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GLOSSARY 
 

Non-technical  

CEN European Committee for Standardization 

DOC Controlled Designation of Origin 

DOCG Controlled and Guaranteed Designation of Origin 

EEC European Economic Community 

EC European Commission 

EU European Union 

FAO Food and Agriculture Organisation 

IAEA International Atomic Energy Association 

IGP Protected Geographic Indication 

ISMEA Indicatori del Sistema Agroalimentare Italiano 

ISTAT Istituto Nazionale di Statistica 

OIV The International Organization of Vine and Wine 

PDO Protected Designations of Origin 

PGI Protected Geographical Indication 

SINAB Sistema Informazione Nazionale Sviluppo Agricoltura Biologica 

TSG Traditional Speciality Guaranteed 

  

Technical  

AIR AIR - atmospheric air used as an international standard for which the 
15N/14N ratio is precisely known and is defined as 0‰ on the δ15N‰ 

scale. 

ATP Adenosine Triphosphate 

13C/12C The ratio of the isotope of carbon with atomic mass 13 to the isotope of 

carbon with atomic mass 12 
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δ13C‰ "Delta carbon-13 per mil".  The 13C/12C ratio expressed relative to the 

international standard Vienna-Pee Dee Belemnite. 

CAM Crassulacean acid metabolism 

CSIA Compound-Specific Isotope Analysis 

EA Elemental Analyser 

EVOO Extra-virgin olive oil 

FA Fatty acid 

FAME Fatty acid methyl ester 

GA3P Glyceraldehyde 3-phosphate GA3P 

GC Gas Chromatography 

GC-C-IRMS Gas Chromatography-Combustion-IRMS 

GC-Py-IRMS Gas Chromatography-Pyrolysis-IRMS 

2H/1H The ratio of the isotope of hydrogen with atomic mass 2 to the isotope of 

hydrogen with atomic mass 1 

δ2H‰ "Delta hydrogen-2 per mil".  The 2H/1H ratio expressed relative to the 

international standard Vienna-Standard Mean Ocean Water. 

HTC 

IRMS 

High temperature conversion 

Isotope Ratio Mass Spectrometry 

KIE Kinetic Isotope Effect 

MWL Meteoric Water Line 

15N/14N The ratio of the isotope of nitrogen with atomic mass 15 to the isotope of 

nitrogen with atomic mass 14. 

δ15N‰ "Delta nitrogen-15 per mil".  The 15N/14N ratio expressed relative to the 

international standard AIR. 

NADP+ Nicotinamide Adenine Dinucleotide Phosphate 

NADPH Nicotinamide Adenine Dinucleotide Phosphate Hydrogen 

NMR Nuclear Magnetic Resonance 
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18O/16O The ratio of the isotope of oxygen with atomic mass 18 to the isotope of 

oxygen with atomic mass 16. 

δ18O‰ "Delta oxygen-18 per mil".  The 18O/16O ratio expressed relative to the 

international standard Vienna-Standard Mean Ocean Water. 

OO Olive oil 

OOA Oxaloacetate 

PEP Phosphoenolpyruvate 

PGA Phosphoglycerate 

RuBP Ribulose-1,5-bisphosphate 

34S/32S The ratio of the isotope of sulfur with atomic mass 34 to the isotope of 

sulfur with atomic mass 32. 

δ34S‰ "Delta Sulfur-34 per mil". The 34S/32S ratio expressed relative to the 

international standard Vienna-Canyon Diablo Troilite 

SI 

SIRA 

International System 

Stable Isotope Ratio Analysis 

SNIF-NMR Site-Specific Natural Isotope Fractionation Nuclear Magnetic Resonance 

TMU Tetramethylurea 

V-CDT Vienna-Canyon Diablo Troilite - AgS S-1 silver sulfide used as an 

international standard for which the 34S/32S ratio is precisely known and 

is defined as 0.3‰ on the δ34S‰ scale 

V-PDB Vienna-Pee Dee Belemnite - Calcium carbonate used as an international 

standard for which the 13C/12C ratio is precisely known and is defined as 

0‰ on the δ13C‰ scale 

V-SMOW Vienna-Standard Mean Ocean Water - ocean water used as an 

international standard for which the 18O/16O ratio is precisely known and 

is defined as 0‰ on the δ18O‰ scale 

‰ Parts per thousand (per mil) 
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ABSTRACT 

 

Objective assessment of food authenticity has become of paramount importance today, with an 

increasing demand for analytical methods able to provide proof of origin and prevent food 

adulteration. In order to achieve this goal, the European Union has reinforced control activities and 

investigated new methods able to support food characterisation and geographical traceability. 

Stable isotope ratio analysis of so-called bioelements such as hydrogen, carbon, oxygen, nitrogen 

and sulfur has been used since the 1990s for food authenticity control of different premium 

products. Application of isotopic composition is based on evidence that the isotopic signature is 

affected by various environmental factors, such as photosynthetic and nitrogen cycles, the 

pedological characteristics of soils, agricultural practices, botanical origin, geographical origin and 

climatic or hydrological conditions.  

In this study, isotope ratio mass spectrometry methods were developed to characterise and 

determine the authenticity of cereal crops, pasta, wine, balsamic vinegar, oenological tannins and 

extra-virgin olive oils. 

In particular, isotopic variability measured along the Italian pasta production chain allowed good 

discrimination in relation to geographical provenance. δ2H, δ18O and δ13C were shown to be 

significantly correlated to geographical factors (e.g. longitude), whereas δ15N and δ34S were affected 

by geology and fertilisation practices. Measurement of amino acid δ15N and δ13C values improved 

discrimination of conventional and organic wheat compared to stable isotope ratio analysis of bulk. 

Variability in the δ15N value was checked along the entire oenological chain for the first time. The 

study included evaluation of the effect of the fermentation process using different types of yeast, the 

addition of nitrogen adjuvants and ultrasound lysis simulating wine ageing. Despite nitrogen isotope 

fractionation observed from soil to wine through the plant, the δ15N value of proline conserved the 

nitrogen isotopic fingerprint of the growing soil and can therefore be used as an additional isotopic 

marker to trace the geographical origin of wine. 

The same analytical approach, when applied to commercial tannin samples, made it possible to 

characterise them based on botanical origin. The δ
13C values were shown to be significantly more 

negative in tannins from grapes, tea and acacia and less negative in tannins from oak. 

Furthermore, the 2H/1H and 13C/12C stable isotope ratios of acetic acid and the 18O/16O of water 

were investigated in “aceto balsamico di Modena IGP” (ABM) samples. No isotopic variation was 

observed along the ABM production chain, providing experimental evidence that such analytical 

parameters, used routinely for wine, can also be used for ABM in authenticity studies.  
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Finally, the 2H/1H, 13C/12C and 18O/16O of extra-virgin olive oils were analysed in bulk samples and 

compounds, specifically in fatty acids. The results showed that in some cases bulk analysis was able 

to discriminate between different countries on the basis of specific geo-climatic conditions. 

Moreover, both the 13C/12C and 2H/1H values of the main fatty acids allowed good discrimination 

between European and non-European extra-virgin olive oils. 

To conclude, the methods developed for the specific commodities considered can be proposed as 

suitable tools for the detection of mislabelling and for consumer protection, demonstrating that 

isotopic analysis can effectively contribute towards distinguishing the authenticity of commercial 

food samples. 

 

 

Keywords: IRMS, GC-C/Py-IRMS, food, origin, traceability, authenticity 
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CHAPTER 1 INTRODUCTION  

 

1.1 FOOD AUTHENTICITY 

 

Adulteration of food and beverages is an increasing global problem and new fraud cases are 

frequently reported. Fraud and adulteration of foodstuff can be related to the geographical origin, 

agricultural system used or processing method, or involve cases in which products have been diluted 

or in which chemical food components have been substituted by cheaper imitations (FPDI, 

https://foodprotection.umn.edu/). Nowadays, objective assessment of food authenticity has become 

of paramount importance, as consumers are increasingly demanding information and reassurance 

regarding the origin and content of their food. Traceability has thus become a cornerstone of the 

quality policy system of the European Union (EU), as it is an effective risk-management tool which 

enables the food industry or the authorities to withdraw or recall products identified as dangerous. 

According to EU law, “traceability” means the ability to track any food, feed, food-producing 

animal or substance that will be used for consumption, through all stages of production, processing 

and distribution (EC Reg. 178/2002). In 1992 and subsequently in 2006 (EEC Reg. 2081/1992 and 

EC Reg. 510/2006), the EU created the PDO (Protected Designations of Origin), PGI (Protected 

Geographical Indication) and TSG (Traditional Speciality Guaranteed) systems to provide a set of 

common rules across countries to register and protect geographical names used to identify food 

products and traditional production processes. 

In the majority of cases, the standard traceability system adopting paper documentation can 

guarantee the geographical origin of foods. However, the increasing complexity and length of the 

food chain and recent food scares have underlined the need for tools ensuring that foods are of a 

high quality and safe to be eaten. Thus, the food industry urgently requires analytical methods to 

provide proof of origin and prevent undeclared deliberate or accidental admixture to food samples. 

Isotopic analysis has been used in official controls since the 1990s but in fact it has been applied 

and reported in the literature since the 1970s [Bricout, 1973]. Application of isotopic composition is 

based on evidence that the isotopic signature is affected by various environmental factors, such as 

botanical origin and climatic or geographical conditions. 

 

 



Chapter 1 
 

10 

1.2 STABLE ISOTOPES 

 

1.2.1 Definition of stable isotopes 

 

Isotopes are atoms of the same element that contain equal numbers of protons but different numbers 

of neutrons in their nuclei, and hence differ in atomic mass. The main elemental constituents (H, C, 

N, O, and S) of bio-organic material exist in nature as 2 or more stable isotopes (2H, 1H; 13C, 12C; 
15N, 14N; 18O, 17O, 16O; 36S, 34S, 33S, and 32S). The most abundant isotope found in nature is the 

lighter, as shown in Table 1, which reports their mean abundance. They are called stable because the 

time of decay for this kind of isotope is very long, in the order of billions of years, in contrast to 

radioactive isotopes which have a time of decay in the order of thousands of years. 

 

Table 1. Mean natural abundance of some stable isotopes of the light bio-elements 

 

 

 

The isotopic composition of organic compounds shows fluctuations around these mean values, and 

variations can be measured precisely and accurately, even if in the order of ppm, using dedicated 

analytical techniques such as Isotope Ratio Mass Spectrometry (IRMS). Stable isotope compositions 

are normally expressed as delta values (δ) according to equation 1: 

 

std

stds

R

RR
X

−=    (1)       
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and are subsequently presented in units of parts per thousand (‰) or in the International System (SI) 

unit urey (mUr, which is equivalent to ‰) [Brand and Coplen, 2012]. Rs and Rstd are the molar 

ratios of the heavy isotope relative to the light isotope in the sample and a standard respectively. For 

example, X can be δ2H, δ13C, δ15N, δ18O and δ34S, and R values are the corresponding isotope 

ratios: 2H/1H, 13C/12C, 15N/14N, 18O/16O and 34S/32S respectively. δ(‰) values are normally reported 

relative to the following internationally agreed standards (Rstd): Vienna - Standard Mean Ocean 

Water (V-SMOW) for δ2H and δ18O, Vienna - Pee Dee Belemnite (V-PDB) for δ
13C, air for δ15N, 

Vienna-Canyon Diablo Troilite (V-CDT) for δ34S [Brand et al., 2014]. 

A positive δ(‰) value indicates that the sample has relatively more of the heavy isotope than the 

standard, while a negative δ(‰) value indicates that the sample has relatively less of the heavy 

isotope compared to the standard [Sulzman, 2007; Carter and Barwick, 2011]. The biological, 

biochemical and climatic causes of these delta value differences are addressed in the following 

section. 

 

 

1.2.2 Natural variation in stable isotope abundance 

 

The isotopes of an element have the same chemical properties, but they nonetheless show different 

abundance. The distribution of isotopes varies in nature, depending on the physical and 

(bio)chemical reaction in which they are involved – a process known as isotope fractionation. 

Indeed, mass differences can interfere with both the rate of reaction (kinetic effect) and the energetic 

state of the system (thermodynamic effect), resulting in enrichment or depletion of an isotope away 

from its mean natural abundance [Galimov, 1985]. 

Kinetic isotope fractionation is a process that separates stable isotopes from each other by their mass 

during (bio)chemical processes. Due to their lower weight, lighter isotopes show greater mobility 

and smaller bound strength and consequently lower activation energy. The thermodynamic effect is 

due to the different free energy of isotopically different molecular species: heavier molecules have 

lower free energy, so they have greater inertia in reactions, and in the physical states tend to 

concentrate in the condensed phases. Isotopic fractionation can also be due to situations with an 

altered reaction equilibrium, such as an instantaneous change in temperature, removal of a reactant 

or reaction product. This kind of fractionation (of non equilibrium, such as enzymatic reactions) 

determines the enrichment of a particular isotopic species, but without pre-established rules. 

Consequently, factors affecting the variability of the isotopic ratios were explored in more depth. 
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CARBON 

As discussed earlier, carbon has two naturally occurring stable isotopes and the ratio of the heavier 

isotope, 13C, to the light isotope, 12C, can be determined using IRMS. Figure 1 shows the carbon 

isotopic composition of some natural substances.  

The original source of carbon in plants comes from the CO2 in air. Plants absorb CO2 and combine 

it with water and light to make carbohydrates – the process known as photosynthesis. Formation of 

C-C bounds is promoted if carbon atoms are lighter and more movable, so photosynthetic products 

are enriched in 12C and depleted in 13C as compared to atmospheric CO2 (δ13CCO2 around -8‰). 

Furthermore, different photosynthetic pathways (C3, C4 and CAM) are reflected in the different 

carbon isotopic ratios of plants, because of the different isotopic discrimination capability of 

carboxylase enzymes involved in CO2 fixation. 

 

 

Figure 1. 13C isotope variation ranges of carbon pools [Kelly, 2001] 

 
 
 

Calvin cycle 

The Calvin cycle is the metabolic process used for fixing carbon dioxide, characteristic of plants 

growing in cold-temperate areas (e.g. tomatoes, potatoes, beetroot, wheat, rice, oats, barley, rye, 

soybean, grapes, oranges, apples). Plants that use the Calvin cycle are known as C3 plants, because 

CO2 is fixed in intermediate products with three atoms of carbon. Calvin cycle reactions can be 

divided into three main stages: carbon fixation, reduction and regeneration of the starting molecule 

(Figure 2).  
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Figure 2. Synthesis of carbohydrate in the Calvin (C3) cycle 

 

 

Atmospheric CO2 diffuses into the leaf through the stomata and dissolves in the cytoplasm [Hatch 

and Slack, 1966; Smith and Epstein, 1971]. There it combines with a five-carbon sugar, ribulose-

1,5-bisphosphate (RuBP), producing two molecules of phosphoglycerate (PGA, a C3 molecule), 

which are subsequently phosphorylated by ATP and then reduced by NADPH to form 

Glyceraldehyde 3-phosphate (GA3P, a C3 sugar) [Taiz and Zeiger, 1998]. 

Five out of six GA3P molecules are used to synthesise more RuBP via a series of complex reactions 

driven by ATP. The sixth molecule of GA3P is used to synthesise glucose (usually regarded as the 

end product of photosynthesis) via combinations and rearrangements.  

Although the initial reaction of CO2 with RuBP produces the overriding 13C isotope effect 

associated with these species, there are many other factors that contribute to the final δ13C‰ value 

of plant material, such as temperature, fertilisation, salinity, CO2 concentration, light intensity and 

photorespiration [O'Leary, 1981]. The interplay of all of these factors results in δ13C‰ values 

between -22‰ and -34‰ for 80% to 90% of plants utilising the C3 pathway [Krueger and Reesman, 

1982]. 
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Hatch-Slack cycle 

The Hatch-Slack cycle is the metabolic process for fixing carbon dioxide used by plants able to 

utilise CO2 concentrations as low as 0.1 ppm (while the Calvin mechanism does not operate at 

atmospheric concentrations of less than approximately 50 ppm). Plants which use the Hatch-Slack 

cycle are known as C4 plants (e.g. maize, sugar cane, corn, sorghum, millet and some types of 

pasture grasses), because CO2 is fixed in intermediate products with four atoms of carbon. The 

Hatch-Slack cycle is characterised by two sequential carboxylation reactions as shown in Figure 3. 

 

 
Figure 3. The Hatch-Slack pathway of C4 photosynthesis 

 

 

When atmospheric CO2 enters the leaf through the stomata, it is fixed at a 3-carbon compound, 

phosphoenolpyruvate (PEP), to form oxaloacetate (OOA), a 4-carbon acid. This first stage proceeds 

with much smaller fractionation as compared to the Calvin cycle, ∆δ ~ 2‰ [O’Leary, 1981]. OAA 

is then rapidly reduced by NADPH to form malate (MAL, a C4 acid). This acid is transported deeper 

into the C4 plant leaves and oxidised by NADP+ to form pyruvate (a C3 compound) and CO2. The 

C3 compound is converted to PEP by the action of ATP, whereas the CO2 feeds into the Calvin 

cycle, where it is used to synthesise glucose as shown in Figure 2. It is important to note that 

although the C3 carboxylase enzyme shows extensive 13C isotope fractionation, it is not expressed in 

the Hatch-Slack photosynthetic pathway. This is because the pre-fixation of CO2 by carboxylation 

of PEP is an irreversible reaction. This results in relatively enriched δ13C‰ values for C4 plants, 

between -10‰ and -14‰ [Winkler, 1984].  
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Crassulacean Acid Metabolism 

Crassulacean acid metabolism, also known as CAM photosynthesis, is a carbon fixation pathway 

evolving in some plants (e.g. pineapple, vanilla, cacti) as an adaptation to arid conditions. In a plant 

using CAM, the stomata in the leaves remain shut during the day to prevent water loss through 

transpiration [Krueger and Reesman, 1982], but open at night, using C4 metabolism to fix CO2. 

However, if the daytime temperature is relatively low, the stomata may open and the plant will 

adopt direct C3 metabolism of CO2. The metabolism adopted by CAM plants is therefore linked to 

local climatic conditions and in extreme cases may be predominantly C3 or C4. Consequently, the 

δ13C‰ value of CAM plant material varies widely between -30‰ and -12‰ [Winkler, 1984]. 

 

Secondary carbon metabolism 

Many metabolic processes involving side reactions or branching processes cause further isotope 

fractionation. Generally, secondary metabolites tend to be relatively depleted in 13C compared with 

the primary source, due to kinetic isotope effects (KIEs) [Schmidt and Kexel, 1999]. 

This is most notable in lipid fractions, which may differ from leaves by as much as 10‰. This 13C 

depletion is caused by an isotope effect associated with the decarboxylation of pyruvic acid during 

fatty acid chain construction and by a non-statistical 13C distribution in sugars precursors [DeNiro 

and Epstein, 1977; Monson and Hayes, 1982]. 

 

Climatic effect 

δ13C is also influenced by climatic factors such as local humidity and temperature, which influence 

leaf stomata opening and hence the efficiency of photosynthesis [Ferrio et al. 2003]. Dry conditions 

cause a restriction of the stoma with limitation of atmospheric CO2 admission to the leaf, causing an 

increase in δ13C.  
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NITROGEN 

Two nitrogen stable isotopes exist in nature, namely 14N and 15N. The range of 15N variation in the 

terrestrial environment is shown in Figure 4. 

 

 
Figure 4. 15N isotope variation ranges of nitrogen pools [Kelly, 2001] 

 

 

The atmosphere is the principal nitrogen reservoir and through physical processes and the activity of 

microorganisms it is transformed into inorganic forms (nitrates, ammonia) and organic forms 

(amino acids, proteins) present and available in soil. The natural cycle of nitrogen encompasses five 

main mechanisms, shown in Table 2: nitrogen fixation, nitrogen assimilation\dissimilation, nitrogen 

mineralisation, nitrification and denitrification [Meier-Augenstein, 2010]. Depending on which of 

these mechanisms occurs, the δ
15N values of soils can vary considerably, generally between -10 and 

+15‰. 

In the context of plant materials, enrichment or depletion of 15N is mainly influenced by the type of 

fertiliser applied. Synthetic fertilisers, produced from atmospheric nitrogen, show δ15N values 

between -4 and +4‰, whereas manure and organic fertilisers are enriched in 15N, with values 

ranging between +0.6 and +36.7‰ [Bateman et al., 2007]. 

Plants display δ15N values that are linked to ammonia and nitrates in soils and are thus affected by 

the same variability factors described above, but also by the isotopic fractionation involved in 

uptake and organic compound assimilation processes [Werner and Schmidt, 2002]. Factors such as 

proximity to the sea and water stress can induce enrichment in 15N [Heaton, 1987]. Leguminous and 

nitrogen-fixing plants are a separate case, as they can fix nitrogen directly from the air, showing 

δ
15N values around 0‰ [Yoneyama, 1995]. 
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 Table 2.  Processes in the nitrogen cycle that give rise to isotopic fractionation 
 

Process Description of the process Fractionation

Natural process, either biological or abiotic, by which nitrogen 
(N2) in the atmosphere is converted into ammonia:

-          through bacteria (e.g.  through nitrogenise enzyme in 
legumes);
-          through physical processes producing high 
temperatures (e.g.  lightening, fire);
-          through human activities (e.g.  production of energy or 
fertilisers).

Assimilation Process of incorporation of nitrogenous compounds (NOx, 
NH3) by microorganisms or plants. At the beginning nitrogen 
oxides are reduced to ammonia and subsequently integrated 
within organic matter.

Assimilation favors incorporation of 14N 

compared to 15N, with a mean 
fractionation of -0.5‰ which is negligible 
in plants.

Dissimilation Metabolic reactions that use the assimilated nitrogen.

Mineralisation Transformation of organic nitrogen in soil into ammonia. ±1‰

Nitrification Biological oxidation of ammonia with oxygen into nitrite 
followed by the oxidation of these nitrites into nitrates.

-12/-29‰

Volatilisation Volatilisation reaction of ammonia as a gas from soil to 
atmosphere (very marked in alkaline soil).

+20‰

Denitrification Nitrate reduction that may ultimately produce molecular 
nitrogen.

Enrichment in 15N.

Fixation –3/+1‰ (data concerning legumes) 
(Fogel and Cifuentes, 1993)

 

 

 

OXYGEN 

Oxygen exists in nature in three stable isotopic species: 16O, 17O and 18O. Of the two minor 

isotopes, only 18O has been employed in isotopic studies and the natural variation range of δ18O is 

shown in Figure 5. 

 

 
Figure 5. 18O isotope variation ranges of oxygen pools [Kelly, 2001] 

 

 

The δ18O variability of meteoric water is based on hydrological cycles of evaporation from oceans, 

atmospheric vapour transport, precipitation and the subsequent return of freshwater to the ocean 

(directly via precipitation and via runoff/iceberg melting). 
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The oxygen isotopic composition of oceanic water is close to 0‰, with values ranging between -1 

and +0.7‰ [Clark and Fritz, 1997]. During evaporation there is enrichment of the lighter isotope in 

vapour, calculated in a hypothetical situation of equilibrium as: 

 

δ
18O = -10.0‰ for oceans at 20°C 

δ
18O = -11.6‰ for oceans at 10°C 

 

which leads, according to these theoretical estimations, to the following values for precipitation, 

considering temperatures of 15°C and 5°C: 

 

δ
18O = 1.5‰ for precipitation at 15°C  

δ
18O = 2.2‰ for precipitation at 5°C 

 

These values do not agree with the mean isotopic composition of world precipitation (δ18O = -4‰), 

proving that from an isotopical point of view evaporation and condensation are non-equilibrium 

processes (mainly determined by low humidity level, temperature, wind and degree of salinity). 

After evaporation, water vapour moves from subtropical zones toward the poles, where it condenses 

in the form of precipitation due to cold temperatures, becoming depleted in heavy isotopes, which 

are concentrated in initial rainfall (Figure 6).  

  

 
 

Figure 6. Isotopic fractionation of vapour mass in relation to temperature [Clark and Fritz, 1997] 

 

 

Thus, equatorial precipitations and vapour are richer in heavier isotopes than water at the poles, 

with an intermediate situation according to latitude. Consequently, latitude is a discriminating factor 
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in oxygen isotopic fractionation. However, in Figure 7 considerable deviations can be noted (e.g. on 

the east coast of South America or on the Atlantic Ocean between Mexico and Scandinavia), due to 

a "continental effect". This latter is related to the vapour masses moving over continents, causing 

precipitation along coasts which is isotopically richer than that in continental areas (mean depletion 

of -2.8‰/1000 km from the coast) (Förstel and Hutzen, 1984). Moreover, different altitudes inland 

lead to 18O depletion of about -0.15‰ to -0.5‰ per 100 metres elevation (Förstel and Hutzen, 

1984), because at higher altitude there is lighter vapour. Finally, another deviation is due to seasonal 

trends; during summer there is enrichment in 18O, especially inland. 

 

 
Figure 7. Distribution of mean δ18O values for precipitation in 1992 and 1993 [Rozanski et al., 1993] 

 

 

Ground water has an isotopic composition related to the mean annual isotopic composition of 

precipitation water, and its δ18O depends only on geographical factors (altitude, latitude and 

distance from the sea) but not on the season. 

The isotopic composition of vegetal water in plants is related to the water absorbed from the soil. 

Furthermore, vegetal water in the leaf undergoes isotopic fractionation during evapotranspiration 

processes, which are affected by temperature and relative humidity and lead to an enrichment in 

heavier isotopes.  

Oxygen in vegetal compounds derives from vegetal water but also from atmospheric CO2 and O2, 

with δ18O values that are constant around +40.3/+42.5‰ and +23.5/+23.8‰ respectively. 

Moreover, oxygen integration through metabolic processes induces considerable additional isotopic 

fractionation. For example, the δ18O of cellulose is correlated with the δ18O of leaf water, with 

enrichment of around 27‰, caused by isotopic fractionation occurring during exchanges between 

the carbonylic group and water [Schmidt et al., 2001; Barbour, 2007]. 
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HYDROGEN 

The primary source of hydrogen in nature is found in the hydrosphere. Hydrogen has two stable 

isotopes (1H and 2H) and examples of typical 2H isotope ranges in various materials are shown in 

Figure 8. 

 

 
Figure 8. 2H isotope variation ranges of hydrogen pools [Kelly, 2001] 

 

 

The double mass of the heavier isotope results in significantly different physicochemical properties, 

particularly as regards the rate of reaction. This means that physical processes such as evaporation, 

condensation and biological processes can lead to significantly different levels in relation to natural 
2H abundance levels  [White, 1988], as shown in Figure 9. The variation in 2H in the hydrosphere 

follows an analogous pattern to the 18O variation discussed above [Craig 1961]. 

The mean annual isotope ratios for hydrogen and oxygen in precipitation from regions as different 

as the Arctic, Antarctic, tropics and European and American continents all fall on the meteoric 

water line (MWL) [Dansgaard, 1964] described by the following equation: 

 

10Oδ 8Hδ 18
00

02 +=   (2) 

 

So, as for oxygen, meteoric water that has passed through the meteorological cycle of evaporation, 

condensation and precipitation shows a systematic geographical isotope variation [Yurtsever and 

Gat, 1981]. 
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Figure 9. Evaporation/condensation model with typical delta values for atmospheric water masses.  

The first δ-value refers to δ18O‰ and the second (in brackets) refers to δ2H‰ [Yurtsever and Gat, 1981] 

 

 

Evaporation of water from the oceans is a fractionation process that causes a progressive depletion 

in heavy water (H2H16O, HH18O) in the clouds as compared to the sea. Consequently, ground water 

reflects the isotopic gradient from the coast to inland areas [Dansgaard, 1964].  

The hydrogen present in plant material originates from the water taken in by the roots [Ziegler et al., 

1976]. Water is transported through the xylem system, and the isotopic composition of water xylem 

is the same as that of ground water, while the water is then taken in by the leaves without any 

change in isotopic composition.  

Evapotranspiration of water through the leaf stomata enriches the remaining water with heavier 

isotopomers. There are no apparent differences in the degree of enrichment of 2H in the leaf water of 

plants utilising the Calvin (C3), Hatch-Slack (C4) or Crassulacean acid metabolism (CAM) 

photosynthetic pathways [Bricout, 1982]. Crops growing in regions with low humidity therefore 

show relatively enriched δ2H‰ values, due to a higher rate of evapotranspiration from leaves 

[Martin et al., 1986].  

Others factors affecting the extent of 2H enrichment in plant products growing in similar temperate 

climates are the varietal origin and timing of maturation. Typically, leaf and fruit water enrichment 

is around 20 to 40‰. 

Generally, primary metabolites (e.g. carbohydrates) tend to be relatively depleted in 2H, resulting in 

δ2H‰ values of -90 to -180‰. Secondary metabolites exhibit additional depletion due to KIEs.  

The δ2H‰ value of protein does not differ significantly from carbohydrate [Winkler, 1984], 

however other carbohydrate reduction products such as ethanol, cholesterol and lipids are relatively 

depleted in deuterium.  
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The depletion in lipids can be further divided into two groups [Estep and Hoering, 1980]. The 

δ2H‰ of triglycerides generated by two-carbon precursors in the fatty acid biosynthetic pathway is 

approximately –30 to –60‰, whereas nonsaponifiable lipids synthesised via the five-carbon 

isoprenoid pathway are depleted by a further 80‰, resulting in–110 to –140‰ depletion relative to 

carbohydrate.  

 

SULFUR 

In nature there are several inorganic compounds containing sulfur, the most common being 

elemental sulfur (S0), sulphates (SO4
2-) and hydrogen sulphide gas (H2S).  

Sulfur exists in four stable isotopes (32S, 33S, 34S, and 36S), and the isotopic abundance in a chemical 

substance depends on its source, mass fractionation and the KIE effect during the formation process. 

Of the three minor isotopes, only 34S has been employed in isotopic studies and the natural δ34S 

variation range is shown in Figure 10. 

 

 
Figure 10. 34S isotope variation ranges of sulfur pools [Kelly, 2001] 

 

 

The average value of the sulfur isotope ratio on Earth reflects that of the solar system, which has 

value of around 22.22‰ [Thode et al., 1961]. However, distribution of the different sulfur isotopes 

in global ecosystems is conditioned by biological activity, according to the kind of reducing 

bacteria, electron donors and the enzymatic reaction rate [Detmers et al., 2001; Schidlowski, 1982]. 

Sulphates dissolving in seawater enter many of the redox processes occurring in the sea, leading to a 

basically uniform δ34S value of around +21‰ [Rees et al., 1978]. Sea spray, deriving from 
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dissolved oceanic sulphate, is one of the most important sources of atmospheric sulfur and causes an 

enrichment of δ34S values in coastal regions [Lott et al. 2003, Hobson 2005, Zazzo et al. 2011]. 

Moreover, the sulfur cycle may also be influenced by anthropogenic input [Wynn et al. 2014]. The 

combustion of fossil fuels containing sulfur and some industrial processes involving sulfur 

compounds represent the main anthropogenic sources of primary SO2 in the atmosphere. The δ34S 

values of anthropogenic emissions generally show a wide range, depending on the nature of the 

source (e.g. coal – from -35 to +30‰, petroleum natural gas – from -20 to +30‰) [Nielsen, 1978]. 

The most common natural processes that can cause input of sulfur into the atmosphere, with 

typically depleted δ34S values, are volcanic activities and forest fires [Camin et al. 2007]. Another 

important source of atmospheric sulfur is biogenic sulfur. This latter is released from soils and 

wetlands and characterised by 34S-depleted values [Wadleigh and Blake, 1999; Mast et al., 2001]. 

Natural factors that influence δ34S values in terrestrial plants are the abundance of heavy sulphides 

in the soil, but also aerobic or anaerobic growing conditions [Rubenstein and Hobson, 2004], 

underlying local bedrock, microbial processes active in soil, fertilisation procedures and 

atmospheric deposition [Krouse and Mayer, 2000], such as the sea-spray effect over forage in 

coastal areas [Attendorn & Bowen, 1997]. 

The S source in any animal tissue is the sulfur contained in plant material. The δ34S values of 

animal samples basically reflect diet, but show some 34S enrichment depending on the state of 

nutrition, trophic level and individual tissue [Tanz and Schmidt, 2010]. 
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1.3 STABLE ISOTOPE RATIO ANALYSIS 

 

1.3.1 Bulk analysis 

 

For analysis of stable isotope ratios, the sample was weighed into tin capsules to determine 13C/12C, 
15N/14N and 34S/32S and silver capsules for quantification of 18O/16O and 2H/1H. The weighted 

amount depended on the % m/m of the elements in the sample. In each analytical sequence, a 

working in-house standards calibrated against international reference materials were analysed after 

every ten samples and used to calculate the isotope ratios of the samples. Sample analysis was 

carried out in duplicate, then calculating the mean values.  

The δ13C, δ15N and δ34S values were measured after combustion of the sample, using a DELTAplus 

XP IRMS (ThermoFinnigan, Bremen, Germany) and visION IRMS (Isoprime Ltd, UK). The 

DELTAplus XP IRMS was equipped with a Flash EA 1112 elemental analyser (ThermoFinnigan) 

operating at 900°C in the presence of O2 and CuO (Figure 11). The developed gases (CO2, N2 and 

SO2) were then separated in a Porapak QS 80-100 mesh (3 m) GC column at 45°C and transferred 

into the ion source of an IRMS with helium as carrier gas (130 mL/min).  

 

 
Figure 11. EA-IRMS schematic diagram and principle of combustion\oxidation (ThermoFinnigan) 

 

 

The visION IRMS was equipped with a Vario Isotope Cube elemental analyser (Elementar 

Analysensysteme GmbH, Germany) operating at 850°C in the presence of O2 and WO3 (Figure 12).  

The developed gases (CO2, N2 and SO2) were then separated with three molecular sieve traps and 

transferred into the ion source of an IRMS with helium as carrier gas (230 mL/min).  
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Figure 12. EA-IRMS schematic diagram (Isoprime) 

 

 

For measurement of δ18O and δ2Η values, the sample was instead subjected to high temperature 

conversion (HTC), using a Delta Plus XP IRMS (ThermoFinnigan, Bremen, Germany) equipped 

with a FinniganTM TC/EA pyrolyser (ThermoFinnigan) (Figure 13). The developed gases (H2 and 

CO) were separated in a Molecular Sieve 5A (3 m) GC column at 100°C and then transferred into 

the ion source of an IRMS with helium as carrier gas (100 mL/min).   

A high furnace temperature (1450°C), low instrumental [H3]
+ factor (<8, for correction of the 

contribution of [H3]
+ to the m/z 3 signal) and dry conditions during analysis were ensured, in order 

to obtain reproducible results. Weighed samples were put in the carousel of the autosampler and 

stored in a desiccator above phosphorus pentoxide (P2O5) for at least 24 h until analysis. The 

carousel was then inserted into the autosampler and equipped with a suitable cover. During 

measurement, dryness was guaranteed by flushing dry nitrogen continuously over the samples. 

 

 
Figure 13. TC/EA-IRMS schematic diagram and principle of high temperature conversion (ThermoFinnigan) 
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Analysis of δ18O in water was performed directly on the fresh sample, according to the UNI ENV 

12141 method (1997). Analysis was carried out using an IRMS (VG Isogas, Middlewich, UK) 

interfaced with a CO2-water equilibrator system (Isoprep18, VG Isotech, Middlewich, UK) allowing 

equilibration of oxygen exchange between sample water and a reference CO2 (Figure 14). The CO2 

gas obtained from the sample and the same reference CO2 were introduced alternately, via a dual-

inlet system, to an IRMS for δ18O measurement. In each analytical sequence of 24 samples, 4 

working in-house standards were analysed and used to calculate the isotope ratio values of the 

samples.  

 

 
Figure 14. CO2 equilibration - IRMS schematic diagram (adapted from ThermoFinnigan) 

 

 

In IRMS, the gases (H2, N2, CO2, and SO2) enters the ion source through a narrow capillary where it 

is then ionised. The electrons needed for ionisation are produced by a hot filament usually made of 

rhenoim or thoriated tungsten [Scrimgeour and Robinson, 2004]. The sample ions generated are 

then accelerated by a series of electrode “lenses” before entering the mass analyser [Kelly, 2003].    

In the mass analyser, the ions are deflected by either a permanent magnet or an electromagnet 

[Kelly, 2003]. The radius of deflection depends on the mass-to-charge-ratio, where ions with the 

same ratio experience the same deflection and heavy ions are less deflected than light ions. This 

deflection focuses the ions into several beams that finally enter the ion detector (Table 3).  

In the ion detector, each of these beams is detected separately using a Faraday-cup [Kelly, 2003; 

Scrimgeour and Robinson, 2004]. The voltage produced via the discharge of the ion in the cup is 

then amplified and transformed into digital output. Different resistors in the ion detector can be 

adjusted for different beam intensities, so that all beams can be detected in the same voltage range 

[Scrimgeour and Robinson, 2004].  
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Table 3. Masses measured using IRMS to determine stable isotope ratios 

 

 

 

1.3.2 Compound-specific analysis 

 

The role of EA and TC/EA is to quantitatively convert the target element present in a sample to the 

appropriate gas for IRMS analysis, regardless of the number of individual chemical species present. 

Techniques broadly described as Compound-Specific Isotope Analysis (CSIA) comprise an 

additional initial stage, in which the individual compounds present in a sample are separated on the 

basis of time. Each compound eluting from the GC column is then converted into simple gases 

when traversing a capillary micro-reactor. Accordingly, all compound specific isotope ratios can be 

analysed using IRMS. CSIA was carried out using a Trace GC Ultra (GC IsoLink + ConFlo IV, 

Thermo Scientific), interfaced with an IRMS (DELTA V, Thermo Scientific), through an open split 

interface and with a single-quadrupole GC-MS (ISQ Thermo Scientific) to identify the compounds 

(Figure 15). 

 

 
Figure 15. GC-C/Py-IRMS schematic diagram (ThermoFinnigan) 
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To determine δ13C and δ15N, the compounds were oxidised in a capillary reactor (Ni/Cu/Pt) to CO2, 

N2 and H2O at 1100°C. The H2O forming in the oxidation process was removed with an online, 

maintenance-free water removal system. For analysis of δ15N, all CO2 was retained in a liquid 

nitrogen trap before transfer to the IRMS. For measurement of δ2H, each compound was passed 

through a high temperature reactor, operating at 1450°C, where it was subjected to high HTC, with 

development of hydrogen gas. 

 

 

1.3.3 Site-specific analysis 

 

Special Nuclear Magnetic Resonance (NMR) systems, such as Site-Specific Natural Isotope 

Fractionation Nuclear Magnetic Resonance (SNIF-NMR) can be used to measure the relative 

isotopic ratios of a given element (e.g. 2H) for each molecular site. In the 2H-NMR spectrum, the 

signal intensities are directly proportional to the number of moles of 2H nuclei in resonance. 

Consequently, the site-specific isotope ratios (2H/1H) can be determined through quantitative 

measurement at each site and calculated by comparison with an internal standard (e.g. 

tetramethylurea TMU) having a certified isotopic value [Martin and Martin, 1990].2H-NMR spectra 

were recorded using a SNIF-NMR spectrometer, equipped with a probe tuned to the characteristic 

resonance frequency of 2H for the corresponding field. The specific 2H probes had a proton 

decoupling channel and also a field-frequency stabilisation channel tuned to the fluorine frequency 

(lock). 

The 2H/1H ratios obtained using SNIF-NMR are expressed in parts per million (ppm), it is possible 

to report the values on the δ-scale using the following equation: 

 

10001
H)H/(

H)H/(
‰Hδ

SMOW
12

i
12

i
2 ⋅








−=  

 

where (2H/1H)i and (2H/1H)SMOW are the hydrogen isotopic values expressed in ppm of a specific 

intramolecular site (i) and standard V-SMOW (155.8 ppm) respectively. 
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1.4 STABLE ISOTOPES IN FOOD AUTHENTICATION 

 

One of the most powerful techniques used in food authenticity studies is IRMS. IRMS has been 

used for the authentication of a wide range of foodstuffs, and recently this technique has gained 

wider acceptance in food control laboratories. Fraud and adulteration of foodstuff can be related to 

the geographical origin, agricultural system used or processing method, or involve cases in which 

products have been diluted or in which chemical food components have been substituted by cheaper 

imitations.  

The isotopic fractionation processes described above often cause unique isotopic signatures for food 

products. These signatures are often sufficiently strong to verify the authenticity of a product. A 

selection of the major fractionation processes and the available associated information of relevance 

to food authenticity testing is presented in Table 4. 

 

Table 4. Selected elements, corresponding delta notation and fractionation processes relevant for authenticity testing 
[Kelly et al., 2005; Sulzman, 2007; Berglund and Wieser, 2011; Brand et al., 2014] 
 

 

Element  

 

 

Delta notation  

 

 

Fractionation processes  

 

  

Information  

 

Hydrogen δ2H Evaporation,  

condensation,  

precipitation,  

transpiration  

 

Geography,  

water usage, fertilisation rate  

 

Carbon δ13C CO2 assimilation,  

stomatal conductance  

 

Water use efficiency, 

fertilisation rate  

 

Nitrogen δ15N N transformation processes,  

atmospheric loss  

 

Fertiliser type and rate  

 

Oxygen δ18O Evaporation,  

condensation,  

precipitation,  

transpiration  

 

Geography,  

water usage, fertilisation rate  

 

Sulfur δ34S S transformation processes,  

sea spray  

Geography, 

fertiliser type  

 

 

 

The relevant literature is summarised in Table 5, which shows the various commodity groups 

investigated, the parameters measured and the corresponding references.  
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Table 5. Summary of the relevant literature relating to the use of multi-isotopic analysis for food authenticity testing 
[Kelly et al., 2005; Gonzalvez et al., 2009; Laursen et al., 2016] 
 
 

Food commodity Authemticy case 
Analytical 
technique 

Parameters 
measured 

Reference 

Meet Geographical origin IRMS H, C, N, S Schmidt et al., 2005,  
Camin et al., 2007,  
Heaton et al., 2008,  
Perini et al., 2009,  
Bong et al., 2010,  
Osorio et al., 2011 

 Agricultural origin IRMS C, N, S Bahar et al., 2008 
     
Butter Geographical origin IRMS C, N, O, S Rossmann et al., 2000,  

Balling and Rossmann, 2004 
     
Cheese Geographical origin IRMS H, C, N, O, S Pillonel et al., 2004, 

Manca et al., 2006,  
Bontempo et al., 2012,  
Camin et al., 2012,  
Camin et al., 2015, 
EU Reg. 584/2011 

     
Milk Geographical origin IRMS, 

GC-Py-IRMS 
H, C, N, O, S Rossmann et al., 1998, 

Crittenden et al., 2007,  
Camin et al., 2008,  
Molkentin and Giesemann, 2010,  
Ehtesham et al., 2013a, 
Ehtesham et al., 2013b, 

 Agricultural origin IRMS C, N Molkentin and Giesemann, 2010,  
Chung et al., 2014 

     
Wine and must Geographical origin IRMS H, C, O Breas et al., 1994,  

Rossmann et al., 1999,  
Ogrinc et al., 2001,  
Cristoph et al., 2004,  
Gremaud et al., 2004 

 Sugar/water addition IRMS, 
SNIF-NMR 

H, C, O EU Reg 555/2008 

     
Vegetable oil Geographical/botanical origin IRMS, 

GC-C-IRMS 
GC-Py-IRMS 

H, C, O Kelly et al., 1997,  
Breas et al., 1998,  
Angerosa et al., 1999, 
Spangenberg and Ogrinc, 2001,  
Aramendia et al., 2007, Iacumin 
et al., 2009, Bontempo et al., 
2009,  
Camin et al., 2010a, Camin et al., 
2010b,  
Guo et al., 2010,  
Faberi et al., 2014,  
Banerjee et al., 2015,  
Jeon et al., 2015,  
Portarena et al., 2015, Mihailova 
et al., 2015,  
Horacek et al., 2015 

 Adulteration IRMS 
GC-C-IRMS 
 

H, C, O Woodbury et al., 1995, Angerosa 
et al., 1997, Spangenberg et al., 
1998,  
Hrastar et al., 2009,  
Seo et al., 2010,  
Richter et al., 2010,   
Kim et al., 2015 

     
Vinegar Sugar/water addition, 

synthetic acetic acid 
IRMS, 
SNIF-NMR 

H, C, O Thomas and Jamin, 2009,  
Camin et al., 2013 
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Fruit and 
vegetables 

Geographical origin IRMS H, C, N, O, S Perez et al., 2006,  
Meylahn et al., 2006,  
Horita, 2008,  
Longobardi et al., 2015, Mimmo 
et al., 2015 

 Agricultural origin IRMS H, C, N, O, S Camin et al., 2011,  
Sturm et al., 2011,  
Bat et al., 2012,  
Flores et al., 2013,  
Laursen et al., 2013,  
Mihailova et al., 2014 

     
Honey Geographical origin IRMS H, C, N, S Kropf et al., 2010a, Kropf et al., 

2010b,  
Schellenberg et al., 2010, 
Bontempo et al., 2015 

 Sugar addition IRMS C White et al., 1998 
     
Cereal crops Geographical origin IRMS C, N, O, S Goitom-Asfaha et al., 2011,  

Kelly et al., 2002,  
Brescia et al., 2002 

 Agricultural origin IRMS H, C, N, O, S Laursen et al., 2013 
     
Tomato passata Water addition IRMS O Bontempo et al., 2014a 
     
Fruit juice Geographical origin IRMS C Kornexl et al., 1996,  

Martin et al., 1996 
 Sugar/water addition IRMS, 

SNIF-NMR 
H, C, O Rossmann et al., 1997, Simpkins 

et al., 2000,  
Rummel et al., 2010, Bontempo 
et al., 2014b 

     
Eggs Agricultural origin IRMS C, N Rogers et al., 2015 
     
Seafood Geographical origin IRMS H, C, N, O Carter et al., 2015,  

Ortea and Gallardo 2015 
     
Coffee and 
caffeine 

Geographical origin IRMS H, C, N Weckerle et al., 2002 

 Synthetic caffeine addition GC-C-IRMS C Zhang et al., 2012 
     
Vanillin Geographical origin GC-C-IRMS 

GC-Py-IRMS 
H, C Hansen et al., 2014 

 Synthetic vanillin addition GC-C-IRMS 
GC-Py-IRMS 

H, C, O Hener et al., 1998,  
Greule et al. 2010 

     
Tea Geographical origin IRMS H, C, N Pilgrim et al., 2010 
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CHAPTER 2 AIMS OF THE THESIS 

 

2.1 AIMS OF THE THESIS 

 

The general aim of this thesis was to verify the applicability of analysis of multi-element stable 

isotope ratios to food authenticity. In particular, analytical approaches based on bulk isotope 

analysis and compound-specific isotope analysis were developed for the traceability of different 

agricultural products and derivatives. 

 

In detail, the research focused on: 

 

− study of multi-element stable isotopes along the pasta production chain, to evaluate if and how 

the farming system and geographical origin affect the isotopic signature; 

 

− development of an analytical approach to measure the isotopic fingerprint of individual amino 

acids of wheat samples in order to discriminate between organically and conventionally grown 

plants; 

 

− investigation of the feasibility of using δ15N as an additional isotopic marker able to link wine 

to the area of origin; 

 

− evaluation of the efficacy of IRMS as a tool for tracing the botanical origin of oenological 

tannins; 

 

− characterisation of "aceto balsamico di Modena": application of stable isotope ratio analysis for 

authentication of origin;  

 

− geographical traceability of extra-virgin olive oils, by combining both stable isotope ratio 

analysis and NMR profiling approaches; 

 

− geographical traceability of European and non-European extra-virgin olive oils: creation of a 

dataset with isotopic values measured in bulk samples and fatty acids. 
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CHAPTER 3 WHEAT AND DERIVATIVES 

 

3.1 INTRODUCTION  

 

Cereals (rice, wheat, corn and soybean) are the most important staple foodstuffs and play a vital role 

as the main source of energy, protein and fat intake for almost all the world's population. Wheat is a 

major food and important commodity in the grain market, with global production currently standing 

at around 730 million tonnes (2014 data provided by FAO, http://faostat.fao.org/). The largest wheat 

producer is China, accounting for 17% of world production, while the major wheat-growing 

countries in Western Europe are France, Germany, the United Kingdom, Italy, Spain and Portugal, 

in order of production.  

Wheat is the most important arable crop in Italy in terms of area cultivated and economic 

significance, due to the production of pasta, which is the main constituent of the Mediterranean diet 

(ISTAT, http://agri.istat.it). Italy is the principal global producer of pasta, which represents about 

7% of total agrofood exports, therefore having a primary role in the Italian economy and 

representing one of the main Italian products worldwide. 

Nowadays, consumers tend to prefer organically produced food, which is generally considered to be 

healthier than conventional products. In Italy, cereals are some of the most widespread organic crops 

(SINAB, http://sinab.it) and the market for organic pasta has shown a growing trend in the last few 

years (ISMEA, http://ismea.it). It is therefore clear that there is an economic basis for developing  

analytical methods able to verify if labelling claims regarding the farming system and geographical 

origin are correct. 

In the last few years, stable isotope ratio analysis (SIRA) has become a promising approach for 

cereal grain traceability, with a growing number of research papers published on this subject, 

suggesting that geographical discrimination of wheat grains is possible, due to the impact of 

microclimate, geology and pedology on isotopic composition [Longobardi et al., 2015; Li et al., 

2016]. 

Wheat samples of different origin were successfully differentiated using the natural abundance of 

the isotopic ratios of C, N, O and H [Brescia et al., 2002; Luo et al., 2015; Wu et al., 2015; Liu et 

al., 2015]. Moreover, satisfying results were also obtained by combining the stable isotope ratios of 

the heavy mass element strontium (87Sr/86Sr) with light mass elements C, N, O and S [Goitom-

Asfaha et al., 2011; Podio et al., 2013].  
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The use of SIRA for geographical authentication of cereals is more highly developed than 

verification of farming systems (organic or conventional). Considering different agricultural 

practices, some works have applied stable isotopic analysis of H, C, N, O and S in order to 

discriminate between organic and conventional wheat [Schmidt et al. 2005; Laursen et al. 2013]. 
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Statement of the author: My personal involvement in this research started with the development of 

experimental design to measure the carbon and nitrogen isotopic values of amino acids extracted 

from wheat: protein hydrolysis, derivatisation and analysis by GC-C-IRMS. As regards method 

development, I personally performed all the experiments and data analysis presented in the 

manuscript. Moreover, I measured the carbon and nitrogen isotopic values of wheat in bulk samples. 

As first author I was responsible for writing the manuscript and managing the comments and 

improvements to the text by the other co-authors. 
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CHAPTER 4 WINE, ADJUVANTS AND RELATED PRODUCTS 

 

4.1 INTRODUCTION 

 

Wine is the most famous and appreciated alcoholic beverage worldwide, obtained from the 

fermentation of fresh grapes or grape must. Approximately 38 billion bottles of wine are produced 

around the world each year, with a wholesale value of US$98 billion.  

The International Organization of Vine and Wine (OIV) has estimated that Italy’s wine production 

reached 48.8 million hectoliters in 2016, making Italy the world leader in terms of wine production, 

followed by France, Spain and the USA. With more than 2400 different styles, Italy offers the 

largest and most diverse array of wines in the world, including at least 300 DOC (Controlled 

Designation of Origin) and DOCG (Controlled and Guaranteed Designation of Origin) wines. The 

value of these premium drinks is determined almost exclusively by the brand/origin and the 

age/vintage.  

In the last few years, total wine production has dropped by about 6%, while world consumption is 

rising. This shortage inevitably leads unscrupulous vendors to fill the gap in the market with bogus 

products. 

SIRA of wine has been applied since 1991, becoming the official method for identifying the 

authenticity of wine in terms of watering down, sugar addition and mislabelling (OIV methods MA-

AS311-05, MA-AS312-07 and MA-AS2-12, EU Reg. 555/2000). The addition of exogenous sugar 

and water in wine can be detected by analysing the isotopic ratios of hydrogen (2H/1H) and carbon 

(13C/12C) in ethanol and oxygen (18O/16O) in water. Additions and counterfeiting are detected by 

comparing the results against an official databank, set up by the EU for all wine-producing countries 

within its territory. So far, the isotopic ratio of N in wine has not yet been investigated as well as the 

isotopic ratios of tannin. 

 “Aceto balsamico di Modena IGP” is another Italian premium product which has obtained the IGP 

(Protected Geographic Indication) recognition, renowned throughout the world due to its specific 

characteristics. This unique balsamic vinegar can only be produced and matured in the province of 

Modena and its production method is specified in European regulations (EU Reg. 583/2009). Its 

success, particularly at international level, has contributed to the emergence and diffusion of fraud, 

represented by products that imitate or simply claim the title “balsamic”, harming producers and 

increasing consumer confusion.  
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Very recently, isotopic methods have been officially recognised by OIV and the European 

Committee for Standardization (CEN) as a means of verifying the authenticity of wine vinegar 

(CEN methods EN 16466-1, EN 16466-2, EN 16466-3 and OIV 510/2013). 13C/12C and 2H/1H 

values in acetic acid and the 18O/16O value in water have provided a powerful tool for detecting the 

addition of exogenous acetic acid and tap water to wine vinegar. Moreover, a recent study [Camin et 

al., 2013] showed that legal limits set on the basis of the wine isotope databank can be used as a 

reference for δ18O analysis to detect the authenticity of wine vinegar. 
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instrumental conditions, analysis and validation of the method to measure the carbon isotopic value 

of acetic acid extracted from balsamic and wine vinegard using GC-C-IRMS.  
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CHAPTER 5 OLIVE OIL 

 

5.1 INTRODUCTION 

 

Extra-virgin olive oil (EVOO) represents a key product in the EU market, with Europe being the 

main exporter and consumer worldwide, as around 98% of the world's olive trees are concentrated 

in the Mediterranean basin (Greece, Spain, Portugal, Italy and France). It enjoys global recognition, 

thanks to its nutritional value and beneficial effects on health, but has suffered a dramatic loss of 

consumer confidence due to increasing numbers of fraud cases. Indeed, when a product acquires a 

reputation extending beyond national borders it can find itself in competition with products which 

pass themselves off as the genuine article and take the same name.  

To protect both ethical producers and consumers, European law requires that the origin of certain 

premium products such as EVOO must be declared on the label. This is why the EU created the 

PDO and PGI systems to protect and promote food produced to certain specifications (EU Reg. 

1151/2012); EVOO has the most restrictive regulations (EU Reg. 1335/2013). 

In the last two decades, different works have been published on the isotopic composition of olive oil 

(OO). The first studies showed that the 13C/12C ratio measured in bulk OO was able to detect 

adulteration with cheaper oils [Angerosa et al., 1997; Spangenberg et al., 1998]. Subsequently, 

researchers have found that SIRA can also be applied to characterise the geographical origin of OO, 

showing that the 13C/12C and 18O/16O ratios change according to latitude, altitude, distance from the 

sea and environmental conditions [Breas et al., 1998; Angerosa et al., 1999; Aramendia et al., 

2007]. Moreover, a number of other studies have focused on different combinations of δ2H, δ13C 

and δ18O measurements in bulk oil to characterise EVOO [Bontempo et al., 2009; Camin et al., 

2010a; Camin et al., 2010b; Iacumin et al., 2009; Portarena et al., 2014; Chiocchini et al., 2016]. 

Finally, the isotope composition was measured not only in bulk samples but also in sub-components 

in order to obtain additional information for the authentication of OO. Combined with multivariate 

statistics, the carbon isotopic composition of individual fatty acids (FAs) and bulk OO provided 

superior discrimination between samples of different geographical origin [Faberi et al., 2014]. 
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INTRODUCTION 

 

European law requires that the origin of some premium products such as EVOO be declared on the 

label. Official OO quality control methods are based on quantitative analysis of specific chemical 

compounds, e.g. fatty acids, sterols, alcohols or stigmastadiene (EEC Reg. 2568/91 and 

amendments), but it is impossible to verify the real geographical origin of EVOO using these 

parameters. This situation highlights the increasing demand for analytical methods and statistical 

tools capable of effectively verifying claims of origin. 

Currently, SIRA offers one of the most promising approaches for establishing the authenticity of 

premium products. This is because SIRA relies on the fact that the content of stable isotopes of bio-

elements (H, C, N, O, S) determined by IRMS reflects local agricultural practices and geo-climatic 

characteristics [Laursen et al., 2016].  

This study investigated the ability of IRMS to distinguish European from non-European EVOO. The 

study was conducted on approximately 100 EVOO samples collected worldwide in the main 

producing countries. 2H/1H, 13C/12C and 18O/16O ratios were analysed in bulk oil, and furthermore 

both 13C/12C and 2H/1H ratios were determined on the four main FAs (linoleic, oleic, palmitic and 

stearic acids), for 2H/1H  for the first time.  

 

 

MATERIALS AND METHODS 

 

Reagents and reference materials 

Fatty acid methyl ester (FAME) standards at ≥99% purity (methyl linoleate, methyl oleate, methyl 

palmitate and methyl stearate), and heneicosane (≥99.5% purity) were purchased from Sigma-

Aldrich (Milan, Italy). All other solvents and reagents (hexane, methanol and sodium hydroxide) 

used were of analytical grade and purchased from Sigma-Aldrich (Milan, Italy) and Carlo Erba 

(Milan, Italy). 

 

Sampling 

In this study a total of 101 authentic EVOOs made with different cultivars were examined. The 

olive oil samples were collected worldwide in the major olive oil-producing regions of Argentina 

(1), Australia (9), France (6), Greece (8), Italy (28), Morocco (1), Peru (1), Portugal (12), Spain 
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(13), Tunisia (12), Turkey (4), Uruguay (2) and the USA (4). The oil samples were collected in 30 

ml dark glass bottles and kept at 4°C until analysis. 

 

Isotopic analysis of bulk OO 

 

Analytical method 

Aliquots of 0.2 - 0.3 mg of olive oil were weighed into tin capsules to determine 13C/12C and silver 

capsules for quantification of 18O/16O and 2H/1H. The analysis of bulk samples was performed in 

duplicate using an IRMS (visION, IRMS, Isoprime Ltd, UK) coupled with an elemental analyser 

(Vario Isotope Cube, Elementar Analysensysteme GmbH, Germany) for 13C/12C measurement.  

For 2H/1H and 18O/16O measurement, an IRMS (Finnigan DELTA XP, Thermo Scientific, Bremen, 

Germany) was used, coupled with a pyrolyser (Finnigan TMTC/EA, high temperature conversion 

elemental analyzer, Thermo Scientific) equipped with an autosampler (Finnigan AS 200, Thermo 

Scientific) and interfaced with the IRMS through a dilutor (Conflo III, Thermo Scientific), dosing 

the sample and reference gases. 

 

Data analysis 

The isotopic values were calculated against working in-house standards (extra virgin olive oils), 

which were themselves calibrated against international reference materials: fuel oil NBS-22 (IAEA-

International Atomic Energy Agency, Vienna, Austria) and IAEA-CH-6 Sucrose for 13C/12C, and 

benzoic acid-601 for 18O/16O. For δ2H, besides the olive oil standards (calibrated against NBS-22 

and IAEA-CH-7 Polyethylene by building a linear relationship), a second standard with a different 

δ2H value (magnesium stearate of the FIRMS FT scheme, δ2H value: -228‰) was used. The 

isotopic values were expressed in δ‰ vs. V-PDB (Vienna Pee Dee Belemnite) for δ13C and V-

SMOW (normalised in relation to the Vienna Standard Mean Ocean Water – Standard Light 

Antarctic Precipitation V-SMOW-SLAP standard scale) for δ18O and δ2H. 

The results showed that bulk-isotope analysis was able to discriminate between different countries 

on the basis of specific geo-climatic conditions (Figure 1), but not specifically between European 

and non-European olive oils, as is evident in Figure 2. Australian samples in particular had lower 

δ13C values, except for one sample, whereas Uruguayan, North American and Peruvian samples had 

lower δ2H and δ18O values.  
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Figure1. Box-plots for extra virgin olive oil δ13C, δ18O and δ2H values measured in bulk samples  

 

 

Principal component analysis (PCA) was applied to test for differences between European and non-

European olive oils, using the δ13C, δ18O and δ2H values measured as variables (Figure 2). The first 

component was mainly negatively loaded by δ
18O and δ2H values, whereas the second component 

was positively loaded by δ13C. The score plot showed that the two groups cannot be resolved on the 

basis of bulk isotope analysis. 
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Figure 2. PCA of the δ13Cbulk, δ
18Obulk and δ2Hbulk values of extra virgin olive oils 

 

 

Isotopic analysis of FAs 

 

Sample preparation 

For the preparation of the FAMEs via transesterification of triglycerides, 0.1g of OO sample was 

weighed into a 10 ml vial with 4 mL of hexane, then 1 mL of 2 M methanolic sodium hydroxide 

solution was added and the vial shaken for 1 min at room temperature (annex XA of EC Reg. 

702/2007). The mixture was allowed to stratify until the upper layer became clear and 1 mL of the 

hexane solution was filtered and then injected into the GC-C-IRMS.       

 

Analytical method 

Individual FA isotopic analysis was carried out in triplicate out using Trace GC Ultra (GC IsoLink + 

ConFlo IV, Thermo Scientific), interfaced with an IRMS (DELTA V, Thermo Scientific), through 

an open split interface and with a single-quadrupole GC-MS (ISQ Thermo Scientific) to identify the 

compounds. For δ13C analysis, 1.0 µL of each sample was injected in split mode (1:10) with an 

auto-sampler (Triplus, Thermo Scientific). A BPX-70 capillary column (60 m × 0.32 mm i.d. × 0.25 

µm film thickness; SGE) with He as carrier gas (at a flow of 1 mL/min) was used. The injector 

temperature was set at 250 °C, and the oven temperature of the GC was initially set at 50 °C, where 

it was held for 4 min before increasing by 30 °C/min to 170 °C, 2 °C/min to 200 °C and finally 1 

°C/min to 210 °C.  
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Carbon isotopic analysis of individual FAs using GC-C-IRMS 

For determination of δ13C, the eluted compounds were combusted into CO2 and H2O in a 

combustion furnace reactor, operated at 1030 °C and composed of a nonporous alumina tube (320 

mm length) containing three wires (Ni/Cu/Pt, 0.125 mm diameter, 240 mm identical length) braided 

and centred end-to-end within the tube. Water vapour was removed with a water-removing trap, 

consisting of a Nafion membrane.  

To monitor instrumental performance, an internal standard was added to each sample and its δ13C 

value checked. Heneicosane was chosen as internal standard because it is not naturally present in 

olive oil. The carbon isotopic value of pure heneicosane (-28.8 ‰) was determined with EA-IRMS, 

and the differences between GC-C-IRMS and EA-IRMS values were at most ±0.2‰. 

The carbon isotopic values of four FAs were determined (Figure 3): palmitic acid (C16:0), stearic 

acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2).  

 

 

 
 

Figure 3. GC-C-IRMS chromatogram of methyl ester derivatives of FAs in an OO sample.  
Peaks: 1, heneicosane (internal standard); 2, methyl palmitate; 3, methyl stearate; 4, methyl oleate;  

5, methyl linoleate. The three first and last peaks of each panel are reference gas signals. 

 

 

To calculate the δ13C values of individual FAs, a mixture of FAME reference standards was  

analysed before and after every three samples to account for δ13C drift within the run. The 

instrumental data for each sample were corrected on the basis of the difference existing between the 

δ13C value of the pure compound in GC/C-IRMS and that in EA-IRMS. 

 

Accuracy and precision of GC-C-IRMS. 

To test the accuracy of the FAME isotopic values determined, the δ13C values of the mixture of 

standard FAMEs measured using GC-C-IRMS were compared with the isotopic values of pure 
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single FAMEs obtained with EA-IRMS. The δ13C values determined using EA-IRMS were the 

means of two measurements, whereas the δ
13C values determined with GC-C-IRMS were the 

average of three runs. δ13C values obtained from EA-IRMS were linearly correlated with those from 

GC-C-IRMS, as shown in the Figure 4, and the difference between the values measured using EA-

IRMS and GC-C-IRMS was not more than ±0.2‰. 

To evaluate precision, a reference FAME mixture was analysed 10 times with GC-C-IRMS. The 

precision (1σ) of GC-C-IRMS determination was on average ±0.2‰. To evaluate the uncertainty of 

measurements for all the processes, a OO sample was transesterified 10 times, and each of the 

samples was analysed using GC-C-IRMS. The standard deviation obtained (1σ) was on average 

±0.3‰. 

 

 

 
 

Figure 4. Isotopic measurements from GC-C-IRMS (n=3) plotted against measurements from EA-IRMS (n=2) for 
carbon. Error bars represent the standard deviation (±1σ) of repeated measurements. 

 

 

Data analysis and corrections 

The δ13C value measured for the FAME is the product of the carbon native to the molecule and the 

contribution of the reagent (methanol) used for transesterification. An empirical correction was 

therefore applied to determine the effective carbon isotope value: 

 

( ) Me
13

FA
13

nFAME
13

n CδCδCCδ1C +=+                               (1) 
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where δ13CFAME, δ
13CFA and δ13CMe are the carbon isotopic values of the FAME, FA and methyl 

group of methanol (Me) respectively. Cn is the number of C atoms in the FA and the δ
13C of Me 

was calculated using EA-IRMS. 

In Figure 5 the δ13C values determined for the four main fatty acids are shown, listed according to 

their biosynthetic order and grouped according to their origin. As is evident in Figure 1, the 

European and non-European samples showed a different trend, according to the specific fatty acids 

considered. In particular, it should be noted that the δ13C values of palmitic and stearic acids are 

similar for the two groups, whereas the δ13C values of oleic and linoleic acids are different. 

 

 

 
 

 Figure 5. Trends for δ13C values determined for the four main fatty acids, listed according  
to their biosynthesis and grouped according to European and non-European origin 

 
 

 

Analysis of variance and Tukey’s test for an unequal number of samples were carried out on the 

data to verify differences between European and non-European samples. The δ13C of methyl oleate 

and linoleate were highly statistically different in the two groups of samples (p<0.001). Specifically, 

European samples generally showed higher values than non-European ones. 

PCA was applied to display the samples in an unsupervised pattern recognition map (score plot), 

using the δ13C values of fatty acids as variables (Figure 6).  
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Figure 6. PCA of δ13C values of FAs in extra-virgin olive oils 

 

 

The PCA showed that the δ13C values of fatty acids make it possible to discriminate between 

European and non-European olive oils, with the exception of some samples. Specifically, the first 

factor explained 58.1% of the total variability of the system and the second 21.5%. The first 

component was mainly positively loaded by the δ13C determined in stearic, oleic and linoleic acids, 

whereas the second component was positively loaded by the δ13C of palmitic acid. 

 

Hydrogen isotopic analysis of individual FAs with GC-Py-IRMS 

For measurement of δ2H, each eluted compound was passed through a high temperature reactor, 

operating at 1400°C, where it was subjected to high temperature pyrolysis with development of H2 

gas. Before measuring the 2H/1H ratio, the [H3]+ factor was verified to be lower than 8. To monitor 

instrumental performance, heneicosane was added to each sample as the internal standard and its 

δ2H value checked. The hydrogen isotopic value of pure heneicosane (-190‰) was determined with 

TC/EA-IRMS, and the differences between GC-Py-IRMS and TC/EA-IRMS values were at most ± 

2.0‰. 

The hydrogen isotopic values of four FAs were determined (Figure 7): palmitic acid (C16:0), stearic 

acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2). 

The δ2H values of FAs were calculated against two international reference materials by building a 

linear relationship: Icosanoic Acid Methyl Esters USGS70 (δ2H value: –183.9‰) and USGS71(δ2H 

value: –4.9‰). 
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Figure 7. GC-Py-IRMS chromatogram of methyl ester derivatives of FAs in an OO sample.  
Peaks: 1, heneicosane (internal standard); 2, methyl palmitate; 3, methyl stearate; 4, methyl oleate;  

5, methyl linoleate. The three first and last peaks of each panel are reference gas signals. 

 

 

Accuracy and precision of GC-Py-IRMS 

To test the accuracy of the FAME isotopic values determined, the δ2H values of the mixture of 

standard FAMEs measured using GC-Py-IRMS were compared with the isotopic values of pure 

single FAMEs obtained with TC/EA-IRMS. The δ2H values determined using TC/EA-IRMS were 

the means of two measurements, whereas the δ
2H values determined with GC-Py-IRMS were the 

average of three runs. δ2H values obtained from TC/EA-IRMS were linearly correlated with those 

from GC-Py-IRMS, as shown in Figure 8, and the difference between the values measured using 

TC/EA-IRMS and GC-Py-IRMS was not more than ±1.9‰. 

To evaluate precision, a reference FAME mixture was analysed 10 times using GC-Py-IRMS. The 

precision (1σ) of GC-Py-IRMS determination was on average ±1.0‰. To evaluate the uncertainty of 

measurements for all the processes, a OO sample was transesterified 10 times, and each of the 

samples was analysed with GC-Py-IRMS. The standard deviation obtained (1σ) was on average 

±2.3‰. 
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Figure 8. Isotopic measurements from GC-Py-IRMS (n=3) plotted against measurements from EA/TC-IRMS (n=2) for 

hydrogen. Error bars represent the standard deviation (±1σ) of repeated measurements. 

 

 

Data analysis and corrections 

The δ2H values measured for FAMEs are the product of the hydrogen native to the molecule and the 

contribution of the reagent (methanol) used for transesterification. An empirical correction was 

therefore applied to determine the effective hydrogen isotope value: 

 

( ) Me
2

FA
2

nFAME
2

n Hδ3HδHHδ3H +=+                               (2) 

 

where δ2HFAME, δ2HFA and δ2HMe are the hydrogen isotopic values of the FAME, FA and methyl 

group of methanol (Me) respectively. Hn is the number of H atoms in the FA and the δ
2H value of 

Me was measured using SNIF-NMR. 

Figure 9 shows the δ2H values determined for the four main fatty acids, listed according to their 

biosynthetic order and grouped according to their origin. As is evident in Figure 1, the European and 

non-European samples showed a similar trend according to the specific fatty acids considered. In 

particular, non-European samples had higher δ
2H mean values for FAs than European ones. 

Analysis of variance and Tukey’s test for an unequal number of samples were carried out on the 

data to verify differences between European and non-European samples. The δ2H of methyl oleate 

was statistically different in the two groups of samples (p<0.001).   
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Figure 9. Trends for δ2H values determined for the four main fatty acids, listed according 
to their biosynthesis and grouped according to European and non-European origin 

 

 

PCA was applied using the δ13C and δ2H values of the four fatty acids as variables (Figure 10). The 

first two factors of PCA explained 64.7% of variance in the 8 original variables. The first 

component (36.2% of variance) was mainly positively loaded by the δ2H determined in four FAs 

whereas the second component (28.5% of variance) was positively loaded by the δ13C of four FAs. 

The score plot showed that the δ2H values of the FAs decreased dispersion in the two groups, 

however discrimination between European and non-European olive oils did not improve 

significantly. 

 

 
Figure 10. PCA of δ13C and δ2H values of FAs in extra-virgin olive oils 
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ANALYTICAL METHOD VALIDATION 

 

To assess the reliability of the method, 10 extra-virgin olive oil samples of undisclosed geographical 

origin were analysed. The results of random forest analysis for origin assignment using the δ13C, 

δ18O and δ2H of bulk samples and the δ13C and δ2H of fatty acids are shown in Table 1. The model 

applied had a mcc of 0.6 in 7-fold cross validation and the number of blind samples correctly 

assigned was 9 out of 10. 

 

Table 1. Results of random forest analysis 

Sample Predicted origin Real origin  
 

7KW Extra UE Tunisia OK 
BC2 UE Argentina NO 
1QV Extra UE Turkey OK 
SV1 Extra UE Australia OK 
DEF UE Portugal OK 
LPT UE Italy OK 
RP5 UE Italy OK 
X8T Extra UE Uruguay OK 
A3Z UE Spain OK 
ZYR UE Spain OK 

 

 

CONCLUSION 

 

This work demonstrates that classification of European and non-European EVOO is possible and 

applicable using IRMS. The results show that geographical discrimination of OO relies on the fact 

that isotopic composition is influenced by the geo-climatic characteristics of the area of origin. 

Moreover, the study highlighted the power of CSIA in comparison to bulk analysis. The isotopic 

fingerprint of specific sub-components adds further detailed information on local conditions (e.g. 

micro-climate, soil and water availability) and can therefore improve geographical discrimination.  

A multivariate statistical approach based on the isotopic composition of the four FAs allowed to 

discriminate between European and non-European OO. In addition, by combining all the isotopic 

parameters measured, it was possible to obtain correct assignment of blind samples of undisclosed 

geographical origin.  

This evidence makes it possible to conclude that in conjunction with other analytical techniques,  

isotope analysis may provide a useful tool for tracing the geographical origin of EVOO.  
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APPENDIX 

 

Table 2. Summary of δ13C, δ18O and δ2H values determined on bulk olive oils and fatty acids 
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CHAPTER 6 CONCLUSIONS 

 

In this thesis, the use of stable isotope ratios as markers for food authenticity and traceability was 

extensively studied and verified. IRMS methods based on bulk analysis and compound-specific 

analysis were developed to characterise premium products and derivatives, such as cereal crops, 

pasta, wine, balsamic vinegar, oenological tannins and extra-virgin olive oil.  

Specifically, the isotopic composition of wheat and pasta was analysed with the aim of evaluating if 

and how the geographical origin and farming system affect stable isotope ratios. Firstly, the 

variability of the H, C, N, O and S stable isotope ratios of bulk samples along the pasta production 

chain (durum wheat, flour and pasta) produced using both conventional and organic farming 

systems in four Italian regions was investigated. The statistical model allowed particularly good 

differentiation of products on the basis of geographical origin (Emilia-Romagna, Tuscany, Molise 

and Basilicata). Subsequently, the method developed to measure the C and N isotopic composition 

of amino acids significantly improved discrimination between organic and conventional wheat 

compared to bulk analysis. With a view to the future, it may be expected that these results will lead 

to the development of an analytical control procedure checking on the geographical provenance of 

organic and conventional pasta and its raw materials. 

The variation in the 15N/14N isotope ratio for the purposes of traceability was also checked for 

Italian wines along the oenological chain, for the first time to date. Despite the isotopic fractionation 

observed from soil to wine, the δ15N values of vine-branches, leaves, grapes and wine reflected the 

variability of δ15N characteristic of the provenance area. Moreover, the study showed that proline 

conserves the nitrogen isotopic fingerprint of the growing soil, independently of the fermentation 

process, type of yeast used, addition of nitrogen adjuvants and wine ageing process. Consequently, 

the δ15N of proline can be suggested as an additional isotopic marker for the geographical 

characterisation of wine. 

Furthermore, δ13C was shown to be a tool that can be used to distinguish and characterise 

commercial tannins according to their botanical origin. This approach provided effective 

differentiation of tannins of different origin and could be used as a complementary method for the 

approaches based on sugar or polyphenolic composition suggested by OIV. 

The same analytical approach was applied to the ingredients of “aceto balsamico di Modena IGP” 

(ABM) to evaluate its authenticity. No isotopic variation from wine to vinegar and ABM, and from 

the original must to ABM must was observed, providing experimental evidence that the analytical 
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procedure routinely used to verify the compliance of wine with European Regulations can also be 

used to evaluate the authenticity of ABM. 

Finally, the isotopic composition of European and non-European extra-virgin olive oil was 

investigated. A dataset with the H, C and O isotopic values measured in bulk samples and the fatty 

acids of authentic extra-virgin olive oils collected in 13 different countries worldwide was created, 

allowing the distinction of two macro areas (European versus non-European). This study showed 

that the variables contributing most to discrimination of the two groups were the isotopic values of 

the H and C of fatty acids. Indeed, a multivariate statistical approach based on the isotopic 

composition of fatty acids offered good discrimination between European and non-European olive 

oil. Consequently, isotope analysis of fatty acids in particular could be used to verify the 

authenticity of extra-virgin olive oil samples, becoming an additional tool for ensuring compliance 

with European law. An improvement in differentiating European and non-European olive oils was 

also found by combining isotopic and NMR profiling methods. 

The stable isotope ratio approach applied throughout this thesis proved to be highly reliable and in 

general it was confirmed that the isotopic composition of premium products reflects the 

geographical, climatic or geological composition of the site of provenance and the farming system 

used. Moreover, this thesis highlights that development of new compound-specific isotope analysis 

methods is crucial to generate more specific information, allowing more reliable food authentication 

and improved protection of consumers and honest producers. 
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