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Abstract

Over the last decade there has been an increasing interest in solutions for the continuous
monitoring of health status with wireless, and in particular, wearable devices that provide
remote analysis of physiological data. The use of wireless technologies have introduced
new problems such as the transmission of a huge amount of data within the constraint of
limited battery life devices. The design of an accurate and energy efficient telemonitoring
system can be achieved by reducing the amount of data that should be transmitted, which
is still a challenging task on devices with both computational and energy constraints.
Furthermore, it is not sufficient merely to collect and transmit data, and algorithms that
provide real-time analysis are needed.

In this thesis, we address the problems of compression and analysis of physiologi-
cal data using the emerging frameworks of Compressive Sensing (CS) and sparse signal
processing. In particular, we develop new methods and propose specific applications for
compression and real-time analysis with a special focus on electrocardiogram (ECG) and
fetal electrocardiogram (fECG) signals. Moreover, the proposed frameworks and results
could potentially be extended to a much wider class of physiological signals.

To improve the performance of current CS frameworks, we introduce a novel sparsifying
dictionary, which, when used in combination with the existing reconstruction algorithms,
allows for accurate recovery of ECG signals at high compression ratios. While the CS com-
pression is a low-complex procedure, signal recovery can be computationally expensive,
and very often we are only interested in extracting certain information without necessarily
needing the full reconstructed signal. This is the case of clinical evaluation based on ana-
lyzing beat-to-beat timing variation, which is calculated from the time occurring between
two consecutive beats, identified by the R-peak in the ECG signal. Thus, we consider
the possibility of avoiding signal recovery and directly performing beat detection in the
compressed domain. To this end we propose a new method capable to provide a real-
time detection of R-peaks with a limited complexity with respect to typical reconstruction
procedures.

Increasing the compression ratio is the main objective, but, due to distortion, the sig-
nal quality is an issue that should always be kept under control. In particular, due to
distortion induced by the sampling process it is essential to guarantee that all clinically
relevant information for a given task is preserved, in order to prevent significant degrada-
tion in the performance of any standard or novel clinically relevant algorithm. Thus, in
order to assess the effectiveness of the proposed dictionary and beat detector, we verify
the impact of CS at different compression ratios on Atrial Fibrillation (AF) detection. We
demonstrate the possibility of accurately detecting episodes of atrial fibrillation (AF) di-
rectly on the compressed measurements which has enormous potential for extending long
term monitoring of transient AF and other episodic phenomena, which requires long term



monitoring and processing of data on energy-constrained devices. Moreover, the proposed
dictionary allows to increase the accuracy of AF detection for a given compression ratio
with respect to standard method.

We also design a framework for the compression of abdominal fECG and to obtain real
time information of the fetal heart rate, providing a suitable solution for real-time, very
low power fECG monitoring. Taking advantage of the sparse representation with the pro-
posed dictionary, it is possible to increase the quality of the compressed signals, and, at the
same time, perform fetal and maternal beat detection/classification. The detection scheme
uses Independent Component Analysis (ICA), which we propose to compute directly in
the compressed domain before signal reconstruction. The need for fast and robust recon-
struction algorithms inspired us to modify an existing reconstruction algorithm and make
it error-tolerant. The proposed method guarantees better immunity against inaccuracy
caused by noisy original signals and possibly ill-conditioned reconstruction procedures.

Finally, we compare fECG compression using CS to a standard compression scheme
using wavelets in terms of energy consumption, reconstruction quality and, more impor-
tantly, performance of fetal heart beat detection on the reconstructed signals. An actual
implementation on a commercial device prove the suitability of CS as an ultra-low power
compression technique for fECG signals. Indeed, CS allows for significant reductions in
energy consumption in the sensor node and the detection performance is comparable to
that obtained on original signals for compression ratios of up to 75%.
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1
Introduction

1.1 Motivations

Cardiac dysfunction can be associated with devastating physiological consequences such
as cardiovascular disease, and, despite during the past few decades the mortality due
to cardiovascular disease has decreased, it still remains the number one cause of death
worldwide. Accordingly to the World Health Organization, in 2012 about 17.5 million
deaths (31% of about 54.9 million deaths occurring worldwide) were due to cardiovascular
disease [98].

By following a healthy lifestyle it is possible to prevent and control many of the risk
factors associated with heart disease. However, in order to reduce or eliminate the com-
plications, cardiac disease should be identified in its early or asymptomatic phase. In
particular, it is important to detect heart rhythm issues (arrhythmias), which are some
of the most common heart disorders. This can be done by analyzing the heart’s activity
through the electrocardiogram (ECG) signal. To this end, Holter systems are commonly
employed to record a patient’s ECG trace and monitor arrhythmias. Patients are con-
nected to the device through a series of wires and must carry the device at all times,
commonly for 24 or 48 hours. Clearly, the impact on the patient’s mobility and everyday
activities makes Holter systems not always easily portable for such a long time.

The use of telemonitoring systems, in particular the new concept of Wireless body
sensor networks (WBSNs), promises to allow continuous and remote monitoring of physi-
ological signals [92, 78, 10, 96]. Wireless functionality allows the devices to continuously
transmit a patient’s heart data to a server, and unlike Holter monitors, they may be used
for several weeks at a time, overcoming the limits of wired technology that restricts pa-
tient’s movements and everyday life. Furthermore, telemedicine is particularly useful since
it may reduce costs of hospitalization and provide remote analysis in sparsely populated
or quarantined regions.

The increasing volume of data generated by the continuous monitoring brings with
it new problems. One of the major challenges in this field is the transmission of a large
amount of data within the constraint of limited battery life devices. This is particularly
important for implantable devices that provide accurate daily transmission of cardiac
electrical data. Thus, in the design of telemonitoring systems based on WBSNs one has
to consider to allow long-term clinically relevant monitoring while reducing the size of
the device, allowing free-living conditions to the patients, without reducing the embedded
intelligence and wireless capabilities.

To achieve low-power telemonitoring using WBSNs technologies, the use of Compres-
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Figure 1.1: WBSN for telemonitoring applications.

sive Sensing (CS) techniques seems to be a promising framework, which may increase the
lifetime of sensors reducing the amount of data to transmit and the computational cost
of the compression algorithm. Furthermore, the analogue implementation of CS allows to
directly acquire a compressed version of the signal, to further reduce the power consump-
tion using sub-Nyquist sampling frequencies. Hardware designs of sub-Nyquist converters
that rely on ideas of CS have been also investigated in the literature. However the digital
implementation remains the most common and used due to its low computational cost.

The continuous monitoring of patient’s health introduces a second issue concerning
the huge amount of data generated that need to be processed and analyzed. Some remote
monitoring systems are based on event-triggered transmissions, and after event detection
on the wearable or implantable device data are transmitted to a mobile patient unit,
and then forwarded to a physician. It is then clear that new automatic solutions for data
analysis are required. Algorithms should be able to elaborate a huge amount of data giving
reliable results, but in some situations it also necessary to develop solutions that work in
real-time and are suitable for low-resource devices. Advances in the signal processing allow
designing very sophisticated and reliable systems for event detection, both in real-time and
off-line situations.

Beyond presenting some solutions that combine tools used to enable low-power com-
pression with real-time analysis of adult the ECG signal, in this work we go further and
extend the analysis to non-invasive fetal electrocardiogram (fECG) recordings. Since its in-
troduction, fetal heart rate monitoring was expected to increase the diagnoses of fetal heart
diseases, however the outputs of fetal heart rate monitors are often unreliable and difficult
to interpret. In the last years, the use of sophisticated signal processing techniques and
recording devices have improved the accuracy in fetal heart rate estimation. Non-invasive
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fECG can theoretically be performed at every stages of the pregnancy enabling long term
and continuous monitoring, but it is currently used for short and intermittent analysis.
Continuous long-term fetal monitoring might provide a way to remove the limitations of
subjective and intermittent evaluation of fetal wellbeing [21]. However, issues with signal
quality, poor battery life and interference have prevented the use of devices for continuous
monitoring of fECG, which have not yet become widely used in clinical practice.

1.2 Thesis outline

The goal of this thesis is to present solutions for ECG and fECG signal compression in low-
power wireless sensors as well as to provide and analyze frameworks for their analysis, using
solutions that arise in the emerging field of compressive sensing and sparse representations.

Initially, we review in Chapter 2 the current state-of-the-art methods for sparse signal
representations and compressive sensing. First, we give the basic definitions and notation
used in this thesis for sparse representation of signals, and we introduce the theory of CS.
Then, we give an overview of some algorithms use for solving ill-posed inverse problems
related both to sparse representation and CS, which will be used in the rest of this work.

Chapter 3 studies a novel dictionary used for the sparse representation of the ECG
signal, which is the key to address the challenging problem of increasing the compression
of ECG signal by using CS. First, we review some basic principles of ECG monitoring
and interpretation, describing the model that can be used to describe the electrocardio-
gram signal. Based on the ECG mathematical model a new over-complete dictionary is
introduced. Allowing a sparsest representation of the ECG signal it enables to achieve
higher compression ratios within the CS framework. Unlike other dictionaries proposed in
literature, the one introduced in this chapter is “universal”, since it does not depend on a
specific patient and does not require a learning stage.

In Chapter 4 a new algorithm for beat detection that works directly on the compressive
sensing measurements of ECG signals is presented. Avoiding the reconstruction procedure,
the adoption of this method considerably reduces the detection complexity, making the
procedure suitable for low-resource and low-power devices. Without actual reconstruc-
tion, it is possible to achieve results comparable with state-of-the-art detection on the
reconstructed signals, when conventional sparsifying bases are used in the reconstruction
process. Using more sophisticated dictionaries, such as the one proposed in Chapter 3,
allows to achieve better detection results at high compression ratios, where the proposed
method performance slightly degrades. However, reconstruction with the over-complete
dictionary requires considerable resources, so the proposed method can still be preferable.
A possibility is to devise schemes where detection is performed in the sensor, while data
are further compressed and transmitted if necessary. Note that radio transmission is in
general costly in terms of energy consumption.

Motivated by the necessity to keep clinical relevant information after signal compres-
sion, Chapter 5 presents a study on the effect of compressive sensing on the performance
of atrial fibrillation detection. Indeed, classical metrics based on signal quality might
be not necessarily a good indicator of the actual clinical usefulness of a signal after re-
construction. Apart from assessing the performance after signal reconstruction and beat
detection with a state-of-the art algorithm, we assess the performance of AF detection
after applying the beat detector proposed in Chapter 4 avoiding the signal reconstruction
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stage. The results of this study have widespread implications for further application of
CS in a clinical context.

We move to the problem of compression and analysis to the fetal electrocardiogram
in Chapter 6. The dictionary introduced for the compression of ECG signal in Chap-
ter 3 is extended to the fECG signal in order to overcome the limitations of the classical
CS framework for the fECG signals. Fetal electrocardiogram signals acquired from the
mother’s abdomen are typically characterized by a very low SNR. In fact, signals recorded
by this method are always a mixture of noises generated, for instance, by fetal brain ac-
tivity, myographic signals (both from the mother and the fetus), movement artifacts and
maternal ECG. Thus, the CS frameworks that use conventional sparsifying bases, such
as the Wavelet basis, generally fail to recover the signal with adequate accuracy, making
the reconstructed electrocardiogram non suitable for diagnostic purposes. Moreover, in
the development of the dictionary we consider the possibility to separate the maternal
and fetal components during the reconstruction procedure, allowing fetal beat detection
in real-time. Although the use of the dictionary allows to separate the fetal and maternal
QRS complexes in the majority of the ECG traces, some further processing might be re-
quired to achieve more reliable results. To this aim, we show that it is possible to apply
Independent Component Analysis (ICA) directly in the compressed domain. Recovering
the independent components can increase the performance of the method. Even if ICA is
applied in the compressed domain, it is possible to virtually reconstruct the same indepen-
dent components that one should obtain from the original mixtures. The novel proposed
dictionary is used during reconstruction as a sparsifying domain. This method can be
used for in home real-time monitoring of fetal heart rate, using small low-power wearable
sensors. While a first analysis can be provided by the proposed method, the signals can
be further evaluated by a physician, since reconstruction preserves the clinical quality of
the signals.

In Chapter 7 a robust version of the reconstruction method used in Chapter 6 is intro-
duced to overcome some limitations due to the nature of the dictionary and sensing matrix.
The improved reconstruction algorithm, based on the Smoothed-l0 (SL0) algorithm, might
be suitable in all the situations in which the matrix used in the CS reconstruction process
is ill-conditioned and the signals or measurements are corrupted by noise. We also show
that the use of a sparse sensing matrix instead of a classical random sensing matrix, with
i.i.d. components, leads to the same detection/reconstruction results. This chapter is
concluded by illustrating how it is possible to take advantage of the sparse representation
obtained from the dictionary used in Chapter 6 to increase the performance of classical
fetal beat detection algorithms, based on ICA working on the raw fECG signals. Indeed,
combining ICA and the sparse representation, it is possible to perform a fast real-time
analysis of fECG.

In Chapter 8 a sensor architecture using the CS paradigm is compared to a standard
compression scheme using wavelets. Unlike other works in the literature, we consider, as a
figure of merit, the accuracy of fetal beat detection after reconstruction, and compare the
results of different compression/transmission/reconstruction procedures as a function of
the sensor energy consumption. Our results show that a properly designed CS paradigm,
using the proposed over-complete dictionary at the receiver, can preserve relevant signal
information and provide a detection performance comparable to that obtained on orig-
inal signals for compression ratios up to about 75%. Moreover, CS scheme has similar
reconstruction quality than one based on wavelets, with the advantage of a low energy
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implementation in the sensor.
To conclude the thesis, in Chapter 9 we summarize our findings and we analyze possible

future directions and open questions.

1.3 Summary of Contributions

The main contributions of this thesis are summarized below.

• We propose a novel dictionary that allows a better rate-distortion performance than
conventional schemes based on state of the art wavelet bases. The dictionary is
based on a Gaussian model of the ECG signal. The proposed sparsifying dictionary
is tested and validated for the reconstruction of real ECG signals from compressed
measurements, and it is shown that it provides significant gain with respect to other
conventional sparsiyfing transforms.

• We introduce a accurate novel method that allows the detection of beat directly on
compressive sensed ECG signals, avoiding the reconstruction procedure.

• We assess the effect of compressive sensing at different compression ratios on atrial
fibrillation detection. This study evaluates the CS framework in view of an actual
implementation in a clinical context and shows the proposed method is significantly
superior.

• Based on the proposed dictionary, we extend the work to non-invasive fetal electro-
cardiogram analysis. We show that our dictionary is able to recover the signal from
the compressive sensing measurements with sufficient quality. Besides, we show that
is possible to implement the Independent Component Analysis (ICA) directly in the
compressed domain, and we propose a scheme that is able to effectively detect fetal
beats during reconstruction.

• We propose a new regularized version of the Smoothed-l0 reconstruction algorithm,
which allows to overcome the problem of noisy signal recovery when the sensing
matrix-dictionary system is ill-conditioned.

• We study and compare the energy consumption and beat detection performance of
CS and wavelet based compression for fECG signals with an actual implementation
on a commercial device and demonstrate significantly superior performance of the
techniques proposed in this thesis.
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2
Sparse Representation and

Compressive Sensing

2.1 Introduction

Over the last few years there has been an increasing interest on alternative signal represen-
tations such as sparse representation and sparse approximation [22, 58, 87]. These make it
possible to represent a signal in a compact way, using only a small number of coefficients
from a general basis or dictionary. The key concept of sparsity is used by several new al-
gorithms developed to achieve state-of-the-art results in a wide range of signal processing
applications, including compression, denoising and analysis. Despite many natural signals
are not sparse in the acquisition domain, it is in general possible to describe the signal
using a sparse representation in a specific dictionary or basis. In particular, for physiolog-
ical signals, such as the electrocardiogram (ECG) or the fetal electrocardiogram (fECG),
it is necessary to develop new dictionaries to allow an efficient sparse representation.

Sparsity is also the basic concept behind Compressive Sensing (CS) [25, 53, 31, 32,
30, 9], a novel paradigm in signal processing that allows to successfully recover certain
signals sampled far below the Nyquist frequency. As we will see in this work, the design
of a suitable sparsifying dictionary is essential in order to achieve better results in CS of
physiological signals.

Besides compression, sparse representations can be successfully applied as an alterna-
tive tool for signal analysis and classification, since they allow to separate the components
of a signal when they have different shape/morphology [128, 18].

In the current chapter, we start by formulating the sparse representation problem
that is fundamental to understand the compressive sensing theory introduced later. To
conclude the chapter, we introduce some of the state-of-the-art algorithms that aim to
solve the inverse problems arising from sparse representation and CS.

2.2 Sparse Signal Processing

2.2.1 Notation

In this work we use normal letters like s to designate scalar quantities and boldface lower-
case letters, s ∈ RN , to indicate N -dimensional real column vectors, each i-th entry
indicated using si. Matrices are indicated with boldface capitals, like A ∈ RM×N , which
represents an M ×N matrix. We indicate the j-th column of the matrix A with aj ∈ RM .
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We make frequent use of the l1, l2 norms, and of the l0-norm, which is actually a
pseudo norm. For p ∈ [1,∞) a norm of a vector x in the N -dimensional Euclidean vector
space RN is defined as

‖ x ‖p=
(

N∑
i=1

|xi|p
) 1

p

. (2.2.1)

The standard inner product in RN is denoted as

〈x, y〉 = yTx =

N∑
i=1

xiyi, (2.2.2)

thus the l2-norm is ‖ x ‖2=
√
〈x, x〉.

The l0 pseudo-norm, which counts the total number of non-zero elements in a vector,
is defined as

‖ x ‖0= Card(Supp(x)), (2.2.3)

where the support of a vector Supp(x) is defined as the set containing the indices of the
non-zero elements, and the cardinality Card(·) counts the number of elements of a set.

2.2.2 Bases and Frames

The goal of sparse signal processing is to approximate a signal using a linear model, called
dictionary [88, 112], which is a set of elementary signals, called atoms, in order to make
its processing or analysis faster and simpler. Sparsity expresses the idea that a signal has
a compact representation, i.e., that one can approximate it with just a few elements from
the dictionary.

When the dictionary forms a basis, it is said to be complete, and every signal is
uniquely represented as the linear combination of the dictionary atoms. A basis Ψ of
an N -dimensional space is defined as a complete set of atoms {ψi}i∈N , such that, for any
signal x, there exists a unique sequence of coefficients si satisfying

x =

N∑
i=1

siψi. (2.2.4)

When the set of atoms are orthogonal, 〈ψi, ψk〉 = δi−k, then Ψ is called an orthogonal
basis. When the atoms are not orthogonal, 〈ψi, ψk〉 6= δi−k, Ψ is called a biorthogonal
basis. In a finite-dimensional space, the number of representative basis atoms is the same
as the dimension of the space (Fig. 2.1 (a) and (b)).

The most commonly used bases in signal processing typically originate form traditional
transforms, such as the Discrete Fourier Transform (DFT), the Discrete Cosine Transform
(DCT) and the Discrete Wavelet Transform (DWT). As well known, these transforms
are effective for representing natural signals and images, and have fast implementations.
The application of these bases to physiological signals, however, can be problematic, and
one can design alternative dictionaries that allow a more compact representation. In
particular, overcomplete dictionaries have more atoms than the dimension of the signal,
and can represent specific signal patterns more efficiently.

When the number of atoms P is larger than the dimension N of the space, the atoms
are no longer linearly independent. If N < P atoms are linearly independent, the set is
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Figure 2.1: (a) An orthogonal basis, (b) a biorthogonal basis, (c) a frame in R2.

called a frame [76] or overcomplete dictionary D ∈ RN×P (Fig. 2.1 (c)). Given a frame
and a set of atoms {di}i∈P , any signal x can be represented by a sequence of coefficients
si such that

x =

P∑
i=1

sidi. (2.2.5)

Because the atoms in D are linearly dependent, this signal expansion is not unique. Non-
uniqueness gives us the possibility to choose among the infinite number of possible repre-
sentations the one that most fits our purposes.

An important property of an overcomplete dictionary is its coherence, first introduced
by Davis et al. [48], which quantifies how the atoms are correlated with each other.

Definition 2.2.1 The coherence of a matrix D is defined as

µ(D) = max
i 6=j
| < di,dj > |
||di||2||dj ||2

.

where di and dj denote columns in D.

It is not difficult to show that the coherence of a matrix D ∈ RN×P , with normalized

columns, ||dj ||2 = 1, is always in the range µ(D) ∈
[√

P−N
N(P−1) ; 1

]
. Note that when D is

an orthogonal matrix, the coherence is exactly 0. It can be shown that incoherence is a
desirable property for overcomplete dictionaries [27].

2.2.3 Sparse and Compressible Signals

A signal x is said to have a sparse representation, in itself or in some transform domain,
if it or its transform coefficient vector s has a large number of coefficients equal to zero.

Formally, we say that a vector s is k-sparse when ‖ s ‖0≤ k. The set of all k-sparse
vectors is defined as

Σk = {s :‖ s ‖0≤ k}. (2.2.6)

Even if the representation is not exact, and requires more than k atoms, it is possible
in general to obtain a good k-sparse approximation of the signal by setting the small
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(a) (b) (c)

Figure 2.2: (a) Original image. (b) Sparse representation using wavelet transform, observe
that most of the wavelet coefficients (dark pixels) are close to zero. (c) Approximation of
the image obtained by keeping only the largest 10% wavelet coefficients.

coefficients to zero (e.g., by thresholding). An example is reported in Fig. 2.2 where the
wavelet transform has been applied to an image. As visible in Fig. 2.2(b), most coefficients
are very small (dark pixels). A good approximation can be obtained by setting the small
coefficients to zero. Figure Fig. 2.2(c) shows its k-term approximation obtained by keeping
only the largest 10% coefficients.

The class of approximately sparse signals, the so called compressible signals, is the
most important in practice, since only few real-world signals are truly sparse even in the
transform domain.

It is possible to quantify the compressibility of a signal by calculating the error resulting
from the approximation of signal s by some ŝ ∈ Σk

σk(s)p = min
ŝ∈Σk

‖ s− ŝ ‖p . (2.2.7)

Most natural signals and images can be represented with bases or dictionaries with
coefficients that obey a power law decay. Sorting the coefficients si such that |s1| ≥
|s2| ≥ · · · ≥ |sK |, we say that the coefficients obey a power law decay if there exist
constants C, q > 0 such that |si| ≤ Ci−q [65]. Signals which obey such property are in
general compressible, and the success of compression schemes based on transform coding
are based on this principle.

2.2.4 The Sparse Representation Problem

In the simplest case of an orthogonal basis Ψ, the expansion coefficients s of a signal x
can be easily computed as inner product of the signal and the atoms

s = ΨTx. (2.2.8)

Equation 2.2.8 is usually called the analysis formula, while the equation x = Ψs is referred
as the synthesis formula.

Let now consider the case of an overcomplete dictionary, where the matrix D ∈ RN×P
is a “fat” matrix, meaning that it has more columns then rows. We assume that rank(D) =
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Figure 2.3: Sparse representation model. In this model colored columns, and the relative
coefficients in s, represent the selected sparse set of atoms.

N (i.e., that it is a full rank matrix). A simple approach in the analysis path is to calculate
s = D̃x, where D̃ = D† is the pseudo inverse of D. It is well known that the resulting
vector s is the minimum l2-norm vector satisfying x = Ds. The pseudo-inverse has the
closed-form expression D† = D

(
DTD

)−1
. Note however that s is not sparse in general.

Searching for compact representations, a more interesting alternative is to find the
solution as the sparsest possible. This is more efficient from a processing and storage
requirement point of view. This can be accomplished by finding the representation having
as few non-zero coefficients as possible, i.e., by solving the problem

min
s
‖ s ‖0 s.t. x = Ds. (2.2.9)

Unfortunately, finding the solution to Eq. 2.2.9 is NP hard due to its combinatorial
optimization nature. As we will see later for the compressive sensing problem, suboptimal
solutions can be found by iterative methods like matching pursuit (MP) [88] and orthogonal
matching pursuit (OMP) [104, 121], or relation methods such as basis pursuit (BP). Sec. 2.4
summarizes some of the most used algorithms used to compute sparse approximations, as
well as to solve the CS-recovery problem that will be introduced in the next section.

2.3 Compressive Sensing

2.3.1 Form Sparse Signals to Sparse Sampling

The majority of traditional signal acquisition schemes are based on the classical sampling
formulation, which requires to sample a signal x(t) on a set of uniformly spaced time
instants, at a rate at least twice the bandwidth of the signal [116] (Fig. 2.4(a)). Signal
reconstruction from samples xn is computed as x̂(t) =

∑
n xnφ(t/T − n), where x̂(t) is

the reconstructed signal, φ(t) is the sinc function, and T is the sampling period. Perfect
reconstruction is guaranteed for any bandlimited signal x(t). This result is the well know
Shannon sampling theorem, which provides a sufficient but not necessary condition for
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Figure 2.4: (a) Traditional ‘acquire then compress’ scheme, (b) possible analog implemen-
tation of compressive sensing and (c) digital compressive sensing.

perfect reconstruction. The necessity to represent the samples efficiently for transmission
or recording purposes, typically requires to compress the data, possibly using costly and
signal dependent schemes.

The use of compressive sensing (CS) appears to be an advantageous alternative to the
standard sensing approach, since it enables to sense and compress data simultaneously
while capturing all the relevant information at a rate lower than the Nyquist one. Instead
of considering the signal bandwidth, compressive sensing is based on the observation that
signals may have a sparse representation in some domain or can be sparse-approximated.
Thus, it can be seen as a novel sampling approach in which the key element in the sparsity
of the acquired signal.

CS is based on an efficient and signal-independent sampling strategy, which consists of
taking M non-adaptive linear measurements of the k-sparse vector x, with M ∼ k,M � N
(Fig. 2.4(b)(c)). In order to make the discussion more concrete, even if analog implemen-
tations are possible (see Fig. 2.4(b)) for the remainder of this chapter we will restrict our
attention to the discrete CS model, known as “digital” CS (Fig. 2.4(c)), which will be used
in this thesis for low power compression of physiological signals.

Digital CS consists in the application of a sensing (or measurements) matrix Φ ∈
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Figure 2.5: Compressive sensing framework.

RM×N to the signal x ∈ RN to obtain the measurement vector y ∈ RM

y = Φx. (2.3.1)

The sensing matrix Φ is typically constructed randomly and does not depend in general on
the characteristics of signal x, making compressive sensing “universal”, since it is possible
to use the same acquisition/compression system for different classes of sparse/compressible
signals.

Compressive sensing can be considered a “democratic” scheme since each measure-
ment carries roughly the some amount of information and has equal priority. Thus, the
reconstruction depends only on the number of measurements and not on the particular
subset received. This might be particularly useful in case of unreliable communication,
since receiving a subset of the measurements still allows to recover the signal, even if with
a lower quality. Moreover, the measurement process is progressive and to obtain a higher
signal quality it is just necessary to take more measurements. In the same way, one can
further increase compression by discarding some of the measurements.

The main idea of CS goes against the common wisdom in data acquisition, substituting
the linear reconstruction process of the classical sampling formulation with a non-linear
one. As we will see later, under specific hypotheses on the matrix Φ, it is indeed possible
to recover a signal as long as it is sparse or compressible.

2.3.2 Compressive Sensing Signal Recovery

The goal of the compressive sensing approach, given the compressed measurements vector
y, is to recover the original vector x satisfying y = Φx. The matrix Φ used in CS is
fat and has more columns than rows, thus the constraint equation defines an ill-posed
problem with infinitely many solutions.
However, if we exploit sparsity as an a-priori information about the signal, it makes sense
to look for the solution that has the minimum number of non-zero components, exactly
as in problem (2.2.9) of Sec. 2.2.4.



14 2. Sparse Representation and Compressive Sensing

When the signal x is not sparse in itself, but has a sparse representation in some
dictionary D, i.e., x = Ds, where s is sparse, Problem (2.2.9) becomes

min
s
‖ s ‖0 s.t. y = As, A = ΦD, (P0). (2.3.2)

The original signal x can be finally recovered as x = Ds.
A generalization of problem (P0) allows to deal with nearly sparse vectors s and noise.

In particular, one can consider the sensing model y = As + n, where n is an additive
vector taking error into account. In this case, the reconstruction problem is formulated as

min
s
‖ s ‖0 s.t. ‖ As− y ‖2≤ ε, (P0,ε), (2.3.3)

where ε is a bound on the noise energy, i.e., ||n||2 ≤ ε. In this case, the reconstruction
gives a vector s̃ whose distance from the original s is controlled by the measurement error
bound ε (see Fig. 2.6). This leads to a robust reconstruction with respect to measurement
errors.

Unfortunately, as for the sparse representation problem (2.2.9), the minimization prob-
lems 2.3.2 and 2.3.3 are NP-hard in general. Therefore, alternative approaches have been
proposed in the literature.

One common approach is based on convex relaxation, replacing the l0 with the l1 norm,
to make the problem easier to work with. Thus, Problem 2.3.2 becomes

min
s
‖ s ‖1 s.t. y = As (P1), (2.3.4)

which is known as the Basis Pursuit (BP) problem. Similarly, Problem 2.3.3 can be
rewritten as the Basis Pursuit Denoising (BPDN) problem

min
s
‖ s ‖1 s.t. ‖ As− y ‖2≤ ε (P1,ε) . (2.3.5)

In Sec. 2.4 we will review some of the algorithms which can be used to solve the
recovery problems introduced in this section.

2.3.3 Sensing Matrices and Recovery Guarantees

In the following, we assume that the sparsifying basis or dictionary is the identity matrix I,
i.e., that y = ΦIs and A = Φ. The sensing matrix Φ used in CS causes a dimensionality
reduction, mapping RN into RM , with a loss of information in general. If s is sparse,
however, some properties of the sensing matrix, which we will describe below, such as the
Null-Space Property (NSP), the Restricted Isometry Property (RIP), and incoherence,
assure optimality of the signal reconstruction procedures.

Null Space Property

In the design of the sensing matrix Φ, we should ensure that any pair of distinct sparse
vectors s1, s2 ∈ Σk, are mapped to different measurement vectors, i.e., Φs1 6= Φs2, since
otherwise it would be impossible to distinguish the two vectors based on the measurements
y. Let us denote the null space of Φ as

N (Φ) = {s|Φs = 0}. (2.3.6)
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Figure 2: (a) Explanation of the robustness of BPDN for 1-sparse signals in
R2. (b) Geometrical illustration of the non-convex reconstruction minimizing
the `q-norm (0 < q  1).

In Figure 1(b), we provide a common illustration of why in the pure sens-
ing case the Basis Pursuit is an e�cient way to recover sparse signals from
their measurements. On this Figure, the signal x is assumed 1-sparse in the
canonical basis of R2, i.e. x lives on one of the two axis e1 or e2 of this space.
The constraint of BP is the line Dy = {u 2 R2 : �u = y} intersecting one
of the two axis, here e2, in x. For a di↵erent reconstruction based on a reg-
ularization with a `2-norm, i.e. the Least Square method (LS), the solution
xLS = arg minu kuk2 s.t.�u = y corresponds to the intersection of Dy with
the smallest `2-ball B2(r) = {u 2 R2 : kuk2  r} intersecting Dy. Clearly,
this point does not match the initial signal x. However, in non-degenerated
situations, i.e. when Dy is not oriented at 45� with e1 in our illustration, the
solution xBP of BP, which is provided by the common point between Dy and
the smallest `1-ball B1(r) = {u 2 R2 : kuk1  r} intersecting Dy = Dy(0), is
precisely the original x.

In Figure 2(a), the previous illustration is adapted to noisy measurement.
The constraint of BPDN is now a tube Dy(✏) = {u 2 R2 : k�u � yk2  ✏}
of thickness 2✏ around the line Dy. The solution of BPDN, i.e. x?, is now
the common point between Dy(✏) and the smallest `1-ball touching this tube.
Geometrically, it is clear that, for most of the configuration, the distance d =
kx�x?k2 between the original signal x and the reconstruction x? is proportional
to 2✏, since x? and x are in Dy(✏).

These two intuitive explanations, i.e. perfect recovery of sparse signals and
the approximate signal reconstruction from noisy measurements, have been the-
oretically proved in [11, 8] again from the essential RIP. Mathematically, if
y = ⇥↵+ n with knk2  ✏ (noisy sensing), then:

11

2✏

k As� y k2 ✏

s

s

-balll1

Figure 2.6: Example of k-sparse signal recovery, k = 1, in R2 in the presence of noise.

It should be noted that if Φs1 = Φs2, then Φ(s1 − s2) = 0, with s1 − s2 ∈ Σ2k. Thus,
in order to ensure that the matrix Φ uniquely represents and allows the recovery of all
s ∈ Σk the null space N (Φ) must not contain vectors in Σ2k.

Formally, one way to characterize this property is by using the spark, defined by
Donoho and Elad in [54].

Definition 2.3.1 The spark of a given matrix Φ is the smallest number of columns of Φ
that are linearly dependent.

Note that spark(Φ) ∈ [2,M + 1].

Theorem 2.3.1 ([54]) For any vector y ∈ RM , there exists at most one signal s ∈ Σk

such that y = Φs if and only if spark(Φ) > 2k.

Proof. The assumption that spark(Φ) > 2k means that any signal z = s1 − s2, with
s1, s2 ∈ Σk, can at most have 2k nonzero entries and hence cannot pick any linearly
dependent set of columns from Φ. Therefore s cannot be in the null space of Φ unless
s1 = s2.

The spark property guarantees uniqueness of the solution for sparse signals. The
spark can also be used to bound the minimum number of measurements required in
order to allow the reconstruction of k-sparse signals from the measurements. It follows
from Theorem 2.3.1 that the minimum number of measurements is M ≥ 2k. Note that
the theorem above is based on the fact that N (Φ) should not contain vectors which
are too sparse. A powerful property that guarantees that the solution to the tractable
Problem 2.3.4 coincides with the solution to Problem 2.3.2 is the Null Space Property
(NSP).

Definition 2.3.2 A matrix Φ satisfies the NSP of order k if

||hS ||1 < ||hS̄ ||1,
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holds for all non-zero h in the null space of Φ and all coordinate set S ⊂ {1, 2, . . . , N}
of cardinality |S| ≤ k. hS denotes a vector whose elements are equal to those of h in the
coordinate set S and zero elsewhere, while S̄ denotes the complement of set S.

If a matrix Φ satisfies the NSP, then the vectors in its null space are not too con-
centrated on a small subset of indices. This guarantees the exact recovery of all possible
k-sparse signals by solving Problem 2.3.4, as stated by Theorem 2.3.2.

Theorem 2.3.2 ([26]) Problem Eq. 2.3.4 uniquely recovers all k-sparse vectors s from
measurements y = Φs if and only if Φ satisfies the NSP of order k.

One may obtain also a stable version of the above theorem by considering compressible
vectors such that σk(x)1 is small (see Eq. 2.2.7).

Restricted Isometry Property

The null-space property can be used for exactly k-sparse and compressible signals in the
noise-free setting. In the presence of noise, it is necessary to impose a stronger condition
on the sensing matrix in order to guarantee signal recovery from the measurements.

To this end, Candès and Tao introduced the Restricted Isometry Property (RIP) [26].

Definition 2.3.3 ([26]) A matrix Φ ∈ RM×N satisfies the Restricted Isometry Property
(RIP) of order k with constant 0 ≤ δk < 1 if

(1− δk) ‖ s ‖2≤‖ Φs ‖2≤ (1 + δk) ‖ s ‖2, (2.3.7)

for all k-sparse vectors s ∈ RN .

This property guarantees that k-sparse vectors cannot be in the null space of Φ, and
that the matrix preserves as much information as possible despite of the dimensionality
reduction.

In particular, considering two k-sparse signals s1 and s2 with different support, if
the matrix Φ satisfies the RIP of order 2k, then the euclidean distance ‖ s1 − s2 ‖2 is
almost preserved after projection. We can write the RIP property for the difference vector
s = s1 − s2, where s is a 2k-sparse vector or less, as

(1− δ2k) ‖ s1 − s2 ‖2≤‖ Φ(s1 − s2) ‖2≤ (1 + δ2k) ‖ s1 − s2 ‖2 . (2.3.8)

The RIP of order 2k requires that any subsets of at most 2k columns of the sensing matrix
Φ behaves approximately like an orthonormal system for sparse signals, preserving the
Euclidean distance.

A lower bound on the number of measurements that a matrix must have in order to
achieve the RIP based only on the dimensions of the problem (N , M and k) is given in
the following theorem.

Theorem 2.3.3 ([45]) Let Φ be an M×N matrix that satisfies the RIP of order k ≤ N/2
with constant δ ∈ (0, 1). Then

M ≥ Cδk log

(
N

k

)
,

where Cδ < 1 is a constant depending on δ.
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From Theorem 2.3.3 it fallows that the number of required measurements only scales
linearly in k up to the logarithmic factor log(N/k). This is an important result on the
minimum number of measurements necessary to recover a signal even in presence of noise.
We have the following theorem, which again allows recovery of signals based on the l1-norm
minimization.

Theorem 2.3.4 ([45]) Let matrix Φ satisfy the RIP of order 2k with constant δ2k < 1/3.
Then, any k-sparse vector s, y = Φs, is the unique solution of Problem 2.3.4.

Theorem 2.3.4 provides guarantees for perfect recovery of k-sparse signals in the noise
free setting. However, in a real scenario we must consider the noisy model and rather solve
the problem in Eq. 2.3.5. In the following theorem, the RIP condition guarantees stable
recovery of signals based on the l1-norm minimization in presence of noise.

Theorem 2.3.5 ([28]) Consider Problem 2.3.5, y = Φs + n, ||n||2 ≤ ε. If Φ satisfies
the RIP with δ2k ≤

√
2− 1, then the solution s̃ of Problem 2.3.5 satisfies

||̃s− s||2 ≤ C0k
−1/2||s− sk||1 + C1ε,

with some constants C0 and C1. sk represents the k-sparse approximation of s, i.e., the
vector s with all but the k-largest entries set to zero.

These results claim that as long as the sensing matrix Φ satisfies the RIP, the l1
recovery is stable against both the measurement noise (quantified by the energy bound ε)
and the signal noise (i.e., the error related to the best k-term approximation).

Incoherence

Another principle of compressive sensing is the mutual coherence between the sensing and
sparsifying matrices or dictionaries. As a matter of fact, the NSP and RIP properties
are in general impractical or even impossible to verify, due to the combinatorial nature of
the definitions. In many cases, it is preferable to use the notion of mutual coherence, as
defined in Def. 2.2.1, which is easier to verify with respect to NSP or RIP.

We have the following theorem.

Theorem 2.3.6 ([58]) (Equivalence - Basis Pursuit) For the system of linear equations
Φs = y, (M ×N matrix Φ, full-rank, M < N ,), if a solution s exists obeying

‖ s ‖0<
1

2

(
1 +

1

µ(Φ)

)
,

that solution is both the unique solution of P1, (2.3.4) and the unique solution of P0
(2.3.2).

2.3.4 Random Sensing Matrices

So far, we summarized the relevant properties that matrices in the context of CS should
satisfy. In this section we will deal with the problem of constructing such matrices. The
RIP condition provides strong guarantees on the perfect recovery of sparse signals, but it
can be difficult to design deterministic matrices satisfying the RIP.
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It is however possible to construct random matrices with entries chosen according
to a Gaussian N (0, 1/M), Bernoulli, P(φi,j = ±1/

√
M) = 1/2, or more generally to a

sub-Gaussian distribution, according to the following definition.

Definition 2.3.4 An M × N matrix Φ is referred to as a sub-Gaussian random matrix
if all the entries of Φ are drawn from independent, zero mean, sub-Gaussian random
variables with variance 1/M , namely, if the entries of Φ , φij, 1 ≤ i ≤ M 1 ≤ j ≤ N ,
satisfy

Prob(|φij | ≥ t) ≤ βe−κt
2
, ∀t > 0,

where β and κ are positive constants.

Indeed, it has been shown that sub-Gaussian matrices satisfy the RIP with high prob-
ability [8]. In applications where the signal is sparse with respect to some basis, we require
that the product matrix A = ΦΨ satisfies the RIP. If the sensing matrix is chosen accord-
ing to a sub-Gaussian distribution and the sparsifying domain is an orthonormal basis,
then it is possible to show that A will also satisfy the RIP with high probability [8].
Moreover, the product of a random matrix with any fixed basis Ψ has low coherence in
general.

2.3.5 Sparse Sensing Matrices

Random matrices with entries chosen according to a sub-Gaussian distribution are a good
choice in order to satisfy the properties required for signal recovery. However, truly ran-
dom matrices might be a potential obstacle in CS implementation, due to the fact that
the matrix-vector multiplication to compute the measurements may require considerable
computational resources. It may be preferable to consider alternative matrix constructions
for low consumption implementations, such as sparse sensing matrices, i.e., matrices with
only few non-zero entries. These matrices are particularly useful thanks to the resulting
limited complexity and small storage requirements.

An interesting subset of sparse sensing matrices is represented by sparse binary matri-
ces that have only few entries equal to 1 in each column, in particular d non-zeros elements
in each column for a d-sparse sensing matrix. The support of the d non-zero elements is
drawn uniformly at random. If Φ is designed such that it is dominated by zero entries and
only few entries are non-zero, then computing the product Φx takes O(dN) operations,
which is a significant saving when d� N .

These matrices are related to the adjacency matrices of an unbalanced expander graph
[67], which consists of two classes of nodes called variable nodes and measurement nodes,
corresponding to the columns and rows of the matrix, respectively. When a pair of variable
and measurement nodes are connected by an edge, the binary matrix has a nonzero entry.
Unfortunately, sparse matrices may no longer satisfy the RIP property, unless the number
of rows is large, i.e., it is at least O(k2) [34], for k-sparse signals.

To overcome this limitation, Berinde et al. in [16] introduced a variant of the RIP,
with the l2-norm replaced by the l1-norm, namely, the RIP-1, defined as follows.

Definition 2.3.5 An M×N matrix Φ is said to satisfy the RIP-1 with isometry constant
δk,1, if for any k-sparse vector s, we have

(1− δk,1)||s||1 ≤ ||Φs||1 ≤ ||s||1
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As the RIP property is used to show that every matrix Φ satisfying this property with
isometry constant δk satisfies the l2 − l1 guarantee in Theorem 2.3.5, then there exists a
connection between the RIP-1 and guarantee for l1 minimization recovery [16]. Indeed,
let s̃ the solution of the problem

min
s
‖ s ‖1 s.t. ‖ Φs− y ‖1≤ ε, (2.3.9)

then, if a matrix Φ satisfy the RIP-1 it can be shown that

||s− s̃||1 ≤ C0k
−1||s− sk||1 + C1ε, (2.3.10)

for some constants C0 and C1. Hence, the RIP-1 proves that after projection it is still
possible to use l1-minimization to recover k-sparse signals [16].

2.3.6 CS with Overcompete Dictionaries

Some of the results presented above assume that signals are sparse with respect to an
orthonormal basis. Despite that, most natural signals may not be sufficiently sparse in an
orthonormal basis but could be much sparser in an overcomplete dictionary D.

Candes et al. [29] generalized CS theory for signals sparse in redundant and overcom-
plete dictionaries. There are two main differences with the classical CS theory presented
in Sec. 2.3.3 and CS using overcomplete dictionaries. As explained, CS requires that the
sensing matrix Φ and in general the product matrix ΦΨ satisfies the incoherence property
and the RIP. However, when the dictionary D is highly coherent, then the product matrix
A = ΦD will also be coherent in general. Second, if the sparsifying transform is not an
orthogonal basis, matrix ΦD is not at all likely to satisfy the RIP.

It is shown in [29] that, even if the low coherence requirements are not satisfied, it is
possible to successfully recover signal x = Ds. The error in the reconstruction of the signal
‖ x̃ − x ‖2 may indeed be smaller then the error in the recovery of the sparse coefficient
vector ‖ s̃ − s ‖2. In order for this to happen, the representation s should have rapidly
decreasing coefficients, which may be the case if a proper dictionary is chosen.

There are some basic conditions that bridge the gap between the classical compressive
sensing with orthonormal bases and the CS with overcomplete dictionaries. Candes et
al. [29] consider a generalization of the RIP of the sensing matrix, the so-called D-RIP.
If the D-RIP is satisfied, they provide results about theoretical stability guarantees for
reconstruction methods based on l1 minimization.

Definition 2.3.6 Let D ∈ RN×P (the dictionary) with P > N and let Φ ∈ RM×N
(the sensing matrix). The restricted isometry constant δk adapted to D is defined as the
smallest constant such that

(1− δk) ‖ x ‖22≤‖ Φx ‖22≤ (1 + δk) ‖ x ‖22,

for all x ∈ RN of the form x = Ds for some k-sparse s ∈ RP .

Note that the D-RIP requirement holds for vectors x with a sparse representation over
D, differently from the original definition of RIP.
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Basically, all random matrices that obey the standard RIP also obey the D-RIP, In
particular, for any overcomplete dictionary D, if Φ has i.i.d. random entries from a
Gaussian or sub-Gaussian distribution, then it satisfies the D-RIP of order k with high
probability if M = O(k log(k/P )).

2.4 Algorithms for Sparse Signal Recovery

This section summarizes a selection of popular sate-of-the-art algorithms for the recon-
struction of sparse signals or to compute the expansion coefficients in sparse representa-
tions with over-complete dictionaries.

2.4.1 l1-norm Algorithms

In the noiseless case, the sparse representation/recovery problems in Eq. 2.2.9 and in
Eq. 2.3.2, are in fact non-convex optimization problems, and as said before they are
NP-hard. They can be approximated using convex relaxation, obtianing the Basis Pursuit
problem of Eq. 2.3.4. This can be recast as a linear program (LP) with equality constraints,
as described by Boyd and Vandenberghe [19].

As a matter of fact, let us write s as s = u− v, with u,v ∈ RN non negative vectors,
u with elements equal to the positive entries of s and zero elsewhere, and v with elements
equal to the absolute value of the negative entries of s and zero elsewhere. By denoting
z = [uT ,vT ]T ∈ R2N , we have ||s||1 = 1T (u + v) = 1T z and As = A(u− v) = [A,−A]z.
Hence, the BP problem can be rewritten as an LP as follows

min
z

1Tz s.t. y = [A,−A]z, z ≥ 0.

The BP problem recast as an LP problem can be solved using well established numerical
algorithms, such as interior-point methods [74].

When the measurements are contaminated by some form of noise or the signal is not
exactly sparse, we should guarantee the stability by using an extension of the previous
problem and solve Problem 2.3.5.

This problem is known as quadratically constrained basis pursuit, in which the con-
straint is related to the noise accepted in the solution. The basis pursuit denoising al-
gorithm (BPDN) can be used to solve the the second-order cone programming (SOCP)
problem in Eq. 2.3.5, by converting it into the unconstrained convex problem

min
s
‖ s ‖1 +λ ‖ As− y ‖22 (BPDN), (2.4.1)

for an appropriate λ ≥ 0 related to the signal power. When it is difficult to find a good
estimation of the noise power to set a value for λ, and it is easier to quantify a bound on
signal sparsity, the LASSO formulation can be used

min
s
‖ As− y ‖2 +η ‖ s ‖1 (LASSO). (2.4.2)

It is not difficult to see that for an appropriate Lagrange multiplier η, the solution to
LASSO is precisely the solution to the unconstrained optimization problem BPDN. Exist-
ing results about the robustness and stability of l1-based methods for signal reconstruction
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are mostly based on the properties of the matrix A. As mentioned in Sec. 2.3.3, it is possi-
ble to show that, if the matrix A obeys the RIP, the reconstruction from noiseless data is
exact, and similar results also hold for stable recovery in noisy settings or for compressible
signals [28].

2.4.2 Greedy Algorithms

Algorithms based on l1-norm minimization guarantee the recovery of approximately sparse
solutions, and robustness against measurement noise. They rely on optimization proce-
dures with relatively high complexity. For example, linear programming has a complexity
which grows with the cubic power of the problem dimension. To overcome the complexity
problem, one can use simpler approaches based on greedy algorithms, which iteratively
construct a sparse approximation of the signal. This type of algorithms include Matching
Pursuit (MP), proposed by Mallat in [88], and Orthogonal Matching Pursuit (OMP) [121].
Matching Pursuit is a greedy algorithm that iteratively decomposes a signal into a linear
combination of a family of functions. At each iteration the algorithm chooses an atom
from the dictionary D and then updates the residual error. The algorithm chooses the
atom with the highest correlation against the current residual error r, i.e.,

λj = arg max
{di}1≤i≤N

|〈rj−1,di〉|. (2.4.3)

In (2.4.3), λj is the atom selected at the j-th iteration. The new residual error is obtained
by subtracting the correlated component

rj = rj−1 − 〈rj−1, λj〉λj . (2.4.4)

The approximation at each step is sj =
∑j

k=1 ckλk, where ck = 〈rk−1, λk〉. The algorithm
ends when the norm of the residual is lower then a desired error bound, or when a sparsity
level is reached.

In the OMP the coefficients are optimized after each iteration by orthogonal projec-
tion of the signal into the subspace spanned by the selected atoms, leading to a better
approximation with respect to the MP. The algorithm is summarized in Algorithm 1.

The stopping criterion should take into account measurement and computation errors
‖ y−As̃ ‖2≤ ε for some ε ≥ 0. If one has an estimate of the sparsity value k, the stopping
criterion can be invoked when the number of iterations reaches k. It is possible to show that
if the sensing matrix Φ is sub-Gaussian and M ∼ k logN , the OMP correctly recovers
a k-sparse signal with high probability. If the sparsity k is small, the OMP algorithm
provides fast reconstruction of the signal, since the number of iterations is equal to k.

2.4.3 Approximation of l0-norm

Even if greedy algorithms have an advantage over l1-based methods in terms of compu-
tation time [43], the main drawback is a lower performance over the l1-norm approaches
[86].

In search of a fast algorithm with a performance similar to that obtained with l1-norm
minimization, it has been proposed to solve Problem 2.3.2 iteratively by approximating
the l0 pseudo-norm with a sequence of continuous cost functions Fσ(s), which converge to
the l0-norm as σ → 0 [94] [56].
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Algorithm 1 OMP Algorithm

Recovery of signal s from measurements y
INPUT: signal y ∈ Rm, matrix A ∈ Rm×n, x̂ = ∅, sparsity level k
OUTPUT: Reconstructed signal s̃ after k iteration, Residual r(k)

Initialize: set initial residual r(0) = y
1: while j ≤ k do
2: λj = arg max

{ai}1≤i≤n
|〈r(j−1),ai〉|. {finding the atom in A with maximum correlation

with residual.}
3: Λ(j) = Λ(j−1) ∪ {λj}
4: s(j) = arg max

ŝ
‖ y −AΛ(j) ŝ ‖2 { where AΛ(j) denotes the column of A indexed by

Λ(j)}
5: r(j) = y −AΛ(j)s(j)

6: j = j + 1
7: end while
8: s̃ = s(j)

The SL0 algorithm proposed in [94] solves the problem in Eq. 2.3.2 by approximating
the l0-norm with a continuous function, and optimizing the resulting cost function to
provide a smooth measure of sparsity. Indeed, the l0-norm can be approximated using a
combination of Gaussian functions, for small σ values [94], as in

||s||0 , N −
N∑
i=1

exp(−s2
i /2σ

2). (2.4.5)

Thus, minimizing the l0-norm is approximately equivalent to maximize

Fσ(s) =
∑
i

exp(−s2
i /2σ

2),

where the parameter σ controls the accuracy with which Fσ approximates the l0 norm.
We have in fact

lim
σ→0

exp(−s2/2σ2) =

1 if s = 0

0 if s 6= 0.
(2.4.6)

This enables to replace the l0-norm minimization with a convex problem, and use
a classic steepest ascent algorithm to maximize Fσ(s). The σ value allows a trade-off
between the approximation of the l0-norm and the smoothness of the function.

The algorithm proposed in [94] consists of two nested iterations, and the external loop
is responsible to gradually decrease the σ value. Note that, when σ is sufficiently large,
exp(−s2

i /2σ
2) ≈ 1 − s2

i /2σ
2, and the maximization of Fσ(s) s.t. y = As resembles the

minimum l2-norm solution of Fσ(s) s.t. y = As [94]. Therefore, the starting solution of
the optimization process is usually calculated using the pseudo-inverse A† of A and set
to s0 = AT (AAT )−1y.

The internal loop maximizes Fσ(s) on the feasible set {s|y = As}, using a steepest
ascent algorithm, and updating s← s− µδk in the direction of the gradient, given by

δk = s ·
[
e
− s21

2σ2
k , . . . , e

− s2N
2σ2
k

]T
. (2.4.7)
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In the previous equation, the dot indicates component by component multiplication. The
next step consists in projecting s into the convex set to avoid trapping the algorithm in
local maxima

s = s−AT (AAT )−1(As− y). (2.4.8)

Algorithm 2 SL0

Input: µ step size, y, A, σdec, σmin, λ, Kiter

Initialization: s0 ← AT(AAT)−1y,
σ1 = 2|max(s0)|
while σk < σmin do

for k=1:Kiter do
δk ← s · [exp(−s2

1/2σ
2
k), . . . , exp(−s2

N/2σ
2
k)]

T

s← s− µδk
Project s onto the feasible set: S = {s|As = y}
s← s−AT(AAT)−1(As− y)

end for
σk ← σkσdec
s̃k ← s

end while
Output: sOUT ← s̃k

The SL0 algorithm is typically 2 to 3 times faster than the Basis Pursuit denoising
algorithm (SPGL1 implementation, [122]), while resulting in many cases in the same or
better accuracy [94].
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3
Compressive Sensing of

Electrocardiogram Signals

3.1 Introduction

Since the early 20th century the ECG signal has become an indispensable clinical tool and
it is widely used in health monitoring as a non-invasive way to establish clinical diagnosis
of heart diseases [62]. The importance of the ECG is still growing thanks to modern and
advanced signal processing techniques that allow the evaluation of variability patterns
present in rhythm or wave morphology on a beat-to-beat basis.

As mentioned in the introduction of this thesis, WBANs promise to be a key element
in wireless ECG systems for long-term recording [92, 78, 10, 96]. WBANs consist of
biomedical wireless sensors attached on or implanted to collect vital biomedical data from
the human body and provide continuous health monitoring. Typically, wearable and
implantable sensors have small batteries and, thus, a tight power budget. Consequently,
to extend the battery life, it is essential to minimize the amount of transmitted data as
well as the complexity of the algorithms used for data compression. In this chapter we
focus on possible solutions to improve the compression of ECG signals collected by means
of wearable sensors. To this purpose, compressive sensing is employed in order to compress
the acquired data while keeping the acquisition device as simple as possible.

As discussed in Chapter 2, thanks to the knowledge of the signal structure, compressive
sensing enables to reduce the number of measurements required by the Shannon theorem,
while still being able to perfectly recover the signal. In order to increase the quality of
the reconstructed signals, the choice of a good sparsifying transform is essential. For
this reason we introduce a newly designed universal overcomplete dictionary composed by
Gaussian functions.

In this chapter we briefly introduce the heart’s electrical activity as well as the gen-
eration of the ECG signal, useful to better understand the ECG model and sparsification
dictionary. In particular, we evaluate the performance of ECG compression using com-
pressive sensing and exploiting the signal sparsity over the proposed Gaussian dictionary.
The performance is evaluated in terms of quality of the reconstructed signal.

3.2 ECG Waveform Generation and Recording

The human heart is an efficient and reliable pump, that propels over 6000 liters of oxygen-
rich blood throughout the body every day and beats over 4 million times a year [77]. The
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pumping function is accomplished by the cardiac muscle: the myocardimum, whose coor-
dinate contraction depends on propagation of electrical impulse generated in the sinoatrial
node (SA node). The SA node has the ability to undergo spontaneous depolarization sixty
to ninety times each minute when it is behaving normally and, the electricity it produces
passes into the right atrium and then into the left atrium. These bioelectrical events are
regulated within very tight limits to allow the coordinated propagation of excitation and
contraction of the heart that is necessary for an efficient cardiac output. Abnormalities in
the regulatory mechanisms often accompany cardiac disease [118].

The electrical activity of the heart can be characterized by measurements acquired from
the cellular level as well as from the body surface, since a potential difference produced
by the current flowing within the body are established on the surface. Within this work
we consider electrocardiographic measurements collected from the body surface, which
describe the different electrical phases of a cardiac cycle (see Fig. 3.1). The waveforms
present in each ECG cycle and produced during depolarization and repolarization deviate
from a baseline level which corresponds to the resting state of the cells. The characteristic
waves are usually labeled with the letters P, QRS, T and U [55].

The P-wave corresponds to the depolarization of the right atrium and subsequently of
the left atrium. In a normal ECG its amplitude is less than 300 µV and its duration is
less than 120 ms.

The Q, R, and S waves are usually treated as a single composite wave known as
the QRS-complex. It reflects the depolarization of ventricles, and indicates the start of
ventricular contraction that pumps blood to the lungs and the rest of the body. In a
normal heart beat its duration is about 70-110 ms, and it may reach an amplitude of 2-3
mV. The Q wave is the initial downward deflection of the QRS complex and the S wave
is its terminal one, while the R wave is the upward deflection.

The T-wave corresponds to the repolarization of the ventricles, which is a necessary
recovery process for the myocardium to depolarise and contract again. The end of the
T-wave coincides with the end of ventricular contraction. The wave corresponding to the
depolarization of the atrium (Ta) is usually not visible since it coincides with the QRS
complex and is buried in the larger waveform. Its duration is about 300 ms. The U-wave,
which appears after ventricular repolarization, may not be seen in a normal ECG.

An ECG recording is typically affected by many sources of noise. The two dominant
artifacts in ECG recordings are baseline wander and electromyogram noise. The baseline
wander can be caused by respiration, body movements, and poor electrode contact, and
its spectral content is usually in the range between 0.05-1 Hz. It may cause problems in
the detection of R peaks, indeed due to the wander, the T peak could be higher than
R peak and leading to a wrong detection. The electrical activity of muscles causes the
electromyographic noise (EMG noise), commonly seen in ECGs recorded during exercise
as a high-frequency noise. Interference from nearby equipment is the cause of another
common source of noise: the power-line interference, typically at 50/60 Hz.

3.3 Related Works

Sparse modelling of ECG signals has recently received much attention as it has shown
promising results in different applications, such as compression and denoising. Since the
sparse model/dictionary is the key for an efficient compression and reconstruction of the
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Figure 3.1: Normal futures of an electrocardiogram signal.

signal within the CS framework, over the past few years extensive work has been done
to find a good sparsifying transform for ECG signals. In this context, most prior works
employ orthogonal sparsifying transforms such as the wavelet transform because of their
straightforward implementation. In Mamaghanian et al. [90], the orthogonal Daubechies
wavelets are used to sparsify the ECG signal. The authors also proposed in [89] a recon-
struction strategy that exploits the correlation between leads. This scenario requires to
acquire multiple channels, hypothesis that dose not always apply in the context of wearable
devices.

Even if the use of a wavelet basis to create sparse representations of ECG signals has
been commonly employed with CS recent works seek to find alternative method to increase
the generally unsatisfactory results.

An algorithm taking advantage from the sparsity on the second-order difference of the
signal is proposed by Pant et al. [101]. This method minimize the lp pseudo norm of the
second-order difference of ECG signals and utilizes patient specific dictionaries to optimize
the reconstruction quality.

Block-Sparse Bayesian Learning (BSBL-BO) has been introduced by Zhang et al. [127],
it exploits the intra-block correlation that exists in time domain ECG signals. The re-
construction problem is solved without using any sparsifying dictionary matrix or basis,
instead it exploited the block-sparsity structure of the ECG in the time domain and used
BSBL-BO for the reconstruction.

Polania et al. [108] proposed an adaptive dictionary learning method that exploits the
multi-scale sparse representation of ECG. The dictionary is built from training signals in
the wavelet domain. It requires a preprocessing stage to detect the QRS complex and a
period normalization. Therefore, it is necessary to store/transmit the beat information,
adding computational complexity to the encoder. Moreover, the technique proposed in



28 3. Compressive Sensing of Electrocardiogram Signals

[108] requires a learning procedure based on the actual patients ECG trace.

3.4 Gaussian Dictionary for ECG Sparsification

3.4.1 ECG Mathematical Model

Representing the ECG trace by its wavelet transform allows to compactly represent the
signal, exploiting sparsity in the transform domain. Indeed, only a few wavelet coefficients
carry most of the signal energy. However, despite the fact that various researchers have
reported that ECG signals are sparse in the wavelet basis [3] [84] and that this basis
is usually adopted in compressive sensing based telecardiology solutions [107] [90], the
application of a more sophisticated model for ECG sparsification is desirable in order to
increase the achievable compression performance.

In the work presented in this chapter, we propose to use a model for the ECG signal
based on a simple class of mathematical functions, and then to design an efficient dictionary
representation around this model.

We consider the Gaussian wave-based dynamical model introduced by McSharry et al.
[91] used for generating realistic synthetic ECG signals.

This model represents the feature waves (i.e., P, Q, R, S and T waves, see Fig 3.1)
of the ECG signal by using Gaussian functions, each with three parameters: amplitude,
width and phase.

A one dimensional Gaussian function is defined as below

gp,b(n) = a exp
−(n− p)2

2b2
, (3.4.1)

where a is the amplitude, p is the position/phase and b the width or shape parameter.

Using this model the morphology of an ECG cycle can be described by an ordinary
differential equation

ż(ai, bi, pi) = −
K∑
i

ai∆pie

−∆p2i
2b2
i , (3.4.2)

where ∆pi = n− pi is the relative position, ai is the amplitude and bi is the width/shape
of the i-th wave.

This model has been used to accomplish different tasks, such as filtering, compression
and classification of the ECG [39] [115]. To fit an observed ECG cycle x(n) with the model
in Eq. 3.4.2 one can solve the following non linear least-square optimization problem

min
ai,pi,bi

||x(n)− z(n)||22, (3.4.3)

where z(n) =
∑

i 2ai∆pi exp(−∆pi/2b
2
i ).

As a measure of sparsity that one can achieve by using this model, we may consider
the number of Gaussian functions that are usually required to represent a noiseless ECG
cycle. Accordingly to [37], all the symmetric waves, such as the Q, R, and S waves, can
be approximated by one Gaussian function, while the asymmetric P and T waves are
typically modelled by two Gaussian functions. Thus, an ECG cycle may be approximated
using about K=7 functions.
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Fig. 3.2 shows an actual ECG cycle approximated as a linear combination of just 5
Gaussian functions (K=5). Each wave has a different shape parameter defined by bi and
is located at pi.

As mentioned before, the ECG signal is usually contaminated by many sources of
noise and therefore, by using the model discussed in this section, one can achieve only an
approximation of the original signal. Fig. 3.2 also shows the residual error between the
signal and its approximation with Gaussian functions.
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Figure 3.2: Approximation of and ECG cycle sampled at 360 Hz using 5 Gaussian func-
tions, with the relative parameters.

3.4.2 Dictionary Design

The Gaussian dictionary proposed in this work aims to be universal and does not need
any training procedure. To this purpose, we need to make it independent from the specific
heart beats in order to avoid any kind of synchronization or normalization on segments to
be compressed. Moreover, it should be independent from the patient own signal and able
to represents abnormal patterns.

So far as the main components of an ECG signal are generated by following the same
model, independently from the patient, we propose to build the dictionary based on the
generative model presented in the previous section (3.4.1).

Others dictionaries proposed in literature [61] [108] and based on dictionary learning
require to decompose the ECG trace on cycles of the same length and centered on the
R-wave. Thus, before applying compressive sensing the incoming samples need to be
processed in order to find the R-wave position, increasing the computational cost. This
solution is preferable in applications that require to store a large amount of data but
without restricting limits on the energy consumption of the algorithm.

Based on the model previously discussed, we build a dictionary matrix D whose
columns correspond to atoms computed as samples of the Gaussian function for suitable
values of pi and bi.

The proposed dictionary is composed of P vectors (i.e., atoms) gi, D = {gi}i∈Γ, such
that each ECG signal can be sparsely approximated by a subset of vectors {gi}i∈Λ in D.
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D = { 1| 2| . . . | L}

P

N …

g(pi, b1)
g(pi, bj)

g(pi+h, bj)

Figure 3.3: Dictionary of Gaussian like functions for ECG signal sparsification.

Several strategies were tested with different sets of values of the scale parameters
and different number of atoms to give an efficient approximation of typical ECG waves.
In particular, assuming x is an N = 256 ECG sample vector, the atoms are computed
for scale parameters bi ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50}. These parameters have been
selected accordingly to the typical amplitude of the ECG characteristic waves. R-waves,
as well as S and Q, are usually represented by Gaussian functions with a small width,
thus using the first scale parameters among those considered for the dictionary. Whereas,
the P and T waves exhibit larger width and are typically computed using the last scale
parameters among those considered.

All the possible integer shift parameters values pi = (p1, p2, . . . , pN ) within the vector
are considered for each of the scale parameter (see Fig. 3.3). This means that an ECG
cycle may be completely characterized by a subset of columns in the dictionary and the
relative amplitude coefficients.

As a measure of how the proposed dictionary is suitable for ECG signal sparsification
we cannot evaluate the maximum coherence of the dictionary because it is highly pes-
simistic, and actually it is not required in order to reconstruct the ECG trace x = Ds, as
discussed in Chapter 2. Therefore, to show the compressibility of the ECG signal over the
proposed dictionary we plot the power decay for ECG cycles represented in the sparsifying
dictionary. We compute the approximation coefficients using the OMP algorithm and sort
them. In Fig. 3.4(a) the absolute value of coefficients are plotted versus index sample,
using logarithmic scale. The dashed line indicates the decay rate of q = −1. The power
decay curve is computed for a fixed signal window N = 256 and averaged over all the ECG
records from the MIT-BIH Arrhythmia Database [95, 64]. As discussed in Sec. 2.2.3, the
faster the coefficients decay, the more compressible they are. As one can see in Fig. 3.4(a)
the sparse representation coefficients corresponding to the use of the Gaussian dictionary
exhibit a power law decay.

We compare the approximation SNR using a traditional Wavelet basis approach and
the Gaussian dictionary, varying the number of retained coefficients. Fig. 3.4(b) shows
the approximation SNR versus the sparseness factor, which is defined as the ratio between
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the number of non zero coefficients in the sparse approximation and the length of the
original signal Sf = k/N . The SNR using the proposed dictionary is higher than using
the Wavelet basis for very low values of Sf . Thus, it is possible to use less coefficients to
sparsely approximate the signal. Thus, one can expect to use less measurements in the
CS compression and achieve better reconstruction quality with respect to Wavelet basis.
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Figure 3.4: (a) Power decay curves for sparse representation of ECG over the Gaussian
dictionary; (b) average SNR for different sparseness factors.

3.5 ECG Signal Recovery Using the Gaussian Dictionary

3.5.1 Experimental Set-Up

Accordingly to the CS-based compression scheme introduced in Chapter 2, we collect M
samples of an ECG segment x of length N , using sensing matrix Φ, and the compressed
data vector is y = Φx ∈ RM . The sensing matrix used in this experiment is a Gaussian
matrix Φ, having i.i.d. entries drawn from a standard normal distribution. Measurements
y are quantized with an 11-bit uniform scalar quantizer.

The compression scheme should work in real-time, thus the measured vectors should
be sufficiently short and we consider ECG segments N = 256 non overlapping samples,
which is less then 1 s at fs = 360Hz. The proposed procedure does not require any
preprocessing of the signal before compression (e.g. synchronization, normalization).

At the receiver said, we aim to reconstruct the ECG x̃ segment from the received
measurements that may be corrupted by noise ỹ = y + n. Here we use two algorithms to
recover x̃, i.e., the Basis Pursuit Denoising (BPDN) using the implementation provided by
the popular SPGL1 [123, 122] and the Orthogonal Matching Pursuit (OMP). To validate
the performance of the Gaussian dictionary (GD) we also repeat the experiments using
the Wavelet basis (WT) as a sparsifying transform. In particular we adopt the orthog-
onal Daubechies wavelet (DB4) with 4 levels of decomposition, which provides a sparse
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Figure 3.5: Compressive sensing applied to an ECG segment sampled at 360 Hz of length
N = 256 and its reconstructed version.

representation for piecewise-linear signals and thus is suitable for ECG signals, leading to
a relatively sparse representation with most of the coefficients close to zero.

We also compare the reconstruction results obtained by using the proposed Gaussian
dictionary with respect to the BSBL-BO reconstruction procedure [127].

All simulations and time measurements are performed on a laptop with an Intel(R)
core(TM) i7 2.40 GHz processor using the commercial software package MATLAB, The
MathWorks Inc., Natick, MA, version 2013a.

3.5.2 Evaluation

Assessment of CS-based schemes performance are usually based on two parameters, which
are also applied by Mamaghanian et al. [90], by Polania et al. [109] and by Dixon et
al. [51] to asses the quality of the reconstruction. Thus, we make use of the following
parameters

• Compression Ratio (CR) that takes into account the number of samples representing
the original ECG signal and the number of CS ECG signal measurements, expressed
by

CR(%) = 100× N −M
N

, (3.5.1)

where M represents the number of samples in the CS domain and N is the number of
samples in the original signal. The CR parameter can take into account quantization,
by considering the number of bits necessary to represent each sample both in the CS
and original signal domains.
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• Percentage root-mean-square difference (PRD) that is a measure of the distortion
error in the reconstructed signal x̃ as compared to the original ECG signal x. It is
expressed by

PRD(%) =

√∑N
n=1(x(n)− x̃(n))2∑N

n=1 x(n)2
× 100, (3.5.2)

where it is assumed that the mean value of the original ECG signal has been sub-
tracted. Zigel et al. [129] established the relation between the diagnostic distortion
of the reconstructed ECG and the measured PRD. The proposed weighted diagnostic
measure for ECG signal compression classify the PRD values on the basis of the sig-
nal quality perceived by a specialist. Accordingly, reconstructions with PRD values
between 0% and 2% are qualified to have “very good” quality, while values between
2% and 9% are categorized as “good”. For higher PRD values, quality classification
is inconsistent.

3.5.3 Dataset

To validate the performance of the considered dictionary for the reconstruction of com-
pressed sensed ECG signals we use the MIT-BIH Arrhythmia Database [64]. This public
dataset contains 48 half-hour signals of two-channel ambulatory ECG recordings, obtained
from 47 patients. The recordings were digitized at 360 samples per second per channel
with 11-bit resolution over a 10 mV range.

We evaluate the proposed method over all database MLII lead signals. Experiments
are carried out by extracting the first 5 minute long signal trace from each database record.
In particular, we evaluate the reconstruction quality over a set of signals with different
rhythms, wave morphologies and normal/abnormal heartbeats.

3.5.4 Experimental Results

Each five minute long ECG signal with a length of 108000 samples used in the experiment
needs to be equally divided into segments of length 256 in order to be processed. For
each segment, after signal recovery, we evaluate the PRD. Results are averages of the
performance for all segments in each trace, and for all traces extracted from the records.
Table 3.1 summarizes the performance of the CS reconstruction exploiting sparsity in the
Gaussian dictionary or Wavelet basis and the two different reconstruction methods.

Fig. 3.6 compares the output PRD, averaged over all database records, for CS com-
pression using the orthogonal wavelet transform and the proposed Gaussian dictionary at
different CR values and using various recovery algorithms. It shows also the reconstruction
quality achieved by using the BSBL-BO algorithm at different CR.

As we can see, using the Gaussian dictionary combined with the BPDN algorithm
allows to improve the reconstruction quality with respect to Wavelet basis and also with
respect to the BSBL-BO. Moreover, one can achieve “good” reconstruction quality for
compression ratios up to CR=75% by applying the proposed dictionary and BPDN or
OMP recovery algorithms. It is possible to obtain similar PRD values using the wavelet
basis as sparsifiying transform in the CS reconstruction, however up to a smaller CR' 50%.

Fig. 3.8 shows box plots for the reconstruction quality obtained by applying the BPDN
algorithm in combination with the proposed dictionary (top) and with the wavelet trans-
form basis (bottom). The proposed method shows a smaller variation of the PRD param-
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Table 3.1: Average PRD value for ECG reconstruction from CS measurements exploiting
sparsity in the Gaussian dictionary (GD) or Wavelet basis (WT) and two different recon-
struction methods, i.e., Basis Pursuit Denoising (BPDN) and the Orthogonal Matching
Pursuit (OMP). Results for the BSBL-BO approach [127] are also reported.

Reconstruction

Method

Sparsifying

Dictionary

Average PRD [%]

CR [%]

40 50 60 70 75 80 85 90

Gaussian
2.77 3.54 4.74 5.57 6.86 8.82 12.32 18.57

BPDN Dictionary

(Sec. 2.4.1) Wavelet
5.55 7.71 13.61 28.91 41.28 56.86 74.38 91.09

Basis

Gaussian
6.80 6.88 6.94 7.57 8.84 11.02 17.40 32.58

OMP Dictionary

(Sec. 2.4.2) Wavelet
6.61 8.18 14.16 35.76 54.91 88.69 161.36 167.55

Basis

BSBL-BO
- - 4.15 4.27 5.13 9.55 15.83 27.53 42.43 68.04

[127]

eter for all the CR values. The boxplot function from the commercial software package
MATLAB Statistical Toolbox with Tukey whiskers has been used. The bottom of each
box represents the 25th percentile and the top is the 75th percentile, each middle line
representing the median.

From Tab. 3.1 and Fig. 3.6, we can see that using the proposed Gaussian dictionary
the performance of OMP is worse than that of BPDN, especially at low compression rate.
Note, however, that the reconstruction time is higher for BPDN recovery (see Fig. 3.7).
When using the BSBL-BO one can compress the original signal up to CR=69% with a
“good” reconstruction quality.

Finally, we provide a visual comparison of the reconstructed signals, both for the
wavelet-based scheme and the proposed framework. Fig. 3.9 shows record 221 of the
database [64], which comprises normal heartbeats as well as premature ventricular con-
tractions (PVC).

It can be seen that, even for a compression ratio CR = 80%, a good reconstruction
is achieved by the proposed scheme, preserving detailed information for clinical diagnosis,
such as amplitude and shape. When using WT the QRS complex amplitudes are reduced
respect to the original one, and the shape of the T-waves are contaminated by noise.

3.6 Comparison of Sparse and Gaussian Sensing Matrices

So far we analyzed the performance of the proposed Gaussian dictionary against tradi-
tional Wavelet basis (DB4), showing the superior reconstruction quality achievable by the
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Figure 3.6: Performance comparison between different CS implementations. Average PRD
for BPDN and OMP algorithm using the Gaussian dictionary (GD) and Wavelet basis
(WT), and BSBL-BO algorithm. The proposed dictionary combined with BPDN recon-
struction reports the best performance for CR<75%, then both OMP and BPDN combined
with the GD lead to same reconstruction quality.

Table 3.2: Sensing matrix computational complexity and storage space allocation of the
CS encoder

Matrix Add Mul Storage Space

Gaussian (n− 1)×m n×m n×m
d-sparse d× n−m 0 n× d

Gaussian dictionary. Different algorithms have been employed to solve the signal recovery
problem from compressed measurements obtained by using random Gaussian matrices.
However, random Gaussian sensing matrices require a high computational cost, necessary
to perform a large matrix multiplication on the sensor, and also high storage requirements.
For a real-time and very low power implementation, we may need to replace random Gaus-
sian matrices with more computationally tractable sensing matrices. Thus, in this section
we analyze the performance of the proposed dictionary when the compression is performed
by using sparse sensing matrices. In Table 3.2 the computational complexity and storage
space allocation needed by the different CS sensing matrices is reported.

Sparse sensing matrices have been used for the CS of ECG signal in [90] and [127],
where the authors proposed to use matrices with d = 12 non-zero elements per column
equal to 1/

√
d and d = 2 non-zero elements equal to 1, respectively. In [90] the orthogonal

Wavelet basis has been considered as the sparsifying transform, while in [127] they use the
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Figure 3.7: Performance comparison between different CS implementations. Average re-
covery in seconds required to reconstruct one block (N=256 samples) of signals. The
OMP algorithm independently on the sparse representation adopted results the faster,
while BPDN combined with GD shows the higher recovery time. Note that BPDN&GD
at CR<80% is not suitable for real-time reconstruction.

BSBL-BO as the recovery technique.

In this section, experiments are designed to assess if sparse random matrices have
comparable performance with random Gaussian sensing matrices when using the proposed
Gaussian dictionary. When sparse sensing matrices are employed, there exists the problem
of selecting the number of non-zero elements d. Thus, we aim to identify the minimum
value of d that allows to keep the number of operations during the compression as low as
possible and achieve an acceptable reconstruction quality. To do so, sparse sensing matrices
with different d ∈ [2, 3, . . . , 12] at different compression ratios are used to compress the
ECG signals and the output PRD is measured. We use the same dataset and the block size
as in Section. 3.5. Fig. 3.10 reports the resulting average output PRD versus the number
of non-zero elements d in the sparse binary sensing matrix at different compression ratios.
The output PRD values are color coded. The obtained results show that the reconstruction
quality is not affected by d, differently from the results reported in [90] in which the
performance was very sensitive to the number of non-zeros elements. This can be another
advantage of the proposed Gaussian dictionary with respect to the traditional Wavelet
basis adopted in [90], since it allows to use less non-zero elements and further reduce the
energy consumption while maintaining the same PRD. Thus, in the next experiment we
use sparse binary sensing matrices with d = 2.

We now compare the performance of Gaussian random matrices and sparse matrices
(d = 2). The average reconstruction quality is evaluated on the first five minutes of all the
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Figure 3.8: Box plots for Gaussian dictionary (GD) and BPDN reconstruction (top) and
Wavelets (WT) and BPDN reconstruction (bottom).
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Figure 3.9: Visual evaluation of the reconstruction of record 221 compressed using the
CS framework at CR = 80%. (a) The original uncompressed signal, (b) recovered signal
using BPDN and the Wavelet basis (WT), PRD = 52.11%, and (c) recovered signal using
BPDN and the proposed Gaussian dictionary (GD), PRD = 6.51%.
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Figure 3.10: Relation between recovery quality and the number d of 1 entries at different
compression ratios. The output percentage PRD values are color coded.
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Figure 3.11: Performance comparison for different sensing matrices. Average PRD for
i.i.d. Gaussian sensing matrix and sparse sensing matrix with d = 2 non-zero elements
equal to 1 in each column. The average PRD after reconstruction using BPDN and the
Gaussian dictionary are comparable for the two classes of sensing matrices.
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MLII records of the MIT-BIH Arrhythmia ECG database, and we measure the average
output PRD of the reconstructed segments. In each segment, a different sparse sensing
matrix, with d = 2, is applied. Fig. 3.11 reports the average PRD at different compression
ratios, and it shows very little performance difference between the sparse sensing and the
Gaussian matrix.

3.7 Discussion

Results suggest that, independently of the recovery algorithm, the design of a more efficient
dictionary, such as the one analyzed in this work, permits to achieve good performance
at higher compression ratios. Wavelets allow a shorter reconstruction time (see Fig. 3.7)
but they are not suitable for an acceptable reconstruction quality at high CR values.
On the overall, the proposed dictionary combined with BPDN reconstruction gives the
best performance with respect to OMP and BSBL-BO, at the expense of an increased
reconstruction time, which might not be a serious issue at the receiving processing side.
Moreover, we verify that the use of sparse sensing matrices with only 2 non-zero elements
in each column, which is useful for low-complex implementation, leads to PRD values
comparable with the ones obtained with random Gaussian sensing matrices. It should be
noted that this very low number of non-zero elements is not achiviable when the Wavelet
basis is adopteed, as reported in [90].

Polina et al. [108] proposed a method which builds an adaptive multi-scale dictionary
via an offline learning procedure on the actual ECG traces. The multi-scale dictionary
D is composed by sub-dictionaries Db, corresponding to a specific wavelet subband b =
1, . . . , B. Each sub-dictionary is learned separately. A B−level wavelet transform is
applied on normalized ECG cycles. Therefore, this method requires a preprocessing stage
to detect R-peaks and identify heartbeats. Since heartbeats may have different durations,
interpolation/decimation is used to make all the ECG cycles the same length, in order
to be consistent with dictionary entries. Note that the method we propose here does not
need any pre-processing stage, making computation at the encoder side very simple.

Note that Polina et al. [108] only used 4 patients from the MIT-BIH Arrhythmia
Database without explanation for excluding the other 43 subjects. They also trained
and tested their algorithm on the same records/patients, with no cross validated results.
Therefore, despite their claims of a high CR (80%) with a PRD of 6%, these results cannot
be considered to be at all representative of generalizable, and are likely to be highly overfit.

3.8 Conclusions

In this chapter, we proposed a dictionary for the ECG sparse modelling, which allows
improvement in recovery of ECG signals from compressed sensed measurements. Experi-
ments show that significant performance gains, in term of achieved reconstruction quality
at high CR, could be obtained by using the proposed Gaussian dictionary, beyond the
common Wavelet basis. In particular, our results show that for real ECG signals, the
compression ratio can be increased by 25% using Gaussian based sparsity, with respect to
respect to the state of the art using a wavelet basis approach.

The proposed dictionary does not require any training procedure, and is independent
of a patient’s specific ECG traces. It can be easily adapted to work with different length
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of compression window, without requiring to be retrained.
We also showed that the choice of the sensing matrix and the reconstruction dictionary

play a crucial role. The use of Gaussian matrices can make the CS procedure problematic
for low-power implementation, while the use of sparse sensing matrices and the proposed
Gaussian dictionary makes the procedure competitive.

Our results validate the suitability of compressed sensing for real-time continuous
monitoring of ECG signals for low-power and resource-constrained sensors.



4
Beat Detection on Compressed

Measurements

4.1 Introduction

This chapter addresses the problem of heart rate estimation from compressive sensing ECG
recordings, avoiding the reconstruction of the entire signals. We consider a framework
where the ECG signals are represented under the form of CS linear measurements and the
QRS locations are estimated in the compressed domain.

As introduced in the previous chapters, compressive sensing theory states that signals,
which are sparse in some domain, can be fully reconstructed using a small number of
random projections, much smaller than the number required by Nyquist-rate sampling.
Unfortunately, the signal recovery process involves algorithms with a relatively high com-
putational load. Recovering long term recordings might require a long time and high
computational resources. Moreover, the reconstruction process should be able to preserve
clinical relevant information, necessary to assess the patient’s health status.

While various methods have been reported to solve the problem of signal recovery from
compressed sensed measurements, the full signal recovery might be not necessary for some
clinical evaluation based on heart rate variability (HRV). The heart rate (HR) and its
variability are calculated from the RR interval, which is the time occurring between two
consecutive R-peaks, the QRS complex being the most prominent segment in every ECG
cycle.
A large variety of methods for R-peak detection have been proposed, and the most com-
monly used is the one proposed by Pan and Tompkins [100] and its following modification
[66]. An extensive review of most of the methods, such as derivative-based [100], wavelet
transforms based [85] [35], matched filter [113], artificial neural networks [52], and many
others can be found in [75].

In this chapter we present a novel R-wave detector working directly on the compressed
sensed measurements. The proposed technique processes the signal in the compressed
domain and estimates the cross correlation between the ECG and a known template. It
can be used to analyze the signal and, only in the presence of detected abnormalities in
the compressed domain, to recover it for further analysis. When the detection/analysis
is performed on a battery operated device like a tablet or smartphone, or directly in the
sensor without sending or storing the whole ECG trace, the proposed method will reduce
the computational cost and the processing time, since it avoids the complexity of the
recovery procedure.
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The proposed correlation-based method is applied on CS data at several compression
ratios to assess the feasibility and the impact of working in the compressed domain. The
correlation based detection is also applied on uncompressed original data and the results
are compared with those obtained after reconstructing the signals from the CS data.
Finally, the benchmark Pan-Tompkins algorithm [100] is applied to the recovered data for
further comparison. Experimental results show that the proposed approach provides little
performance loss, with the advantage of limited complexity.

4.2 Background: Estimation with Compressive Measure-
ments

Signal recovery from compressed measurements has been widely investigated in the past
few years, leading to several accurate reconstruction algorithms with moderate complex-
ity. However, some signal processing problems do not require full signal reconstruction, as
shown in [47], where manifold-based image classification is performed on random measure-
ments. To this end, new ways to directly process compressive measurements and extract
information without having to reconstruct the original signal have been introduced in [46].
Davenport et al. [46] proposed a new approach to solve some signal processing problems
directly in the compressive measurements domain, in particular the tasks of detecting,
classifying, and estimating deterministic signals within the compressed domain. One of
the problems considered in [46] is the estimation of a linear function of the signal vector x
from compressed measurements y. In particular, given a general and fixed test vector h,
the problem is to obtain from y a good estimate of p = 〈x,h〉. Two possible estimators
are considered in [46], namely the orthogonalized estimator given by

p̂o =
N

M
yT (ΦΦT )−1Φh, (4.2.1)

and the so called direct estimator, which avoids the orthogonalization process, given by

p̂d = 〈y,Φh〉. (4.2.2)

When using a sensing matrix Φ that is a stable embedding, which is a more general form
of the RIP property, performance bounds for the direct estimator can be demonstrated.

Definition 4.2.1 Let δ ∈ (0, 1) and U , V ⊂ RN , Φ is a stable embedding of (U ,V) if

(1− δ)||u− v||22 ≤ ||Φu−Φv||22 ≤ (1 + δ)||u− v||22,

for all u ∈ U and v ∈ V.

If Φ is a stable embedding, the following theorem provides a performance bound for
the absolute error in estimating 〈u,v〉 from compressive measurements.

Theorem 4.2.2 (see [46, Theorem 4]) Suppose that u ∈ U and v ∈ V and that Φ is
a stable embedding of (U ,V ∪ −V), then:

|〈Φu,Φv〉 − 〈u,v〉| ≤ δ||u||2||v||2.
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Thus, for an appropriate matrix Φ, using Eq. 4.2.2 one can obtain a good estimate of
p by calculating a linear function of the compressed measurements. Moreover, it can be
shown that the use of random M ×N sensing matrices with sufficiently large M allows to
satisfy the stable embedding property with high probability.

The bounds in Theorem 4.2.2 are useful also for the general case of the estimation of
a linear operator represented by a matrix multiplication Hx. We have in particular

Hx =



hT1
hT2
hT3
· · ·
hTQ

 x =



〈h1,x〉
〈h2,x〉
〈h3,x〉
· · ·
〈hQ,x〉

 , (4.2.3)

so we can estimate the individual components in the compressed domain. In the following,
we analyze an R-peak detector which calculates the correlation of the incoming signal and
a known template, a problem which can be cast into the framework outlined above and
which can be solved in the compressed domain.

4.3 ECG Model and Problem Formulation

We now give a description of the ECG model considered in this chapter. As already
introduced in Sec. 3.2, an ECG cycle consists of several waves, labeled P, Q, R, S, and T.
We can express the electrocardiogram signal xr(n), related to the recording taken during
a time interval T , long enough to include at least one QRS complex, as

xr(n) = x(n) + r(n) =
∑
i

αiψ(n− θRi) + r(n), (4.3.1)

where αi and θRi are the amplitude and center of the given kernels, which we identify
with the translated versions of the ECG beat QRS template. Moreover, r(n) represents
noise due to mismatch between the template and the actual QRS beat shape, and to other
different sources, including P and T waves.

In the compressive sensing scenario, we cast xr(n) values into an N -dimensional vector
xr = x + n and observe few random measurements y ∈ RM

y = Φx + n, (4.3.2)

where n represents the compressed noise and possibly additional noise due to the mea-
surement process. Thus, given y, we are interested in estimating the position of the R
wave θ̂Ri in the original signal.

It should be noted that, since we have only access to the compressive measurements,
no pre-processing can be performed in order to attenuate other signal components and
artifacts, including the P-wave, the T-wave or baseline drift. Moreover, it is not suitable
to perform some pre-processing tasks in the CS sensor, in order to reduce its complexity
and avoid full rate processing.

A QRS detection method that can be successfully applied without preprocessing is
based on template matching, or matched filtering. Indeed, a filter matched to the QRS
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template can improve the output Signal-to-Noise ratio (SNR), attenuating the noise and
emphasizing the QRS complexes. For this reason, R-peak detection methods based on
matched filtering have been used extensively in the uncompressed domain (see, for exam-
ple, Hamilton et al. [66], Kaplan [71] and Ruha et al. [113].) The Matched filter method
seems suitable also for compressive sensing applications, as shown by Eftekhari et al. [57],
in which a matched filter has been employed on a small number of frequency-domain
observations for estimating the unknown delay and amplitude of a signal.

As we will see in the next section, the idea beyond the proposed method is to cast the
matched filter approach into the compressive sensing signal processing theory introduced in
Section 4.2. In particular, we propose to estimate the correlation between the compressed
ECG signal and a compressed template (i.e., the compressed average QRS complex).

4.4 Compressive Beat Detection Based on Matched Filter-
ing

Let us consider the model described in Eq. 4.3.1. Assuming white noise, the optimal
strategy maximazing the signal-to-noise ratio of samples taken at time instants θRi is to
process xr(n) with a matched filter, with impulse response equal to the time reversed
version of ψ(n). In particular, one has to compute the correlation output

Rxψ(n) =
∑
m

xr(m)ψ(m− n), (4.4.1)

and time instants θRi can be detected by searching for local maxima of the correlation
Rxψ(n). As a matter of fact, the amplitude of Rxψ(n) at each time instant is a measure
of how well the template matches the corresponding section of the input signal, and it
achieves its maximum at each position where the observed signal best matches the tem-
plate. As mentioned, R-peak detection methods based on matched filtering have been
used extensively in the literature.

For finite length-N signal blocks xr, each correlation output can be computed as the
inner product between xr and an appropriately defined vector ψn whose non-zero elements
correspond to the QRS template. Thus, the matched filter technique consists in calculating

Rxψ(n) = 〈x, ψn〉, (4.4.2)

and selecting the indexes corresponding to maxima, in order to detect θRi.

Using the results introduced in Sec. 4.2, in the proposed approach we estimate (4.4.2)
in the compressed domain. In particular, given the measurements y = Φxr, we estimate
the correlation Rxψ(n) by using the direct estimator, as follows

R̂xψ =



〈y,Φψ1〉
〈y,Φψ2〉
〈y,Φψ3〉
· · ·

〈y,ΦψN 〉

 . (4.4.3)
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Note that each of the inner products in (4.4.3) is between length-M vectors, with no need
to reconstruct the signal. As an alternative, we can use the orthogonalized estimator

R̂xψ,n =
N

M
〈y, (ΦΦT )−1Φψn〉. (4.4.4)

In order to minimize the effect of baseline wander, it is convenient to subtract the signal
mean from each block before computing (4.4.3). The signal mean can be estimated using
the same approach suggested in [46]. As a matter of fact, we can write µxr = 〈xr, lm〉,
where lm = [ 1

N , . . . ,
1
N ]t. Using for instance the orthogonalized estimator, we have

µ̂xr = 〈y, (ΦΦT )−1Φlm〉. (4.4.5)

Then the signal mean can be removed from the measurements as y −Φµ̂xr [1, . . . , 1]t.

4.5 Summary of the Proposed Scheme

The flowchart of the proposed procedure is shown in Fig. 4.1. It consists of three main
steps, namely, QRS template construction, correlation estimation using matched filtering
on compressive measurements and peak-finding based on adaptive thresholding. Fig. 4.1
also includes the sensor structure: assuming a digital implementation, the sensor acquires
and transmits the uncompressed ECG signal for a brief time, then switches to CS com-
pression and transmits the compressed data. Alternatively, the first signal portion could
be reconstructed at the receiver. This short uncompressed signal portion is used to iden-
tify the QRS complexes to generate the template, but it can be also useful to check that
the electrodes are correctly placed and that the signals are being correctly recorded. The
uncompressed signal should be sufficiently long to ensure that it contains enough beats in
order to allow the template creation (i.e., 10 seconds).

Once the preliminary stage including tuning, electrode placement and patient-specific
template generation is done, the long-term monitoring starts and the signal is compressed
using the CS framework. The compressed measurements can be transmitted to a smart-
phone/computer for real time processing, or stored to be processed later.

Another possible option is to implement the detection on compressed measurements
directly on the sensor, and then send only the ECG segments showing abnormal beat rate
patterns. This increases power saving in all the situations in which the patient’s heart
rate pattern is normal. The results reported in this chapter also apply for this alternative
scenario.

4.5.1 Template Generation

The selection of a good template is crucial in order to provide a reliable beat detector. In
this work, the QRS template is created adaptively for each patient, using the detected QRS
complexes within the first 10 seconds of the uncompressed ECG. In long-term recording,
the template might be updated after a predefined time, by transmitting or reconstructing
the uncompressed signal. A list of the R-peak fiducial points should be extracted from
the available ECG signal by using an automatic detector, e.g., the Pan-Tompkins [100]
detector. Then, the QRS complexes are extracted using a fixed time window centered at
the R-peak position and with a fixed length of 100 ms, in order to contain most of the QRS
complex. Finally, the QRS template is computed by taking the median of the extracted
QRS complexes. An example of template is depicted in Fig. 4.3(c).
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Stage 1: Signal Acquisition/Compression on sensor

Compressive Sensing 
y = �x

xecg

Matched Filtering in 
Compressed Domain

QRS-Detection 
Thresholding

Average Template 

Detected QRS, HR 

 

R̃x 

Stage 2: Transmission/Storage

Stage 3: Detection on remote device

y, ,�

Figure 4.1: Block diagram of the proposed R-peak detection methodology using compres-
sive sensing measurements.

4.5.2 Cross-Correlation Estimation

The main step in the proposed method consists in estimating the cross-correlation using
the compressed ECG signal y, given the reference QRS template. We assume that the
sensing matrix is known at the receiver, so there is no need to transmit it. While in the
experiments described later we use a different sensing matrix for each signal in order to take
into account its influence on the average detection capability, in an actual implementation
it is not necessary to use a different sensing matrix for each recording.

Thus, given the template ψ, the sensing matrix Φ and the measurements y, the direct
or orthogonalized estimator is used to estimate the cross-correlation coefficients using
Eq. 4.4.3 or Eq. 4.4.4.

An application of the proposed method on a real ECG signal is shown in Fig. 4.2,
which is a section of the record number 107 of the MIT-BIH Arrhythmia Database [64].
In particular, Fig. 4.2(b) depicts the cross-correlation computed on the uncompressed data
while the one obtained by using the orthogonalized estimator for a compression ratio of
50% is shown in Fig. 4.2(c).
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Figure 4.2: An example of correlation estimation: (a) original ECG signal sampled at
360 Hz, (b) correlation computed on the original signal, (c) correlation estimated on
compressive sensing measurements (CR=50%).

4.5.3 Peak Detection

The last stage of the proposed method consists in the detection of the R-wave peaks by
comparing the absolute value of the correlation against an adaptive amplitude-dependent
threshold. The detection threshold is computed for each correlation window, i.e., for each
measurement block, and it depends on the correlation amplitude in the current window.

As a matter of fact, as the compression ratio 1−M/N increases, the estimated cross-
correlation function typically becomes more noisy. Thus, applying a low threshold level,
which might be appropriate for detection at low compression or on uncompressed data, is a
poor choice, and it experimentally increases the number of false QRS complexes detection.
Since the method should be able to provide good performance at every compression level,
we use a variable threshold, which depends on the Root Mean Square (RMS) value of the
cross-correlation in the current window.

After the RMS value is calculated, if it is larger than 25% of the maximum cross-
correlation absolute value, the threshold is set to be 75% of the maximum value of the
segment. If the RMS of the segment is less than 25% of its maximum value, the threshold
is set to be 50% of the maximum value.

To avoid false detection in general, a refractory period of 200 ms is employed prior to
repeating the process for the next cardiac cycle. This constraint is a physiological one due
to the refractory period during which ventricular depolarization cannot occur.

Additionally decision rules for the reduction of false positive detection are applied. In
particular, to avoid that a QRS peak that is situated in between two consecutive blocks
is detected twice, when the distance between the last detected peak in the previous block
and the first in the current one is less then 200 ms, we take the middle point as the R-peak
location.
Similarly, missed beats can occur between two consecutive blocks. When the RR interval
measured for R-peaks across two blocks is higher than 1.5 times the average RR computed
on the previous 10 signal blocks, the threshold is adjusted to the half of its value and a
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Figure 4.3: An example of beat detection: (a) original ECG signal sampled at 360 Hz
and the detected beats, (b) the received compressive sensing measurements (CR=75%),
(c) template used for the detection (d) correlation estimated on compressive sensing mea-
surements using the orthogonalized estimator, and the adaptive threshold (dash line).

new search is performed on a window of 100 ms centered between the two blocks. This
strategy is justified by the fact that the time interval between adjacent heart beats usually
does not change so quickly [66].
The example illustrated in Fig. 4.3 helps to understand the basic operations of the proposed
method. The compressed measurements Fig. 4.3(b) and the generated template Fig. 4.3(c)
are used to estimate the cross-correlation R̂xψ(n) (Fig. 4.3(d)) with the orthogonalized

estimator. Whenever R̂xψ(n) is higher than the adaptive threshold a peak is detected, thus
providing information about the peak location in the original signal. The corresponding
marker is shown in Fig. 4.3(a).

4.6 Simulation and Results

To verify the effectiveness of the proposed CS QRS detection technique, we evaluated its
performance through a series of experiments.

We first evaluate and compare the detection performance of the direct and orthog-
onalized estimators. We then compare the performance of our technique with respect
to detection on original and reconstructed signals at various compression ratios, using
the same detection method based on cross-correlation and matched-filtering (MF). We
also compare the results with the use of the Pan-Tompkins (PT) detection algorithm on
reconstructed signals.

Experimental data for evaluating the proposed method are obtained from the MIT
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Arrhythmia Database, introduced in Sec. 3.5.3.
We further define an observation window of length 512 samples (approximately 1.5 s

at 360 Hz), enough to contain at least one beat in the majority of cases, and keeping the
acquisition time sufficiently short for real-time monitoring. Moreover, the use of a longer
window may lead to incorrect detection due to the adaptive threshold calculation.

4.6.1 Performance Evaluation

An R-peak was classified as correctly identified if the time difference between the R-peak
in the reference and the R-peak as identified by the algorithm is smaller or equal to 50
ms.

For the evaluation of the proposed scheme, we use classical performance figures usually
applied for the assessment of QRS detection algorithms, i.e., sensitivity (Se) and positive
predictivity (P+). According to the American National Standard [2] Se and P+ are
computed as

Se =
TP

TP + FN
100, P+ =

TP

TP + FP
100. (4.6.1)

In the above equations, TP (true positives) is the total number of QRS correctly located
by the detector, a false negative (FN) occurs when the algorithm fails to detect a true
beat (actual QRS) and a false positive (FP) represents a false beat detection.

The algorithm accuracy can be also evaluated using the F measure, proposed in [12],

F = 2
Se P+

Se + P+
100 = 2

TP

2TP + FN + FP
100. (4.6.2)

4.6.2 Direct and Orthogonalized Estimators

Table 4.1: Detection results for the orthogonalized and direct estimators and for some
compression ratios.

Orthogonalized Estimator Direct Estimator

CR [%] Se [%] P+ [%] F [%] Se [%] P+ [%] F [%]

Uncompressed 98.6±2.9 99.3±1.4 98.9±1.0 98.6±2.9 99.3±1.4 98.9±1.9

30 98.2±3.2 99.1±1.5 98.6±2.1 96.8±4.5 98.9±1.7 97.7±2.8

50 97.4±3.7 98.6±1.9 98.0±2.4 96.0±4.9 97.9±2.6 96.9±3.4

75 94.7±5.0 95.9±3.5 95.3±3.7 93.4 ±6.4 94.2±6.4 93.6±5.4

85 90.7±5.7 88.2±10.6 89.1±7.4 89.0±7.6 88.9±8.5 88.7±6.9

To assess the performance difference of the direct and orthogonalized estimators, we
evaluated the performance figures described above as the number of compressive measure-
ments varied from M = 51 to M = 410 (corresponding to a compression ratio varying
from 90% to 20%). Furthermore, we also tested the proposed method on uncompressed
signals (M = N = 512 in the figures). For each signal a different Gaussian sensing matrix
Φi,j ∈ N (0, 1/M) has been used.
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Figure 4.4: Average F measure for QRS detection using the direct (dashed line) and
orthogonalized (solid line) estimator for different number of measurements. Error bars
indicate standard deviation.

Fig. 4.4 shows the average F measure over all the records. As one would expect, it
is possible to see that for both the estimators, the detection performance increases as M
increases. However, the orthogonalized estimator has slightly better performance with
respect to the direct one. The results for the two estimators and for some compression
ratios are summarized in Table 4.1.

Fig. 4.5 shows, for the orthogonalized estimator, the average sensitivity and positive
predictivity values averaged over all the signals at different compression ratios. The ability
to detect the true QRS complexes seems to be slightly affected by compression, at least
for compressions as high as about 75%. Both sensitivity and positive predictivity slightly
decrease for compression ratios higher than 50%, but they are still higher than 95% when
the compression ratio is lower than 75%.

4.6.3 Detection on Reconstructed ECG

As part of our experiments we compare the proposed method, working in the compressed
domain, with schemes where the signal is first reconstructed from the CS measurements,
and then the P&T QRS or the MF is used in order to detect the QRS complexes.

As reference, the two detection method on the raw signals lead to a F measure of 98.7%
and 98.9% for P&T and MF, respectively.

ECG signals are recovered with the Basis Pursuit Denoising BPDN algorithm provided
in the SPGL1 solver [123], which is the reconstruction algorithm selected by many authors,
such as Mamaghanian et al. [90] and Dixon et al. [51]. To enable a quicker reconstruction
and also a possible power consumption reduction at the decoding stage, we also use the
OMP and the Smoothed-l0 (SL0) [94] algorithms, which have a lower complexity.

As the sparsifying transform Ψ, we select the orthogonal Daubechies−4 wavelets (WT),
which can can effectively provide a sparse representations of the ECG, as suggested in [107].
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Figure 4.5: Average Sensitivity Se (solid line) and Positive Predictivity P+ (dash line) for
QRS detection using the orthogonalized estimator at different compression ratios. Error
bars indicate standard deviation.

The results of this experiment are displayed in Fig. 4.6(a) and (b), which show a series
of plots comparing the average F measure at different compression ratios. In particular, in
Fig. 4.6(a) we compare the performance of the proposed method with respect to MF detec-
tion that works in quasi real-time on reconstructed signals. Whereas, Fig. 4.6(b) shows the
performance of P&T detection applied off-line on the whole reconstructed signal. We can
see from this figures that the proposed QRS detection procedure, using the orthogonalized
estimator, has a performance similar to the methods that require reconstruction. At com-
pression ratios larger than about 65%, the proposed method allows a slower performance
degradation. In particular, for compression ratios higher than 65% the proposed detection
method in the compressed domain gives better results, also with respect to detection using
the P&T algorithm on the reconstructed signals. As a matter of fact, we observed that
the reconstruction at higher compression ratios, using the wavelet basis as the sparsifying
domain, may introduce artifacts that are attenuated by the matched filtering detection
procedure, while these artifacts might be incorrectly classified as R peaks by the P&T
algorithm.

In the CS framework, the reconstruction quality depends not only on the signal itself,
but also on the sparsifying basis, or possibly overcomplete dictionary, used in solving the
reconstruction problems.Indeed, one can design dictionaries that are more likely to lead
to sparse solutions with a consequent better reconstruction for a given compression ratio.
One can argue that the choice of the wavelet basis as the sparsifying domain is not the best
choice, even if it is widely used, since overcomplete dictionaries increase the reconstruction
complexity [90] [93]. Applying overcomplete dictionaries that are patient based or more
general overcomplete dictionaries based on signal models, can improve the reconstruction
quality at a given compression, and consequently provide better detection performance
[108] [40] [42]. However, note from Fig. 4.6(a) and (b) that the detection performance is
not far from that obtained with uncompressed signals (compression ratio equal to 0% in
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Figure 4.6: Comparison of the average F measure for the proposed method working directly
on compressive measurements with respect to detection after signal reconstruction with (a)
online detectors, i.e., the proposed method working directly on compressive measurements
and matched filtering (MF), and (b) offline detector, i.e., the Pan-Tompkins (PT). Signal
reconstruction in performed using a variety of algorithms (BPDN, OMP, SL0) combined
with Daubechies−4 wavelets (WT) and Gaussian dictionary (GD).
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Figure 4.7: Average time required to process 1 s of signal with the proposed method and
using SL0 recovery with WT or GD followed by MF.

the figure), at least for compression values up to 50-60%.

To verify the detection performance while using a sparsifying domain that increases
the sparsity of the signal, we carried out experiments using an overcomplete Gaussian dic-
tionary (GD) based on the morphology of the ECG signal, designed such that it preserves
the shape of QRS complexes as well as of the P and T waves [40]. Since the use of an
overcomplete dictionary has a great impact on the reconstruction complexity, we report in
Fig. 4.6 (a) and (b) the results obtained with the SL0 reconstruction algorithm, which has
a much lower complexity than BPDN and similar reconstruction quality performance1.
As mentioned before, the GD is specifically designed to preserve the shape of the main
waves, such as the QRS complexes, thus its application increases the detection perfor-
mance in term of F measure as shown in Fig. 4.6 (a) and (b), with an average F=97.6%
and F=97.2% for a compression ratio 90% for the MF and P&T, respectively.

As expected, as the use of the GD allows better reconstruction quality than the WT,
the detection performance increases at high compression ratios. However, this comes at
the price of increased computational complexity.

Fig. 4.7 reports the average time required to process 1 s of the ECG signal using the
proposed method and applying the MF detector after signal reconstruction using the SL0
algorithm. We show results only for the SL0 algorithm since it is the one that has the
lowest execution time, without significant reconstruction quality loss. As we can see, the
proposed method is always the fastest, requiring a processing time always less then 2.9
seconds to process 30 minute of signal, corresponding to less than 0.0023 s to process
a 1.5 s signal block. The reconstruction with the GD requires at least 12.6 s for a 30
minutes record,corresponding to 0.007 s for each block. Decreasing the compression ratio,
the time increases up to 90.6 s, corresponding to a CR=20% (i.e., 0.05 s per block). All

1Using the BPDN algorithm followed by the P&T or MF algorithms provides very similar detection
results, which are not shown in Fig. 4.6 (a) and (b).
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the simulations are written in Matlab, running on an Intel Core i7 processor, equipped
with 16 GB memory. Fig. 4.6 and Fig. 4.7 allow to conclude that the proposed method,
operating in the compressed domain, allows significant detection complexity reduction
with similar or better performance than schemes using reconstructed signals, when the
wavelet sparsifying domain is used. The performance is also similar to the one obtained
with original or reconstructed signals using an overcomplete dictionary, followed by P&T
detection, at least for compressions as high as about 60-70%, with a relevant complexity
reduction.

4.7 Conclusions

In this chapter we presented a method that allows R-peak detection directly on the com-
pressive sensing measurements, in order to estimate the peak positions and heart rate
avoiding the signal recovery stage. The proposed method is based on the estimated cross
correlation with a template, combined with further processing procedures to detect the
QRS complexes. Experimental results on real ECG signal demonstrated that the proposed
method achieves an accuracy comparable with those obtained on the original signal up
to compression ratios of about 60-70%. Moreover, the average Sensitivity and Positive
Predictivity values are about 95% even for a compression ratio as high as CR=75%. In
Chapter 5 we will consider other metrics, such as the ability to detect atrial fibrillation
still operating in the compressed domain.



5
Accuracy of Atrial Fibrillation

Detection on Compressed Sensed
ECG Signals

5.1 Introduction

So far, we have seen that CS approaches to electrocardiogram compression can provide
efficient real-time and low-complexity encoding. In doing so, it is important to assess the
downstream effect of the compression on any signal processing and classification algorithm.
The reconstruction process within the CS framework enables an accurate approximation of
the original signal. However, in the reconstruction of physiological signals, it is essential to
guarantee that all clinically relevant information for a given task is preserved, in order to
prevent significant degradation in the performance of any standard (or novel) algorithm.
In this chapter we investigate the impact of CS on Atrial Fibrillation (AF) analysis,
which is the most common super-ventricular arrhythmia and consists in an abnormal
electrical activity arising in the atrium [24]. Although it is not a lethal disease, it may
lead to very disabling complications such as cardiac failure and atrial thrombosis, with
the subsequent risk of a stroke [80]. In order to diagnose arrhythmia, it is necessary to
document the heart rhythm at the time of symptoms (e.g., palpitations, syncope, chest
pain) with electrocardiography. In presence of AF, the ECG trace is characterized by
absent P-waves and irregularity of the ventricular response. AF patients exhibit irregular
rhythms at rates between 100 and 175 beats per minute, while a normal sinus rhythm has
a resting heart rate between 60 and 100 beats per minute.
If a suspected arrhythmia cannot be detected and documented on a resting ECG during
initial evaluation, the cardiac rhythm may be recorded for 24 or 48 hours using portable
Holter monitoring devices. Despite the undeniable benefits of such medium term ECG
monitoring, some arrhythmias might be not detected (because they are too infrequent or
asymptomatic/’silent’). The extension of ECG recording to 7-day or even longer using
wearable or implantable devices can assist in detecting such episodes.

The aim of the work described in this chapter is to quantify the performance of an AF
detection algorithm on CS reconstructed signals at different compression ratios. Tipically,
after CS signal reconstruction, the Pan-Tompkins (‘P&T’) R-peak detection algorithm
[100] is applied and the resulting RR interval series are employed for the identification of
AF episodes. The reconstruction process might introduce distortions leading to inaccurate
R-peak detection and consequently to a degradation in the ability of identifying AF. In
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addition, since the recovery process involves algorithms with a high computational load,
recovering a whole long term recording might require long time and high resources. Thus,
we also evaluate the reliability of the QRS detector proposed in Chapter 4, which operates
directly on the compressed measurements. In such a way, it is possible to perform AF
detection without recovering the original ECG signal. For this scenario, we also assess the
performance of the AF detector at different compression ratios.

5.2 Method

5.2.1 Method Description

The work-flow adopted for the AF evaluation process is reported in Fig. 5.1. It clarifies
the AF evaluation procedure to assess the effect of different CS compression ratios on AF
detection.

First, we consider the uncompressed scenario, i.e, AF detection based on the QRS
annotations directly available in the MIT Atrial Fibrillation Database (MIT AF DB)
[120], as well as AF detection based on the detected QRS locations from the uncompressed
ECG signals using the Pan-Tompkins (P&T) detection algorithm [100]. An AF detection
method based on multi-feature extraction and a Support Vector Machine (SVM), described
in Sec. 5.2.4, is applied on segments of 30 consecutive beats to perform AF detection.

For the assessment of AF accuracy on compressed ECG signals, we consider three
different scenarios, in addition to different values of compression ratios. The first two sce-
narios require to reconstruct the ECG signals from compressed measurements as explained
in Sec. 5.2.3, where two different sparsifying bases are adopted. Then, R-peak detection
is performed using the P&T algorithm on the reconstructed signals. The third scenario
evaluated in this study is motivated by the desire to simplify the detection process after
compression. In particular, this scenario does not require signal reconstruction and the
R-peaks are directly detected using an algorithm that operates on the compressed ECG
signals. The detector, based on matched filtering, is described in Chapter 4, and is herein
referred to as Compressed Sensing Matched Filtering (CSMF). After extraction of the RR
interval time series, the multi-feature SVM detector is also applied for AF detection. Addi-
tionally, we test the performance of an AF detector based on the normalized fuzzy entropy
measure, NFEn, [82], the results of which are reported and discussed in Appendix A.1.

Finally, in order to verify that clinically relevant information is preserved, AF detection
accuracy is assessed in a range of compression ratios, i.e., 10, 20, 30, 40, 50, 60, 65, 70,
75, 80, 85 and 90%. In addition, we also evaluated the accuracy of QRS detection in the
three different scenarios. In this way, we can verify the relation between a good R-peak
detection and the ability of correctly classify an AF episode.

5.2.2 Data

For the analysis in this chapter, ECG signals from the MIT Atrial Fibrillation Dataset
[120], freely accessible on PhysioNet [64], are used. This database contains 25 ECG record-
ings with a duration of approximately 10 hours each, sampled at 250 Hz, 12 bit resolution,
with accompanying expert beat annotations. Among the records, 23 records include raw
two-channel ECG signals. Records 00735 and 03665 are represented only by the rhythm
and beat annotation files and were therefore excluded in this study. QRS annotations
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Figure 5.1: General flowchart of the AF accuracy evaluation method employed in this
work.

were derived using an automated detector. The rhythm annotations were manually anno-
tated and contain 4 types of rhythms: AF (atrial fibrillation), AFL (atrial flutter), J (AV
junctional rhythm), and N (used to indicate all other rhythms). The RR interval series
corresponding to the latter three rhythm types (AFL, J and N) were merged as non-AF
rhythms in this study, to create AF and non-AF rhythm types.

5.2.3 Setting the CS Parameters

In this work, when signal compression is followed by reconstruction, CS is applied to non-
overlapping windows (blocks) of length N = 256 samples, which corresponds to almost one
second in the MIT AF DB ECG data. We chose N equal to a power of two to allow the
use of a dyadic wavelet matrix Ψ as the sparsifying basis, as described below. Moreover,
using windows corresponding to approximately one second, makes the compression process
suitable for low-delay real-time applications.

Each signal is compressed using a different random sensing matrix with i.i.d. entries
drawn from the normal distribution, Φi,j , j ∈ N (0, 1/M). The resulting measurements

y, yj =
∑N

i=1 φjixi are quantized with a 12-bit uniform scalar quantizer. Signal recon-
struction from CS measurements is performed using the SL0 algorithm [94]. Since the
reconstruction process is based on the signal sparsity assumption, we need to use a sparsi-
fying transform Ψ. To this end, we employ the orthogonal Daubechies-4 wavelets (Db4),
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and a 5-level decomposition, which can effectively provide a sparse representations of the
ECG, as suggested in [107].

We also compare the wavelet basis to the use of an over-complete Gaussian dictionary
introduced in Sec. 3.4.2, which provides a sparse representation of ECG signals. Since it
is based on the ECG morphology, it preserves the shape of QRS complexes as well as of
P and T waves, increasing the quality of reconstructed signals.

In this study we also verify the performance of a beat detector that operates directly
on the compressed sensed measurements and does not require signal reconstruction. In
particular we use CSMF, introduced in Chapter. 4. For this method, it is required that the
signal block contains at least one heart beat in the majority of cases, so we set N = 380,
corresponding to about 1.5 s block duration. The sensing matrices are still drawn from an
i.i.d. standard normal distribution, Φi,j , j ∈ N (0, 1/M), and the measurements quantized
with 12-bit resolution.

5.2.4 AF Detection Using an SVM Method

Generally, AF detectors are based on two approaches. One is based on atrial activity
analysis and it focuses on the absence of P waves in the ECG signal. However, the P-wave
has relatively low amplitude, and the ambulatory ECG often exhibits movement-related
noise resembling the P-wave, which can lead to many false positives. The second approach
is based on ventricular response analysis, and it is based on the predictability of the beat-
to-beat intervals of the ventricular contractions. These RR intervals are derived from the
most obvious large amplitude feature in the ECG, the R-peak. This approach is robust to
artifacts, and is suitable for analysis of ECG recorded by wearable devices [33].

In this study, we used a state-of-the-art method developed by Li et al. [79] for the ven-
tricular response-based AF detection, which was developed on the MIT AF DB described
in Sec. 5.2.2. The AF classification step is based on a Support Vector Machine (SVM)
applied to 8 features that quantify irregularity in the RR interval time series. The SVM
is trained by considering 30 s long signal windows, manually marked as AF and non-AF
rhythms [79].

5.2.5 Evaluation Metrics

Evaluation on QRS Detection Accuracy

A QRS is correctly identified if the time difference between the annotated QRS in the ref-
erence and the detected R-peak by the algorithm is smaller or equal to 50 ms, according to
the recommendation of the American National Standard for ambulatory ECG analyzers
(ANSI/AAMI EC38-1994) [2]. We compute the sensitivity (SeQRS) and positive predic-
tivity (P+QRS) for QRS detection as reported in Sec. 4.6.1. We indicate with TPQRS the
true positives, i.e., the QRS number correctly located by the detector, FNQRS the false
negative, and FPQRS the false positive.

Accurate R-peak detection is crucial for a reliable analysis of AF episodes. In order
to test QRS detection accuracy, record 07126 was excluded since its reference QRS an-
notations are not consistent with the ECG signal. As a reference for the performance of
detection in compressed/reconstructed signals, we applied the P&T QRS detector [100] on
the remaining 22 raw original ECG signals, obtaining SeQRS= 96.38%, P+QRS= 90.38%.
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Evaluation on AF Detection Accuracy

For this purpose, the RR series are classified into: AF episodes and non-AF episodes. The
accuracy of AF episodes classification adopted in this work use the following metrics:

Sensitivity: Se =
TP

TP + FN
, (5.2.1)

Specificity: Sp =
TN

TN + FP
, (5.2.2)

Accuracy: Acc =
TP + TN

TP + FP + TN + FN
, (5.2.3)

Positive predicitivity value: PPV =
TP

TP + FP
, (5.2.4)

Negative predicitivty value: NPV =
TN

TN + FN
, (5.2.5)

Youden index: J = Se+ Sp− 1. (5.2.6)

where TP , FN , FP and TN denote the true positive, false negative, false positive and true
negative detections, respectively. All the measures were computed on all the RR interval
series within the dataset, including noisy segments to represent a real world scenario.

As a reference for the performance of AF detection in compressed/reconstructed sig-
nals, we perform classification based on the manually annotated QRS positions or de-
tected by P&T on the raw original ECG signals. In these cases we obtain an accuracy
Acc =96.53% on hand annotated signals and 95.28% using peak detection with the P&T
detector.

5.3 Results

5.3.1 QRS Detection Performance

Fig. 5.2(a-c) show TPQRS, FNQRS and FPQRS for QRS detection using the considered
three approaches, namely the CSMF R-peak detector in the compressed domain, the
P&T detector after signal reconstruction using the wavelet basis (WT) and the Gaussian
dictionary (GD). Fig. 5.2(d) shows the total number of detected QRS, i.e., the sum of
TPQRS and FPQRS as a function of the compression ratio.

Fig. 5.3 (a-b) illustrate the results of QRS detection sensitivity (SeQRS) and positive
predictivity (P+QRS) as a function of the compression ratio. At low CR levels (CR<60%),
QRS detection using the three CS approaches gives similar results.

For CR=10%, the CSMF method results are SeQRS=96.61% and P+QRS=97.06%.
The P&T method run on the reconstructed ECG signals using the wavelet basis results in
SeQRS=97.01% and P+QRS=97.54%. The P&T method run on the reconstructed ECG sig-
nals using the Gaussian dictionary results in SeQRS=96.98% and P+QRS=97.48%. These
results are slightly higher than those obtained with P&T-based QRS detection on the raw
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Figure 5.2: Numbers of (a) TPQRS, (b) FNQRS and (c) FPQRS QRS (d) Total number of
the detected QRS (TPQRS+FPQRS) varying the compression ratio for the CSMF detection
or Pan-Tompkins (P&T) detection after reconstruction using Wavelet Transform (WT)
and Gaussian dictionary (GD).

ECG signals (see Section 5.2.5), and can be explained by the filtering properties of the CS
approach at low CR rates.

At CR levels higher than about 60-70%, the QRS detection accuracy of all three
CS approaches declines rapidly. It is worth noting the difference between the wavelet
basis recovery and Gaussian dictionary recovery. Fig. 5.2(d) clearly shows that recovery
performed using the wavelet basis leads to many missed QRS detections at high CR
levels. Thus, as we can see in Fig. 5.3(a-b), detection on signals reconstructed using the
wavelet basis has lower sensitivity and positive predictivity values than on signals recovered
using the Gaussian dictionary. Indeed, the reconstruction process using the wavelet basis
typically introduces artifacts that lead to incorrect QRS detections. At the same CR
level, the reconstructed ECG signals using the Gaussian dictionary, based on a model
of QRS waveforms, exhibit less artifacts, leading to better accuracy for QRS detection.
This can be seen in Fig. 5.4, which shows an example from record 05121. In particular,
Fig. 5.4(a) shows the raw ECG signal and the corresponding annotated QRS complexes
marked with triangles. Fig. 5.4(b) and (c) depict the reconstructed ECG signals using the
Gaussian dictionary and the wavelet basis, respectively, at CR=75%. Triangles in (b) and
(c) represent the detected QRS using the P&T method on the reconstrucetd signals. It
can be seen that the artifacts present in the reconstructed ECG signal using the wavelet
basis cause wrong beat detection. Obviously, if one or more QRS complexes are missed
or wrongly detected, the resulting RR interval series and consequently AF classification
performance, are compromised. In addition, for high CR levels, the proposed CSMF
method gives higher sensitivity, but lower positive predictivity for QRS detection, than
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the method based on the wavelet basis. We note that recostruction using the Gaussian
dictionary gives the best results.
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Figure 5.3: QRS detection (a) Sensitivity and (b) Positive Predictivity versus CR.

5.3.2 AF Detection Performance

As mentioned, the detector operates on segments of 30 consecutive beats within the manu-
ally annotated AF and non-AF time intervals. The reference total number of AF segments
is given by the number of segments belonging to AF time intervals and obtained from the
annotated QRS complexes. The reference total number of non-AF segments is computed
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Figure 5.4: (a) Original ECG signal sampled at 250 Hz (first 10 s of record 05121) and
reference QRS annotations. (b) Signal recovered at 75% compression using Gaussian
Dictionary and QRS positions detected using the P&T algorithm. (c) Signal recovered at
75% compression using Wavelet Transform (WT) and QRS positions detected using the
P&T algorithm.

similarly. It is important to note that, due to compression and errors in QRS detection,
the total number of segments in AF time intervals for a given technique, computed as
the sum of TP and FN classification decisions, is in general different from the reference
value. The same happens for non-AF segments, defined as the sum of TN and FP after
classification. Of course, if many QRS complexes are missed, we expect a large difference
with respect to the reference values. Fig. 5.5(a) and (b) compare the total number of
AF and non-AF segments for a given technique with the reference values. It can be seen
that reconstruction with the wavelet basis exhibits a significant drop at compression ratios
higher than 60%. This is consistent with Fig. 5.2, where it can be seen that at high CR,
the method based on signal recovery using WT missed many QRS complexes, whereas the
GD and the CSMF methods could detect almost as many beats as given by the reference
annotated QRS complexes.

Fig. 5.5(c-f) show TP , FN , FP and TN values for AF detection as a function of CR,
for the three CS scenarios considered in this study.

The number of correctly classified AF segments, represented by the TP value, is re-
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ported in Fig. 5.5(c). It can be seen that TP starts to rapidly drop at CR>60% when
AF detection is performed after reconstruction with the wavelet basis. Instead, when
reconstruction is performed using the gaussian dictionary, TP starts to significantly de-
crease at CR> 75%. The CSMF technique, applied directly in the compressed domain,
results in a relatively small performance loss up to CR=50% with a rapid decline at higher
compression.

Figures 5.5(d-f) similarly show that for CR up to 60% the techniques have similar
performance, while the WT and CSMF techniques degrade at higher compression. The
method based on reconstruction with the Gaussian dictionary exhibits very good perfor-
mance for CR up to about 75%. Note that the SVM detector tends to classify a segment
with an RR pattern not consistent with AF as a non-AF segment, which is a safe harbour
approach. Indeed, if a patient needs treatment, many AF segments would be present, and
it is likely that eventually a positive trigger would be seen. This explains the larger FN
values at high compression ratios.

An example of detected QRS complexes by the three CS techniques for non-AF and
AF episodes is reported in Fig. 5.6. The figure shows a sample of record 04746, and, in
particular, the AF episode occurs at time 1:13:10. The detected RR series after compres-
sion (CR=80%) and reconstruction shows that WT leads to inaccurate QRS locations.
In this example, the use of the Gaussian dictionary enables a better QRS detection that
allows to correctly classify the normal rhythm and the AF episode. This also applies for
CSMF detection on the CS measurements.

Table 5.1 summarizes the results for the SVM-based AF detector on the MIT-BIH
Atrial Fibrillation Database in a variety of scenarios, as described in Sec. 5.2. In particular,
the second columns specifies the technique used for the evaluation. ’Reference QRS’ refers
to the application of the SVM-based AF detector on annotated QRS complexes, while
’Raw signals’ refers to classification after QRS detection using the P&T procedure on
uncompressed signals, as specified in the fourth column. It is clear that the corresponding
performance values help to quantify the performance of the CS-based techniques. Note
that the CSMF method does not require signal reconstruction, as specified in the third
column, where the reconstruction technique is indicated.

It can be seen from Table 5.1 that the application of the AF detector on annotated
QRS complexes (’Reference QRS’) results in a very high Sp value equal to 99.14% and a
relative low Se value equal to 93.22%. As mentioned before, this can be justified by the
fact that the classifier tends to mark as non-AF those segments which do not exhibit a
typical AF pattern.

As expected, classification after QRS detection by employing the P&T algorithm on
the uncompressed ECG signals also results in a high Sp of 97.68% and a relative low Se
of 92.97%.

An overall picture of the accuracy of AF detection performance as a function of CR is
given in Fig. 5.7. It can be seen from the figure and from Table 5.1 that, for CR values up
to about 50%, the AF detector applied to QRS complexes derived from the compressed
signals, using the CS techniques described in this work, gives results comparable to those
achieved when employing a standard QRS detector on the raw uncompressed signals. At
a compression ratio equal to 60%, we have less than 1% loss for the WT and GD based
techniques, and about a 5% loss for CSMF. At a compression ratio equal to 75%. the GD
method guarantees a small performance loss of about 1.2%.
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Figure 5.5: Total number of (a) AF episodes (TP+FN), (b) non-AF episodes (TN+FP).
Number of (c) True Positive (TP), (d) False Positive (FP), (e) False Negative (FN) and
(f) True Negative (TN) detections for the SVM AF classifier operating on QRS detected
using CSMF or (P&T) detection after reconstruction using Wavelet Transform (WT) and
Gaussian Dictionary (GD). The reference numbers (dash-dot line) refer to the AF episodes
and non-AF episodes found on the reference QRS.

5.4 Discussion

To detect AF automatically and reliably is a challenging task even on raw uncompressed
ECG data. In our study, we investigated the effect of CS-based ECG compression on the
accuracy of an AF detector applied to the processed data, for a wide range of compres-
sion ratios between 10% and 90%. To this end, two different sparsifying representations,
in combination with the SL0 algorithm, were used to reconstruct the ECG signals from
the CS measurements. Afterwards, the P&T algorithm was employed for QRS detection.
Furthermore, we also describe a newly introduced beat detector that allows direct pro-
cessing of the compressed measurements, without any signal reconstruction. Finally, the
RR interval series obtained from the three different CS scenarios at different CR levels
was used to perform AF detection using a previously reported state-of-the-art SVM-based
model.
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Figure 5.7: Output AF detection Accuracy versus CR when analysis is performed in the
compressed domain using the proposed CSMF beat detector and after signal reconstruction
using the Pan & Tompkins (P&T) beat detector.
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Table 5.1: Results of the performance metrics on uncompressed and compressed ECG
signals using different reconstruction/detection methods for the SVM-based AF detector.

Metric CS Reconstruction QRS Detector
Compression Ratio

0% 10% 20% 30% 40% 50% 60% 65% 70% 75% 80% 85% 90%

Se [%]

Reference QRS - - 93.22 - - - - - - - - - - - -

Raw signals - P&T 92.97 - - - - - - - - - - - -

CS ECG signals SL0 & WT P&T - 92.35 91.97 92.11 92.21 92.06 92.16 91.29 89.52 86.39 68.09 43.38 27.41

CS ECG signals SL0 & GD P&T - 92.15 91.35 92.10 92.02 91.91 91.93 91.90 91.67 91.75 91.02 89.25 84.83

CS ECG signals No CSMF - 90.47 89.63 88.47 86.85 85.24 79.79 77.63 72.00 66.01 57.10 47.87 29.88

Sp [%]

Reference QRS - - 99.14 - - - - - - - - - - - -

Raw signals - P&T 97.68 - - - - - - - - - - - -

CS ECG signals SL0 & WT P&T - 97.61 97.54 97.59 97.49 97.36 96.08 92.91 87.65 76.50 60.94 65.04 72.65

CS ECG signals SL0 & GD P&T - 97.64 97.38 97.59 97.47 97.21 97.04 96.76 96.61 95.83 94.41 88.50 72.66

CS ECG signals No CSMF - 98.30 98.19 98.33 98.06 97.97 98.10 97.80 97.74 97.34 96.46 93.89 89.88

Acc [%]

Reference QRS - - 96.53 - - - - - - - - - - - -

Raw signals - P&T 95.28 - - - - - - - - - - - -

CS ECG signals SL0 & WT P&T - 95.27 95.07 95.17 95.17 95.02 94.35 92.20 88.44 80.58 64.07 55.49 54.29

CS ECG signals SL0 & GD P&T - 95.20 94.72 95.16 95.06 94.88 94.79 94.60 94.45 94.05 92.93 88.82 77.66

CS ECG signals No CSMF - 94.93 94.51 94.10 93.27 92.55 90.32 89.27 86.92 84.22 80.13 75.01 65.37

PPV [%]

Reference QRS - - 98.83 - - - - - - - - - - - -

Raw signals - P&T 96.96 - - - - - - - - - - - -

CS ECG signals SL0 & WT P&T - 96.87 96.77 96.79 96.67 96.48 94.91 90.79 84.00 72.09 57.63 49.44 40.63

CS ECG signals SL0 & GD P&T - 96.90 96.49 96.81 96.64 96.29 96.07 95.77 95.47 94.47 92.60 85.32 68.43

CS ECG signals No CSMF - 97.57 97.39 97.55 97.09 96.89 96.87 96.27 95.86 94.71 91.97 84.50 67.10

NPV [%]

Reference QRS - - 94.91 - - - - - - - - - - - -

Raw signals - P&T 94.04 - - - - - - - - - - - -

CS ECG signals SL0 & WT P&T - 94.10 93.83 94.00 94.08 93.97 93.93 93.30 92.03 88.89 70.99 59.31 59.44

CS ECG signals SL0 & GD P&T - 93.95 93.44 93.95 93.92 93.85 93.87 93.73 93.70 93.73 93.19 91.66 87.27

CS ECG signals No CSMF - 93.17 92.62 91.91 90.91 89.95 86.79 85.64 82.80 79.90 76.03 72.13 64.98

J [%]

Reference QRS - - 92.36 - - - - - - - - - - - -

Raw signals - P&T 89.95 - - - - - - - - - - - -

CS ECG signals SL0 & WT P&T - 89.96 89.51 89.70 89.71 89.42 88.24 84.20 77.17 62.89 29.03 8.42 0.06

CS ECG signals SL0 & GD P&T - 89.79 88.73 89.68 89.49 89.13 88.98 88.66 88.28 87.58 85.43 77.74 57.49

CS ECG signals No CSMF - 88.77 87.82 86.80 84.91 83.21 77.89 75.43 69.74 63.36 53.56 41.76 19.76

All three CS scenarios, i.e., reconstruction with the wavelet basis or the Gaussian
dictionary followed by a standard Pan & Tompkins detector, and the direct detection on
compressed measurements (CSMF), exhibit similar characteristics for what concerns the
AF classification quality metrics. In particular, at low CR levels, the AF detection results
are comparable with those obtained on raw uncompressed ECG signals. However, for
high CR values, the AF detection accuracy for the three methods decreases, as can be
seen in Fig. 5.7. The results reveal that AF detection based on the new CSMF method
has an acceptable performance loss, with respect to the techniques that require signal
reconstruction, up to compression ratios of about 60%. This technique performs better
than the WT-based method for CR higher than 70%. Indeed, CSMF reaches an accuracy
equal to 92.55% at a 50% compression ratio, while at CR=90%, its accuracy decreases to
65.37%. AF detection after reconstruction using WT allows slightly better results up to
CR= 70%. However, its performance rapidly decreases at higher CR levels and reaches an
accuracy equal to 54.29% at CR=90%. The best performance is achieved by the method
with signal reconstruction using the Gaussian dictionary, which allows to reach accuracies
94.05% and 77.66% at CR=75% and CR=90%, respectively.

This study also highlights some drawbacks related to each of the three CS scenarios.
One major drawback of the CSMF method is the quickly increasing number of false neg-
ative AF detections FN when CR> 50%. This is due to the SVM-detector tendency to
favour non-AF classifications. The WT method has a reconstruction quality that decreases
rapidly at high compression ratios, thus compromising classification quality. Overall, it
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appears that using the Gaussian dictionary for signal reconstruction enables a good AF
detection up to a CR level of 75-80%, at the expense of increased reconstruction complex-
ity.

The democracy property of compressive sensing consists in the fact that each measure-
ment carries the same amount of information. Thus, the reconstruction quality depends
only on how many measurements are received and not on the particular received subset.
This allows to modulate the compression ratio by simply discarding or retaining some
measurements. Considering the trade-off between AF classification accuracy, execution
time, and compression, one could envision a two-stage processing system where the CSMF
method is employed in the sensor for mild compression ratios up to CR=60%. The system
then switches to a higher compression, when transmission or recording is needed after AF
episodes are detected, in view of reconstruction with GD followed by P&T detection. The
switch simply consists in transmitting or recording fewer measurements. In a concrete
scheme, one could acquire a compressed version of the signal using the analog CS imple-
mentation [63, 14] with a low CR, e.g., 50%, and use CSMF for AF detection. Then, the
CR can be increased (up to 80%) by keeping a subset of the measurements in order to
save/transmit a lower amount of data, still allowing accurate AF classification when the
reconstruction is performed using the GD method.

As one could expect, there is a relationship between the AF detection accuracy and
QRS detection accuracy. In particular SeQRS starts to rapidly decline for CR>60%, simi-
larly to what happens for the AF detection accuracy, when reconstruction using the WT
and CSMF methods are used. Furthermore, reconstruction using the Gaussian dictionary
allows to obtain similar results at a higher CR=75%.

Many studies related to CS-based ECG compression limited their assessment to the
reconstruction quality, without evaluating the actual impact that signal reconstruction
has on preserving relevant clinical information. In this study, we show that CS can be
successfully employed as a compression technique for ECG signals when the final goal is
to perform AF detection. As for reconstruction quality, we also show that the reliability
of detected QRS complexes significantly depends on the sparsifying basis adopted for
reconstruction.

5.5 Conclusions

The results of this study show that AF classification performed after CS-based compression
allows to correctly detect AF episodes when the compression ratio is lower than 60%
or 75%, depending on the reconstruction/detection method adopted. In particular, we
found that acceptable results are obtained for compression ratios up to 60% when AF
classification is performed on signal reconstructed using wavelets as the sparsifying basis,
or when the CSMF method is used. However, when a specifically designed sparsifying
dictionary, as the one proposed in Chapter 3, is used during signal reconstruction, good
results are obtained for CR values as high as 75%. These findings have positive implications
concerning the acquisition and compression of ECG signals for clinical purposes using
low-power wearable devices. Moreover, the possibility to correctly identify an AF episode
directly on the compressed measurements represents a good opportunity for future long-
term monitoring applications that need to process the data on energy-constrained devices.
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6
Joint Reconstruction and Detection

of Fetal Beats from CS Fetal ECG
Measurements

6.1 Introduction

In this chapter, we focus on non-invasive abdominal fetal ECG (fECG) signal processing
and compression. Processing of such physiological signals has attracted much research
interest due to the possibility to assess fetal health conditions during pregnancy. fECG
signal analysis can provide early detection of fetal heart disorders, making it possible to
treat them with drug administration or to pre-schedule the delivery [72]. According to the
World Health Organization, in 2015 about 303,000 newborns died within 4 weeks after
birth due to congenital anomalies. Heart defects are the most common severe congenital
anomaly affecting approximately 6−11 per 1000 newborns. About 20−30% of these heart
defects are severe and potentially life threatening, requiring surgery within the first year
of life [124].
Fetal heart rate (fHR) is commonly used to indirectly assess fetus conditions during preg-
nancy and labor [102], and among the different approaches (e.g., Doppler ultrasound, fetal
magnetocardiogram, phonocardiography) the examination of the fECG from non-invasive
measurements on the mother’s abdomen plays an important role. Indeed, like for adults,
the fECG allows to visualize the electrical activity of fetal heart, which conveys important
information about the health and conditions of the fetus.

Nowadays, fetal heart monitoring is mainly carried out for short time periods in a
hospital environment; however, long-term continuous monitoring can provide a rapid ob-
jective assessment of fetal well-being. Its implementation is showing an increasing interest
as demonstrated by the different wearable devices that have been developed in recent years
[59] [21]. The advances in the field of wireless wearable sensors for human daily activity
monitoring, have made it possible to use this technology also for the continuous monitor-
ing of fetal electrocardiogram. As for adult ECG, also for non-invasive abdominal fECG
the use of compressive sensing is vital in order to increase the battery life of the wearable
sensors. Moreover, in the specific case of abdominal fECG, we are usually required to
record more than one channel, in order to enable further signal processing, thus increasing
the amount of data to be transmitted/stored. The CS framework introduced in Chapter 2
and applied to low-power monitoring of adult ECG in Chapter 3, may be used as a viable
solution for the compression of fECG.
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A first study on the usability of CS for the telemonitoring of fECG signals has been
investigated in [127], by Zhang et al.. As reported by the authors, due to the particular
complexity of the abdominal fECG signals, current CS frameworks using linear sparsifying
bases, generally fail to adequately recover the signal at high compression ratios, making the
reconstructed electrocardiogram non suitable for diagnostic purposes. Thus, they proposed
to use a new reconstruction algorithm, namely block sparse Bayesian learning (BSBL),
to overcome the problem. Using the scheme proposed in [127], the authors report that
compression ratios up to 60% allow the extraction of fECG signals without significative
performance loss with respect to using the original non-compressed signals.

In this chapter, we design a novel joint reconstruction/detection signal processing
technique for the compression and analysis of non-invasive fECG through abdominal elec-
trodes. The proposed technique allows real-time analysis of the collected signals [42]. It
can be implemented into wearable sensors allowing at-home continuous monitoring of fetal
health.

Motivated by the observation that the use of a properly designed dictionary allows
to have better performance then BSBL algorithm for adult ECG signals (see Sec. 3.5.4)
we introduce a novel dictionary for fECG sparsification. The design of such dictionary is
based on the morphology of fetal beats, which leads to effective performance in realistic
settings and can also be used for the separation of maternal and fetal beats.

6.2 Fetal ECG Signal Processing

Fetal ECG signals can be collected invasively by using an intrauterine electrode during
labor, with the recording electrodes in direct contact with the fetal skin or scalp [99].
Alternatively, non-invasive methods may be used by collecting the signals with non-invasive
electrodes placed on the mother’s abdomen surface. These methods can be used at any
stage of pregnancy [105] and they promise greater prospect for long-term monitoring of
fHR and fetal well-being. Abdominal fECG can be recorded from the maternal abdomen
as early as at the twentieth week after conception [105].

The mechanical functioning of the fetal heart differs from that of the adult heart,
however, its beat-to-beat electrical activity is similar. In common with the adult electro-
cardiogram, fetal ECG contains three easily identifiable components, namely the P wave,
QRS complex and the T wave, representing the atria and ventricles contraction and relax-
ation activities. Even if the morphology of adult and fetal ECG patterns are similar, the
fetal wave amplitude changes considerably throughout gestation. Moreover, despite the
similarities in the electrical properties of fetal and adult cardiac systems, there are some
differences in their RR-interval. Indeed, the fetal heart beat is almost twice as fast as
the adult heartbeat, with considerable variations corresponding to different stages of fetal
cardiac development. The range of normal fHR varies significantly with gestational age.
For example, at the end of the first month of pregnancy, the normal average fetal heart
rate is about 110 bpm and increases to 175 bpm after the ninth week. In the following
weeks, the rate starts to slow down, reaching 110-160 bpm at delivery [119].

Despite the fact that non-invasive abdominal fECG signals can be conveniently recorded,
their analysis represents a challenge for clinical technicians as well as for engineers, due
to the complexity of the trace. Indeed, there are three main problems concerning non-
invasive measurement of fECG. The first one is the low signal to noise ratio (SNR). In
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the method based on the wavelet basis. We note that recostruction using the Gaussian
dictionary gives the best results.

Compression Ratio [%]
10 20 30 40 50 60 70 80 90

Q
R

S
 S

e
n

si
tiv

ity
 [

%
]

30

40

50

60

70

80

90

100

CSMF
WT + P&T
GD + P&T

(a)

Compression Ratio[%]
10 20 30 40 50 60 70 80 90

Q
R

S
 P

o
si

tiv
e

 P
re

d
ic

tiv
ity

 [
%

]

20

30

40

50

60

70

80

90

100

CSMF
WT + P&T
GD + P&T

(b)

Figure 4.3: QRS detection (a) Sensitivity and (b) Positive Predictivity versus CR.

4.3.2 AF Detection Performance

As mentioned, the detector operates on segments of 30 consecutive beats within the manu-
ally annotated AF and non-AF time intervals. The reference total number of AF segments
is given by the number of segments belonging to AF time intervals and obtained from the
annotated QRS complexes. The reference total number of non-AF segments is computed
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Figure 6.1: Two abdominal recordings from the Physionet Challenge dataset A sampled
at 1 KHz. In (a) 4 channels of signal a22, the fECG QRS complexes are clearly visible (red
boxes) while in (b), 4 channels of signal a32 of the dataset, the fECG cannot be identified
by visual inspection. It is also clear, from record a22, that different sources of noise may
affect the signals.

fact, recorded signals are always a mixture of noises generated, for instance, by fetal brain
activity, myographic signals (both from the mother and the fetus), movement artifacts and
maternal ECG. Moreover, the fetal component is usually smaller compared to the maternal
one, with a voltage amplitude of 1-10 µV compared to the maternal ECG (mECG), which
can have an amplitude as high as 1000µV [20]. The lower amplitude is due to the fact that
the fetal heart is smaller than the adult one, and that the signal is typically attenuated by
tissues in the path to the measuring electrodes. Fig. 6.1 shows two abdominal recordings
from the Physionet Challenge database [117] [64]. In Fig. 6.1(a), the fetal QRS complex
is barely visible, while it can be seen clearly in Fig. 6.1(b). Note that the duration and
morphology of the fetal QRS complex is indeed similar to the maternal one, but with a
smaller amplitude and QRS width.

The fetal component of the abdominal fECG trace is often very weak. Its detection
can be a difficult task and there is need for signal processing techniques to improve SNR
and eliminate the maternal component from the signal.
The problem of extraction of the fetal ECG trace from non-invasive abdominal fECG has
been typically addressed in the literature by using a combination of different techniques
[38]. Indeed, extraction methods are typically based on a multi-step approach. Typically,
the first step consists of a pre-processing stage, whose objective is to remove baseline wan-
dering and power-line interference.
The second step estimates the maternal beats by using some form of processing such as
filtering and template subtraction [50] [83]. Blind and semi-blind signal separation tech-
niques can also be used to this end [6] [125]. The idea is that signals, in a multi-channel
abdominal recording, are mixtures of uncorrelated independent sources corresponding to
the mother’s heart beat, the fetal one and noise. Two of the most commonly applied
blind source separation techniques are the Independent Component Analysis (ICA) [114],
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and the Principal Component Analysis (PCA). Note that PCA allows to decompose the
input signals into statistically uncorrelated components, which do not necessarily repre-
sent independent sources. Due to the significant noise usually affecting the signals, ICA
and PCA have some limitations when used alone, and other pre-/post-signal processing
techniques have to be adopted. For instance, ICA has been used together with the wavelet
decomposition in [7].
After identification, the maternal component is removed from the abdominal recording by
using an adaptive or matched filter trained from several maternal reference channels [99]
[126] [50]. The same method can be used to extract directly the fetal QRS waves [60, 103].
Methods based on linear decomposition have been also employed for fetal ECG separa-
tion and enhancement. The abdominal signals are decomposed into different components
by using suitable basis functions. The basis functions can be selected from classes that
are somehow in coherence with the time, frequency, or scale characteristics of the fetal
components. Wavelet decomposition [73, 5], and matching pursuits [4], are among these
methods.
Finally, fetal QRS are typically estimated by using a modification of existing adult QRS
detection techniques. After this final step, it is possible to further process the detected
beats to constrain the estimated fHR and RR time series within physiological or statistical
limits based on heuristics.
Behar et al. [13] compared the results relative to a wide variety of state-of-the-art meth-
ods for non-invasive fetal ECG analysis and proposed to use a combination of several
techniques to improve performance.

6.3 Proposed Joint Reconstruction/Detection Framework

The jointly Reconstruction/Detection framework that we analyze in this chapter is sum-
marized in the block diagram of Fig. 6.2.

First, since fetal heart rate estimation requires the separation of the fetal and maternal
beats from the acquired ECG signals, we model the recorded ECG signals as a mixture of
independent components (ICs) given by the mother’s and fetal heart beat signals, as well
as other noise sources. In particular, as shown in Sec. 6.4 it is possible to perform ICA
directly in the compressed sensed domain, with no performance loss than using the original
signals. Our scheme operates on small blocks of compressed coefficients, and estimates
the compressed independent components, thus reducing computational complexity and
permitting low delay detection and reconstruction.

In order to recover the ICs, we extend the work proposed in Chapter 3, to overcame the
limitations of classical CS framework for fECG signals, introducing a new universal dictio-
nary that permits to successfully increase compression while maintaining a reconstruction
quality which does not affect the detection performance. Similarly to the dictionary used
for adult ECG sparsification, the one used for abdominal fECG reconstruction comprises
two classes of Gaussian-like functions [91], modeling the fetal and mother ECG, respec-
tively. The dictionary is described in Sec 6.5.

Finally, from the reconstructed compressed independent components, we further en-
hance the maternal and fetal beats by checking the activated atoms during reconstruction
within the CS framework. Indeed, some of the ICs may still contain both maternal and
fetal beats.
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Figure 6.2: The proposed joint reconstruction/detection framework for fetal ECG signals.

Although the focus of the framework proposed in this chapter is to deign a low-power
and low-complexity acquisition/detection real-time system, the performance loss with re-
spect to non real-time procedures, which apply off-line post-processing techniques and
several detection refinement stages, is acceptable, besides the fact that the proposed ap-
proach does not require training, it is completely automatic and can be used for real-time
analysis with a small delay.

6.4 Source Separation in the Compressed Domain

Among the different approaches proposed for fECG extraction from multi-channel record-
ings, blind source separation techniques, such as the ICA, combined with other methods
(e.g., maternal QRS cancellation), seem to allow reliable results [13]. In the following, we
summarize the ICA technique and propose its application in the domain of compressed
signals y.

6.4.1 Independent Component Analysis

Let xi(k), i = 1, ..., S, be one of the multi-channel recorded signals. In the framework of
Independent Component Analysis, xi(k) is modeled as a linear combination of independent
processes corresponding to S unknown sources, i.e.,

xi(k) = ai1c1(k) + ai2s2(k) + · · ·+ aiScS(k). (6.4.1)

Each sample xi(k) is therefore an instance of a random variable

xi =
S∑
j=1

aijcj , (6.4.2)

where cj are assumed to be independent and non-Gaussian (except for one of the variables
at most). By collecting variables (6.4.2) in vector xm = [x1, ..., xP ]T , we can write the
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ICA model in matrix-vector notation as

xm = Amc, (6.4.3)

where xm are the observed linear mixtures, c = [c1, ..., cS ]T are the hidden source signals
and Am is the unknown mixing matrix.

ICA algorithms estimate matrix W = A−1
m and obtain the independent components

c = Wxm. ICA is based on the fact that, according to the central limit theorem, each
variable xi, since it is a linear combination of independent variables, tends to have a Gaus-
sian distribution, opposite to the distribution of the source components cj . According to
this observation, separation algorithms for ICA estimation are based on the maximization
of the non-gaussianity of wTxm, which allows to find one row wT of matrix W. This
gives one of the independent components. The other ICs can be estimated by finding all
the local maxima of the optimization problem in the S-dimensional space of vectors w.

6.4.2 ICA in the Compressed Domain

As explained before, the approach proposed in this work uses the CS framework as a
compression technique, and therefore the information available at the receiver side consists
of the compressed measurements y, one vector for each channel.

Considering the CS model, each measurement yi of the i-th channel corresponds to
the compressed version of the i-th acquired mixture signal xi.

As said before, detection schemes based on ICA would require to reconstruct the signals
before application of the technique. However, we propose to apply ICA directly in the
compressed domain. Indeed, the projection of the data into a lower dimensional space, as
provided by CS, reduces the dimension of the problem and may be very useful in order to
speed-up the ICA algorithm. As we will see in this chapter, the high-dimensional problem
can be solved in the compressed domain, with a limited quality loss.

Define xi = [xi(n0), ..., xi(n0 + N − 1)]T as a block of N consecutive samples of the
i−th multi-channel recorded signal. According to (6.4.1), we can write

xi = ai1c1 + · · ·+ aiScS , (6.4.4)

where cj = [cj(n0), ..., cj(n0 +N − 1)]T . With the help of a random sensing matrix Φ, the
CS framework computes measurements for a block as

yi = Φxi = ai1Φc1 + · · ·+ aiSΦcS . (6.4.5)

Across various blocks, the statistics we observe allow to model the elements of yi as samples
of a process

yi(h) = ai1Φhc1 + · · ·+ aiSΦhcS , (6.4.6)

where Φh is one row of the random matrix Φ, and cj is an N−dimensional random vector
of samples cj(k). Each sample yi(h) is therefore an instance of a random variable

yi =
P∑
j=1

aijycj , (6.4.7)

where variables ycj = Φhcj , obtained by sensing the unknown sources, can be supposed to
be independent, since they are functions of the independent source processes. Moreover,
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Figure 6.3: (a) First 2 s of original 4 channels abdominal fetal ECG record a32 of the
Challenge dataset A sampled at 1 KHz) (b) k = 8 consecutive blocks of compressed
sensed measurements of each channel (record a32), corresponding to the first 2 s. The
compression ratio is CR=60% (c) Estimated 4 independent components, which are still
a compressed version of the original ICs (d) Reconstructed ICs from the compressed ICs
(e) ICs corresponding to ICA applied to the original signal. (f) Reconstructed signals
obtained from the reconstructed ICs thanks to the estimated mixing matrix.
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variables ycj are in general non-Gaussian. Assume for instance that the elements of Φh,
one row of the sensing matrix Φ, are i.i.d. normalized Gaussian random variables. Then,
given cj , variable ycj is Gaussian with variance

σ2 =

k0+N−1∑
k=k0

c2
j (k).

However, the distribution of ycj is obtained by averaging over the distribution of cj , and
is given by a non-Gaussian linear superposition of Gaussian components. Of course, non-
gaussianity arises also when Φ is generated with distributions other than Gaussian.

As an example, Fig. 6.3(a) shows the first two seconds of record a32 of the 4-channel
abdominal recordings from the Physionet Challenge dataset. The signals, sampled at
1 kHz, are divided into blocks of length N = 250 samples. Fig. 6.3(b) shows the cor-
responding CS measurements, consisting of 8 consecutive blocks yi of length M = 100
(60% compression ratio). Fig. 6.3(c) shows the ICs ycj of the measurements, which are
estimated by performing ICA in the compressed domain. Finally, Fig. 6.3(d) shows the
signal independent components after CS reconstruction. It may happen that ICA fails
to separate the mother’s and fetal components exactly. The typical situation is that one
of the independent components reveals the mother’s beat, while one of the others is still
a mixture of the mother’s and fetal ECG, the other components corresponding to noise.
The next section describes the proposed procedure to detect the two signals during the re-
construction process. In Fig. 6.3(e) we also show the result of ICA on the original signals.
It can be seen that, apart from the different order and possible sign changes, the signals
are almost identical to those in Fig. 6.3(d), thus confirming that the proposed component
analysis can be safely applied in the compressed domain.

In summary, according to (6.4.7), we can write in matrix notation y = Ayc i.e.,
the measurements can be expressed as a combination, with the same mixing matrix of the
original model, of non-Gaussian independent components, obtained as CS measurements of
the unknown sources. We can therefore use ICA to estimate W and the compressed sensed
unknown sources, in order to apply the separation procedure within the CS reconstruction
framework.

6.5 Gaussian Dictionary for fECG Sparsification

Compressive Sensing is typically used combined with an orthogonal basis for signal spar-
sification, such as the DWT or DCT. However, the use of an appropriate overcomplete
dictionary may lead to a sparser representation of signals, improving compression as well
as the identification of signal patterns matched to the dictionary atoms.

Following the ideas of using a Gaussian-like functions dictionary for the sparsification of
the adult ECG, proposed in Chapter 3 based on the ECG signal approximation introduced
by McSharry et al. [91], we propose the use of an appropriate overcomplete Gaussian
dictionary D for the abdominal fetal ECG signals sparsification.

In the design of the proposed dictionary, we take into account not only the aspects
of efficient signal representation for compression purposes, but also the possibility to help
the separation between maternal and fetal beats. As a matter of fact, if atoms in the dic-
tionary approximate different characteristics of the two signal classes, fetal and maternal,
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Figure 6.4: The proposed overcomplete dictionary D represented as an N×P matrix with
columns gi, and split into three parts, for maternal, noise and fetal waves approximation.
In this model any sparse set of atoms (columns in gray) can be selected.

it is possible to separate them by considering which class of atoms are activated during
reconstruction. This turn to be very helpful when, after ICA, the resulting independent
components are still a mixture of maternal and fetal beats.
The proposed dictionary is composed of P vectors D = {gi}i∈P , such that each fECG sig-
nal can be sparsely approximated by a subset of vectors {gi}i∈K in D, where |K| represents
the support of the best k-term approximation xK of x

xK =
∑
i∈K

sigi. (6.5.1)

As for the dictionary proposed in for adult ECG sparsification the vectors gi are
Gaussian-shaped with elements

gi(n) = exp

(
n− pi
bi

)2

, (6.5.2)

where bi is a shape (or scale) parameter, which is chosen to give an efficient approximation
of typical ECG waves, such as the P, Q, R, S and T waves. Note that the dictionary is
universal, and it can be used to represent different kinds of beats (normal and abnormal)
as for the Gaussian dictionary proposed in Chapter 3.

We use a total of 17 different shape parameter, 11 of them are used for maternal
waves approximation Dm, 4 for fetal ECG waveforms approximation Df and 2 for noise
Dn. Hence, the over-complete dictionary is given by the concatenation of the three sub-
dictionaries: D = [Dm|Dn|Df ].
Different sets of values of the scale parameter and different number of atoms have been
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Figure 6.5: Separation using the proposed Gaussian dictionary. (a) Original 4 channel a04
record sampled at 1 KHz, with both maternal and fetal QRS complexes visible. (b) Re-
construction of the maternal ECG using coefficients sm related to Dm. (c) Reconstruction
of the fetal ECG considering only atoms belonging to sf related to Df .

tested for dictionary construction, in order to model the maternal and fetal ECGs. In
particular, for the type of recordings considered in the experiments, which are ECG traces
sampled at 1 kHz, we observed that scale parameters bi ∈ {5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 50},
ensure a good approximation of both symmetric (Q, R, S) and asymmetric (P and T)
maternal waves. For fetal ECG approximation, atoms are computed using scale parameters
bi ∈ {2.5, 3, 3.5, 4}. For the noise components we use bi ∈ {1.6, 2}. For each bi, all the
possible shift parameters values pi within the signal segment x are considered. In the
proposed scheme, since signal segments x with a duration of N = 250 samples are not
synchronized with heart beats, the atoms corresponding to waves close to the segment
boundaries are built using windowed Gaussian functions. Fig 6.4, reports the resulting
partitioning of the proposed over-complete dictionary.
Thus, the atoms used for reconstruction using the proposed dictionary provide information
about the location and nature of ECG waveforms, which can be used for classification.
As a matter of fact, one would expect that the reconstruction of a fetal or mother’s ECG
waveform would use only atoms from the corresponding section of the dictionary, i.e.
Dm,Df ,Dn. Of course, an abdominal ECG signal of a pregnant woman requires a set of
atoms (columns in gray in Fig. 6.4) belonging to all three sections, so additional processing
is needed. Fig. 6.1 also shows that direct analysis of the reconstructed signals may not be
sufficient to detect the fetal beats.

To make the discussion more concrete, we give an example of the separation capabil-
ities of the proposed dictionary. In this example we do not apply any other separation
technique before reconstruction. The only information we use to separate the maternal
and fetal components are the atoms selected to recover the signal and their location with
respect to the dictionary section. Fig. 6.5 (a) reports the reconstructed signal a04 after CS
compression at CR=75%, using the SL0 algorithm and the proposed dictionary. Fig. 6.5
(b) shows the approximation of the maternal ECG signal using only the atoms activated



6.6. Detection and Classification of Fetal and Maternal Beats 79

0 500 1000 1500 2000

Am
pl
itu
de

-2

0

2

0 500 1000 1500 2000

Am
pl
itu
de

-2

0

2

0 500 1000 1500 2000

Am
pl
itu
de

-5

0

5

Samples
0 500 1000 1500 2000

Am
pl
itu
de

-2

0

2

0 500 1000 1500 2000

Am
pl
itu
de

-2
-1
0
1
2

0 500 1000 1500 2000

Am
pl
itu
de

-2
-1
0
1
2

Samples
0 500 1000 1500 2000

Am
pl
itu
de

-2
-1
0
1
2

5.6. Detection and Classification of Fetal and Maternal Beats 77

0 500 1000 1500 2000

A
m

p
lit

u
d

e

-2

0

2

0 500 1000 1500 2000

A
m

p
lit

u
d

e

-2

0

2

0 500 1000 1500 2000

A
m

p
lit

u
d

e

-5

0

5

Samples
0 500 1000 1500 2000

A
m

p
lit

u
d

e

-2

0

2

(a)

0 500 1000 1500 2000

A
m

p
lit

u
d

e

-2

-1

0

1

2

0 500 1000 1500 2000

A
m

p
lit

u
d

e

-2

-1

0

1

2

Samples
0 500 1000 1500 2000

A
m

p
lit

u
d

e

-2

-1

0

1

2

(b)

Figure 5.6: Reconstructed ICs for the first 2 s of record a08 of the Challenge dataset A,
with ICA applied in the CS domain. (b) Further separation of maternal and fetal traces
from the 4-th independent component by exploiting the dictionary-based classification
procedure.

in Dm. As it can be seen, the maternal beats in each channel are well separated from
the other components. Fig. 5.5 (c) shows the approximation of the fetal QRS complexes
using the atoms belonging activated in Df , and the fetal ECG components in each trace
is the most prominent. It should be noted that in correspondence of the maternal peaks
some residual signal may still be present, however, this can be treated as noise and will
not interfere with the fetal beat detection.
From this example we can see that the maternal component and the fetal ones can be
approximated by di↵erent parts of the dictionary. However, when the fetal components
are hidden by the maternal ones, due to a very low fetal beat amplitude, ICA should be
applied in order to enhance the fetal trace. Fig. 5.6(a) shows the ICs corresponding to the
four channels of record a08 of the Challenge dataset A. While the two plots from above
correspond to noise components, the mother’s beats are clearly visible in the third plot.
However, as we can see in the bottom plot of Fig. 5.6(a), the corresponding independent
component can still contain a mixture of the fetal and mother’s beats. In such a case, the
proposed classification procedure can be used to further separate the maternal and fetal
components. Indeed, by looking at the atoms used for the reconstruction, we can actually
separate the mother’s and fetal beats in the mixed signal, as shown in Fig. 5.6(b).

5.6 Detection and Classification of Fetal and Maternal Beats

After applying the ICA in the compressed domain and perform the reconstruction of the
compressed ICs the final step of the proposed approach involves the detection of the ma-
ternal and fetal QRS complexes and their classification. The reconstruction process is
based on the assumption that the independent components, resulting from the ICA anal-
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Figure 5.6: Reconstructed ICs for the first 2 s of record a08 of the Challenge dataset A,
with ICA applied in the CS domain. (b) Further separation of maternal and fetal traces
from the 4-th independent component by exploiting the dictionary-based classification
procedure.

in Dm. As it can be seen, the maternal beats in each channel are well separated from
the other components. Fig. 5.5 (c) shows the approximation of the fetal QRS complexes
using the atoms belonging activated in Df , and the fetal ECG components in each trace
is the most prominent. It should be noted that in correspondence of the maternal peaks
some residual signal may still be present, however, this can be treated as noise and will
not interfere with the fetal beat detection.
From this example we can see that the maternal component and the fetal ones can be
approximated by di↵erent parts of the dictionary. However, when the fetal components
are hidden by the maternal ones, due to a very low fetal beat amplitude, ICA should be
applied in order to enhance the fetal trace. Fig. 5.6(a) shows the ICs corresponding to the
four channels of record a08 of the Challenge dataset A. While the two plots from above
correspond to noise components, the mother’s beats are clearly visible in the third plot.
However, as we can see in the bottom plot of Fig. 5.6(a), the corresponding independent
component can still contain a mixture of the fetal and mother’s beats. In such a case, the
proposed classification procedure can be used to further separate the maternal and fetal
components. Indeed, by looking at the atoms used for the reconstruction, we can actually
separate the mother’s and fetal beats in the mixed signal, as shown in Fig. 5.6(b).

5.6 Detection and Classification of Fetal and Maternal Beats

After applying the ICA in the compressed domain and perform the reconstruction of the
compressed ICs the final step of the proposed approach involves the detection of the ma-
ternal and fetal QRS complexes and their classification. The reconstruction process is
based on the assumption that the independent components, resulting from the ICA anal-

Figure 6.6: Reconstructed ICs for the first 2 s of record a08 of the Challenge dataset A,
with ICA applied in the CS domain. (b) Further separation of maternal and fetal traces
from the 4-th independent component by exploiting the dictionary-based classification
procedure.

in Dm. As it can be seen, the maternal beats in each channel are well separated from
the other components. Fig. 6.5 (c) shows the approximation of the fetal QRS complexes
using the atoms belonging activated in Df , and the fetal ECG components in each trace
is the most prominent. It should be noted that in correspondence of the maternal peaks
some residual signal may still be present, however, this can be treated as noise and will
not interfere with the fetal beat detection.
From this example we can see that the maternal component and the fetal ones can be
approximated by different parts of the dictionary. However, when the fetal components
are hidden by the maternal ones, due to a very low fetal beat amplitude, ICA should be
applied in order to enhance the fetal trace. Fig. 6.6(a) shows the ICs corresponding to the
four channels of record a08 of the Challenge dataset A. While the two plots from above
correspond to noise components, the mother’s beats are clearly visible in the third plot.
However, as we can see in the bottom plot of Fig. 6.6(a), the corresponding independent
component can still contain a mixture of the fetal and mother’s beats. In such a case, the
proposed classification procedure can be used to further separate the maternal and fetal
components. Indeed, by looking at the atoms used for the reconstruction, we can actually
separate the mother’s and fetal beats in the mixed signal, as shown in Fig. 6.6(b).

6.6 Detection and Classification of Fetal and Maternal Beats

After applying the ICA in the compressed domain and perform the reconstruction of the
compressed ICs the final step of the proposed approach involves the detection of the ma-
ternal and fetal QRS complexes and their classification. The reconstruction process is
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Figure 6.7: Absolute value of atoms si activated during reconstruction of one independent
component of signal a23 of the Physionet Challenge database, in the dictionary section
corresponding to maternal ECG approximation Dm . Colors represent the magnitude of
the atoms as indicated in the vertical colorbars.

based on the assumption that the independent components, resulting from the ICA anal-
ysis, share the same structure of the original signals, i.e., they are sparse in the Gaussian
dictionary used for approximation.
Two assumptions have been made for the localization of maternal beats. The first one is
that at least one of the ICs contains maternal beats. The second one is that these compo-
nents are reconstructed using atoms mainly belonging to the maternal dictionary section.
Fig. 6.7 shows the atoms in the maternal dictionary activated during reconstruction of one
independent component of signal a23 of the Physionet Challenge database.
Based on the sparse representation, only atoms with a non-negligible magnitude in the
maternal dictionary are considered as potential maternal QRS complexes. Note that fetal
QRS complexes, clearly visible in Fig. 6.7, do not significantly activate atoms from the
maternal dictionary.

Within a signal block of 2 seconds, an R peak position candidate p at time t is selected if
the corresponding atom magnitude |si| (see (6.5.1)) is greater than a threshold T = αAmax,
where Amax is the maximum atom magnitude in the current signal segment. In the
experiments, we set α = 0.75. If two detected atoms correspond to time positions less
then 0.3 s apart, the one with smaller |si| is discarded, since they are supposed to be
redundant.

Detection is performed on three of the four channels simultaneously. The channel
with the lowest kurtosis is supposed to be noise and is not considered. For beat position
detection, we select the channel with the largest absolute si value.

The detection of fetal beats is carried out in a similar way as for maternal detection,
but considering the dictionary section used for fetal approximation. However, in this case,
some of the atoms activated during reconstruction might be related to the mother’s beats.
Not considering the atoms located in correspondence of the previously detected mother’s
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Figure 6.8: One of the IC’s of signal a22. (a) Absolute value of atoms (si) activated in the
fetal dictionary (b) absolute value of atoms resulting after attenuation. Colors represent
the magnitude of the atoms as indicated in the vertical colorbars.

beats is not efficient, since maternal and fetal beats may overlap in time.
A possible solution is the attenuation of these values by multiplying them by a constant
value 0 < β < 1, For simulations we set this constant equal to β = 0.25. This ensures
that when there is a time overlap between the fetal and maternal beats, we are still able
to detect the fetal one (see Fig. 6.8).
The threshold value used for the detection of fetal QRS complexes should take into account
the lower power of the fetal signal, and it is set at T = 0.5Amax in the experiments. The
time interval used to classify close peaks as redundant is reduced to 0.25 s, given that
the fetus heart rate is faster than the maternal normal sinus rhythm (i.e., about 110 to
160 beats per minute (bpm) [97]). We compute the time differences between the detected
atom positions in the three channels, and select the one with the lowest difference variance,
corresponding to the most regular beat rate.
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6.7 Evaluation of the Proposed Method

6.7.1 Experimental Set-Up

Fig. 6.2 summarizes the approach implemented for this work, which consists of five main
steps, namely, (1) compression of the raw abdominal ECG signals using Compressive
Sensing, (2) application of ICA on the compressed measurements, (3) reconstruction of
the Independent Components via their sparse representation, (4) detection of the maternal
beats, (5) detection of the fetal beats.

Before calculating the CS measures, raw signals are pre-processed using a zero phase
high-pass Butterworth digital filter for baseline wander removal, with cut-off frequency
equal to 2 Hz. To remove power-line interference, a second order notch filter at 50 Hz or
60 Hz is applied, depending on the fact that signals come from European or US recordings.
Original signals are sampled at 1 kHz.

Compressive Sensing is applied on signal blocks of length N = 250 samples, using
a sparse sensing matrix Φ, with only two non-zero elements in each column, whose row
position is randomly chosen. This class of sensing matrices is particularly interesting for
low-power applications and allows an efficient implementation in hardware. In the exper-
iments, we consider signal blocks of N = 250 samples, and take M = 62 measurements,
corresponding to a compression ratio CR=75%. With a 63×250 sensing matrix, we require
437 additions. The choice of a compression ratio of 75% is based on the results reported
in [40], where it has been shown that it is the maximum CR that ensures a good recon-
struction quality of the signals. However, for the sake of completeness, in Section 6.7.5,
we evaluate the performance of the proposed framework at different CRs. Compressed
data are represented with 16 bits.

In the proposed framework, we reconstruct signal ICs and not the original mixed
signals. However, these can be recovered by simply multiplying the estimated mixing
matrix and the reconstructed ICs. As mentioned, in this work we use the reconstruction
algorithm proposed in [94], the Smoothed l0 (SL0) algorithm, which allows real-time
implementation. Detection and classification are applied on the sparse representation and
the fHR is computed every 2 s. This time represent a good trad-off keeping the analysis
window short enough to allow a real-time analysis and still have an accurate detection.

6.7.2 Standard fECG Evaluation Datasets

The robustness of signal processing methods for non-invasive fECG extraction should
be evaluated quantitatively using standard databases. The evaluation of the proposed
framework is performed on three public database.

The first one is the Abdominal and Direct Fetal Electrocardiogram Database [64]
[70] denoted as the Silesia dataset. It contains 5 multichannel fECGs, obtained from
5 different women, each one consisting of four abdominal fECG recordings as well as
one fECG recording taken directly from a scalp electrode and used as reference. The
position of the electrodes was constant during all recordings. The sampling rate is 1 kHz
with a resolution of 16 bits. For this dataset, data are already pre-processed by digital
filtering for removal of power-line interference and baseline drift. The R-wave locations
were automatically determined in the direct fECG signal and these locations were verified
by a group of expert cardiologists.
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The second and the third datasets we consider are set A and set B of the Physionet
Challenge dataset [64]. In particular, set A contains 75 records and both records and
expert annotations are available. Whereas, for set B, which contains 100 records, only the
records were made public and the scoring of the performance is performed online. For the
non-invasive datasets, the annotations were obtained from fECG QRS estimates derived
manually. Due to the inaccuracy of reference annotations, records a38, a46, a52, a54, a71,
a74 of dataset A are discarded, as suggested in [13]. Both datasets consist of 1-minute
long 4-lead abdominal fECG recordings, all sampled at 1 kHz with a resolution of 16 bit,
but recorded with different hardware, following separate protocols and on a number of
pregnant women.

6.7.3 Standard Evaluation Metrics

For the evaluation of the proposed scheme, we use classical performance figures usually
applied for the assessment of QRS detection algorithms, i.e., sensitivity (Se) and positive
predictivity (P+), as well as the F measure, defined in Sec. 4.6.1.

Additionally, we apply the scoring methods proposed in [38], using two metrics, i.e.,
fetal heart rate measurement and RR interval measurement. The first one, denoted here
as HRmeas (bpm2), is used to assess the ability of the algorithm to provide valid fHR
estimation. It is based on the squared difference between matched reference (fHR) and
detected fHRd measurements every 5 s (12 instances for 1 min long signals)

HRmeas =
1

12

12∑
i=1

(fHRi − fHRdi )2. (6.7.1)

To asses the ability of the algorithm to extract the correct fetal QRS locations with respect
to the reference markers, the RR measure metric is used, which is calculated from the
differences between matched reference RR and test RRd intervals. This metric is denoted
here by RRmeas (ms)

RRmeas =

√√√√ 1

I − 1

I−1∑
i=1

(RRi −RRdi )2, (6.7.2)

where I is the total number of fetal QRS complexes in the reference. These measures
correspond to the Physionet Challenge scores and were obtained with the same code used
by the Challenge scorer. Additionally, we apply the scoring methods proposed in [38],
using two metrics, i.e., fetal heart rate measurement and RR interval measurement.

Since we are applying a compression technique, i.e. compressive sensing, reconstruction
quality is also evaluated using the PRD metric, as defined in Sec. 3.5.2. As for adult ECG
we consider reconstructions with PRD values between 0% and 2% as “very good” quality,
while values between 2% and 9% are categorized as “good”.

Finally, we consider the total time required by the algorithm for beat classification,
including reconstruction of all the 4 channels, in order to asses the possibility to implement
the proposed framework in a real-time application. The average time required by the
algorithm, for a 1 minute long signal, is approximately 3.7 s. The reconstruction program
is written in Matlab, running on an Intel Core i7 processor, equipped with 16 GB memory.
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6.7.4 Results for Detection Performance

Table 6.1 reports a full evaluation of the proposed framework in terms of the number of
correctly found beats (TP), sensitivity Se, positive predictivity P+ and F measures, for
all the 5 records in the Silesia dataset. The compression ratio resulting from Compressive
Sensing is 75%, since we take 63 measurements every 250 signal samples at 1 kHz. For each
signal the first row of the table shows results obtained within the first minute, whereas
the second row shows results for the whole five minutes long signals. The same randomly
selected sparse sensing matrix has been used for all traces and signal segments. For this
dataset and the selected sensing matrix, the average value for sensitivity is Se=92.5%
within the first minute, and Se=90% for the five minutes long signals. The positive
predictivity average values are P+=92% and P+=88% within the first minute and for five
minutes, respectively. Average HRmeas and RRmeas values within the first minute are
10.34 bpm2 and 12.33 ms, respectively. For 5 minutes long signals we obtain HRmeas =
53.55 bpm2 and RRmeas = 16.48 ms.

Table 6.1: Results, after one minute and after five minutes, for signals from the Abdominal
and Direct Fetal ECG Dataset (Silesia). The same sensing matrix has been used to sense
all signals.

Record t TP FP FN Se P+ F mean PRD HRmeas RRmeas
% % % % (bpm2) (ms)

r01 1’ 129 0 0 100 100 100 9.85 0.0048 1.49
5’ 628 21 15 98 97 97.5 10.29 22.1578 13.10

r04 1’ 110 17 15 88 87 87.5 5.52 23.6373 12.30
5’ 508 142 123 80 78 79 5.93 75.9085 22.21

r07 1’ 122 3 5 96 97 96.5 6.20 14.7479 14.74
5’ 5721 63 55 91 90 90.5 5.21 33.0583 16.04

r08 1’ 123 10 9 93 92 92.5 10.24 0.0038 12.03
5’ 638 18 12 98 97 97.5 10.60 7.2327 10.12

r10 1’ 109 20 19 85 84 84.5 10.55 13.30 20.98
5’ 519 154 117 82 77 79.5 10.24 129.4236 20.92

Evaluation of the proposed detection method on the dataset A, using a fixed randomly
selected sparse sensing matrix ΦA for all the signals of the dataset, gives an average sen-
sitivity Se=78% and an average positive predicitivity value P+=77%. Concerning the
scoring method proposed by the Physionet Challenge the average HRmeas, for the same
sensing matrix ΦA, is 138.65 bpm2 and the RRmeas is 20.92 ms. A full evaluation for all
the records in set A is reported in Appendix A.2. Since the Challenge dataset contains
signals from different databases, recorded using different instrumentation and methods, re-
sults have an inhomogeneous distribution. Therefore, we analyzed the distribution among
the signals of the dataset, obtaining a minimum value for sensitivity equal to 15% (signal
a18) and a maximum value 100% (signal a32), while positive predictivity values range
from 21% up to 99%. The median value of the sensitivity distribution is about 87.7%,
while the positive predictivity median value is 85.5%. Fig. 6.9(a) shows the boxplot of the
sensitivity and positive predictivity values. The distribution of HRmeas and RRmeas for
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the proposed procedure is presented in Fig. 6.9(b)(c). Median value for the HRmeas and
RRmeas, are 31.58 bpm2 and 17.96 ms, respectively.
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Figure 6.9: Distribution of (a) of the sensitivity S (%) and the positive predictivity P+
(%), (b) HRmeas (bpm2)and (c) RRmeas (ms) for Challenge set A.

To assess the influence of different sensing matrices on the ability to correctly classify
the fetal beats, we tested 50 different sensing matrices on the Challenge dataset A, for a
compression ratio CR=75% and the entire dataset. Average results obtained for sensitivity
are Se=78±1% and for positive predictivity P+=77±1%. Again using 50 different sensing
matrices, the values for HRmeas are 133.16 ± 9.04 bpm2 and 21.41 ± 0.6 ms for RRmeas.
The influence of the sensing matrix appears to be moderate.

Finally, we tested the proposed framework on dataset B of the Challenge. Also for
this dataset, the proposed method has been tested using 50 different sensing matrices.
(Average and standard deviation results for each signal are reported in Table A.3). The
scores are HRmeas=188 ± 13 bpm2 and RRmeas=24.52 ± 0.26 ms.

To allow the comparison with some off-line methods considered in Section 6.8, we add
a limited complexity post-processing stage after real-time detection, in order to correct
the estimated fHR and RR time series (we call this variation of the proposed method
smoothed in Section 6.8). It operates on 1 min long blocks of the detected fetal channel
and consists in the removal of beats that are too short to be physiologically possible. It
also checks for missed beats, using an approach similar to the one proposed in [50]. After
this post-processing stage, the average scores obtained using dataset B, with 50 randomly
chosen sensing matrices, are 136 ± 11 bpm2 and 17.23 ± 0,41 ms for HRmeas and RRmeas,
respectively.

6.7.5 Effect of Compression Ratio

Fig. 6.10 shows a comparison between the reconstruction obtained with the proposed
Gaussian dictionary and a wavelet-based sparsifying basis, as commonly adopted for CS
implementation [90]. In accordance with the results presented in [40], relative to standard
ECG traces and a simpler dictionary, the use of the proposed Gaussian dictionary for
mother and fetal ECG compression allows a great improvement in the reconstruction
quality (on average, about 75% CR with the Gaussian dictionary against a smaller 50% CR
with wavelets, for a “good” reconstruction quality PRD=9%). On average, the proposed



866. Joint Reconstruction and Detection of Fetal Beats from CS Fetal ECG Measurements

dictionary seems to ensure good reconstruction quality for signals in the Silesia dataset
(see Table 6.1), with a mean PRD value of 8.5%. Even if some signals have a PRD greater
than 9%, the ability of the algorithm to correctly detect and classify the fetal beats does
not seem to be affected. Concerning the reconstruction quality on the Challenge dataset
A, results show a mean PRD value of 7.5 %, satisfying the reconstruction requirements
for diagnostic purposes.
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Figure 6.10: (a) and (b) - Reconstruction of 1 s of record a21, channel 1, of Chal-
lenge A dataset for the same compression ratio CR=75%. In (a) a wavelet basis
is used (PRD=28.19%), while in (b) the Gaussian overcompelete dictionary is used
(PRD=5.48%). (c) Reconstruction of record a21, channel 1, with compression ratio CR=
90% and the Gaussian Dictionary, PRD = 29.25%.

In Fig. 6.11, the performance of our framework at six different compression ratios,
ranging from 60% to 90%, are reported. Results are averages of the performance for the
entire dataset A, using 50 different sensing matrices at each compression ratio. Both mean
and standard deviation values are shown for each CR. As it can be seen in Fig.6.11(a),
the reconstruction quality changes with the CR, as well as the reconstruction time, from
6.7 ms for a CR=60% to 4.6 ms when the CR is 90%, see Fig.6.11(b).

The detection performance in term of sensitivity, positive predictivity, HRmeas and
RRmeas shows a negligible variation when the reconstruction ensures a good quality (i.e.,
for CR<75%), as shown in Fig.6.11(c) and (d) for HRmeas and RRmeas. In particular,
the average sensitivity value ranges from 79%, for CR=65%, to 76% for CR=80%. The
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Figure 6.11: Average reconstruction performance (i.e., average PRD (a) and reconstruction
time (b) values) at six different compression ratios ranging from 60% to 90%, for dataset
A; (c) HRmeas and (d) RRmeas at different CRs. Error bars indicate standard deviation.

positive predictivity value shows a similar trend. Also HRmeas and RRmeas show small
variations (i.e., a variation of 3 bmp2 for HRmeas, and less then 1 ms for RRmeas). Higher
compression ratios (CR>80%) cause a loss of detection performance, both in terms of S
and P+ and in terms of HRmeasand RRmeas. At CR=90%, sensitivity decreases to 61%
and P+ decreases to 59%, while HRmeas and RRmeas increase to 225 bpm2 and 28 ms,
respectively.

6.8 Discussion and Relation to other fECG extraction meth-
ods

Unlike others methods proposed in literature, which are designed for off-line analysis after
pre-processing of the signal, our framework allows detection of fetal beats, as well as
maternal beats, by processing short 2 s signal blocks during signal reconstruction within
the CS framework. Due to its relatively low complexity, the proposed procedure can be
implemented in real time at the receiver. From the best of our knowledge, this is the
first time that a framework for the low-power CS compression of fetal abdominal ECG is
proposed combined with a beat detector for fHR estimation.
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Data from this Silesia dataset have been previously used in [5], for the validation
of a wavelet-based method. Sensitivity values reported in [5] range from Se=85% to
Se=95% for the five minute long signals. Instead, when it is evaluated on each minute, the
sensitivity ranges from about 72% up to 98%. From the results reported in Table 6.1, it is
apparent that the proposed framework allows a similar performance, besides the fact that it
operates on compressed data which are acquired with very little complexity. The HRmeas
and the RRmeas values on this dataset have been previously reported in [111] using two
different approaches, with average values HRmeas=122.5 bpm2 and RRmeas=31.46 ms
for the global approach, and HRmeas=11.21 bpm2 and RRmeas=26.64 ms for the time
adaptive approach. Thus, on this dataset, our framework (HRmeas=53.55 bpm2 and
RRmeas=16.48 ms) outperforms the global approach proposed by Rodrigues et al. [111]
and is comparable with the second one.

In [13], several techniques have been tested on dataset A of the Chellenge dataset.
One of the methods operates on the full original signals, computes ICA and uses an
adapted version of the standard Pan and Tompkins QRS detector [100]. Besides baseline
wander removal and notch filtering, the method does not employ additional pre/post-
processing techniques, similarly to what we do in the proposed approach. Compared to this
method, our solution increases detection performance by 10% for the mean sensitivity value
(reported result for the same dataset is 69.1%). Moreover, the percentage improvement for
the positive predictivity is 18% (reported result, P+=60%). When PCA is used instead
of ICA in [13] our improvement is 21% and 31% for S and P+, respectively. With respect
to the results reported in [13], the mean HRmeas achieved by the proposed approach
outperforms the methods based on ICA and PCA (mean HRmeas value 2852.1 bpm2

for the ICA based method and mean HRmeas value 3892.1 bpm2 for the PCA method).
References [38] [13] also report results obtained with different techniques comprising a
combination of ICA processing stages and template subtraction. These techniques operate
on the full length pre-processed original signals with no compression. Our method has
comparable results with respect to each individual technique considered in [13], even if the
most elaborate, which use a combination of individual techniques, can achieve considerably
better results than the proposed method.

Methods reviewed in [38] usually follow a four step approach, which includes pre-
processing, estimation of maternal component and its removal, estimation of fHR and RR
time series, and a post-processing final stage where detected beats are corrected based
on prior knowledge. Table 6.2 summarizes and compares the performance of some ap-
proaches proposed in [38], with respect to the one proposed in this thesis, for dataset
B. As it can be seen, the proposed method achieves results comparable to some off-line
methods, even though it works on compressed signals and, using short signal blocks, can
be implemented in real-time with a short delay. Regarding execution time, as shown in
Fig. 6.2, the proposed approach includes reconstruction from compressed samples, accord-
ing to the fact that the intended focus of this work is a low-power and low-complexity ac-
quisition/detection real-time system, while existing algorithms operate on non-compressed
data. A fair comparison would need to include compression/decompression procedures in
the existing schemes. In Table 6.2 we report results by neglecting the time required by
the reconstruction stage (see Fig. 2). We evaluate the CPU execution time of Matlab
publicly available implementations, running on an Intel Core i7 processor, equipped with
16 GB memory. For the proposed techniques, we report average values, using 50 different
sensing matrices. To compute ICA in the compressed domain and to detect the fetal QRS
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Table 6.2: Comparison of some detection methods on dataset B. In case of no publicly
available implementation, the execution time is set to N.A.

Method HRmeas RRmeas Realtime Compression Execution Time
bpm2 ms s

ICA-Template Adaption [6] 20.4 4.6 NO NO N.A.

FUSE - smooth [13] 29.6 4.7 NO NO 1.8

ICA-TS-ICA upsampling [125] 34 5.1 NO NO 1.55

Wiener filter [111] 124.8 14.4 NO NO 4.8

TS-ICA upsampling [50] 134.5 12.4 NO NO 200

Proposed method - smoothed 136 17.2 NO YES 0.64

Proposed method 188 24.5 YES YES 0.64

ICA-Extended Kalman [6] 219 7.7 NO NO N.A.

TS and PCA[36] 305.7 23.1 NO NO N.A.

Wavelet based [5] 513.1 35.3 NO NO N.A.

TSPCA [13] 759.42 21.86 NO NO 1.09

complexes the proposed algorithm takes about 0.64 s for a one minute long signal, while
the total time, including reconstruction, is about 3.7 s, as mentioned before.

Pre-processing may increase detection performance, especially when impulsive artifact
removal is applied. Impulsive artifacts may affect the performance of ICA decomposition,
and this may be one of the reasons why the proposed method has for some signal a worse
performance than other methods [13]. Moreover, we believe that the proposed method
fails on some abdominal signals of the Challenge A dataset due to the poor quality of
the signals. As mentioned in [50] and [111], for some signals, such as a02, a09, a18 or
a29, due to the low signal quality, it is not possible to correctly identify the fetal beats,
obtaining unreliable results. For practical purposes, the choice of the optimal number and
position of electrodes is important since the efficiency of the signal processing methods
strongly depends on the signal quality and on the number of channels. This observation
is confirmed by the different average performance obtained with the Silesia and Challenge
datasets.

6.9 Conclusions

In this chapter, a framework for the CS compression of abdominal fetal ECG recordings
jointly with real time beat detection and classification has been presented.

We proposed to take advantage of the reduced dimension of the problem to apply a
classical separation technique, i.e., the independent component analysis (ICA), directly in
the compressed domain, with a consequent reduced computational cost. By applying the
ICA in the compressed domain we obtained a good estimation of the original independent
components (ICs), which are reconstructed from the compressed ICs by following the same
procedure used to reconstruct compressed sensed signals. To this end, we introduced a
new dictionary for the sparsification of maternal and fetal components that can be used to
recover the compressed measurements as well as the compressed independent components.
The fetal beast detection is based on the atoms used for the reconstruction of the fetal
trace in the independent components.

Evaluation of the proposed method has been done on three open datasets, showing
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promising results for both correct detection of fetal beats (Se=92.5% for Silesia dataset
and Se=78% for the Challenge dataset A) and reconstruction quality (PRD=8.5% and
PRD=7.5%). These results allow us to conclude that the proposed framework may be
used for compression of abdominal fECG and to obtain real time information of the fetal
heart rate, providing a suitable solution for low-power telemonitoring applications.



7
Improving the Smoothed l0

Algorithm

7.1 Introduction

In this chapter, we return to the problem of signal reconstruction from compressed mea-
surements. As seen before, the Smoothed-l0 algorithm (SL0) introduced in Sec. 2.4.3,
relaxes the original NP-hard problem by using smooth approximations of the l0 norm.
SL0 is particularly interesting for its low complexity, which allows for real-time signal
reconstruction [42]. However, as we will see in this chapter, the SL0 algorithm may fail
in case of noisy signals or ill-conditioned sensing/dictionary-based reconstruction proce-
dures. We describe a variant of the SL0 technique in this more challenging setting and
we show that, while maintaining the same computational cost of the original algorithm,
the proposed modification significantly improves the reconstruction quality, both for syn-
thetic and real-world ECG signals. We also show that the proposed algorithm allows
robust heart beat classification when sparse matrices, implementable with very low com-
putational complexity, are used for compressed sensing of the ECG signal. Furthermore,
similarly to the analysis performed in Chapter 3, we show that the use of sparse sensing
matrices with only 2 non-zero elements in each column compares successfully with the use
of random Gaussian matrices even when using the proposed variant of the SL0 on fetal
ECG signals.

7.2 Regularization of Smoothed l0 Alogorithm

As described in Sec. 2.4.3, the SL0 algorithm approximating the l0-norm with a continuous
function, and the minimiazation of the l0-norm is approximately equivalent to maximaize
Fσ = exp(−s2

i /2σ
2) ≈ 1 − s2

i /2σ
2 s.t. y = As. This problem resembles the minimum

l2-norm solution and the starting solution of the optimization process is usually calculated
using the pseudo-inverse A† of A and set s0 = AT (AAT )−1y.

Note that the algorithm requires that matrix A has full rank M . When the number
of measurements M increases (i.e., the compression ratio decreases), this requirement may
become critical, making the reconstruction problem ill-conditioned and sensitive to noise.

In real scenarios where the sparse signal or the measurements are affected by noise, if
the compound matrix A is ill-conditioned, then application of A† amplifies the error and
results in poor reconstruction, even using the Robust SL0 proposed in [56]. Ill-conditioned
matrix A may no longer satisfy the requirements imposed by traditional compressed sens-
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ing assumption and the recovery algorithm becomes sensitive to noise: in this situations
small perturbations in the signal or in the measurements deviate the reconstruction from
the original signal. Introducing a regularization term in the optimization problem enables
a stable recovery of x = Ds.

As in the SL0 algorithm, we approximate the l0-norm by using (2.4.5), and the algo-
rithm again consists in two nested iterations. The internal loop seeks the maximum of Fσ
in the feasible set {s| ‖ y −As ‖2≤ ε}. At each step we compute s̃ = s− µδk and project
s̃ by solving

min
ŝ
‖ ŝ− s̃ ‖2 s.t. ‖ Aŝ− y ‖2≤ ε. (7.2.1)

Using the Lagrangian function of Eq. (7.2.1), the problem can be rewritten as

min
ŝ
‖ Aŝ− y ‖22 +λ ‖ ŝ− s̃ ‖22, (7.2.2)

where λ is the regularization parameter. The solution, whose full derivation is given in
Appendix B, is

ŝ = s̃−AT (AAT + λIM )−1(As̃− y). (7.2.3)

As for the SL0 algorithm, for large σ values, the solution is equal to the l2 norm
solution subject to ‖ y −As ‖2≤ ε. Solving the problem

min
s
‖ As− y ‖22 +λ ‖ s ‖22, (7.2.4)

we set the initial solution of the algorithm to s0 = AT(AAT + λIM )−1y.
The proposed λSL0 algorithm is summarized in Algorithm 3. The value of the regular-

ization parameter λ represents a compromise between the two terms of the cost function.
When the noise norm ε is small, λ→ 0, and the algorithm reduces to the original SL0 for
the noiseless case. We carried out some experiments (results are omitted due to lack of
space) and we observed that the value of λ is not critical and should be ∼10−100 times
the expected noise ε.

Algorithm 3 λSL0

Input: µ step size, y, A, σdec, σmin, λ, Kiter

Initialization: s0 ← AT((AAT) + λIM )−1y,
σ1 = 2|max(s0)|
while σk < σmin do

for k=1:Kiter do

δk ← s · [e
− s21

2σ2
k , . . . , e

− s2N
2σ2
k ]T

s← s− µδk
Project s onto the feasible set: {s| ‖ As− y ‖2≤ ε}
s← s−AT((AAT) + λIM )−1(As− y)

end for
σk ← σkσdec
s̃k ← s

end while
Output: sOUT ← s̃k
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Figure 7.1: Reconstruction SNR versus input SNR obtained from 100 trials for simulated
fECG signals, at CR=50%, using the SL0, λSL0 and BPBN (SPGL1) algorithms with the
Wavelet (WT) or the Gaussian Dictionary (GD).

7.3 Performance of λSL0

In this section, the effect of noise on the reconstruction performance is experimentally an-
alyzed. We compare the performance of the proposed algorithm with the original SL0 and
the BPDN-SPGL1 algorithms [123]. The signals used in these experiments are simulated
fECG signals [11] with length N = 256. As sparsifying dictionaries we use the dictionary
of Gaussian like functions proposed in Sec. 6.5, and the Wavelet basis with Daubechies’
length-4 filters. The sensing matrix elements are drawn as independent Gaussian random
variables [27]. We repeat the experiment 100 times with different source signals at different
noise levels, and using each time a different random sensing matrix. The reported SNR
value is the average of these simulations. In Fig. 7.1, we report the reconstruction SNR
as a function of the input SNR (SNRin) when gaussian noise is added to the simulated
fECG traces, for a compression ratio CR=50% (M = 128). Compared to the original SL0
algorithm, λSL0 allows to achieve better reconstruction quality, especially when the Gaus-
sian dictionary is used. An improvement can be also appreciated when the Wavelet basis
is used, especially at lower SNRin values. Note that the use of the Gaussian Dictionary
gives much better performance than Wavelets also when BPDN is used.

In addition to the previous experiments, we assess the reconstruction performance as
the compression ratio changes. In Fig. 7.2, it is possible to see that the average SNR
achieved by the λSL0 algorithm combined with the Gaussian Dictionary outperforms the
SL0 method, especially at low compression ratios (M large) and is comparable with respect
to the traditional BPDN algorithm, which has a higher complexity. At higher compression
ratios (CR> 50%) the Wavelet basis achieves a lower performance independently of the
reconstruction algorithm.
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Figure 7.2: Reconstruction SNR versus CR obtained from 100 trials for simulated fECG
signals, using using the SL0, λSL0 and BPBN (SPGL1) algorithms with the Wavelet (WT)
or the Gaussian Dictionary (GD)

As a measure of the computational cost of the algorithms we use the CPU time, setting
the same parameters (Kiter = 3 an σdec = 0.5 ) for SL0 and λSL0. Experiments show an
average reconstruction time for the λSL0 algorithm ranging from 0.07 s, when CR=30%,
to 0.01 s, when CR=80%. Thus, it maintains approximately the same computational cost
of the original SL0 algorithm (ranging from 0.03 s to 0.01 s), while being much faster than
the BPDN algorithm (1.6 s to 0.6 s). Programs are written in Matlab, running on an Intel
Core i7 processor, equipped with 16 GB memory.

7.4 Application to Joint Compression and Beat Detection
in fECG

In this section, we analyze the performance of λSL0 for fetal beat detection in CS-
compressed real-world fECG signals, in particular signals belonging to set A of Challenge
database (see Sec. 6.7.2) (excluding badly annotated signal as in [13] and signals containing
saturated values 1).

The metrics used for the assessment of detection quality are the classical figures, i.e.
Sensitivity (S) and Positive Predictivity (P+) described in Sec. 6.7.3. Reconstruction
quality is assessed by using the PRD value (see Sec. 3.5.2). We also analyze the influence
of different sensing matrices, in particular sparse matrices which allow very low complexity
of the CS sensor.

1Some signals in set A contain invalid values corresponding to invalid output of the A/D converter.
In this chapter signal segments containing saturated values, i.e., a02, a09, a11, a16 and a18, were not
considered differently from Chapter 6, leading to different overall performance.
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Figure 7.3: Sparse decomposition of the independent component in (a) using the SL0 algo-
rithm, for (b) CR=75% and (c) CR=40% and (e) using the λSL0 algorithm for CR=40%.
In the graphs, different intensities represent the weight of the activated atoms.

7.4.1 fECG Reconstruction and Fetal Beat Detection

In Chapter 6 a framework for the compression of multichannel abdominal fECG and
joint detection of fetal beats has been proposed. The separation is based on the atoms,
belonging to the fetal or mother’s sub-dictionaries, activated during the reconstruction
process. The compression of the signal is based on Compressive Sensing and uses a binary
sparse sensing matrix, containing only d = 2 ones in random positions in each column, in
order to reduce the sensor complexity [17].

In accordance with the analysis of the previous section 6.7.4, we found out experimen-
tally that, for compression ratios greater than 50%, the detection performance is preserved,
while at lower compression ratios, besides the increased information available, fetal beat
detection may fail. This problem arises when the compound matrix A resulting form the
multiplication of the sensing matrix by the dictionary matrix is poorly conditioned and
the independent components (ICs) are noisy.

As an example, we show in Fig. 7.3 (a) a portion of the IC related to the fetal trace
of signal a32 of the 4-channel Physionet Challenge dataset [1], where the fetal beat is
clearly visible. When the compression ratio is CR=75%, the reconstruction quality value
PRD (percentage root-mean-square difference) is about 6% (average of the 4 channels) and
the detection performance in terms of sensitivity (Se) and positive predictivity (P+) are
Se=100% and P+=99.34%, respectively. At lower compression ratios detection fails, and
for CR=40% we have PRD=0.47%, Se=60% and P+=68%. Fig. 7.3 (b) and (c) show the
positions of the fetal activated dictionary atoms for the two cases CR=75% and CR=40%,
respectively. As we can see, when CR=40%, the algorithm fails to find the correct sparse
representation, leading to a wrong beat detection. Instead, Fig. 7.3 (d) shows the activated
atoms when the λSL0 algorithm is used instead of SL0. For the whole signal and using
the same sensing matrix at CR=40%, λSL0 achieves Se=100% and P+=99%. We repeat
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Figure 7.4: Detection performance for SL0 and λSL0 algorithm. The vertical coordinate
gives (a) the average Sensitivity and (b) the average Positive Predictivity at different CR
values.
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Figure 7.5: Comparison of average PRD when using the SL0 and the λSL0 algorithm at
different CRs.

the experiment 20 times with different random sparse binary matrices (d = 2), for all
the signals in Challenge data set A (see Sec. 6.7.2). The reported sensitivity value is the
average of these simulations. Fig. 7.4 (a-b) shows that the detection performance of the
proposed algorithm is almost independent of the CR, while the SL0 algorithm fails at
lower CRs.
In Fig. 7.5 it can be seen that the proposed λSL0 algorithm outperforms the original
algorithm, in terms of average reconstruction quality PRD as introduced in Sec.3.5.2, at
low compression ratios.
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Figure 7.6: Average recovery quality for signal a25 of dataset A. The vertical coordinate
gives the average PRD and the error bar gives the standard deviation. (a) Effects of the
number of non-zero entries in each column of the sensing matrix at CR=40% for SL0 and
λSL0. (b) Comparison of average PRD using sparse sensing matrices with d = 2 and
random Gaussian sensing matrices at different CR (λSL0 algorithm).

7.4.2 Influence of the Sensing Matrix

Table 7.1: Average performance of detection and reconstruction for SL0 and λSL0 for
dataset A.

Reconstruction Method
SL0 λSL0

CR Sensing Matrix Se P+ PRD Se P+ PRD
% [%] [%] [%] [%] [%] [%]

40 Sparse d=2 46.6 48.7 5.27 84.9 84.2 3.77
Gaussian 43.8 45.6 5.58 84.4 83.4 3.72

50 Sparse d=2 77.6 77.6 5.93 84.6 83.4 4.49
Gaussian 75.6 76.1 5.71 84.7 83.2 4.27

75 Sparse d=2 84.3 83.5 8.81 84.5 83.3 8.14
Gaussian 84 .1 83.2 8.80 84.3 83.2 8.02

In this section, we analyze the performance of the reconstruction procedure, using
SL0 and λSL0 algorithms, when different sensing matrices, generated from i.i.d. Gaussian
random variables, or sparse matrices with different d values, are used. There are no theo-
retical guidelines for choosing the optimal number of non-zero elements d, therefore it has
been determined experimentally. In the following experiments, the signal is divided into
N = 250 sample long segments, which are compressed independently. For each d value and
compression ratio, the experiments were repeated using 20 randomly generated different
sensing matrices, and the average performance is reported. Results for signal a25 of the
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Figure 7.7: (a) Effects of the number of non-zero entries in each column of the sensing
matrix on detection performance. The vertical coordinate gives (a) the average Sensitivity
and (c) the average Positive Predictivity for signal a25 of dataset A for CR=40%, the error
bar gives the standard deviation. (c) Comparison of average Sensitivity and (d) Positive
Predictivity when using sparse sensing matrices with d = 2 and random Gaussian sensing
matrices at different CR (λSL0 algorithm).

Challenge dataset A are shown in Fig. 7.6 and Fig. 7.7. As we can see from Fig. 7.6(a),
for a compression ratio CR=40%, increasing the number of ones in each column of the
sensing matrix, does not improve the reconstruction quality, both for the SL0 and λSL0
reconstruction algorithms. Note however that λSL0 outperforms SL0. Fig. 7.6(b) shows
a comparison of the reconstruction quality obtained with sparse matrices, d = 2, with
respect to the quality obtained using Gaussian random matrices. Although the theoret-
ical reconstruction performance for i.i.d. Gaussian sensing matrices is well established,
we can see experimentally that, for the class of signals we are considering, sparse matri-
ces have similar performance. The use of a sparse sensing matrix with d = 2 provides
almost identical reconstruction results, despite the very low complexity implementation.
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Finally, Table 7.1 summarizes the average reconstruction and detection performance for
Challenge dataset A, at different compression ratios, when using a sparse sensing matrix
with d = 2 and an i.i.d. Gaussian sensing matrix. Experiments are repeated for the SL0
and λSL0 algorithms. Both detection and reconstruction are mostly independent from the
sensing matrix, while it is apparent that the λSL0 algorithm allows robust detection and
reconstruction.

7.5 Conclusions

In this chapter we proposed a regularized version of the SL0 algorithm. Experimental
results confirm that the proposed algorithm has good performance, while preserving the
low computation complexity of the original approach. The application of λSL0 to the joint
compression and detection framework of fetal ECG also demonstrates that the proposed
modification can efficiently reconstruct the signals and correctly detect the beats in the
presence of noise and for different compression ratios. Moreover, we have shown that
the use of sparse sensing matrices with only 2 non-zero elements in each column, com-
pares successfully with random Gaussian matrices, while permitting a very low complexity
implementation.



100 7. Improving the Smoothed l0 Algorithm



8
Evaluation of Energy and Detection

Accuracy of Compressed Sensed
fECG

8.1 Introduction

Within this thesis we have seen that advances in the field of signal processing have made
it possible to develop new techniques for an efficient and reliable continuous monitoring of
ECG and fECG signals. The issue of reducing power consumption in wearable devices has
been addressed by many researchers, and some works also proposed solutions for the spe-
cific case of fetal ECG monitoring. However, results that are focused on energy saving do
not analyze algorithms and solutions for the analysis of collected signals. In this chapter,
we compare different compression schemes, and evaluate their overall performance and
ability to preserve relevant diagnostic features as a function of power consumption.
In particular we analyze how effective compressive sensing could be for fECG monitor-
ing in battery constrained devices, with limited computational capacity, compared with
classical compression techniques, in particular based on the Discrete Wavelet Transform
(DWT). We evaluate the performance via actual implementation of the CS and wavelet
compression paradigms on the Shimmer platform [23] for ECG signal monitoring.
Within this chapter we prove that, for the analysis of abdominal recordings of fetal ECG
signals, which can be difficult to process due to the low-amplitude of the fetal beats,
CS can provide significant advantages with respect to conventional CS schemes based
on wavelets, and with respect to DWT schemes in the signal domain. In particular,
we show that a CS scheme based on reconstruction with the over-complete dictionary
proposed in Sec 6.5, instead of the wavelet basis considered in [127], has similar recon-
struction quality than one based on wavelet compression, proving that the CS paradigm
is suitable for fECG acquisition, with the advantage of a low power implementation in
the sensor. Unlike other works in the literature, we consider, as a figure of merit, the
accuracy of fetal beat detection after reconstruction, and compare the results of different
compression/transmission/reconstruction procedures as a function of the sensor power
consumption.
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8.2 Related Work

Energy saving by using compressive sensing for adult electrocardiogram signal monitoring
with wireless sensors has been studied in [90]. A sparsifying wavelet basis is used at the
receiver. Authors show that compressive sensing is a competitive low-complexity compres-
sion paradigm with respect to state-of-the-art DWT-based compression. As reported in
the paper, despite an inferior compression performance in terms of signal reconstruction
quality, the overall energy efficiency achieved by CS outperforms the DWT-based ECG
compression scheme, thanks to the lower complexity and lower CPU execution time. Ac-
cordingly with the results reported in [90], is it possible to achieve a life extension of the
battery up to 37% with an acceptable reconstruction quality. Results are based on an
actual implementation on the Shimmer 2r platform [23] for adult ECG signal monitoring,
considering a sampling frequency of 256 Hz and 11 bit resolution.

The application of the compressive sensing paradigm for fetal electrocardiogram signal
acquisition, however, introduces some issues. Indeed, as discussed in Sec. 6.2 non-invasive
records are mixture of the fetal, the mother’s heart beats and noise. As stated by Zhang
et al. [127], the use of the traditional wavelet basis is not suitable for the reconstruc-
tion of fECG signals from compressive sensing measurements. In [127], a new method,
namely Block Sparse Bayesian Learning (BSBL), was introduced to overcome the limita-
tions of the traditional compressive sensing framework. Exploiting the spatial, temporal
and dynamic structure of signals, it enables to reconstruct non-sparse signals with high
quality. In particular, the reconstruction process proposed in [127] does not destroy the
interdependence structure of multichannel recordings, in order to allow the application
of fetal beat detection algorithms, usually based on independent component analysis or
Blind Source Separation (BSS) [49]. Besides considering the mean squared error (MSE)
between reconstructed and original signals, performance assessment of BSBL is based on
the Pearson correlation between the detected fetal beats in the original and reconstructed
signals.

As evidenced by previous works, compressive sensing seems to be an effective tool
for low power compression when compared to traditional schemes such as wavelet based
compression. In the following, CS energy saving is analyzed in the context of fetal ECG
detection performance. We show that the use of an appropriate over-complete dictionary,
such as the one proposed in Chapter 6, at the receiver can make CS adequate for fetal
ECG reconstruction, allowing significant power saving for a given reconstruction quality
or beat detection accuracy with respect to traditional DWT based compression.

8.3 Method

8.3.1 Evaluation Framework

The work-flow adopted for the CS paradigm evaluation in fetal ECG acquisition is shown
in Fig. 8.1. The aim of this work is to compare the energy and reconstruction/detection
performance of two encoding procedures, namely CS acquisition and DWT compression
(Section 8.3.5).

Energy consumption for the two compression schemes is evaluated at different compres-
sion ratios as described in Sec. 8.3.2. Both encoding techniques operate on non-overlapping
signal blocks of N=256 samples, for signals sampled at 1 kHz with 16-bit resolution.
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Figure 8.1: Proposed evaluation method

Since the aim of this work is to comparatively evaluate the CS-based compression
schemes and DWT on a standard database, we do not use real-time ECG acquisition to
asses the recovery and detection quality. Thus, experiments are carried out using non-
invasive fetal ECG signals from set-A of the public database described in Sec. 6.7.2.

For the assessment of fetal beat detection accuracy on compressed ECG signals, we
consider four different scenarios. The first three scenarios require to reconstruct the ECG
signals from compressed sensed measurements. To this end, we adopt two different sparsi-
fying matrices in the decoder reconstruction process. In particular, we use the traditional
Daubechies (DB4) wavelet basis with a 5-level decomposition, and the over-complete Gaus-
sian dictionary proposed in Sec. 6.5. The over-complete dictionary is specifically designed
to preserve the relevant waves of both maternal and fetal electrocardiogram signals [42].
The reconstruction algorithm adopted to solve the inverse problem is the λSL0 described
in Chapter 7, which allows to achieve good performance in presence of noisy signals and
ill-conditioned matrices [41]. Moreover, we also consider for comparison the BSBL-BO
algorithm, used for fECG reconstruction in [127].

In the fourth scenario, the ECG signal is compressed using a DWT-based method
(Section 8.3.5) and, at the decoder, a standard inverse DWT is applied to reconstruct the
signals on the basis of the received coefficients.

After signal reconstruction form the two compression schemes (CS or DWT) the FUSE
method [13]1 for fetal ECG extraction and beats detection is applied. The fetal extrac-
tion method is a combination of template subtraction and principal/independent com-

1Authors have made available the entire FUSE code at https://physionet.org/challenge/2013/sources/.
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ponent analysis, while the final fetal QRS complex detection is performed by using a
Pan-Tompkins QRS detector on all the obtained channels [100], then the one with the
smoothest fetal heart rate time series is selected. Assessment of the performance of the
different scenarios is evaluated using the metrics reported in Sec. 8.3.3.

Finally, we combine the energy consumption with the detection performance in order
to establish the actual energy saving that one can achieve while guaranteeing a certain
detection accuracy.

8.3.2 Energy Consumption Evaluation

Energy requirements of the two different compression algorithms are evaluated on the basis
of the actual number of MCU cycles and transmission bitrate required by implementation
in a commercial acquisition device. Since energy consumption does not depend on the
actual signals, we evaluate the cost of the algorithms in a real implementation, although
experiments, for comparison purposes, are carried out off-line on signals of the public
database described above.

The hardware considered in this work is the one present on Shimmer devices2 [23]
powered by a rechargeable Li-polymer battery, with an internal ECG daughter board,
validated for ambulatory and research purposes. In our experiments, the sampling rate
of the device is set to 1 kHz. The device includes the low-power Texas Instrument 16-bit
MSP430F5438 micro-controller [69], and a low-power CC2420 IEEE 802.15.4 [68] compli-
ant radio. The MSP430 is a 16-bit word processor, and the compression performance of
both algorithms is evaluated using 16 bit arithmetic. Code Composer Studio (CCS) has
been used to generate the firmware binary code. One of the functionalities of the CCS
development kit allows to count MCU cycles for the running code.

We consider the energy cost Ecomp required by the compression algorithms to process
one signal block of N = 256 samples. Ecomp can be expressed as

Ecomp = NcycEcyc, (8.3.1)

where Ncyc is the number of MCU cycles to encode one signal block.

The energy consumption per clock cycle Ecyc can be easily calculated for the considered
micro-controller, which in active mode consumes 312 µA/MHz when the MCU operates
at 8 MHz and the supply voltage is +3 V, namely

Ecyc(@8 MHz) = 312 · 3 · 10−12 = 0.936 nJ/cycle. (8.3.2)

Since the two compression schemes may require different bitrates for the same recon-
struction quality or beat detection capability, we also consider in the following the trans-
mission cost, which usually has the highest impact on the overall energy consumption.
To this purpose, we take into account the Texas Instruments CC2420 radio specifications
[68]. In [68], it is reported that the energy consumption per transmitted bit is Ebit = 230
nJ/bit.

The transmission energy, Etx, to transmit one signal block equals therefore

Etx = NbitEbit, (8.3.3)

2http://www.shimmersensing.com/.
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where Nbit is the number of bits necessary to encode the block.

Finally, he total energy required to process and transmit a signal block is given by.

ETOT = Ecomp + Etx = NcycEcyc +NbitEbit. (8.3.4)

In the following, we do not consider the energy required by the ADC, since the cost is the
same in both scenarios.

8.3.3 Reconstruction Quality Assessment

In order to assess the quality of the reconstructed signals, we use the traditional PRD
quality metric, defined as in Sec 3.5.2, usually employed for the assessment of adult ECG
reconstruction quality. In the experiments described below, the PRD value is computed
for each reconstructed signal block in every channel and then the average and standard
deviation are reported.

Moreover, the results of fetal beat detection are used as a reconstruction quality mea-
sure. In particular, we evaluate the Sensitivity (Se) and the Positive Predictivity (P+),
as introduced in Sec. 4.6.1.

8.3.4 CS Implementation

We implement CS compression by using sparse sensing matrices, with two non zero ele-
ments in each column, similarly to the one used in Chapter 6. In particular, the non zero
elements are equal to 1, thus the compression stage reduces to the sum of signal samples
indexed by the matrix elements, that can be implemented using a single accumulator and
no floating-point multiplication. Moreover, instead of storing the whole sensing matrix, it
is possible to store just the positions of the non-zero elements.

8.3.5 DWT-Based Compression Implementation

The DWT [44] allows to hierarchically decompose an input signal into a series of succes-
sively lower frequency approximations and their associated detail signals. As for Compres-
sive Sensing, DWT-based compression is still based on the sparsity principle, since most
of the wavelet coefficients of natural smooth signals have a small amplitude, so that the
signal is approximately sparse in the wavelet domain. Indeed, smallest wavelet coefficients
can be neglected without much signal quality loss, as shown in Fig. 8.2 where only 10% of
the original coefficients are kept. Thanks to this property, the wavelet transform is widely
used for the compression of signals and images.

Differently from the CS framework, where the transmitting encoder simply computes
random projections, and an optimization problem is solved at the receiving decoder using
knowledge of the sparsifying representation, a DWT-based compression scheme needs to
compute the transform in the sensor, then exploit sparsity by transmitting a subset of the
computed coefficients.

The DWT linear transform operates on a signal vector x of length N , which is typically
a power of two, and allows to separate data into different frequency components. The DWT
is computed with a cascade of filters followed by a factor 2 subsampling. The resulting low-
pass coefficients represent a rough subsampled approximation of the original signal, while
the high-pass coefficients represent detail information. Due to subsampling, the number
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Figure 8.2: (a) Original ECG signal sampled at 1 KHz and (c) corresponding wavelet
coefficients, the lines correspond to the threshold level to select the 10% largest coefficients.
Plots (b) and (d) show the reconstructed signal and the 10% largest coefficients used for
reconstruction.

of wavelet coefficients is N for an N -length input signal vector (when using appropriate
extension of the signals at the borders.)

In this work, we use the orthogonal Daubechies wavelet (DB4) with 8-tap filters, which
provides a sparse representation for piecewise-linear signals and thus is suitable for ECG
signals, leading to a relatively sparse representation with most of the coefficients close to
zero (see Fig. 8.2). In the implementation, the block size and the number of layers of
the wavelet transform needs to be appropriately selected based on the desired frequency
resolution and the coding delay. Our choice considers a 4-level wavelet decomposition and
256 sample frames. Before applying the DWT, the ECG signal block is preprocessed to
remove the mean value.

In order to have accurate power consumption estimates in a concrete scenario [90], we
implemented the algorithms on a general-purpose MSP430 [69] microcontroller that does
not include a floating-point unit. Therefore, all computations are performed in fixed-point,
which is suitable for real-time embedded applications. Filter coefficients are represented
with 9 bits, and the original abdominal ECG samples in x and the corresponding wavelet
coefficients α = [d1, d1, d3, d4, a4] are both represented with B = 16 bits.

As mentioned, the main advantage of using the DWT representation is that the signal
can be compactly represented by few large coefficients. This allows us to set to zero the
small coefficients, thus reducing the number of coefficients to encode. Signal compression
is performed by keeping the largest DWT coefficients α, as suggested in [15]. In this work,
the number of retained coefficients is selected based on the desired compression ratio CR.
We only encode Ncoeff non-zero entries and their corresponding positions in the N -length
coefficient vector. In addition, we need to send the mean of the ECG vector, encoded
with Bmean=16 bits. Since we work with a signal window of length N = 256, we need
Bidx=8 bits to represent the index of each retained coefficient. The number of coefficients
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Figure 8.3: Number of CPU cycles required to compress a signal block (N=256 samples)
using CS with sparse random matrices or DWT-based compression as a function of the
compression factor.

is computed as follows

Ncoeff = dNB(100−CR
100 )−Bmean
B +Bidx

e. (8.3.5)

In particular, given a compression ratio and the relative number of coefficients to retain
Ncoeff , only the first largest Ncoeff coefficients in absolute value are kept. The largest
coefficients are selected using the ordering algorithm merge sort, which has a computational
complexity O(N log2N).

In summary, two vectors are used to code the DWT coefficients, one contains only the
nonzero wavelet coefficients, and the other one contains the corresponding positions. Both
need to be sent to the receiver in order to recover the signal.

8.4 Experimental Results

In Fig. 8.3, the number of cycles required by the microcontroller to perform the com-
pression of a single N = 256 signal block for the two coding schemes is shown. The
computational workload required for the wavelet scheme, which includes filtering and
multiplications, is significantly higher than that required by the CS scheme, requiring
additions only. As an example, to compress at CR=50% 1 s of one channel ECG data,
the wavelet based compression code executes in about 306 ms, whereas the CS code only
requires about 35 ms. Note that DWT does not allow real-time processing for 4-channel
recordings sampled at 1 kHz, and would require buffering at the sensor or using a smaller
sampling frequency.

The required total energy, including the one for transmission, is shown in Fig. 8.4
for the two algorithms at various compression ratios. In particular, results refer to the
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Figure 8.4: Energy required to compress and transmit one N = 256 signal block for each
channel in a 4-channel recording (4 blocks in total), using the CS or DWT-based schemes.

energy required for the compression and transmission of four blocks of length N=256,
corresponding to 250 ms in 4-channel recording.

In terms of energy, we can see that compressive sensing is more energy-efficient than
transmitting the uncompressed original signal (for one signal block, Ecomp = 0, Etx =
NBEbit) for compression ratios CR> 10%, while the DWT-based compression becomes
favorable for CR> 45%. Fig. 8.4 also shows that increasing the compression ratio, the gap
between the two compression techniques increases, leading to higher energy-saving for the
CS-based method.

It is clear that CS allows for the reduction of the encoding complexity in the sensor
node, allowing a reduction of the overall energy consumption. However, we need to assess
how the different compression schemes impact on the reconstruction quality of the signal
at the receiver. In particular, for the CS-based scheme, several methods can be used for
reconstruction. In Fig. 8.5 and Fig. 8.6 we report the average PRD value, for reconstruction
quality assessment, and the average Sensitivity and Positive Predictivity, to verify the
accuracy of the detection algorithms resulting from the CS and DWT-based schemes.

As it can be seen from Fig. 8.5, the DWT-based scheme allows to have good reconstruc-
tion quality up to CR=80%. In previous works, e.g., [90], the performance of DWT-based
compression was compared to a CS scheme where the optimization reconstruction problem
was solved at the receiver using a wavelet basis as the sparsifying matrix Ψ, showing that
the quality of the recovered signal was in favour of the DWT-based scheme. Fig. 8.5 con-
firms that CS reconstruction using the wavelet basis at the receiver (dotted line) has lower
performance, i.e., higher PRD values, than DWT-based compression (dashed line). Us-
ing the specifically designed dictionary [42], however, the performance of the DWT-based
scheme and CS scheme (continuous line in Fig. 8.5) become similar in terms of average
PRD value. Indeed, both algorithms allow compression up to CR= 80% maintaining a
good reconstruction quality. The CS-based approach, however, requires significantly lower
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Figure 8.5: Average PRD value for different compression/ reconstruction schemes. Error
bars indicate standard deviation.

energy as we will see below. Fig. 8.5 also shows PRD values for the BSBL reconstruction
technique in the CS scenario (dashed-dotted line). The performance is similar to the one
obtained using the wavelet sparsifying basis at the receiver. However, we will confirm
below that BSBL better preserves signal characteristics and allows for improved detection
performance after signal reconstruction.

As a matter of fact, PRD values can provide in some cases a rough estimate of the
signal quality, especially when the interest is preserving clinically relevant aspects. As
an example, we report in Fig. 8.7 one ECG trace and the corresponding PRD values for
each signal block. It can be noticed that blocks with the largest PRD values do not
contain relevant ECG information. Clearly, a noisy block cannot be sparse in the wavelet
basis or Gaussian Dictionary representations, thus worsening the performance of CS-based
schemes.

To compare how well the different techniques can preserve relevant signal character-
istics, Fig. 8.6(a) and Fig. 8.6(b) show the average Sensitivity and Positive predicitivity
measures obtained from the application of the detection algorithm on the reconstructed
signals. Both indicators show that the different techniques have approximately the same
performance for compression ratios less than 50%, with S and P+ values very similar to
those obtained on the uncompressed signals, i.e., S=98.9% and P+=97.7%. Note that the
BSBL reconstruction technique (dashed-dotted line) outperforms CS reconstruction with
wavelet basis at the receiver (dotted line), confirming that BSBL can preserve dependency
among ECG channels, which is exploited by ICA in the detection algorithm. However,
performance achieved adopting the BSBL method is still lower than that obtained with the
DWT-based scheme (dashed line) and CS with Gaussian dictionary reconstruction at the
receiver (continuous line). For these techniques, the S and P+ values are approximately
constant up to CR=75%, with values similar to those obtained with uncompressed signals.
In summary, the DWT-based scheme and the CS scheme with Gaussian dictionary at the
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Figure 8.6: (a) Average Sensitivity value and (b) average Positive Predicitivity value for
different compression/reconstruction schemes. Error bars indicate standard deviation.
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Figure 8.7: (Top) Original signal a28 of the Challenge dataset A sampled at 1 KHz and
(Middle) reconstructed record after CS compression at CR=70% using the Gaussian dic-
tionary for sparsification. (Bottom) Corresponding PRD value for each window (different
colors represent different windows).

receiver appear to have comparable performance in terms of PRD, S and P+ metrics.
However, the CS scheme allows significant energy-saving in the encoding sensor.

Fig. 8.8 shows the energy required by the two schemes as a function of the PRD
value. In particular, we report the energy values necessary to compress and transmit
the entire 4-channel, 1 minute long, signals. The energy required to achieve a desired
fetal beat detection Sensitivity and Positive Predictivity is reported in Fig. 8.9 (a) and
(b), respectively. It is apparent from the figures that the considered CS scheme allows
significant energy saving for all the considered figures of merit. For instance, for PRD=9%,
less than 0.3 J are required by the CS scheme, while the DWT-based scheme requires about
0.7 J. A sensitivity value S=95% requires about 0.2 J and 0.7 J for DWT-based and CS
schemes, respectively. Similar values are required to have P+=95% for the two schemes.

8.5 Conclusions

In this chapter, we evaluated energy consumption of two acquisition schemes for multi-
channel abdominal fECG signals, one based on DWT and the other based on the emerging
CS paradigm. Experimental results with an actual implementation on a commercial de-
vice, show that compressive sensing allows to significantly reduce energy consumption in
the sensor node. Moreover, it is advantageous with respect to transmission of the uncom-
pressed signals for compression ratios higher than 10% (the DWT-based scheme becomes
preferable only for CR>45%). We compared the quality of the recovered signal in terms of
PRD values, and also, more importantly, by testing the performance of a state-of-the-art
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Figure 8.8: Energy required by the DWT-based and CS schemes to achieve a desired PRD
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fetal beat detector on the recovered traces. We found that compressive sensing, using a
suitable dictionary for signal sparsification at the receiver, can achieve the same results of
the DWT-based scheme, but with significantly lower energy consumption. In particular,
we showed that the detection performance obtained with the CS scheme is comparable
to that obtained on original signals for compression ratios up to about 75%. This study
confirms that compressive sensing, by moving complexity to the receiving end, where the
reconstruction optimization algorithm, together with other processing tasks, is run, is in-
deed suitable for fECG monitoring in low power applications, and allows the use of sensors
with limited complexity.
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9
Conclusions and Future Works

The aim of this dissertation was to develop tools to improve current compression and
analysis methods for long-term monitoring of cardiac signals acquired by means of wearable
sensors. To this end, taking advantage of sparse signal approximation and compressive
sensing theory, we have designed and analyzed new frameworks.

The first contribution provided by this work aims to improve the quality of ECG
signals reconstructed from compressed sensed measurements. Under the sparse approxi-
mation model, signals are assumed to be well represented as sparse linear combinations of
atoms from a predetermined dictionary and we expect that designing an appropriate dic-
tionary will lead to better compression/reconstruction performance. Hence, we employed
Gaussian-like functions, which have been successfully applied for the approximation of the
characteristic waves of the ECG, to design a new dictionary for its sparsification. As a
result, our proposed dictionary guarantees the preservation of the signal structure while
approximating each ECG cycle using a linear combination of just few dictionary atoms.
Since the proposed dictionary is based on a signal model, it turns out to be universal
and, thus, it can be used independently of the particular patient ECG trace. Numerical
experiments, conducted on actual ECG recordings from a public database, have demon-
strated the good performance of the proposed dictionary in terms of reconstruction quality.
Moreover, we have shown that, with respect to the use of sparsifying transforms such as
wavelets, it is possible to take samples at higher compression ratios while maintaining the
same reconstruction quality.

Very often, for the analysis of the ECG signal, we are only interested in extracting
certain information, such as the heart rate, while the reconstruction of the full signal
from compressive measurements is not of particular interest in an early stage. Moreover,
the reconstruction process can be computationally too expensive to be implemented on
some devices or to be done in real-time. Thus, we proposed a method to extract heart
rate information directly from the compressed measurements. In particular, we have
focused on the beat detection problem that can be recast as a compressed signal processing
problem. To this end, a method that use a compressive sensing matched filtering approach
combined with further processing procedures, have been proposed for the detection of the
QRS complexes. Experimental results on real ECG signals have demonstrated that the
proposed method achieves an accuracy comparable with that obtained on original signals
up to compression ratios of about 60-70%.

Although there are generally accepted standards for the evaluation metrics of signal
reconstruction quality, such as the PRD, there exists no clear interpretation on the clinical
relevance of these metrics. Therefore, to understand the impact of compressive sensing
on clinical analysis of ECG signals, we evaluated its effect at different compression ratios
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for atrial fibrillation detection. We have shown that the performance is dependent on
the compression ratio as well as on the reconstruction procedure selected. In particular,
when the Gaussian dictionary proposed in this work is used as the sparsifying transform,
it is possible to achieve accurate atrial fibrillation detection in signals that have been
compressed up to 80%. In addition, we have shown that the proposed algorithm for beat
detection on compressed measurements allows an accurate atrial fibrillation detection up to
CR=50% when working in the compressed domain with a very low complexity procedure.
The proposed compressive detector results in a trade-off between effective atrial fibrillation
detection and low computational cost. The described work is definitely a first important
step toward the analysis of compressed signals for clinical purpose.

The second part of the thesis describes a new solution for the compression and real-
time processing of non-invasive fetal ECG signals. We have focused in particular on the
compressive sensing approach, which is a difficult task for this class of signals due to
the particular complexity of the abdominal fECG trace. The use of orthogonal bases
generally fails to recover the signal at high compression ratios. Thus, we have introduced
a novel dictionary for fetal ECG sparsification, similar to the one proposed for adult ECG,
which can also provide a separation of the different components, such as the maternal and
the fetal one. In order to provide a real-time analysis within the reconstruction process,
we have proposed a scheme based on ICA performed in the compressed domain, which
reduces the dimension of the problem and speeds up the ICA algorithm. Mother’s and
fetal beat detection is thus based on the atoms activated during the reconstruction of
the independent components. Results suggest that the proposed method is suitable for
real-time reconstruction and joint detection/classification of the maternal and fetal beats.

In case of noisy original signals and possibly ill-conditioned sensing/reconstruction
procedures we have introduced a modification of the low-complexity compressive sensing
reconstruction Smoothedl0 (SL0) algorithm, in order to guarantee the robustness of the
reconstruction/detection framework. As show by experimental results the modification
significantly improves the reconstruction quality, both for synthetic and real-world fetal
ECG signals.

Finally, we evaluated the energy consumption of two acquisition schemes for multichan-
nel abdominal fECG signals, one based on DWT and the other based on CS paradigm.
We have compared the quality of the recovered signal in terms of reconstruction quality,
and also, more importantly, by testing the performance of a state-of-the-art fetal beat
detector on the recovered traces. We have found that compressive sensing, using the pro-
posed dictionary for signal sparsification at the receiver, can achieve the same results of
the DWT-based scheme, but with significantly lower energy consumption. Thus, we have
quantified the potential of the CS paradigm for low-complexity and energy efficient fECG
sensing and compression for storage or transmission, considering also detection accuracy
aspects.

In summary, in this thesis we have addressed several important problems for the con-
tinuous monitoring of physiological signals. We believe that the research efforts in this
thesis give some new insights to develop next generation personal health care monitor-
ing systems able to provide concrete improvements in detecting and preventing cardiac
diseases. However, there are many roads to follow for future works on the topics of this
dissertation. Indeed, the use of sparse signal processing as well as compressive sensing for
physiological signals is a relatively new research field and, despite this thesis brings several
contributions, there is still much room to provide new reliable methods.
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In particular, in Chapter 4 we proposed a method for the analysis of ECG signals in
the compressed sensed domain, which is restricted to the simple case of beat detection
and atrial fibrillation analysis. However, the application of this method for the detection
of other characteristic waves, such as the P or T wave, as well as of general patterns that
identify abnormality in the ECG trace, is definitely a very interesting problem. Investi-
gating the improvement on the battery lifetime by implementing the proposed methods
on an actual wearable device for event detection is certainly another interesting study.

Concerning the analysis of the effect of compressive sensing on atrial fibrillation detec-
tion of Chapter 5, the results suggest that algorithms for the analysis of ECG based on
compressed heart rate estimation should be modified by taking in account the fact that
the analysis is done in the compressed domain. Indeed, in this work, we employed an
atrial fibrillation detection designed and optimized for uncompressed signals. It would be
interesting to design the compressed detector and analysis algorithm together in order to
achieve optimal performance.
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A
Supplementary Results

A.1 Results for AF Detection Using Entropy-based Method

In Chapter 5 we evaluated the accuracy of an SVM-based Atrial Fibrillation (AF) detector
applied on ECG signals that have been perviously compressed by compressive sensing. In
this section we summarize the results for an AF detector based on the normalized fuzzy
entropy measure, NFEn, introduced by Liu et al. [82]. This method is based on entropy,
which refers to the degree of regularity or irregularity of a time series, and it is estimated
by counting how many “template” patterns repeat. Repeated patterns imply increased
regularity in the time series and lead to low entropy values [106, 110]. Typical entropy
measures are approximate entropy (ApEn) [106] and sample entropy (SampEn) [110].
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Figure A.1: Output AF Accuracy versus CR.

Both SampEn and CoSampEn have the problem of weak statistical stability due to
the rigid determination rule (0-1 determination) [81]. Liu et al. therefore replaced the
0-1 determination with a fuzzy rule, proposing a fuzzy measure entropy (FuzzyMEn) [81].
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Recently, Liu et al. proposed a new entropy-based AF detector, based on the normalized
fuzzy entropy (NFEn), which combines the advantages of both FuzzyMEn and CoSampEn
methods, and verified its improved performance [82].

To assess the accuracy of the NFEn method, we employed the same evaluation scheme
described in Sec. 5.2, by using detection windows of 30-beat RR segments. Tab. A.1
provides the results in terms of the considered evaluation metrics, which have been de-
scribed in Sec. 5.2.5, for the NFEn-based AF detector on the MIT-BIH Atrial Fibrillation
Database (see Sec. 5.2.2). We consider a variety of setting scenarios, as described in
Sec. 5.2. An overall picture of the AF detection performance, for varying CR, is given by
the AF accuracy measure, reported in Fig. A.1.

All the considered scenarios, i.e., reconstruction with the Wavelet basis (WT) or with
the Gaussian dictionary (GD) followed by Pan-Tompkins (P&T) detection, or direct de-
tection on compressed measurements (CSMF), show similar trends for the AF metrics. In
particular, at low CR levels the AF detection results are comparable with those obtained
on raw uncompressed ECG signals. However, for high values of CR, the AF detection
accuracy decreases, as can be seen in Fig. A.1. The results of this study reveal that, when
using the NFEn AF classifier, the CSMF method outperforms the detection performed af-
ter signal reconstruction using the Wavelet basis. Indeed, classification in the compressed
domain reaches about 89% of correctly classified signals for a compression ratio of about
50%. As the compression ratio gets closer to 90%, it decreases reaching 52% of correctly
classified AF episodes. The classification after reconstruction using the Wavelet basis
achieves similar results up to CR= 50%, however, its performance rapidly decreases at
high CR reaching 43% accuracy at CR=90%.

Similarly to the SVM-based AF detector, the best performance is achieved by classifica-
tion after signal reconstruction with the Gaussian dictionary, which allows to reach about
90% and 66% of correctly classified AF episodes at CR=65% and CR=90%, respectively.
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Table A.1: Results of the performance metrics on uncompressed and compressed ECG
signals using different reconstruction/detection methods for the NFEn AF detector.

Metric CS Reconstruction QRS Detector
Compression Ratio

0% 10% 20% 30% 40% 50% 60% 65% 70% 75% 80% 85% 90%

Se [%]

Reference QRS - - 96.69 - - - - - - - - - - - -

Raw signals - Pan&Tomp. 98.21 - - - - - - - - - - - -

CS ECG signals SL0 & Wavelet Pan&Tomp. - 96.87 97.03 97.79 97.85 98.40 99.15 99.39 99.70 99.83 98.77 99.93 99.93

CS ECG signals SL0 & GD Pan&Tomp. - 97.27 97.20 97.16 97.69 97.84 97.96 98.43 99.02 99.06 99.38 99.59 99.87

CS ECG signals No CSMF - 96.73 96.84 96.71 96.98 97.30 97.63 97.88 98.22 98.62 99.10 99.53 99.90

Sp [%]

Reference QRS - - 88.37 - - - - - - - - - - - -

Raw signals - Pan&Tomp. 84.64 - - - - - - - - - - - -

CS ECG signals SL0 & Wavelet Pan&Tomp. - 81.06 81.02 81.11 80.91 79.87 77.66 71.58 62.96 46.31 21.74 7.07 2.50

CS ECG signals SL0 & GD Pan&Tomp. - 81.45 80.83 81.02 81.04 80.46 79.12 78.99 77.92 76.74 73.52 63.77 42.57

CS ECG signals No CSMF - 86.80 86.28 85.83 84.26 83.21 79.51 76.56 73.86 66.22 56.32 42.96 18.28

Acc [%]

Reference QRS - - 92.12 - - - - - - - - - - - -

Raw signals - Pan &Tomp. 90.19 - - - - - - - - - - - -

CS ECG signals SL0 & Wavelet Pan&Tomp. - 89.25 89.31 89.71 89.63 89.34 88.52 85.20 80.11 69.10 50.79 41.16 43.09

CS ECG signals SL0 & GD Pan&Tomp. - 89.66 89.30 89.37 89.63 89.39 88.74 88.91 88.57 87.94 86.29 80.57 65.99

CS ECG signals No CSMF - 91.09 90.83 90.50 89.71 89.22 87.23 85.57 84.13 79.81 74.24 66.37 52.09

PPV [%]

Reference QRS - - 87.20 - - - - - - - - - - - -

Raw signals - Pan&Tomp. 81.55 - - - - - - - - - - - -

CS ECG signals SL0 & Wavelet Pan&Tomp. - 84.60 84.61 84.64 84.47 83.63 81.94 77.05 70.21 57.96 43.32 38.41 42.26

CS ECG signals SL0 & GD Pan&Tomp. - 84.96 84.46 84.58 84.58 84.11 83.02 82.98 82.05 81.10 78.53 70.82 54.59

CS ECG signals No CSMF - 84.78 84.24 83.73 82.17 81.20 77.94 75.35 73.26 67.84 62.06 55.19 46.36

NPV [%]

Reference QRS - - 97.02 - - - - - - - - - - - -

Raw signals - Pan&Tomp. 98.56 - - - - - - - - - - - -

CS ECG signals SL0 & Wavelet Pan&Tomp. - 96.02 96.21 97.18 97.25 97.95 98.89 99.19 99.59 99.73 96.70 99.46 97.97

CS ECG signals SL0 & GD Pan&Tomp. - 96.52 96.42 96.38 97.06 97.24 97.38 97.98 98.73 98.78 99.18 99.43 99.78

CS ECG signals No CSMF - 97.21 97.30 97.19 97.39 97.63 97.84 98.01 98.27 98.51 98.86 99.24 99.61

J [%]

Reference QRS - - 85.06 - - - - - - - - - - - -

Raw signals - Pan&Tomp. 82.85 - - - - - - - - - - - -

CS ECG signals SL0 & Wavelet Pan&Tomp. - 77.93 78.05 78.90 78.76 78.27 76.80 70.97 62.66 46.14 20.52 7.01 2.42

CS ECG signals SL0 & GD Pan&Tomp. - 80.03 79.34 79.43 79.45 79.08 77.93 77.74 76.69 75.57 72.77 63.31 42.44

CS ECG signals No CSMF - 83.53 83.12 82.53 81.25 80.50 77.14 74.44 72.08 64.84 55.42 42.50 18.18

A.2 Results for Fetal Beat Detection

Table A.2 reports a full evaluation of the joint reconstruction/detection method for fECG
proposed in Chapter 6 for Challenge set A signals. All the signals have been compressed
using the same sensing matrix at CR=75%. In Table A.2 we report the number of cor-
rectly found beats (TP), false negative (FN) and false positive (FP) values, as well as the
Sensitivity Se, Positive Predictivity P+ and F measures. For each signal, HRmeas and
RRmeas values are also reported (see Sec.6.7.3).

Table A.3 reports the average and standard deviation for sensitivity Se, positive pre-
dictive P+, HRmeas and RRmeas for the entire Challenge dataset A. Results are average
values after using 50 different sensing matrices for each signal (CR=75%).
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Table A.2: Results for Challenge dataset A. The number of TP, FP, FN are calculated for
a window size of 100 ms (± 50 ms around the reference R peak).

Num TP FP FN S P+ F HR HRmeas RRmeas PRD
(%) (%) (%) (bpm) (bpm2) [ms] %

1 130 11 14 90 92 91 143 18.10 24.32 2.45
2 32 90 127 20 26 22.6 122 1464.17 46.93 6.62
3 120 10 7 94 92 93 130 11.22 12.28 10.44
4 126 4 2 98 97 97.5 130 16.46 16.81 9.77
5 119 12 9 93 91 92 131 29.26 12.07 11.47
6 97 48 62 61 67 63.9 145 289.25 36.46 3.43
7 76 57 53 59 57 58 133 37.93 31.22 4.72
8 122 5 5 96 96 96 127 3.64 12.36 10.52
9 28 75 101 22 27 24.2 103 990.59 58.89 3.70
10 144 22 30 83 87 85 166 90.93 26.20 3.31
11 27 77 112 19 26 22 104 1767.46 61.96 4.81
12 129 8 8 94 94 94 137 7.33 10.97 13.07
13 113 16 12 90 88 89 129 14.36 19.23 5.63
14 92 38 30 75 71 73 130 72.12 25.72 12.86
15 127 6 6 95 95 95 133 27.17 18.98 11.61
16 23 81 106 18 22 20 104 809.00 48.28 6.74
17 114 17 17 87 87 87 131 8.09 20.27 12.48
18 23 85 126 15 21 17.5 108 2091.73 67.85 5.43
19 115 14 11 91 89 90 129 21.01 20.77 6.71
20 96 37 34 74 72 73 133 37.01 28.23 7.72
21 95 46 49 66 67 66.5 141 167.64 29.64 4.34
22 121 7 4 97 95 96 128 12.35 16.55 9.93
23 86 45 39 69 66 67.5 131 120.76 29.39 5.90
24 114 9 8 93 93 93 123 14.55 14.13 5.94
25 112 16 12 90 88 89 128 28.01 16.26 5.81
26 98 40 39 72 71 71.5 138 72.62 24.09 3.09
27 38 67 96 28 36 31.5 105 954.73 43.08 1.65
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Num TP FP FN S P+ F HR HRmeas RRmeas PRD
(%) (%) (%) (bpm) (bpm2) [ms] %

28 160 3 6 96 98 97 163 16.25 27.18 5.15
29 81 52 45 64 61 62.5 133 30.13 26.85 5.04
30 118 27 21 85 81 83 145 21.97 15.30 5.36
31 130 4 6 96 97 96.5 134 26.04 13.75 12.41
32 151 1 0 100 99 99.5 152 0.01 2.36 2.70
33 126 14 13 91 90 90.5 140 94.24 90.97 4.58
34 86 51 44 66 63 64.5 137 22.98 22.62 13.91
35 152 6 10 94 96 95 158 102.08 21.81 5.89
36 164 4 3 98 98 98 168 0.0001 5.65 4.71
37 121 17 20 86 88 87 138 53.16 21.92 9.09
39 124 10 10 93 93 93 134 17.18 13.18 9.49
40 127 17 20 86 88 87 144 115.09 23.12 22.80
41 100 38 35 74 72 73 138 25.95 16.62 8.01
42 140 9 10 93 94 93.5 149 14.56 13.84 23.33
43 152 4 5 97 97 97 156 17.64 12.44 2.82
44 158 3 4 98 98 98 161 7.31 15.19 5.86
45 71 69 68 51 51 51 140 84.18 29.29 8.91
46 106 28 24 82 79 80.5 134 23.80 19.37 6.90
47 79 57 64 55 58 56.5 136 223.76 35.46 3.04
48 64 76 68 48 46 47 140 56.21 28.68 2.92
49 144 4 3 98 97 97.5 148 0.05 5.29 4.31
50 130 11 11 92 92 92 141 46.74 23.18 2.06
51 42 99 94 31 30 30.5 141 163.44 29.66 4.94
53 138 14 14 91 91 91 152 15.70 14.23 26.13
55 90 45 52 63 67 65 135 104.64 29.24 8.68
56 80 61 52 61 57 58.9 141 80.50 30.79 4.72
57 138 6 9 94 96 95 144 39.04 19.20 3.53
58 99 42 37 73 70 71.5 141 20.25 16.75 10.80
59 150 2 2 99 99 99 152 7.61 8.26 3.71
60 104 44 43 71 70 70.5 148 13.36 23.58 1.38
61 130 13 9 94 91 92.5 143 56.39 17.74 21.94
62 138 6 5 97 96 96.5 144 10.95 12.60 9.46
63 108 32 29 79 77 78 140 41.36 22.11 3.23
64 121 18 14 90 87 88.5 139 26.02 19.21 3.27
65 131 11 12 92 92 92 142 15.51 17.64 19.09
66 103 32 26 80 76 78 135 33.41 20.00 12.31
67 129 19 24 84 87 85.5 148 45.73 24.85 7.53
68 132 7 6 96 95 95.5 139 7.28 7.25 1.47
69 144 3 4 97 98 97.5 147 5.32 9.37 6.54
70 116 29 24 83 80 81.5 145 15.60 19.32 6.06
72 165 2 1 99 99 99 167 10.97 11.12 5.51
73 94 49 44 68 66 67 143 25.13 23.47 6.36
75 107 28 26 80 79 79.5 135 37.73 24.90 2.69
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Table A.3: Average and standard deviation for sensitivity Se, positive predictive P+,
HRmeas and RRmeas for the entire dataset A, using 50 different sensing matrices.

Num S P+ HRmeas RRmeas
(%) (%) (bpm2) [ms]

1 91.4 ± 1.8 91.9 ± 1.5 31.637 ± 14.025 15.15 ± 1.66
2 18.7 ± 0.7 23.7 ± 0.7 1387.799 ± 42.077 38.24 ± 0.65
3 77.4 ± 5.1 74.7 ± 4.4 53.773 ± 19.344 21.82 ± 2.27
4 98.4 ± 1.4 96.7 ± 1.7 8.914 ± 4.281 14.66 ± 0.39
5 99.0 ± 0.9 98.2 ± 0.9 0.013 ± 0.015 3.49 ± 1.74
6 62.9 ± 7.6 68.0 ± 5.4 282.952 ± 163.946 34.29 ± 3.30
7 46.8 ± 2.2 47.3 ± 2.7 78.955 ± 33.894 36.78 ± 3.16
8 98.2 ± 0.5 96.2 ± 1.3 10.938 ± 6.361 7.87 ± 2.13
9 24.3 ± 0.5 28.0 ± 0.7 419.425 ± 83.098 40.53 ± 3.84
10 64.4 ± 22.8 71.8 ± 19.1 587.196 ± 666.376 38.00 ± 13.42
11 22.8 ± 1.7 30.0 ± 2.7 1245.240 ± 134.335 55.24 ± 6.72
12 87.6 ± 4.1 85.9 ± 4.2 18.518 ± 16.538 13.15 ± 2.03
13 89.1 ± 0.5 86.3 ± 0.4 21.079 ± 8.915 15.32 ± 2.42
14 62.0 ± 8.4 55.2 ± 9.9 295.594 ± 201.337 24.97 ± 5.90
15 96.7 ± 1.9 95.1 ± 1.9 6.590 ± 3.864 12.81 ± 1.23
16 21.7 ± 3.4 26.0 ± 3.6 511.232 ± 119.087 46.22 ± 7.98
17 91.3 ± 1.2 90.2 ± 1.3 5.796 ± 1.883 12.40 ± 1.38
18 15.0 ± 1.0 19.6 ± 1.7 1392.199 ± 269.465 46.79 ± 8.60
19 92.6 ± 2.0 92.1 ± 2.1 2.381 ± 4.102 18.44 ± 1.00
20 86.4 ± 1.2 85.8 ± 2.8 59.073 ± 36.949 23.95 ± 3.85
21 76.6 ± 5.1 75.8 ± 6.4 49.677 ± 15.553 24.94 ± 2.65
22 96.8 ± 1.4 96.3 ± 1.2 0.163 ± 0.231 5.66 ± 2.22
23 88.8 ± 0.8 85.6 ± 1.3 50.513 ± 52.352 17.15 ± 1.45
24 90.4 ± 6.8 87.7 ± 8.9 43.769 ± 18.238 16.23 ± 4.67
25 93.3 ± 4.1 91.3 ± 4.4 12.143 ± 9.957 10.95 ± 3.07
26 70.3 ± 3.7 68.3 ± 3.4 40.813 ± 28.200 23.32 ± 3.09
27 67.2 ± 5.4 66.0 ± 6.8 71.491 ± 16.335 25.86 ± 1.74
28 95.8 ± 2.1 95.4 ± 1.8 17.019 ± 6.467 24.84 ± 0.50
29 64.3 ± 4.2 56.8 ± 0.7 181.981 ± 142.427 25.48 ± 2.18
30 78.4 ± 8.7 78.5 ± 5.8 53.937 ± 17.130 27.72 ± 9.77
31 91.2 ± 3.4 91.4 ± 3.8 33.423 ± 15.463 16.77 ± 3.41
32 99.6 ± 0.4 98.9 ± 0.4 0.014 ± 0.007 3.13 ± 0.67
33 94.0 ± 3.0 91.6 ± 2.5 190.177 ± 57.670 86.23 ± 6.35
34 89.2 ± 4.8 85.9 ± 5.1 21.612 ± 28.115 18.22 ± 4.35
35 96.1 ± 1.3 95.7 ± 1.1 27.375 ± 13.849 14.11 ± 3.80
36 96.0 ± 3.3 96.2 ± 2.5 10.749 ± 12.868 9.80 ± 4.71
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Num S P+ HRmeas RRmeas
(%) (%) (bpm2) [ms]

37 82.7 ± 5.7 83.1 ± 5.2 44.015 ± 13.336 21.46 ± 5.23
39 80.8 ± 3.5 78.9 ± 2.2 58.627 ± 18.776 19.34 ± 5.35
40 85.0 ± 6.5 85.2 ± 5.4 55.283 ± 55.524 20.50 ± 5.35
41 82.5 ± 5.8 81.0 ± 7.2 20.799 ± 18.214 15.71 ± 1.19
42 93.8 ± 3.3 93.4 ± 3.4 12.262 ± 4.347 11.05 ± 1.79
43 98.5 ± 1.0 98.1 ± 1.1 2.647 ± 4.159 5.80 ± 3.08
44 98.8 ± 0.6 98.6 ± 0.3 4.866 ± 8.427 7.68 ± 6.99
45 47.0 ± 9.2 44.9 ± 8.9 71.105 ± 35.402 24.74 ± 2.47
47 68.1 ± 1.5 70.1 ± 1.7 216.643 ± 70.009 37.20 ± 4.70
48 50.8 ± 6.8 48.1 ± 5.1 99.191 ± 53.109 31.25 ± 7.49
49 98.4 ± 1.0 97.5 ± 1.4 2.450 ± 4.213 5.17 ± 2.73
50 86.3 ± 4.2 85.1 ± 5.0 21.329 ± 22.239 14.34 ± 0.97
51 44.6 ± 7.9 41.0 ± 8.9 306.998 ± 167.849 32.27 ± 5.48
53 82.5 ± 2.0 82.3 ± 1.6 57.305 ± 27.779 22.08 ± 7.15
55 71.6 ± 2.1 73.0 ± 2.7 71.804 ± 30.489 30.48 ± 5.79
56 50.0 ± 2.0 44.1 ± 1.9 258.552 ± 81.460 29.27 ± 3.10
57 95.7 ± 3.5 95.3 ± 3.1 0.171 ± 0.285 7.47 ± 5.09
58 85.5 ± 2.2 84.7 ± 2.6 7.610 ± 5.220 13.50 ± 0.40
59 97.1 ± 2.1 97.4 ± 2.3 9.094 ± 6.072 8.67 ± 2.29
60 73.9 ± 7.3 72.8 ± 7.1 23.841 ± 11.033 23.18 ± 4.23
61 92.8 ± 4.0 90.5 ± 5.3 50.942 ± 49.446 17.35 ± 3.14
62 88.3 ± 0.8 89.0 ± 0.4 12.662 ± 7.444 18.25 ± 1.42
63 87.1 ± 3.7 85.4 ± 3.3 19.906 ± 8.169 15.04 ± 1.93
64 90.9 ± 1.9 89.5 ± 1.7 4.637 ± 4.070 11.77 ± 2.04
65 95.1 ± 3.0 93.8 ± 2.5 11.223 ± 6.326 9.64 ± 1.81
66 79.3 ± 5.2 75.7 ± 6.5 59.095 ± 72.762 19.96 ± 0.36
67 89.1 ± 2.0 87.2 ± 2.0 67.421 ± 74.678 19.06 ± 2.05
68 92.0 ± 3.2 89.2 ± 3.4 28.692 ± 12.324 11.14 ± 1.59
69 95.5 ± 2.4 94.7 ± 3.0 3.816 ± 3.821 9.76 ± 2.06
70 83.1 ± 3.9 82.9 ± 4.3 35.129 ± 16.702 22.23 ± 3.91
72 97.6 ± 1.0 98.2 ± 0.6 35.207 ± 43.781 10.73 ± 4.91
73 73.2 ± 1.2 70.6 ± 1.4 57.280 ± 46.832 21.20 ± 3.59
75 82.0 ± 3.9 79.6 ± 4.4 33.886 ± 21.982 20.40 ± 5.82
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B
Mathematical Derivations

B.1 Derivation of Problem 7.2.1

Problem 7.2.1 can be solved by considering the unconstrained convex problem

min
ŝ
‖ Aŝ− y ‖22 +λ ‖ ŝ− s̃ ‖22 .

It can be shown that this formulation is indeed equivalent to the original Problem 7.2.1
for an appropriate choice of the parameter λ. This problem can be solved analytically by
expressing the objective function as the convex quadratic function

L(s, λ) = sTATAs− 2yTAs + yTy + λsTs− 2λs̃Ts + λs̃Ts̃.

A point s minimizes L if and only if

∇sL = 2ATAs− 2ATy + 2λs− 2λs̃ = 0,

which yields

s = (ATA + λI)−1(ATy + λs̃).

By using the following inverse matrix formula

(I + AB)−1 = I−A(I + BA)−1B,

we can write

(λI + AB)−1 = [λ(I + λ−1AB)]−1

= (I + λ−1AB)−1λ−1

= [I− λ−1A(I + λ−1BA)−1B]λ−1

= {I− λ−1A[λ−1(λI + BA)]−1B}λ−1

= [I− λλ−1A(λI + BA)−1B]λ−1

= λ−1[I−A(λI + BA)−1B], (B.1.1)

and thus we have

s = λ−1
[
I−AT(λI + AAT)−1A

]
(ATy + λs̃)



128 B. Mathematical Derivations

= s̃− λ−1AT(λI + AAT)−1A(ATy + λs̃) + λ−1ATy

= s̃− λ−1AT
[
(λI + AAT)−1AATy + (λI + AAT)−1λAs̃− y

]
= s̃− λ−1AT{

[
(λI + AAT)−1AAT − I

]
y + (λI + AAT)−1λAs̃}.

(B.1.2)

Finally, using the same inverse matrix formula, we can write

(λI + AAT)−1AAT − I = −λ(λI + AAT)−1,

which gives us the following solution

s = s̃− λ−1AT
[
−λ(λI + AAT)−1y + (λI + AAT)−1λAs̃

]
= s̃−AT(λI + AAT)−1(As̃− y).

(B.1.3)



Bibliography

[1] Physionet Challenge 2013. http:www.physionet.org/challenge/2013/.

[2] American National Standard: Ambulatory Electrocardiographs, ANSI/AAMI,
EC38, 1994.

[3] Paul S Addison. Wavelet transforms and the ECG: a review. Physiological Measure-
ment, 26(5):155–199, 2005.

[4] Metin Akay and Eduard Mulder. Examining fetal heart-rate variability using match-
ing pursuits. IEEE Engineering in Medicine and Biology Magazine, 15(5):64–67,
1996.
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