uptake of the different nitrogen forms 

and of the physiological and molecular bases of their reciprocal interactions in different plant species. 

Particularly, due to its huge utilization, the comprehension of physiological and molecular bases of urea 

uptake and the influence of the other nitrogen sources on the mechanisms of its acquisition by plants 

might have great relevance to enhance the nitrogen use efficiency in crop species, such as maize.  
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 Aim of the work  1.3

 

 

Beside the use of urea as the most worldwide nitrogen fertilizer, a research topic of great interest 

concerns the capacity of crop plants to use urea per se as a nitrogen source for their development and 

growth. However, to date only a limited number of works had focused on the uptake systems and 

assimilation of urea by roots, especially in maize plants. Thus, general aim of this thesis focuses on the 

comprehension of physiological and molecular mechanisms involved in urea uptake by maize roots.  

In the first part of the study, an in vivo kinetic characterization of high-affinity urea uptake was 

performed, especially with the aim to ascertain the existence of a possible inducible process. Further 

analyses were conducted to determine if the concentration of urea in the external medium and the time 

of root exposition to the N-source could influence the uptake capacity of maize roots.  

Since in the field roots are commonly exposed to a combination of different nitrogen forms, part of this 

thesis concerned also the influence of organic and inorganic nitrogen sources on the mechanism of urea 

acquisition in plants. Particular attention was dedicated to reciprocal influence of nitrate and urea on 

their own uptake systems.  

In order to evaluate a possible link between the physiological response and variations at 

transcriptional level, the second part of the thesis focused on the effect of urea on gene expression in 

maize roots and leaves. A genome-wide analysis was performed in roots in order to investigate which 

transcripts could be induced by urea treatment when at physiological level roots showed the maximal 

uptake rates of this organic source. This analysis was conducted also using roots exposed to nitrate or to 

urea and nitrate applied simultaneously, thus trying to draw a more comprehensive picture of 

transcriptomic changes associated with the root response to the two main N-sources conceivably 

present in the soil. Expression of genes involved in urea and nitrate transport and metabolism was 

further analysed using a real time RT-PCR analysis of maize roots and leaves during the exposure to the 

different N-sources.  

An important aim of this work was concerned the molecular identification and functional 

characterization of a putative high-affinity urea transporter of maize (ZmDUR3). This task was 

accomplished in the third part of the work by cloning the ZmDUR3-ORF from maize roots and by testing 

the capacity of ZmDUR3 to transport urea by expression in heterologous Saccharomyces cerevisiae 

mutant and in Xenopus laevis oocytes. Finally, to identify the subcellular localization of ZmDUR3, 

ZmDUR3/GFP phusion proteins were transiently expressed in Nicotiana tabacum protoplasts. 
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2 Materials and methods 
 

 

 Plant material and growth conditions 2.1

 

 

 Maize culture  2.1.1

 

Maize seed (Zea mays L., cv. PR33T56, Pioneer Hybrid Italia S.p.A.) were germinated over aerated 0.5 

mM CaSO4 solution in a dark growth chamber at 25°C. After 4 days, the seedlings were transferred into 

an aerated hydroponic system (plastic posts) filled with 2 L of solution containing 0.5 mM CaSO4 in a 

controlled climatic conditions: day/night photoperiod, 16/8 h; light intensity, 220 µE m-2 s-1; temperature 

(day/night) 25/20°C; RH 70 to 80 %. After 24 hours, 5-day-old plants were transferred in a complete 

nitrogen-free nutrient solution containing (µM): KCl 5; CaSO4 500; MgSO4 100; KH2PO4 175; NaFe-EDTA 

20; H3BO3 2.5; MnSO4 0.2; ZnSO4 0.2; CuSO4 0.05; Na2MoO4 0.05. The pH of solution was checked and 

adjusted to pH 6.0 with sodium hydroxide (NaOH). 

Nitrogen was supplied in form of: urea (U treatment), calcium nitrate (N treatment), ammonium sulfate 

(A treatment), ammonium nitrate (AN treatment) or as single amino acids (glycine, Gly; arginine, Arg; 

aspartate, Asp; asparagine, Asn; glutamate, Glu; glutamine, Gln). Plants were exposed to these nitrogen 

forms supplied singularly or in combination, in a range of concentration from 1 to 4 mM of total 

nitrogen. As control plants were not exposed to any nitrogen source (Ctr).  

It was also analyzed the effect on urea uptake rate of the urease inhibitor N(n-butyl)thiophosphoric-

triamide (nNBPT, Apollo Scientific Ltd, UK). Thus, 0.897 µM nBTPT was added to urea treatments 

(Krogmeier et al., 1989). 

 

Morphometric evaluation in long term experiments:  7 days of nitrogen treatments 

To evaluate the effect of different nitrogen sources on root and leaf fresh weights and on the 

morphology of the root system, 5-day-old maize plants were exposed for 7 days to a nutrient solution 

containing a) as a sole nitrogen source: urea (U), ammonium (A), nitrate (N) or glutamine (Gln), 1 mM 

Ntot;  or b) a combination of two nitrogen sources: urea and nitrate (UN), urea and ammonium (UA), 

urea and glutamine (UG) or ammonium and nitrate (AN), 2 mM Ntot. Control plants were fed with 

nutrient solution without the addition of any nitrogen form. At the end of the experiment (Figure 11, a) 

photos of root systems were taken and the upper- and lower-parts of 24 plants were weights. 
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Physiological and molecular studies in short term experiments: max. 24 hours of nitrogen 

treatments 

 

- Urea Kinetic, urea and nitrate uptake capacity and 15N accumulation 

The urea and nitrate uptake assays were performed on 5-day-old maize plants exposed for a maximum 

of 24 hours to a nutrient solution containing a) as a sole nitrogen source: urea (U, from 1 to 4 mM Ntot), 

ammonium (A), nitrate (N) or single amino acids (glycine, Gly; arginine, Arg; aspartate, Asp; asparagine, 

Asn; glutamate, Glu; glutamine, Gln) ranging from 1 to 3 mM Ntot; or b) a combination of two nitrogen 

sources: urea and nitrate (UN), urea and ammonium (UA), urea and glutamine (UG) or ammonium and 

nitrate (AN), containing 2 mM Ntot. Control plants were fed with nutrient solution without the addition 

of any nitrogen form. After 2-4-6-8-10-12 and 24 hours of exposition to different nitrogen treatments 

Figure 11, b), the roots of intact seedlings were washed in 0.5 mM CaSO4 and used to perform the urea 

and nitrate uptake assays. Another series of experiments were performed where15N accumulation was 

measured in maize roots and shoots after 24 hours of exposition to different nitrogen treatments 

containing 15N-labeled source (98 atom % 15N; ISOTEC® Stable Isotopes, Sigma Aldrich, Milano, Italy): 

15N-ammonium (1 mM Ntot, A), 15N-nitrate (1 mM Ntot, N), 15N-urea (1 mM Ntot, U), ammonium and 

15N-nitrate (2 mM Ntot, AN) or 15N-urea and nitrate (2 mM Ntot, UN). 

 

- Microarray experiment 

Microarray analyses were performed on 5-day-old maize plants exposed to a nutrient solution 

containing as a sole nitrogen source: urea (U, 1 mM Ntot), nitrate (N, 1 mM Ntot) or in combination urea 

and nitrate (UN, 2 mM Ntot). Control plants were fed with nutrient solution without the addition of any 

nitrogen form. After  8 hours of exposition to different nitrogen treatments (nine hours after the 

beginning of light phase; Figure 11, c), the roots from six plants were pooled together, immediately 

frozen in liquid nitrogen and stored at -80°C until further processing. Microarray analyses are based on 

three independent biological replications. 

 

- Real time RT-PCR experiment  

Real time RT-PCR analyses were performed on 5-day-old maize plants exposed for a maximum of 24 

hours to a nutrient solution containing a) as a sole nitrogen source: urea (U), nitrate (N) or glutamine 

(Gln), 1mM Ntot; or b) a combination of two nitrogen sources: urea and nitrate (UN) or urea and 

glutamine (UG), 2mM Ntot. Control plants were fed with nutrient solution without the addition of any 

nitrogen form. After 2-4-8-12 and 24 hours of exposition to different nitrogen treatments (Figure 11, b), 
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the roots and leaves from six plants were pooled together,  immediately frozen in liquid nitrogen and 

stored at -80°C until further processing. The collection was repeated in two independent experiments. 

 

 

 

Figure 11. Schematic representation of the experimental plan for long term (a) and short term experiments (b, c 
and d). 5-day-old maize plants were grown hydroponically in 0.5 mM CaSO4 in nitrogen starvation (-N). Then plants 
were transferred in nutrients solution containing different nitrogen treatments. Depending on exposition time to 
the nitrogen treatments, two type of experiments were performed: a) Long term experiment: 7 days of nitrogen 
treatments; b, c and d) Short term experiments: maximum 24 hours of nitrogen treatments.  For the different 
analyses blue lines represent the time span and in yellow the harvesting times. All the experiments started 1 hour 
after the onset of light, thus “2h” samples were harvested after 3 hours from the beginning of the light phase. 

 

a Long term experiment (7 days of nitrogen treatments) for morphological and plant growth 

evaluations  

b Short term experiment (max 24 h of nitrogen treatments) for urea and nitrate uptake analyses 

and for 
15

N accumulation.  

c Short term experiment (max 24 h of nitrogen treatments) for microarray analysis  

d Short term experiment (max 24 h of nitrogen treatments) for Real time RT-PCR analyses 
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 Arabidopsis culture  2.1.2

 

To evaluate the contribution of single nitrogen sources on plant nutrition, Arabidopsis plants were 

treated with 15N-labeled sources and the 15N content in roots and shoots was analyzed in time course. 

So, Arabidopsis plants (Arabidopsis thaliana from the Columbia-0 ecotype) were grown under 

hydroponic culture conditions in a growth chamber with day/night photoperiod, 8/16 h; light intensity, 

220 µE m-2 s-1; temperature (day/night) 21/17°C; RH 70 to 80%. Seeds were sterilized and germinated at 

4°C for 5 days in plastic tips filled with 1% w/v agarose gel. When two embryonic leaves appeared, 

plantlets were transferred in hydroponic conditions as described above for maize plants. For each plastic 

pots, 12 plants grew together exposed to 2 L of nutrient solution. The composition of the  media was the 

same reported by Mérigout and coworkers (2008a). Thus, plants were grown with basic nutrient 

medium supplemented with 1 mM NH4NO3. Basic medium contained 1 mM MgSO4, 1 mM KH2PO4, 2.5 

mM K2SO4, 2.2 mM CaCl2, 10 mM MnSO4, 24 mM H3BO3, 3 mM ZnSO4, 0.9 mM CuSO4, 0.04 mM 

(NH4)6Mo7O24, and 10 mg L-1 Fe-EDTA. Nutrient solution was renewed every 2 days and, during the 2 first 

weeks, used at half-strength (pH 5.5 adjusted with KOH ). At the age of 5 weeks, and 7 days before the 

experiment, most of the plants were transferred to basic medium without addition of nitrogen 

(complete nitrogen starvation, -N), while few plants were maintained in nitrogen sufficiency (by addition 

of 2 mM NH4NO3, +N). Nutrient solutions were renewed daily during these 7 days to ensure constant 

concentration nitrogen and pH stability. The day of the experiments (42 days after sowing), the nutrient 

solution was renewed and the nitrogen was supplied as [15N]-labeled sources (98 atom % 15N; ISOTEC® 

Stable Isotopes, Sigma Aldrich, Milano, Italy). The nitrogen sufficient plants were supplied with  [15N]-

urea (1 mM Ntot) or [15N]-nitrate(1 mM Ntot). 5 treatments were performed on nitrogen deficient 

plants, using as sole nitrogen source: [15N]-ammonium (1 mM Ntot, A), [15N]-nitrate (1 mM Ntot, N) or 

[15N]-urea (1 mM Ntot, U); or a combination of two nitrogen sources: urea and [15N]-nitrate (2 mM Ntot, 

UN) or [15N]- urea and nitrate (2 mM Ntot, UN).  

After 2, 4, 8, 12 or 24 hours of exposition to the nitrogen treatments, plants were rinsed in CaSO4 0.5 

mM solution and shoots and roots were weighed separately and dry at 60°C. For each nutritional 

condition, three plants were pooled and homogenized to a powder for the 15N-analysis. 
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 Physiological analyses 2.2

 

 

 Measurement of net high-affinity urea uptake and calculation of kinetic 2.2.1

parameters 
 

Roots of intact seedlings were immersed in 40 ml of a constantly agitated on shaker (Janke & Kunkel KS 

501D) and aerated solution containing 500 µM CaSO4 and 200 µM urea. Net uptake was measured as 

urea depletion from the solution per unit of time, removing samples of solution (60 µl) for urea 

determination every 2 min for 10 min, span time during which uptake had a linear trend.  

The urea was determined by diacetylmonoxime and thiosemicarbazide colorimetric assay  (modified 

from Killingsbaeck, 1975). In order to analyze a great numbers of samples, the colorimetric reaction was 

performed using 96-well ELISA-microplates and the volumes of reagents were optimized. Thus, the 

samples, as aliquots of 60 µl, were mixed thoroughly with 120 µl of color development reagent, which 

consisted of 1:1 mixed color reagent [7% (v/v) 0.2 M diacetylmonoxime; 7% (v/v) 0.05 M 

thiosemicarbazide]: mixed acid reagent [20% (v/v) sulfuric acid (H2SO4); 0.06% (v/v) 74 mM ferric 

chloride hexahydrate in 9% (v/v) ortho-phosphoric acid]. The tubes were incubated for 15 min at 99°C 

(lid temperature: 105 °C) in thermocycler (Eppendorf Mastercycler DNA Engine Thermal Cycler PCR). The 

samples were cooled 5 min on ice and the urea concentration was determined spectrophotometrically 

by measuring the absorbance at 540 nm using a microplate reader (GENios Microplate Reader TECAN, 

Ges.m.b.H-Austria). Results were expressed as velocity of net-uptake of urea: µmol urea g-1 root fresh 

weight (FW) h-1. 

The same reaction was used to determined urea accumulation in Arabidopsis tissues by Kojima et al. 

(2007), who pointed out that the ureides allantoin, ornithine, arginine, and uric acid, did not interfere 

with urea determinations, although other ureides were not tested. 

Kinetic parameters of the high-affinity urea uptake system (Vmax and Km) were calculated in the 5 - 300 

µM concentration range. Uptake rates were measured as described above except that the uptake 

solution contained 5, 10, 25, 50, 100, 200 or 300 µM urea. The results were obtained using the 

linearization of Woolf–Augustinsson–Hofstee. These kinetic parameters are not to be attributed to a 

single transporter, but are related to the overlapping activities of different transporters. 

To determine the direct effect of urease inhibitor on the urea transport system, the nBTPT was added to 

the uptake solution. So, roots of intact seedlings were immersed in 40 ml of solution containing 0.5 mM 

CaSO4, 200 µM urea and 0.897 µM nBTPT.  As described above, samples of 60 µl were removed every 2 

min during the time span of 10 min and urea was determined following the same colorimetric method. 
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 Measurement of net high-affinity nitrate uptake 2.2.2

 

Roots of intact seedlings were immersed in 40 ml of a constantly agitated on shaker (Janke & Kunkel KS 

501D) and aerated solution containing 500 µM CaSO4 and 200 µM KNO3. Net uptake was measured as 

nitrate depletion from the solution per unit of time (Cataldo et al., 1975), removing samples (200 µl) for 

nitrate determination every 2 min for 10 min, span time during which uptake had a linear trend. 

Aliquots of 200 µl were mixed thoroughly with 0.8 ml of 5 % (w/v) salicylic acid in concentrated H2SO4. 

After 20 min incubation at room temperature, 19 ml of 2 M NaOH was added. Samples were cooled to 

room temperature and nitrate concentration was determined spectrophotometrically by measuring the 

absorbance at 412 nm.  

  

 

 15N analysis 2.2.3

 

To performed the analyses of 15N accumulation in plants of maize and Arabidopsis, approximately 1 mg 

of dried samples of leaf and root tissues were weighed in a tin capsule for the measurement of d13C and 

d15N in one run. The analysis was carried out using a Delta V isotope ratio mass spectrometer (Thermo 

Scientific, Germany) equipped with a Flash EA 1112 elemental analyser (Thermo Scientific, Germany). 

The isotope ratios were expressed in d‰ versus V-PDB (Vienna – Pee Dee Belemnite) for d13C and air for 

d15N according to the following formula: 

d‰ = [(Rsample– Rstandard)/Rstandard]∙1000 

where Rsample is the isotope ratio measured for the sample and Rstandard is the isotope ratio of the 

international standard. R is the abundance ratio of the minor, heavier isotope of the element to the 

major, lighter isotope (e.g. 13C/12C). The isotopic values were calculated against international reference 

materials: L-glutamic acid USGS 41 and ammonium sulphate IAEA-N-2 (IAEA-International Atomic Energy 

Agency, Vienna, Austria).  
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 Molecular work 2.3

 

 

 RNA extraction 2.3.1

 

At harvesting times, root and leaf maize samples were collected, immediately frozen in liquid nitrogen 

and conserved at -80 °C until further processing. RNA extractions were performed using the Invisorb 

Spin Plant RNA kit (Stratec Molecular, Berlin, Germany) as reported in the manufacturer’s instructions 

(http://www.invitek.de/). 70 mg of maize tissue were homogenized in liquid nitrogen and the powder 

was mixed with 900 µl of DCT solution and dithiothreitol (DTT) according to the supplier's instructions. 

In order to verify the absence of genomic contamination, 1 µg of total RNA was analyzed 

electrophoretically running on 1% agarose gel  and it was quantified by spectrophotometer Nanodrop 

2000 instrument (Thermo Scientific, Wilmington, USA). For the microarray analysis the RNA quality and 

quantity were determined using a Bioanalyzer Chip RNA 7500 series II (Agilent, Santa Clara, CA). 

 

 

 Microarray analysis  2.3.2

 

The cDNA synthesis, labeling, hybridization and washing reactions were performed according to the 

NimbleGen Arrays User's Guide (www.nimblegen.com). Each hybridization was carried out on a 

NimbleGen microarray (Roche, NimbleGen Inc., Madison, WI), representing 59,756 transcripts predicted 

from the B73 reference genome version 1 (B73 RefGen_v1) (www.maizesequence.org). The chip probe 

design is available at the following URL: http://ddlab.sci.univr.it/FunctionalGenomics/. 

The microarray was scanned using a ScanArray 4000XL (Perkin-Elmer) at 532 nm (Cy-3 absorption peak) 

and GenePix Pro7 software (Molecular Devices, Sunnyvale, CA, USA) according to the manufacturer's 

instructions. Images were analyzed using NimbleScan v2.5 software (Roche), which produces Pair Files 

containing the raw signal intensity data for each probe and Calls Files with normalized expression data 

(quantile normalization) derived from the average of the intensities of the four probes for each gene 

through RMA analysis. 

Analysis of normalized data (Calls Files) was performed by the open source software of the Bioconductor 

project (Gentlemen et al., 2004; http://www.bioconductor.org) with the statistical R programming 

language (Ihaka and Gentleman, 1996; http://www.r-project.org). Differentially expressed probes were 

identified by linear models analysis (Smyth, 2004) using limma package and applying Bayesian 

http://www.invitek.de/
file:///D:/dottorato/TESI%20DOTTORATO/TESI/RP-LZ/ultime%20versioni/www.nimblegen.com
file:///D:/dottorato/TESI%20DOTTORATO/TESI/RP-LZ/ultime%20versioni/www.maizesequence.org
http://ddlab.sci.univr.it/FunctionalGenomics/
http://www.bioconductor.org/
http://www.r-project.org/
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correction, adjusted p-value of 0.05. All microarray expression data are available at the Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo). 

 

 

 Real-time RT-PCR experiments 2.3.3

 

1 µg of total RNA was retrotranscribed in cDNA following the protocol to the total RNA (checked for 

quality and quantity using a spectrophotometer NanoDrop™ 1000 (Thermo Scientific), followed by a 

migration in an agarose gel). To 1 pmol of Oligo d(T)23VN (Sigma Aldrich, Milano, Italy), 15 U Prime 

RNase Inhibitor (Eppendorf, Hamburg, Germany) and 10 U M-MulV RNase H- were added and keep at 

42°C for 1 h (Finnzymes,Helsinki, Finland) following the application protocol of the manufacturers. After 

RNA digestion with 1 U RNase A (USB, Cleveland, USA) for 1 h at 37°C, gene expression analyses were 

performed by adding 0.16 µl of the cDNA to the realtime PCR complete mix, FluoCycleTM sybr green (20 

µl final volume; Euroclone, Pero, Italy), in a DNA Engine Opticon Real-Time PCR Detection (Biorad, 

Hercules, USA). The analyses of real-time result were performed using Opticon Monitor 2 software 

(Biorad). 

Specific primers (Tm = 58 °C) were designed to generate 80-140 bp PCR products (Table 3)and they were 

synthesized by Sigma Aldrich (Milano, Italy). Four genes were used as housekeeping to normalized the 

data: ZmRPS4, ZmRPL17, ZmpolyUBI, ZmRPL30; data were confirmed with all housekeeping genes, 

however ZmRPS4 in roots and ZmPolyUBI in leaves were more constitutively expressed than the others 

and for this reason used for the relativization of the data. So, the mRNA levels of target gene were 

normalized with respect to the transcript level of the housekeeping gene (HK) using the 2-ΔΔCT method, 

where ΔΔCT = (CT,Target- CT,HK)Time x - (CT,Target- CT,HK)Time 0 (Livak and Schmittgen, 2001).  

  

http://www.ncbi.nlm.nih.gov/geo
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Table 3 List of specific primers used to performed Real time RT-PCR analyses. 

Genes Protein description GenBank Acc N° Primer FOR (5’- -3’) Primer REV (5’- -3’) 

ZmNRT2.1 High affinity nitrate transporter (NRT) AJ344451 GATCGACGATCACCTATACCTC GTGCTCCGTTGACATGAG 

ZmNRT2.2 High affinity nitrate transporter (NRT) AY659965 CCTACCTTTACGTGTATGCCTTG GATGTGCCAACGATATTCATC 

ZmNRT1.2 Low affinity nitrate transporter (NRT) NM_001112455.1 GGTGTCGATGGTGCTCTTCT ACGCGGTTGTCTATGGTCTC 

ZmNAR2.2 
Component for high affinity nitrate  

transporter (NAR) 
NM_001112454.1 GCCGTCATGTTGTGTAGTGC CAGGTCCAGCTTGTGACTGA 

ZmNR1 Nitrate reductase (NR) AF153448 CCAGCCGACTTGCCAGCGTAA GCATGGCCTATGTTATCTGCTGCTC 

ZmNR2 Nitrate reductase (NR) U20450.1 GGTGAAGGTCAACGTGTGC CGGTCTCGAGGTGCTTCT 

ZmNiR Nitrite reductase (NiR) M23456.1 CTTCATGGGCTGCCTCAC GTAGACGTCGGCCAGGTG 

ZmGS2 Glutamine synthetase (GS) EU963258.1 TGTGAAGCAGCTGAAGGATG GAGCAGAGAGTCGCAAGACC 

ZmFd-GOGAT 
Fd-glutamine oxoglutarate  

aminotransferase (Fd-GOGAT) 
NM_001112223 GGTGAAGGCGTTCTCTGAAG GCAACAGCTTGGACATCTCA 

ZmDUR3 High affinity urea transporter (DUR) BQ164112.1 CCTCAATCTGGTGGGTGTCT ATTGGCCTTTCTCCACAGC 

ZmUrease Urease NM_001151384 ATGCTGATGGTTTGTCACCA GCAATATGTCCTCAGCAGCA 

ZmUreG Urease associated protein (UreG) EU956120 CAGGCCGATCTGTTGGTAAT CACCTGTGCAAACACAAAGG 

ZmArginase Arginase BT087608 ATTTGCTCCTCCACGCATAC TTAGCACCCGAGGATCATTC 

ZmPAL Phenylalanine Ammonia Lyase (PAL) NM_001254868.1 CGGTGAAGAACACCGTGAC ATCAGCTCCTTCTCGCTGAA 

ZmANR1 
MADS box transcription factor: 
“Arabidopsis Nitrate Regulated-1” (ANR1) HM994692.1 ATCAACCTGATTCGCCAAGA TGCAAAGTTGAATGGAGTCG 

ZmPIP4 Aquaporin, water and urea channel (PIP) AJ271796 ACAGCAACCATGCAGCATAC CGAGCACGCACCACTTACTA 

ZmRPS4 ribosomal protein AF013487 GCAACGTTGTCATGGTGACT CTCCACGTGAATGGTCTCAA 

ZmPolyU Ubiquitin protein S94466 GTACCCTCGCCGACTACAAC ATGGTCTTGCCAGTCAAGGT 

ZmRPL30 ribosomal protein AF034949 AATGTCGACCTTGGAACTGC TGCTCACCCGGTGTAGTCTT 

ZmRPL17 ribosomal protein EU975447.1 AAAGTCTCGCCACTCCAATG ACGTCCAAGCCTTTCACATC 
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 Isolation and functional characterization of ZmDUR3 2.3.4

 

 

2.3.4.1 RNA work 

 

2.3.4.1.1 DNAse treatment and Reverse Transcription reaction 

To the ZmDUR3-ORF, total RNA was extracted from root samples of 5-day-old maize plants exposed for 

24 hours to 1 mM urea, as described above. To avoid contaminations by genomic DNA, the samples of 

total RNA were treated with DNAse. Thus, 10 µg of RNA were mixed with 5 U DNAse (RNAse-free, 

Fermentas); 2.5 µl 10 x DNAse-Buffer (Fermentas) in a final volume of 25 μl. The reaction was performed 

at 37°C for 1 h. The RNA was then precipitated for 1 h at -20°C by adding 2.5 volume of 99% EtOH and 

1/10 volume Na-Acetate (3 M, pH 5.2). After centrifugation at 14,000 g for 30 min at 4°C, the pellet was 

washed with 70% EtOH and then resuspended in 9 µl of RNAse-free water.  

The reverse transcription reaction (RT-reaction) was performed incubating in a thermocycler 2 µg of 

total RNA with 1 µl Oligo-dT23 (50 μM) or with 1 µl gene specific primer (2 μM; 192_R) at 75°C for 5 min 

for primer hybridisation and then cooled down at 50°C for at least 2 min. Samples were briefly 

centrifuged and the reaction mix containing 5x first strand buffer (Gibco BRL), 5 mM MgCl2; 125 µM 

dNTP; 10 mM DTT; 16 U RiboLock™ Ribonuclease Inhibitor (Fermentas); 470 mM trehalose, were added 

in 20 µl of final volume. Afterwards 80 U of SuperScript®
 II Reverse Transcriptase (200 U μl-1; GIBCO BRL) 

were added and the samples were incubate for 1 h at 50°C. The enzyme was then inactivated at 70°C for 

15 min. 

 

2.3.4.1.2 Polymerase Chain Reaction  

The PCR reaction was performed in 50 µl of final volume with the addition of:  

5 x GC Buffer for Phusion® High-Fidelity DNA Polymerase (NEB Labs);  

0.2 mM ATP; 0.2 mM TTP; 0.3 mM GTP; 0.3 mM CTP 

0.4 µM Primer Forward;  

0.4 µM Primer Reverse;  

10-100 ng Template 

Before the addition of polymerase, the samples were incubated at 98°C for 5 min to denature the 

template and then 2 U Phusion® High-Fidelity DNA Polymerase (NEB Labs) were added to each samples.  

The specific forward and reverse primers are listed in theTable 4. 
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The samples were incubated in termocycler T3000 Thermo Cycler (Biometra, Göttingen, Germany) 

applying the following PCR profile: 

 

Initial denaturation    98°C    30 sec  
 

   

Denaturation    98°C    10 sec  

Annealing     58-68°C 30 sec X 35 cycles 

Elongation      72°C    30sec -2min  

 

Final extension    

 

72°C    

 

10 min 

 

 
 
 

Table 4.  List of primers used to amplify the ZmDUR3-ORF. Restriction enzyme recognition sites (RE site)  are 
underlined. 

 

 

Agarose Gel Electrophoresis  

For the isolation and purification of PCR products, the DNA samples were applied on agarose gels. The 

electrophoretic mobility of DNA fragments mainly depends on the fragment size and to concentration of 

agarose used as well as applied voltage and electrophoresis buffer used. In order to purify the fragments 

a low agarose concentration was used: 0.6% agarose. So, 0.6 mg of agarose were dissolved in 100 ml of 

1X TAE buffer and mixed with ethidium bromide (final concentration 0.5 µg ml-1) . The electrophoresis 

  

ATG_EcoRI_F  
( RE site for EcoRI) 

5’-CGGAATTCATGGCCGCTGGCGGCGCCGGC-3’ 

166_F 5’-TTCTTCGCGCTCTTCACCTC-3’  

192_R 5’-CAGGAATGAGGTGAAGAGCGCGAAGAAGGCGC-3’ 

2196_BamHI_R  
( RE site for BamHI) 

5’-CGCGGATCCTTAAGCTAGCGAAAGATTATCTTCATC-3’ 

ATG Long Primer (RE site for EcoRI  

and overlap with Second Long Primer) 

5’-CGGAATTCATGGCTGCTGGTGGTGCTGGTGCTTGTCCTCCACCAGGTCTAGG 
TTTTGGTGGTGAATATTATTCTGTTGTTGATGGTGCTTGTAGTCGTGATGG -3’ 
 

Second Long Primer (overlaps with  

ATG Long Primer and with Second Fragment) 
5’-GGTGCTTGTAGTCGTGATGGTAGCTTTTTTGGCGGTAAACCAGTTCTAGCTCA 
AGCTGTTGGTTATGCTGTCGTTCTTGGTTTTGGTGCTTTCTTCGCGCTCTTCACCTC-3’ 
 

ATG_SpeI_F  
( RE site for SpeI) 

5’-ATAACTAGTATGGCTGCTGGTGGTGCTGG-3’ 

2196_BglII_R 
( RE site for BglII) 

5’-ATAtAGATCTGCAGCTAGCGAAAGATTATCTTCATCG-3’ 

ATG_XbaI_F 
( RE site for XbaI) 

5’-ATATCTAGAATGGCTGCTGGTGGTGCTGG-3’ 

2196_NsiI_R  
( RE site for NsiI) 

5’-ATAATGCATTTAAGCTAGCGAAAGATTATCTTCATCG-3’ 
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was carried out at 90 mV voltage in TAE 1X buffer. In order to illuminate the ethidium-bromide stained 

DNA, the fragments were then visualized by UV-light and the desired band was removed with a razor 

blade. The desired DNA fragment was then purified from the sliver of gel by EconoSpin® mini spin 

column (Epoch Life Science) following the manufacturer's instructions. 

 

10X TAE Buffer (1 liter) 

48.4 g  Tris base [tris(hydroxymethyl)aminomethane] 

11.4 ml Glacial Acetic Acid (17.4 M) 

20 ml  Na2EDTA (0.5 M, pH 8.0) 

 

2.3.4.2 ZmDUR3“Native”-ORF amplification 

In the putative ZmDUR3-ORF sequence a high content of GC was observed, especially at the beginning of 

the ORF where very high values of GC% were reached (in the first 100 bp the GC-content was around 

80%). Maybe for this intrinsic peculiarity the direct amplification of the whole sequence was difficult to 

perform and only aspecific amplifications were obtained.  

So, the ZmDUR3-ORF (called ZmDUR3“Native”) sequence was amplified by two independent PCR-

reactions which led to amplify two distinct fragments with an overlap of 20 bp.  

-First fragment: covered the first part of the ORF sequence starting from +1 ATG (192 bp) 

-Second fragment: covered most part of the ORF sequence, from +172 up to +2196 (2024 bp) 

Subsequently to obtain the whole sequence, these two fragments were linked by PCR reaction based on 

the approach of Assembly PCR (Figure 12).  

 

 

 

Figure 12. Schematic representation of the approach used to amplify the ZmDUR3“Native”-ORF. The whole 
sequence was obtained amplifying two distinct fragments. First Fragment and Second Fragment showed an 
overlapping of about 20 bp  which allowed the subsequent assembled of the whole sequence called 
ZmDUR3“Native”. 
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First Fragment Amplification  

The amplification of the First Fragment was performed by PCR reaction using as template the RT-

reaction product obtained by the gene specific primer 192R. So, 50 ng of specific cDNA were amplified 

by forward primer, ATG_EcoRI_F (having the restriction site for EcoRI), and by reverse primer, 192_R. 

The melting temperature (Tm) was 68°C  and the time of elongation was of 30 sec at 72°C.   

 

Second Fragment Amplification  

The amplification of the Second Fragment was performed by PCR reaction using as template the RT-

reaction product retrotranscribed by the Oligo-dT23. So, 100 ng of total cDNA were amplified by 

forward primer, 166_F, and by reverse primer, 2196_BamHI_R (having the restriction site for BamHI).  

The melting temperature (Tm) was 58°C  and the time of elongation was of 2 min at 72°C.   

 

Assembly PCR for ZmDUR3“Native”-ORF 

The First Fragment and Second Fragment of ZmDUR3-ORF were assembled using the approach of the 

Assembly PCR. So, the PCR reaction was carried out with 10 ng First Fragment and 10 ng Second 

Fragment, as template; while the forward and reverse primers were ATG_EcoRI_F (restriction site for 

EcoRI) and 2196_BamHI_R (restriction site for BamHI). The reaction was performed with a Tm of 62°C 

and 1 min 30 sec of elongation time at 72°C . 

 

2.3.4.3 ZmDUR3“Modified”-ORF amplification 

In order to reduce the GC content and to favour the expression of ZmDUR3 in heterologous systems 

(such as yeast, oocytes or other plant species), a second version of the sequence was obtained.  

Since, the highest GC content of ZmDUR3“Native”-ORF occurs in the first part of the sequence 

corresponding to the first 166 bp, only 47 nucleotides in this region were modified (Figure 13). These 

modifications are all synonymous substitutions occurring only at the third base of the codons (codons 

were modified to match the codon-usage preference of yeast according to 

http://www.kazusa.or.jp/codon/) and the resulting ORF version was called ZmDUR3“Modified”-ORF. In 

this way the GC content was reduced from 75% in ZmDUR3“Native”-ORF to 47% in ZmDUR3“Modified”-

ORF. However the differences between the two ORF versions were only at the nucleotide level, while no 

any difference occurred at amino acid sequence of the protein. 

  

http://www.kazusa.or.jp/codon/
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ZmDUR3“Native”-ORF 

5’-ATG GCC GCT GGC GGC GCC GGC GCG TGC CCT CCG CCG GGG CTG GGC TTC GGC GGG GAG TAC TAC TCG GTG GTG GAC 

GGC GCG TGC AGC CGC GAC GGC AGC TTC TTC GGC GGG AAG CCG GTG CTG GCG CAG GCC GTT GGG TAC GCC GTC GTC 

CTT GGC TTC GGC GCC TTC TTC GCG CTC TTC ACC TCA TTC CTG…-3’ 

 

ZmDUR3“Modified”-ORF 

5’-ATG GCT GCT GGT GGT GCT GGT GCT TGT CCT CCA CCA GGT CTA GGT TTT  GGT GGT  GAA  TAT TAT TCT GTT  GTT  GAT 

GGT  GCT TGT AGT CGT GAT GGT AGC TTT TTT GGC GGT AAA CCA GTT CTA GCT CAA GCT GTT GGT  TAT  GCT  GTC GTT 

CTT GGT TTT GGT GCT TTC TTC GCG CTC TTC ACC TCA TTC CTG…-3’ 

 

Figure 13. Nucleotide differences occurring in the ZmDUR3“Modified”-ORF. Bold letters are referred to the 47 
modified nucleotides occurring in the ZmDUR3“Modified”-ORF. 

 

The modified region of ZmDUR3“Modified”-ORF was obtained assembling two long primers, ATG Long 

Primer and Second Long Primer (about 100 bp each) which were synthetized in vitro (Microsynth AG, 

Balgach, Switzerland).  

Two consecutive Assembly PCR reactions were performed to add the long primers to the Second 

Fragment which was previously isolated. In order to allow the Assembly PCR, ATG Long Primer was 

designed to overlap for 20 bp the Second Long Primer; in the same way also Second Long Primer showed 

an overlapping with the Second Fragment (Figure 14). 

 

 

Figure 14. Schematic representation of the approach used to amplify the ZmDUR3“Modified”-ORF. The whole 
sequence was obtained amplifying the Second Fragment with Second Long Primer as forward primer of a PCR-
Assembly. Subsequently, a further reaction of PCR-Assembly was performed using as forward the ATG Long Primer. 
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Assembly PCR for ZmDUR3“Modified”-ORF 

The Second Long Primer and Second Fragment were assembled by PCR. So, 10 ng of First Fragment were 

used as template; while Second Long Primer and 2196_BamHI_R (restriction site for BamHI) were used 

as forward and reverse primers. The reaction was performed with a Tm of 62°C and 1 min 30 sec of 

elongation time at 72°C .  

The PCR product was directly purified using EconoSpin columns (Epoch Life Science, following the 

manufacturer's instructions). So, 10 ng of purified PCR product were used as template for the 

consecutive PCR with forward and reverse primers: ATG Long Primer (restriction site for EcoRI) and 

2196_BamHI_R (restriction site for BamHI). The reaction was performed with a Tm of 62°C and 1 min 30 

sec of elongation time at 72°C.  
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2.3.4.4 Cloning 

 

2.3.4.4.1 pDR197-ZmDUR3“Native” and pDR197-ZmDUR3“Modified” 

For the yeast complementation assay, both versions of ZmDUR3 (ZmDUR3“Native” and 

ZmDUR3“Modified”) were cloned into the vector pDR197 (Doris Rentsch, unpublished; Figure 15) using 

restriction enzymes: EcoRI and BamHI (Fermentas, FastDigest®) yielding the plasmid pDR197-

ZmDUR3“Native” and pDR197-ZmDUR3“Modified”. pDR197, a modified version of pDR195 (Rentsch et 

al., 1995), consists of 6.3 kb and contains the following Multiple-Cloning Site (MCS): XhoI-SmaI-PstI-

EcoRI-EcoRV-HindIII-SalI-XhoI-Acc65I-KpnI-BamHI.  

 

 

Figure 15. pDR197 plasmid map. 

 

2.3.4.4.2 pBF1-ZmDUR3“Native” and pBF1-ZmDUR3“Modified” 

For the functional characterization in Xenopus oocytes, ZmDUR3-ORF sequence was cloned into the 

plasmid pBF1 (Baukrowitz et al., 1999) (Figure 16), in which the sp6 promoter allows the in vitro 

transcription of the insert as cRNA. Thus, both versions of ZmDUR3 (ZmDUR3“Native” and 

ZmDUR3“Modified”) were cloned into the vector pBF1. The inserts were excised from pDR197-

ZmDUR3“Native” and pDR197-ZmDUR3“Modified” using the restriction enzymes EcoRI and BamHI and 

cloned into the EcoRI and BglII sites of pBF1.  
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Figure 16. pBF1 plasmid map. 

 

2.3.4.4.3 pUC18-ZmDUR3“Modified”-Sp-GFP6 and pUC18-GFP5T-Sp-ZmDUR3“Modified”  

For the transient expression of ZmDUR3“Modified” in tobacco protoplasts, two plasmids harboring a 

sequence for the Green Fluorescent Protein (GFP) were used: pUC18-Sp-GFP6 and pUC18-GFP5T-Sp 

(Komarova et al., 2012). Both plasmids derived from pUC18 which was modified by addition of the gene 

encoding the GFP: in pUC18-Sp-GFP6, the GFP sequence is located up-stream of MCS; while in pUC18-

Sp-GFP5T, GFP is down-stream the MCS. 

 

pUC18-ZmDUR3“Modified”-Sp-GFP6 

The amplification of the insert ZmDUR3”Modified” was performed by PCR reaction using as template 

pBF1-ZmDUR3”Modified”. So, 20 ng of pBF1-ZmDUR3”Modified” plasmid were amplified by forward 

primer, ATG_SpeI_F (having the restriction site for SpeI), and by reverse primer, 2196_BglII_R (having 

the restriction site for BglII).  The melting temperature (Tm) was 58 °C  and the time of elongation was 1 

min and 45 sec at 72 °C.  The amplified fragment was purified and cloned into pUC18-Sp-GFP6 (C-

terminal GFP) using the restriction enzymes SpeI and BglII. 

 

pUC18-GFP5T-Sp-ZmDUR3“Modified” 

The amplification of the insert ZmDUR3”Modified” was performed by PCR reaction using as template 

pBF1-ZmDUR3”Modified”. So, 20 ng of pBF1-ZmDUR3”Modified” plasmid were amplified by forward 

primer, ATG_XbaI_F (having the restriction site for XbaI), and by reverse primer, 2196_ NsiI_R (having 

the restriction site for NsiI).  The melting temperature (Tm) was 58 °C  and the time of elongation was 1 

min and 45 sec at 72 °C.  The amplified fragment was purified from agarose gel and digested by the 

restriction enzymes XbaI and NsiI. In this way compatible ends for the restriction sites of NheI and PstI 

were respectively produced. So, ZmDUR3”Modified” was cloned into the NheI/PstI site of pUC18-GFP5T-

Sp (N-terminal GFP).  
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 Transfomation of electrocompetent Escherichia coli 2.3.5

 

To prepare electro competent cells, a single colony of E.coli (SURE, Stratagene, Heidelberg) was used to 

inoculate 20 ml of SOB medium. This starter culture was incubated overnight at 37°C with shaking and 5 

ml aliquots were used to inoculate 500 ml of SOB medium (1 in 100 dilution). This culture was incubated 

at 37°C with shaking until the culture density had reached an OD of 0.6 at 600 nm. Then, the culture was 

chilled on ice for 30 min and transferred to ice-cold sterile 500 ml centrifugation bottles. Cells were 

harvested by centrifugation at 2,800 g for 15 min at 4°C, the supernatant was removed and the pellet 

was washed two times with ice-cold 500 ml of 10% glycerol (Washing buffer). The centrifugations were 

performed under same conditions after every wash. Finally the pellet was resuspended in 2 ml of 

Washing buffer and aliquots of 200 µl were stored at -80˚C. All equipment and solutions were 

maintained at 0°C to 4°C throughout the procedure. 

A 100 µl aliquot of electrocompetent E. coli cells was mixed 1-5 µl (containing 0.02 µg to 1 µg) of 

desalted plasmid DNA derived from DNA mini- or maxipreps or from a ligation reaction) and transferred 

to a pre-chilled 1 cm gap-width electroporation cuvette. The cuvette was placed in the Electro Cell 

Manipulator 600 (ECM600) electroporation system from Biotechnologies and Experimental Research 

Inc. (BTX) and electroporated at a voltage of 2.4 kV, a capacitance of 25 µFD and a resistance of 200 Ω. 

Following electroporation, 1 ml of pre-warmed SOC medium was added to the cells and the entire 

volume was transferred in a 2.0 ml Eppendorf tube. Cells suspension were incubated at 37°C for one 

hour with shaking and a 200 µl aliquot was spread on a LB-agar plate, supplemented with ampicillin 100 

µg/ml. Plates were incubated at 37°C overnight and the grown colonies were screened by colony PCR for 

the desired recombinant DNA constructs. Colonies that were tested positive in the PCR screen were 

used to inoculate cultures for plasmid mini and /or maxipreps. 

 

SOB Medium (1 liter) 

20.0 g  Tryptone 

5.0 g  Yeast extract 

0.5 g   NaCl 

Add deionized H2O to a final volume of 1 liter and then autoclave 

Add 10 ml of filter-sterilized 1 M MgCl2 and 10 ml of filter-sterilized 1 M MgSO4 prior to use 

 

SOC Medium (100 ml) 

2 ml of filter-sterilized 20% (w/v) glucose or 1 ml of filter-sterilized 2 M glucose 

SOB medium (autoclaved) to a final volume of 100 ml 

Prepare immediately before use 
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LB Agar (1 liter) 

10 g NaCl 

10 g Tryptone 

5 g Yeast Extract 

15 g Agar 

Add deionized H2O to a final volume of 1 liter 

Adjust pH to 7.0 with 5 N NaOH and then autoclave 

Pour into petri dishes (~25 ml/100-mm plate) 

 

LB-Ampicillin Agar (1 liter) 

1 liter of LB agar, autoclaved and cooled to 55°C 

10 ml of 10 mg ml-1 filter-sterilized ampicillin 

Pour into petri dishes (~25 ml/100-mm plate) 
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 Transfomation of competent cells of Saccharomyces cerevisiae 2.3.6

 

In order to demonstrate the transport function of ZmDUR3, a complementation assay was performed 

using YNVW1 (Δdur3, Δura3; Liu et al., 2003a), a mutant strain of yeast (Saccharomyces cerevisiae). As 

previously described by Liu et al. (2003a), the strain 23346c (Mat a, Δura3; Grenson, 1969) was used to 

generate a mutant defective in urea uptake since the ScDUR3 gene was substituted for a marker gene by 

PCR-based gene disruption (Liu et al., 2003a). The resulting mutant YNVW1 (Δdur3, Δura3) was defective 

in urea uptake and growth on <5 mM urea as a sole nitrogen source. 

The dur3 mutant YNVW1 was transformed by pDR197 harboring ZmDUR3”Native” or ZmDUR”Modified” 

or by the empty vector alone. Transformants were selected on uracil-deficient yeast nitrogen base 

medium containing ammonium sulfate (0.5% w/v) before a single colony was chosen for growth 

complementation tests with urea as a sole nitrogen source. 

 

2.3.6.1 Yeast growth, transformation and selection 

To prepare competent yeast cells, a single colony of YNVW1 yeast mutant was inoculated in 5 ml of YPD 

medium and grown at 28°C overnight with shaking. An aliquot of 1 ml of this starter culture was used to 

inoculate 100 ml of YPD medium (1 in 100 dilution). This culture was incubated at 28°C while shaking 

until OD600 reached values around 0.5 - 0.8 (2x10-7 cell ml-1). Then, yeast cells were harvested by 

centrifugation at 2,500 g for 5 min, the supernatant was removed and the pellet was washed with 20 ml 

of Solution A (Washing buffer). Finally the pellet was resuspend in 2 ml of Solution A and aliquots of 100 

µl were stored at -80˚C. 

The yeast transformation was performed mixing 100 µl of competent cells with 200 ng plasmid DNA 

(pDR197 harboring ZmDUR3”Native” or ZmDUR”Modified” or empty vector) and the addition of 5 µl 1 M 

Histamin and 50 µg of denaturated Salmon Sperm DNA. After incubation at 37°C for 5 min, 1 ml of 

Solution B was added to the cells followed by  1 h of incubation at 28°C while shaking. Then, the cell 

samples  were centrifuged at 2,500 g for 5 min and the pellet was resuspend in 800 µl of Solution C. 

After further centrifugation, the pellet was resuspended in 100 µl of Solution C and plated on SD 

medium, an uracil-deficient yeast nitrogen base without amino acid medium (Difco) containing 

ammonium sulfate (0.5% w/v). The plates were incubated for 2-3 days at 28°C. 

The complementation test was performed by streaking single colonies of yeast transformed with the 

different constructs on MM medium plates containing ammonium sulfate (0.5% w/v) or urea (1, 2 or 3 

mM) as sole nitrogen source. Yeast transformed with the empty vector was used as a negative control. 
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Solution A 

10 mM  BICINE (Serva) 

1 M  Sorbitol 

3% v/v   Ethylene glycol (Roth) 

pH adjusted at 8.35 with KOH.  

 

Solution B 

200 mM  BICINE (Serva) 

40%  w/v PEG 1000 (Roth) 

pH adjusted at 8.35 with KOH.  

 

Solution C 

10 mM   BICINE (Serva) 

150 mM  NaCl 

pH adjusted at 8.35 with KOH.  

 

YPD medium (1 liter) 

10 g   Yeast Extract  

20 g  Glucose 

20 g  Peptone 

 

SD medium (1 liter) 

1.7 g   Yeast Nitrogen base (without amino acids and ammonium sulfate) 

5 g  Ammonium sulfate 

20 g  Glucose 

20 g  Bacto Agar 

 

MM medium (1 liter) 

1.7 g  Yeast Nitrogen base (without amino acids and ammonium sulfate) 

20 g  Glucose 

20 g   Oxoid Agar 
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 Expression in Xenopus laevis oocytes 2.3.7

 

To characterize the functionality of ZmDUR3, Xenopus laevis oocytes were injected with 50 ng (50 nl) of 

ZmDUR3“Native” or ZmDUR3“Modified” cRNA, as previously described by Dietrich et al. (2004) and 

Meyer et al. (2006). 

 

cRNA Synthesis 

10 µg of both constructs (pBF1-ZmDUR3“Native” and pBF1-ZmDUR3“Modified”) were linearized by 

incubation with the restriction enzyme MluI (Fermentas) for 3 hours at 37°C. Subsequently the 

linearized DNA-fragments were purified by adding 1 volume of phenol:chloroform: isoamylalcohol 

(25:24:1, pH 8) followed by centrifugation for 15 min at 14,000 g and 4°C. The supernatant was 

transferred to a new eppendorf tube and the DNA was percipitated by adding 1/10 volume of 3 M 

NaAcetate and 2.5 volumes of Ethanol 100%. After incubation at 4°C for 20 min, the samples were 

centrifuged (20 min at 14,000 g ) the supernatant was removed and the pellet was washed with ethanol 

70%. The pellet was resuspended in 20 µl of RNAse-free water. To detect the quantity and quality of the 

purified DNA fragment, the samples were analyzed by gel electrophoresis and quantified using the 

Nanodrop 2000 spectrophotometer instrument (Thermo Scientific, Wilmington, USA). 

1 µg of both linearized constructs were used to synthetized cRNA using AMBION T7 mMESSAGE 

mMACHINE- Kit (Ambion, Austin, USA) following the manufacturer’s instructions. cRNAs were quantified 

by spectrophotometer and visualized by electrophoresis performed in denaturating conditions (Figure 

17).  

 

 
 

Figure 17. ZmDUR3“Native” (left) and ZmDUR3“Modified” (right) cRNA samples visualized using EtBr in 

denaturating 1% agarose gel. 
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Preparation of Oocytes and RNA injection  

Stage V and VI female Xenopus oocytes were surgically removed and defoliculated by incubation in 

Barth’s solution containing 50 mg collagenase for 1.5-2 hours at room temperature. Subsequently, 

oocytes were washed in Barth’s solution (88 mM NaCl, 1 mM KCl, 0.33 mM Ca(NO3)2, 0.41 mM CaCl2, 

0.82 mM MgSO4, 2.4 mM NaHCO3, 10 mM HEPES pH 7.4) containing 1 mg ml-1 BSA.  

After defoliculation and washing oocytes were injected with 50 ng (50 nl) of ZmDUR3“Native” cRNA or 

ZmDUR3“Modified” cRNA or water as control and stored in Barth’s solution containing 50 µg ml-1 of 

gentamicin, 100 µg ml-1  of streptomycin, and 100 U ml-1 of penicillin. The injected oocytes were 

incubated at 16°C for 4-7 days in Barth’s solution before two electrode voltage clamp experiments were 

performed. The experiments were performed at 21 ± 1 °C.  

 

Two Electrode Voltage Clamp Experiments  

Oocytes injected with 50 ng (50 nl) cRNA of ZmDUR3“Native” cRNA or ZmDUR3“Modified” were tested 

for urea transport by two electrode voltage clamp experiments at an external pH of 5.5. Two electrode 

voltage clamp experiments were performed as described by Hammes et al. (2010), Voltage pulses were 

applied for 150 ms and the currents were filtered at 5000 Hz. The analysis was performed exposing the 

oocytes to “Na-Ringer modified” solution buffered at pH 5.5 with or without the addition of 10 mM urea 

(the necessary pH adjustment were made).  

 

Urea Uptake Assay  

Since under these experimental conditions ZmDUR3 injected oocytes showed no significant induction of 

current in response to the addition of 10 mM urea to the solution, radiolabeled uptake experiments 

were performed using 14C-labeled urea as substrate. The transport capacity was evaluated on single 

oocyte after 4 days from the injection.  

For these experiments oocytes were transferred to “modified Na-Ringer” solution buffered with MES at 

pH 5.5 for 5 minutes in  and then incubated for 1 hour in the same solution containing 5-10-50-100-200 

µM of radiolabeled urea (20% of 14C-labelled urea, 54 mCi mmol-1; ARC American Radiolabeled 

Chemicals Inc.). Single oocytes were rinsed once with modified Na-Ringer solution (pH 5.5), two times 

with Na-Ringer modified solution (pH 5.5) containing 20 mM of unlabeld urea and two times with 

modified Na-Ringer (pH 7.5). Solutions used for washing of the oocytes after the incubation in 

radiolabeled urea were kept at 4°C. After washing oocytes were transferred to scintillation vials and 

lysed with 10% sodium dodecyl sulfate (SDS). Then, 4 ml of scintillation cocktail ULTIMA GOLDTM XR 

(PerkinElmer Life Sciences) were added to the lysed oocytes and the radioactivity was determined using 

a LS6500 scintillation counter (Beckman Coulter, High Wycombe, UK). 
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Na-Ringer modified solution  

115 mM NaCl 

2 mM  KCl 

1.8 mM  CaCl2 2H2O 

1 mM   MgCl2 6H2O 

Buffered with MES or HEPES: 

5 mM  MES-NaOH pH5.5 

5 mM  HEPES-NaOH pH7.5 

pH was adjusted with NaOH. 

 

 

 Transient expression in Nicotiana tabacum protoplasts 2.3.8

 

For the subcellular localization of urea transporter, a transient expression of GFP-fusion proteins in 

tobacco protoplasts was done as described by Komarova et al. (2012). So, protoplasts of tobacco 

(Nicotiana tabacum) were isolated and transformed with 10 µg of pUC18-ZmDUR3“Modified”-Sp-GFP6 

or pUC18-GFP5T-Sp-ZmDUR3“Modified” or with empty vector pUC18-Sp-GFP6. Diameter of tobacco 

protoplasts was approximately 40 μm. Samples were examined with a SP2 AOBS confocal microscope 

(Leica Microsystems). Filter settings were 500 to 520 nm for GFP and 628 to 768 nm for chlorophyll 

epifluorescence detection. 

For colocalization experiments, pUC-PTR1-Sp-EYFP (Komarova et al., 2012) was used as marker for 

plasma membrane. So, tobacco protoplasts were co-transformed with 7.5 µg of pUC18-

ZmDUR3“Modified”-Sp-GFP6, or pUC18-GFP5T-Sp-ZmDUR3“Modified”, and 7.5 µg pUC-PTR1-Sp-EYFP. 

As reported by Kromarova et al. (2012), samples were excited with an argon ion laser at the wavelength 

of 458 nm for GFP and 514 nm for YFP. Fluorescence was detected at 492-511 nm for GFP and at 545–

590 nm for YFP. 
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3 Results 
 

 

Most of researches on nitrogen nutrition in higher plants have focused on the physiological and 

molecular characterization of nitrate and ammonium uptake systems. On the other hand, only few 

works have provided evidence of urea acquisition and on root mechanisms involved in the process, 

particularly in crop species. In particular, in maize the root absorption of molecular urea was 

demonstrated by Coïc et al. (1961) and Mérigout et al. (2008a).  

The aim of the present work was to characterize the transport system involved in urea acquisition in 

maize.  

Moreover it is well known that, in soil solution, fertilization with urea may result in a simultaneous 

exposure of plant roots to different nitrogen sources, such as urea, nitrate and ammonium at least for 

short time (Mérigout et al., 2008b). In addition the natural occurrence of peptide and aminoacids in soil 

solution and the rhizosphere (Jämtgård et al., 2010) could led to a coexistence of more organic and 

inorganic nitrogen sources. Thus uptake of urea was studied with respect to the presence of different 

nitrogen sources. 

In order to limit the urea degradation, maize plants were grown in hydroponic solutions; net uptake of 

urea was determined measuring its depletion from the solution bathing the roots.  

15N-labeled nitrogen sources were also used to monitor root uptake and tissue distribution of nitrogen. 

Experiments were also conducted using the most common urease inhibitor (nBTPT), which is often 

applied in the agricultural soils together with urea fertilizers.  
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 Study the effect of different nitrogen sources on urea uptake 3.1

 

 

 Morphometric evaluation of maize roots exposed to different nitrogen 3.1.1

sources 
 

Preliminary experiments were conducted in order to verify the growth performance of plants supplied 

with different nitrogen sources: 5 day old maize plants were fed for 1 week with nutrient solution 

containing as a sole nitrogen source: urea (U), nitrate (N), ammonium (A) or glutamine(Gln), 1mM of 

total nitrogen (Ntot). Moreover, in order to better simulate soil conditions, plant roots were exposed 

also to a combination of two nitrogen sources, such as ammonium and nitrate (AN), urea and nitrate 

(UN), urea and ammonium (UA) or urea and glutamine (UG), 2 mM Ntot. At the end of the treatment 

the plants were harvested and marked differences among the treatments were observed (Figure 18). In 

particular the exposition to a specific nitrogen form induced variations in terms of biomass distribution 

between shoots and roots (Figure 18, A) and changes of root architecture (Figure 18, B.2), while no great 

differences were noticed in shoot morphology (data not shown).  

The supply of U or N (singularly or in combination) allowed a good development of maize plants, 

although changes in root morphology and biomass production could be highlighted depending on the N-

source supplied. In comparison to nitrate, the presence of urea in the extra-radical solution promoted 

the biomass production and especially stimulated the root development. The beneficial effect of urea 

was mainly observed as a greater lateral root proliferation on primary and also on seminal roots. In 

addition to a high density of lateral roots, urea also favoured the elongation of whole root system 

(primary, seminal and lateral roots). Whereas, under nitrate treatment (N), the density of lateral roots 

was lower than that induced by urea and was mainly restricted to primary axis.  

The beneficial effect of urea on the root development was also appreciated when roots were exposed to 

a combination of urea and nitrate (UN). In particular, under UN treatment, the positive effect of urea on 

the primary and seminal root elongation was much more evident than when this organic source was 

applied singularly (U); while the density and elongation of lateral roots were comparable to those 

detected in U-fed plants. Interestingly, under UN treatment, it was recorded the greatest biomass 

production mainly due to higher values in shoot fresh weight than U or N fed plants. 

Completely different growth was noticed under ammonium (A) treatment. In agreement with published 

evidence (Kirkby and Mengel, 1967), A fed plants showed lower leaf and root weight accumulation than 

all the other treatments. Moreover the leaves were dark green and very small, while root system was 

very poorly developed and stubby. In general, ammonium exerted a negative effect on the elongation of 
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roots (primary- and seminal-) and led also to a strong suppression of lateral root elongation. Similar root 

morphology was also observed when ammonium and urea were applied together (UA), in particular the 

presence of urea was not sufficient to contrast the negative effect of ammonium, since UA fed plants 

showed drastic limitation in secondary root development.  

On the contrary, the nitrate supply reduced strongly the negative effect of ammonium, since ammonium 

and nitrate fed plants (AN) showed a fresh weight accumulation similar to U or N treatments. Previous 

evidence about the beneficial effect of nitrate in relieving ammonium effects on plant development was 

reported also in pepper (Houdusse et al., 2005) and wheat (Garnica et al., 2010). 

Glutamine (Gln) has an intermediate effect with respect to A or N treatments and no great differences 

were noticed when plants where exposed to a combination of glutamine and urea (UG). Interestingly, 

under both treatments (Gln and UG) the elongation of lateral roots close by root tips resulted to be 

enchoraged by glutamine. Concerning the UG treatment, the supply of urea did not induced a higher 

proliferation of lateral roots than Gln fed plants, even if was  appreciated a higher elongation of lateral 

roots throughout the seminal axis.  

These results provide clear evidence that, under the experimental conditions employed, nutrient 

solution-grown maize plants are able to use urea as a sole nitrogen source sustaining the root 

development and the biomass accumulation in a similar way as when they are fed with nitrate. 
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Figure 18. Effect of different  nitrogen sources on the fresh weight accumulation of shoots and roots (A) and on 
the morphology of the root system (B.2) in maize plants by long term experiment (7 days of nitrogen 
treatments). (B.1) Schematic representation of maize root system (Hochholdinger, 2009). 5 day old maize plants 
were grown hydroponically for 7 days in nutrient solution containing a) as a sole nitrogen source: urea (U), 
ammonium (A), nitrate (N) or glutamine (Gln), 1mM Ntot;  or b) a combination of two nitrogen sources: urea and 
nitrate (UN), urea and ammonium (UA), urea and glutamine (UG) or ammonium and nitrate (AN), 2mM Ntot. 
Control plants were fed with nutrient solution without the addition of any nitrogen form (Ctr). After 7 days of 
treatment fresh weight of leaf and root tissues were evaluated (the values are means ± SD, n=12).   
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 Dynamics and kinetics of urea uptake in maize roots  3.1.2

 

3.1.2.1 Kinetic characterization of urea uptake in intact roots  

To verify the capacity of maize roots to take up urea, a concentration dependent net-influx analysis was 

performed.   

The experimental procedure involved 5 day-old maize plants grown hydroponically without added 

nitrogen. Before the uptake experiment, plants were exposed for 4 hours to a nutrient solution 

containing urea (1 mM) as a sole nitrogen source (urea treatment) or without (Control). Net uptake rate 

was measured by depletion approach from a solution containing 5 to 300 µM urea (Figure 19). 

In control plants rate of urea uptake by maize roots showed a typical saturation kinetic corresponding to 

the Michaelis-Menten model. These results are compatible with the presence of a high affinity transport 

system and allow the definition of the kinetic parameters (Km and Vmax) for urea transport.  

Interestingly, the exposition of roots to urea before the uptake assay induced modifications in kinetic 

parameters. Indeed the net influx of urea in roots of pre-treated plants was 2.5 fold higher as compared 

to control plants, with Vmax values of 20 and 8 µmol urea g-1 FW h-1, respectively. The urea treatment 

also affected the Km value, which increased in treated plants more than 6 times with respect to 

untreated control plants (27 and 4 µM, respectively). These results indicate that, in maize roots, urea 

induces its own uptake causing a modification of the kinetic parameters in the high affinity 

concentration range. 

 

 

 

Figure 19. Kinetic assay of urea net uptake by maize roots. The concentration-dependent uptake was carried out 
using 5 day-old maize plants exposed for 4 h to a nutrient solution supplied with urea 1 mM as a sole nitrogen 
source or not (Control). Afterwards roots were incubated for 10 minutes in the assay solution containing urea at 
different concentrations (5-10-25-50-100-200-300 µM). Values are means ± SD (n=3). 

Urea (µM) 

Urea 1 mM for 4 h 
 

Control 
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3.1.2.2 Effect of urea concentration treatment on its uptake  

Based on previous results, a further experiment was planned with the aim to assess if the uptake 

capacity could be modulated by urea pre-treatment, depending on incubation time and concentration of 

the molecule. For this purpose maize plants were exposed for up to 24 hours to nutrient solutions 

containing urea at different concentrations (0.5-2 mM urea). Every two hours a group of six plants from 

each treatment was transferred in the uptake assay solution containing 200 µM urea (Figure 20), where 

the net uptake rate was measured by depletion approach. 

Results corroborated previous observation whereby plants exposed to urea treatment increased their 

ability to acquire this organic nutrient in comparison to untreated plants. In particular during the 

incubation time, the uptake capacity was modulated following a bell-shape curve. Plants fed with 1 mM 

urea rapidly increased their uptake capacity, which reached the peak after 4 hours of treatment (15 

µmol urea g-1 root FW h-1): afterwards the rate decreased showing, after 24 hours, values lower than 

those registered for untreated plants. On the other hand, during the 24 hours period no significant 

change of the net uptake rate was observed in untreated plants, which maintained a constant value of 5 

µmol g-1 root FW h-1. These data revealed that (high affinity) urea transport system in maize roots is a 

substrate-inducible process, possibly involving retro-regulation mechanisms. Moreover the comparison 

between urea treatments revealed that plants exposed to higher urea concentration before the uptake 

assay reached the highest level of induction in a time shorter than plants fed with lower concentrations 

of urea. For example plants treated with 2 mM urea (4 mM Ntot) reached the peak of uptake after 2 h of 

exposition to urea, while those treated with 0.5 mM urea (1 mM Ntot) reached the maximum induction 

6 hours later. 

These data suggest that in maize roots the induction of urea uptake system is dependent on the 

concentration and time of exposure to this organic N-source.  
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         Control         2.0mM Urea       1.5mM Urea         1.0mM Urea       0.5mM Urea 

Figure 20. Time course of urea uptake in maize roots. 5 day-old maize plants were exposed up to 24 hours to a 
nutrient solution supplied with urea at different concentrations (0.5-1-1.5-2 mM urea) or without addition of 
nitrogen sources (Control). Every two hours groups of six plants from each treatment were transferred in the assay 
solution containing 200 µM urea. The values are means ± SD (n=3); (*) missing sample. 

 

 

  

**      * * * * * 
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 Effect of different nitrogen sources (organic and inorganic) on the net urea 3.1.3

uptake capacity by maize plants 
 

From previous experiments it was well evident that the exposition of plants for long periods (7 days) to 

different nitrogen sources induced changes in root morphology and fresh weight accumulation in shoots 

and roots (Figure 18). Furthermore it was demonstrated that maize roots are able to take up urea from 

a low-concentration solution suggesting the involvement of a high affinity transport system which is 

induced by urea itself (Figure 19). However in soil solution roots are normally exposed to a pool of 

nitrogen inorganic (ammonium and nitrate) and organic (mainly aminoacids, peptides and urea) sources; 

furthermore interactions with respect to uptake and assimilation of different nitrogen sources have 

been reported (Garnica et al., 2009; 2010). Aim of this part of the work was to determine the effect that 

the presence of these N-sources in the root external solution could have on urea uptake and, on the 

other side, to ascertain if urea could influence the uptake of others N-sources, such as nitrate. 

 

3.1.3.1 An overview on the influence of nitrogen sources on urea uptake  

In a preliminary set of experiments, it was investigated the effect of a large pool of nitrogen sources 

(such as ammonium, nitrate or amino acids) on the urea uptake system. In particular these inorganic 

and organic sources can occur in soil solution, even if their bio-availability for plant nutrition and their 

concentrations are subject to great fluctuations (Gaudin et al., 1987; Miller and Cramer, 2004; Jämtgård 

et al., 2010). Plants were fed with nutrient solution containing as unique nitrogen source: urea (U) or 

ammonium (A) or nitrate (N) (2 mM Ntot) or single aminoacids (Glycine, Arginine, Aspartate, 

Asparagine, Glutamate or Glutamine, 1mM). In three treatments plants were fed with a combination of 

two nitrogen sources (4 mM Ntot): urea and ammonium (UA), urea and nitrate (UN) or ammonium and 

nitrate (AN). Uptake capacity was measured in plants pre-treated for 4 hours with the appropriate N-

source(s) and then transferred to the assay solution containing 200 µM urea (Figure 21).  

Consistent with previous results, the exposition of plants to urea induced its own uptake reaching values 

around 25 µmol urea g-1 root FW h-1. All the other treatments were able to induce only a limited urea 

uptake; urea uptake rates of glutamine-treated plants were very close to those recorded for control 

untreated plants. In general the rate levels detected in plants treated with different amino acids were 

quite similar, with the exception of glutamine. Indeed, the lowest uptake rate was registered under 

glutamine treatment.  

Interestingly the presence of urea in combination with the inorganic N-sources (UA and UN treatments) 

did not lead to uptake rates comparable to those observed when urea was supplied alone; data rather 

resembled those registered for sole nitrate or ammonium treatments, with AN treatment causing even 



Tesi di Dottorato di Laura Zanin discussa presso l’Università degli Studi di Udine 

70 

Control   U A          N       UA       UN        AN      Gly       Arg     Asp       Asn     Glu       Gln 

net influx rates lower than those observed when the two inorganic sources were applied singularly (A or 

N treatments). 

These results suggest that the induction of urea uptake was a specific response to the presence of urea 

itself in the external solution and that the contemporary presence of the two most common inorganic 

sources during the induction period can limit its subsequent uptake.  

 

Figure 21. Urea uptake by roots of maize plants pre-treated with different N-sources. 5 day-old maize plants 
were exposed for 4 hours to a nutrient solution containing as a sole N-source: urea (U, 2 mM Ntot); ammonium (A, 
2 mM Ntot); nitrate (N, 2 mM Ntot) or single amino acidc (glycine, Gly; arginine, Arg; aspartate, Asp; asparagine, 
Asn; glutamate, Glu; or glutamine, Gln; at concentration of 1 mM). As control some plants were exposed to 
nutrient solution without addition of nitrogen sources (Control). Combinations of different N-forms were also 
used: urea and ammonium (UA), urea and nitrate (UN) or ammonium and nitrate (AN), 4 mM Ntot. After 4 hours, 
groups of six plants from each treatment were transferred to the assay solution containing 200 µM urea. The 
values are means ± SD (n=3). 

 

3.1.3.2 Reciprocal influence of nitrate and urea on their acquisition systems  

The interaction at the level of root uptake between the two main nitrogen forms used in agricultural 

soils, urea and nitrate, was investigated exposing maize plants to a combination of these two N-sources 

for a definite period of time (up to 24 h). During this period the changes in the urea and nitrate uptake 

rates were measured from solutions containing each N-source (urea or nitrate) at 200 µM concentration. 

Interestingly 24 hours of exposition to the different nitrogen treatments determined small changes in 

lateral root development (Figure 22), but with no significant effect on root fresh weight accumulation 

(data not showed). This allowed a comparison among treatments with respect to the functionality of 

uptake systems without side effects of different growth rates. 
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Figure 22. Effect of different  nitrogen source on the root morphology of 5 day-old maize plants. Plants were 
exposed for 24 hours to a nutrient solution containing as a sole nitrogen source: urea (U, 1 mM Ntot), nitrate (N, 1 
mM Ntot) or urea and nitrate together (UN, 2 mM Ntot). As control plants were grown in nitrogen deficient 
nutrient solution (Control) or in calcium sulfate solution (0.5 mM CaSO4). A) upper parts of two control plants; B) 
root systems under different nitrogen treatments. 

 

3.1.3.2.1 Effect of nitrate on the net urea uptake 

Corroborating previous results, the exposition of maize plants to urea (U treatment, 1 mM Ntot) induced 

the high-affinity uptake system for the molecule, with a maximum influx recorded after 8 hours of 

treatment (14 µmol urea g-1root FW h-1). As previously reported, untreated plants (Control) showed a 

constant uptake rate ranging from 3 to 4 µmol urea g-1 root FW h-1.  

The induction of urea uptake was much reduced in plants treated with nitrate and urea (UN treatment, 

2 mM Ntot), 7 µmol urea g-1 root FW h-1 after 8 hours, suggesting a control of urea uptake by nitrate 

availability (Figure 23). 

 

 

 

Figure 23. Time-course of urea uptake in maize roots. 5 day-old maize plants were exposed up to 24 hours to a 
nutrient solution without added nitrogen (Control) or supplied with 0.5 mM urea (U, 1 mM Ntot) or urea and 
nitrate (UN, 2 mM Ntot) or. After 4 - 8 - 12 and 24 hours of treatment, groups of six plants from each treatment 
were transferred to the assay solution containing 200 µM urea. The values are means ± SD (n=3).  

Control  Control       CaSO4         N              U       UN 

 

A                       B 
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3.1.3.2.2 Effect of urea on the net nitrate uptake 

The high affinity transport system for nitrate has been extensively studied, showing that it is up-

regulated by nitrate itself.  The activity of this transport system typically exceeds plant demand for 

nitrate uptake, so that after the initial exposure to nitrate it is rapidly down-regulated (Glass and Siddiqi, 

1995; Forde and Clarckson, 1999). Furthermore, it has been demonstrated that pre-treatment of plants 

with ammonium can negatively affect the development of a higher nitrate uptake rate (Locci et al., 

2001). 

Experiments were performed using maize plants pre-treated for up to 24 hours with nitrate alone (N, 1 

mM Ntot) or nitrate plus urea (UN, 2 mM Ntot) and compared with untreated plants (Control) with 

respect to their capacity to take up nitrate from a 200 µM solution (Figure 24). 

Results confirmed the induction of nitrate uptake systems and highest rates were observed after 8 hours 

of exposure to the anion (15 µmol nitrate g-1 root FW h-1). Interestingly in UN fed plants the presence of 

urea limited the development of a higher nitrate uptake capacity: after 8 hours the uptake rate was 9 

µmol nitrate g-1 root FW h-1. A general increase in the uptake activity was observed until 8 hours but 

subsequently it slowly decreased returning at the same level of control plants.  

As expected untreated plants did not modulate their nitrate uptake rate during the 24-hours treatment 

showing a constant value around 4-5 µmol nitrate g-1 root FW h-1. Results indicate that the presence of 

urea in the external  medium can limit the response of the roots to nitrate. 

 

 

 
 

Figure 24. Time-course of nitrate uptake in maize roots. 5 day-old maize plants were exposed up to 24 hours to a 
nutrient solution without added nitrogen (Control) or supplied with nitrate (N, 1 mM Ntot) or urea plus nitrate 
(UN, 2 mM Ntot)r. After 4, 8, 12 and 24 hours of treatment, groups of six plants from each treatment were 
transferred in the assay solution containing 200 µM nitrate. The values are means ± SD (n=3). 
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3.1.3.2.3 Influence of nitrogen concentration on urea and nitrate uptake  

In the above experiments the nitrogen concentration in the combined (UN) treatment was twice that 

those with a single N-source (U or N), for this reason additional experiments were performed exposing 

plants to treatments having the same nitrogen concentration (Figure 25). Thus maize plants were pre-

treated with solutions containing only urea (U, 2 mM Ntot) or nitrate (N, 2 mM Ntot) or urea and nitrate 

together (UN treatment, 2 mM Ntot). Confirming previous data, the increase in urea concentration 

determined an earlier response of uptake system leading, in U plants, to a maximum induction after 4 

hours of exposure to the organic N-source. The same behavior was relieved also in nitrate (N) fed plants 

corroborating published works which described the induction of nitrate high affinity transport system as 

concentration dependent (Crawford and Forde, 1998; Locci et al. 2001). However, as previously 

observed, in UN treatment no significant variation in the uptake rate of each N-source was registered 

during the 24-h treatment.  
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Figure 25. Time-course of Urea (A) and nitrate (B) uptake in maize roots. 5 day-old maize plants were exposed 
within 24 hours to a nutrient solution without added nitrogen (Control) or containing the same amount of total 
nitrogen (2 mM Ntot), namely 1 mM urea (U), 2 mM nitrate (N) or 0.5 mM urea and 1 mM nitrate (UN). After 2, 4, 
6, 8, 12 and 24 hours of treatment, groups of six plants from each treatment were transferred to the assay solution 
containing 200 µM urea (A) or 200 µM nitrate (B). The values are means ± SD (n=3). 

 

In summary these results (Figure 23-Figure 25) indicate that under the experimental conditions of this 

study, the presence of nitrate together with urea (NU treatment) limited the development of a higher 

uptake capacity by the high-affinity transport system of both nutrients. 
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3.1.3.3 Effect of organic nitrogen sources on the net urea uptake  

In the following experiments it was studied the effect on urea uptake system exerted by another organic 

source which is known to have a regulatory role in nitrogen acquisition, the amino acid glutamine 

(Sugiharto et al., 1992, Stoelken et al., 2010). Thus, 5 day-old maize plants were fed for a maximum of 

24 hours with a nutrient solutions containing as a sole N-source glutamine (Gln, 1 mM Ntot) or nitrate 

(N, 1 mM Ntot) or urea (U, 1 mM Ntot); furthermore combinations of two different N-sources were 

employed: urea and glutamine (UG, 2 mM Ntot) or urea and nitrate (UN, 2 mM Ntot). After 2, 4, 8, 12 

and 24 hours of treatment, the urea uptake capacity of plants was measured by incubating the roots in 

the assay solution containing urea 200 µM (Figure 26).  

During the exposition time, the urea influx was modulated by the external N-source. In particular, as 

observed above, the highest value in urea uptake was registered in U fed plants, while the lowest values 

were detected in Control plants, without significant changes with the time. Intermediate values were 

detected for nitrate treatment (N), reflecting the same trend observed in U fed plants. On the other 

hand, in Gln treated plants, the trend was quite similar to Control and values did not show great 

variation with the time of exposure, although a little increase was observed after 24 hours of treatment.  

UG and UN fed plants showed almost the same pattern of urea uptake with values roughly comparable 

to those observed when nitrate was the sole N-source.  

 

 

Figure 26. Time-course urea uptake in maize roots. 5 day-old maize plants were exposed up to 24 hours to a 
nutrient solution without added nitrogen (Control) or supplied with glutamine (Gln) or nitrate (N) or urea (U) (1 
mM Ntot). Others two treatments containing urea together with glutamine (UG) or nitrate (UN), 2 mM Ntot. After 
2, 4, 8, 12 and 24 hours of exposition, groups of six plants from each treatment were transferred to the assay 
solution containing 200 µM urea. The values are means ± SD (n=3). 
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 Analysis of urea contribution to nitrogen accumulation in maize and 3.1.4

Arabidopsis plants using 15N-labeled sources 

 

3.1.4.1 Urea absorption in shoot and roots of maize plants fed with 15N-labeled nitrogen 

sources 

Previous physiological experiments were performed in order to characterize the urea uptake systems in 

maize roots and the influence of organic and inorganic nitrogen sources on their activity. However this 

kind of analysis cannot provide an indication about the contribution of a specific source to the overall 

plant N-nutrition. Thus, nitrogen sources labeled with the stable isotope 15N were also used to study 

urea absorption by root cells. The accumulation of 15N analyzed within the plants can be regarded as 

being derived from external 15N-urea absorbed by the roots. Nitrogen accumulation using 15N-

ammonium and 15N-nitrate was also measured as compared to the urea treatment and to reveal 

possible effects of nitrate nutrition on the urea uptake system. Operatively, maize plants were fed with 

nutrient solution containing 15N-ammonium (A), 15N-nitrate (N), 15N-urea (U), ammonium and 15N-nitrate 

(AN), 15N-urea and nitrate (UN) or, as a control, without any addition of nitrogen sources (Control). A, N, 

U -fed plants were exposed to 1 mM total nitrogen, while in AN and UN treatment the total nitrogen 

concentration was 2 mM. Plants were incubated with labeled sources for 24 hours, afterwards shoot 

and root samples were harvested and the 15N-accumulation was measured (Figure 27).  

The highest levels in shoot and root 15N-accumulation were reached in 15N-nitrate-fed plants (N and AN 

treatments); in particular its uptake was not affected by the contemporary presence of ammonium. 

Under both treatments (N and AN), the amounts of 15N were almost equally distributed among shoots 

and roots. Compared to N treatment, much lower 15N contents were found in 15N-U-fed plants, although 

15N distribution pattern among the tissues was similar to that found feeding plants with 15N-nitrate.  

Concerning the total amounts of 15N in plants, under ammonium treatment (A) an intermediate 

situation between N and U fed plants was reported, with significant differences in terms of allocation 

among root and leaf tissues.  

In A fed plants the amount of 15N accumulated in roots was almost 2-fold higher than that allocated in 

leaves, which showed a 15N content comparable to that detected in leaves of U-treated plants.  

Interestingly, confirming the physiological results reported above (Figure 23-Figure 25), urea uptake was 

reduced when this N-source was applied in combination with nitrate. In particular, as compared to U fed 

plants, UN shoots and roots showed 2-times lower 15N accumulation, with essentially the same 15N 

distribution among tissues. 
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Figure 27. 

15
N accumulation in maize plants fed with different 15

N-sources. Root and shoot 
15

N accumulation was 
measured in 5-day-old maize plants fed for 24 hours with nutrient solutions supplied with different labeled 
nitrogen sources: 

15
N-ammonium (A), 

15
N-nitrate (N), 

15
N-urea (U), ammonium and 

15
N-nitrate (AN), 

15
N-urea and 

nitrate (UN). As  control plants treated with solution without any addition of nitrogen sources were used. The 
underlined letters are referred to the 

15
N-labeled source. Nitrogen concentration in A, N and U treatments was 1 

mM, while it was 2 mM in AN and UN treatments. The analysis was performed on six plants for each sample. 

 

3.1.4.2 Time course of urea absorption in Arabidopsis plants fed with 15N labeled nitrogen 

sources   

At the time of analysis, Arabidopsis was the only plant species in which the high-affinity urea uptake 

system was already characterized. In particular experimental evidence of 15N-urea influx in Arabidopsis 

roots was reported only in two works. Kojima et al. (2007) for the first time characterized in vivo the 

high- and a low-affinity systems for urea uptake. Later Mérigout et al. (2008a) performed a more 

thorough physiological characterization confirming the capacity of Arabidopsis roots to take up urea and 

demonstrating that urea uptake was regulated by the initial nitrogen status of the plants. These authors 

also showed that ammonium nitrate could influence urea influx, but without discriminating the effect of 

each inorganic source.  

In the present work a time-course of 15N accumulation analysis was performed in Arabidopsis plants pre-

grown under different N-nutritional regimes and than treated with different 15N-labelled N-sources. 

Thus, 5 week-old plants were grown for five weeks in hydroponic nutrient solution and than transferred 

for one week to N-sufficient or N-deficient conditions. At the end of the growing period leaves of plants 

grown without added nitrogen showed clear symptoms of starvation. For the uptake experiment, 

nitrogen sufficient (N-sufficient) and nitrogen deficient (N-deficient) plants were incubated for up to 24 

hours in nutrient solutions containing different 15N-labeled nitrogen sources: 15N-ammonium (A), 15N-

nitrate (N), 15N-urea (U), urea and 15N-nitrate (UN), 15N-urea and nitrate (UN); leaves and roots were 

harvested after 2, 4, 8, 12 and 24 hours for the 15N determination.  
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In general, under all the treatments imposed, leaf and root tissues displayed a progressive increase 

during the incubation time in 15N-labeled nitrogen contents (Figure 28, B and C).  

 

3.1.4.2.1 Total 15N accumulation in Arabidopsis plants 

Results showed that under N-deficiency, A or N treated plants accumulated higher amounts of nitrogen 

in comparison to plants grown with an adequate nitrogen supply.  

The A and N treatments were the most efficient nitrogen forms leading to the highest accumulation of 

15N in maize plants grown under N-deficiency (Figure 28, A). In contrast to inorganic sources, the urea 

was acquired at lower levels comparable to those found in nitrogen sufficient plants treated with 

labeled nitrate (N). 

About UN treatments (UN and UN) two general observations should be considered: first, in UN total 

nitrogen concentration was 2-fold higher (2 mM tot) than in the single-source treatments (1 mM tot); 

second, to have an indication of the total nitrogen absorbed, the contribution from both labeled 

treatments, UN and UN should be evaluated. Under N-deficiency the presence of nitrate didn’t limit the 

urea-derived 15N accumulation in maize plants. On the other hand urea showed a negative effect on 15N-

nitrate acquisition in Arabidopsis.  

 

3.1.4.2.2 15N accumulation in roots 

In general roots showed higher amounts of nitrogen than those found in leaves (Figure 28, B); moreover 

the accumulation patterns reflected those registered in whole plants with the exception of UN roots. In 

this case, after 12 and 24 hours, the amounts of 15N were quite similar and the maximum accumulation 

(24 h) was significantly lower than that observed in N or U treated roots. 

 

3.1.4.2.3 15N accumulation in leaves 

Strong differences within the treatments were relieved in leaves (Figure 28, C). In particular, plants 

exposed to labeled nitrate (N) led to the highest 15N content in leaves either in N-sufficient of N-

deficient leaves. In these latter plants comparable amounts of 15N accumulation was also observed in 

UN -treated plants, while the values registered in A treatment were lower. Independently of the 

nitrogen status of the plants, 15N-urea treatment (U and UN) showed the lowest accumulation of labeled 

nitrogen as being derived from urea.  
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Figure 28. Time-course of 
15

N accumulation in 6 week-old Arabidopsis plants (A), in roots (B) and in leaves (C). 
The growth conditions (complete nutrient solution) were the same for all the plants until the 5

th
 week; afterwards 

some plants were maintained for 1 week in N-sufficiency (2 mM nitrogen, in the blue box on left side) while other 
were grown for 1 week without added nitrogen (N-deficiency, in the red box on right side). For the 

15
N uptake 

experiment plants were exposed for up to 24 hours to nutrient solutions containing different 
15

N-labeled nitrogen 
sources: 

15
N-ammonium (A), 

15
N-nitrate (N), 

15
N-urea (U), urea and 

15
N-nitrate (UN), 

15
N-urea and nitrate (UN). The 

underlined letters are referred to the 
15

N-labeled source. Nitrogen concentration in A, N and U treatments was 1 
mM, instead two times (2 mM) in UN and UN treatments. Roots (B) and leaves (C) from three plants of each 
treatment were sampled and the 

15
N accumulation was detected. The first histogram (A) represents the total 

15
N 

absorbed in plants. The values are means ± SD of three replicates.   
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For the first time in maize, the effect of urea on the amounts of nitrogen taken up by the external 

nitrogen source was evaluated using 15N-urea. On the other hand, previous works were performed on 

Arabidopsis (Mérigout et al., 2008a); thus further 15N analyses on this model plant were done to 

evaluate the experimental conditions. 

In summary, the 15N accumulation data provided a valid indication that Arabidopsis and maize are able 

to take up urea and to translocate urea per se or urea-derived N-compounds to the shoot. Interestingly, 

in agreement with the urea uptake rates, UN-fed plants showed a lower accumulation of 15N derived 

from 15N-urea in both roots and shoots as compared to urea treatment (U). So, a hypothesis is that 

nitrate exerts negative effects on the urea uptake in plants; indeed nitrate limits the induction of the 

urea uptake system conceivably determining low amounts of nitrogen as being derived from urea. The 

reciprocal influence between urea and nitrate was analysed in more detailed in Arabidopsis plants. 

Interestingly, data clearly indicated that these two plant species react in a different way to nitrogen 

nutrition: in Arabidopsis nitrate did not exert adverse effect on the accumulation of 15N-urea derived 

15N; thus urea contribution to nitrogen plant nutritrion under U and UN treatments was the same, in 

both roots and shoots.  

On the other hand, in UN fed Arabidopsis plants, the presence of urea in the external medium limited 

the 15N accumulation as being derived from 15N-nitrate. This data is in agreement with the negative 

influence of urea on nitrate uptake reported by Mérigout et al. (2008a). Moreover, the low nitrogen 

amount was mainly due to a limited accumulation of the nutrient in roots more than in shoots since no 

significant variations were detected between N and UN treated leaves. These data suggest that the 

negative effect of urea on nitrate is related to root accumulation whereas the translocation of the 

nutrient to shoots is not influenced. A hypothesis could be a regulatory control of urea (or of related 

metabolites) on the mechanism of nitrate efflux in roots.  
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 Stability of the treatment solution  3.1.5

 

In order to analyze the stability of the nutrient solutions, the amounts of urea, ammonium and nitrate 

were checked during the time span of the experiments. Nutrient solutions containing: urea (U, 1 mM 

Ntot), nitrate (N, 1 mM Ntot) or urea and nitrate (UN, 2 mM Ntot) were sampled after 2, 4, 8 and 24 

hours of exposition to maize roots. During the time span of the experiments (24 hours) was observed a 

decreased in the concentrations of nitrate and urea in a range that was in main part attributed to the 

root uptake activity. In particular in the solutions containing urea, very few amounts of ammonium were 

detectable only after 24 hours of root incubation, suggesting that under the experimental conditions 

used no significant urea degradation took place. This observation was similar to that reported by 

Mérigout and coworkers (2008b) and by Wang and coworkers (2012). 

 

 

 Effect of urease inhibitor on the net urea uptake  3.1.6

 

Although under our experimental conditions we did not find a significant urea degradation, it is well 

accepted that in soil solution the stability of urea is completely different (Watson, 2005). It is subject to 

a rapid degradation due to the presence of microbial ureases, which are the most persistent enzymes in 

nature and almost ubiquitously expressed by most organisms (Polacco and Holland, 1993). The urease 

activity limits the efficiency of urea, since its hydrolys produces ammonium, which is rapidly volatilized 

as ammonia gas. So one of the most used strategies to reduce ammonia emissions from urea fertilizer is 

to apply urease inhibitors. The most promising and widely tested soil urease inhibitor is N- (n-butyl) 

thiophosphoric triamide (nBTPT), whose inhibitory activity is associated with the formation of its oxygen 

analogue. To date nBTPT is one of the few urease inhibitors that are commercially available and it is also 

marketed in combination with urea fertilizers (Watson, 2005). 

Generally it has been demonstrated that nBTPT enhances efficiency of urea-containing fertilizers in soil, 

even preventing potentially toxic accumulation of urea degradation products (Watson, 2005); on the 

other hand, it has also been evidenced that the presence of the inhibitor can induce some phytotoxicity, 

possibly as a consequence of excessive urea accumulation in plants (Gerendàs and Sattelmacher, 1999).  

 

To investigate the effect of this inhibitor on the urea uptake, an experiment was performed using the 

same growth and treatment conditions reported above. Thus net urea uptake rates were measured on 

the whole root system during 24 hours of contact with urea in presence or absence of 0.897 µM nBTPT. 

5 day-old maize plants were grown in complete nutrient solution containing: urea (U, 1mM Ntot); urea + 
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nBTPT (U+nBTPT, 1 mM Ntot); urea and nitrate + nBTPT (UN+nBTPT, 2 mM Ntot); urea and ammonium + 

nBTPT (UA+nBTPT, 2 mM Ntot).  

After 4, 8, 12 and 24 hours of treatment, the urea net influx was measured in an assay solution 

containing 200 µM urea.  

Figure 29 shows that the presence of nBTPT altered the pattern of urea net uptake rates following 

exposure of roots to urea alone (U). In particular during the time span of the treatment with U+nBTPT, 

the induction of urea uptake was severely limited: constant values of uptake rates, not significantly 

higher than those detected in control plants, were found between 4 and 24 hours. 

Similar patterns were also found in urea and nitrate or ammonium treatments in presence of the 

inhibitor (UN+nBTPT and UA+nBTPT treatments). In particular in urea and ammonium, after 24 hours, 

the uptake rate was lower than control plants maybe due to retro-regulatory events. 

 

 

Figure 29. Effect of the urease inhibitor (nBTPT) on the time-course of urea uptake in maize roots. 5 day-old 
maize plants were exposed up to 24 hours to a nutrient solution without added nitrogen (Control) or supplied with 
urea (U, 1 mM Ntot); the effect of the urease inhibitor on urea uptake was tested using pre-treatment solutions 
containing: 0.897 µM nBTPT and urea (U+nBTPT, 1mM Ntot), or urea and nitrate (UN+nBTPT, 2 mM Ntot) or urea 
and ammonium (UA+nBTPT, 2 mM Ntot). After 4, 8, 12 and 24 hours of treatment, groups of six plants from each 
treatment were transferred to the assay solution containing 200 µM urea. The values are means ± SD (n=3). 
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A possible direct effect of the urease inhibitor on the urea transport system was also evaluated; to this 

purpose the net uptake rate was measured by adding nBTPT to the assay solution (Figure 30). Thus, 

plants were exposed for 8 hours to a nutrient solution with (U) or without (Control) urea and then 

transferred to an assay solution containing 200 µM urea with or without nBTPT. In this case plants were 

exposed to nBTPT only for a maximum of 10 minutes. Results showed that in U-fed plants the presence 

of nBTPT in assay solution limited the uptake capacity, determining a 30% decrease in uptake rates. On 

the other hand, the direct effect of nBTPT on control plants caused a 40% stimulation of urea uptake 

rate. 

These data suggest that nBTPT might interfere with the mechanism of urea acquisition, possibly acting 

directly on high-affinity inducible urea transporters.  

 

 

Figure 30. Direct effect of nBTPT on the urea transport system. 5 day-old maize plants were exposed for 8 hours 
to a nutrient solution with (U) or without (Control) urea and then transferred to an assay solution containing 200 
µM urea with 0.897 µM nBTPT (+nBTPT) or without the urease inhibitor (-nBTPT). The values are means ± SD of 
three replicates of two plants each. 
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 Transcriptomic aspects of urea and nitrate uptake in maize 3.2

plants 
 

 

 Genome-wide gene expression analysis in maize roots 3.2.1

 

At physiological level (Figure 23, Figure 24), nitrogen treatments led to changes in the root uptake 

capacity of the sources. In experiment described previously, compared to control, urea or nitrate 

treated plants showed an increase in their respective uptake velocity, reaching the maximum value after 

8 hours of exposition. To investigate the transcriptomic changes involved in this physiological response, 

a genome-wide gene expression analysis was performed using the same experimental conditions of 

above experiments. So, maize plants were grown for 5 days in nitrogen starvation and then were 

exposed for 8 hours to a nutrient solution under four nitrogen treatments: urea (U, 1 mM Ntot); nitrate 

(N, 1 mM Ntot); urea and nitrate (UN, 2 mM Ntot); without any addition of nitrogen source (Ctr) as 

control. Roots were sampled from three independent experiments and the total mRNA was extracted in 

order to perform the microarray analysis. Differences in root gene expression among the treatments 

were obtained using the maize chip 12 X 135K Arrays (http://ddlab.sci.univr.it/FunctionalGenomics) 

developed by NimbleGen (http://www.nimblegen.com, Roche NimbleGen, Inc.). This array allows the 

simultaneous analysis of all the samples, monitoring the expression of 59,756 transcripts predicted from 

the B73 maize reference-genome version 1 (B73 RefGen_v1, http://www.maizesequence.org).  

Depending on nitrogen treatment, four transcriptomic profiles were obtained (Ctr, U, N, UN) and 

compared to each other. So, six comparisons were carried out (U vs Ctr, N vs Ctr, UN vs Ctr, N vs U, UN 

vs U and N vs UN) and statistical analyses were performed on data using Linear Models for MicroArray 

(LIMMA, adjusted p-value ≤ 0,05) (Table 5). Surprisingly, only few genes were found as differentially 

expressed by nitrogen treatments: the highest value was detected in UN vs Ctr (132 differentially 

expressed transcripts), the lowest in U vs Ctr (4 transcripts), and in N vs UN there were no significant 

variations in gene expression. Most of the detected transcripts showed a strong modulation with high 

values of fold change (FC), indeed, except very few transcripts, the fold changes (FC) were over |2|. 

Results suggested that under these experimental conditions, in presence of urea alone, only few genes 

were differentially expressed (U vs Ctr). A completely different situation was registered under nitrate, 

since it resulted as responsible for the major transcriptional variation among the comparisons, especially 

in N vs Ctr and UN vs Ctr. This hypothesis is confirmed by N vs UN, where the presence of urea along  

nitrate did not influence significantly the gene expression profile, any significant change in expressed 

http://ddlab.sci.univr.it/FunctionalGenomics
http://www.nimblegen.com/
http://www.maizesequence.org/
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transcripts was not identified by statistical analysis. This means that under N and UN treatments, roots 

express the same pool of transcripts with a similar level of expression.  

As consequence of this similar transcriptome in U and Ctr roots, the comparison of nitrate versus urea 

(N vs U) or versus control (N vs Ctr) gave similar numbers of transcripts, same observation could be done 

for UN vs U. However in both case (N vs U and UN vs U) the numbers of transcripts were 40% lower than 

versus Ctr (N vs Ctr and UN vs Ctr), indicating that even if not significative there is a drift in the 

expression profiles of urea treated roots in direction of the profile of nitrate treated one in comparison 

to the control. 

Moreover the identified transcripts were divided in positive and negative FC, which correspond 

respectively to over- and down- expressed genes. As reported in Table 5, in all comparisons the numbers 

of up-regulated genes are much higher than those downregulated. 

 

 

Table 5. Number of gene differentially expressed by nitrogen treatments in the six comparisons. Data provided 
by microarray analyses performed on mRNA extracted from root of maize grown under different nitrogen 
treatment. Maize plants were grown for 5 days in nitrogen starvation and then were exposed for 8 hours to a 
nutrient solution under three nitrogen treatments: urea (U, 1 mM Ntot); nitrate (N, 1 mM Ntot); urea and nitrate 
(UN, 2 mM Ntot). Control plants were not exposed to any nitrogen source (Ctr). The root transcriptomic profiles 
were compared to each other, obtaining six comparisons: U vs Ctr, N vs Ctr, UN vs Ctr, N vs U, UN vs U, N vs UN. For 
each comparison, the number of differentially expressed transcripts is reported in the table: numbers in the first 
row are referred to the total number of gene differentially expressed; in second and third rows are reported the 
number of over- and down- expressed transcripts, respectively. Thus, for example, in UN vs Ctr were identified 132 
differentially expressed genes: 113 over- and 19 down- expressed by the UN treatment in comparison to control 
roots. This experiment was performed using three independent biological replications and the data were statistical 
analyzed using Linear Models for MicroArray (LIMMA , Smyth, 2004) adjusted p-value≤ 0,05. 

 

 UN vs Ctr N vs Ctr UN vs U N vs U U vs Ctr N vs UN 

Tot transcripts 132 89 62 57 4 / 

Over expressed +113 +79 +58 +53 +4 / 

Down regulated -19 -10 -4 -4 / / 

 

 

 

Manually curated annotation of the differentially expressed transcripts was performed by BLASTP 

analyses (UniProt Database: http://www.uniprot.org/?tab=blast) using the protein predicted by CDS 

(coding sequence, GenBank Database: http://blast.ncbi.nlm.nih.gov/Blast.cgi) of each maize transcript 

(Table 7 and Table 8). The annotated transcripts were then grouped in main functional categories 

according to biological process terms of Gene Ontology (GO) assigned to each transcript on the basis of 

BlastP results. The most representative functional categories were “metabolic process”, “localization” 

and “biological regulation”, while less abounded were “response to stimulus”, “cellular component 

http://www.uniprot.org/?tab=blast
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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organization or biogenesis”, “cellular process”, “developmental process” and “carbon utilization” (Table 

6). A part of transcripts were classified in “biological process” and “no hits found” categories. The first 

category concern transcripts encoding proteins involved in unknown biological process; and “no hits 

found” is referred to transcripts that do not show any homology to known proteins.  

Although UN vs Ctr, N vs Ctr, UN vs U, N vs U show different numbers of differentially regulated genes 

(132, 89, 62 and 57 respectively), in each comparison the GO categories were represented by similar 

percentage (Table 6). 

 

 

Table 6. Functional category distribution of differentially expressed transcripts in UN vs Ctr, N vs Ctr, UN vs U,    
N vs U comparisons. Distribution in main functional categories according to GO “Biological process” terms. 

 

Biological process GO classes: UN vs Ctr N vs Ctr UN vs U N vs U 

  %  %  %  % 

Biological process (GO:0008150) 25 19 15 17 9 15 10 18 

Metabolic process (GO:0008152) 65 49 44 49 34 55 30 53 

Localization (GO:0051179) 16 12 10 11 9 15 6 11 

Biological regulation (GO:0065007) 17 13 13 15 8 13 8 14 

Response to stimulus (GO:0050896 ) 2 2 2 2 1 2 1 2 

Cellular comp. org. or biogenesis (GO:0071840 ) 2 2       

Cellular process (GO:0009987 ) 1 1 1 1 1 2 1 2 

Developmental process (GO:0032502) 1 1 1 1     

Carbon utilization (GO:0015976) 1 1 1 1   1 2 

No hits found 2 2 2 2     

 132  89  62  57  

 

 

    

 UN vs Ctr        N vs Ctr                 UN vs U       N vs U 
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3.2.1.1 Metabolic process (GO:0008152) 

In Table 7, the transcripts from #29 to 97 belong to the GO category “metabolic process”. 

Most of the modulated transcripts are known to be regulated by nitrate exposure and overall they are 

involved in the nitrogen assimilation pathway. Hence my results confirm their modulation by nitrate as 

reported by Wang et al. (2000), who performed a microarray analysis to identify Arabidopsis genes that 

responded to nitrate at either low or high (up to 10 mM) nitrate concentrations. Generally, in my data 

these genes were found modulated by nitrate alone (N) as well by nitrate and urea together (UN) 

(comparisons N vs Ctr and UN vs Ctr).  

Intriguing data were obtained in roots exposed to a combination of urea and nitrate (UN). In general, it 

was observed that the UN treatment determined a stronger variation in the gene expression levels than 

N treatment, suggesting a possible involvement of urea in facilitate the assimilation of nitrogen. 

Moreover, comparing N and UN treatments to urea (N vs U and UN vs U), it was possible to discriminate 

among genes specifically modulated by the presence of urea source or of nitrate source, respectively.  

  

3.2.1.1.1 Nitrogen assimilation pathway 

The most overexpressed transcripts are involved in nitrate reduction, i.e. nitrate reductase, NR (#34 and 

51); nitrite reductase, NiR (#30, 31, 33, 35, 36, 40); and indirectly uroporphyrinogen III 

methyltransferase, UPM (#29, 43, 50 and 55). 

NR and NiR genes encode for two key enzymes in the nitrate assimilation pathway: nitrate uptake is 

firstly reduced by NR to nitrite, than NiR converts nitrite into ammonium. Previous works had 

demonstrated the nitrate induction of both enzymes, in particular in Crawford and Glass (1988), 

Wilkinson and Crowford (1991, 1993) and in Lahners et al. (1988). In all four comparisons, the most 

abounded transcript was UPM which is involved in a branch point step of the siroheme biosynthesis, an 

essential co-factor for NiR. In maize, UPM was observed strongly induced within 2 hours of 16 mM 

nitrate treatment (Sakakibara et al., 1996).  

Nitrite reduction requires ferrodoxin (Fd) as reductant. In roots, Fd is reduced in plastids by ferrodoxin-

NADP reductase (FNR), which uses NADPH. In agreement with Ritchie et al., 1994, both Fd (#66) and FNR 

(#49) genes were found to be induced by nitrate. 

To support the production of reduced Fd in roots, NADPH is produced by the oxidative pentose 

phosphate pathway, which converts glucose 6-phosphate into ribose 5-phosphate and reduces two 

NADP+ molecules (Bowsher et al., 1992). In 1998, Redinbaugh and Campbell observed that the activity of 

two enzymes in the pathway (glucose-6-phosphate dehydrogenase, G6PDH; 6-phosphogluconate 

dehydrogenase, 6PGDH) increase by at least a 10-fold factor in maize-root plastids after 24 hours of 

treatment with 10 mM nitrate. These data are consistent with the gene expression detected in my 
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results: G6PDH (#42) was up-regulated in all four comparisons; in the other hand 6PGDH (#58) resulted 

differentially expressed only in N vs Ctr and UN vs Ctr.  

As observed in Arabidopsis microarray analyses (Wang et al., 2003; Wang et al., 2004) glycolysis-related 

genes are positively modulated by nitrogen. Two genes encoding the glycolytic enzyme Glucose-6-

phosphate isomerase (G6PI) were induced by N or NU treatments (#57, 68). Their modulation appeared 

to be closely related to the nitrate presence in extra-radical solution, since they were detected as 

differentially modulated in nitrate-treated roots in comparison to Control roots and even Urea-treated 

roots. G6PI catalyzes the isomerization reaction of Glucose 6-phosphate to Fructose-6-phosphate and it 

serves both glycolysis and the pentose phosphate pathways. These two catabolic pathways occur in 

cytosol and plastid compartments and are integrated, as pointed out by Dennis et al., 2000. It is possible 

that G6PI induction helps recycle carbon back to the pentose phosphate pathway and thus aids in the 

generation of NADPH by pentose phosphate oxidation.  

Other genes that are known to be nitrate-induced, include those involved in ammonia assimilation, i.e. 

that encode for glutamine synthetase, GS (#32, 63, 76) and Fd-glutamate synthase, GOGAT (#79). These 

results are in agreement with the experimental evidence found by Redinbaugh and Campbell (1993), 

who demonstrated that maize roots induced Fd-GOGAT and GS within 30 min when exposed to 10 mM 

nitrate and within 2 hours with 10 µM nitrate. The ammonium could be substrate also of other enzyme 

which converts 2-oxoglutarate into glutamate, the 2-oxoglutarate-dependent dioxygenase (GDH). In my 

analyses the GDH transcript (#75) was found to be upregulated by nitrate or nitrate and urea treatments 

(UN vs Ctr and N vs Ctr comparisons) meaning that it is mainly modulated by nitrate, in agreement with 

the experimental data reported by Mérigout et al. (2008a).  

An interesting transcriptional modulation was found for asparagine synthase (ASN), which converts 

aspartate into asparagine by deamination of glutamine. The strong up-regulation of two transcripts (#45 

and 52) appeared strictly dependent on the urea presence in the extra-radical solution (UN vs Ctr, N vs U 

and U vs Ctr). The ASN induction is consistent with the Arabidopsis microarray data of Mérigout et al 

(2008a), who found a modulation of two isoforms of ASN as depending on urea.  

Last group of known nitrate regulated genes includes those genes involved in organic-acid and starch 

metabolisms. Among the microarray data I had found two transcripts (#41 and 44) encoding for a 

subunit of pyruvate dehydrogenase (PDH). This enzyme catalyzes the oxidation of pyruvate into CO2, 

NADH and acetic acid, which enters in the TCA cycle. The CO2 released might be rapidly interconverted 

into bicarbonate or vice versa by the enzyme carbonic anhydrase, which transcript (#140 Carbon 

utilization (GO:0015976)) was found to be overespressed by a 5-fold factor in N vs Ctr, UN vs Ctr and      

N vs U comparisons. 
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3.2.1.1.2 Signaling and scavenging of ROS   

SNF1-related protein kinase (SnRK) a serine/threonine protein kinase which is a crucial component in 

the transcriptional and metabolic regulation by integrating growth and development in response to 

nutritional status and stress conditions (Polge and Thomas, 2007). Among the SnRK, the subfamily 

SnRK3 is also designated as CIPK (CBL-Interacting Protein Kinasis) because they can interact with calcium 

sensor calcineurin B-like proteins (CBL) to form a network mediating calcium signaling and a complex 

array of environmental stimuli (Batistic and Kudla, 2004; Pandey, 2008). However, knowledge about 

SnRK genes is very limited. In 2011, Chen and coworkers had published a report about putative CIPK 

genes in maize. In this work, the authors observed that ZmCIPK genes transcriptionally responded to 

abiotic stresses, such as salt, drought, heat and cold stresses registering an upregulation of 24, 31, 20, 

and 19 ZmCIPK genes, respectively. My results revealed the overexpression of four CIPK (#38, 47, 48, 53) 

in four comparisons: UN vs Ctr, N vs Ctr, UN vs U and N vs U; while only in UN vs Ctr a transcript coding 

for SnRK2.4 (#56) was differentially expressed.  

A fundamental protection mechanism against reactive oxygen species is through the ascorbate–

glutathione cycle in which an important antioxidant, ascorbate, is utilized to convert harmful H2O2 to 

H2O. The enzyme monodehydroascorbate reductase (MDHAR) maintains reduced pools of ascorbate by 

recycling the oxidized form of ascorbate. My results show that two transcripts (#37, 59) coding for a 

MDHAR were induced by N and UN in comparison to Ctr and U treatments (UN vs Ctr, N vs Ctr, UN vs U 

and N vs U). This enzyme is known to be involved in the scavenging of nitric oxide that can be produced 

by nitrate reductase (NR) when nitrite is used as substrate (Rockel et al., 2002; Igamberdiev et al., 2006). 

NO is a signaling molecule involved in many biochemical and physiological processes (Lamattina et al., 

2003). In maize, it has been reported that nitric oxide plays a role as a mediator of nitrate dependent 

root growth (Zhao et al., 2007). Moreover Prinsi  and coworkers (2009) reported that at a high external 

concentration of nitrate, maize roots reduce their endogenous level of nitric oxide with a concomitant 

protein accumulation of MDHAR. This experimental observation was consistent with the hypothesis that 

MDHAR activity might contribute in controlling nitric oxide levels in root tissues after exposition to 

nitrate (Igamberdiev et al., 2006; Rockel et al., 2002; Prinsi et al., 2009). 

 

3.2.1.1.3 Shikimic pathway 

The most interesting and novel founding in my data was the induction of genes that are involved in the 

shikimic acid pathway. This pathway converts simple carbohydrate precursors derived from glycolysis 

and the pentose phosphate pathway to aromatic amino acids, such as phenylalanine, tyrosine, and 

tryptophan, lignin and secondary metabolites (Herrmann and Weaver, 1999; Tzin and Galili, 2010).  

In our data, the first enzyme of shikimic pathway being modulated by nitrogen treatment was shikimate 

kinase (SK), which catalyzes the fifth reaction of this pathway, converting shikimate to                 
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shikimate 3-phosphate. Its transcript (#78) was found to be upregulated by the urea and nitrate 

treatment in comparison to control roots (UN vs Ctr); in all the other comparisons, the expression levels 

were not significantly different. 

Same behavior was found for the transcript (#77) coding for the downstream enzyme arogenate 

dehydrogenase (TyrA) that catalyzes the conversion of arogenate to tyrosine. So under urea and nitrate 

(UN) it seems to induce the pathway that leads to the production of tyrosine. In Arabidopsis and in 

Sorghum bicolor, tyrosine is directly responsible for the feedback-inhibition of TyrA (Rippert and 

Matringe, 2002; Connelly and Conn, 1986). Tyr serves as precursor of several families of secondary 

metabolites, including, for example, tocochromanols (vit E), plastoquinones, isoquinoline alkaloids, 

several non-proteic amino acids and perhaps also some phenylpropanoids (Tzin and Galili, 2010). 

My analyses revealed also an interesting modulation of two genes coding for ferulate 5-hydroxylase 

(FAH, #46 and 87). This enzyme catalyzes the conversion of ferulate (a phenylalanine derivate) to 5-

hydroxyferulate, a precursor of sinapate which is a phenylpropanoid requested for lignin biosynthesis. 

One transcript (#46) was found to be strongly upregulated by UN and N in comparison to Ctr and even 

to U treatments, instead the other one (#87) was found to be downregulated in UN vs Ctr, N vs Ctr and 

N vs U, no significant modulation was observed in UN vs U. Thus, these results suggest that nitrogen 

treatments modulated in opposing way two genes putatively encoding for isoforms of the same enzyme 

which may indicate that they have a different role.  

Probably another enzyme is involved in this pathway catalyzing a downstream reaction in the 

biosynthesis of sinapate ester. In UN vs Ctr, a 2-fold upregulation of a transcript (#81) coding for a 

putative serine carboxypeptidase which could convert the last precursor of sinapoyl-malate was found.  

The induction of the phenilpropanoid pathway is usually correlated to a condition of nitrogen starvation, 

as observed by Fritz et al. (2006). They showed that in tobacco the nitrogen deficiency led to a marked 

shift from nitrogen-containing compounds (such as alkaloids) to carbon-rich products, such as 

phenylpropanoids which are synthesized from phenylalanine or tyrosine. The stimulation of 

phenylpropanoid metabolism is triggered by changes in nitrate concentration, rather than downstream 

nitrogen metabolites, and is mediated by induction of a set of enzymes in the early steps of the 

phenylpropanoid biosynthetic pathway. On the other hand as pointed out by Chikov and Batasheva 

(2012), when roots are exposed to nitrate concentration of nitrogen-containing compounds, the 

translocation from roots to leaves of a fraction of amino acids increases at first and then is also the turn 

for nitrate. In this condition, the regulation of these various processes in plants is not directly depending 

on either sugar or nitrate concentrations but on the ratio between them.  

So, perhaps due to a change in the C/N balance, my nitrogen treatments induced the shikimic pathway 

leading to an increase in the aromatic-amino acid biosynthesis. In particular, under urea and nitrate, 

roots overexpressed the enzyme involved in Tyr biosynthesis, facilitating the nitrogen assimilation; but 
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at the same time also the synthesis of Phe-derivates was induced, leading to increase the carbon 

compounds.  

 

3.2.1.1.4 Amino acids biosynthesis 

Among transcripts related to metabolic process, some are involved in the amino acid biosynthesis. In 

roots, the nitrogen deriving from nitrate or urea uptake is rapidly converted into ammonium; first 

enzymes to be involved in ammonia assimilation are GS, GOGAT, GDH and ASN as described above. 

However from my data, also the shikimic pathway for the synthesis of aromatic amino acids (Phe, Tyr, 

Trp) was found to be induced by nitrogen treatments. Other transcripts involved in the amino acid 

biosynthesis were found like aspartokinase/homoserine dehydrogenase (AK/HSDH), Alanine-glyoxylate 

aminotransferase (AGAT) and 5-adenylylphosphosulfate (APS) reductase. 

In the N vs Ctr comparison, the nitrate treatment induced a 2-fold upregulation of a transcripts (#94) 

coding for a bifunctional aspartokinase/homoserine dehydrogenase (AK/HSDH). Enzymes with these 

kinds of activity could be involved in the synthesis of lysine, threonine, and methionine. These amino 

acids are synthesized from aspartate, and the first enzyme in the pathway, AK, catalyzes the 

phosphorylation of Asp to P-aspartyl phosphate; instead the third enzyme, HSDH, catalyzes the NADPH-

dependent conversion of Asp 3-semialdehyde to homoserine. In 1992, Azevedo and coworkers reported 

biochemical evidences that in maize an AK-HSDH bifunctional enzyme exists and two years later 

Muehlbauer and coworkers (1994) characterized three maize genes that encode subunits of AK-HSDH.  

Only in the UN vs Ctr comparison, data revealed a 2-fold downregulation of three transcripts (#86, 89, 

93) coding for an alanine-glyoxylate aminotransferase (AGAT). This enzyme is involved in the C2 

oxidative photosynthetic cycle which acts as a scavenger to recover fixed carbon lost during 

photorespiration by the oxygenase reaction of rubisco. In particular AGAT catalyzes a transamination 

reaction where glyoxylate is converted into glycine using as amino donor the amino acid alanine and 

releasing pyruvate. As pointed out by Igarashi and coworkers (2006) detailed regulation mechanisms of 

this biosynthetic pathway of glycine is unclear and moreover, in non-photosynthetic tissues (e.g. roots), 

Gly is synthetized mainly though glycolysis and the glyoxylate cycle.  

Under urea and nitrate treatment (UN vs Ctr) the overexpression of a gene implicated in sulfur 

metabolism was detected. The transcript (#69), encoding for 5-adenylylphosphosulfate (APS) reductase, 

is involved in the assimilation pathway of sulphate, who leads to the synthesis of the amino acid 

cysteine. APS reductase transfers two electrons to APS producing sulfite. 

Our results are in agreement with the Arabidopsis microarray data detected by Wang and coworkers 

(2003), who registered in roots an over-expression of APS reductase gene in presence of nitrate. In 

particular their data revealed that nitrate itself can induce sulfate uptake and metabolism genes, 

increasing sulfate assimilation.   
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Figure 31. The nitrate-dependent gene regulation network. Solid lines represent metabolite fluxes, while dashed 
lines symbolize positive regulatory signaling by nitrate. Abbreviations in parentheses represent genes; NRT nitrate 
transporter, NR nitrate reductase, NiR nitrite reductase, GS2 plastid glutamine synthetase, GOGAT glutamate 
synthase, Fd ferredoxin, FNR Fd-NADP+ oxidoreductase, G6PDH glucose-6-phosphate dehydrogenase, 6PGD 6-
phosphogluconate dehydrogenase, SUMT S-adenosylmethionine-dependent uroporphyrinogen III 
methyltransferase, ICDH isocitrate dehydrogenase, CS citrate synthase, PKc cytosolic pyruvate kinase, PEPC 
phosphoenolpyruvate carboxylase, MDH malate dehydrogenase (Sakakibara, 2003). 

 

 

3.2.1.2 Localization (GO:0051179) 

The other most representative functional category is the “localization” in which transcripts from #98 to 

114 are clustered. 

A strong modulation was registered for the gene coding a glucose-6-phosphate/phosphate translocator 

(GPT, transcripts #98 and 104). As observed before in “metabolic process”, nitrogen treatments (N and 

UN) induced the pathway of glycolysis as well as the oxidative pentose phosphate pathway, which are 

localized in the cytosol and plastid respectively. The up-regulation of GPT gene is request for the 

translocation of cytosolic glucose 6-phosphate into plastid (Figure 32) where it is substrate for the 

glucose-6-phosphate dehydrogenase (G6PDH). The transcript #98 and 104 were detected strongly 

upregulated under urea and nitrate treatment (UN vs Ctr and UN vs U), in the other hand only #98 was 

observed to be also modulated by nitrate alone (N vs Ctr and N vs U). Moreover the oxidative pentose 

phosphate pathway is also connected to the shikimic acid pathway which is localized in the same 

compartment. The shikimic acid pathway converts phosphoenolpyruvic acid (a carbohydrate precursors 

derived from glycolysis) and erythrose-4 phosphate (from pentose phosphate pathway) to the aromatic-

amino acids Trp, Tyr and Phe (Herrmann and Weaver, 1999). My analysis revealed that under UN 

treatment, a gene encoding for a phosphoenolpyruvate/phosphate translocator (PPT, Figure 32), 
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transcript #105, was found to be overexpressed 3-fold in comparison to control roots. This protein could 

mediate the translocation of phosphoenolpyruvate from cytosol into plastid where it enters the shikimic 

acid pathway. The overexpression of these translocators is consistent with the induction of genes 

involved in the shikimic pathway.  

 

 
 

Figure 32. Exchange of oxidative pentose phosphate pathway intermediates by the plastid phosphate 
translocators in Arabidopsis. Glucose 6-phosphate (Glc-6-P) can enter plastids in exchange for triose phosphate or 
orthophosphate (Pi) via the Glc-6-P/phosphate translocator (GPT). Exchange of xylulose 5-phosphate (Xlu-5-P), 
triose phosphate (Triose-P) and Pi is catalysed by the XPT. In the absence of cytosolic transketolase and 
transaldolase, this activity facilitates further metabolism (within plastids) of pentose phosphates that are 
generated by the oxidative reactions in the cytosol, as well as the provision of pentose phosphates generated 
independently of NADPH production for nucleotide synthesis in the cytosol. The phosphoenolpyruvate/phosphate 
translocator (PPT) is required for the import of phosphoenolpyruvate into plastids for the biosynthesis of aromatic 
acids. The triose phosphate/phosphate translocator, which is expressed only in photosynthetic cells, is omitted for 
clarity (Kruger and von Schaewen, 2003). 

 

Hemoglobin 2 and MDHAR (see “metabolic process”) are known to be involved in the scavenging of 

nitric oxide. In particular, Prinsi and coworkers (2009) observed that the exposition of maize roots to 

high nitrate concentration (10 mM NO3
-) in external medium determined an over-accumulation of the 

protein MDHAR as well as Hemoglobin 2. Furthermore nitrate have a positive influence on the 

transcription of the gene coding for Hemoglobin, since in a recent work Trevisan et al. (2011) registerd 

the over-expression of gene coding for Hemoglobin (GenBank: AF236080.1) in maize roots supplied with 

1 mM nitrate, where the maximal induction was reached after 6 hours of exposition. 

This effect of nitrate was also registered in the model plant Arabidopsis, where a genome-wide analysis 

revealed the over-expression of a non-symbiotic hemoglobin 1 gene (AtHB1) (Wang et al., 2000). The 
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authors suggested that under nitrate treatment, the oxygen sensitiveness of NR and its molybdenum 

cofactor could request a reduction in oxygen concentration which could be mediated by hemoglobin 

itself (Wang et al., 2000).  

Showing a similar behavior of NR and MDHAR genes, my analyses detected also a strong upregulation of 

hemoglobin 2 (#99 transcript) in UN vs Ctr, N vs Ctr, UN vs U and N vs U comparisons. 

 

A physiological and molecular linkage between sulfur and nitrogen metabolism has been known for 

many years (Reuveny et al., 1980; Vidmar et al., 1999; Prosser et al., 2001). In my data the transcripts 

encoding a sulfate transporter was detected to be overexpressed by a 4-fold factor (#102) in UN vs Ctr 

and N vs Ctr. These data are consistent with Vidmar and coworkers (1999), who reported that in 

nitrogen starved barley, the root exposition to nitrate or ammonium induced the gene encoding for the 

high affinity sulfate transporter and increased the sulfate uptake in roots. The authors suggested that a 

nitrogen metabolite may influence the gene expression of sulfate transporters.  

 

Other interesting genes to be modulated by N and UN nitrogen treatments coded for tonoplast 

dicarboxylate transporters (DT, #101 and 108). The major carboxylate of vacuole is constituted by 

malate,which is accumulated in this compartment by specific channel protein or by  DT, also known as 

malate transporter. In plant cells the activity of this transporter  contributes to maintain cytosolic pH 

homeostasis and it has been identified in Arabidopsis (AttDT, Arabidopsis thaliana tonoplastic 

Dicarboxylate Transporter, Emmerlich et al., 2003). By transcriptomic analysis Hu et al. (2009) had 

reported the induction of AttDT gene by nitrate. The authors suggested that since the synthesis of 

amino acids from nitrogen as being derived from taken up nitrate led to a stechiometric production of 

OH- ions (van Beusichem et al., 1985), under this conditions the synthesis of malate might contribute to 

maintain the pH homeostasis reducing the OH- concentration in the cytosol (Davies, 1986). So the 

authors hypotyzed that the induction of AttDT expression was a cellular response to reduced the 

alkaline stress due to nitrate assimilation. In a similar way the microarray data reported in the present 

work could find a reasonable explanation. It is interesting observed as the ZmDT was overexpressed 

when plants were exposed to urea and nitrate (UN treatment), it is possible that in addition to nitrate 

also the assimilation of nitrogen as being derived from urea might contributed to increase the cytosolic 

pH, indeed in comparison to N treatment, the presence of urea in UN treatment determined an increase 

in the levels of ZmDT trancripts. 

 

Interestingly, microarray data revealed a strong modulation in the amounts of a high affinity nitrate 

transporter transcript (#114, NRT2.5). When roots were exposed to urea as sole nitrogen source (U) the 

gene expression of NRT2.5 was found upregulated in comparison to nitrate treatments (UN and N) 
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showing higher values than those found when control was compared to nitrate treatments. So, 

overturning the comparisons as Ctr vs UN, Ctr vs N; U vs UN; U vs N, the following values are observed:  

 

 

 Ctr vs UN Ctr vs N U vs UN U vs N 

 

NRT2.5 (#114) 

 

/ 

 

8.28 

 

8.38 

 

14.57 

 

 

Also Mérigout et al. (2008a) found in Arabidopsis the overexpression of NRT2.5 (At1g12940) as induced 

by urea when applied as unique source of nitrogen. In particular their transcript was found to be 

modulated in roots of urea-treated plants in comparison to nitrate-fed plants.   
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Table 7.  List of transcripts modulated in maize roots in response to different nitrogen treatments, such as single sources urea (U) or nitrate (N), or a combination of them: 
nitrate and urea together (UN). As control roots of plants never exposed to any nitrogen source were used (Ctr). In the table are reported the Probe ID of the transcripts; the 
fold change values (FC) found in the five comparisons UN vs Ctr, N vs Ctr, UN vs U, N vs U and U vs Ctr; the description of the putative protein function with the UniProtID and 
e-value of the BLAST analysis. The bold transcripts are discussed in detail. 

 

# ProbeID FC Description UniProtID e-value 

    UN vs Ctr N vs Ctr UN vs U N vs U U vs Ctr     

 

  
  

    
 Biological process (GO:0008150) 
 1 GRMZM2G071704_T01 14.04 10.74 14.37 10.99   Putative uncharacterized protein C5Y9Q9 7.0×10-93 

2 GRMZM2G133684_T02 6.11 4.39 5.07 3.65   HPP B6TMS3 1.0×10-169 

3 GRMZM2G133684_T03 5.84 4.4 6.05 4.56   HPP B6TMS3 2.0×10-46 

4 GRMZM5G868296_T01 5.33         Putative uncharacterized protein C4J6L4 8.0×10-51 

5 GRMZM2G017319_T01 4.78 4.96       LOB domain protein 40, putative, expressed Q75HN5 1.0×10-106 

6 GRMZM2G474039_T01 4.78 4.15 6.53 5.67   Putative uncharacterized protein B6U8K9 3.0×10-99 

7 AC191113_2_FGT002 4.1 3.54       Loricrin-like protein Q69JW8 0.0 

8 GRMZM2G107226_T01 3.94 4.25 2.87 3.1   Putative uncharacterized protein B6UAX1 7.0×10-69 

9 GRMZM2G133684_T01 3.87         HPP B6TMS3 1.0×10-169 

10 GRMZM2G165914_T01 3.81         Putative uncharacterized protein C6JS85 0.0 

11 AC197340_3_FGT003 3.54         Putative uncharacterized protein B6U9R4 5.0×10-27 

12 GRMZM2G147787_T01 3.48         Putative uncharacterized protein B4FLV4 1.0×10-105 

13 GRMZM2G159732_T02 3.34 2.77 3.65 3.03   Nodulin-related protein-like Q6YZD9 0.0 

14 GRMZM5G856297_T02 2.98   3.21     Putative uncharacterized protein B4FEU2 9.0×10-94 

15 GRMZM5G803735_T01 2.61         Putative uncharacterized protein C0PEG5  0.0 

16 GRMZM2G144483_T01 2.54   2.94 2.54   Putative uncharacterized protein B4FDB9 5.0×10-99 

17 GRMZM2G342738_T01 2.4 2.01       Putative uncharacterized protein B6TLE5 8.0×10-92 

18 GRMZM2G038931_T02 2.19 1.96       Putative uncharacterized protein B6T9I8 1.0×10-177 

19 AC186512_3_FGT007 2.08         Putative uncharacterized protein B6UGF5 1.0×10-137 

20 GRMZM2G170137_T01 1.99 1.89       Protein binding protein B6T6Z8 1.0×10-132 
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    UN vs Ctr N vs Ctr UN vs U N vs U U vs Ctr       

21 GRMZM2G101754_T01 1.92 1.87       Uncharacterized protein C0P3Y9 0.0 

22 GRMZM2G155746_T01 1.78 1.84   1.87   Putative uncharacterized protein C5YV17 0.0 

23 GRMZM2G563728_T01 -2.26         Os08g0116700 protein Q69UI7 1.0×10-158 

24 GRMZM2G098925_T01 -3.32 -3.33       Putative uncharacterized protein C5XZ31 1.0×10-108 

25 GRMZM2G388253_T04 -4.03         Putative uncharacterized protein C5X873 6.0×10-44 

26 GRMZM2G044902_T04   2.51       Seed specific protein Bn15D17A B6UCF2 8.0×10-49 

27 AC203257_2_FGT003     -2.36 -2.02   Putative uncharacterized protein B6TT56 1.0×10-147 

28 GRMZM5G806818_T01       2.61   Putative uncharacterized protein C4J0G0 9.0×10-91 

 

 

   Metabolic process (GO:0008152) 
 29 GRMZM2G105604_T01 28.19 21.88 16.41 12.73   Uroporphyrinogen III methyltransferase P93628 0.0 

30 GRMZM2G079381_T01 14.54 12.84 9.96 8.79   Ferredoxin--nitrite reductase B6SY01 0.0 

31 GRMZM2G079381_T04 14.24 12.45 16.35 14.29   Ferredoxin--nitrite reductase B6SY01 3.0×10-83 

32 GRMZM2G098290_T03 13.97 11.95 7.18 6.14   Glutamine synthetase B4FT28 0.0 

33 GRMZM2G079381_T02 13.43 12.53 8.89 8.29   Ferredoxin--nitrite reductase B6SY01 0.0 

34 GRMZM5G878558_T01 13.33 13.29 24.2 24.12   Nitrate reductase C5XTG6 0.0 

35 GRMZM2G079381_T05 10.55 9.98 7.21 6.82   Ferredoxin--nitrite reductase B6SY01 0.0 

36 GRMZM2G102959_T01 10.23 9.04 6.38 5.65   Ferredoxin--nitrite reductase B6SY01 0.0 

37 GRMZM5G828229_T01 9.85 8.75 6.26 5.55   Monodehydroascorbate reductase Q9SPM2 1.0×10-142 

38 GRMZM2G181081_T02 9.34 7.35 8.68 6.83   CIPK-like protein 1 B6SY58 0.0 

39 GRMZM2G127909_T01 9.29 9.29 7.92 7.91   Putative uncharacterized protein  C5Z610 5.0×10-55 

40 GRMZM2G079381_T03 9.24 9.64 8.59 8.96   Ferredoxin--nitrite reductase B6SY01 0.0 

41 GRMZM2G043198_T02 9.04 8.23 7.9 7.19   Pyruvate dehydrogenase E1 component  B6TKX6 1.0×10-135 

42 GRMZM2G177077_T01 8.27 6.46 7.87 6.15   Glucose-6-phosphate 1-dehydrogenase B6SWV1 0.0 

43 GRMZM2G000739_T02 7.97 6.48 6.61 5.38   Uroporphyrinogen III methyltransferase P93628 5.0×10-79  

44 GRMZM2G043198_T04 7.87 8.77       Pyruvate dehydrogenase E1 component  B6TKX6 0.0 

45 GRMZM2G078472_T04 6.1       4.99 Asparagine synthetase B6ETR6 0.0 

46 GRMZM2G399530_T01 5.65 4.96 5.04 4.42   Putative ferulate 5-hydroxylase C0KHM0 
1.0×10-169  
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    UN vs Ctr N vs Ctr UN vs U N vs U U vs Ctr       

47 GRMZM2G181081_T03 4.87 4.08 5.24 4.38   CIPK-like protein 1 B6SY58 0.0 

48 GRMZM2G181081_T04 4.86 4.66 4.19 4.02   CIPK-like protein 1 B6SY58 0.0 

49 GRMZM2G058760_T01 4.37 4.59 4.43 4.65   Ferredoxin--NADP reductase, root isozyme B6TRH0 0.0 

50 GRMZM2G000739_T01 4.36 4.18 3.79     Uroporphyrinogen III methyltransferase P93628 2.0×10-92  

51 GRMZM2G568636_T01 4.2 4.15 7.33 7.25   Nitrate reductase Q9XGW5 0.0 

52 GRMZM2G078472_T02 3.93     -4.56 4.75 Asparagine synthetase B6ETR6 0.0 

53 GRMZM2G181081_T01 3.91 4.18 3.87 4.14   CIPK-like protein 1 B6SY58 0.0 

54 GRMZM2G003426_T01 3.69 3.82 3.11 3.22   Polyphosphate kinase 2 family Q3JLV8 2.0×10-5 

55 GRMZM2G105604_T02 3.63 3.88 2.53 2.7   Uroporphyrinogen III methyltransferase P93628 0.0 

56 GRMZM2G110922_T04 3.43         SnRK2.4 D5FGN9 0.0 

57 GRMZM2G076075_T01 3.37 3.49 2.79 2.89   Glucose-6-phosphate isomerase C0PAU7 0.0 

58 GRMZM2G440208_T01 3.26 3.12       6-phosphogluconate dehydrogenase, decarboxylase B6TX10 0.0 

59 GRMZM5G828229_T02 3.24 3.49 2.3 2.48   Monodehydroascorbate reductase Q9SPM2 0.0 

60 GRMZM2G139689_T01 3.05 2.68 2.65 2.33   L-aspartate oxidase 1 B6U0K6 0.0 

61 GRMZM2G003023_T02 2.98 2.79       NTGP5 B6U3R7 4.0×10-78 

62 GRMZM2G335709_T01 2.85         Putative wall-associated kinase 4 Q5VRE1 0.0 

63 GRMZM2G046601_T01 2.73         Glutamine synthetase B6UDS5 0.0 

64 GRMZM2G404443_T01 2.67   2.39     Cytokinin dehydrogenase 6 E3T1X1 0.0 

65 GRMZM2G061568_T02 2.62         Acid phosphatase ACP2 Q5N7Q9 1.0×10-159  

66 GRMZM2G106190_T01 2.53 2.66   2.11   Ferredoxin-6, chloroplastic P94044 1.0×10-102 

67 GRMZM2G416875_T01 2.48 2.39 1.92     Cis,cis-muconate cycloisomerase-like Q5ZC51 0.0 

68 GRMZM2G076075_T02 2.46 2.37 2.52 2.43   Glucose-6-phosphate isomerase C0PAU7 0.0 

69 AC189750_4_FGT004 2.44         Adenosine 5'-phosphosulfate reductase 1 Q5EUC9 0.0 

70 GRMZM2G003023_T01 2.43 2.26 1.89     NTGP5 B6U3R7 4.0×10-78 

71 GRMZM2G443509_T02 2.42         Protein phosphatase 2C containing protein B6T998 0.0 

72 GRMZM2G094273_T01 2.37 2.42       Cis,cis-muconate cycloisomerase-like Q5ZC51 0.0 

73 GRMZM2G323830_T01 2.35         Cytochrome P450 family protein, expressed Q10S02 0.0 

74 GRMZM2G039757_T01 2.34 
    

Protein tolB G8A034 
2.0×10-77 
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    UN vs Ctr N vs Ctr UN vs U N vs U U vs Ctr       

75 GRMZM2G046669_T01 2.28 2.19       Putative 2-oxoglutarate-dependent dioxygenase Q7EYC8 2.0×10-99 

76 GRMZM2G046601_T03 2.27         Glutamine synthetase B6UDS5 0.0 

77 GRMZM2G365961_T01 2.19         Arogenate dehydrogenase isoform 2 B6SS03 0.0 

78 GRMZM2G004590_T04 2.1         Shikimate kinase B6TNA7 0.0 

79 GRMZM2G036609_T01 2.1         Ferredoxin-dependent glutamate synthase P23225 0.0 

80 GRMZM2G443509_T01 2.09 1.97       Protein phosphatase 2C containing protein B6T998 0.0 

81 GRMZM2G126541_T01 2.07         Putative serine carboxypeptidase Q75I01 0.0 

82 GRMZM2G064083_T01 2.06 2.19       Hydroxyproline-rich glycoprotein family protein Q9M3G8 1.0×10-5 

83 GRMZM2G036629_T01 2.03         Metallothionein-like protein 1 B6TQN8 5.0×10-54 

84 GRMZM2G047995_T02 -1.89 -1.9       Lipase B6U116 1.0×10-149 

85 GRMZM2G047995_T01 -1.94 -1.73       Lipase B6U116 1.0×10-166 

86 GRMZM2G107739_T02 -2.08 -2.98       Alanine-glyoxylate aminotransferase 2 B6U6Q5 0.0 

87 GRMZM2G007698_T01 -2.31 -2.56   -2.35   Putative ferulate 5-hydroxylase C0KHM0 1.0×10-178 

88 GRMZM2G164967_T01 -2.51   -2.49     Carotenoid cleavage dioxygenase B6UEM5 0.0 

89 GRMZM2G127350_T01 -2.52         Alanine-glyoxylate aminotransferase 2 B6U6Q5 0.0 

90 GRMZM2G086088_T03 -2.62         Ubiquitin-conjugating enzyme E2-17 kDa 9 B6UG63 1.0×10-102 

91 GRMZM2G154007_T01 -2.94         Alcohol dehydrogenase 1 B6TD57 0.0 

92 GRMZM2G010460_T10 -3.36         Putative ubiquitin-conjugating enzyme E2 Q75GA0 5.0×10-95 

93 GRMZM2G107739_T03 -3.92         Alanine-glyoxylate aminotransferase 2 B6U6Q5 0.0 

94 GRMZM2G136712_T01   2.11       Bifunctional aspartokinase/homoserine dehydrogenase P49080 0.0 

95 GRMZM2G152390_T06   -1.93       Type I inositol-1,4,5-trisphosphate 5-phosphatase CVP2 B6SKV9 0.0 

96 GRMZM2G471083_T01     2.01     Sucrose phosphate synthase G3CM26 0.0 

97 GRMZM2G319445_T01     -1.86     Terpene synthase 7 B6SYF3 0.0 

 

 

   Localization (GO:0051179) 
 98 GRMZM2G009223_T01 15.73 12.36 9.75 7.66   Glucose-6-phosphate/phosphate translocator 2 B6SRN7 0.0 

99 GRMZM2G168898_T01 7.01 6.01 5.95 5.11   Hemoglobin 2 Q3S3T0 1.0×10-128 

100 GRMZM2G049852_T01 6.5       7.95 MATE efflux family protein, expressed Q8H0A7 
0.0 
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    UN vs Ctr N vs Ctr UN vs U N vs U U vs Ctr       

101 GRMZM2G176430_T01 5.13 4.16 4.39 3.55   Tonoplast dicarboxylate transporter B6T0F4 0.0 

102 GRMZM2G304700_T01 4.64 4.04       Sulfate transporter B6TU79 0.0 

103 GRMZM2G135175_T01 3.45 3 2.72 2.37   MATE efflux family protein, expressed Q8H0A7 0.0 

104 GRMZM2G180720_T01 3.4   3.21     Glucose-6-phosphate/phosphate translocator 2 O64909 0.0 

105 GRMZM2G066413_T01 2.9         Phosphoenolpyruvate/phosphate translocator 3 Q5VQL3 4.0×10-77 

106 GRMZM2G344163_T01 2.67 2.22 2.14     Putative chloride channel Q6ZDC2 0.0 

107 GRMZM2G078781_T01 2.58         Cyclic nucleotide-gated ion channel 2 B6U9Q0 0.0 

108 GRMZM2G060749_T01 2.38 2.12 2.2     Tonoplast dicarboxylate transporter B6T0F4 3.0×10-24 

109 GRMZM2G166976_T01 2.21 2.46 2.38 2.66   SPX domain-containing membrane protein Q6EPQ3 0.0 

110 GRMZM2G028129_T03 2.16         ATPase 2 B6SVY2 0.0 

111 GRMZM2G180720_T02 2.03         Glucose-6-phosphate/phosphate translocator 2 O64909 0.0 

112 GRMZM2G375116_T02 -1.8         Potassium transporter 25 Q6YWQ4 0.0 

113 GRMZM2G024196_T01 -3.4 -3.62       Yellow stripe-like transporter 12 E3UJZ2 0.0 

114 GRMZM2G455124_T01   -8.28 -8.38 -14.57   High affinity nitrate transporter NRT2.5 A0EXC0 4.0×10-82 

 

 

   Biological regulation (GO:0065007) 
 115 GRMZM2G004161_T05 11.35 8.68 6.28 4.81   BTB/POZ and TAZ domain-containing protein 1 Q9FMK7 9.0×10-77 

116 GRMZM2G001205_T01 8.68 6.15     4.33 ZFP16-1 B6TTL8 1.0×10-150 

117 GRMZM2G002915_T01 8.04 6.53 6.68 5.42   Homeobox-leucine zipper protein HOX25 A3BYC1 7.0×10-72 

118 GRMZM2G124495_T01 6.51 5.8 5.37 4.78   Transfactor B6SXM1 0.0 

119 GRMZM2G437490_T01 4.07         Leucine zipper protein-like Q5VP18 1.0×10-156 

120 GRMZM2G004161_T01 3.53 3.34 3.02     BTB/POZ and TAZ domain-containing protein 1 Q9FMK7 2.0×10-95 

121 GRMZM2G134759_T01 3.44         C2H2 Zn finger protein C6YY76 1.0×10-61 

122 GRMZM2G004161_T02 3.25 3.39 2.93 3.06   BTB/POZ and TAZ domain-containing protein 1 Q9FMK7 9.0×10-77 

123 GRMZM2G004161_T03 3.14 2.81 2.95 2.63   BTB/POZ and TAZ domain-containing protein 1 Q9FMK7 2.0×10-95 

124 GRMZM2G035370_T04 3.04 3.66 2.7 3.25   Transfactor B6SXM1 0.0 

125 GRMZM2G035370_T02 2.86 3.27 2.57 2.94   Putative Myb-like DNA-binding domain-containing protein G9C2U8 1.0×10-143 

126 GRMZM2G134759_T02 2.62         C2H2 Zn finger protein C6YY76 
1.0×10-61 
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    UN vs Ctr N vs Ctr UN vs U N vs U U vs Ctr       

127 GRMZM2G137532_T01 2.4         BZIP protein B6UHB7 9.0×10-36 

128 GRMZM2G319187_T01 2.16 2.42   1.92   Response regulator 4 Q9FRZ1 1.0×10-154 

129 GRMZM2G020772_T02 2.1 2.09       MYB-type transcription factor K4JRL7 0.0 

130 GRMZM2G398055_T01 -1.62         G2-like transcription factor K4JBW4 0.0 

131 GRMZM2G006745_T06 -2.61 -2.59       DRE-binding protein 1c (Dehydration responsive factor) C3UZ65 0.0 

132 GRMZM2G002128_T02   2.12       MYB transcription factor B7ZY89 0.0 

 

 

   Response to stimulus (GO:0050896 ) 
 133 GRMZM2G048205_T01 2.97 2.85 2.81 2.7   Endonuclease/exonuclease/phosphatase family protein Q33A95 0.0 

134 GRMZM2G391596_T01 1.9         SAUR11-auxin-responsive SAUR family member B6TVX0 1.0×10-145 

135 GRMZM2G013970_T01   1.97       22.3 kDa class VI heat shock protein Q6AUW3 1.0×10-97 

 

 

   Cellular component organization or biogenesis (GO:0071840 ) 
 136 GRMZM2G122187_T01 2.96         ANTH domain containing protein, expressed Q53M05 1.0×10-121 

137 GRMZM2G417496_T01 -2.29         Formin-like protein 12OSJNBa0091C12.5 Q7XWS7 0.0 

 

 

   Cellular process (GO:0009987 ) 
 138 GRMZM2G047474_T01 2.62 2.48 2.09 1.98   TLD-domain containing nucleolar protein Q9FKA3 1.0×10-150 

 

 

   Developmental process (GO:0032502) 
 139 GRMZM2G023811_T01 7.39 6.27       CLE family OsCLE602 protein A8R3R0 6.0×10-14 

 

 

   Carbon utilization (GO:0015976) 
 140 GRMZM2G121878_T04 4.97 5.79   5.77   Carbonic anhydrase B4F9E2 0.0 

 

 

   No hits found 
 141 GRMZM2G095090_T01 3.01 3.02       No hits found / / 

142 GRMZM2G149788_T03 -1.94 -1.93       No hits found / / 
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3.2.1.3 Effect of urea on gene expression 

In our experimental conditions, the exposition of maize roots to urea induced a similar pool of 

transcripts to those found in Control roots, except for 4 genes that were strongly modulated by this 

organic nitrogen form (Table 8).  

 

Table 8.  List of the genes differentially regulated by urea treatment in comparison toc roots (UvsCtr). In the first 
column are reported the transcript numbers referred to Table 7. In the other columns are reported: the ID codes 
(ID), the correspondent fold change (FC, U vs Ctr), the putative function of the transcripts according to blast 
analysis with the correspondent UniprotID, the functional class of Gene Onthology. The positive FC indicates that 
the transcripts are all specifically over-expressed in exposure to urea (adjusted p-value<0.05). 

 

 

3.2.1.3.1 MATE efflux family protein  

The first transcript to show the strongest urea modulation codes for a transporter belonged to the 

MATE efflux family, the expression level detected in urea roots were 8-fold higher than in control roots 

(#100, corresponding to the EST: ZM_BFb0199N08.r). By Blast analysis it was found to share a 66% of 

amino acid identity (e-value of 1.0×10-117) with an Arabidopsis MATE transporter, AT4g23030. Yazaki et 

al. (2008) reported a phylogenetic relationship of 56 MATE transporter genes presented in Arabidopsis 

genome, although their functions have been only elucidated for some members in recent years. In 

particular the sequence of AT4g23030 appeared to be closely related to a MATE transporter named 

AtFRD3 (ferric reductase defective) necessary for correct iron distribution throughout the plant (Green 

and Rogers, 2004). However recent data elucidated that AtFRD3 mediates the efflux of citrate to the 

apoplast and is not directly involved in iron transport (Durrett et al., 2007). In the phylogenetic tree 

AT4g23030 appeared also to be closely related to another MATE called AtEDS5 (identified in enhanced 

disease susceptibility mutants) which its expression was induced by pathogen attack and UV-C 

treatment (Nawrath et al., 2002). Yazaki et al. (2008) speculated on possible AtEDS5 substrates, such as 

organic molecules involved in the signal transduction cascade and precursors of salicylic acids. Anyway 

the molecular and biochemical function of the majority of these transporters are still to be 

characterized. 

 

# ProbeID FC 
U vs Ctr 

Description UniprotID GO category 

      
100 GRMZM2G049852_T01 7.946 MATE efflux family protein, expressed Q8H0A7 localization (GO:0051179) 

45 GRMZM2G078472_T04 4.988 Asparagine synthetase B6ETR6 metabolic process (GO:0008152) 

52 GRMZM2G078472_T02 4.748 Asparagine synthetase B6ETR6 metabolic process (GO:0008152) 

116 GRMZM2G001205_T01 4.328 ZFP16-1 B6TTL8 biological regulation (GO:0065007) 
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3.2.1.3.2 Asparagine synthetase 

As discussed above the urea induced the modulation of two transcripts encoding for an asparagine 

synthase ASN which were found to be ca. 5 fold overexpressed by urea treatment (#45 and 52). In both 

case their expression was observed also in presence of nitrate in the extra-radical solution (UN vs Ctr), 

with the difference that only the second transcript (#52) is specifically regulated in response to urea 

since it was detected also in N vs U as up-regulated by urea itself.   

As for the regulation of other genes involve in urea metabolism (Figure 33), my analysis did not detect 

any specific variation in gene expression linked to nitrogen assimilation that are modulated by the urea 

treatment. We can only suggest that when urea is taken up by roots, it is rapidly hydrolyzed by the 

endogenous pool of cytosolic urease. In this way the released ammonium becomes substrate for GS, 

GOGAT, GDH and other enzymes involved in the ammonium assimilation pathway, along with the 

released CO2 that could be used by carbonic anhydrase since we had found it upregulated by UN 

treatment. Concerning the modulation of gene involved in urea degradation and its synthesis, I did not 

observe any transcriptomic variation, in agreement with the Arabidopsis genome-wide analysis 

performed by Mérigout et al. (2008a). They reported that, as far as the enzymes of the urea cycle were 

concerned, no transcriptional regulation by urea was observed for urease, arginase, Orn carbamyl 

transferase, arginosuccinate synthase, or arginosuccinate lyase. 
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Figure 33. Proposed urea assimilatory pathway in Arabidopsis. Urea is synthesized inside mitochondria during Arg 
degradation via arginase in the Orn or urea cycle. Arginase-derived urea is then exported to cytoplasm and 
hydrolyzed by urease. Urea-derived ammonium is assimilated into Gln via GS; then, GOGAT catalyzes the 
formation of Glu via the GS-GOGAT cycle. AAT, Asp aminotransferase; AL, arginosuccinate lyase; AS, 
arginosuccinate synthetase; ASN, Asn synthetase; GDH, Glu dehydrogenase; NiR, nitrite reductase; NR, nitrate 
reductase; OCT, Orn carbamyl transferase (Mérigout et al., 2008a).  

 

3.2.1.3.3 ZFP16-1 

The urea source also modulated another transcript which was 4-fold more expressed in urea than 

control roots. Via Blast analysis the microarray sequence probe showed 100% of identity with a Zea 

mays mRNA NM_001157330 coding for a zinc finger protein (ZFP16-1, #116: NP_001150802.1/B6TTL8) 

belonged to the GO class of Biological regulation. The maize ZFP16-1 shows 69% of amino acid identity 

(e-value 3.0×10-84) with the rice Cys2/His2-type zinc finger transcription factor (OsZFP16, 

AAP74357.1/Q7X9N8). The Cys2/His2-type zinc finger proteins constitute one of the largest 

transcription factor families in eukaryotes (Kubo et al., 1998) and in plants, they are induced in response 

to a large variety of stress conditions, in order to enhanced tolerance to salt, dehydration, and/or cold 

stresses (Sakamoto et al., 2000, 2004; Kim et al., 2001; Sugano et al., 2003). However, the roles of these 

transcription factors in plant stress responses are still not well understood (Sun et al., 2010).  
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 Real time PCR: modulation of gene expression in time course experiment  3.2.2

 

Via microarray analysis, the transcriptomic modulation was measured after 8 hours of exposition to the 

different nitrogen sources. In order to confirm these data and to focus on gene expression level of 

transcripts involved in nitrogen uptake and metabolism, real time RT-PCR analyses on root and leaf 

tissues were performed on time-course experiments where maize plants were treated for 2, 4, 8, 12 and 

24 hours with the different N sources. Maize plants were grown in the same conditions used for 

microarray experiments. Moreover the influence of a nitrogen acquisition metabolite, i.e. glutamine, 

was also investigate on the transcriptional regulation of enzymes involved in its synthesis. Thus, 5 day-

old maize plants were exposed to a nutrient solution supplied with different nitrogen sources: urea (U, 1 

mM Ntot), nitrate (N, 1 mM Ntot), glutamine (Gln, 1 mM Ntot), urea and nitrate (UN, 2 mM Ntot), urea 

and glutamine (UG, 2 mM Ntot). As control, few plants were maintain in nitrogen starvation, exposed to 

nutrient solution without addition of any nitrogen source (Ctr). Real time PCR data were confirmed in 

two independent biological replications, however the graphs are referred to only one representative 

experiment with mean values ± SD (technical replications: n=3). The gene expression values are relative 

to those found for the housekeeping gene (ZmRPS4 in roots and ZmPolyUbi in leaves) and in all graphs 

the unit value (Relative gene expression = 1) is referred to the first bar on the left: 2 h control (Ctr).  

 

 

3.2.2.1 Gene expression in maize roots 

 

3.2.2.1.1 ZmNRT2.1-, ZmNRT2.2- and ZmNAR2.2-gene expression  

The transcript amounts of the genes ZmNRT2.1 and ZmNRT2.2, which encode two putative high-affinity 

transporters, were measured. In control plants (Ctr), no significant change in ZmNRT2.1 transcript 

accumulation was measured during the experimental time span (Figure 34, a). In urea (U) or urea and 

glutamine (UG) treated plants, similar amounts of transcripts were detected in comparison to those 

found in control roots and within 24 hours no significant variations were observed. On the other hand, 

the root exposition to nitrate source (N treatment) induced a strong accumulation of ZmNRT2.1 

transcript already after 4 hours from the beginning of nitrate supply (8-fold with respect to the control) 

and after 8 hours the mRNA amount was similar to that registered in control roots.  

Interestingly the presence of urea with nitrate (UN treatment) differently affected the expression levels 

of the gene. Under UN treatment the wideness of induction was lower than that observed in roots 

exposed to nitrate alone, nevertheless the up-regulation of the gene was significantly higher than in 

control roots and from 4 to 12 hours the expression values were maintained stable. 
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Glutamine treatment (Gln) did not show a significant accumulation in roots of ZmNRT2.1, but rather a 

decrease after 8 and 12 hours (less than 0,5 times the level measured in control roots at 2h). After 24 

hours, the transcript level was higher up to 4 fold that measured at 2 h. 

Like for ZmNRT2.1, the ZmNRT2.2 expression profile was similar in control roots, remaining 

stable within 24 hours (Figure 34, b). Also ZmNRT2.2 transcription was induced by nitrate when supplied 

together with urea or alone (N and UN treatments). After 4 hours of exposition the maximum 

expression levels was reached under both treatments, being higher in presence of urea (UN) than in its 

absence (N). After the peak of maximum induction and already after 8 hours of exposition a slow 

decrease of expression level was observed indicating that feedback regulation started rapidly.  

Besides Ctr, also Gln showed comparable expression pattern to those detected for ZmNRT2.1: after 8 

hours (and at least in the next three hours) the levels of ZmNRT2.2 transcripts decreased remaining 

lower than control. U and UG treatments, instead, affected differentially the gene expression of this 

isoform. A gradual increase in ZmNRT2.2 expression level was detected and after 24 hours it was up to 4 

times the expression of control roots.  

The transcript levels of ZmNAR2.2 encoding for an accessory protein of NRT2s, was also 

examined (Figure 34, c). Interestingly, in roots treated with only nitrate (N), it was observed an early 

response in the modulation of this gene. After only 2 hours of exposition a peak value was registered 

accounting for over 12 times more than that of control. However this induction rapidly decreased since, 

already after 8 hours of treatment, the transcription values were comparable to control roots. Under 

the other treatments (Gln, U, UG, UN), the transcription of ZmNAR2.2 was not significantly modulated 

by the nitrogen sources even if a barely higher expression was reported in presence of glutamine (Gln 

and UG).  
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Figure 34. Real-time RT-PCR analyses of ZmNRT2.1-, ZmNRT2.2- and ZmNAR2.2-gene expression levels in maize 
roots. 5 day-old maize plants were exposed for a maximum of 24 hours to nutrient solution supplied with different 
nitrogen treatments: glutamine (Gln, 1 mM Ntot), nitrate (N, 1 mM Ntot), urea (U, 1 mM Ntot), urea and glutamine 
(UG, 2 mM Ntot), urea and nitrate (UN, 2 mM Ntot). As control few plants were maintain in nitrogen starvation, 
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exposed to nutrient solution without addition of any nitrogen source (Ctr). Root samples were harvested after 2-4-
8-12-24 hours of treatment. Data were confirmed by two independent biological replications, however the graphs 
are referred to representative experiments where data are mean ± SD (technical replications: n=3). Gene mRNA 
levels were normalized with respect to the transcript level of the housekeeping gene ZmRPS4; relative changes in 
gene transcript levels were calculated on the basis of the mean transcript level of housekeeping gene ZmRPS4 in 
roots of control plants (Ctr) at 2 hours (Relative gene expression=1). Analysed genes encode: a, b and c, high-
affinity nitrate transporters (NRT2.1 and NRT2.2) and accessory protein of nitrate transporter (NAR2.2), 
respectively. 
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3.2.2.1.2 ZmNRT1.2 gene expression  

By real time RT-PCR, the expression levels of ZmNRT1.2 (NM_001112455.1) was also investigated 

(Figure 35). More information is available about its Arabidopsis homologous, AtNRT1.2. This gene was 

found expressed in root tip and in root epidermal cells and it is involved in nitrate uptake from soil into 

roots (Huang et al., 1999). AtNRT1.2 is solely a low affinity nitrate transporter and is responsible for the 

constitutive low affinity nitrate uptake capacity of roots, being expressed even if nitrate is not present 

(Huang et al., 1996; Huang et al., 1999). 

Under our conditions, data suggest that in maize root the exposition to nitrate or glutamine (N or Gln 

treatments) down regulated the gene expression of ZmNRT1.2. On the other hand, after 24 hours, 

control roots induced its expression up to 3 fold, similar induction was also observed in roots treated 

with urea and glutamine (UG treatment). In fact, in UG roots the amount of ZmNRT1.2 mRNA increased 

gradually until 8 hours when the peak value was registered. Interestingly, after 12 hours the 

transcription of this gene was rapidly down-regulated: at 12 and 24 hour a very low level of relative 

expression were detected. No significant modulation was observed in roots exposed to urea or to urea 

and nitrate, where the transcript levels were around 1 of relative gene expression or less. 

 

 

 

Figure 35. Real-time RT-PCR analyses of ZmNRT1.2 gene expression levels in maize roots. 5 day-old maize plants 
were exposed for a maximum of 24 hours to nutrient solution supplied with different nitrogen treatments: 
glutamine (Gln, 1 mM Ntot), nitrate (N, 1 mM Ntot), urea (U, 1 mM Ntot), urea and glutamine (UG, 2 mM Ntot), 
urea and nitrate (UN, 2 mM Ntot). As control few plants were maintain in nitrogen starvation, exposed to nutrient 
solution without addition of any nitrogen source (Ctr). Root samples were harvested after 2-4-8-12-24 hours of 
treatment. Data were confirmed by two independent biological replications, however the graphs are referred to 
representative experiments where data are mean ± SD (technical replications: n=3). Gene mRNA levels were 
normalized with respect to the transcript level of the housekeeping gene ZmRPS4; relative changes in gene 
transcript levels were calculated on the basis of the mean transcript level of housekeeping gene ZmRPS4 in roots of 
control plants (Ctr) at 2 hours (Relative gene expression=1). ZmNRT1.2 gene encodes for the low-affinity nitrate 
transporter (NRT1.2). 
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3.2.2.1.3 ZmNR2, ZmNiR and ZmGS2 gene expression  

Concerning the nitrogen metabolism, the expression levels of genes encoding for enzymes involved in 

the nitrate reductive steps and ammonium assimilation pathway, such as nitrate reductase (NR), nitrite 

reductase (NiR) and glutamine synthetase (GS) were investigated (Figure 36, a, b and c). The nitrogen 

treatments affected in the same way the transcription profile of all these genes (ZmNR2, ZmNiR and 

ZmGS2), which clearly responded to nitrate, under both N and UN treatments. 

In particular under N treatment, ZmNR2 and ZmNiR were strongly upregulated after 8 hours of 

exposition, while lower induction was reported for ZmGS2. These genes were also up-regulated in 

presence of nitrate with urea (UN). Compared to N treatment, the expression of ZmNR2 in UN roots was 

induced earlier, reaching a peak already after 4 hours and was followed by a gradual decrease. On the 

contrary, the maximum up-regulation of ZmNiR by UN was reached two hours later (12 hours) than in N 

roots. The comparison between UN and N roots revealed a positive influence of urea on ZmGS2 

induction, since higher amounts of transcript were detected during all the experimental time span. 

Under other nitrogen treatments (Gln, U, UG), the expression levels were comparable to those observed 

in control roots. Further GS isoforms were also analyzed, such as ZmGS1-5 (GenBank: X65930.1), but no 

significant variations were registered among the different nitrogen treatments (data not shown). 
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Figure 36. Real-time RT-PCR analyses of ZmNR2, ZmNiR and ZmGS2 gene expression levels in maize roots. 5 day-
old maize plants were exposed for a maximum of 24 hours to nutrient solution supplied with different nitrogen 
treatments: glutamine (Gln, 1 mM Ntot), nitrate (N, 1 mM Ntot), urea (U, 1 mM Ntot), urea and glutamine (UG, 2 
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mM Ntot), urea and nitrate (UN, 2 mM Ntot). As control few plants were maintain in nitrogen starvation, exposed 
to nutrient solution without addition of any nitrogen source (Ctr). Root samples were harvested after 2-4-8-12-24 
hours of treatment. Data were confirmed by two independent biological replications, however the graphs are 
referred to representative experiments where data are mean ± SD (technical replications: n=3). Gene mRNA levels 
were normalized with respect to the transcript level of the housekeeping gene ZmRPS4; relative changes in gene 
transcript levels were calculated on the basis of the mean transcript level of housekeeping gene ZmRPS4 in roots of 
control plants (Ctr) at 2 hours (Relative gene expression=1). Analysed genes encode: a, b and c, nitrate reductase 
(NR2), nitrite reductase (NiR) and glutamine synthetase (GS2). 

 

3.2.2.1.4 ZmFd-GOGAT gene expression  

The expression of a maize gene encoding for the enzyme Fd-GOGAT, which (together with GS) is 

involved in the GS-GOGAT cycle for the ammonium assimilation was also investigated (Figure 37). For 

this gene, the expression levels were referred to 4h of control roots, since no detectable levels were 

observed after 2 hours with the control treatment. Within 24 hours, control roots gradually increased 

the expression levels of Fd-GOGAT up to 4 times at the end of the experiment.  

Under Gln, U and UN treatments its expression was significantly upregulated during the light phase 

reaching peak after 4 h of treatment, or already after 2 hours in UN roots, and later it declined showing 

the lowest values after 12 hours of exposition. These data may suggest a circadian regulation of ZmFd-

GOGAT expression, since after 24 hours the amounts of transcript returned to be almost comparable, or 

higher, than those found at 4 hours under these treatments.  

Different behavior was measured in N and UG roots. Under nitrate (N), the expression levels of ZmFd-

GOGAT were up-regulated after 2 and after 12 hours of exposition to nitrate. In UG treated plants, a 

gradual reduction in transcript amounts was measured during the experimental timespan, after 24 

hours the transcript amount was comparable to that measured after 4 hours in control roots. 

In conclusion, the transcriptional regulation of ZmFd-GOGAT seems to be differentially modulated by 

the nitrogen treatments, nevertheless the highest amount of transcript was reached already after 2 

hours of exposition to urea and nitrate (UN) treatment. 
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Figure 37. Real-time RT-PCR analyses of ZmFd-GOGAT gene expression levels in maize roots. 5 day-old maize 
plants were exposed for a maximum of 24 hours to nutrient solution supplied with different nitrogen treatments: 
glutamine (Gln, 1 mM Ntot), nitrate (N, 1 mM Ntot), urea (U, 1 mM Ntot), urea and glutamine (UG, 2 mM Ntot), 
urea and nitrate (UN, 2 mM Ntot). As control few plants were maintain in nitrogen starvation, exposed to nutrient 
solution without addition of any nitrogen source (Ctr). Root samples were harvested after 2-4-8-12-24 hours of 
treatment. Data were confirmed by two independent biological replications, however the graphs are referred to 
representative experiments where data are mean ± SD (technical replications: n=3). Gene mRNA levels were 
normalized with respect to the transcript level of the housekeeping gene ZmRPS4; relative changes in gene 
transcript levels were calculated on the basis of the mean transcript level of housekeeping gene ZmRPS4 in roots of 
control plants (Ctr) at 4 hours (Relative gene expression=1), since after 2 h the expression level was not detectable 
(ND). ZmFd-GOGAT gene encodes for an enzyme involved in ammonium assimilation: glutamine oxoglutarate 
aminotransferase ferrodoxin dependent (Fd-GOGAT).  
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3.2.2.1.5 ZmDUR3, ZmUrease, ZmUreG gene expression  

Genes involved in the uptake and assimilation of urea were analysed. ZmDUR3 encode for the putative 

high affinity transporter of urea in maize, while ZmUrease and ZmUreG encode for the enzyme Urease 

and for UreG, respectively, an accessory protein that is required for the functionality of the apoenzyme 

urease. 

Control roots showed a stable expression level of ZmDUR3 ranging from 1 to 0.5, so during the 

experiment the mRNA amounts were not modulated meaningfully. The nitrogen treatments did not 

positively influenced the transcriptional regulation of this gene, indeed the ZmDUR3 expression was 

down regulated by the different N sources. Most of the transcriptional patterns showed lower transcript 

abundance at any time span of the experiment as compared with values recorded in control roots. The 

only exception was reported for UG treatment, where after 24 hours the transcript amount was 

comparable to those found in control plants (Figure 38, a). 

The urea, as being derived from soil uptake or from endogenous metabolism, is assimilated in plants via 

enzymatic degradation, that involve urease and UreG for the breakdown of urea into ammonium and 

CO2. 

ZmUrease expression was not influence by the presence of the different nitrogen sources, since control 

and treatment patterns were mostly similar showing stable expression levels during all the experimental 

time span. Nevertheless, a significant up-regulation of ZmUrease was induced after 24 hours of root 

exposition to urea source (U treatment). Also in UN roots exposed for 24hours to urea and nitrate, the 

gene expression was positively regulated, however in this case there was a great variation among the 

technical replications that led to high value in standard deviation (Figure 38, b). 

In general, the expression levels of ZmUreG did not show any significant regulation of this gene. The 

relative amounts of transcript were comparable to that measured in control after 2 hours of exposition 

(around 1 of relative gene expression), except few samples, after 24 hours in control and glutamine 

treated roots (Ctr and Gln), in which the expression levels reached 2 of relative gene expression (Figure 

38, c).  
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Figure 38. Real-time RT-PCR analyses of ZmDUR3, ZmUrease, ZmUreG gene expression levels in maize roots. 5 
day-old maize plants were exposed for a maximum of 24 hours to nutrient solution supplied with different 
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nitrogen treatments: glutamine (Gln, 1 mM Ntot), nitrate (N, 1 mM Ntot), urea (U, 1 mM Ntot), urea and glutamine 
(UG, 2 mM Ntot), urea and nitrate (UN, 2 mM Ntot). As control few plants were maintain in nitrogen starvation, 
exposed to nutrient solution without addition of any nitrogen source (Ctr). Root samples were harvested after 2-4-
8-12-24 hours of treatment. Data were confirmed by two independent biological replications, however the graphs 
are referred to representative experiments where data are mean ± SD (technical replications: n=3). Gene mRNA 
levels were normalized with respect to the transcript level of the housekeeping gene ZmRPS4; relative changes in 
gene transcript levels were calculated on the basis of the mean transcript level of housekeeping gene ZmRPS4 in 
roots of control plants (Ctr) at 2 hours (Relative gene expression=1). Analysed genes encode: a, b and c, , high 
affinity urea transporter (ZmDUR3), urease (ZmUrease), urease accessory protein (ZmUreG). 

 

3.2.2.1.6 ZmArginase gene expression 

The enzyme arginase is a key enzyme in the urea cycle, catalysing the conversion of arginine to ornithine 

and urea. The expression analyses of the gene ZmArginase was performed to investigate if the root 

exposition to different nitrogen sources might be causing modifications in the endogenous metabolism, 

i.e. regulating the nitrogen remobilization from arginine.  

During the time span of the experiment, the expression pattern registered for control and treated roots 

did not show significant modulations, since the values were closed to 1 of relative gene expression. Also 

among the treatments were not observed substantial differences (Figure 39).  

 

 

Figure 39. Real-time RT-PCR analyses of ZmArginase gene expression levels in maize roots. 5 day-old maize 
plants were exposed for a maximum of 24 hours to nutrient solution supplied with different nitrogen treatments: 
glutamine (Gln, 1 mM Ntot), nitrate (N, 1 mM Ntot), urea (U, 1 mM Ntot), urea and glutamine (UG, 2 mM Ntot), 
urea and nitrate (UN, 2 mM Ntot). As control few plants were maintain in nitrogen starvation, exposed to nutrient 
solution without addition of any nitrogen source (Ctr). Root samples were harvested after 2-4-8-12-24 hours of 
treatment. Data were confirmed by two independent biological replications, however the graphs are referred to 
representative experiments where data are mean ± SD (technical replications: n=3). Gene mRNA levels were 
normalized with respect to the transcript level of the housekeeping gene ZmRPS4; relative changes in gene 
transcript levels were calculated on the basis of the mean transcript level of housekeeping gene ZmRPS4 in roots of 
control plants (Ctr) at 2 hours (Relative gene expression=1). ZmArginase gene encodes for the enzyme arginase, 
which is involved in urea cycle. 
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3.2.2.1.7 ZmPAL gene expression 

From microarray data the influence of nitrogen treatments on the expression of enzymes involved in the 

shikimic pathway was registered (Table 7). In particular the urea and nitrate treatment (UN) induced the 

transcriptional up-regulation of an down-stream enzyme for the synthesis of shikimic acid (shikimate 

kinase ,SK). Moreover the nitrogen sources influenced the transcription of genes encoding for enzymes 

that are involved in the transformation of phenylalanine derivatives into a phenilpropanoid, like 

synapate. For this reason the gene modulation of the enzyme phenylalanine ammonia-lyase (PAL), 

which catalyses the deamination of phenylalanine into cinnamic acid, was investigated. This reaction 

represents an essential regulatory step in the formation of many phenolic compounds.  

During the time span of the experiment, stable expression levels of ZmPAL were found in control roots, 

and in presence of urea: under U, UG and UN treatments. Significant transcript modulation was 

observed under glutamine (Gln), in fact a strong increase in the expression levels was registered, 

reaching a peak after 4 hours of exposition to the amino acid. In the following hours, the expression 

levels declined already after 8 hours to values comparable to those detected in control roots. 

Also the nitrate treatment induced the overexpression of ZmPAL, even if in this case the induction was 

less important than that registered under glutamine. After gradual increase in the first 8 hours, the 

transcript amount was stable from 8 to 24 hours being two times more abundant than in control roots 

(Figure 40). 

 

Figure 40. Real-time RT-PCR analyses of ZmPAL gene expression levels in maize roots. 5 day-old maize plants 
were exposed for a maximum of 24 hours to nutrient solution supplied with different nitrogen treatments: 
glutamine (Gln, 1 mM Ntot), nitrate (N, 1 mM Ntot), urea (U, 1 mM Ntot), urea and glutamine (UG, 2 mM Ntot), 
urea and nitrate (UN, 2 mM Ntot). As control few plants were maintain in nitrogen starvation, exposed to nutrient 
solution without addition of any nitrogen source (Ctr). Root samples were harvested after 2-4-8-12-24 hours of 
treatment. Data were confirmed by two independent biological replications, however the graphs are referred to 
representative experiments where data are mean ± SD (technical replications: n=3). Gene mRNA levels were 
normalized with respect to the transcript level of the housekeeping gene ZmRPS4; relative changes in gene 
transcript levels were calculated on the basis of the mean transcript level of housekeeping gene ZmRPS4 in roots of 
control plants (Ctr) at 2 hours (Relative gene expression=1). ZmPAL gene encodes for the enzyme phenylalanine 
ammonia-lyase (PAL), which, catalysing the deamination of phenylalanine, allowes the synthesis of many phenolic 
compounds.  
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3.2.2.1.8 ZmANR1 gene expression 

Several studies have demonstrated that plants, including maize, respond to a localize nitrate treatment 

stimulating lateral root elongation (Granato and Raper, 1989; Zhang and Forde, 1998). One component 

of the nitrate signaling pathway has been identified in Arabidopsis Nitrate Regulated-1 (ANR1) gene, 

which is encoding for a member of the MADs box family transcription factors (Zhang and Forde, 1998). 

In Arabidopsis, AtANR1 is exclusively expressed in roots (Zhang and Forde, 1998; Burgeff et al., 2002) 

and it is a positive regulator of a signal transduction pathway linking the external nitrate concentration 

in the soil with an increase in the rate of lateral root elongation (Zhang and Forde, 1998). 

By real time RT-PCR, the expression profile of ZmANR1 was examined in roots of maize exposed to the 

different nitrogen sources (Figure 41). The root exposition to 1 mM nitrate in the external medium (N 

treatment) induced the expression of ZmANR1. Under N treatment, the transcript amounts detected 

during the experimental time span were higher than those measured in control plants.   

The highest up-regulation of ZmANR1 was detected in root exposed to glutamine (Gln treatment) 

reaching peak after 4 hours, than the transcript amount declined suggesting the involvement of 

feedback regulation. 

On the other hand, under U, UG and UN, the amounts of ZmANR1 transcript did not show significant 

differences within 24 hours.  

 

 

Figure 41. Real-time RT-PCR analyses of ZmANR1 gene expression levels in maize roots. 5 day-old maize plants 
were exposed for a maximum of 24 hours to nutrient solution supplied with different nitrogen treatments: 
glutamine (Gln, 1 mM Ntot), nitrate (N, 1 mM Ntot), urea (U, 1 mM Ntot), urea and glutamine (UG, 2 mM Ntot), 
urea and nitrate (UN, 2 mM Ntot). As control few plants were maintain in nitrogen starvation, exposed to nutrient 
solution without addition of any nitrogen source (Ctr). Root samples were harvested after 2-4-8-12-24 hours of 
treatment. Data were confirmed by two independent biological replications, however the graphs are referred to 
representative experiments where data are mean ± SD (technical replications: n=3). Gene mRNA levels were 
normalized with respect to the transcript level of the housekeeping gene ZmRPS4; relative changes in gene 
transcript levels were calculated on the basis of the mean transcript level of housekeeping gene ZmRPS4 in roots of 
control plants (Ctr) at 2 hours (Relative gene expression=1). ZmANR1 gene encodes for Arabidopsis Nitrate 
Regulated-1 (ANR1) MADS-box transcription factor, a positive regulator of lateral root growth involved in nitrate 
signalling pathway.   



Tesi di Dottorato di Laura Zanin discussa presso l’Università degli Studi di Udine 
 

119 

3.2.2.2 Gene expression in maize leaves 

 

3.2.2.2.1 ZmNR1, ZmNR2, ZmGS2 gene expression 

In leaves, the expression levels of genes involved in nitrogen assimilation, such as nitrate reductase (NR), 

glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) was investigated. For 

most of them, the gene expression analysis was performed detecting the same gene isoforms that were 

measured in roots, in this way the effect of nitrogen treatments on modulation of genes, like ZmNR2, 

ZmGS2, and ZmFd-GOGAT, has been analyzed in time course within 24 hours in root and leaf tissues. 

Two isoforms, ZmNR1 and ZmNR2, of nitrate reductase were measured. Concerning the expression of 

ZmNR1 (Figure 42, a) no great variations were observed in control and treated leaves, except under N 

and UN treatment. After 24 hours of root exposition to nitrate (N), leaves induced the expression of 

ZmNR1 more than 4 times in comparison to the amount of transcript detected in control (2h Ctr). 

Interestingly, leaves of UN plants overexpressed ZmNR1 already after 2 hours and, during all the 

experimental time span, the average of transcript amounts (mean value: 2.9 of relative gene expression) 

was higher than those detected in control leaves. 

Despite the ZmNR2 expression was strongly induced in roots by nitrate treatments (N and UN), in leaves 

this isoform was not induced by nitrogen sources (Figure 42, b). In leaves of control and treated plants, 

no significant up-regulation was observed within 24 hours. In particular N and UN showed expression 

levels comparable with control at 2 hours (around 1 of relative gene expression). However the profile 

pattern registered in control plants was not stable, indeed, after 8 hours, the amount of ZmNR2 mRNA 

was 4 times downregulated (0.23 of relative gene expression). In urea-treated plants, the 

downregulation was delayed, occurring after 24 hours of root exposition to this organic nitrogen source. 

Intermediate and stable values were detected in plants treated with glutamine (Gln and UG treatments) 

ranging from 0,4 and 1 of relative gene expression.  

As reported for ZmNR2, despite in roots ZmGS2 was up-regulated by nitrate treatments, in leaves this 

gene was not induced under N and UN. Also other treatments did not induce significant gene 

modulation of ZmGS2 and the transcript levels were comparable with those registered in control leaf 

tissue. Nevertheless, during the experimental timespan, a really weak increase in the amount of ZmGS2 

mRNA was observed in UG and UN treatments.  
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Figure 42. Real-time RT-PCR analyses of ZmNR1, ZmNR2, ZmGS2 gene expression levels in maize leaves. 5 day-old 
maize plants were exposed for a maximum of 24 hours to nutrient solution supplied with different nitrogen 
treatments: glutamine (Gln, 1 mM Ntot), nitrate (N, 1 mM Ntot), urea (U, 1 mM Ntot), urea and glutamine (UG, 2 
mM Ntot), urea and nitrate (UN, 2 mM Ntot). As control few plants were maintain in nitrogen starvation, exposed 
to nutrient solution without addition of any nitrogen source (Ctr). Leaf samples were harvested after 2-4-8-12-24 
hours of treatment. Data were confirmed by two independent biological replications, however the graphs are 
referred to representative experiments where data are mean ± SD (technical replications: n=3). Gene mRNA levels 
were normalized with respect to the transcript level of the housekeeping gene ZmPolyUBI; relative changes in gene 
transcript levels were calculated on the basis of the mean transcript level of housekeeping gene ZmPolyUBI in 
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leaves of control plants (Ctr) at 2 hours (Relative gene expression=1). Analysed genes encode: a, b and c, nitrate 
reductase (NR1 and NR2) and glutamine synthetase (GS2). 

 

3.2.2.2.2 ZmFd-GOGAT gene expression 

In leaves, the ferredoxin-dependent type of glutamate synthase (Fd-GOGAT) is found in chloroplasts and 

serves mainly in photorespiratory nitrogen metabolism for the (re)assimilation of the produced 

ammonia. The amount of Fd-GOGAT protein and its activity increase with light levels. Also the 

transcription of ZmFd-GOGAT gene was reported to be light regulated. In particular, Suzuki and 

coworkers (2001) examined the transcript amounts in 11-day-old second green leaves of maize plants 

grown under 16-h light/8-h dark cycle. The steady-state mRNA level varied between day and night: the 

higher mRNA level reached about 4 h after the onset of light, and then decreased by about 20% to the 

minimal level at the middle of the day. Interestingly, the ZmFd-GOGAT mRNA induction in the morning 

and repression at the middle of the day correlate with the lowest and highest levels of glutamate, 

respectively (Suzuki et al., 2001). The authors suggested that the reduction in ZmFd-GOGAT mRNA in the 

morning is reminiscent of a repression of the nitrogen assimilatory genes by high nitrogen metabolites 

or low carbon metabolites (Suzuki et al., 2001). 

Our real time RT-PCR data (Figure 43) are in agreement with the previous observations reported by 

Suzuki et al. (2001), since in general a downregulation of ZmFd-GOGAT was measured in the middle of 

the light phase, correspondent to samples harvested after 4-8-12 hours of exposition to the treatments. 

On the other hand, higher values of expression were registered in 2- and 24-hour leaf samples, which 

were harvested after 3 and 1 hours, respectively, from the onset of light.  

An interesting pattern was observed in UN leaves, where the minimal expression level of ZmFd-GOGAT 

was detected after 4 hours of root exposition to the sources and gradually increased reaching the 

maximum after 24 hours of treatment. After 13 hours from the onset of light (12h sample), the 

transcript amount was the equal to the one detected after 3 hours of light phase (2h sample). So, this 

data suggest that the expression of ZmFd-GOGAT is maintained higher when roots are exposed to urea 

and nitrate applied in combination than when are applied singularly. 
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Figure 43. Real-time RT-PCR analyses of ZmFd-GOGAT gene expression levels in maize leaves. 5 day-old maize 
plants were exposed for a maximum of 24 hours to nutrient solution supplied with different nitrogen treatments: 
glutamine (Gln, 1 mM Ntot), nitrate (N, 1 mM Ntot), urea (U, 1 mM Ntot), urea and glutamine (UG, 2 mM Ntot), 
urea and nitrate (UN, 2 mM Ntot). As control few plants were maintain in nitrogen starvation, exposed to nutrient 
solution without addition of any nitrogen source (Ctr). Leaf samples were harvested after 2-4-8-12-24 hours of 
treatment. Data were confirmed by two independent biological replications, however the graphs are referred to 
representative experiments where data are mean ± SD (technical replications: n=3). Gene mRNA levels were 
normalized with respect to the transcript level of the housekeeping gene ZmPolyUBI; relative changes in gene 
transcript levels were calculated on the basis of the mean transcript level of housekeeping gene ZmPolyUBI in 
leaves of control plants (Ctr) at 2 hours (Relative gene expression=1). ZmFd-GOGAT gene encodes for an enzyme 
involved in ammonium assimilation: glutamine oxoglutarate aminotransferase ferrodoxin dependent (Fd-GOGAT).  
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3.2.2.2.3 ZmArginase gene expression 

The expression profile of ZmArginase was examined in roots (Figure 39) and  in leaves (Figure 44). In 

both tissues ZmArginase did not show any significant variation in gene expression levels in control and 

treated plants and the values were very stable during the time span of the experiment.  

 

 

 

 

Figure 44. Real-time RT-PCR analyses of ZmArginase gene expression levels in maize leaves. 5 day-old maize 
plants were exposed for a maximum of 24 hours to nutrient solution supplied with different nitrogen treatments: 
glutamine (Gln, 1 mM Ntot), nitrate (N, 1 mM Ntot), urea (U, 1 mM Ntot), urea and glutamine (UG, 2 mM Ntot), 
urea and nitrate (UN, 2 mM Ntot). As control few plants were maintain in nitrogen starvation, exposed to nutrient 
solution without addition of any nitrogen source (Ctr). Leaf samples were harvested after 2-4-8-12-24 hours of 
treatment. Data were confirmed by two independent biological replications, however the graphs are referred to 
representative experiments where data are mean ± SD (technical replications: n=3). Gene mRNA levels were 
normalized with respect to the transcript level of the housekeeping gene ZmPolyUBI; relative changes in gene 
transcript levels were calculated on the basis of the mean transcript level of housekeeping gene ZmPolyUBI in 
leaves of control plants (Ctr) at 2 hours (Relative gene expression=1). ZmArginase gene encodes for an enzyme, 
arginase, involved in the urea cycle for the remobilization of nitrogen stored in form of arginine. 
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3.2.2.2.4 ZmPIP4 gene expression 

The maize gene Plasma-membrane-Intrinsic-Protein 4 (ZmPIP4) encodes for an aquaporin that belongs 

to the protein classes of water channel putatively localized at plasma membrane or PIPs. By 

heterologous expression in Xenopus oocytes, Marilia (2001) demonstrated the capacity of the maize 

protein PIP4 to transport urea.  

By microarray analysis performed on root tissues, PIP4 did not show any variation at transcriptional level 

after 8 hours of exposition to N, U, UN or Ctr. So, a real time RT-PCR analysis was performed in maize 

leaves to investigate if, in leaves, ZmPIP4 is modulated by the nitrogen sources. 

Different expression patterns were observed for ZmPIP4 in control and treated samples (Figure 45). 

Surprisingly, ZmPIP4 was progressively accumulated in urea-treated plants (U) reaching a maximum 

after 8 h (5 times higher than 2h Ctr) and then decreased. Also under glutamine (Gln), ZmPIP4 was up-

regulated showing already after 2-4 hours a high amount of transcript. Differently the transcriptional 

profiles registered under N and UG were constantly below that detected in control leaves at 2 hours. 

Within 24 hours, Ctr and UN showed fluctuations in the transcript amounts and, in both case, the 

minimal value was reached after 12 hours of treatment. 

 

 

 

Figure 45. Real-time RT-PCR analyses of ZmPIP4 gene expression levels in maize leaves. 5 day-old maize plants 
were exposed for a maximum of 24 hours to nutrient solution supplied with different nitrogen treatments: 
glutamine (Gln, 1 mM Ntot), nitrate (N, 1 mM Ntot), urea (U, 1 mM Ntot), urea and glutamine (UG, 2 mM Ntot), 
urea and nitrate (UN, 2 mM Ntot). As control few plants were maintain in nitrogen starvation, exposed to nutrient 
solution without addition of any nitrogen source (Ctr). Leaf samples were harvested after 2-4-8-12-24 hours of 
treatment. Data were confirmed by two independent biological replications, however the graphs are referred to 
representative experiments where data are mean ± SD (technical replications: n=3). Gene mRNA levels were 
normalized with respect to the transcript level of the housekeeping gene ZmPolyUBI; relative changes in gene 
transcript levels were calculated on the basis of the mean transcript level of housekeeping gene ZmPolyUBI in 
leaves of control plants (Ctr) at 2 hours (Relative gene expression=1). ZmPIP4 gene encodes for an aquaporin: 
Plasmamembrane-Intrinsic-Protein 4 (ZmPIP4). 
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 Functional and molecular characterization of ZmDUR3, the high 3.3

affinity urea transporter in maize 
 

 

In the last decades urea has become an extensively used N-fertilizer. However, despite its great 

agricultural importance the role of urea as a nitrogen source for plants is still not very well understood. 

In addition, besides the chemical input as fertilizer, urea is also a natural organic molecule synthetized 

by most organisms (Kojima et al., 2006; Wang et al., 2008). While in plants urea represents an important 

metabolite for nitrogen storage, in mammals the urea production is associated to the detoxification of 

nitrogen compounds (Sands, 2004). As a consequence urea is ubiquitously released in natural soils and 

water bodies at constant micromolar concentrations (less than 10 µM; Cho et al., 1996; Mitamura et al,. 

2000a; Mitamura et al., 2000b). Despite the fact that fertilization events can contribute to increased 

urea concentration in soils, Gaudin et al. (1987) estimated that also in fertilized crop-planted soils the 

urea concentration is maintained in a micromolar range (up to 70 µM). In part this is due to the 

presence of microbial ureases in the soil solution, which rapidly hydrolyse urea into carbon dioxide and 

ammonia. However, as pointed out by Dalal (1985), the microbial urease activity shows an affinity 

constant in the millimolar range, so low concentrations of urea could remain in the soil also after 

microbial degradation. As a logical consequence plants might have developed strategies to use this 

nitrogen source, even if present in a micromolar concentration range. 

The evolution of a high affinity urea transporter in plants can represent an important strategy to 

increase the nitrogen uptake capability especially when the external urea concentrations are very low 

(Kojima et al., 2006). However only few studies have investigated the molecular basis of the urea 

transporters in higher plants, the first research was published by Liu et al. in the 2003(a) reporting the 

cloning and characterization of a high affinity urea transporter of Arabidopsis, called AtDUR3. In 

particular the coding sequence of AtDUR3 showed a weak homology with an ortholog of yeast (ScDUR3), 

a member of the sodium-solute symporter (SSS) gene family, which is widespread in microorganisms, 

animals, and humans (Reizer et al., 1994; Jung, 2002). Members of the SSS family have been described 

to transport a various range of solutes, such as sugars, amino acids, nucleosides, inositols, vitamins, 

anions, and urea (Reizer et al., 1994; Turk and Wright, 1997; Saier, 2000). Further investigations on 

AtDUR3 showed no significant homology to any other protein of Arabidopsis (Liu et al., 2003a); thus, it 

represents the only member of this gene family in plants. Similarly, in the rice genome, OsDUR3 is the 

only gene that has significant homology with AtDUR3, suggesting that plant DUR3 proteins might 

represent a transporter subfamily consisting of only one member (Wang et al., 2012). To date, among 

higher plants only the Arabidopsis and rice orthologous urea transporters (AtDUR3 and OsDUR3) have 
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been characterized at molecular and physiological level (Liu et al., 2003a; Kojima et al., 2007; Wang et 

al., 2012).  

 

 

 Isolation and cloning of ZmDUR3 from maize roots 3.3.1

 

Only one putative full length coding sequence (ZmAC202439_FGT006) in the maize genome was 

identified by homology to AtDUR3 (At5g45380), using a BLAST  (Basic Local Alignment Search Tool) 

search algorithm performed using the Aramemnon plant membrane protein database 

(http://aramemnon.botanik.uni-koeln.de/index.ep, ARAMEMNON v. 7.0© Flügge Lab, Botanical Institute 

at the University of Cologne) (Figure 46). 

 

 
 

Figure 46. Orthologous cluster of related plant protein sequences to AtDUR3 (from Aramemnon DB 
http://aramemnon.botanik.uni-koeln.de) 

 

Further in silico analysis on GenBank EST database revealed a group of maize ESTs (BQ164112, 

BQ164020, FL011289, FL448872, DV550376, AW400387, BQ163839, BQ163822, FL011290) proofing 

expression of this gene. Most of the ESTs covered the 3’- region of ZmAC202439_FGT006 with the 

exception of FL011289 and FL011290 which aligned at the 5’- region (Figure 47). 

 

 
Figure 47.  Distribution of ESTs on the putative transcript ZmAC202439_FGT006. ESTs were identified performing 
a BLASTN analysis on NCBI (National Center for Biotechnology Information, http://blast.ncbi.nlm.nih.gov). 

 

In this part of the work,  the coding sequence of the high affinity urea transporter (ZmDUR3) was 

isolated from maize root mRNAs. Using gene specific primers, a transcript from maize root was 

amplified by RT-Assembly-PCR and cloned into the yeast expression vector pDR197 (Doris Rentsch, 

http://aramemnon.botanik.uni-koeln.de/index.ep
http://aramemnon.botanik.uni-koeln.de/
http://blast.ncbi.nlm.nih.gov/
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unpublished). The sequencing results showed an open reading frame of 2196-bp coding for 731 amino 

acids. The alignment with the genomic sequence revealed four exon regions of 192, 108, 663 and 1233 

bp, which differed in number and size from the predicted ones (Figure 48). In addition, in comparison to 

the predicted transcript sequence (ZmAC202439_FGT006), the isolated ZmDUR3-ORF contained three 

non-synonymous changes in the nucleotide sequence; one of this variation was also detected in a maize  

EST sequence (BQ164112). The same three nucleotides were also identified in the rice sequence, 

OsDUR3 (Wang et al., 2012). 

 

 

Figure 48. Schematic representation of the exonic regions of ZmAC202439_FGT006. Comparison between the 
predicted exons and the coding sequences found by cDNA sequencing (exons are represents as red boxes). 

 

Blast analysis revealed that ZmDUR3 cDNA had a high similarity with OsDUR3 rice sequence (84% 

nucleotide sequence identity with a 94% of query coverage). Similar percentages were also observed at 

amino acid level with an identity of 83 and 75% to protein OsDUR3 and AtDUR3, respectively (Figure 49). 

ZmDUR3 contains 731 amino acids and is predicted as an integral membrane protein containing fifteen 

predicted transmembrane spanning domains with outside position of the N-terminus of the protein 

(TMSDs, prediction performed by TOPCONS, http://topcons.cbr.su.se/, and confirmed by TMHMM 2.0, 

http://www.cbs.dtu.dk/services/TMHMM/). In addition, since the expected number of amino acids in 

transmembrane helix in the first 60 amino acids of the protein was around 17 (larger than 10 amino 

acids), the presence of a “possible N-terminal signal sequence” was predicted (TMHMM 2.0, 

http://www.cbs.dtu.dk/services/TMHMM/).  

The comparison between ZmDUR3 and the rice ortholog OsDUR3 (721 amino acids) revealed a similar 

predicted topology (Figure 50), especially with regard to number of TMSDs, and N- and C-terminal 

orientation.  

  

http://topcons.cbr.su.se/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
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Figure 49. Amino acid alignment between orthologous proteins (in order ZmDUR3, OsDUR3 and AtDUR3). 
Performed by “MegAlign” Lasergene software using  Clustal-W method.   
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Figure 50. Comparison between predicting transmembrane protein topologies of ZmDUR3 and OsDUR3 
(prediction performed by http://topcons.cbr.su.se/) 

 

The functional characterization was performed by using two different approaches in heterologous 

systems: i) a functional complementation of a mutant strain of S. cerevisiae, ii) transport function assays  

by two electrode voltage clamp and radiolabeled uptake experiments in Xenopus oocytes. Since 

ZmDUR3 has a high GC-content (around 80% GC content in the first 100 bp), its level of expression in 

other organisms may be limited. In order to reduce the GC content and favor the expression of ZmDUR3, 

we modified the first part of ZmDUR3 at nucleotide level (less than. 200 nt). These modifications are all 

synonymous substitutions occurring only at the third base of the codons (the codon-usage preference in 

yeast is referred to http://www.kazusa.or.jp/codon/). In this way a second version of ZmDUR3 was 

obtained (called ZmDUR3“Modified”) which differs from the ZmDUR3“Native” only at nucleotide level, 

while the amino acids remain unchanged (Figure 51).  

 
  

http://topcons.cbr.su.se/
http://www.kazusa.or.jp/codon/
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ZmDUR3“Native”: 5’- ATG GCC GCT GGC GGC GCC GGC GCG TGC CCT CCG CCG GGG CTG GGC TTC GGC GGG GAG TAC TAC 

TCG GTG GTG GAC GGC GCG TGC AGC CGC GAC GGC AGC TTC TTC GGC GGG AAG CCG GTG CTG GCG CAG 

GCC GTT GGG TAC GCC GTC GTC CTT GGC TTC GGC GCC TTC TTC GCG CTC TTC ACC TCA TTC CTG…-3’ 

 

 MAAGGAGACPPPGLGFGGEYYSVVDGACSRDGSFFGGKPVLAQAVGYAVVLGFGAFFALFTSFL 

 

ZmDUR3“Modified”:  5’- ATG GCT GCT GGT GGT GCT GGT GCT TGT CCT CCA CCA GGT CTA GGT TTT GGT GGT GAA TAT TAT TCT 

GTT GTT GAT GGT GCT TGT AGT CGT GAT GGT AGC TTT TTT GGC GGT AAA CCA GTT CTA GCT CAA GCT 

GTT GGT TAT GCT GTC GTT CTT GGT TTT GGT GCT TTC TTC GCG CTC TTC ACC TCA TTC CTG…-3’ 

 

 MAAGGAGACPPPGLGFGGEYYSVVDGACSRDGSFFGGKPVLAQAVGYAVVLGFGAFFALFTSFL 

 

Figure 51. Nucleotide differences between ZmDUR3”Native” and ZmDUR3“Modified” sequences. The nucleotide 
sequence of the first exon was modified substituting only the third base of the codons (bold letters), originating 
ZmDUR3“Modified”, with no difference occurring at the amino acid level.  

 

 

 Yeast complementation assay in dur3 mutant yeast strain YNVW1  3.3.2

 

In order to verify the capacity of ZmDUR3-ORF to transport urea, a yeast complementation assay was 

performed using a dur3 mutant strain of Saccharomyces cerevisiae, as described previously by Liu et al. 

(2003a). The mutant YNVWI (Δura3, Δdur3 ) is defective in urea uptake and can not grow on <5mM urea 

as the sole nitrogen source  (Liu et al., 2003a). After complementation, both versions of ZmDUR3-ORF 

(ZmDUR3”Native” and ZmDUR3”Modified”) were tested on a medium containing urea at different 

concentrations (1, 2 or 3 mM) as the sole nitrogen source. 

Results showed that the dur3 mutant strain transformed with the empty vector pDR197 was unable to 

grow on a medium containing only urea. On the other hand, the heterologous expression of both 

versions of ZmDUR3-ORFs enabled YNVWI to grow on urea medium (Figure 52). As positive control, the 

yeast strain 23346c (Δura3) containing the unmutated endogenous yeast urea transporter (ScDUR3) was 

transformed with the (empty) expression-vector pDR197 and grown on selective media. Growth of 

colonies of yeast strain 23346c were visible already after 3 days on 3 mM urea (data not shown).  

In comparison to the positive control, the ZmDUR3 transformants needed a longer incubation time since 

the colonies became visible only after 5 days.  

Furthermore, the two ZmDUR3-ORF transformed lines  (ZmDUR3“Native”- and ZmDUR3“Modified”-

transformants) did not show any apparent growth difference on a media supplemented with 

ammonium (as ammonium sulfate, 0.5% (NH4)2SO4) as the nitrogen source. When grown on selective 

plates supplemented with urea as a sole nitrogen source, however, growth differences between 

ZmDUR3“Native”- and ZmDUR3“Modified”-transformants became apparent. In particular the size of the 

colonies of ZmDUR3“Modified”-transformants was larger in comparison to colonies transformed with 
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the native ZmDUR3-ORF version, and this different growth capacity was already visible on 1 mM urea 

plates. This result is clearly ascribable to the partial optimization of the codon usage in 

ZmDUR3“Modified”-ORF facilitating in yeast the translation of the maize sequence. 

 

     Empty vector ZmDUR3   ZmDUR3 

     pDR197  “Native”  “Modified” 

 

Control   

  (NH4)2SO4 

 

 

1mM urea 

 

  

 

2mM urea 

 

 

 

3mM urea 

 

 

Figure 52. Yeast complementation assay. Growth of the urea uptake-defective strain YNVW1 by expressing 
ZmDUR3”Native” and ZmDUR3”Modified”. The yeast mutant YNVW1 transformed with the empty vector 
pDR197(left column), and pDR197 carrying ZmDUR3”Native” (middle column) or ZmDUR3”Modified” (right 
column) ORFs. MM medium plates contained 0.5% of ammonium sulfate or urea at three different concentrations 

(1, 2 or 3 mM urea) as a sole nitrogen source. The pictures were taken after 5 days of incubation. 

 

 

 Kinetic studies in X. laevis oocytes (electrophysiology and 14C-urea uptake) 3.3.3

 

To get information about kinetic parameters and transport features of ZmDUR3, both versions of 

ZmDUR3-cRNA (ZmDUR3”Native” and ZmDUR3”Modified”) were injected into oocytes. Using this 

heterologous system, the ZmDUR3 transport activity was tested using two different approaches: two 

electrode voltage clamp experiments and influx assay of radiolabelled urea (14C-urea).  

The first approach is feasible when the transport process includes the net movement of charge across 

the membrane, such as with charged substrates or co-transport of substrate with ions such as protons. 

The application of this technique to oocytes allows the transporter-mediated currents to be assayed as a 

function of membrane potential, which is a component of the driving force in the transport system.  

Until 1988 there was no significant experimental evidence for protein-mediated urea uptake by plant 

cell; in particular it was not clear if urea itself or its degradation products were moving across plant 

membranes. The first investigation in plants was performed by Wilson et al. (1988): short term 14C -urea 
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uptake in algal cells revealed a biphasic kinetics sensitive to the ATPase inhibitor DCCP or to the 

protonophore CCCP, indicating that urea uptake in plants was coupled to a proton gradient. More 

recently (Liu et al., 2003a) the functional characterization of AtDUR3 by electrophysiological assay could 

demonstrate that the high affinity urea transporter mediated the transmembrane movement of urea by 

a co-transport with protons. In that work the presence of urea 100 µM induced a small and reversible 

inward current (< 4 nA) in oocytes injected with AtDUR3-cRNA, corresponding to the net influx of 

positive charges across oocyte membranes (Liu et al., 2003a).  

In order to characterize the transport of ZmDUR3, a two-electrode voltage clamp study in oocytes was 

performed (data not shown). Substrate induced currents were measured 4-6 days after injection of 

oocytes with ZmDUR3”Native” cRNA, ZmDUR3”Modified” cRNA or, as control, water. The analysis was 

performed exposing the oocytes to “Na-Ringer modified” buffer solution at pH 5.5 with or without the 

addition of 10 mM urea. However in our experiments no significant urea-induced currents could be 

measured in oocytes expressing ZmDUR3 indicating not, or only very low, urea uptake in ZmDUR3-

expressing oocytes. Also the noise in all experiments was around 4 nA making it very difficult to measure 

currents  < 4 nA (as observed by Liu et al. (2003a) in AtDUR3-injected oocytes exposed to urea).  

Therefore to verify the transport activity of ZmDUR3, a different approach was used i.e. measuring the 

influx of radiolabelled urea (14C-urea). ZmDUR3-expressing oocytes were exposed for 5, 15, 30 or 60 

minutes to Na-Ringer modified solution containing 200 μM urea (21 ± 1°C). Using this approach the 

capability of ZmDUR3 to transport urea and the linearity of 14C-urea uptake could be shown in some 

experiments (Figure 53). 

 

 

Figure 53. Influx assay of radiolabelled 
14

C-urea in Xenopus leavis oocytes. To confirm the linearity of 200 μM 
urea uptake within 60 minutes, the ZmDUR3 uptake capacity was measured by 

14
C-urea accumulation in water 

injected (H2O) and in ZmDUR3 expressing oocytes (ZmDUR3“Native”, ZmDUR3“Modified”) exposed for 5, 15, 30 or 
60 minutes (pH 5.5) to 200 μM urea. The values are means ± SD (n=5 oocytes). 
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In all experiments uptake of 14C-urea was also observed in water injected oocytes. In batches of oocytes, 

where this background was low, transport function of ZmDUR3 could be shown (Figure 53) and 

measured; while in other batches (approximately 50%) of oocytes, the background was too high to allow 

significant measurements of ZmDUR3-mediated urea uptake. The background seems to be strongly 

different between different batches of oocytes. 

Leung et al. (2000) published a study concerning the characterization of urea transport in Xenopus 

oocytes by a rabbit  Na+-glucose cotransporter (rbSGLT1). Their results showed that urea influx in non-

injected oocytes was temperature sensitive; in particular the assay was performed by incubating 

oocytes at three different temperatures 14, 22 and 30°C. The component of unspecific urea influx across 

the plasma membrane was reduced by more than two times in oocytes incubated at 22°C as compared 

to 30°C.  

For this reason, to discriminate the background from urea influx due to the active transport by ZmDUR3, 

the kinetic experiments were conducted at 21 ± 1°C exposing oocytes to 5, 10, 50, 100 or 200 µM of 14C-

urea. The accumulation of 14C-urea by ZmDUR3 saturated around 50 µM with a Km value of 20 µM 

(Figure 54) comparable to the Km value reported for OsDUR3 (c. 10 µM, Wang et al., 2012). The data 

shown here are derived from a single experiment, so further repetitions of kinetic assay are needed to 

confirm this result.  

 

 

Figure 54. Biochemical characterization of urea transport by ZmDUR3”Modified” in Xenopus leavis oocytes. 
Concentration dependent 

14
C-urea uptake was saturable displaying a Michaelis-Menten kinetic, in the graph the 

transport rate between 5 and 100 µM urea concentration are shown. Kinetic parameters were calculated after 
subtracting the linear component of the uptake rate detected in water injected oocytes. The data are depicted in 
two graphical representations, as: (a) Michaelis-Menten and (b) Headie Hofstee plot, the last one was used to 
calculate the affinity constant (Km). The values are means ± SD of n=5 oocytes from one experiment, further 
repetitions have to be performed to corroborate these data. 
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 GFP-localization in tobacco protoplasts  3.3.4

 

Functional complementation of yeast mutant YNVWI by ZmDUR3 and its functional expression in 

Xenopus oocytes indicated that in these heterologous systems the transporter is at least partially 

localized at the plasma membrane. To corroborate the subcellular localization, N- and C-terminal fusion 

proteins of ZmDUR3 and GFP (Green Fluorescent Protein) were transiently expressed in tobacco 

(Nicotiana tabacum) protoplasts. Tobacco protoplasts were also transformed with the vector encoding 

the free GFP (pUC18-Sp-GFP6; Komarova et al., 2012), which was used as negative control.  

In Figure 55 the fluorescent signal derived from the ZmDUR3-GFP fusion protein and free GFP are 

shown. In the negative control (GFP) the fluorescent signal was in the cytoplasm, while in ZmDUR3-GFP 

expressing protoplasts the signal was mostly localized in internal membranes and maybe to the plasma 

membrane. 

 

 

 

 

 

a) ZmDUR3-GFP 

 

 

 

 

b) GFP 

 

 

 

 

 

 

Figure 55. Subcellular localization of ZmDUR3 protein fused with green fluorescent protein (GFP) in tobacco 
protoplasts.  a) ZmDUR3-GFP: protoplasts transformed with GFP fused to the C-terminal of ZmDUR3 
(ZmDUR3“Modified”-GFP fusion construct); b) GFP, as control free GFP localized in the cytoplasm. Images were 
taken using a confocal laser-scanning microscope: bright-field images (left column) , chlorophyll fluorescent image 
(red, middle column), GFP-fluorescent image (green, right column) are shown. 
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To clarify the subcellular targeting of ZmDUR3, two colocalization experiments were performed using 

tobacco protoplasts which transiently expressed ZmDUR3-GFP or GFP-ZmDUR3 and AtPTR1-YFP. YFP-

tagged AtPTR1 was used as reference, which was shown to be localized at the plasma membrane 

(Komarova et al., 2012). So, the localizations of ZmDUR3 and AtPTR1 was visualized as green and purple 

fluorescent signals, respectively (Figure 56). 

Tobacco protoplasts expressed ZmDUR3-GFP and GFP-ZmDUR3 mainly showed green fluorescence at 

internal membranes, although a difference between the experiments was registered. When GFP was 

fused at the C-terminus of ZmDUR3 the green signal did not overlap with the signal of AtPTR1-YFP. On 

the other hand, the fusion of GFP at N-terminus of the protein showed a better co-localization with the 

AtPTR1-YFP. 
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Figure 56. Colocalization in tobacco protoplast of (A) ZmDUR3-GFP and AtPTR1-YFP fusion proteins and (B) GFP-ZmDUR3 and AtPTR1-YFP fusion proteins. Images were 
detected using a confocal laser-scanning microscope: bright-field images (first column), chlorophyll fluorescent image (red signal, second column), GFP-fluorescent image 
(green signal, third column); YFP-fluorescent image (purple signal, fourth column) are shown. In the last column, merged images show chlorophyll fluorescence (red), GFP-
fluorescence (green) and YFP-fluorescence (purple). Diameter of protoplasts was approximately 40 µm. 

 

 

     

     

A 

B 
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The results reported in this work look very similar to the GFP-localization images published for OsDUR3 

and AtDUR3 (Wang et al., 2012; Figure 57). OsDUR3-GFP and AtDUR3-GFP fusion proteins were 

transiently expressed in Arabidopsis protoplasts. The authors reported that “The green-fluorescence 

signal derived from OsDUR3-GFP expression was restricted to a thin ring comparable to the size of the 

protoplasts most similar to the signal resulted from AtDUR3-GFP fusion-protein…” concluding that 

“OsDUR3 was mostly targeted to the plasma membrane.” (Wang et al., 2012).  

In comparison to tobacco, the Arabidopsis protoplasts are characterized by a smaller size and a lower 

number of chloroplasts making it difficult to discriminate between the plasma membrane and the 

cytoplasm. Indeed in Arabidopsis, the cytoplasm may be also observed as thin ring located directly 

underneath the plasma membrane. In addition in the AtDUR3 and OsDUR3, the fluorescence signals 

were not uniformly distributed at the periplasm of protoplasts which may indicate that the protein may 

not be exclusively found at the plasma membrane, but may also localize in internal membranes. 

 

 

 

Figure 57. Subcellular localization of OsDUR3 and AtDUR3 protein fused with green fluorescent protein (GFP) 
(Wang et al., 2012). Transmission image (left column), fluorescence image (middle column) and merged image 
(right column) are shown. GFP fluorescence from Arabidopsis protoplasts transformed with OsDUR3-GFPand 
AtDUR3-GFP fusion constructs.  

 

 

In conclusion, ZmDUR3 seemed to localize mainly in internal membranes although it can not be 

excluded that ZmDUR3 partially also reaches the plasma membrane. Moreover the subcellular 

localization of ZmDUR3 showed a comparable result to those reported for the rice and Arabidopsis 

orthologs, OsDUR3 and AtDUR3 (Wang et al., 2008). 
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4 Discussion 
 

 

Plant nutrition is a research topic of great interest for scientists. It has been estimated that in the next 

years world population will increase, reaching 9.15 billion by 2050 (Alexandratos and Bruinsma, 2012). 

This, in turn, will determine an increase in food demand, requiring a higher cereal production (about 

+38% by 2025 according to Dobermann and Cassman, 2005).  

It is well known that nitrogen nutrition is one of the key factors limiting plants growth, this is especially 

true for cereals, such as maize, mainly because of their low Nitrogen Use Efficiency (NUE) (Raun and 

Johnson, 1999). Actually a common agronomic practice to improve the cereal yield consists into apply 

nitrogen fertilizers based on nitrate, ammonium or urea. So in the future, especially if losses of  cereal 

cropping area continue at the rate of the past 20 years (-0.33% per year) and the NUE of cereals will not 

be increased substantially, the cereal demand will lead to a 60% increase of the global nitrogen use 

(Dobermann and Cassman, 2005). The wide use of chemical inputs for food production will lead to 

negative impacts at ecological and also economical level. Core objective of modern agriculture and 

researchers has to be the improvement of cereal yields in a more cost-effective and eco-compatible way 

improving nitrogen use efficiency of cereals and minimizing losses from both inorganic and organic 

nutrient sources. This could be done by optimizing plant-soil relationships in order to improve the 

acquisition of native and applied nitrogen (Tomasi et al., 2009). 

Despite the use of urea as the most worldwide nitrogen fertilizer, little information is available 

concerning the mechanisms of its acquisition in higher plants. The urea transporter gene was isolated 

and characterized for the first time in higher plants using Arabidopsis  (AtDUR3, Liu et al., 2003a). The 

transformation of knock-out Arabidopsis mutants (atdur3-1 and atdur3-3) with AtDUR3 restored the 

wild type phenotype growing on urea as sole nitrogen source. This experimental evidence, with other 

functional assays, supported the view that AtDUR3 codes for the major high affinity transporter for urea 

uptake in roots. To date only the orthologous gene of rice, OsDUR3, has been cloned and functionally 

characterized. Besides DUR3, the only other plant proteins to show urea permeability belong to the 

super-families of aquaporins, Major facilitator Proteins (MIPs): membrane channels that may facilitate 

the transport of water and small solutes, as urea. Particularly, in maize, five aquaporins have been 

characterized: ZmPIP1-5 (Gaspar et al., 2003); ZmNIP2-1, ZmNIP2-4, ZmTIP4-4 (Gu et al., 2012); and 

ZmPIP4 (Marilia, 2001). Several experimental evidence identified aquaporins as responsible for the low 

affinity urea transport system in higher plants (Siefritz et al., 2001; Liu et al., 2003b; Gaspar et al., 2003; 

Klebl et al., 2003). Even if their localization has not yet been clarified, these channels may play a crucial 
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role in urea acquisition from soil, especially after a fertilization event when high urea concentration 

occurs in soil solution.  

However, in agricultural soils urea is rapidly hydrolysed to ammonium by microbial urease action, thus 

its concentration is usually low and does not exceed the µM range (estimated to be up to 70 µM). For 

this reason the physiological role of DUR3 can be relevant to the uptake of urea from the soil.  

This thesis focuses on the characterization of the mechanisms of urea acquisition in maize roots at 

physiological, transcriptional and molecular level. Moreover, with the aim to mimic more closely soil 

conditions, particular attention was paid to the influence of other nitrogen sources, such as nitrate, on 

the urea uptake system. 

 

In the first part of the work, a physiological characterization of the high affinity transport system of urea 

was performed using intact maize roots. The effect of other,organic and inorganic nitrogen sources, on 

the uptake rate of urea was also evaluated by short-term experiments (within 24 hour). In particular, 

two sources were analysed in detail: i) nitrate, an inorganic source that occurs in soil solution as a 

product of nitrification process or derived from fertilization; ii) glutamine, an amino acid that in soil may 

be present as free molecule or as constituent of decomposing organic matter. Glutamine also represents 

the first metabolic product deriving from urea and nitrate assimilation pathway. 

In order to assess the existence of a correlation among physiological and transcriptional responses, 

changes in the transcriptomic profile were evaluated by microarray analysis in roots exposed to urea 

and/or nitrate. In addition, to corroborate the microarray data and to analyse the transcriptional 

modulation of other genes during the experimental time span, real time RT-PCR analyses were 

performed within 24 hours of treatment with urea, nitrate or glutamine. 

Finally, with the aim to identify at molecular level the urea transport system in maize, the ZmDUR3 gene 

orthologous to rice and Arabidopsis, encoding for the high affinity urea transporter, was cloned from 

root samples and characterized in heterologous systems.   
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 Physiological characterization of urea uptake 4.1

 

 

In agricultural soils, plant roots are exposed to a combination of different nitrogen sources, organic and 

inorganic ones, whose use efficiency is not yet completely clarified. Several studies reported the ability 

of plants to grow in presence of nitrate or ammonium as a sole nitrogen source, even if, depending on 

plant species, negative effects on plant development have been reported under ammonium nutrition 

(Britto and Kronzucker, 2002). On the other hand, concerning the use of organic sources by roots, very 

few information is available. Due to its great agronomical importance, urea is the organic nitrogen form 

that has been studied in more detail, especially in the last years. However, only few works have 

provided evidence that plants can use urea as sole nitrogen source, demonstrating the root absorption 

of the molecule (Coïc et al., 1961; Mérigout et al., 2008a). Furthermore, it was demonstrated that urea 

could sustain growth of crop species, like rice (Wang et al., 2012), wheat and maize (Mérigout et al., 

2008b).  

In order to confirm this result, in the present work, a first series of experiments was performed using 

maize plants grown in hydroponic conditions and exposed for 1 week to urea or to other nitrogen 

sources, such as nitrate, ammonium and glutamine; the different N-forms were applied singularly or in 

combination with urea (Figure 18). At the end of the experiment, strong differences were reported in 

the root architecture (Figure 18, B.2), while no great variation was observed in the shoot development. 

The morphological observation, together with the data on roots and leaves fresh weights, gave an 

indication that maize plants are able to grow in presence of urea as a sole nitrogen source. Particularly, 

plants fed with urea showed a very well developed root system with an extensive proliferation of 

secondary roots. The positive influence of urea on the root structure was previously described by Kirkby 

and Mengel (1967) in tomato plants. Biomass accumulation in plants treated with urea was similar to 

that, found in plants exposed to nitrate or to ammonium nitrate (Figure 18, A). Interestingly the highest 

yields in shoot fresh matter were registered in plants exposed to urea and nitrate (UN treatment). 

Cumulative effects of nitrate and urea have been reported also in wheat (Garnica et al., 2009) and 

oilseed rape (Arkoun et al., 2012b) with respect to nitrogen accumulation. 

Starting from data on growth and morphological changes, time- and concentration-dependent uptake 

experiments were performed to characterize in detail the mechanisms of urea acquisition in maize 

roots. Among higher plants, the kinetic characterization of urea uptake was previously described only in 

Arabidopsis and rice (Kojima et al., 2007; Wang et al., 2012), using 15N-urea short-term influx assay. A 

different approach was used in the present work: urea depletion from the root external media was 

measured, as described by Kyllingsbaek (1975), with a colorimetric assay where only intact urea 
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molecules are the substrate for the colorimetric reaction. Results obtained with this approach were 

comparable to those reported in previous works, since the exposition of intact maize roots to urea up to 

300 µM showed a saturation kinetic corresponding to the Michaelis-Menten model (Figure 19). This 

behavior is compatible with the presence in maize roots of a high-affinity transport system for urea 

uptake with kinetic features similar to those found in Arabidopsis and rice (Table 9).  

 

Table 9 Comparison between Arabidopsis, rice and maize kinetic features of high-affinity urea transport system 
in roots. Arabidopsis and rice data are referred to 

15
N-urea kinetic assay reported by Kojima et al. (2007) and Wang 

et al. (2012), respectively; whereas maize data are referred to Figure 19. Not induced: kinetic assay performed on 
nitrogen starved plants; Induced with urea: kinetic assay performed on plants exposed for 4 h to 1 mM urea. (*) 
data gathered from Figure 6 in Kojima et al. (2007). 

Plants Vmax Km References 
      

Arabidopsis* Not induced  16 µmol urea g-1 DW h-1 8.5 µM urea Kojima et al. (2007) 

Rice Not induced 2.48 µmol urea g-1 DW h-1 7.55 µM urea Wang et al. (2012) 

Maize Not induced 8 µmol urea g-1 FW h-1 4 µM urea In the present work 

Maize Induced with urea 20 µmol urea g-1 FW h-1 27 µM urea In the present work 

 

 

The kinetic assay in maize roots revealed an important aspect of urea uptake that was not previously 

described in detailed in higher plants: data (Figure 19) suggested that, in the high-affinity concentration 

range, urea induces its own uptake, causing a modification of the kinetic parameters. Moreover this 

response was found to be dependent on substrate concentration in the treatment solution (Figure 20). 

The root exposition to high urea concentration induced a higher and earlier up-regulation of influx rates 

than plants exposed to lower urea concentrations.  

In a previous work (Mérigout et al., 2008a) up-regulation of urea uptake by itself was reported for 

Arabidopsis. This conclusion was inferred from influx assay performed by exposing plants to a solution 

containing 10 mM 15N-urea (corresponding to 20mM Ntot). The influx capacity of urea-fed plants (U, 

over 300 µmol urea g-1 DW h-1) was higher than N-starved plants or plants fed with ammonium nitrate 

(AN) or ammonium nitrate plus urea (ANU), which showed values around 200 µmol urea g-1 DW h-1. 

Thus, under the experimental conditions employed in that work urea uptake was in main part due to the 

low affinity transport system. Results of the present work indicate that in maize urea can act on the 

induction of the high affinity transport system.  

The induction by substrate is well noted feature of nitrate high-affinity transport system (iHATS) (e.g. 

Orsel et al., 2002; Monte, 2004) and was also confirmed here (Figure 24; Figure 25, B).  

Time-course experiments also showed that a down regulation of uptake rates occurred prolonging 

exposition of the roots to urea; this would indicate the involvement of a feedback regulation by end-

products or urea itself, similarly to what has been oserved for nitrate uptake (Glass et al., 2001). This 

physiological response might be connect to urea assimilation pathway. Indeed, previous experimental 
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evidence (Mérigout et al., 2008a) suggest that urea taken up by Arabidopsis roots is assimilated directly 

in root cells releasing ammonium which is the substrate for glutamine synthesis by GS; this conclusion is 

supported by accumulation of glutamine in roots. So, glutamine, as well ammonium, might act as 

feedback reulators for the urea uptake. This idea is consistent with the observation that in maize 

(present work) the presence of glutamine with urea in the external medium (UG) exerted a negative 

effect on urea uptake rates limiting the induction of urea uptake system (see below).  

Interactions among different N-sources was investigated in detail studying the reciprocal influence 

between urea and nitrate at the level of their influx rates in maize roots (Figure 23; Figure 24; Figure 25). 

Results showed that in the short time the simultaneous exposition of roots to nitrate and urea exerted 

negative effects on the induction of the uptake systems for each N-form. The up-regulation in the high-

affinity uptake of urea was much reduced in plants treated with nitrate and urea in comparison to plants 

exposed to urea alone (Figure 23) and the same held true for nitrate uptake when urea was also present 

in the treatment solution. 

This result is consistent with previous observations in Arabidopsis (Mérigout et al., 2008a) obtained 

analyzing the interactions, at the level of 15N-influx, among different nitrogen sources. In this plant the 

presence of ammonium nitrate in the growth medium reduced the influx rate of urea. From its side urea 

exerted a repressive effect on nitrate influx while enhancing ammonium uptake.  

Different results were obtained in wheat (Bradley et al., 1989; Garnica et al., 2009). In these works 

nitrate enhanced the uptake of urea when roots were simultaneously exposed to these N-sources (UN). 

As reported by Garnica et al. (2009) this effect was much more evident in UN fed plants between 24 and 

96 hours. However, in both reports, uptake was evaluated as an accumulation during the time span of 

the exposition to the N-source (24 to 96 hours), while in the experiments reported in this thesis uptake 

rates were evaluated at each time of treatment (after 2, 4, 8, 12 and 24 hours) incubating intact maize 

roots for a very short period (10 minutes) in 200 µM urea assay solution. The results of the present work 

clearly indicate that rate of uptake of urea and nitrate can be modulated each other, especially when 

induction processes are considered. This would imply that reactivity of maize roots to the nitrogen 

forms could be influenced by the relative composition of the soil solution. So, when mixed to urea, 

nitrate did not affect plant growth in the long term (Figure 18) while limited the maximum capacity to 

uptake urea in the short term (Figure 23); vice versa the urea exerted similar effect on the rates of 

nitrate uptake (Figure 24).  

In oilseed rape, Arkoun et al. (2012b) analysed the accumulation of 15N on plants exposed for 15 days to 

solutions containing as sole nitrogen source 15N-urea or 15N-nitrate applied singularly or in conjunction. 

In contrast to the data reported in wheat (Garnica et al., 2009), in oilseed rape the simultaneous 

presence of nitrate along with urea led to preferencial nitrate uptake. The authors suggested that 

depending on the nitrophilic character of species, plants may prefer the uptake of a specific N-source 
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among those available in soil solution. This hypothesis might explain the contradictory behavior 

observed among wheat, maize, Arabidopsis and oilseed rape. 

Very few information is available about the use of organic nitrogen sources for plant nutrition. Single 

amino acids or peptide are present in the soil and might represent an accessible nitrogen source for 

crop growth. The Arabidopsis transporters, LHT1 and AAP5 are important components of the root amino 

acid uptake system, characterized by different amino acid specificities and function at amino acid 

concentrations seen in field conditions (Svennerstam et al., 2011). Several putative amino acid 

transporter have been described in a large variety of species (Lipson and Näsholm, 2001) suggesting a 

possible capacity of plants, beside Arabidopsis, to use these organic molecules as nitrogen sources. 

Glutamine was shown to be the most effective amino acid in promoting Arabidopsis growth, although 

glutamine-fed plants were, on average, only about half the size of plants grown with nitrate 

(Svennerstam et al., 2007). In other species, glutamine was even the only amino acid that could support 

plant growth (Turnbull et al., 1995; Bonner and Jensen, 1996). Moreover, in plants glutamine is the first 

amino acid to be synthetized during the nitrate/ammonium assimilation pathway and its regulatory role 

in the gene transcription of high-affinity nitrate transporters, NRT2, has been clearly described (Glass et 

al., 2001). 

Part of the work of this thesis focused on the interactions between root uptake of urea and of other N-

sources, like nitrate and glutamine. Glutamine is an organic nitrogen source naturally occurring in soil, 

besides being  the first metabolic product synthetized from urea and nitrate assimilation. Long term 

experiments (7 days) could confirm that this amino acid is able to sustain maize growth (Figure 18), even 

if, as reported in Arabidopsis (Svennerstam et al., 2007), glutamine-fed plants showed a reduced 

biomass accumulation as compared to plants grown with nitrate.  

Thus, the effect of glutamine on urea uptake was studied in more detailed by short-term influx 

experiments using plants exposed for 24 hours to the different N-sources. Glutamine and nitrate 

exerted similar effect on urea uptake, since the combination of these sources with urea (UG and UN 

treatments), prevented the induction of the high-affinity urea uptake system (Figure 26). This result 

would suggest a possible role of glutamine as a negative (feedback) regulator of urea uptake. 

In soil urea is rapidly hydrolyzed to ammonium and carbon dioxide by action of microbial 

ureases. It has been calculated that a significant portion of applied urea (more than 50%) is lost through 

ammonia volatilization (Terman, 1979), decreasing the amount of nitrogen available for plant nutrition. 

A common agronomic practice to increase the efficiency of urea-based fertilizers consists into applying 

urease inhibitors in conjunction with urea fertilizers. Actually the most used and commercially available 

urease inhibitor is the N-(n-butyl) thiophosphoric triamide (nBTPT) (Watson, 2005).  

Very few studies have provided experimental evidences of the physiological effects of nBTPT on plants 

(Watson and Miller, 1996; Cruchaga et al., 2011). In particular, a main question is if this molecule can 
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pass across the plasma membrane thus inhibiting also the plant ureases. In perennial grass, Watson and 

Miller (1996) reported a negative effect of nBTPT on the endogenous urease activity and transient 

formation of leaf-tip scorch. Similar effects were also reported in pea, where nBTPT was absorbed by 

plants causing clear inhibition of the leaf and root urease activity associated with the development of 

necrotic leaf margins (Cruchaga et al., 2011). 

In this thesis the effect of the urease inhibitor nBTPT on the root capacity to absorb urea was 

investigated. Results showed that the exposition of plants to nBTPT limited the induction of the high-

affinity uptake system (Figure 29). A 30% inhibition of the uptake rate of urea-induced plants by nBTPT 

was observed also adding nBTPT directly in the assay solution (10 minutes in 200µM urea, Figure 30). 

Previous works performed in our laboratory showed the capability of nBTPT to strongly inhibit also the 

induction of nitrate high-affinity transport system (Monte et al. unpublished). However, no direct effect 

of nBTPT on nitrate high-affinity transport was observed (Monte et al. unpublished).  

These data represent an interesting starting point for improving knowledge about molecular 

mechanisms of nBTPT action on urea transporters. In addition, the capacity of nBTPT to enter into the 

roots limiting the enzymatic activity required for urea assimilation (i.e. acting on plant urease) should be 

considered. 
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 Transcriptomic analyses  4.2

 

 

From the physiological data it is clearly evident that urea can induce its own uptake. Indeed the root 

exposition to a solution containing urea at millimolar range induced, after few hours (4-8 h), a peak 

value in the uptake rates and subsequently the influx decreased. Moreover, it was clear that the 

presence of urea along with nitrate reduced the induction of the high affinity uptake systems of each 

nitrogen source. With the aim to clarify if these physiological responses could be related to variations at 

transcriptomic level, genome-wide analyses were performed on maize roots treated for 8 hours with 

urea (U), nitrate (N) or urea and nitrate (UN) and compared with the transcriptomic profile of maize 

roots maintained without nitrogen supply (Ctr). Using a maize chip developed by NimbleGen 

Technology, the microarray analyses allowed the simultaneous monitoring of around 60,000 transcripts 

of the root transcriptomic profiles from the different treatements. 

To date only one study concerning the transcriptomic modulation induced by urea treatment in the 

model plant Arabidopsis (Mérigout et al., 2008a) has been reported, while a large variety of microarray 

studies on the modulation of gene expression by nitrate in plants, including Arabidopsis (Wang et al., 

2000; Wang et al., 2003; Wang et al., 2004) and maize (Liu et al., 2008), are available. 

In the present work, the microarray analyses revealed that the transcriptional modulation induced by 

nitrogen treatments concerned only few genes, in particular comparing the different treatments 132 

differentially expressed genes were found in UN vs Ctr, 89 in N vs Ctr, 62 in UN vs U, 57 in N vs U, 4 in U 

vs Ctr and 0 in UN vs N (Table 5). These data suggested that the transcriptomic variations were mostly 

induced by nitrate rather than urea. In fact, N and UN roots did not show significant differences in their 

transcriptomic profiles. On the other hand, the highest transcriptional variation was registered under 

nitrate, expecially when analyzing UN vs Ctr (132) and N vs Ctr (89). The modulated transcripts were 

manually annotated and grouped in main functional categories according to biological process terms of 

Gene Ontology (GO). The most representative classes were: “metabolic process”, “localization” and 

“biological regulation”.  

The microarray data reported in this work were corroborated by experimental evidence documented in 

previous transcriptional works of Arabidopsis and maize. In particular the presence of nitrate induced 

the strong overexpression of genes involve in its assimilation, as nitrate reductase (NR), nitrite reductase 

(NiR), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT); all these genes 

are well known to be nitrate-induced in plants, as also described by Wang et al. (2000). Interestingly 

microarray data showed that the treatment with urea and nitrate determine an increase in the up-

regulation of genes induced by nitrate. This means that the transcriptional effect of urea involves 
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changes in the amounts of transcripts more than the type of transcript, showing a difference at a 

quantitative scale more than at a qualitative one with respect to nitrate. Neverthless, as suggested by 

Mérigout et al. (2008a), the upregulation of those genes by urea might be correlated with the proposed 

pathway for N-urea assimilation (Figure 33). 

Besides genes that belong to GS/GOGAT cycle, also transcripts encoding for protein involved in abiotic 

stress response, as well in scavenging of ROS, were identified. However most of them resulted to be 

modulated essentially by nitrate. The only exception was represented by ZmSnRK2.4 gene which was 

found up-regulated only when nitrate was supplied along with urea.  However its role in the signaling of 

abiotic stress depending on nitrogen nutrition state has still to be clarified. 

The most interesting and novel founding microarray data concerns the modulation of transcripts 

involved in the shikimic pathway (Shikimate kinase, #78). In particular the presence of urea in 

conjunction with nitrate induced the up-regulation of genes (Arogenate dehydrogenase isoform 2, #77) 

for the synthesis of tyrosin, an aromatic amino acid precursor of several secondary metabolites. 

Moreover results indicate that under this nitrogen treatment (UN), urea may stimulate also the 

phenilpropanoid pathway (Putative ferulate 5-hydroxylase, #46) leading to the synthesis of compounds 

derived from phenylalanine.  

In a previous study on tobacco plants, microarray data showed as the expression of genes involved in 

the central steps of the phenylpropanoid metabolism could be regulated by nitrate levels (Fritz et al., 

2006). Results reported the stimulation of phenylpropanoid metabolism in nitrogen-deficient tobacco as 

a response to low nitrate per se, rather than low levels of amino acids. Thus, in maize (data in the 

present thesis), the effect of urea nutrition might lead to changes in nitrate levels of the roots, 

simulating a condition of nitrogen starvation. 

Thus, these results suggest that urea, when supplied in combination with nitrate (UN), stimulates 

nitrogen assimilation by activation of GS/GOGAT cycle, amino acid biosynthesis and secondary 

metabolite (Tyr-derivate compounds). However, at the same time,  possibly due to a change in C/N 

balance, urea determines up-regulation of genes involved in the synthesis of Phe-derivates leading to 

higher levels of carbon compounds. 

With respect to the putative transcription factors belonging to “biological regulation” category, further 

analyses are nedded to identify in more detailed the encoded biological function of these transcripts 

and their involvement in nitrogen nutrition in maize roots.  

Concerning the transcriptional modulation induced by urea itself, only four transcripts were identified in 

comparison to control roots (U vs Ctr, Table 8), which were found strongly up-regulated: a MATE 

transporter (8 FC), two Asparagine synthetases (both 5 FC) and a Zinc finger protein (4 FC). The over-

expression of Asparagine synthetase (AtASN1), as induced by urea was previously described in 

Arabidopsis; this result was consistent with an increase in the Asp amounts in urea-fed plants (Mérigout 
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et al., 2008a). Regarding the two other transcripts identified in the present work, further analysis is 

needed to clarify their involvement in the response mechanism of maize roots to urea. 

In agreement with previous results obtained in Arabidopsis (Mérigout et al., 2008a), root exposition to 

urea did not induced modulation in the expression of genes coding for urease or enzymes involved in 

the urea cycle.  

In order to confirm the microarray data and focusing on gene expression level of transcripts 

involved in nitrogen uptake and metabolism, real time RT-PCR analyses on root and leaf tissues were 

performed. Plants were treated with the same nitrogen sources applied for the microarray experiments, 

urea and nitrate, and moreover the effect of a nitrogen metabolite, i.e. glutamine, was evaluated. A 

time-course experiment run over 24 hours of treatment allowed to follow the dynamics of expression of 

the genes considered. As expected, results showed a strong up-regulation by nitrate of genes involved in 

the uptake of the anion and in its assimilatory pathway.  

Concerning the uptake of nitrate, the expression of two putative high-affinity nitrate transporters were 

analysed (NRT2.1; 2.2, Figure 34 A, B) as well of an accessory protein needed for their functionality 

(NAR2.2, Figure 34 C). These genes were not found differentially modulated by the nitrogen treatments 

at the microarray analysis, while real time RT-PCR revealed that their expression was induced by the 

exposition to nitrate reaching a peak value after 2 hours for NAR and 4 hours for the two NRT2 

transporters. These latter genes were found overexpressed also when nitrate was applied together with 

urea, showing, especially for NRT2.2, even higher values in presence of urea (UN) than in its absence (N). 

A higher up-regulation of BnNRT2.1 was also reported after 24 h treatment of oilseed rape roots with 

urea plus nitrate as compared to nitrate alone, while changes in BnNRT2.1 was not evaluated (Arkoun et 

al., 2012b). In the present work it appeared that while ZmNRT2.2 expression was enhanced by the 

simultaneous provision of urea and nitrate, ZmNRT2.1 expression was somehaw decreased in roots 

exposed to nitrate and urea; however this latter was maintained at higher level till the end of the 

experiment (24 h) as compared with the sole nitrate supply. This would suggest a kind of modulation of 

the two high-affinity transporters (Rizzardo et al., 2012). Interestingly, a role for ZmNRT2.2 in nitrate 

translocation has been also hypothesized (Trevisan et al., 2008). Negative modulation of NAR2.2 gene is 

consistent with a decrease in nitrate uptake induction in UN roots. 

Confirming microarray data, genes that are involved in nitrogen assimilation, such as nitrate reductase 

(NR), nitrite reductase (NiR) and glutamine synthetase (GS2), were found to be up-regulated only by 

nitrate (N) and by urea and nitrate (UN) treatments (Figure 36). Real time RT-PCR confirmed that when 

nitrate was applied in combination with urea, the expression levels of these genes was maintained 

higher for longer time and even at higher levels (GS2) than when nitrate alone was supplied.  

A different situation was detected for the expression of the gene encoding Fd-GOGAT (Figure 37), that 

was found to be modulated also by treatments with glutamine and/or urea. However the differences 



Tesi di Dottorato di Laura Zanin discussa presso l’Università degli Studi di Udine 

148 

observed after 8 hours of exposition are somehow in agreement with the microarray analysis, where the 

amounts of Fd-GOGAT were only two-fold those registered in control roots (UN vs Ctr FC 2.10). 

Particularly with respect to the expression of ZmGS and ZmFd-GOGAT, several experimental evidence 

have previously demonstrated that nitrate could induce the expression of genes involved in its 

assimilation (Redinbaugh et al., 1993), while the positive influence of urea was not clearly reported in 

other works. Interestingly, the higher induction of nitrogen assimilatory genes in plants supplied with 

nitrate plus urea would suggest a positive effect of the two forms in accelerating nitrogen metabolism. 

This would possibly affect feedback control over the transporters gene expression (see above). Of 

course, this assumption needs to be supported by further analysis at the enzymatic and metabolomic 

level. 

Besides genes involved in nitrate uptake and assimilation, also the transcriptional variations of genes 

related to urea transport and metabolism were investigated. Under the experimental conditions 

employed in the present work, no significant modulation in the gene expression of ZmDUR3 was found 

(Figure 38, A). During the time span of the experiment (24 hours), the transcript amounts were 

comparable among the different nitrogen treatments.  

In rice the relative expression of OsDUR3 was found up-regulated 6 days after germination, while in 

Arabidopsis, the amount of DUR3 protein in roots was strongly induced after 3 days of nitrogen 

starvation (Kojima et al., 2007). An interesting study was performed by Arkoun et al. (2012a), who 

analysed the effect of urea and nickel (Ni) nutrition on the expression level of BnDUR3. This element is 

an important cofactor of the enzyme urease and is requested for its activity. These authors observed 

that depending on the presence of nickel in the external medium, rapeseed roots could differentially 

express BnDUR3. Plants were grown hydroponically for 1 week in nitrogen starvation and then were 

exposed for 7, 15 and 21 days to urea with or without nickel. After 7 days of treatment, the amount of 

transcript observed in urea-fed plants were higher than the expression level recorded in (urea+Ni)-fed 

plants.  

This experimental evidence suggests that the expression of genes coding for DUR3 transporter may be 

up-regulated by nitrogen starvation and also by urea treatment under nickel deficiency. Thus, as future 

prospective to clarify the transcriptional regulation of ZmDUR3, further analysis will be done extending 

the time span of the experiment and changing the nickel concentration in the external medium.  

In planta the fate of urea taken up by soil solution is not yet clarified, however reported in Arabidopsis it 

has been reported that the root exposition to urea determined an increase in urea contents also in 

shoots (Mérigout et al., 2008a). To data few information concerns the urea translocation in higher 

plants. Kojima et al. (2006) suggested the involvement of aquaporins for the allocation of urea in leaf 

tissues. Particularly in maize, aquaporins that belong to the protein classes of PIPs and TIPs, have been 

characterized as permeable to urea (Gaspar et al., 2003; Gu et al., 2012; Marilia, 2001). By heterologous 
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expression in Xenopus oocytes, Marilia (2001) demonstrated the capacity of the maize protein PIP4 to 

transport also urea along with water. By real time RT-PCR analyses it was shown that the root exposition 

to urea treatment determined the overexpression of ZmPIP4 in leaves, reaching a peak value after 8 

hours of treatment (Figure 45).  

The expression pattern of other genes involved in nitrogen assimilation in leaves were tested. Beside 

ZmNR2, ZmGS2, ZmArginase which showed no great variations during the experimental time span and 

under different nitrogen treatments, interesting changes in the transcriptional profiles were detected 

for the genes ZmNR1 and ZmFd-GOGAT. In particular the presence of urea along with nitrate (UN) led to 

rapidly increase the leaf amounts of ZmNR1 transcript (Figure 42) reaching values higher than those 

recorded when sources were applied singularly (U or N treatment). Concerning ZmFd-GOGAT, the 

transcriptional profiles confirmed the well known photoperiod regulation reported for this gene, 

showing a down regulation in the middle of the light phase (Suzuki et al., 2001). Neverthless the 

simultaneous exposition of roots to urea and nitrate (UN) positively reduced the repression of ZmFd-

GOGAT, especially after 12 hours of treatment (Figure 43). The leaf gene expression analyses contribute 

to corroborate the hypothesis that urea in the external medium may act at transcriptional level to 

stimulate the expression of genes that are involved in nitrogen metabolism. 

The microarray and real time RT-PCR experiments gave important information about the transcriptional 

modulation that may occur in roots when urea and/or nitrate are applied as nitrogen sources. Results 

are in agreement with the well-known modulation by nitrate of genes involved in the nitrogen uptake 

and assimilation. To our knowledge, in this work, the effect of urea on the gene expression was 

investigated for the first time in a crop species. Surprisingly the influence of this organic molecule at 

transcriptional level concerned only a limited number of genes, while its effect mainly concerns the 

quantitative level of transcripts. Indeed for genes involved in nitrate uptake and assimilation, the 

presence of urea in the external medium along with nitrate determined higher amounts of transcripts 

than those detected under nitrate treatment. 

Interesting data were reported in leaves for the ZmPIP4 transcript (Figure 45), which may be involved in 

the translocation and allocation within plants of urea taken up by roots. On the other, despite 

physiological results would suggest that urea may induce its own uptake, at transcriptional level this 

response did not seem to be supported by modulation in the gene expression profile of ZmDUR3. This 

result might be related to the experimental conditions employed, like e.g the short-term treatment as 

compared with previous work; indeed urease gene expression was clearly evident in urea-fed plants 

only after 24 hours of treatment (Figure 38, B). Alternatively it might indicate that for the transitory 

induction of uptake a new synthesis of the transporter is not needed and that a post-translational 

regulation might occur. 
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 Functional and molecular characterization of ZmDUR3 4.3

 

 

In the last part of this work the open reading frame (ORF) of the ZmDUR3 gene was isolated from maize 

roots and functionally characterized. The only ScDUR3 orthologs to be previously identified and 

characterized in higher plants are the urea transporters of Arabidopsis, AtDUR3 (Liu et al., 2003a), and 

rice, OsDUR3 (Wang et al., 2012). The functional characterization of ZmDUR3 was carried out by 

expressing the isolated ORF-sequence in different heterologous systems.  

In the first approach, the urea transport activity of ZmDUR3 was verified by complementing the 

dur3 yeast mutant strain (YNVWI, Δura3 Δdur3) which is defective in the endogenous urea transporter, 

ScDUR3. This mutant strain is unable to grow on a medium containing less than 5 mM urea as sole 

nitrogen source. The expression of ZmDUR3 in YNVWI cells complemented the urea-uptake deficiency 

and restored the ability of the yeast strain to grow on a medium containing ≤3 mM urea when applied 

as unique source of nitrogen (Figure 52). This result provided a clear evidence about the physiological 

role of ZmDUR3 as transporter of urea across plasma membrane.  

As positive control, the yeast strain 23346c (Δura3) that was transformed with the (empty) expression-

vector showed colonies on 3 mM urea plates already after 3 days (data not shown). On the other hand, 

colonies of the yeast mutant transformed with ZmDUR3 became visible only after a relative long 

incubation time of around 5 days. In agreement with this observation, also the complementation of the 

YNVWI phenotype by OsDUR3 required a long time of incubation of about 5 days (Wang et al., 2012). 

Slow growth of ZmDUR3-transformant YNVWI colonies might be due to a low urea transport rates of 

ZmDUR3. Moreover, the expression of a maize protein in a heterologous system might lead to problems 

with the transcription and translation of the ZmDUR3-construct or to an incomplete targeting of 

ZmDUR3 to yeast plasma membrane. All these possible explanations might result in the delay of growth 

of the ZmDUR3-transformed dur3 yeast mutants.  

In order to facilitate the expression of ZmDUR3-ORF in yeast, an ORF variant was prepared with a yeast-

preferred codon usage and lower GC content. So, in the first part (10%) of the ORF, G and C in the third 

codon position were replaced with A or T nucleotides making up codons which are more frequently used 

in yeast. The resulting sequence, ZmDUR3“Modified”, showed a decreased in the GC content and 

therefore a partial optimization for the expression in yeast. Interestingly the ZmDUR3“Modified”-

transformants grew slightly faster than yeast mutants transformed with the unmodified ZmDUR3-ORF 

(ZmDUR3”Native”). So, after 5 days of growth on selective plates, differences in colony size between 

ZmDUR3”Native”- and ZmDUR3“Modified”-transformants were detected. Since the two constructs 

differed only at nucleotide level, the lower translation of the maize transgene was partially responsible 

of the slow rate of yeast growth. 
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These results confirmed that especially for plant species with a high GC content, the ORF-optimization 

strategy may be a valid method to improve the expression of transgenes in yeast or oocytes allowing a 

better molecular characterization of plant proteins. 

The yeast complementation assay gave a clear evidence that the functional activity of ZmDUR3 is to 

transport urea across the plasma membrane, so its characterization was deepened performing further 

experiments.  

The measurement of the kinetic parameters of ZmDUR3-mediated urea transport could be 

performed also in yeast cells by uptake experiments with labeled urea (14C-urea or 15N-urea). 

Nevertheless, as previously pointed out by Liu et al. (2003a), the 14C-urea uptake studies in yeast cells 

with AtDUR3 were difficult to perform due to the rapid degradation of urea by endogenous yeast 

ureases. In particular, the rapid hydrolysis of radiolabeled urea resulted in 14C-CO2 release with 

aftermathes for the safety and for the accuracy of the kinetic measurements. Although this problem 

could be solved using 15N-labeled urea, 15N measurements are less sensitive than using a radioactive 

tracer. Moreover the measurement of 15N-content into cells did not allow a discrimination between the 

uptake of nitrogen as being derived from intact molecules of urea or from its hydrolysis products. In 

addition, the slow rate of growth of transformants may indicated a low capacity of these cells to take up 

urea, which could limited the analyses.  

For these reasons, a different approach was chosen expressing ZmDUR3 in a different 

heterologous system, i.e. X. laevis oocytes, which are often used to investigate protein-facilitated urea 

transport processes (Liu et al., 2003a,b; Wang et al., 2012). A first series of experiments was conducted 

using two electrode voltage clamp (TEVC) technique. However no substrate-induced currents in 

response to 10 mM urea at pH 5.5 could be measured. In the electrophysiological experiments reported 

by Liu et al. (2003a), AtDUR3-expressing oocytes exhibited a very small (less than 4 nA) inward-directed 

currents when 100 µM urea was present in the medium. Under the experimental conditions used for 

ZmDUR3 analyses, the background noise did not allow to measure urea transport (< 4 nA). The problem 

to record significant current could be due to the heterologous expression of a maize protein in Xenopus 

oocytes, resulting in low amounts of transporters and, as a consequence, of urea uptake which resulted 

under the detection limit.  

For this reason, more sensitive analyses were carried out using 14C-labeled urea. During these uptake 

assays, it was observed that the measurement of ZmDUR3-mediated urea uptake into frog cells was 

possible to detect only in some batches of oocytes with low endogenous urea uptake ability. This 

background uptake of urea in water injected oocytes was very different depending on the batch of 

oocytes, since in few experiments it reached low values of ~4 pmol urea oocyte-1 h-1; while in other 

experiments, very high values of around 27 pmol urea oocyte-1 h-1 were measured. Two possible factors 

could mainly contribute to this background: first, due to its neutral character and low molecular weight, 
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urea can cross membranes by simple diffusion; and second, the presence of endogenous aquaporins on 

oocyte plasma membrane can facilitate a passive influx. 

However, using one batch of oocytes with a low background of urea uptake, a kinetic assay of ZmDUR3 

transport activity was carried out. A saturable kinetic of urea accumulation was observed and the 

concentration of urea permitting a half-maximal uptake (Km) was around 20 µM (Figure 54). Even if 

further repetitions are necessary to confirm these data, the uptake rates of urea found for ZmDUR3 

were comparable with those reported for OsDUR3, which showed a maximal 14C-urea uptake around 13 

pmol urea oocytes-1 h-1 (Wang et al., 2012). Moreover ZmDUR3 showed a similar Km value to those 

reported for its orthologs from Arabidopsis thaliana (AtDUR3, Km of 3 µM; Liu et al., 2003a, b), Oryza 

sativa (OsDUR3, Km of 10 µM; Wang et al., 2012) and the fungus Paxillus involutus (PiDUR3, Km of 31,8 

µM; Morel et al., 2008).  

Since the Km value of ZmDUR3 for urea import into oocytes is consistent with the Km value found for 

urea uptake by intact maize roots (Km 27 µM in urea-treated plants) and no additional high-affinity urea 

permease are to date predicted from the fully-sequenced maize genome. Therefore ZmDUR3, might 

represent the most significant component of the high-affinity urea uptake system from soil in maize 

roots.  

These further experimentsconfirmed that ZmDUR3 codes for a transporter which is able to move urea as 

an intact molecule across either yeast or oocyte plasma membranes and that the kinetic parameters are 

similar to those of known urea transporters.  

In conclusion the molecular characterization of ZmDUR3 in yeast and oocytes allowed to test its 

functional activity resulting in a preliminary indication of the kinetic parameters. In these heterologous 

systems, ZmDUR3 showed a comparable behavior to those observed for the Arabidopsis and rice 

orthologs, AtDUR3 and OsDUR3. Indeed in the yeast complementation assay ZmDUR3 transformants 

showed a relative slow growth on selective plates, as well as previously reported for OsDUR3 (Wang et 

al., 2012). Also urea uptake rates in ZmDUR3-injected oocytes were very low  and in a comparable range 

to those detected for AtDUR3 and OsDUR3 (Liu et al., 2003a; Wang et al., 2012). It is possible that the 

difficulties to perform the analyses in yeast and oocytes might be related to the expression of plant 

proteins in heterologous systems. In particular, in comparison to plant cells, the fungal and animal cells 

display different capacity to perform post-translational modifications, which might be requested in 

planta before the DUR3 proteins becomes completely functional. Moreover, it remains possible that in 

these cells, even if efficiently incorporated into the organelle/membranes, the heterologous proteins 

were incorrectly or incompletely targeted to the plasma membrane. As consequence, different factors 

might have contributed to reduce the transport activity of ZmDUR3 making the molecular 

characterization of this transporter difficult.  



Tesi di Dottorato di Laura Zanin discussa presso l’Università degli Studi di Udine 
 

153 

For these reasons and to clarify in planta the cellular localization of ZmDUR3, tobacco 

protoplasts were transiently transformed with ZmDUR3”Modified”-ORF fused with GFP. The fluorescent 

signal was mostly detected in internal membranes although it is not excluded that ZmDUR3 partially also 

reaches the plasma membrane. Indeed in the colocalization experiments, a minor fraction of GFP-

ZmDUR3 signal overlapped with the fluorescence detected for the reference protein of plasma 

membrane (AtPTR1-YFP) (Figure 56).  

Transient expression of GFP fusion protein has limitations. In certain cases the wild‐type protein and the 

GFP-fusion protein might differ in their subcellular locations, since the presence of GFP could hinder 

proper localization, ZmDUR3/GFP-fusion protein might result in incorrect or incomplete localization. 

Another disadvantage consists in improper folding or instability of the encoded fusion protein, so that 

little or not well targeted fluorescent signal was detected.  

A further consideration about this technique concerns the plant species and the tissue which was used 

to express the transgene. In particular the analyses were conducted using tobacco protoplasts derived 

from leaf mesophyll cells, because these were easy to isolate and also the chloroplast autofluorescence 

allowed a good identification of the cytoplasm.  

However it is possible that the expression of ZmDUR3 in root tissues might show a better targeting of 

the fusion protein. This hypothesis may be corroborated by the experimental evidences reported by 

Kojima et al. (2007), who showed by two immunological approaches that AtDUR3 protein resides 

predominantly in the plasma membrane of root cells. So, it is reasonable to assume that the 

ZmDUR3/GFP might showed a better localization at the plasma membrane when expressed in 

protoplasts isolated from maize root tissue.  

Besides these considerations, in this work of thesis several experimental evidences indicated that the 

plasma membrane localization of ZmDUR3 is highly probable. First, the physiological experiments 

showed the capacity of maize roots to take up this organic molecule and since to date ZmDUR3 appears 

as the only predicted urea transporter in maize, it most likely represents the major component for the 

high affinity uptake of urea from the soil. Second, by characterization in heterologous system, the 

function of ZmDUR3 at the plasma membrane of yeast and oocytes was demonstrated. Third, the 

subcellular localization of ZmDUR3 showed comparable results to those reported for the rice and 

Arabidopsis orthologs, OsDUR3 and AtDUR3 (Wang et al., 2012). In particular for AtDUR3 the plasma 

membrane localization in Arabidopsis root cells was previously described by two immunological 

approaches. Kojima et al. (2007) used polyclonal antibodies against AtDUR3 in two independent 

analyses: a protein gel blotting analysis of membrane protein fraction from Arabidopsis roots and a 

immunohistochemical assay on whole-mount root samples. Both immunological techniques gave the 

same results: AtDUR3 localized mainly at the plasma membrane even if a minor fraction of the labeled 

protein appeared to be localized inside the cells. The authors suggested that a fraction of AtDUR3 might 
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reside in endosomal compartments, reflecting proteins that were moving to or from the plasma 

membrane (Kojima et al., 2007). Another possibility is that for the membrane targeting of urea 

transporter, root auxiliary proteins or molecular signals are involved.  

For example, concerning the subcellular-localization of a high affinity iron transporter of Arabidopsis 

(Iron-Regulated Transporter 1, IRT1), in Arabidopsis roots IRT1 was found mainly localized in the early 

endosomal compartments (Barberon et al., 2011) while at the plasma membrane the abundance of IRT1 

was low and tightly regulated by ubiquitin-dependent trafficking. The turnover of IRT1 protein was 

investigated and the localization of IRT1 was explained by the authors as a result of a “rapid endocytosis 

and slower recycling to the plasma membrane, where it likely performs iron uptake from the soil, and is 

addressed to the lytic vacuole for turnover” (Barberon et al., 2011). So, the authors concluded that the 

specific contribution of these trafficking pathways controlled the amounts of IRT1 protein at the plasma 

membrane. 

The consideration about IRT1 suggests that the presence of ZmDUR3 in internal membranes may reflect 

a similar situation where the abundance of the protein at the plasma membrane is controlled by a 

specific trafficking pathways in response to urea. It would be interesting to further analyze in root 

protoplasts if the presence of urea in the external medium might influence the membrane localization of 

this transporter.  

As final approach to provide more detailed assessment of molecular and physiological role of this maize 

transporter in planta, the overexpression of ZmDUR3 in two dur3 mutant lines of Arabidopsis is still 

ongoing. Kojima et al. (2007) identified two independent T-DNA insertion lines of Arabidopsis (ecotype 

Col-0), which were isolated from the insertion mutant collections of the Salk Institute Genomic Analysis 

Laboratory (Alonso et al., 2003). These mutants, called atdur3-1 (SALK_042649) and atdur3-3 

(SALK_036318), are defective in the endogenous urea transporter AtDUR3 and therefore they showed 

impaired growth on a medium with urea (<5 mM) as sole nitrogen source. In particular both mutant 

lines are unable to grow on a medium containing 1 mM urea. Under these conditions atdur3 lines 

became chlorotic and accumulated more anthocyanins than the wild type plants, indicating a condition 

of nitrogen deficiency. The transformation of both dur3 mutants with 35sCaMV:ZmDUR3 by 

Agrobacterium tumefaciens was performed in order to obtain ZmDUR3-overexpressing transgenic plants 

of Arabidopsis. The possible complementation of the mutant phenotype by ZmDUR3 will confirm the 

physiological role of this protein as high affinity urea transporter for the uptake from soil and of its 

localization at the plasma membrane of root cells.  
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5 Conclusion 
 

 

My thesis work reports, for the first time, the physiological characterization of urea uptake in roots of 

intact maize plants. Results indicate that at micromolar urea concentrations (up to 300 µM urea), maize 

roots are able to take up this nitrogen source, using a high affinity transport system characterized by 

saturation kinetic. These data are consistent with those reported in Arabidopsis and rice.  

This transport system appeared to be inducible by urea itself, retro-regulated and dependent on the 

external urea concentration as well as on the time of root exposure to the molecule. Furthermore it was 

affected by the presence of nitrate or glutamine in the external medium, which limited the induction of 

the urea transport system. These data support the idea of a cross-interaction among different N-

sources, inorganic and organic, present in the soil solution. 

At least under the experimental conditions employed in this work, the modulation of the urea uptake 

rate due to the presence of urea did not appeared to be regulated at transcriptional level, since no 

parallel variation in the expression levels of the high-affinity urea transporter ZmDUR3 was found. 

Indeed, analysis of the transcriptomic profile revealed that the presence of urea in the external medium 

as the sole N-source, determined the up-regulation of only four genes. On the other hand, the effect of 

urea was more appreciable when this nitrogen organic source was applied to roots in combination with 

nitrate. Under this treatment a higher increase in the expression levels of genes known to be induced by 

nitrate was registered.  

So, when applied simultaneously to roots, urea and nitrate at physiological level limited reciprocally the 

inducible component of each other high-affinity transport system, while at transcriptional level they 

increased the amounts of transcripts involved in the mechanism of nitrogen acquisition and assimilation. 

These data might be considered in a context of a more efficient use of the nitrogen sources available for 

maize plants, where acquisition and utilization mechanisms are efficiently modulated. 

The microarray analysis has been also an important tool to detect transcripts of genes, whose 

involvement in response to urea and/or nitrate has not been yet elucidated. So, further molecular 

analyses will be performed to characterize these transcripts and clarify their biological role in nitrogen 

nutrition. 

Besides the physiological characterization of high affinity urea transport in maize roots, and of the 

related molecular aspects, an important result of the present work was the identification and 

characterization of ZmDUR3 by heterologous expression in yeast mutant, X.laevis oocytes and tobacco 

protoplasts. With the aim to provide convincing evidence that ZmDUR3 does fulfill a function in urea 

acquisition from soil and use within the plant, the transformation of two Arabidopsis mutant lines 
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(atdur3-1 and atdur3-3, Kojima et al., 2007), which are defective for the endogenous transporter 

AtDUR3 and are not able to grow on a medium containing urea (<5mM) as sole nitrogen source will be 

carried out. 

This work sheds light on the regulation of urea acquisition mecchanisms in maize roots and on the role 

of ZmDUR3 in the high affinity urea transport system, improving the knowledge on the overall nitrogen 

acquisition and on the use efficiency of nitrogen fertilizers in crop plants. 
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