UNIVERSITA DEGLI STUDI DI UDINE
DIPARTIMENTO DI MATEMATICA E INFORMATICA
DOTTORATO DI RICERCA IN INFORMATICA

PH.D. THESIS

Alignment and reconciliation
strategies for large-scale de nowvo

assembly
CANDIDATE SUPERVISOR
Riccardo Vicedomini Prof. Alberto Policriti

March 2016

INSTITUTE CONTACTS

Dipartimento di Matematica e Informatica
Universita degli Studi di Udine

Via delle Scienze, 206

33100 Udine — Italia

+39 0432 558400
http://www.dimi.uniud.it/

http://www.dimi.uniud.it/

To my parents

Abstract

The theme of this thesis is sequencing (large) genomes and assembling them: an area
at the intersection of algorithmics and technology.

The birth of next-generation sequencing (NGS) and third-generation sequencing
(TGS) platforms dropped the costs of genome analysis by orders of magnitude com-
pared to the older (Sanger) method. This event also paved the way to a continuously
increasing number of genome sequencing projects and the need of redesigning several al-
gorithms (as well as data structures) in order to cope with the computational challenges
introduced by the latest technologies. In this dissertation we will explore two major
problems: de novo assembly and long-sequence alignment. The former has been tack-
led, first, with a global approach and then by taking advantage of a hierarchical scheme
(more natural considering the type of dataset at our disposal). The second problem,
instead, has been studied in order to speed up a computationally critical phase of the
first one. We also put a particular effort into the development of solutions able to scale
on large datasets with the practical goal of reconstructing/improving the draft sequence
of one of the largest genome ever being sequenced to date (i.e., the Norway spruce).

The de movo assembly problem consists in the reconstruction of the DNA sequence
of an organism starting from reads produced by a sequencer. It is tackled by softwares
called assemblers, which adopt different models and heuristics in order to take advantage
of the peculiarities of the input. Currently available methods, however, fail to deal with
large and repetitive genomes and results are often unsatisfactory for carrying out many
downstream analyses. In view of this, we propose a novel algorithm which follows a quite
recent paradigm: assembly reconciliation (or merging). The key idea is to compare two
or more genome assemblies and merge them in order to retain the best features from
each one of them (while discarding/correcting possible errors). The algorithm we devised
(GAM-NGS) made reconciliation to be feasible on large NGS datasets. In particular,
the tool was able to provide an improved assembly of the 20-gigabase Norway spruce,
using also a moderate amount of computational resources.

The second addressed problem (long-sequence alignment) consists in finding similar-
ities between sequences. From a practical perspective, the alignment of reads against
a known reference is crucial for evolutionary studies or to detect variants between se-
quences of the same species. Moreover, the very same assembly problem requires efficient
algorithms and data structures to identify high-similarity overlaps among the reads and,
therefore, to guide the assembly process. Our contribution on this matter consists in
the development of a method to align and merge pools of long assembled sequences,
each one representing a small fraction of the genome and independently assembled from
NGS data. This type of datasets has been recently produced for aiding the reconstruc-
tion of two large and complex genomes (the Norway spruce and the Pacific oyster) in

vi Abstract

order to seek for a trade-off between sequencing cost and assembly accuracy/contiguity.
However, to the best of our knowledge, no formal solution has been proposed yet. For
this reason, we introduced a framework (HAM) to carry out a Hierarchical Assembly
Merging of such pools. Moreover, due to the large number of long sequences we expect
to process, we devised a fingerprint-based algorithm for detecting overlaps between long
and accurate sequences and which also achieves comparable results with state-of-the-art
tools, while using considerably less computational resources.

Contents

List of Tables xi
List of Figures xiii
Introduction 1
I Genome Sequencing and Assembly 7
1 Preliminaries 9
1.1 Shotgun sequencing 11
1.1.1 Sanger (first-generation) sequencing 13

1.1.2 High-throughput (second-generation) sequencing 14

1.1.3 Single molecule (third-generation) sequencing 17

1.2 Coverage, read length and assembly contiguity 18

2 Sequence alignment 23
2.1 Fundamentals of the alignment problem 23
2.2 Suffix-based data structures Lo 25
2.2.1 Suffixtriesand trees o oo 25

2.2.2 Suffixarrays 25

2.2.3 The Burrows-Wheeler transform 26

2.2.4 Suffix-based alignment in practice 27

2.3 Seeds and fingerprints oL oo 27
2.3.1 Seed-based alignment 0L 27

2.3.2 Fingerprint-based comparison 28

3 Theoretical de novo assembly 31
3.1 Definitionso 32
3.2 The Shortest Common Super-string Problem 33
3.3 Ovwerlap Graphs L 33
3.3.1 String Graphs 35

3.4 deBruijn Graphs L 36
3.5 Constraint Optimization Problem 37

viii Contents
II Real World Genome Assembly 39
4 Practical Assembly Strategies 41
4.1 Assembly strategies L L 42
4.1.1 Greedy 42

4.1.2 Overlap-Layout-Consensus 45

4.1.3 de Bruijn Graph o o 48

4.1.4 Branch-and-bound assemblers 53

4.1.5 De novo assembly with long and noisy reads 53

4.2 Assembly validation L 55
4.2.1 Validation metrics. oL 56

4.2.2 Evaluation studies and results 57

5 De Novo Assembly Through Reconciliation 59
5.1 Background L 59
5.2 GAM-NGS: efficient assembly reconciliation using read mapping 62
5.2.1 Definitions 62

5.2.2 Blocks constructiono oo 63

5.2.3 Blocks filtering Lo 64

5.2.4 Assemblies graph construction 65

5.2.5 Handling problematic regions 67

526 Merging Lo 70

5.3 Results. e 70
5.3.1 Evaluation and validation on GAGE datasets 72

5.3.2 Performance of GAM-NGS on large datasets 79

5.4 Conclusions 81
IIT Large-scale Genome Assembly 83
6 Hierarchical Assembly of Large Genomes 85
6.1 The Norway spruce assembly 86
6.1.1 Fosmid pool sequencing and assembly. 86

6.1.2 Hierarchical assembly. 86

6.1.3 Assembly validation 0. 87

6.2 Hierarchical pool reconciliation 87
6.2.1 Overview of the method 88

6.2.2 Pool pre-processing o 89

6.2.3 Overlap detection 89

6.2.4 A merging strategy o 90

6.2.5 Graph simplification.o 90

6.2.6 Consensus SEQUENCE.« v v v v v v v e e e e e e 91

6.3 Results. e 91
6.4 Remarks 93

Contents ix
7 Fingerprint-based Overlap Detection 95
7.1 A local non-deterministic approach 96
7.1.1 Fingerprint construction. 97

7.1.2 Fingerprint-based overlaps detection. 97

7.2 A global deterministic approach L. 98
7.2.1 An algorithm to build deterministic fingerprints 99

7.2.2 Implementation Lo Lo 102

7.2.3 Experimental results 0oL 103
Conclusions 107
IV Appendices 109
A GAM-NGS supplementary tables 111
B DFP supplementary tables 115
Bibliography 121

1.1

5.1
5.2

5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10
5.11

6.1

7.1

Al

A2

A3

A4

A5

A6

B.1

List of Tables

Features of modern sequencing technologies

Reference genomes and libraries of GAGE datasets
GAGE statistics (contiguity, duplication and compression) on Staphylo-
COCCUS QUTEUS + « o v v e e et e et e e e e e e e e e
GAGE statistics (SNPs, indels and misjoins) on Staphylococcus aureus .
Assembly reconciliation tools performances on Staphylococcus aureus . .
GAGE statistics (contiguity, duplication and compression) on Rhodobac-
ter sphaeroides L
GAGE statistics (SNPs, indels and misjoins) on Rhodobacter sphaeroides
Assembly reconciliation tools performances on Rhodobacter sphaeroides
GAGE statistics (contiguity, duplication and compression) on human
chromosome 14o
GAGE statistics (SNPs, indels and misjoins) on human chromosome 14
Assembly reconciliation tools performances on human chromosome 14
Contiguity statistics of GAM-NGS on large plants datasets

GAGE statistics of HAM on the human chromosome 14
Overlap validation and performance of DFP, DALIGNER, and MHAP .

GAGE statistics (contiguity, duplication and compression) on Staphylo-
coccus aureus of the merging between assemblies with the largest N50
GAGE statistics (SNPs, indels and misjoins) on Staphylococcus aureus of
the merging between assemblies with the largest N50
Assembly reconciliation tools performances on Staphylococcus aureus of
the merging between assemblies with the largest N50
GAGE statistics (contiguity, duplication and compression) on Rhodobac-
ter sphaeroides of the merging between assemblies with the largest N50
GAGE statistics (SNPs, indels and misjoins) on Rhodobacter sphaeroides
of the merging between assemblies with the largest N5O
Assembly reconciliation tools performances on Rhodobacter sphaeroides
of the merging between assemblies with the largest N50

Overlap validation and performance of DFP, DALIGNER, and MHAP
on the E. coli dataset

74
74
7

76
7
7
78
79

79
81

92

105

111

112

112

112

113

113

xii

LIST OF TABLES

B.2

B.3

B4

Overlap validation and performance of DFP, DALIGNER, and MHAP

on the D. melanogaster ISO1 dataset 116
Overlap validation and performance of DFP, DALIGNER, and MHAP

on the Human chromosome 14 dataset 117
Overlap validation and performance of DFP, DALIGNER, and MHAP

on the C. gigas dataset 118

1.1
1.2
1.3
14
1.5

3.1
3.2
3.3

4.1

4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
9.7
5.8
5.9

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5

List of Figures

The DNA structure. Source: U.S. National Library of Medicine 10
Drop of sequencing cost per Mbp throughout last 15 years 13
MMumina’s bridge amplification 16
SOLiD color-space encoding oL 16
Lander-Waterman statistics L. 20
Bi-directed edges defining overlaps. oL 34
Example of possible mis-assemblies in the string graph framework. . . . 36
de Bruijn graph example 0oL 37
de Bruijn graph complexity which may arise due to repeats, variants, and

SEQUENCINE €ITOIS v v v v v v e e e e e e e 49
de Bruijn graph simplification methods using read-paths and read pairs 50
A sketch of the Hierarchical Genome Assembly Pipeline (HGAP) 54
Feature Response Curve on Assemblathon 1 assemblies 57
Blocks construction in GAM-NGS 65
Assembly Graph construction in GAM-NGS 67
A two-node cycle structure in the Assemblies Graph of GAM-NGS . .. 68
Bifurcations in the Assemblies Graph of GAM-NGS 69
GAM-NGS merging example o oo 70
FRCurve of Staphylococcus aureus assemblies. 73
FRCurve of Rhodobacter sphaeroides assemblies. 76
FRCurve of human chromosome 14 assemlies 78
FRCurve of assembly reconciliation tools on human chromosome 14 . . 80
Feature-Response curves of Norway spruce assemblies 87
Hierarchical reconciliation of pools 89
Example of the String Graph built in HAM 91
Example of fingerprint construction oL 97
Example of overlap detection with fingerprints 98
Deterministic fingerprint construction 100
Overlap detection with deterministic fingerprints 102

Average fingerprint size in functionof k. 104

Introduction

This dissertation focuses on the problem of reconstructing the genomic sequence of
an organism — the de movo genome assembly problem — from a set of much shorter
fragments, named reads, which are randomly extracted through the sequencing process.
The reconstructed sequence is also called assembly. The de novo assembly problem is
probably one of the most significant and studied matters of bioinformatics for biological
and theoretical reasons. From a biological point of view, it is important for improving
our knowledge on the relationships and the interactions within a genome and, hence, for
understanding how an organism functions and evolves. Moreover, the assembly process
is just the beginning of a quite vast set of downstream analyses that have important
and direct applications. Additionally, the technological revolution brought by the recent
sequencing technologies has concretely made the study of genomic sequences feasible for
a large number of individuals. The characterization of sequences relative to healthy
and diseased human cells also opened new possibilities in personalized medicine (e.g.,
treatment and prevention of diseases). Such studies are usually carried out comparing a
reconstructed sequence against an accurate reference. A fragmented, mis-assembled or
unrepresentative reconstruction might not contribute to any practical use and, therefore,
an accurate assembly is demanded for a large number of applications, starting from
the very same reference definition (if not already available). This last need makes
the assembly problem particularly interesting also from a theoretical perspective. The
availability of precise models describing genome assembly, in fact, guides us to methods
for dealing with the problem in practice.

Unfortunately, as we will often remark throughout the entire thesis, both theoretical
and practical approaches struggle with two major deficiencies. First, theoretical models
do not accurately formalize the genome assembly problem. Our incomplete knowledge
about the non-random substructures of a genome certainly contributes to this limita-
tion. Hence, even a precise modeling of the problem might lead us towards biologically
inaccurate results. Practical approaches, instead, besides being related to possibly im-
perfect models, are furthermore based on heuristic methods due to negative theoretical
results. The use of heuristics thus provide approzimate results that can be either satis-
factory or not. In general, as the complexity and the size of a genomic sequence increase,
approximate methods are overwhelmed by theoretical and technological limitations and
new perspectives on the problem should be sought.

A brief history of sequencing

The Sanger method [156] has been the first major breakthrough concerning our better
understanding of the genome structure and, due to its simplicity, it became the gold-

2 LIST OF FIGURES

standard approach for approximately thirty years. Such a method — often referred to as
first-generation sequencing — has been continuously improved and automatized through
the years and ultimately led to the full characterization of the human genome sequence
[181]: a landmark for a number of following applications concerning, for instance, the
understanding of diseases but also studies on other species. Unfortunately, the Sanger
method is characterized by two major downsides: the relatively low throughput and the
extremely high costs. This last shortcoming in particular limited whole-genome-shotgun
(WGS) sequencing to large research facilities only and restricted its applications in
terms of both the organisms that could be studied (i.e., small-sized genomes or specific
genomic regions) and the type of analyses that could be preformed. As a matter of fact,
consider that it took approximately three billions of dollars and thirteen years of effort
to complete the first human reference sequence.

This impressive result has been followed by several efforts to make sequencing faster
and cheaper. This resulted in the advent of next-generation sequencing (NGS) tech-
nologies, which marked the second — and probably the most important — milestone con-
cerning genome analysis. These sequencing technologies, in fact, have in common three
fundamental hallmarks that distinguish them from the older methods: they are orders
of magnitude cheaper, very short fragments are produced, and a orders-of-magnitude
higher throughput is provided. Such a sequencing revolution paved the way to a large
number of earlier unfeasible studies even to small research centers. In order to give an
idea of the benefits introduced by NGS technologies, consider that it was then possible
to sequence and complete the genome of a human individual in a couple of months at
approximately one-hundredth of the cost [191]. Furthermore, recent technological ad-
vances now permit the sequencing of a human genome at the cost of 1000 dollars. Even
if sequencing data can be directly exploited to perform several kinds of analyses, one of
its main applications still remains genome assembly.

Currently, many efforts are being put on improving sequencing in order to increase
read length without sacrificing throughput, costs, and accuracy. Recent technological
advances, also known as third-generation sequencing (TGS), introduced novel method-
ologies to sequence DNA molecules. Specifically, they are currently able to produce
kilobase-long reads that, in principle, would allows us to overcome part of the difficul-
ties which are especially encountered in the assembly of complex genomes. Moreover,
Eugene W. Myers recently argued [4] the TGS PacBio technology has also two peculiari-
ties which may get us closer to the achievement of a near perfect assembly: (i) sequencing
can be nearly approximated by a Poisson sampling of the genome, and (ii) errors are
randomly distributed within reads. Hence, using well known statistical models [91] and
provided a high-enough read coverage [41], building an accurate and complete refer-
ence assembly starts to seem possible. The improvement on read length however has
a cost: the error rate is quite high and it can reach 15% (mainly insertions and dele-
tions). Algorithms and data structures have been proposed to overcome this issue, yet
the mandatory error correction phase is still computationally demanding. Despite the
difficulties, it has been recently shown that a very accurate assembly of a microbial
genome could be achieved solely with a TGS dataset [39)].

Finally, an alternative to TGS is represented by the hierarchical assembly of pools,
that seeks for a trade-off among sequencing costs, accuracy and computational complex-
ity. This approach consists in dividing long DNA inserts into several pools which are

LIST OF FIGURES 3

independently sequenced and assembled using NGS data. If a pool is sufficiently small
(i.e., representative of a little percentage of the underlying genome), then problems gen-
erated by the non-random sub-structures of the genome are less likely to appear and,
therefore, to hinder the assembly process. Two representative sequencing projects which
employed quite successfully this strategy are the Norway spruce [134] and the Pacific
oyster [198]. Unfortunately, in such a hierarchical approach, available assemblers do not
perform well with assembled sequences coming from the aforementioned pools and ad
hoc methods are required.

Theoretical and practical de novo assembly

First models towards the definition of genome assembly were based on the shortest
common super-string that explains (i.e., contains) the set of sequenced reads extracted
from the genome. Other frameworks instead consist in modeling the problem as finding
optimum-weight paths in graphs built from the reads. This translates into solving a
generalized Traveling Salesman Problem (TSP) on a String/Overlap graph or a Eulerian
Super-path Problem on a de Bruijn graph. Despited not being a precise formulation of
the genome assembly problem, such formalizations have all been proven to be NP-hard
problems.

As a consequence, these hardness results made de novo assembly tools to heavily
rely on heuristics and hence to “choose” between correctness, completeness, and com-
putational complexity. Despite the “intractability” of the problem, quite good results
have been achieved on Sanger-based datasets, thanks also to the long range informa-
tion provided by the reads. For this reason, even if the formalization of the problem is
difficult in general, such promising results led to think that probably the most difficult
cases are restricted to unrealistic scenarios.

The peculiarities of NGS data, moreover, imposed two major issues: the efficient
processing of a large amount of data and the feasibility of de novo assembly with very
short fragments. The contribution of Mathematics and Computer Science methods has
been crucial to address these problems and to make assembly and analyses viable with a
moderate amount of resources. Specifically, computational efficiency and memory con-
straints demanded the development of specific algorithms and data structures in order
to cope with NGS datasets and to perform different type of large-scale analyses (assem-
bly, identification of structural variants, etc.). As a matter of fact, previous assemblers
had been tailored to Sanger-based datasets and did not adapt to the newer input. As a
result, very sophisticated solutions have been proposed in literature for minimizing the
time and/or memory requirements for storing and processing the input sequences (e.g.,
fingerprinting/hashing [108, 145, 182], suffix trees/arrays [179], the FM-index [58]) but
also for assisting the assembly process (e.g., de Bruijn graphs and variants). It is worth
to mention that, from an asymptotic complexity analysis, some of the employed data
structure are not optimal but still they perform much better in practice. The shorter
read length instead makes genome assembly even more complex. This is especially due
to the non-random structure of the genome: repeats, for instance, are the main cause of
poor contiguity and mis-assemblies. This difficulty has been mainly addressed with an
extensive use of paired sequences (i.e., pair of reads sequenced from the same genomic
locus and whose distance can be estimated). Nevertheless, NGS assemblers proved to
be inadequate for many de movo assembly projects. Therefore, there is still room for

4 LIST OF FIGURES

improvements, especially on large-scale de novo assembly.

Contributions of the thesis

This dissertation introduces several methods which enhance available approaches in two
different settings: whole genome shotgun and hierarchical assembly. Briefly, we will
take advantage of the fact that different heuristics/approaches are actually able to re-
construct specific regions of a genome accurately (see [26,52,154] for several assembly
evaluations). Specifically, we will follow a recent paradigm whose purpose is to obtain
an enhanced assembly starting from several other assemblies obtained with different
heuristics. This strategy is called assembly reconciliation and consists in merging as-
sembled sequences produced by different tools while detecting possible mis-assemblies
and isolating problematic regions. Besides its first application on Sanger-based assem-
blies [32,200], such a strategy has found its natural use with NGS-based assemblies,
which are more frequently of unsatisfying quality. We will also show how assembly rec-
onciliation could be extended to be used in a hierarchical setting thought for dealing
with large-scale assemblies.

More precisely, this thesis is based on three main contributions related to the de novo
assembly problem: an assembly reconciliation algorithm, a hierarchical (pool-based)
assembly framework, a fingerprint-based overlap detection algorithm.

Assembly reconciliation. The first main contribution is GAM-NGS an assembly
reconciliation algorithm which merges assemblies (obtained by different tools) in order
to enhance contiguity and correctness of the reconstructed sequence. Differently with
respect to other competing tools, GAM-NGS does not rely on global alignment but,
instead, it takes exploits the mapping of a set of reads against the two input assem-
blies in order to detect regions (called blocks) representing the same genomic locus. The
merging phase is carried out with the help of a weighted graph G (built from blocks) in
order to resolve local problematic regions due to mis-assemblies, repeats, and compres-
sion/expansion events. Using state-of-the-art datasets and evaluation methods, we were
also able to show that GAM-NGS achieves good results in terms of both computational
requirements and accuracy.

During the PhD program, the candidate was also involved in the Spruce Genome
Project in order to employ GAM-NGS’s strategy to build the first draft of the Norway
spruce assembly (one of the longest genomes ever sequenced to date). Specifically,
GAM-NGS was used to merge a whole-genome-shotgun assembly with a collection of
pool-based assemblies obtained using a hierarchical strategy and NGS technologies. As
a result, the tool was able to greatly improve the assembly’s contiguity and to decrease
the evidences of putative errors (hence enhancing output’s accuracy).

Both the aforementioned works/collaborations resulted in the following two publi-
cations (as first author and as co-author, respectively):

R. Vicedomini, F. Vezzi, S. Scalabrin, L. Arvestad, and A. Policriti. GAM-NGS:
genomic assemblies merger for next generation sequencing. BMC Bioinformatics,
14(Suppl 7):S6, 2013

LIST OF FIGURES 5

Bjorn Nystedt, Nathaniel R. Street, Anna Wetterbom, Andrea Zuccolo, Yao-Cheng Lin,
Douglas G. Scofield, Francesco Vezzi, Nicolas Delhomme, Stefania Giacomello, Andrey
Alexeyenko, Riccardo Vicedomini, Kristoffer Sahlin, Ellen Sherwood, Malin Elfstrand,
Lydia Gramzow, Kristina Holmberg, Jimmie Hé&llman, Olivier Keech, Lisa Klasson,
Maxim Koriabine, Melis Kucukoglu, Max Kéller, Johannes Luthman, Fredrik Lysholm,
Totte Niittyld, Ake Olson, Nemanja Rilakovic, Carol Ritland, Josep A. Rossello, Juliana
Sena, Thomas Svensson, Carlos Talavera-Lopez, Gunter Theiszen, Hannele Tuominen,
Kevin Vanneste, Zhi-Qiang Wu, Bo Zhang, Philipp Zerbe, Lars Arvestad, Rishikesh
Bhalerao, Joerg Bohlmann, Jean Bousquet, Rosario Garcia Gil, Torgeir R. Hvidsten,
Pieter de Jong, John MacKay, Michele Morgante, Kermit Ritland, Bjéorn Sundberg,
Stacey Lee Thompson, Yves Van de Peer, Bjérn Andersson, Ove Nilsson, Par K. Ing-
varsson, Joakim Lundeberg, and Stefan Jansson. The Norway spruce genome sequence
and conifer genome evolution. Nature, 497(7451):579-584, May 2013

Hierarchical pool-based reconciliation. As our second contribution we propose a
model for building a draft assembly using the hierarchical pool-based approach (the one
considered in the Norway spruce and in the Pacific oyster genome projects). This work
has been motivated by the fact that currently ad hoc solutions have been considered and
no particular framework has been presented to address in general such scenario. This
resulted in a prototype tool called Hierarchical Assemblies Merger (HAM, for short)
which is based on an Overlap-Layout-Consensus (OLC) paradigm and extends GAM-
NGS’s idea to the reconciliation of multiple pools in a hierarchical manner.

HAM’s strategy and preliminary results have been presented in the following paper:

R. Vicedomini, F. Vezzi, S. Scalabrin, L. Arvestad, and A. Policriti. Hierarchical
Assembly of Pools. In Francisco Ortuno and Ignacio Rojas, editors, Bioinformatics
and Biomedical Engineering, volume 9044 of Lecture Notes in Computer Science, pages
207-218. Springer International Publishing, 2015

Fingerprint-based overlap detection. Our third and last contribution instead ad-
dresses a specific stage of the genome assembly process and is thought to be strictly
coupled with HAM’s work to address a large-scale assembly reconciliation. In particu-
lar, we developed a novel method to speed up and carry out the overlap detection phase
required by HAM’s framework.

Our method assumes that pools have been assembled in good-quality contigs and
hence distinguish itself from competing tools which address the problem of detecting
overlaps among long error-rich sequences. Moreover, in order to improve the compu-
tational effort required by currently available methods, we devised a “deterministic”
fingerprinting technique (called DFP) which greatly reduces the size of the input and
that allows to quickly identify — with also good precision — the pairs of sequences which
are likely to overlap. The main feature of DFP is to compare sequences solely using
their fingerprints and a more precise assessment/computation of the overlap is carried
out only in a later stage. Due to the recent development of DFP, the method has not
been published yet.

6 LIST OF FIGURES

Outline of the thesis

This dissertation is divided into three parts and structured as follows.

Part I outlines some biological concepts and some theoretical and practical aspects
concerning the main problems that will be addressed in the remaining parts. Specifically,
in Chapter 1 we briefly present some important preliminary biological notions required
to fully understand the rest of the thesis. In Chapter 2 we outline some algorithms
and data structures which are commonly used to handle large-scale applications in
bioinformatics and that are important for the assembly process. Finally, Chapter 3 is
dedicated to the theoretical formulations of the de novo genome assembly problem.

Part II, instead, will focus on the practical aspects of assembly strategies. More
precisely, Chapter 4 is related to the state of the art of methods employed to solve the
assembly problem, while in Chapter 5 we describe our first main contribution, i.e., the
algorithm of our assembly reconciliation tool (GAM-NGS).

Part IIT eventually present a novel formalization and a practical implementation
for the hierarchical pool-based assembly scenario: Chapter 6 describe the HAM frame-
work and presents some preliminary results; Chapter 7 describe the two fingerprinting
techniques we devised in order to speed up the overlap detection in HAM.

|

Genome Sequencing and
Assembly

Preliminaries

In this first chapter we lay down the foundations of what we think are the most important
biological aspects that the reader — who we do not assume to have a background in
genomics — should acquire in order to follow the topics discussed in the rest of this thesis.
We keep the biochemical details to a minimum and focus mainly on the processes which
allows us to “decode” genomes (i.e., sequencing). We believe that a basic understanding
of how sequencing works and how it evolved throughout the last dozen of years is
necessary to fully grasp many details of the computational challenges further discussed
below. Readers already familiar with the subject may safely skip this chapter.

Genomics is the discipline that studies the structure and the encoded information of
genomes [142]. More precisely, it deals with the reconstruction of the DNA sequence of
organisms and the relationships and interactions within a genome. Every living organism
is built up of one (e.g., bacteria) or more (e.g., plants, mammalians) biological units
called cells wherein it is stored the information needed for the regulation of their specific
functions and the evolution of the whole organism. Moreover, cells behave and interact
differently depending on their specialized function (e.g., think about the human organs)
and the inputs from their surrounding environment.

The DNA, or deoxyribonucleic acid, is usually stored in each cell nucleus as a collec-
tion of molecules called chromosomes. Such molecules have two fundamental functions:
first, replicating themselves and, second, storing, in regions called genes, the information
which regulates the evolution and the function of each single cell. Genes are, in fact, the
starting points of protein synthesis — one of the most important processes for cell’s life.
We can hence define the genome as the collection of DNA molecules (and their encoded
genes) within a cell.

One of the most important reasons to study the genome of an organism is treating and
preventing diseases. In fact, even though cells have nearly the same DNA “blueprint”,
this molecule is continuously subject to mutations (i.e, modifications of its structure).
Genetic mutations could be inherited or acquired during lifetime (e.g., cell division,
environmental factors) and while some of them could be beneficial to create diverse and
healthy populations, others might damage the DNA and lead to an improper protein
synthesis along with different sorts of diseases.

10 1. Preliminaries

The DNA structure. From a chemical point of view, the DNA can be seen as a
large chain-like molecule made up by the concatenation of small repeating units called
nucleotides. Each nucleotide consists of a sugar (deoxyribose) bound to a phosphate
group and to a nitrogenous base. The latter can be of four different types: Adenine,
Cytosine, Guanine, and Thymine. Hence, DNA molecules can be seen abstractly as
strings encoded in the four-letter alphabet {A,C,G, T}, where letters stand for the first
letter of the corresponding base. For the sake of simplicity, in the following chapters we
might indistinctly use the terms nucleotide and base.

The DNA structure typically consists of two DNA molecules held together in a
double-helix shape [188] and running in opposite directions (anti-parallel). A particu-
larity of these coupled chains — the Watson and Crick strands — is that they are attached
by bonds between complementary base pairs: adenine with thymine and cytosine with
guanine (see Figure 1.1). Hereafter, we will often use the term base pair (bp) to identify
one of these two bases. Looking closely to the DNA structure, it is possible to notice
that if we pick one strand and we replace each base with its complementary one, we
obtain exactly the other strand. Hence, both strands encode exactly the same infor-
mation and it is precisely this redundancy, along with the stronger attraction between
complementary bases, that makes the DNA replication “easy”. More specifically, the
synthesis of DNA is usually catalyzed by the so-called DNA polymerase, that is an en-
zyme able to bind nucleotides to a single-stranded DNA molecule in order to create a
new the complementary strand.

Adenine Thymine

—)

Guanine Cytasine

Sugar phosphate
backbone

Figure 1.1: The DNA structure. Source: U.S. National Library of Medicine

Living organisms can be also classified by the number of chromosome copies within
their cells. More precisely, an organism is said to be haploid if cells contain one copy
of each chromosome, diploid if the copies are two, and, in general, polyploid for higher

1.1. Shotgun sequencing 11

copy numbers. Humans, for instance, are diploid and, hence, they are characterized
by two homologous copies of their 23 chromosomes (one inherited from the mother, the
other from the father). A particular hallmark of diploids and polyploids is that some
regions (loci) of homologous chromosomes might be different. A specific region (locus)
encoding a gene is called allele. When two alleles are identical (i.e., the DNA sequence
is exactly the same) the locus is defined homozygous, otherwise it is said heterozygous.
A specific allelic variant is called haplotype.

1.1 Shotgun sequencing

Sequencing is the first mandatory step required to “decipher” genomes. Due to techno-
logical limitations it is currently impossible to decode exactly the sequence of very long
DNA stretches. However, a strategy named shotgun sequencing consists in randomly cut
DNA molecules into millions of shorter pieces called inserts, which can be sequentially
“read” by a machine called sequencer. The reconstructed sequences are named reads
and are usually encoded as strings in the alphabet {A,C,G, T}. Read length and accu-
racy strictly depends on the employed technology and, as we will show in the following
chapters, this leads to different computational approaches to solve the genome assembly
problem.

Applications. The main application of DNA sequencing that we will cover in this
dissertation is called de novo (genome) assembly and it aims at reconstructing the
entire genomic sequence of an organism — the reference genome — starting from a set of
randomly extracted reads.

Sequencing is also very useful to perform additional downstream analyses. For in-
stance, when a reference is available, sequencing can be exploited to compare genomes
of same-species (or closely-related) organisms to discover allelic variants or to perform
evolutionary studies such as the annotation and the classification of transposable ele-
ments [99,120]. Finally, a matter of primary interest is also the sequencing and the
study of disease-driven variations in the haplotypes of a specific individual. This would
allow us to possibly devise new treatments to cure/prevent diseases.

Paired reads. Almost all available sequencers are able to read from both the extrem-
ities of a specific DNA fragment, producing the so-called paired reads. The ability to
estimate the insert size (i.e., size of fragments) provides valuable information about the
relative positions of reads in the genome. This additional knowledge has been proven
to be extremely helpful in dealing with large and complex genomes (e.g., repeat res-
olution, scaffolding) and also mitigated the drawback of having short reads in input.
Paired reads can be further separated into two categories: paired-end (PE) and mate-
pair (MP) reads. While the principle is similar — and they are often confused with each
other — they are inherently different. For instance, from a computational point of view,
the main differences are insert size (less than 1 Kbp for PE reads, larger for MP reads)
and read orientations.

Read quality. Each base of a sequenced read is usually defined by the measurement
of a signal (e.g., fluorescent-dye/light intensity, electrical current disruption) which is

12 1. Preliminaries

detected by the sequencer and it is used to distinguish nucleotides. The process of base
calling consists of translating these measurements to a sequence of (discrete) nucleotides.
Given that the quality of reads varies significantly for many reasons, a simple numerical
estimation of base quality is very useful in order to improve genome assembly [56].

The quality value might be defined in several ways and it is related to the technology
used. A common method is to relate the probability p of a wrong-base call to a log-
transformed value @) using the following formula:

Q = —10 - logy, p.

This formula defines the so-called Phred quality score [56] and, for instance, a value
of 30 means the probability of a specific base call being wrong is 0.001 (i.e., 0.1%).
Note that if p = 1 (i.e., a base is certainly wrong), @ = 0 and it increases as the error
probability diminish.

History of sequencing. Sequencing of DNA molecules began in the early 1970s
with the development of the Maxam-Gilbert method [63]. Nevertheless, the first con-
crete sequencing strategy was introduced in 1975 by Frederick Sanger [156] and sub-
sequently refined in order to sequence the first genome ever, i.e. the 5374-bp-long
bacteriophage ®X174 [155]. Sanger technology kept being improved and automatized
through years, leading to sequencing the first human genome. The first draft was re-
leased in 2001 [181] and finished a couple of years later [44], overall requiring a 13-year
effort and an estimated cost of 3 billion dollars.

The Sanger method remained the gold standard technique for almost thirty years
due to its low complexity and the small amount of toxic/radioactive chemicals needed
with respect to the Maxam-Gilbert method. However, the introduction of the Roche-454
technology in 2005 kicked off the so-called Next Generation Sequencing (NGS) revolu-
tion, as it was a massive improvement compared to previous technologies. As evidence
of this, it was then possible to sequence and complete the genome of a human individual
in a couple of months at approximately one-hundredth of the cost [191]. Several other
different technologies have been commercialized in the following years such as Illumina-
Solexa in 2006 and SOLiD in 2007. Specifically, they developed high-throughput and
cost-effective techniques which made sequencing of billion-base genomes affordable to
many research facilities. Moreover, they allowed to take a huge leap forward to the
ambitious goal of sequencing the human genome with less than 1000 dollars. Objective
eventually reached in 2014 with the Illumina’s HiSeq X Ten sequencer: a machine able
to deliver over 18 000 human genomes per year at the price of 1000 dollars each.

While NGS platforms are continuously improving both in terms of cost and through-
put, recently, Pacific Biosciences (PacBio) commercialized a different sequencing ap-
proach. It is based on the so-called Single-Molecule Sequencing (SMS) principle and it
is often classified as a Third Generation Sequencing technology. More precisely, PacBio
proposed an advance towards the thousand-dollar-genome challenge with a fast and
cost-effective method to sequence DNA, which is currently able to produce kilobase-long
reads. Whereas most technologies require several identical copies of a DNA molecule
before its sequence could be decoded, the peculiarity of the method described by Eid
et al. in [53] is to directly sequence a single molecule of DNA in real-time. Despite not
being as competitive as Illumina on accuracy, cost, and throughput, yet, it has been

1.1. Shotgun sequencing 13

Sequencer Phred Output/run Time/run Read length
AB 3730xl Q20 1.92-0.92 Mbp 24 hours 550-1000 bp
454 GS FLX+ >Q30 450-700 Mbp 10-23 hours 450-700 bp
AB SOLiD v4 >Q30 120 Gbp 7-14 days 2 x 50 bp

AB SOLiD 5500xl Q40 up to 300 Gbp 7 days 75-35 bp (PE)
Ilumina HiSeq 4000 >Q30 125-1500 Gbp < 1-3.5 days 2 x 150 bp
IHlumina HiSeq X Ten >Q30 1.6-1.8 Thp < 3 days 2 x 150 bp
Ton Torrent PGM Q20 100-200 Mbp 2 hours 200—400 bp
PacBio RS <Q10 0.5-1.0 Gbp 2—4 hours 1.5 Kbp
PacBio RS II <Q10 0.5-1.0 Gbp 0.5-4 hours ~ 10 Kbp

Table 1.1: Features of modern sequencing technologies [103,146].

$10000

$1 000

$100 |-

$0.01

| | | | | | |
2002 2004 2006 2008 2010 2012 2014

Figure 1.2: Drop of sequencing cost per Mbp throughout last 15 years. Source: National
Human Genome Research Institute.

shown that using PacBio sequencing it is however possible to achieve better results on
microbial genome assembly [39].

We are now going to delineate those aspects that make each sequencing technology
unique, focusing mainly on throughput, cost, read length, and expected accuracy. The
latter two are the reasons why many different combinatorial approaches and sophisti-
cated data structures have been devised for the genome assembly problem. Difference
among technologies are summarized in Table 1.1.

1.1.1 Sanger (first-generation) sequencing

Also known as the chain termination method, this technique falls into the category of the
so-called First Generation Sequencing technologies. For three decades, de novo genome
sequencing projects, such as the Human Genome Project, have been carried out using
capillary-based semi-automated implementations of this method [80,155,174].
High-throughput Sanger shotgun sequencing [14] protocol typically consists of the

14 1. Preliminaries

following steps. The DNA molecule to be sequenced — the target DNA — is first randomly
sheared into small fragments (e.g., using restriction enzymes). These pieces, also called
inserts, are subsequently ligated with viral/plasmid cloning vectors, i.e. small DNA
fragments able to replicate themselves together with the attached molecule. These
spliced sequences are then introduced into host cells — typically harmless strains of the
Escherichia coli bacterium — wherein they are amplified (i.e., replicated). This process
yields to a collection of organisms in which the target DNA, along with the host DNA,
is present in high-number copies. The vector DNA can be finally extracted to allow
the actual sequencing of the target DNA fragments through a series of biochemical
reactions [159]. More precisely, modern implementations generate multiple different-
size fragments, each one starting from the same location and such that the last base is
labeled with a fluorescent dye — such that the four nucleotides could be distinguished.
Fragments are finally sorted by their length in order to determine the sequence.

Sanger sequencing was at first a quite complex process: it required the use of ra-
dioactive materials and a large amount of infrastructures and human labor. In 1987
the introduction of the first semi-automated machine — thanks to Applied Biosystems —
made sequencing faster and less error-prone: it was then possible to output 500 Kbp/day
and sequence 600-base-long reads. It was also due to Applied Biosystems, along with
the launch of the PRISM 3700 DNA Analyzer, that the Human Genome Project was
completed by nearly five years ahead of schedule [43,181]. Now, after three decades
of technological refinements, their latest model (AB 3730xl) can achieve read lengths
up to 1000 bp, a per-base accuracy of 99.999%, and a cost in the order of $0.50 per
kilobase [159]. Even though it has been overwhelmed by significantly faster and cost-
effective methods, nowadays, this technology is still used for finishing genomes (e.g., gap
closure) or to accurately sequence short regions of interest.

1.1.2 High-throughput (second-generation) sequencing

Often referred to as Next Generation Sequencing (NGS) technologies, the methods we
are going to outline in this section allowed sequencing to be orders of magnitude cheaper
and characterized by a much higher throughput with respect to the chain termination
method. The main drawback, however, is that read lengths are much shorter and this,
along with the huge amount of data produced by sequencers, imposed new algorithmic
challenges in genome assembly and downstream analyses. In the last dozen of years
many high-throughput systems were commercialized, however we will describe the fea-
tures of those which are more popular and that have been used in major large-scale
sequencing projects: 454, Illumina, and SOLiD. In contrast to Sanger sequencing, these
platforms avoid bacterial cloning (potentially being able to sequence DNA that cannot
be propagated in bacteria). More precisely, DNA molecules are amplified in spatially-
separate locations of highly parallel arrays [19]. Based on the same paradigm — namely
cyclic-array sequencing — implementation and biochemistry are much different among
these systems [160]. This have repercussions on throughput, run time, read length and
costs (see Table 1.1).

454. Roche 454 was the first NGS platform commercialized. In order to achieve an
approximately 100-fold increase in throughput over Sanger sequencing technology [110],

1.1. Shotgun sequencing 15

454 developed a sequencing-by-synthesis approach called pyrosequencing [151]. In sim-
ple terms, it is based on measuring — through a camera — the light emitted when the
next complementary nucleotide is sequentially incorporated on a single-stranded DNA
template (the target sequence). The intensity of the light is directly correlated to the
amount of bases being incorporated and, if the same nucleotide is added n times in
a row, the signal is expected to be n times larger. The accuracy of pyrosequencing
hence relies on the precise measurement of the emitted light. As a consequence, the
major limitation of the 454 technology relates to consecutive instances of the same base
(e.g.,...AAAAAA ...) and, unlike Illumina and SOLiD platforms, 454 data-sets frequently
suffer the presence of insertions and deletions [147].

Currently, 454 platform provides a higher per-base cost with respect to its NGS
competitors. Its strength however is to output almost a billion base pairs per day of
single-ended (SE) reads whose lengths are on average 450-700 bp. Despite the higher
cost, it still represents a viable and recommended choice in projects where read length
matters (e.g., de novo assembly).

INlumina. Like 454, this platform is also based on the sequencing-by-synthesis principle
and, even though reads are much shorter than 454’s, this technology allowed to diminish
the per-base cost and increase throughput significantly. To achieve this, Illumina’s
sequencing protocol is based on the so-called bridge amplification:

1. DNA molecules are first sheared into fragments that are short-enough to be se-
quenced. Fragments are then denaturated (i.e., strands are separated) and ligated
to specific adapters (i.e., short synthetic DNA sequences) which are attached to
both the extremities. Afterwards, fragments are bound to a solid surface — namely
flow cell — where many clusters of reverse complementary copies of the adapters
had been previously fixed.

2. A local amplification process is repeated several times: hanging adapters ligate to
nearby complementary adapters (thus forming a bridge, see Figure 1.3); unlabeled
nucleotides and polymerase enzymes are added to initiate the synthesis of frag-
ments’ complementary strands; double stranded molecules are finally denaturated
to allow successive iterations. In this way the flow cell will be covered with clusters
of thousand copies of the formerly attached fragments.

3. The system now sequences all clusters simultaneously. More precisely, nucleotides
are modified such that their incorporation — and hence the replication process — is
controlled step by step. A fluorescent dye is also employed in order to decode which
bases have been added at each cycle through highly sensitive optics. Finally, before
the next reading cycle starts, a “washing” step is performed in order to remove
both the “termination feature” from the inserted nucleotides and the fluorescent
dye.

As a consequence of the employed wash-and-scan paradigm, base-reading accuracy
drops quickly and this is the reason why much shorter reads are produced with respect
to 454 sequencing. On the contrary, Illumina sequencing is not hindered by consecutive
instances of the same base in sequenced fragments.

16 1. Preliminaries

Even though read length is significantly smaller than 454, the throughput is un-
matched. As a matter of fact, I[llumina sequencers are currently able to produce billions
of 150 bp paired reads within a couple of days (see Table 1.1). Moreover, due to the
massive amount of information generated and the higher 454 cost, Illumina’s platform
is nowadays the first choice in most large sequencing projects.

0 non goo
n||ln'|” unln'l” ulllu'l'] ey

TP nm& I]ﬂlm Humi
|n” ﬂ] I il 0

Figure 1.3: Illumina’s bridge amplification.

SOLiD. Currently produced by Applied Biosystems, it was the latest-commercialized
sequencer of the first three major NGS platforms. Even tough this technology provides
shorter reads than Illumina, a particular effort was put on accuracy and throughput.
When it was presented, in fact, it allowed to achieve a higher throughput at a slightly
lower per-base cost [109].

The first DNA fragmentation and amplification phase recalls the process employed
by the 454 platform. However, amplified sequences are inserted on a glass surface where
sequencing is based on the different sequencing-by-ligation principle.

More precisely, SOLiD sequencing involves sequential rounds of hybridization and lig-
ation processes using dinucleotides, i.e. two-nucleotide sequences, labeled by four differ-
ent fluorescent dyes. Being only four available colors and sixteen possible dinucleotides,
each color encodes four different nucleotide transitions (see Figure 1.4). Moreover, each
base of the target sequence is effectively covered in two different reactions by two 1-base
shifted dinucleotides. This allows to decode a specific base by looking at the colors of
two successive ligation reactions. As the last base of the adapter is already known, the
color sequence can be successfully translated to the corresponding nucleotide sequence.

2nd base
A CGT

A . O O . Decoding example

c00@O 0000
cO000 A-T-G-A~A~C
T@O0®

Figure 1.4: SOLiD color-space encoding.

1st base

Being the number of legal two-color transitions limited, the main advantage of this
sequencing/encoding technique is to effectively allow the detection of sequencing errors
or single-nucleotide variants (when a reference is available). As a matter of fact, SOLiD

1.1. Shotgun sequencing 17

platforms proved to be particularly useful in structural variation analyses and, generally,
resequencing projects [111,163]. SOLiD instruments are nowadays able to output 300
Gbp of 75 bp fragments or 75-35 bp PE-reads in a single run of 7 days. However, due to
the very small read length and the need of dedicated software to effectively handle the
color-space encoding, this technology is often ruled out in favor of Illumina — especially
when large-scale de novo assembly is concerned.

Ion Torrent. This technology is actually considered to lie between second and third
generation sequencing technologies [157]. It implements a sequencing-by-synthesis prin-
ciple carried out by a high-density array of semiconductors capable to perceive the
protons released while nucleotides are incorporated during the synthesis [152]. This
particular technology allows to diminish both time and sequencing costs. Being a wash-
and-scan system, however, read length is limited. Latest Ion Torrent’s Personal Genome
Machine (PGM) is able to produce 200-bp reads in less than 2 hours.

1.1.3 Single molecule (third-generation) sequencing

Over the last ten years, second-generation sequencing platforms have been optimized
improving cost, throughput, time, and accuracy, hence allowing a more complete (and
beyond expectation) understanding of the information encoded within whole genome
sequences [119]. During these years Illumina has undoubtedly been the leader in cost-
effective high-throughput massively parallel sequencing [20].

Several companies, however, explored the possibility to directly sequence single
molecules, hence avoiding the canonical amplification phase [19]. These strategies are
often referred to as Third Generation Sequencing (TGS) technologies and they have
been introduced from 2009. Currently, three major TGS systems have been (or soon
will be) commercialized: Helicos Genetic Analysis, Pacific Biosciences (PacBio), and
Oxford Nanopore.

Helicos Genetic Analysis. This is the first true single-molecule sequencing system
being commercialized [25,70]. In this method, (short) fragments of DNA molecules are
first attached on glass flow cells. Subsequently, fluorescent nucleotides are added one
at a time with a terminating nucleotide which halts the process so that a “snapshot”
of the sequence can be taken [178]. The main drawback of this method is the high
time required to sequence a single nucleotide and the small read length (approximately
32 bp). Moreover, like any other SMS system, the error rate is typically grater than
5% and mostly involves insertions and deletions. The highly parallel nature of this
technology however allows to produce corrected reads with high-accuracy (> 99%).

Unfortunately, this method was not very successful as it was not much different
from the leading second-generation technologies: read lengths, throughput, and run
times are in fact comparable to top-notch NGS platforms. As a matter of fact, this
hallmark, combined with the higher error rates, usually translates into a more expensive
sequencing.

PacBio. The single-molecule real-time (SMRT) sequencing approach developed by
Pacific Biosciences is the first TGS approach to directly observe the single nucleotides

18 1. Preliminaries

being incorporated by DNA polymerases as they synthesize the complementary strand
of a target DNA molecule [53].

The first problem encountered during the development of this method was observing
DNA polymerase’s work in real time — as it binds nucleotides — and it was solved
exploiting the zero-mode waveguide technology [93]. A second problem was due to the
typical use of fluorescent dyes attached to the bases as they can inhibit polymerase’s
activity (this is the reason why most sequencing approaches synthesize DNA molecules
one nucleotide at a time). In order to overcome this issue, the dye is attached to the
phosphate group of the nucleotide. In this way, during the synthesis, it is automatically
cleaved when each nucleotide is incorporated.

PacBio sequencing is currently able to output reads which are one or two orders of
magnitude longer than any other first- or second-generation technology (see Table 1.1).
More precisely, this platform is currently able to produce reads which are typically
10 Kbp long (or even longer).

Despite many potential improvements are expected by the use of such long reads,
this technology poses also new challenges due to error rates reaching 15% (as reported
in [34]). Fortunately, errors are uniformly distributed and uncorrelated between different
sequences. Hence, provided a high-enough coverage or exploiting NGS data-sets [90], it
has been shown that PacBio reads can be effectively corrected (yet with a significant
computational effort) in order to obtain highly accurate sequences.

Oxford Nanopore. Nanopore-based technologies are able to detect nucleotides while
a DNA molecule passes through a nanopore (i.e., a nano-scale hole) by measuring their
response to an electrical signal. Like PacBio’s SMRT, nanopore technologies have the
potential to be extremely fast while using a small amount of input material (remember
that amplification is not needed in SMS) [157].

Oxford Nanopore is currently developing and commercializing different devices able
to analyze single molecules such as DNA, RNA, and proteins, using nanopore sensing
technologies. More precisely, an ionic current flows through a nanopore (by setting a
voltage across it) and the characteristic current’s disruption — due to nucleotides passing
through/near the pore — is exploited to identify a target molecule [42,76,171].

Like other SMS technologies, the expected advantages of nanopore-based sequenc-
ing are long reads, high scalability, low costs, and small instrument size (e.g., Oxford
Nanopore’s MinION sequencer, which is being released through an early-access program,
is a pocket-sized portable device). This technique however is not exempt from the high
error rates (between 5 and 40%) [66] typical of SMS implementations and, hence, from
a (computationally expensive) mandatory error correction pre-processing.

1.2 Coverage, read length and assembly contiguity

In a sequencing process reads are randomly sampled (extracted) from a genome. Due
to their very small length (w.r.t. the DNA molecules), it is clear that extracting a
high-enough number of them is a necessary condition in order to reconstruct most of
the genomic sequence (even in the absence of repeats). As a matter of fact, in the
best case scenario, in case some regions of the genome were not sufficiently covered, the

1.2. Coverage, read length and assembly contiguity 19

assembly would consist of a set of sequences, named contigs [169]. Moreover, a high-
enough coverage does not only increase the contiguity of an assembly but also improves
accuracy: a single read might have an error rate of 1%, while an 8-fold coverage has an
error rate as low as 1071¢ when eight high-quality reads agree with each other [158].
The coverage ¢ of the sequencing process can be defined as the average number of
reads covering each single nucleotide of the genome (i.e., extracted from that locus).

Definition 1.1 (Coverage). Let n be the number of input reads, be their length, and
|g| be the genome size. The (sequencing) coverage c is defined as

nl

c=—.
gl

The notation c¢x is often used to indicate that g has been sequenced with coverage
c. Since the genome size might be unknown, in practice, a rough estimate of |g| can
be computed analyzing, for instance, the k-mer spectrum (i.e., the distribution of the
substrings of length k contained in the input dataset) or using flow cytometry.

Sequencing coverage, however, is not the only parameter influencing the assembly
pipeline. Sequencing distribution and read length are also extremely important. In 1988
Lander and Waterman proposed a model [91] applicable to shotgun sequencing. More
precisely, the two fundamental parameters involved in this study are

e the read coverage c,

e the length ¢ required to detect an overlap between two reads extracted from the
same genomic locus.

Assuming that the probability one of the n reads starts at a specific position is very
low, Lander and Waterman formally proved the following results:

i. the expected number of contigs is @c -e” 7,

ii. the expected contig length is l(ewff1 +(1-0)),

where e is the Napier’s constant and ¢ is the maximum read fraction not involved in an
overlap, that isoc =1 — % Figure 1.5 depicts the expected number and length of contigs
as a function of coverage.

Using Lander-Waterman model in the context of high-throughput short-read sequenc-
ing, however, the coverage needed in order to expect long contigs might be underesti-
mated. Previous results, in fact, assume that sequencing is a Poisson process. While
this assumption makes sense with a sequencer able to produce a low coverage of long
and accurate reads (e.g., Sanger), this hypothesis is no longer valid for NGS and TGS
sequencing projects. In NGS data-sets, for instance, errors, repeats and other complicat-
ing factors often require a coverage as high as 100x in order to deal with the assembly
of large and complex genomes [65] (much greater than the one computed with the afore-
mentioned model). Nagarajan and Pop [126] tried to explore the connections between
repeat complexity, (short) reads, overlap lengths and coverage. Specifically, they showed
how a short read length increase the difficulty of the problem and also proved several

20 1. Preliminaries

104

—0.75 —0.50 — 0.25

—0.75 — 0.50 — 0.25

contig number
—
average contig length

coverage coverage

(a) Expected contig number as function of (b) Expected contig length as function of cov-
coverage and expressed as a multiple of #. erage for [= 500.

Figure 1.5: Lander-Waterman statistics for different values of %, that is the minimum
portion of a read needed to detect overlaps with other reads.

hardness results for the assembly problem. The inaccuracy of the long TGS reads, in-
stead, demands a higher coverage for the preliminary error-correction phase. However,
once such reads are corrected, the hypotheses might be used in order to consider a lower
coverage for the assembly.

22

1. Preliminaries

Sequence alighment

Before diving into the main matter of this dissertation, we briefly outline the algorithms
and data structures commonly employed within the assembly process. As we will report
later (starting from Chapter 4), the development of clever methods allowed, first, to
obtain practical solutions to the “easier” assembly of Sanger reads and, later, to effi-
ciently handle the newer challenges imposed by the successive generations of sequencing
technologies. Specifically, two major tasks became of critical importance: the efficient
processing of large datasets of very short reads, and the use of error-rich sequences to
improve the assembly’s quality. In the last decade, this translated into the develop-
ment of very effective theoretical and practical methods which were able to cope with
such large amounts of error-prone data. As far as genome assembly is concerned, the
aforementioned tasks are usually tackled by employing advanced data structures (e.g.,
succinct indexes, fast-lookup hash tables) and algorithms that often take advantage of
the capabilities of the underlying hardware.

One critical stage of the assembly process, that is affected from the large amount of
data provided by next-generation sequencing technologies, is sequence alignment. The
task consists in finding regions of close similarity between a query sequence and a set of
target sequences. When the number of searched sequences is huge and/or the target is
too large, the alignment process becomes computationally challenging. For this reason,
in practice, the problem is usually addressed by building an index from the data in order
to perform searches in a (space and time) efficient manner.

In this chapter we will outline some of the most important methods and data struc-
tures which are used to solve the alignment problem. Specifically, in Section 2.1 we
provide some preliminary definitions, in Section 2.2 we describe the most important
suffix-based data structures, and in Section 2.3 we describe some alternative methods
particularly suited for the inexact alignment problems.

2.1 Fundamentals of the alignment problem

Let X be a finite alphabet and ¥* be the set of all strings over it. Specifically, we will
consider ¥ to be defined as the DNA alphabet (i.e., {A,C,G,T}), although the algorithms

24 2. Sequence alignment

and data structures we are going to outline simply require |X| > 2.

Given a generic string s € ¥*, we denote its length by |s| and its ith character with s;
(or s[i]), where i € {1,...,]|s|}. Given two indices %, j such that 1 <14 < j < |s|, we define
the sub-string of s from the ith to the jth character (included) as s; ; = s;8;41---5; (or

s[i, j])-

Definition 2.1 (The alignment problem). Let p,t € ¥* be two strings and consider a
distance function ¢ : X* x ¥* — R. The alignment problem is defined as finding the
following set:

T={(i,4) | 0(ptiy) <k AN 1<i<j<l|t|},

where k € R is the maximal allowed distance between two aligned regions. In other
words, we want to find all the positions (or occurrences) of those sub-strings of ¢ which
are similar (yet not necessarily equal) to p according to 4.

In general, for £ > 0 the problem is usually referred to as finding an approzimate
alignment and, in our scenario, it is the most interesting one due to the fact that
the strings we want to process are affected by errors. Moreover, in DNA sequence
alignment, ¢ is commonly defined according to two metrics: the Hamming distance and
the Levenshtein (or edit) distance.

The first one simply represents the number of mismatches (i.e., differences) between
two strings a and b. Formally, the Hamming distance dg : %™ x 3" — N is defined
as dg(a,b) = X7 1 h(a;, b;), where |a| = |b] = n, h(z,y) = 1if z # y, and h(z,y) =0
otherwise. The main downside of such a metric is that it can be used on equal-length
strings only. However, it has been particularly adopted to tackle the alignment of short
reads (e.g., Illumina) [182], as they are much less affected by insertion/deletion errors.

The Levenshtein distance, instead, is tightly related to the representation of an
alignment as a list (string) of operations (i.e., matches, insertions, deletions, and sub-
stitutions) that can be “executed” as a program to convert a sequence into another one.
In this way, the edit distance dg : ¥* x 3* — N can be simply defined as the minimum
number of edit operations needed to perform such a transformation (matches excluded).
In practice, to each edit operations are also associated specific costs and the goal of the
alignment problem usually becomes finding alignments which optimize the cumulative
cost, of the edit string.

Alignment methods can be further divided into two main categories: global and local
algorithms. The former consists in finding an optimal edit string which transforms an
entire sequence a into an entire sequence b. The latter, instead, involves finding optimal
alignments between an entire sequence a and portions of a sequence b (or maximal align-
ments between portions of both sequences). Furthermore, a special case is represented
by semi-global alignments which are constrained to the start and/or to the end of one
of the sequences. When we seek an alignment which is bonded to both the start and
the end of either one of a pair of sequences we refer to an overlap detection problem,
that is, the search of optimal prefix-suffix alignments above a certain length threshold
within a collection of input strings.

The Needleman-Wunsch [129] and the Smith-Waterman [164] algorithm are well-
known dynamic programming methods that allows to compute global and local optimal
alignments, respectively. A semi-global alignment can be computed simply with a vari-
ant of the Smith-Waterman algorithm.

2.2. Suffix-based data structures 25

2.2 Suffix-based data structures

2.2.1 Suffix tries and trees

Suffix tries. A suffiz trie (or, simply, trie) is a data structure that stores all the
suffixes of a string. Formally, a suffix trie of a string t = t1t5 - - - ¢, is a rooted labeled
tree with the following properties:

e cach edge is labeled with a letter from 3;
e any two edges leaving the same vertex have distinct labels;

e cvery suffix of ¢ (i.e., ¢; , for i = 1,...,n) corresponds to a unique path from the
root to a leaf.

In the above definition there is a problem when a suffix of ¢ occurs as a prefix of a
different suffix. In order to avoid that, a special character $ ¢ % is added at the end of
t.

Suffix tries allows us to determine whether a string p occurs (exactly) within ¢ in
O(|p|) time by visiting the trie from the root and checking whether there is a path which
spells p or not. The main drawback of tries, however, is the space complexity which is
proportional to n? (and hence not viable for many biological applications)

Suffix trees. An improvement over tries has been brought by suffix trees. As a matter
of fact, this data structure not only allows to search for a pattern in time proportional
to |p| but also occupies a linear amount of memory. Another remarkable peculiarity of
suffix trees is the possibility to build them in linear time. Peter Weiner was the first
to provide a solution [189]. Nevertheless, Esko Ukkonen later devised a conceptually
simpler algorithm [179] which paved the way to a number of successful applications in
bioinformatics. Ukkonen’s algorithm has been also preferred in practice due to its lower
memory requirements and for the on-line construction of the suffix tree. More in detail,
a suffiz tree is nothing but a compact representation of a trie and, in order to achieve
the linear-space complexity, edges of linear paths are compressed into a single one which
additionally stores two indexes on ¢ (to avoid storing the actual sub-string).

Despite the optimal theoretical complexity, the major downside of such an index is
that it requires more memory than the actual string. As a matter of fact, most space-
efficient implementations in bioinformatics use 1217 bytes per nucleotide (impractical
for large-scale applications).

2.2.2 Suffix arrays

In 1990 Manber and Myers introduced suffix arrays — a space-efficient alternative to
suffix trees — and described the first algorithms for their construction and use [107].
The suffix array SA; of a string ¢ can be simply seen as a sorted list of all suffixes
of t. More formally, it is an integer array of size |t| = n and such that SA.[i] = j if and
only if ¢;,, is the ¢th suffix of ¢ in ascending lexicographic order.
A basic implementation allows to build a SA; in O(|t|) time and requires only 4 bytes
per character (a significant improvement over suffix trees). Unfortunately, the search

26 2. Sequence alignment

for exact occurrences of a pattern p is based on a simple binary search and, hence,
proportional to |p| - log|t|. Nevertheless, it is possible to get rid of the log|t| factor by
enhancing suffix array with an additional data structure which stores the information
about the longest common prefizes (LCP). In this way, finding pattern occurrences can
be carried out in O(|t| + log |t]) [87], without compromising space efficiency. Moreover,
it has been also showed that suffix arrays can substitute each suffix tree algorithm and
solve the same problems with the same computational complexity [10]. This last result
has been achieved with a sophisticated implementation of the suffix array (plus the LCP
structure) characterized by a slightly larger memory footprint.

Even though the canonical implementation of suffix arrays is not asymptotically
optimal due to the logarithmic factor, it is worth mentioning that operations performed
on this data structure are usually faster compared to suffix trees. This is mainly due
to the fact that the logarithmic factor is small in practice and to the improved cache
locality of the array.

2.2.3 The Burrows-Wheeler transform

Given a string ¢, the Burrows-Wheeler transform (BWT) [29] can be defined as a per-
mutation BWT; of t’s characters. The BWT has two fundamental properties making it
interesting for text-processing purposes:

1. it is lossless: from BWT; it is possible to easily reconstruct ¢,

2. it can be highly compressible.

In order to build BWT; it is assumed that a character $ ¢ ¥ had been appended at the
end of t. Consider now a square [¢| X [t| matrix M where rows are characterized by all
the cyclic permutations of ¢ sorted by (ascending) lexicographic order. The last column
of M defines BWT; (i.e., BWT;[i] = M3, [t], for i € {1,...,|t]}).

It is worth to observe that, as the BWT sorts repeated sub-strings into contiguous
intervals, the transformed string is likely to contain runs of repeated symbols. This
allows the efficient compression of BWT; using, for instance, a run-length encoding al-
gorithm. This strategy proves to be particularly effective for compressing high-coverage
DNA sequencing data as the length of the character (nucleotide) runs depend on cover-
age [161].

Another interesting property of BWT; is that it can be defined in terms of SA,.
Formally, given an element SA,[i] = j of the suffix array, then

BWT [Z] . tj—1 if 7 >1,
e $ otherwise.

From a practical point of view, recently, Hon et al. [74] showed that the BWT of
a human genome can be computed with just O(n) bits of working space and using up
to 1 GB of RAM. A slightly better space occupancy could be achieved with the recent
result from Policriti et al. [143] which uses about 2.6 bits per input symbol.

2.3. Seeds and fingerprints 27

The FM-index.

Ferragina and Manzini obtained a major improvement over suffix-based indexes with
the definition of the FM-index [58]: a succinct data structure to be coupled with the
Burrows-Wheeler transform and suffix arrays, characterized by a 3n-bit footprint per
character.

Specifically, the FM-index allows to efficiently compute the number of occurrences
of a pattern p in a string ¢ in O(|p|). This result is achieved with the so-called backward
search algorithm which is based on the key observation that occurrences of p in ¢ induce
an interval in S A; which can be defined using two pre-computed structures:

e (C(a): the number of occurrences of lexicographically smaller characters than a € ¥
within ¢.

e Occ(a,i): the number of occurrences of a in the sub-string BWT;[1, 1].

Exploiting these two structures the positions where p occurs can be found in O(|p|+ k),
where k is the number of p’s occurrences.

From a practical point of view, sophisticated implementations of this compressed
index allows to store the entire human genome in 2 GB.

2.2.4 Suffix-based alignment in practice

All the data structures outlined in this section are certainly well suited for the exact
alignment problem. Unfortunately, they are less able to cope with the inexact variant.
As a consequence, short-read alignment (as well as overlap detection) is usually carried
out either searching for exact occurrences of small sub-sequences, or by generalizing
known algorithms, using strategies such as backtracking and other hybrid techniques, in
order to deal with mismatches (but also risking to compromise the run time in practical
scenarios).

Well known BWT-based tools are BWA [95], BWA-SW [96], BOWTIE [92], SOAP2
[100], BLASR [34], BWA-MEM [94], and BW-ERNE [145]. It is worth to notice that
BWA-MEM, BWA-SW, and BLASR — while making use of a FM-index — are mainly
based on a (hybrid) seed and extend approach.

2.3 Seeds and fingerprints

Exact algorithms are usually not well suited to find approximate alignments. For this
reason, most tools commonly perform the search using small ezact seeds (i.e. fixed-
length sub-strings extracted from the sequences) or fingerprints. Hereafter we present
some of the techniques based on this approach and that are related to one of our main
results which will be presented in Chapter 7.

2.3.1 Seed-based alignment

The first stage of seed-based algorithm is to detect seeds shared by two or more se-
quences: this allows to quickly identify a limited subset of putative approximate align-
ments. Seeds are extracted from the input sequences and, typically, indexed in hash

28 2. Sequence alignment

tables or properly-filtered sorted tables. Matching seeds are subsequently extended using
sophisticated (yet slower) implementation of dynamic-programming algorithms, such as
Smith-Waterman [57,175]. This approach is also referred to as seed and extend [60].
Here we will outline some of the hash-based strategies/tools commonly employed in
sequence alignment.

Very popular seed-based tools are BLAST [13], SSAHA [131], BLAT [89], Novoalign
[72], and DALIGNER [124].

Spaced seeds. A common heuristic for the approximate alignment problem is to
look for high-scoring matches starting from exact seed hits. Such hits are the first
evidence of a putative larger similarity between sequences. However, it has been shown
that allowing few mismatches in seed hits can increase sensitivity without any loss of
specificity [31,105].

In general, a seed can be defined from a binary string p, called seed pattern, which
defines what positions of the seed require a match (i.e., p; = 1) and those for which we
do not care if they match or not (i.e., p; = 0). A seed pattern of length m that contains
at least a do-not-care position between two matching positions is called spaced seed and
its weight is defined as w(p) = X", p;.

To get the idea of the improved sensitivity of these seeds, consider two sequences both
20 bp long and with 70% similarity (i.e., the probability of a match is 70%). Using 5-bp
exact seeds, the chances of getting at least one hit is approximately 73%. Instead, using
the pattern 110111, which has the same weight but allows for a mismatch, increases the
probability of having at least a hit to 80%.

However, the performance of a spaced seed strictly depends on how its pattern is
defined: two distinct equal-weight spaced seed which differs in just one do-not-care po-
sition might have different sensitivities on sequences with different degrees of similarity.
A study on how seed sensitivity can be computed has been done in [28].

Known alignment tools based on spaced seeds are LASTZ [69], ZOOM [101], PerM
[37], SToRM [132], and SpEED [84].

2.3.2 Fingerprint-based comparison

Fingerprinting can be defined as a process which uses cleverly-designed hash function
to map elements of an arbitrarily large domain I/ to much smaller objects (i.e., the
fingerprints). This general idea typically introduces two major benefits in large-scale
applications: efficient comparison between (possibly large-size) elements and data com-
pression. However, it is also affected by the problematics of hash functions: collisions,
among them. For this reason it is of utmost importance to design a fingerprint algorithm
which diminishes the chances of collisions (i.e., false positives).

In this section we are now going to outline some interesting fingerprint-based tech-
niques which also found applications in bioinformatics and, particularly, in sequence
comparison.

Rabin-Karp fingerprinting. The idea of fingerprints has been adopted to solve the
pattern-matching problems since the Rabin-Karp algorithm [86]: the rationale of the
method is to replace computations on fixed-length strings with (much more efficient)

2.3. Seeds and fingerprints 29

computations of much shorter strings (i.e., the fingerprints). The key idea of the algo-
rithm is to see, without loss of generality, a binary string x = z1xs...x, as the binary
representation of the number

n

h(z) = Z (zi-2"7").

=1

In this way, it is possible to define a collection of fingerprint (or hash) functions h,,(x) =
h(z) mod m. Searching the occurrences of a pattern p of length n within a string s of
size |s| > n can be done as follows: iteratively compare h,,(p) with hy,(s[¢,i +n — 1])
(i=1,...,|s|—n+1) and, if such values are equal, perform a string comparison between
that sub-string and p to check whether it is an actual occurrence or a false positive. The
performance of such an algorithm depends on two main aspects: the choice of m and the
efficient computation of h,, for successive sub-strings of s. For instance, setting m to a
properly-chosen prime (e.g. a Mersenne number) diminishes the chances of hitting false
positives. Moreover, choosing a value of m which is small enough to fit in a computer
word allows to perform fingerprint comparisons in O(1). Finally, using also a rolling-
hash scheme to compute h,,(s[i,j]) from h,,(s[i — 1,7 — 1]) in constant time yields to
an overall O(|s|) complexity.

An extension of such a fingerprint technique, which also account for inexact searches,
has been introduced in rNA [182] (a software package which is currently known as
ERNE). More precisely, it adopts a hybrid strategy which splits the pattern in ¢ blocks
while computing, for each of them, a hash value. The peculiarity of this method is
the employment of Hamming-aware functions designed to restrict the search of matches
on a Hamming sphere of radius O(k) “centered” at a hash value h(p) of a pattern p,
instead of the entire Hamming sphere of radius k. Formally such functions, as presented
in [144], are defined as follows:

Definition 2.2 (Hamming-aware function). Let w be the word size of the computer
architecture. A hash function A is said to be Hamming-aware if there exist

e aset Z(k) C X% such that |Z(k)| € O(c*w¥) for some constant ¢, and
e a binary operation ¢ : X% x X% — 3% computable in O(w) time,

such that if p € 3" then the following holds:

{h@) 1P €x" Adulp,p) <k} C {p(h(p),2)]z 2(k)}

The use of Hamming-aware hash functions hence allows to search the entire Hamming
sphere of p efficiently. Specifically, ERNE computes fingerprints of blocks with at most
k/t mismatches with respect to the original block. Finally, fingerprints are looked up
within the hash index in order to seek for putative occurrences of the pattern.

MinHash. A different fingerprinting idea, employed recently in DNA sequence com-
parison, exploits a dimensionality reduction technique called MinHash [27] to create a
more compact representation of sequences. Specifically, given a set S = {s1,...,8,},
m distinct hash functions h® : ¥* — N (for i = 1,...,m), the fingerprint Hg of S is

30 2. Sequence alignment

a m-length vector such that Hgli] = hl,;,.(S), where hi . (S) represents the minimal
value returned by h’ applied to all the elements of S. Moreover, this technique allows
to efficiently estimate the Jaccard’s similarity between two sets.

In practice, a tool named MHAP [21] successfully applied this idea to detect overlaps
among PacBio reads. More precisely, MHAP first considers, for each input sequence r,
the set R consisting of all the k-length sub-strings of r. The fingerprints Hpr are then
computed and, using a sort-and-merge approach, MHAP then finds pairs of fingerprints
sharing a minimum number of elements. Such identified pairs are then processed to
check whether the two corresponding sequences overlap.

Bloom filters. A Bloom filter [23] is a space-efficient probabilistic data structure
which can also be seen as a fingerprint. It is particularly useful to test whether an
object of a domain U belongs to a set or, more generally, to efficiently compare sets.
Formally, a bloom filter is a tuple (B, m, hy, ..., hy), where B is a bit vector of size m
and h; : U — {1,...,m} are k distinct hash functions that independently and uniformly
map each element of U to a random integer over the range [1,m]. Given a Bloom filter
B, the following two operations are defined:

e Insertion. an element a € U is added to B by setting to 1 all the bits of B
corresponding to the positions h;(a) fori =1,... k.

o Membership query. an element a € U belongs to B if and only if B[h;(a)] =1 for
each i € {1,...,k}.

It is straightforward to see that checking whether an element belongs to the set does
not produce false negatives (the removal of elements is not allowed). False positives,
instead, are expected to occur with a probability p related to m, k and the number of
inserted elements n. It is possible to prove that, given m and n, the value of k that
minimizes such probability is

m
k~—In2.
n

Moreover, assuming k is set to this optimal value, it is possible to show that

nlnp
(In2)2 -~

m= —

Thus, given a false positive probability p and an estimation of the (to be) inserted
elements n, suitable values of k£ and m can be computed.

Due to the non-optimal space occupancy, a non-constant time complexity [135], and
the absence of a delete operation, several variants have been proposed in literature.
However, to the best of our knowledge, the use of Bloom filters in assembly-related
methods has been mainly restricted to its classical implementation. Applications in
bioinformatics involve distributed read alignment [117], sequence classification [172], k-
mer counting [114], error correction [71,166], and sequence-graph compression [38,136].

Theoretical de novo assembly

The de novo genome assembly problem (DGAP) is the task of reconstructing the se-
quence of a genome, starting from a (usually large) set of randomly-extracted short
sequences called reads. Many efforts have been done in order to address the problem of
reconstructing a genome from a theoretical perspective [112,126,137].

In 1984, Peltola et al. presented the first application of the NP-hard shortest common
super-string problem (SCSP) to solve DGAP [137], suggesting a solution based on the
Overlap-Layout-Consensus (OLC) paradigm. The NP-hardness of the SCSP formulation
led also to develop several approximation algorithms.

However, reducing DGAP to SCSP is biologically inaccurate and, for this reason,
the assembly problem has been subsequently modeled as finding paths in graphs (built
from the reads) which better explain the input data. The main benefit of this approach
is the ability to reduce DGAP to known problems and, therefore, properly study the
computational complexity along with the use of efficient exact/approximate algorithms.
In 1995, Myers addressed SCSP problems by proposing a model based on the overlap
graph in which vertices correspond to reads and (bi-directed) edges properly encode
overlaps. DGAP was then reduced to the NP-complete problem of finding a Hamiltonian
path. In the same year, the use of de Bruijn graphs (ABG) for genome assembly was also
introduced — and later expanded by Pevzner [140] to account for the double-stranded
nature of DNA. This structure can be seen as a lossy representation of the overlap
graph and, from a theoretical perspective, it is the other face of the same coin. As a
matter of fact, in 2007, Medvedev proved the NP-hardness of finding a coherent (and
optimal) assembly path both in overlap/string and de Bruijn graphs [112]. Due to the
intractability of both models and the presence of sequencing errors in the input reads —
which further complicate the problem — assemblers have been mostly designed to exploit
different heuristics in order to directly provide an approximate solution while also using
moderate amounts of computational resources.

Finally, in 2008, Narzisi and Mishra developed an approach based on combinatorial
optimization techniques in order to overcome the inaccuracy of heuristic methods [127].
Their idea however is limited to small-sized genomes and cannot compete with other
algorithms on large-scale data-sets.

32 3. Theoretical de novo assembly

3.1 Definitions

Let ¥ = {A,C,G, T} be the DNA alphabet and ¥ = ¥*\ {¢} be the set of all non-empty
strings over it. The complement of each character is defined as follows: A = T, T = A,
C =G, and G = C. Given a generic string s € ¥ we denote its length by |s| and the ith
character as s[i]. Given two indices , j such that 1 <7 < j < |s|, we define the substring
of S from the ith to the jth character (included) as s[i,j] = s[i]s[i + 1]---s[j]. The
reverse complement ‘s is defined by reversing s and substituting each character with its
complement. Formally, 5[i] = s[|s| —i+ 1], for i € {1,...,]|s|}.

In the following sections we will often refer to particular strings of fixed length.
More precisely, a string consisting of k characters is also called k-mer. Moreover, given
a sequence s, we define its ith k-mer by kf = s[i,i+k—1],7 € {1,...,|s|—k+1}. We may
just write k; when s is clear from the context. For a sequence collection § = {s1,..., s},
we also define the set of all its k-mers (the spectrum) as follows:

KFS)={k|s€S A ls|>k Aicl,|s|—k+1]}.

Definition 3.1 (Overlap). Let a,b € 1 be two strings such that |a|,[b] > 1. We say
that a overlaps b if and only if there exist a string z € ©1 such that:

o 1 <[z| <min(}al, [b]);

e alzy, |al] = z = b[1, 2], where z, = |a] — |z| + 1 and 2, = |z|. In other words, z is
suffix of @ and a prefix of b.

We also define ol(a,b) = |2/|, where 2’ is the longest string for which the aforementioned
constraints are fulfilled (ol(a,b) = 0 if such a string does not exist).

Notice that in the above definition we require a match between a proper suffix/prefix
and none of the two sequences can be fully contained into the other one. In case a is a
substring of b we say that a is contained in b or, equivalently, b contains a.

Definition 3.2 (Layout). Let R = {r1,...,r,} be a set of reads such that, for each
i # j, r; is not contained in r;. A layout is defined as a permutation 7 : [1,n] — [1,7]
of the elements of R and its weight w(7) is defined as

w(m) = ol (r,r(i), TW(H_U).

i=1

Intuitively, a read layout depicts a way to combine (i.e., assemble) reads in order to
possibly reconstruct the genome they were extracted from. More precisely, the recon-
struction is obtained from a layout 7 by the concatenation of the reads — following 7’s
order — and keeping only one copy of the “overlap string”. We now define the de novo
genome assembly problem as follows:

Problem 3.3 (De novo Genome Assembly Problem (DGAP)). Let R = {r1,...,7mn}
be a set of input sequences (i.e., the reads) such that, for each i € {1,...,n}, r; € ¥T
and 7; is a substring of an unknown string g € X% (i.e., the genome). The problem
is finding a layout m,; of R that better explains the observed set of reads R (¢.e., that
better approximate the unknown genomic sequence).

3.2. The Shortest Common Super-string Problem 33

Notice that the absence of containment relations in a layout of R can be assumed
without any loss of generality: contained reads can be initially omitted and “mapped”
back when the layout has been built.

3.2 The Shortest Common Super-string Problem

Based on a parsimony assumption, at the beginning, genome assembly has been ap-
proximated as finding the shortest common super-string (SCS) containing each input
sequence and it can be formally defined as follows.

Problem 3.4 (Shortest Common Super-string Problem (SCSP)). Let R = {r1,...,7mn}
be a set of input reads, find the shortest string s such that, for each i € {1,...,n}, r; is
a substring of s.

This problem can be seen as finding a Hamiltonian path of maximum weight in
a directed graph where edges represent overlap lengths between read pairs [176] or,
equivalently, finding a maximum-weight layout. The NP-hardness proof of SCSP [61] led
to study several polynomial-time approximation algorithms. Among those, a particular
attention has been put on a simple greedy approach: iteratively combine two strings in
‘R which have the longest overlap amongst all pairs until either there is only one string
or all pairs have an empty overlap. Tarhio and Ukkonen studied its performance in
terms of the “compression” achieved by a super-string s and defined as X|r;| — s. In
particular they showed the compression achievable by the greedy algorithm is at least
half of the one of an optimal solution and conjectured a 2 approximation factor [176].

Even though minimizing output length (using different constraints) is a very popular
choice, from a biological perspective, an accurate approximation of the genome is not
guaranteed. In particular, for SCSP we can observe that:

i. the double stranded nature of DNA is not taken into account;
ii. input sequences are assumed to be exempt from errors;
iii. repeated sub-sequences are compressed in a single one.

The last point is probably the most significant one, as there is no biological reason for
collapsing repeats. In fact, doing so would likely yield wrong assemblies, as it is not
uncommon that repeated sub-sequences are found in multiple copies at different points
of a genome.

3.3 Overlap Graphs

An overlap graph is typically defined as a graph where vertices correspond to reads and
edges depict overlap relations. In order to take care of the two DNA strands, Kececioglu
and Myers introduced a very intuitive representation of overlaps in a graph [88]. First,
notice that there are only four admissible overlaps between two sequences a and b:

i. a suffix of @ matches a prefix of b (a overlaps b);

ii. a prefix of a matches a suffix of b (b overlaps a);

34 3. Theoretical de novo assembly

——= O—C0 —

Figure 3.1: Bi-directed edges defining overlaps.

iii. a suffix of a matches a prefix of) (a overlaps @)7
iv. a prefix of a matches a suffix of b (3 overlaps a);

We denote any of the previous cases with @ = b. Then, an overlap can be modeled as a
single bi-directed edge by adding an oriented arrow at both the endpoints which also tells
us whether to use the actual read or the reverse complement. More specifically, consider
two reads r;, r; such that r; = r; and let e be an edge between the corresponding
vertices. The direction of the arrow on 7;’s side of e is depicted in Figure 3.1 and is
defined as follows:

e if the overlap involves r;’s suffix (i.e., cases i. and iii.), it points away from r;;
e if the overlap involves r;’s prefix (i.e., cases ii. and iv.), it points towards r; .

Entering a vertex corresponding to r; with an arrow pointing towards it tells us to
consider the read r;. If the arrow points away, instead, 7; must be used. The same
reasoning also applies to r;.

Hereafter, we might also use r; = r; to denote a bi-directed edge e between two
vertices r; and r;.

Definition 3.5 (Overlap graph). Let R = {ry,...,r,} be a set of reads such that, for
each ¢ # j, r; is not contained in r; and let £ € Ny be an overlap threshold. The
overlap graph is a bi-directed weighted graph OG*(R) = (V, E,w) such that:

o V="R;

e E={el|le=(rir;) N r;=r; A ol(e) >k }, where ol(e) denotes the length of
the specific overlap modeled by e;

o w(e) = |r;| —ol(e), where r; = Tj.

It is worth noticing that the weight of and edge e is defined with respect to the
direction e is visited and that more than one type of overlaps — and hence more than
one edge — might arise between two reads.

Due to the non-canonical representation of edges, we still have to define how such a
bi-directed graph needs to be visited. Formally, we introduce the notion of read-coherent
path (or walk).

Definition 3.6 (Read-coherent path). Let R = {r1,...,7,} and OG*(R) = (V, E,w)
be an overlap graph. A read-coherent path is defined as a sequence o of m vertices and
m — 1 edges such that:

3.3. Overlap Graphs 35

€1 €2 €3 €m—2 em—1
@ U =T VT, =Ty = = T = T
e for each z € {2,...,m}, the arrows of edges e, and e,_; on r;_'s endpoint have

opposite directions.
The weight of o is defined as w(o) = Zz_ll w(e;).

The problem of seeking a layout from OG*(R) can be modeled as a special case of
the traveling salesman problem (TSP).

Problem 3.7 (Traveling Salesman Problem (TSP)). Let G = (V, E,w) be a weighted
graph (not necessarily complete). Find a minimum-weight Hamiltonian path, that is, a
path o which visits every vertex v € V' ezactly once and whose weight w(o) is minimum.

In the overlap graph framework, indeed, we need to seek for a minimum-weight
read-coherent Hamiltonian path.

3.3.1 String Graphs

As Myers pointed out in [122], the size of OG¥(R) can be dramatically reduced by
removing redundant nodes and edges, while preserving all the information encoded in
the input data-set.

More precisely, in addition to contained reads, the idea is to remove transitively
inferred edges. As a matter of fact, included reads just provide redundant information
for the assembly process and they could easily be excluded from the graph construction
(they are however still used to estimate the copy numbers of repeated substrings). Given

three reads/vertices x,y,z € V, an edge e € E such that « = 2z can be transitively

inferred if there exist a read-coherent path = 2 Y 2, with the same arrow orientations
of e; and es on = and z endpoints, respectively. In simple terms, © = z can be deduced
from the overlaps * = y and y = z. For this reason e is superfluous and with its
removal we do not lose any information.

Another common operation (yet not essential) — performed after the transitive re-
duction — is a sort of compression and consists in replacing unambiguous paths with
singleton vertices/edges which account for the corresponding (again, unambiguous) path
strings. It is worth noticing that this compression greatly simplifies a string graph and
also retains its former topology. These merged sequences, in fact, possibly represent
(maximal) DNA fragments unequivocally resolved by the reads. This operation is also
called unitigging and merged strings are also referred to as unitigs [123].

Definition 3.8 (String graph). Let R = {r1,...,r,} be a set of reads such that, for
each i # j, r; is not contained in r; and let £ € N5 be an overlap threshold. The string
graph is a bi-directed weighted graph SGF(R) obtained from OGF(R) by removing
transitive edges.

A string graph can be computed in polynomial time [122]. However, the mere pres-
ence of non-redundant edges force us to consider a different formulation of DGAP in
SGF(R). The assembly problem can then be formulated as finding a minimum-weight
generalized Hamiltonian path in SG*(R). Nagarajan and Pop provided a reduction
from SCSP, hence demonstrating the NP-hardness [126].

36 3. Theoretical de novo assembly

Actual genome sequence
I S S— I I I I I

Possible mis-assembled sequence
[I I [I I | I E—

O—»> @)
SGH(R)

Figure 3.2: Example of possible mis-assemblies in the string graph framework. Nodes
in SG*(R) represent unitigs. A Hamiltonian path does not necessarily correspond to a
biologically accurate assembly.

Problem 3.9 (Generalized Hamiltonian Path). Let G = (V, E) be a graph (not neces-
sarily complete). Find a path o which visits every vertex v € V' at least once.

Finding a generalized Hamiltonian path on SG*(R) (or, equivalently, a Hamiltonian
path on OG*(R)) is indeed a better approximation of DGAP with respect to solving
SCSP. Repeats, however, might still get collapsed or lead to wrong genome reconstruc-
tions (see Figure 3.2).

Exploiting included reads, Myers also proposed a statistical method to estimate
the number of times an edge should be accounted. More precisely, edge traversals are
first partitioned in three categories: exactly once, at least once, and optional (i.e., any
number of times). Solving a (polynomial) minimum-cost network flow problem it is then
possible to estimate a putative traversal count. This lead to model DGAP as finding
a minimum-weight path such that edge constraints are fulfilled (again, an NP-hard
problem [112]).

A detailed overview of the algorithms based on this framework will be presented in
Section 4.1.2.

3.4 de Bruijn Graphs

Since its introduction, the Overlap-Layout-Consensus paradigm has been the classical
approach for fragment assembly [64,88,169]. The main drawback of such a method
is that finding pairwise overlaps among sequences is computationally expensive and
both the SCSP and the overlap graph formulation have been proven to be NP-hard
problems. This led to the introduction of many (error-prone) heuristics in order to seek
for computational efficiency.

An alternative to the OLC paradigm is given by the de Bruijn graph [47] (dBG)
framework as it models the genome assembly problem into finding an Eulerian path in
a graph. de Bruijn graphs were first exploited in this context in 1995 by Idury and
Waterman [83] which defined the so-called spectrum graph (i.e., a graph built from k-
mers). More precisely, they modeled fragment assembly as a sequencing-by-hybridization

3.5. Constraint Optimization Problem 37

r1 TATCTGGA AGGA

ro ATCTGGAA [CTGG]+{TGGA+{GGAAF-[GAAT]

rg TCTGCAAT _

ry TATGCAAT [TATC|+{ATCT}+{TCTG] [AATC+{ATCCJ]+{TCCC]
5 CTGCAATC

76 AGGAATCC [CTGC{TGCA-[GCAA[CAAT]

7 GCAATCCC

TATG~ATGC

Figure 3.3: de Bruijn graph dBG*(R) example, where R = {r1,...,r7} and k = 5.

problem by replacing every read with the set of all its k-mers. Formally a de Bruijn
graph can be defined as follows:

Definition 3.10 (de Bruijn graph). Let R = {ry,...,r,} be a set of reads and k > 2
an integer constant. The de Bruijn graph is a directed graph dBG*(R) = (V, E) such
that:

o V=KFYR),
o E={(v,v)) | vi,v; €V AN v[2,k—1] =v;[1,k—-2] }.

In other words, dBG¥(R) is build such that nodes are distinct (k — 1)-mers and
edges correspond to distinct k-mers. More precisely, an edge is put between a pair of
(k—1)-mers which have the same first and last k — 1 bases, respectively (see Figure 3.3).
For instance, an edge (v;,v;) € E represents the k-mer v; - v;[k — 1].

Breaking reads into shorter fragments might seem counterproductive, because the
long range information provided is lost. However, choosing a high enough value of k
limits this issue and brings to the table the computational advantages that allowed
dBGs to cope with the large amount of reads provided by NGS technologies, as the
computationally expensive overlap detection among reads can be avoided. If we do not
take into account errors, the genome can hence be reconstructed by properly choosing
a path which visits every edge (k-mer) exactly once (i.e., an Eulerian path).

The main drawback of this framework is that paths describing an assembly might
be unsupported by any read, in contrast to the overlap/string graph in which a path
consistently represent an assembly. As a matter of fact, a de Bruijn graph could contain
several Eulerian paths which do not correspond to a correct genome reconstruction.
In order to cope with this issue, Pevzner et al. [140] proposed to model the assembly
problem as finding an Eulerian super-walk that actually contains each read-path (i.e., a
path that “spells” an actual read). Unfortunately, this more precise formalization has
been proven to be NP-hard [112].

3.5 Constraint Optimization Problem

Despite being both the OLC and the dBG frameworks well-defined theoretical formula-
tions, they do not model properly the de novo genome assembly problem, as a solution
might still not be biologically correct. The NP-hardness also led to the development of
many heuristic approaches which usually yield approximate results.

A different theoretical framework has been proposed by Narzisi et al. [127] and it
aims at solving DGAP while being as much biologically consistent as possible. More

38 3. Theoretical de novo assembly

precisely, they acknowledge the difficulty of the problem and directly model genome
assembly as a constrained optimization problem (COP). The idea is to employ a search
which could potentially consider exhaustively all possible read layouts, while limiting the
(exponential) solution space with a branch and bound schema which does not explore
further unlikely layouts.

Problem 3.11 (Constrained DGAP). Let R = {r1,...,7,} be a set of reads and let ¢
be an error-rate threshold. Find an assembly ¢’ based on a read layout m such that:

® 7(;) can be mapped on ¢’ with at most - |ry(; | differences for each i € {1,...,n};
e the overall overlap score given by all reads overlapping in 7 is optimized;
e the insert size of paired reads is consistent;

e the observed distribution of restriction enzyme sites is consistent with the distri-
bution of a provided experimental optical map.

The method is then based on the optimization of well-defined score functions, each
one defining a feature that we expect from a good assembly.

[l

Real World Genome Assembly

Practical Assembly Strategies

The shotgun process allows to obtain reads uniformly distributed along a target molecule.
Whole-genome shotgun (WGS) sequencing, in particular, refers to sampling reads from
genome’s chromosomes. Hence, WGS assembly consists in the reconstruction of se-
quences up to the chromosome length. Given the possibility to sequence a large amount
of reads in parallel, this approach has been the most used strategy in many sequencing
projects and, due to the computational complexity results outlined in Chapter 3, assem-
bly tools employed different heuristics in order to approximately solve the difficult task
of genome assembly. The NP-hardness of each read-coherent formalization, however,
should not frighten us. As a matter of fact, approximate methods achieved satisfactory
results in many projects and this might indicate that the theoretical difficulty could be
effectively and efficiently overcome in practice.

In an ideal world, assemblers would output a number of sequences fully representing
chromosomes. In the “real world”, though, de novo assembly methods need to take into
account several factors which make the problem even more difficult than the one formal-
ized in Chapter 3. First, reads might contain sequencing errors (or parts of clone/vector
sequences) and this often requires an error-correction phase. Second, genomes may con-
tain repeated sub-sequences as well as several haplotypes. These biological traits, along
with uncorrected errors, yield peculiar — and more complex — graph structures and de-
mand the employment of ad hoc solutions in order to take them into account. For these
reasons, an assembly typically consists of a (large) collection of contiguous sequences
named contigs. The core part of the assembly process is usually carried out with greedy
or graph-based approaches (such as those presented in Sections 3.3 and 3.4). Specifically,
tools are often classified into four main categories: Greedy, Overlap-Layout-Consensus
(OLC), de Bruijn Graph (dBG), and Branch-and-Bound (B&B). In the final stages of
the assembly process, these fragments might be further ordered, oriented, and joined
into longer (gapped) sequences called scaffolds, exploiting, for instance, paired-read li-
braries. Many tools are available for this last phase also known as scaffolding. However,
they will not be covered in this dissertation and we will only focus on the core step
of the assembly process. The interested reader can find more details on this subject
in [24,46,51,62,153].

42 4. Practical Assembly Strategies

4.1 Assembly strategies

Through the evolution of sequencing technologies, algorithms have been specifically
designed to accommodate particular read lengths and error rates. For instance, the
relatively low coverage of long good-quality reads (proper of Sanger technologies) paved
the way to greedy and OLC-based assemblers.

When next-generation technologies appeared, however, all canonical assembly al-
gorithms failed to adapt. As a consequence, assemblers needed to be re-designed and
developed from scratch in order to handle the new features of NGS data (i.e., very high
coverage of wvery short reads). In this new scenario, the de Bruijn graph framework
definitely proved to be more suited than OLC and greedy methods.

Recently, the long and error-rich TGS reads brought new challenges for the assembly
process and, specifically, for the error correction and overlap detection phases. In order
to make use of such reads, hybrid pipelines were introduced in order to correct reads
using NGS technologies. Effective algorithms were devised in order to make use of the
OLC paradigm (set aside for NGS projects, yet more suited for long sequences) on such
error-prone data-sets.

In the following sections we are now going to outline the most common assemblers
developed for each of the aforementioned scenarios.

4.1.1 Greedy

In early genome sequencing projects, the number of reads produced rarely exceeded
several thousands and this led to the implementation of very simple heuristics: pick a
sequence and extend it until no further extension can be done. The sequence considered
at a certain point (which can be either a read or a contig) is extended with the highest-
score overlapping read.

It is immediately clear that the performance of greedy methods strictly depends on
the efficient computation of all (or almost all) overlaps between the chosen sequence
and the available (i.e., unused) reads. This task had been usually carried out using, for
example, hash tables. In general, for the sake of computational efficiency, a common
approach for this phase is to limit the search of overlaps to only the exact ones above a
minimum length threshold.

It is evident that such algorithms are inherently different from graph-theoretical ap-
proaches as they are based on local choices. However, they can be seen as a visit of
an implicit — and highly pruned — overlap graph where only few high-scoring edges are
kept [116]. It is also clear that this approach works better with limited numbers of reads
and low-complexity genomes, as the abundance of very similar reads may introduce a
certain level of ambiguity during sequence extension which hinders the assembly pro-
cess. The main limitation of such heuristic is its lacking of a global perspective on the
problem. As a matter of fact, genomic repeats (even short ones) constitutes a major
issue: assemblers usually fail to reconstruct them on complex genomes and they likely
introduce mis-assemblies. For this reason, the greedy method has been mostly used with
bacterial genomes.

Well known assemblers tailored for Sanger datasets are TIGR [173], CAP3 [78], and
Phusion [118].

4.1. Assembly strategies 43

TIGR. The TIGR Assembler was probably the earliest greedy assembler developed
and it was proposed by Sutton et al. in 1995. Its hallmark is the ability to detect
potential repeats by determining reads having unusually large numbers of overlaps than
it is expected (assuming a random distribution of sequencing). These putative repeats
are handled at the end of the process using stricter merging criteria.

CAP3. Tt is the third version of the CAP assembler and it introduces a certain number
of improvements with respect to other greedy implementations: it filters reads and use a
dynamic programming algorithm to compute maximal-scoring alignments only between
reads which are likely to overlap. Specific parameters are set in order to separate
sequencing errors from divergent copies of repeated sequences. CAP3, in addition, clips
low-quality regions of reads and makes use of read-pair information.

Phusion. This long-read assembler was used to assemble the 2.6-billion-base repeat-
rich mouse genome. The algorithm consists of three main phases. First, reads are
corrected and those sharing low-copy-number words are clustered. Second, clusters are
assembled independently using PHRAP [67] (another greedy assembler which makes use
of Phred quality scores). Finally, overlapping contigs are joined with the help of shared
reads and read-pair information.

The seed-and-extend framework

With the advent of NGS technologies, the number of reads in NGS projects increased
by one (or more) orders of magnitude. For this reason greedy assemblers had to be
redesigned in order to efficiently seek for overlapping reads and possibly account for
the information coming from paired reads. The greedy approach for this scenario has
been also renamed seed-and-extend but the only difference with respect to the general
algorithm used for Sanger sequencing is in the data structures employed. More in
detail, seed-and-extend algorithms often use a prefix-tree to efficiently store fixed-length
prefixes and to seek for possible extensions.

Although mitigated by the use of paired reads, the seed-and-extend framework still
fails to cope with error-rich datasets. However, this technique can be used as a pre-
processing step for NGS datasets in order to obtain Sanger-like reads that can be used
as input for an OLC assembler.

Examples of assemblers in this category are SSAKE [187], VCAKE [85], SHORTY
[75], PE-Assembler [15], and GapFiller [125].

SSAKE. Released in 2007, it is the earliest short-read greedy assembler thought for
NGS data. The algorithm of SSAKE is based on progressively seek for the longest
possible overlap between two sequences through the use of a prefix tree. More pre-
cisely, unique sequences are stored in a hash table along with the number of occurrences
in the input data-set. A prefix tree is then used to organize them and their reverse
complements. Moreover, reads are processed in decreasing order with respect to their
frequency to prevent the extension of reads containing errors. In order to minimize the
number of mis-assembly, read extension can also be stopped when ambiguities occur.
This, however, might lead to shorter contigs. SSAKE’s idea has been later improved

44 4. Practical Assembly Strategies

by SHARCGS [50] which basically adopt the same strategy but adds several pre- and
post-processing steps.

VCAKE. The Verified Consensus Assembly by K-mer Extension (VCAKE) algorithm
is based on a modification of the simple k-mer extension proper of previous tools such as
SSAKE and SHARCGS. The peculiarity of this algorithm is to work with non-perfect
overlaps in order to overcome sequencing errors (and handle polyploid organisms). This
is done by exploiting high-depth coverage and extending seeds one base at a time (using
the most commonly represented base from all overlapping reads). It is worth to mention
that VCAKE, as well as other seed-and-extend tools, has been also employed successfully
in hybrid pipelines in order to combine different sequencing technologies within a single
assembly project [149].

SHORTY. To the best of our knowledge, SHORTY is the first assembler that have
been applied on real data coming from the emerging SOLiD sequencing technology and
designed to make use of paired-end reads. In particular, SHORTY expects in input a
deep coverage of short reads and a small collection of 300-500 bp starting seeds (which
can be build using another assembly on the input data-set). As a pre-processing step,
good-quality paired reads are stored in a prefix tree along with their reverse complement.
Then, a seed is chosen and a set of neighboring paired reads (¢.e., such that one of the
two reads in a pair maps against the seed) is built. This set can be exploited in order
to extend the chosen sequence into longer contigs. This process of seed extension is
repeated as long as it is possible. The ultimate phase of SHORTY is to use again the
pairing information coming from the reads to build scaffolds.

PE-assembler. This is probably the latest seed-and-extend tool developed for whole-
genome assembly. According to its authors, PE-Assembler is capable of handling large
datasets and produces highly contiguous and accurate assemblies within reasonable time.
Differently to other contemporary approaches, it does not represent the genome as a
graph but, instead, it is based on a simple extension procedure and for this reason it is
very similar to SSAKE, VCAKE, and SHARCGS. However, the improvement on such
older tools is made by an extensive use of paired reads and parallelization. Extension
ambiguities are handled using a multiple-path approach that takes into account sequence
coverage, evidence from multiple paired-read libraries, and other features such as the
insert size distribution of paired-end reads.

GapPFiller. As opposed to the other assembly methods described up to this point,
this is a local de novo assembly tool and it is thought to reconstruct the inserts of a
paired read library. It is based on a seed-and-extend scheme in which every read is
selected as seed and iteratively extended until its mate is possibly found. The extension
is performed along with the computation of a consensus based on overlapping reads. The
search of overlaps is carried out in a very efficient manner thanks to a hash function
which guarantees a low false positive rate [182]. Moreover, the extension phase employs
peculiar clustering and trimming heuristics in order to guarantee assembly correctness.

Despite being a local assembler, the distinctive hallmark of GapFiller is to produce
long high-quality sequences which could be used as input for a whole-genome assembler

4.1. Assembly strategies 45

to enhance both contiguity and correctness of the assembly. This method can be also
exploited for structural variation reconstruction.

4.1.2 Overlap-Layout-Consensus

Assemblers based on the overlap/string graph (recall the definitions in 3.3) are usually
referred to as implementing the Overlap-Layout-Consensus (OLC) approach. As the
name suggests, the approach consists in three main phases.

First, pairwise read overlaps are computed in order to determine graph’s edges.
This is also the most computationally demanding phase of the OLC approach and, for
efficiency issues, tools usually compute the k-mer spectrum in order to index reads in a
hash table and to seek overlaps exclusively amongst reads sharing a certain number of
k-mers. It is worth to mention that for repetitive genomes this speed-up might not be
of great help since the number of reads sharing the same k-mer could be quite large.

Second, a consistent layout is sought, usually among a collection of paths in the
graph which satisfy certain properties. If available, the assembler can use the paired
read information to accomplish this task.

The third and last phase consists in computing multiple sequence alignments in order
to produce a precise layout and the consensus sequence. Again, this step is performed
using approximate methods, since no efficient algorithm is known for computing the
optimal solution [54].

The performance of an OLC assembler is sensitive to three parameters: the k-mer
size, the minimum overlap length and sequence identity. Higher values of such param-
eters likely lead to correct and fragmented assemblies, while lower values diminish the
computational costs but introduce the concrete risk of introducing more mis-assemblies.

The OLC approach has demonstrated its capabilities in many Sanger-based sequenc-
ing projects: ARACHNE [18] and PCAP [79] are two well known OLC assemblers.

Despite being the gold-standard for many years, OLC assemblers were not able to
cope with the high abundance and the small read length of NGS technologies (which
made this approach computationally demanding). Still, many assemblers based on this
framework appeared, thanks also to the development of clever heuristics and data struc-
tures. Well known OLC assemblers for NGS reads are Minimus [165], Edena [73],
CABOG [115], and SGA [161].

ARACHNE. The ARACHNE assembler is a software designed to analyze paired
reads obtained from Sanger sequencing (although it can also be used with single-ended
reads).

As a pre-processing step, ARACHNE processes reads in order to trim terminal re-
gions of poor quality and to discard reads containing mostly low-quality bases.

Subsequently, ARACHNE detects and aligns putative pairs of overlapping reads.
Some of them might be false positives (due to repeats in the genome) and they will
be eliminated in a subsequent step. Rather than comparing all read pairs, overlap
detection is carried out using a sort and extend strategy. More precisely, each k-mer is
stored in a table along with the read identifier and the position it occurs. This table
is then sorted so that identical k-mers appear consecutively and very high frequency
k-mers are removed. In order to detect and correct sequencing errors, ARACHNE

46 4. Practical Assembly Strategies

computes multiple alignments among overlapping reads and, once a good alignment set
is determined, the tool exploits paired-read information to link sequences and to create
contigs.

In the absence of repeats, producing the correct layout would be easy: any two
reads with significant overlap likely belong to the same genome locus. Nevertheless,
false overlaps may arise from different repeated sequences. For this reason, ARACHNE
identifies potential repeat boundaries and avoids assembling contigs across them (making
it overly conservative).

PCAP. The PCAP assembler (Parallel Contig Assembly Program) is a tool aimed at
processing efficiently millions of Sanger reads and addressing the issues of large WGS
projects. Unlike Arachne, PCAP allows the computation of overlaps to be performed
in parallel on multiple processors. More precisely, the entire dataset R of reads is
partitioned into m subsets of similar sizes, where m is the number of available processors.
Because of the huge size of the dataset, R is stored on the secondary memory. Instead,
every partition and its data structures are kept in main memory.

PCAP’s algorithm can be divided into three main phases: first, repetitive regions
are identified and overlaps are computed; second, overlaps are evaluated to construct
unitigs; third, contigs/scaffolds are built.

In order to identify repeats among the reads, a subset R; is first compared with
itself. Additional repeats are then discovered comparing (in parallel) the whole dataset
R against each single R;. At the end, overlaps between reads in R and unique read
regions in the subset are computed using a look-up table.

The construction of contigs resembles ARACHNE’s algorithm. In particular, depth
of coverage is exploited in order to score each overlap. In this way poor end regions
(of reads) are identified and removed. Reads are then assembled into contigs based on
unique overlaps. Finally, contigs are corrected and linked into scaffolds and a multiple
alignment is constructed in order to derive a consensus for each contig.

Minimus. The Minimus assembler was built as a modular pipeline and with the goal
to be easily (re)usable. It has been released as a component of AMOS [1]: an open-
source package that provides a collection of tools and libraries for the development of
assembly and analysis pipelines. In particular, Minimus consists of the combination of
three AMOS modules, following the traditional OLC paradigm:

1. hash-overlap: a sequence overlapper that uses minimizers [150] to increase speed
and decrease memory usage.

2. tigger: a unitigger, i.e. a tool which clusters reads that can be unambiguously
assembled, based on the algorithms developed by Myers in [122].

3. make-consensus: a progressive multiple alignment tool that refines the read layout
generated by tigger in order to generate a precise multiple alignment of reads.

Edena. The Exact de novo assembler (Edena) [73] is a tool conceived to process
millions of reads produced by the Illumina technology.

4.1. Assembly strategies 47

In addition to the classical OLC approach, Edena includes two features which im-
prove the assembly of very short sequences: exact matching and detection of spurious
reads. The first one has been used for two main reasons: first, avoiding spurious overlaps
due to sequencing errors; second, exact matching is considerably faster than approxi-
mate matching (using an appropriate index, overlaps between millions of short reads
can be computed using reasonable amounts of computational resources).

The approach followed by Edena can be summarized in four main phases. First,
the input data set is processed to remove redundant information and reads are indexed
within a prefix tree. Second, all overlaps of a predetermined minimum size are computed
using a suffix array to build the overlap graph G. Third, since G is likely to contain
a large amount of branching paths — hindering the construction of long contigs — the
overlap graph is simplified by removing transitive and spurious edges, and by resolving
bubbles (i.e., two paths starting and ending on the same nodes). Finally, all contigs
above a certain length threshold which are unambiguously represented in the graph are
provided as output.

CABOG. The Celera Assembler with the Best Overlap Graph (CABOG) is a modified
version of the former Celera Assembler [123] and its pipeline was developed in order to
combine reads coming from Sanger and 454 technologies.

CABOG uses seeds (i.e., k-mers) to compute exact-matches in order to detect pos-
sibly overlapping reads. Seed matches are found within compressed sequences where
consecutive instances of the same nucleotide are collapsed into a single one. This com-
pression allows to better deal with 454 reads. More in detail, CABOG counts the number
of instances of each distinct k-mer observed in the compressed input sequence and dis-
cards those appearing too frequently or uniquely. Then, overlaps are computed among
read pairs which share enough k-mers (which are also used to anchor the alignments).

Using computed alignments, CABOG is then able to build an overlap graph G. More
precisely, G is reduced to the Best Overlapping Graph (BOG) by keeping, for each read,
only the best (i.e., the longest) overlap and by discarding contained reads. All cycles are
resolved by deleting a randomly chosen edge, making the graph acyclic. CABOG then
sorts reads by score (defined as the number of reachable reads) and, starting from the
highest scoring ones, it follows the paths in the BOG to construct unitigs. Paired-read
constraints are also exploited during the unitig construction.

Finally the resulting set of sequences is provided as input to the Celera Assembler
to build contigs, scaffolds, and to perform the consensus step.

SGA. The main issue of OLC assemblers is their inability to cope with large NGS
datasets due to the very large amount of memory typically required. For this reason,
tools like Edena cannot be used to assemble large eukaryotic genomes such as plants
or mammalians. Other assemblers, instead, have been focused to take advantage of
the longer (yet more expensive) reads of 454 platforms. Since the overlap detection is
usually carried out by the employment of read indices, large read numbers demands
clever and space-efficient data structures.

As a matter of fact, the FM-index [58] has been exploited by SGA (String Graph
Assembler) in order to build a string graph in O(L), where L is the sum of all read
lengths. More precisely, SGA implements a distributed construction of an FM-index:

48 4. Practical Assembly Strategies

the input set of reads R is partitioned in m subsets Rq,...,R,, and intermediate in-
dices are merged using a BWT merging algorithm [59] until a single index for the whole
dataset is built. As the memory footprint of the FM-index is typically less than an order
of magnitude with respect to the suffix array, this indexing strategy allows to efficiently
use the FM-index for very large sequence collections. Nevertheless, the distinctive hall-
mark of SGA is its ability to directly compute exclusively non-transitive edges and,
therefore, immediately build the (reduced) string graph. More technical details on the
implementation of this clever technique can be found in [161].

4.1.3 de Bruijn Graph

Given a set of reads, a de Bruijn Graph is built by considering all k-mers belonging to
the input reads (see Section 3.4). This graph-theoretic model has two main practical
advantages:

i. computational efficiency: the overlap detection phase (the main bottleneck of the
OLC paradigm) is no more needed.

ii. memory usage: it is proportional to the number of distinct k-mers in the genome
and not to the number of reads (as in the overlap graph).

For these two reasons, the idea of considering k-mers instead of reads turned out to
be extremely successful with very-short-read technologies such as SOLiD and Illumina.
Along with the aforementioned benefits, however, there are also two major downsides:

i. higher graph complexity: the assembly process is more difficult due to the fact
that repeats longer than k base pairs and sequencing errors are likely to create
more complex sub-graphs with respect to the OLC approach (see Figure 4.1). For
instance, short repeats are collapsed in single paths accessed (in the graph) by
many distinct paths which converge into and, subsequently, diverge out from the
repeated sequence. This makes the use of long reads (as well as paired ones) crucial
to simplify the graph and to obtain correct and contiguous assemblies.

ii. memory usage: even though it just depends on the number of distinct k-mers, in
large-scale sequencing projects the amount of memory required may still be a bottle-
neck. This potential issue has been addressed by distributed implementations [162]
and sparse/probabilistic data structures [38,195].

Well known standard dBG assemblers are EULER [140], Velvet [196], Allpaths [30].

EULER. It was the first assembler based on the dBG formalization which models the
assembly problem as finding a Eulerian walk (or super-walk). First versions of the tool
were specifically designed for single and paired Sanger reads [139,140]. However, with
the advent of NGS, it was adapted to handle 454 [36] and Illumina [35] technologies.

The key idea of EULER is to make use of the information provided by reads (which
is lost in the dBG construction). In particular, the idea of finding a Eulerian super-walk
(i.e., a path containing each read-path) is considered.

As opposed to many contemporary assemblers, EULER performs error correction as
a first step. Specifically, EULER seeks for low-frequency k-mers which likely appear

4.1. Assembly strategies 49

[AAGTAT|—|AGTATC|—{GTATCT| [ATCTGC}—|TCTGCT —{CTGCTG|
(a) TATCTG
[CTTTAT|—{TTTATC}—{TTATCT] [ATCTGA |—{TCTGAA —{CTGAAT]
[CTGG|—*{TGGA|—{GGAA|—{GAAT|
(b) JRATG} —{FTEc}—{TCec)
/'

|[CTGC—{TGCA}—{GCAA|—{CAAT]|

(¢) [ATCT}—[TCTG}—{CTGC]—{TGCA}—{GCAA}—|CAAT |—{AATC]—{ATCC]—{TCCC]

Figure 4.1: de Bruijn graph complexity which may arise due to (a) repeats, (b) variants,
and (c) sequencing errors.

due to sequencing errors. This filter is also called spectral alignment: the rationale
is to correct reads by lowering the number of (distinct) k-mers in the dataset. This
correction step, however, might remove valid k-mers belonging to low-coverage loci.
Moreover, EULER spectral alignment is only able to deal with mismatches and not
with insertions or deletions.

From this corrected set of reads, EULER then builds a dBG and maps input reads
on some edges in order to resolve repeat-induced (short) paths by exploiting read-paths
and paired reads (see Figure 4.2). EULER also performs other graph simplifications
such as the removal of short “dead-end” paths (likely due to uncorrected errors).

Since the k-mer size is a critical parameter, as in every other dBG-based assembler,
EULER in practice builds two de Bruijn graphs using two different values of k. The
rationale is to use a more specific (i.e., with larger k) graph to resolve gaps which are
filled using a more sensitive (i.e., with smaller k) graph.

Velvet. This set of tools has been designed for the de novo assembly of very short
reads. Velvet implements the dBG structure differently with respect to Pevzner’s im-
plementation: k-mers are mapped into nodes instead of arcs and reverse-complement
sequences are associated to nodes in order to obtain an implicit bi-directed graph.
Velvet performs several graph simplifications. The first one consists in collapsing all
unambiguous paths. Subsequently, Velvet removes “dead-end” paths shorter than 2k
bases and bubbles. These latter ones are resolved using the so-called Tour Bus algorithm
which is based on a Dijkstra-like breadth-first visit of the graph: just the most supported
path is considered, while the other one is removed and reads supporting it are re-aligned.
Velvet then uses coverage information to remove connections which might possibly lead
to mis-assemblies. Finally, Velvet’s last step involves mate pairs that are used to resolve
complex and long repeats. The latest version of the tool implements scaffolding using a

50 4. Practical Assembly Strategies

SN 2 =
Q\ /Q O\ /O
O o O O
A e —

(a)

Figure 4.2: de Bruijn graph simplification methods. (a) read-paths allows to resolve
repeats of k base pairs and up to the read length. (b) read pairs which span a repeat
can be used to identify valid assembly paths.

sophisticated algorithm called Pebble [197].

In summary, Velvet offers a full implementation of the dBG paradigm [116]. It does
not use an error-correction procedure directly on reads/k-mers but, instead, it applies a
series of heuristics in order to reduce graph’s complexity. These involve the use of local
graph topology, read coverage, sequence identity, and paired-read constraints.

Allpaths. This assembler uses a read-correction phase similar to Euler’s spectral align-
ment. Specifically, Allpaths considers only trusted k-mers, that are those exhibiting
both high frequency and good base quality. After the construction of the graph and
the canonical removal of sequencing-error tips (i.e., dead-ends), the algorithm identifies
unipaths (i.e., paths corresponding to unitigs). The latter are used as seeds in order to
build the assembly (starting from the longer ones). The extension of unitigs is carried
out with the help of paired reads. Moreover, Allpaths partitions the graph in order to
assemble in parallel regions that are locally unique. Small connected components, as
well as paths unsupported by read pairs, are finally removed.

It is worth to mention that Allpaths was able to successfully assemble a human
genome using Illumina reads, while almost reaching the quality of a Sanger-based as-
sembly [65].

Space-efficient de Bruijn graphs

In dBG-based assembly, small values of k tend to produce a high number of branch-
ing nodes and, therefore, ambiguity in the assembly. As a consequence, in large-scale
projects the memory space required for storing all k-mers can be extremely high: a
canonical implementation of the dBG structure might require over 300 GB [162].

Advances on space-efficient hash schemes [71,108,114,166] can certainly improve the
correction of sequencing errors and, hence, the decrease of the graph’s size. Unfortu-
nately, a standard dBG representation may still demand hundreds of gigabytes even
with corrected reads [98].

4.1. Assembly strategies 51

Recently, Pell et al. [136] introduced the idea of a probabilistic variant of de Bruijn
graphs, in which the main structure is stored as a Bloom filter [23], and showed that
the graph can be encoded with a 4-bit footprint per node. Specifically, a probabilistic
dBG is obtained by inserting all input k-mers in a Bloom filter B. This representation
does not explicitly store edges but they can be implicitly retrieved by testing B for the
membership of all possible extensions of a k-mer. However, it is important to mention
that this variant is an over-approximation of the de Bruijn graph built from the same
k-mers: the use of Bloom filters is subject to false positive which introduce false nodes
(and, hence, false branches).

Recently, several methods (and assemblers) were designed to reduce memory re-
quirements of de Bruijn graphs while also making sure assembly accuracy is not wors-
ened. Among them, we mention a distributed (ABySS [162]) and three space-efficient
(SparseAssembler [195], SOAPdenovo2 [104], and Minia [38]) assemblers.

ABySS. The major innovation brought by ABySS to the literature is the distributed
representation of the de Bruijn graph. This peculiar feature allows to parallelize the
assembly of billions of short reads across a network of computers using the MPI protocol
[68]. In particular, the set of k-mers is partitioned using a simple XOR-based hashing
function. Moreover, a vertex (k-mer) can have up to eight edges (one for every possible
one-base extension) and this information can be efficiently stored within 8 bits. In this
way, adjacent k-mers can be easily generated and their cluster locations deterministically
computed by their hash values.

After the graph construction, ABySS proceeds in two stages. First, the graph is
simplified by removing low covered paths and resolving bubbles. These two error removal
steps are iterated several times to correct errors that are in close proximity. Second,
contigs are built using only highly supported paths and mate-pair information is used to
extend assembled sequence by resolving ambiguities in contig overlaps. Mate-pair reads
are also exploited to create scaffolds.

SparseAssembler. In order to reduce memory usage, Ye et al. [195] proposed a novel
approach which exploits sparseness: instead of storing every single k-mer (or read, in
overlap graphs) as nodes, the idea is to skip a fraction of k-mers (or reads). In the sparse
dBG, nodes represent a 1/g (approximately uniform) sub-sample of the k-mer diversity
in the whole genome. With the “sparsely-spaced” nodes, the authors showed that the
memory requirements of such a sparse variant can be considerably smaller than those
of canonical implementations.

This different storage method has been implemented in SparseAssembler and, while
greatly reducing the size of the overall graph, it also proved to be competitive (in terms
of accuracy) to state-of-the-art tools both on simulated and real datasets.

SOAPdenovo2. The second version of the SOAPdenovo assembler differentiates itself
from the first one in a series of improvements made to the former algorithm (and data
structures). In particular, the major achievement consists in how the dBG is built and
managed. Other enhancements involve error correction, repeat resolution, scaffolding,
and gap closure. Specifically, SOAPdenovo2 is based on a sparse dBG [195] and, to
further improve assembly’s accuracy, it uses different values of k [138]: first, a small-k

52 4. Practical Assembly Strategies

graph is built in order to deal with sequencing errors and low-coverage areas; then,
larger k-mers are used to rebuild the graph in order to take care of the resolution of
long repeats. This last step is carried out by iteratively mapping reads to the previously
created small-k graph.

Minia. Chikhi and Rizk took over the idea of probabilistic dBGs [136] and imple-
mented a low-memory assembler (called Minia) based on this data structure. Their
implementation, while lowering the memory usage by an order of magnitude with re-
spect to standard dBGs, encloses an additional data structure for dealing with false
positives (hence, solving the main issue of probabilistic dBGs). Specifically, they intro-
duce the set of critical False Positives (¢F'P) k-mers which contains just a subset of all
possible false positives. Each query to the Bloom filter is then modified such that a
positive-membership answer is followed by a query to the cF P set.

The authors showed that these two data structures, along with a proper marking
structure to perform the graph traversal, allowed to significantly reduce memory usage
compared to assemblers like ABySS, SOAPdenovo, and SparseAssembler.

Paired de Bruijn graphs

One of the major improvements in genome assembly has been definitely brought by
paired reads (either PE or MP). As a matter of fact, the use of this type of data
has been incorporated in many dBG assemblers but, still, as a mere post-processing
step (e.g., graph simplification, scaffolding). For this reason, paired reads often fail to
untangle complex repeat structures.

A more advanced formalization of the genome assembly problem in the dBG frame-
work considers the reconstruction of a genomic string from a set of k-mer pairs (or
k-bimers) at a certain distance. From this idea, Medvedev et al. [113] introduced the
notion of paired de Bruijn graph (PdBG): a generalization of the canonical dBG which
additionally incorporates pairing information within its topology. However, PdABGs were
introduced more as a theoretical result rather than a practical solution due to the very
limiting assumption that the exact distance between paired k-mers is known. Neverthe-
less, the main issue of this model has been addressed by the SPAdes assembler [16].

SPAdes. This tool recently introduced new algorithmic solutions and improvements
over state-of-the-art tools to handle bacterial datasets. A hallmark of SPAdes is its use
of k-mers only for building the initial graph. Subsequent steps are exclusively carried
out with graph-theoretic operations based on graph topology, coverage, and sequence
lengths (but not the actual sequences).

More in detail, this assembler implements two variations of the canonical framework:
paired and multi-sized dBGs. The first one is considered after transforming the set of k-
bimers (extracted from paired reads) into a set of adjusted k-bimers by estimating their
distance accurately (and, hence, making Medvedev’s formalism viable). The second
framework involves using multiple values of the k parameter, which is tuned to deal
with low and high coverage regions in order to possibly reduce fragmentation and repeat
collapsing. Using such dBG variants, the algorithm of SPAdes is able to deal with issues
such as sequencing errors, uneven coverage, insert-size variation, and chimeric (paired)
reads.

4.1. Assembly strategies 53

4.1.4 Branch-and-bound assemblers

A completely different strategy, that does not focus on employing heuristic to circumvent
the NP-hardness of the theoretical problem but tries to solve it in exactly, has been
recently explored by Narzisi and Mishra in [127].

Their idea consists in performing a constrained search (within the solution space)
while pruning implausible layouts. Such a branch-and-bound (B&B) approach is based
on a collection of well-chosen score functions which characterize different structural
properties.

B&B represents a different — and interesting — point of view on the assembly problem
and, for this reason, it deserves a separate category. At this moment, the only B&B
assembler available is SUTTA [127].

SUTTA. At a high level, SUTTA generates (potentially) all possible consistent lay-
outs, organizing them as paths in a structure called double-tree (or D-tree) rooted at
randomly selected seeds (i.e., reads). Paths are progressively and concurrently evalu-
ated by the aforementioned score functions. The possible exponential search space of the
D-tree is addressed by pruning many redundant and uninformative branches of the tree
(i.e., transitively deducible paths, those unsupported by paired reads, and extremely
low-coverage paths).

The strength of this scheme is that, in principle, it can be easily extended to deal
with different kinds of data (paired reads, optical maps, etc.) and, possibly, future
technologies.

4.1.5 De novo assembly with long and noisy reads

The availability of TGS datasets can be exploited in many ways to build — or just
improve — de novo assemblies. Moreover, it is going to be particularly useful for large
and complex genomes, where the high percentage of repeats makes short-read assemblers
often inadequate for achieving satisfactory results. Yet, the high error-rate provided by
currently available technology poses additional algorithmic challenges and the need to
devise novel and effective methods.

Nowadays, different kinds of assembly procedures have been developed (mostly for
PacBio reads) and they can be grouped according to the following four categories.

e TGS-only: it involves the exclusive use of TGS libraries. Sequences are usually
corrected before assembling them using an OLC algorithm. HGAP [39] is prob-
ably the best known pipeline in this category. Recently, also pacBioToCA [90]
implemented this strategy.

e Hybrid: combining the high-quality NGS reads and the large-length TGS reads
allows to produce very long genomic contigs that otherwise would require costly
low-throughput techniques. Cerulean [49], pacBioToCA [90], and dBG20LC [194]
are three implementations of this methodology.

e Gap filling: gaps inside the scaffolds of an existing paired-read-based assembly are
reconstructed using TGS sequences. A tool available for this task is PBJelly2 [55].

54 4. Practical Assembly Strategies

Long reads

i — - Construct
Longest e preassembled
‘seed’ reads reads
Preassembled - .
reads e e e oy [sw— Assemble
e R A e . G s S S to finished
Genome genome

Figure 4.3: A sketch of HGAP. Source: [39].

e Scaffolding: scaffolds are built using TGS reads to join contigs of an assembly
constructed with NGS data. Known tools for scaffolding using PacBio reads are
AHA [17] and PBJelly2 [55].

HGAP. The Hierarchical Genome Assembly Pipeline involves three main phases.

First, longest reads are used as seeds and, through a directed acyclic graph-based
consensus procedure, they are corrected using the smaller reads in order to build a set
of highly accurate pre-assembled reads (see Figure 4.3)

Second, corrected sequences are assembled with the Celera Assembler [123]. How-
ever, in principle any assembler could be considered in the pipeline (yet OLC assemblers
are better suited for this task). Indeed, the quality of the resulting draft assembly de-
pends on coverage and length distribution with respect to the repeat content of the
genome.

Third, in order to significantly reduce remaining indels and single-base errors, a
quality-aware consensus algorithm that uses the quality scores provided by the PacBio
platform should be used. For instance, the Quiver algorithm can be used to derive a
highly accurate consensus sequence.

pacBioToCA. Thanks to the uniform distribution of errors in PacBio reads, it has
been shown that such reads can be effectively corrected using an NGS dataset in order
to obtain highly accurate sequences [90]. For instance, short reads can be mapped using
aligners like NovoAlign [72] and GMAP [192], able to tolerate larger edit distances.
This kind of alignment is however computationally expensive and requires a quite large
running time even for bacterial datasets. Formerly, pacBioToCA was a pre-processing
tool based on this idea. A recent version, however, employs MHAP [21] for a faster
overlap detection and to perform error correction using the same input TGS reads.
Corrected reads are then assembled using the latest version of the Celera Assembler.

Cerulean. Cerulean is a hybrid assembly approach to produce high-quality assemblies
using [llumina PE reads and PacBio long reads. The peculiarity of this tool is to avoid
using short reads directly. Instead, it requires a short-read assembly graph structure to
be generated with an existing assembler (e.g., ABySS [162]). Specifically, an assembly
graph consists of nodes corresponding to contigs and edges representing putative adja-
cencies. Cerulean’s output is then built using a mapping of PacBio reads to the contigs

4.2. Assembly validation 55

using BLASR [34].

The alignment of long reads to very short contigs might generate several spurious
connections in the assembly graph. In order to mitigate this issue, the algorithm of
Cerulean initially operates with a simplified representation of the assembly graph, con-
sisting exclusively of long contigs. The graph is then improved by iteratively adding the
smaller sequences.

dBG2OLC. The relatively high sequencing depth (usually 50-100x) required in order
to perform the error correction of long noisy reads is making the transition from NGS
to TGS technologies quite slow [194]. In view of this, Ye et al. devised a novel assembly
technique which maintains a comparable accuracy while requiring a significantly lower
sequencing coverage (approximately 10-20x) with respect to existing solutions.

Specifically, the idea implemented in their hybrid assembler ({BG20LC) is to anchor
TGS reads to the dBG contigs obtained from a NGS dataset. Additionally, each long
read is compressed into a list of anchors in order to allow pair-wise alignments to be
computed much more efficiently. Subsequently, an overlap is built directly from the
compressed reads and a consensus is devised from linear regions of the graph to finish
the assembly.

Compared to other existing approaches such as pacBioToCA and HGAP, it has
been shown that dBG20OLC can produce decent assembly drafts while using orders of
magnitude lower computational resources (both memory and time) and requiring a much
smaller TGS-read coverage.

4.2 Assembly validation

Many biological questions are tightly connected to the analysis of genome sequences and,
hence, to the assembly problem. For example, studies showed that genome structural
variations are related to numerous diseases [170] (e.g., Parkinson’s and Alzheimer’s).
Nevertheless, knowledge provided by the comprehension of genomes is not only impor-
tant to understand (and possibly treat or prevent) disease traits but also for studying
the evolution of living organisms. For these reasons, being able to obtain an accurate
reference genome is mandatory to perform a large number of downstream analyses.

While since the first sequencing project different theoretical models and a large
amount of clever heuristics have been proposed in order to handle errors and to efficiently
provide a reliable genome assembly, yet a small effort has been done on the equally
important assembly validation task.

For many years, assemblies have been evaluated using mostly inappropriate metrics
(e.g., NG50, mean contig size, etc.) which just reflect contiguity at the expense of
correctness. Also, with the advent of high-throughput sequencing, the assembly problem
became more difficult due to the shorter read length and this increased the chances of an
assembler to make mistakes in the assembly process. As a matter of fact, Alkan et al. [12]
criticized two major achievements: the assemblies of the Han Chinese and the Yoruban
individuals [98] (both sequenced with Illumina reads). In particular, approximately 420
Mbp of missing (repeated) sequences were identified from the Yoruban assembly and it
was estimated that both miss almost the 16% of the genome sequence. For this reasons,

56 4. Practical Assembly Strategies

as the number of NGS projects keep growing, the need of standard and reliable validation
methods is becoming every day more impelling.

4.2.1 Validation metrics.

The validation of an assembly should account for three main traits: contiguity (i.e., the

length of its contigs), completeness (i.e., the percentage of the genome that has been

assembled), and correctness (i.e., the number of errors introduced by the assembler).
One of the most used metric to estimate contiguity is certainly the N50.

Definition 4.1 (N50 and NG50). Let A = {C4,...,C,} be an assembly and assume
that |C;| > |Ciya], for i = 1,...,n (i.e., contigs are sorted by non-increasing length).
Then, the N50 is defined as the length |Cy|, where k is the minimum integer such that:

k

poNted 20.50-Zn:|0i|.

i=1 i=1

In other words, it corresponds to the maximal length IV of a contig in A such that at least
half of the total assembly size is “covered” by all contigs with length greater or equal
than N. The NG50 is defined similarly, with the only difference that the cumulative
assembly size is replaced by the estimated genome size.

Other widely used statistics concerning contiguity and completeness are the number
of contigs, the average length of contigs, and the total assembly length. As shown in
[128], however, the exclusive use of contiguity measures should be avoided and, therefore,
more sophisticated metrics shall be taken into account. In fact, the main downside of
length-based statistics is being completely unrelated to assembly correctness. Think of
an assembler that blindly glues most of its contigs producing an assembly characterized
by a very large N50 and few long contigs. However, these contigs most certainly will
contain a too large number of mis-assemblies to be useful in downstream analyses.

Assuming a reference genome is available, it is possible to compute a precise charac-
terization of errors by aligning the assembly to the reference sequence. A representative
study of reference-based approaches is presented in [106, 154] and will be briefly dis-
cussed in Section 4.2.2. Other reference-based approaches consist in comparing a de
novo assembly with a similar finished genome [97,102] or with conserved sequences of
related organisms [40].

If a reliable reference sequence is not available, instead, the evaluation of correctness
is more difficult and it is usually carried out exploiting read mappings [82,141] (but also
optical maps [199]) in order to compute quality measures — often referred to as features
— such as:

e read coverage: regions exhibiting an unusual coverage may indicate mis-assemblies
such as translocations (i.e., junction of far apart genomic loci), repeat expansion,
or repeat collapse.

e paired reads accordance: a region presenting a high-enough number of correctly
aligned reads with unmapped mates (or mapped at an unexpected distance) is
a good indicator that a mis-assembly occurred. This situation usually involves
either translocations, insertions, deletions or inversions.

4.2. Assembly validation 57

120

100

3
T

=

= BCCGSC
= [oBUGA
RHUL
»— WTSI-P
DCSISU
—=— IRISA
—8- ASTR
—o— UCSF B
GACWT
CIUoC

approximate coverage (%)

B

20

Jic
0 0.5 1 L5 2

2.5
Feature threshold

Figure 4.4: FRC example on Assemblathon 1 assemblies [184].

e k-mer frequencies: by comparing those of k-mers in input reads with frequencies
of k-mers in the assembly, it is possible to identify putative errors in presence of
unexpected k-mer multiplicities.

In [141], a tool called amosvalidate was proposed with the goal of identifying a set
of features able to report regions or evidences that likely represent assembly errors in
contigs. Their approach definitely represented an improvement over the traditional —
often overrated — length-based evaluations.

More recently, Narzisi and Mishra [128] exploited this pipeline to introduce a novel
reference-less metric which captures the trade-off between correctness and contiguity:
the Feature Response Curve (FRC). More precisely, the FRC allows to characterize the
sensitivity (coverage) of contigs as a function of the number of features (see Figure 4.4).
The curve is built as follows: first, contigs are sorted by length in descending order and,
then, for each feature threshold T, only the longest contigs whose number of features
is less than T are considered to compute the genome coverage. As a rule of thumb,
a steeper curve (which also approach “rapidly” the 100% coverage) usually reflects a
better assembly since it means there are less negative features in the longer contigs.

4.2.2 FEvaluation studies and results

Several works concerning the evaluation of assemblers have been proposed in literature
with the aim of ranking the performance of available tools on different datasets: Assem-
blathon 1 [52], GAGE [106, 154], Assemblathon 2 [26], and the re-evaluation of GAGE
datasets using the FRC [184] are probably the most important ones.

The first Assemblathon contest was made in order to assess the performance of
state-of-the-art algorithms on a synthetic diploid genome (unknown to the participating
teams). Within this study it has been shown that:

58 4. Practical Assembly Strategies

1. it was possible to assemble the genome to a high level of coverage and accuracy;

2. large differences exist between the assemblies (some assemblers performed well
on some metrics but poorly on others), suggesting that further improvements in
current methods can be achieved.

However, it is worth noticing that such evaluation was performed only on a single sim-
ulated dataset, limiting the extent to which the conclusions can be generalized [183].

Similarly, GAGE’s study [154] (and GAGE-B, the bacterial counterpart [106]) eval-
uated several top-notch assemblers on real Illumina datasets. This work showed that
data quality — more than the assembler itself — is a very important factor to obtain high
quality results and it also confirmed the sensible difference of contiguity and correctness
between assemblies of different tools. A criticism against GAGE is that each assem-
bler was tuned in order to maximize the resulting NG50 (this was done to mimic the
typical user behavior). Nevertheless, NG50 has been showed to be the worst quality
predictor [183].

As opposed to the aforementioned studies, in Assemblathon 2 the correct genomic
sequences were unknown. Because of this, various experimental datasets where used,
such as fosmid sequences and optical maps, in order to asses the results. Another goal of
the study was to verify the suitability of different metrics to evaluate assembly’s quality.
What Assemblathon 2 showed is that on challenging genomes (and with a reasonable
amount of sequencing):

1. Assemblers are extremely sensitive to parameters and the performance of different
assemblers varies substantially on the same dataset.

2. The same assembler with the same parameters performs differently on different
datasets.

Despite the FRC allows to evaluate assemblies without the need of a reference se-
quence, the main limitation of the method is that it requires a read layout (missing in
the majority of NGS assemblers). For this reason Vezzi et al. [184] developed a tool
called FRCY*™ which allows to evaluate de novo assemblies by computing the curve
using an alignment-based layout when it is not provided by the assembler (as in many
dBG-based implementations). The tool has been applied to evaluate datasets of Assem-
blathon 1, GAGE, and Assemblathon 2. It was then showed that in many scenarios it
is straightforward to rank assemblers simply by looking at the FRCs and, even when it
is unclear which assembly might be the best, this methodology still allows to highlight
positive and negative aspects of assemblers with respect to each others.

De Novo Assembly Through
Reconciliation

5.1 Background

The advent of Next Generation Sequencing (NGS) technologies made possible to se-
quence virtually all the organisms of the biosphere [109]. NGS technologies are charac-
terized by extremely high data production which makes them affordable to obtain high
coverage of any organism.

The ability to produce high sequence coverage for lots of genomes paved the way to
a large number of de novo assembly projects [45,97]. Despite this, it is now commonly
accepted that de novo assembly with short reads is more difficult than de novo assembly
with long Sanger reads [126]. Short read length and reduced insert size made correct
assembling and positioning of repeats a very crucial and delicate issue. Even though
some works presented high quality results based on NGS data [98,133], de novo assembly,
especially for large eukaryote genomes, is still a holy grail [12,22].

Recently, several evaluations have been presented in literature (see Section 4.2),
trying to rank the performance of assemblers on different datasets. As a byproduct,
these “competitions” showed the extreme difficulty to elect the best assembler. Each
dataset is characterized by different peculiarities and heuristics implemented by each
assembler are usually only partially able to solve the raised issues.

An interesting strategy to improve de novo assemblies has been proposed and goes
under the name of assembly reconciliation [32,200]. The goal of assembly reconciliation
is to merge the assemblies produced by different tools while detecting possible mis-
assemblies and isolating problematic regions. Such a strategy has already been proposed
for Sanger-based assemblies and one of our goals is to adapt and improve it for NGS
data.

Zimin et al. in [200] presented Reconciliator, which is based on an iteration of errors
identification and correction, and merging phases. Using the so called CE statistics they
identify regions likely to contain errors in the assemblies. After this, a global alignment

60 5. De Novo Assembly Through Reconciliation

between the two assemblies is performed. In order to avoid problems with repeats,
alignment is performed using seeds unique in both the reference and the query sequences.
At this point areas marked as problematic are solved using the assembler with better
CE statistics and possible gaps in the assemblies are filled. The last step consists in the
validation of the merged assembly.

Casagrande and colleagues in [32] proposed GAM (GAM-NGS’s ancestor), a tool
similar to Reconciliator, but able to avoid the global alignment step. In order to identify
similar sequences they searched for areas assembled by the same reads. Subsequently
the notion of “block” is introduced to evaluate sensible local alignments and a graph
is built to describe global relationships between the two assemblies. When confronted
with problematic regions (e.g., loops and bifurcations in the graph), GAM uses one of
the assemblies as guide.

Both Reconciliator and GAM have advantages/disadvantages on one another (e.g.,
GAM does not need a global alignment while Reconciliator does, however GAM was not
able to detect and correct mis-assemblies). Nevertheless, both tools share the limitation
that they are tailored for Sanger-based assemblers. As an example, they both need a
layout file (usually an afg file) describing for each read the (unique) position where it
has been used. In NGS assemblers, such a layout file is provided by a small minority of
tools (e.g., Velvet, Ray and SUTTA). Moreover, another limit of both tools is the fact
that the two input assemblies must have been produced using the same set of reads.

Recently, several new tools appeared, tackling the problem of assembly reconcilia-
tion using NGS-like datasets: GAA [193], ZORRO [7], Mix [168], GARM [167], and
Metassembler [190].

GAA performs a global alignment between two assemblies (using BLAT). The align-
ment is used to build the so called Accordance Graph in order to merge the assemblies.
In the merging phase reads are used to solve possible inconsistent links in order to out-
put a correct assembly. Morover, GAA focuses more on avoiding the introduction of
mis-assemblies instead of correcting them.

ZORRO performs a first error correction phase directly on the original contigs and
then a global alignment using nucmer. The alignment is used to order contigs and
deriving a consensus sequence. The main drawback of both GAA and ZORRO is the
mandatory global alignment phase between the assemblies, which is not only a com-
putational expensive step, but, in presence of ortholog and paralog sequences, it may
produce a large number of false links affecting merging performances. ZORRO has been
explicitly designed for short genomes (as size increases, merging is not feasible).

Mix is a tool that merges two or more draft assemblies, aiming to reduce contig
fragmentation and to speed up finishing of bacterial genomes. The algorithm is based
on a extension graph which models prefix/suffix overlaps among contigs of the input
assemblies. Mix then determines a set of non-overlapping maximal independent longest
paths to merge contigs. The tool, however, does not try to correct errors but instead it
focuses just on (blindly) improving contiguity without taking into account more quali-
tative metrics (we already emphasized in Section 4.2 that contiguity is a bad indicator
for assessing correctness). Moreover, the computational complexity of this method can
be exponential in the size of strongly connected components (SCCs) in the graph. For
this reason, Mix might not be well suited to work on large and complex genomes, where
large SCCs are expected.

5.1. Background 61

GARM, like GAM-NGS, also treats assemblies asymmetrically but — differently from
GAM-NGS — it chooses the better assembly according to several statistics. GARM’s
pipeline works as follows: (i) nucmer is used to align assemblies to each other; (ii)
ambiguous overlaps and inclusions are removed; (iii) a layout is generated along with a
consensus scores (iv) contigs are merged exploiting also their orders in scaffolds.

Metassembler, finally, is based on the extensive use of compression-expansion statis-
tics in order to iteratively merge assemblies two at a time. First, Metassembler uses
nucmer to align the input assemblies and to find breakpoints (i.e., the boundaries of
found alignments). Then, for each region between breakpoints, the assembly with the
best compression-expansion statistics is chosen for generating the output.

Other tools that belong to the assembly reconciliation family are MATA [130], e-
RGA [33], and the Velvet’s Columbus module. However, they focus more on enhancing
de novo assembly results guided by a reference sequence belonging to closely related
species, than on pure reconciling de novo assemblies.

With this picture in mind we developed GAM-NGS (Genomic Assemblies Merger for
Next Generation Sequencing) whose primary goal is to merge two assemblies in order to
enhance contiguity and possibly correctness. GAM-NGS does not need global alignment
between contigs, making it unique among assembly reconciliation tools. In this way not
only a computationally expensive and error prone alignment phase is avoided, but also
much more information is used (total read length is usually one or two order of magnitude
higher than the mere assembly’s length). Read alignments allow the identification of
regions reconstructed with the same reads, thus isolating natural candidates to represent
the same genomic locus. GAM-NGS merge-phase is guided by an Assemblies Graph
(AG). AG is a weighted graph and this is another specific feature of our tool. Weights
indicate the likelihood that a link is part of a correct path. AG allows GAM-NGS to
identify genomic regions in which assemblies contradict each other (loops, bifurcations,
ete.). In all these situations weights are locally used to output the most reliable sequence,
given the information in AG.

GAM-NGS requires as input two assemblies and a SAM-compatible alignment (e.g.,
obtained with BWA [95], ERNE [48]) for each input read library and each assembly.
GAM-NGS can also work with assemblies obtained using different datasets, as long
as the set of reads aligned on the assemblies is the same. It is important to note
that, mapping reads back to the assembly is practically a mandatory phase for a large
number of downstream analyses (e.g., SNP calling, repeat analyses, etc.) and therefore
represents no extra cost.

We tested GAM-NGS on six datasets. We used three GAGE datasets [154] in order
to evaluate GAM-NGS and to compare it with other assembly reconciliators (i.e., GAA
and ZORRO). Moreover, in order to show GAM-NGS data and “biological” scalability,
we tested it on three large plant datasets: a Prunus persica genome (227 Mbp, double
haploid), a Populus nigra genome (423 Mbp, heterozygous) and a Picea abies genome
(20 Gbp, diploid and highly repetitive). GAM-NGS turned out to be able to correctly
merge these assemblies, significantly improving the results achievable using only one
assembler. Statistics computed on GAM-NGS outputs show comparable results with
respect to other assembly reconciliation tools. Nevertheless, GAM-NGS is always the
fastest and the least computationally demanding tool, which makes GAM-NGS the best
candidate for large datasets.

62 5. De Novo Assembly Through Reconciliation

5.2 GAM-NGS: efficient assembly reconciliation us-
ing read mapping

GAM-NGS’s main idea is to identify highly similar fragments between two assemblies,
searching for regions sharing a large amount of mapped reads. The assumption is that
areas built using the same reads most likely represent the same genomic locus.

The vast majority of NGS assemblers does not return a layout file as output (i.e., a
file, usually in afg format, listing along the assembly the reads used and their positions).
In order to overcome this limit, GAM-NGS approximates the layout file using reads
aligned back to the assembly: an analysis step almost mandatory in all de novo assembly
projects. Such an approximation might be prone to errors: as an example, consider
a genome containing (almost) perfectly duplicated regions. In such a case genomic
read belonging to any two repeated sequences will be randomly assigned to one of the
two copies. In order to keep problems related with repeats, at least partially, under
control, GAM-NGS uses only reads uniquely aligned (i.e., mapped to a single position),
discarding all reads that have been ambiguously aligned (i.e., characterized by two or
more high-score alignments).

As a matter of fact, since assemblers implement different heuristics — if this was not
the case, merging would be trivial and pointless — they may contradict each other by
presenting a diverse sequence order or erroneously splicing (e.g., scaffolding) sequences
belonging to different genomic regions. Thus, it is compulsory to identify these situations
and, possibly, solve them. To address this problem we used a graph structure — the
Assemblies Graph (or AG) — which records and weights the most probable order relation
among regions (blocks) where the same reads are mapped.

Once AG is built, GAM-NGS identifies “problematic” regions, signalled by specific
sub-graph structures. Such local problems are solved by selecting the path in the graph
that maximizes a set of measurable and local features, suggesting the assembly’s correct-
ness. Some of these features are borrowed from [183] and are computed using pairing
information coming from aligned paired-end and possibly mate-pair reads libraries. If
there is not enough evidence to decide on assembly correctness (e.g., weights are too
close to each other), we chose to be as conservative as possible, electing one of the se-
quences as master, the other one, therefore, becoming the slave. In the following sections
we will denote the master assembly as M and the slave one as S.

After this last phase, GAM-NGS visits the simplified graph, merges contigs finding
a consensus sequence and finally outputs the improved assembly.

5.2.1 Definitions

Let X be an alphabet and X* be the set of finite-length strings from . For every s € ¥*
we will denote by |s| the number of characters in s. In our context reads and contigs
are elements of ¥*, where ¥ = {A,C, T,G,N}. With R = {ry,72,...,7,} we denote the
set of reads aligned against both M and S, which are the master and slave assemblies,
respectively. Usually R is the set, or a subset, of reads used to assemble both M and S
and its elements may belong to different paired read and mate pair libraries. However,
alignments of reads belonging to different libraries should be provided into separate
alignment files, in order to exploit the information of different insert sizes.

5.2. GAM-NGS: efficient assembly reconciliation using read mapping 63

Let r1, o be two reads aligned against the same contig C' (with C belonging to either
M or S). Fori € {1,2}, let begin(r;) and end(r;) be the positions in C where the first and
last base of r; are aligned, respectively. Therefore, we can assume begin(r;) < end(r;),
for i € {1,2}. We say that r1 and ro are adjacent if and only if begin(ry) < end(r1) + 1
and begin(ry) < end(rs) + 1.

Given a contig C' belonging to assembly A, a frame over A is defined as a maxi-
mal sequence of reads r1,...,r, mapped against A where r;, 7,41 are adjacent (i.e.,
overlapping or close enough) for ¢ = 1,...,n — 1. Thus, a frame F can be identified
by the contig where its reads are aligned and the interval [begin(F),end(F)], where
begin(F) = min { begin(r;) |i=1,...,n} and end(F) = max{end(r;) | i=1,...,n}.
Moreover, we define the length of a frame F' as |F| = end(F') — begin(F) + 1.

Given two different assemblies M and S, we define a block B as a pair of frames
(one over M and one over S) consisting of the same sequence of reads rq,...,r,, and
the size of the block as the number of reads from which it has been constructed. If the
majority of the reads r; are aligned with opposite orientations on the two frames, we
say that B is discordant. Otherwise, we say that B is concordant. We remark that we
are interested in finding blocks where the sequence of reads (the frame) is maximal (i.e.,
it cannot be extended further with other reads). Ideally, blocks should represent those
fragments of the considered genome which have been built in accordance by both the
assemblies.

In the following we will first explain how blocks are built from alignments and then
we will show how blocks are filtered in order to avoid spurious blocks produced as
consequence of the existence of similar genomic regions. After this we will illustrate the
Assembly Graph construction, the handling of the problematic regions identified on the
graph and, lastly, how the merging phase is carried out.

5.2.2 Blocks construction

The first, and most computational demanding, step of GAM-NGS’s outer algorithm is
the identification and construction of blocks between assemblies M and S. The basic
input format are BAM files (i.e. files in the, by now, standard alignment format).
Alignments are assumed to be ordered by their contig identifier and by the alignment
position.

The procedure starts by loading into a hash table H all the reads uniquely mapped
on M. Once H has been populated, uniquely mapped reads on S are processed. In
particular, for each read r, we perform the following steps:

e if r is not present in H, we will not use it for blocks construction;

e if r is adjacent to a previously created block B (i.e., adjacent to a read contained
in both its frames), then B is extended using r;

e otherwise, a new block, started by the single read r, is built.

Storing in main memory all the alignments of M and going through all the alignments
of S may easily become a major computational stumbling block. For this reason we
carefully designed the data structures and the relative manipulation algorithm. Each
uniquely aligned read requires only 21 bytes: 8 bytes for its identifier, 4 bytes for contig’s

64 5. De Novo Assembly Through Reconciliation

identifier, starting and ending position, and 1 byte for mapping orientation (reverse
complemented or original strand). Moreover, we decided to store them in a memory
efficient hash table such as Google’s SparseHash [3], which is characterized by a 2 bits
overhead per entry.

For each processed read r mapped on a contig C' of an assembly A, we define the
scope of r as the set of blocks whose frame on C' is adjacent to . We exploit the fact
that input alignments are ordered, during the blocks construction phase: if a block B is
“out of scope” for the current processed read r then B will not be successively altered.
If the size of B is higher than a user predefined threshold B,,;, then B is saved into
secondary memory and main memory space is released. Otherwise, B is discarded. The
rationale behind the B,,;, threshold is that blocks consisting of only few reads are likely
to be a consequence of alignment errors or chimeric sequences.

5.2.3 Blocks filtering

A typical problem common to all assembly reconciliation tools is that, especially with
highly repetitive genomes, similar regions belonging to different genomic areas might
be merged (such a problem is also common among de novo assemblers). In particular,
GAM-NGS may build blocks between regions that attract the same reads only because
they are similar (note that perfect genomic repeats are not a problem because in this
case reads will be ambiguously aligned). This situation not only complicates Assemblies
Graph’s structure, but it also suggests the presence of problematic regions (i.e., errors)
in sequences that are, in fact, correct. To limit this problem, GAM-NGS runs two
additional filtering steps before the graph construction: one based on depth-of-coverage
analysis, and the other one on block-length considerations.

More specifically, considering a block B with frames Fys, Fis, on M and S, respec-
tively, GAM-NGS computes for each frame two different types of coverages: a block
coverage BC and a global coverage GC. For instance, considering the frame on the
master assembly Fis, let Rr,, be the set of all reads uniquely aligned on Fjy, while let
be Rp,, the set of reads uniquely aligned on F; and used as part of block B. Clearly,
Re, € Rp,, . Moreover, we define the block coverage of Fys as

Srer, |7
BCp,, = W
and the global coverage of F); as
S rern, Il
GO = Rl

At this point, GAM-NGS keeps only blocks satisfying the following condition:

BCp,, BCp,
> T,
ax { GCr,, GCr. | =

where T, is a user defined real number in the interval [0,1]. The idea is to get rid of
blocks built using a low amount of reads compared to the number of mapped reads on

5.2. GAM-NGS: efficient assembly reconciliation using read mapping 65

both frame intervals (see Figure 5.1).

Figure 5.1: Blocks construction in GAM-NGS. Blocks are identified by regions belonging
to M and S that share a relatively high amount of mapped reads. In this figure, blue
reads identify clusters of adjacent reads that are uniquely mapped in the same contig of
both the assemblies. Moreover, GAM-NGS discards blocks like B3 that contains a small
amount of shared reads compared to the number of reads aligned in the same regions
(e.g., in Bj these are less than 35% and this block may create a wrong link between
contigs).

We decided to use the maximum between the two ratios in order to avoid the removal
of blocks corresponding to heterozygous regions: it may happen that one assembler
returns both alleles while the other returns only one of them. In this case, the proportion
of reads used in the block should be close to 1 and 0.5, respectively.

The second filtering step is based on the length of block’s frames. In particular, given
a block B composed of frames Fyy,, Fs; on contigs M; € M and S; € S respectively, B
is retained if

> min{0.3 - [M;|,Ti} V |Fs,| > min{0.3 - [S;], 11},

where T; is a user-defined threshold. Nevertheless, when this condition is not satisfied
we still retain the block if any of the following conditions is satisfied: there are other
blocks between M; and S satisfying the condition or this is the only block between the
two contigs. The rationale is, again, to discard blocks that are likely to be consequences
of wrong alignments or chimeric regions, while keeping small blocks that can still witness
insertions or deletions by one of the two assemblies.

5.2.4 Assemblies graph construction

For each assembly, we can define a block order relative to an assembly exploiting frames’
order along its contigs. In particular, consider an assembly A and two blocks B; and
By with frames F{* and F3, respectively, both on A. We say that By comes before B
with respect to A if and only if both F{* and F3 lie on the same contig C4 and F{
comes before F3' (i.e., begin(F{') < begin(Fs')) and there is no frame F3' lying over
C 4 for which F{! comes before Fy' and Fj' comes before Fj'.

It is important to point out that this block order strictly depends on the consid-
ered assembly, since the same genomic region may have been reconstructed on opposite
strands in the input assemblies. Thus, there may be cases where B; comes before By
with respect to M, but By comes before By with respect to S. In this scenario, block
orders of the two assemblies may contradict each other (leading to cycles in AG) even

66 5. De Novo Assembly Through Reconciliation

when there is no contradiction at all.

Our goal is to determine a consistent order of blocks among each contig of both the
assemblies. To facilitate that, we build a Contigs Graph (CG) which consists of a vertex
Vi, for each contig M; € M and a vertex Vg, for each contig S; € S. Two vertices Vi
and Vi are connected by an undirected edge if and only if U and W belong to different
assemblies and have at least one block over them.

For each edge e connecting two vertices Vi, Vs,, we assign the weight

rt r
We = max
¢ rt+r="rt+r=)’

where rT and r~ are the number of reads belonging to concordant and discordant blocks
between M; and S;, respectively. For each vertex V' the weight wy is then computed,
corresponding to the mean of its incident edges’ weights (this mean is weighted on the
overall size of all blocks connecting two contigs). The main idea is that edges’ weights
will have a value close to one when the majority of the reads composing the blocks are
mapped either with the same orientation or with the opposite orientation. In the former
case contigs will most likely have the same orientation, while in the latter case one of
the two contigs must be complemented and reversed.

In more detail, let @ be the set of processed vertices. At first, for each connected
component of CG, we insert into Q a vertex V which maximizes wy and we set the
original blocks’ order for V’s contig. Then, we repeat the following steps until all
vertices of the graph belong to Q:

e Pick V € Q with largest wy;

e Let adj(V') be the set of the vertexes adjacent to V. For each vertex Viy € adj(V),
we set the order of blocks on U depending on whether the majority of reads belongs
to concordant or discordant blocks and according to blocks’ order of V’s contig;

e adj(V)’s elements are added to Q and we remove V’s incident edges from the
graph, updating vertices’ weights.

The rationale behind this heuristic is that, at each iteration, we set the order of the
blocks over one of the contigs for which we have the clearest evidence. However, this
is a simple (yet effective) procedure to compute a consistent blocks’ order among the
assemblies and we plan to improve it in order to have a higher guarantee of avoiding
the introduction of “false contradictions” (i.e., cycles) in AG.

With the updated blocks order we are now able to build the Assemblies Graph (AG):
a node Vg is added for each block B, while edges connect blocks that share at least one
frame on the same contig. In particular, if a block By comes before a block By with
respect to M or S we put a directed edge from Vg, to Vg, (see Figure 5.2). Notice that,
since we are considering the merging of two assemblies, each node cannot have an input
or output degree strictly greater than two.

Moreover, during AG construction, we add to each edge a weight characterized by a
series of features that are evaluated within the region relative to the blocks related to
the vertices connected by the edge.

Let Vg,, VB, be two nodes linked by an edge (i.e., By comes before By on a contig
C of either one of M and S). Let F; and F, be, respectively, their frames on C.

5.2. GAM-NGS: efficient assembly reconciliation using read mapping 67

Then, we compute the number of reads that have a correctly placed pair (or mate)
that spans the gap between F} and F, and the number of reads that are expected
to have their pair (or mate) correctly placed and crossing over F; and Fy which is
unmapped or mapped to a different sequence. In particular, a read 7/, mapped on
a contig C, has a correctly placed pair (or mate) r” if begin(r”) is inside the region
[begin(r') 4+ (m—3-sd), begin(r') + (m+3-sd)] and |C| > begin(r’) + (m+3 - sd), where
m and sd are the mean and the standard deviation of the insert size of the library,
respectively. Furthermore, we also compute values such as coverage and number of
wrongly oriented pairs (or mates). These weights are used to determine the likelihood
that a link represents a correct path allowing us to take motivated decisions in case of
problematic regions witnessed by non-linear graphs (i.e., bubbles, bifurcations, etc.).

M 1 M. 2 A/[d

B1 BQ B3 B4 B5

S] SQ S3

Figure 5.2: Example of AG construction. Let M = {M;, M2, M5} and S = {51, S2, S5}
be the master and slave assemblies, respectively. B; comes before Bs in both S; and
M so a directed edge connects Vg, and Vp,. The same also applies for Vg, and Va,,
since By comes before Bs in S;. Moreover, an edge is added between Vp, and Vg, as
Bs comes before By in Ms.

Every path in AG corresponds to a sequence of blocks such that every pair of con-
secutive blocks lies on the same assembled sequence for at least one assembly. Thus, we
can exploit AG to integrate or extend contigs.

Also, it is important to notice that if we consider AG disregarding edges’ orienta-
tion, more than a single connected component can be present. We exploited this fact
implementing GAM-NGS in a way that it can correct and merge contigs handling single
connected components in parallel.

5.2.5 Handling problematic regions

Even if we build AG using the previously described method, block orders suggested
by assemblies may contradict each other. For instance, suppose two blocks lie on a
single contig in both the assemblies with opposite order with respect to M and S. This
scenario will lead to a cycle in AG. Moreover, strongly connected components (SCCs)
containing at least two nodes denote a situation where M and S disagree on the order
of some blocks. To find these kind of contradictions we used Tarjan’s algorithm [177] to
determine SCCs in linear time while visiting AG.

Another possible problem is represented by divergent paths that may indicate situ-
ations where assemblies locally behaved differently: one assembler extended a sequence

68 5. De Novo Assembly Through Reconciliation

in a different way with respect to the other. In particular, we can exploit edges’ weights
to perform choices that are locally optimal (e.g., in the presence of a bifurcation the
path minimizing the evidence of mis-assemblies will be chosen) in order to output a cor-
rect sequence. In situations where weights/features do not allow us to take a position
(e.g. similar weights), we decided to be as conservative as possible, trusting only contigs
belonging to the master assembly.

Among the various graph structures generated by discordant assemblies, bubbles and
forks are the most common ones (see Figure 5.3 and Figure 5.4). Bubbles consist of a
path that first diverges and then converges back. Forks, instead, contain only divergent
or convergent paths. We can spot and distinguish these two structures with a simple
depth-first traversal of AG. Such structures can nest in highly complex scenarios and,
at this stage, we decided to deal only with graphs for which we have a good guarantee
that they will be handled correctly. In particular, we took care only of cycles involving
exactly two nodes and bifurcations not involving any bubble.

Handling cycles involving exactly two nodes

Cycles involving only two nodes may indicate inversions along the same contig in both
M and S. To solve this particular kind of loop we can exploit mate-pair and pair-end
reads’ orientation. In [183] it has been shown how the use of mate-pair-happiness [141]
is one of the best methodologies to detect mis-assemblies.

If the graph is indeed the result of two inverted blocks in one of the two assemblies,
contigs pairs will be mapped with the correct orientation in only one of the two (see
Figure 5.3). Hence, if we are able to find a minimum number of reads that are aligned
properly in one contig and with the wrong orientation in the other one, we can include
the correct sequence in the improved assembly. Otherwise, we chose to directly output
the sequence of the master assembly.

A\

SSEEEE

B B, Bs

B,

2T
OO OWNO

Figure 5.3: A 2-node cycle in AG witness a putative inversion along a single contig in
M and S. If there actually is an inversion, then mate-pair reads are aligned with the
wrong orientation in one of the two contigs. We can use this information to provide in
output a correct sequence (the blue one in the picture).

5.2. GAM-NGS: efficient assembly reconciliation using read mapping 69

Handling bifurcations

Graphs containing bifurcations may signify biological repeats or mis-assemblies. We
will only show how we handle nodes with output degree equal to two, since nodes with
input degree equal to two can be treated symmetrically. Let B be a block such that Vg
has two outgoing edges to Vg,, and Vp,. Let M; € M be the contig shared between B
and By, and S; € S be the contig between B and Bg. In order to solve this scenario
we focus on where reads placed on frames defined by B have their respective paired
read (or mate): do they end up in By or Bg? See Figure 5.4 for an illustration of this
case. Let nj; and ng count the number of mates mapped to Bj;’s and Bg’s frame,
respectively. Given a read library with mean insert size m and standard deviation s,
we define uys (respectively ug) as the number of reads mapped on the frame defined by
B such that their pair/mate, accordingly to library orientation, is not aligned within a
region of length m + 3s (i.e., insert size spanning) in Bj,’s frame on M; (respectively,
in Bg’s frame on S;). If M; (or S;) is so short that it is included within the insert size
spanning of a read placement, then that read is not used to compute ups (or ug).
For instance, if we find that

n n
ﬂZTU A iSTLv

Up us

where Ty > T, are two threshold values in [0, 1], we may be able to spot a mis-assembly
in S;. Conversely, if we find that
n

Z>1 A X<,

us Un
we may be able to spot a mis-assembly in M;, as in Figure 5.4b. If we are not in any of
the two previous situations, it might mean that either blocks are too distant to let us
discover the mis-assembly or B has been built due to a repetitive sequence. In this case,
to avoid the introduction of errors in the improved assembly, we do not risk resolving
the bifurcation and instead simply output the master’s contigs.

S S @ PN

M M

By S By S
’ [—] o —

B B

@ ' '

. Be M, Be M,
@ S5) =) S o] =)

(a) Biological repeat (b) Putative mis-assembly

Figure 5.4: Bifurcations in the Assemblies Graph may spot biological repeats or mis-
assemblies. In panel (a), paired reads do not solve the bifurcation and we might face a
biological repeat. In panel (b), paired reads on M; might help us to spot a mis-join in
the assembly.

70 5. De Novo Assembly Through Reconciliation

5.2.6 Merging

After solving problematic regions in AG, we can visit maximal disjoint paths in order to
produce a draft alignment of contigs belonging to different assemblies. Such alignment
is based on reads mapping and might be inaccurate (e.g., regions having low identity).
Therefore, we perform a semi-global alignment algorithm [180] (a banded variant to save
memory) to make sure that contigs have a high similarity (i.e., at least an identity of
95%) and should be merged.

We decided not to return a consensus, since there is no guarantee that it would be
better than the two original sequences. Therefore, we decided to output the sequence
belonging to the assembly that locally shows the best CE statistics [200] for insert sizes.

We also tried to avoid the introduction of duplicated regions, closing a gap between
two contigs of M linked by a contig of S if and only if semi-global alignments on both
ends of the region do not drop below 95% identity (see Figure 5.5).

After this phase, we obtain a set of merged contigs that we called paired contigs. To
obtain the final improved assembly we simply output this set along with contigs of M
that were not involved in any merge.

]\11 AIQ AJS

By B, Bs By B;

S1 SZ SS

Merged assembly
I I I || I [N T

Figure 5.5: GAM-NGS merging example. During the merging phase, we fill the gaps
between contigs in M and we extend a contig of M only if the corresponding sequence
in S is longer and semi-global alignments at any end do not drop below 95% identity.
Moreover, for regions defined by a block, we output the frame with better CE statistics.

5.3 Results

GAM-NGS’s source code can be freely downloaded from [6]. It has been written in C++
and has been tested on Linux operating systems.

Validation of GAM-NGS’s output has been performed on public data, for which re-
sults obtained by various assemblers are public as well. In particular, we chose three real
datasets (i.e., Staphylococcus aureus, Rhodobacter sphaeroides and human chromosome
14) downloaded from GAGE’s website [5] (see Table 5.1) for which a reference genome
is available. Moreover, we chose to test GAM-NGS on larger datasets such as Prunus
persica, Populus nigra and Picea abies, in order to show our tool’s scalability.

It is also important to point out that datasets provided by GAGE represent a useful
instrument to evaluate GAM-NGS for a number of different reasons. First, GAGE pro-
vides state of the art datasets formed by several paired end and mate pairs libraries. Sec-

5.3. Results 71

Table 5.1: Reference genomes and libraries of GAGE datasets.

. Genome . Average read Insert
Organism Library Coverage
length (bp) length (bp) size (bp)
Fragment 101 180 29X
S. aureus 2,903,081
Short jump 96 3500 32X
F t 101 180 31X
R. sphaeroides 4,603,060 ragmen
Short jump 101 3500 29X
Fragment 101 180 39X
Human chr14 88,289,540 Short jump 96 3000 12X
Long jump 96 35000 0.2X

ond, it provides highly reliable reference assemblies suitable for benchmarking. Third,
a suite of reusable scripts is available for computing assembly metrics.

Reads available for each public dataset were error-corrected using both Quake and
the Allpaths-LG error corrector. We chose to use the Allpaths-LG error-corrected reads.

Since GAM-NGS (as well as GAA) follows a master/slave approach and many assem-
blies are available for each GAGE datasets, we had to decide which assemblies should
be merged and which should be elected as master.

Evaluating de novo assemblies in absence of a reference sequence is as difficult as de
novo assembly itself. As an example, consider that Assemblathon 2 [26] required more
than a year to evaluate submitted assemblies. GAGE datasets gave us the possibility to
choose the two best assemblies accordingly to GAGE evaluation, however we decided to
be as realistic as possible and to avoid the use of the available reference sequence. To the
best of our knowledge, the only methodology available to evaluate assemblies in absence
either of a reference sequence or of external-validation-data (e.g., fosmid ends, physical
maps, efc.) is based on Feature Response Curve-analysis (FRCurve-analysis) [183].
Recently, a novel tool dubbed FRC?*™ [184], designed for computing a FRCurve from
NGS-datasets, has been presented. Results summarized in [184] show that FRCb*™
is able to effectively detect mis-assemblies. FRC*®™ enabled us to evaluate a de novo
assembly using only an alignment file (given in the standard SAM/BAM format) of a
set of reads (usually the same reads used in the assembly), which is also the same input
required by GAM-NGS.

For each GAGE dataset we plotted the FRCurve [183] using FRC*®™. Then we chose
to merge the two assemblies having the steepest curves (i.e., few negative features in the
longest contigs) and whole length close to the genome size. As expected by the results
shown in [184], we were always able to choose assemblies that, using GAGE’s evaluation
scripts, were characterized by good statistics such as number of errors and corrected
NG50 (i.e., NG50 of the assemblies broken in correspondence of each mis-assembly).
All experiments were performed using both combinations of master/slave assemblies.
We also decided to follow a common “bad practice” electing as best assemblies those
characterized by the longest NG50 (without any consideration on the number of errors)
and run GAM, GAA and ZORRO to merge them.

As far as the three larger datasets were concerned, we merged assemblies obtained

72 5. De Novo Assembly Through Reconciliation

with CLC [9] and ABySS [162] for Prunus persica and Populus nigra, while we used
GAM-NGS with a whole genome shotgun assembly and a series of fosmid-pools as-
semblies (all assembled with CLC assembler) for Picea abies that, to the best of our
knowledge, represents one of the largest ever sequenced genome.

GAM-NGS’s performance rely on the choice of several parameters: the minimum
number of reads per block By,in, the threshold T, related to blocksaAZ coverage filtering,
the minimum block’s length threshold T;.

Low values of B,,;, increase the number of blocks which leads to a larger memory
requirement and to a potentially more complex Assemblies Graph. Moreover, high
values of T, or T allow us to filter more blocks, running the risk of discarding significant
blocks, while with low values we might keep blocks due to repeats that will complicate
AG’s structure. We decided to set B,,;, = 10, T, = 0.75 and T; = 200 bp for all
experiments on bacteria. Instead, for human chrl4, we set B,,;, = 50, T. = 0.75 and
T; = 500 bp.

To evaluate correctness, we computed statistics using the same analysis script used
in [154] and available for downloading at [5]. In particular, N50 sizes were computed
based on the known size of the genome (NG50) and only contigs longer than 200 bp
were used for the computations. As a consequence of the absence of a reference sequence
in the case of the three new plants genomes we simply returned statistics showing the
improvements in contiguity.

All experiments were performed on a 16 CPU machine with 128 GB of RAM, with
the only exception of Picea abies where we used a machine equipped with 32 CPUs and
2 TB of RAM. GAM-NGS was always executed taking advantage of all available CPUs.
GAA and ZORRO are designed as single-core programs. For this reason, we reported
both CPU and wall clock times for each experiment. Moreover, GAA’s internal call to
BLAT is specified with the parameter ~fastMap which requires input sequences to have
contigs shorter than 5 Kbp. Thus, in each experiment, we had to manually run BLAT,
providing its output to GAA’s call. As we will show later, GAM-NGS was the fastest
tool on the largest GAGE dataset (human chromosome 14).

Time of alignment was added to GAM-NGS’s time but we would like to emphasize
that read alignment is often required in downstream analyses and is also needed when
FRCY™ [184] is used to evaluate assemblies’ correctness.

5.3.1 Evaluation and validation on GAGE datasets

Given the availability of a reference sequence, GAGE datasets allowed us to compute the
actual number of errors within an assembly. We compared GAM-NGS with GAA [193]
and ZORRO [7] in order to obtain a comparison of assembly reconciliation tools as
fair as possible and we used the same scripts used by Salzberg and colleagues in [154],
downloadable from [5].

Staphylococcus aureus

For Staphylococcus aureus’ dataset we chose to merge the assemblies of Allpaths-LG
and MSR-CA. Looking at their FRCurves in Figure 5.6, they seem to be the best two
assemblies for this dataset (SGA looks steeper, however its short contigs contains many
issues according to our analysis). This situation is also confirmed by GAGE analysis,

5.3. Results 73

as both Allpaths-LLG and MSR-CA assemblies have a low number of errors and a large
corrected NG50.

100 -

wee - Allpaths-LG
g = Bambu2
o m— MSR-CA
< 50 — SGA
g SOAPdenovo
© — Velvet

0

! ! ! ! !
150 200 250 300 350 400
Feature threshold

!
0 50 100

Figure 5.6: FRCurve of Staphylococcus aureus assemblies. Allpaths-LG and MSR-CA
assemblies reach earlier a coverage close to 100% with the smallest number of features
and, thus, they where chosen to be merged.

As shown in Table 5.2, using Allpaths-LG as master assembly, GAM-NGS was able
to increase Allpaths-LG’s NG50 by ~40 Kbp and to decrease the number of compressed
regions. Table 5.2 also shows us that GAA behaved better as far as compressed refer-
ence bases and corrected NG50 are concerned (GAA’s corrected NG50 is ~5Kbp longer
than GAM-NGS one). However, GAA is affected by duplication events and, more im-
portantly, Table 5.3 shows that it contains one misjoin more than GAM-NGS. ZORRO,
instead, returned a lower NG50 (about half, compared to GAM-NGS and GAA) and a
lower corrected NG50. Moreover, ZORRQO’s output contains more misjoins than GAM-
NGS.

Using MSR-CA in place of Allpaths-LG as master assembly, GAM-NGS was able to
increase NG50 by ~30 Kbp and provide a better corrected NG50 with respect to the
other tools. Moreover, GAM-NGS was able to correct the master assembly problematic
regions, as GAM-NGS output as a lower number of misjoins than MSR-CA. GAA,
instead, using MSR-CA as master assembly, performed better as far as compressed
reference bases are concerned but returned a higher number of misjoins and indels
compared to GAM-NGS. In this case ZORRO returned the minimum number of misjoins
among the three tools but it is also the one with the assembly characterized by the lowest
NG5H0 and the lowest corrected NG50.

In Tables A.1 and A.2 we summarize the results of merging the assemblies charac-
terized by the largest NG50 (i.e., Allpaths-LG and SOAPdenovo), without considering
assemblies’ correctness. The purpose of this test is to demonstrate how important the
input assembly choice is. In particular, when using SOAPdenovo as master (i.e., assem-
bly with largest NG50) and Allpaths-LG as slave, all the three assemblies reconciliation
tools return an assembly characterized by a corrected NG50 lower than master’s one.
Using Allpaths-LG as master, GAA and ZORRO returned a large number of dupli-

74 5. De Novo Assembly Through Reconciliation

Table 5.2: GAGE statistics (contiguity, duplication and compression) on Staphylococcus
aureus. For each assembler we report the number of contigs greater than 200 bp (Ctg),
the NG50, the corrected NG50 (i.e., computed breaking the assembly at each error),
assembly’s total length, the percentage of short (Chaff) contigs, the length of reference’s
regions which cannot be found in the assembly (Unaligned ref), the length of assembly’s
regions that cannot be found in the reference (Unaligned asm), the percentage of dupli-
cated (Dupl) and compressed (Comp) regions in the assembly. All the percentages in
the table are computed with respect to the true genome size.

Ctg NG5O0 NG50 Assembly Chaff Unaligned Unaligned Dupl Comp

Assembler num (kb) corr. (kb) size (%) size (%) ref (%) asm (%) (%) (%)
Allpaths-LG 60 96.74 66.23 98.88 0.03 0.61 0.01 0.04 1.26
MSR-CA 94 59.15 48.23 98.60 0.01 1.28 0.00 0.71 0.88
Allpaths-LG + MSR-CA

GAM-NGS 44 141.54 75.82 100.49 0.00 0.44 0.01 0.26 0.99
GAA 40 139.48 80.68 99.52 0.03 0.37 0.01 0.32 0.88
ZORRO 81 74.68 62.85 99.70 0.16 0.32 0.04 0.59 0.88
MSR-CA + Allpaths-LG

GAM-NGS 66 90.47 66.44 100.21 0.01 1.01 0.00 2.03 0.89
GAA 53 131.65 64.43 100.66 0.01 0.95 0.00 1.90 0.79
ZORRO 80 74.64 62.85 99.63 0.14 0.32 0.05 0.53 1.11

Table 5.3: GAGE statistics (SNPs, indels and misjoins) on Staphylococcus aureus. For
each assembly we show the number of SNPs, the number of indels shorter than 5 bp and
greater (or equal) than 5 bp. The number of misjoins is computed as the sum of inver-
sions (parts of contigs reversed with respect to the reference genome) and relocations
(rearrangements moving a contig within/between chromosomes).

Assembler SNPs Indels < 5 bp Indels > 5 bp Misjoins Inv Reloc

Allpaths-LG 79 4 12 4 0 4
MSR-CA 191 23 10 13 6 7
Allpaths-LG + MSR-CA

GAM-NGS 137 9 15

GAA 145 8 16

ZORRO 133 12 8 6 2
MSR-CA + Allpaths-LG

GAM-NGS 214 19 10 9 2

GAA 206 22 15 11 2

ZORRO 262 24 9 7 4

5.3. Results 75

Table 5.4: Assembly reconciliation tools performances on Staphylococcus aureus. In
GAM-NGS’s entries the first value indicates the time spent in alignment phase, while
the second one is GAM-NGS’s run time.

Tool User (CPU) time Wall clock time
Allpaths-LG + MSR-CA
GAM-NGS 1h 10m 19s + 51s 4m 10s + 17s
GAA 1m 20s 1m 20s
ZORRO 3m 04s 3m 04s
MSR-CA + Allpaths-LG
GAM-NGS 1h 10m 19s + 49s 4m 10s + 17s
GAA 1m 11s 1m 11s
ZORRO 14m 18s 14m 18s

cated regions (providing an assembly much longer than the reference) and they both
introduced more misjoins than GAM-NGS.

Table 5.4 shows running times of the three assembly reconciliation tools. If we
consider the CPU time, then GAM-NGS is definitely affected by the required reads
alignment phase. Instead, if we consider wall time, GAM-NGS’s performance is in line
with the other tools.

Rhodobacter sphaeroides

For Rhodobacter sphaeroides’ dataset we chose to merge Allpaths-LG and MSR-CA
assemblies. Looking at their FRCurves in Figure 5.7, they seem the best two assemblies
to be merged. CABOG and Bambus2 also provide sharp FRCurves on this dataset,
however both assemblies are characterized by a large number of short contigs with
many features (i.e., long tail), and they both fail to fully assemble the genome, as the
total assembly’s length is approximately 90% of the expected one. For these reasons we
discarded CABOG and Bambus2.

As shown in Table 5.5, using Allpaths-I.G as master assembly, we were able to
increase its NG50 by ~10 Kbp. While GAA behaved better than GAM-NGS in terms
of corrected NG50 as its value is ~3Kbp longer, our tool behaved slightly better with
consideration of duplication and compression events. Also in this case, ZORRO has
worse performance among tested tools in terms of contiguity (both NG50 and corrected
NG50). More importantly, Table 5.6 shows that both GAM-NGS and GAA were able
to lower the number of misjoins, while ZORRO introduced a relocation.

When using MSR-CA as master assembly, GAM-NGS was able to increase MSR-
CA’s NG50 by ~27 Kbp, providing a longer corrected NG50 with respect to the two
merged assemblies. Also with this master/slave combination, GAA’s assembly is char-
acterized by a corrected NG50 slightly better than GAM-NGS’s one. Both GAM-NGS
and GAA introduced one additional misjoin with respect to MSR-CA, while ZORRO
was able to correct the master assembly.

Tables A.4 and A.5 also show the results of merging the assemblies with the high-
est NG50 (i.e., Bambus2 and SOAPdenovo). GAM-NGS and GAA have very similar
statistics and for both of them the difference between the NG50 and its corrected value

76 5. De Novo Assembly Through Reconciliation

100 - -

ABySS
Allpaths-LG
Bambu2
CABOG
MSR-CA
SGA
SOAPdenovo
Velvet

350 400

at
o

coverage (%)

) I

. ! ! !
0 50 100 150 200 250 30
Feature threshold

Figure 5.7: FRCurve of Rhodobacter sphaeroides assemblies. Allpaths-L.G and MSR-CA
assemblies reach earlier a coverage close to 100% with the smallest number of features
and, thus, they where chosen to be merged. CABOG’s assembly seems better but
provides a low coverage of the genome and, for this reason, it was not taken into account.

Table 5.5: GAGE statistics (contiguity, duplication and compression) on Rhodobacter
sphaeroides. Columns are the same as in Table 5.3.

Ctg NG50 NG50 Assembly Chaff Unaligned Unaligned Dupl Comp

Assembler num (kb) corr. (kb) size (%) size (%) ref (%) asm (%) (%) (%)
Allpaths-LG 204 42.45 34.42 99.68 0.01 0.45 0.01 0.38 0.31
MSR-CA 395 22,12 19.08 97.02 0.01 3.47 0.04 1.05 0.53
Allpaths-LG + MSR-CA

GAM-NGS 168 51.12 37.88 99.97 0.00 0.28 0.01 0.61 0.31
GAA 164 53.82 40.55 100.07 0.01 0.20 0.01 0.63 0.32
ZORRO 216 38.87 30.64 100.41 0.03 0.36 0.02 0.43 048
MSR-CA + Allpaths-LG

GAM-NGS 199 49.61 37.88 97.95 0.01 3.10 0.04 1.58 0.61
GAA 177 54.71 40.55 99.74 0.01 1.61 0.04 1.08 0.35
ZORRO 206 44.61 38.79 101.14 0.09 0.21 0.06 1.64 0.25

is substantial. ZORRO, instead, tends to output a highly fragmented assembly lowering
the number of indels but without correcting any misjoin.

Table 5.7 shows running times of the three assembly reconciliation tools. Also in
this dataset, if we consider the CPU time, then GAM-NGS is definitely affected by the
required reads alignment phase and requires much more time than GAA and ZORRO.
If we consider wall time, instead, GAM-NGS runs in less than 8 minutes, comparable,
if not better, than the other tools.

5.3. Results 77

Table 5.6: GAGE statistics (SNPs, indels and misjoins) on Rhodobacter sphaeroides.
Columns are the same as in Table 5.4.

Assembler SNPs Indels < 5 bp Indels > 5 bp Misjoins Inv Reloc

Allpaths-LG 218 150 37 6 0 6
MSR-CA 807 179 32 9 1 8
Allpaths-LG + MSR-CA

GAM-NGS 250 157 44

GAA 345 162 48

ZORRO 263 153 35

MSR-CA + Allpaths-LG

GAM-NGS 842 198 46 10 1

GAA 802 187 49 10 1
ZORRO 928 215 29 7 0

Table 5.7: Assembly reconciliation tools performances on Rhodobacter sphaeroides. In
GAM-NGS’s entries the first value indicates the time spent in alignment phase, while
the second one is GAM-NGS’s run time.

Tool User (CPU) time Wall clock time
Allpaths-LG + MSR-CA
GAM-NGS 1h 21’ 09” 4 2’ 20” 5 03” 4 43”7

GAA 177 17”7
ZORRO 14’ 46” 14’ 46”
MSR-CA + Allpaths-LG

GAM-NGS 1h 21’ 09” + 2’ 19” 5 03”7 + 48”
GAA 19”7 19”
ZORRO 16’ 15” 16’ 15”

Human chromosome 14

These first two bacteria datasets are small and time might not be considered an issue
(each assembly reconciliation tool was able to run in reasonable time). The third GAGE
dataset on which we tested our tool was the human chromosome 14 (characterized by
an ungapped 88 Mbp size). This dataset is not only ~20 times larger than the other
two, but it is also more complex (e.g., containing repeats, afflicted by heterozygosity).
Moreover, in this scenario GAM-NGS starts to show its real potential: assembling large
datasets using a relatively low amount of resources, while preserving correctness.

ZORRO output is not shown in Table 5.8 as, after two weeks of computation, it was
not able to provide an output. Thus, we limit our evaluation to only GAM-NGS and
GAA.

For this dataset we chose to merge Allpaths-LG and CABOG assemblies. Looking
at their FRCurves in Figure 5.8, they are clearly the best two assemblies to be merged.
GAGE’s statistics also show that Allpaths-LG and CABOG assemblers produce the best
two assemblies for this dataset (i.e., highest NG50 and low number of misjoins).

78 5. De Novo Assembly Through Reconciliation

100 |-
"
— = ABySS
= — Allpaths-LG
&% Bambus2
£ 50 —— MSR-CA
8 — SGA
m— SOAPdenovo
— Velvet
v CABOG
0 ! ! !
0 0.2 0.4 0.6 0.8 1 1.2
Feature threshold 10°

Figure 5.8: FRCurve of human chromosome 14 assemlies. Allpaths-LG and CABOG
contain definitely the lowest numbers of features with respect to the other assemblers.

Table 5.8: GAGE statistics (contiguity, duplication and compression) on human chro-
mosome 14. Columns are the same as in Table 5.3. All the statistics were computed
using the same script with the gapped reference genome (107,349,540 bp).

Ctg NG50 NG50 Assembly Chaff Unaligned Unaligned Dupl Comp
Assembler num (kb) corr. (kb) size (%) size (%) ref (%) asm (%) (%) (%)

Allpaths-LG 4529 27.96 15.69 78.67 0.02 20.03 0.04 0.23 2.11
CABOG 3361 35.86 18.63 80.34 0.02 19.13 0.07 0.13 1.39
Allpaths-LG + CABOG

GAM-NGS 2235 61.64 21.91 80.94 0.02 19.08 0.10 0.88 1.43
GAA 1989 69.40 23.04 82.08 0.02 18.92 0.09 1.52 1.39
CABOG + Allpaths-LG

GAM-NGS 1979 66.29 23.63 81.00 0.02 19.00 0.06 0.74 1.37
GAA 1903 70.39 23.89 81.89 0.02 18.98 0.07 1.21 1.36

Tables 5.8 and 5.9 show how, using Allpaths-L.G as master assembly, GAM-NGS was
able to increase NG50 by ~ 32 Kbp and the corrected NG50 by ~ 6 Kbp. GAA returned
better NG50 values but it produced more duplicated regions and it was afflicted by a
larger amount of mis-joins and indels compared to GAM-NGS.

We also want to point out that the corrected NG50 is certainly an important statistic
to evaluate the improvement of a merge with respect to the master assembly but it
only indicates whether the longest contigs are affected by errors and does not tell how
the assembler behaves on short contigs (which are also important to assess assemblies’
quality, as FRCurve demonstrates). We finally plot the FRCurve to globally estimate the
quality of the merged assemblies. Figure 5.9 shows that GAM-NGS globally behaved
better and, in particular, seems to introduce less features (especially in the shortest
contigs of the assembly).

Table 5.10 shows running times of the two assembly reconciliation tools used with

5.3. Results 79

Table 5.9: GAGE statistics (SNPs, indels and misjoins) on human chromosome 14.
Columns are the same as in Table 5.4. All the statistics were computed using the same
script with the gapped reference genome (107,349,540 bp).

Assembler SNPs Indels < 5 bp Indels > 5 bp Misjoins Inv Reloc

Allpaths-LG 55319 27563 2558 101 44 57
CABOG 81151 28438 2884 149 46 103
Allpaths-LG + CABOG

GAM-NGS 61725 29936 2950 119 32 87
GAA 63835 30151 2990 123 29 94
CABOG + Allpaths

GAM-NGS 79478 29653 3021 154 43 111
GAA 81763 29812 3008 134 31 103

Table 5.10: Assembly reconciliation tools performances on human chromosome 14. In
GAM-NGS’s entries the first value indicates the time spent in alignment phase, while the
second one is GAM-NGS’s run time. Due to the size of the assemblies, we parallelized
BLAT’s execution to get GAA’s output in a reasonable time. ZORRO results are not
shown due to the fact that the tool cannot run in parallel and, after more than a week
of computation, was still not able to provide an output.

Tool User (CPU) time Wall clock time
Allpaths-LG + CABOG
GAM-NGS 4h 24’ 59” 4 1h 14’ 41”7 45’ 56” + 18’ 16”
GAA 452h 18’ 14h 16’ 4”
CABOG + Allpaths-LG
GAM-NGS 4h 24’ 59” 4+ 1h 12’ 35”7 45’ 56” + 19’ 21”
GAA 467h 40’ 13h 44’ 58’

this dataset. GAM-NGS required about 1 hour to accomplish its task (reads’ alignments
included), while GAA required about 13 hours (manually running multiple BLAT align-
ments in parallel).

This characteristic may not be very important for short genomes but, as the size
increases, it becomes of crucial importance. As we will show in the tests on some large
plant genomes, GAM-NGS is able to merge even 20 Gbp assemblies using a relatively
low amount of memory and time.

5.3.2 Performance of GAM-NGS on large datasets

On small datasets, all the assembly reconciliation tools provide an output in reasonable
time. However, when we consider the human chromosome 14 we observe how GAA
runs at least 10 times slower than GAM-NGS (if we consider also the mandatory reads’
alignment step) while ZORRO, after two weeks, is not even able to provide us a partial
output. This proves that the major bottleneck consists in the global alignment phase of
these tools.

5. De Novo Assembly Through Reconciliation

100 =
g
@
5 50 - B
g = Allpaths-LG
CABOG
— GAA
m— GAM-NGS
0 ! ! !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Feature threshold .10%
(a) Merging with Allpaths-LG as master.
100 s
S
%
E; 50 - B
S = Allpaths-LG
CABOG
— GAA
m— GAM-NGS
! ! !
00 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Feature threshold 104
(b) Merging with CABOG as master

Figure 5.9: FRCurve of assembly reconciliation tools on human chromosome 14, using
(a) Allpaths-LG and (b) CABOG as master assembly. Despite the lower corrected NG50
(which means errors in the longest contigs), considering the whole assembly, GAM-NGS
seems to behave globally better than GAA and the input assemblies.

On the contrary, GAM-NGS’s approximation (using read’s alignment back to the as-
semblies) coupled with the implementation of a weighted graph, achieves similar results
in a reasonable amount of time. In order to show GAM-NGS’s scalability, we tested it
on three large plants genomes whose sizes vary from 227 Mbp to 20 Gbp.

The first of these datasets is Prunus persica, characterized by a genome size of

227 Mbp. The best assemblies we were able to compute were produced with CLC and
ABySS assemblers, which were similar in length and number of contigs. We chose to use

5.4. Conclusions 81

Table 5.11: Contiguity statistics of GAM-NGS on large plants datasets.

Assembler Total Length (Kbp) Contigs N50 (bp)

Prunus persica

ABySS (M) 177,460 33,949 10,895
CLC (S) 179,151 41,684 8,654
GAM-NGS 184,735 27,445 13,410
Populus nigra

CLC (M) 339,551 104,432 6,130
ABySS (S) 296,245 83,564 5,357
GAM-NGS 359,795 78,366 10,018

ABySS as master, since it was more contiguous. As shown in Table 5.11, we were able
to increase NG50 (of ~3 Kbp with respect to the master) and provide a more contiguous
assembly compared to both CLC and ABySS. After mapping a 65x coverage of Illumina
paired-end reads (which required 4 hours and 37 minutes), GAM-NGS took less than 2
hours using at most 19.6 GB of RAM.

The second large dataset we used is Populus nigra, characterized by a genome size
of ~423 Mbp. Also in this case, as for Prunus persica, the assemblies we had at our
disposal were made with CLC and ABySS. This time, CLC’s assembler looked better
for its total length and NG50 and, thus, we decided to use it as master. As shown
in Table 11, even with this dataset, we were able to increase NG50 (by ~4 Kbp with
respect to the master) and to provide a more contiguous assembly. To perform the
mandatory alignment step we used a 80x coverage of Illumina paired-end reads, which
required about 8 hours. Then, GAM-NGS took less than 4 hours using at most 34.5 GB
of RAM to perform the merge. In order to save memory we could have decreased the
reads coverage (at least 30 is suggested at the cost of a lower assembly improvement).

As a demonstration of GAM-NGS’s flexibility, consider that GAM-NGS has also
been used to obtain a draft assembly of the 20-gigabase genome of Picea abies (i.e.,
the Norway spruce), where performing a global alignment is impracticable. GAM-NGS
was able to run in less than 3 days (6 days, taking into account also the mandatory
alignment phase) using at most 612 GB of RAM. This is certainly a low amount of
resources, considering the dataset’s size (almost a Terabyte) and that building a WGS
assembly took one week and required more than 1 TB of RAM.

5.4 Conclusions

In this chapter we presented GAM-NGS: a de novo graph-based assembler which is
able to merge assemblies using a relatively low amount of computational resources. Its
strength relies on the fact that it does not need a global alignment to be performed and
that makes its strategy unique among the other assembly reconciliation tools. In fact,
GAM-NGS finds regions belonging to the same DNA locus using reads aligned back to
the assembly, which is also an almost mandatory analysis step in all de novo assembly
projects. The order in which these regions have been assembled is exploited to build

82 5. De Novo Assembly Through Reconciliation

a locally weighted graph that GAM-NGS uses to fill gaps between sequences and to
correct putative mis-assemblies. Moreover, mapping reads to the assemblies — without
knowing how they have been placed by the assemblers — may lead to complex graph
sub-structures (e.g., bubbles, bifurcations, cycles) due to alignment errors or chimeric
assembled sequences. Resolving these types of sub-graphs is far from being a trivial
task, as in certain regions there may be lack of any possible evidence. In these kind of
situations (which, for instance, represented 40% of the problematic cases for the human
GAGE’s dataset) we decided to be as conservative as possible, returning the sequences
of one of the input assemblies (the one elected as master by the user).

The approach has been validated using GAGE [154] datasets, proving its effective-
ness and reliability. Results showed that, for each GAGE dataset, GAM-NGS was
always able to improve master assembly’s NG50 and corrected NG50 (i.e., NG50 of
the assembly broken in correspondence of the errors), hence providing a globally more
correct output (even if some errors were carried by the slave assembly). Although GAA
provided better statistics in some cases, GAM-NGS gives comparable results and offers
excellent scalability. As a matter of fact, GAM-NGS yields an improved assembly in
reasonable time on large datasets (especially if used on a multi-core computer) for which
competing tools are impractical. In particular, we showed GAM-NGS’s scalability on
large plant datasets (genome size up to 20 Gbp), where our tool required a low amount
of computational resources compared to the dataset sizes and assembly requirements.

The presented algorithm performs a merge of two assemblies, returning the sequences
of one of them in those problematic regions where we are not able to determine the
most correct sequence between the two assemblies. We plan to investigate the use of
further weights in AG that will allow us to solve more “difficult” regions, allowing us
to completely replace the master-slave approach with a strategy that provides a more
correct output.

We also plan to exploit GAM-NGS in a strategy thought to improve and correct a
Whole Genome Shotgun assembly along with multiple sets of well assembled fosmid (or
BAC) pools which constitute a hierarchically simplified version of the same genome.

[11

Large-scale Genome Assembly

Hierarchical Assembly of Large
Genomes

In the last decade sequencing costs have been continuously dropping down with the
advent of NGS technologies. Nevertheless, as we already emphasized in the first two
parts of this thesis, cost-effective technologies created new challenges for the de novo
assembly problem, especially for large and complex genomes [11]. Indeed, resolving
repeats longer than read length is often unfeasible, particularly in repeat-rich datasets.
Several algorithms have been proposed to increase assembly’s contiguity and correctness,
though, the quality of the reconstructed sequences is often unsatisfactory for downstream
analyses.

A recent approach, seeking for a trade-off between sequencing costs and assembly’s
quality, consists in sequencing long-insert DNA fragments (e.g., fosmids and BAC clones)
in pools using NGS technologies. In this way, since a pool represents just a small subset
of the entire genome, the complexity of the assembly process highly decreases. In partic-
ular, compared to the canonical whole-genome-shotgun sequencing (where repeats are
the main cause of fragmentation), a higher quality is expected in terms of sampling, re-
peats resolution, and allele reconstruction [11]. Also, pools introduce helpful constraints
that can be exploited during reconciliation.

In Section 6.1 we present the methodology adopted in [134] to carry out the draft
assembly of the 20-gigabase Picea abies (commonly known as the Norway spruce), which
is also one of the largest species ever being sequenced. One of the distinctive hallmarks
of the employed strategy (which is different from the one presented in the previous
chapter) has been the application of GAM-NGS to merge and improve a WGS assembly
with pool assemblies. The use of GAM-NGS was suitable due to the fact that input
coverage of assembled pools was quite low and did not cover the entire genome length.

In Section 6.2 we outline a simple formalization — and generalization — of a method to
address the hierarchical pool-based assembly. In particular, we assume that the available
(assembled) sequences provide a higher coverage of the underlying genome (say, 4-8x).
We also provide some preliminary results on a small-scale scenario. The method is
however intended to be used on a spruce-like dataset.

86 6. Hierarchical Assembly of Large Genomes

6.1 The Norway spruce assembly

In order to assemble the 20-gigabase, repeat-rich, and heterozygous Picea abies genome,
Nystedt et al. [134] developed a hierarchical strategy combining fosmid pools with both
haploid and diploid whole-genome shotgun data (adopted also in [198]). The assembly
process consisted of three major stages: fosmid pool assembly, hierarchical assembly,
and validation.

6.1.1 Fosmid pool sequencing and assembly.

Fosmid libraries were constructed from a diploid tissue of the spruce and assigned to 450
pools. Based on a small preliminary study, consisting of just 5 pools of varying sizes, it
was decided to generate approximately 1000 (random) fosmids per pool as a reasonable
trade-off between sequencing time, cost, and assembly performance. Equivalently, we
can say that each one of these sets covered approximately the 0.2% of the entire genome.

Each pool dataset was separately assembled starting from PE-read libraries of 300-
base reads and using a proprietary assembler (i.e., CLC [9]). Further scaffolding was
performed using BESST [153] (a stand-alone tool specifically developed for this project)
with two paired-read libraries with 625-base and 2.4-kilobase insert sizes.

The N50 and assembly size varied significantly among pools and because of this, while
the sequenced libraries theoretically reflected a 1x coverage, the assemblies represented
approximately a 0.5x coverage of the genome. Nevertheless, using the pool strategy
allowed to obtain more assembled sequences longer than 10 Kbp compared to whole-
genome assemblies of the haploid sequence.

6.1.2 Hierarchical assembly.

In order to obtain the first Picea abies draft reference, fosmid-pool assemblies were
combined with both haploid and diploid whole-genome shotgun assemblies. Due to the
fact that available assembly softwares were not able to cope with the integration such
assembled pools in a satisfactory way [198], a ad hoc pipeline based on both GAM-
NGS [185] and BESST [153] has been developed.

In order to apply GAM-NGS, the idea was to improve a whole-genome-shotgun
(WGS) assembly Awags with the set of fosmid pool scaffolds FP sampled from the
same genome. Each fosmid pool was sequenced and assembled separately using a 80x
coverage. Then, the 50x coverage of Illumina reads used to assemble Ay s has been
mapped on both Ay gs and FP for the blocks construction phase. GAM-NGS was able
to increase the assembly length by 1.4 Gbp with a NG50 that was 1.42 times greater
than the one of the WGS assembly [134]. Fosmid-pool scaffolds unused by GAM-NGS
and with no hit of more than 95% over 30% length against the merged assembly were
also added to the output. The merged assembly reached a length of 12.0 Gbp, hence
improving the original WGS assembly.

Finally, several paired-read libraries (with insert size from 300 bp to 10 Kbp) were
aligned to GAM-NGS’s output and scaffolded with BESST. This allowed to improve
even more the contiguity of the sequence while also improving assembly’s quality: the
resulting output included 4.3 Gb in scaffolds longer than 10 Kbp.

6.2. Hierarchical pool reconciliation 87

70
) 60 B
=
w 50
&
§ 40
S 30
(<%
g 20
S 10 - = Haploid WGS assembly
(G) Merged assembly
0 - == P. abies 1.0 assembly
T I T T T
0 1 2 3 4

Number of features (x107)

Figure 6.1: Feature-Response curves of Norway spruce assemblies [134]. The graph
depicts, from the starting WGS assembly (red curve), the improvements achieved first
thanks to GAM-NGS’s merging (yellow curve) and, then, with scaffolding (green curve).

6.1.3 Assembly validation

The final assembly was validated using several metrics. Among them, the Feature-
Response curve presented in Section 4.2.1 was used to evaluate the assembly after each
step of the pipline. Figure 6.1 indicates clear improvements (i.e., increasingly steeper
curves) during both GAM-NGS’s merging and the scaffolding stages. This supports the
validity of the assembly strategy and also proves the efficacy of GAM-NGS in such a
large-scale scenario.

As an additional proof of the benefits of the pool-based strategy, protein-coding
fractions of the genome were analyzed using sequences from Picea sitchensis (or Sitka
spruce) [148]. It was then estimated that approximately 63% of such protein-coding
genes were fully covered (> 90% of their length), and 96% partially covered (> 30% of
their length) within single scaffolds of the final assembly.

6.2 Hierarchical pool reconciliation

To the best of our knowledge, when facing either a large or a complex genome, where
pool sequencing proved to be a viable and promising approach [134,198] and despite the
progresses in sequencing long-insert pools, a standard methodology which systematically
handles these kinds of datasets has not been proposed. Available assembly reconciliation
tools such as GAA [193], GAM-NGS [185], and Mix [168], in fact, have not been designed
for this kind of task. In particular, the first two are based on a master-slave approach
and they are able to reconcile just two WGS assemblies at a time. The third one,
instead, while being able to accept multiple assemblies as input, had been specifically
thought for small bacterial genomes. Moreover, its negligence in dealing with mis-joins
makes it unsuitable for the job.

For these reasons we propose a hierarchical scheme whose goal is to build a draft as-

88 6. Hierarchical Assembly of Large Genomes

sembly from multiple sets of independently assembled pools which form a hierarchically
simplified version of a genome. Our idea relies on the effectiveness of the methods used
to tackle two main sub-problems: overlap detection and merging of input sequences.
For the first one, we depict a fingerprinting-based solution which let us to quickly carry
out the task. We describe then a possible data structure and heuristics in order to deal
with the second one. Some preliminary results are reported, obtained using a prototype
tool we named Hierarchical Assemblies Merger (HAM). We want also to remark that
this work might also take advantage of latest sequencing technologies, which produce
long reads and are affected by high error rates.

6.2.1 Overview of the method

Let P = {P1,...,Pm} be a collection of assembled pools (in the following the adjective
“assembled” may be omitted). Each P; is the result of the de novo assembly of multiple
long-insert fragments and it is supposed to be obtained by a state-of-the-art de novo
assembler, using a high-coverage set R; of short reads.

In order to guide the reconciliation, we are going to make use of two assumptions
about pools. First, a pool covers a small percentage of the genome. Thus, two contigs
C4,Cy € P; most likely do not belong to the same genomic locus (or at least we expect
this would occur rarely), unless they represent the same insert that could not be entirely
assembled. Second, a contig cannot be longer than the maximum size of the sequenced
fragments (~ 40 Kbp for a fosmid and ~ 100 Kbp for a BAC clone).

Our hierarchical assembly scheme can be naturally depicted as a binary tree T
which recursively decompose the problem. T has m leaves and minimum height (i.e.,
O(logm)). More precisely, the ith leaf is labeled P;, while an internal node corresponds
to the result of the reconciliation of two or more pools and it is labeled £, & Lo, where £
and Lo identify the “partial” assemblies of its children and & is the merging operation.
The root, thus, consists in the final assembly of the collection P. T is also partitioned
“vertically” with respect to the depth of its vertices. More precisely, we propose to
consider three major classes of nodes, namely A;,, A,,, and A;, where different strategies
could be applied (see Fig. 6.2).

Ay, comprises nodes with highest depth. They correspond to the reconciliation of
assemblies which still cover a quite small part of the genome. Thus, in this scenario we
can afford to use a less sophisticated (even quadratic) algorithm for the overlap detection
and a simple merging algorithm based on minimum length and identity. However, the
more a node is closer to the root the more an unsophisticated /greedy method would be
computationally expensive and error-prone.

For this reason we introduce A,, and A;, whose reconciliations are thought to be done
with more efficient techniques. In the following sections we define an original method
for A,, (valid also for A;) based on the construction of smaller objects — fingerprints — to
be used in place of the entire contigs for overlap detection. We then formulate an open
problem whose solution could improve the performances for A;. Finally, we present an
algorithm based on the String Graph [122] used to carry out the actual merge.

In conclusion, we can summarize our hierarchical assembly approach in:

1. a pool pre-processing stage;

6.2. Hierarchical pool reconciliation 89

P P2 Ps Pa Ps B Pm

Figure 6.2: Hierarchical reconciliation of pools guided by a binary tree 7 with reconcil-
iation strategies depending on node depth (i.e., regions Ay, A, A;)

2. several reconciliation phases consisting in a depth-based strategy for overlap de-
tection and merging (see Fig. 6.2).

6.2.2 Pool pre-processing

This phase is thought to be performed on leaves of 7. The goal is to filter poorly
assembled pools, exploiting features (e.g., paired reads mapping, k-mer analyses) which
may spot errors in input contigs. However, we do not want to discard these sequences
completely but we can try to integrate them in a later stage (as soon as a reliable draft
assembly has been achieved).

An intuitive pre-processing procedure to find putative mis-assemblies consists in
using a mapping of R; against P; in order to break contigs in regions showing a low
physical coverage (i.e., uncovered by paired-read inserts). This idea has already been
exploited in tools like REAPR [81] and FRC**™ [184] — which also take advantage of
other “bad-mapping” evidences — for correction and evaluation purposes, respectively.

Finally, a length threshold can be applied to keep only long-enough contigs. Since
we expect good quality assemblies for most of the pools, for instance, we can set it to a
fairly high value (e.g., 5 Kbp).

6.2.3 Overlap detection

Due to the very small size of pools with respect to the genome, sequence similarity of
two contigs from the same pool can, with highest likelihood, be attributed to paralogy
rather than to an allelic difference. For this reason, we make the reasonable assumption
that pools are unlikely to contain overlapping fragments. Thus, we can formulate the
constraint that any pair of contigs from the same pool are distinct.

A simple approach to solve the problem could be performing an all-against-all align-
ment among the pools to be merged, retaining overlaps above user-defined length and

920 6. Hierarchical Assembly of Large Genomes

identity thresholds. Indeed, using this approach could be computationally demanding
for large numbers of sequences and could be affordable only for merges in Aj,.

In order to perform the task in A,, and A; one may think to use overlap detection
algorithms of state-of-the-art assemblers. However, to the best of our knowledge, the
presence of significant indels is not kept into account by them. More precisely, NGS
assemblers usually expect short good-quality reads as input and not long pre-assembled
contigs. The idea we explored consists in replacing each contig C' with a k-mer-based
fingerprint F(C') when seeking for sequences C’ that are likely to overlap with C. This
idea should help in quickly finding putative approximate overlaps between contigs. Two
fingerprinting algorithm for this task will be analyzed in depth in Chapter 7.

6.2.4 A merging strategy

A reasonable structure to reconcile assemblies would certainly be the String Graph
(SG) [122] which we already described in Section 3.3.1. We recall that the SG is a
bi-directed graph, that is a graph where a directed head is attached to both ends of
an edge. There are four kinds of edges and they correspond to the different types of
overlaps [122]. We can thus define the in-degree of a vertex as the number of incident
heads that point inwards and the out-degree as the number of incident heads that point
outwards with respect to the vertex.

The SG construction is done as follows: a vertex is put for each contigs, while
edges link overlapping pairs; transitive edges are removed; simple paths are collapsed
in unitigs. The main idea of the SG is to represent sequences as vertices and prefix-
suffix overlaps as edges. We expect that input sequences (i.e., assembled pools) might
contain different kind of errors: simple mismatches, insertions/deletions and misjoins.
Thus, before connecting two vertices (contigs), we check whether their approximate
overlap exceeds a user-defined identity threshold. The alignment is then retained only
if the “overhangs” introduced by the overlap’s intervals are short enough (e.g., less than
100 bp). Moreover, fully included contigs are discarded and not represented as vertices.
However, they will be used to compute the sequence coverage of the graph node in which
they are included.

6.2.5 Graph simplification.

The SG is simplified removing transitive edges using Myers’s algorithm [122] and un-
ambiguous (i.e., non-branching) paths can be collapsed into single nodes. At this point,
we can take care of some graph topologies which may arise due to putative misjoins and
small indels: bubbles and cut vertices adjacent to bifurcations.

Bubbles are characterized by two (or more) paths starting and ending at the same
nodes. They are usually caused by small errors (e.g., insertions/deletions) or biological
variants. We can simply rely on algorithms used by state-of-the-art assemblers to take
care of these structures. For instance, we may perform a linear visit of the graph (e.g.,
depth-first) and when a bubble is found, if the identity of the branches is above a certain
threshold, we retain only the path which is better covered and remove the other ones.
Otherwise, if branches diverge too much, we do not remove any of them.

When an input sequence contains a mis-join such as a relocation (i.e., regions far
apart within the same chromosome are spliced together) or a translocation (i.e., regions

6.3. Results 91

Cy

Figure 6.3: Example of the String Graph built in HAM. A possible consensus sequence
is colored in red.

belonging to different chromosomes are joined) we can witness long almost-unambiguous
paths which are connected by a single vertex (the contig containing the mis-join) which
causes a bifurcation in each path. These vertices can bee seen as cut vertices (i.e., their
removal increases by one the number of connected components of the graph) with in
and out degrees equal to 1 and adjacent to nodes characterized by a bifurcation.

Finally, an additional constraint could be exploited to identify consistent (or incon-
sistent) paths: giving the assumption that pool inserts have been sampled uniformly
and independently, we expect contigs belonging to the same pool to be found far apart
in a path and close enough contigs (i.e., below the insert-size) are likely to represent
the assembly of a single insert.

6.2.6 Consensus sequence.

Due to the use of approximate alignments to compute overlaps, we decided to output
the sequence for each remaining vertex as follows. Each vertex corresponds to a simple
unambiguous path in the former SG. Thus, we simply start from the first contigs in the
path and we extend with the following one (see Figure 6.3). A better approach might
be weighting the edges (possibly considering also transitive ones) and providing the best
path according to a certain function.

6.3 Results

All the results are based on an early implementation of a tool we named Hierarchical As-
semblies Merger (HAM) which performs the overlap detection and the merge strategies
in a single step. The first one is carried out by the fingerprint-based overlap detection
we will later depict in Chapter 7, while the second one takes advantage of the SG and
the heuristics presented in Section 6.2.4.

92 6. Hierarchical Assembly of Large Genomes

Table 6.1: GAGE statistics of HAM on the human chromosome 14 (percentages refers
to the ungapped reference genome size).

Ctg NG50 Assembly Unaligned Unaligned Duplication =~ Compression
num (kb) size (%) reference (%) assembly (%) (%) (%)
453 293 96.59 2.85 0.03 0.03 1.18

SNPs Indels < 5bp Indels >5bp Mis-joins Invertions Relocations

4339 542 230 20 2 18

All the experiments were run on the same machine using 8 threads and the k-mer-
based overlap detection algorithm has been tuned to consider k-mers with frequency
lower (or equal) than 20 and to seek overlaps that are at least 1 Kbp long and with 95%
identity.

A simulated datasets based on the 88-Mbp-long Human chromosome 14 has been
built. More precisely, it consisted of a 8x coverage of 40-Kbp-long inserts randomly as-
signed to 353 pools (each one containing approximately 50 sequences and representing
the 2.27% of the reference genome). We chose the insert size to follow a normal distri-
bution with a mean of 40 Kbp and a standard deviation of 5Kbp. For each pool, we sim-
ulated a 42x-coverage PE-read library of Illumina fragments with (500 £ 25)-base-long
insert-size and 100-base-long reads. For this task we chose the tool pIRS [77]. Then, in
order to obtain good-quality assemblies, pools have been independently assembled using
two state-of-the-art de novo assemblers: ABySS (version 1.5.2) and MaSuRCA (version
2.3.1).

We validated the assemblies of both tools using GAGE’s validation script [154]
against the available references for each pool. In this way, the choice of the assembler
has been pretty clear. ABySS returned very contiguous assemblies with good quality
metrics, while MaSuRCA returned results with also good quality metrics but they were
more fragmented and presented on average a higher percentage of missing reference
sequence.

ABySS has been first executed with mostly default parameters using a k-mer size of
71bp (k = 71), a higher maximum bubble length (b = 1,000,000), and a higher thresh-
old for the unitig size required to build contigs (s = 500). A second run has been carried
out with two additional parameters: a lower minimum alignment length of a read (I =1
instead | = k) and a higher minimum sequence identity for a bubble (p = 0.95 instead
of p = 0.9). Both executions achieved similar results as inversions and relocations are
concerned. The second one, however, led to a significantly higher number of transloca-
tions (i.e., rearrangements moving sequences between different inserts). Therefore, the
first one has been selected.

We finally run HAM with the aforementioned mentioned parameters and, using again
GAGE’s validation script, we computed assembly correctness and contiguity statistics.
As shown in Table 6.1, we were able to reconstruct most of the genome with a low
number of mis-joins and with good contiguity statistics.

6.4. Remarks 93

6.4 Remarks

This chapter introduced a novel approach to build a draft de novo assembly of complex
genomes when a collection of well-assembled long-insert pools is available. Moreover,
sequencing and assembling a collection of such pools has been proven to be a viable
strategy for improving downstream analyses in several sequencing projects (e.g., the
Norway spruce and the Pacific oyster genomes). The main advantage is that pool
assemblies are less likely hindered by repeats and allelic differences.

In order to exploit these kinds of datasets properly, we designed a strategy to perform
reconciliation in a hierarchical manner. Specifically, we exploited a method based on
fingerprints to carry out the overlap detection, while we relied on the String Graph to
merge assemblies.

While still being a proof of concept, we were able to obtain promising preliminary
results on a relatively small dataset based on the human chromosome 14. In the future,
while improving the implementation of HAM to reflect precisely the scheme depicted
in this work, our intent is to devise additional heuristics based on the particular input
dataset. Specifically, an assembled contig should not exceed the length of the fos-
mid/BAC clone. Moreover, sequences belonging to different inserts of the same pool are
expected to be far apart in the genome (unless they are close and short enough) and,
hence, we do not expect to find them close in the graph.

Fingerprint-based Overlap
Detection

As outlined in Chapter 6, the assembly of large and complex datasets could definitely
benefit from the availability of longer sequences in order to disambiguate difficult re-
gions of the genome (e.g., repetitive region resolution) while increasing contiguity and
correctness. There are two possibilities:

1. use third-generation sequencing technologies which produce long reads at the cost
of a very high error rate (e.g., up to 15% for PacBio).

2. sequence and assemble long-insert DNA fragments (e.g., fosmids or BAC clones)
in pools using second-generation technologies, where each pool represents a very
small subset of the genome [11]. With this approach lower error rates are expected,
however, the drawback is to deal with possible mis-assemblies.

The availability of long sequences allows to re-consider the OLC paradigm for the genome
assembly problem, the main computational bottleneck of this approach being the de-
tection of all pairwise overlaps between input sequences. A few state-of-the-art tools
are available for the task of approximate long-sequence alignment. Some of those have
been thought to align input sequences to a single reference (e.g., BWA-MEM [94]),
while others (e.g., BLASR [34], DALIGNER [124], MHAP [21]) have been specifically
designed to deal with the high error rates of TGS reads and may need huge amounts of
computational resources (memory and/or time).

On this landscape we propose two novel methods (one being an improvement on the
other) to effectively detect approximate overlaps among kilobase-long contigs, using rea-
sonable amounts of computational resources. The idea we propose consists in (cleverly)
fingerprinting contigs and the algorithms we describe are mainly thought to be used for
the reconciliation (assembly) of assembled long-insert pools.

In Section 7.1 we start by describing a local non-deterministic strategy to compute,
for a collection of input sequences, a set of k-mer-based fingerprints which are thought
to be used to efficiently find overlaps using a fingerprint-vs-sequence approach.

96 7. Fingerprint-based Overlap Detection

In Section 7.2 we further improve the fingerprint construction using a global deter-
ministic strategy. The method dispenses with the idea of mapping fingerprints to entire
sequences (required by the “blindness” of the local choices) and, instead, it favors a more
efficient fingerprint-vs-fingerprint approach that leads to find highly probable overlaps
using even less computational resources compared to both the non-deterministic ap-
proach and available aligners.

7.1 A local non-deterministic approach

In this section we will propose a non-deterministic method to compute fingerprints using
local choices of k-mers.

Let S = {S1,...,Sn} be a set of input sequences (e.g., assembled contigs), where
S; € ¥*,i=1,..., N, and the alphabet is ¥ = {A,C,G, T}. Let i : ¥* — N be a function
which maps each k-mer to its global frequency, i.e. its frequency computed with respect
to all k-mers in S. More precisely, being k7 the k-mer starting at S[i],

hz)=|{ki|SeS Nniel,|S|—k+1] A=k} |

The idea is to compute a significantly smaller structure F(S) to be used in place of
S € S, which shall allow us to find overlaps with high probability. From now on, we
will refer to F(S) as the fingerprint of S.

F(S) is built by wisely picking an ordered list of S’s k-mers. We also assume the
global frequency h(k;) to be available for every k-mer k; in the dataset. The fingerprint
computation problem is defined as follows.

Problem. Let S be a sequence, Tf,.q be a k-mer frequency threshold, and Ty,, be
a maximum distance threshold. We define ngypr as the number of k-mers k; € S for
which h(k;) > Ttreq and npp as the number of k-mers k; € S for which h(k;) < Typeq.
The problem is to seek for an ordered list of k-mers F(S) = (ki,,..., ki) where i; €

{1,...,|S| =k +1}, i1 < iz < --- < i, and such that the following constraints are
fulfilled:
o i1 —ij < Tyep for j=1,...,2—1 (i.e., two consecutive k-mers are not too far
apart in 5);

® Ny is minimum;
e nyp is minimum among those lists which minimize ngp.

In other words, the problem is building a fingerprint which fulfills the gap constraint
and minimizes the pair (ngp,nrr) in the lexicographic order.

The rationale behind this approach is to take as many low-frequency k-mers as
possible while assuring that long sub-sequences are not left “uncovered”. Keep in mind
that these k-mers will be aligned and minimizing the number of highly frequent k-mers
improves the performance.

7.1. A local non-deterministic approach 97

ki, ki, ki ki ki

s [o Y s () OO0 (0 [[B3 [Ed
\ \ \ \ [

< Tyap > Tgap

Figure 7.1: Example of fingerprint construction. Low-frequency regions are depicted
with a green tint. First, yellow-colored k-mers are added to F(S). Second, remaining
k-mers are chosen in order to fulfill the gap constraints (i.e., 4,41 — ¢; < Tyqp). The
output fingerprint is then F(S) = (ki,, ..., ki).

7.1.1 Fingerprint construction.

An approximate solution can be found linearly with two scans of the ordered list of S’s
k-mers. In the first one, we just pick those which are boundaries of low-frequency regions
(i.e., maximal sub-sequences comprising exclusively k-mers ¢ such that h(t) < Treq).
In the second one, whenever two subsequent k-mers in F(S) violate the gap constraint,
a minimal list of k-mers is added between them in order to satisfy the gap threshold.
This solution, while not being optimal, has the advantage of providing the minimum
number of high-frequency k-mers. It is also pretty straightforward and does not take
much computational effort (see Figure 7.1).

7.1.2 Fingerprint-based overlaps detection.

After the fingerprints are built, we map each k-mer in F(.S) against the set of sequences
S’ for which we want to detect overlaps. Taking into account the distances between
the mapped k-mers and their mapping order allows us to reduce the number of false
positives (i.e., sequences which do not overlap). S’ can be indexed either using a db-
Hash [145] or a FM-index [58]. The purpose of this mapping, however, is just to identify
putative overlaps while reducing at the same time the number of exhaustive alignment
computations (i.e., performed using a banded Smith-Waterman algorithm).

First, we introduce a parameter c,;,, which is the minimum number of shared k-
mers required to check whether two contigs overlap. This parameter should be chosen
in order to guarantee we are able to find true overlaps with high probability and a low
false positive rate.

Second, we take into account the distances and the order of the mapped k-mer. Let
A be a contig sharing at least ¢,,;, k-mers with a fingerprint F(.5) and let M 4 be a list
of pairs (k;;,w), also referred as hits, such that k;, € F(S5) and w is the position where
ki; occurs in A. After sorting M, according to j (i.e., the index of k;; in F(S5)), we
seek for a long enough interval I of hits with the following constraints:

1. the k-mers of two consecutive hits reflect the order in F(5);

2. the actual number of k-mers in M 4 between two uniquely mapped k-mers differs
at most by 3 from the expected number (7.e., the one in F(S));

3. all k-mers should be mapped with the same orientation.

Since I corresponds to a region in both A and S, we can think of it as an approximate
overlap and we want to choose the one which minimizes the sum of the left and right

98 7. Fingerprint-based Overlap Detection

Ma = ((kiy, ws), (kiy, wa), (kiy, we), (kiy, wr), (kiy, wa), (kiy, ws), (kiy, ws), (Kigs wo), (Kizs wio), (Kis, w1), (kig, w11))

Figure 7.2: Example of overlap detection. The k-mers which identify unique hits (un-
derlined in M 4) are colored in yellow, while those mapped in multiple position are
colored in blue. Red-colored k-mers, instead, are absent in the sequence. The first in-
terval computed is [k;,, k;,], which is then extended with k;,. The approximate overlap
reported consists of the sequences S[iy,is + k — 1] and Afws, w11 + & — 1].

tips of A and S (these tips are accounted with respect to I). An interval fulfilling these
constraints is then extended from both ends considering also non-uniquely mapped k-
mers (see Figure 7.2). This putative overlap is then assessed using Smith-Waterman
algorithm and retained only if its length is greater than 77, and the identity exceed
idpmin, where Ty, and id,,;, are two user-defined thresholds.

7.2 A global deterministic approach

The method depicted in Section 7.1 has two main limitations. First, it is necessary to
build an index in order to efficiently map k-mers. Moreover, the index construction does
not fit well in the hierarchical scheme presented in Section 6.2, as it might still demand
some computational effort on large datasets in the last levels of the hierarchy (i.e., A,
and A,,). Second, overlaps are computed comparing fingerprints and sequences and this
is forced by the local choices for S.

We believed that a more clever fingerprint construction could be achieved in order
to compare mere fingerprints and (in the first stage of the process) avoid the use of
entire sequences. For this reason we came up with the idea of making a better use of
k-mer frequencies in order to devise a “deterministic” algorithm that picks k-mers in a
way that fingerprints of sequences with an actual overlap are likely to be built using the
same seeds. This strategy solves both the aforementioned problems related to the non-
deterministic approach: it does not require an index and it accelerates the computation
of pairs of sequences which overlap (with high probability).

The algorithm presented in this section consists of three main stages:

i. after choosing a reasonably sized threshold k, we compute the global frequency h(k;)
of each k-mer k; with respect to all input sequences in S;

ii. given a sequence S, the key idea is to cluster its k-mers in order to find regions con-
sisting of successive k-mers whose (global) frequency remains sufficiently “stable”;

7.2. A global deterministic approach 929

iii. in each one of the regions identified in (ii.), we pick the k-mers that will constitute
F(S) with a deterministic procedure.

The rationale behind this idea is that, chosen a proper value of k, the frequency of a
k-mer in S is likely to reflect the number of overlapping sequences. In other words, the
frequency of k-mers will remain (almost) constant until a new overlap starts (or ends).
From that point on the frequency will be “stable” until another overlap starts (or ends).
Therefore, in order to build fingerprints deterministically we can just keep track of these
starting/ending points and — rigidly — choose between them.

As soon as the fingerprints have been built, we then seek for contig pairs whose
fingerprints share a minimum amount of k-mers. For each such pair, we may then verify
the presence of a proper overlap using classical dynamic programming approaches (e.g.,
a banded Smith-Waterman algorithm).

7.2.1 An algorithm to build deterministic fingerprints
Definitions

Given S € S and f € N, we define I}; as the set of maximal endpoints (I,) such that
each k-mer in S[l,r] has global frequency f. Formally,

zf:{(l,r) Lre[LIS] ANl4+E<r A (Vi,jell,r—Fk+1])

h(k;) = h(k;) = f A h(ki—1) # h(k;) A h(kr_jy2) # h(kl)}
F(S) will be determined by carefully choosing in an ordered list of its k-mers. We
assume the global frequency h(t) to be available for every k-mer ¢ in the dataset.

Problem 7.1 (Deterministic Fingerprint Computation Problem (DFCP)). Given S € S
and L € N, the problem is to find an ordered list F(S) = (k;,,..., ki) of k-mers in S,
such that

e 1<ip<--<i, <|S—k+1and
e if A,B € S overlap by at least L bases, then F(A) and F(B) share at least a
k-mer picked from the overlapping region.
Fingerprint construction.

Given a sequence S, we orderly process all its k-mers from the leftmost one. During
this scan, IJ‘? is built for f > 2. Then we consider the following set of k-mers as the
fingerprint of S:

F(S)={(k,i) | p,q) €If N q—p+1>Tp A (i=p V i=q—k+1)},

where T, is a user-defined threshold that specifies the minimum length of a region to
be accounted in fingerprint construction. In words: the fingerprint is built choosing the
first and last k-mer of every maximal stable frequency interval.

100 7. Fingerprint-based Overlap Detection

Assuming k has a value such that we have a fairly high probability that a k-mer is
unique in the reference sequence (i.e. in the genome) and with low error rate, we expect
two overlapping contigs A, B € S to share most of the k-mers of F(A) and F(B) which
can be found in the overlapping region.

A sketch of the fingerprint construction is depicted in Figure 7.3.

h(X1X2X3X4X5) =1
S AGCGATTACAATGGACCTTA h(RIXSXEXIRS) = 2
S, GATTACAATGGACCTTACTGCACC h(X1X2X3X4X5) = 3
S TGGACCTTACTGCACCTG X; € {A,C,T,G}

F(S1) = { (GATTA, 4), (ATGGA, 11), (TGGAC, 12), (CCITA, 16) }
F(S2) = { (GATTA, 1), (WIGGH, 8), (TGGAC,9), (CCTTA, 13), (IGTTAG|, 14), (GCAGE, 20) }
F(Ss) = { (TGGAC, 1), (/CCTTA,5), (ICTTACI, 6), ([GCACE], 12) }

Figure 7.3: Deterministic fingerprint construction. In this example we assume there are
three error-free sequences and that k& = 5 is large enough (i.e., each k-mer in the reference
sequence is unique). Yellow colored regions correspond to Zi* (for i = 1,3), cyan colored
regions correspond to IQS i (fori = 1,2,3), and pink colored regions correspond to Igf ¢ (for
i =1,2,3). Notice that k-mers in fingerprints might also overlap in the full sequence.

The problem with the above fingerprint construction technique is that it does not
take into account errors. In fact, the presence of erroneous bases, insertions, or deletions
most likely will increase the cardinality of If and will lower the “size” of its elements
(e.g., modifying a single base in the region S[p, q], where (p,q) € T3, might split (p, q)
into two sub-intervals (p,m), (m + 2,q)).

In order to diminish the chances of missing short intervals due to errors, we intro-
duce a “second order” version of If in which neighboring elements at a distance below
a predetermined threshold are glued into single intervals. Formally, we consider the
following set:

75 _) (I,p1), (P2, P3); -+ s (PmsT) EI}? is a maximal sequence for which
’ l<p<ps< - <pm<r Apy1—p0i<Tg Ni=13,....m—1 ’

where T € Z is the maximum distance allowed to join two consecutive intervals. This
definition of 7' ? might as well help in dealing with single k-mers whose frequency is
unrelated with the mean coverage of a region (e.g., a very frequent k-base long pattern
in the genome that appears in a region represented by a number of sequences that reflect
sequencing coverage).

Finding candidate sequences.

After building the set of all fingerprints F(S), we want to use it to find all the pairs
(,j) — where we assume, w.l.o.g., that ¢ < j — for which F(S;) and F(S;) share at

7.2. A global deterministic approach 101

least a k-mer. However, a higher threshold for the minimum number of shared k-mer
could be set. Briefly, we proceed in a way similarly to DALIGNER: we build a sorted
table of k-mers to find pairs of candidate overlapping sequences (steps 1-3) and we apply
additional steps to filter out putative false positives:

L. the list Krsy = {(ki,a,i) | (ki,i) € F(Sa)} is built and sorted according to the
following order relation

(ki,a,i)<(kj,b,j) = k‘,‘<]kj\/(k‘i=k‘j/\a,<b),
where < stands for the lexicographical order among k-mers;

2. all tuples containing a k-mer which is not locally unique (i.e., it is found multiple
times in the same fingerprint) are discarded: Ur(s) is the resulting list;

3. from Ur(s) we can easily build the list M of tuples corresponding to pair of contigs
whose fingerprints share a k-mer at a certain position. More precisely,

M= {(a,b,i,j) | (k;i,a,i),(kj,b,j) EZ/{f(s) A ki = k‘j N a< b}

The list is lexicographically sorted on a, b, and 1.

Approximate overlap detection.

Let F(Sa), F(Sp) be two fingerprints sharing m k-mers k;,,...,k;,, and k;,,...,k;,
from S, and Sy respectively, where i; < -+ < iy, and k;, = k;, for z = 1,...,m.
We also define hp, = (i.,j.) as a hit-pair, where k;, = k;_ . It might happen that
shared k-mers do not strictly appear in the same order in S, and S, due to errors or
by chance. Thus, we need to seek for a proper sub-sequence of hp1, ..., hp, such that
(k-mer) indices appear in the same order both in S, and S, and which likely identify
an overlap. We will call this sub-sequence a consistent chain of k-mers or, simply, chain
(see Figure 7.4).

A possible strategy to find a good chain could be computing the longest strictly
increasing sub-sequence (LSIS) of ji,. .., jm,. This, however, may not correspond to an
actual overlap. Moreover, in contigs corresponding to repetitive parts of the genome,
the suffix (or prefix) of a sequence may be similar to both the prefix and suffix of another
one. Thus, finding just one chain might not be enough.

A different strategy, which is also the one we chose to adopt, is to keep a set of
candidate chains C (initially empty) and process each hp, in order to possibly extend
an element of C or, otherwise, to build a new singleton chain. More precisely, we say
that a chain C' = (hp,,,...,hp.,) can be safely extended by hp,, when the following
two conditions apply:

1. iy, <., and j,, <1;, (i.e., k-mers of hp., are not strictly included in the region
of the chain C);

2. the relative difference between the lengths of the regions of the chain |i,, —i,, +

k—1| and |j.,, 7., + k — 1| is at most 5%.

u

102 7. Fingerprint-based Overlap Detection

kjl kjé kjd k}; kjﬁ k]a
]]]]]] O)
F(S) T]
kil kiz k13 ku kis k?f}
] I D] —]]]]

]:(Sfl) e — I 1

Figure 7.4: Example of fingerprint-based overlap detection. A consistent chain of k-mers
might be C = (hp1, hpa, hpa, hps, hpg) which is then used to roughly identify a putative
overlapping region between S, and S, (the yellow colored one).

This way of building chains takes O(m?) time. However, fingerprints are on average
quite small (see Figure 7.5) and, therefore, also m will be small in the majority of
the cases. We then filter out chains whose overhangs (i.e., gray regions depicted in
Figure 7.4) are longer than the 20% of the chain region’s length and that also contain
more than 5 fingerprint k-mers (which were not shared between the sequences). Finally,
in order to compute overlap’s end points, we extend retained chains using a banded
Smith-Waterman alignment.

7.2.2 Implementation

In the description of the method we considered the DNA alphabet ¥ = {A,C,T,G}.
In practice, however, the input sequences may contain a certain amount of ambiguous
characters (e.g., gaps introduced during the scaffolding phase of the assembly). We
identify any of them as the character N and we force h(t) = 0, for every ambiguous
k-mer t € (S U {N})F\ BF.

The DNA is a double-stranded molecule: each strand is connected to a complemen-
tary one. Thus, in order to cope with overlaps between contigs belonging to different
strands, the (global) frequency of a k-mer is computed considering its canonical repre-
sentation (7.e., the smaller string between the k-mer itself and its reverse complement in
the lexicographic order). Moreover, the computation of frequencies has been carried out
using Jellyfish’s efficient hash-table implementation [108], which allowed us to complete
this task exploiting parallelism and using a moderate amount of time and memory.

The “list” Kz (s) is implemented using a vector in which a tuple of the form (k;, y, 1)
is added for each (k;,i) € F(Sy). The vector is then sorted using the aforementioned
lexicographic order relation in linearithmic time. Thus, Ur(s) could be built in-place
with a linear complexity in a single sweep of Kx(s).

Finally, given a tuple (k;, a,i) € Ur(s), for each subsequent (k;,b, j) € Ur(s) where
k; = k;, the tuple (a,b,1, j) is added to a vector which corresponds to M. The expected
time to carry out this task is linear in the number of true overlaps between input
sequences. As we will show in the next section, the number of false positives is much
lower than the number of overlaps found. M is then sorted accordingly in order to
cluster shared k-mers between fingerprints.

7.2. A global deterministic approach 103

7.2.3 Experimental results

The method we described has been implemented in C++11 and tested on Linux op-
erating systems. A prototype of its implementation, hereafter named DFP, can be
downloaded from [2].

Datasets

In order to test our method, DFP has been applied on four datasets of different size
and type: Escherichia coli K12 MG1655 (4.6 Mbp), Drosophila melanogaster 1SO1
(~ 130 Mbp), the human chromosome 14 (88 Mbp, ungapped length), and Crassostrea
gigas (~ 637 Mbp). The four experiments were carried out in the two applicative
scenarios for which the method is proposed. The first two datasets consisted of a 26x
and a 10x coverage of corrected PacBio reads, respectively, and retrieved from [8].
The third and the fourth ones, instead, represented the pool-sequencing scenario. In
particular, from the human chromosome 14 reference we extracted a 8x coverage of
40 Kbp inserts which were randomly assigned to 353 pools. For each pool, we simulated
a 42X coverage paired-end read library of Illumina fragments with (500 + 25)-bp insert
size and 100-bp reads. Then, each library has been independently assembled using
ABySS [162]. Finally, the C. gigas dataset was based on real data and consisted in a 4 x
coverage of contigs obtained from the assembly of 1600 fosmid pools. For each dataset,
scaffolds were broken and only sequences longer than 5 Kbp were considered.

Output validation and DFP performance.

DFP’s results have been compared against two state-of-the-art alignment tools: MHAP
[21] (version 1.6) and DALIGNER [124] (version 1.0). To the best of our knowledge,
we believe they are currently the most appropriate choice for detecting overlaps in our
application scenario. The reader, however, should keep in mind that these two tools
were designed to work with the high error rates of PacBio reads, while our method has
been mainly designed for long high-quality sequences. BWA-MEM and BLASR were
also considered, nevertheless, we discarded them from the comparison because they are
primarily designed for mapping contigs/reads to a reference sequence and they are not
well suited for a pair-wise comparison of sequences. In particular, the first one tends to
discard too many true overlaps, while the second one requires a large amount of time
as the dataset grows.

MHAP follows the same philosophy of DFP: build and compare fingerprints instead
of sequences. More precisely, it is based on a probabilistic dimensionality reduction
approach called MinHash [27] along with the computation of Jaccard similarity be-
tween fingerprints. DALIGNER, instead, potentially considers all k-mers in all input
sequences, rather than the reduced set of MHAP and DFP. In order to detect putative
overlapping sequences, it relies first on filtering repetitive k-mers and second on a par-
allel and cache-friendly radix sort. Subsequently, shared k-mers (seeds) are extended
using a O(N D)-time difference algorithm [121] to precisely compute overlaps.

We run each tool varying the k-mer size from 19 to 31 (from 15 to 27 for E. coli,
due to the smaller genome size) and we sought for overlaps long at least 2 Kbp. D.
melanogaster and C. gigas, due to the large size, were partitioned in 20 000-sequence
sets to be sure tools could finish using at most 32 GB of RAM.

104 7. Fingerprint-based Overlap Detection

T T T
= —o— E. coli
'a —— D. melanogaster
2 450 I —m— Human chrl4 ||
2 C. gi
= —— . gigas
g 3501 \.\‘\ |
=
Z
QEJ 250 - |
3
& 150 |- B
@
g 1001 M)
<< 50 .
| | | | | | | | |

15 17 19 21 23 25 27 29 31

k-mer size

Figure 7.5: Average fingerprint size in function of k.

Parameters were set in order to achieve a good trade-off between required computa-
tional resources and output accuracy, and also taking into account that input sequences
are expected to have high quality. DFP particularly relies on three parameters: k-mer
size, T, and T (see Section 7.2.1). While the first one was varied accordingly to the
dataset (to have a reasonable assurance for a k-mer to be almost unique in the genome),
Tp, and T where set to the default values of 2k + 1 and —5 respectively, as they lead
to a good balance between fingerprint size, speed, and precision (see Figure 7.5 and
Table 7.1). MHAP was run increasing both the minimum number of matches and the
similarity score cutoff as they affect the filtering and, thus, the output. DALIGNER was
run with non-default parameters more suited for the alignment of assembled contigs and
corrected reads. Moreover, its repetitive k-mer filter was tuned to use at most 30 GB
of RAM (memory was limited to 16 GB for D. melanogaster as the tool crashed using
higher bounds).

The performance of each tool was then evaluated comparing the output to a set of
true overlaps inferred from the mapping of the input dataset to the reference genome.
More precisely, we mapped input sequences against references using Nucmer (E. coli
and Human chromosome 14) and BLASR (D. melanogaster and C. gigas), keeping only
whole-sequence matches with identity greater or equal than 95%.

Sensitivity, specificity and positive predictive value (PPV) were then computed with
the software used to evaluate MHAP and which is based on random sampling. In a
nutshell, for a randomly chosen sequence, all other overlapping sequences are extracted
from the reference matches. Every actual overlap is then counted as a true positive,
while any missing one as a false negative. In order to estimate PPV, instead, a random
overlap is compared to the reference mapping and, if the overlap is not deducible from
the mapping, it is assessed using a local dynamic programming alignment. The PPV
value is finally computed dividing the number of true overlaps for the number of overlaps
evaluated. The sample size had been chosen in order to estimate PPV and specificity
up to £1%.

7.2. A global deterministic approach 105

Table 7.1: Overlap validation and performance of DFP, DALIGNER, and MHAP: sensi-
tivity (TPR), specificity (SPC), positive predictive value (PPV), resident set size (RSS)
peak in GB, wall clock time (WCT), and CPU time.

Data set Tool k TPR SPC PPV RSS WCT CPU
DFP 17 99.6 100.0 100.0 3.21 59s 5m 08s
E. coli DALIGNER 17 99.7 100.0 100.0 28.46 57s 11m 40s
MHAP 19 100.0 100.0 99.5 9.82 1m 35s 24m 41s
DFP 19 98.1 100.0 99.5 10.03 16m 28s 2h 21m 7s
D. melanogaster DALIGNER 19 99.4 100.0 100.0 16.40 30m 03s 6h 34m 43s
MHAP 19 99.0 100.0 100.0 18.85 32m 33s 8h 44m 3s
DFP 31 99.8 100.0 100.0 1.51 1m 33s 16m 48s
Human chr 14 DALIGNER 31 100.0 100.0 100.0 18.99 9m 31s 2h 04m 45s
MHAP 31 99.3 100.0 99.7 18.85 18m 13s 4h 57m 22s
DFP 29 99.8 100.0 99.9 8.95 25m 48s 4h 31m 54s
C. gigas DALIGNER 31 96.5 100.0 100.0 12.46 1h 09m 27s 17h 9m Os
MHAP 21 99.8 100.0 100.0 16.81 51m 30s 13h 45m 02s

Table 7.1 shows, for each tool, the statistics of the best execution (the others are
reported in Appendix B). On all the datasets our method proved to be the fastest one,
while also being the less memory greedy. This is due to the fact that, on average, our
fingerprints are very small (see Figure 7.5). DFP’s accuracy, however, is comparable
with the other methods analyzed (see Table 7.1). DALIGNER, instead, achieved the
best sensitivity on almost all datasets and was the second best tool when running time
is concerned. Its performance, however, is tailored to its filtering phase and, therefore,
on memory usage. In fact, adapting its filter to very low memory boundaries is likely
to decrease its sensitivity (that is also the reason we decided to run it using almost
all the 32 GB available). MHAP achieved also quite good statistics on all data-sets.
The tool, however, is penalized by its Java implementation which is not optimal in
terms of computational resources management. As also DFP does, it also pays a higher
initialization cost with respect to DALIGNER. In particular, we believe that, if we did
not impose memory limitations, it would use much less computational resources (both
time and RAM) than DALIGNER and get closer to DFP’s run time.

Conclusions

In this dissertation we propose three original contributions to the genome reconstruction
problem: a whole-genome assembly reconciliation method, a hierarchical pool-based
assembly strategy, and the efficient overlap detection between long sequences.

The first one deals with the merging de novo assemblies in order to improve assem-
bly’s quality. As a matter of fact, the availability of a large number of different heuristic
methods paved the way to reconciliation techniques [32,200] which were initially tai-
lored to Sanger-based assemblies. For this reason, we developed GAM-NGS [185], a
tool which extends this approach to be used regardless of the typology of dataset from
which the input sequences have been built. In particular, our method effectively relies
on the mapping of a read dataset against the input assemblies. Such a mapping, besides
being used to identify regions representing the same genomic locus, allowed us to exploit
the information coming from paired reads in order to identify putative mis-assemblies
and, hence, improve assembly’s correctness. Due to the particular effort done in its
implementation, GAM-NGS has also been developed to carry out the reconciliation of
very large assemblies using moderate amounts of computational resources. Furthermore,
GAM-NGS has been used to aid the definition of the first draft sequence of the 20-Gbp
Norway spruce genome [134]. At the moment, GAM-NGS is only able to merge two
assemblies at a time. A further improvement would be to handle more assemblies (e.g.,
iteratively) and introduce additional heuristics to resolve some complex graph structures
which are not currently “untangled”. In this way it would be possible to abandon the
master-slave approach described in Chapter 5 and whose performance is strictly related
to the choice of the input assemblies.

The second strategy we proposed in order to tackle the genome assembly problem (on
a large scale) has been thought to exploit the specific methodology used to sequence the
Norway spruce genome. Specifically, in order to deal with the abundance of repetitive
regions, the genome has been sequenced in fosmid pools, each one assembled indepen-
dently. In a scenario where a 4-8x coverage of such pools is available, GAM-NGS is
no longer suitable for the task. For this reason, we devised a novel framework [186],
which extends the assembly reconciliation idea in the case of a hierarchical sequencing of
long-insert pools. The result is a prototype tool called HAM and based on an Overlap-
Layout-Consensus (OLC) paradigm which leads to achieve promising results concerning
assembly’s quality on simulated pool-based datasets.

Finally, the third problem we faced is strictly related to the hierarchical reconciliation
tool just mentioned. As a matter of fact, the critical part of every OLC-based assembler
is the computation of overlaps among reads (or, more in general, sequences). In order to
detect overlaps within large datasets we then defined a novel method which computes
k-mer-based fingerprints of the input sequences and uses them to efficiently seek for

108 7. Fingerprint-based Overlap Detection

overlaps. The main advantage of this technique is to replace each sequence with its
fingerprints in the identification of putative overlaps. We were able to show empirically
that our method fits well in the hierarchical reconciliation framework as well as with
corrected PacBio reads. Moreover, the method compares favorably (in terms of both
running time and memory usage) with respect to other methods developed for the task
of kilobase-read alignment. Unfortunately, the main limitation of our method is the need
of good quality sequences in input and, for this reason, it is not suited to work with
raw third-generation-sequencing reads. An interesting future perspective would be to
understand whether we could extended our method to handle also error-rich datasets.

Y

Appendices

GAM-NGS supplementary tables

Table A.1: GAGE statistics (contiguity, duplication and compression) on Staphylococcus
aureus of the merging between assemblies with the largest N50.

Ctg NG50 NG50 Assembly Chaff Unaligned Unaligned Dupl Comp

Assembler num (kb) corr. (kb) size (%) size (%) ref (%) asm (%) (%) (%)
Allpaths-LG 60 96.74 66.23 98.88 0.03 0.61 0.01 0.04 1.26
SOAPdenovo 107 288.18 62.68 100.55 0.34 0.22 0.02 1.66 1.45
Allpaths-LG + SOAPdenovo

GAM-NGS 56 107.12 69.39 99.52 0.03 0.56 0.01 0.34 1.26
GAA 40 255.66 83.67 108.10 0.06 0.25 0.01 278 1.31
ZORRO 104 76.94 65.83 105.59 0.31 0.15 0.10 5.19 1.36
SOAPdenovo + Allpaths-LG

GAM-NGS 93 288.18 62.68 100.92 0.32 0.20 0.02 1.88 1.40
GAA 74 294.96 62.87 101.92 0.34 0.16 0.02 2.62 1.37

ZORRO 107 76.94 62.68 105.63 0.29 0.16 0.09 5.17 1.50

112

A. GAM-NGS supplementary tables

Table A.2: GAGE statistics (SNPs, indels and misjoins) on Staphylococcus aureus of
the merging between assemblies with the largest N50.

Assembler SNPs Indels < 5 bp Indels > 5 bp Misjoins Inv Reloc
Allpaths-LG 79 4 12 4 0 4
SOAPdenovo 247 25 31 15 1 14
Allpaths-LG + SOAPdenovo

GAM-NGS 88 5 14 4 0

GAA 100 9 19 10 1
ZORRO 227 19 12 6 1
SOAPdenovo + Allpaths-LG

GAM-NGS 304 27 29 15 1 14
GAA 314 32 30 12 1 11
ZORRO 299 28 11 13 2 11

Table A.3: Assembly reconciliation tools performances on Staphylococcus aureus of the
merging between assemblies with the largest N50. In GAM-NGS’s entries the first value
indicates the time spent in alignment phase, while the second one is GAM-NGS’s run

time.

Tool User (CPU) time

Wall clock time

Allpaths-LG + SOAPdenovo

GAM-NGS 1h 10m 53s + 33s 5m 12s + 24s
GAA 5m 04s 5m 04s
ZORRO 7m 08s 7m 08s
SOAPdenovo + Allpaths-LG

GAM-NGS 1h 10m 53s + 34s 5m 12s + 25s
GAA 4m 49s 4m 49s
ZORRO 9m 52s 9m 52s

Table A.4: GAGE statistics (contiguity, duplication and compression) on Rhodobacter
sphaeroides of the merging between assemblies with the largest N50. Columns are the

same as in Table 5.3.

Ctg NG50 NG5H0 Assembly Chaff Unaligned Unaligned Dupl Comp

Assembler num (kb) corr. (kb) size (%) size (%) ref (%) asm (%) (%) (%)
Bambus2 177 93.19 12.78 94.97 0.00 4.92 0.00 0.00 0.24
SOAPdenovo 202 131.68 14.34 100.29 0.44 0.76 0.01 1.30 0.46
Bambus2 + SOAPdenovo

GAM-NGS 83 149.75 14.16 98.32 0.00 3.02 0.00 1.59 0.63
GAA 100 194.16 14.74 98.35 0.13 2.28 0.01 0.63 0.58
ZORRO 711 16.56 13.18 100.48 0.89 0.66 0.25 1.05 0.59
SOAPdenovo + Bambus2

GAM-NGS 177 154.47 15.17 100.41 0.42 0.82 0.01 1.67 0.48
GAA 174 188.18 14.54 100.35 0.44 0.76 0.01 1.38 0.48
ZORRO 720 16.56 12.78 100.48 0.84 0.69 0.24 1.14 0.56

A. GAM-NGS supplementary tables

113

Table A.5: GAGE statistics (SNPs, indels and misjoins) on Rhodobacter sphaeroides
of the merging between assemblies with the largest N50. Columns are the same as in

Table 5.4.
Assembler SNPs Indels < 5 bp Indels > 5 bp Misjoins Inv Reloc
Bambus2 189 149 363 5 0 5
SOAPdenovo 534 155 404 8 0 8
Bambus2 + SOAPdenovo
GAM-NGS 431 173 406 10 0 10
GAA 581 177 404 10 0 10
ZORRO 546 196 84 8 0 8
SOAPdenovo + Bambus2
GAM-NGS 534 153 393
GAA 532 155 407
ZORRO 513 175 111

Table A.6: Assembly reconciliation tools performances on Rhodobacter sphaeroides of
the merging between assemblies with the largest N50. In GAM-NGS'’s entries the first
value indicates the time spent in alignment phase, while the second one is GAM-NGS’s

run time.

Tool User (CPU) time

Wall clock time

Bambus2 + SOAPdenovo

GAM-NGS 1h 26’ 47" + 2’ 35”
GAA 3’ 59”7
ZORRO 8 227

553”7 + 1’137
3’ 59”
8 22’

SOAPdenovo + Bambus2

GAM-NGS 1h 26’ 477 + 2’ 237
GAA 37477
ZORRO 7 447

5 537 + 1’ 09”
347
7 447

DFP supplementary tables

Table B.1: Overlap validation and performance of DFP, DALIGNER, and MHAP on the
E. coli dataset for several values of k: sensitivity (TPR, True Positive Rate), specificity
(SPC), positive predictive value (PPV), resident set size (RSS) peak, wall clock time
(WCT), and CPU time. DALIGNER was run with the non-default parameters: -e.9
-kk -wb -h60 -s500 -M30. MHAP was run with the non-default parameters: -k k
--num-threads 16 --num-min-matches 8 --threshold 0.16.

Tool k TPR SPC PPV RSS Peak WCT CPU
15 99.6 100.0 100.0 3.31 GB 58s 5m 08s
17 99.6 100.0 100.0 3.21 GB 59s 5m 08s
19 99.4 100.0 100.0 2.94 GB 53s 5m 03s

DFP 21 99.3 100.0 100.0 2.67 GB 54s 5m 10s
23 99.1 100.0 100.0 2.54 GB 50s 5m 16s
25 98.9 100.0 100.0 2.35 GB 50s 5m 38s
27 98.6 100.0 100.0 2.21 GB 47s 5m 07s

15 99.7 100.0 100.0 29.56 GB 1m 58s 18m 28s
17 99.7 100.0 100.0 28.46 GB 57s 11m 40s

19 99.6 100.0 100.0 28.0 GB 55s 11m 25s
DALIGNER 21 99.6 100.0 100.0 27.6 GB 58s 11m 26s
23 99.5 100.0 100.0 27.22 GB 57s 11m 19s
25 99.5 100.0 100.0 26.86 GB 57s 11m 22s
27 99.5 100.0 100.0 26.5 GB 56s 11m 17s

15 100.0 100.0 99.5 9.86 GB 1m 35s 24m 42s
17 100.0 100.0 99.4 9.86 GB 1m 36s 24m 53s
19 100.0 100.0 99.5 9.82 GB 1m 35s 24m 4l1s
MHAP 21 100.0 100.0 99.4 9.77 GB 1m 39s 25m 55s
23 100.0 100.0 99.4 9.83 GB 1m 38s 25m 40s
25 100.0 100.0 99.4 9.84 GB 1m 38s 25m 47s
27 100.0 100.0 99.4 9.81 GB 1m 38s 25m 42s

116 B. DFP supplementary tables

Table B.2: Overlap validation and performance of DFP, DALIGNER, and MHAP on
the D. melanogaster ISO1 dataset for several values of k. Statistics were computed us-
ing the Release 6 of the reference genome. Columns are the same as in Table B.1.
DALIGNER was run with the non-default parameters: -e.9 -kk -w5 -h60 -s500
-M16 (higher values of -M did not allow the program to terminate correctly). MHAP was
run with the non-default parameters: -k & --num-threads 16 --num-min-matches 5
--threshold 0.5.

Tool k TPR SPC PPV RSS Peak WCT CPU
19 98.1 100.0 99.5 10.03 GB 16m 28s 2h 21m 7s
21 98.0 100.0 99.6 10.03 GB 16m 23s 2h 24m 8s
23 97.8 100.0 99.7 8.80 GB 16m 02s 2h 23m 32s
DFP 25 97.6 100.0 99.7 8.35 GB 15m 50s 2h 27m 11s
27 974 100.0 99.5 7.92 GB 15m 44s 2h 25m 28s
29 97.1 100.0 99.5 7.55 GB 15m 46s 2h 30m 26s
31 96.8 100.0 99.7 7.23 GB 16m 19s 2h 44m 11s
19 99.4 100.0 100.0 16.40 GB 30m 03s 6h 34m 43s
21 99.4 100.0 100.0 16.40 GB 30m 07s 6h 32m 07s
23 99.4 100.0 100.0 16.41 GB 29m 42s 6h 24m 50s
DALIGNER 25 99.4 100.0 100.0 16.41 GB 30m 23s 6h 32m 57s
27 994 100.0 100.0 16.40 GB 30m 11s 6h 30m 17s
29 99.3 100.0 100.0 16.41 GB 30m 47s 6h 34m 56s
31 99.3 100.0 100.0 16.41 GB 30m 04s 6h 27m 42s
19 99.0 100.0 100.0 18.85 GB 32m 33s 8h 44m 3s
21 99.0 100.0 100.0 18.96 GB 32m 26s 8h 43m 07s
23 99.0 100.0 100.0 18.75 GB 31lm 37s 8h 29m 18s
MHAP 25 99.0 100.0 100.0 18.97 GB 32m 19s 8h 41m 54s
27 99.0 100.0 100.0 18.97 GB 32m 03s 8h 37m 50s
29 99.0 100.0 100.0 18.86 GB 31lm 34s 8h 28m 57s
31 99.0 100.0 100.0 19.00 GB 32m 30s 8h 44m 49s

B. DFP supplementary tables

117

Table B.3: Overlap validation and performance of DFP, DALIGNER, and MHAP on the
Human chromosome 14 dataset for several values of k. Statistics were computed using
the ungapped reference genome. Columns are the same as in Table B.1. DALIGNER was
run with the non-default parameters: -e.9 -kk -w5 -h60 -s500 -M30. MHAP was
run with the non-default parameters: -k k& --num-threads 16 --num-min-matches 8

--threshold 0.16.

Tool k TPR SPC PPV RSS Peak WCT CPU
19 99.0 100.0 99.8 1.92 GB 1m 41s 17m 2s
21 99.2 100.0 99.9 1.58 GB 1m 37s 16m 56s
23 99.4 100.0 100.0 1.50 GB 1m 37s 16m 44s
DFP 25 99.5 100.0 100.0 1.38 GB 1m 35s 16m 41s
27 99.7 100.0 100.0 1.40 GB 1m 34s 16m 40s
29 99.7 100.0 100.0 1.46 GB 1m 35s 16m 51s
31 99.8 100.0 100.0 1.51 GB 1m 33s 16m 48s
19 100.0 100.0 100.0 23.43 GB 12m 57s 2h 50m 45s
21 100.0 100.0 100.0 22.37 GB 11m 25s 2h 29m 29s
23 100.0 100.0 100.0 21.51 GB 10m 22s 2h 14m 32s
DALIGNER 25 100.0 100.0 100.0 20.69 GB 10m 04s 2h 10m 47s
27 100.0 100.0 100.0 20.05 GB 9m 54s 2h 09m 28s
29 100.0 100.0 100.0 19.49 GB 9m 54s 2h 11m 36s
31 100.0 100.0 100.0 18.99 GB 9m 31s 2h 04m 45s
19 99.3 100.0 99.4 19.57 GB 18m 45s 5h 3m 57s
21 99.3 100.0 99.4 19.21 GB 20m 34s 5h 34m 17s
23 99.3 100.0 99.5 19.04 GB 20m 51s 5h 38m 37s
MHAP 25 99.3 100.0 99.6 18.90 GB 17m 37s 4h 46m 6s
27 99.3 100.0 99.5 18.93 GB 18m 08s 4h 54m 29s
29 99.3 100.0 99.6 18.93 GB 21m 05s 5h 42m 48s
31 99.3 100.0 99.7 18.85 GB 18m 13s 4h 57m 22s

118 B. DFP supplementary tables

Table B.4: Overlap validation and performance of DFP, DALIGNER, and MHAP on
the C. gigas dataset for several values of k. Statistics were computed using the un-
gapped reference genome. Columns are the same as in Table B.1. DALIGNER was
run with the non-default parameters: -e.9 -kk -w5 -h60 -s500 -M30. MHAP was
run with the non-default parameters: -k k --num-threads 16 --num-min-matches
50 --threshold 0.5.

Tool k TPR SPC PPV RSS Peak WCT CPU
19 99.5 100.0 99.9 6.90 GB 27m 33s 4h 37m 9s
21 99.6 100.0 99.9 7.27 GB 26m 49s 4h 31m 26s
23 99.7 100.0 99.9 7.71 GB 26m 17s 4h 28m 02s

DFP 25 99.7 100.0 99.9 8.08 GB 26m 11s 4h 30m 26s
27 99.7 100.0 99.8 8.53 GB 25m 57s 4h 31m 23s
29 99.8 100.0 99.9 8.95 GB 25m 48s 4h 31m 54s
31 99.8 100.0 99.9 9.38 GB 25m 45s 4h 32m 29s

19 96.5 100.0 100.0 18.89 GB 2h 07m 17s 1d 8h 28m Os
21 96.5 100.0 100.0 17.20 GB 1h 47m 29s 1d 3h 18m 8s
23 96.5 100.0 100.0 15.86 GB 1h 39m 15s 1d 37m 19s
DALIGNER 25 96.5 100.0 100.0 14.74 GB 1h 28m 26s 22h 5m 18s
27 96.5 100.0 100.0 13.80 GB 1h 23m 41s 20h 35m 37s
29 96.5 100.0 100.0 12.98 GB 1h 16m 05s 18h 52m 19s
31 96.5 100.0 100.0 12.46 GB 1h 09m 27s 17h 9m Os

19 99.8 100.0 100.0 16.79 GB 51m 47s 13h 49m 07s
21 99.8 100.0 100.0 16.81 GB 51m 30s 13h 45m 02s
23 99.8 100.0 100.0 16.84 GB 52m 11s 13h 56m 11s
MHAP 25 99.8 100.0 100.0 16.85 GB 52m 59s 14h 10m 00s
27 99.8 100.0 100.0 16.90 GB 53m 05s 14h 10m 58s
29 99.7 100.0 100.0 16.93 GB 53m 28s 14h 16m 28s

31 99.7 100.0 100.0 16.91 GB 53m 52s 14h 23m 27s

120 B. DFP supplementary tables

Bibliography

AMOS - A Modular Open-Source Assembler [http://amos.sourceforge.net].
http://bitbucket.org/vice1987/fingerprint.
http://code.google.com/p/sparsehash/.
http://dazzlerblog.wordpress.com/2014/05/15/on-perfect-assembly/.
http://gage.cbecb.umd.edu.

http://github.com/vice87/gam-ngs.

http://lge.ibi.unicamp.br/zorro/.
http://www.cbcb.umd.edu/software/PBcR/MHAP.
http://www.cledenovo.com/.

Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing
suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53 —
86, 2004. The 9th International Symposium on String Processing and Information
Retrieval.

Andrey Alexeyenko, Bjorn Nystedt, Francesco Vezzi, Ellen Sherwood, Rosa Ye,
Bjarne Knudsen, Martin Simonsen, Benjamin Turner, Pieter de Jong, Cheng-
Cang Wu, and Joakim Lundeberg. Efficient de novo assembly of large and com-
plex genomes by massively parallel sequencing of Fosmid pools. BMC Genomics,
15(1):439, 2014.

C. Alkan, S. Sajjadian, and E.E. Eichler. Limitations of next-generation genome
sequence assembly. Nature methods, 8(1):61-65, 2010.

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J.
Lipman. Basic local alignment search tool. Journal of Molecular Biology,
215(3):403 — 410, 1990.

S Anderson. Shotgun DNA sequencing using cloned DNase I-generated fragments.
Nucleic Acids Research, 9(13):3015-3027, July 1981.

Pramila Nuwantha Ariyaratne and Wing-Kin Sung. PE-Assembler: de novo as-
sembler using short paired-end reads. Bioinformatics, 27(2):167-174, 2011.

http://amos.sourceforge.net
http://bitbucket.org/vice1987/fingerprint
http://code.google.com/p/sparsehash/
http://dazzlerblog.wordpress.com/2014/05/15/on-perfect-assembly/
http://gage.cbcb.umd.edu
http://github.com/vice87/gam-ngs
http://lge.ibi.unicamp.br/zorro/
http://www.cbcb.umd.edu/software/PBcR/MHAP
http://www.clcdenovo.com/

122

B. Bibliography

[16]

Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail
Dvorkin, Alexander S. Kulikov, Valery M. Lesin, Sergey I. Nikolenko, Son Pham,
Andrey D. Prjibelski, Alexey V. Pyshkin, Alexander V. Sirotkin, Nikolay Vyahhi,
Glenn Tesler, Max A. Alekseyev, and Pavel A. Pevzner. SPAdes: A New Genome
Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of
Computational Biology, 19(5):455-477, April 2012.

Ali Bashir, Aaron A Klammer, William P Robins, Chen-Shan Chin, Dale Webster,
Ellen Paxinos, David Hsu, Meredith Ashby, Susana Wang, Paul Peluso, Robert
Sebra, Jon Sorenson, James Bullard, Jackie Yen, Marie Valdovino, Emilia Mollova,
Khai Luong, Steven Lin, Brianna LaMay, Amruta Joshi, Lori Rowe, Michael Frace,
Cheryl L Tarr, Maryann Turnsek, Brigid M Davis, Andrew Kasarskis, John J
Mekalanos, Matthew K Waldor, and Eric E Schadt. A hybrid approach for the
automated finishing of bacterial genomes. Nat Biotech, 30(7):701-707, July 2012.

Serafim Batzoglou, David B. Jaffe, Ken Stanley, Jonathan Butler, Sante Gnerre,
Evan Mauceli, Bonnie Berger, Jill P. Mesirov, and Eric S. Lander. ARACHNE: A
Whole-Genome Shotgun Assembler. Genome Research, 12(1):177-189, 2002.

David R. Bentley. Whole-genome re-sequencing. Current opinion in genetics €
development, 16(6):545-552, December 2006.

David R. Bentley, Shankar Balasubramanian, Harold P. Swerdlow, Geoffrey P.
Smith, John Milton, Clive G. Brown, Kevin P. Hall, Dirk J. Evers, Colin L.
Barnes, Helen R. Bignell, Jonathan M. Boutell, Jason Bryant, Richard J. Carter,
R. Keira Cheetham, Anthony J. Cox, Darren J. Ellis, Michael R. Flatbush, Niall A.
Gormley, Sean J. Humphray, Leslie J. Irving, Mirian S. Karbelashvili, Scott M.
Kirk, Heng Li, Xiaohai Liu, Klaus S. Maisinger, Lisa J. Murray, Bojan Obradovic,
Tobias Ost, Michael L. Parkinson, Mark R. Pratt, Isabelle M. J. Rasolonjatovo,
Mark T. Reed, Roberto Rigatti, Chiara Rodighiero, Mark T. Ross, Andrea Sabot,
Subramanian V. Sankar, Aylwyn Scally, Gary P. Schroth, Mark E. Smith, Vin-
cent P. Smith, Anastassia Spiridou, Peta E. Torrance, Svilen S. Tzonev, Eric H.
Vermaas, Klaudia Walter, Xiaolin Wu, Lu Zhang, Mohammed D. Alam, Carole
Anastasi, Ify C. Aniebo, David M. D. Bailey, Iain R. Bancarz, Saibal Baner-
jee, Selena G. Barbour, Primo A. Baybayan, Vincent A. Benoit, Kevin F. Ben-
son, Claire Bevis, Phillip J. Black, Asha Boodhun, Joe S. Brennan, John A.
Bridgham, Rob C. Brown, Andrew A. Brown, Dale H. Buermann, Abass A.
Bundu, James C. Burrows, Nigel P. Carter, Nestor Castillo, Maria Chiara E. Cate-
nazzi, Simon Chang, R. Neil Cooley, Natasha R. Crake, Olubunmi O. Dada,
Konstantinos D. Diakoumakos, Belen Dominguez-Fernandez, David J. Earnshaw,
Ugonna C. Egbujor, David W. Elmore, Sergey S. Etchin, Mark R. Ewan, Mi-
lan Fedurco, Louise J. Fraser, Karin V. Fuentes Fajardo, W. Scott Furey, David
George, Kimberley J. Gietzen, Colin P. Goddard, George S. Golda, Philip A.
Granieri, David E. Green, David L. Gustafson, Nancy F. Hansen, Kevin Harnish,
Christian D. Haudenschild, Narinder I. Heyer, Matthew M. Hims, Johnny T. Ho,
Adrian M. Horgan, Katya Hoschler, Steve Hurwitz, Denis V. Ivanov, Maria Q.
Johnson, Terena James, T. A. Huw Jones, Gyoung-Dong Kang, Tzvetana H.
Kerelska, Alan D. Kersey, Irina Khrebtukova, Alex P. Kindwall, Zoya Kingsbury,

B. Bibliography 123

Paula I. Kokko-Gonzales, Anil Kumar, Marc A. Laurent, Cynthia T. Lawley,
Sarah E. Lee, Xavier Lee, Arnold K. Liao, Jennifer A. Loch, Mitch Lok, Shujun
Luo, Radhika M. Mammen, John W. Martin, Patrick G. McCauley, Paul Mc-
Nitt, Parul Mehta, Keith W. Moon, Joe W. Mullens, Taksina Newington, Zemin
Ning, Bee Ling Ng, Sonia M. Novo, Michael J. O’Neill, Mark A. Osborne, Andrew
Osnowski, Omead Ostadan, Lambros L. Paraschos, Lea Pickering, Andrew C.
Pike, Alger C. Pike, D. Chris Pinkard, Daniel P. Pliskin, Joe Podhasky, Vic-
tor J. Quijano, Come Raczy, Vicki H. Rae, Stephen R. Rawlings, Ana Chiva Ro-
driguez, Phyllida M. Roe, John Rogers, Maria C. Rogert Bacigalupo, Nikolai
Romanov, Anthony Romieu, Rithy K. Roth, Natalie J. Rourke, Silke T. Ruediger,
Eli Rusman, Raquel M. Sanches-Kuiper, Martin R. Schenker, Josefina M. Seoane,
Richard J. Shaw, Mitch K. Shiver, Steven W. Short, Ning L. Sizto, Johannes P.
Sluis, Melanie A. Smith, Jean Ernest Sohna Sohna, Eric J. Spence, Kim Stevens,
Neil Sutton, Lukasz Szajkowski, Carolyn L. Tregidgo, Gerardo Turcatti, Stephanie
VandeVondele, Yuli Verhovsky, Selene M. Virk, Suzanne Wakelin, Gregory C. Wal-
cott, Jingwen Wang, Graham J. Worsley, Juying Yan, Ling Yau, Mike Zuerlein,
Jane Rogers, James C. Mullikin, Matthew E. Hurles, Nick J. McCooke, John S.
West, Frank L. Oaks, Peter L. Lundberg, David Klenerman, Richard Durbin, and
Anthony J. Smith. Accurate whole human genome sequencing using reversible
terminator chemistry. Nature, 456(7218):53-59, November 2008.

Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M Lan-
dolin, and Adam M Phillippy. Assembling large genomes with single-molecule
sequencing and locality-sensitive hashing. Nature Biotechnology, 2015.

Ewan Birney. Assemblies: the good, the bad, the ugly. Nature methods, 8(1):59—
60, January 2011.

Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.
Commun. ACM, 13(7):422-426, July 1970.

Marten Boetzer, Christiaan V. Henkel, Hans J. Jansen, Derek Butler, and Wal-
ter Pirovano. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics,
27(4):578-579, 2011.

Jayson Bowers, Judith Mitchell, Eric Beer, Philip R Buzby, Marie Causey,
J William Efcavitch, Mirna Jarosz, Edyta Krzymanska-Olejnik, Li Kung, Doron
Lipson, Geoffrey M Lowman, Subramanian Marappan, Peter Mclnerney, Adam
Platt, Atanu Roy, Suhaib M Siddiqi, Kathleen Steinmann, and John F Thompson.
Virtual terminator nucleotides for next-generation DNA sequencing. Nat Meth,
6(8):593-595, August 20009.

Keith Bradnam, Joseph Fass, Anton Alexandrov, Paul Baranay, Michael Bech-
ner, Inanc Birol, Sebastien Boisvert, Jarrod Chapman, Guillaume Chapuis, Rayan
Chikhi, Hamidreza Chitsaz, Wen-Chi Chou, Jacques Corbeil, Cristian Del Fabbro,
T Docking, Richard Durbin, Dent Earl, Scott Emrich, Pavel Fedotov, Nuno Fon-
seca, Ganeshkumar Ganapathy, Richard Gibbs, Sante Gnerre, Elenie Godzaridis,
Steve Goldstein, Matthias Haimel, Giles Hall, David Haussler, Joseph Hiatt, and

124

B. Bibliography

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Isaac Ho. Assemblathon 2: evaluating de novo methods of genome assembly in
three vertebrate species. GigaScience, 2(1):10, 2013.

Andrei Z. Broder. On the Resemblance and Containment of Documents. In In
Compression and Complezity of Sequences (SEQUENCES’97), pages 21-29. IEEE
Computer Society, 1997.

Jeremy Buhler, Uri Keich, and Yanni Sun. Designing seeds for similarity search in
genomic DNA. Journal of Computer and System Sciences, 70(3):342 — 363, 2005.
Special Issue on Bioinformatics {IT}.

M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical report, 1994.

Jonathan Butler, Iain MacCallum, Michael Kleber, Ilya A. Shlyakhter,
Matthew K. Belmonte, Eric S. Lander, Chad Nusbaum, and David B. Jaffe.
ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome
Research, 18(5):810-820, 2008.

A. Califano and I. Rigoutsos. FLASH: a fast look-up algorithm for string homol-
ogy. In Computer Vision and Pattern Recognition, 1993. Proceedings CVPR 93.,
1993 IEEE Computer Society Conference on, pages 353-359, Jun 1993.

Alberto Casagrande, Cristian Del Fabbro, Simone Scalabrin, and Alberto Poli-
criti. GAM: Genomic Assemblies Merger: A Graph Based Method to Integrate
Different Assemblies. 2009 IEEE International Conference on Bioinformatics and
Biomedicine, pages 321-326, November 2009.

Federica Cattonaro, Alberto Policriti, and Francesco Vezzi. Enhanced reference
guided assembly. IEEE, December 2010.

Mark Chaisson and Glenn Tesler. Mapping single molecule sequencing reads using
basic local alignment with successive refinement (BLASR): application and theory.
BMC Bioinformatics, 13(1):238, 2012.

Mark J. Chaisson, Dumitru Brinza, and Pavel A. Pevzner. De novo fragment
assembly with short mate-paired reads: Does the read length matter? Genome
Research, 19(2):336-346, 2009.

Mark J. Chaisson and Pavel A. Pevzner. Short read fragment assembly of bacterial
genomes. Genome Research, 18(2):000, 2007.

Yangho Chen, Tate Souaiaia, and Ting Chen. PerM: efficient mapping of
short sequencing reads with periodic full sensitive spaced seeds. Bioinformatics,
25(19):2514-2521, October 2009.

Rayan Chikhi and Guillaume Rizk. Space-Efficient and Exact de Bruijn Graph
Representation Based on a Bloom Filter. In WABI, volume 7534 of Lecture Notes
in Computer Science, pages 236—248. Springer, 2012.

B. Bibliography 125

[39]

[40]

[43]

[44]

[45]

Chen-Shan Chin, David H Alexander, Patrick Marks, Aaron A Klammer, James
Drake, Cheryl Heiner, Alicia Clum, Alex Copeland, John Huddleston, Evan E
Eichler, Stephen W Turner, and Jonas Korlach. Nonhybrid, finished microbial
genome assemblies from long-read SMRT sequencing data. Nat Meth, 10(6):563—
569, June 2013.

Deanna M. Church, Leo Goodstadt, LaDeana W. Hillier, Michael C. Zody, Steve
Goldstein, Xinwe She, Carol J. Bult, Richa Agarwala, Joshua L. Cherry, Michael
DiCuccio, Wratko Hlavina, Yuri Kapustin, Peter Meric, Donna Maglott, ZoAx
Birtle, Ana C. Marques, Tina Graves, Shiguo Zhou, Brian Teague, Konstantinos
Potamousis, Christopher Churas, Michael Place, Jill Herschleb, Ron Runnheim,
Daniel Forrest, James Amos-Landgraf, David C. Schwartz, Ze Cheng, Kerstin
Lindblad-Toh, Evan E. Eichler, Chris P. Ponting, and The Mouse Genome Se-
quencing Consortium. Lineage-Specific Biology Revealed by a Finished Genome
Assembly of the Mouse. PLoS Biol, 7(5):e1000112, 05 20009.

Gary A. Churchill and Michael S. Waterman. The accuracy of DNA sequences:
Estimating sequence quality. Genomics, 14(1):89 — 98, 1992.

James Clarke, Hai-Chen Wu, Lakmal Jayasinghe, Alpesh Patel, Stuart Reid, and
Hagan Bayley. Continuous base identification for single-molecule nanopore DNA
sequencing. Nat Nano, 4(4):265-270, April 2009.

Francis S. Collins, Michael Morgan, and Aristides Patrinos. The Human Genome
Project: Lessons from Large-Scale Biology. Science, 300(5617):286-290, 2003.

Human Genome Sequencing ConsortiumInternational. Finishing the euchromatic
sequence of the human genome. Nature, 431(7011):931-945, October 2004.

Rami a. Dalloul, Julie a. Long, Aleksey V. Zimin, Luqgman Aslam, Kathryn Beal,
Le Ann Blomberg, Pascal Bouffard, David W. Burt, Oswald Crasta, Richard P.
M. a. Crooijmans, Kristal Cooper, Roger a. Coulombe, Supriyo De, Mary E.
Delany, Jerry B. Dodgson, Jennifer J. Dong, Clive Evans, Karin M. Frederick-
son, Paul Flicek, Liliana Florea, Otto Folkerts, Martien a. M. Groenen, Tim T.
Harkins, Javier Herrero, Steve Hoffmann, Hendrik-Jan Megens, Andrew Jiang,
Pieter de Jong, Pete Kaiser, Heebal Kim, Kyu-Won Kim, Sungwon Kim, David
Langenberger, Mi-Kyung Lee, Tacheon Lee, Shrinivasrao Mane, Guillaume Mar-
cais, Manja Marz, Audrey P. McElroy, Thero Modise, Mikhail Nefedov, Cédric
Notredame, Ian R. Paton, William S. Payne, Geo Pertea, Dennis Prickett, Daniela
Puiu, Dan Qioa, Emanuele Raineri, Magali Ruffier, Steven L. Salzberg, Michael C.
Schatz, Chantel Scheuring, Carl J. Schmidt, Steven Schroeder, Stephen M. J.
Searle, Edward J. Smith, Jacqueline Smith, Tad S. Sonstegard, Peter F. Stadler,
Hakim Tafer, Zhijian (Jake) Tu, Curtis P. Van Tassell, Albert J. Vilella, Kelly P.
Williams, James a. Yorke, Liqing Zhang, Hong-Bin Zhang, Xiaojun Zhang, Yang
Zhang, and Kent M. Reed. Multi-Platform Next-Generation Sequencing of the
Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis. PLoS
Biology, 8(9):1000475, September 2010.

126

B. Bibliography

[46]

[47]

[48]

[49]

[50]

Adel Dayarian, Todd Michael, and Anirvan Sengupta. SOPRA: Scaffolding algo-
rithm for paired reads via statistical optimization. BMC Bioinformatics, 11(1):345,
2010.

N. G. de Bruijn. A Combinatorial Problem. Koninklijke Nederlandsche Akademie
Van Wetenschappen, 49(6):758-764, June 1946.

C. Del Fabbro, F. Tardivo, and A. Policriti. A Parallel Algorithm for the Best
k-Mismatches Alignment Problem. In Parallel, Distributed and Network-Based
Processing (PDP), 2014 22nd Euromicro International Conference on, pages 586—
589, Feb 2014.

V. Deshpande, E. D. Fung, S. Pham, and V. Bafna. Cerulean: A hybrid assembly
using high throughput short and long reads. ArXiv e-prints, July 2013.

Juliane C. Dohm, Claudio Lottaz, Tatiana Borodina, and Heinz Himmelbauer.
SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo
genomic sequencing. Genome Research, 17(11):1697-1706, 2007.

Nilgun Donmez and Michael Brudno. SCARPA: scaffolding reads with practical
algorithms. Bioinformatics, 29(4):428-434, 2013.

D. a. Earl, K. Bradnam, J. St. John, a. Darling, D. Lin, J. Faas, H. O. K. Yu,
B. Vince, D. R. Zerbino, M. Diekhans, N. Nguyen, P. Nuwantha, a. W.-K. Sung,
Z. Ning, M. Haimel, J. T. Simpson, N. a. Fronseca, 1. Birol, T. R. Docking, I. Y.
Ho, D. S. Rokhsar, R. Chikhi, D. Lavenier, G. Chapuis, D. Naquin, N. Maillet,
M. C. Schatz, D. R. Kelly, a. M. Phillippy, S. Koren, S.-P. Yang, W. Wu, W.-C.
Chou, a. Srivastava, T. I. Shaw, J. G. Ruby, P. Skewes-Cox, M. Betegon, M. T.
Dimon, V. Solovyev, P. Kosarev, D. Vorobyev, R. Ramirez-Gonzalez, R. Leggett,
D. MacLean, F. Xia, R. Luo, Z. L, Y. Xie, B. Liu, S. Gnerre, I. MacCallum,
D. Przybylski, F. J. Ribeiro, S. Yin, T. Sharpe, G. Hall, P. J. Kersey, R. Durbin,
S. D. Jackman, J. a. Chapman, X. Huang, J. L. DeRisi, M. Caccamo, Y. Li, D. B.
Jaffe, R. Green, D. Haussler, I. Korf, and B. Paten. Assemblathon 1: A competitive
assessment of de novo short read assembly methods. Genome Research, September
2011.

John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul
Peluso, David Rank, Primo Baybayan, Brad Bettman, Arkadiusz Bibillo, Keith
Bjornson, Bidhan Chaudhuri, Frederick Christians, Ronald Cicero, Sonya Clark,
Ravindra Dalal, Alex deWinter, John Dixon, Mathieu Foquet, Alfred Gaertner,
Paul Hardenbol, Cheryl Heiner, Kevin Hester, David Holden, Gregory Kearns,
Xiangxu Kong, Ronald Kuse, Yves Lacroix, Steven Lin, Paul Lundquist, Con-
gecong Ma, Patrick Marks, Mark Maxham, Devon Murphy, Insil Park, Thang
Pham, Michael Phillips, Joy Roy, Robert Sebra, Gene Shen, Jon Sorenson, Austin
Tomaney, Kevin Travers, Mark Trulson, John Vieceli, Jeffrey Wegener, Dawn
Wu, Alicia Yang, Denis Zaccarin, Peter Zhao, Frank Zhong, Jonas Korlach, and
Stephen Turner. Real-Time DNA Sequencing from Single Polymerase Molecules.
Science, 323(5910):133-138, 20009.

B. Bibliography 127

[54]

[55]

[56]

[57]

[58]

Isaac Elias. Settling the Intractability of Multiple Alignment. Journal of Compu-
tational Biology, 13(7):1323-1339, September 2006.

Adam C. English, Stephen Richards, Yi Han, Min Wang, Vanesa Vee, Jiaxin Qu,
Xiang Qin, Donna M. Muzny, Jeffrey G. Reid, Kim C. Worley, and Richard A.
Gibbs. Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read
Sequencing Technology. PLoS ONE, 7(11):e47768, 11 2012.

Brent Ewing and Phil Green. Base-Calling of Automated Sequencer Traces Using
Phred. II. Error Probabilities. Genome Research, 8(3):186-194, 1998.

Michael Farrar. Striped Smith-Waterman speeds database searches six times over
other SIMD implementations. Bioinformatics, 23(2):156-161, 2007.

P. Ferragina and G. Manzini. Opportunistic data structures with applications.
In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium
on, pages 390-398, 2000.

Paolo Ferragina, Travis Gagie, and Giovanni Manzini. Lightweight Data Indexing
and Compression in External Memory. Algorithmica, 63(3):707-730, 2012.

Paul Flicek and Ewan Birney. Sense from sequence reads: methods for alignment
and assembly. Nature methods, 6:56-S12, 2009.

John Gallant, David Maier, and James Astorer. On finding minimal length su-
perstrings. Journal of Computer and System Sciences, 20(1):50 — 58, 1980.

Song Gao, Niranjan Nagarajan, and Wing-Kin Sung. Opera: Reconstructing Op-
timal Genomic Scaffolds with High-Throughput Paired-End Sequences. In Vineet
Bafna and S.Cenk Sahinalp, editors, Research in Computational Molecular Biol-
ogy, volume 6577 of Lecture Notes in Computer Science, pages 437-451. Springer
Berlin Heidelberg, 2011.

Walter Gilbert and Allan Maxam. The Nucleotide Sequence of the lac Operator.

Proceedings of the National Academy of Sciences of the United States of America,
70(12 Pt 1-2):3581-3584, December 1973.

T R Gingeras, J P Milazzo, D Sciaky, and R J Roberts. Computer programs for
the assembly of DNA sequences. Nucleic Acids Research, 7(2):529-545, September
1979.

Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe J. Ribeiro, Joshua N.
Burton, Bruce J. Walker, Ted Sharpe, Giles Hall, Terrance P. Shea, Sean Sykes,
Aaron M. Berlin, Daniel Aird, Maura Costello, Riza Daza, Louise Williams,
Robert Nicol, Andreas Gnirke, Chad Nusbaum, Eric S. Lander, and David B. Jaffe.
High-quality draft assemblies of mammalian genomes from massively parallel se-
quence data. Proceedings of the National Academy of Sciences, 108(4):1513-1518,
2011.

128

B. Bibliography

[66]

Sara Goodwin, James Gurtowski, Scott Ethe-Sayers, Panchajanya Deshpande,
Michael C. Schatz, and W. Richard McCombie. Oxford Nanopore sequencing,
hybrid error correction, and de novo assembly of a eukaryotic genome. Genome
Research, 2015.

Phil Green. PHRAP. [http://www.phrap.org], 2002.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI (2Nd Ed.):
Portable Parallel Programming with the Message-passing Interface. MIT Press,
Cambridge, MA, USA, 1999.

R.S. Harris. Improved pairwise alignment of genomic DNA. PhD thesis, The
Pennsylvania State University, 2007.

Timothy D. Harris, Phillip R. Buzby, Hazen Babcock, Eric Beer, Jayson Bow-
ers, Ido Braslavsky, Marie Causey, Jennifer Colonell, James DiMeo, J. William
Efcavitch, Eldar Giladi, Jaime Gill, John Healy, Mirna Jarosz, Dan Lapen, Keith
Moulton, Stephen R. Quake, Kathleen Steinmann, Edward Thayer, Anastasia
Tyurina, Rebecca Ward, Howard Weiss, and Zheng Xie. Single-Molecule DNA
Sequencing of a Viral Genome. Science, 320(5872):106-109, 2008.

Yun Heo, Xiao-Long Wu, Deming Chen, Jian Ma, and Wen-Mei Hwu. BLESS:
Bloom filter-based error correction solution for high-throughput sequencing reads.
Bioinformatics, 30(10):1354-1362, 2014.

C. Hercus. Novocraft short read alignment package. http://www.novocraft. com,
20009.

David Hernandez, Patrice Francois, Laurent Farinelli, Magne @Osteras, and Jacques
Schrenzel. De novo bacterial genome sequencing: Millions of very short reads
assembled on a desktop computer. Genome Research, 2008.

Wing-Kai Hon, Tak-Wah Lam, Kunihiko Sadakane, Wing-Kin Sung, and Siu-
Ming Yiu. A Space and Time Efficient Algorithm for Constructing Compressed
Suffix Arrays. Algorithmica, 48(1):23-36, 2007.

Mohammad Hossain, Navid Azimi, and Steven Skiena. Crystallizing short-read
assemblies around seeds. BMC Bioinformatics, 10(Suppl 1):S16, 2009.

Stefan Howorka, Stephen Cheley, and Hagan Bayley. Sequence-specific detection
of individual DNA strands using engineered nanopores. Nat Biotech, 19(7):636—
639, July 2001.

Xuesong Hu, Jianying Yuan, Yujian Shi, Jianliang Lu, Binghang Liu, Zhenyu Li,
Yanxiang Chen, Desheng Mu, Hao Zhang, Nan Li, Zhen Yue, Fan Bai, Heng Li,
and Wei Fan. pIRS: Profile-based Illumina pair-end reads simulator. Bioinfor-
matics, 28(11):1533-1535, 2012.

Xiaoqiu Huang and Anup Madan. CAP3: A DNA Sequence Assembly Program.
Genome Research, 9(9):868-877, 1999.

http://www.phrap.org

B. Bibliography 129

[79]

[89]

[90]

[91]

Xiaoqiu Huang, Jianmin Wang, Srinivas Aluru, Shiaw-Pyng Yang, and LaDeana
Hillier. PCAP: A Whole-Genome Assembly Program. Genome Research,
13(9):2164-2170, 2003.

T Hunkapiller, RJ Kaiser, BF Koop, and L. Hood. Large-scale and automated
DNA sequence determination. Science, 254(5028):59-67, 1991.

Martin Hunt, Taisei Kikuchi, Mandy Sanders, Chris Newbold, Matthew Berriman,
and Thomas Otto. REAPR: a universal tool for genome assembly evaluation.
Genome Biology, 14(5):R47, 2013.

Daniel H. Huson, Aaron L. Halpern, Zhongwu Lai, Eugene W. Myers, Knut Rein-
ert, and Granger G. Sutton. Comparing Assemblies Using Fragments and Mate-
Pairs. In Olivier Gascuel and BernardM.E. Moret, editors, Algorithms in Bioin-
formatics, volume 2149 of Lecture Notes in Computer Science, pages 294-306.
Springer Berlin Heidelberg, 2001.

Ramana M. Idury and Michael S. Waterman. A New Algorithm for DNA Sequence
Assembly. Journal of Computational Biology, 2(2):291-306, January 1995.

Lucian Ilie, Silvana Ilie, and Anahita Mansouri Bigvand. SpEED: fast computation
of sensitive spaced seeds. Bioinformatics, 27(17):2433-2434, 2011.

William R. Jeck, Josephine A. Reinhardt, David A. Baltrus, Matthew T. Hick-
enbotham, Vincent Magrini, Elaine R. Mardis, Jeffery L. Dangl, and Corbin D.
Jones. Extending assembly of short DNA sequences to handle error. Bioinformat-
ics, 23(21):2942-2944, 2007.

Richard M. Karp and M.O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development, 31(2):249-260, March 1987.

Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park.
Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its Appli-
cations. In Proceedings of the 12th Annual Symposium on Combinatorial Pattern
Matching, CPM 01, pages 181-192, London, UK, UK, 2001. Springer-Verlag.

J. D. Kececioglu and E. W. Myers. Combinatorial algorithms for DNA sequence
assembly. Algorithmica, 13(1-2):7-51, 1995.

W. James Kent. BLAT — The BLAST-Like Alignment Tool. Genome Research,
12(4):656-664, 2002.

Sergey Koren, Michael C Schatz, Brian P Walenz, Jeffrey Martin, Jason T Howard,
Ganeshkumar Ganapathy, Zhong Wang, David A Rasko, W Richard McCombie,
Erich D Jarvis, and Adam M Phillippy. Hybrid error correction and de novo
assembly of single-molecule sequencing reads. Nat Biotech, 30(7):693-700, July
2012.

Eric S. Lander and Michael S. Waterman. Genomic mapping by fingerprinting
random clones: A mathematical analysis. Genomics, 2(3):231 — 239, 1988.

130

B. Bibliography

[92]

[93]

[99]

[100]

[101]

[102]

Ben Langmead, Cole Trapnell, Mihai Pop, and Steven Salzberg. Ultrafast
and memory-efficient alignment of short DNA sequences to the human genome.
Genome Biology, 10(3):R25, 2009.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W.
Webb. Zero-Mode Waveguides for Single-Molecule Analysis at High Concentra-
tions. Science, 299(5607):682-686, 2003.

H. Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. ArXiv e-prints, March 2013.

Heng Li and Richard Durbin. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics, 25(14):1754-1760, 2009.

Heng Li and Richard Durbin. Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics, 26(5):589-595, 2010.

R Li, Wei Fan, G Tian, Hongmei Zhu, Lin He, J Cai, Q Huang, and Q.
The sequence and de novo assembly of the giant panda genome. Nature,
463(January):311-317, 2009.

R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan,
K. Kristiansen, S. Li, H. Yang, J. Wang, and J. Wang. De novo assembly
of human genomes with massively parallel short read sequencing. Genome,
doi:101101/gr097261109, 2010.

Ruiqiang Li, Jia Ye, Songgang Li, Jing Wang, Yujun Han, Chen Ye, Jian Wang,
Huanming Yang, Jun Yu, Gane Ka-Shu Wong, and Jun Wang. ReAS: Recovery
of Ancestral Sequences for Transposable Elements from the Unassembled Reads
of a Whole Genome Shotgun. PLoS Comput Biol, 1(4):e43, 09 2005.

Ruigiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kris-
tiansen, and Jun Wang. SOAP2: an improved ultrafast tool for short read align-
ment. Bioinformatics, 25(15):1966-1967, 2009.

Hao Lin, Zefeng Zhang, Michael Q. Zhang, Bin Ma, and Ming Li. ZOOM! Zillions
Of Oligos Mapped. Bioinformatics, 24(21):2431-2437, November 2008.

Kerstin Lindblad-Toh, Claire M Wade, Tarjei S. Mikkelsen, Elinor K. Karlsson,
David B. Jaffe, Michael Kamal, Michele Clamp, Jean L. Chang, Edward J. Kul-
bokas, Michael C. Zody, Evan Mauceli, Xiaohui Xie, Matthew Breen, Robert K.
Wayne, Elaine A. Ostrander, Chris P. Ponting, Francis Galibert, Douglas R.
Smith, Pieter J. deJong, Ewen Kirkness, Pablo Alvarez, Tara Biagi, William
Brockman, Jonathan Butler, Chee-Wye Chin, April Cook, James Cuff, Mark J.
Daly, David DeCaprio, Sante Gnerre, Manfred Grabherr, Manolis Kellis, Michael
Kleber, Carolyne Bardeleben, Leo Goodstadt, Andreas Heger, Christophe Hitte,
Lisa Kim, Klaus-Peter Koepfli, Heidi G. Parker, John P. Pollinger, Stephen M. J.
Searle, Nathan B. Sutter, Rachael Thomas, Caleb Webber, and Eric S. Lander.
Genome sequence, comparative analysis and haplotype structure of the domestic
dog. Nature, 438(7069):803-819, December 2005.

B. Bibliography 131

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin, Lihua Lu,
and Maggie Law. Comparison of Next-Generation Sequencing Systems, 2012.

Ruibang Luo, Binghang Liu, Yinlong Xie, Zhenyu Li, Weihua Huang, Jianying
Yuan, Guangzhu He, Yanxiang Chen, Qi Pan, Yunjie Liu, Jingbo Tang, Gengxiong
Wu, Hao Zhang, Yujian Shi, Yong Liu, Chang Yu, Bo Wang, Yao Lu, Changlei
Han, David Cheung, Siu-Ming Yiu, Shaoliang Peng, Zhu Xiaogian, Guangming
Liu, Xiangke Liao, Yingrui Li, Huanming Yang, Jian Wang, Tak-Wah Lam, and
Jun Wang. SOAPdenovo2: an empirically improved memory-efficient short-read
de novo assembler. GigaScience, 1(1):18, 2012.

Bin Ma, John Tromp, and Ming Li. PatternHunter: faster and more sensitive
homology search. Bioinformatics, 18(3):440-445, 2002.

Tanja Magoc, Stephan Pabinger, Stefan Canzar, Xinyue Liu, Qi Su, Daniela Puiu,
Luke J. Tallon, and Steven L. Salzberg. GAGE-B: an evaluation of genome as-
semblers for bacterial organisms. Bioinformatics, 29(14):1718-1725, 2013.

Udi Manber and Gene Myers. Suffix Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing, 22(5):935-948, 1993.

Guillaume Margais and Carl Kingsford. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764-770, 2011.

Elaine R Mardis. The impact of next-generation sequencing technology on genet-
ics. Trends in genetics : TIG, 24(3):133-41, March 2008.

Marcel Margulies, Michael Egholm, William E. Altman, Said Attiya, Joel S.
Bader, Lisa A. Bemben, Jan Berka, Michael S. Braverman, Yi-Ju Chen, Zhoutao
Chen, Scott B. Dewell, Lei Du, Joseph M. Fierro, Xavier V. Gomes, Brian C.
Godwin, Wen He, Scott Helgesen, Chun He Ho, Gerard P. Irzyk, Szilveszter C.
Jando, Maria L. I. Alenquer, Thomas P. Jarvie, Kshama B. Jirage, Jong-Bum Kim,
James R. Knight, Janna R. Lanza, John H. Leamon, Steven M. Lefkowitz, Ming
Lei, Jing Li, Kenton L. Lohman, Hong Lu, Vinod B. Makhijani, Keith E. McDade,
Michael P. McKenna, Eugene W. Myers, Elizabeth Nickerson, John R. Nobile, Ra-
mona Plant, Bernard P. Puc, Michael T. Ronan, George T. Roth, Gary J. Sarkis,
Jan Fredrik Simons, John W. Simpson, Maithreyan Srinivasan, Karrie R. Tar-
taro, Alexander Tomasz, Kari A. Vogt, Greg A. Volkmer, Shally H. Wang, Yong
Wang, Michael P. Weiner, Pengguang Yu, Richard F. Begley, and Jonathan M.
Rothberg. Genome sequencing in microfabricated high-density picolitre reactors.
Nature, 437(7057):376-380, September 2005.

Kevin Judd McKernan, Heather E. Peckham, Gina L. Costa, Stephen F. McLaugh-
lin, Yutao Fu, Eric F. Tsung, Christopher R. Clouser, Cisyla Duncan, Jeffrey K.
Ichikawa, Clarence C. Lee, Zheng Zhang, Swati S. Ranade, Eileen T. Dimalanta,
Fiona C. Hyland, Tanya D. Sokolsky, Lei Zhang, Andrew Sheridan, Haoning Fu,
Cynthia L. Hendrickson, Bin Li, Lev Kotler, Jeremy R. Stuart, Joel A. Malek,
Jonathan M. Manning, Alena A. Antipova, Damon S. Perez, Michael P. Moore,
Kathleen C. Hayashibara, Michael R. Lyons, Robert E. Beaudoin, Brittany E.

132

B. Bibliography

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Coleman, Michael W. Laptewicz, Adam E. Sannicandro, Michael D. Rhodes, Ra-
jesh K. Gottimukkala, Shan Yang, Vineet Bafna, Ali Bashir, Andrew MacBride,
Can Alkan, Jeffrey M. Kidd, Evan E. Eichler, Martin G. Reese, Francisco M.
De La Vega, and Alan P. Blanchard. Sequence and structural variation in a hu-

man genome uncovered by short-read, massively parallel ligation sequencing using
two-base encoding. Genome Research, 19(9):1527-1541, 2009.

Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno. Com-
putability of Models for Sequence Assembly. In Raffaele Giancarlo and Sridhar
Hannenhalli, editors, Algorithms in Bioinformatics, volume 4645 of Lecture Notes
in Computer Science, pages 289-301. Springer Berlin Heidelberg, 2007.

Paul Medvedev, Son Pham, Mark Chaisson, Glenn Tesler, and Pavel Pevzner.
Paired de Bruijn Graphs: A Novel Approach for Incorporating Mate Pair Infor-
mation into Genome Assemblers. Journal of Computational Biology, 18(11):1625—
1634, October 2011.

Pall Melsted and Jonathan Pritchard. Efficient counting of k-mers in DNA se-
quences using a bloom filter. BMC Bioinformatics, 12(1):333, 2011.

Jason R. Miller, Arthur L. Delcher, Sergey Koren, Eli Venter, Brian P. Walenz,
Anushka Brownley, Justin Johnson, Kelvin Li, Clark Mobarry, and Granger Sut-
ton. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics,
24(24):2818-2824, 2008.

Jason R Miller, Sergey Koren, and Granger Sutton. Assembly Algorithms for
Next-Generation Sequencing Data. Genomics, 95(6):315-327, March 2010.

Hamid Mohamadi, Benjamin P Vandervalk, Anthony Raymond, Shaun D Jack-
man, Justin Chu, Clay P Breshears, and Inanc Birol. DIDA: Distributed Indexing
Dispatched Alignment. PLoS ONE, 10(4):e0126409, 04 2015.

James C. Mullikin and Zemin Ning. The Phusion Assembler. Genome Research,
13(1):81-90, 2003.

David J Munroe and Timothy J R Harris. Third-generation sequencing fireworks
at Marco Island. Nat Biotech, 28(5):426-428, May 2010.

Alysson R. Muotri, Maria C.N. Marchetto, Nicole G. Coufal, and Fred H. Gage.
The necessary junk: new functions for transposable elements. Human Molecular
Genetics, 16(R2):R159-R167, 2007.

Eugene W. Myers. An O(N D) difference algorithm and its variations. Algorith-
mica, 1(1-4):251-266, 1986.

Eugene W. Myers. The fragment assembly string graph. Bioinformatics, 21(suppl
2):1179-1i85, 2005.

Eugene W. Myers, Granger G. Sutton, Art L. Delcher, Tan M. Dew, Dan P. Fa-
sulo, Michael J. Flanigan, Saul A. Kravitz, Clark M. Mobarry, Knut H. J. Reinert,

B. Bibliography 133

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Karin A. Remington, Eric L. Anson, Randall A. Bolanos, Hui-Hsien Chou, Cather-
ine M. Jordan, Aaron L. Halpern, Stefano Lonardi, Ellen M. Beasley, Rhonda C.
Brandon, Lin Chen, Patrick J. Dunn, Zhongwu Lai, Yong Liang, Deborah R.
Nusskern, Ming Zhan, Qing Zhang, Xiangqun Zheng, Gerald M. Rubin, Mark D.
Adams, and J. Craig Venter. A Whole-Genome Assembly of Drosophila. Science,
287(5461):2196-2204, 2000.

Gene Myers. Efficient Local Alignment Discovery amongst Noisy Long Reads. In
Dan Brown and Burkhard Morgenstern, editors, Algorithms in Bioinformatics,
volume 8701 of Lecture Notes in Computer Science, pages 52—67. Springer Berlin
Heidelberg, 2014.

Francesca Nadalin, Francesco Vezzi, and Alberto Policriti. GapFiller: a de novo
assembly approach to fill the gap within paired reads. BMC' Bioinformatics,
13(Suppl 14):S8, 2012.

N Nagarajan and M Pop. Parametric complexity of sequence assembly: Theory
and applications to next generation sequencing. Journal of Computational Biology,
16:897-908, 20009.

Giuseppe Narzisi and Bud Mishra. Scoring-and-Unfolding Trimmed Tree Assem-
bler: Concepts, Constructs and Comparisons. Bioinformatics (Oxford, England),
27(2):153-160, November 2010.

Giuseppe Narzisi and Bud Mishra. Comparing De Novo Genome Assembly: The
Long and Short of It. PLoS ONE, 6(4):€19175—, March 2011.

Saul B. Needleman and Christian D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443 — 453, 1970.

Jurgen Nijkamp, Wynand Winterbach, Marcel van den Broek, Jean-Marc Daran,
Marcel Reinders, and Dick de Ridder. Integrating genome assemblies with MATA.
Bioinformatics (Ozford, England), 26(18):1433-i439, September 2010.

Zemin Ning, Anthony J. Cox, and James C. Mullikin. SSAHA: A Fast Search
Method for Large DNA Databases. Genome Research, 11(10):1725-1729, 2001.

Laurent Noé, Marta Girdea, and Gregory Kucherov. Designing efficient spaced
seeds for SOLiD read mapping. Advances in Bioinformatics, 2010:1ID 708501, July
2010.

M Nowrousian, JE Stajich, M Chu, I Engh, and E Espagne. De novo Assembly
of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora,
a model organism for fungal morphogenesis. PLoS Genet, 2010.

Bjorn Nystedt, Nathaniel R. Street, Anna Wetterbom, Andrea Zuccolo, Yao-
Cheng Lin, Douglas G. Scofield, Francesco Vezzi, Nicolas Delhomme, Stefania
Giacomello, Andrey Alexeyenko, Riccardo Vicedomini, Kristoffer Sahlin, Ellen
Sherwood, Malin Elfstrand, Lydia Gramzow, Kristina Holmberg, Jimmie Hallman,

134

B. Bibliography

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

Olivier Keech, Lisa Klasson, Maxim Koriabine, Melis Kucukoglu, Max Kéller,
Johannes Luthman, Fredrik Lysholm, Totte Niittyld, Ake Olson, Nemanja Ri-
lakovic, Carol Ritland, Josep A. Rossello, Juliana Sena, Thomas Svensson, Car-
los Talavera-Lépez, Gunter Theiszen, Hannele Tuominen, Kevin Vanneste, Zhi-
Qiang Wu, Bo Zhang, Philipp Zerbe, Lars Arvestad, Rishikesh Bhalerao, Jo-
erg Bohlmann, Jean Bousquet, Rosario Garcia Gil, Torgeir R. Hvidsten, Pieter
de Jong, John MacKay, Michele Morgante, Kermit Ritland, Bjérn Sundberg,
Stacey Lee Thompson, Yves Van de Peer, Bjorn Andersson, Ove Nilsson, Par K.
Ingvarsson, Joakim Lundeberg, and Stefan Jansson. The Norway spruce genome
sequence and conifer genome evolution. Nature, 497(7451):579-584, May 2013.

Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An Optimal Bloom Filter Re-
placement. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 05, pages 823-829, Philadelphia, PA, USA, 2005.
Society for Industrial and Applied Mathematics.

Jason Pell, Arend Hintze, Rosangela Canino-Koning, Adina Howe, James M.
Tiedje, and C. Titus Brown. Scaling metagenome sequence assembly with prob-
abilistic de Bruijn graphs. Proceedings of the National Academy of Sciences,
109(33):13272-13277, 2012.

H Peltola, H Séderlund, and E Ukkonen. SEQAID: a DNA sequence assembling
program based on a mathematical model. Nucleic Acids Research, 12(1 Pt 1):307—
321, January 1984.

Yu Peng, Henry C. M. Leung, S. M. Yiu, and Francis Y. L. Chin. IDBA-UD: a
de novo assembler for single-cell and metagenomic sequencing data with highly
uneven depth. Bioinformatics, 28(11):1420-1428, 2012.

Pavel A. Pevzner and Haixu Tang. Fragment assembly with double-barreled data.
Bioinformatics, 17(suppl 1):5225-S233, 2001.

Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An Eulerian path ap-
proach to DNA fragment assembly. Proceedings of the National Academy of Sci-
ences of the United States of America, 98(17):9748-9753, June 2001.

Adam M Phillippy, Michael C Schatz, and Mihai Pop. Genome assembly forensics:
finding the elusive mis-assembly. Genome biology, 9(3):R55, January 2008.

A. Polanski and M. Kimmel. Genomics. In Bioinformatics, pages 213-260.
Springer Berlin Heidelberg, 2007.

Alberto Policriti, Nicola Gigante, and Nicola Prezza. Average Linear Time and
Compressed Space Construction of the Burrows-Wheeler Transform. In Adrian-
Horia Dediu, Enrico Formenti, Carlos Martin-Vide, and Bianca Truthe, editors,
Language and Automata Theory and Applications, volume 8977 of Lecture Notes
in Computer Science, pages 587-598. Springer International Publishing, 2015.

B. Bibliography 135

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

Alberto Policriti and Nicola Prezza. Algorithms and Computation: 25th Inter-
national Symposium, ISAAC 201/, Jeonju, Korea, December 15-17, 2014, Pro-
ceedings, chapter Hashing and Indexing: Succinct Data Structures and Smoothed
Analysis, pages 157-168. Springer International Publishing, Cham, 2014.

Alberto Policriti and Nicola Prezza. Fast randomized approximate string matching
with succinct hash data structures. BMC Bioinformatics, 16(Suppl 9):54, 2015.

Michael A Quail, Miriam Smith, Paul Coupland, Thomas D Otto, Simon R Harris,
Thomas R Connor, Anna Bertoni, Harold P Swerdlow, and Yong Gu. A tale of
three next generation sequencing platforms: comparison of Ion Torrent, Pacific
Biosciences and Illumina MiSeq sequencers. BMC' Genomics, 13:341-341, July
2012.

Aaron R Quinlan, Donald A Stewart, Michael P Stromberg, and Gabor T Marth.
Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat Meth,
5(2):179-181, February 2008.

Steven Ralph, Hye Chun, Natalia Kolosova, Dawn Cooper, Claire Oddy, Carol
Ritland, Robert Kirkpatrick, Richard Moore, Sarah Barber, Robert Holt, Steven
Jones, Marco Marra, Carl Douglas, Kermit Ritland, and Jorg Bohlmann. A conifer
genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality,
sequence-finished full-length ¢cDNAs for Sitka spruce (Picea sitchensis). BMC
Genomics, 9(1):484, 2008.

Josephine A. Reinhardt, David A. Baltrus, Marc T. Nishimura, William R. Jeck,
Corbin D. Jones, and Jeffery L. Dangl. De novo assembly using low-coverage short
read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae.
Genome Research, 19(2):294-305, 2009.

Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount, and James A.
Yorke. Reducing storage requirements for biological sequence comparison. Bioin-
formatics, 20(18):3363-3369, 2004.

Mostafa Ronaghi, Samer Karamohamed, Bertil Pettersson, Mathias Uhlén, and
P&l Nyrén. Real-Time DNA Sequencing Using Detection of Pyrophosphate Re-
lease. Analytical Biochemistry, 242(1):84 — 89, 1996.

Jonathan M. Rothberg, Wolfgang Hinz, Todd M. Rearick, Jonathan Schultz,
William Mileski, Mel Davey, John H. Leamon, Kim Johnson, Mark J. Milgrew,
Matthew Edwards, Jeremy Hoon, Jan F. Simons, David Marran, Jason W. My-
ers, John F. Davidson, Annika Branting, John R. Nobile, Bernard P. Puc, David
Light, Travis A. Clark, Martin Huber, Jeffrey T. Branciforte, Isaac B. Stoner,
Simon E. Cawley, Michael Lyons, Yutao Fu, Nils Homer, Marina Sedova, Xin
Miao, Brian Reed, Jeffrey Sabina, Erika Feierstein, Michelle Schorn, Mohammad
Alanjary, Eileen Dimalanta, Devin Dressman, Rachel Kasinskas, Tanya Sokolsky,
Jacqueline A. Fidanza, Eugeni Namsaraev, Kevin J. McKernan, Alan Williams,
G. Thomas Roth, and James Bustillo. An integrated semiconductor device en-
abling non-optical genome sequencing. Nature, 475(7356):348-352, July 2011.

136

B. Bibliography

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

Kristoffer Sahlin, Francesco Vezzi, Bjorn Nystedt, Joakim Lundeberg, and Lars
Arvestad. BESST - Efficient scaffolding of large fragmented assemblies. BMC
Bioinformatics, 15(1):281, 2014.

S. L. Salzberg, a. M. Phillippy, a. V. Zimin, D. Puiu, T. Magoc, S. Koren, T. Tre-
angen, M. C. Schatz, a. L. Delcher, M. Roberts, G. Marcais, M. Pop, and J. a.
Yorke. GAGE: A critical evaluation of genome assemblies and assembly algo-
rithms. Genome Research, December 2011.

F. Sanger, G. M. Air, B. G. Barrell, N. L. Brown, A. R. Coulson, J. C. Fiddes, C. A.
Hutchison, P. M. Slocombe, and M. Smith. Nucleotide sequence of bacteriophage
©X174 DNA. Nature, 265(5596):687-695, February 1977.

F. Sanger and A. R. Coulson. A rapid method for determining sequences in DNA
by primed synthesis with DNA polymerase. J Mol Biol, 94(3):441-448, May 1975.

Eric E. Schadt, Steve Turner, and Andrew Kasarskis. A window into third-
generation sequencing. Human Molecular Genetics, 19(R2):R227-R240, 2010.

Michael C Schatz, Arthur L Delcher, and Steven L Salzberg. Assembly of large
genomes using second-generation sequencing. Genome Research, 20(9):1165-1173,
September 2010.

Jay Shendure and Hanlee Ji. Next-generation DNA sequencing. Nat Biotech,
26(10):1135-1145, October 2008.

Jay Shendure, Robi D. Mitra, Chris Varma, and George M. Church. Advanced
sequencing technologies: methods and goals. Nat Rev Genet, 5(5):335-344, May
2004.

Jared T. Simpson and Richard Durbin. Efficient de novo assembly of large genomes
using compressed data structures. Genome Research, 22(3):549-556, 2012.

JT Simpson, K Wong, SD Jackman, and JE Schein. ABySS: A parallel assembler
for short read sequence data. Genome, pages 1117-1123, 2009.

Douglas R. Smith, Aaron R. Quinlan, Heather E. Peckham, Kathryn Makowsky,
Wei Tao, Betty Woolf, Lei Shen, William F. Donahue, Nadeem Tusneem,
Michael P. Stromberg, Donald A. Stewart, Lu Zhang, Swati S. Ranade, Ja-
son B. Warner, Clarence C. Lee, Brittney E. Coleman, Zheng Zhang, Stephen F.
McLaughlin, Joel A. Malek, Jon M. Sorenson, Alan P. Blanchard, Jarrod
Chapman, David Hillman, Feng Chen, Daniel S. Rokhsar, Kevin J. McKer-
nan, Thomas W. Jeffries, Gabor T. Marth, and Paul M. Richardson. Rapid
whole-genome mutational profiling using next-generation sequencing technologies.
Genome Research, 18(10):1638-1642, 2008.

T F Smith and M S Waterman. Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195-7, March 1981.

Daniel Sommer, Arthur Delcher, Steven Salzberg, and Mihai Pop. Minimus: a
fast, lightweight genome assembler. BMC Bioinformatics, 8(1):64, 2007.

B. Bibliography 137

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[17]

[179]

Li Song, Liliana Florea, and Ben Langmead. Lighter: fast and memory-efficient
sequencing error correction without counting. Genome Biology, 15(11):509, 2014.

Luz Mayela Soto-Jimenez, Karel Estrada, and Alejandro Sanchez-Flores. GARM:
Genome Assembly, Reconciliation and Merging Pipeline. Current Topics in Medic-
inal Chemistry, 14(3):418-424, 2014.

Hayssam Soueidan, Florence Maurier, Alexis Groppi, Pascal Sirand-Pugnet, Flo-
rence Tardy, Christine Citti, Virginie Dupuy, and Macha Nikolski. Finishing bac-
terial genome assemblies with Mix. BMC' Bioinformatics, 14(Suppl 15):516, 2013.

R Staden. A new computer method for the storage and manipulation of DNA gel
reading data. Nucleic Acids Research, 8(16):3673-3694, August 1980.

Pawet Stankiewicz and James R. Lupski. Structural Variation in the Human
Genome and its Role in Disease. Annual Review of Medicine, 61(1):437-455,
2010. PMID: 20059347.

David Stoddart, Andrew J. Heron, Ellina Mikhailova, Giovanni Maglia, and Ha-
gan Bayley. Single-nucleotide discrimination in immobilized DNA oligonucleotides
with a biological nanopore. Proceedings of the National Academy of Sciences,
106(19):7702-7707, 2009.

Henrik Stranneheim, Max Kaller, Tobias Allander, Bjérn Andersson, Lars Arves-
tad, and Joakim Lundeberg. Classification of DNA sequences using Bloom filters.
Bioinformatics, 26(13):1595-1600, 2010.

Granger G. Sutton, Owen White, Mark D. Adams, and Anthony R. Kerlevage.
TIGR Assembler: A New Tool for Assembling Large Shotgun Sequencing Projects.
Genome Science and Technology, 1(1):9-19, January 1995.

Harold Swerdlow, Shaole Wu, Heather Harke, and Norman J. Dovichi. Capillary
gel electrophoresis for DNA sequencing: Laser-induced fluorescence detection with
the sheath flow cuvette. Journal of Chromatography A, 516(1):61 — 67, 1990.

Adam Szalkowski, Christian Ledergerber, Philipp Krahenbuhl, and Christophe
Dessimoz. SWPS3 - fast multi-threaded vectorized Smith-Waterman for IBM
Cell/B.E. and x86/SSE2. BMC Research Notes, 1(1):107, 2008.

J. Tarhio and E. Ukkonen. A Greedy Approximation Algorithm for Constructing
Shortest Common Superstrings. Theor. Comput. Sci., 57(1):131-145, April 1988.

R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing, 1(2):146-160, 1972.

John F. Thompson and Kathleen E. Steinmann. Single Molecule Sequencing with
a HeliScope Genetic Analysis System. John Wiley & Sons, Inc., 2010.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260,
1995.

138

B. Bibliography

[180]

[181]

Esko Ukkonen. Algorithms for approximate string matching. Information and
Control, 64(1 - 3):100 — 118, 1985. International Conference on Foundations of
Computation Theory.

J. Craig Venter, Mark D. Adams, Eugene W. Myers, Peter W. Li, Richard J.
Mural, Granger G. Sutton, Hamilton O. Smith, Mark Yandell, Cheryl A. Evans,
Robert A. Holt, Jeannine D. Gocayne, Peter Amanatides, Richard M. Ballew,
Daniel H. Huson, Jennifer Russo Wortman, Qing Zhang, Chinnappa D. Kodira,
Xiangqun H. Zheng, Lin Chen, Marian Skupski, Gangadharan Subramanian,
Paul D. Thomas, Jinghui Zhang, George L. Gabor Miklos, Catherine Nelson,
Samuel Broder, Andrew G. Clark, Joe Nadeau, Victor A. McKusick, Norton
Zinder, Arnold J. Levine, Richard J. Roberts, Mel Simon, Carolyn Slayman,
Michael Hunkapiller, Randall Bolanos, Arthur Delcher, Ian Dew, Daniel Fa-
sulo, Michael Flanigan, Liliana Florea, Aaron Halpern, Sridhar Hannenhalli, Saul
Kravitz, Samuel Levy, Clark Mobarry, Knut Reinert, Karin Remington, Jane
Abu-Threideh, Ellen Beasley, Kendra Biddick, Vivien Bonazzi, Rhonda Brandon,
Michele Cargill, Ishwar Chandramouliswaran, Rosane Charlab, Kabir Chaturvedi,
Zuoming Deng, Valentina Di Francesco, Patrick Dunn, Karen Eilbeck, Carlos
Evangelista, Andrei E. Gabrielian, Weiniu Gan, Wangmao Ge, Fangcheng Gong,
Zhiping Gu, Ping Guan, Thomas J. Heiman, Maureen E. Higgins, Rui-Ru Ji,
Zhaoxi Ke, Karen A. Ketchum, Zhongwu Lai, Yiding Lei, Zhenya Li, Jiayin
Li, Yong Liang, Xiaoying Lin, Fu Lu, Gennady V. Merkulov, Natalia Milshina,
Helen M. Moore, Ashwinikumar K Naik, Vaibhav A. Narayan, Beena Neelam,
Deborah Nusskern, Douglas B. Rusch, Steven Salzberg, Wei Shao, Bixiong Shue,
Jingtao Sun, Zhen Yuan Wang, Aihui Wang, Xin Wang, Jian Wang, Ming-Hui
Wei, Ron Wides, Chunlin Xiao, Chunhua Yan, Alison Yao, Jane Ye, Ming Zhan,
Weiqing Zhang, Hongyu Zhang, Qi Zhao, Liansheng Zheng, Fei Zhong, Wenyan
Zhong, Shiaoping C. Zhu, Shaying Zhao, Dennis Gilbert, Suzanna Baumhueter,
Gene Spier, Christine Carter, Anibal Cravchik, Trevor Woodage, Feroze Ali,
Huijin An, Aderonke Awe, Danita Baldwin, Holly Baden, Mary Barnstead, Ian
Barrow, Karen Beeson, Dana Busam, Amy Carver, Angela Center, Ming Lai
Cheng, Liz Curry, Steve Danaher, Lionel Davenport, Raymond Desilets, Su-
sanne Dietz, Kristina Dodson, Lisa Doup, Steven Ferriera, Neha Garg, Andres
Gluecksmann, Brit Hart, Jason Haynes, Charles Haynes, Cheryl Heiner, Suzanne
Hladun, Damon Hostin, Jarrett Houck, Timothy Howland, Chinyere Ibegwam,
Jeffery Johnson, Francis Kalush, Lesley Kline, Shashi Koduru, Amy Love, Fele-
cia Mann, David May, Steven McCawley, Tina Mclntosh, Ivy McMullen, Mee
Moy, Linda Moy, Brian Murphy, Keith Nelson, Cynthia Pfannkoch, Eric Pratts,
Vinita Puri, Hina Qureshi, Matthew Reardon, Robert Rodriguez, Yu-Hui Rogers,
Deanna Romblad, Bob Ruhfel, Richard Scott, Cynthia Sitter, Michelle Small-
wood, Erin Stewart, Renee Strong, Ellen Suh, Reginald Thomas, Ni Ni Tint,
Sukyee Tse, Claire Vech, Gary Wang, Jeremy Wetter, Sherita Williams, Monica
Williams, Sandra Windsor, Emily Winn-Deen, Keriellen Wolfe, Jayshree Zaveri,
Karena Zaveri, Josep F. Abril, Roderic GuigAs, Michael J. Campbell, Kimmen V.
Sjolander, Brian Karlak, Anish Kejariwal, Huaiyu Mi, Betty Lazareva, Thomas
Hatton, Apurva Narechania, Karen Diemer, Anushya Muruganujan, Nan Guo,
Shinji Sato, Vineet Bafna, Sorin Istrail, Ross Lippert, Russell Schwartz, Brian

B. Bibliography 139

[182]

[183]

[184]

[185)

[186]

[187]

[188]

[189]

[190]

Walenz, Shibu Yooseph, David Allen, Anand Basu, James Baxendale, Louis Blick,
Marcelo Caminha, John Carnes-Stine, Parris Caulk, Yen-Hui Chiang, My Coyne,
Carl Dahlke, Anne Deslattes Mays, Maria Dombroski, Michael Donnelly, Dale Ely,
Shiva Esparham, Carl Fosler, Harold Gire, Stephen Glanowski, Kenneth Glasser,
Anna Glodek, Mark Gorokhov, Ken Graham, Barry Gropman, Michael Harris,
Jeremy Heil, Scott Henderson, Jeffrey Hoover, Donald Jennings, Catherine Jor-
dan, James Jordan, John Kasha, Leonid Kagan, Cheryl Kraft, Alexander Levitsky,
Mark Lewis, Xiangjun Liu, John Lopez, Daniel Ma, William Majoros, Joe Mc-
Daniel, Sean Murphy, Matthew Newman, Trung Nguyen, Ngoc Nguyen, Marc
Nodell, Sue Pan, Jim Peck, Marshall Peterson, William Rowe, Robert Sanders,
John Scott, Michael Simpson, Thomas Smith, Arlan Sprague, Timothy Stockwell,
Russell Turner, Eli Venter, Mei Wang, Meiyuan Wen, David Wu, Mitchell Wu,
Ashley Xia, Ali Zandieh, and Xiaohong Zhu. The Sequence of the Human Genome.
Science, 291(5507):1304-1351, 2001.

Francesco Vezzi, Cristian Del Fabbro, Alexandru I. Tomescu, and Alberto Policriti.

rNA: a fast and accurate short reads numerical aligner. Bioinformatics, 28(1):123~
124, 2012.

Francesco Vezzi, Giuseppe Narzisi, and Bud Mishra. Feature-by-Feature — Eval-
uating De Novo Sequence Assembly. PLoS ONE, 7(2):e31002, February 2012.

Francesco Vezzi, Giuseppe Narzisi, and Bud Mishra. Reevaluating Assembly Eval-
uations with Feature Response Curves: GAGE and Assemblathons. PLoS ONE,
7(12):€52210, 12 2012.

R. Vicedomini, F. Vezzi, S. Scalabrin, L. Arvestad, and A. Policriti. GAM-NGS:
genomic assemblies merger for next generation sequencing. BMC Bioinformatics,
14(Suppl 7):S6, 2013.

R. Vicedomini, F. Vezzi, S. Scalabrin, L. Arvestad, and A. Policriti. Hierarchical
Assembly of Pools. In Francisco Ortuifio and Ignacio Rojas, editors, Bioinformatics
and Biomedical Engineering, volume 9044 of Lecture Notes in Computer Science,
pages 207-218. Springer International Publishing, 2015.

René L. Warren, Granger G. Sutton, Steven J. M. Jones, and Robert A. Holt.
Assembling millions of short DNA sequences using SSAKE. Bioinformatics,
23(4):500-501, 2007.

J. D. Watson and F. H. C. Crick. Molecular Structure of Nucleic Acids: A Struc-
ture for Deoxyribose Nucleic Acid. Nature, 171(4356):737-738, April 1953.

Peter Weiner. Linear pattern matching algorithms. In Switching and Automata
Theory, 1973. SWAT °08. IEEE Conference Record of 14th Annual Symposium
on, pages 1-11, Oct 1973.

Alejandro Wences and Michael Schatz. Metassembler: merging and optimizing de
novo genome assemblies. Genome Biology, 16(1):207, 2015.

140

B. Bibliography

[191]

[192]

(193]

[194]

[195]

[196]

[197]

[198]

David A. Wheeler, Maithreyan Srinivasan, Michael Egholm, Yufeng Shen, Lei
Chen, Amy McGuire, Wen He, Yi-Ju Chen, Vinod Makhijani, G. Thomas Roth,
Xavier Gomes, Karrie Tartaro, Faheem Niazi, Cynthia L. Turcotte, Gerard P.
Irzyk, James R. Lupski, Craig Chinault, Xing-zhi Song, Yue Liu, Ye Yuan, Lynne
Nazareth, Xiang Qin, Donna M. Muzny, Marcel Margulies, George M. Weinstock,
Richard A. Gibbs, and Jonathan M. Rothberg. The complete genome of an indi-
vidual by massively parallel DNA sequencing. Nature, 452(7189):872-876, April
2008.

Thomas D. Wu and Colin K. Watanabe. GMAP: a genomic mapping and align-
ment program for mRNA and EST sequences. Bioinformatics, 21(9):1859-1875,
2005.

Guohui Yao, Liang Ye, Hongyu Gao, Patrick Minx, Wesley C. Warren, and
George M. Weinstock. Graph accordance of next-generation sequence assemblies.
Bioinformatics, 2011.

C. Ye, C. Hill, J. Ruan, Zhanshan, and Ma. DBG20OLC: Efficient Assembly of
Large Genomes Using the Compressed Overlap Graph. ArXiv e-prints, October
2014.

Chengxi Ye, Zhanshan Ma, Charles Cannon, Mihai Pop, and Douglas Yu. Ex-
ploiting sparseness in de novo genome assembly. BMC Bioinformatics, 13(Suppl
6):51, 2012.

Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome research, 18(5):821-9, May 2008.

Daniel R. Zerbino, Gayle K. McEwen, Elliott H. Margulies, and Ewan Birney.
Pebble and Rock Band: Heuristic Resolution of Repeats and Scaffolding in the
Velvet Short-Read de Novo Assembler. PLoS ONE, 4(12):e8407, 12 2009.

Guofan Zhang, Xiaodong Fang, Ximing Guo, Li Li, Ruibang Luo, Fei Xu,
Pengcheng Yang, Linlin Zhang, Xiaotong Wang, Haigang Qi, Zhigiang Xiong,
Huayong Que, Yinlong Xie, Peter W. H. Holland, Jordi Paps, Yabing Zhu, Fucun
Wu, Yuanxin Chen, Jiafeng Wang, Chunfang Peng, Jie Meng, Lan Yang, Jun
Liu, Bo Wen, Na Zhang, Zhiyong Huang, Qihui Zhu, Yue Feng, Andrew Mount,
Dennis Hedgecock, Zhe Xu, Yunjie Liu, Tomislav Domazet-Loso, Yishuai Du, Xi-
aoqing Sun, Shoudu Zhang, Binghang Liu, Peizhou Cheng, Xuanting Jiang, Juan
Li, Dingding Fan, Wei Wang, Wenjing Fu, Tong Wang, Bo Wang, Jibiao Zhang,
Zhiyu Peng, Yingxiang Li, Na Li, Jinpeng Wang, Maoshan Chen, Yan He, Fengji
Tan, Xiaorui Song, Qiumei Zheng, Ronglian Huang, Hailong Yang, Xuedi Du,
Li Chen, Mei Yang, Patrick M. Gaffney, Shan Wang, Longhai Luo, Zhicai She,
Yao Ming, Wen Huang, Shu Zhang, Baoyu Huang, Yong Zhang, Tao Qu, Peix-
iang Ni, Guoying Miao, Junyi Wang, Qiang Wang, Christian E. W. Steinberg,
Haiyan Wang, Ning Li, Lumin Qian, Guojie Zhang, Yingrui Li, Huanming Yang,
Xiao Liu, Jian Wang, Ye Yin, and Jun Wang. The oyster genome reveals stress
adaptation and complexity of shell formation. Nature, 490(7418):49-54, October
2012.

B. Bibliography 141

[199] Shiguo Zhou, Michael Bechner, Michael Place, Chris Churas, Louise Pape, Sally
Leong, Rod Runnheim, Dan Forrest, Steve Goldstein, Miron Livny, and David

Schwartz. Validation of rice genome sequence by optical mapping. BMC Genomics,
8(1):278, 2007.

[200] Aleksey V Zimin, Douglas R Smith, Granger Sutton, and James a Yorke. Assembly
reconciliation. Bioinformatics (Oxford, England), 24(1):42-5, January 2008.

	List of Tables
	List of Figures
	Introduction
	I Genome Sequencing and Assembly
	Preliminaries
	Shotgun sequencing
	Sanger (first-generation) sequencing
	High-throughput (second-generation) sequencing
	Single molecule (third-generation) sequencing

	Coverage, read length and assembly contiguity

	Sequence alignment
	Fundamentals of the alignment problem
	Suffix-based data structures
	Suffix tries and trees
	Suffix arrays
	The Burrows-Wheeler transform
	Suffix-based alignment in practice

	Seeds and fingerprints
	Seed-based alignment
	Fingerprint-based comparison

	Theoretical de novo assembly
	Definitions
	The Shortest Common Super-string Problem
	Overlap Graphs
	String Graphs

	de Bruijn Graphs
	Constraint Optimization Problem

	II Real World Genome Assembly
	Practical Assembly Strategies
	Assembly strategies
	Greedy
	Overlap-Layout-Consensus
	de Bruijn Graph
	Branch-and-bound assemblers
	De novo assembly with long and noisy reads

	Assembly validation
	Validation metrics.
	Evaluation studies and results

	De Novo Assembly Through Reconciliation
	Background
	GAM-NGS: efficient assembly reconciliation using read mapping
	Definitions
	Blocks construction
	Blocks filtering
	Assemblies graph construction
	Handling problematic regions
	Merging

	Results
	Evaluation and validation on GAGE datasets
	Performance of GAM-NGS on large datasets

	Conclusions

	III Large-scale Genome Assembly
	Hierarchical Assembly of Large Genomes
	The Norway spruce assembly
	Fosmid pool sequencing and assembly.
	Hierarchical assembly.
	Assembly validation

	Hierarchical pool reconciliation
	Overview of the method
	Pool pre-processing
	Overlap detection
	A merging strategy
	Graph simplification.
	Consensus sequence.

	Results
	Remarks

	Fingerprint-based Overlap Detection
	A local non-deterministic approach
	Fingerprint construction.
	Fingerprint-based overlaps detection.

	A global deterministic approach
	An algorithm to build deterministic fingerprints
	Implementation
	Experimental results

	Conclusions

	IV Appendices
	GAM-NGS supplementary tables
	DFP supplementary tables
	Bibliography

