
Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

UNIVERSITÀ DEGLI STUDI DI UDINE 
DIPARTIMENTO DI MATEMATICA E INFORMATICA 

DOTTORATO DI RICERCA IN INFORMATICA 
 
 
 
 
 
 
 

PH.D. THESIS 
 
 
 
 

An architecture supporting the development 
of serious games for scenario-based training 
and its application to Advanced Life Support 

 
 
 
 
 
 
 
 
 
 
 
 

 CANDIDATE: SUPERVISOR: 
 Alberto Cabas Vidani Luca Chittaro 

 





 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

Contents 

Contents ........................................................................................................................................ iii 

List of figures ................................................................................................................................ v 

Introduction ................................................................................................................................ vii 

1. Architectures and tools for serious game creation ................................................................ 9 
1.1 Difficulties in serious game creation ........................................................................... 10 
1.2 Solutions proposed by industry .................................................................................... 11 
1.3 Solutions proposed by academic research ................................................................... 12 

1.3.1 Architectures for procedural generation of learning tasks ....................................... 13 
1.3.2 Architectures for serious games based on predetermined learning tasks ................. 16 
1.3.3 General Observations on the surveyed solutions ..................................................... 23 

2. The proposed Serious Game Architecture for Scenario-based Training .......................... 25 
2.1 The proposed architecture ............................................................................................ 25 

2.1.1 The Scenario Simulator module ............................................................................... 29 
2.1.2 Task repository ......................................................................................................... 40 
2.1.3 Menu task hierarchies ............................................................................................... 46 

2.2 Implementation aspects ................................................................................................ 48 

3. Case study: a serious game for Advanced Life Support training ...................................... 51 
3.1 Conventional training of EMS nurses .......................................................................... 51 
3.2 Application Overview .................................................................................................. 53 

3.2.1 User interaction ........................................................................................................ 54 

3.3 The task repository for EMSAVE ................................................................................ 58 

3.3.1 Dialogs in EMSAVE ................................................................................................ 61 

3.4 Scenario CTT models in EMSAVE ............................................................................. 63 
3.5 Patient states ................................................................................................................. 65 

4. User Evaluation ...................................................................................................................... 67 
4.1 Pilot study .................................................................................................................... 67 

4.1.1 EMSAVE prototype ................................................................................................. 68 
4.1.2 Experimental design ................................................................................................. 69 



iv Contents 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

4.1.3 Participants ............................................................................................................... 73 
4.1.4 Results ...................................................................................................................... 73 

4.2 Evaluation of EMSAVE in ALS retraining ................................................................. 77 

4.2.1 Procedure .................................................................................................................. 77 
4.2.2 Participants and setting ............................................................................................. 78 
4.2.3 Results ...................................................................................................................... 82 

Conclusions ................................................................................................................................. 89 

Bibliography ............................................................................................................................... 93 
 



 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

List of figures 

Figure 1.1. Example of a learning task as proposed in [26]. In a mini-game, the user has to identify 
the wrong details on the façade of a famous building. ................................................. 13 

Figure 1.2. A conceptual overview of the architecture proposed by Binsubaih et al. [32]. ............... 14 
Figure 1.3. A screenshot of the StoryTec editor produced within the 80Days project. ..................... 15 
Figure 1.4. A screenshot of the JDoc editor, showing the interface used by senior doctors to choose 

patients to insert in the virtual world. ........................................................................... 16 
Figure 1.5. An example of the graphical quality of serious games created through the ED-Game 

Author. .......................................................................................................................... 17 
Figure 1.6. A screenshot from a prototypical serious game proposed by McKenzie and McCalla. .. 18 
Figure 1.7. A screenshot from the authoring toolbox AESOP. .......................................................... 19 
Figure 1.8. A screenshot of the scenario editor proposed by Protopsaltis et al. ................................ 20 
Figure 1.9. The scenario editor proposed by van Est et al. ................................................................ 21 
Figure 1.10. A screenshot from a game built using the e-Adventure platform. ................................. 22 
Figure 1.11. A screenshot of the dialog authoring tool proposed by Johnson and Valente. .............. 23 
Figure 2.1. General overview of the serious game architecture. (Blue boxes represent modules, 

yellow cylinders represent repositories). ...................................................................... 26 
Figure 2.2. Example of an XML log file. ........................................................................................... 28 
Figure 2.3. A more detailed view of the Scenario Simulator module. (Blue boxes represent modules, 

green boxes represent sub-modules, yellow cylinders represent repositories) ............. 29 
Figure 2.4. Example of how the Choice operator is used. ................................................................. 32 
Figure 2.5. a) An example of the ambiguity problem. b) Eliminating ambiguity by inserting a new 

node. .............................................................................................................................. 33 
Figure 2.6. Screenshots of a) user CTT model, b) NPC CTT model and c) concurrent CTT model. 33 
Figure 2.7. CTT for the “Conduct Head-to-Toe Exam” procedure. .................................................. 34 
Figure 2.8. An error explanation shown in EMSAVE. ...................................................................... 35 
Figure 2.9. The XML code of the error model for the CTT example depicted in Figure 2.7. ........... 36 
Figure 2.10. Fragment of a state model XML file ............................................................................. 38 
Figure 2.11. Example of a variable mapping. .................................................................................... 40 
Figure 2.12 Example of a task definition in the task repository ........................................................ 42 
Figure 2.13. An effect of type DialogEffectType. ............................................................................. 45 
Figure 2.14. Example of an XML file defining a menu. .................................................................... 47 
Figure 3.1. Details of the user interface: a) a 3D animated icon indicates the destination of user’s 

avatar movement after a click, b) the contextual menu related to the patient, c) 



vi List of figures 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

appearance of the mouse pointer hovering over an interactive object (in this case, a 
medical device), d) the contextual menu related to the medical device. ...................... 55 

Figure 3.2. The debriefing window: a red circle denotes a wrong task selection, a green circle 
denotes a correct one. ................................................................................................... 56 

Figure 3.3. The XML code for the Chest palpation task in the task repository. ................................ 57 
Figure 3.4. Chart illustrating the execution sequence of effects described in Figure 3.3. ................. 59 
Figure 3.5. Yellow flags indicating placeholders in a map. ............................................................... 60 
Figure 3.6. Examples of task effects: a) a message box showing the outcome of the Chest Palpation 

task, b) generic animation of the user’s avatar moving the hands on patient’s chest, c) 
video showing how to put the oxygen mask on patient’s face, d) a 2D overlay showing 
the display of a medical device with data taken from the patient state model. ............ 61 

Figure 3.7. The effect of type DialogEffectType of the task called Presentation. ............................. 62 
Figure 3.8. Screenshots of a) the team leader CTT model, b) the teammate CTT model, c) the 

patient CTT model, d) a fragment of the concurrent CTT model................................. 64 
Figure 3.9. The XML schema definition of the element describing possible outcomes for the chest 

observation task ............................................................................................................ 65 
Figure 4.1. The interface of the EMSAVE prototype used in the first user study. ............................ 68 
Figure 4.2. Chart showing the average number of correct answers to the pre-test and the post-test. 82 
Figure 4.3. Chart showing the average number of correct answers to the pre-test, the post-test and 

the retention test. ........................................................................................................... 86 



 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

Introduction 

In the last 10 years, there has been a growing interest towards serious games, computer 
applications that employ video game technology for educational and instructional purposes. They 
have been applied and proved effective in many fields, such has military training [15, 34, 68], 
corporate training [33, 58], education (at all levels, from primary school to college and university) 
[5, 28, 37], emergency response training [3, 16, 40, 62] and healthcare, both as tools for training 
healthcare professionals [23, 57] and for treating pathologies or yield changes in health behavior [4, 
20]. 

Serious games bring several benefits. First, as virtual reality applications, they allow users to 
experience situations that are impossible or hard to reproduce in the real world for reasons of safety, 
cost or time (e.g., emergency situations). Second, they can support the development of many skills, 
such as analytical and spatial skills, strategic skills and insight, decision making, social skills and 
collaboration [58]. Third, the main advantage that distinguishes serious games from virtual reality 
or other computer applications for training is the fact that they can increase engagement and 
motivation to learn [49] and thus be more effective in transferring knowledge [11]. Finally, serious 
games often have low hardware requirements that allow them to be run on common PCs, promoting 
a more frequent and convenient practice. This is important in many situations where old or low 
performing computers are utilized for training [15, 58]. 

Fundamental open problems in serious games research reside in the production process. First, 
the process is still “handcrafted and labor-intensive” [67] and needs to be streamlined and 
standardized. Second, to provide the instructional and educational content, involvement of domain 
experts is necessary, but several communication and cooperation difficulties may arise among game 
developers and domain experts [28]. A critical help could come from authoring tools tailored to the 
requirements of domain experts and to the training or learning purposes of the serious games that 
have to be developed [11, 15]. Moreover, very few disciplined, systematic studies about the 
effectiveness of serious games exist [58], but they are necessary to identify strengths and 
weaknesses of these tools, so as to produce more effective serious games and to promote their 
adoption. 

Our research aimed at developing an architecture to support serious games creation, focusing in 
particular on serious games for scenario-based training. The main purposes of the architecture are: 

• to organize and structure knowledge representation, 
• to allow for a more efficient game creation process, by making code reuse among different 

game engines possible and by allowing multidisciplinary teams to create serious games 



viii Introduction 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

focusing more on knowledge representation and multimedia resources rather than on 
software implementation, 

• to be applicable to many domains in which scenario-based training is practiced. 
To demonstrate the applicability of the proposed architecture, we employed it to develop a 

serious game (named EMSAVE) for training emergency medical services nurses in advanced life 
support (ALS) procedures. We then carried out two user evaluations. The first one regarded a 
prototype of the serious game and aimed at assessing the acceptance of this kind of application by 
its potential users, its perceived usefulness and the learnability of the adopted control system, as 
well as to collect suggestions and requirements from the 12 participating nurses. The second 
evaluation involved a larger sample of 40 healthcare professionals in real training classes and 
regarded a more advanced version of EMSAVE. Its purpose was to evaluate the effectiveness of the 
serious game as a training tool for ALS procedures in two ways: 

• by comparing subjects’ knowledge of ALS procedures before and after training with the 
serious game, through a questionnaire created by professional ALS instructors, 

• by assessing knowledge retention, through a subsequent administration of the same 
questionnaire, which took place three months after the training session. 

This thesis is structured as follows. In chapter 1, we provide a description of the problems 
hindering serious games creation and a survey of the solutions proposed by the industry and the 
research community to address them. Chapter 2 describes the architecture we propose to support the 
creation of serious games for scenario-based training. In chapter 3, we illustrate EMSAVE, the 
serious game we created to train nurses working for emergency medical services and show how we 
employed the architecture in its development process. Chapter 4 describes the two evaluations of 
EMSAVE we carried out with healthcare professionals. Finally, the thesis concludes discussing 
future directions for our research. 

 



 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

1
Architectures and tools for serious 

game creation 

The term “serious game” started to become popular both in the industry and in the research 
community in the early 2000s [58]. Many agree that the area of serious games was born with the 
release of the “America’s Army” game [68] in 2002 ([58, 67]). America’s Army had originally been 
conceived for promoting military recruitment but was soon adopted also for training new recruits in 
basic skills as shooting. 

There is no widespread consensus on the definition of serious game. In his PhD thesis [66], 
Yusoff defines a serious game as “a learning tool that incorporates game technology for the purpose 
of achieving learning objectives rather than pure entertainment”. Zyda proposes a comprehensive 
formal definition [67] of serious games as “a mental contest, played with a computer in accordance 
with specific rules, that uses entertainment to further government or corporate training, education, 
health, public policy, and strategic communication objectives.” To summarize, we agree with the 
words of Susi et al. [58]: “there seem to be as many definitions available as there are actors 
involved, but most agree on a core meaning that serious games are (digital) games used for 
purposes other than mere entertainment”. In one word, the element that distinguishes serious games 
from entertainment games, as stated by Zyda, is pedagogy, that is, the educational or instructional 
aspect of a serious game. 



10 1.    Architectures and tools for serious game creation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

1.1 Difficulties in serious game creation 

The peculiarities of serious games cause several difficulties that hinder their creation process. 
First, to be effective in capturing and keeping users’ attention, serious games need to be of 
comparable quality to successful entertainment games. Satisfying such requirements is extremely 
expensive, development costs of an entertainment game for 2008 have been estimated in the range 
of $10M - $25M [60]. Moreover, developing games requires the involvement of people with diverse 
skills such as programmers, 3D modelers, writers and sound designers. Unfortunately, serious 
games target very small niches (e.g., surgeons, firefighters, emergency nurses, policemen), so 
possible revenue for a single title would be small, in particular much smaller than the potential 
revenue of an entertainment game. Thus, development costs for serious games must be kept low, 
also considering the fact that often the organizations needing them have much less resources to 
invest for game development than companies producing entertainment games. 

Second, development of serious games lacks widely accepted and employed frameworks or 
architectures which could make the game creation process more efficient, predictable and 
inexpensive [67]. Although some solutions to this problem have been proposed, serious games are 
often developed from scratch, since their code is not designed to be reused. The introduction of 
proper methodologies could facilitate the creation of code modules and resources that can be ported 
across different projects. 

Third, to speed up serious games creation and to reduce costs, developers often resort to game 
engines (see, for example, [3, 7, 18, 32, 51]). When code is written to work with a specific game 
engine, porting it to a different engine requires a long work, sometimes not shorter than rewriting it 
from scratch. Moreover, different serious games often share several functions (at code level) and 
being able to use the same code across many games would reduce the amount of time and effort 
needed for its development. However, if code depends on a specific game engine, it can possibly be 
reused only for serious games based on the same engine. Several reasons could make changing the 
game engine necessary, for example the need to deploy a game to a different platform (e.g., on a 
gaming console instead of a personal computer) or the presence of some required features available 
only in a single game engine. An architecture reducing the dependence of code from the game 
engine would help mitigate these problems. 

Finally, the necessary integration of pedagogical content with the game poses additional 
challenges. To produce such content, the involvement of domain experts in the design and 
development process, as well as continuous and effective communication between domain experts 
and game developers are necessary. Unfortunately, several communication difficulties may arise 
[28]: domain experts typically do not have the abilities to face game development problems, while 
game designers and developers are not familiar with the topics the game deals with (i.e., the 
pedagogical content). The above mentioned game engines often provide editing tools but they are 
not useful to the purpose of involving domain experts. Some of these tools support editing the 
virtual world as well as objects and characters in it, but they do not help creating pedagogical 



1.2    Solutions proposed by industry 11 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

content. Another kind of tools is employed to edit scripts controlling the behavior of objects and 
characters, interaction with the game and so on, through game engine-specific scripting languages. 
Scripts have been used to create pedagogical content but they result in engine-dependent and hardly 
reusable code [6]. Moreover, scripting languages are not understandable by domain experts with no 
experience in computer programming. Help to overcome these difficulties could come from 
authoring tools tailored to the requirements of domain experts and to training or learning purposes 
of serious games [11, 15]. Authoring tools could be employed to acquire pedagogical content from 
domain experts in a more efficient and structured way than simple interviews and meetings. Such 
tools could even support easy editing of some aspects of the game directly by the domain experts 
and automation of some game development activities. 

1.2 Solutions proposed by industry 

Through the years, the request of serious games for training has grown in many areas, such as 
healthcare, the military, education, emergency management and the corporate world (see [58] for a 
survey of serious games application areas). Consequently, the number of companies developing 
serious games for training has grown as well. These companies rarely provide domain experts with 
tools to directly edit the pedagogical content for the serious game. Serious game engines that 
companies have created and use often provide authoring tools but they are rarely meant to be used 
to create pedagogical content, rather they are meant to edit game resources (such as the virtual 
world and its content), in the same fashion as the engines for entertainment games. When tools to 
create pedagogical content are provided, they allow to use this content in predetermined virtual 
worlds with very limited game aspects. Moreover, details behind serious games developed by these 
companies are typically not made public. In this section, we survey the platforms proposed by 
companies to allow the creation of serious games reducing the need for game developers. 

Sealund [69] is a company which provides custom serious games, developed on commission, as 
well as serious game engines that promise to allow the creation of games for training and learning 
without the help of computer programmers. At a deeper analysis, it turns out that the various 
engines provided only allow to create slight variants of e-learning applications based on the 
exchange of questions and answers between the trainee and one or more virtual trainers. Some of 
these engines allow to develop only 2D games, the ones with 3D features only support the creation 
of serious games which put the trainee in one out of a limited set of possible virtual worlds where 
she can only interact with virtual trainers which explain concepts and ask questions. Thus, 
Sealund’s products are very limited in the kinds of serious games that can be developed and in the 
features offered by those games. 

Olive [70] is a software platform to create virtual worlds for training. It provides an SDK with a 
“wide range of integration and customization features, and flexible, enterprise IT-ready software” 
(from Olive’s website). No detail is given about the possibility for domain experts to create games 



12 1.    Architectures and tools for serious game creation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

on their own, but the descriptions of the platform suggest that the creation tools are conceived for 
developers. 

Bohemia Interactive flagship product, Virtual Battlespace 2 [71], provides a virtual world for 
military training with a large set of 3D models to be used in it and some editing tools to create 
missions. A scripting language is provided to create new training scenarios, much like 
entertainment game engines. Also in this case editing tools are aimed at developers. 

Caspian Learning proposes its authoring tool for serious games, called Thinking Worlds [72]. It 
features visual tools that allow to choose a virtual world among the provided ones as setting for the 
serious game, place objects and characters in it, determine paths along which they move and so on. 
The Interaction editor allows to model learning activities. They can be, for example, conversations 
with virtual characters, multiple choice questions or other kinds of quizzes the user has to solve. 
The Scene Flow editor allows one to define how scenes, which can be seen as different missions, 
proceed. The evolution of each scene is defined through charts in which modules representing the 
possible events (e.g., movement of a virtual character along a path or camera position change) are 
combined and connected to each other. Logic operators and variables can also be used to determine 
when an event must be triggered. These tools reduce the amount of programming work needed to 
develop a serious game, nonetheless they are not built to be used by domain experts, rather by 
novice programmers. For this reason, Thinking Worlds still provides a scripting language to 
implement more advanced functions, which the Scene Flow editor does not cover. 

In summary, the industry has addressed the problem of providing tools to speed up serious 
games creation, but the proposed solutions are too limited or still require programmers to create 
serious games. 

1.3 Solutions proposed by academic research 

In this section, we survey several architectures proposed by academic research to speed up and 
streamline serious games creation and to reduce the need for computer programmers during 
development. We group them in two categories: 

• the first one gathers architectures supporting the creation of serious games in which the user 
has to execute learning tasks that are generated at runtime or chosen at runtime by the game 
engine among a set of possible ones; 

• the second one gathers architectures supporting the creation of serious games in which the 
user has to execute a (possibly branching) sequence of learning tasks, which was 
predetermined by instructors. 



1.3    Solutions proposed by academic research 13 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

1.3.1 Architectures for procedural generation of learning tasks 

Bellotti et al. [6] deal with sandbox serious games, which are inspired by sandbox games (such 
as Grand Theft Auto IV [73]), i.e. games that allow the user to freely explore a virtual world in 
which several tasks are distributed and associated to specific locations or characters. There does not 
need to be a predetermined order in which these tasks have to be performed, but often completing a 
particular task or a set of tasks makes the user proceed in the game (for example, unlocking other 
tasks). Bellotti et al. use what they call the Experience Engine to determine which tasks to propose 
to the user, based on the provided user and task models. The user model includes several numeric 
fields such as skill level, preference for various task types and need for developing particular skills. 
Task models are composed of fields indicating, for example, task type, task difficulty, dependencies 
among tasks, coordinates of the virtual world where the task is placed. Values from these models 
are combined through a genetic algorithm to determine at runtime the sequence of tasks to perform. 
This differentiates the approach proposed by Bellotti et al. from well-known entertainment sandbox 
games in which there usually is not a precise task sequence to follow. This architecture has been 
employed to create serious games promoting the knowledge of the European cultural heritage. 
These games have the form of treasure hunts inside European cities, where the user has to reach 

 

Figure 1.1. Example of a learning task as proposed in [26]. In a mini-game, the user has to identify
the wrong details on the façade of a famous building. 



14 1.    Architectures and tools for serious game creation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

important landmarks and play mini-games to learn about them (see Figure 1.1 for an example). To 
exploit the Experience Engine in a serious game, instructors have to specify values for all the fields 
in user and task models. This probably is the major weakness of the approach, since translating 
concepts such as user’s skill level, user’s need of learning specific skills or task difficulty to 
numbers is not easy and no suggestion is provided on how to do it. Moreover, it can be hard to 
assure the pedagogical validity of an automatically generated sequence of tasks. 

The architecture proposed by Binsubaih et al. [10] employs a rules engine (namely, the JESS 
engine [74]) to control the game (see Figure 1.2 for an overview of the architecture). It was 
proposed for games in general and then also applied to serious games [8]. It aims at separating the 
game logic from the game engine, while often the game logic or at least parts of it are tightly 
coupled with the game engine, by using its proprietary scripting language. The proposed approach 
requires game authors to define their own ontologies, describing the virtual world content (e.g., 
object positions) and domain specific information (e.g., hints for a trainee using the game), and to 
specify rules to control the game. A Loader module imports ontologies and rules into the rules 
engine and an Adapter module allows communication between the game engine and the rules 
engine, by mapping the game engine data structures to the ontology data structures. Thus, the 
architecture only works with game engines providing scripting languages with data structures which 
can be mapped to the ontologies. Mapping is achieved by introducing variables that are used as 
placeholders in the scripting languages and translated at runtime retrieving data from ontologies. 
The portability of the architecture was tested by creating ontologies and rules for two different 
games and then making both of them work on two separate engines. The first game aimed at 
training police officers to deal with traffic accidents. It presented an accident scenario with 
damaged vehicles, injured people and leaked hazardous material. The user has to investigate the 
situation to find out how the accident happened. The investigation is carried out by interacting with 
smart objects in the virtual world, which store information about the accident. The second game 

 

Figure 1.2. A conceptual overview of the architecture proposed by Binsubaih et al. [32]. 



1.3    Solutions proposed by academic research 15 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

was not a serious game but only a way to demonstrate the performance of the rule engine to drive 
an NPC running away from the user chasing it. 

In [24], hierarchical task network planning is used to procedurally generate scenarios for 
emergency rescue games. In this case, scenarios concern buildings hit by an earthquake where users 
have to rescue possible victims and shore damaged walls. Data needed for scenario generation are 
the initial state of the building and the desired training goals. Given these data, the system can 
procedurally create a virtual building that can be used for training. As authors underline, the system 
is strictly limited to the domain of rescue operations in collapsed building, so the training goals 
correspond to features that the collapsed building can have: wall damage level, possible fires, 
presence of victims trapped in the building. Moreover, the system proved able of creating scenario 
descriptions with the desired features, but these descriptions were never been used to create a virtual 
world for a serious game, so its effectiveness has not been confirmed. 

The 80days project [21] follows an adaptive digital storytelling approach to create digital 
educational games, a term often used when referring to serious games for education. The authors 
defined an XML based language called ICML (INSCAPE Markup Language, from the name of a 
previous project) which is used to describe the story behind the game. The story is made of scenes, 

 

Figure 1.3. A screenshot of the StoryTec editor produced within the 80Days project. 



16 1.    Architectures and tools for serious game creation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

which can be connected to one another, meaning they are consequential, or unconnected. 
Unconnected scenes are combined with the other scenes by the Story Engine, based on the 
dramaturgic, learning and gaming aspects of each scene, encoded in its ICML representation. An 
authoring tool to create stories and produce ICML files through a graphical user interface, called 
StoryTec [22], has been developed and tested, with encouraging results (Figure 1.3). It seems that 
this platform is aimed at a specific kind of educational serious game where users learn only through 
conversations with virtual characters, since no evidence of other kinds of learning tasks is given. 

1.3.2 Architectures for serious games based on predetermined 
learning tasks 

Sliney and Murphy propose JDoc [57], a serious game with the purpose of familiarizing junior 
doctors with the day-to-day stress of a hospital. This system aims at reducing the time senior 
doctors have to devote to training junior doctors. To allow direct creation of pedagogic content by 
domain experts (i.e., senior doctors), a Content Management System (CMS) is provided to manage 
resources like characters, conversations that can occur in the game, user data and so on. A graphical 
interface allows senior doctors to create scenarios by adding patients (Figure 1.4), together with 
some related data (e.g. blood test results), nurses and doctors to the hospital virtual world. Users are 
placed inside a virtual hospital in which they can find and assess various patients. A usability test 
with junior doctors showed that interaction with the system was easy and that doctors perceived it 

 

Figure 1.4. A screenshot of the JDoc editor, showing the interface used by senior doctors to choose
patients to insert in the virtual world. 



1.3    Solutions proposed by academic research 17 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

as a useful tool for training. Unfortunately, the paper by Sliney and Murphy does not give further 
details on what information is stored in the CMS and how it is used in the game, neither on how the 
editing tool for the CMS works. 

ED-Game Author is an authoring tool for educational serious games [64]. It provides several 
virtual worlds and some basic stories to be used for games. Authors can exploit these resources to 
create serious games in which users can explore a virtual world and encounter characters that pose 
them questions or give them explanations about selected subjects. Correct answers make the user 
progress in the game (e.g., earning her a key for a locked door). Special objects hiding hints for the 
user can also be found. To create a serious game through ED-Game Author, an instructor has to 
choose an environment as setting and then create the pedagogical content consisting of lessons and 
tests. The latter can be of several kinds: multiple choice questions, fill-in the blank, true/false 
questions, open questions. Instructors can also assign possible causes of errors to wrong answers. 
When a user gives a wrong answer, the error is recorded in her student profile. This way, instructors 
are able to keep track of user’s performance not only by counting errors, but also identifying the 
most common error causes. The pedagogical content is added through a graphical interface and then 
associated to locations in the chosen virtual world. During play, when a user reaches a location 
associated with a test, it pops up and the user has to answer. Other characters in the game can help 

 

Figure 1.5. An example of the graphical quality of serious games created through the ED-Game
Author. 



18 1.    Architectures and tools for serious game creation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

by giving explanations about a question (if instructors specified so). The biggest limitation of ED-
Game Author is its poor exploitation of the advantages that virtual reality can give. The only actions 
it allows players to perform are to explore the environment and go from a test to another one. 
Moreover, the graphical quality of the serious games built through this tool is comparable to the one 
of the 3D videogames of the early 90s (as shown by screenshots in the paper). It is not sure how 
much it could be appealing to today’s students, to whom these serious games are addressed. 

McKenzie and McCalla propose an architecture for serious games for professional ethics [33]. It 
allows to create serious games that train the user in ethical decision making (e.g., to decide whether 
to omit security testing to complete a critical project on schedule) through conversations with 
virtual characters and decisions she has to make (as shown in Figure 1.6), by choosing among the 
presented options. The game is divided in scenes, describing the sequence of conversations and 
decisions the user has to go through, modeled through properly structured XML files. A learner 
model, created in collaboration with domain experts, is used to represent the skill level already 
reached by the user and the training objectives and to change conversations and decisions at 
runtime, to adapt them to the needs of the user. The architecture is not yet completely implemented, 
so it has never been tested and no serious game has been created using it. 

The authoring toolbox AESOP (Authoring Edutainment Stories for Online Players) [55] was 
also developed to support creation of serious games exploiting interactive storytelling techniques. In 
these games, the pedagogical content is implicitly built into the story the user goes through. The 
creators of AESOP model stories through Finite State Machines (FSMs), in which states correspond 
to “uninterruptible segments of storytelling” and edges to choices the user can do, leading to other 
states. Each state describes the virtual characters behaviors (i.e., conversation, gesture or 
movement) for the corresponding step of the story. A visual tool (Figure 1.7) was developed where 
FSMs are visualized as graphs and game authors can edit them through a graphical interface and 
save them in XML format. XML files are processed by a module called Engine/Wrapper, written in 

 

Figure 1.6. A screenshot from a prototypical serious game proposed by McKenzie and McCalla. 



1.3    Solutions proposed by academic research 19 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

Macromedia Director’s Lingo language. Its main purposes are to translate FSMs in a score using 
Director syntax and play the story by executing behaviors described in the FSM nodes and showing 
the user choices modeled by FSM edges. The AESOP toolbox was used to author Heart Sense 
Game [54], “a role-playing game in which you help the hero try to solve a crime and simultaneously 
rescue his career and find romance”, having the form of a character-driven adventure story in which 
user interaction and learning tasks are limited to dialogues with NPCs. While authors claim that the 
use of XML makes their architecture game engine-independent through communication of the 
Engine/Wrapper module with diverse game engines, it is not specified how it is implemented. 

Protopsaltis et al. [50] deal with the problem of scenario-based serious games repurposing, 
which refers to “the changing of a learning resource, created for a specific educational context, to a 
new educational context (or contexts)”. In their work, authors define scenario-based serious games 
as “branching scenarios, where users’ decisions lead to effects, both immediate and simulation 
wide, altering the events, characters and situations encountered”. Difficulties related to serious 
games repurposing are similar to the ones related to their development. The authors propose to use 
properly structured XML files to store scenarios. These files describe the events that happen in a 
scenario and the consequences of user actions. They also provide a graphical editor, called mEditor 
(Figure 1.8), to make it easier for non-programmers to edit scenarios, by rendering XML files as 
tree structures and allowing drag-and-drop operations on them. The editor has been used to create 
scenarios for an educational game, called Happy Night Club, that explains to teenagers the dangers 
of binge drinking. The game has a 2D interface and the user can learn only through conversations 
with virtual characters. Authors do not specify to what extent their approach can be applied to other 

 

Figure 1.7. A screenshot from the authoring toolbox AESOP.



20 1.    Architectures and tools for serious game creation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

kinds of games (for example, 3D first-person games) and teaching techniques, involving 
interactions beyond simple conversations. 

Van Est et al. [17] propose an authoring tool to build scenarios by composing building blocks 
(Figure 1.9). The basic ones are actions and events: the former are performed by the player, the 
latter by the game. To allow non-linear scenarios, logic blocks are employed, that allow scenario 
branching, such as if-then blocks. Finally variables, combined with logic blocks, allow a finer 
grained control over non-linear scenarios (e.g., a variable describing the result of an action can be 
used as threshold to decide whether an event must be performed). Authors also developed a 
scenario editor in which blocks are represented by nodes and can be composed through a drag-and-
drop interface. A scenario is visualized as a branching sequence of connected nodes of various 
kinds. The scenario editor is also used to execute scenarios, while an additional application, the 
Communicator, is used to implement communication with the game engine through TCP/IP. This 
approach allows instructors to create scenarios that can be potentially executed by any game engine. 
However, scenario editing is not made completely game engine independent by this solution, for 
two reasons. First, actions and events are specific to a single game and must be defined by game 
developers to exploit the features of the adopted game engine. Second, modules performing 
communication with the Communicator application must be implemented according to actions and 
events available in the scenario editor. The editor was used to create scenarios for a game called 
Supervisor, aimed at training supervisors of oil drilling sites. In the game, the user learns to handle 
hazardous situations, watch personnel and take care of health, safety and environment regulations. 

 

Figure 1.8. A screenshot of the scenario editor proposed by Protopsaltis et al. 



1.3    Solutions proposed by academic research 21 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

<e-Adventure> [60] is a platform for the creation of serious games resembling the point-and-
click graphic adventures that were very popular from the mid ‘80s to the mid ‘90s, such as the 
Monkey Island series [75]. To make the pedagogical content game engine-independent, the creators 
of the platform follow what they define a “documental approach” [38], exploiting XML files to 
describe scenarios. Since XML files are human readable, this approach also facilitates the 
collaboration of programmers with domain experts while working on pedagogical content. In <e-
adventure>, the story is divided in scenes, each of which requires the user to carry out some tasks to 
be able to move to the next scene. Tasks usually consist in performing some action on objects on 
the screen (e.g., clicking an object and selecting an action from the related menu) or having a 
conversation with a virtual character. Positive or negative scores can be assigned to tasks [36], so as 
to create an automatic assessment of user’s performance. The platform also provides an editing tool 
supporting the creation of scenes, by combining the art assets provided by artists and specifying 
clickable objects with related actions. <e-Adventure> was exploited, for example, to create a 
serious game teaching the Insertion Procedure of Central Venous Catheters [35]. In this game, the 
user is shown pictures of the actual medical equipment necessary for the procedure and has to 
perform the correct sequence of actions on the different tools by clicking on them and selecting the 
appropriate actions from a menu. Communication with the patient is also carried out when specified 
by the scenario. As the authors themselves underline, the biggest weakness of this platform is the 
game genre to which it is limited, that is, 2D graphic adventures. Entertainment games of the last 
decade offer much more realistic graphical quality and interactions to users, which could not feel 
engaged by 2D graphic adventures (see Figure 1.10 as an example), and thus less motivated to 
learn. Moreover, van Est [17] claims that the customization options provided by the <e-Adventure> 
editor are very limited and that authoring tools require operations which are overwhelming to a 
domain expert with no game development experience. 

 

Figure 1.9. The scenario editor proposed by van Est et al. 



22 1.    Architectures and tools for serious game creation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

The work presented by Johnson and Valente [27] shows how effective authoring tools can be, 
by allowing instructors to create content on their own with limited or no help by computer 
programmers. The paper describes the architecture and the authoring tools for the platform called 
Tactical Language and Culture Training System (TLCTS), which was exploited to build 3D serious 
games to teach the military foreign languages and cultures and how to use them for tactical 
purposes. Besides the overall architecture, the provided authoring tools are probably the major 
strength of this platform (Figure 1.11 shows an example of the dialog authoring tool). They allow 
domain experts to create pedagogical content through graphical interfaces, mainly in the form of 
conversations and non-verbal communication. Code for single lessons is automatically generated by 
the authoring tools, so the need for computer programmers is greatly reduced. Domain experts are 
also given the possibility to choose art assets (e.g., 3D models) to compose the virtual world in 
which lessons take place. Serious games produced using this platform have also been deployed and 
used by the military and the authoring tools proved really effective in rapidly increasing the 
available training material. One of these games is Tactical Iraqi, aimed at teaching the Iraqi 
language to American soldiers in order to be able to communicate with the population in Iraq. In the 
game, the user can explore a virtual world reproducing typical situations that the military can 
experience in Iraq, meet NPCs representing Iraqi civilians and talk with them. The game also 
exploits a speech recognition engine and a scoring system to assess user’s performance. The authors 
of the paper, however does not suggest if and how this platform can be extended to serious games 
of different genres or with different purposes. 

 

Figure 1.10. A screenshot from a game built using the e-Adventure platform. 



1.3    Solutions proposed by academic research 23 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

1.3.3 General Observations on the surveyed solutions 

As can be seen, there are many differences among the proposals surveyed above: some of them 
are suited only for specific domains (e.g., emergency rescue or military training), some others are 
limited to only a certain game genre (e.g., 2D graphical adventures) or to a single teaching 
technique (e.g. multiple answer questions and textual explanations). These limitations suggest that 
the development of a single tool supporting the creation of any kind of serious game in any domain 
is really hard, if not impossible. 

However, some common aspects can be identified. First, most authors resort to the XML 
language, or a language derived from it, to model pedagogical content. The reasons for this choice 
are that it is a standard language, which can also be processed by computers while being also 
understandable by humans. 

Second, most of the proposed architectures support the creation of serious games based on 
scenarios intended as narratives describing a possibly branching sequence of tasks that the user has 
to perform. Many apply this approach to education, but there are also examples of applications to 
other areas. For example, Moreno-Ger et al. employ it for clinical procedures training [35], while 
McKenzie and McCalla employ it for ethical decision-making in corporation environments [33]. 

Finally, as regards authoring tools, only Johnson and Valente [27] present a successful case 
study. The other attempts at creating authoring tools that domain experts can use are still in an early 
stage of development or have proved insufficient. The main aspects of the surveyed architectures 
are summarized in Table 1.1. 

 

Figure 1.11. A screenshot of the dialog authoring tool proposed by Johnson and Valente. 



24 1.    Architectures and tools for serious game creation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

 

Authors Game genre GEI Authoring 
tools 

Types earning 
tasks 

Learning tasks 
representation 

Bellotti et al. 
[1] 

Sandbox 
games 

No No Puzzle-games Annotated task tree 

Binsubaih et 
al. [2] 

Potentially 
anyone 

Yes No Potentially 
anyone 

Rule-based 

Hullett and 
Mateas [5] 

Not specified No No Rescue people 
in collapsed 
building 

SHOP statements 

Göbel et al. 
[4] 

Digital 
storytelling 

No  StoryTec Dialogs Story objects encoded 
in ICML (XML-based) 

Sliney and 
Murphy [10] 

First person 
3D adventure 

No CMS Dialogs and 
observations 

Not specified 

Virvou et al. 
[12] 

First person 
3D adventure 

No ED-Game 
Author 

Dialogs Not specified 

McKenzie 
and McCalla 
[7] 

Digital 
storytelling 

No No Dialogs Scenes with possible 
choices for user (XML) 

Silverman et 
al. [9] 

Interactive 
drama 

Yes AESOP Dialogs FSM, edges as dialog 
choices (XML) 

Protopsaltis 
et al. [8] 

2D graphic 
adventure 

Yes mEditor Mainly dialogs Trees with if-then-else 
nodes connecting 
events (XML) 

Van Est et 
al. [3] 

Many Yes Shai Not specified Sequences of actions 
connected by logic 
blocks 

Torrente et 
al. [11] 

2D graphic 
adventure 

No Yes Dialogs and 
object selections 

FSM, branches 
corresponding to user 
choices (XML) 

Johnson and 
Valente [6] 

First person 
3D adventure 

No Yes Mainly dialogs Not specified 

Table 1.1. Main aspects of the surveyed architectures. The acronym GEI in the header of the third 
column stands for game engine independent. In the last column we specify in parentheses if XML is 
used to store learning task representations. 



 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

2
The proposed Serious Game 

Architecture for Scenario-based 
Training 

Addressing the issues with serious games development introduced in chapter 1, we propose an 
architecture for serious games which has the following main purposes: 

• to organize and structure knowledge representation, 
• to allow for a more efficient game creation process, by making code reuse among different 

game engines possible and by allowing multidisciplinary teams to create serious games 
focusing more on knowledge representation and multimedia resources rather than on 
software implementation, 

• to be applicable to many domains in which scenario-based training is practiced, which 
include healthcare [2, 41, 52], emergency management [1, 53] and police corps [31]. 

2.1 The proposed architecture 

We first introduce some key concepts on which our work is based: 



26 2.    The proposed Serious Game Architecture for Scenario-based Training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

• The scenario concept is central to our architecture. We define it as a narrative describing the 
correct sequence of tasks that should be carried out by the user and the events that should 
take place in the game, as well as locations, objects and characters involved. 

• Game entities are all objects and characters in the virtual world that can have a state 
evolving during the scenario. 

• A state is a set of properties relevant to the domain and depending on the instructional 
requirements. For example, in a medical serious game a patient state could include vital 
signs and several other symptoms, while in a serious game for firefighter training the state of 
a game entity could describe whether that object is on fire. Property values can change as a 
scenario proceeds. In the example above, a game entity could catch fire at a certain point of 
the training session and then fire could be extinguished by the user. 

To make the code reusable and to make the architecture platform-independent and game engine-
independent we were inspired by the document-oriented approach proposed in [38]. We exploited 
the XML format to store and organize the information describing scenarios (i.e., the pedagogical 
content) and to model some other application features, such as the structure of menus (further 
details in the following sections). This file format has the advantage of being processable by 
computer applications and also facilitating editing by game developers and domain experts [38]. 
XML files can be directly edited through any text editor and their hierarchical structure makes them 

Figure 2.1. General overview of the serious game architecture. (Blue boxes represent modules,
yellow cylinders represent repositories). 



2.1    The proposed architecture 27 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

easier to understand than programming languages to domain experts without experience in software 
development. Moreover, it’s relatively easy for developers to provide authoring tools to domain 
experts for creating and editing XML files. This authoring tools would expose the content of XML 
files in a more user-friendly way and allow editing them through a graphical user interface (e.g., as 
proposed by Torrente et al. [61]). Once available, this tools would make the creation of pedagogical 
content even more convenient and developer-independent. 

An overview of the modules and repositories that compose our architecture is provided in Figure 
2.1. The architecture allows to create serious games for scenario-based training, in which players 
can explore a virtual world and select tasks to perform on game entities. Correct selections make 
them proceed through the scenario. The game engine (represented in Figure 2.1 by the 
homonymous module) is responsible for simulating and rendering the virtual world, managing user 
interaction (both with the virtual world and with the graphical user interface) and giving feedback to 
the user (e.g., by playing audio samples or showing text messages). We designed the architecture 
such that any game engine can be plugged into the corresponding module by implementing only 
small changes to the code. This is possible thanks to the Serious Game Coordinator module, which 
acts as an interface between the Game Engine module and the rest of the architecture. After 
selecting the game engine on which to execute the serious game, developers only need to implement 
communication between the engine and the Serious Game Coordinator. Then, this module will 
coordinate the other ones and handle communication between them and the game engine. 
Communication is partly implemented through events, as proposed also by BinSubaih et al. [9] or 
by van Est et al. [17]. To receive messages the game engine must subscribe to events produced by 
the Serious Game Coordinator, while to send messages the game engine must call public methods 
the Serious Game Controller makes available. 

The Logger module records information about user interaction and exploration of the 3D world, 
produced by the game engine, and outcomes of tasks, produced by the Scenario Simulator, in 
appropriately structured XML files (kept in the log repository, labeled Logs in Figure 2.1), 
following a schema we defined. These data can be used to analyze user performance during or after 
training sessions, for trainees’ auto assessment and to report progress during training sessions. In 
more detail, the Logger module records the following information: 

• names of tasks selected by the user and whether the selection was correct, 
• 3D coordinates of the destination of every user movement, 
• the target of each mouse click (e.g., an interface component or a 3D object), 
• the coordinates of each waypoint that is reached by the user’s avatar, which are special 

points in the 3D world that the user’s avatar gets to before performing specific tasks. 



28 2.    The proposed Serious Game Architecture for Scenario-based Training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

A timestamp is assigned to each recorded event, so that their sequence can be reconstructed. 
Figure 2.2 shows an example of a log file. At the beginning, the name of the player is recorded 

followed by the list of events, in the PlayerName element. The first stored information is the 
timestamp of the event, in the homonymous element. Then, for each event the values of several 
parameters are reported. Parameter names depend on the type of the event, specified in the initial 
GameEvent element. For example, a TaskSelectionGameEventType element stores the target on 

<EMSAVELog xmlns:xsi="http:"//www.w3.org/2001/XMLSchema-instance 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<PlayerName>Andrea</PlayerName> 
<GameEventList> 
   <GameEvent xsi:type="WaypointGameEventType"> 
      <TimeStamp>2010-07-14T16:27:27.5944095+02:00</TimeStamp> 
      <X>-12.61424</X> 
      <Y>2.255441</Y> 
      <Z>1.49274135</Z> 
      <Vertical>0</Vertical> 
      <Horizontal>-1.0978539</Horizontal> 
   </GameEvent> 
   <GameEvent xsi:type="TaskSelectionGameEventType"> 
      <TimeStamp>2010-07-14T16:27:30.2635621+02:00</TimeStamp> 
      <Object>Patient</Object> 
      <KeywordPath>Presentazione a paziente</KeywordPath> 
      <Outcome>Right</Outcome> 
   </GameEvent> 
   <GameEvent xsi:type="WaypointGameEventType"> 
      <TimeStamp>2010-07-14T16:27:33.1197255+02:00</TimeStamp> 
      <X>-12.61424</X> 
      <Y>2.255441</Y> 
      <Z>1.49274135</Z> 
      <Vertical>-0.473972619</Vertical> 
      <Horizontal>-1.12364757</Horizontal> 
   </GameEvent> 
   <GameEvent xsi:type="TaskSelectionGameEventType"> 
      <TimeStamp>2010-07-14T16:27:35.0528361+02:00</TimeStamp> 
      <Object>Patient</Object> 
      <KeywordPath>Spoglia torace</KeywordPath> 
      <Outcome>Right</Outcome> 
   </GameEvent> 
   <GameEvent xsi:type="MouseClickGameEventType"> 
      <TimeStamp>2010-07-14T16:27:39.3120797+02:00</TimeStamp> 
      <MouseTarget>MenuWindow</MouseTarget> 
      <TargetElement>Chiudi simulatore</TargetElement> 
   </GameEvent> 
</GameEventList> 
</EMSAVELog> 

Figure 2.2. Example of an XML log file. 



2.1    The proposed architecture 29 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

which the task was performed, the name of the task and its outcome, that is whether the selection 
was right or wrong. 

In the following, we describe in detail the Scenario Simulator module and the various 
repositories depicted in Figure 2.1. 

2.1.1 The Scenario Simulator module 

Real world scenario-based training is usually carried out in form of a simulation, with one or 
more instructors directing it and role-playing actors impersonating the different characters involved. 
These simulations are based on scenarios, which are written by instructors and used to direct 
training sessions and evaluate trainees’ performance. Trainees usually have to execute a sequence of 
tasks to correctly handle the situation described by the scenario and thus successfully complete the 
training session.  

Serious games can be employed to transfer real world training simulations to a virtual world 
with synthetic characters, but to make it possible an appropriate and effective way to model 
scenarios is necessary. A formal representation of scenarios, together with visual tools for editing 
them, would allow domain experts to create training scenarios that could directly be incorporated in 
games. They could then be exploited to control the game as well as evaluate user performance by 
comparing her task selections against the correct sequence of tasks described in the chosen scenario. 

The Scenario Simulator module (Figure 2.3) receives user’s task selections from the Serious 
Game Coordinator and exploits scenario models in the scenario repository (labeled Scenarios in 

 

Figure 2.3. A more detailed view of the Scenario Simulator module. (Blue boxes represent modules,
green boxes represent sub-modules, yellow cylinders represent repositories) 



30 2.    The proposed Serious Game Architecture for Scenario-based Training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

Figure 2.3) to determine whether those selections are correct. Then it checks whether the spatial 
conditions for the selected task are satisfied, through the Spatial Condition Checker module. If they 
are not, the Scenario Simulator module tells the Serious Game Coordinator to do the necessary 
actions to satisfy them or to ask the user to do them (depending on what specified in the spatial 
conditions descriptions, as explained in section 2.1.2.1). When spatial conditions are satisfied, the 
Effect Launcher module tells to the Serious Game Coordinator what effects must be executed 
(effects definition is described in section 2.1.2.2). Then, based on the CTT model of the scenario 
(described in section 2.1.1.1), the CTT Simulator module determines which tasks are correct 
selections for the user based on the last task completion. 

In the following sections, we illustrate how modules composing the Scenario Simulator and the 
repositories depicted on the right side of Figure 2.3 are defined and used. 

2.1.1.1 Scenario representation 

The main models exploited by the Scenario Simulator are the ones representing the sequences of 
tasks that the user and the game entities have to perform.  

To this purpose, we exploited task models, which are used in human-computer interaction (HCI) 
to analyze the logical activities that support the achievement of users' goals [45]. They can be 
exploited for different purposes such as system design, development and usability evaluation. They 
describe the tasks needed to achieve a particular goal or a set of goals. These tasks are typically 
represented in a hierarchical structure. Task descriptions can range from abstract activities to 
concrete actions. 

In a serious game for scenario-based training, players have to perform a correct sequence of 
tasks that leads to a specific goal, and there could be various sequences that lead to the same result. 
We propose to use task models to describe and structure these tasks. Moreover, task models can be 
represented by a proper data structure, to be processed by the game engine or game authoring tools. 
Task models can thus support game production in different ways: 

• When the design process requires to define a scenario or multiple scenarios (which might 
illustrate, for example, single stages of the game), each scenario could be formalized 
through a task model. Then, task models could help identify requirements of the game and 
thus support design decisions. 

• Game building tools could exploit the task modeling formalism to directly involve people 
with no particular skills in game development (e.g. experts of a specific domain) in the game 
creation process. For example, the tools could provide the expert with a graphical user 
interface to model instructional content in terms of task models. 

• At runtime, the task model could be employed by the game engine to support and monitor 
procedure execution. For example, it could be used to present the player with the actions she 
can perform, retrieving them from the data structure, based on the history of actions already 
taken. 



2.1    The proposed architecture 31 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

• A task model representation of scenarios can support replay and evaluation of players’ 
performance. Having a structure telling what sequences of tasks should be carried out to 
successfully complete the game, it is possible to compare them with players' actions and to 
report errors. This feature is particularly useful in serious games, because it allows 
assessment of the learning progress. 

In this section, we introduce the task modeling formalism we adopted and illustrate how we 
employed it in our architecture. 

ConcurTaskTrees 

To model scenarios, we adopted the ConcurTaskTrees formalism (hereinafter, CTT), a formal 
notation originally proposed by Paternò et al [46] in the domain of interface design and 
development. It has been used to design and develop hypermedia [44] and safety critical 
applications [47], to support usability evaluation [30], and to analyze user interactions with web 
applications [42]. 

The main features of CTT are: 
• hierarchical structure - tasks are arranged in a tree structure, useful for decomposing the 

problem into smaller parts; 
• graphical syntax - the hierarchical structure is represented through a graph which reflects the 

logical structure of the hierarchy; 
• temporal operators - tasks are linked with their siblings, which are tasks grouped under the 

same node (called parent), through temporal operators describing temporal relations among 
them; 

• concurrency modeling - concurrent models can be used to describe temporal relations 
among tasks belonging to different models. 

A CTT model is built in three phases: 
1. tasks are decomposed and arranged in one or more hierarchical tree-like structures; 
2. temporal relations among tasks are identified; 
3. objects are associated with each task, whose execution involves interaction with one or more 

objects. 
Different temporal operators allow users of CTT to create complex temporal dependencies 

among tasks. Temporal operators defined in the notation are: 
• Order independence (T1 |=| T2). Tasks T1 and T2 can be performed in any relative order; 
• Concurrency (T1 ||| T2). Tasks T1 and T2 are performed at the same time. They do not need 

to have the same duration, so they can overlap; 
• Synchronization (T1 |[]| T2). Tasks T1 and T2 have to synchronize on some exchange of 

information; 
• Enabling (T1 >> T2). Termination of T1 enables execution of T2; 
• Choice (T1 [] T2). T1 and T2 are both enabled, but when one of the two is chosen, the other 

one is disabled; 



32 2.    The proposed Serious Game Architecture for Scenario-based Training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

• Enabling with information passing (T1 []>> T2). When T1 terminates it provides some 
value for T2 and enables it; 

• Deactivation (T1 [> T2). T1 is interrupted by T2; when T2 terminates, then T1 is 
reactivated; 

• Iteration (T1*). T1 is repeated until another task deactivates it; 
• Finite iteration T1(n). T1 will be performed n times; 
• Optional task [T1]. Performance of T1 is not mandatory. 
Besides the hierarchical modeling and graphical syntax, which are common features of many 

task modeling formalisms, there are two peculiar features of CTT that make it particularly suitable 
for our purposes. 

First, CTT allows one to model concurrent processes, a feature not easily found in other task 
modeling formalisms [45]. This can be useful in serious games design, because it allows a serious 
game to concurrently manage and control tasks performed by one or more user’s avatars and by all 
the game entities involved in a scenario. Moreover, interactions among characters and game entities 
can be modeled. For example, it is possible to model a procedure on which several users have to 
collaborate or to simulate consequences of user tasks on game entities in the virtual world, such as 
state changes. 

Second, the CTTE (ConcurTaskTrees Environment) application [39] supports a relatively easy 
and quick visual creation and editing of CTT models. It also allows to export CTT models into 
XML format. This makes the exploitation of task models by other applications very convenient: a 
developer can easily create a parser for the CTT XML syntax that extracts the needed information 
from the exported model. 

The application of CTT in our architecture 

To model scenarios, we exploit the concurrent features of CTT, combining several models: 
• the user CTT model describes the correct sequence of tasks that the user has to perform, 
• for each game entity performing tasks in the scenario, one game entity CTT model describes 

sequences of tasks the game entity has to perform in the virtual world, 
• a concurrent CTT model is used to specify temporal relations among tasks belonging to the 

 

Figure 2.4. Example of how the Choice operator is used. 



2.1    The proposed architecture 33 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

other CTT models. 
Leaf nodes in the CTT models represent tasks the user or game entities can perform, while 

internal nodes serve the purpose of grouping their child nodes. Generally, game creators are free to 
group tasks to their preference and build trees with any number of levels. However, there are special 
cases in which grouping becomes mandatory, to ensure the correct simulation of the sequence of 
tasks: 

• when the Choice temporal operator (introduced in section 2.1.1.1) is used, all possible 
alternative nodes must be connected in sequence via the Choice temporal operator and then 
grouped under the same parent (this holds also for alternative nodes which are roots of 
subtrees). For example, in the model depicted in Figure 2.4, there are two nodes connected 
by a Choice temporal operator ([]). When a leaf child of one of them is executed, the 
children of the other one will not be selectable, and thus executable, anymore; 

Figure 2.6. Screenshots of a) user CTT model, b) NPC CTT model and c) concurrent CTT model.

 

Figure 2.5. a) An example of the ambiguity problem. b) Eliminating ambiguity by inserting a new
node. 



34 2.    The proposed Serious Game Architecture for Scenario-based Training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

• when the Order Independence temporal operator is used in a subtree, if in the same subtree 
other different temporal operators are present, the subsequent nodes which are not connected 
through the Order Independence temporal operator must be grouped under a new node, 
which then has to replace the first one of the sequence in the tree. Figure 2.5a shows an 
example of a tree in which an Order Independence temporal operator is followed by a 
different temporal operator. Figure 2.5b shows how the previous tree must be transformed 
by grouping nodes to ensure correct simulation. 

The interpretation of temporal operators by the Scenario Simulator depends on the model. In the 
following, we describe how different models are interpreted by the Scenario Simulator. 

The user CTT model describes which tasks can be performed by the user at each moment of the 
simulation. For example, if she has to call an NPC (Non-Player Character) before trying to rescue 
an injured patient, the two tasks have to be connected by an “Enabling” temporal operator in the 
user CTT model. Based on this relation, the Scenario Simulator could, for example, prevent the user 
from (or give a negative score for) rescuing the person before having called for help  

Temporal operators in the game entity CTT models, instead, are used by the Scenario Simulator 
to tell the game engine what tasks game entities have to perform and to describe temporal relations 
among them. The Scenario Simulator uses this information, together with the concurrent CTT 
model, to control the actions performed in the virtual world by game entities. The concurrent CTT 
model is used by the Scenario Simulator to know temporal relations among user’s and game entities 
tasks. All leaf tasks executed by game entities and the user (i.e., tasks included in game entities and 
user CTT models) must be inserted in the concurrent model and connected to their siblings through 
the appropriate temporal operator. For example, to tell that a certain game entity task must be 
executed after a certain user task, the game entity task must be the right sibling of the user’s task 
and an “Enabling” temporal operator must connect them. Figure 2.6 exemplifies this case. The user 
CTT model fragment in Figure 2.6a depicts an hypothetical “phase 1” of a rescue procedure 

 

Figure 2.7. CTT for the “Conduct Head-to-Toe Exam” procedure. 



2.1    The proposed architecture 35 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

(internal nodes can be named arbitrarily and serve only to the purposes of giving a logical structure 
to their child nodes or to ensure correctness of the simulation). Figure 2.6b, instead, shows a 
fragment of the NPC CTT model, with a root node, labeled “NPC”, which is repeatable, as shown 
by the ‘*’ symbol close to the label. Since the root is repeatable, every task in the tree is always 
repeatable. Moreover, each task can be executed at any time, since they are all connected to each 
other by Order Independence temporal operators. The concurrent CTT model in Figure 2.6c puts the 
tasks from the two previous models together. The “Call NPC” task in this model is a reference to 
the homonymous task in the user CTT model, while the “Reach user” task is a reference to the 
homonymous task in the NPC CTT model. From this concurrent CTT model, the Scenario 
Simulator knows that, after the “Call NPC” task is executed, the NPC has to perform the “Reach 
user” task. As a consequence, the Scenario Simulator tells the Serious Game Coordinator to execute 
the effects of that task (e.g., to make the NPC game entity move towards user’s avatar), which will 
then communicate it to the game engine. 

Error models 

As described in [43], information in task trees can be exploited to support user's interaction with 
different kinds of automatic help. More precisely, it can be used to inform users about (i) tasks that 
can be executed at a particular moment of the simulation (i.e., tasks that satisfy temporal constraints 
described in CTT models) (ii) subtasks they should perform to complete a task, and (iii) correct 
sequences of tasks that enable a particular task. For example, if we consider the procedure “Conduct 

 

Figure 2.8. An error explanation shown in EMSAVE.



36 2.    The proposed Serious Game Architecture for Scenario-based Training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

Head-to-Toe Exam” in Figure 2.7, the system can tell the user that, at the beginning, only the task 
“Check Head” can be executed. After completing it, the system can tell that “Check Neck” can be 
executed, and then all the subtasks of “Check Chest” will be executable at the same time. To 
complete “Check Chest”, the system will suggest to complete all its subtasks, while any 
permutation of those subtasks would be suggested as a correct sequence to enable the “Check 
Abdomen” task after the completion of “Check Neck”. 

These kinds of help can be useful for trainees to know how they could advance in the 
simulation, but, unfortunately, they are not enough to make users understand their errors when they 
choose an unsuited task. More precisely, they can provide reasons why a chosen task is not suited, 
but only in terms of tasks to complete first, if any. Moreover, if a task is not executable at a 
particular moment of the simulation and will never be, a training system based only on CTT would 
be able to tell trainees that the chosen task is unsuited since then on, but not to explain why. To 
overcome such limitation and provide trainees with more tutoring feedback about wrong choices, 
we propose to couple CTT models with specifically designed error models (as shown in Figure 2.3, 
in the CTT+Error models repository). In intelligent tutoring systems, error models are employed to 
model users' misconceptions [12], such as typical errors that users commit during training. In 
scenario-based training, typical errors can be the omission of a task in the application of a procedure 
or the execution of a task that is common-sense, but scientifically wrong (e.g., people usually try to 
keep standing or sit down a fainting person, who instead should be helped to lie down to easily 
supply blood to the brain). To provide tutoring feedback to users who commit typical errors, our 
architecture allows trainers to associate each node of the user CTT model with a typical error list, 
i.e, a list of unsuited tasks that inexpert trainees typically perform after completing that node. For 
each task in the typical error list, trainers can write an explanation about why it is unsuited and 
should not be performed at that moment. In this way, if a trainee chooses an unsuited task in the 
typical error list, the Scenario Simulator module can not only determine that it is unsuited, but also 
retrieve the more informative explanation. For example, considering again the procedure “Conduct 
Head-to-Toe Exam” in Figure 2.7, if novice users typically perform “Check Abdomen” 

<ErrorModel> 
   <TaskErrors> 
      <!--Errors for tasks preceding "Check Neck" should be insert here--> 
      <TaskError> 
         <TaskIdentifier>Check Neck</TaskIdentifier> 
         <DefaultExpl>You have just checked the neck[…]</DefaultExpl> 
         <TypicalErrorList> 
            <TypicalError> 
               <ErrorTaskName>CheckAbdomen</ErrorTaskName> 
               <SpecificExpl>You should not check[…]</SpecificExpl> 
            </TypicalError> 
<!--Other explanations for typical errors after “Check neck”, explanations for the following 
tasks and closing tags should be here--> 

 
Figure 2.9. The XML code of the error model for the CTT example depicted in Figure 2.7. 



2.1    The proposed architecture 37 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

immediately after “Check Neck”, the task “Check Abdomen” could be inserted in the typical error 
list for “Check Neck” with an explanation like the one shown in Figure 2.8. 

Of course, enumerating all possible trainees' errors may be very challenging and time 
consuming for trainers, so we allowed them to specify also more general explanations that will be 
shown for all less typical errors. More precisely, each node of the user CTT model can be 
associated to a description that sums up the state of the simulation after completing that node and 
provides some advice on how to continue. The association is defined by developers at design time, 
using the TaskIdentifier element (shown in Figure 2.9) to specify the name of a task to which a 
typical error list is associated. If, at runtime, the user selects an unsuited task and it is in the typical 
error list of the last executed task, the specific explanation is provided. Otherwise, the more general 
hint is provided instead. For example, if after completing the task “Check Neck” of the procedure 
“Conduct Head-to-Toe Exam” in Figure 2.7, the user selects a task that is not a subtask of “Check 
Chest” and it is not in “Check Neck” typical error list, the system will use the general explanation 
associated to “Check Neck”, which can sound like “You have just checked the neck. Complete the 
head-to-toe exam in the right order by conducting the required exams on the chest”. The XML code 
for the error model (see Figure 2.9 for an example) has an entry (TaskError) for each task in the 
user CTT model. Besides the TaskIdentifier element mentioned above, each entry contains a 
mandatory default explanation (DefaultExpl) and an optional list of specific explanations 
(SpecificExpl), one for each typical error (referred to with the corresponding task name). 

In general, the explanations provided by trainers should not offer the explicit solutions, but 
should be intended as hints to make users reason about possible choices. Users who could not guess 
how to proceed, even after the hint, can always rely on the explicit help (i.e., the list of suitable 
tasks) that the SG can automatically offer by exploring the CTT.  

2.1.1.2 State models 

As can be seen in Figure 2.3, the scenario repository not only stores CTT models and error 
models, but also state models. There must be a state model for each game entity with state. A state 
model describes how values of properties in a state change as the scenario proceeds and is stored in 
a properly structured XML document. The information that must be included in state models varies 
across different domains and also across different serious games in the same domain. For example, 
for serious games in the domain of medical personnel training, the information that must be 
included in the patient state may vary depending on the purpose of the serious game. For instance, 
in games for triage training (e.g., the ones proposed in [26, 29, 32, 63]) only symptoms relevant to 
the triage procedure need to be represented, such as wounds, blunts and conscious state. Instead, in 
serious games for training healthcare professionals working inside the hospital, the set of vital signs 
and symptoms to be represented would be much larger, since in the hospital patients are attached to 
several devices that continuously monitor numerous parameters. 

For these reasons we defined an outline that game developers must use to define state models 
for a specific domain or a specific serious game. An example of a state model we used for a patient 



38 2.    The proposed Serious Game Architecture for Scenario-based Training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

in a medical serious game is shown in Figure 2.10. Every state model file must begin with a 
StateModel element, which contains an EntityName, a StaticData and a States element, which in 
turn includes one or more State elements having a string attribute describing their name chosen by 
developers. These are the only mandatory elements in state model files, elements nested inside them 
can be customized by developers. The EntityName element reports the name of the game entity to 
which the state model is associated. So, to correctly employ state models, a name must be assigned 
to the corresponding game entity (as allowed by any game engine) and the same name must be 
specified inside the EntityName element. The StaticData element must contain data that is common 
to all the states and does not change as the game proceeds. In the example, we included in this 
element the personal data (e.g., gender). State elements must be used instead to store data changing 
as the game proceeds. Each State element must contain the same XML elements, structured in the 
same way, the only thing that can change is the value contained in each element. As the scenario 
proceeds, game entity state changes are described by changes in values in the corresponding state 
models. In the example above, we nested in the State element an element describing the vital signs 
of the patient. It contains several other elements, such as the one reporting cardiac frequency, which 
changes from “State 1” to “State 2”. 

To create a state model for a specific domain, developers must work together with domain 
experts to identify the data it must include and how to structure it. Then, the XML schema of the 
state model we provide must be extended, in order for the architecture to be able to understand the 

<StateModel> 
   <EntityName>Patient</EntityName> 
   <StaticData> 
      <PersonalData> 
         … 
      </PersonalData> 
   </StaticData> 
   <States> 
      <State name="State 1"> 
         <VitalSigns> 
             <CardiacFrequency>65</CardiacFrequency> 
            … 
         </VitalSigns> 
      </State> 
      <State name="State 2"> 
         <VitalSigns> 
             <CardiacFrequency>143</CardiacFrequency> 
            … 
         </VitalSigns> 
      </State> 
   </States> 
</StateModel> 

Figure 2.10. Fragment of a state model XML file 



2.1    The proposed architecture 39 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

state model and to correctly interpret value data types. Data stored in the state model can be 
accessed through variables, which are mapped by the Variable Mapper module, described in section 
2.1.1.3. Through this approach, the architecture can be applied to any domain without modifying 
the code, but only customizing XML document schemas. 

2.1.1.3 The Variable Mapper sub-module 

To access the information stored in state models and in the user model at runtime, game creators 
can use variables, whose name must start with the at sign (@). These variables can be seen as 
placeholders that the Variable Mapper sub-module substitutes at runtime, by retrieving data 
corresponding to variables from the state models.  

Mappings between variables and state models elements are defined in properly structured XML 
files of which you can see an example in Figure 2.11. The root element is a VariableMappings 
element, which can contain one or more VariableMapping elements. Each mapping associates a 
variable to an XML path. The Variable element contains the string corresponding to the variable 
name, while the XMLPath element can contain a UserModelPath element or a StateModelPath. The 
former is used when the variable must be substituted with a value from the user model and contains 
a string describing the XML path starting at the root of the document. An XML path is a sequence 
of elements name nested within each other, divided by the slash symbol (/), which bring to the 
element whose value must be substituted to the variable. The StateModelPath is more complex and 
contains other elements: 

• the GameEntityName element stores the name of the game entity with which the state model 
is associated, 

• the PathType element can either contain the “Static” or “Dynamic” string, respectively 
specifying whether the path refers to static data stored in the state model or to data stored in 
the States section of the model, 

• the Path element contains the relative XML path of the value with which the variable must 
be substituted. If PathType is Static the path is relative to the StaticData element in the state 
model, otherwise it is relative to the State element corresponding to the current state. 



40 2.    The proposed Serious Game Architecture for Scenario-based Training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

In Figure 2.11, for example, the variable called “CardiacFrequency” is mapped to the 
CardiacFrequency element inside the VitalSigns element of the patient state shown in Figure 2.10. 

When developers define a new state model, they also have to define an XML file with variable 
mappings. This way, variables can be used to refer to data stored in the state model, without having 
to remember XML paths. Moreover, as described above, variables can be used to retrieve data that 
changes as the scenario proceeds: the same variable can refer to a different State element inside a 
state model, depending on the moment in which its value is retrieved.  

2.1.2 Task repository 

CTT models describe temporal and hierarchical information about tasks. The task repository 
(labeled Tasks in Figure 2.3) stores additional details for each task appearing in a CTT model (i.e., 
each leaf in the tree). 

The task repository is written in XML format. We defined an XML schema which determines 
how the information has to be laid out, so as to create a standard way to describe tasks. Thanks to 
the schema, serious games creators are able to define their own task repository tailored to the 
domain of interest, so that the Scenario Simulator can employ it. The task repository includes 
definitions for both tasks that can be performed by the user and by the NPCs. 

For each task, the task repository stores information about (for an example, see Figure 2.12): 
• its name, which must be unique, since it is used as key when searching for a task, 
• its performer, i.e., the virtual character or game entity which performs the task (e.g., the user 

or an NPC), 
• its target (optional), i.e., the game entity on which the task is performed, 
• spatial conditions (optional), i.e., conditions that must be satisfied to allow task 

performance,  
• effects (optional), i.e., consequences of the task on states, virtual world and the serious game 

graphical interface (explained in more detail in section 2.1.2.2). 
While name, performer and target are string values that need no further explanation, in the 

<VariableMappings> 
   <VariableMapping> 
      <Variable>CardiacFrequency</Variable> 
      <XMLPath> 
         <StateModelPath> 
            <GameEntityName>Patient</GameEntityName> 
            <PathType>Dynamic</PathType> 
            <Path>VitalSigns/CardiacFrequency</Path> 
         </StateModelPath> 
      </XMLPath> 
   </VariableMapping> 
</VariableMappings> 

Figure 2.11. Example of a variable mapping. 



2.1    The proposed architecture 41 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

following we explain in more detail spatial conditions and effects. 
Figure 2.12 shows a fragment of an XML file defining a task for a medical serious game called 

“Chest palpation”, as can be seen in the TaskName element. The performer is specified in the 
RoleLabel element, which reports the label used to identify the performer in the game. Similarly, 
the target of the task is specified in the TargetLabel element. Conditions are described by single 
Condition elements nested inside a Conditions element. Condition elements are explained in detail 
in section 2.1.2.1. Similarly, several Effect elements describing the effects of the task are nested 
inside an Effects element, as explained in section 2.1.2.2. Each Task element can contain only one 
Conditions and one Effects element, but they both can contain one or more Condition or Effect 
elements. 



42 2.    The proposed Serious Game Architecture for Scenario-based Training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

 

<Task> 
   <TaskName>Chest palpation</TaskName> 
   <RoleLabel>TeamLeader</RoleLabel> 
   <TargetLabel>Patient</TargetLabel> 
   <Conditions> 
      <Condition xsi:type="PositionConditionType"> 
         <Solver>System</Solver> 
         <PositionLabel>GenericAnimationOnPatientTorso</PositionLabel> 
         <ThresholdDistance>0</ThresholdDistance> 
      </Condition> 
      <Condition xsi:type="OrientationConditionType"> 
         <Solver>System</Solver> 
         <OrientationLabel>GenericAnimationOnPatientTorso</OrientationLabel> 
         <ThresholdRotation>0</ThresholdRotation> 
      </Condition> 
   </Conditions> 
   <Effects> 
      <Effect  xsi:type="SerialEffectsType"> 
         <Effect xsi:type="ParallelEffectsType"> 
            <Effect xsi:type="ChangeCameraEffectType"> 
               <UserStoppable>1</UserStoppable> 
               <CameraLabel>AtPatientChest</CameraLabel> 
            </Effect> 
            <Effect xsi:type="SerialEffectsType"> 
               <Effect xsi:type="AnimationEffectType"> 
                  <Duration>4</Duration> 
                  <GameEntityLabel>TeamLeader</GameEntityLabel> 
                  <AnimationName>GenericActionChest</AnimationName> 
                  <Loop>true</Loop> 
                  <Speed>1</Speed> 
               </Effect> 
               <Effect xsi:type="TextMessageEffectType"> 
                  <UserStoppable>1</UserStoppable> 
                  <Message>@ChestPalpation</Message> 
               </Effect> 
            </Effect> 
         </Effect> 
         <Effect  xsi:type="PositionEffectType"> 
            <UserStoppable>true</UserStoppable> 
            <GameEntityLabel>TeamLeader</GameEntityLabel> 
            <PositionLabel>TeamLeaderSafe</PositionLabel> 
         </Effect> 
         <Effect xsi:type="OrientationEffectType"> 
            <Duration>0</Duration> 
            <GameEntityLabel>TeamLeader</GameEntityLabel> 
            <OrientationLabel>TeamLeaderSafe</OrientationLabel> 
         </Effect> 
      </Effect> 
   </Effects> 
</Task> 

Figure 2.12 Example of a task definition in the task repository 



2.1    The proposed architecture 43 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

2.1.2.1 Task spatial conditions 

The creators of a serious game could require that some spatial conditions are satisfied before the 
effects of a task are executed. These are the only conditions which are not controlled by the 
scenario, since the user’s avatar and the other game entities can change position and orientation in 
the game world during the training session. However, to guarantee consistent results, it is often 
required that a game entity has a specific position and orientation. For example, when the user’s 
avatar and an NPC have a dialog, it could be required that their corresponding 3D models face each 
other. These three types of spatial conditions can be specified in task descriptions: 

• distance between performer and target (e.g., during a dialog the performer and the target 3D 
models cannot be too far from each other), 

• presence of the target in the performer field of view (e.g., before a dialog the performer 3D 
model should look at the 3D model of the target to speak with), 

• position and orientation of the performer in the 3D world (e.g., the game engine could need 
the performer 3D model to be in a precise position and/or have a precise orientation before 
performing an animation on an object). 

Figure 2.12 shows how conditions are defined. The condition type is specified inside the 
Condition element. The following Solver element specifies whether the spatial condition must be 
satisfied by the user or by the system. When a spatial condition has to be satisfied by the system, the 
Scenario Simulator module asks the game engine, through the Serious Game Coordinator, to move 
and/or rotate the task performer in order to satisfy the conditions. Similarly, when a spatial 
condition has to be satisfied by the user, the Scenario Simulator module asks the game engine, 
through the Serious Game Coordinator, to show a message suggesting that she needs to move closer 
to a certain point and/or to rotate towards a certain object. This distinction is useful since, in some 
cases, trainers want the user to carry out these actions, for didactic purposes, i.e., to make the 
trainee remember to satisfy that condition also in the real world. In other cases, this is not necessary 
and the spatial condition has to be met only to make the scenario progress. For example, in a 
medical serious game teaching how to deal with deaf patients, the instructor could need to teach that 
when speaking to a deaf person, it is necessary to be in her field of view. Explicitly asking users to 
do it in the serious game would reinforce learning. On the other hand, sometimes 3D models must 
execute animations which involve interaction with other 3D models. To avoid incoherent behaviors, 
such as unwanted compenetrations between 3D models, the serious game creators could require a 
game entity to be in a precise position and have a precise rotation before executing the animation. 
This condition can be satisfied by the system, with no intervention by the user, since in this case 
there is nothing to learn.  

After the Solver element, there are elements peculiar of the specific type of condition. Positions 
and orientations are specified not using 3D coordinates, but labels that refer to the names of 
placeholders inserted by game creators in the virtual world. This allows the reuse of task 
descriptions in different virtual worlds, since placeholders with the same labels can be used by 
simply changing their position and orientation coordinates. 



44 2.    The proposed Serious Game Architecture for Scenario-based Training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

2.1.2.2 Task effects 

Task effects are defined using the Effect elements that can be seen in Figure 2.12. Each effect 
has a type among the following: 

• ChangeStateEffectType triggers state changes (e.g., a heart rate variation in a virtual patient 
could be the effect of a defibrillation task performed by the user), 

• VideoEffectType triggers playback of videos (e.g., videos showing details that cannot be 
reproduced by the virtual world at a sufficient level of fidelity) and audio (e.g., virtual 
patients' respiratory sounds), 

• TextMessageEffectType triggers the display of text messages (e.g., outcomes of medical 
tests), 

• PictureEffectType triggers the display of pictures (e.g., of a body part affected by a 
pathology), 

• ChangeControlVisibilityEffectType triggers the visualization of specific parts of the 
graphical interface of the serious game (e.g., a window showing vital signs of a virtual 
patient), 

• AnimationEffectType triggers playback of animations (e.g., performed by a virtual 
character), 

• ChangeCameraEffectType triggers changes in virtual camera parameters (e.g., position and 
orientation of the camera), 

• ChangeGameEntityVisibilityEffectType triggers game entity visibility,  
• PositionEffectType and OrientationEffectType respectively trigger changes in position and 

orientation of 3D objects, 
• DialogEffectType triggers playback of dialogs between virtual characters. 
When a task has multiple effects they must be nested under an Effect element of type 

SerialEffectType or ParallelEffectType (as happens in Figure 2.12). These elements do not only 
serve the purpose to group effects but also to define their execution order: 

• effects nested under an Effect element of type SerialEffectType are fired in sequence, that is, 
each effect can start only after the previous one has completed (the order in which they are 
listed in the XML document determines the order in which they are executed), 

• effects nested under an Effect element of type ParallelEffectType are all fired at the same 
time. 

Effect elements of type SerialEffectType can be nested under Effect elements of type 
ParallelEffectType, so that serious game creators are free to define any effect sequence they need. 

There are two elements that can be used in each Effect element, except for the ones of type 
SerialEffectType and ParallelEffectType: 

• the UserStoppable element contains a Boolean value which must be true (or 1) if user input 
is required to complete the effect and false (or 0) otherwise, 



2.1    The proposed architecture 45 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

• the Duration element contains a value of type double describing the time it takes to the 
effect to complete. 

An example of an effect requiring user input to complete is the effect of type 
TextMessageEffectType in Figure 2.12: to leave the user freedom to read the message at her own 
pace, the UserStoppable element for that effect must be set to 1 and the serious game could show, 
for example, a button to close the window showing the message which will signal the game that the 
user has given the input to complete the effect. After these two common elements, there are 
elements peculiar to each effect type, i.e., the effect parameters. 

The most complex effect type is the DialogueEffectType, exemplified in Figure 2.13. In our 
architecture, dialogs are sequences of lines alternatively said by the participating virtual characters, 
which can be at most two. The first interlocutor is the game entity performing the task or the user, 
the second interlocutor is the task target. Each dialog can contain one or more LinePair elements, 
grouped under a LinePairs element. Each of these elements must contain an Interlocutor1Line 
element, representing the line said by the first interlocutor, while the Interlocutor2Line, representing 
the line said by the second interlocutor, is optional. This way, effects of this type can also be used to 
make a character say a single line, e.g., an exclamation. The text of each line is stored in a Text 
element, which is mandatory, and one or more optional audio fragments can be associated to each 
line. This approach allows game creators to compose messages reusing audio samples. 

Effects of a task and the order in which they have to be executed are defined when a task 
description is added to the task repository and can’t be changed at runtime. However, depending on 
the effect type, some effect parameter values can be instantiated at runtime. To do so, game creators 

<Effect  xsi:type="DialogEffectType"> 
<LinePairs> 

<Linepair 
<Interlocutor1Line> 

<Text>Buongiorno, sono @UserGenderJob del 118, cosa sta
succedendo? 

</Text> 
<Audio> 

<AudioFragment>@PresentationQuestion</AudioFragment> 
</Audio> 

</Interlocutor1Line> 
<Interlocutor2Line> 

<Text>@Presentation</Text> 
<Audio> 

<AudioFragment>@PresentationAnswer</AudioFragment> 
</Audio> 

</Interlocutor2Line> 
</Linepair 

</Linepairs> 
</Effect> 

Figure 2.13. An effect of type DialogEffectType.



46 2.    The proposed Serious Game Architecture for Scenario-based Training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

can use variables, which are then substituted at runtime with the appropriate values by the Variable 
Mapper module, as described in section 2.1.1.3. A variable is used for example in the effect of type 
TextMessageEffectType shown in Figure 2.12. This effect includes an Element named Message 
whose value is the message that will be shown to the user. In this example, the message to be shown 
is the result of a chest palpation in a medical serious game. At runtime, when this effect is executed, 
the Scenario Simulator finds the @ChestPalpation variable and uses the Variable Mapper to 
discover that it must be substituted with the text describing the result of the examination stored in 
the current state of the patient. The message string can then be provided to the game engine, 
through the Serious Game Coordinator, to be shown to the user.  

2.1.3 Menu task hierarchies 

In model-based user interface design, models are used to give a representation of tasks that can 
be performed through an interface, of the abstract structure and behavior of the interface and of its 
visual parts [48]. Model-based user interfaces bring several advantages [59], among which 
reusability and support for the creation of design tools, which can easily understand models. These 
are also purposes of the architecture we propose, so we applied some of the principles of model-
based user interface design by coupling task descriptions, illustrated in section 2.1.2, with an XML 
based hierarchical description of the user interface. 

As introduced at the beginning of this chapter, to proceed in the scenario, the user has to select 
the correct task among the available ones. Every game entity can be defined as target for a task. A 
specific menu must be associated to each task target, which will contain all the tasks the user can 
perform on that target. While the implementation of the interaction (e.g., mouse button click 
management and menus appearance) depends on the chosen game engine and thus cannot be 
generalized, we created an XML schema to define task hierarchies that support the creation of game 
engine-independent menus. 

Menus based on our schema are organized following the well-known hierarchical structure in 
which each menu can contain several items grouped in nested submenus. We decided to adopt this 
structure for the menus for two main reasons: 

• many well-known office applications make use of hierarchical menus, so many users, not 
only computer experts, would be familiar with similarly structured menus, 

• grouping tasks reduces their number in each submenu, to avoid the user the inconvenience 
of scrolling down very long lists of tasks. 

Each menu is described by a single XML file, of which an example can be seen in Figure 2.14. 
At the top, each file has to include a Language and a Country element specifying the language of 
the current menu, to allow menu localization. Then, a Target element indicates the target of the 
tasks included in the menu, which must be a string the game engine can use to retrieve the 
corresponding game entity. For example, for the Menu in Figure 2.14 to work, the virtual world 
must include a game entity to which the string “Relative” is associated (how this is implemented 



2.1    The proposed architecture 47 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

depends on the specific game engine).The main element called Menu can include two kinds of 
elements: 

• Menu elements identifying submenus, 
• Action elements corresponding to tasks the user can perform. 
Each Menu element must be followed by a MenuName and a Description element. Action 

elements must include a TaskName and a MenuItemName element: 
• the former indicates the name of the task in the task repository to which the menu item 

corresponds, 
• the latter indicates the name of the task shown to the user. 
The depth of this recursive tree structure is not limited, that is, each menu can contain an 

<ActionHierarchy xmlns="http://tempuri.org/ActionHierarchy.xsd" 
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
   <Language>it</Language> 
   <Country>IT</Country> 
   <Target>Relative</Target> 
   <Menu> 
      <MenuName>Tasks on character</MenuName> 
      <Description>Menu showing tasks on a character</Description> 
      <Menu> 
         <MenuName>Communicate</MenuName> 
         <Description>Communicate with the character</Description> 
         <Action> 
            <TaskName>Presentation to the character</TaskName> 
            <MenuItemName>Presentation</MenuItemName> 
         </Action> 
         <Menu> 
            <MenuName>Request information</MenuName> 
            <Description>Request information from the caracter</Description> 
            <Action> 
               <TaskName>Ask character name</TaskName> 
               <MenuItemName>Name</MenuItemName> 
            </Action> 
            <Action> 
               <TaskName>Ask character age</TaskName> 
               <MenuItemName>Age</MenuItemName> 
            </Action> 
         </Menu> 
      </Menu> 
      <Action> 
         <TaskName>Give item to character</TaskName> 
         <MenuItemName>Give item</MenuItemName> 
      </Action> 
   </Menu> 
</ActionHierarchy> 

Figure 2.14. Example of an XML file defining a menu. 



48 2.    The proposed Serious Game Architecture for Scenario-based Training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

arbitrary number of actions and/or submenus. By distinguishing between task name and menu item 
name, we made task definition independent from menu definition. This allows developers, for 
example, to use the same task repository while showing different task names tailored to the user. 
This can be useful when groups of people with different levels of expertise must be trained. For 
example, a serious game for emergency medical training could be used by both professional 
healthcare personnel and people with no medical formation. To the second group only a small 
subset of the tasks available to the first would be available. Professional healthcare personnel is 
used to use abbreviations or acronyms for many tasks, so they could expect to see the same 
abbreviations or acronyms in the menus. However, the second group would probably not know 
these abbreviations and need more descriptive names in the menus. 

2.2 Implementation aspects 

The architecture has been developed in C#. We defined two namespaces under which the classes 
of the architecture are grouped. First, the Logger namespace includes only the homonymous class 
which implements the Logger module (described in section 2.1). The operations performed by the 
Logger class are straightforward, so we do not deal with them in this section. Second, the 
GameLogic namespace gathers classes implementing the functions of the Scenario Simulator 
module and of the Serious Game Coordinator module. A class called Narrator is responsible for 
reading CTT models describing the scenario and executing them. It exploits the methods of a class 
called SpatialPreconditionChecker to know if task spatial conditions are satisfied before executing 
them and the methods of the EffectLauncher class to execute task effects. 

The main functions of the SeriousGameCoordinator class are the following: 
• it synchronizes the classes managing preconditions and effects with the game engine 

tick, a signal used to set the frequency of time-dependent events in a game (such as 
rendering). This is necessary to correctly execute effects with duration and to wait for 
preconditions to be satisfied; 

• it provides public methods that the game engine can use to access data (e.g., tasks) and to 
initialize the Scenario Simulator module once the scenario has been chosen and the 
training session starts; 

• it defines the events to which the game engine must subscribe to receive information 
from the modules of the architecture; 

• it provides the methods and public fields that the game engine must call to send 
information to the modules of the architecture. 

From the point of view of a serious game developer using the proposed architecture, there are 
six fundamental events to which the game engine must subscribe: 

• the EffectFired event fires when an effect of a task is executed. By handling this event, 
the game engine shows the consequences of task selection to the user; 



2.2    Implementation aspects 49 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

• the EffectCompleted event fires when the execution of an effect is completed. By 
handling this event, the game engine can, for example, go back to the default camera 
after having changed it because of an effect of type ChangeCameraEffectType; 

• the SpatialConditionUnsatisfied event is fired when a spatial condition is not satisfied 
and it must be satisfied by the system (see section 2.1.2.1); 

• the SpatialConditionMessageSent event is fired when an unsatisfied spatial condition 
must be satisfied by the user and carries the message to be shown to her; 

• the SpatialConditionsDataRequested event is fired when data is needed to check if a 
spatial condition is satisfied. By handling this event, the game engine sends the 
necessary data to the Scenario Simulator module; 

• the ScenarioCompleted event is fired when the scenario is completed. It can be used, for 
example, to trigger the visualization of debriefing information or to start a final cutscene. 

 





 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

3
Case study: a serious game for 
Advanced Life Support training 

Based on the architecture described in chapter 2, we developed a serious game called EMSAVE, 
aimed at training EMS nurses (i.e., nurses working in ambulance services) in decision making 
during medical emergencies. We developed it in collaboration with nurses, instructors and medics 
working for the Italian EMS. In this chapter, we describe how we created it, in order to illustrate 
how the architecture is used to build serious games for scenario-based training. A similar process 
can be followed to create serious games in other domains. 

3.1  Conventional training of EMS nurses 

In order to be able to develop EMSAVE, we initially studied how EMS nurses work and train. 
We collected relevant information from interviews with nurses, instructors and medics working for 
the Italian EMS, who also collaborated during the entire production process. When EMS nurses 
face an emergency, they have to correctly analyze the situation, assess conditions of people 
involved, choose the appropriate procedures and perform them. Moreover, they typically need to 
operate under strict time constraints. EMS nurses training includes classroom lessons, case studies 
and live simulations. Emergency procedures are often described by flowcharts that have to be 
memorized by nurses. During live simulations, nurses operate on mannequins or actors under the 
supervision of one or more instructors, who guide them and evaluate their performance, based on a 



52 3.    Case study: a serious game for Advanced Life Support training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

predetermined scenario describing the initial situation, tasks that the trainee has to perform and how 
the scenario proceeds consequently. More rarely, larger live simulations (reproducing, for example, 
mass disasters) involving many people are organized, with actors playing patients and emergency 
situations recreated in every detail. Simulations are necessary for EMS nurses, to test concepts and 
procedures they learned before having to handle real emergencies, where errors or delays can have 
serious consequences.  

Live simulations require time, money and organizational effort, each time they are carried out. 
On the contrary, the development costs of a serious game, if it also provides the tools for 
conveniently creating new content (e.g., creating new training scenarios for the game), must be 
sustained only once. Then, the serious game can always be available and can be used anywhere, 
including at home. Training sessions need to be periodically repeated during nurses’ careers, mainly 
because: (i) emergency procedures are regularly updated, as a consequence of progress in medicine 
(e.g., new knowledge or changes in medical devices); (ii) some kinds of emergency situations occur 
rarely, and they have to be rehearsed through training, to maintain the ability to effectively handle 
them. Thus, nurses need training tools which can be frequently, conveniently and easily accessed 
and used, to reduce time needed and increase opportunities for training: serious games are really 
promising to this purpose. 

We also had the possibility to observe conventional training sessions with live simulations. In 
particular, we observed simulations carried out for training in Advanced Life Support (ALS) 
procedures. These procedures are exclusively employed in cardiopulmonary emergencies. During 
ALS procedures, depending on the type of cardiac arrhythmia, defibrillation is applied, and 
medication is administered. Also oxygen is administered and sometimes endotracheal intubation 
must be performed to secure the airway. At regular intervals, the effect of the treatment on the heart 
rhythm, as well as the presence of cardiac output, is assessed on a cardiac monitor or through 
palpation and auscultation. In case of patients who suffered physical injuries, Advanced Trauma 
Life Support (ATLS) procedures are used instead. Despite the differences among procedures, 
training methods are very similar. 

From our observations and the information collected during the interviews with the experts, we 
learned that: 

• ALS procedures are always performed by a team, both during real emergencies and training, 

• the trainee acts as the team leader, thus being the one making decisions, while the other team 
members only execute her orders, 

• the instructor directs the simulation following a predetermined scenario, 

• in most scenarios, besides the EMS team and the patient, characters also include a patient’s 
relative, who can be interviewed to obtain more details about the patient (when the patient 
himself cannot talk), 



3.2    Application Overview 53 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

• it is up to the instructor to decide when to help the trainee, 

• at the end of the simulation, instructors evaluate trainee’s performance. 

These observations show how training sessions are carried out in a way very similar to a role 
playing game, with the training scenario as script. These points make our architecture, in which 
scenarios play a central role, very promising for developing serious games for training EMS nurses. 

Every five years, ALS guidelines are internationally updated and medical personnel has to 
attend a retraining course to learn what changed. Full ALS courses take three days and combine 
classroom lessons with simulations involving mannequins. Smaller retraining sessions, with the 
purpose of refreshing already acquired knowledge, should be held during the period between 
guideline updates but, mostly due to budget shortage, they rarely take place. Serious games could 
thus be used to reduce retraining costs and make it more convenient. Instead of having to recruit a 
trainer and organize collective courses, trainees could individually practice on computers at work or 
at home on the assigned scenarios. Based on these considerations, we decided to develop EMSAVE 
as a serious game to be used for retraining purposes. 

3.2 Application Overview 

The user of EMSAVE plays the team leader of an EMS team that is called to rescue a patient 
outside of the hospital. The virtual rescue team also includes a nurse teammate and a patient’s 
relative character can be involved in scenarios as well. Real-world emergencies are usually handled 
by teams made of more than two persons, but, in accordance with the experts, we decided to keep 
their number low in the serious game, to simplify development and lower the risk of unexpected 
situations during play, due to interactions between virtual character models. The reduced number of 
team mates did not affect the effectiveness of training, since team mates’ unique purpose is to 
execute some tasks requiring an intervention on the patient, such as administration of medications 
and application of defibrillation. The trainee plays the role of the team leader, so her only concern is 
to take the correct decisions about what tasks to perform and when to perform them and this is not 
affected by the number of team mates. 

At the beginning of each training session, the user has to choose a user profile or create a new 
one. The profile stores the user’s gender, so that the user character model in the virtual world can be 
adapted to it, and associates logs to the right user. After the user profile, scenario and location have 
to be chosen among the possible ones. To this date, we included in EMSAVE three scenarios. The 
first one is shorter and simpler to complete, because it is intended as a tool to familiarize with the 
serious game. In this first scenario, the team leader CTT model contains 125 tasks. In the other two 
scenarios, instead, the team leader CTT models include respectively 210 and 200 tasks. These two 
scenarios are more complex, since they are intended to be used for retraining and thus they must 
represent a challenge for the trainee. We then included two different locations, a private house and a 



54 3.    Case study: a serious game for Advanced Life Support training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

train station, as possible settings for scenarios. We chose these locations after consulting the experts 
and receiving from them a list of the places in which emergencies most frequently take place, 
patient’s home and crowded spaces, represented in our case by the train station, were the first two. 
Users are allowed to play any combination of scenarios and locations. Once scenario and location 
have been selected, the training session starts. The user is placed inside a virtual world in which the 
emergency described by the scenario is taking place and is shown a message giving some initial 
information about the emergency. 

EMSAVE has been developed with NeoAxis [76], a game engine programmable in C# and built 
on the Ogre rendering engine [77]. Exploiting NeoAxis features we developed user navigation in 
the virtual world, interaction with the virtual world and the graphical user interface (described in 
section 3.2.1). We also developed the classes controlling NPCs behavior. We employed NeoAxis 
editing tools to create maps for the two locations mentioned in section 3.2. Finally, as introduced in 
section 2.1, we implemented the necessary events subscriptions to make the game engine able to 
send messages to the Serious Game Coordinator module. 

3.2.1 User interaction 

The user sees the virtual world in first person. Movement through the virtual world and 
interaction with objects in it are carried out only through the mouse: 

• mouse movement controls rotation of the user viewpoint, 

• a left click on the ground makes the user character move towards the clicked position 
(Figure 3.1a), 

• a left click on an interactive object (Figure 3.1c) or character opens a contextual menu 
(Figure 3.1b and Figure 3.1d), presenting tasks from the task hierarchy (introduced in 
section 2.1.3) which has that game entity as target. 

For example, the contextual menu associated to the patient contains all the tasks that the user 
can perform on the patient, such as talking to him and carrying out examinations (Figure 3.1b). The 
user can also interact with the patient’s relative character to ask information about the emergency or 
about the patient. The teammate character, instead, takes part in the execution of the emergency 
procedure by executing user’s orders. Orders are issued by selecting the appropriate tasks from the 
contextual menu associated to the teammate character. The task hierarchy for each menu was 
defined together with the experts, also to ease its comprehension by the potential users. 



3.2    Application Overview 55 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

By limiting interaction devices to the mouse only, we aimed at making user interaction as 
simple as possible (point-and-click interface). As we verified in our user studies (see chapter 4 for 
more details), most of the potential users of EMSAVE are not computer experts and employ 
computers only for office work, internet browsing and similar activities. They are used to mouse-
based interaction and benefit from an interface which requires to use only the mouse, instead of the 
typically more complex video game interfaces 

 

a) 

 

b) 

 

c) 

 

d) 
Figure 3.1. Details of the user interface: a) a 3D animated icon indicates the destination of user’s 
avatar movement after a click, b) the contextual menu related to the patient, c) appearance of the 
mouse pointer hovering over an interactive object (in this case, a medical device), d) the contextual 
menu related to the medical device. 



56 3.    Case study: a serious game for Advanced Life Support training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

To perform the emergency procedure, the user has to select a task at a time. When the user 
selects a correct task (i.e., a task which satisfies the temporal constraints imposed by the CTT model 
representing the current scenario, as described in section 2.1.1.1), its spatial conditions are checked. 
If they are not satisfied, the game engine executes the appropriate instructions or the user is asked to 
take the necessary actions to satisfy them, depending on what the task specifies. When spatial 
conditions are satisfied, the effects of that task, defined in the task repository, are executed. 
Otherwise, if a wrong task is selected, an explanation suggesting how to find the correct task is 
shown to the user (as described in section 2.1.1.1). 

During the training session, the user can access a non-contextual menu by pressing the right 
mouse button. This menu allows the user to get help in the form of a suggestion of the next correct 
tasks, to see the history of previously selected tasks or the results of the exams previously executed 
on the patient. 

When the user has performed all of the tasks necessary to handle the emergency, the scenario is 
completed and a debriefing window is shown (Figure 3.2). This window includes a list of all the 
tasks the user selected during the training session in the order they were executed and shows which 
ones were correct or wrong. 

 

Figure 3.2. The debriefing window: a red circle denotes a wrong task selection, a green circle
denotes a correct one. 



3.2    Application Overview 57 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

 

<Task> 
   <TaskName>Chest palpation</TaskName> 
   <RoleLabel>TeamLeader</RoleLabel> 
   <TargetLabel>Patient</TargetLabel> 
   <Conditions> 
      <Condition xsi:type="PositionConditionType"> 
         <Solver>System</Solver> 
         <PositionLabel>GenericAnimationOnPatientTorso</PositionLabel> 
         <ThresholdDistance>0</ThresholdDistance> 
      </Condition> 
      <Condition xsi:type="OrientationConditionType"> 
         <Solver>System</Solver> 
         <OrientationLabel>GenericAnimationOnPatientTorso</OrientationLabel> 
         <ThresholdRotation>0</ThresholdRotation> 
      </Condition> 
   </Conditions> 
   <Effects> 
      <Effect  xsi:type="SerialEffectsType"> 
         <Effect xsi:type="ParallelEffectsType"> 
            <Effect xsi:type="ChangeCameraEffectType"> 
               <UserStoppable>1</UserStoppable> 
               <CameraLabel>AtPatientChest</CameraLabel> 
            </Effect> 
            <Effect xsi:type="SerialEffectsType"> 
               <Effect xsi:type="AnimationEffectType"> 
                  <Duration>4</Duration> 
                  <GameEntityLabel>TeamLeader</GameEntityLabel> 
                  <AnimationName>GenericActionChest</AnimationName> 
                  <Loop>true</Loop> 
                  <Speed>1</Speed> 
               </Effect> 
               <Effect xsi:type="TextMessageEffectType"> 
                  <UserStoppable>1</UserStoppable> 
                  <Message>@ChestPalpation</Message> 
               </Effect> 
            </Effect> 
         </Effect> 
         <Effect  xsi:type="PositionEffectType"> 
            <UserStoppable>true</UserStoppable> 
            <GameEntityLabel>TeamLeader</GameEntityLabel> 
            <PositionLabel>TeamLeaderSafe</PositionLabel> 
         </Effect> 
         <Effect xsi:type="OrientationEffectType"> 
            <Duration>0</Duration> 
            <GameEntityLabel>TeamLeader</GameEntityLabel> 
            <OrientationLabel>TeamLeaderSafe</OrientationLabel> 
         </Effect> 
      </Effect> 
   </Effects> 
</Task> 

Figure 3.3. The XML code for the Chest palpation task in the task repository. 



58 3.    Case study: a serious game for Advanced Life Support training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

3.3 The task repository for EMSAVE 

As described in section 2.1.1, scenarios are made of tasks taken from the task repository. The 
task repository schema is defined in the architecture and is domain independent, but tasks are 
domain specific. So, before creating scenarios for EMSAVE, we had to create a task repository 
suitable for ALS training. To this purpose, we worked together with the experts. First they gave us a 
small set of the most common tasks which have to be performed in almost every emergency. Then, 
through various revisions, this set was expanded with other less frequent tasks. This incremental 
approach allowed us to quickly create a small, but plausible, testing scenario, without having to 
populate a huge task repository with all the possible tasks necessary for ALS training before being 
able to conduct preliminary tests of the application. 

With the information gathered from the experts, we created the task repository following the 
schema we defined. The most challenging part of this activity was the definition of the effects for 
each task. For some tasks, effects were obvious. For example, the effect of task “Put oxygen mask 
on patient’s face” obviously involves having the mask on the patient face. However, to correctly 
assign effects to some tasks we had to obtain additional information from the experts. For example, 
drugs are sometimes administered by injection, other times orally, and this detail determines which 
animation has to be used as an effect of the drug administration task. 

Another difficulty in defining task effects was the decision on how they had to be combined, 
whether in sequence or in parallel. In some cases, to create a believable sequence of effects, we put 
together complex combinations of nested parallel and serial sequences. For example, Figure 3.3 
shows the “Chest Palpation” task in the task repository. The task has several effects, which are 
shown to the user in the following order: 

1. the camera is moved to focus on patient’s chest, 

2. the team leader character (the one controlled by the user) performs the palpation animation, 

3. after some seconds of palpation, a text message communicates the result of the diagnostic 
task, 

4. the team leader character moves back to its default position, 

5. the team leader character turns towards the patient. 

Effect 1 in the list above must start together with effect 2, so it is put inside an effect of type 
ParallelEffectType with the effect of type SerialEffectType in which effect 2 and 3 are nested. This 
nesting is used to make the text message appear only after the animation has played for 4 seconds, 
as specified by the value of the Duration element inside the effect of type AnimationEffectType. 
Finally, the effect of type ParallelEffectType including effects 1, 2 and 3 is nested inside an effect 
of type SerialEffectType and followed by effects 4 and 5. This way, after completing the palpation 



3.3    The task repository for EMSAVE 59 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

animation (effect 2) and receiving the corresponding feedback (effect 3), the team mate character 
goes back to its initial position and turns to the patient. Figure 3.4 illustrates the execution sequence 
of these effects. 

This task definition also shows an example of how variables are used. More precisely, the 
Message parameter in the text message effect contains the string “@ChestPalpation”. Obviously, 
the result of a chest palpation is not necessarily the same every time the chest palpation task is 
performed, it depends on current patient state. When the text message effect is executed, 
“@ChestPalpation” is translated by the Variable Mapper sub-module (described in section 2.1.1.3) 
and the message is substituted by a phrase reporting a diagnostic result retrieved from current 
patient state (as can be seen in Figure 3.6a).  

Further work was needed to produce and collect resources necessary to fully implement effects. 
As described in section 2.1.2.2, effects can involve many types of media: video, pictures, audio. 
Some audio clips and some pictures were found on the internet and validated by the experts, while 
others were created specifically for EMSAVE. Some tasks required showing nurses maneuvers as 
effects. In some cases, they did not need to be shown in detail, so we created generic animations 
that could approximate them (Figure 3.6b). In other cases, however, it was necessary to show the 
exact movements that were part of a maneuver. Creating a 3D animation precisely showing such 
movements would have required a big effort both in terms of time and money. So, we shot videos of 
actual nurses performing those procedures on an actor playing the patient (Figure 3.6c) under the 
supervision of the experts. Funds available for serious game development are often too limited to 
create detailed animations of all the tasks that characters have to perform in the game. When this 
happens, shooting videos could be a more viable way to show certain tasks in a more detailed way. 

 

Figure 3.4. Chart illustrating the execution sequence of effects described in Figure 3.3. 



60 3.    Case study: a serious game for Advanced Life Support training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

Spatial conditions have been easy to define. For example, the chest palpation task shown in 
Figure 3.3 has a position and an orientation spatial condition. As described in section 2.1.2.1, in 
both spatial conditions we didn’t hardwire the exact coordinates. This way, the spatial condition 
would have required the user character model (since this is a task performed by the user) to be, for 
example, at the same 3D coordinates regardless of the map used for a specific scenario. Since 
different scenarios can take place in different locations (i.e., in different virtual worlds), such a 
solution would have been very limiting. Instead, we use labels which name placeholders that game 
developers put in each map. Such a solution supports any combination of scenarios and maps, 
provided game developers correctly place placeholders in each map (see Figure 3.5 for an example 
of placeholders put in a map using the NeoAxis map editor). 

 

Figure 3.5. Yellow flags indicating placeholders in a map. 



3.3    The task repository for EMSAVE 61 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

3.3.1 Dialogs in EMSAVE 

During an emergency, there are several questions that a nurse must ask to the patient or to other 
characters, to gather the information necessary for successfully treating the patient. Together with 
the experts, we identified what these dialogues were and added them in the EMSAVE dialogue 
repository. We used variables, as described in section 2.1.1.3, that were translated at runtime, based 
on data retrieved from the user and patient models. 

 

a) 

 

b) 

 

c) 

 

d) 
Figure 3.6. Examples of task effects: a) a message box showing the outcome of the Chest Palpation 
task, b) generic animation of the user’s avatar moving the hands on patient’s chest, c) video 
showing how to put the oxygen mask on patient’s face, d) a 2D overlay showing the display of a 
medical device with data taken from the patient state model. 



62 3.    Case study: a serious game for Advanced Life Support training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

As regards the audio samples, after writing down the text for each dialogue, we recorded them 
with human actors. We had to record both the female and the male version for the team leader 
character since the user has the possibility to choose gender when creating a new user profile. 

As an example, consider the dialog added as an effect for the task called Presentation. This is the 
first task carried out by the nurse after reaching the patient. In it, the nurse presents herself, asks the 
patient’s name and what is going on, while the patient answers with his or her name and some 
initial details on what’s happened and how he or she feels. In Figure 3.7, you can see the XML code 
for the corresponding effect of type DialogEffectType. 

This dialogue is a good example of how and why variables are used in dialogues. Both text and 
audio for team leader lines must change depending on the job indicated by the user for her 
character, when the user profile was created. When the user character presents itself, it says it is a 
nurse. Since in Italian different words are used to indicate a male or female nurse, the 
@UserGenderJob variable is substituted at runtime with the correct word, specified in the user 
model. The same holds for the audio part of the question. The @PresentationQuestionAudio 
variable is translated at runtime with the audio filename specified in the user model. 

Several audio fragments can also be combined in a single line, as can be seen in the 
Interlocutor2Line element in Figure 3.7. While variables corresponding to text fragments are simply 
substituted by text inside the Text element, to combine different audio fragments, they have to be 
specified using separate AudioFragment elements, appropriately ordered inside the Audio element. 
So, in our example, the patient character would first say its name, retrieving the file whose path is 

<Effect  xsi:type="DialogEffectType"> 
<LinePairs> 

<Linepair 
<Interlocutor1Line> 

<Text> 
Buongiorno, sono @UserGenderJob del 118, cosa sta succedendo? 
</Text> 
<Audio> 

<AudioFragment>@PresentationTeamLeaderAudio</AudioFragment> 
</Audio> 
</Interlocutor1Line> 

<Interlocutor2Line> 
<Text>@Presentation</Text> 
<Audio> 

<AudioFragment>@PatientNameAnswerAudio</AudioFragment> 
<AudioFragment>@PresentationPatientAudio</AudioFragment> 

</Audio> 
</Interlocutor2Line> 

</Linepair 
</Linepairs> 
</Effect> 
 
Figure 3.7. The effect of type DialogEffectType of the task called Presentation. 



3.4    Scenario CTT models in EMSAVE 63 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

obtained retrieving the value of the @PatientNameAnswerAudio variable, and then explain its 
situation, retrieving the file whose path is obtained translating the @PresentationPatientAudio 
variable. 

3.4 Scenario CTT models in EMSAVE 

In EMSAVE, each scenario includes four CTT models:  
• a team leader CTT model, describing the correct sequence of tasks the user has to perform to 

successfully complete the scenario (Figure 3.8a), 

• a teammate CTT model, describing tasks performed by the teammate NPC, that is a simple 
two-level tree, in which all leaves are connected through the “Choice” temporal operator and 
the root node is an iterative task. This way, after a teammate task has been executed, all leaf 
tasks are available again (Figure 3.8b), 

• a patient CTT model, that is another two-level tree, in which all leaves are “change state” 
tasks (i.e. tasks that tell the scenario simulator to change the current patient state) and are 
connected one another through the “Enabling” temporal operator, forming a straight 
sequence of tasks (Figure 3.8c), 

• a concurrent CTT model (Figure 3.8d reports a fragment of a concurrent CTT model), 
describing temporal relations among tasks belonging to the above models (as defined in 
section 2.1.1). 

As described in section 2.1.1, the first and last CTT models are the ones that every serious game 
based on our architecture must have and always have the same purpose, regardless of the domain. 
The other two, instead, the ones corresponding to the NPCs, have a purpose specific to EMSAVE. 
The patient CTT model represents a linear sequence of state changes to resemble scenarios written 
for real world training. These scenarios always feature an initial patient state at the beginning and 
several state changes happening during the scenario, sometimes following a task performed by the 
trainee, sometimes corresponding to a spontaneous evolution of patient conditions. The teammate 
CTT model, instead, works as a set of always available tasks. It represents the behavior of the 
teammate character, which does nothing other than wait for orders by the team leader. To correctly 
describe the sequence of a team leader’s order and the execution by the teammate, the concurrent 
CTT model must include a task corresponding to the order, taken from the team leader CTT model, 
followed by the appropriate teammate task, connected by an “Enabling” temporal operator. For 
example, in Figure 3.8d, the team leader task “Richiedi accesso venoso” (which means “request 
vein cannulation”) is followed by the team mate task “Accesso venoso” (which means “Vein 



64 3.    Case study: a serious game for Advanced Life Support training 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

cannulation”) and the two are connected by an “Enabling” temporal operator. After executing the 
team leader task, the scenario simulator finds the teammate task and makes the teammate character 
reach the patient character and perform an animation indicating that the patient character is being 
cannulated. 

 

 

a) 

 

b) 

 

c) 

 

d) 
Figure 3.8. Screenshots of a) the team leader CTT model, b) the teammate CTT model, c) the
patient CTT model, d) a fragment of the concurrent CTT model 



3.5    Patient states 65 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

3.5 Patient states 

To create the patient state model we extended the generic state model XML schema (as 
described in section 2.1.1.2), which includes information about the patient and the evolution of his 
vital signs and of the symptoms he shows throughout the scenario. 

Each scenario needs its specific patient state model. The initial part of the XML file includes 
some static data, regarding personal data about the patient, which are common to every state. They 
are:  

• patient gender, 

• answers to questions that the nurse asks during the SAMPLE (which stands for Symptoms, 
Allergies, Medications, Prior History, Last Meal, Event) interview, that the user has to carry 
out at a certain point during the scenario, 

• the type of cardiac arrest the patient suffered (since ALS scenarios always involve a cardiac 
arrest). 

The remaining part of the patient model contains one or more patient states. We worked together 
with the experts to identify the symptoms and vital signs to be included in the patient state model, 
based on the diagnostic tasks a nurse can perform during an ALS scenario, and the possible 
outcomes for each one of them. For example, as shown in Figure 3.9, the skin on the chest can be 
normal, pale or red. When the user selects the “Chest observation” task, one among these three 
values is returned as a result. 

<xs:element name="ChestObservation"> 
   <xs:complexType> 
      <xs:all> 
         <xs:element name="Skin"> 
            <xs:simpleType> 
               <xs:restriction base="xs:string"> 
                  <xs:enumeration value="Normal"></xs:enumeration> 
                  <xs:enumeration value="Pale"></xs:enumeration> 
                  <xs:enumeration value="Red"></xs:enumeration> 
               </xs:restriction> 
            </xs:simpleType> 
         </xs:element> 

Figure 3.9. The XML schema definition of the element describing possible outcomes for the chest
observation task 





 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

4
User Evaluation 

The evaluation of EMSAVE was conducted in two stages. First, we carried out a pilot study on 
a prototypical version of the serious game, with the purpose of evaluating acceptance of the serious 
game as a training tool by the potential users (i.e., healthcare professionals employing ALS 
procedures) and its perceived usability and usefulness. The pilot study also allowed us to collect 
suggestions and comments which helped to further develop the serious game. Second, on the more 
advanced version of the serious game described in chapter 3 we conducted another evaluation with 
the purpose of assessing the effectiveness of EMSAVE as a training tool. We evaluated the 
effectiveness in terms of knowledge gains: 

• by comparing subjects’ knowledge of ALS procedures before and after training with the 
serious game, through a questionnaire created by professional ALS instructors, 

• by assessing knowledge retention, through a new administration of the same questionnaire, 
three months after the training session took place. 

In this chapter, we describe the experimental design of both evaluations and the results they 
produced. 

4.1 Pilot study 

In the early stages of development, we conducted a study to evaluate nurses’ acceptance of the 
serious game, its usability and its perceived usefulness. Since this kind of training tool was 
completely new to its potential users, it was necessary for us to know if it would have been well 



68 4.    User Evaluation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

received and if they found it useful and effective. We also took advantage of this study to collect 
suggestions about possible new features, which were kept in consideration in later development 
stages. 

4.1.1 EMSAVE prototype 

The evaluation was performed on a prototypical version of EMSAVE, which differed from the 
version described in chapter 3. The most evident differences concern the interface, interaction with 
the virtual world and task selection. 

Camera orientation and user’s avatar movement were controlled in the same way as in the later 
version, except for the fact that a third-person over-the-shoulders view was used instead of the first-
person view and that the right mouse button was used to indicate movement destination. There were 
no interactive 3D objects in the virtual world, information from the virtual medical devices was 
instead integrated in the user interface (Figure 4.1, lower left) and dialogues with NPCs started 
automatically at predetermined points in the scenario. A list of the available tasks, presented in 
random order so as not to suggest their correct sequence, was continuously visible to the user, in a 
frame on the left side of the screen (Figure 4.1, upper left). To select a task, the user had to press the 
Enter key on the keyboard, so that the mouse was no more used to move the user’s avatar but to 

 

Figure 4.1. The interface of the EMSAVE prototype used in the first user study. 



4.1    Pilot study 69 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

select tasks from the list. After the user double-clicked on the name of the selected task or pressed 
the Enter key again, the mouse again controlled user’s avatar movement. In the later version, 
instead, tasks were selected from contextual menus which opened after a click on a character or on 
an object in the virtual world, thus there was no need to switch the mouse from movement control 
to task selection. 

We exploited the prototype to also assess subjects’ preference on the methods employed to show 
the manual procedures performed by nurses’ avatars in the game. In the scenario a domain expert 
created for the evaluation, there were three manual procedures, which we reproduced with 
animations of the team mate character, while in the later version of EMSAVE videos were used to 
this purpose. The animation of the first manual procedure was created using motion capture data, 
while for the other two keyframing was employed. Moreover, the second animation was presented 
in the form of a rendered video overlaid on the 3D scene, while the other two were actually 
performed by characters in the virtual world. Motion capture requires more effort than keyframing, 
but should produce more realistic animations. Similarly, making virtual characters perform actions 
in the virtual world is more difficult than overlaying a rendered video on the scene, but should 
provide a more compelling experience. We included all these conditions in the serious game, to test 
if nurses had strong preferences for one technique over the others and thus receive indications for 
the future development of the application. Further detail about the prototype is provided in [13]. 

4.1.2 Experimental design 

The pilot study had the following purposes: 
• to investigate nurses’ acceptance of the serious game in terms of learnability and usability of 

controls, 
• to assess the perceived usefulness and effectiveness of the serious game as a training tool 

(EMS nurses’ training only involves non computer-based activities, so we don’t know how 
they perceive them), 

• to collect nurses’ judgment about specific details, such as the way we reproduced some 
patient’s symptoms or the different animation realization and presentation techniques we 
illustrated in section 4.1.1, 

• to gather suggestions about possible improvements to the serious game. 
We carried out the user study with nurses working for the EMS center of Udine Hospital, Italy. 

The emergency situation we presented in the evaluation is based on a scenario concerning a 
tetraplegic person with high fever and respiratory difficulties in his bed at home, assisted by a 
relative. Patient’s respiratory difficulties in the simulation are indicated by a cyanotic complexion, 
the sound of heavy breathing and the animation of the patient abnormally bending his chest. 
Emergency nurses must initially concentrate on patient's breathing, putting an oxygen mask on his 
face. Then, they must measure some vital signs, like heart rate, blood pressure, etc. Finally, the 
patient must be transferred to a stretcher.  



70 4.    User Evaluation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

1. How long have you been using a computer? 

I have never used 
a computer 

Less than a year About a 
year 

1-2 years 2-5 years More than 5 years 

2. How often do you use a computer? 
I do not use 
a computer 

About once 
a month 

A few times 
a month 

A few 
times a 
week 

Every day, 
for less than 
1 hour 

Every day, 
for 1-3 
hours 

Every day, for 
more than 3 
hours 

3. What is the main thing you do when you use a computer? 
I do not use a 
computer 

e-mail Web browsing Videogames Document 
editing (Word, 
Excel, etc.) 

Other 
(describe) 

4. How much do you like using a computer? 
Not very much A little Very much 
5. How often do you play videogames? 
I do not 
play 
videogames 

About once 
a month 

A few times 
a month 

A few 
times a 
week 

Every dat, 
but for less 
than 1 hour 

Every day, 
for 1-3 
hours 

Every day, for 
more than 3 
hours 

6. Did you ever play 3D videogames? 
Yes No 

Table 4.1 The computer use questionnaire 

The evaluation took place at the EMS center, the usual workplace of the subjects. Each nurse 
carried out the test during her work shift change or during a planned break. This way, it was 
possible for nurses to devote their full attention to testing the application without being subjected to 
time-pressure or interruptions and distractions. Nurses were initially asked to fill in an anonymous 
questionnaire containing demographic questions (age, sex, computer experience, videogame 
experience, etc.). The computer use questions (Table 4.1) were taken from the computer use survey 
proposed in [25]. From that survey, we did not use questions about how long the subject had been 
using the Internet and how often she used it, since they were not relevant to our purposes. For the 
same reason we excluded the question about cell phone usage frequency and about self-assessment 
of computer skills. After having been instructed about the navigation controls, nurses went through 
a familiarization phase, in which they were allowed to spend unlimited time in a generic non-
emergency virtual world until they felt familiar with the controls. This virtual world was made of 
two rooms connected by a corridor. Nurses started in the corridor and were asked to reach the room 
in front of them, which had many boxes in its centre, forcing the player to move along the walls to 
explore the room. Nurses were asked to fully explore the room around the boxes and to go back to 



4.1    Pilot study 71 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

the corridor. Then, if they were not yet familiar with the controls, they were asked to reach the other 
room at the opposite end of the corridor. This room was larger and contained several big fantasy 
objects. Nurses were free of moving around the room as long as they liked. 

When nurses felt acquainted with the controls, the evaluation phase, in which nurses faced the 
emergency scenario written by the experts, started. First, nurses were told that they had to move in 
the virtual world and choose the appropriate tasks from the proposed list to handle the presented 
emergency situation. They were instructed about how to interact with the list of tasks and about the 
fact that tasks in the list would appear in random order. This way, we forced nurses to think about 
what task to select, preventing them from blindly double clicking the first task on the list. No other 
information was given, but nurses were invited to ask any question in case of difficulties or make 
any comment about the whole experience (following a think-aloud protocol), since we were 
interested in evaluating how quickly all the aspects of the application could be understood. Then, 
interaction with the application started.  

Initially, a text window, introducing the emergency situation and the main goal, is shown to the 
nurses. After they have read the introduction, they can click on the OK button and start the test. The 
virtual experience initially places nurses on the front door of the patient’s house where they are met 
by a relative of the patient, who engages them in a brief conversation about what happened. Then, 
the relative invites nurses to follow her to the patient’s bedroom. Once they reach the room, the 
relative informs nurses that the patient is tetraplegic and they can also see the wheelchair on the 
patient’s bedside. Then, nurses can choose tasks from the proposed list to perform the procedure. 
When a correct task (i.e. a task satisfying the constraints imposed by the CTT model of the 
procedure) is chosen, an event is triggered in the virtual world (e.g. an animation). After executing 
all the proper tasks, when the patient is transferred to the stretcher to take him to the ambulance, a 
message informs the nurse that she successfully handled the emergency. 

After the test, nurses were administered a questionnaire (Table 4.2), with questions about overall 
player satisfaction, specific application details, such as the patient character or animations, and the 
perceived usefulness of this kind of applications in training EMS nurses. Some questions were 
taken from questionnaires that can be found in the literature. Questions 2, 3, 5, 6, 15, 16 and 17 
were taken from the Presence Questionnaire proposed in [65]. Question 12 was instead taken from 
the EGameFlow [19] questionnaire, developed to evaluate games for e-learning, while question 1 
comes from a questionnaire to evaluate navigation control in VEs [56]. Most questions were 
presented in the form of statements to which nurses had to indicate their level of agreement on a 
five-item Likert scale, ranging from “Totally agree” (1) to “Totally disagree” (5). To have more 
opportunities to collect subjects’ opinions on the experience, we read the statements together with 
them, discussing and delving deeper into their answers. The number of items in the questionnaire 
was intentionally kept as low as possible, since we wanted to avoid nurses getting tired or annoyed 
by the evaluation. The evaluator also interviewed nurses about their ratings and their answers to the 
open questions, to collect nurses’ impressions and feedback thoroughly. 



72 4.    User Evaluation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

 

  Mean Std. Dev. 
Interaction 
1 Moving through the virtual world was simple 2.08 0.95
2 I quickly learned how to move through the virtual world 1.83 0.7
3 I could always concentrate on the actions in the game rather than on 

the commands I had to issue to activate them 
2.08 0.86

4 I quickly learned how to select tasks to perform the procedure 1.58 0.64
View 
5 I had a complete view of the virtual world 1.42 0.49
6 I could observe well objects and characters in the virtual world from 

various points of view 
1.42 0.49

Specific application details 
7 The sound of the shortness of breath of the patient is realistic 1.42 0.64
8 The cyanotic complexion of the patient is realistic 1.33 1.31
9 List virtual patient’s aspects you liked or disliked (open question)  
10 The application shows three animations, listed below, related to actions 

belonging to the procedure. Order them from 1 to 3 based on your 
preference (1 best, 3 worst). 

Oxygen mask application.    Vein cannulation.    Patient’s transfer to 
the stretcher. 

 

11 The characters helped me understand what was happening in the 
virtual world and what I was supposed to do 

2.25 0.83

Usefulness and effectiveness as a training tool 
12 This kind of application could increase my knowledge 1.67 0.85

13 This application would integrate well with the training methods 
currently employed to train EMS nurses 

1.5 0.5

14 In what phase of the training should it be employed? (open question)   
Global satisfaction 
15 I felt involved in the experience 1.75 0.6 

16 I liked the graphics of the application 1.67 0.47 
17 I liked the audio of the applications 1.67 0.47 
18 I will be willing to use this kind of application 1.25 0.43 
19 Additional comments (open question)   

 
Table 4.2. Application evaluation questionnaire (ratings ranged from 1 to 5, lower values 
correspond to better ratings,). Scores indicate subjects’ level of agreement to each statement. 
Results for questions 9, 10, 14 and 19 are reported and discussed in sections 4.1.4.3, 4.1.4.4, 
4.1.4.6. 



4.1    Pilot study 73 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

4.1.3 Participants 

We circulated a call for volunteers among the nurses working for the EMS center of Udine 
Hospital: 12 of them, 8 female and 4 male, answered positively. Subjects did not receive any 
compensation for participating in the test. Moreover, their superiors and supervisors were not 
involved in the recruitment, to avoid them feeling forced to participate in the study. The average age 
was 38.6 years (youngest 28, oldest 50). Answers to question 2 in the computer use questionnaire 
(Table 4.1) were almost equally distributed among the last three. This means that all subjects use 
computers daily, although the numbers of hours differ. No nurse indicated playing videogames as 
her most frequent computer task: the main computer tasks were almost equally distributed among e-
mail, web browsing, editing documents and using computers at work. Most subjects said that they 
like to use computers very much. Use of videogames was rare: 7 nurses played videogames a few 
times a month, 4 nurses played about once a month, only one nurse never played videogames. 
Finally, we asked whether subjects ever played 3D videogames, making sure that they understood 
we referred to videogames in which the action took place inside a 3D virtual world, by giving some 
examples of well-known videogames. It turned out that 7 subjects never played 3D videogames. 

4.1.4 Results 

In this section, we report the results of the evaluation , together with some observations. These 
results were also presented at the “2nd International conference on Games and Virtual Worlds for 
Serious Applications” [14]. 

4.1.4.1 Familiarization Phase 

The purpose of this phase was to allow nurses to familiarize with navigation controls. We 
measured the duration of this phase, to assess its difficulty (the longer the familiarization phase, the 
harder to learn navigation controls): the average training time was about 2 minutes. However, seven 
nurses took 90 seconds or less to get used to the navigation controls. The two slowest nurses took 
about 5 minutes to familiarize with the controls. They both did not have any experience with 
videogames and one of them did not like to use computers while the other one liked it only a little. 
A particular case is represented by a nurse having experience with some console games, who took 
nearly 4 minutes to familiarize with the controls. Because of the control system she was used to, she 
would have preferred to use arrow keys to navigate the virtual world rather than the mouse. Overall, 
the control system we adopted turned out to be easily learnable by users with no or very little 
experience with 3D videogames, as confirmed by questionnaire results. The first 3 statements, 
concerning the difficulty of familiarizing with the controls, received positive ratings as shown in 
Table 4.2. The best rating (1.83) was the one related to the learnability of the control system. 



74 4.    User Evaluation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

4.1.4.2 Evaluation Phase 

The evaluation phase was completed in an average time of nearly 7 minutes (mean: 419 
seconds, standard deviation: 83.38 seconds). During this phase, nurses did not show particular 
difficulties with the controls or the interface. Ratings of statement 4 (“I quickly learned how to 
select tasks to perform to carry out the procedure”) averaged a very good result (mean: 1.58, 
standard deviation: 0.64). This result was predictable, considering that computer use questions 
pointed out that the main computer tasks carried out by the subjects usually involve traditional 2D 
interfaces with menus. 

4.1.4.3 Specific Application Details 

Statements 5 to 11 in Table 4.2 investigated the satisfaction of the subjects about some specific 
aspects of the application. The provided view proved adequate to the task, allowing nurses to 
completely survey the virtual world and objects and characters in it (statements 5 and 6, both with 
mean 1.42 and standard deviation 0.49). During the interviews we had while designing and 
developing EMSAVE, clinicians were very demanding when it came to the simulation of the 
patient, so we used statements 7 to 9 to collect nurses’ opinions about the patient character. Aside 
from the particular observations of each single nurse, it is worth noting that almost all nurses paid 
considerable attention to the symptoms shown by the patient. The number and the level of detail of 
their comments stress how a credible simulation of the symptoms and of the reactions of the patient 
to the procedure is crucial for this kind of applications. To assess nurses’ subjective preference 
about the three animations used to show manual procedures, we asked them to put them in order of 
preference, from the best to the worst (question 10). We assigned a score of 1, 2, 3 respectively to 
the first, second and third condition. The average scores for the three animations were 1.75 
(standard deviation 0.72) for the animation created with motion capture, 1.92 (standard deviation 
0.96) for the rendered animation, 1.83 (standard deviation 0.8) for the animation created through 
keyframing. Friedman’s test pointed out that the small differences among these averages are not 
statistically significant. The ratings obtained highlight how there was no clear preference among the 
considered animations, although we expected the rendered video to perform worse than the other 
two, since the overlaid video could have created a break in the sense of immersion. 

4.1.4.4 Usefulness and Effectiveness as a Training Tool 

There was a substantial agreement about the usefulness of the game as a tool for training nurses. 
Asked if this kind of application could increase their knowledge (statement 12), nurses answered 
with an average score of 1.67 (standard deviation 0.85). This result is encouraging, indicating that 
training with serious games could be well accepted by nurses. Nurses thought also that this kind of 
training could be easily integrated with current training procedures for EMS nurses (statement 13, 
mean 1.5, standard deviation 0.5). In particular, by interviewing them in more depth, we got the 



4.1    Pilot study 75 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

following comments and suggestions (the first two were given by almost all nurses, while each one 
of the others were suggested by a single nurse only): 

• the application could be used to train novice EMS nurses who still have to learn all the 
emergency procedures, even the simplest ones; 

• the application could be used during retraining, which occurs periodically during a nurse’s 
career to refresh previously acquired knowledge; 

• the need to concentrate on the patient during real emergencies could prevent nurses from 
paying attention to each possible detail of the procedure, so the application could be used to 
analyze emergency situations and the corresponding procedures more carefully; 

• the application could always be available to nurses at the workplace to refresh procedures 
when there is some time available (e.g., waiting for an emergency call), and it could also be 
used at home; 

• the application could be used to teach procedure updates; 
• the application could be used to test nurses’ knowledge, substituting written exams; 
• a multi-user experience could improve collaboration among the different responders 

involved in the emergency, such as nurses, ambulance drivers and possible volunteer 
rescuers, by allowing them to communicate and cooperate applying their specific skills. 

4.1.4.5 Overall Satisfaction 

Statements about realism of graphics and audio (16 and 17) received the same high score (mean: 
1.67, standard deviation: 0.47). In particular, subjects appreciated the fact that uniforms used for the 
3D models of nurses in the virtual world and medical devices had been modeled after the real ones. 
This brought the simulation closer to their everyday life experience. Although the graphical and 
audio quality of this first prototype did not reach the level of commercial videogames, the high level 
of satisfaction from the nurses’ side indicates that it was sufficient for the specific training 
application. 

Almost all nurses reported a high or very high involvement (statement 15, mean: 1.75, standard 
deviation: 0.6). This happened despite the fact that no particular interaction devices for immersive 
VR were used and an observer was present. 

Finally, statement 18 tested if nurses would willingly use this kind of application for training. 
The average score was the highest of the whole questionnaire: 1.25 (standard deviation: 0.43). In 
particular, some nurses were really enthusiastic about the possibility of having such applications 
available everyday for training. 

4.1.4.6 Nurses’ Feedback 

During the evaluation, we invited nurses to share their thoughts about the application, whether 
they were questions, critiques or proposals. Most comments were related to minor improvements 



76 4.    User Evaluation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

we should implement, but some identified new requirements for the application or important desired 
features. In the following, we report the most significant comments. 

In the virtual world, users can see an assistant nurse character which remains passive most of the 
time. It was included into the virtual world for two reasons: (i) to make the presented situation more 
realistic, since actual ambulance runs do not involve less than two nurses; (ii) to take part in moving 
the patient to the stretcher, an action required by the considered emergency medical procedure. One 
of the nurses wished it was possible to issue orders to the other nurse, since in real situations 
different nurses deal at the same time with different aspects of the emergency. This is an 
improvement which could increase the complexity of possible actions in the virtual world and pose 
more challenges to the user, providing more learning opportunities. 

We were expecting nurses to generally require more verbal interactions with characters than we 
provided in the application. However, only one of them said it would have been good if he could 
ask questions to the other characters. Similarly, another nurse pointed out that questions made by 
the main character to the relative during conversations were not the ones she would have made in a 
real situation, so the possibility of choosing questions would have made conversations more useful. 

Making the application adaptive to different professional levels was suggested by one of the 
nurses. Since, in real emergency situations, people with different skills and goals are involved (e.g. 
nurses and volunteer rescuers), the application should be aimed at training all these different 
responders and automatically adapt to different users. For example, the set of tasks a user can 
choose should change with respect to the role she has. 

Some nurses had experimented other multimedia applications for training, in the form of 
hypertexts, integrating videos and animations, which presented emergency situations and asked 
trainees to select the correct procedure or just showed it. Nurses compared the serious game with 
these applications or with the current non computer-based training methods. In each case the 
application was seen as a better way to convey knowledge, mainly because of the immersive 
elements it introduces. 

Finally, by observing nurses while they navigated the virtual world, we noticed that several of 
them tended to collide with walls or other obstacles, forcing the camera to positions that made it 
difficult to move away from those obstacles. By adopting a first person viewpoint in the later 
version of EMSAVE, this problem was removed. 



4.2    Evaluation of EMSAVE in ALS retraining 77 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

4.2 Evaluation of EMSAVE in ALS retraining 

We designed and carried out a user evaluation with healthcare professionals on the version of 
EMSAVE described in chapter 3. The main objective of the evaluation was to assess the 
effectiveness of EMSAVE as an ALS retraining tool, by measuring knowledge gains after training 
with the serious game. Moreover, we also investigated subjects’ perceived usefulness and 
effectiveness of EMSAVE as a retraining tool. As during the entire development process, ALS 
training experts were involved in designing the experimental evaluation. Every detail of the 
evaluation procedure was discussed with the experts, to ensure its effectiveness in testing the impact 
of EMSAVE on trainees’ knowledge.  

4.2.1 Procedure 

The user evaluation was composed of a training event and a retention test. To propose a training 
experience familiar to the ones to which subjects were used, we worked with the “SOS formazione” 
(the center for hospital training) and the experts on the organization of the evaluation. It was not 
possible to integrate the evaluation in a full ALS training course, because they have a structure and 
methodologies that cannot be modified, require the presence of several instructors and last 3 days. 
So, we agreed on proposing an ALS retraining course lasting only half a work day, that is three 
hours and a half to four hours, since we had more freedom to structure it as we needed. 

The experiment followed a within-subject design. The procedure we followed was composed of 
the following steps (with the corresponding durations): 

1. subjects filled out a questionnaire about demographics, computer use (Table 4.3), use of 
3D videogames and 3D applications (Table 4.4), subjects’ initial level of 
preparation(Table 4.5), feelings towards ALS training and expectations from virtual 
reality for training (Table 4.6). The computer use questions were the same used for the 
pilot study (Table 4.1) with slight variations: i) an initial question was added, which 
excluded all the following in case of a negative answer, ii) answers to question 2 were 
changed to cover a longer period of time, iii) answers to question 4 were grouped in 
more coherent categories iii) for the answers to question 5 a 5-item scale instead of a 3-
item scale was used, to uniform it to the rest of the questionnaire. Similar questions were 
used to survey 3D videogames and 3D applications use, with the addition of a question 
asking about the devices used for 3D applications. If subjects would have found the 
mouse-based interaction we proposed too difficult, we could have investigated possible 
influences by the devices they were used to. The last part of the questionnaire was 
proposed by the ALS instructors and included a set of questions they usually employ to 
assess courses outcomes (30 minutes together with the following step); 

2. subjects were administered a multiple choice test (that we call pre-test), made of 38 
questions about ALS procedures, each one with one correct answer out of a possible 



78 4.    User Evaluation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

four, to assess their initial knowledge. The questionnaire was created by professional 
ALS instructors (who also wrote the scenarios used for the evaluation), in order to test 
the knowledge necessary to successfully complete the testing scenarios. In other words, 
they made sure that the questionnaire only included questions which could test 
knowledge gains caused by playing the scenarios. Our hypothesis was that there would 
have been a statistically significant difference between the number of correct questions 
before and after the testing scenarios; 

3. subjects were instructed on how to use EMSAVE, playing along a brief demonstration 
held by one of the developers (15 minutes); 

4. subjects went through a simple familiarization scenario, with the purpose of getting 
acquainted to the application, its controls and its interface (30 minutes); 

5. subjects played two testing scenarios, which they were required to complete, without any 
help from the experimenter, except for unexpected situations, such as application 
crashes. Scenarios were written by professional ALS instructors, who were asked to 
create scenarios of similar difficulty but regarding different emergency situations, which 
would have allowed to cover various ALS concepts. Both scenarios included a patient 
with cardiac issues which resulted in a cardiac arrest, but the causes of these issues 
differed, so subjects had to handle the emergencies in distinct ways. Each scenario also 
included a team mate executing user’s orders and a relative of the patient to answer 
questions in case the patient lost consciousness. The setting for the first scenario was the 
patient’s house, while for the second scenario the setting was a train station. In both 
scenarios users had to reach the patient and execute the necessary tasks to handle the 
emergency.(60 minutes); 

6. the same 38 questions of the pre-test were administered as a post-test to measure 
knowledge gains (30 minutes, together with the following step); 

7. subjects were administered a questionnaire about perceived usefulness, effectiveness, 
usability and validity of EMSAVE and their opinion about the application and the whole 
experience (Table 4.7); 

8. subjects were invited to share their thoughts about the application, how they thought its 
employment would affect training and any remarks or proposals they had (30 minutes). 

Three months after the retraining course, a retention test was carried out. Participants to the 
training received the same ALS questionnaire used for the pre and post-test and were asked to 
compile it and send it back. By comparing results from the three tests, we were able to assess how 
much knowledge had been retained over time. 

4.2.2 Participants and setting 

Since we proposed a retraining course, we involved only subjects which had already received 
ALS training. We only allowed subjects who knew the most recent guidelines update, which, at the 



4.2    Evaluation of EMSAVE in ALS retraining 79 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

time we organized the evaluation, dated back to 2005. Otherwise, subjects could have made errors 
in the ALS questionnaire or in scenarios following the wrong guidelines. 

Subjects were recruited through several channels. First, the training event was advertised in the 
“Foglio Informativo”, a monthly publication reporting all courses available to medical personnel, 
which is distributed in all departments of the Udine hospital and also downloadable from the 
hospital website. These courses award their participants CME (abbreviation for Continuing Medical 
Education) credits. This credit system is used internationally (e.g., in Europe, Great Britain, Canada 
and the United States) to help those in the medical field maintain competence and learn about new 
and developing areas of their field. In particular, all people working for the Italian public healthcare 
have to obtain a fixed amount of CME credits each year (as happens, for example, in several of the 
United States). Second, an information leaflet specifically dedicated to the event was sent to all the 
hospital departments dealing with emergencies and critical patients. Finally, the nurse coordinators 
of those departments were directly informed of the event through email and phone. 40 people 
answered positively to the call. As a compensation for their participation they received 6 CME 
credits.  

4.2.2.1 Demographics, computer use, 3D videogames and 3D applications use 

Of the 40 participants, 25 were female (62,5% of the total) and 15 male (37,5% of the total). 
This gender distribution and in particular the predominance of women, is close to the actual gender 
distribution of Italian professional nurses: 78% of the 395491 members of IPASVI (the federation 
of Italian nurses) are female. The average age was 35.52, the youngest participant was 24, while the 
oldest 49. From the computer use questionnaire (Table 4.3) we learned that all subjects use 
computers and only 2 of them have been using a computer for less than 1 year. The rest of them 
have been using computers for at least 2 years, with 33 people using computers for 5 years or more. 

1. Do you use computers? 
Yes No    
2. How long have you been using computers? 
Less than a year 1-2 years 2-5 years 5-10 years More than 10 

years 
3. How often do you use computers? 
Once a month or less A few times a 

month 
A few times a 
week  

Every day for 1 to 3 
hours 

Every day for 
more than 3 
hours 

4. What is the main thing you do when you use a computer? (Check all that apply) 
Applications related to 
my profession 

Office applications, 
email and Internet 

Multimedia 
applications 

Videogames Other: 
__________ 

5. How much do you like using a computer? 
Not at all A little Quite like it A lot  Really like it 

Table 4.3. The computer use questionnaire. 



80 4.    User Evaluation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

Only 2 subjects use computers less than once a week, while 26 subjects use it at least once a day. 
On a scale from 1 to 5, subjects answered 3.575 on average (standard deviation 0.78) to the question 
on how much they liked using computers. Only 6 people indicated that they use videogames, thus 
the majority of the subjects were probably not used to the kind of experience we proposed. 

Only 5 subjects used 3D videogames or 3D applications before (Table 4.4), and no one of them 
had more than 5 years of experience. Also, the frequency of use was quite low: no subject uses them 
daily. As regards the control devices , all 5 subjects are used to mouse and keyboard. Finally, to the 
question “How much do you like using them?” the 5 subjects answered with an average score of 3.4 
out of 5 (standard deviation 0.548) on a 5-item Likert scale, with higher values corresponding to 
better ratings. 

4.2.2.2 Initial level of preparation 

Questions in Table 4.5 helped assessing the subjects’ initial level of preparation. 16 subjects 
worked in the emergency room, 12 subjects in the emergency services (i.e., on ambulances): these 
are the two departments were ALS procedures are needed more often and more frequently applied. 
11 people worked at the Intensive Care Unit while the remaining one was an anesthesiologist. 
Moreover, 28 people indicated that they employed ALS procedures often or always. However, 24 
subjects declared their knowledge of such procedures was only sufficient, while 15 subjects deemed 
it passable. No one reported a very good knowledge in the field. Only 9 subjects ever attended an 
ALS retraining course, despite 23 of them thought that they should be held every 1 or 2 years and 
14 of them thought they should be repeated twice a year. This significant discrepancy between the 
number of people that never received ALS retraining and the widespread need for it underline the 
importance of a tool, such as serious games, to make retraining convenient, cheap and feasible.  

1. Do you use 3D videogames or other 3D applications? 
Yes No    
2. How long have you been using them? 
Less than a year 1-2 years 2-5 years 5-10 years More than 10 

years 
3. How often do you use them? 
Once a month or less A few times a 

month 
A few times a 
week  

Every day, for 1 to 
3 hours 

Every day, for 
more than 3 
hours 

4. What devices do you employ when you use them? (Check all that apply) 
Mouse Keyboard Game devices 

(e.g., joypad) 
Movement sensor 
(e.g., Wii) 

Touchscrenn 
(e.g., on a 
mobile phone) 

5. How much do you like using them? 
Not at all A little Quite like it A lot  Really like it 

Table 4.4. The 3D videogames and 3D applications use questionnaire. 



4.2    Evaluation of EMSAVE in ALS retraining 81 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

4.2.2.3 Feelings towards ALS training and expectations from virtual reality for training 

The final questions (Table 4.6) were presented in the form of statements to which subjects had 
to indicate their level of agreement on a five-item Likert scale, ranging from “Totally disagree” (1) 
to “Totally agree” (5). Regarding the first aspect, that is feelings towards ALS training: 

• subjects strongly felt the need to refresh their knowledge of ALS procedures (average score 
of 4.125, standard deviation 0.757), 

• they generally felt neither comfortable nor uncomfortable during ALS simulations (average 
score of 3.125, standard deviation 0.9), 

• they also generally did not feel under stress during ALS simulations (average score of 2.975, 
standard deviation 1.07). 

At the same time, they thought virtual reality could really be useful for ALS retraining (average 
score of 4.075, standard deviation 0.888) and that it will become a widespread training tool in the 
future (average score of 4, standard deviation 0.716). Although positive, these results could have 
been influenced by the voluntary nature of participation to the evaluation: subjects could already be 
well-disposed towards training in virtual reality. 

1. Which department do you work for? 
ER EMS ICU Cardiology Other:_____ 
2. How often are you involved in the ALS team in your department? 
Never Rarely Sometimes Often Always 
3. How would you rate your ALS knowledge level? 
Very bad Poor Sufficient Passable Very good 
4. Which agency provided the last ALS course you attended? 
IRC/ERC AHA AISACE Hospital agency Other:_____ 
5. Have you ever attended an ALS retraining course? 
Yes No    
6. How often do you think you should attend an ALS retraining course? 
Once every 5 years or 
less 

Once every 1-2 
years 

Once every 6 
months 

Once a month Once a week 
or more 

7.Have you ever participated in a course exploiting virtual reality simulations? 
Yes No    
8. Did you specifically prepare to attend this course? 
Yes No    

Table 4.5. Questions about working department, ALS use and knowledge. 



82 4.    User Evaluation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

4.2.3 Results 

In this section, we report and comment results from the ALS and the acceptance questionnaire, 
participants’ remarks and suggestions about EMSAVE and results from the retention test. 

4.2.3.1 ALS questionnaire results. 

As mentioned above, we administered the same set of questions about ALS before and after the 
two testing scenarios. Answers to the pre-test showed that, on average, subjects had some gaps in 
their knowledge of ALS procedures (Figure 4.2). The total number of correct answers was 943 out 
of 1512 (38 questions times 40 participants), with an average of 23.575 correct answers per subject 
(standard deviation 4.26). The maximum number of correct answers given by a subject was 31, 
while the minimum was 13. With an average score too close to 38, we would have had a ceiling 
effect, which would have left too little space for improvement and made it difficult to measure 
statistically significant knowledge gains. Besides, it was also confirmed that participants needed 

1. I feel the need to refresh ALS procedures 
Strongly disagree Disagree Neither agree nor 

disagree 
Agree Strongly agree 

2. I feel uncomfortable when filling out an ALS questionnaire 
3. I feel under stress when facing an ALS simulation 
4. I think that a virtual reality simulation tool, like the one that will be used for this course, can be useful to 

refresh and keep updated my ALS knowledge 
5. I think that in the future virtual reality simulations will become a widespread retraining tool 

Table 4.6. Questions about feeling towards ALS and the usefulness of virtual reality for it (all 
questions have the same set of possible answers). 

0

5

10

15

20

25

30

 

     Pre-test 23.58

     Post-test 28.35

Figure 4.2. Chart showing the average number of correct answers to the pre-test and the post-test. 



4.2    Evaluation of EMSAVE in ALS retraining 83 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

ALS retraining. 
The post-test questionnaire received 1134 positive answers, 191 more than the pre-test, with an 

average of 28.35 correct answers per subject (standard deviation of 3.676). We analyzed the results 
using the Wilcoxon matched pairs test, which can be employed to evaluate the difference between 
two observations of the same group, before and after an experiment. It applied to our case, since we 
had a single group of subjects who went through the same experiment (i.e., the training session) and 
were observed before and after it through the pre-test and post-test questionnaires. The computed 
difference between the two averages  of correct answers was 4.8, which is a statistically significant 
difference (T = 8, p < 0.05). The total of the ranks where performance after the post-test was higher 
was 8 and the total of the ranks where performance was lower was 812. The effect size was large, r 
= 0.85. This means that completing scenarios with EMSAVE improved subjects’ knowledge of 
ALS procedures. 

4.2.3.2 Perceived usefulness, effectiveness, usability and validity of EMSAVE and opinions 
about the application and the whole experience 

All the answers to this questionnaire proved statistically significant, since p-value, calculated 
through the chi-square goodness of fit test, was less than 0.001 for each of them. The first question 

1. How often do you think the virtual reality simulator should be used for training? 
Once every 5 years or 
less 

Once every 1-2 
years 

Once every 6 
months 

Once a month Once a 
week or 
more 

2. I think this is a valid self-training tool to refresh ALS knowledge and keep it up to date 
Strongly disagree Disagree Neither agree nor 

disagree 
Agree Strongly 

agree 
3. After completing the simulated scenarios, I feel more confident about ALS procedures 
4. The proposed scenarios are credible 
5. The proposed scenarios are in line with the ones proposed by instructors during ALS courses 
6. I think that in the future virtual reality simulations will become a widespread retraining tool 
7. I will gladly use this tool for retraining if it was available on my home computer 
8. I will gladly use this tool for retraining if it was available at my working department 
9. I’d like that every month one hour of my work was dedicated to training with virtual reality 
10. It was easy to refresh procedures using this tool 
11. I felt involved while performing procedures with this tool 
12. Overall, I am satisfied by this retraining tool 
13. I positively value the training experience had in this course 

Table 4.7. Evaluation and acceptance of EMSAVE as a training tool (All questions but the first one 
have the same possible answers). 



84 4.    User Evaluation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

asked how frequently subjects thought the virtual reality simulator should be used. Nineteen of 
them answered “once every 6 months” and other 11 answered “once a month”. Six people indicated 
once or more a week as the best frequency. Considering that virtual reality is not part of current 
training methods and the almost complete lack of experience subjects have with virtual reality 
applications, these are very encouraging answers: they both reveal that healthcare professionals see 
virtual reality simulation (at least in the form implemented in EMSAVE) as a viable training tool. 
Moreover, this question was a slight modification of question number 6 in Table 4.5: “How often 
do you think you should attend an ALS retraining course?”. While the previous question asked 
about the desired frequency of ALS retraining courses, this one asked about the desired frequency 
of ALS retraining in virtual reality. Possible choices for the answer were the same, so we could 
compare answers to the two questions using the Wilcoxon matched pairs test. A significant 
difference came out in favor of the question asked after the training (T = 0, p < 0.05). 13 subjects 
showed no change in agreement after the training and were discarded from the analysis. The total of 
the ranks where agreement was stronger before the training was 378 and the total of the ranks where 
agreement was stronger after the training was 0. The effect size was large, r = 0.87. This means that 
subjects would like to attend retraining courses more often if they involved virtual reality 
simulations.  

The remaining questions were presented in the form of statements to which subjects had to 
indicate their level of agreement on a five-item Likert scale, ranging from “Totally disagree” (1) to 
“Totally agree” (5). Statements about the effectiveness of EMSAVE received good scores: 
statement 2, about the validity of EMSAVE as an ALS self training tool, got an average score of 
4.375 (standard deviation 0.54). This statement repeated statement number 4 in Table 4.6, we 
analyzed the difference between the average scores (which was 0.2) using the Wilcoxon matched 
pairs test, to see if subjects’ opinions about the validity of EMSAVE to refresh knowledge had 
changed after using it, but it was not significant (T = 11, p=0.56). 29 subjects showed no change in 
agreement after the training and were discarded from the analysis. The total of the ranks where 
agreement was stronger before the training was 55 and the total of the ranks where agreement was 
stronger after the training was 11. The effect size was large, r = 0.59.The following statement, about 
increased confidence in ALS procedures after the simulation, got an average of 3.925 (standard 
deviation 0.61). Thus, to the considered sample EMSAVE proved very effective in increasing 
confidence about ALS procedures. 

The two following questions tested whether the proposed scenarios were appropriate for ALS 
training. Scenarios proved both realistic (average score 3.925, standard deviation 0.572) and in line 
with the ones usually proposed by ALS instructors (average score 4.125, standard deviation 0.404). 
These results help ensure the validity of the experiment. 

Subjects showed confident that virtual reality will become a widespread retraining tool (average 
score 4.225, standard deviation 0.66). Their opinion did not change with respect to the same 
question asked before the training (Table 4.6, statement 5), since the difference between the two 
average scores (0.23), analyzed using the Wilcoxon matched pairs test was not significant (T = 36, 



4.2    Evaluation of EMSAVE in ALS retraining 85 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

p=0.1). 24 subjects showed no change in agreement after the training and were discarded from the 
analysis. The total of the ranks where agreement was stronger before the training was 100 and the 
total of the ranks where agreement was stronger after the training was 36. The effect size was 
medium, r = 0.41. They also proved willing to use EMSAVE for their training, both at work 
(average score 4.525, standard deviation 0.554) and at home (average score 4.225, standard 
deviation 0.675). They also would like to dedicate one hour each month to training with EMSAVE: 
average score 4.3, standard deviation 0.723. 

We dedicated the last questions to a brief evaluation of EMSAVE and of the overall experience. 
Subjects agreed that executing the procedures with our application was not difficult (average score 
3.6, standard deviation 0.778). This is a positive result, since, as reported above, almost all subjects 
did not have any experience with 3D applications. Very important is the fact they felt involved in 
the experience, which is one of the primary objectives of EMSAVE and of virtual reality training 
tools in general (average score 4.225, standard deviation 0.62). Overall, the application and the 
experience had a good impact: subjects were really satisfied by the retraining tool (average score 
4.425, standard deviation 0.549) and very positively valued the training experience (average score 
4.525, standard deviation 0.506). 

4.2.3.3 Miscellaneous comments 

In this section, we report the most interesting among comments and suggestions subjects gave at 
the end of the course. 

Comments confirmed the very positive, in some cases enthusiastic, response of the subjects to 
the whole experience we could already infer from the answers to the last questionnaire. They liked 
the alternative and innovative approach to training and were overall satisfied by the usability and 
immersiveness of the application.  

As regards ease of use, several subjects reported some difficulties in the beginning, which 
quickly disappeared during the second and third scenario. The biggest obstacle was the large 
number of options in the menus that made it difficult to find the desired task. However, after some 
minutes of practice, all subjects got used to the menu structure and found the needed options more 
quickly. The choice of using only the mouse as an interaction device and to assign the left mouse 
button to interact with objects and to navigate and the right mouse button to bring up the menu was 
appreciated. No subject reported problems with navigation in the virtual world, despite their very 
limited experience with 3D applications. However, this could be due to the fact that the proposed 
scenarios required very little exploration of the virtual world. Some subjects highlighted that action 
was really slower in the simulation than in real emergencies. This was expected and in a certain 
measure inevitable, because of the fact that users had to select tasks from menus and not directly act 
on the patient. However, it also forced subjects to carefully consider each and every step of the 
procedure, while in real emergencies some steps are carried out almost automatically. Many 
subjects appreciated this, because it helped them reconsider their knowledge and reassess every 
detail. 



86 4.    User Evaluation 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

The last recurring topic among the comments we received regarded the need for some additional 
help features during the simulation. Single subjects proposed the following features: 

• vital signs and the list of devices attached to the patient should be always shown by the GUI, 
• a flowchart for the procedure should be available, both to show the history of performed 

tasks and advice about the next step, 
• guidelines should be shown before each scenario, to refresh them in the user’s memory, 
• since sometimes the same emergency could be handled in slightly different ways, 

ambiguities can arise in some scenarios, where the scenario requires the trainee to execute a 
task while another one could also be correct. In these cases a rationale for the task inserted 
in the scenario should be given. 

The first two points had already been discussed with experts during development. We integrated 
the task history in form of a list, since procedure execution in EMSAVE takes far more than in real 
emergencies, thus users could forget some tasks they already carried out. We agreed, instead, not to 
provide the flowchart suggesting next tasks, as well as panels continuously showing vital signs and 
the list of attached devices, since they could have made procedure execution too easy. 

4.2.3.4 Retention test results 

Three months after the evaluation had taken place, 39 participants (one had sadly deceased) 
received the same ALS questionnaire used for the pre and post-test and were asked to compile it 
and send it back. All 39 subjects compiled and returned the questionnaire, then we compared the 
new results to the ones obtained from the pre and post-test questionnaires (Figure 4.3), to measure 
how much the knowledge gained during the evaluation had been retained. 

A one-way analysis of variance (ANOVA) pointed out that there was a significant effect 

0

5

10

15

20

25

30

 

     Pre-test 23.58

     Post-test 28.35

     Retention test 26.36

Figure 4.3. Chart showing the average number of correct answers to the pre-test, the post-test and 
the retention test. 



4.2    Evaluation of EMSAVE in ALS retraining 87 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

(F(2,117)=15.527, p<0.05). We then compared the pre-test and the post-test with the retention-test 
using the Wilcoxon matched pairs test. As expected, there was a decrease in the number of correct 
answers to the retention test compared to the post-test: on average, each subject gave 1.9 less 
correct answers to the retention questionnaire and the difference was statistically significant (T = 
131, p < 0.05). Two subjects showed no change in performance after the training and were 
discarded from the analysis (together with the deceased one). The total of the ranks where 
performance after the post-test was higher was 572 and the total of the ranks where performance 
was lower was 131. The effect size was large, r = 0.55. However, the average performance was still 
better than the pre-test: on average, each subject gave 2.9 more correct answers to the retention 
questionnaire than to the pre-test one and the difference was statistically significant (T = 85.5, p < 
0.05). Four subjects showed no change in performance after the training and were discarded from 
the analysis (together with the deceased one). The total of the ranks where performance after the 
post-test was higher was 85.5 and the total of the ranks where performance was lower was 544.5. 
The effect size was large, r = 0.64. 

Although all subjects participating to our study received ALS training, pre-test results showed 
that they suffered some knowledge loss due to the passage of time. The results of the retention test 
suggest that part of the knowledge acquired through the use of the serious game was retained by 
participants to the evaluation after a period of three months. The negative effect of time can be 
reduced through the repetition of training sessions, which the adoption of a serious game makes 
more convenient and less expensive than traditional training methods. The only limitation to the 
retention test is that subjects received questionnaires by e-mail and we cannot be sure that they 
compiled it without any help or in an environment that favored a level of concentration comparable 
to the one they had during the evaluation. 





 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

Conclusions 

In this thesis, we have presented our architecture to support the creation of serious games for 
scenario-based training. The architecture aims at making serious games production more efficient, 
by allowing code reuse among different projects and reducing the need for game developers’ effort, 
and at facilitating the involvement of domain experts and their collaboration with game developers. 

The architecture exploits the CTT [45] task modeling formalism to represent scenarios with tree-
like structures in which nodes represent tasks, which the user has to perform to successfully 
complete a scenario, and are connected by temporal operators which describe temporal relations 
between tasks. We also introduced a representation allowing to specify effects, and their execution 
order, for each task. Through effects, task consequences can be shown in the virtual world. To 
describe state changes of game entities (e.g., heart rate change in a patient after cardiac massage) 
we provided a representation that can be extended by game developers based on the domain and on 
the purpose of the serious game to be developed. State models can be used to store information that 
changes as the scenario progresses. To refer to information stored in state models when defining 
task effects, we allow game developers to use their own variables, that are substituted at runtime 
with values taken from the current state. Game developers only need to define the desired variable 
mappings, together with task descriptions and state models, at design time and then the defined 
variables can be used to define any number of scenarios. All the models we use are stored in XML 
format, which has the advantage of being standard and at the same time processable by computers 
and readable by humans. This way, game developers and domain experts can work together to 
define tasks and scenarios for serious games. 

The architecture is also game engine-independent. This means that, to exploit the architecture, 
game developers are not restricted to a single game engine whose features could not meet their 
requirements. To adapt the architecture to a game engine, game developers only have to implement 
an event-based communication between the module we called Serious Game Coordinator and the 
game engine of choice. 

By exploiting the XML format, we facilitate the creation of authoring tools that allow domain 
experts to edit scenarios without the help of game developers. As shown by Johnson and Valente 
[27], such tools can really determine the success of a serious game, by significantly speeding up the 
creation of pedagogical content (i.e., training scenarios in our case). We intend to proceed in this 
direction and work together with domain experts towards the creation of authoring tools they could 
find easy to use. They will allow the composition of scenarios by dragging and dropping tasks and 
setting up the appropriate temporal relations among them, in a similar way to the editors proposed 
by van Est et al. [17] or by Protopsaltis et al. [50]. The usability of these authoring tools will then be 



90 Conclusions 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

evaluated, by asking experts from several domains in which scenario-based training is practiced to 
create training scenarios to be used in serious games. 

We also plan to test game engine independence. Binsubaih et al. [10] have demonstrated the 
game engine independence of their architecture by interfacing it both with a simulation engine they 
created and a commercial game engine. To develop EMSAVE, we used the NeoAxis [76] game 
engine and to this purpose we implemented the communication between this game engine and the 
architecture. To test and demonstrate game engine independence, we should port EMSAVE to a 
different game engine. This test would help evaluate whether the porting procedure is simple 
enough or it needs to be improved, to ease the work of game developers. 

Another direction in which we are moving is the adaptive tailoring of scenarios. Our purpose is 
to have the serious game tailoring scenarios based on the characteristics of the user or on 
instructor’s indications. Currently, EMSAVE offers the possibility to create scenarios involving 
disabled patients, based on scenarios which originally involved only non disabled patients. Dealing 
with a disabled patient requires additional care by the nurse. For example, when talking to a deaf 
patient the nurse is required to get close in order for him to read her lips. In terms of task 
descriptions inside our architecture, this implies adding a spatial condition, requiring the user to be 
within a certain distance from the patient, to tasks corresponding to dialogs. We extended the 
architecture with a module which changes scenario CTT models and task descriptions, based on the 
information about the kind of patient’s disability. At the beginning of a training session, after a 
scenario and a disability have been chosen, this module adapts the scenario in several ways. First, it 
can add new tasks to the scenario. For example, a guide dog is often present close to a blind patient 
and, until the dog has its harness on, it does not move and could stand in the way of the nurse. So, 
nurses are required to remove the harness at the beginning of the procedure. When the chosen 
disability is blindness, the task “Remove harness from guide dog” is added to the scenario in the 
right place. Second, spatial conditions or effects of existing tasks can be changed. For example, deaf 
patients have to be able to see the rescuer’s face, in order to read her lips while she talks. When the 
chosen disability is deafness, a spatial condition requiring the user’s avatar to be turned towards the 
patient is added to each task with an effect of type DialogEffectType. Third, the content of the 
virtual world can be changed. For example, the guide dog mentioned above is added to the virtual 
world only when the chosen disability is blindness. This feature can be extended by supporting 
changes based on user characteristics stored in the user model. For example, user skill level could 
be used to simplify a scenario for beginners or add more tasks for a more experienced user. 
Moreover, the adaptation mechanism must be tested to verify its applicability on other domains 
besides medical emergencies. 

Finally, we intend to develop more advanced tools to guide and help the user in the training 
process and to support both assessment of user’s performance by the serious game (e.g., through a 
scoring system, as presented in [36]) and by instructors (e.g., through tools for after-action review, 
as proposed in [29]). From our work with ALS instructors during the development of EMSAVE, we 
have seen that the way assessment is carried out strongly depends on the domain: both the assessed 



Conclusions 91 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

aspects of the performance and how they are evaluated may radically change between domains. A 
careful and in depth analysis of the assessment process in several domains is necessary, to be able to 
further extend the architecture while maintaining generality. 





 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

Bibliography 

[1] D. Alexander. Scenario methodology for teaching principles of emergency management. 
Disaster Prevention and Management, 9(2):89-97, 2000. 

[2] G. Alinier. Developing High-Fidelity Health Care Simulation Scenarios: A Guide for 
Educators and Professionals. Simulation & Gaming, 42(1):9 -26, 2011. 

[3] P. Backlund, H. Engstrom, C. Hammar, M. Johannesson, and M. Lebram. Sidh - a Game 
Based Firefighter Training Simulation. In Proceedings of the 11th International Conference 
Information Visualization, IEEE Computer Society Press, pages 899-907, 2007. 

[4] T. Baranowski, R. Buday, D. I. Thompson, and J. Baranowski. Playing for Real :  Video 
Games and Stories for Health-Related Behavior Change. American Journal of Preventive 
Medicine, 34(1):74-82, 2008. 

[5] K. Becker and J. R. Parker. Serious games + computer science = serious CS. J. Comput. Small 
Coll., 23(2):40-46, 2007. 

[6] F. Bellotti, R. Berta, A. De Gloria, and L. Primavera. A task annotation model for Sandbox 
Serious Games. In IEEE Symposium on Computational Intelligence and Games, 2009. CIG 
2009, IEEE Computer Society Press, pages 233-240, 2009. 

[7] F. Bellotti, R. Berta, A. De Gloria, and L. Primavera. A task annotation model for Sandbox 
Serious Games. In 2009 IEEE Symposium on Computational Intelligence and Games, IEEE 
Computer Society Press, pages 233-240, 2009. 

[8] A. BinSubaih, S. Maddock, and D. Romano. An Architecture for Portable Serious Games. In 
Doctoral Symposium hosted at the 20th European Conference on Object Oriented 
Programming, 2006. 

[9] A. BinSubaih, S. Maddock, and D. Romano. A Domain-Independent Multiplayer Architecture 
for Training. Presented at the International Workshop in Computer Game Design and 
Technology, pages 144-151, 2004. 

[10] A. BinSubaih, S. Maddock, and D. Romano. Game logic portability. In Proceedings of the 
2005 ACM SIGCHI International Conference on Advances in computer entertainment 
technology, ACM, pages 458–461, 2005. 

[11] S. Blackman. Serious games...and less! SIGGRAPH Comput. Graph., 39(1):12-16, 2005. 
[12] P. Brusilovskiy. The construction and application of student models in intelligent tutoring 

systems. Journal of computer and systems sciences international, 32(1):70–89, 1994. 
[13] A. Cabas Vidani and L. Chittaro. Using a Task Modeling Formalism in the Design of Serious 

Games for Emergency Medical Procedures. In Proceedings of the IEEE VS-GAMES 
International Conference on Games and Virtual Worlds for Serious Applications, IEEE 
Computer Society Press, pages 95-102, 2009. 



94 Bibliography 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

[14] A. Cabas Vidani, L. Chittaro, and E. Carchietti. Assessing Nurses’ Acceptance of a Serious 
Game for Emergency Medical Services. In 2010 Second International Conference on Games 
and Virtual Worlds for Serious Applications (VS-GAMES), IEEE Computer Society Press, 
pages 101-108, 2010. 

[15] R. E. Chatham. Games for training. Commun. ACM, 50(7):36-43, 2007. 
[16] M. Crichton and R. Flin. Training for emergency management: tactical decision games. 

Journal of Hazardous Materials, 88(2-3):255-266, 2001. 
[17] C. van Est, R. Poelman, and R. Bidarra. High-Level Scenario Editing for Serious Games. In 

International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory 
and Applications, Springer Verlag, 2011. 

[18] S. de Freitas and S. Jarvis. A Framework for developing serious games to meet learner needs. 
In The Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), 2006. 

[19] F. L. Fu, R. C. Su, and S. C. Yu. EGameFlow: A scale to measure learners’ enjoyment of e-
learning games. Computers & Education, 52(1):101-112, 2009. 

[20] C. Gatzidis, K. Parry, E. Kavanagh, A. Wilding, and D. Gibson. Towards the Development of 
an Interactive 3D Coach Training Serious Game. In Games and Virtual Worlds for Serious 
Applications, Conference in, IEEE Computer Society Press, pages 186-189, 2009. 

[21] S. Göbel, F. Mehm, S. Radke, and R. Steinmetz. 80days: Adaptive digital storytelling for 
digital educational games. In Proceedings of the 2nd International Workshop on StoryTelling 
and Educational Games STEG’09, CEUR Workshop Proceedings, 2009. 

[22] S. Gobel, L. Salvatore, and R. Konrad. StoryTec: A Digital Storytelling Platform for the 
Authoring and Experiencing of Interactive and Non-Linear Stories. In International 
Conference on Automated solutions for Cross Media Content and Multi-channel Distribution, 
2008. AXMEDIS  ’08, IEEE Computer Society Press, pages 103-110, 2008. 

[23] M. Hogan, H. Sabri, and B. Kapralos. Interactive community simulation environment for 
community health nursing. In Proceedings of the 2007 conference on Future Play, ACM, 
pages 237-240, 2007. 

[24] K. Hullett and M. Mateas. Scenario generation for emergency rescue training games. In 
Proceedings of the 4th International Conference on Foundations of Digital Games, ACM, 
pages 99-106, 2009. 

[25] L. A. Jackson et al. Culture, gender and information technology use: A comparison of Chinese 
and US children. Computers in Human Behavior, 24(6):2817-2829, 2008. 

[26] S. Jarvis and S. de Freitas. Evaluation of an Immersive Learning Programme to Support Triage 
Training. In Proceedings of the IEEE VS-GAMES International Conference on Games and 
Virtual Worlds for Serious Applications, IEEE Computer Society Press, pages 117-122, 2009. 

[27] W. L. Johnson and A. Valente. Collaborative Authoring Of Serious Games For Language And 
Culture. Presented at the SimTecT 2008, 2008. 

[28] H. Kelly et al. How to build serious games. Commun. ACM, 50(7):44-49, 2007. 



Bibliography 95 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

[29] P. Kizakevich, R. Furberg, R. Hubal, and G. Frank. Virtual Reality Simulation for 
Multicasualty Triage Training. In Proceedings of the 2006 I/ITSEC Conference, 2006. 

[30] A. Lecerof and F. Paternò. Automatic Support for Usability Evaluation. IEEE Trans. Softw. 
Eng., 24(10):863-888, 1998. 

[31] M. D. Lynch. Developing a Scenario-Based Training Program: Giving Officers a Tactical 
Advantage. FBI Law Enforcement Bulletin, 74(10):8, 2005. 

[32] D. McGrath and D. Hill. UnrealTriage: A Game-Based Simulation for Emergency Response. 
In Proceedings of The Huntsville Simulation Conference, 2004. 

[33] A. McKenzie and G. McCalla. Serious Games for Professional Ethics: An Architecture to 
Support Personalization. In AIED 2009: 14th International Conference on Artificial 
Intelligence in Education Workshops Proceedings, IOS Press, pages 69-78, 2009. 

[34] I. C. Moon, M. Schneider, and K. M. Carley. Evolution of Player Skill in the America’s Army 
Game. Simulation, 82(11):703-718, 2006. 

[35] P. Moreno-Ger, C. Blesius, P. Currier, J. L. Sierra, and B. Fernández-Manjón. Rapid 
development of game-like interactive simulations for learning clinical procedures. In 
Proceedings of Game Design and Technology Workshop and Conference, 2007. 

[36] P. Moreno-Ger, C. Blesius, P. Currier, J. L. Sierra, and B. Fernández-Manjón. Online learning 
and clinical procedures: rapid development and effective deployment of game-like interactive 
simulations. In Transactions on edutainment I, Springer-Verlag, pages 288-304, 2008. 

[37] P. Moreno-Ger, D. Burgos, I. Martínez-Ortiz, J. L. Sierra, and B. Fernández-Manjón. 
Educational game design for online education. Comput. Hum. Behav., 24(6):2530-2540, 2008. 

[38] P. Moreno-Ger, J. L. Sierra, I. Martínez-Ortiz, and B. Fernández-Manjón. A documental 
approach to adventure game development. Science of Computer Programming, 67(1):3-31, 
2007. 

[39] G. Mori, F. Paternò, and C. Santoro. CTTE: Support for Developing and Analyzing Task 
Models for Interactive System Design. IEEE Transactions on Software Engineering, 
28(8):797-813, 2002. 

[40] F. La Mura et al. Collaborative Virtual Environments as Research and Teaching Instruments in 
the Field of Disaster Medicine: the “e-DISTRICT CiPro” Simulator. In Proceedings of the 
11th International Conference Information Visualization, IEEE Computer Society Press, pages 
892-898, 2007. 

[41] B. M. Nagle, J. M. McHale, G. A. Alexander, and B. M. French. Incorporating scenario-based 
simulation into a hospital nursing education program. Journal of Continuing Education in 
Nursing, 40(1):18-25, 2009. 

[42] L. Paganelli and F. Paternò. Intelligent analysis of user interactions with web applications. In 
Proceedings of the 7th international conference on Intelligent user interfaces, ACM, pages 
111-118, 2002. 



96 Bibliography 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

[43] S. Pangoli and F. Paternó. Automatic generation of task-oriented help. In Proceedings of the 
8th annual ACM symposium on User interface and software technology, ACM, pages 181–
187, 1995. 

[44] F. Paternò and C. Mancini. Engineering the Design of Usable Hypermedia. Empirical Softw. 
Eng., 4(1):11-42, 1999. 

[45] F. Paternò. ConcurTaskTrees: An Engineered Approach to Model-based Design of Interactive 
Systems. In The Handbook of Analysis for Human-Computer Interaction, Lawrence Erlbaum 
Associates, pages 483-500, 2002. 

[46] F. Paternò, C. Mancini, and S. Meniconi. ConcurTaskTrees: A Diagrammatic Notation for 
Specifying Task Models. In Proceedings of the IFIP TC13 International Conference on 
Human-Computer Interaction (INTERACT’97), Chapman & Hall, Ltd., pages 362-369, 1997. 

[47] F. Paternò and C. Santoro. Preventing user errors by systematic analysis of deviations from the 
system task model. Int. J. Hum.-Comput. Stud., 56(2):225-245, 2002. 

[48] P. Pinheiro da Silva. User Interface Declarative Models and Development Environments: A 
Survey. In Interactive Systems Design, Specification, and Verification, vol. 1946, P. Palanque 
and F. Paternò, Eds. Springer Berlin Heidelberg, pages 207-226. 

[49] M. Prensky. Digital game-based learning. Comput. Entertain., 1(1):21-21, 2003. 
[50] A. Protopsaltis et al. Scenario-based serious games repurposing. In Proceedings of the 29th 

ACM international conference on Design of communication, ACM, pages 37–44, 2011. 
[51] P. Rooney, K. C. O’Rourke, G. Burke, B. MacNamee, and C. Igbrude. Cross-Disciplinary 

Approaches for Developing Serious Games in Higher Education. In Games and Virtual 
Worlds for Serious Applications, Conference in, IEEE Computer Society Press, pages 161-
165, 2009. 

[52] E. Salas, K. A. Wilson, C. S. Burke, and H. A. Priest. Using Simulation-Based Training to 
Improve Patient Safety: What Does It Take? Joint Commission Journal on Quality and Patient 
Safety, 31(7):363-371, 2005. 

[53] Schaafstal A.M., Johnston J.H., and Oser R.L. Training teams for emergency management. 
Computers in Human Behavior, 17(5):615-626, 2001. 

[54] B. G. Silverman et al. Modeling emotion and behavior in animated personas to facilitate 
human behavior change: the case of the HEART-SENSE game. Health Care Management 
Science, 4(3):213–228, 2001. 

[55] B. G. Silverman, M. Johns, R. Weaver, and J. Mosley. Authoring Edutainment Stories for 
Online Players (AESOP): Introducing Gameplay into Interactive Dramas. In Virtual 
Storytelling. Using Virtual RealityTechnologies for Storytelling, vol. 2897, O. Balet, G. 
Subsol, and P. Torguet, Eds. Springer Berlin Heidelberg, pages 65-73, 2003. 

[56] M. Slater, M. Usoh, and A. Steed. Taking steps: the influence of a walking technique on 
presence in virtual reality. ACM Trans. Comput.-Hum. Interact., 2(3):201-219, 1995. 



Bibliography 97 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

[57] A. Sliney and D. Murphy. JDoc: A Serious Game for Medical Learning. In Proceedings of the 
First International Conference on Advances in Computer-Human Interaction, IEEE Computer 
Society Press, pages 131-136, 2008. 

[58] T. Susi, M. Johannesson, and P. Backlund. Serious Games – An Overview. 2007. 
[59] P. A. Szekely, P. N. Sukaviriya, P. Castells, J. Muthukumarasamy, and E. Salcher. Declarative 

interface models for user interface construction tools: the MASTERMIND approach. In 
Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-
Computer Interaction, Chapman &amp; Hall, Ltd., pages 120–150, 1996. 

[60] J. Torrente, A. del Blanco, E. J. Marchiori, P. Moreno-Ger, and B. Fernández-Manjón. <e-
Adventure>: Introducing educational games in the learning process. In 2010 IEEE Education 
Engineering (EDUCON), IEEE Computer Society Press, pages 1121-1126, 2010. 

[61] J. Torrente, P. Moreno-Ger, B. Fernàndez-Manjòn, and J. L. Sierra. Instructor-Oriented 
Authoring Tools for Educational Videogames. In Advanced Learning Technologies, IEEE 
International Conference on, IEEE Computer Society Press, pages 516-518, 2008. 

[62] M. Turoff, M. Chumer, S. R. Hiltz, A. Hendela, J. Konopka, and X. Yao. Gaming Emergency 
Preparedness. In Proceedings of the 39th Annual Hawaii International Conference on System 
Sciences - Volume 02, IEEE Computer Society Press, page 38, 2006. 

[63] D. S. Vincent, A. Sherstyuk, L. Burgess, and K. K. Connolly. Teaching mass casualty triage 
skills using immersive three-dimensional virtual reality. Academic Emergency Medicine: 
Official Journal of the Society for Academic Emergency Medicine, 15(11):1160-1165, 2008. 

[64] M. Virvou, C. Manos, G. Katsionis, and K. Tourtoglou. Incorporating the culture of virtual 
reality games into educational software via an authoring tool. In 2002 IEEE International 
Conference on Systems, Man and Cybernetics, IEEE Computer Society Press, pages 326- 331, 
2002. 

[65] B. G. Witmer and M. J. Singer. Measuring Presence in Virtual Environments: A Presence 
Questionnaire. Presence: Teleoperators & Virtual Environments, 7(3):225-240, 1998. 

[66] A. Yusoff. A Conceptual Framework for Serious Games and its Validation. PhD thesis. 2010. 
[67] M. Zyda. From visual simulation to virtual reality to games. Computer, 38(9):25-32, 2005. 
[68] America’s Army. Available: http://www.americasarmy.com/. [Accessed: 01-Nov-2011]. 
[69] Sealund. Available: http://www.sealund.com/. [Accessed: 01-Nov-2011]. 
[70] OLIVE - On-Line Interactive Virtual Environment. Available: 

http://www.saic.com/products/simulation/olive/. [Accessed: 02-Nov-2011]. 
[71] VBS2. Available: http://www.bisimulations.com/node/22/vbs2/rte. [Accessed: 02-Nov-2011]. 
[72] Thinking Worlds. Available: http://www.thinkingworlds.com/. [Accessed: 02-Nov-2011]. 
[73] Grand Theft Auto IV. Available: http://en.wikipedia.org/wiki/Grand_Theft_Auto_IV. 

[Accessed: 03-Nov-2011]. 
[74] Jess, the Rule Engine for the Java Platform. Available: http://jessrules.com/. [Accessed: 04-

Nov-2011]. 



98 Bibliography 

Tesi di dottorato di Alberto Cabas Vidani, discussa presso l’Università degli Studi di Udine 

[75] Monkey Island (series). Available: http://en.wikipedia.org/wiki/Monkey_Island_(series). 
[Accessed: 06-Nov-2011]. 

[76] NeoAxis Engine. Available: http://www.neoaxisgroup.com/. [Accessed: 27-Dec-2008]. 
[77] OGRE. Available: http://www.ogre3d.org/. [Accessed: 07-Jan-2009]. 
 


