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Abstract

This thesis focuses on the topics of biologically inspired hierarchical machine learning
methods for object classification.

Mimicking the human brain to achieve human-level cognition performance has
been a core challenge in artificial intelligence research for decades. Humans are very
efficient in capturing the most important information while being exposed to a plet-
hora of different stimuli, a capability that is used to represent and understand their
surroundings in a concise fashion. Think about a kid that learns how to categorize ob-
jects through, either labeled or unlabeled, samples. It is a matter of fact that he/she
is able to grasp the object concept by processing a few samples. This strong evidence
highlights the existence of an extremely complex and engineered cortical mechanisms
that allows such efficient learning.

This Thesis draw inspiration from the fascinating biological brain organisms and
its ability to learn simple concepts as well as complex notions from a few samples
to introduce novel hierarchical learning models. It also grounds on the belief that
the study of the vision sensory domain can provide a uniquely concrete grasp on the
relevant theoretical and practical dimensions of the problem of learning in hierar-
chies. Thus, this Thesis provides an in-depth investigation of biologically-inspired
hierarchical learning architectures for image classification.

Pivoting on the belief that decomposability of the sensory data is a fundamental
principle for learning good representations, the proposed hierarchical learning archi-
tectures adhere to such a property by aggregating simple features into more and
more complex patterns as the structure becomes deeper and deeper. The underlying
idea shared by these models is is to finally provide a different –artificial– hierarchy
of computations that mimics the human brain by abstracting away from existing
highly-“engineered” models that are quite in vogue (e.g., Deep Neural Networks).
To support each approach, experimental results on public datasets are conducted.
Results demonstrate that exploitation of subsequent filtering and pooling strategies
are the main ingredients of a hierarchical architecture able to build meaningful data
representation.
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1
Introduction

The first chapter briefly introduces the motivation behind the inves-
tigation of hierarchical learning architectures. Within this context, the
contributions and the organization of this thesis are defined.

1.1 Hierarchical Learning

Chomsky’s Poverty of the Stimulus (POS) argument is one of the most famous and
controversial arguments in the study of the human mind [23]. Specifically, as regards
human learning, the POS argument captures the notion that biological organisms
can learn complex concepts and tasks from an exceptionally small set of samples.
Think about a kid that learns how to categorize objects through, either labeled or
unlabeled, samples. It is a matter of fact that he/she is able to grasp the object
concept by processing a few samples. This strong evidence highlights the existence of
an extremely complex and engineered cortical mechanisms that allows such efficient
learning.

The idea that complex systems have a hierarchical modular organization dates
back in the early 1960s [157] and has recently attracted fresh support from quanti-
tative studies of large scale, real-life mammalian brain networks [120]. These have
demonstrated that human brain functional networks have a hierarchical organization
which is significantly common between different individuals. Despite this similarities,
little is known as to how exactly the neural connections adapt and perform efficient
learning to achieve high degrees of invariance to complex transformations. It has
been largely speculated that there exist a strong link between the human learning
ability and the computational hierarchical organization of the human brain. Indeed,
it has been hypothesized that circuits found in the human brain grounds on such a
structure to promote modularity and reuse of redundant sub-circuits. This encoun-
ters the energy and space efficiency objectives that are inherited in the human nature.
Though this is intuitively compelling, no solid theoretical foundation supports such
an hypothesis.
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Classical results from the brain-inspired learning theory [62, 102] have shown that,
up to an arbitrary degree of accuracy, any continuous function can be approximated
from an (infinite) set of samples by exploiting a single layer of computational learning
elements. While such theories are proven and seems plausible, we argue that decom-
posability of the sensory data is a fundamental principle that supports the process
of learning good representations. In particular, we will consider hierarchical learning
architectures that exploit such a property by aggregating simple features into more
and more complex patterns as the structure becomes deeper and deeper. Empirical
results will demonstrate that exploitation of subsequent filtering and pooling strate-
gies are the main ingredients of a hierarchical architecture able to build meaningful
data representation.

The Thesis grounds on the belief that the study of the vision sensory domain
can provide a uniquely concrete grasp on the relevant theoretical and practical di-
mensions of the problem of learning in hierarchies. Thus, this Thesis provides an
in-depth investigation of biologically-inspired hierarchical learning architectures for
image classification. Its basis draws inspiration from the fascinating human cognition
system and aims to introduce a further step towards a deeper understanding of the
mammalian brain. Following the current surge of effort that the vision and pattern
recognition communities are giving to hierarchical learning solution, we seek to design
novel learning models on the basis of anatomical and physiological data describing
our visual cortex. The underlying idea is to finally provide a different –artificial–
hierarchy of computations that mimics the human brain by abstracting away from
existing highly-“engineered” models that are quite in vogue (e.g., [92, 158, 166, 54]).

Within this context, we start by conducting an empirical analysis that ties the
discrimination and invariance properties of the biological vision with functional mo-
dules and computer vision theory of wavelets. In the course of such an exploration,
the role of hierarchical structures that leverages on the combination of different visual
clues visibly emerges. This analysis also takes a step towards demonstrating the im-
portance of the groundbreaking work of Hubel and Wiesel [72] which gave a stimulus
of paramount importance to the study of visual hierarchies analogous to the primate
visual system.

Then, we follow the recent neuroscience discoveries regarding the evidence for
parallel visual systems in the brain that are associated with different levels of visual
clues [123, 61, 161]. The work experimentally evaluates such parallel assumptions by
studying the effects of different visual representations within a framework consisting
of shallow architectures. We adopt the notion of an ensemble committee-based model
that, using a representation expressed by different visual appearance clues such as
color, texture, shape and filter features, is able to identify important patterns to
distinguish among image classes. In support of the approach, we conduct extensive
experiments which show classification results that are on par or surpass the state-of-
the-art.

A solution that leverages on the process of learning visual feature descriptors
instead of using hand-crafted solutions is then introduced. The approach capitalizes
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on the deep learning wave of enthusiasm by introducing a hierarchical learning archi-
tecture that is able to both identify the most discriminative features to describe an
image and, at the same time, to correctly classify it. Exploitation of a recent residual
learning scheme together with the introduction of a feature detector that is conceived
to capture specific structured image information are considered. To validate the so-
lution, we report on a large set of different experiments on multiple publicly available
benchmark datasets. Results show that existing approaches are outperformed by a
significant margin.

Lastly, we consider the problem that all the aforementioned approach suffer from
a significant limitation that reside on the fact that such schemes require a substantial
manual work to select and tune many algorithm hyperparameters (e.g., the number
of hidden neurons/layers in an artificial neural network). Such a consideration find
abundant support by the literature in cognitive studies [6, 76], which demonstra-
ted that the human learning is a complex phenomenon requiring flexibility to create
new/adapt existing brain functions to perform new neurophysiological activities to
drive the desired behavior. This adaptability is embodied in the modular structure,
which plays a critical role in evolution, development, and optimal network function.
Thus, the brain network does not dwell on any external source/knowledge/decision
to construct/modify its structure, but autonomously adapts through evolution. On
the basis of such motivations, we introduce a hierarchical architecture that yields
to more complex data abstractions as the information flows through more and more
deeper processing layers. The hierarchical structure automatically adapts itself to
the problem complexity by introducing new computational units. Preliminary results
demonstrate the benefits of the solution which obtains similar performance to current
state-of-the-art methods.

The vision-related work in this Thesis parallels the theoretical and cognitive brain
findings by sharing the notion of a localized spots that are present in a restricted
retinal region [28, 94]. This is combined with the layered analysis that is largely backed
by mammalian brain analyses. Thus, the Thesis aims to introduce new computational
architectures that adhere to the human models as discovered in the early stages of
the visual cortices and in recent functional networks of the ventral visual stream.
To support the underlying assumptions built into the abstract formalisms, all the
introduced solutions are extensively evaluated in the context of a difficult, real-world
learning task.

The remainder of this chapter is organized as follows. We start by listing the
most relevant motivations that lay down the basis for the choice of hierarchical lear-
ning architectures over shallow alternatives. Then, a brief literature survey covering
the most relevant works in the field is provided. To conclude, we draw the list of
contributions and define the overall organization of the Thesis.
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1.2 The Motivation

Why should hierarchical learning architectures be the best choice for image classifi-
cation? Is it possible to emulate the human brain solution to the visual recognition
problem with a learning scheme that does not hinge on the manual tuning of its
hyperparameters? These and other related questions are the focus of this Thesis.

First and foremost we draw inspiration from the fascinating biological brain orga-
nisms and its ability to learn simple concepts as well as complex notions from a few
samples. This establishes the ultimate goal of Artificial Intelligence (AI): is it possible
to emulate/transfer this remarkable ability to machines? Addressing the problem in
a whole would be cumbersome, thus we focus on the vision problem which has been
recently shown to be one of the most promising windows into human intelligence. In-
terestingly, by following the hierarchical processing in the primate visual system that
constitute a deep hierarchy of computations, we contrast the flat vision architectures
that are still largely considered in mainstream computer vision and pattern recog-
nition [94]. Within this context we believe that the deep hierarchies in the primate
ventral system carry extremely valuable insights that should be considered to design
AI algorithms, fostering increasingly interaction between biological and AI research.

It is a matter of fact that the human brain is organized in a hierarchical fashion
with large circuit modularity and substantial reuse of general sub-circuits that yield
to space and energy minimization. Such a feature is captured by a hierarchical model
in which initial processing layers act as feature detectors producing information that
is general and yet exploitable in the context of many specific classification problems.
By going deeper in the hierarchical architecture, more task-specific information is cap-
tured. Such an aspect, connected with the fact that naturally occurring phenomena
can be largely addressed by exploiting a “divide and conquer” approach, seems to
indicate that hierarchical models are indeed a valuable learning scheme. It has been
also empirically demonstrated that hierarchical learning solutions are ideally suited
to domains and tasks which decompose into parts.

A final, yet relevant source of motivation for the work presented in this Thesis
comes from the recent widespread success of recent deep hierarchical learning archi-
tectures in a plethora of different tasks (refer to the following literature survey for
details). Despite their astonishing results, such models largely depend on a “trial-
and-error” approach to determine the number and arrangement of the computational
units which they are composed of. There have been efforts in addressing such a pro-
blem by starting with a large network, using more neurons than are expected to be
needed, and then removing the neurons that have little effect on the final error. Howe-
ver, this solution is not only computationally inefficient (which is now still a problem,
considering that one might need a week or more before obtaining any result) but,
more importantly, it does not guarantee that an optimal architecture configuration is
obtained. This, together with the evidence showing that organization of the human
brain connection is not fixed but adapts dependently on several conditions, motivates
the study of a hierarchical scheme that is not pivoted on the human manual labor.
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1.3 Literature Survey

In this survey we discuss previous work related to the matter that will be presented
in this Thesis. We begin with a review of the prior work involving highly-engineered
hierarchies learning solutions, with particular focus on deep neural networks (DNN).
Then, since our work grounds on neural trees solutions, we conclude by giving a review
of the literature in such a field.

1.3.1 Deep Neural Networks

An artificial neural network (ANN) consists of many simple processing units, called
neurons, each of which generates a real-valued activation output. Measurements
obtained from environment sensors are assigned to the input neurons. Following
neurons get activated through weighted connections from previously active neurons.
The goal of an ANN is to find the optimal connection weights between layers of
neurons such that an optimality criterion is met. This will make the ANN exhibit a
desired behavior, such as recognizing the object in an image, describing its content
or even driving a car in an autonomous fashion. Depending on the specific problem
under consideration and on how the layers of neurons are connected together, long
causal chains of computational stages that transform (often in a non-linear way) the
aggregate activation of the network may be needed.

Shallow ANNs consist of such hierarchical architectures that have few such stages.
These schemes have been around for many decades if not centuries. Probably, the
earliest work in the field, which inspired a huge amount of researches, is the world
famous work by McCulloch and Pitts [118]. It describes that the character of the
human nervous activity, which is composed of a sequence of neural events and relations
among them, can be treated as a network of logical expression units. Starting from
such work, the activity in supervised ANNs saw a further boost with another highly
relevant work. That is the Rosenblatt paper on the “perceptron” [141], the basic
computational ANN unit.

It is worth noticing that, in some sense ANNs have been on the stage for even
longer, since the initial models were essentially variants of linear regression methods
which date back to the early 1800s [101, 39].

Models with more nonlinear layers of neurons were later proposed. This was due
to the discoveries that Hubel and Wiesel [72] did on the cells found in the cat’s visual
cortex. The two Nobel awarded researches found that particular visual inputs such
as specific orientation and edges stimuli make the animal cells fire. The fact that
complex cells exhibit more spatial invariance than simple cells inspired the deeper
nonlinear architectures that are somehow still driving the results of modern award-
winning Deep Learning solutions.

A particular work that is probably deserving to be called the first “deep neural
network” is the work Neocognitron system that was proposed by Fukushima in the
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1980 [38]. It was the first work that, largely inspired by Hubel and Wiesel, tried
to incorporate the neurophysiological insights in an artificial neural network system.
More interestingly it introduced the Convolutional Neural Networks (today simply
called CNNs or convnets) which exploits a particular connection in subsequent layers
of neurons. Such a connection let the convolutional units look only at a small portion
of the input (typically a rectangular region, also known as the receptive field). The
weights of the convolutional unit define a convolutional kernel (or filter) which is
shifted step by step across a (generally) 2-D array of input values, such as the pixels
of an image. The output of such a process is a feature map of filter responses which
defines the input to the higher-level units. Due to the fact that convolutional layers
only require adaptation of the filter parameters, such an architecture has massive
weight replication, hence it is more computational efficient than its fully-connected
counterpart (in which the weights to be adapted are determined by the number of
neurons in two subsequent layers).

Another feature that the Neocognitron system introduces to the field is given by
the subsampling (also known as pooling or downsampling) layer. This consists of units
that generally have fixed-weights connections with physical neighbors in the preceding
convolutional layer. Such units aim to answer to the insensitiveness to certain small
image shifts which the mammalian visual cortex showed. Nowadays, such subsampling
units become active if at least one of their inputs is active (i.e., max pooling). In the
Neocognitron architecture, convolutional layers are alternated to Spatial Averaging
downsampling layers. Moreover, differently from modern solutions the weights are not
adapted via a supervised scheme but through a local winner-takes-all unsupervised
learning rules or by pre-wiring. Thus, despite the architecture was comparatively
deep, the whole solution was not addressing the common deep learning problem in
which all the weights are adapted end-to-end.

The answer to such an issue was not long in coming. Indeed, it was already
in the 1970s that efficient error backpropagation (BP) was developed for arbitrary,
discrete, possibly sparsely connected, ANN-like networks [105, 106], albeit without
reference to NN. More ANN-specific works were published a few years later in [179]
and in [13] with a method for multilayer threshold ANNs. Despite this, the paper that
let BP emerge and be very significant for ANN training was proposed in [142]. Such a
work experimentally showed that representations captured by the hidden layers were
extremely useful and highly-driven by the task domain.

It was however, only in the early 1990s that BP for ANN become an explicit
research subject. Specifically, the diploma thesis by Hochreiter [59] lay down an
extremely important milestone for the development of deep learning schemes trained
via BP. Hochreiter’s thesis formally identified the reason behind the difficulties in
training traditional deep feed-forward or recurrent networks by BP: the now famous
problem of vanishing or exploding gradients. This should be mainly attributed to
the standard activation functions which yield to a rapid shrink or explosion of the
backpropagated error signals which sooner or later approach to zero or grow out of
bounds. Delineating such an insight in a formal way opened to the abundant research
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that came years later to avoid suffering from the vanishing gradients problem.

Since then, a surge of effort has been devoted to understand single (hidden) layer
ANNs in terms of statistical learning theory [42, 132, 67]. Despite this, there is little
work that attempts to do the same for multilayer ANNs with nonlinear activation
functions. In the context of regularization, the ANN community has largely resorted
to a handful of effective but little understood heuristics such as weight decay and
pruning techniques [12].

Although the discovery of such findings and the moderate success of ANNs on
different tasks, the decade around 2000 saw the decline of such models in favor of
non-neural machine learning methods such as Support Vector Machines (SVMs) [173,
150, 124] which had a more robust theoretical background and proved to be more
effective. This happened despite the publication of the BP-trained CNN development
obtained by LeCun [100], which is considered the most important milestone for the
many present competition-winning pattern recognizers.

After such a decline, the study of deep belief networks rekindled the interest on
ANNs within the machine learning community. Although the notion of a deep archi-
tecture was not new, Hinton and Salakhutdinov [57] came up with a novel training
algorithm that leverages on a set of stacked layer-wise pretrained Restricted Boltz-
mann Machines (RBMs). After the pretraining, the RBMs are “unrolled” to create
a deep autoencoder, which is then fine-tuned using BP. This work partially respon-
ded to the major issues on deep neural networks trained with BP which generally
determined slow converge to poor local minima for most practical problems. Specifi-
cally, authors demonstrated that the combination of deep autoencoders unrolled from
pretrained stacked RBMs was able to obtain excellent classification performance on
practical applications such as handwritten digits and human face recognition.

Since then, plenty of relevant works involving deep architectures have been pu-
blished. The majority of them can be categorized into two main groups: i) empirical
applications and solutions to practical applications, and ii) theoretical attempts ai-
ming to understand why deep networks work so well.

Due to its impact on real world, to date, the majority of the literature is devoted
on efficient approaches for an effective training and inference in deep model as well
as on empirical experiments covering very different application domains (see [149]).
Since this Thesis focuses on a more practical approach, the following review will cover
the most relevant works that share a similar viewpoint. We will nevertheless begin
our discussion by presenting few works that have a more theoretical background.

An interesting paper on this matter was proposed by Bengio and LeCun [8]. In
their work, authors started by considering boolean function learning in support to
the use of deep networks, then listed the advantages of a multi-layer architecture over
a Gaussian kernel SVM by discussing the fact that such a solution would ostensibly
require more training patterns. Despite the significant set of intuitively appealing and
informal arguments in favor of deep networks, the work was limited to specific exam-
ples that do not provide a rigorous justification. An additional step towards having a
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more significant grasp on the expressive power of deep models was proposed in [99].
Authors first proved that adding hidden units in an RBM yields strictly improved
modeling power, then showed that RBMs are universal approximators of discrete dis-
tributions. A first significant finding was that the performance of a two-layer network
is limited by the representational ability of the first layer, thus suggesting that a first
layer with a huge number of neurons is preferable. The second important result was to
demonstrate that additional RBMs layers yield to better generalization, rather than
introducing more representational power.

After the publication of such works, another milestone towards the deep learning
era, was set up by [7]. The paper throughly discussed the motivations and principles
behind recent learning algorithms for deep architectures. Specifically, it analyzed
those learning schemes that exploits unsupervised learning of single-layer models as
building blocks (e.g., RBMs) to construct deeper models, such as the Deep Belief
Networks (DBNs).

As regards more practical approaches, it is safe to state that the deep learning
era started with the world-famous paper by Krizhevsky et al. [92]. With their bre-
akthrough paper, they trained a large, deep convolutional neural network to classify
the 1.2 million high-resolution images in the ImageNet dataset. As a result, a top-1
and top-5 error rates of 37.5% and 17.0% were achieved, which at the time correspon-
ded to a 10% improvement over the state-of-the-art.

After such work, a huge amount of research has been devoted to the design of
more complex deep architectures. A lot of effort was spent to learn optimal feature
representations [9], either by considering labeled [25] or unlabeled data [98, 31, 81].
Then, a more application-driven approach has been considered to tackle many visual
perception tasks such as object [104, 29, 51, 162, 158, 166, 54, 186] and action recogni-
tion [84, 34, 26], image segmentation [43, 189, 50], visual question answering [195, 152],
image captioning [56, 184, 79], natural language processing [64], etc..

Despite the multitude of interesting and innovative aspects of each of such solu-
tions, we believe that it is worth describing more in detail only those more relevant
works that opened to new research directions. In [158], authors introduced the well
known VGG-network architecture. Authors demonstrated that by increasing depth
in an architecture with very small (i.e., 3 × 3) convolution filters, a significant im-
provement on the prior-art configurations could be achieved by pushing the depth to
1619 weight layers. These findings let the work be on the top of the leaderboard for
the 2014 ImageNet Challenge [143]. In addition, by exploiting the architecture pre-
trained on the ImageNet dataset to extract high-level representation on a different
domain test set, authors demonstrated the robustness of the obtainable representa-
tions (see also [153, 29]). More or less at the same time, the Google research team,
proposed the GoogLeNet network [166] which improved utilization of the computing
resources inside the architecture. Following a a carefully crafted design, depth and
width of the network were increased without incrementing the computational budget.

Even though the architecture were deeper, these still suffer from training difficul-
ties. To try to overcome such a problem, in [54] authors reformulate the common
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architecture layers such that residual residual functions with reference to the layer
inputs are learned in place of unreferenced functions (i.e., authors introduced the
ResNets). Such an approach facilitates the training of networks that are substanti-
ally deeper than those used previously (e.g., VGG [158] and GoogLeNet [166]) and
have lower complexity. ResNets are able to scale up to thousands of layers and still
have improving performance. However, each fraction of a percent of improved accu-
racy costs nearly doubling the number of layers, hence opening to the diminishing
feature reuse problem [162] which makes these networks very slow to train. To tackle
these problems, in [186], authors thoroughly analyzed the ResNet building blocks to
introduce a novel architecture which is less deep but has more feature maps per layer.
The resulting wide residual networks (WRNs) demonstrated to be far superior over
thin and very deep ResNet counterparts.

The aforementioned works introduced novel generic architectures that were howe-
ver evaluated on recognition tasks. A highly relevant work that addressed a slightly
different problem was introduced [43]. Authors proposed a simple and scalable algo-
rithm that combines CNNs with bottom-up region proposals in order to localize and
segment objects. This work is better known as R-CNN : Regions with CNN features.
Follow-up works exploited spatial pyramid pooling layers (SPP) [51], considered the
problem as a regression problem to spatially separated bounding boxes and associated
class probabilities (YOLO) [140], and simultaneously addressed object detection and
segmentation (Mask R-CNN ) [50].

Last but not least it is necessary to mention the deep generative models. Training
such models has been extremely difficult because of the many intractable probabilistic
computations that arise in maximum likelihood estimation and related strategies, and
due to difficulty of leveraging the benefits of piecewise linear units in the generative
context. To address such problems, in [44] authors introduced what is by LeCun
“most interesting idea in the last 10 years in Machine Learning”. That is, exploit
a generative adversarial nets (GAN ) framework, in which the generative model is
pitted against an adversary: a discriminative model that learns to determine whether
a sample is from the model distribution or the data distribution. This is reminiscent of
a police-counterfeiters setting in which, through learning, the generative model aims
to learn how to forge samples that are indistinguishable from the genuine articles
while the discriminative model aims to detect the counterfeit currency. Since then,
efforts have been spent to investigate a Laplacian pyramid framework to generate
images in a coarse-to-fine fashion [27], to consider both the structure (the underlying
3D model) and the style (the texture mapped onto structure) of the samples [177], as
well as to study unsupervised [135] and energy-based[190] models.

Little is known however, as to why deep networks work well, and why or when
particular architectural choices (number of layers, number of units per layer, etc.) lead
to optimal performance. This is the main motivation that opened to the research in
other learning architectures that aim to overcome such limitations.
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Figure 1.1: A general representation of a Neural Tree architecture trained on patterns
belonging to K = 3 different classes.

1.3.2 Neural Trees

Despite the limited amount of research compared to the current deep learning litera-
ture, neural trees (NTs) are a quite old field of research. Indeed, NTs were born in
the 1984 when Breiman et al. used linear threshold units as the nodes of a tree [18].

The creation of such an architecture was motivated by the shortcomings, that at
the time, were encountered while working with ANNs. More specifically, the ANN-
related literature presented in the preceding paragraphs have demonstrated that in
the mid 1980s such architectures were already able to successfully tackle a variety of
tasks by performing a significant set of computations in a highly-parallel fashion. To
address the non-linearly separable problems, deeper version were designed. However,
training such models should be considered an NP-complete problem since the number
and arrangement of hidden units must be determined before training starts. Even if
the number of hidden layers is fixed, it is still necessary to find the optimal number of
units in each layer. Currently, there is no proven method to solve these limitations.
A classical approach to address the problem is to start with a large network, using
more neurons than are expected to be needed, and then removing the neurons that
have little effect on the final error. It is a matter of fact that such a “trial-and-error”
solution is highly inefficient and, more importantly, it does not guarantee that an
optimal network configuration is obtained.

The NT architecture was conceived with the aim to overcome these limitations
whilst exploiting the pros of ANNs. This is the key aspect that aims to eliminate the
basic ANN problem, i.e., determining how many hidden layers/hidden neurons are
needed to address a specific task. The first architecture resembling an NT can be dated
back to 1984, when Breiman, Friedman, Olshen and Stone used linear threshold units
as the nodes of a Decision Tree (DT) [18]. Even though such a hierarchical learning
scheme has no ANN inside, its ideas largely influenced the upcoming research.
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The procedure to train an NT is the same that was initially exploited to train
the perceptron tree [171]. Everything starts with a single root node, then child nodes
are added when needed. The root node is trained with whole training set. Once the
training procedure for the model in the root node is completed, the learned model
is exploited to classify the input set of data patterns. As a result this is partitioned
into K number of groups, where K is the number of distinct classes in the input set.
Patterns belonging to a specific group are then used to build a child node. Thus, K
child nodes are created. The process continues in a recursive fashion, with each of the
subsequent nodes having a maximum of K children. If a particular input set satisfies
particular stop conditions, the group of data is considered to be homogeneous, hence
the node is considered as a leaf node. Such a node has no model in it to train. The
leaf node simply specifies the classification label/probability that is to be assigned
to the patterns that reach it. A common representation of an NT model is depicted
in Figure 1.1.

During the classification stage, the learned NT model is used to assign a specific
label to previously unseen patterns. As for the training stage, any new pattern is first
input to the root node. The in-node model computes the activation values for the new
pattern according to the learned parameters, then passes the datum to the child node
corresponding to the maximum activation value. This top-down process continues
until a leaf node is reached which is in charge to assign the final classification label
to the pattern.

The first work that exploited an ANN inside the nodes of a DT was proposed in
the late 1980s by Utgoff [171]. In such a work the author introduced the perceptron
Tree which alternates nodes with attribute tests and perceptrons. More in details,
the perceptron tree learning solution starts by training a perceptron at the root node.
Then, if the patterns input to a perceptron node, such as the root node, are not linearly
separable, the note is replaced with a decision function that exploits an attribute test
to split the input data into two groups. This results into two new child nodes that
contain the patterns that lie above or below the learned threshold, respectively. The
major shortcoming of this work was to trash the efforts spent by the perceptrons that
are replaced by the attribute test functions.

As the research progresses in the field, the typical structure of the NT and its in-
node models changed. In [159], authors proposed a binary NT, in which perceptrons
are used at each node of the tree. Later, in [146], authors introduced a NT Network
scheme which consists of of single-layer ANNs connected in a tree structure. The
learning process considered the ℓ1-norm (measured as the distance between generated
outputs and targets). To address the multi-class classification problems, a local en-
coding scheme that classifies an input pattern according to a winner-take-all rule was
adopted. Thus, each in-node ANN model partitioned the input space into regions,
which are then considered by child nodes.

The efforts in linking ANNs with NTs continued with the research being addres-
sed towards the possible extraction of an NT structure such that it can be converted
into an efficient ANN. The main idea is simple, yet very challenging: build a DT,
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then convert it into an ANN. One of the first work in this direction was the Entropy
Network proposed in [154] which introduced a procedure to shape a DT architec-
ture into a multilayer ANN. The idea was analyzed more in details in [19], with a
thorough complexity analysis and practical advancements. Later, the exploitation
of linear DTs as the building blocks of an ANN was investigated in [129] Another
interesting approach was proposed by modifying the ID3 algorithm [134] such that it
can be exploited to convert decision trees into hidden layers [24]. During the learning
process, the network is modified by adding new hidden until the task becomes linearly
separable at the output layer. Thanks to this, self-generation of an ANN architecture
is obtained.

Other works introduced hybrid NT solutions in which DTs and NNs are fused
into one structure. In [37], the split node was introduced to divide the training set
into two parts when the current in-node model performs the same classification of
the parent node. The resulting learning strategy was demonstrated to converge in all
the cases. Symbolic learning was explored to simulate the human reasoning process
with an Hybrid Decision Tree (HDT) [193]. A Generalized Neural Tree (GNT) model
was more recently proposed in [36]. The main contribution of such work was the
definition of a novel training procedure that yields an overall optimization of the tree.
However, it requires that each time the tree grows by including an additional child,
the whole tree is parsed. It also trains the in-node models not using the patterns that
reach a particular node only, (i.e., the LTS), but instead considers all the data and a
weighted correction-rule that conveys information regarding the whole architecture,
in-node models included. The procedure let a father node update its weights on the
basis of the classification performed by its children. Interestingly, results showed that
this often corresponds to a reduction in the tree dimension. An evolution of the GNT,
was the Adaptive High-order Neural Tree (AHNT) [35], which considered high-order
perceptrons (HOP) instead of simple perceptron. With such a solution first-order
nodes can be exploited to divide the input space with hyperplane in case of linearly
separable data. When such a characteristic is not present, HOPs can be considered to
divide the input space with more flexibility, but at the expense of increased complexity.
The proposed learning solution also considers the depth of the tree to favor HOPs at
first levels. Moving toward leaf nodes, low-order perceptrons are favored as LTSs are
easier and smaller. Such a scheme inherits from the results showed in [183], where
authors observed that the complexity of the nodes affects the size of tree: a tree with
complex in-node models may be quite small, while a tree with simple in-node models
tends to become very large.

Pruning strategies were also investigated. In [109], a uniformity index was adopted
to model the degree of correctness at each node. Results showed that consideration of
such an index yields to a reduction in the depth of the tree with a good classification
accuracy. Despite this outcome, the work still suffered from the hand-crafted selection
of the in-node networks architectures (number of hidden layers and number of nodes
for each layer) and the uniformity index. In [1], a new algorithm providing different
methods to construct and use multivariate decision trees was proposed. Each node
exploits multiple algorithms to split the input data, but only the best one is selected.
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Thus, the architecture considers the best fitting algorithm at each node.

Despite the differences with the initial NTs, all the NT-related works have a com-
mon feature that characterized the tree-based hierarchical architectures: the structure
of a NT is determined on-the-fly during the training process. The basic idea is that
dividing the training set into smaller local sets (according to the subregions into which
the feature space is divided) is easier than learning the classification surface parame-
ters from the whole set. Such a solution is shared with DTs, but often these methods
consider classification hyperplanes that are perpendicular to the axes of the feature
space. NTs have no restrictions, hence should be considered more flexible in capturing
the different characteristics of the pattern distribution.

1.4 Contributions and Organization of the Thesis

The Thesis is organized along the lines described in the previous section. In the
following we summarize the main contributions of the Thesis in order by chapter.

Chapter 2 - A Forest of Random Trees for the Optimal Selection of Feature
Encodings

This chapter provides an empirical analysis of a famous and widely used hierarchical
learning scheme. The analysis is conducted on hand-crafted visual description soluti-
ons that aim to mimic the process that the human visual cortex perform to grasp the
relevant and discriminative image traits. Specifically, we have considered five of the
most important texture filter banks and measured their performances when used in
image classification tasks. Since the responses of such filters have high dimensionality,
we also analyzed the effects of adopting different feature encoding schemes to obtain a
compact feature representation. This yields to the basis results and limitations upon
which the following chapters build on.

Chapter 3 - Learning to Rank with a Committee of Shallow Neural Net-
works

Regardless of the specific application, image classification is a problem with many
challenges which cannot be addressed only by considering simple filter-response fea-
tures and a unique classification solution. As performed in chapter 2, a large portion of
the literature addressed the problem challenges by designing ad-hoc image representa-
tions based on some a priori knowledge of the problem. Despite their often successful
applications, this might not be sufficient to correctly handle all the challenges. In this
chapter, a possible solution to sidestep the aforementioned problems is introduced.
Specifically, we propose a system that uses as many different features as possible but
exploits only a subset of those to perform the classification task. Following this idea,
a classification system based on a committee of shallow neural networks is introdu-
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ced. In addition, we introduce a Structural Support Vector Machine [170] as the
committee supervisor to fuse the discordant members’ classifications. The proposed
solution showed that improved classification performances as well as optimal rankings
are achieved through individual ranking fusion.

Chapter 4 - Going Deeper and Wider with Wide-Slice Residual Networks

So far, works exploiting hand-crafted visual feature representations have been explo-
red. However, the recent discoveries on representational learning have demonstrated
that learning specific image representations yields to significantly better performan-
ces. Specifically, we introduce a deep neural network architecture which introduces
the following contributions: i) it leverages on the idea that many object have a speci-
fic vertical structure to propose a vertical layer feature detector; ii) combines the so
extracted representation with a wide residual learning architecture to obtain a more
generic representation. Both such representations as well as the classifier are learned
end-to-end in a supervised fashion. Results on benchmark datasets showed that the
proposed solution outperforms existing hierarchical architectures. The analysis of the
source of performance demonstrated that robust feature representations are learned
and, more interestingly, that such solution is able to automatically focus on the image
portion that contains the object of interest to perform its classification.

Chapter 5 - Extreme Deep Learning Trees: The Evolution of Neural
Learning Systems

All the methods previously discussed hinge on the manual specification of multiple
hyperparameters (e.g., the number of features to consider, the number of hidden
layers/neurons in an ANN, etc.). The process of selecting such hyperparameters can
be either done manually or obtained through cross-validation schemes. However, in
both cases there is no guarantee that the obtained values are optimal for the task. To
overcome such limitations, the last chapter of this Thesis introduces a novel NT-based
hierarchical architecture that combines three key ingredients: i) does not require the
specification of any of the common ANN hyperparameters; ii) at each node of the
tree, performs very fast learning and inference by analytically solving the parameter
learning problem in a shallow neural network; iii) extracts relevant image features by
means of a convolutional neural network architecture. An analysis of the obtained
results on different visual classification tasks has shown the benefits of the solution,
both in terms of accuracy as well as with regard to the computational performance.

Chapter 6 - Concluding Remarks and Future Works

The Thesis concludes with a discussion on the obtained results and emphasizes the
advantages and limitations of hierarchical architectures. In particular, the key aspects
of the hierarchical model presented in chapter 5 and its possible contributions on other
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tasks are presented. Finally, we provide a speculation on future works in the field.
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2
A Forest of Random Trees for

the Optimal Selection of
Feature Encodings

In this chapter an empirical in-depth analysis of a famous and wi-
dely used hierarchical learning scheme jointly exploited with existing hand-
crafted visual description solutions is conducted. Specifically, we have con-
sidered five of the most important texture filter banks and measured their
performances when used in image classification tasks.

2.1 Introduction

Mainstream computer vision is largely focused to solve specific methods related to
specific tasks using hand-crafted visual feature representations of the datum. Such
feature-based descriptors are taken as inputs and then processed by the task-dependent
learning solutions. This resulted in a divorce with the initial works jointly conducted
with biologically related approaches. The only references to such mechanisms were
commonly limited to individual functional modules or feature choices such as the filter
banks that are related to the V1 area of the human brain [94].

Leveraging on this connection with the human brain, there have recently been
a growing interest in such biologically-inspired feature representations. Within this
class of approaches, the majority of the existing works in literature agree on the fact
that features extracted by texture filters are among the most relevant ones for image
recognition tasks. However, there is still a lack of a study showing which features are
likely to be more useful among the huge plethora of available ones. The aim of this
work is thus to evaluate and compare different approaches based on texture filters, in
order to gain a better insight on their performances. In this paper, we have conside-
red five of the most important texture filter banks, namely Laws filters [96], Gabor
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Figure 2.1: Proposed system architecture based on three main stages: (i) texture
feature extraction; (ii) feature encoding and (iii) training/classification. (Best viewed
in color)

filters [178], Schmid filters [148], Leung-Malik filters [103] and Maximum Response fil-
ters [174], and measured their performances when used in image classification tasks.
Since the responses of such filters have high dimensionality, we also analyzed the
effects of adopting different feature encoding schemes to obtain a compact feature re-
presentation. The task is performed by computing either the Bag-of-Words, the Fisher
Vector or the Vector of Locally Aggregated Descriptors (VLAD) representation for
each filter bank. We finally compared the discriminative power of each texture filter
alone, and show that better results can be achieved using a proper combination of dif-
ferent filters. This is obtained by using a Random Forest of Decision Trees (RF) [17]
classifier, which automatically detects and uses only the relevant features to produce
a reliable classification. The main novelty of this work thus lies in giving a better
understanding of texture filter approaches through comparative results, despite the
adopted techniques are not novel per se. This work extends the preliminary results
we discussed in [114].

2.2 Testing framework

The pipeline of the proposed system is depicted in Figure 2.1. It consists of three main
main phases: (i) texture feature extraction, (ii) feature encoding, and (iii) random
forest classification.

Since the proposed approach introduces a classification scheme based on a lear-
ning mechanism, the system requires a training stage before its deployment. In the
training stage, each image is given to the feature extraction module that extracts the
texture features by means of filter banks. To reduce the high dimensionality of the
obtained features, these are processed by the feature encoding module. The encoding
features are finally given to the RF classifier that learns the parameters of the decision
boundaries that best separate the image classes.
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(a) (b) (c)

(d) (e)

Figure 2.2: (a) Laws filter bank consisting of 16 5x5 masks; (b) Gabor filter bank
with 8 orientations and 5 sizes; (c) Standard Schmid filter bank; (d) Leung-Malik
filter bank. The set consists of first and second derivatives of Gaussians at 6 orien-
tations and 3 scales making a total of 36 filters; 8 Laplacian of Gaussian filters; and
4 Gaussians. (e) MR8 filter bank. The set consists of 2 oriented filters with 6
orientations and 3 scales plus 2 isotropic filters.

During the classification phase, given a test image to classify, the same types of
features are extracted and nonlinear encoding procedure is applied using the learned
codebook. Then, the obtained encoded features are given to the trained RF classifier
that produces the final classification decision.

2.2.1 Texture Feature Extraction

Texture features are of fundamental importance for image recognition. However, at a
current state, there is no work that has deeply analyzed the performance of existing
filter banks for the given task. This motivates a study of the importance of such
filters. In particular, given a grayscale image I ∈ RM×N of a particular class, we have
considered the most widely used bank of filters that produce features robust to object
scale and rotations:
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Laws filters [96] combine multiple texture energy features computed in a local
neighborhood to obtain rotation invariance properties. Texture energy features are
obtained by combining the 4 Laws mask into 16 2D convolutional kernels (see Fi-
gure 2.2(a)). The outputs of the 16 convolutions are then combined into 9 feature
vectors which are separately vectorized, then collected in the matrixΥ(I) ∈ R(MN)×9.

Gabor filters [178] with 5 different sizes and 8 orientations have been used (see
Figure 2.2(b)). The results of the convolution process with each single filter is then
vectorized. The resulting vectors computed for every Gabor filter are finally stacked
to obtain Γ(I) ∈ R(MN)×G, where G = 40 indicates the number of exploited Gabor
filters.

Schmid filters [148] are obtained by convolution with isotropic “Gabor-like”
filters and have rotation invariant properties. A zero DC component of the filter is
also computed to achieve invariance to intensity translations. The convolution of the
image with the S = 13 Schmid filters (see Figure 2.2(c)) results in the stacked filter
responses Ψ(I) ∈ R(MN)×13.

The Leung-Malik (LM) [103] filter bank is also used to get texture features.
The LM filter bank consists of first and second derivatives of Gaussians at 6 orien-
tations and 3 scales, 8 Laplacian of Gaussian (LoG) filters, and 4 Gaussians (see
Figure 2.2(d)). After convolving the image with such filters the responses are col-
lected in the feature vector Λ(I) ∈ R(MN)×48.

The Maximum Response 8 (MR8) filter bank [174] has been also considered.
The MR8 bank inherits from the Root Filter Set (RFS) consisting of 38 filters similar
to the LM ones (see Figure 2.2(e)). However, RFS filters are not rotation invariant and
the MR8 ones were conceived to sidestep such a problem. This is achieved by taking
only the maximum RFS filter responses across all orientations for the two anisotropic
filters. In particular, measuring only the maximum response across orientations allows
to reduce the number of responses from 38 (6 orientations at 3 scales for 2 oriented
filters, plus 2 isotropic) to 8 (3 scales for 2 filters, plus 2 isotropic). Thus, the MR8
filter bank consists of 38 filters but only 8 filter responses which are finally collected in
∆(I) ∈ R(MN)×8. An example of the responses of the different filter banks is shown
in Figure 2.3.

2.2.2 Feature Encoding

Feature encoding techniques are commonly exploited to reduce the dimensionality of
the feature vector used to represent an image. Such methods rely on the idea that an
image can be described as a composition of “visual words”. Such visual words form
a codebook which is commonly learned in an unsupervised fashion during a training
phase. More specifically, common encoding schemes define a “visual word” as the
centroid of a set of clusters into which the feature space is split.

Let X (I) = {x1, . . . ,xn} be the set of n d-dimensional column vectors represen-
ting the feature descriptors extracted from a single image I. In our case, each feature
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(a) (b) (c)

(d) (e)

Figure 2.3: Response images after convolutions with a single filter randomly selected
from the four different filter banks shown in Figure 2.2. All filter responses are scaled
for visualization. (a) Input image. (b) Response after convolution with a Gabor
filter. (c) Response after convolution with a Schmid filter. (d) Response after
convolution with a Leaung-Malik filter. (e) Response after convolution with a MR8
filter.

descriptor is given by the concatenation of filter responses at a single location, the-
refore n = MN and d ∈ {9, G, 13, 48, 8} depending on which filter bank is used. Let
XTr = {X (I1), · · · ,X (ITr)} be the set of feature vectors extracted from all the Tr
training images. Finally, let d(xi,xj) be the dissimilarity between any two feature
vectors xi and xj belonging to XTr. Such distance is used to cluster the feature space
defined by XTr.

Bag-of-Words Encoding

The Bag-of-Words (BoW) encoding model idea inherits from document processing
techniques where a document is seen as a set of words each of which has a difference
frequency of appearance. In the BoW encoding for images, each image is represented
by counting the frequency of a particular feature present in the learned codebook.
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Figure 2.4: Bag-of-Words encoding of feature vectors x. First row shows the nearest
cluster out of the K possible ones obtained by k-means. Second row describes the
final encoded vector obtained by computing the histogram counting the frequency of
each nearest cluster.

See Figure 2.4 for the BoW feature encoding scheme.

To compute the codebook of “visual words”, k-means is applied on the set XTr.
Let µbow

k , for k = 1, . . . ,K be the so computed K cluster means. Once the codebook
is computed, the features extracted from a new image are quantized as follows. Each
feature vector xi ∈ X is mapped to the corresponding “visual word”, i.e., to the
nearest cluster as

κi = argmin
k∗=1,··· ,K

d

xi,µ

bow
k∗

. (2.1)

Hence, the i-th entry in κ ∈ Nn denotes the index of the nearest cluster to the i-th
feature vector.

Then, the BoW encoding is obtained by computing the K dimensional histogram
of such “visual words” as

φbow(I) =




n
i=1 1(κi=1)

...n
i=1 1(κi=K)


 (2.2)

where 1(·) is the indicator function.
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Fisher Vector Encoding

The Fisher Vector (FV) encoding [130] was introduced to provide a softer way to
compute the cluster prototypes and a more robust feature encoding. This technique,
first introduced by Jaakkola and Haussler [73], defines an aggregation mechanism
based on the Fisher Kernel (FK) principle by combining the benefits of generative
and discriminative approaches to pattern classification.

In the FV encoding scheme, clustering is performed through a Gaussian Mixture
Model (GMM). Let µfv

k ,Σk,π
fv
k , be the mean, covariance and the prior of each of

the k = 1, · · · ,K Gaussian Models, respectively. The clustering process is performed
on the training data XTr. The task is accomplished by model fitting based on the
Expectation Maximization (EM) algorithm.

Once the GMM model is obtained, the posterior probability of each Gaussian
Model is computed for every feature vector xi ∈ X as

ωk(i) =
exp


− 1

2 (xi − µfv
k )T Σ−1 (xi − µfv

k )


K
t=1 exp


− 1

2 (xi − µfv
t )T Σ−1 (xi − µfv

t )
 . (2.3)

Then, for each dimension j = 1, · · · , d and Model k, the d-dimensional mean and
covariance deviation vectors are obtained as

µfv
k (j) =

1

n

πfv

k

n

i=1

ωk(i)
xi(j)− µfv

k (j)

σfv
k (j)

(2.4)

Σfv

k (j) =
1

n


2πfv
k

n

i=1

ωk(i)




xi(j)− µfv

k (j)

σfv
k (j)

2

− 1


 (2.5)

The FV encoded feature representation of a given image, denoted as φfv(I) ∈ R2Kd,

is obtained by stacking the column vectors µfv and Σfv
computed for each of the k

Gaussian mixtures

φfv(I) =




µfv
1
...

µfv
K

Σfv

1
...

Σfv

K




(2.6)

Such an encoding is not limited to the number of occurrences of each visual word
but it also includes additional information about the distribution of the descriptors.
Recent works [130, 145] have shown that such an approach leads to better classification
performances with respect to the standard BoW encoding methods.
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Figure 2.5: Vector of Locally Aggregated Descriptors (VLAD) encoding of feature
vectors x. Top row shows the hard assignments of feature vectors to the k-means
quantized space. Then, second and third rows show the computation of the residuals.
The last row describes the final encoded vector obtained by stacking the residuals.

VLAD Encoding

The Vector of Locally Aggregated Descriptors (VLAD) image encoding was initially
proposed by Jegou et al. [75] with the objective to provide an excellent search accuracy
with a reasonable vector dimensionality. The VLAD feature encoding is shown in
Figure 2.5 and briefly described in the following.

VLAD is a feature encoding and pooling method, similar to Fisher vectors. It
encodes the feature vector set by first constructing a dictionary of such features. This
is usually done by applying a clustering method such as a Gaussian Mixture Model
(GMM) or k-means on a set of features extracted from training images. Let µvlad

k , for
k = 1, . . . ,K be the so computed K cluster means. Let also si,k be the strength of the
association of a feature xi ∈ X to the k-th cluster. Such a strength can be computed
either in a soft (e.g., obtained as the posterior probabilities of the GMM clusters) or
hard (e.g., obtained by vector quantization with k-means) way, but it should satisfy

K

k=1

si,k = 1 ∧ si,k ≥ 0 ∀k. (2.7)
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The cluster means µvlad
k are of the same dimension as the features in X . The

VLAD encoding scheme exploits such a property to encode the n features by consi-
dering their residuals with respect to the K cluster means as

rk =
n

i=1

si,k

xi − µvlad

k


. (2.8)

Thus, for each cluster a vector of the same dimensionality of the original feature is
obtained.

The encoded representation of the whole image is finally computed by stacking all
the vectors of residuals as

φvlad(I) =



r1
...
rK


 (2.9)

where φvlad(I) ∈ R(Kd).

2.2.3 Image Classification

Let I be a given image of a particular class. From such an image, all the aforemen-
tioned features are separately extracted and encoded. Once the encoding process is
completed, the resulting vectors are concatenated to obtain the joint encoded repre-
sentation Φ(I) = [φ(Υ(I))φ(Γ(I))φ(Ψ(I))φ(Λ(I))φ(∆(I))] ∈ F . Then, the goal of
classification is to learn a mapping from the joint encoded feature space F , to the
label space, Y. Where each element y ∈ Y defines a particular class.

However, it might be that not every component in the joint encoded representation
has the same discriminative power [111]. Motivated by this, and due to the multi-
class classification nature of the image classification problem, we exploit a Random
Forest classifier [17]. The RF classifier is able to automatically detect, and hence
exploit, only the relevant features for the given task. It builds a large collection of de-
correlated trees with the objective of reducing the variance of an estimated prediction
function by pooling many noisy but approximately unbiased models. Trees are ideal
candidates for bagging as they capture complex interaction structures in the data
and have low bias. Also, trees are very noisy, hence they benefit greatly from the
pooling procedure. As shown in [17], an average of N i.i.d. random variables, each
with variance σ2, has variance 1/Nσ2. If the variables are simply i.d. (identically
distributed, but not necessarily independent) with positive pairwise correlation ρ, the
variance of the average is ρσ2 + 1−ρ

N σ2. As N increases, the second term disappears,
but the first remains, and hence the size of the correlation of pairs of bagged trees
limits the benefits of pooling. The idea in random forests is to improve the variance
reduction of bagging by reducing the correlation between the trees, without increasing
the variance too much. This is achieved in the tree-growing process through random
selection of the input variables.
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Algorithm 1: Random Forest for Classification of DFVs

Input : Training Encoded Features
Output: Trained ensemble of decision trees
for n← to N do

Draw a bootstrap sample Z∗ of size S from the training data;
Grow a random-forest tree Tn to the bootstrapped data, by recursively
repeating the following steps for each terminal node of the tree, until the
minimum node size smin is reached:

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two child nodes.
end

Output the ensemble of trees {Tn}Nn=1;

To learn the parameters of the decision surfaces that separate the classes in F we
trained an RF classifier as follows. LetM = {Tt}Tt=1 be a forest of T trees each one
denoted as Tt. Each tree is trained with a set of Tr data points S = {(Φ(Ii), yi)}Tri=1.
Since bagging can also be applied, each tree can be trained with a different set of
randomly selected data points S∗ ⊆ S. The dimensionality of S∗ is controlled through
the bagging hyper-parameter η as S∗ = η|S|. Let also Sj ⊆ S∗ be the set of data
points reaching node j. Each j-th node is associated with a binary split function
h(Φ(I),Θj) ∈ {0, 1}, i.e., the weak learner, which is characterized by its parameters
Θj = {κ,ψ, τ} where ψ defines the geometric primitive used to separate the data
(e.g. an axis-aligned hyperplane). The parameter vector τ captures thresholds for
the inequalities used in the binary test. The filter function κ randomly selects some
features of choice out of the entire vector Φ(Ii). In the current framework, we select

h (Φ(I)i,Θj) = 1(⟨κ(Φ(I)i),ψ⟩>τ), (2.10)

where τ = 0 and ψ denotes a hyperplane.

All the aforementioned parameters are optimized at each split node as

Θ∗
j = argmax

Θ∗
j∈Pj

J(Sj ,SL,SR,Θj), (2.11)

where

J(S,Θ) = H(S)−


i={L,R}

|Si|
|S|H(Si), (2.12)

with Shannon entropy H(·) and SL and SR denoting the subsets of training points
going to the left and to the right children, respectively. Pj ⊂ P is the random subset
of available parameters Θ. The dimensionality of such a random subset is controlled
by ρ = |Pj |. The training continues to split the samples until the maximum depth D
is reached, a node contains a single sample or samples of a single class are left.
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Oncethetrafinfingoffthewhoflefforestfiscompfleted,asetofffleavesLtfisassocfiated
toeachtreeTt. Toeachfleaffℓt∈Ltfisassocfiatedaprobabfiflfistficmodeflpt(y|Φ(Ifi))

wfithy∈Yfindexfingthecflass.Thereffore,tocflassfiffyanewfimagêI,firstfitsffeature-
encodedrepresentatfionfiscomputed.Then,fforeachtree,Φ(̂I)ffoflflowsthepathffrom
therootnodedowntoafleaffone.Onceafleafffisreachedfforeachtree,theRFcflassfifier
assfignsΦ(̂I)thecflassprobabfiflfity

p(y|Φ(̂I))=
1

T

T

t=1

pt(y|Φ(̂I)). (2.13)

Thefinaflcflassflabeflfiscomputedasŷ=argmaxyp(y|Φ(̂I)).

2.3 ExperfimentaflResuflts

Tovaflfidatetheproposedapproach,resufltsontwobenchmarkffoodrecognfitfionda-
tasetshavebeencomputed. Ascommonflyperfformedfintheevafluatfionoffffoodre-
cognfitfionapproaches[22,32,33],theachfievedperfformancesareprovfidedfintermsoff
recognfitfionaccuracy.Theperfformanceachfievedbytheexfistfingmethodshavebeen
takenffromthecorrespondfingworksorhavebeenprovfidedbytheauthors.

2.3.1 ExperfimentaflSettfings

Inthecurrentfframework,wehaveusedaGaborfiflterbankwfith8orfientatfionsand
5sfizes,therefforeG=40. Whennotexpflficfitflyspecfified,theffeatureencodfinghas
beenobtafinedbymeansofftheFVapproachwfithK =300cflusters.Sfimfiflarfly,by
deffauflt,theRFcflassfifierhasbeentrafinedwfithT=2000treeshavfingmaxfimum
depthD=100. Eachtreehasbeentrafinedbysettfingη=0.6. Ateachnodethe
ffunctfionκrandomflyseflects

√
dffeatures,wheredfisthedfimensfionaflfityoffthefinput

ffeaturevector.

Ffinaflfly,fimageshavebeenrescafledto128×128toremovetheeffectoffdfifferent
fimagesfizesonthecflassfifierperfformances.

2.3.2 Datasets

UNICT-FD889Dataset

TheUNICT-FD889Dataset1hasbeenrecentflyfintroducedbyFarfineflflaetafl.[32].
TheUNICT-FD889datasethastheflargestnumberoffdfifferentcflassestorecognfize.It
comeswfith3583fimagesreflatedto889dfistfinctdfishesoffffoodoffdfifferentnatfionaflfitfies
(e.g.,Itaflfian,Engflfish,Thafi,Indfian,Japanese,etc.)whfichhavebeencoflflectedfinareafl
anduncontroflfledscenarfio(e.g.,dfifferentbackgroundsandfiflflumfinatfioncondfitfions)

1Avafiflabfleathttp://fipflab.dmfi.unfict.fit/UNICT-FD889

http://iplab.dmi.unict.it/UNICT-FD889
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Ffigure2.6:15randomflyseflectedsampflesffromtheUNICT-FD889dataset.Coflumns
correspondtoadfifferenttypeoffffood(fi.e.,toadfifferentcflass). Rowsshowthe
appearancevarfiatfionsbetweensampflesbeflongfingtothesamecflass.

Ffigure2.7:15randomflyseflectedsampflesffromtheUECFood100dataset.Coflumns
correspondtoadfifferenttypeoffffood(fi.e.,toadfifferentcflass). Rowsshowthe
appearancevarfiatfionsbetweensampflesbeflongfingtothesamecflass.

bymeansoffsmartphones.Hence,theUNICT-FD889datasetfisacoflflectfionoffffood
fimagesacqufiredbyusersfinreaflcasesoffmeafls.Eachffoodbeflongfingtoapartficuflar
cflasshasbeenacqufiredmufltfipfletfimes(ffouronaverage)toensuregeometrficand
photometrficvarfiabfiflfitfies(seeFfigure2.6fforaffewexampfles).

Toprovfideaffafircomparfisonwfithexfistfingmethods,theffoflflowfingresufltshave
beencomputedbyaveragfingtheperfformanceonthesamethreespflfitsasadvfisedby
Farfineflflaetafl.[32].

UECFood100Dataset

TheUECFood100Dataset2fisoneofftheflargestffoodrecognfitfiondatasets[117].Thfis
datasetcontafinsapproxfimatefly100fimagesfforeachoffthe100dfifferentffoodcatego-
rfies.Thusfitcontafinsapproxfimatefly14000reafl-worfldffoodfimages.TheUECFood100
datasetwasbufiflttofimpflementapractficaflffoodrecognfitfionsystem3whfichwasfinten-
dedtobeusedfinJapan.Becauseoffthfis,fitwascoflflectedfinsuchawaythatmufltfipfle
ffoodfitemswerepresentfinasfingflefimage,thuswfiththeobjectfivetoperfformboth
thedetectfionandtherecognfitfiontasks.

Sfincetheproposedsystemfisdesfignedtoffocusonflyontherecognfitfiontask,the
gfivengroundtruthboundfingboxeshavebeenusedtoobtafinadatasetofffimages
contafinfingsfingfleffoodfitemsonfly(seeFfigure2.7). Despfitethfis,thesameprotocofl

2Avafiflabfleathttp://ffoodcam.mobfi/dataset100.htmfl
3http://ffoodcam.mobfi/

http://foodcam.mobi/dataset100.html
http://foodcam.mobi/
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Ffigure2.8:15randomflyseflectedsampflesffromtheFood-101dataset.Coflumnscorre-
spondtoadfifferenttypeoffffood(fi.e.,toadfifferentcflass).Rowsshowtheappearance
varfiatfionsbetweensampflesbeflongfingtothesamecflass.

proposedby Matsudaetafl.[117]hasbeenffoflflowedtoffafirflycomparetheobtafined
perfformancewfithexfistfingmethods.

Food-101Dataset

TheFood-101Dataset4fistheflargestffoodrecognfitfiondataset[16].Ithasbeencofl-
flectedbydownfloadfingfimagesffromffoodspottfing.com.Thetop101mostpopuflarand
consfistentflynameddfisheswereseflected. Then,fforeachcategory750trafinfingand
250testfimageswerecoflflectedandmanuaflflycfleaned.Onpurpose,thefintensecoflors
andsometfimeswrongflabeflsfincfludedfinthetrafinfingfimageswerenotcfleaned.Asa
resufltthedatasetcontafins101’000reafl-worfldffoodfimages(seeFfigure2.8).

2.3.3 PerfformanceAnaflysfis

Toevafluatetheproposedapproach,wehaveanaflyzedtheffoflflowfingaspects:(fi)per-
fformanceoffsfingflefiflterbanksusfinggrayscafleorRGBcoflorfimages.Intheflattercase,
eachfimagepflanefisseparateflyprocessed;(fifi)perfformanceoffdfifferentencodfings,aflso
asaffunctfionoffthecodebooksfize;(fififi)finfluenceofftheRFhyper-parametersonthe
cflassfificatfionaccuracy.

FfiflterBanks

Toanaflyzetheaccuracyperfformanceoffeachfiflterbankwehavecomputedtheresuflts
shownfinFfigure2.9.

UNICT-FD889: ResufltsfinFfigure2.9(a)showthat,fforeveryconsfideredfiflter
bank,thebestperfformanceareachfievedwhentheffuflflcoflorfinfformatfionprovfidedby
threechanneflsfisexpflofited.Inpartficuflar,whenSchmfidfifltersareused,theperffor-
mancedropsffrom41.54%to27.34%fiffonflygrayscaflefinfformatfionfisused.Thebest
perfformanceareobtafinedbyfiflterfingtheRGBcoflorfimageswfiththeMR8fiflterbank.

4Avafiflabfleathttp://www.vfisfion.ee.ethz.ch/datasets/ffood-101

http://www.vision.ee.ethz.ch/datasets/food-101
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Figure 2.9: Accuracy performance on the (a) UNICT-FD889, (b) UECFood100, and
(c) Food101 datasets achieved by filtering RGB and grayscale images with each single
filter bank.
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In such a case the accuracy is 62.46%. More interestingly, results show that while
being simpler compared to other filters, Laws filters yield the second best accuracy
(i.e., 47.97%).

UECFood100: Results in Figure 2.9(b) reflect those obtained considering the
UNICT-FD889 dataset. Indeed, overall, the best performance are achieved when color
information is considered. However, for the considered dataset the accuracy difference
between grayscale and RGB filtered images is never more than 9% (Schmid filters).
The best performance are obtained by using the MR8 filter bank on RGB images. In
such a case the accuracy is 34.71%. More interestingly, results show that there is less
than 1% accuracy difference when Gabor filters are applied on RGB images instead
of grayscale ones.

Food101: Food101 is the most complex of the three datasets, as it has a large
intra-class variance. This affects the results shown in Figure 2.9(b), where the best
performing filter bank (MR8) achieved just a 29% of classification accuracy. The
other banks, except LMF, reached similar performances. It is worth noting that, with
the exception of MR8, in the other cases working on RGB or grayscale data does
not drastically affect the performance. This is probably due to the intra-class shape
variance, leading to spatial features be more relevant than color information.

Feature Encoding

In the preceding section we have reported on the performance of each single filter bank
obtained by using the FV encoding scheme. To evaluate the performance of different
encodings and the influence of the codebook dimensionality, we have conducted the
following experiments. Each filter bank response is encoded using the same method
and the same number of “visual words” K. Then, the 5 obtained encoded vectors
obtained for each image are stacked and input to the RF classifier.

In addition, to see if the RF classifier is able to select the optimal features as
well as the optimal encoding, we have run one additional experiment. Specifically,
the three encoding methods are separately applied to each filter bank response. The
value of K has been kept same for each of them. The so obtained 15 encoded vectors
are finally stacked and given to the RF classifier. In the following, results obtained
with such a procedure are referred to as All.

Results in Figure 2.10 show that for VLAD, FV and All optimal accuracy perfor-
mance are achieved when the number of clusters K is of either 20 or 50. In particular,
20 clusters are considered in the FV encoding scheme the classification accuracy is
about 63.29% which is very close to the performance of the single MR8 filter bank
encoded with the same scheme but with 300 clusters (see Figure 2.9(a)). For all the
encodings, the performance decrease when the number of clusters increase. In par-
ticular, it is worth noticing that when the All solution is considered, performance
are even lower than a single adopted encoding scheme. Such a behavior is mainly
due to the exploding dimensionality of the encoded feature vectors which yields to a
very sparse space, hence introduces the curse of dimensionality issue. Such a problem
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Figure 2.10: Accuracy performance on the UNICT-FD889 dataset achieved by using
different encoding schemes and color spaces.

could be addressed by growing the number of trees in the RF model.

On the other hand, performance obtained using the BoW encoding increases if
a large number of visual words is used. The best accuracy under such scheme is
obtained when the number of clusters is of 500. When more clusters are considered
performance decrease. Differently from VLAD and FV, BoW encoding does not
suffer from the curse of dimensionality problem since the number of dimensions in the
encoded feature space is determined by the codebook size (see Section 2.2.2).

Finally, as previously shown in the filter banks analysis, better performance are
achieved when RGB color information is considered.

Random Forest Classifier

The RF classifier model is controlled by different hyper-parameters: the number of
trees T , the maximum depth D, the bagging size defined by η and the number of
features that are selected through the filter function κ. To evaluate the influence of
such hyper-parameters on the performance, we have proceeded by fixing the values
of the hyper-parameters as defined in Section 2.3.1, then we have varied the value
of a single hyper-parameter. The results of such analysis, shown in Figure 2.11 and
Figure 2.12, have been computed considering all the filter banks encoded using 300
clusters and the FV method. Color information has been used.

UNICT-FD889: Results in Figure 2.11(a) have been computed by varying
the number of trees such that T ∈ [1, 5000]. Under such scenario, the classification
accuracy drastically increases when T grows from 1 to 1000. For larger values the
performance improves but with less gain. The best performance is obtained when
T = 5000 trees have been used. Such results demonstrate the benefits of the RF
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Figure 2.11: Performances of the random forest classifier on the UNICT-FD889 da-
taset varying the different hyper-parameters. Results have been computed by first
fixing the hyper-parameters as described in Section 2.3.1, then we varied the: (a)
Number of trees in the forest; (b) Maximum depth of each single tree; (c) Percentage
of the features selected at each node; (d) Number of randomly selected features at
each node.

classifier, and in general of aggregation methods, which are able to strongly improve
the accuracy produced by a single weak classifier.

The results on the analysis of the depth hyper-parameter are shown in Figure 2.11(b).
Results show that by varying D in the range [10, 200] two main classification accu-
racy peaks can be found: the first is at D = 20, the second at D = 100. For smaller
and larger values performance decreases due to underfitting and overfitting problems
respectively. Indeed, with a very shallow tree it is not possible to have enough de-
cision boundaries to discriminate all the samples well. Similarly, if the tree is too
deep, the number of decision boundaries is too high, thus causing the RF model to
not generalize well on new samples. The performance decrease for values in between
the two peaks is caused by the two random components of the RF, i.e., bagging and
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Figure 2.12: Performances of the random forest classifier on the UECFood100 dataset
varying the different hyper-parameters. Results have been computed by first fixing
the hyper-parameters as described in Section 2.3.1, then we varied the: (a) Number
of trees in the forest; (b) Maximum depth of each single tree; (c) Percentage of the
features selected at each node; (d) Number of randomly selected features at each
node.

the random feature selection at each node. Despite this, it should be noticed that
for all the considered cases the gap between the best (48.67%) and the worst perfor-
mance (47.94%) is less than 0.8%, thus showing the robustness of the model to such
hyper-parameter.

Finally, in Figure 2.11(c) and Figure 2.11(d) the RF model performance are com-
puted by varying the bagging percentage and the number of selected random features
at each node, respectively.

The results in Figure 2.11(c) show that there is consistency in the results when
the bagging hyper-parameter η is changed from 10% to 100% (notice that in such a
last case no bagging is used since all the available data is used by each tree). Indeed,
no matter what bagging percentage is considered, the classification accuracy is never
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Figure 2.13: Performances of the random forest classifier on the Food-101 dataset
varying the different hyper-parameters. Results have been computed by first fixing
the hyper-parameters as described in Section 2.3.1, then we varied the: (a) Number
of trees in the forest; (b) Maximum depth of each single tree; (c) Percentage of the
features selected at each node; (d) Number of randomly selected features at each
node.

less than 47.71% (η = 0.9) nor higher than 48.86% (η = 1).

Similarly, results in Figure 2.11(d) show that the RF model is insensitive to the
number of randomly selected features at each node. Varying such a hyper-parameter
the classification accuracy gap between the best and the worst performance is less than
0.9%. The optimal performance is obtained when the number of selected features is
computed as

√
d.

UECFood100: Results in Figure 2.12(a) have been computed by varying
the number of trees such that T ∈ [1, 5000]. Under such scenario, the classification
accuracy drastically increases when T grows from 1 to 500. For larger values the
performance remains stable with a peak at T = 2000.

In Figure 2.12(b), results of the proposed approach are given as a function of the
depth RF hyper-parameter. Differently from the results shown in Figure 2.11(b), the
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accuracy performance obtained using a very shallow tree (i.e., D = 10) is much worse
than the one achieved using a deeper forest. This is due to the complexity of the
dataset, which requires more separating hyperplanes to well discriminate between the
100 classes. The optimal results are achieved when D = 100.

Results in Figure 2.12(c) show the performance of the RF model varying the bag-
ging percentage. The depicted results demonstrate that by considering an extreme
bagging in which each tree sees only 10% of the total training samples the worst per-
formance are achieved. However, it should be noticed that in such case the accuracy
performance is only about 3% less than the optimal one (obtained by setting η = 0.5).

Finally, results in Figure 2.12(d) show that the RF model trained on the UE-
CFood100 dataset is more sensitive to the selected number of randomly selected fea-
tures at each node. Indeed, compared to the case when only 5 features are selected at
each node, almost a 10% improvement is obtained by varying such a hyper-parameter
to select 500 features.

To summarize, the RF hyper-parameter analysis has shown that the number of
trees and the number of randomly selected features at each node in the forest should
be carefully selected to obtain the best possible performance. On the other hand,
the model performances do not heavily depend on the tree depth and the bagging
percentage.

Food101: The performances on Food101 are similar to the ones achieved on
UECFood100 and confirm the conclusions described above. Figure 2.13(a) confirms
the initial performance boost in the range T ∈ [1, 500], even though there is a small
but constant improvement when augmenting the number of trees up to 5000.

Figure 2.13(b) again shows very poor results when the tree depth is too low (D <
30), due to the complexity of the dataset, and a slight performance decrease due to
overfitting when D >= 100. The best results have been obtained with D = 80.

Regarding the bagging percentage, in Figure 2.13(c) we see again that this hyper-
parameter drastically influence the results only when η < 0.1, while giving substanti-
ally stable results for any value higher than that.

The last result analyzes the system performances with respect to the number
of randomly selected features at each node (Figure 2.13(d)). As already seen in
UECFood100 dataset, there is an approximately linear increase in the classification
accuracy while increasing the number of selected features from 5 to

√
d, where the

system reaches its best result.

To summarize, the RF hyper-parameter analysis has shown that the number of
trees and the number of randomly selected features at each node in the forest should
be carefully selected to obtain the best possible performance. On the other hand,
the model performances do not heavily depend on the tree depth and the bagging
percentage.
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Discussion

As a result of the conducted performance analysis, we can draw the following conclu-
sions:

1. While more computationally demanding color information should be retained
to obtain better recognition performance.

2. The number of clusters determining the codebook size for encoding should be
carefully selected on the basis of the chosen encoding scheme.

3. Exploiting more encoding schemes simultaneously may yield to performance
degradation due to the very high-dimensionality of the obtained encoded feature
vector.

4. For the specific tasks, the selected RF model has demonstrated to be sensitive
to two hyper-parameters, namely the number of trees in the forest and the
number of randomly selected features at each node. This can be exploited to
simplify the cross-validation procedure usually required to select the optimal
hyper-parameters values.

To qualitatively evaluate the performance of the proposed approach we have com-
puted the results in Figure 2.14 and Figure 2.15. The performance achieved by the
proposed method are shown for 18 query images from the UNICT-FD889 and the
UECFood100 datasets, respectively (see caption for additional details). The depicted
results demonstrate that, even only texture information is exploited, the proposed
approach is able to well capture the global appearance of the images and it also has
the capacity to reliably find the true match under challenging conditions (see the 3
cases in the first row). When the query image is not correctly classified, or the con-
sidered cases are very challenging, the resulting scores are very close to each other,
thus meaning there is uncertainty in the given answer.

In the following section, the given results have been computed following the afo-
rementioned conclusions. Thus, RGB color information, FV encoding with K = 20
clusters and T = 5000 trees have been considered. The other RF model hyper-
parameters have been kept as defined in Section 2.3.1.
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Figure 2.14: Performance achieved by the proposed method on the UNICT-FD889
dataset are shown for 9 query images (organized in two rows). At the bottom of each
of those, the bar histograms show the score (in percentage) of the proposed approach
for the true match (in green) and for the remaining top 4 matches (in red). On the
y-axis of each bar histogram a randomly selected training image corresponding to the
food class is depicted. (Best viewed in color)
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Figure 2.15: Performance achieved by the proposed method on the UECFood100
dataset are shown for 9 query images (organized in two rows). At the bottom of each
of those, the bar histograms show the score (in percentage) of the proposed approach
for the true match (in green) and for the remaining top 4 matches (in red). On the
y-axis of each bar histogram a randomly selected training image corresponding to the
food class is depicted. (Best viewed in color)
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2.3.4 State-of-the-art Comparisons

Comparisons with state-of-the-art methods are given in Figure 2.16. Performances
achieved by our method are labeled as TFE-RF.

UNICT-FD889: In Figure 2.16(a), the obtained performance are compared to 4
state-of-the-art methods, namely PRICoLBP [32], SIFT [32], BoT [32] and FB [114].
Results demonstrate that the proposed approach outperforms existing ones by im-
proving the previous best accuracy by more than 5%. This is an interesting result
since other approaches (i) require complex procedure for feature extractions (e.g.,
PRICoLBP [133]); (ii) use the original input images of size 320 × 240, which carry
more information than the resized ones.

UECFood100: A comparison with state-of-the-art approaches is given in Fi-
gure 2.16(b). The obtained performance are compared to the ones achieved by 6
state-of-the-art methods [117]. Methods like Circle, JSEG, DCR, DPM, and Whole
use a detector to identify the location of the food, while GTBB [117] uses the same
ground truth as TFE-RF. Results demonstrate that TFE-RF outperforms detector-
based approaches but has lower performance than GTBB. This is mainly due to (i)
the discriminative power of the additional color and shape features which these met-
hods exploits [117] and (ii) the relevant information which full-size images has with
respect to the resized ones which our approach considers.

Food101: Figure 2.16(c) shows a comparison of the proposed method with
state-of-the-art approaches on the Food101 dataset. The competitors performances
have been taken from [16], and include among others approaches based on HoG,
BoW, SURF, AlexNet, Random Forests, etc. (see [16] for exact references for each
method). As it can be seen, in this challenging dataset the proposed method reaches
an accuracy of 38.1%, comparable to the other approaches based on random forests,
but outperformed by the results obtained by deep learning strategies, as in the case
of AlexNet, based on a Convolutional Neural Network approach.

2.4 Conclusion

In this chapter an analysis of existing filter banks and feature encoding schemes for
image classification has been provided. The work has been motivated by the lack of
studies showing which biologically-inspired filters for texture features are likely to be
the most useful for the task. In particular, we have considered five of the most widely
used filter banks in computer vision, namely Laws, Gabor, Schmid, Leung-Malik and
MR8. To reduce the high dimensional representations produced by filter banks we
have used (and analyzed the performance of) the three main encoding schemes in
literature: BoW, FV and VLAD. Then, the image classification task is accomplished
by exploiting such encoded representations within an RF classifier. Results on two
food classification benchmark datasets have been provided. Specifically, an in-depth
analysis of the performance of each filter bank and encoding scheme has been provided.
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Figure 2.16: Performance of the proposed TFE-RF approach are compared to state-
of-the-art ones. Results are shown for the (a) UNICT-FD889, (b) UECFood100, and
(c) Food101 datasets.
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3
Learning to Rank with a

Committee of Shallow Neural
Networks

In this chapter, we introduce an image recognition system based on
a committee of classifiers. Each committee member, i.e., an Extreme Le-
arning Machine, is trained to specialize on a single feature type. Then,
a supervisor, i.e., a Structural Support Vector Machine, is exploited to
produce the final ranking of possible matches by filtering out the irrelevant
features and thus merging only the relevant ones. Thus, the supervisor
automatically selects the optimal features for image recognition out of the
existing plethora of available ones (e.g., color, texture, etc.). Experimental
results show that the proposed system outperforms state-of-the-art works
on four publicly available benchmark datasets.

3.1 Introduction

In the previous chapter we have provided an in-depth analysis of the image classifi-
cation performance achieved by exploiting hand-crafted visual features that aim to
mimic the feature extraction process conducted by the human brain. Such represen-
tations were considered as the input to a random forest of decision trees classifier
that performs an efficient feature selection through the hierarchy. This solution follo-
wed the process conducted by most of the existing methods which address the image
classification challenges by designing ad-hoc image representations based on some a
priori knowledge of the problem (e.g., [33, 116, 182]). Despite their successful ap-
plications, the a priori knowledge might not be sufficient enough to correctly handle
all the problem challenges. We hypothesize that a possible solution to sidestep the
aforementioned problems might be a system that uses as many different features as
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possible but exploits only a subset of those to perform the image classification task.
Following this idea, an image classification system based on a supervised learning
committee is introduced.

As demonstrated in [168, 167, 151], learning with a committee has two main
benefits: (i) a committee might exhibit performance unobtainable by an individual
committee member on its own. This is due to the fact that individual errors made
by the committee members cancel out to some degree when their predictions are
combined; (ii) a committee of learning machines has modularity properties. Since
different members can focus on a particular region in the input space, the mapping
from input to target is not approximated by one estimator but by several estimators.
Despite these benefits, since many different possible visual features can be used to
address the task, they cannot be just integrated in a single feature vector of very high
dimensionality. Indeed, this might yield to intractable computational loads as well
as to the curse of dimensionality problem. To address the aforementioned issues, the
Supervised Extreme Learning Committee (SELC) approach is introduced.

SELC relies on a committee of Extreme Learning Machines (ELM) [71], where
each ELM is trained with a specific feature type only. In this way, each member
specializes on classifying an image only by using a certain feature type. This has the
advantage of both reducing computational loads as well as to keep the committee
learning benefits. Among all the possible neural-based learning systems [112], Ex-
treme Learning Machines have been chosen for their excellent performances in terms
of computational burden while maintaining a classification accuracy comparable to
similar learning tools.

Committee-based approaches require the selection of a supervisor to fuse the dis-
cordant members’ classifications. The typical output of the supervisor is a class.
However, when classification results must be presented to users, a rank could be more
appropriate. While ranking information can be obtained from single committee mem-
bers, none of the existing works have adopted a supervisor considering it. Motivated
by this, we introduce a Structural Support Vector Machine [170] as supervisor. It
automatically selects the ranking produced by the members and combines them to
obtain optimal classification performance as well as an optimal ranking.

The rest of the chapter is organized as follows: in Section 3.2 we describe the
proposed approach, explaining how ELMs can be applied to image classification and
how the committee outputs can be merged into a final rank by means of a Structured
Support Vector Machine. In Section 3.3 we give some comparative experimental
results, showing how our system performs with respect to state-of-the-art methods.
Finally, conclusions are drawn in Section 3.4.
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Figure 3.1: Proposed system architecture based on three main stages: (i) image
feature representation; (ii) committee training and (iii) supervisor training. (Best
viewed in color)

3.2 The Approach

3.2.1 System Overview

As shown in Figure 3.1, the proposed image recognition system consists of three main
phases: (i) image feature representation, (ii) committee training/classification, and
(iii) supervisor training/decision.

Since the proposed approach introduces a committee-based learning mechanism, a
training phase is required. During such a phase, each training image is given to the fe-
ature extraction module that computes discriminative visual features capturing color,
shape and texture information. To reduce the high dimensionality of a subset of such
features, a codebook learning submodule that provides nonlinear feature encoding is
exploited. The obtained encodings and the remaining features are finally considered
as the image feature representation (details in Section 3.2.2). Then, the whole set of
such representations is given to the committee training module (Section 3.2.3) where
each committee member specializes in classifying the image by exploiting a single
type of feature only (i.e., either color, shape or texture). Once the committee mem-
bers are trained, their answers are evaluated by a committee supervisor whose aim
is to learn how to properly combine them such that the optimal ranking is obtained
(Section 3.2.4).
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During the recognition phase, given a test image to classify, the same features are
extracted. The nonlinear encoding procedure is applied to a subset of those by using
the learned codebook. Then, the obtained representation is provided to the committee
members for classification. Each member produces a classification considering only
the type of feature it has been trained with. Finally, the members answers are given
to the committee supervisor which combines them and produces the final decision
(ranking).

3.2.2 Image Feature Representation

Literature in image recognition [33, 116, 182, 82] usually represents an object as a
combination of different features (e.g., color, shape, spatial relationships, etc.). Recent
works [32, 33] have also shown the benefits of feature encodings [83, 175, 155] for the
same task.

Despite this, as also demonstrated in the previous chapter, it is difficult to identify
which are the best features for image recognition. The SELC approach has been
designed to tackle such an interesting problem. It aims to autonomously select only
the relevant features out of a large pool of given ones. Thus, to obtain the image
feature representation, a large set of features has been considered. This includes (i)
color, (ii) shape, (iii) texture, (iv) local and (v) data-driven features.

Color: Due to their rotation and location invariant properties, color histogram
features are the most widely used features to capture the global appearance of an
image. However, as shown in [41, 172], histograms are discriminative feature repre-
sentations of a datum only if the input image is projected in an appropriate color
space. By following the advices in [41, 172], in the current framework the HSV,
CIELab, RGB, normalized RGB and Opponent color spaces have been considered.
Thus, for a given image I, a histogram is extracted from each of such color space
components. Histograms belonging to the same color space are finally concatenated.

Shape: To capture the shape of a given image the Pyramid Histogram of Oriented
Gradients (PHOG) [15] and the GIST features [127] are used. The PHOG feature
captures the local shape and the spatial layout of the shape in a given image [15]
by exploiting the pyramidal framework proposed in [97]. The GIST feature models
the shape of an image by computing the dominant spatial structure of a very low
dimensional representation of the image itself (i.e., the Spatial Envelope).

Texture: As previously discussed (see chapter 2), texture features are of fun-
damental importance for image recognition. Indeed, looking at general images, its
reasonable to claim that the image recognition problem is closely related to that of
texture discrimination.

To capture the texture information, Local Binary Pattern (LBP) [126], Local
Phase Quantization (LPQ) [136], Local Configuration Pattern (LCP) [45], Pairwise
Rotation Invariant LBP (PRICoLBP) [133], Binary Gabor Patterns [188] and textons
features [83, 175, 155] are used. These have been selected on the basis of the fact that
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each of them captures different texture aspects which can be worth to inspect.

In particular, to extract textons features, the MRS4 filter bank [175] has been
considered for textons encoding. To achieve invariance to affine illumination transfor-
mations, the z-scores of the image intensity are computed before convolution with the
ℓ1 normalized filters. The obtained responses at each pixel location are then contrast
normalized as in [33].

Differently from previous works in the field using standard textons encodings sche-
mes like [32, 33], in this work a more robust feature encoding based on the Improved
Fisher Vector (IFV) technique [73, 130, 145] is used. The IFV method suppresses
the lossy process [14] of common Bag-of-Words (BoW) hard quantization methods
which yield to performance degradation. In a nutshell, given a set of training images,
after convolution with the MRS4 filters, the obtained filter responses are clustered by
means of a Gaussian Mixture Model. Then, for each image, every feature descriptor
(i.e., the filter response at a location) is assigned to a particular mode in the mixture
with a strength given by the posterior probability. In addition, for each mode the
mean and covariance deviation vectors are considered. The result of such a process,
computed for every feature response, yields to the encoded feature representation.

Local features: Local feature are particular image regions which are different
from their surroundings. Such features lead to a powerful and discriminative image
representation that has been widely applied in a large range of applications. In this
work, we have exploited three different types of local features, which also consider
color information, namely: (i) DSP-SIFT [30], (ii) OpponentSIFT [172], and (iii)
C-SIFT [172].

To obtain a fixed-length feature representation for each image, we followed [11]
and used a standard Bag-of-Words approach. To avoid very high dimensional feature
representations, which may yield to curse of dimensionality issues, the IFV approach
has not been used in such a case.

Data-Driven: All the aforementioned features are the result of an hand-craft
designing process that is conducted by humans on the basis of the a priori knowledge
of the problem. However, in the recent past such a task has been widely obscured
by the now well known feature learning procedure. With such a task, a machine
learning algorithm is trained to learn the most suitable image representation for the
given classification/regression task. Following such a motivation, we have considered
feature representations that were learned from natural images. Specifically, we have
followed [139] to compute the data-driven feature representation: the given image is
fed to the OverFeat Convolutional Neural Network (CNN) [153]. Then, the CNN
features are taken from the output of the last convolutional layer.

3.2.3 Extreme Learning Machines

An Extreme Learning Machine (ELM) [70] is a particular Single Layer Feed-forward
Network (SLFN) which was inspired by biological learning and proposed to overcome
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Figure 3.2: General architecture of a standard Extreme Learning Machine. The input-
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learned analytically, without the need of an iterative process.

the issues faced by back propagation-based learning algorithms. In particular, the hid-
den nodes of an ELM compute random combinations of the input values. Thus, the
input-to-hidden weights do not need to be learned with computationally expensive
learning algorithms and can be randomly generated, independently from the input
data (see Figure 3.2). In such a network, it is proven that the universal approxi-
mation theorem still holds under mild assumptions, provided that the hidden layer
has enough nodes [70]. Computing the final output is then just a matter of finding
the optimal hidden-to-output weights, which can be conveniently done in an analy-
tical way, without the need of computationally expensive iterative processes, such as
backpropagation.
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Preliminaries

More formally, let x be a d-dimensional row feature vector belonging to one out of m
possible classes. To such a feature vector corresponds a class label y represented by
a m-dimensional unit row vector. Its single positive c-th component, denoted as yc,
indicates that x belongs to class c ∈ C = {1, . . . ,m}. The vector x is the input for the
ELM. Thus, the value of the j-th input neuron corresponds to the j-th component in
a data sample x.

Let the hidden layer be composed of L hidden neurons and let its connection with
the input neurons be denoted as the random matrix R ∈ Rd×L. The output of the
j-th neuron in the hidden layer is computed as hj(x) = σ(x,Rj , bj), where Rj is
the j-th column of R, bj is a random bias parameter associated with the j-th hidden
neuron and σ(·) is a differentiable activation function, such as the:

(i) Sigmoid function:

σ(x,Rj , bj) =
1

1 + exp(−(xTRj + bj))
(3.1)

(ii) Hyperbolic tangent function:

σ(x,Rj , bj) = tanh(xTRj + bj) (3.2)

(iii) Gaussian function:

σ(x,Rj , bj) = exp(−bj∥x−Rj∥2) (3.3)

Let βj ∈ Rm be a row vector of connection weights between the j-th hidden
neuron and the output layer such that the output of the network is given by

ŷ =
L

j=1

βjhj(x) (3.4)

which, expressed in a more compact form, results in

ŷ = h(x)β (3.5)

where β ∈ RL×m is the matrix of weights connecting the hidden layer composed of L
nodes with the m output nodes and h(x) = [h1(x), . . . , hL(x)] the output row vector
of the hidden layer with respect to the input x.

In particular, h(x) maps the data from the d-dimensional input space X to the
L-dimensional hidden layer random feature space H where the input-to-hidden node
weights R are randomly generated according to any continuous sampling distribution
probability. This has the advantage of projecting the data onto a lower dimensional
space (i.e., compress the data dimensionality) or to a higher dimensional space (i.e.,
to increase sparsity) [85]. Ideally, to not lose valuable discriminative property of the
input data, the random weights (i.e., the projection matrix) R should provide a stable
embedding that approximately preserves the distance between all pairs of original fe-
atures. As proved in [70], if the original points are projected onto a randomly selected
subspace with suitably high dimensions, then the Johnson-Lindenstrauss lemma [80]
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is satisfied with high probability and thus the distances between the points in the
random space are preserved. As shown [69], a matrix satisfying such restricted iso-
metry property is the random Gaussian matrix where each element of the random
projection matrix ri,j ∼ N (0, 1). Finally, the hidden layer output mapping h(x) has
universal approximation capability property, i.e.

lim
L→inf

∥
L

j=1

βjhj(x)− y∥ = 0 (3.6)

holds with probability one with appropriate hidden-to-output connection weights β.

ELM Learning

Let {(x(i),y(i))}ni=1 be the set of n training samples pairs and

H(R, b) =




h(x(1))
h(x(2))

...
h(x(n))




h(x1), · · · ,h(xn)


(3.7)

=



h1(x1) · · · hL(x1)

...
. . .

...
h1(xn) · · · hL(xn)


 (3.8)

=



σ(x(1),R1, b1) · · · σ(x(1),RL, bL)

...
. . .

...
σ(x(n),R1, b1) · · · g(x(n),RL, bL)


 (3.9)

be the hidden layer output matrix (i.e., the projection of the input feature vectors
onto the ELM random feature The j-th column of H is the output of the j-th hidden
node with respect to inputs x(1), · · · ,x(n), parametrized by Rj and bj .

Let also

Y =



y(1)

...
y(n)


 =




y
(1)
1 · · · y

(1)
m

...
. . .

...

y
(n)
1 · · · y

(n)
m


 (3.10)

be the training data target matrix. The ELM aims to learn the set of hidden-output
weights β by solving

Hβ = Y. (3.11)

As shown in [65], if the number of hidden neurons is equal to the number of
distinct training samples (i.e., n = L), then the hidden layer output matrix H is
square and invertible. Hence, a standard SLFN can approximate the given training
samples with zero error. However, in the majority of the cases the number of hidden
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neurons is different from the number of distinct training samples (i.e., n ̸= L), hence,
H is non-square matrix and there may not exist suitable parameters such that there
exist a solution for Hβ = Y.

A common approach to address such a problem is to estimate specific parameters
R̂, b̂, β̂ such that

argmin
R,b,β

∥H(R, b)β −Y∥ (3.12)

which is equivalent to minimizing the cost function

J(R, b,β) =
n

i=1




L

j=1

βjσ

x(i),Rj , bj


− y(i)




2

(3.13)

=

n

i=1




L

j=1

βjhj


x(i)

− y(i)




2

. (3.14)

When H(R, b) is unknown, gradient-based learning algorithms, like back propa-
gation, are generally used to search the minimum of ∥H(R, b)β −Y∥. However, as
proved in [70] the input weights and the hidden layer thresholds of an SLFN need not
to be adjusted and can be arbitrarily given. For fixed input-to-hidden weights R and
hidden layer thresholds b, training an SLFN is equivalent to finding a least-squares
solution β̂ of the linear system

argmin
β

∥Hβ −Y∥. (3.15)

According to [70], ELMs exploit the aforementioned property and find the least-
squares solution of the above linear system by computing

β̂ = H†Y (3.16)

where H† is the MoorePenrose generalized inverse [2] of matrix H.

However, from the learning point of view, ELMs also aims to reach the smallest
training error but also the smallest norm of output weights[68, 70]. This is motivated
by the fact that, as demonstrated in [5, 4], the smaller the weights are, the better
generalization performance a network tends to have. Thus, the final ELM objective
is to find β̂ such that

β̂ = argmin
β

∥β∥+ ∥H(R, b)β −Y∥. (3.17)

It turns out that the solution to such a problem is still the one in eq.(3.16). Indeed, the
Moore-Penrose generalized inverse produces the smallest norm least-squares solution
to the given linear system, hence fully satisfies the ELM objective.

From this it can be shown that, by using the orthogonal projection method [137],
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the hidden-to-output connection weights can be computed as

β̂ = HT

HHT

−1
Y (3.18)

=

HTH

−1
HTY (3.19)

where eq(3.18) holds when HHT is nonsingular and eq(3.19) is valid when HTH is
nonsingular.

In addition, to achieve a stabler solution and to obtain better generalization per-
formance [71, 66], the ridge regression theory [60] can be exploited, and a positive
value 1/C can be added to the diagonal elements of HHT . By considering this,
and substituting eq.(3.18) in eq.(3.5), the predicted output of a new sample can be
computed as

ŷ = h(x)HT


I

C
+HHT

−1

Y. (3.20)

Kernel ELM

Standard ELMs perform an initial projection onto the ELM random feature space by
means of a linear mapping. To obtain a stable embedding that preserves the distance
between original data points such a mapping is randomly generated according to any
continuous sampling probability distribution.

However, this may still yield to: (i) lose of relevant data dimensions (if L is too
small); (ii) curse of dimensionality and high computational load issues (if L is too
large). This introduces the problem of selecting the proper number of hidden neurons
for the considered task.

In particular, it should be noticed that the curse of dimensionality problem states
that the difficulty of an estimation problem increases drastically with the dimension
L of the space. This is due to the fact that as a function of L, exponentially many
patterns are required to properly sample the L-dimensional space. This well-known
statement induces some doubts about whether it is a good idea to go to a high-
dimensional feature space for learning.

On the other hand, statistical learning theory shows that the contrary holds as
well. Indeed, learning in a very high dimensional space can be simpler if a low
complexity model is adopted. In particular, this is true if a low complexity mapping
accounting for the variability and richness of the data is used [173]. As demonstrated
in [124], such a mapping can be defined by a kernel function.

In light of this, instead of computing the mapping to the ELM random feature
space by means of a random projection matrix (i.e., by using h(x) : X → H), kernel
functions are exploited. Let φ(x(i),x(j)) be a kernel function, like a

(i) Gaussian RBF: φ(x(i),x(j)) = exp

(−∥x(i) − x(j)∥2)/2σ2



(ii) Polynomial: φ(x(i),x(j)) =

⟨x(i),x(j)⟩+ θ

d
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(iii) Sigmoidal: φ(x(i),x(j)) = tanh

κ⟨x(i),x(j)⟩+ θ



then, let Φ be the kernel matrix such that Φi,j = φ(x(i),x(j)). By substituting the
random projection matrix H with the kernel matrix Φ, the objective in eq.(3.17) can
then be re-written as

argmin
β

∥β∥+ ∥Φβ −Y∥. (3.21)

As before, since the kernel projection is known, only the hidden-to-output connection
weights have to be learned. The solution to the aforementioned problem is the same
suggested in eq.(3.16), where the generalized pseudo inverse should be computed for
Φ instead of for H.

As demonstrated in [71], by adopting kernels in ELM one can avoid to select the
number of hidden neurons L, and the predicted output class of a new data sample x̂
can be computed as

ŷ =



φ(x̂,x(1))

...
φ(x̂,x(n))




T


I

C
+Φ

−1

Y (3.22)

where x(1), . . . ,x(n) and Φ are the training data samples and the training kernel
matrix, respectively.

ELM Committee

As a result of the ELM training procedure carried out with the kernel extension,
the set of hidden-to-output layer connection weights are learned. Such weights are
learned by exploiting the set {(x(i),y(i))}ni=1 of n d-dimensional features. A feature
vector x(i) is typically computed by concatenating all the feature vectors deriving
from different cues (e.g., color histograms, Histogram of Oriented Gradients, etc.).
While such an approach is widely and successfully adopted, it may introduce several
problems. Indeed, if many multiple features are considered to represent the input
data, then the overall joint feature dimension may be very large. Thus, the computa-
tional load is increased. In addition, low dimensional features are usually dominated
by high dimensional ones, hence these are somehow considered as more important for
discriminating between input data patterns.

To address the aforementioned problems an approach that separately considers the
different types of features is proposed. Such an approach is named ELM committee

and works as follows. Let {(x(i)
∗ ,y(i))}ni=1 be the set of n training samples pairs, where

x
(i)
∗ = {x(i)

k : x
(i)
k ∈ Rdk , k = 1, . . . ,K} denotes the set of K different feature types

(e.g., color histogram, Histogram of Oriented Gradients, etc.) extracted for the i-th
training data sample and dk indicates the dimensionality of the k-the feature type.
Thus, it is not necessary that, features of different type span the same space, i.e.,

|x(i)
1 | may be different to |x(i)

2 |.
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In the ELM committee approach, an ELM is required to learn the optimal hidden-
to-output connection weights β̂ for each feature type separately. Therefore, K diffe-
rent sets of connection weights are learned by solving

β̂k = argmin
βk

∥βk∥+ ∥Φkβk −Y∥ (3.23)

where Φk denotes the ELM kernel mapping for the k-th feature type.

Since kernel ELMs are separately trained on different features, the solution to
their objectives produce K separate predictors, each one denoted as

ŷk =




Φk(x̂,x
(1)
k )

...

Φk(x̂,x
(n)
k )




T


I

C
+Φk

−1

Y (3.24)

where x
(1)
k , . . . ,x

(n)
k andΦk are the training data samples of type k and the correspon-

ding training kernel matrix, respectively. Such a procedure is highly parallelizable and
can easily scale to high-dimensional problems.

3.2.4 Committee Supervisor

In the previous sections a learning approach to separately model K different types
of features has been introduced. This reduces the computational loads and allows to
better handle the problems of dominating high dimensional features. Despite such
benefits, since an answer is given by each committee member (i.e., each single ELM),
there should be an appropriate pooling procedure that collects them to provide a final
decision. Such a task is accomplished by the committee supervisor.

The committee supervisor can be as simple as a pooling operator (e.g., average
pooling, max pooling, etc.). The common output of the supervisor is a class label.
However, we believe that when classification results have to be presented to users (as
in the case of object recognition), a ranking could be more appropriate. Towards this
objective, we introduce a supervisor that aims to learn the coefficients α of the linear
combination of the k = 1, . . . ,K member answers ŷk such that an optimal ranking
can be obtained. A Structural Support Vector Machine (i.e., the supervisor) has been
selected for such a task. The overall architecture is shown in figure 3.3.

The Structural Supervisor Objective

Let X and O denote the input feature (i.e., x ∈ X ) and the output (i.e., o ∈ O) spaces,
respectively. The idea behind Structural SVM [169, 170, 78] is to discriminatively
learn a scoring function f : X × O → R over input/output pairs, where the space of
the outputs O is no longer restricted to contain only numbered labels (as in common
classification problems), but it is a structured output space whose elements may be
sequences, strings, lattices, etc. In SELC, the structured output space consists in a
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ŷm

�
1,D

x1

x2

x3

xd�1

xd

h1

hL

h2

hL�1

ŷ1
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ŷ1

ŷ2
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Figure 3.3: Architecture of the proposed Supervised Extreme Learning Committee
approach.

ranking of the considered classes. Since the true class should be always ranked first,
such structured output space also yields to optimal classification performance.

As before, let X = {x(i)}ni=1 be the input set and c(i) ∈ C = {1, . . . ,m} denote
the class of the i-th sample. For a given sample x(i), the objective is to learn the
coefficients α that order relevant classes C(i)+ ⊆ C (i.e., classes “similar” the same
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class of the sample) before irrelevant ones C(i)− ⊆ C (i.e., classes “different” from the
class of the sample).

However, in common classification problems there is only knowledge of the order
between the relevant and irrelevant classes, but not of the order within relevant or
irrelevant ones. To overcome such an issue, we consider the query-class set of a sample
x(i) as a partially ordered set, where the partial order o(i) is defined as

o(i) = {o(i)+,(i)−}, o(i)
+,(i)− =


+1 if c(i)+ ≺ c(i)−

−1 if c(i)+ ≻ c(i)−
(3.25)

where c(i)+ ≺ c(i)− indicates that a relevant class c(i)+ ∈ C(i)+ is ranked before an
irrelevant one c(i)− ∈ C(i)−, and after otherwise.

In a structural SVM model the objective function is defined by

f(x;α) = argmax
o∈O

F (x,o;α) (3.26)

where α denotes a parameters vector. It might be useful to think of F as a family
of cost functions –parametrized by α, which measure how well the output o matches
the input of interest x.

By letting Ψ(x,o) be a combined feature representation of inputs and outputs and
assuming F to be linear in such a feature space, i.e.

F (x,o;α) = ⟨α,Ψ(x,o)⟩ (3.27)

then, the appropriate margins and constraints can be introduced to formulate the
structural SVM with slack rescaling objective [78] as

min
α,ξ≥0

1

2
∥α∥2 + γ

n

n

i=1

ξi (3.28)

s.t. ∀i,∀õ(i) ∈ O \ o(i) :

⟨α,Ψ(x(i), C;o(i))−Ψ(x(i), C; õ(i))⟩ ≥ 1− ξi
∆(o(i), õ(i))

where γ is a parameter that controls the trade-off between the norm of the coefficients
α and the average of the slack variables ξi. Ψ(·) is the combined feature representation
(details in the following) and O is the space consisting of all possible partial orders.
Within such a space, o(i) denotes a correct partial order that ranks all relevant classes
before irrelevant ones while õ(i) is an incorrect partial order that violates some of the
pairwise relations. Finally, ∆(o(i), õ(i)) is a suitable loss function that quantifies the
loss associated with predicting a wrong partial order.

The constraints in eq.(3.28) state that, for each sample, the score ⟨α,Ψ(x(i), C;o(i))⟩
of a correct order o(i) must be greater than the score ⟨α,Ψ(x(i), C; õ(i)))⟩ of all in-
correct orders õ(i) by a required margin. This margin equals 1 in the slack-rescaling
formulation.
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Supervisor Learning

As shown in eq.(3.28), three main components have to be defined in order to properly
achieve the final objective:

(i) The combined feature representation for inputs and outputs: Ψ(·);
(ii) The function used to compute the loss between a wrong and a correct partial

order: ∆(·, ·);
(iii) A separation oracle to optimize the given objective by means of the cutting

plane approach.

The Combined Feature Representation: The flexibility in designing Ψ(·)
has strongly pushed the adoption of Structural SVMs to attack a wide plethora of
problems like natural language parsing [169], object detection [194] and segmenta-
tion [10], just to name a few. Therefore, the choice of such function highly depends
on the task that one wants to address.

Since in the current approach only relevant and irrelevant pairs relationships are
known, a modification of the commonly adopted partial order feature [119, 77] is used.
This, denoted Ψ(x(i), C;o(i)), is computed as

|C(i)+|

i+=1

|C(i)−|

i−=1

o(i)
+,(i)− (ψ(x(i), c(i)+)−ψ(x(i), c(i)−))

|C(i)+||C(i)−| . (3.29)

In the proposed case, the order should be optimized over the committee members
decisions, thus the featureψ is represented by the output of theK committee members

ψ(x(i), c(i)) =

ŷ1c(i) , . . . , ŷ

K
c(i)

T
(3.30)

where ŷk
c(i)

is the output computed by the k-th member with respect to class label

c(i).

Such partial order feature is suitable for the proposed objective because it only
depends on the difference between relevant and irrelevant pairs, not the entire list.
By adding the differences of correct orders and subtracting that of incorrect orders,
the partial order feature emphasizes the directions in feature space which are closely
related to correct ordering.

The Loss Function: Similarly to the selection of a suitable combined feature
representation, the choice of the loss function for Structural SVMs is also highly
dependent on the task. Among all the possible loss functions that can be used, the
area under curve (AUC) measure [77, 185] is the more appropriate for the proposed
approach. Indeed, it allows to characterize the difference between relevant and and
irrelevant pairs with only partial order available.

As shown in [77, 185], computing the AUC requires computing a ranking. This
can be naturally obtained by ordering each example according to ⟨α,ψ(x(i), c(i))⟩, for
all c(i) ∈ C. From such a ranking, the partial ordering õ(i) can be computed and the
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AUC loss calculated as

∆(o(i), õ(i)) =

|c(i)+|

i+

|C(i)−|

i−

111(o(i)+,(i)− ̸= õ(i)+,(i)−)

|C(i)+||C(i)−| (3.31)

where 111(·) is the indicator function. Thus, the AUC loss function tells, on average,

how many incorrect orders are obtained with the current partial ordering õ(i).

The Separation Oracle: As shown in [77], learning a ranking function that
optimizes an upper bound on the AUC loss on the training set requires a constraint
for every possible wrong output õ(i). Unfortunately, the number of possible wrong
outputs is exponential in the size of C. Such a problem can be addressed by adopting
a cutting plane algorithm which iteratively introduces constraints until the original
problem is solved within a desired tolerance [170]. In such a case, one key step is to
efficiently determine the separation oracle. Given a fixed α, for each example x(i)

the separation oracle aims to find the output ȯ(i) associated with the most violated
constraint, i.e.

ȯ(i) = argmax
ȯ(i)∈O

⟨α,Ψ(x(i), C;o(i))⟩+∆(o(i), ȯ(i)). (3.32)

For a fixed α, the argument maximizing eq.(3.32) can be found by sorting the
committee answers by ⟨α,ψ(x(i), c(i))⟩ in descending order. This strongly reduces
the computational complexity as the maximization objective in eq.(3.32) only requires
O(n log n) processing time.

3.2.5 The Supervised Extreme Learning Committee Decision

In the preceding sections it has been shown how standard ELMs can be extended
to include Kernels as well as how a committee of such Kernel-ELMs can be formed.
Then, exploiting the idea that not every committee member should have the same
power to take th final decision, a committee supervisor, based on structural SVM
ranking, has been introduced.

Once the training procedure is completed, the learned parameters can be adopted
to obtain the ranking for a new test data sample x̂. First, the committee members are
asked to produce K answers [ŷ1, . . . , ŷK ]. Then, the learned supervisor coefficients α
are used to weights such answers. As a result, the output of the Supervised Extreme
Learning Committee is computed as

ỹ = αT



ŷT
1
...

ŷT
K


 . (3.33)

The ranking for the test data sample is finally obtained by sorting in descending
order the elements in ỹ.
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3.3 Experimental Results

To validate the proposed SELC approach, results on four benchmark datasets for food
recognition have been computed. For each of them, an analysis of the performances
of the selected features as well as on the benefits of the proposed approach with
respect to standard ELMs is conducted first. Then, the advantages of the proposed
supervisor with respect to other approaches are shown. Finally, comparisons with
state-of-the-art methods are presented to show the superior performance of SELC.

As commonly performed in the evaluation of food recognition approaches [22, 32,
33], the achieved results are shown in terms of recognition accuracy and by means of
the top-n criterion [32]. The top-n criterion defines the chance of obtaining a correct
recognition within the first n retrieved images.

The performances achieved by the existing methods have been taken from the
corresponding works or have been directly provided by the authors.

3.3.1 Experimental Settings

To evaluate the performance of our approach, we have adopted the following settings
for all the experiments. All the algorithm hyperparameters have been selected through
4-fold cross validation.

Image Feature Representation:

Color:
For every color channel a 32 bin histogram is extracted. Thus, the set of color histo-
gram features consists of 5 histograms (i.e., one for each color space) each of which
has dimensionality equal to 96.

Shape:

1. PHOG: features have been extracted from each color channel of a given image
which has been projected onto the HSV color space first [110]. HOG quantized
considering 9 bins have been extracted considering 3 levels of the spatial pyramid.
The resulting PHOG feature vector consists of 2295 elements.

2. GIST: the same implementation settings used in [127] have been adopted to get
the 512-D feature vector.

Texture:

1. LBP: the uniform rotation invariant descriptor [126] has been considered to extract
the LBP descriptor using 8-neighbors and a radius of 1. The resulting vector
consists of 59 elements.

2. LPQ: the basic LPQ version [136] with decorrelation and SIFT uniform 3 × 3
window for local frequency estimation has been used. The resulting 256-D vector
contains the histogram of the LPQ codewords.



60 3. Learning to Rank with a Committee of Shallow Neural Networks

3. LCP: a feature vector of 81-D has been extracted considering 8 neighborhoods and
a radius of 2.

4. BGP: The 216-D vector has been computed using the same settings described
in [188].

5. PRICoLBP: The code released with [133] has been used to extract the 1770-D
feature vector.

6. Textons: 300 Gaussian Mixtures have been considered to quantize the filter re-
sponses, hence to learn the codebook.

Apart from textons –which have been separately extracted from each channel of the
RGB color space– all other considered texture feature representations have been ex-
tracted from grayscale images.

Local:

1. DSP-SIFT: The Domain Size Pooling-SIFT (DSP-SIFT) descriptor [30] introduces
a simple modification of the original SIFT one. Specifically, gradient orientations
of a grayscale image are pooled across different domain sizes in addition to the
usual spatial locations. The descriptor computed for each detected keypoint lies
in a 128-D space.

2. OppSIFT: The 384-D visual descriptor –computed for every detected interest
point– describes all of the channels in the opponent color space. Due to the nor-
malization of the SIFT descriptor, such a feature is invariant to changes in light
intensity [172].

3. C-SIFT: In [172], authors showed that the O1 and O2 components of the opponent
color space contain intensity information. To obtain a descriptor which is scale-
invariant with respect to light intensity changes, the 384-D C-SIFT descriptor was
proposed [172].

Each of these feature has been encoded using a BoW approach with 1000 codewords.

Data-Driven:
Following [139], the output for the last convolutional layer has been taken as the
image feature representation. As a result each image is described by a 4096-D feature
vector.

When jointly considered, the resulting feature vector lies in a 19770-D feature
space.

Kernels

When kernel-ELMs are used, their performances are evaluated using four different
kernels, namely the:

1. linear kernel;
2. cosine kernel;
3. exponential χ2 kernel;
4. radial basis function kernel (with free parameter set to 1);
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Datasets

To validate the proposed method four publicly available benchmark datasets have
been considered. The PFID [22], UNICT-FD889 [32], the UECFood100 [117] and
the Food-101 [16] datasets have been selected because they provide different food
recognition challenges:

1. The PFID dataset has images acquired under different lighting conditions and
from different viewing angles. Therefore, it is useful to understand if the proposed
method is robust to such challenges.

2. The UNICT-FD889 dataset has images of 889 different real food plates acquired
by mobile devices in uncontrolled scenarios. Hence, results on this dataset provide
an estimate on how well an algorithm scales to a real scenario.

3. The UECFood100 dataset contains about 14000 images, corresponding to 100 dif-
ferent food categories.

4. Similarly, the Food-101 dataset has images of 101 different foods. However, in
such case 1000 images for each category are available. Due to the large number of
images, these two datasets are well suited to evaluate the learning performance of
the proposed approach.

More details regarding each dataset are given in the following.

Experimental Scenarios

Three main different scenarios have been selected to analyze the performance of the
proposed approach. These are the followings:

1. To see how single features perform on the food recognition task, performances
obtained by separately exploiting each considered type of feature have been com-
puted.

2. To demonstrate the benefits of kernel ELM over standard ELM, results will be also
given for the case when kernel is not used. Under such a scenario, the number of
hidden neurons has been set to L = 1000.

3. To demonstrate the benefits of the proposed kernel-ELM committee supervisor,
the achieved performance are compared to those obtained by using common fusion
schemes: (a) low -level consists in feature concatenation; (b) mid -level, where the
kernels computed for different features are combined. Results have been obtained
by kernel averaging [40], kernel product [40] and by exploiting the Sparse and Non-
Sparse version of Multiple Kernel ELMs (MKELMs) [108]; (c) high-level, where
committee members outputs are fused using the weights learned by means of score
averaging, Lasso and Logistic Regression (our method belongs to such a category).

In all the following results, the performances shown for both the mid and high-levels
fusion schemes (SELC included) have been computed using the χ2 − exp kernel for
every feature type. Notice that, the kernels could have been separately selected for
each dataset to obtain better recognition performance. However, to provide a more
general framework, the choice of the kernel has been kept fixed.
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Ffigure3.4:15randomflyseflectedsampflesffromthePFIDdataset. Eachcoflumn
correspondstoadfifferenttypeoffffood(fi.e.,adfifferentcflass). Rowsshowthree
dfifferentfinstances.InthePFIDdatasetsomeffoodcflasses(fi.e.,fitemsonthe5th,6th
and7thcoflumns)areverysfimfiflartoeachother.

3.3.2 PerfformanceEvafluatfion

PFIDDataset

ThePfittsburghFast-ffoodImageDataset1(PFID)wasthefirstdatasetbufifldexcflu-
sfiveflyfforffoodrecognfitfion[22]. ThePFIDcontafinsdataoffthreefinstancesoff61
dfifferentffoodfitemswhfichwerepurchasedondfifferentdatesffromthesamerestau-
rantoratdfifferentbranchesoffthesameffastffoodchafin.Eachfinstancehas6fimages
coflflectedunderdfifferentflfightfingcondfitfions,wfithdfifferentbackground,andsensed
ffromdfifferentvfiewfingangfles(seeFfigure3.4).Asaresuflt,thewhofledatasetcontafins
1089fimagesoff61dfifferentcflassesoffffood.

Foflflowfingtheprotocoflfin[182,33],perfformanceevafluatfionshaveaflsobeencon-
ductedbyre-organfizfingthe61PFIDffoodcategorfiesfinto7majorcflasses:Sandwfiches,
Saflads&Sfides,Chficken,Breads&Pastrfies,Donuts,Bagefls,andTacos.Inboththeca-
ses,3-ffofldcross-vaflfidatfionhasbeenconductedusfing12fimagesffromtwofinstancesoff
eachorfigfinaflcflassffortrafinfing,andthe6remafinfingfimagesoffthethfirdfinstanceoff
eachorfigfinaflcflassffortestfing[182,33].

PerfformanceAnaflysfis:

InFfigure3.5(a)theperfformancesachfievedbythesfingfleffeaturesusfingdfifferent
kerneflsareshown.Letconsfiderthecasewhennokerneflfisused.Undersuchscenarfio,
resufltsdemonstratethatPRIcoLBPffeaturesarethebestperfformfingoneswfithan
accuracyoff30.62%.Ingenerafl,coflorhfistogramsandtextureffeaturesperfformbetter
thantheCNNones.Despfitethfis,whentheCosfinekerneflfisused,theopposfiteoccurs
andCNNffeaturesyfiefldtothebestperfformancewfithanaccuracyfimprovementoff
about30%.

InFfigure3.5(b)theperfformancesachfievedbyconsfiderfingthejofintffeaturespace
(fi.e.,flowfleveflffusfionscheme)andusfingdfifferentkerneflsareshown. Thedepficted
resufltsshowthat,whennokerneflfisused,theaccuracyfisoff14.59%,whfichfiseven
flowerthantheoneachfievedbyusfingsomeffeaturesaflone.IfftheCosfinekerneflfis

1Avafiflabfleathttp://pfffid.fintefl-research.net/

http://pfid.intel-research.net/
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Figure 3.5: Accuracy performances obtained by the proposed method on PFID da-
taset. In ((a)) performances achieved by using single features with different kernels
are given. In ((b)) performances achieved by considering the joint feature space and
different kernels are shown.
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Figure 3.6: Top–n Performances on the PFID dataset using the proposed approach are
compared to the results achieved considering the best performing low/mid/high level
fusion schemes. In ((a)) results are computed considering all the 61 classes. In ((b))
results are computed considering only the 7 major classes. The inside pictures show
the performance on a reduced range of Top–n.

adopted, performance reaches an accuracy of 50.75%, which is slightly better than the
single performance achieved by CNN features only. This shows that, as for the single
feature scenario, if a kernel is used performance will improve. However, dependently
on the adopted kernel, the performances of the joint feature approaches are very close
or even worse than the ones achieved by using the best single feature. This highlights
the fact that, if jointly considered, there is no guarantee that adding more features
to tackle the problem of food recognition improves the performance.
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Figure 3.7: Confusion matrices computed for both the standard PFID dataset ((a))
and its 7 major classes ((b)). The lighter the diagonal, the more effective the approach.
In ((b)), the class labels and the correct classification percentages are shown.

To show the benefits of the proposed committee-based method, in Figure 3.6 the
achieved top–n performances are compared to the ones obtained by the low/mid/high
level fusion schemes having the best accuracy results on the considered dataset. Re-
sults have been computed considering both the 61 categories and the 7 major classes.

Results computed considering all the 61 categories (see Figure 3.6(a)) show that
by using the proposed SELC approach the accuracy performance is of 53.73%. Thus,
it SELC improves the best results obtained by considering the joint features and
cosine kernel by about 3%. Such a gap increases more with larger values of n. A
similar difference in performance is shown with respect to the average high level
fusion scheme. Kernel averaging yields to a significant decrease in the performance.
Indeed, in such a case the accuracy is of 38.36%, only.

When the 7 major classes are considered only, a similar behavior is achieved (see
Figure 3.6(b)). Considering the accuracy reached by using the linear (85.86%) and
the cosine (85.22%) kernels for the low level fusion scenario, the accuracy improves
by 5.03% and by 5.67% respectively. When the best performing mid and high level
fusion schemes used for comparisons are considered, SELC improves the corresponding
accuracies by more than 7% and 10%, respectively.

To better analyze the performance of the proposed method, the confusion matrices
shown in Figure 3.7 have been computed. The lighter the diagonal line, the more
effective the approach, because it has a higher probability of classifying food of a
given category as itself. When the 7 major classes are considered (Figure 3.7(b)), the
correct classification percentages are shown together with the class labels.
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Figure 3.8: Performances achieved on the PFID datasets by the proposed method are
shown for 6 query images (organized in two rows). The bar histograms show the score
(in percentage) of the proposed approach for the true match (in green) and for the
remaining top 4 matches (in red). On the y-axis of each bar histogram a randomly
selected training image corresponding to the food class is depicted.

For both the scenarios, the diagonal elements show high probabilities, thus re-
flecting the capacities of the proposed approach in correctly classifying most of the
plates. More interestingly, Figure 3.7(b) have a light vertical band showing that in
a large number of cases a food is assigned to the Sandwich class. The motivation
behind such behavior is that in the 7 major classes dataset, the majority of the sam-
ples belong to such a class. Hence the dataset is not well balanced among all the
classes as it was in the case all the 61 categories were considered. Therefore, when
the algorithm is trained with many Sandwich samples and very few Taco samples that
shares similar characteristic as those, the classifier is not able to find a good decision
boundary separating the two classes.

In Figure 3.8 the performances achieved by the proposed method are shown for 6
query images (see caption for additional details). The depicted results demonstrate
that proposed approach is able to well capture the global appearance of the images and
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Figure 3.9: Comparisons with state-of-the-art methods computed considering all the
61 categories in the PFID dataset. Results are shown as classification accuracy.
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Figure 3.10: Comparisons with state-of-the-art methods on the PFID dataset consi-
dering only the 7 major classes. Results are shown as classification accuracy.

it also has the capacity to reliably find the true match under challenging conditions.
When the query image is not correctly classified, or the considers cases are very
challenging, the resulting scores are very close to each other, thus meaning there is
uncertainty in the given answer.

State-of-the-art Comparisons: In Figure 3.9, the performance of the proposed
SELC approach is compared to the state-of-the-art ones. The comparison is given with
respect to the PFID dataset with all the 61 classes. Results demonstrate that the
proposed approach improves the state-of-the-art performance of CTX-MKL [11] by
more than 5.2% and outperforms recent approaches like Class-BoT [33] and OM [182]
by more than 20%.
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Tabfle3.1: Cflassfificatfionperfformancesachfievedbystate-off-the-artmethodsonthe
7majorcflassesoffthePFIDdataset.Sfincethenumberofffimagesfforthedfifferent
cflassesfisnotbaflanced,fforeachcflasstheper-cflassaccuracyfisgfiventogetherwfith
thecorrespondfingnumberofffimages.Bestresufltsfforeachcflassarefinbofldffaceffont.

Imagespercflass Sandwfich
Saflad&
Sfides

Bagefl Donut Chficken Taco
Bread&
Pastry

Oneachtestrun 228 36 24 24 24 12 18

Percflassaccuracy[%]
(NumberoffImages)

Sandwfich
Saflad&
Sfides

Bagefl Donut Chficken Taco
Bread&
Pastry

Coflor[22]
69.0
(157.3)

16.0
(5.8)

13.0
(3.1)

0.0
(0)

49.0
(11.8)

39.0
(4.7)

8.0
(1.4)

BoWSIFT[22]
75.0
(171)

45.0
(16.2)

15.0
(3.6)

18.0
(4.3)

36.0
(8.6)

24.0
(2.9)

3.0
(0.5)

GIR-STF[182]-[155]
79.0
(180.1)

79.0
(28.4)

33.0
(7.9)

14.0
(3.4)

73.0
(17.5)

40.0
(4.8)

47.0
(8.5)

OM[182]
86.0
(196.1)

93.0
(33.5)

40.0
(9.6)

17.0
(4.1)

82.0
(19.7)

65.0
(7.8)

67.0
(12.1)

Cflass-BasedBoT[33]
87.6
(199.7)

84.3
(30.3)

70.8
(17.0)

43.1
(10.3)

66.7
(16.0)

69.4
(8.3)

53.7
(9.7)

SELC
98.25
(224.1)

98.15
(35.3)

63.89
(15.3)

62.50
(15.0)

94.44
(22.7)

47.22
(5.7)

81.48
(14.7)

InTabfle3.1andFfigure3.10theaccuracyperfformancecomparfisonbetweenthe
proposedapproachandstate-off-the-artonesonthe7 majorcflassesoffthePFID
datasetaregfiven.Inaddfitfion,ffoflflowfingfin[33],tobetterunderstandtheresuflts
finTabfle3.1,thenumberofffimagesbeflongfingtothedfifferentcflassesarereported
togetherwfiththeper-cflassaccuracy.

ResufltsdepfictedfinFfigure3.10showthattheaccuracyperfformanceoffSELC
(90.9%)outperfformsaflfltheconsfideredaflgorfithms,wfithPRI-CoLBP[133]befingthe
cflosestoneswfithanaccuracyoff87.3%.

ResufltsfinTabfle3.1showthatthemafinsourceofferrorsfistheTacoffoodcategory.
Asaflreadydfiscussed,thfisfisduetothefimbaflancedcondfitfionsoffthedataset.Despfite
thfis,theproposedSELCapproachperfformsbetterthanexfistfingonesfincflassfiffyfing5
outoff7categorfies.Inthetworemafinfingcase,Cflass-basedBoT[33]perfformsbetter.
NotficethatCflass-basedBoTrequfiresthatanencodfingfiscomputedfforeachdfifferent
cflassoffffood. Whfiflesuchanapproachcoufldhavebeenexpflofitedfinourworkasweflfl,
wedecfidednottousefittoflfimfitthecomputatfionaflrequfirements.

UNICT-FD889Dataset

TheUNICT-FD889Dataset2hasbeenrecentflyfintroducedfin[32]. TheUNICT-
FD889datasetfistheonethathastheflargestnumberoffdfifferentcflassestorecognfize.
Itcomeswfith3583fimagesreflatedto889dfistfinctffoodcategorfiesbeflongfingtodfifferent

2Avafiflabfleathttp://fipflab.dmfi.unfict.fit/UNICT-FD889

http://iplab.dmi.unict.it/UNICT-FD889
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Figure 3.11: 15 randomly selected samples from the UNICT-FD889 dataset. Columns
correspond to a different type of food (i.e., to a different class). Rows show the
appearance variations between samples belonging to the same class.
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Figure 3.12: Accuracy performances on the UNICT-FD889 dataset achieved by: ((a))
using single features with different kernels and ((b)) considering the joint feature space
and different kernels.

nationalities (e.g., Italian, English, Thai, Indian, Japanese, etc.). Images have been
collected in a real and uncontrolled scenario (e.g., different backgrounds and light
environmental conditions) by means of smartphones. Hence, the UNICT-FD889 da-
taset is a collection of food images acquired by users in real cases of meals. Each food
belonging to a particular class has been acquired multiple times (four on average) to
ensure geometric and photometric variabilities (see Figure 3.11 for a few examples).

To provide a fair comparison with existing methods, the following results have been
computed by averaging the performance on the same three splits adopted in [32].

Performance Analysis: In Figure 3.12(a) the performances achieved by the
single features using different kernels are shown. Differently from the results of single
feature on the PFID dataset, in such a case the best classification accuracies are
achieved using color histogram features. In particular, when no kernel is used, an
accuracy of 53.44% is achieved using color histogram features extracted from the
normalized RGB color space. CNN features do not perform well. Their classification
accuracy obtained without using a kernel is of 14.03% only. However, when kernels
are introduced, their performance increases significantly and a classification accuracy
of 66.30% is reached using the Cosine kernel. Thus, as shown for the PFID dataset,
results demonstrate that the choice of an appropriate kernel may strongly improve
the recognition performance.

In Figure 3.12(b) the performances achieved by considering the joint feature space
(i.e., low level fusion scheme) and using different kernels are shown. The depicted
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Figure 3.13: Performances on the UNICT-FD889 dataset using the proposed approach
are compared to the results achieved considering the best performing low/mid/high
level fusion schemes. Performance are given using the top–n criterion.

results show that, when no kernel is used on the joint feature space the obtained
accuracy (5.15%) is much less than the one obtained by using color histogram features
only. While the usage of a kernel drastically improves the accuracy performance, these
are still on the same line as the ones achieved by color histograms. Indeed, using the
χ2 − exp kernel an accuracy of 68.95% is reached (which is very similar to the one
obtained using the same kernel on normalized RGB histogram features, i.e. 72.16%).

In Figure 3.13 the top–n performance of the proposed SELC approach is compared
to the ones achieved by the best performing low/mid/high level fusion schemes. Under
such scenario, results show that significant benefits can be obtained by using the
proposed high level fusion committee-based approach.

In particular, let us consider the results obtained by the low level fusion approach
using the χ2−exp kernel. When n = 1, a classification accuracy of 68.95% is obtained
using the joint feature space. SELC reaches a classification accuracy of 88.85%, thus
yielding to a 20% performance improvement. Such a gap reduces to 1%, only when
n=300. Similarly, when compared to the mid and high level fusion schemes, results
show that a significant improvement is achieved. Specifically, an accuracy impro-
vement of about 17% and 3.5% is obtained with respect to the Product Kernel [40]
and the Average fusion schemes, respectively.

In Figure 3.14 the performances achieved by the proposed method are shown for
6 query images (organized in two rows). The reported cases show that the proposed
approach is able to well capture both the global appearance of the images and the
little details that differentiate two very similar classes (e.g., see the first query on the
second row).
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Figure 3.14: Performances achieved by the proposed method on the UNICT-FD889
dataset are shown for 6 query images (organized in two rows). At the bottom of each
of those, the bar histograms show the score (in percentage) of the proposed approach
for the true match (in green) and for the remaining top 4 matches (in red). On the
y-axis of each bar histogram a randomly selected training image corresponding to the
food class is depicted. (Best viewed in color)
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State-off-the-artComparfisons: InFfigure3.15theperfformanceofftheproposed
SELCapproachfiscomparedtothestate-off-the-artonesgfivenfin[32,114]. The
depfictedresufltsdemonstratethattheproposed methodstrongflyoutperfformsthe
exfistfingonesbyfimprovfingthebestprevfiousperfformancebymorethan28%.In
partficuflar,thePRI-CoBP[133]approachthathassfimfiflarperfformancetoSELCon
thePFIDdataset,fisgettfingthesecondworstaccuracyontheUNICT-FD889dataset.

UECFood100Dataset

TheUECFood100Dataset3fisoneofftheflargestffoodrecognfitfiondatasets[117].
Thfisdatasetcontafinsapproxfimatefly14000reafl-worfldffoodfimagesbeflongfingto100
dfifferentcategorfies.TheUECFood100datasetwasbufiflttofimpflementapractficaflffood
recognfitfionsystem[86]whfichwasfintendtobeusedfinJapan.Becauseoffthfis,fitwas
coflflectedfinsuchawaythatmufltfipfleffoodfitemswerepresentfinasfingflefimage,thus
wfiththeobjectfivetoperfformboththedetectfionandtherecognfitfiontasks.However,
sfincetheproposedsystemfisdesfignedtoffocusonflyontherecognfitfiontask,thegfiven
groundtruthboundfingboxeshavebeenusedtoobtafinadatasetofffimagescontafinfing
sfingfleffoodfitemsonfly(seeFfigure3.16).Despfitethfis,thesameprotocoflfin[117]has
beenffoflflowedtoffafirflycomparetheobtafinedperfformancewfithexfistfingmethods.

Perfformance Anaflysfis: InFfigure3.17,theaccuracyperfformanceonthe

3Avafiflabfleathttp://ffoodcam.mobfi/dataset100.htmfl

http://foodcam.mobi/dataset100.html
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Figure 3.16: 15 randomly selected samples from the UECFood100 dataset. Images
of single food items were obtained by using the given ground truth bounding boxes.
Columns correspond to a different type of food (i.e., to a different class). Rows show
the appearance variations between samples belonging to the same class.
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Figure 3.17: Accuracy performances on the UECFood100 dataset obtained by single
features and joint ones, both with different kernels. In ((a)) the results of single fea-
tures with different kernels are depicted. In ((b)) the accuracy performances obtained
by considering the joint feature space and different kernels are shown.

UECFood100 dataset are shown for single features (Figure 3.17(a)) and joint features
(Figure 3.17(b)) both with different kernels.

Results in Figure 3.17(a) show the performances achieved by single features exploi-
ting different kernels. When no kernel is used to model each single feature space, local
features are well discriminating between the 100 categories. Data-driven features (i.e.,
CNN) yield to the best performance with a classification accuracy of about 53.54%.
Color histogram features extracted from the normalized RGB color space achieve the
lowest classification accuracy (i.e., 0.96%). As for the other two considered datasets,
when kernels are used performances strongly improve. In particular, the CNN feature
performance increases to 66.99% and to 74.30% when the cosine and the χ2 − exp
kernels are adopted, respectively. Using the same kernels, MRS4 encoded features
yield to a classification accuracy of 34.21% and 47.96%. More interestingly, when the
linear and the RBF kernels are used the CNN feature performance significantly drop
down to 2.11% and 2.78%.

Performance achieved by considering the joint feature space and using different
kernels are depicted in Figure 3.17(b). Results show that an accuracy of 58.63% is
reached when no kernel is used to model the joint feature space. Performance improves
by 16.15% if the cosine kernel is adopted. Such an improvement is more significant
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Figure 3.18: Results on the UECFood100 dataset using the proposed approach are
compared to the best performing low/mid/high level fusion schemes. Performance
are shown using the top–n criterion.

when the exponential χ2 kernel is used. Indeed, in that particular case performance
increases by more than 20%.

In Figure 3.18 the top–n performance of the proposed SELC approach is compared
to the ones achieved by the existing low/mid/high level fusion schemes that have the
highest accuracy on the considered UECFood100 dataset. Results show that, for low
values of n, the performance achieved by SELC is very close to the ones obtained by
modeling the joint features space with the χ2 − exp kernel. In particular, when n=1,
the gap between the two approaches is of about 3%. Such a difference remains stable
and reduces to 0.5% only when n=32. The mid and high level fusion schemes used for
comparison, namely Product Kernels [40] and Lasso, have an accuracy of 46.71% and
61.80%, respectively. Thus, such methods are strongly outperformed by the proposed
fusion scheme.

Qualitative performances achieved by the proposed SELC approach on the UE-
CFood100 dataset are shown in Figure 3.19. Results are shown for 6 query images
(organized in two rows). The depicted images demonstrate that the proposed appro-
ach is able to model the appearance of the 100 categories and can well generalize to
even very challenging test samples (e.g., first row, 3rd query).

State-of-the-art Comparisons: In Figure 3.20 the performance of the proposed
SELC approach is compared to the state-of-the-art ones both in terms of classification
accuracy and by using the top–n criterion. Results are compared to the ones provided
in [117] and [181]. Methods like Circle, JSEG, DCR, DPM, andWhole (all from [117]),
use a detector to identify the location of the food, while GTBB [117] and PMTS [181]
uses the same ground truth as SELC. The reported results demonstrate that state-of-
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Figure 3.19: Performances achieved by the proposed method on the UECFood100
dataset are shown for 6 query images (organized in two rows). At the bottom of each
of those, the bar histograms show the score (in percentage) of the proposed approach
for the true match (in green) and for the remaining top 4 matches (in red). On the
y-axis of each bar histogram a randomly selected training image corresponding to the
food class is depicted. (Best viewed in color)
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Ffigure3.20:Comparfisonswfithstate-off-the-artmethodsontheUECFood100dataset.
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Ffigure3.21:15randomflyseflectedsampflesffromtheFood-101dataset. Coflumns
correspondtoadfifferenttypeoffffood(fi.e.,toadfifferentcflass). Rowsshowthe
appearancevarfiatfionsbetweensampflesbeflongfingtothesamecflass.

the-artperfformancearesfignfificantflyfimprovedffrom60.2%(PMTS[181])to84.3%.
Suchadfifferencereducesflfittflewhennfincreases. Whenn=5theproposedmethodfis
theonflyonethatachfievesacflassfificatfionaccuracyoffmorethan95%.

Toconcflude,whfifleresufltsoffotherapproachesthatusethedetectorarenotdfirectfly
comparabfle,wecanhypothesfizethatsfinceGTBBusesthesameffeaturesandflearnfing
aflgorfithmasthosetoperfformthecflassfificatfion,fitfispflausfibfletoassumethatSELC
outperfformssuchmethodsasweflflfiffthesamedetectorfisused.

Food-101Dataset

TheFood-101Dataset4fistheflargestffoodrecognfitfiondataset[16].Ithasbeencofl-
flectedbydownfloadfingfimagesffromffoodspottfing.comThetop101mostpopuflarand
consfistentflynameddfisheswereseflected. Then,fforeachcategory750trafinfingand
250testfimageswerecoflflectedandmanuaflflycfleaned.Onpurpose,thefintensecoflors

4Avafiflabfleathttp://www.vfisfion.ee.ethz.ch/datasets/ffood-101

http://www.vision.ee.ethz.ch/datasets/food-101
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Figure 3.22: Feature and kernel performance analysis on the Food-101 dataset.
In ((a)) classification accuracies achieved by using single features with different ker-
nels are shown. In ((b)) the accuracy performances obtained by considering the joint
feature space (low-level fusion scheme) and different kernels are depicted.

and sometimes wrong labels included in the training images were not cleaned. As a
result the dataset contains 101’000 real-world food images (see Figure 3.21).

The same splits introduced in [16] have been used to compute all the following
results.

Performance Analysis: Results in Figure 3.22 show the accuracy performances
on the Food-101 dataset of single features and joint features (i.e., low-level fusion
scheme) with different kernels.

Results, in Figure 3.22(a) show that the performances of single features are similar
to the ones obtained for the other datasets with CNN ones largely dominating the
others. Such features achieve a 49.54% accuracy when the χ2 − exp kernel is used.
The second runner up is the MRS4-IFV feature with an accuracy that is less than
half of the aforementioned one (i.e., 24.80%). Regardless the considered kernel, color
histograms, LBP and LCP barely achieve an accuracy higher than 15%. Thus, these
are the worst performing ones for such a dataset.

When all such features are jointly considered (see Figure 3.22(b)) the performances
improve and an accuracy of 52.90% is obtained using the χ2 − exp kernel. In all
the other cases, the performances considerably reduce, even with respect to single
features. In particular, when the RBF and linear kernels are used the accuracy never
gets higher than 20%. Thus, showing that CNN and MRS4-IFV features used alone
yield to better performance.

In Figure 3.23, the top–n performance achieved by SELC is compared to the
ones obtained by using different fusion schemes. Specifically, the results are shown
for the low/mid/high level fusion schemes that have the highest accuracy on this
dataset. Results show that the proposed approach obtains the highest accuracy (i.e.,
55.89%) and it also yields to the best ranking with respect to other methods. More
interestingly, the best high fusion scheme, i.e., Lasso, has the worst performance both
in terms of accuracy and ranking.

State-of-the-art Comparisons: In Table 3.2, the accuracy performance of
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Figure 3.23: Top–n performances on the Food-101 dataset. The results achieved by
the proposed fusion scheme are compared to the ones obtained by using the best
low/mid/high ones.

SELC is compared to the ones obtained by existing methods on the Food-101 dataset.
Results show that, with an accuracy of 56.40%, the best performing approach on
such dataset is achieved by employing a convolutional neural network which has been
trained using the AlexNet architecture. Such results reflects the performance achieved
by our single CNN features which achieves an accuracy of 49.54%. However, notice
that in such a case the adopted OverFeat [153] has been trained on natural images
and not on this dataset specific samples. Despite this, the performance of SELC is
only 0.51% less than the best existing one. All the other approaches are significantly
outperformed. In particular, the performance of the very recent RFDC [16] work is
improved by more than 5%.

Computational Performance

To show the computational performance of the proposed approach, we have computed
the results in Table 3.3 and Figure 3.24.

Results in Table 3.3 report on the classification accuracy and the processing times
required to run a non optimized MATLAB implementation of the proposed appro-
ach on a Intel Xeon E5-v2660 machine equipped with 256GB of RAM. The results
are shown for all the datasets and for the different fusion schemes. The processing
reported for PFID training has been average over all the three trials.

Results demonstrate that the low level fusion schemes are less demanding in terms
of computational times. In particular, when no kernel is exploited, only 1 second is
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Table 3.2: Accuracy performance achieved by state-of-the-art methods on the Food-
101 dataset. Best results is highlighted in boldface font.

Method Accuracy [%]

HoG [16] 8.85
SURF BoW-1024 [16] 33.47
SURF BoW-1024 + Color
BoW-256 [16]

38.83

SURF IFV-64 [16] 44.79
Color IFV-64 [16] 14.24
SURF IFV-64 + Color Bow-64 [16] 49.40
BoW [16] 28.51
IFV [16] 38.88
AlexNet-CNN [16] 56.40
RF [16] 37.72
RCF [16] 28.46
MLDS [16] 42.63
RFDC [16] 50.76
SELC 55.89

required for training. When kernels are introduced the processing time increases and
reaches a maximum of about 16 seconds (χ2 − exp kernel).

Mid and high level fusion schemes have similar performances both in terms of
accuracy as well as in processing times. Specifically, it should be noticed that the
SELC approach requires more processing time than Average and Product Kernels [40],
and the Average high fusion methods only. These only require a sum or a product over
kernels or committee answers. Thus, the proposed fusion scheme not only produces
the best accuracy but it is also competitive in terms of computational performance.

Finally, it is a matter of fact that nowadays, food recognition algorithms are
very attractive for mobile devices. As regards a possible deployment of the SELC
approach on such devices, we can state the following. As shown in Table 3.3, the
kernel computation is computationally demanding, especially if the training set is
very large. On the contrary, the classification and fusion operations can be performed
in fractions of a second. Despite this, the proposed approach uses many different
features which requires more than a couple of second to be extracted.

To verify if all the proposed features are necessary for a correct classification we
have performed the following experiment on the Food-101 dataset. We have run the
proposed approach by subsequently eliminating a single committee member output
from the recognition phase (i.e., the fusion weight assigned to the feature has been
zeroed). The process is conduced by eliminating the features following an ordering
given by the sorted (ascending) supervisor weights. Thus, the feature assigned with
the lowest weight is eliminated first. Results in Figure 3.24 show that by eliminating
12 features out of 17, the performance decreases by about 1%. If two more features are
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Table 3.3: Computational and accuracy performances [%] of the proposed method.
The PFID training time performances [s] are shown in the 7th column. The given
values have been averaged over the three considered trials. The last column shows the
time required to classify a single image (averaged over all the datasets). Best results
are highlighted in boldface font.

PFID PFID7
UNICT-
FD889

UECFood100 Food-101
PFID Training

Time [s]
Average Test

Time [s]

L
ow

No Kernel 14.59 33.22 5.15 58.63 31.88 0.99 0.01
Cosine 50.75 85.22 65.15 74.78 46.18 2.97 0.08
χ2 − exp 46.37 81.22 68.95 81.32 52.90 15.48 0.29
Linear 48.10 85.86 57.02 1.54 1.07 2.69 0.07
RBF 19.13 18.33 7.17 18.11 17.08 2.91 0.07

M
id

Average
Kernels [40]

38.36 82.67 59.74 11.06 37.26 68.75 1.67

Product
Kernels [40]

36.99 78.03 71.77 46.71 38.61 68.07 1.64

Sparse
MKELM [108]

35.63 80.31 57.33 10.96 49.07 74.82 1.71

Non-Sparse
MKELM [108]

35.81 80.49 57.44 12.25 39.88 74.65 1.73

H
ig
h

Average 48.38 78.76 85.24 52.40 31.09 69.11 1.74
Lasso 35.54 80.31 57.29 61.80 39.46 72.86 1.76
Logistic-
Regression

38.47 68.94 55.86 51.71 32.35 102.40 1.77

SELC 53.73 90.89 88.85 84.31 55.89 70.57 1.76

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

[%
]

48

50

52

54

56 55.89% 55.89% 55.89% 55.89% 55.72% 55.72% 55.80% 55.72% 55.72% 55.63% 55.54% 55.54% 55.54%

54.32% 54.32%

49.80% 49.54%

Food-101 Dataset - Feature Importance

SELC -LCP -LBP -HIST
RGB

-DSP-SIFT -LPQ -HIST
hsv

-HIST
Opp

-HIST
nRGB

-HIST
lab

-PRICoLBP -BGP -PHOG -C-SIFT -GIST -Opp-SIFT -MRS4-IFV

Figure 3.24: Accuracy performance achieved by the proposed approach with sub-
sequent elimination of a committee member. First bar shows the SELC approach
performance. Following ones show the results obtained by eliminating a particular
feature and all the other ones appearing on its left, from the test phase. The last co-
lumn shows the accuracy performance obtained by eliminating all the features other
than CNN ones.
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removed, such a reduction is more evident and the accuracy goes below 50%. Results
demonstrate that only few features are very discriminative and the supervisor is able
to capture such information. Thus, to reduce the computational complexity, features
that are assigned a low fusion weight can be excluded from the test phase without
significant performance loss.

To summarize, the proposed method has significant complexity both in terms of
memory and time for the computation of the considered features. However, this addi-
tional computational burden is justified by the better performances that are obtained
with respect to other fusion schemes and approaches in the literature.

3.3.3 Discussion

On the basis of the results obtained for the four considered datasets we can state the
following considerations.

Features:
Results on single features have shown a large inconsistency across the different da-
tasets. For instance, color histogram features yield to excellent performance on the
UNICT-FD889 dataset while they perform very poorly on the UECFood100 and Food-
101. The opposite occurs when CNN features are considered. In addition, despite
a common belief, texture features generally yield to unsatisfying results over all the
datasets. Such a behavior is largely driven by the intrinsic challenges of each specific
dataset.

More specifically, let us consider the UNICT-FD889 dataset. Images of a same ca-
tegory are acquired by taking picture of the same dish under different conditions (e.g.
by rotating the plate, zooming in, etc.). Since the considered food images are highly
textured and generally present similar gradients, features considering such informa-
tion (local features included) tend to perform poorly, especially if color information
is not considered. Results for the other datasets follow similar motivations.

Kernels:
Results have shown that using a kernel function instead of computing a random
mapping between the input and hidden ELM neurons has significant benefits in terms
of classification accuracy. In particular, for low values of n the choice of an appropriate
kernel matters and can significantly affect the performance. However, different kernels
yield to different improvements which also depend on the type of considered feature.
Such difference in the results is driven by the specific kernel computation and its
parameters.

For instance, when computing the RBF kernel we have set the free parameter to 1
(optimal for all features/datasets on average). However, since this controls the radius
of influence of each sample and depends on the magnitude of the considered feature
components, it is reasonable that for some specific features the kernel computation
yields to a new feature space which is highly separable into the specific food categories.

A similar reasoning could be extended to the joint feature cases. Despite this,
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it should be noticed that the cosine and the χ2 − exp kernels generally improve the
recognition performances.

Supervisor:
The deep comparison with other low/mid/high-level fusion scheme has shown that
for every dataset the proposed supervisor yields to better performance than other
approaches. This substantiate the benefits of the proposed committee-based appro-
ach. More specifically, results have demonstrated that the Structural SVM is able to
correctly capture the feature importance and can exploit this information to produce
better results both in terms of classification accuracy as well as in terms of ranking
performance. Moreover, it has negligible impact on the computational burden.

Overall Performance:
The results obtained conducting an extensive analysis and the comparisons with state-
of-the-art approaches have shown that, regardless of the considered dataset, the pro-
posed SELC approach can be successfully applied for food recognition purposes. It
also scales very well to real-world widely different scenarios. Finally, the computati-
onal analysis and the feature importance evaluation have shown that SELC can be
easily extended for mobile devices usage.

3.4 Conclusion

In this chapter, a system for image recognition based on a learning committee has
been introduced. The committee-based approach has been conceived with the idea
that existing ad-hoc image representations based on a priori knowledge of the problem
might not be sufficient to correctly handle the task. Therefore, a system that uses as
many different features as possible but exploits only a subset of those to perform the
image classification task has been proposed. The approach has been named Supervised
Extreme Learning Committee (SELC). In SELC, each ELM is presented a particular
feature type only, hence it highly specializes on classifying images by using a certain
feature type. The classification results obtained by the committee members are later
fused into a single output by means of a Structural SVM. This produces an optimal
plausibility rank.

To show the benefits of the proposed SELC approach extensive evaluations on
four benchmark datasets have been conducted. These demonstrated that SELC has
superior performance to the single members taken separately, as well as to other
existing fusion schemes. Comparisons with existing methods have shown that SELC
is able to outperform the state-of-the-art results on all the considered datasets.
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4
Going Deeper and Wider with
Wide-Slice Residual Networks

The recent success of DNN for image classification tasks generated a
enormous amount of research which generally exploited off-the shelf deep
architectures to classify images. The chapter grounds on the idea that
better results can be obtained if the deep architecture is defined with respect
to an analysis of the image composition. Following such an intuition, a
new deep scheme is designed to handle the image structure. Extensive
evaluations on three benchmark datasets demonstrate that our solution
shows better performance with respect to existing approaches.

4.1 Introduction

The recent advent of deep learning technologies has achieved successes in many visual
perception tasks such as object and action recognition, image segmentation, visual
question answering, etc. [158, 166, 54, 34, 26, 189, 195, 56, 64]. Yet the status quo of
computer vision and pattern recognition is still far from matching human capabilities
especially when it comes to classify an image whose intra-category appearance might
present more differences than its inter-category counterparts.

Specifically, in the previous chapters we have seen that the image recognition
problem can be addressed by exploiting hand-crafted image representations based
on a priori knowledge of the problem (e.g., [117, 33, 133]). Such a solution yielded to
encouraging results (e.g., [33, 16, 115] obtained considering combinations of different
features (e.g., color, shape, spatial relationships, etc.).

The solutions included in the aforementioned categories consider that the manu-
ally designed feature representation are optimal for the specifically addressed tasks.
While this is appealing, it might not be the case and it also contrast the neuros-
cience discoveries which showed that the human brain is organized in a hierarchical



84 4. Going Deeper and Wider with Wide-Slice Residual Networks

Figure 4.1: The food recognition problem is characterized by severe intra-class variati-
ons. However, some dishes have a particular structure which has not been considered.

fashion with large circuit modularity and substantial reuse of general sub-circuits.
This feature might indicate that in the hierarchical brain model, initial processing
layers act as feature detectors producing information that is general, yet exploitable
in many specific classification problems. Then, by going deeper in the hierarchical
architecture, more task-specific information is captured. It has been showed that such
a feature can be included in a hierarchical learning architecture by aggregating simple
features into more and more complex patterns as the structure becomes deeper.

Following such results, there have been a surge of effort in investigating the possi-
bility of learning specific image representation (e.g., [87, 107, 48, 21, 125]). However,
such approaches generally obtained better performance thanks to a mere application
of off-the-shelf DNN solutions to the problem. Thus, existing approaches neglected
the design of a proper architecture which considers the specific problem challenges.
This motivates the development of a novel architecture that is defined following an
analysis of the image composition.

Specifically, in this chapter we introduce a novel WIde-Slice Residual Network
(WISeR) that has been designed to capture the structural information that is present
in some food dishes (i.e., images). Our key intuition is that, regardless the exploited
ingredients and the final presentation, many dishes are largely characterized by ver-
tical food layers. For instance, 15% of the whole data in the Food-101 benchmark
dataset is represented by food images that have such traits (see Figure 4.1 for few ex-
amples). Thus, we propose to leverage such a vertical structure to introduce the slice
convolution layer. However, since not all the food dishes present such a structure, we
also exploit a large residual learning architecture to obtain a generic food represen-
tation. This, together with the representation obtained from the slice convolution, is
enclosed in single architecture to emit the food classification.

Contributions:: Concretely, our contributions are: (i) We propose a novel con-
volutional layer that captures the vertical structure of food dishes; (ii) By combining
the features detected through such layer with a stack of residual learning blocks we
obtain a good representation for food dishes which do not show a specific structure;
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(iii) Significantly enlarge the number of feature maps per convolution layer to tackle
the diminishing feature reuse issue in deep residual networks [162], thus to improve
the representational power of the learned feature detectors.

Results on three benchmark datasets show that, by combining such three ingre-
dients together, our approach performs better than existing works in the field.

4.2 Wide-Slice Residual Networks

Our goal is to take a single-shot of an image and output the corresponding food
category. The proposed model aims to achieve such an objective by combining a slice
convolution layer with residual learning.

4.2.1 Architecture

As shown in Figure 4.2, the model consists of a single deep network with two main
branches: a residual network branch (Sec. 4.2.2), and a slice network branch with
a slice convolutional layer (Sec. 4.2.3). The residual network encodes generic visual
representations of food images. The slice network specifically captures the vertical
food layers. Features extracted from the two branches are then concatenated and fed
to the fully connected layers that emit a classification prediction.

4.2.2 Residual Network Branch

Residual Learning

Since the breakthrough paper on extremely deep neural networks first appeared in [52]
and later published in [54] –which won the ILSVRC and MSCOCO 2015 competitions,
a surge of effort has been dedicated on exploring residual learning in such architec-
tures. The idea behind residual learning is very simple yet has been shown to be
extremely effective [54] in solving optimization issues that affects the process of lear-
ning the parameters of very deep neural networks (e.g., with more than 20 layers).

Everything starts from the assumption that given an input x, a shallow network
with few stacked non-linear layers can approximate a mapping function M(x). On
the basis of such an assumption, it is reasonable to hypothesize that a network with
the same structure can approximate the residual function F(x) =M(x) − x (given
that the input and output have the same dimensionality). While, either learning
an approximation of the mapping function M(x) or the residual function F(x) is
feasible, the ease of such a process is significantly different. Indeed, as demonstrated
in [54], deep networks trained to approximate the mapping functionM(x) suffer from
a degradation that does not appear in networks trained on approximating the residual
function F(x). This opens to the success of residual learning for very deep networks.
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Figure 4.2: Proposed WISeR architecture consisting of two branches: a residual net-
work branch (Sec.4.2.2), and a slice branch network with slice convolutional layers
(Sec.4.2.3). The output of the two branches in fused via concatenation, then fed to
the two fully connected layers to emit the food classification prediction.
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Figure 4.3: Graphical representation of (a) Basic Residual Blocks and (b) Wide Re-
sidual Blocks. By expanding the number of convolution kernels (i.e., widening), the
number of parameters to learn increases, hence the networks has more capacity.

Wide Residual Blocks

Following the methodology in [54], we exploit residual learning every few stacked
layers. Formally, we let a residual block with identity mapping [55] be represented as

xl+1 = xl + F(xl,Wl) (4.1)

where xl, xl+1 and Wl = {Wl,k|k = 1, . . . ,K} represent the input, the output and
the set of parameters associated with the l-th residual block, respectively. K denotes
the number of layers in a residual block (K = 2, in our case). The residual learning
objective is to find the parameters Wl that best approximate the function F(xl,Wl).

Before going further it is important to emphasize a few relevant ingredients regar-
ding eq.(4.1):

i) neither extra parameter nor computation complexity is introduced (except for
the negligible addition performed on feature maps, channel by channel);

ii) the function F(xl,Wl) is very flexible and can represent both fully connected
and convolutional layers;

iii) if the dimensionalities of xl and F(xl,Wl) are different (e.g., when varying
the number of feature maps), a linear projection P can be exploited by the
shortcut connections to match the dimensions (i.e., eq.(4.1) becomes xl+1 =
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Figure 4.4: (a) Standard squared convolutional kernel commonly used in deep learning
architectures for food recognition. (b) Proposed slice convolutional kernel aiming to
capture the vertical layer structure of some food dishes.

Pxl + F(xl,Wl)).

Armed with eq.(4.1), as shown in Figure 4.3, we followed the recommendations
in [55] and adopted the batch normalization (BN) and ReLU (ReLU) layers as “pre-
activations” for the convolutional layers (Conv). Then, to increase the representational
power of a residual block we shared the same idea as [186] and widen the convolutional
layers by significantly increasing the number of feature maps. This has been shown to
be able to tackle the diminishing feature reuse problem [162] and improve performance
of residual networks compared to increasing their depth.

4.2.3 Slice Network Branch

Slice Convolution

Common deep learning architectures (e.g., [158, 166, 54, 55]) exploit squared kernels
to detect and extract relevant image features (see Figure 4.4(a)). Same occurs when
such architectures are applied to the food recognition task (e.g., [87, 107, 48, 21]).
By doing this, existing approaches do not directly consider the vertical traits of some
food dishes. We believe that, while such a vertical structure can be captured via the
deep hierarchy, a specific food layer detector can be extremely useful when it comes
to classify food dishes that present such a peculiarity.

For such a purpose, we propose to exploit a slice convolution (see Figure 4.4(b)).
It will learn the parameters of a convolution kernel that has the same width as the
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Ffigure4.5: Ffivedfifferentffooddfishesappearfingfinthe(a)UECFood100,(b)UE-
CFood256,and(c)Food-101datasets.Thethreerowshfighflfightthestrongfintra-cflass
varfiatfionsfforthesameffooddfish.(Bestvfiewedfincoflor)

finputfimage.Insuchaway,fitwfiflflactasavertficaflflayerffeaturedetector.

SflficePooflfing

Foraspecfificvertficaflflystructuredffoodcategory,fitfisnotguaranteedthatthevertficafl
flayersappearsfinthesameposfitfion.Thus,theoutputoffthesflficeconvoflutfionmfight
bedfifferentdependfingontheflocatfionoffsuchvertficafltrafits.Totackflethfisfissuewe
perfformmaxpooflfingonvertficaflflyeflongatedwfindows.Asaresufltweexpectthata
specfificffoodflayerfisdetectedwfithfinacertafinvertficaflflocatfion.

4.3 ExperfimentaflResuflts

Ffirst,wedescrfibetheseflecteddatasetsandtheevafluatfionprotocofl.Thfisfisffoflflowed
byadfiscussfionoffexperfimentaflanddesfignseflectfions. Then,wepresentthecom-
parfisonswfithexfistfingmethodstodemonstratethesuperfiorperfformanceoff WISeR,
ffoflflowedbyconcfludfingremarks.

4.3.1 Datasets

Tovaflfidatetheproposed WISeRapproach,resufltsonthreebenchmarkdatasetsffor
ffoodrecognfitfionhavebeencomputed.Thesehavebeenseflectedonthebasfisoffthe
dfifferentchaflflengestheycarry.SeeFfigure4.5fforaffewsampfles.

UECFood1001: TheUECFood100dataset[117]contafins100dfifferentffood
categorfiesfforatotafloffapproxfimatefly14’000fimages.Imagesacqufiredbymobfifle
camerascontafinthemostpopuflarJapaneseffooddfishes.Sfincethedatasethasbeen
concefivedtoaddressareafl-worfldchaflflenge,theacqufiredpficturesmaycontafinmore
thanasfingfleffooddfish.Thereffore,thfisdatasetfisuseffufltounderstandfifftheapproach

1http://ffoodcam.mobfi/dataset100

http://foodcam.mobi/dataset100
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fisabfleperfformffoodflocaflfizatfionbefforecflassfificatfion,hencefifffitffocusesonthereflevant
fimagedetafifls.

UECFood2562: TheUECFood256[88,89]fisanewfly-constructedffoodfimage
dataset,whfichhasbeenbufifldonthefideathatnumberoffffoodcategorfiesfinexfistfing
datasetsfisnotenoughfforpractficafluse.Authorsexpflofitedknowfledgeonffoodoffother
countrfiesandfleveragedonexfistfingcategorfiestoextendtheUECFood100dataset.
Thesoobtafineddatasetcontafins256dfifferentffoodsdfisheswhficharerepresented
finabout32’000fimages. AsffortheUECFood100dataset,mufltfipfleffooddfishescan
appearfinasamefimage. Wfiththfisdatasetweafimtoevafluateourapproachon
cflassfiffyfingaflargenumberoffchaflflengfingcflasses.

Food-1013: Theffood-101dataset[16]consfistsoffreafl-pficturesoffthe101most
popuflardfishesthatappearedonffoodspottfing.com.Onpurpose,thefimageshavenot
beenseflectedandcheckedbyhumanoperator,hencethetrafinfingsetcontafins75’750
fimageswfithfintensecoflorsandsometfimeswrongflabefls.Addfitfionaflfly,250testfimages
havebeencoflflectedfforeachcflass,andhavebeenmanuaflflycfleaned. Thedataset
hasatotafloff101’000reaflworfldfimages,fincfludfingverydfiversebutaflsovfisuaflflyand
semantficaflflysfimfiflarffoodcflasses.Thfisaflflowsustovaflfidateourapproachonaflarge
datasetbufifldwfithweakflyflabefleddata.

4.3.2 EvafluatfionProtocofl

Evafluatfionoffffoodrecognfitfionapproaches(e.g.,[117,86,33,11])fisgeneraflflyperffor-
medbyshowfingtheTop-1recognfitfionaccuracy.Inaddfitfiontothat,weaflsoreport
onthetop-5crfiterfionasgeneraflflyconsfideredwhenprovfidfingtheresufltsachfievedby
deepneuraflnetworks.

FortheUECFood256andFood-101datasets,weusedtheprovfidedspflfits.Sfince
theUECFood100datasetdoesnotcomewfithsuchaffeature,weevafluatedtheperffor-
manceoffourapproachusfingthesameprotocoflfin[87,48],hencerandomflypartfitfioned
thedatasetfintotwosubsetsusfing80%offthefimagesffortrafinfingandtherestffortes-
tfing.

Notficethat,theperfformanceachfievedbytheexfistfingmethodshavebeentaken
ffromthecorrespondfingworksorhavebeendfirectflyprovfidedbytheauthors.

4.3.3 ExperfimentaflandImpflementatfionSettfings

Exfistfingffoodrecognfitfiondeepnet-basedapproachestweakthenetworkhyperpara-
meterstothespecfificdataset(e.g.,[87,48]).Inourevafluatfion,wehavedecfidednot
tospecfificaflflyadjustthemtoprovfideagenerficfframework.

Foflflowfingthecommonrecfipeadoptedbyexfistfingapproaches[87,21,11],we

2http://ffoodcam.mobfi/dataset256
3http://www.vfisfion.ee.ethz.ch/datasets/ffood-101/

foodspotting.com
http://foodcam.mobi/dataset256
http://www.vision.ee.ethz.ch/datasets/food-101/
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did not train our architecture from scratch since it required more food images than
all the ones that are currently available in any dataset. We started from a WRN
architecture [186] pre-trained on the ImageNet 2012 (ILSVRC2012) classification da-
taset [143].Then, we added the slice convolution branch and fine-tuned the whole
architecture on the selected food recognition datasets. We initialized the new slice
convolution units adopting the scheme proposed in [53]. To balance the learning rate
of existing units and the new ones, we forced the learning rate of the latter to be 5×
the learning rate of the former ones.

Data: During the fine-tuning process we augment the number of dataset samples
by taking 224×224 random crops from images resized such that the smaller dimension
is of 256 pixels. We also exploited horizontal flipping with the scale and aspect ratio
augmentation technique proposed in [166]. In addition, we applied photometric dis-
tortions [63] and the AlexNet-style color augmentation [54]. In testing, we considered
the standard 10-crop testing [92].

For the UECFood100 and UECFood256 datasets we provide the results considering
the whole images as well as the performances obtained with ground-truth cropped
pictures. We adopted the ground-truth regions included in the publicly available
versions of the two aforementioned datasets.

Optimization: Model training was performed via stochastic gradient descent
with mini-batches containing 24 samples. The initial learning rate has been set to
0.01, then updated to 0.002 and 0.0004, after 50k and 90k iterations respectively.
Momentum has been set to 0.9 and a weight decay penalty of 0.0005 had been applied
to all layers. Training has been stopped after 100k iterations.

4.3.4 Performance Analysis

State-of-the-art Comparisons

In the following, the performances of our approach are compared to the state-of-the-
art ones on the three considered benchmark datasets.

UECFood100: Table 4.1 shows the results achieved by existing methods and
compares our approach with the top performer [186] on the UECFood100 leaderbo-
ard. Considering ground-truth cropped images, our architecture improves the Top–1
performance of existing works specifically designed for food recognition (i.e., [113, 21])
by more than 7%. Such a gap reduces to about 2.5 percentage points if comparison
is given with respect to [186]. The WISeR architecture is the only one that surpasses
the 99% recognition accuracy at Top–5.

Notably, our solution shows a significant improvement over [107] (i.e., about 20%)
when the considered images are not cropped to contain the ground-truth only, but
exhibit more food dishes appearing at the same time.

UECFood256: Table 4.2 lists the best existing results available for the UE-
CFood256 dataset. The depicted results show that our solution obtains the best
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Table 4.1: Top–1 and Top–5 performance on the UECFood100 dataset. First 3 rows
show the results achieved by using methods adopting hand-crafted features. Next
11 rows show the performance obtained by deep learning-based approaches on the
ground-truth cropped images. Last 2 rows depict the results obtained considering
images having more than a single food class (i.e., no ground truth is exploited). Best
results is highlighted in boldface font.

Method Top-1 Top-5 Publication

MKL 51.6 76.8 COST2016 [107]
FC7 58.03 83.71 ACMMM2016 [21]
SELC 84.3 95.2 CVIU2016 [113]

DeepFoodCam 72.26 92.00 UBICOMP2014 [87]
AlexNet 75.62 92.43 ACMMM2016 [21]
DeepFood 76.3 94.6 COST2016 [107]
FV+DeepFoodCam 77.35 94.85 UBICOMP2014 [87]
DCNN-FOOD 78.77 95.15 ICME2015 [180]
VGG 81.31 96.72 ACMMM2016 [21]
Inception V3 81.45 97.27 ECCVW2016 [48]
Arch-D 82.12 97.29 ACMMM2016 [21]
ResNet-200 86.25 98.91 CVPR2016 [54]
WRN 86.71 98.92 BMVC2016 [186]
WISeR 89.58 99.23 Proposed

DeepFood 57.0 83.4 COST2016 [107]
WISeR 79.46 97.46 Proposed

performances by surpassing the 83% and 95% recognition accuracies at Top–1 and
Top–5, respectively.

More interesting are the performances obtained when no-ground truth is consi-
dered to locate the food dish within the image. In such a case, we outperform the
previous best result and obtain the overall third best Top–5 recognition accuracy,
thus achieving better performance than recent methods which consider ground-truth
cropped images (e.g., [48, 54]).

Such an outcome, together with the results shown in Table 4.1, might indicate
that our proposed solution is able to focus only on the relevant portion of an image
to perform the classification task. As shown in Figure 4.6, visual inspection of the
obtained performance substantiate this hypothesis. It also demonstrate that the pro-
posed solution has gained an high-level knowledge of the food dishes by giving high
scores to food plates that are very similar to each other, or contain more than a single
food class (e.g., 2nd to 5th sample). To obtain more detailed insights on such results,
an analysis of the visual attention performed by the architecture has been conducted
(see Sec. 4.3.5).

Food-101: A comparison with existing methods on the Food-101 dataset is
shown in Table 4.3. Results demonstrates that our solution outperforms the best
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Table 4.2: Top–1 and Top–5 performance on the UECFood 256 dataset. First 3
rows show the results obtained by using methods adopting hand-crafted features.
Next 7 rows show the performance obtained by deep learning-based approaches on
the ground-truth cropped dataset images. Last 2 rows depict the results obtained
considering input images having more than a single food class (i.e., no ground truth
is exploited). Best result is highlighted in boldface font.

Method Top-1 Top-5 Publication

RootHOG-FV 36.46 58.83 UBICOMP2014 [87]
Color-FV 41.60 64.00 UBICOMP2014 [87]
Color-FV+HOG-FV 52.85 75.51 UBICOMP2014 [87]

DeepFoodCam 63.77 85.82 UBICOMP2014 [87]
DeepFood 63.8 87.2 COST2016 [107]
DCNN-FOOD 67.57 88.97 ICME2015 [180]
Inception V3 76.17 92.58 ECCVW2016 [48]
ResNet-200 79.12 93.00 CVPR2016 [54]
WRN 79.76 93.90 BMVC2016 [186]
WISeR 83.15 95.45 Proposed

DeepFood 54.7 81.5 COST2016 [107]
WISeR 72.71 93.78 Proposed

Table 4.3: Top–1 and Top–5 performance on the Food-101 dataset. First 9 rows show
the results obtained by using methods adopting hand-crafted features. Last 7 rows
show the performance obtained by deep learning-based approaches. Best results is
highlighted in boldface font.

Method Top-1 Top-5 Publication

SURF BoW-1024 33.47 - ECCV2014 [16]
SURF IFV-64 44.79 - ECCV2014 [16]
BoW 28.51 - ECCV2014 [16]
IFV 38.88 - ECCV2014 [16]
RF 37.72 - ECCV2014 [16]
RCF 28.46 - ECCV2014 [16]
MLDS 42.63 - ECCV2014 [16]
RFDC 50.76 - ECCV2014 [16]
SELC 55.89 - CVIU2016 [113]

AlexNet-CNN 56.40 - ECCV2014 [16]
DCNN-FOOD 70.41 - ICME2015 [180]
DeepFood 77.4 93.7 COST2016 [107]
Inception V3 88.28 96.88 ECCVW2016 [48]
ResNet-200 88.38 97.85 CVPR2016 [54]
WRN 88.72 97.92 BMVC2016 [186]
WISeR 90.27 98.71 Proposed
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Figure 4.6: Top–5 WISeR predictions on 5 image samples from the UECFood256
dataset (with no cropped ground-truths). Test image are shown at the top. In the
bar plots, predictions are ranked from top (most likely class) to bottom (less likely
class). The true match class is represented by a green bar. False matches are shown
with red bars. (Best viewed in color)

results obtained by considering hand-crafted features [113]. The proposed architecture
performs better than all the existing deep learning-based ones by achieving a Top-1
accuracy of more than 90%. Such a result shows that our solution is able to learn
good representations even from weakly labeled data. This substantiates the fact that
residual learning-based networks are not suffering from the diminishing feature reuse
problem [162].

Ablation Analysis

Branch Performance: To better understand the source of our performance,
Table 4.4 shows results for ablation experiments analyzing the contributions of the two
architecture branches. Specifically: (i) slice@WISeR removes the residual network
branch. Classification is obtained by considering only the slice convolution branch
features; (ii) residual@WISeR performs the opposite. Food recognition is achieved
via classification of residual features.
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Table 4.4: Top–1 and Top–5 performance achieved by separately exploiting the two
proposed network branches on the UECFood100, UECFood256 and Food-101 data-
sets. Slice@WISeR shows the results obtained using only the slice convolution branch.
Residual@WISeR shows the performance achieved via the residual learning branch.

Dataset Model Top-1 Top-5

UECFood100
slice@WISeR 41.72 66.15
residual@WISeR 86.71 98.92

UECFood256
slice@WISeR 30.56 57.65
residual@WISeR 79.76 93.90

Food-101
slice@WISeR 46.17 63.57
residual@WISeR 88.72 97.92

Results show that for all the three datasets, the residual learning branch (i.e.,
residual@WISeR) largely outperforms the slice one. We hypothesize that the reason
behind such a result is due to the following facts: (i) The residual learning branch
has been pre-trained considering a very large set of natural images (i.e., ImageNet),
while the weights of the slice branch are learned from scratch. Features extracted
from a network trained on ImageNet –without fine-tuning– have shown to be highly
discriminative per se for many visual recognition tasks [153, 81] (food recognition
included [113]). Thus, it is reasonable to believe that such a pre-training introduces
significant priors for the network weights. This is confirmed by the fact that training
the whole WISeR architecture from scratch results in a recognition rate of 78.12%,
68.37%, and 79.45% on the three considered datasets, respectively. (ii) Capturing
only vertical layer features excludes learning of other distinctive traits that are not
specific of vertically structured food dishes.

Model Capacity: Improved recognition performance of WISeR over standalone
WRN can be attributed to the increased model capacity on target tasks rather than
slice convolution. To verify such a possibility, starting from the same ImageNet pre-
trained WRN network, we exploited the transfer learning scheme proposed in [128] by
including an additional 2048-units fully connected layer before the output one, then
trained on the specific food dataset. Results show that using the transfer learning
scheme with no slice branch, Top1 results on all the datasets improve little over stan-
dalone WRN (about 1% on average). Thus, performances are lower than the ones
obtained with the proposed solution.

Per Category Performance: Since the vertical pattern might not be generic,
to see for which categories the slice convolution is helpful and for which categories
it instead hurts we have conducted the computed the results in Figure 4.7. Results
show that, on 14 out of 15 food categories presenting a vertical structure, performan-
ces are improved. Degradation on food dishes that do not present vertical traits is
limited (i.e.,about 0.7% on average) and occurs only in 23 cases over the remaining
86 categories.
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Figure 4.7: Per-category Top–1 recognition percentage on 30 categories from the Food-
101 dataset. Blue and red bars represent the results obtained by residual@WISeR on food
categories that either present or not the vertical traits, respectively. The green bars represent
the results obtained by the proposed WISeR approach.

4.3.5 Visual Attention

Results on the UECFood100 and UECFood256 datasets show that our approach can
extract the useful information for classification from the relevant image regions only.
To have a richer grasp on this outcome, we have conducted an analysis of the vi-
sual attention performed by the architecture. Towards this end, we have exploited
the recent Grad-CAM approach [152]. It allows to obtain a coarse localization map
regarding the important regions in the image which are considered for classification.

As show in Figure 4.8, when more than a single food dish is present in the image,
the WISeR architecture is able to focus only on the image portion that contains the
object of interest. This is substantiated by the fact that features are not extracted
from other non-relevant food/non-food objects (e.g., the plate containing green leaves,
the spoon, the paper glass, etc.).

4.3.6 Discussion

Outcomes: Results obtained for the three datasets demonstrate that: (i) our
solution shows better performance with respect to existing approaches either based
on hand-crafted features or on deep learning schemes; (ii) while the residual learning
branch brings most of the classification power, by combining the so extracted features
with the vertical layer traits discovered through the slice convolution branch the best
achievements are attained; (iii) the proposed WISeR architecture is able to self-dis-
cover the image portion that should be considered to extract the features, hence to
emit the classification.

This shows that our approach is able to well address the many non-trivial chal-
lenges in food recognition and is not designed to tackle the specific problems brought
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Figure 4.8: Analysis of the visual attention obtained through our architecture on two
randomly selected images from the UECFood100 dataset. First column is the input
image, second column shows the visual attention with a color-coded plot (blue means
lower attention, red higher). Last column depicts the gradient computed with respect
to the input image, showing that features are extracted only from the relevant image
region. Results obtained through Guided Grad-CAM visual explanation [152]. (Best
viewed in color)

in by a single dataset.

Limitations: It is a matter of fact that nowadays food recognition algorithms are
very attractive for mobile platforms. Our solution requires substantial memory loads
as well as significant computational efforts to process a single datum, thus denying a
possible deployment of our approach on these devices. A possible solution to such a
problem would be to compress the network to obtain a shallower architecture [47] or
to exploit binary weights [138]. We demand this study to future works.

4.4 Conclusion

In this chapter, a system for automatic image recognition based on a deep learning
solution specifically designed for the considered task has been proposed. The WI-
SeR architecture combines features extracted from two main network branches. The
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residual learning branch provides a deep hierarchy which is able to capture the ge-
neral traits that are shared with the majority of the existing categories. The slice
convolution branch captures the structural information (i.e., vertical layers) of the
images which present such a peculiarity. The features extracted from these branches
are fused then exploited to emit the classification.

To demonstrate the benefits of the proposed solution, evaluations on three bench-
mark datasets have been conducted. Comparisons with existing methods have shown
that by exploiting both the architecture branches together better performance than
state-of-the-art approaches are achieved regardless the considered dataset. The vi-
sual attention analysis has shown that the network is able to self-identify the relevant
portions of the image that should be considered for classification.



5
Extreme Deep Learning Trees:

The Evolution of Neural
Learning Systems

This chapter introduces a novel hierarchical learning architecture that
aims to overcome the major problem which previously presented solutions
suffer from: the need to manually design the whole architecture pipeline.
First, a brief review of the most common biologically-inspired learning
schemes which are the basis for the proposed learning model is presented.
The description of the proposed solution follows with preliminary expe-
rimental evaluations conducted on three datasets having different image
classification tasks.

5.1 Introduction

We, as humans, are inherently able to complete a plethora of different and complex
task in fractions of a second. In particular, in every instant of our chaotic and crowded
lives we are exposed to a myriad of data acquired through many different sensors, but
are somehow able to catch the relevant aspects of such data in a way that allows for
their future use. Most of this capability we embody comes from the robustness and
the efficiency of our brain, which is one of the reasons why mimicking its behavior
has been a widely explored research area in artificial intelligence.

In response to this call, previous chapters have introduces hierarchical learning
architectures that ultimately aimed to emulate our own visual abilities. However,
current performance still remains a long way from the goal; and, although, in the last
few years, deep learning architectures have taken huge steps towards achieving such
a goal, they still lack several features that limit their use.
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To push the progress towards cloning human capability with innovative techni-
ques, in this chapter we start by providing a brief overview of the mainstream brain-
inspired architectures and research directions proposed over the past decade. At the
outset, however, it is important to emphasize that each architecture has strengths and
weaknesses, depending on the application and context in which it is being used. Arti-
ficial Neural Networks (ANNs), Neural Trees (NTs), Convolutional Neural Networks
(CNNs) and Extreme Learning Machines (ELMs) (and their respective variations) are
the primary focus because they are well established in the field and have just showed
great promise for future work. After such an analysis a novel architecture exploiting
the strengths of the current methods is proposed. Preliminary results demonstrate
that it is able to achieve state-of-the-art results in a more efficient way.

5.2 ANNs: The Basis of Neural Learning

In the last 30 years, different hierarchical learning architectures and models have been
proposed to mimic the human brain. By far, the most widely adopted is the Arti-
ficial Neural Network (ANN). An ANN introduces layers of artificial computational
units (i.e., neurons) wired in such a way that they resemble the human brain neural
connections.

5.2.1 Artificial Neural Networks

As shown in Figure 5.1, ANNs are composed of a number of basic computational
units, called neurons. These, organized in layers, perform linear or nonlinear trans-
formations of their inputs. ANN structures usually contain one input layer, one output
layer and possibly one or more hidden layers. The neurons of two adjacent layers are
connected by synaptic weights. Every neuron computes a transfer function, e.g. a
weighted sum of the outputs generated by the previous layer, then applies an activa-
tion function. The outputs are then connected to the next layer. The procedure ends
when the output layer is reached.

An ANN without a hidden layer is a linear discriminant method known as single-
layer feedforward neural network (SLFN). If nonlinearity is intrinsic in the classifica-
tion problem, one or more hidden layers should be considered to define a multilayer
ANN (e.g., a Multilayer perceptron (MLP) [142]).

ANNs can be classified into two classes depending on how the neurons are con-
nected. This connection characterizes the flow of the input information and gives rise
to two main kinds of network: feedforward ANNs and recurrent ANNs. In feedfor-
ward neural networks, input information flows only in one direction from one layer to
another and there is no feedback loop in any other layer of the network. In recurrent
neural networks at least one feedback loop exists in the network structure.

In both the cases, the purpose of training the network is to compute the optimal
weights that minimize a suitable criterion function known as loss function or cost
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Figure 5.1: An ANN with k hidden layers. The input column vector x ∈ Rd represents
the input layer. The hidden nodes at hidden layer i compute the transfer function

h
(i)
j = xTW + b for all j = 1, · · · , li, where li is the number of hidden nodes at

layer i, W ∈ Rd×li are the connection weights and b ∈ Rli is the bias term. Then,
a nonlinear transformation g(·), known as the activation function, is applied to each
transfer function to produce the output which serves as the input for the next layer.
The same operations are repeated for all the layers in the network. The output of the
last layer is finally input to a suitable cost/loss function which should be minimized.
The error computed through such a function is used by the BP algorithm to learn the
optimal weights and biases.

function. For classification, optimal weights should reduce misclassification [187] while
correct prediction of the real-valued output is expected for regression problems [160].
The sum-of-square error and the cross entropy are the two most adopted criteria for
cost functions [90].

Recently, extensions to standard ANNs were proposed by considering genera-
tive models (e.g., Deep Belief Networks (DBNs) [57] and Deep Boltzmann Machines
(DBMs) [144]) and unsupervised pre-training (e.g., Stacked Auto Encoders (SAEs) [176]
and Statcked Denoising Auto Encoders (SDAEs) [176]) to initialize the connection
weights.
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5.2.2 Backpropagation for Neural Learning

By far the most popular training method for multi-layer ANNs is the backpropagation
(BP) algorithm [142]. It is based on two phases that are iterated till convergence. A
first phase fed forward the patterns using the connection weights (which, for the first
are usually randomly initialized). The output of the last layer is compared with the
expected value to compute the training error. Then, such error is backpropagated, i.e.
fed back, to the neural network and used to adjust the weights using a gradient descent
strategy. A complete forward-backward propagation is called an epoch. The training
stops after a certain stopping criterion is satisfied. This can be a predefined number
of training epochs, cross validation [163] and early stopping [122]. Later, derivations
of BP including momentum [46], Nesterov’s Accelerated Gradient [165] and second
order information [20] were introduced.

5.2.3 What are the limits of ANNs?

Due to the non convexity objective function of the ANN, the BP algorithm may
get stuck in a local minimum. Therefore, several training runs with different initial
weights should be performed to find a good solution. This further increases the
computational effort [49].

In addition, there is no fixed a priori rule to decide, for any given problem, the
architecture (i.e., number of hidden layers and nodes in each of these layers) of an
ANN. This can only be done by evaluating the network performance using different
architectures and selecting the one that produces the best results.

Last but not least, ANNs learn how to transform the input patterns into the desired
outputs. Usually, input patterns derive from an extraction process that involves the
knowledge of the problem and supposes that certain features best represent the raw
data for the task. It often happens that bad performance of the ANNs is related to
the wrong selection of the features adopted to represent the data rather than to the
discriminative incapacity of the ANN process.

To summarize, ANNs at present have drawbacks and limitations including: (i)
slow learning speed, (ii) trivial human tuned parameters, (iii) non-optimum learning
algorithms, (iv) a priori knowledge for proper representation of the input data.

5.3 NTs: An Hybrid Neural Architecture

To overcome some of these limitations, novel hybrid architectures originating from
decision trees (DTs) and simple perceptrons have been proposed. The main motiva-
tion for the development of this new architecture came from the search for a training
algorithm able to learn the structure of the architecture rather than requiring its
upfront definition.
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Algorithm 2: NT Training

Input : The training set X
Output: The trained NT model

Set Qv ← {v0} and QX ← {X};
while Qv do

v ← Pop(Qv) and X′ ← Pop(QX);
TrainNode (v, X′);
(Qv̂, QX̂)← Classify(v,X′);
while QX̂ do

if X∗ ← Pop(QX̂) is homogeneous then
v∗ ← Pop(Qv̂) is set to leaf;

else
Push(Qv, Pop(Qv̂));
Push(QX , X∗);

end

end

end
where v0 represents the root node, X ∈ Rd×n is the training set consisting of n

d-dimensional feature vectors. X′ ⊂ X is the local training set (LTS) at a given node

v. Let Qv and QX be the queues holding the nodes to train and corresponding LTSs.

TrainNode is the procedure used to train an ANN. It eventually substitutes the

ANN node with a more appropriate classification scheme (e.g., a split node). Classify

is the procedure that, given a node v, classifies the related LTS and produces the list

of child nodes Qv̂ together with list of corresponding patterns QX̂ . The homogeneity

property of a training set is a set of rules that define the correct classification of a

LTS. Finally, Pop and Push are the usual queue related procedures.

5.3.1 From Decision Trees to Neural Trees

The DT is one of the most popular models for machine learning because it is able
to make decisions with fewer computations and provides a more comprehensible mo-
del. Literature in extending standard DTs to improve their generalization ability is
countless [91], however following [192], existing works can be generally categorized
depending on the in-node models: (i) multivariate approaches consider multiple fea-
tures which are exploited by linear [3] or non-liner [191] partitioning hypersurfaces;
(ii) multinode approaches jointly consider many nodes to make decisions (e.g., Fuzzy
DT [164]); (iii) multitree approaches adopt ensembles methods to improve single mo-
del performance (e.g., Random Forest [17]).

When the in-node model of a DT is an ANN perceptron the obtained architecture
is called neural tree (NT) [159]. The first architecture resembling an NT can be dated
back to 1984, when linear threshold units were used as in-node models of a DT [18].
Even though such a tree does not exploit ANNs, it outlined the upcoming research
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Figure 5.2: An example of convolution layer. The convolution of a 2D signal with
a kernel can be defined as a particular ANN with two layers. The input neurons
consist of signal values. The second layer neurons are connected only with a subset
of the input ones. The connection weights from the input to the second layer (i.e.,
α, β, γ, δ) are the same for every neuron. Finally, the weighted input is processed by
the function f , which is generally the activation function of an ANN.

on NTs.

5.3.2 Neural Tree

The first NT was proposed in 1988 by Utgoff [171]. Such a tree, called a perceptron
tree, is composed of attribute tests as internal in-node models and perceptrons as
leaves.

Training:

As standard NTs training algorithms, the perceptron tree training procedure genera-
tes the tree in a recursive manner by partitioning the training set. Such a procedure
involves three steps: training internal nodes, then determining leaf nodes and labeling
them.

For a generic NT, having heterogeneous in-node models (e.g., splits, ANNs, etc.),
the training procedure can be written as in Algorithm 2. Starting from root:

i) The TrainNode procedure is used to train the in-node model.
ii) The training patterns are later classified by means of the Classify procedure,

hence the training set is partitioned.
iii) If a partition satisfies the homogeneity condition, then a leaf node is created

and labeled with the corresponding class. Under particular conditions, the in-
node model can be replaced by a more appropriate one (e.g., in the perceptron
tree, if the training patterns of a node are not linearly separable, the trained
perceptron is substituted by a split node).

iv) If a partition is not homogeneous, a new child node is added to the tree. Such
a node will be trained using the patterns of the associated partition.

v) The training stops when all nodes become leaves.
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The differences between alternative NT schemes rely on theTrainNode procedure
and on the homogeneity definitions. The former decides which type of in-node model
has to be considered, while the latter defines the training stop criteria.

Classification:

The decision making procedure in the NT is governed by the Classify function. The
class of a test pattern is obtained by traversing the tree in a top-down fashion starting
from the root node. At each node the Classify function classifies the pattern, hence
selects the children to which the pattern should be presented next. The procedure
stops when the pattern reaches a leaf node representing the class.

5.3.3 What are the limits of NTs?

While NTs solve the problem of defining a priori the ANN architecture, they still
have a number of drawbacks: (i) there is a lack of control on the depth of the tree;
(ii) convergence is not guaranteed for all the schemes; (iii) training in-node models on
small LTSs limit the generalization; (iv) as ANNs, NTs work on features representing
the data.

While in recent years plentiful work was successfully conducted to address the
aforementioned issues [121], as for ANNs, the success or failure of NTs for pattern
classification still depends on the raw data representations. These are usually built by
means of hand-crafted features extraction algorithms fit to the considered problem.
This highlights the essence of new learning architectures in inducing discriminative
raw data representation that is not task-dependent.

5.4 Learning Data Representations

To solve the raw data representation problem, in the last few years, several different
systems able to automatically learn proper data representations have been investi-
gated [7, 9]. However, much of the success of such new deep architectures should
be awarded to a quite old [100] special kind of ANN able to capture signal spatio-
temporal dependencies: the convolutional neural networks (CNNs).

To make the introduction to CNNs more intuitive, in the following, we make use
of images instead of generic signals. Nevertheless, the discussion can be generalized
to any type of signal.

5.4.1 Convolutional Neural Networks

In pattern recognition problems a vector is usually used to represent the real signal.
In case of images, this vector becomes a matrix. Within such a matrix, there exist a
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group of pixels that share local (spatio-temporal) properties, which CNNs are able to
capture [100]. A CNN is a particular type of ANN where precise rules are defined to
introduce the:

i) Convolution Layer,
ii) Local Contrast Normalization Layer,
iii) Pooling/Subsampling Layer, and
iv) Fully Connected Layer.

The Convolution Layer

allows to discover the local properties in the data. It performs a convolution of
the given image with a kernel by adopting a particular layer connection rule (see
Figure 5.2). In particular, the kernel weights define the weights connecting a subset
of the input neurons with a hidden one. As the network is trained, the weights of the
kernel are adapted to extract the optimal local feature. However, if we use a single
kernel, the layer will be highly specialized, hence its generalization capabilities are
limited. To get round this, multiple different kernels are randomly initialized, thus
different kernels will be learned. In other words, for a given input feature map, e.g.
the input image, we can have a convolution layer that produce multiple output feature
maps.

The Local Contrast Normalization Layer

limits the effects of intensity variations over the different feature maps. Indeed, when
looking at similar images, it may happen that, after the convolution operation the
resulting feature maps span a different feature space. To deal with this problem a local
contrast normalization (LCN) layer [74] is stacked at the output of the convolution
layer. The layer, inspired by computational neuroscience models [131, 28], adopts
a similar connection rule to the convolution layer. It performs local subtractive and
divisive normalizations, enforcing a sort of local competition between adjacent features
in a feature map, and between features at the same spatial location in different feature
maps [74].

The Pooling/Subsampling Layer

adds robustness to small shifts of the input data by looking at groups of input neu-
rons that can either come from a single input feature map or from multiple feature
maps [74]. While many different kinds of pooling layers, e.g. average pooling, L2 pool-
ing, etc. can be found in the literature [74, 9], the max-pooling layer [9] is currently
extremely popular. It tells us if a feature is present in the considered group, but not
precisely where.
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The Fully Connected Layer

is the common ANN layer where every input neuron is connected to each layer neuron.
While can be used everywhere in the CNN architecture, such a layer is generally the
last one [100, 93]. This is motivated by the fact that the fully connected layer acts as
a classifier by separating the input data space.

5.4.2 Learning Features by Backpropagation

The layers of a CNN define particular connection rules which constrain the neurons
to consider local information only. The fully connected one is not subject to such
restrictions and is used to produce the final classification. Since CNNs are a particular
type of ANNs, the classification error can be backpropagated to learn the connection
weights of each CNN layer. In particular, the convolution layer has weights that define
the convolution kernel. As the network is trained, these are adapted to extract the
optimal local features.

5.4.3 What are the limits of CNNs?

CNNs are a special kind of ANNs, so they suffer from similar problems, BP above
all. Most importantly, CNNs demand a huge amount of labeled data for training.
This boils down to weak generalization power when the number of training data is
small and the number of free parameters is large, i.e. when the network is very deep.
This is due to the fact that, in such a case, the CNNs is prone to overfitting, or, in
other words, the net faces a case of over-parameterization. In addition, as for ANNs,
there is no fixed rule to define a priori how many hidden layers and neurons should
be employed to obtain optimal performance.

To summarize, CNNs have apparent drawbacks and limitations including: (i)
BP learning speed and generalization performance for limited training data sets; (ii)
tweaks and tricks should be adopted to define the architecture parameters.

5.5 Extreme Learning Machines

ANNs and CNNs have been widely explored as architectures to handle complex and
challenging tasks. While new learning techniques have been proposed by the com-
munity, almost all of them derive from the BP algorithm. Hence, such networks lack
faster learning procedures. It is not surprising to see that it may take hours [25],
days [93], and even longer to train a single ANN/CNN by using traditional BP-based
methods.
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Figure 5.3: Architecture of an Extreme Learning Machine. Unlike previously seen
neural architectures, there is no backpropagation in the learning process. With ELM
the input-to-hidden weights are randomly picked. Only the set of hidden-to-output
connection weights β are learned.

5.5.1 Biological-Inspired Learning

Extreme Learning Machines (ELMs) [70] were inspired by biological learning and
proposed to overcome the issues faced by BP-based learning algorithms. ELMs were
devised following the idea that some part of the human brain systems have random
neurons whose parameters are independent of their environment. Indeed, all the
hidden nodes in an ELM are independent of the training data as well as independent
of each other (see Figure 5.3). Hidden nodes need not be tuned and the input to
hidden weights can be randomly generated before seeing the training data. The
solution to learn the optimal hidden to output weights (in order to obtain the correct
input-output mappings) resides on the Moore-Penrose generalized inverse [2].

5.5.2 ELMs: Advantages and Shortcomings

ELMs are extremely fast learning algorithms for SLFN and have the following im-
portant properties: (i) Minimum training error: the special solution for learning the
hidden to output layer connection weights, derived from exploiting the properties of
the network structure, as well as the Moore-Penrose generalized inverse matrix [2],
is one of the least-square solutions of a linear system. (ii) The smallest norm of
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Figure 5.4: Structure of an Extreme Deep Learning Tree in-node model. The input to
such model is the raw data. This is convolved with a convolution kernel having random
weights. The output of the convolution goes through the local contrast normalization
and the pooling layers. The output of the such last layer is used as the input of
an ELM. The ELM performs a random mapping and learns the hidden-to-output
weights.

weights and best generalization performance: Bartletts neural network generaliza-
tion theory [4] for feedforward neural networks asserts that the smaller the norms of
weights are, the better generalization performance the networks tend to have. ELMs
have such a property, indeed, the solution has the smallest norm among all the least-
square solutions. (iii) Unique minimum norm least-square solution: the minimum
norm solution for learning the hidden to output weights is unique.

While ELMs have such valuable properties, their success or failure, like ANN and
NT architectures, hinges on the adopted data representation.

5.6 The Future of Brain-Inspired Learning Archi-
tectures: Extreme Deep Learning Trees

Considered the weak and strong points that each of the previously presented architec-
tures has, we propose a novel architecture that borrows their strengths and combines
them into a unique system. We named such an architecture Extreme Deep Learning
Tree (EDLT).
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5.6.1 EDLT Structure

An EDLT exploits an NT architecture whose in-node models are composed of an ELM
stacked at the output of a three-layer CNN (i.e., a CNN composed of a convolutional,
local contrast normalization and pooling layers). See Figure 5.4 for the in-node model
architecture.

The Tree: Less Prior Knowledge.

One of the main current issues of ANNs is to determine the number and arrangement
of hidden layers and neurons correctly before training starts. A common approach
is to train many different networks (each one having a different structure), and then
adopt the configuration of the one that has the minimum validation error. But, even
if the optimal configuration for a particular task can be found, it is not certain that
the picked configuration will be the best one. Indeed, the possible configurations of
a single network with only one hidden layer are infinite (we can have one layer with
infinite hidden neurons). The tree structure of an NT, together with the adoption of
appropriate split nodes, allows us to solve such a problem.

CNN Layers: Random Feature Extraction.

We have shown that CNNs are able to learn meaningful feature extractors only by
looking at the data. However, this process requires a network to perform several
forward/backward propagations over the data. As well as being time consuming,
such a process has been shown to be barely effective [147, 74] if compared to CNNs
with random weights. In particular, in [147], it has been shown that a CNN-based
architecture with random weights is frequency selective as well as translation invariant.

In response to this, in our EDLT structure, we use a three-layer CNN with random
weights to discover local properties of the data. In particular, for each CNN, hence
for each node of the EDLT, we perform a convolution with a single kernel. While
this disregards the basic CNN rationale for which subsequent layers learn higher level
features, it speeds up the computation (no BP training procedure is used) and does
not require the number of kernels to be specified before the training starts.

ELM: Fast and Accurate Classification.

One of the biggest problems in current ANN is BP. ELMs can be used to overcome
this problem. In particular, we stack an ELM at the output of the CNN pooling
layer. Then, the randomly convolved-contrast normalized-subsampled features are
projected onto the random feature space which preserves the distance between all
pairs of original features (see the Johnson-Lindenstrauss lemma [80] for details). After
such a projection, the hidden to output connection weights are learned by computing
the Moore-Penrose generalized inverse matrix [70].
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5.6.2 EDLTAdvantages

Tosummarfize,theEDLTarchfitecturehastheffoflflowfingstrengths:(fi)TheNTarchfi-
tectureaflflowsustoperfforma“dfivfideandconquer”approach,thusfinherentflyredu-
cfingbfigchaflflengfingprobflemstosmaflflandeasfierones.Atthesametfime,fitremoves
theprobflemofffindfingthebestnumberoffflayers/unfitsfinanANN/CNN.(fifi)The
randomwefightsCNNarchfitectureavofidstherequfirementoffadoptfingahand-craffted
ffeatureextractortorepresentthegfivenfinputsfignafl.(fififi)TheELMarchfitecture
aflflowsustoavofidusfingBP,thusconsfiderabflyreducfingtheflearnfingspeed.

5.6.3 PerfformanceEvafluatfion

Toevafluatetheperfformanceoffourmethodwfithrespecttostate-off-the-artdeepar-
chfitecturesweconsfideredthreedatasets:(fi)TheMNISTdataset[100]1fisprobabfly
themostwfideflyadopteddatasettoevafluatedeeparchfitectureperfformance.Itcon-
sfistsofftwodatasetswfith28×28fimagesoffhandwrfittendfigfits,oneffortrafinfing(60k
fimages)andoneffortestfing(10kfimages).(fifi)TheLeaffSnapdataset[95]2has7719
fimagesofffleavestakenbymobfifledevficesfinoutdoorenvfironments.(fififi)TheORL
Facedataset3has64×64fimagesoff40dfistfinctsubjectsacqufiredatdfifferenttfimes,
wfithflfightfingvarfiatfionsandchangfingffacfiaflexpressfions.

ComparfisonsaregfivenwfithrespecttoDeepBeflfieffNetworks(DBNs)[58],Deep
Bofltzmann Machfines(DBMs)[144],StackedAutoEncoders(SAEs)[176],Statcked
DenofisfingAutoEncoders(SDAEs)[176],standardELMswfithrandomffeaturepro-
jectfions,GaussfiankerneflELMs[85],mufltfi-flayerELM[85],RandomForestoffDecfisfion
Trees[17]andSupportVectorMachfines(SVMs)wfithRadfiaflBasfisFunctfion(RBF)
kernefl.Foraflflthedatasets,rawpfixefls’fintensfitfiesarethefinputtothesuchsystems.

WeconductedtheexperfimentsonaDesktopPCwfithanfi737703.4-GHzcore,16
GbytesoffRAMrunnfingMATLAB2014a.Gaussfian-kerneflELMsandSVMsrequfired
morethan16GbytesoffRAM,soweranfitonahfigh-perfformancecflusterwfith2-GHz
processorsand128GbytesoffRAMrunnfingMATLAB2013a.

InTabfle5.1wereportontheperfformanceoffEDLTusfingtheorfigfinafl MNIST
(wfithoutanyafineoreflastficdfistortfion[156]),theLeaffSnapandtheORLFacedata-
sets. MNISTandORLFacecommonspflfitshavebeenadopted.ForLeaffSnap,5-ffofld
crossvaflfidatfionhasbeenconductedonfimagesdownsampfledto32×32pfixeflsand
convertedtograyscafle.

Resufltsshowthat,fforeverydataset,EDLTmeetstheperfformanceoffstate-off-the-
artarchfitecturesbothfintermsoffrecognfitfionperfformanceandfintermsoffcomputa-
tfionafltrafinfingtfimes.Indeed,whfifletheEDLTachfievesthebestrecognfitfionrateson
aflflthethreedatasets,perfformancevaryflfittflebetweentheadoptedapproaches.In
partficuflar,fitfisworthnotficfingthat,ffortheMNISTdataset,thefinaflEDLTstructure

1Avafiflabfleathttp://yann.flecun.com/exdb/mnfist/
2Avafiflabfleathttp://fleaffsnap.com/dataset/
3Avafiflabfleathttp://www.cfl.cam.ac.uk/research/dtg/attarchfive/ffacedatabase.htmfl

http://yann.lecun.com/exdb/mnist/
http://leafsnap.com/dataset/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Table 5.1: Performance comparison of EDLT with state-of-the-art deep architectures.
Comparisons have been carried out on the unmodified/unprocessed MNIST, LeafSnap
and ORL Face Datasets. Best results are in boldface font. Results for Gaussian-kernel
ELMs and SVMs have been computed using a faster machine. It is worth noticing
how, on a huge dataset (like MNIST), by exploiting GPU parallelism the proposed
approach has lower training time than ELMs.

Dataset MNIST LeafSnap ORL Face

Algorithm
Acc. %
(Std.Dev.)

Training
Time (s)

Acc. %
(Std.Dev.)

Training
Time (s)

Acc. %
(Std.Dev.)

Training
Time (s)

EDLT
99.06

(± 0.03)
339.72

47.61
(± 1.03)

129.21
95.10

(± 1.52)
52.01

Multi-layer
ELM [85]

99.02
(± 0.04)

464.51
36.19

(± 0.93)
58.43

94.23
(± 0.04)

37.65

ELM
random features

97.39
(± 0.1)

389.39
32.04

(± 0.87)
27.80

93.90
(± 1.08)

14.89

Gaussian kernel
ELM [85]

98.75
(± 0.09)

790.96
40.91

(± 1.02)
407.21

94.41
(± 1.21)

259.11

Deep belief
network [58] (DBN)

98.87
(± 0.06)

20,580
33.12

(± 1.21)
1,566

94.79
(± 1.89)

1,066

Deep Boltzmann
machine [144] (DBM)

99.05
(± 0.07)

68,246
35.43

(± 1.30)
5,420

94.03
(± 1.67)

2,109

Stacked
auto-encoder [176] (SAE)

98.61
(± 0.07)

9,891
22.90

(± 2.12)
931.77

81.80
(± 3.38)

480.94

Stacked denoising
auto-encoder [176] (SDAE)

98.72
(± 0.06)

13,707
24.19

(± 1.77)
1,047

82.31
(± 2.90)

600.67

Random Forest
(1000 trees) [17]

98.47
(± 0.08)

17,746
46.37

(± 1.04)
1,289

90.10
(± 2.38)

810.28

SVM with
RBF Kernel

96.60
(± 0.09)

29,438
25.76

(± 1.52)
2,797

84.20
(± 2.97)

305.50

consists of 364 nodes out of which only 29 have reached depth 16. Since the EDLT
borrows the NT structure, depth is determined during training by the homogeneity
condition. In our case, a partition is homogeneous, hence the node becomes a leaf, if
all its patterns belong to the same class. To control depth/overfitting, homogeneity
property can be modified following [121]. This shows that the model is capable of
handling challenging tasks without requiring too deep branches (e.g., overfitted data).

For every considered dataset, our proposed EDLT strongly outperforms the widely
adopted deep architectures, like DBNs and DBMs, in terms of computational training
times. On average, training an EDLT requires about 3 minutes, while training such
architectures require more than 2 and 7 hours respectively.

5.7 Conclusion

In this chapter we have given a brief overview of the most widely adopted brain-
inspired learning architectures, namely, NTs, CNNs and ELMs. In response to such
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an analysis we have proposed a novel architecture that combines the strengths of each
one. By using such an architecture we want to overcome the problems related to: (i)
the a priori definition of an ANN architecture, (ii) the design of hand crafted discrimi-
native data representations, and (iii) the usage of the slow and tricky BP algorithm.
The EDLT architecture borrows the tree structure from NT, and introduces a new
in-node architecture consisting of a CNN with an ELM classifier stack at the end.
Results on three datasets have shown that state-of-the-art performance have been
met at a low computational effort.
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6
Concluding Remarks

and Future Works

This last chapter closes the Thesis by drawing the conclusion which
emerged from the empirical evaluations of the presented hierarchical lear-
ning solutions. Speculations on future works in the field are finally pre-
sented.

In this Thesis, we have addressed the problem of hierarchical learning and proposed
four novel solutions which have been empirically evaluated considering the image
classification task.

This Thesis largely drew inspiration from the fascinating biological brain orga-
nisms and its ability to learn simple concepts as well as complex notions from a few
samples. In particular, it leverages on the recent neuroscience discoveries which sho-
wed that the human brain is organized in a hierarchical fashion with large circuit
modularity and substantial reuse of general sub-circuits. However, delivering a solu-
tion to the ultimate AI goal is not possible yet. Thus, the presented content focused
on the vision problem which has been recently shown to be one of the most promising
windows into human intelligence.

Following such key insights, we started by conducting an empirical evaluation
study that aimed to tie the discrimination and invariance properties of the biological
vision with functional modules and computer vision theory of wavelets. Then, we
continued by following the recent neuroscience discoveries highlighting the evidence
for massive parallel operations that are performed by the mammalian visual systems
such that the aggregation of different visual clues can be instantaneously performed.
Such assumptions have been validated by studying the effects of different visual re-
presentations within a framework consisting of shallow hierarchical architectures.

These solutions, however, neglected the deep hierarchy of computations present
in the primate visual system. Indeed, it has been shown that in the human brain
hierarchical model the initial processing layers act as generic feature detectors which



116 6. Concluding Remarksand Future Works

produce information that is exploitable in the context of many specific classification
problems, while by going deeper in the hierarchy, more task-specific information is
captured. Pivoting on this argument, we capitalized on the deep learning wave of
enthusiasm and introducing a hierarchical learning model whose architecture design
depends on the final classification task. Such argument, however, contrasts the mo-
del adaptability which the human brain is embodied. It is not new, that the brain
functional networks does not dwell on any external source/knowledge/decision to con-
struct/modify its structure, but autonomously adapts through evolution. This strong
evidence motivated the investigation of a hierarchical architecture that follows the
“divide and conquer” approach which is highly connected with naturally occurring
phenomena. As a result, we presented a hierarchical structure automatically adapts
itself to the problem complexity by introducing new computational units when nee-
ded.

The following were the main contributions of the Thesis.

A Forest of Random Trees for the Optimal Selection of Feature Encodings

In chapter 2, we have performed an in-depth analysis of widely adopted hand-
crafted visual features that aim to resemble the process of feature extraction observed
in the mammalian brain. The idea was to throughly investigate the performance of
existing approaches on the image classification task to have a better grasp on their ad-
vantages and limitations. The evaluation has been carried out considering a classical
hierarchical learning solution that proved to be extremely efficient in capturing only
the discriminative features among the pool of available ones. The obtained results
showed that considered techniques have poor performance per se, but can be useful if
a proper classification scheme is adopted. The chapter defined the basis for the whole
Thesis.

Learning to Rank with a Committee of Shallow Neural Networks

Results from the empirical evaluations conducted in chapter 2 demonstrated that
image classification is a problem with many challenges which cannot be addressed
only by considering simple filter-response features and a unique classification solu-
tion. Despite the successful stories achieved by considering methods belonging to
such a category, it is often the case that the designed ad-hoc image representati-
ons based on some a priori knowledge of the problem are not sufficient to correctly
handle all the problem challenges. In chapter 3, a possible solution to sidestep the
aforementioned problems has been introduced. It brings to the limits the idea that
any possible hand-crafted visual feature representation could be relevant, but the op-
timal result is obtained if a proper fusion scheme is exploited. Following this idea, we
prosed a classification system based on a committee of shallow neural networks each
of which separately consider a specific visual characteristic. Then, an optimal ranking
is delivered by fusing the committee classifications via a Structural Support Vector
Machine. Comparisons with the state-of-the-art have demonstrated the benefits of
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the proposed architecture.

Going Deeper and Wider with Wide-Slice Residual Networks

In chapter 4 we have built upon the results of the approach discussed in chapter 3.
In particular, we have focused on the limitations of hand-crafted visual features. In-
spired by this, we aimed to understand how feature representations can be learned
from data. Differently from state-of-the-art methods, we have not considered a lear-
ning solution that exploits off-the shelf schemes, thus neglecting the design of a proper
architecture which considers the specific problem challenges. Indeed, we have propo-
sed a novel architecture that is defined following an analysis of the image composition.
We have shown that our approach significantly improves the existing performance on
three benchmark datasets. The analysis of the source of performance demonstrated
that robust feature representations are learned and, more interestingly, that such so-
lution is able to automatically focus on the image portion that contains the object of
interest to perform its classification.

New Directions– Extreme Deep Learning Trees: The Evolution of Neural
Learning Systems

In chapter 5 we have introduced a novel direction of research. As the large majo-
rity of the existing literature in the field, all the approaches discussed in the preceding
chapters hinge on the manual specification of multiple hyperparameters (e.g., the num-
ber of features to consider, the number of hidden layers/neurons in an ANN, etc.). It
is a matter of fact that the selection of such hyperparameters is a tedious “trial-and-
error” approach which does not guarantee that the obtained values are optimal for the
task. The lack of a solution aiming to address all the discussed hierarchical learning
issues, plus the problem of hyperparameters selection, motivated the design of a novel
NT-based hierarchical scheme that yields to three main achievements: i) does not
require the specification of any of the common ANN hyperparameters; ii) very fast
learning and inference are performed by solving the optimization problems in an ana-
lytical fashion; iii) does not hinge on hand-crafted visual features but obtains optimal
image representations by means of a CNN-driven approach. The preliminary analy-
sis conducted on different image classification tasks has demonstrated the benefits of
the solution, both in terms of accuracy as well as with regard to the computational
performance.

Future Work

Mimicking the human brain to achieve human-level cognition performance has been a
core challenge in artificial intelligence research for decades. Humans are very efficient
in capturing the most important information while being exposed to a plethora of dif-
ferent stimuli, a capability that is used to represent and understand their surroundings
in a concise fashion. Machine learning research has made considerable progress to-
wards cloning such human capability with innovative techniques like deep and feature
learning, incremental learning, etc. The approaches proposed in this Thesis to address
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the visual image classification challenges can also be extended to other tasks. So, our
work opens up to a very wide range of applications in numerous other areas. Among
of them we’ll outline two directions which can lead to future works, one dealing with
the process of learning visual feature representations, the other with applications on
different domains.

Learning Representations

Having features invariant to pose, illumination changes, viewpoint variations, rota-
tions,etc. is the holy grail of computer vision as it can lead to the solution of an
enormous variety of problems like recognition, tracking, etc.. Despite the huge effort
put by the community, such kind of features have not been discovered yet. With the
last two chapters of the Thesis, we introduced two solutions that aimed to mimic
the human brain in terms of its vision-classification capabilities. In particular, in
chapter 4, we introduced an architecture able to automatically focus on the image
portion that contains the object of interest and extract the most relevant features to
perform its classification. While, in the last chapter we mainly explored the usage of
features that correspond to the visual characteristics considered by the V1 area of the
occipital cortex [94]. We believe that being able to introduce the process of learning
more abstract and high-level representations in the EDLT structure will open to new
and relevant discoveries that can have a strong impact towards the ultimate human
brain mimicking goal.

Applications

The concept and the ideas that have been discussed in this thesis can be used and
applied in many other domains different from the vision one. For instance, the process
of separately considering different features, then fusing them to provide an optimal
ranking, can also be used to present the web-surfer a ranking of pages that best
respond to a given search. This is just an example of such applications, but we
can also think about other domain, like sound understanding, language processing,
medical analysis, etc..
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