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Preface 

In the past consumer demand was focused on microbiologically safe and stable 

food products. Nowadays consumers are also looking for higher quality products 

with enhanced fresh-like characteristics, fewer additives, improved sensory and 

nutritional quality. In other words, consumers seek foods that contribute to their 

health and wellness. Nevertheless, product convenience, affordability, and ethical 

production are more and more gaining importance. In this context, due to the 

reversing of the food chain, today it is the consumers who tell the producers what 

they want to eat (from fork to farm). The recent development of unconventional 

non-thermal technologies, such as high pressure, pulsed electric fields, 

ultrasounds, cold plasma, dense phase carbon dioxide, and ultraviolet light 

processing, addresses these new consumer needs towards safe, high quality, and 

fresh-like foods. As food structure and functions are the result of the status of 

food constituents, the structural modification of food constituents can lead to new 

product characteristics or improved functionalities. To this regard, different 

driving forces, such as mechanical or electromagnetic energy, were shown to 

effectively affect the structure of food proteins or polysaccharides. Taking 

advantage of specific potentials and opportunities of these unconventional 

technologies by focusing on the complex process-structure-function relationship, 

offers the exiting possibility for the development of fresh-like, healthy, tailor 

made foods. It is evident that this goal can only be reached by clearly understand 

the effects of the process on biomolecule structure and thus functions.  

In this context, this PhD thesis aimed to investigate whether and how 

unconventional technologies, such as light processing and high pressure 

homogenisation, can be exploited to modify biomolecule structure inducing 

changes in their own functions as well as in the functions of other bioactives 

present in the matrix (Fig. A). To this aim, the thesis was divided in two parts. In 

the first part, the effect of UV-C and pulsed light on the structure and functions of 

selected proteins, including polyphenoloxidase, gluten, and egg white was 

investigated. In the second part, the effect of high pressure homogenisation on 

egg white proteins structure and functions as well as on microstructure and 

carotenoid bioaccessibility (BAc) of tomato pulps was studied.  
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Figure A Overall research strategy of this PhD thesis.  
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Chapter 1 Introduction 

1.1 UV-C and pulsed light processing  

Ultraviolet (UV) light processing indicates the use of the electromagnetic 

radiation that occupies the non-ionizing region of the spectrum between 200 nm 

(X-rays) and 400 nm (visible light). The UV spectrum can be further divided into 

three regions: short-length UV light (UV-C) from 200 to 280 nm, medium-length 

UV light (UV-B) from 280 to 320 nm, and full-length UV light (UV-A) from 320 

to 400 nm (Bintsis, Litopoulou-Tzanetaki, & Robinson, 2000; Falguera, Pagán, 

Garza, Garvín, & Ibarz, 2011). UV radiation, in particular short-length UV light 

(UV-C), is nowadays recognised as an efficient technology to non-thermally 

inactivate a wide range of microorganisms, easy to use and characterized by 

favourable costs of equipment, energy and maintenance (Barbosa-Canovas, 

Pothakamury, Palou, & Swanson, 1998; Bintsis et al., 2000; Falguera et al., 2011). 

Practical UV disinfection systems are based on the exploitation of UV radiation 

under both continuous and pulsed conditions. In both the cases, the intensity of 

UV radiation is expressed as irradiance or intensity flux (W m-2), while the dose, 

which is a function of the intensity and time of exposure, is expressed as radiant 

exposure or fluence (J m-2) (Bintsis et al., 2000). Continuous UV-C processing 

exploits mercury lamps as the source of germicidal radiation. Mercury lamps are 

considered to provide almost monochromatic radiation at 254 nm, which is 

absorbed by microbial cell DNA, causing thymine dimers in the same DNA 

strand (photochemical effect). The resulting effect is that the DNA transcription 

and replication are blocked, compromising cellular functions and eventually 

leading to cell death (Bolton & Linden, 2003; Koutchma, 2009). On the other 

hand, pulsed light (PL) treatment is based on the repetition of consecutive short, 

high power light pulses. The latter are emitted by flash xenon lamps. Contrary to 

mercury lamps, xenon lamps emit radiation with a broad spectrum similar to that 

of the sun (170-2600 nm), including UV, visible and infrared light (Falguera et 

al., 2011). Similarly to continuous UV-C light, the germicidal effect of PL is 

primarily mediated by its UV component, thus consisting in the above-mentioned 

photochemical effect (Wang, Macgregor, Anderson, & Woolsey, 2005). 

Furthermore, after very intense PL treatments localized heating of bacteria can 

occur, which leads to cell death (photothermal effect) (Fine & Gervais, 2004; 

Wekhof, 2000). Finally, because of constant disturbance caused by the high-

energy pulses, structural damages to bacterial cell may also be observed 

(photophysical effect) (Krishnamurthy, Tewari, Irudayaraj, & Demirci, 2008; 
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Takeshita et al., 2003). Due to its high peak power, PL may provide some 

practical advantages over continuous UV-C in those situations where rapid 

disinfection is required. In fact, the intense pulses of light, which typically last a 

few hundred microseconds, can result in the application of lethal UV dose levels 

that would require continuous UV sources to operate over a much longer time 

period. The latter can account for an increase in temperature that leads to 

degradation of the food components (Elmnasser et al., 2007; Krishnamurthy, 

Demirci, & Irudayaraj, 2004). 

Both continuous and pulsed ultraviolet light is successfully used for sterilisation 

of packaging materials, working surfaces, utensils, air and drinkable water 

(Bintsis et al., 2000; Koutchma, Keller, Chirtel, & Parisi, 2004; Wright, Sumner, 

Hackney, Pierson, & Zoecklein, 2000). Moreover, it has been proposed to 

decontaminate the surface of shell eggs, fresh-cut vegetables and ready-to-eat 

meat products, as well as for killing microorganisms in liquids, such as milk, fruit 

juices and infant food (Caminiti et al., 2011; Choi, Cheigh, Jeong, Shin, & Chung, 

2010; Hierro et al., 2011; Hierro, Manzano, Ordóñez, de la Hoz, & Fernández, 

2009; Marquenie, Michiels, Van Impe, Schrevens, & Nicolaï, 2003; Pataro et al., 

2011; Ramos-Villarroel, Martín-Belloso, & Soliva-Fortuny, 2011).  

Ultraviolet light processing can be a viable non-thermal alternative in liquid and 

solid foods for eliminating or reducing the levels of most types of undesirable 

microorganisms. However, little is known about the interaction of UV light with 

food components, both in model systems and in a complex food matrix 

(Koutchma, 2009). 

2.1 High pressure homogenisation 

High pressure homogenisation (HPH) is obtained by forcing a fluid through a 

very small orifice, the valve gap of few micrometres in width, by means of a 

positive displacement pump. During this process the fluid undergoes several 

physical phenomena successively and/or simultaneously involved before, through, 

and at the outlet of the high pressure valve gap. In particular, the initial pressure 

build-up and drop generates intense mechanical forces and elongational stress in 

laminar flow at the valve entrance and in the valve gap, followed by turbulence, 

cavitation and impacts with solid surfaces at the gap outlet. The fluid travelling 

through the high pressure valve gap is accompanied by short-life heating 

phenomena (Floury, Bellettre, Legrand, & Desrumaux, 2004; Floury, Legrand, & 

Desrumaux, 2004; Middelberg, 1995; Paquin, 1999). The increase in temperature 

of the fluid must be measured and controlled by efficient cooling systems to avoid 

over-processing of heat-sensitive biomolecules (Cortés-Muñoz, Chevalier-Lucia, 
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& Dumay, 2009; Picart et al., 2006; Thiebaud, Dumay, Picart, Guiraud, & 

Cheftel, 2003). 

The mechanical stresses, that take place during HPH, can be exploited to disrupt 

microorganism cells, thus leading to microbial decontamination of the food 

product (Middelberg, 1995). Despite several hypotheses (Diels, De Taeye, & 

Michiels, 2005; Diels & Michiels, 2006), the exact mechanism of how HPH 

inactivates microorganisms has not yet been fully elucidated. High pressure and 

velocity gradients, shear stresses, turbulence, shocks and cavitation phenomena 

occurring through the high pressure valve could induce mechanical disruption 

and/or at least alteration of cell membranes (Gogate & Pandit, 2008; Kleinig & 

Middelberg, 1998; Middelberg, 1995). The efficiency of HPH for microbial 

inactivation depends on different parameters, such as pressure level, extent of 

recycling through the homogeniser, physiological properties of the 

microorganism, as well as characteristic of the food matrix (Diels, Callewaert, 

Wuytack, Masschalck, & Michiels, 2005; Donsì, Ferrari, Lenza, & Maresca, 

2009; Maresca, Donsì, & Ferrari, 2011; Pedras & Pinho, 2012; Picart et al., 2006; 

Thiebaud et al., 2003). Several studies showed HPH to be a continuous process 

that offers the advantage of notably reducing the microbial load at a level 

equivalent at least to pasteurisation in different foods, such as milk and dairy 

products, and fruit juices (Calligaris, Foschia, Bartolomeoli, Maifreni, & 

Manzocco, 2012; Cruz et al., 2007; Maresca et al., 2011; Pereda, Ferragut, 

Quevedo, Guamis, & Trujillo, 2007; Poliseli-Scopel, Hernández-Herrero, 

Guamis, & Ferragut, 2012; Suárez-Jacobo et al., 2012). In addition to microbial 

inactivation, HPH is widely used in the food, biotechnology, cosmetic and 

pharmaceutical areas to fragment particles in dispersions or emulsions, to produce 

fine and stable emulsions, to modify the viscous properties of fluids due to the 

particle size reduction, to facilitate metabolite extraction (Dumay et al., 2013; 

Floury, Bellettre, et al., 2004; Floury, Legrand, et al., 2004). Despite the potential 

of sanitisation of food, use of HPH in food industry is limited by the high cost of 

the equipment, the availability of cheaper alternative technologies, such as high-

temperature short-time processing, and the lack of predictive tools for microbial 

inactivation (Diels & Michiels, 2006; Donsì, Annunziata, & Ferrari, 2013). 

However, HPH has the great advantage that this technology can be also used for 

obtaining food systems having different rheological and microstructural 

properties than those obtained from row materials (Vannini, Lanciotti, Baldi, & 

Guerzoni, 2004). Therefore, HPH represent a promising technology for obtaining 

safe and tailor-made foods. 



 

10 

 

3.1 Biomolecule engineering by unconventional processes 

The development of emerging technologies in food processing addresses new 

consumer needs toward safe, healthy, convenient, and minimally processed foods, 

as well as environmental friendly and sustainable food manufacturing techniques 

with low energy requirements and reduced water use (Aguilera & Lillford, 2008; 

Toepfl, Mathys, Heinz, & Knorr, 2006). Hitherto, the main purpose of 

unconventional processing has been to obtain safe foods without the detrimental 

effects of thermal treatments. However, any processes used to eliminate 

pathogenic and/or food spoilage microorganisms will inevitably affect the 

structure of the food product (Heldman, Lund, & Husain, 2008). 

Food matrix is composed of different components, such as protein and 

polysaccharides. As the structure and functions of food biomolecules are closely 

interlinked, structural changes of food constituents can lead to new product 

characteristics or improved functionalities (Aguilera, 2005, 2006; Fischer & 

Windhab, 2011; Norton, Moore, & Fryer, 2007). Taking advantage of specific 

potentials and opportunities of non thermal unconventional processes, including 

the understanding and control of the complex process-structure-function 

relationships, offers the possibility for the development of foods with unique 

properties (tailor-made foods) (Hermansson, 2002; Knorr et al., 2011). To this 

regard, both UV processing and HPH may provide, besides microbial 

inactivation, additional advantages. In fact, the same driving forces that induce 

microbial inactivation, can affect food biomolecules, inducing changes in their 

structure and functions. 

In the case of the UV processing, the energy of the UV radiation is captured by 

the chromophore, and transferred throughout the molecule as chemical energy. 

The latter induces changes in the conformation, size and architecture of the 

polymer, leading to modifications in its properties (Davies & Truscott, 2001; 

Wondraczek, Kotiaho, Fardim, & Heinze, 2011). Proteins are major targets for 

photoreactions due to the abundance of endogenous chromophores within their 

structure. Both amino acid side-chains (e.g., thriptophan, tyrosine, phenylalanine, 

cysteine) and bound prosthetic groups (e.g., flavins, heme) may act as efficient 

chromophores. Proteins have the additional ability to bind exogenous 

chromophores, and rapidly react with other excited state species. The result is the 

development of side-chain oxidation, backbone fragmentation, and/or formation 

of cross-links and aggregates (Davies & Truscott, 2001; Davies, 2003; Pattison, 

Rahmanto, & Davies, 2012). Ultraviolet treatments were reported to increase 

tensile strength of gluten, zein, and albumin films (Rhim, Gennadios, Fu, Weller, 
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& Hanna, 1999). Photocrosslinking of egg white protein and sodium caseinate 

was associated to improved emulsifying and foaming properties (Kuan, Bhat, & 

Karim, 2011).  

Similarly to UV processing, also pulsed light treatments were demonstrated to 

cause milk protein aggregation by disulphide bonds without further significant 

changes in protein components (Elmnasser et al., 2008). Fernández et al. (2012) 

showed that pulsed light induced conformational changes in β-lactoglobulin, 

enhancing its absorption rate at the air/water interface. In addition, β-

lactoglobulin solutions treated with pulsed light formed highly elastic interfaces, 

resulting in more stable foams. As regards protein biologic activity, ultraviolet 

and pulsed light processing was demonstrated to reduce the catalytic activity of 

different enzymes and the immunoreactivity of allergenic proteins (Chung, Yang, 

& Krishnamurthy, 2008; Dunn, Clark, & Asmus, 1989; Guerrero-Beltrán & 

Barbosa-Cánovas, 2006; Manzocco, Dri, & Quarta, 2009; Manzocco & Nicoli, 

2012; Manzocco, Quarta, & Dri, 2009; Shriver & Yang, 2011; Yang et al., 2010) 

On the other hand, intense mechanical stresses induced by HPH have been shown 

to affect the structure of food proteins and polysaccharides, resulting in changes 

in their functional properties. Recently, Patrignani et al. (2013) showed that 

inactivation of Salmonella enterica in liquid whole egg by HPH at 100 MPa for 

up to 5 passes was accompanied by minor impact on product viscosity as well as 

an increase in foam capacity and stability. These modifications in the 

technological performances of liquid whole egg were attributed to unfolding and 

increased exposure of hydrophobic regions of egg proteins as a consequence of 

HPH treatment. At similar pressure levels, the typical egg lipoprotein matrix was 

maintained and no proteolysis was detected in high pressure homogenised whole 

egg (Marco-Molés & Hernando, 2009). Denaturation and/or aggregation of 

globular proteins, such as whey proteins, can be induced by HPH processing 

depending on the intensity of mechanical forces and/or the temperature of the 

sample. For instance, HPH treatment up to 140 MPa did not produce changes in 

the secondary structure of β-lactoglobulin but promoted slight interactions among 

particles (Subirade, Loupil, Allain, & Paquin, 1998). When whey proteins were 

treated, dissociation of large aggregates was observed resulting in an increase of 

surface hydrophobicity (Bouaouina, Desrumaux, Loisel, & Legrand, 2006). Upon 

homogenisation at higher pressures (>250 MPa), whey protein aggregation was 

also observed (Grácia-Juliá, René, & Cortés-Muñoz, 2008). Similarly, soybean 

11S globulins were reported to denature upon HPH leading to the formation of a 

gel-like architecture (Floury, Desrumaux, & Legrand, 2002). HPH (200-600 MPa) 

also induced an initial increase and subsequent decrease in free SH content of soy 
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protein isolate. These structural modifications led to changes in emulsifying and 

gelling properties of soy protein isolates (Wang et al., 2008). With regard to 

protein biologic activity, changes in enzymatic activity of several enzymes were 

observed as a consequence of HPH induced protein conformational changes. In 

particular, inactivation of pectate lyase in banana juice, and polyphenoloxidase 

and pectin methyl esterase in apple juice was observed upon HPH at pressure 

higher than 200 MPa (Calligaris, et al., 2012; Suárez-Jacobo et al., 2012). By 

contrast, HPH up to 130 MPa was found to enhance the antimicrobial activity of 

lysozyme and lactoperoxidase (Vannini et al., 2004). Despite the abundance of 

literature evidences, the effect of high pressure homogenisation on protein 

structure and functions is still contradictory. 

HPH has been also shown to affect polysaccharides in fruit- and vegetable-based 

products. In this case, homogenisation has been shown to modify not only the 

particle size of plant fibre suspensions but also the particle interactions, thus 

affecting rheological properties such as the viscosity (Bayod, Månsson, Innings, 

Bergenståhl, & Tornberg, 2007). For instance, HPH has been shown to decrease 

the viscosity of carrot and broccoli puree (Christiaens et al., 2012; Lopez-Sanchez, 

Nijsse, et al., 2011). By contrast, HPH of tomato puree resulted in an increase in 

product viscosity (Colle, Van Buggenhout, Van Loey, & Hendrickx, 2010; 

Lopez-Sanchez, Nijsse, et al., 2011). The latter was attributed to the formation 

and strengthening of a fibre network as a consequence of mechanical stresses 

induced by HPH treatment (Bayod et al., 2007; Beresovsky, Kopelman, & 

Mizrahi, 1995; Lopez-Sanchez, Svelander, Bialek, Schumm, & Langton, 2011; 

Lopez-Sanchez, Nijsse, et al., 2011). It has been suggested that such structural 

modifications may affect the release and bioaccessibility of micronutrients, such 

as carotenoids, from the food matrix (Parada & Aguilera, 2007; van het Hof et al., 

2000). 

Based on these evidences, light processing and HPH could be exploited to modify 

the structure of food biomolecules, thus obtaining food systems with well-defined 

functional properties and biologic activity.  

4.1 Aim and outline of this PhD thesis 

The aim of this PhD thesis was to investigate the potentials of unconventional 

processes, such as light processing and high pressure homogenisation, to modify 

the structure of selected food biomolecules, and thus their functions as well as the 

functions of other bioactives present in the matrix, in order to obtain tailor-made 

foods. To this aim, different matrices were considered (Fig. B). In particular, as 

an example of a globular protein, the enzyme polyphenoloxidase (PPO) was 
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selected and the effect of PL on structure and activity of PPO in model solutions 

was investigated. As an example of a mix of globular proteins, egg white was 

chosen and the effect of either UV-C, or PL, or HPH treatment on its structure 

and technological performances and immunoreactivity was studied. In addition, as 

an example of a mix of globular and fibrous proteins, gluten was selected and the 

effect of PL on its structure and immunoreactivity was evaluated. Besides 

proteins, different polysaccharides were also considered. In this context, as an 

example of a semi-crystalline polysaccharide included in granules, wheat starch 

was selected and the effect of PL on its structure and technological performances 

was studied. On the other hand, differently coloured tomatoes were considered as 

a food matrix containing fibrous polysaccharides, and the effect of HPH on their 

structure and technological performances as well as carotenoid bioaccessibility 

was investigated. Finally, as a mix of proteins and polysaccharides wheat flour 

was considered and the effect of PL on its structure and immunoreactivity was 

studied. Depending on the matrix, different analytical methodologies were chosen 

to assess structural changes induced by unconventional processing.  

 
 

Figure B Aim of this PhD thesis. 

The results of this PhD research project will be discussed considering first the 

effect of light processing on PPO, egg white, wheat gluten, starch, and wheat 

flour. In the second part, the effect of HPH on egg white proteins and tomato 

pulps will be considered. 
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Chapter 2 Materials and Methods 

2.1 Sample preparation 

Polyphenoloxidase 

Mushroom tyrosinase (PPO) (3933 U mg-1, Sigma, St. Louis, MO, USA) was 

used. PPO solutions were prepared by diluting increasing amounts of the enzyme 

in 0.1 M potassium phosphate buffer pH 7.0 (Sigma, St. Louis, MO, USA). The 

initial activities of the different PPO solutions on 1.5·10-3 M Dopa (Sigma, St. 

Louis, MO, USA) in 0.1 M potassium phosphate buffer pH 7.0 were 0.0040, 

0.0065, 0.01, 0.015, 0.026, 0.046 and 2.000 Abs min-1. Aliquots of 100 µL PPO 

solutions were introduced into transparent plastic pouches (polycoupled 

Combiflex PA/PE 090, 20/70, Savonitti, Codroipo, Italy) of 2 x 3 cm, allowing 

80% of the UV radiation to reach the sample, as declared by the producer. The 

pouches were hermetically sealed (Easy Packer EP400, Orved, VM-16, Musile di 

Piave, Italy) and submitted to pulsed light treatment. 

Egg white 

Organic eggs were obtained from a local supermarket. The egg white was 

manually separated from the egg yolk and the chalazae were removed. The 

albumen was manually gently mixed. Egg white pH was 8.6±0.3. Egg white was 

immediately either treated by high pressure homogenisation, or introduced (1.5 g 

egg white) into transparent plastic pouches (polycoupled Combiflex PA/PE 090, 

20/70, Savonitti, Codroipo, Italy) of 3.5 x 6.0 cm. The pouches were hermetically 

sealed (Easy Packer EP400, Orved, VM-16, Musile di Piave, Italy) and submitted 

to either UV-C light or PL treatment. 

Wheat gluten and flour 

Wheat gluten (80% purity grade, Sigma-Aldrich, Milan, Itlay), and wheat flour 

obtained from a local supermarket were suspended in 0.05 M sodium phosphate 

buffer containing 0.5% SDS (w/v) (pH 6.9) in concentration equal to 1% (w/v). 2 

mL of gluten or flour suspension was introduced into 2 x 3 cm plastic pouches 

(Polycoupled Combiflex PA/PE 090, 20/70, Savonitti, Codroipo, Italy). 

Additional samples were prepared introducing 0.5 g wheat gluten, starch, or flour 

into the pouches. The pouches were hermetically sealed (Easy Packer EP400, 

Orved, VM-16, Musile di Piave, Italy) and submitted to PL treatment. After 

pulsed light treatments, gluten, and flour powder was suspended in 0.5% (w/v) 
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SDS-0.05 M sodium phosphate buffer (pH 6.9) solution in concentration equal to 

1% (w/v) and analysed. 

Starch 

Wheat starch (Sigma-Aldrich, Milan, Itlay) was suspendend in distilled water in 

concentration equal to 1% (w/v). 2 mL of starch suspension was introduced into 2 

x 3 cm plastic pouches (Polycoupled Combiflex PA/PE 090, 20/70, Savonitti, 

Codroipo, Italy). The pouches were hermetically sealed (Easy Packer EP400, 

Orved, VM-16, Musile di Piave, Italy) and submitted to PL treatment. 

Tomato pulps 

Red, orange and yellow ripe tomatoes (Solanum lycopersicum L.) of the cultivars 

Admiro, Bolzano and Lorenzo respectively, were purchased at a local 

greengrocer. They were washed, wiped, manually quartered with a sharp knife, 

frozen in liquid nitrogen and stored at −40 °C until use. The same batch of each 

tomato was used for the preparation of all samples. The frozen tomato quarters 

were thawed, peeled, mixed (3 times for 5 s) (Büchi Mixer B-400, Flawil, 

Switzerland) and sieved (pore size 1.0 mm) in order to remove the seeds. Tomato 

pulps were immediately treated by HPH and analysed within 24 h. 

2.2 Unconventional processing 

UV-C light treatment 

Egg white samples were exposed for increasing time (5, 30 min) to UV-C light 

(15 W, OF, OSRAM, GmbH HNS, Munich, Germany, maximum emission 253.7 

nm) in a thermostated cell (Climacell 222, MMM Medcenter, Einrichtungen 

GmbH, Graefelfing, Germany) at 8 °C. The distance between the samples and the 

lamp was 2.5 cm and the irradiance incident on the samples was 35.4 W m-2. 

Irradiance was measured using a portable luminometer (HD-2102.2 Delta Ohm, 

Padova, Italy) equipped with a UV-C light probe (LP471 UVC, Padova, Italy). 

The luminometer sensor was placed in the thermostated cell at 2.5 cm distance 

from the UV-C lamp and irradiance value recorded. 

The dose received by the samples exposed to the light for 5 and 30 min was 1.06 

and 6.37 J cm-2 respectively. The lamp was allowed to stabilise by turning it on at 

least 15 min before use. Analogous samples kept under dark were prepared as 

control. No temperature changes were observed as a consequence of lighting in all 

samples. 
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Pulsed light treatments 

Pulsed light treatments were carried out at room temperature by using a pulsed 

light mobile decontamination unit (Claranor, Rouaine, France) equipped with 4 

xenon lamps with emission in the range 200-1000 nm (200-400 nm: 41%; 400-

700 nm: 51%; 700-1000 nm: 8%). Lamps were positioned at each side of a quartz 

plaque held in the centre of the cube shaped chamber. According to the 

manufacturer’s instructions, PPO, egg white, gluten, starch, and flour samples 

were placed on the quartz plaque and lamps set at distances allowing the sample 

to be exposed to increasing light fluence from 0 to 1.75 J cm-2 pulse-1. Exposure to 

higher fluence up to 31.5 J cm-2 was obtained by delivering to the sample 

increasing number of pulses (0-18), each having a fluence of 1.75 J cm-2. Pulse 

duration was 50 μs and repetition rate was 0.5 Hz. 

High pressure homogenisation 

Egg white was homogenised using a two stage high pressure homogeniser (Panda 

PLUS 2000, Gea Niro Soavi, Parma, Italy) provided with cylindrical tungsten 

carbide homogenising valves. The first valve, which is the actual homogenisation 

stage, was set at 150 MPa and the second one at 5 MPa. Aliquots of 250 mL egg 

white were homogenised via multiple passes up to 17 at 10.8 L h-1 flow rate. The 

homogeniser inlet and outlet were connected to a heat exchanger (Julabo F70, 

Seelbach, Germany) set at 4 °C. Additional samples were obtained by 

homogenising the egg white with the first valve set at 0 MPa. Untreated egg white 

was considered as control. All the samples were kept at 4 °C until analysis. All 

the samples were analysed within 24 h after the homogenisation process. 

Tomato pulps were homogenised via a single pass at 20, 50 and 100 MPa using a 

high pressure homogeniser (Panda 2K; Gea Niro Soavi, Mechelen, Belgium) with 

inlet and outlet connected to a heat exchanger at a pre-set temperature of 4 °C. 

Non homogenised pulps were considered as control samples. All the samples 

were kept in the dark at 4 °C until analysis. 

2.3 Temperature measurements 

Sample temperature was measured by a copper-constantan thermocouple probe 

(Ellab, Denmark) connected to a portable data logger (mod. 502A1, Tersid, 

Milano, Italy). In samples subjected to UV-C and PL treatment, measurements 

were performed within 10 s from the end of the treatment. In samples subjected to 

HPH, measurements were performed just before and immediately after 

homogenization. 
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2.4 Determination of PPO structure and function 

HPLC-gel permeation analysis 

HPLC-gel permeation analysis was performed in duplicate by a HPLC system 

Jasco (model 880-02, Japan Spectroscopic Co., Tokyo, Japan) equipped with a 

UV-Vis detector as reported by Manzocco et al. (2009). Two columns were used: 

BioSep-SEC-S 3000, 30 cm length, 7.80 mm internal diameter and BioSep-SEC-

S 2000 30 cm length, 7.80 mm internal diameter, 5 µm granulometry, 125 Å 

porosity, with separation range among 5 and 150 kDa. Injection volume was 20 

L and the mobile phase, delivered at a flow rate of 0.6 mL min-1, was 0.1 M 

potassium phosphate buffer pH 7.0 in isocratic conditions. The detection 

wavelength was 220 nm. Bovine Serum Albumin (67 kDa), α-Lactalbumin (15 

kDa) and β-Lactoglobulin (18 kDa) albumin (44.29 kDa) from Sigma (St. Louis, 

MO, USA) were used as calibration standards. Peaks integration was performed 

by CHROM-CARD for Windows software (1.19 version). 

Polyphenoloxidase activity 

The PPO activity was assayed spectrophotometrically (Shimadzu UV-2501PC, 

UV-Vis recording spectrophotometer, Shimadzu Corporation, Kyoto, Japan) at 25 

°C according to the methodology of Kahn (1985), based on the absorption at 420 

nm of the brown polymers formed when L-Dopa is oxidized in the presence of 

PPO. The reaction was started by the addition of 20 µL of PPO solution to 2 mL 

of medium containing 0.1 M potassium phosphate buffer pH 7.0 and 1.5·10-3 M 

L-Dopa as substrate. The absorbance at 420 nm was monitored each minute for 

15 min. The changes in absorbance per minute were calculated by linear 

regression applying the pseudo zero order kinetic model. The eventual final 

stationary phase was excluded from regression data. One unit of PPO was defined 

as the amount of enzyme which produces an increase in absorbance at 420 nm of 

0.001 per minute under the testing conditions. PPO activity was calculated as the 

percentage ratio between enzymatic activity of the pulsed light treated solution 

and of the untreated one.  

Linear regression of enzymatic activity as a function of pulsed light fluence was 

also performed considering the linear part of the curve. The photostability of PPO 

was calculated as the fluence required to reduce the original PPO activity by 50% 

(F50) and expressed as J cm-2. 
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Data analysis 

At least five independently treated samples were assessed for enzymatic activity. 

Coefficients of variations, expressed as percentage ratio between standard 

deviation and mean value were lower than 9. HPLC gel permeation analyses were 

carried out in duplicate. Linear regression analysis was performed using 

Microsoft Office Excel 2003. Goodness-of-fit was evaluated by means of the 

determination coefficients (R2) and the corresponding p values. 

2.5 Determination of egg white protein structure and functions 

Absorbance 

The absorption spectroscopy measurements at 280, 380, and 680 nm were 

performed by a UV-Vis spectrophotometer (UV-2501 PC, Shimadzu Kyoto, 

Japan) at 25 °C with a 1 cm path-length cuvette. Egg white was diluted 1:100 

(v/v) with 0.05 M tris-HCl buffer pH 9.0 containing 0.4 M NaCl. 

Dynamic light scattering 

Light scattering measures were made using a Particle Sizer NICOMPTM 380 ZLS 

(PSS NICOMP Particle Sizing System, Santa Barbara, California, USA). Egg 

white samples were diluted either 1:1000 (v/v) with 0.05 M tris-HCl buffer pH 

9.0 containing 0.4 M NaCl, or 1:50 with deionized water. The angle of 

observation was 90°. The refractive index of the solution was set at 1.333 and the 

viscosity was approximated to that of pure water at 25 °C. Hydrodynamic radius 

refers to the corresponding volume distribution calculated by NICOMP 

Distribution Analysis. 

Determination of free sulfhydryl content 

The concentration of free sulfhydryl groups (SH) of the egg white samples was 

determined using Ellman's reagent (5',5-dithiobis (2-nitrobenzoic acid), DTNB) 

(Sigma Aldrich. Milan, Italy). Changes in free sulfhydryl groups were measured 

in duplicate as reported by Beveridge, Toma, & Nakai (1974). Briefly, egg white 

(1.5 g) was diluted to 10 mL with 1% (p/v) NaCl in Tris-glycine buffer (10.4 g 

Tris, 6.9 g glycine, 1.2 g EDTA per liter, pH 8.0) (Sigma Aldrich, Milan, Italy). A 

volume of 2.9 mL of 0.5% SDS in Tris-Glycine buffer was added to 0.1 mL of 

diluted egg white and 0.02 mL of Ellman's reagent (4 mg mL-1 DTNB in Tris-

glycine buffer) to develop colour. After 15 min, absorbance was measured at 412 

nm by a UV-Vis spectrophotometer (UV-2501 PC, Shimadzu Kyoto, Japan). 
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Concentration of free sulfhydryl groups (µM g-1) was calculated from the 

following equation: 

 (1) 

where A412 is the absorbance at 412 nm; C is gluten concentration (mg mL-1); 

D=5.02 is the dilution factor; and 73.53 is derived from ; 1.36·104 is 

the molar absorptivity (Ellman, 1959). 

HPLC gel-permeation analysis 

Egg white was diluted 1:50 (w/v) with 0.05 M tris-HCl buffer pH 9.0 containing 

0.4 M NaCl (Sigma Aldrich, Milan, Italy). The solution was filtered on 0.20 µm 

pore size filters (Econofilters, Agilent Technologies, Cernusco sul Naviglio, 

Italy). Samples were analysed using a HPLC system Jasco (model 880-02, Japan 

Spectroscopic Co., Tokyo, Japan) equipped with a UV-Vis detector. Two 

columns were used: BioSep-SEC-S 3000, 30 cm length, 7.80 mm internal 

diameter and BioSep-SEC-S 2000 30 cm length, 7.80 mm internal diameter, 5 µm 

granulometry, 125 Å porosity, with separation range among 5 and 150 kDa. 

Injection volume was 20 L and the mobile phase, delivered at a flow rate of 0.6 

mL min-1, was 0.05 M tris-HCl buffer pH 9.0 containing 0.4 M NaCl in isocratic 

conditions. Detection wavelength was 220 nm. Bovine serum albumin (67 kDa), 

α-lactalbumin (14 kDa), -lactoglobulin (18 kDa), albumin (44.29 kDa) (Sigma, 

St. Louis, MO, USA), and insulin (5.7 kDa) (Roche Diagnostic GmbH, 

Mannheim, Germany) were used as calibration standards. A linear relation 

(R2=0.92) was found between retention time and molecular weight of standard 

proteins, expressed in logarithmic values. Peaks integration was performed by 

CHROM-CARD for Windows software (1.19 version). 

SDS-polyacrylamide gel electrophoresis 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed according to Laemmli (1970). Egg white was diluted 1:4 with 0.05 M 

tris-HCl buffer pH 8.8 containing 0.4 M NaCl. The egg white solution was then 

further diluted 1:4 with sample buffer (Bromophenol blue 0.01%, 120 mM Tris-

HCl, pH 6.8, 4% (w/v) SDS, 20% (v/v) glycerol). 5 µL of sample (15 µg protein) 

were loaded on a 15% (w/v) polyacrylamide separating gel containing bis-

acrylamide cross linker, mounted on a Mini 2-D (Bio-Rad, Richmond, California, 

USA) vertical electrophoresis cell. The egg white electrophoretic patterns were 
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obtained by running the samples at 15 mA with standard proteins of known 

molecular weight (Precision Plus Protein™ Dual Color Standards, Bio-Rad, 

Segrate, Italy). The gels were subsequently stained in NOVEX ® Colloidal Blue 

Staining Kit (Invitrogen, Carlsbad, California, USA) for one night and then 

destained in bi-distilled water. Gels were scanned and analysed with the 

ImageQuant TL Image Analysis Software (Amersham Bioscience Inc., 

Piscataway, New Jersey, USA) to determine the molecular weight of each band. 

Immunoreactive egg white proteins 

The quantitative determination of immunoreactive egg white was performed at 

room temperature by the enzyme immunoassay RIDASCREEN® Fast Ei/Egg 

Protein (R-Biopharm AG, Darmstadt, Germany) according to the manufacturer’s 

recommendations. Analyses were performed on samples diluted to 8×10-10 g L-1 

with the 0.05 M Tris-HCl pH 8.8 buffer containing 0.4 M NaCl. Absorbance at 

450 nm was measured by using a microplate reader (Sunrise, Tecan Group, 

Männedorf, Switzerland). Concentration of immunoreactive egg white was 

determined according to the calibration curve obtained using the standard 

solutions provided with the immunoassay kit. 

Apparent viscosity 

Viscosity at 20 °C was measured by a Stresstech Rheometer (Reologia 

Instruments AB, Lund, Sweden) with a parallel plate geometry of 40 mm 

diameter, and a gap of 2 mm. The system was thermostated by a Jumo Dicon cell 

(Sm M.K. Juccheim GMBM & Co, Fulda, Germany). The measurements were 

performed at shear rate from 1.093 and 159.4 s-1. Apparent viscosity was 

calculated at shear rate equal to 5.17 s-1. 

Gel firmness 

Aliquots of 3.5 g of egg white were introduced in 10 mL capacity vials, 

hermetically sealed with butyl septa and metallic caps. Samples were heated in a 

water thermostated bath (YELLOW line, IKA-Werke, Germany) at 90 °C for 5 

min. Firmness was measured by a puncture test using an Instron 4301 (Instron 

LTD, High Wycombe, UK) according to the methodology of Manzocco et al. 

(2009) with minor modifications. The instrumental settings and operations were 

accomplished using the software Automated Materials Testing System (version 5, 

Series IX, Instron LTD, High Wycombe, UK). Samples were punctured with a 1.5 

mm cylindrical probe. Crosshead speed was set at 10 cm min-1. Force-distance 

curves were obtained from the puncture tests and firmness was taken as the force 
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(N) required to puncture the gel 0.5 cm. For each sample 6 measures were 

performed. 

Gelling temperature 

Gelling temperature was determined by a rotational rheometer (Stresstech 

Rheometer, Reologia Instruments AB, Lund, Sweden) equipped with a 40 mm 

diameter cone-plate geometry. As reported by Raikos, Campbell, Stephen, & 

Euston, (2007), a temperature sweep was conducted from 60 to 75 °C at a heating 

rate of 1.0 °C min-1 using a frequency of 1 Hz and a strain of 0.008. These 

conditions were chosen within the linear viscoelastic region of the samples. The 

outer edges of the plates were covered with a thin layer of mineral oil (d= 0.84 g 

mL-1, Sigma Aldrich, Milan, Italy) to minimize water loss during measurements. 

Foam ability and stability 

Foams were obtained by whipping 5 mL of egg white for 3 min at 20 °C in a 50 

mL cylinder by a high speed mixer (Ika-Werke, DI 25 basic, Staufen, Germany) 

operating at 9500 rpm. The volume of the foam and of the drained liquid was 

assessed just after whipping and during holding up to 30 min at 20 °C. Percentage 

foam ability (FA) and stability (FS) were calculated as follows: 

 

FA (%) = (Vf-Vl0)/Vl0 ×100  (2) 

 

FS (%) = Vf30/Vf ×100  (3) 

 

where Vf is the foam  volume, Vl0 is the initial volume of the liquid egg white and  

Vf30 is the foam volume after 30 min observation. 

Microscopy 

Just whipped foams and foams held for 30 min at 20 °C were placed onto a 

microscope slide. Pictures of foam bubbles were acquired as quickly as possible 

using a digital camera (Leica EC3, Solms, Germany) mounted on a LeicaTM 

microscope (Leica DM 2000, Solms, Germany), magnification 100x. 

Image analysis 

Images were submitted to analysis using Image-Pro Plus (ver. 6.3, Media 

Cybernetics, Inc., Bethesda, MD, U.S.A.). In particular, images were converted to 

grey scale (8 bit). Because of the low contrast between the bubbles and the 

surrounding medium, the boundaries of the air bubbles were selected by a semi 
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automatic procedure. The maximum diameter of the bubbles was measured. 

Bubbles in each image were subdivided into three classes, depending on their 

average diameter: the first class (small bubbles) consisted of bubbles with average 

diameter lower than 0.05 mm; the second class (medium bubbles) included 

bubbles with average diameter from 0.05 to 0.1 mm; the third class (large 

bubbles) consisted of bubbles with average diameter higher than 0.1 mm. The 

percentage ratio between the number of bubbles belonging to each class and the 

total number of bubbles in the image was calculated. 

Data analysis 

Results are expressed as mean of three replicates ± standard deviation. Means 

were compared using one-way analysis of variance (ANOVA) (P<0.05) followed 

by Tukey test. Least squares linear regression analyses were also performed 

(Statistica 6.0, StatSoft inc., Tulsa, USA). 

2.6 Determination of gluten proteins structure and function 

Absorbance 

The absorption spectroscopy measurements at 280 and 320 nm were performed 

by a UV-Vis spectrophotometer (UV-2501 PC, Shimadzu Kyoto, Japan) at 25 °C 

with a 1 cm path-length cuvette. Gluten and flour samples were diluted with 0.5% 

(w/v) SDS-0.05 M sodium phosphate buffer solution (pH 6.9) to obtain 

absorbance signals on scale.  

Microscopy analysis 

Micrographs of gluten (100x), and flour samples (40x) were taken using a digital 

camera (Leica EC3, Solms, Germany) mounted on a light microscope (Leica DM 

2000, Solms, Germany).  

Dynamic light scattering 

Light scattering measures were made using a Particle Sizer NICOMPTM 380 ZLS 

(PSS NICOMP Particle Sizing System, Santa Barbara, California, USA). The 

angle of observation was 90°. The refractive index of the solution was set at 1.333 

and the viscosity was approximated to that of pure water at 25 °C. Hydrodynamic 

radius refers to the corresponding volume distribution calculated by NICOMP 

Distribution Analysis.  
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Determination of free sulfhydryl content 

The concentration of free sulfhydryl groups (SH) of gluten and wheat flour 

samples was determined using Ellman’s reagent (5’,5-dithiobis (2-nitrobenzoic 

acid), DTNB) (Sigma Aldrich, Milan, Italy). The procedure described by 

Stathopoulos, Tsiami, David Schofield, & Dobraszczyk (2008), based on the 

method of Beveridge et al. (1974), was followed. Briefly, a Tris–glycine–EDTA 

(TGE) buffer was prepared by dissolving Tris (10.4 g), glycine (6.9 g) and EDTA 

(sodium salt) (1.2 g) (Sigma Aldrich. Milan, Italy) in 800 mL distilled water. The 

pH was adjusted to 8.0 using concentrated hydrochloric acid and the volume was 

then made up to 1 L. Ellman's reagent was prepared by dissolving 20 mg of 

DTNB in 5 mL of dimethylformamide (4 mg mL-1 solution) (Sigma Aldrich, 

Milan, Italy) and stored in the dark at room temperature. A working SDS–TGE 

solution was freshly prepared each time by mixing 45 mL of TGE stock solution 

with 5 mL SDS stock solution (25%, w/v). The working solution was degassed in 

an ultrasonic bath for 30 min, and flushed with nitrogen during stirring for 

15 min. 10 mg gluten and 100 mg flour was suspended in 3 mL TGE–SDS buffer 

at 20 °C and vortexed every 10 min for 30 min. 0.06 mL Ellman's reagent was 

added to the suspension and the mix was held at 20 °C for 15 min. This was 

followed by centrifugation at 3,000 g for 15 min at 4 °C. The supernatant was 

then centrifuged at 20,000g for 15 min at 4 °C. The absorbance of the supernatant 

was measured at 412 nm by a UV-Vis spectrophotometer (UV-2501 PC, 

Shimadzu Kyoto, Japan). Both reagent and sample blanks were used. 

Concentration of free sulfhydryl groups (µM g-1) was calculated from the 

following equation: 

 (1) 

where A412 is the absorbance at 412 nm; C is gluten concentration (mg mL-1); 

D=5.02 is the dilution factor; and 73.53 is derived from ; 1.36·104 is 

the molar absorptivity (Ellman, 1959). 

HPLC gel-permeation analysis  

Gluten proteins were analysed by HPLC gel-permeation according to the 

procedure described by Gupta, Khan, & Macritchie (1993), with minor 

modifications. Before HPLC analysis gluten and flour samples were submitted to 

protein extraction. The samples were heated at 40 °C for 5 min and subsequently 

stirred at room temperature for 20 h to assure dissolution. The samples were 
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centrifuged at 10,000 g for 30 min. The supernatant was collected and filtered 

(Whatman PVDF syringe filter, 0.45 µm pore size-25 mm diameter). Analyses 

were performed on a HPLC system Jasco (model 880-02, Japan Spectroscopic 

Co., Tokyo, Japan) equipped with a UV-Vis detector. Two columns were used: 

BioSep-SEC-S 3000, 30 cm length, 7.80 mm internal diameter and BioSep-SEC-

S 2000 30 cm length, 7.80 mm internal diameter, 5 µm granulometry, 125 Å 

porosity, with separation range among 5 and 150 kDa. The eluent consisted of 

50% (v/v) acetonitrile (Sigma) and 50% (v/v) MilliQ water, containing 0.1% (v/v) 

trifluoroacetic acid (Sigma). The injection volume was 10 μl. Flow rate was set at 

0.5 ml min-1 and the detection wavelength was 210 nm. Bovine serum albumin 

(67 kDa), α-lactalbumin (14 kDa), β-lactoglobulin (18 kDa), albumin (44.29 kDa) 

(Sigma Aldrich, Milan, Italy) were used as calibration standards. Peak retention 

times were estimated by CHROM-CARD for Windows software (1.19 version). 

A linear relation (R2=0.99) was found between retention time and molecular 

weight of standard proteins, expressed in logarithmic values.  

SDS-polyacrylamide gel electrophoresis  

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed according to Laemmli (1970). 63 µL gluten samples were diluted with 

37 µL sample buffer (bromophenol blue 0.01%, 120 mM Tris-HCl, pH 6.8, 4% 

(w/v) SDS, 20% (v/v) glycerol). Flour samples were submitted to protein 

extraction procedure, as explained for HPLC analysis, 80 µL supernatant were 

diluted with 20 µL sample buffer (bromophenol blue 0.2%, 0.5 M Tris-HCl, pH 

6.8, 10% (w/v) SDS, 50% (v/v) glycerol). 5 µL of gluten sample (25 µg protein), 

and 20 µL flour protein extract (12.8 µg protein) were loaded on a 13% (w/v) 

polyacrylamide separating gel containing bis-acrylamide cross linker, mounted on 

a Mini 2-D (Bio-Rad, Richmond, California, USA) vertical electrophoresis cell. 

The electrophoretic patterns of gluten proteins were obtained by running the 

samples at 15 mA with standard proteins of known molecular weight (Precision 

Plus Protein™ Dual Color Standards, Bio-Rad, Segrate, Italy). The gels were 

subsequently stained in NOVEX ® Colloidal Blue Staining Kit (Invitrogen, 

Carlsbad, California, USA) for one night and then destained in bi-distilled water. 

Gels were scanned and analysed with the ImageQuant TL Image Analysis 

Software (Amersham Bioscience Inc., Piscataway, New Jersey, USA) to 

determine the molecular weight of each band. 
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Immunoreactive gliadin 

The quantitative determination of immunoreactive gliadin was performed at 25 °C 

by the enzyme immunoassay RIDASCREEN® Fast Gliadin (R-Biopharm AG, 

Darmstadt, Germany) according to the manufacturer’s recommendations. 

Analyses were performed on light treated gluten samples and light treated wheat 

flour samples diluted to 2 mg L-1 with 0.5% (w/v) SDS-0.05 M sodium phosphate 

buffer solution (pH 6.9). Absorbance at 450 nm was measured by using a 

microplate reader (Sunrise, Tecan Group, Männedorf, Switzerland). 

Concentration of immunoreactive gliadin was determined according to the 

calibration curve obtained using the standard solutions provided with the 

immunoassay kit. 

Data analysis 

The results are averages of at least three measurements taken from different 

samples and are reported as means ± SD. Analyses of variance (ANOVA) was 

performed with significance level set to P<0.05 (Statistica for Windows, ver. 5.1, 

Statsoft Inc. Tulsa, USA, 1997). The Tukey procedure was used to test for 

differences between means. 

 

2.7 Determination of starch structure and function 

Absorbance 

The absorption spectroscopy measurements at 280 and 320 nm were performed 

by a UV-Vis spectrophotometer (UV-2501 PC, Shimadzu Kyoto, Japan) at 25 °C 

with a 1 cm path-length cuvette. Starch samples were diluted with distilled water 

to obtain absorbance signals on scale.  

Turbidity 

The optical density at 680 nm of starch samples was measured each minute during 

15 min by a UV-Vis spectrophotometer (UV-2501 PC, Shimadzu Kyoto, Japan) 

at 25 °C with a 1 cm path-length cuvette. 

Dynamic light scattering 

Light scattering measures were made using a Particle Sizer NICOMPTM 380 ZLS 

(PSS NICOMP Particle Sizing System, Santa Barbara, California, USA). The 

angle of observation was 90°. The refractive index of the solution was set at 1.333 

and the viscosity was approximated to that of pure water at 25 °C. Hydrodynamic 
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radius refers to the corresponding volume distribution calculated by NICOMP 

Distribution Analysis.  

Gelatinisation 

5 mL of starch suspension were introduced in 10 mL capacity vials, hermetically 

sealed with butyl septa and metallic caps. Starch samples were heated in a water 

thermostated bath (YELLOW line, IKA-Werke, Germany) at 100 °C for 30 min. 

Microscopy analysis 

Micrographs of starch granules (200x), and gelatinised starch granules (100x) 

were taken using a digital camera (Leica EC3, Solms, Germany) mounted on a 

light microscope (Leica DM 2000, Solms, Germany).  

Data analysis 

The results are averages of at least three measurements taken from different 

samples and are reported as means ± SD. Analyses of variance (ANOVA) was 

performed with significance level set to P<0.05 (Statistica for Windows, ver. 5.1, 

Statsoft Inc. Tulsa, USA, 1997). The Tukey procedure was used to test for 

differences between means. 

2.8 Determination of tomato pulps microstructure and functions  

(This experimental work was performed at the Laboratory of Food Technology of 

the Katholieke Universiteit Leuven, Belgium). 

Light microscopy  

Micrographs of tomato pulps were taken using a digital camera mounted on a 

light microscope (Olympus BX-41, Optical Co. Ltd., Tokyo, Japan). To visualize 

the microstructure of the tomato pulps, the samples were diluted 1:10 (v/v) with 

0.1 % toluidine blue aqueous solution. The presence of starch was also evaluated 

by diluting 1:4 (v/v) tomato pulp with a iodine staining solution (0.2% iodine, 2% 

potassium iodide aqueous solution). Few droplets of the mixtures were placed on 

microscopic slides, covered with cover glasses and studied using a 10x 

magnification. To visualize the tomato chromoplasts, one droplet of tomato pulp 

was placed on a microscopic slide, covered with a cover glass and analysed using 

a 100x magnification.  
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Particle size distribution (PSD) 

The PSD of tomato pulps was measured by laser diffraction using a Malvern 

Mastersizer S long bench instrument (Malvern Instrument Ltd., Worcestershire, 

UK). Tomato pulp was poured into a stirred tank filled with water until a laser 

obscuration of 20% was achieved. The diluted sample was pumped into the 

measuring cell, which was located in the optical path of the laser beam. The laser 

beam (He–Ne laser, wavelength 633 nm), collimated at 18 mm, was scattered to 

detector units (42 element composite solid state detector array), which detected 

particles in the range of 0.05 to 880 μm. Volumetric PSDs were calculated from 

the intensity distribution of the scattered light using the Mie theory by use of the 

instrument software. 

Bostwick consistency 

The consistency of tomato pulps was measured using a Bostwick consistometer. 

This empirical test was conducted allowing the sample to flow under its own 

weight along a sloped stainless steel tray for 30 s at room temperature (23 °C). 

The distance the pulps flowed was recorded as the Bostwick consistency index 

(cm). High values correspond to a low consistency pulp with low resistance to 

flow, while lower values are associated with high consistency pulps resistant to 

flow. Measurements were done in triplicate.   

In vitro bioaccessibility 

The lycopene, ζ-carotene and lutein in vitro bioaccessibility was measured 

immediately after processing the tomato pulp by simulating human digestion in 

the stomach and small intestine in vitro. The procedure described by Moelants et 

al. (2012), based on Hedrén, Diaz, & Svanberg (2002), was followed. In 

particular, 5 g tomato pulp was weighted into a 50 mL capacity brown falcon 

tube. The sample was diluted with 5 mL NaCl/ ascorbic acid solution (0.9% 

NaCl, 1% ascorbic acid in water), 5 mL stomach electrolyte solution (0.30% 

NaCl, 0.11% KCl, 0.15% CaCl2∙2H2O, 0.05% KHPO4, 0.07% MgCl2∙6H2O in 

water) and 10 mL of freshly prepared oil emulsion. The latter was obtained by 

suspending 1% (w/v) L-α-phosphatidylcholine from egg yolk (Sigma) in water. 

5% (v/v) extra virgin olive oil was then added and the mixture was homogenized 

(UltraTurrax® T25, IKA® - Werke GMBH & CO.KG, Staufen, Germany) at 

9500 rpm during 10 min. A second homogenization was performed at 100 MPa 

for one cycle using the high pressure homogeniser described above.  

To simulate the first phase of gastric digestion, the pH of the mixture was 

adjusted to 4±0.05 with 1 M HCl or 1 M NaHCO3 and 5 mL pepsin solution 
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(0.52% porcine pepsin, from Sigma, in electrolyte solution) was added. After 

flushing the headspace of the samples with nitrogen for 20 s, the mixture was 

incubated at 37 °C for 30 min while shaking end-over-end. The pH of the mixture 

was then acidified to 2±0.05 to mimic the drop of the gastric pH after the intake 

of a meal (Tyssandier et al., 2003). The headspace of the samples was flushed 

again with nitrogen for 20 s and the incubation at 37 °C continued for another 30 

min. To imitate the passage through the small intestine, the pH of the partially 

digested tomato pulp was raised to 6.9±0.05 and 3 mL pancreatin/bile salts 

solution (0.4% porcine pancreatin, 2.5% bile extract, 0.5% pyrogallol, and 1% α-

tocopherol, from Sigma, in water) was added. Finally, the headspace of the 

sample was flushed with nitrogen for 20 s and incubated for 2 h at 37 °C. The 

digest was centrifuged (L7 Ultracentrifuge, Beckman, Palo Alto, CA, USA) at 

165,000 g during 65 min at 4 °C to separate the micelles. The supernatant was 

collected, filtered (Chromafil PET filters, 0.20 μm pore size-25 mm diameter) and 

analyzed for carotenoid content (Cm). The in vitro bioaccessibility of the 

carotenoids was defined as the percentage ratio between the carotenoid content in 

the micelles (Cm) and in the digest of the control sample (i.e. non homogenised 

tomato pulp) (Cd). The latter sample was obtained immediately after digestion (no 

ultracentrifugation). 

Carotenoid content 

The extraction of lycopene, ζ-carotene and lutein was performed following the 

procedure of Sadler, Davis, & Dezman (1990), with minor modifications. The 

analysis was performed under subdued light to prevent carotenoid degradation 

and isomerisation. 0.5 g NaCl and 50 mL extraction solution (50% hexane, 25% 

acetone, 25% ethanol, 0.1% butylated hydroxytoluene) were added to 2 g freshly 

prepared tomato pulp, to the digest of non homogenised tomato pulp or to the 

micellar fraction. The mixture was stirred at 4 °C for 20 min. Reagent grade water 

(15 mL) was added and stirring was continued for 10 min. The apolar phase was 

then separated from the aqueous phase using a separation funnel. The apolar 

phase, containing the carotenoids, was collected, filtered (Chromafil PET filters, 

0.20 μm pore size-25 mm diameter) and transferred to an amber HPLC vial. 

When necessary, the apolar phase was concentrated under vacuum at 30 °C for 35 

min using a rotary evaporator. The concentrated carotenoid extracts were 

redissolved in hexane:dichloromethane (4:1 v/v) and transferred to an amber 

HPLC vial. The concentration factor was calculated by adding a known amount of 

β-apo-8’-carotenal prior to the evaporation of the apolar solvent.  
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The HPLC analyses were performed on an Agilent 1200 series system equipped 

with a diode array detector (Agilent Technolgies 1200 Series, Diegem, Belgium), 

according to Colle et al. (2010) with some modifications. Carotenoids were 

separated at 25 °C on a reversed phase C30 column (3 μm×150 mm×4.6 mm, 

YMC Europe, Dinslaken, Germany) coupled to its guard column. A mobile phase 

of reagent grade water (A), methanol (B) and methyl-t-butyl-ether (C) was used. 

The gradient elution was as follows: 0 min: 4% (A), 96% (B); 6-9 min: 4% (A), 

81% (B), 15% (C); 21-24 min: 4% (A), 41% (B), 55% (C); 32 min: 4% (A), 31% 

(B), 65% (C); 34-38 min: 4% (A), 26% (B), 70% (C); 38-48 min: 4% (A), 96% 

(B). Lycopene, ζ-carotene and lutein were identified based on retention times and 

spectral characteristics compared to the standards (data not shown). To quantify 

the carotenoids, HPLC-DAD peak responses were measured at 472 nm for 

lycopene, and at 450 nm for ζ-carotene and lutein. The carotenoid content was 

calculated based on their calibration curve and expressed as μg/g tomato pulp.  

Data analysis 

Results obtained are expressed as mean of three replicates ± standard deviation. 

Means were compared using one-way analysis of variance (ANOVA) followed by 

Tukey test (P<0.05) (Statistica 6.0, StatSoft inc., 2001). Least squares linear 

regression analyses were performed by using Statistica for Windows (ver. 4.5, 

1993, Stat Soft Inc., Tulsa, USA). 
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PART I Effect of light processing on food biomolecules 

The aim of the first part of this PhD research was to investigate the effects of light 

processing on selected food proteins focusing on the process-structure-function 

relationship. To this aim different types of proteins, which serve important 

functionality in foods, were chosen. The following chapters will discuss the effect 

of PL on the structure and enzymatic activity of PPO in model solution, the effect 

of UV-C light and PL on the structure and technological performances (viscosity, 

gelling and foaming properties) as well as immunoreactivity of egg white 

proteins, the effect of PL on wheat gluten structure and immunoreactivity, the 

effect of PL on wheat starch structure and gelatinization, and the effect of PL on 

wheat flour microstructure and immunoreactivity.  

 

Chapter 3 Effect of pulsed light on polyphenoloxidase 

Aim of the study 

In this chapter the effect of PL treatment on a globular protein exerting enzymatic 

activity was studied. In particular, polyphenoloxidase (PPO) was chosen as an 

example. This enzyme is known to be composed of monomers that undergo 

association determining the formation of dimers and tetramers. The tetramer 

structure is normally the main form of PPO (Jolley, Nelson, & Robb, 1969). PPO 

is one of the most important enzymes involved in food spoilage. It is well known 

to cause browning in cut fruits and vegetables leading to less attractive 

appearance and loss in nutritional quality. Therefore, PPO inactivation is highly 

desirable for increasing the stability and quality properties in fresh-cut products. 

Usually enzyme inactivation is obtained by thermal treatment (conventional 

blanching) and by the use of antioxidants and/or enzyme inhibitors (Almeida & 

Nogueira, 1995). However, conventional blanching usually results in a substantial 

loss of both technological and nutritional quality-related properties of fresh-cut 

products. In contrast, PL treatments could represent not only an easy disinfection 

technique but also a novel approach to non-thermally inactivate undesired 

enzymes limiting the overall quality depletion associated to conventional 

inactivation methods. As protein enzymatic activity is closely related to its 
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structure, structure modifications potentially induced by light exposure can 

reasonably modify the enzyme activity. There is much circumstantial evidence 

indicating that protein enzymatic activity could be strongly affected by PL 

treatment. Although food scientists have largely investigated the possibility to 

exploit PL to inactivate PPO in fruits and vegetables, still contradictory results are 

available in the literature. In 1989, Dunn et al.  suggested that pulsed light could 

inhibit PPO in potato slices and alkaline phosphatase in model systems. More 

recently, Oms-Oliu, Martín-Belloso, & Soliva-Fortuny (2010) showed that pulsed 

light promoted an increase in PPO activity in fresh-cut mushrooms. On the other 

hand, Ramos-Villarroel et al. (2011) observed that PL, combined with 

antibrowning agents, can prevent enzymatic browning in fresh-cut avocado. 

Whilst, Charles, Vidal, Olive, Filgueiras, & Sallanon (2013) demonstrated the 

increase in PPO activity in fresh-cut mango submitted to pulsed light treatment. 

Given these apparently contradicting evidences, investigations on model systems 

could provide useful insights into the effects of PL on structure and activity of 

PPO. To this aim, the effect of PL on the structure and enzymatic activity of PPO 

in model solution was investigated.  

Results and discussion 

Aqueous solutions containing considerably different amounts of PPO (4.0 or 30.0 

U), which mimic the actual amount of this enzyme in real foods, were prepared. 

The solutions were exposed to PL with increasing fluence up to 15.75 J cm-2. 

Upon these intense treatments, a slight increase in temperature was detected. 

However, sample temperature never exceeded 36.0±0.7 °C, suggesting minor 

effects of temperature increase on PPO inactivation. The effect of pulsed light on 

PPO structure and function was assessed by evaluating molecular changes by 

HPLC gel-permeation and enzymatic activity. Table 3.1 shows the evolution of 

the areas of the peaks detected in the chromatograms of the aqueous solutions 

containing 4.0 U of enzyme as a function of the light fluence received during the 

pulsed light treatment.  
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Table 3.1 Peak areas (±SD) relevant to HPLC-gel permeation analysis of a 4.0 U 

polyphenoloxidase solution as a function of the pulsed light fluence.  

Fluence 

(J cm-2) 

Peak area (arbitrary units x 1000) 
Peak 1 

(rt=16.8) 

Peak 2 

(rt=23.7) 

Peak 3 

(rt=26.4) 

Peak 4 

(rt=27.9) 

Peak 5 

(rt=32.4) 

Peak 6 

(rt=34.2) 

Peak 7 

(rt=36.6) 

0.00 2.6 ± 0.4 32.3 ± 3.1 24.5 ± 4.1 8.9 ± 1.1 19.5 ± 2.8 17.1 ± 2.1 8.1 ± 0.3 

0.40 2.2 ± 0.9 33.8 ± 1.4 23.5 ± 0.6 5.7 ± 1.0 19.1 ± 3.2 19.6 ± 2.3 9.7 ± 0.6 

1.75 2.3 ± 0.7 28.8 ± 0.8 11.6 ± 3.4 3.0 ± 1.6 20.3 ± 2.2 19.8 ± 1.5 11.2 ± 1.1 

5.25 5.0 ± 1.3 22.3 ± 1.1 9.1 ± 1.7 2.7 ± 1.2 22.1 ± 2.7 22.9 ± 2.0 11.7 ± 0.9 

8.75 5.6 ± 0.9 14.1 ± 3.7 6.1 ± 1.3 0.4 ± 0.1 31.2 ± 3.8 34.4 ± 2.7 18.3 ± 1.6 

12.25 2.2 ± 0.8 8.0 ± 3.0 4.1 ± 1.6 0.1 ± 0.1 29.3 ± 1.4 35.5 ± 3.1 15.8 ± 1.5 

15.75 n.d. 6.9 ± 1.7 4.6 ± 1.5 n.d. 20.9 ± 3.9 32.3 ± 2.4 13.8 ± 1.3 

n.d.: Not detectable; rt: retention time 

Seven peaks (peak 1, 2, 3, 4, 5, 6 and 7), having retention times 16.8, 23.7, 26.4, 

27.9, 32.4, 34.2, and 36.6 min, were observed. Apparent molecular weights of 

proteins eluted in peaks 2, 3 and 4 were recognised as the tetrameric, dimeric and 

monomeric forms of the quaternary structure of PPO, which have molecular 

weights of 130.0, 65.0, and 32.5 kDa, respectively (Martinez & Whitaker, 1995). 

It can be noted that the areas of peaks 2, 3, and 4 progressively decreased with the 

increase in the pulsed light fluence.  Exposure of PPO to pulsed light also resulted 

in the modification of the area of peak 1. Such peak was associated to a molecule, 

whose short retention time could account for protein unfolding/aggregation. A 

certain amount of denatured protein was actually present also in the untreated 

solution, probably as a consequence of enzyme extraction operations. However, 

exposure to PL resulted in the increase of the peak area relevant to this protein 

fraction, which reached a maximum value upon 8.75 J cm-2 treatment. On further 

pulsing, a decrease in the area of this peak was then observed, so that peak 1 

became not detectable in the 15.75 J cm-2 treated sample. A similar evolution, 

although with a maximum value at slightly different fluence, was also observed 

for the areas of peaks 5, 6, and 7. The latter are relevant to molecular species with 

longer retention time and apparent molecular weight around 5 kDa. The peak 

areas of these protein fragments reached a maximum value in the samples treated 

at about 10 J cm-2 fluence. Also in this case, a further increase in PL intensity 

promoted the degradation of the protein fragments eluted in these peaks. 

As already mentioned in Chapter 1.3, photo-degradation of proteins proceeds 

through aggregation and cleavage phenomena. The former are the result of cross-

linking reactions involving aminoacid residues. In fact, upon photo-oxidation, His 

can easily react with other aminoacid residues to give cross-links (Shen, Spikes, 

Smith, & Kopeček, 2000). Besides, light can affect the structure of proteins via 
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photo-excitation of Trp, Tyr, Phe, Met and Cys groups inducing the reduction of 

disulphide (S-S) bonds (Davies & Truscott, 2001). The breakage of disulphide 

bonds would directly disturb the protein structure causing a loss in its biologic 

activity. However, the new generated thiol groups can further react to form either 

intermolecular S-S bonds responsible for aggregation (Wu, Sheng, Xie, & Wang, 

2008), or protein radicals that are potential progenitors of backbone fragmentation 

(Davies & Truscott, 2001). 

The results acquired by HPLC-gel permeation analysis (Table 3.1) suggest PL to 

promote modifications of the structure of PPO by inducing both 

unfolding/aggregation phenomena and protein backbone cleavage. However, 

denatured proteins (peak 1) as well as their fragments (peaks 5, 6 and 7) can react 

on further light pulsing. In other words, high fluence treatments could lead to the 

degradation of the unfolded and cleaved proteins produced at lower fluences. 

Protein unfolding and aggregation have been previously reported for PPO 

exposed to continuous UV light (Manzocco, Quarta, et al., 2009). However, in 

that case, no degradation of the newly formed large protein was detected. It is 

thus possible that pulsed light could promote PPO degradation via reaction 

pathways other than those characterising UV treatments. Conversely, it is also 

possible that similar mechanisms are involved but fluence strongly affect the 

overall extent of protein degradation. 

HPLC-gel permeation analysis were also performed on the aqueous solutions 

containing 30.0 U of enzyme and exposed to pulsed light (Table 3.2).  

Table 3.2 Peak areas (±SD) relevant to HPLC-gel permeation analysis of a 30.0 U 

polyphenoloxidase solution as a function of the pulsed light fluence. 

Fluence 

(J cm-2) 

Peak area (arbitrary units x 1000) 
Peak 1 

(rt=16.8) 

Peak 2 

(rt=23.7) 

Peak 3 

(rt=26.4) 

Peak 4 

(rt=27.9) 

Peak 5 

(rt=32.4) 

Peak 6 

(rt=34.2) 

Peak 7 

(rt=36.6) 

0.00 31.6 ± 1.8 304.1 ± 6.6 404.4 ± 1.5 41.6 ± 1.5 12.2 ± 0.2 10.3 ± 1.8 n.d. 

0.40 30.3 ± 3.3 303.5 ± 10.4 392.8 ± 9.2 46.9 ± 3.5 16.8 ± 1.3 10.2 ±  0.2 n.d. 

1.75 34.7 ± 3.8 261.4 ± 3.8 116.0  ± 5.1 37.4 ± 0.8 14.4 ± 1.1 11.8 ± 0.5 2.4 ± 0.9 

5.25 30.6 ± 2.7 201.0 ± 2.2 58.4 ± 2.6 21.3 ± 0.3 12.3 ± 0.2 16.9 ± 2.8 4.6 ± 0.9 

8.75 24.2 ± 1.9 155.2 ± 3.4 56.3 ± 1.3 15.9 ± 0.3 10.2 ± 07 17.4 ± 0.2 4.7 ± 1.8 

12.25 24.2 ± 2.3 84.1 ± 2.9 57.0 ± 2.1 13.8 ± 0.5 17.6 ± 1.1 34.2 ± 0.5 9.9 ± 0.1 

15.75 27.8 ± 2.6 45.4 ± 0.7 54.7 ± 2.4 7.9 ± 0.6 17.7 ± 1.3 34.4 ± 1.5 10.1 ± 0.1 

n.d.: not detectable; rt: retention time 

By comparing the peak areas of the untreated samples (0 J cm-2) containing 30.0 

or 4.0 U of PPO (Table 3.2 and 3.1, respectively), a marked difference in the 

relative abundance of the protein eluted in the different peaks can be observed. In 
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fact, while the tetrameric structure of PPO (peak 2) was the most abundant in the 

4.0 U sample, the dimeric one (peak 3) was favoured in the 30.0 U sample. The 

latter, despite its almost ten-fold higher concentration, also showed a lower 

amount of small proteins (peaks 5, 6 and 7) than that observed in the solution 

containing 4.0 U of enzyme (Table 3.1). It was hypothesised that self crowding of 

proteins promotes specific conformational structures, which are reasonably those 

allowing the excluded volume to be reduced. In other words, crowding conditions 

would favour compact protein structures, while hindering dissociation 

phenomena. In the crowded environment of the 30.0 U samples, photo-

degradation of aggregates eluted in peak 1 was limited and protein fragments 

moderately increased upon light exposure. It can be inferred that, in this 

condition, polyphenoloxidase photo-degradation mainly occurred through 

intramolecular reactions with minor contribution of cross-linking among vicinal 

proteins. However, it is not excluded that in crowded conditions, shadowing 

effects could play a critical role on protein photosensitivity. In fact, the effect of 

light is known to be reduced by any body between target object and light source. 

For instance, microorganisms can be protected from the germicidal effect of light 

by other cells, as occurs when biofilms are formed (Sommers, Sites, & Musgrove, 

2010). Analogously, proteins could protect each other from light according to 

local shadowing effects. In this way, molecules placed at the surface of the 

sample would represent a physical screen for the internal ones, preventing their 

photoreaction.  

To understand the effect of PL induced structure modification on protein function, 

enzymatic activity of the solutions containing 4.0 and 30.0 U of PPO was 

measured. PPO activity was assessed by regression analysis of changes in 

absorbance at 420 nm as a function of time (R2>0.98; P<0.05). Results are 

reported in table 3.3.  

Table 3.3 Residual activity (±SD) of 4.0 or 30.0 U polyphenoloxidase solution as a 

function of the pulsed light fluence. 

Fluence (J cm-2) Activity (%) 

 4.0 U 30.0 U 

0.00 100±1.4 100±3.2 

0.40 45.1±4.0 63.2±0.8 

1.75 7.6±0.6 23.4±1.6 

5.25 2.5±2.1 8.2±0.9 

8.75 n.d. n.d. 

12.25 n.d. n.d. 

15.75 n.d. n.d. 

n.d.: not detectable  
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Table 3.3 shows that PPO activity decreased with the increase in PL fluence. In 

addition, no residual activity was detected in samples exposed to fluence equal or 

higher than 8.75 J cm-2. These results are consistent with the decrease in the peaks 

relevant to tetrameric, dimeric, and monomeric PPO fractions (peaks 2, 3, and 4) 

observed by HPLC gel permeation analysis (Tables 3.1 and 3.2). In fact these 

protein fractions are generally recognised as those having enzymatic activity 

(Martinez & Whitaker, 1995). Samples showing no residual activity were also 

stored for one week at 4 °C and reassessed for enzyme activity. Data not shown 

indicate that the enzyme was unable to recover its activity. These results confirm 

that intense pulsed light treatments can irreversibly and completely inactivate 

PPO in model solutions. 

To better understand the effect of crowding on PPO photosensitivity, aqueous 

solutions containing increasing units of enzyme (from 4.0 to 46.0 U) were 

prepared and exposed to one pulse of light with different fluence at room 

temperature (22.1±0.4 °C). In this case, lower PL fluence values were chosen to 

better appreciate the inactivation effect of processing on PPO. The temperature of 

the samples was measured just after the treatment and did not exceed 23.4 ± 0.7 

°C. Based on this evidence, PPO inactivation should be mainly attributed to the 

effect of light exposure. As expected, the activity of PPO progressively decreased 

as the fluence of the light pulse increased (Fig. 3.1).  

 

 

Figure 3.1 Residual activity of solutions containing different PPO units as a function 

of PL fluence. Bars represent standard deviation of residual activity value.  
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The effect of pulsed light on PPO activity strongly depended on the initial amount 

of the enzyme in the solution. For instance, the activity of the solution containing 

10.0 U of PPO quickly decreased by exposure to low fluence pulses, and reached 

an almost constant value on further increase in the pulse fluence. By contrast, the 

solutions containing 26.0 or 46.0 U of PPO showed a progressive activity 

decrease according to a straight line in the entire tested fluence range. 

In order to evidence the relation between the inactivation effect of pulsed light 

and the amount of enzyme in the aqueous solution, the photostability of PPO was 

calculated. To this aim, regression analysis of enzymatic activity data reported in 

Fig. 3.1 was performed as a function of pulsed light fluence considering data 

relevant to the linear part of the curve. 

Regression coefficients data were used to calculate the photostability of PPO (F50, 

J cm-2). A low value of F50 indicates PPO to be easily denatured by pulsed light. 

By contrast, higher values of F50 account for intense resistance of the enzyme to 

pulsed light. Fig. 3.2 shows the F50 values of PPO in aqueous solutions containing 

increasing units of enzyme.  

 

Figure 3.2 Photostability, expressed as fluence required to reduce the original PPO 

activity by 50% (F50), of solutions containing different PPO units. 
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amount of the enzyme in the solution is in accordance with previous literature 

data showing that protein concentration can strongly affect their photosensitivity 

(Manzocco & Nicoli, 2012). For instance, no photodegradation of egg white was 

reported in systems having concentration higher than the critical concentration C* 

which accounts for the quantity of proteins that can be accommodated in a given 

volume of solution without mutual perturbation (Lapasin & Pricl, 1995). Beyond 

this specific concentration, the system can be considered crowded. According to 

the literature (Ellis & Minton, 2006; Minton, Karmin, Hahn, & Minton, 1982; van 

den Berg, Ellis, & Dobson, 1999; van den Berg, Wain, Dobson, & Ellis, 2000), 

crowding of proteins in water solutions could control protein structure 

modifications by accelerating their folding and aggregation. It is thus possible that 

macromolecular crowding could favour specific protein conformations, 

potentially modifying their sensitivity to structural modifications caused by 

physical stresses. Based on these considerations, it can be inferred that self 

crowding of PPO, and thus protein vicinity in the aqueous solution, could increase 

their photostability. However, as stated before, shadowing effects of protein in 

crowded environment cannot be completed neglected. 

Conclusions 

Present results demonstrate that PL allows the inactivation of PPO in model 

solution as a consequence of protein structure modifications. The PPO sensitivity 

to PL strongly depended, not only on PL intensity, but also on the enzyme 

concentration. The vicinity of the enzyme molecules in the solution favours 

specific protein conformations. At concentrations up to 10 U, PPO would be 

easily inactivated because proteins could undergo both intramolecular 

modification and photoreaction with surrounding molecules. By contrast, at 

higher concentrations, protein vicinity could favour conformations having lower 

photosensitivity, probably because less prone to intermolecular rearrangements. 

These results suggest that the intensity of PL treatment is not the only factor 

determining the extent of protein modification. In fact, environmental factors, 

such as protein vicinity, can also play an important role on the reactions of protein 

upon PL exposure. 
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Chapter 4 Effect of light processing on egg white 

4.1 Effect of UV-C on egg white proteins 

Aim of the study 

This chapter is focused on the effect of UV-C light processing on egg white, 

which was chosen as a matrix composed of a mix of globular proteins. Egg white 

is extensively used as a food ingredient in a variety of food formulations, due to 

its multifunctional properties. In fact, egg white is mainly composed of globular 

proteins, which are characterised by excellent foaming and gelling properties, in 

addition to their high nutritional value (Mine, 1995). Unfortunately, beside these 

outstanding technological performances, egg white proteins are also responsible 

for allergenic reaction, mostly in children (Mine & Yang, 2008).  

Since egg white is highly susceptible to microbial contamination, liquid egg white 

must be processed to guarantee its safety. Normally, heat pasteurization is 

required to control spoilage microorganisms and pathogens. Salmonella, mainly 

the egg-associated serotype Enteritidis, is the pathogen of concern (USDA-ARS 

74-48, 1969; European Regulation CEE 1441/2007; Code of Federal Reulations, 

2010). Despite pasteurisation of egg white is performed at temperatures which 

allow protein coagulation to be prevented, heat treatment can easily impair 

protein functional properties. In this context, UV-C light treatments can represent 

an attractive non-thermal alternative to conventional thermal processing for 

microbial inactivation (de Souza & Fernández, 2011; Geveke & Torres, 2013; 

Geveke, 2008; Unluturk, Atilgan, Baysal, & Unluturk, 2010; Unluturk, Atilgan, 

Handan Baysal, & Tari, 2008). Besides the sanitisation effect, UV-C light 

processing is particularly interesting thanks to its potential ability to alter the 

structure of proteins with consequent modification of their functions. For 

instance, UV-C treatments were reported to increase the tensile strength of gluten, 

zein, and albumin films, as a consequence of photocrosslinking (Rhim et al., 

1999). Irradiated fish gelatin exhibited higher gel strength, marked reduction in 

viscosity, and significant changes in melting temperatures (Bhat & Karim, 2009). 

Photocrosslinking of egg white protein and sodium caseinate was associated to 

improved emulsifying and foaming properties (Kuan et al., 2011). With regard to 

protein biologic activity, ultraviolet exposure was demonstrated to reduce the 

catalytic activity of different enzymes and the immunoreactivity of allergenic 

proteins by promoting protein aggregation and/or backbone fragmentation 

(Guerrero-Beltrán & Barbosa-Cánovas, 2006; Manzocco, Dri, et al., 2009; 
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Manzocco & Nicoli, 2012; Manzocco, Quarta, et al., 2009). The aim of the 

present study was thus to investigate the effects of UV-C processing on egg white 

protein structure and selected functional properties.  

Results and discussion 

Egg white was exposed to UV-C light with increasing fluence in a thermostated 

chamber at 8 °C. Structure characteristics of untreated and UV-C treated samples 

were then analyzed.  In Table 4.1.1 results relevant to absorbance at 280, 380 and 

680 nm, hydrodynamic radius and percentage of particles, as well as free 

sulfhydryl groups concentration are reported.  

Table 4.1.1 Absorbance at 280, 380 and 680 nm, hydrodynamic radius, percentage of the 

main particle fraction, and concentration of free sulfhydryl groups in egg white exposed to 

increasing UV-C light fluence (0, 1.06, 6.37 J cm-2) at 8 °C. 

  Fluence (J cm-2) 

  0 1.06 6.37 

Absorbance 280 nm 1.089 ± 0.002 c 1.096 ± 0.003 b 1.184 ± 0.011 a 

 380 nm 0.008 ± 0.001 c 0.011 ± 0.001 b 0.032 ± 0.008 a 

 680 nm 0.194 ± 0.002 c 0.201± 0.002 b 0.293 ± 0.012 a 

Hydrodynamic radius (nm) 5.7 ± 0.1 c 9.9 ± 1.8 b 13.9 ± 3.5 a 

Particles (%) 99.8 ± 0.1 a 98.8 ± 0.7 b 95.9 ± 1.5 c 

Free SH groups (µM g-1) 40.5 ± 2.1 b 30.4 ± 3.8 c 52.7 ± 1.1 a 
a,b,c  for each property, means indicated by the same letter are not significantly different (P>0.05). 

Egg white showed a progressive increase in absorbance at 280 nm with UV-C 

fluence. This result apparently contradicts literature evidences indicating that 

intense UV irradiation of protein solutions can cause a decrease in absorbance at 

this wavelength as a consequence of oxidation of Trp chromophores (Wu et al., 

2008). It can be hypothesized that the bleaching of Trp residues in light treated 

egg white was probably counterbalanced by the occurrence of other reactions. 

The increase in absorbance at 280 nm could be actually attributed to the formation 

of early non enzymatic browning reaction products (Rizzi, 1994). This hypothesis 

is supported by the concomitant increase in absorbance at 380 nm, which is 

consistent with the formation of brown melanoidins (Rizzi, 1994). Literature data 

actually indicates that UV irradiation of model systems containing aminoacids 

and reducing sugars is associated to the formation of a number of different 

Maillard reaction products (Sheldon, Jones, & Shibamoto, 1988).  

Egg white exposed to UV light appeared more turbid as shown by the increase in 

absorbance at 680 nm as well as by the dimension of protein particles (Table 

4.1.1). Dynamic light scattering analysis of fresh egg white showed the 
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prevalence of protein particles with average hydrodynamic radius equal to 5.7 nm. 

Upon light exposure, the size of this class of protein particles increased up to 13.9 

nm. However the percentage of these particles decreased due to the presence of a 

novel class of particles with hydrodynamic radius higher than 100 nm. The latter 

were found to approach 4% of the overall particles after 6.37 J cm-2 UV 

processing. The presence of high size particles, in combination with the increase 

in turbid appearance, validates the formation of protein aggregates as a 

consequence of structural modifications of egg white proteins upon light 

treatment. To investigate the nature of these structural modifications, samples 

were analysed for the concentration of free sulfhydryl groups (SH). In fact, based 

on literature data, the decrease in free SH could indicate protein cross-linking, 

while their increase generally accounts for both protein unfolding and backbone 

fragmentation (Beveridge et al., 1974). In the case of UV treated egg white (Table 

4.1.1), the concentration of free SH decreased after exposure to 1.06 J cm-2 and 

increased upon exposure to 6.37 J cm-2. These data suggest that the structural 

modification induced by UV radiation may be rather complex, potentially 

involving more than one mechanism of denaturation. According to several authors 

(Davies & Truscott, 2001; Wu, Sheng, Xie, & Wang, 2008), and similarly to what 

observed for PL-treated PPO (Chapter 3, Tables 3.1 and 3.2), light exposure can 

induce protein structure modifications by means of both unfolding/aggregation 

phenomena and cleavage. On the basis of these considerations, it can be inferred 

that the decrease in free SH concentration of egg white exposed to 1.06 J cm-2 

UV-C light (Table 4.1.1) could be attributed to partial unfolding and subsequent 

formation of S-S bonds. However, disulphides have also been reported to further 

dissociate, in a reversible reaction, to give free SH groups (Davies & Truscott, 

2001). Consequently, the energy received by egg white upon exposure to 6.37 J 

cm-2 UV-C light could be sufficient to cleave native and light-induced S-S bonds, 

giving reason to the increase in free SH groups reported in Table 4.1.1. 

In order to confirm this hypothesis, specific information about the light-induced 

structural modifications of egg white proteins were obtained by HPLC-gel 

permeation analysis. The chromatogram relevant to the freshly prepared egg 

white showed the presence of five main peaks with retention time of 20.08, 24.8, 

27.3, 31.0 and 37.0 min. By comparison of molecular weight, they were attributed 

to ovomucin (peak 1), ovotransferrin (peak 2), ovalbumin (peak 3), ovomucoid 

(peak 4) and lysozyme (peak 5) respectively (Awadé & Efstathiou, 1999; Mine, 

1995). Table 4.1.2 shows the evolution of the area of the peaks detected in the 

chromatograms of egg white proteins as a function of their exposure time to UV 

radiation.  



 

42 

 

Table 4.1.2 Peak areas relevant to HPLC-gel permeation analysis of egg white exposed to 

increasing UV-C light fluence (0, 1.06, 6.37 J cm-2) at 8 °C.  

Peak 
Retention 

time (min) 
Protein 

Peak area 

(arbitrary units x 1000) 

   0 J cm-2 1.06 J cm-2 6.37 J cm-2 

1 20.1 Ovomucin 691.4 ± 301.3ab 303.8 ± 175.9b 888.1 ± 283.1a 

2 24.8 Ovotransferrin 416.8 ± 84.9 c 937.4 ± 376.7b 2344.8 ± 742 a 

3 27.3 Ovalbumin 22007.6 ± 161.9a 22048.8 ± 2901.7a 22553.7 ± 3372.2a 

4 31.0 Ovomucoid 20.3 ± 16a  15.1 ± 2.8b 16.4 ± 2.2b 

5 37.0 Lysozyme 1252.2 ± 142.1a 722.3 ± 16.5b 287.4 ± 25.8c 

6 18.2 Protein 1 n.d. 374.3 ± 98.4b 1158.2 ± 451.4a 

7 35.1 Protein 2 7.6 ± 1.1b 15.3 ± 1.5a  11.9 ± 2.5a 

8 41.9 Protein 3 n.d. n.d. 7.2 ± 10.2a 
a,b,c  for each peak, means indicated by the same letter are not significantly different (P>0.05). 

n.d. not detected. 

Upon light exposure, peak areas of ovalbumin, ovomucin and ovomucoid did not 

show marked changes. Light exposure significantly affected only the areas of 

peaks relevant to lysozyme and ovotransferrin. In particular, the peak area of 

lysozyme progressively decreased while that associated to ovotransferrin 

increased. These data indicate that egg white proteins are not similarly sensitive to 

light exposure. Lysozyme seems particularly susceptible to structural 

modifications caused by light exposure. As regards the increase in the peak area 

of ovotransferrin, it is hardly believable that the presence of this protein could 

increase as a consequence of light treatment. Rather molecules having apparent 

molecular weight similar to ovotransferrin could occur due to unfolding or 

aggregation of other proteins. Exposure of egg white to UV light was actually 

associated to the appearance of a novel peak with very short retention time as 

compared to that of all other proteins detected in the untreated sample (Peak 6). 

Such peak was associated to a molecule, whose short retention time could be 

attributed to protein aggregation/unfolding. Actually its apparent molecular 

weight could be roughly estimated to be around 600 kDa. The presence of this 

peak is consistent with the occurrence of particles with hydrodynamic radius 

higher than 100 nm as well as with the decrease of free SH groups after 5 min of 

exposure (Table 4.1.1). The peak area of two additional peaks (peak 7 and peak 

8), relevant to molecular species with longer retention time, and thus lower 

apparent molecular weight, was also found to increase with exposure time. These 

species were not detected by light scattering analysis, probably because they were 

masked by the bigger ones. These results confirm that UV-C radiation promotes 
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egg white protein modification inducing not only unfolding/aggregation 

phenomena but also protein backbone cleavage. 

As observed by many authors, the modification of protein structure and the 

formation of Maillard reaction products could affect protein allergenicity (Chen & 

Phillips, 2005; Gruber, Vieths, Wangorsch, Nerkamp, & Hofmann, 2004; Taheri-

Kafrani et al., 2009). Anugu, Yang, Shriver, Chung, & Percival (2010) reported 

that pulsed UV light treatment allowed the allergenicity of isolated egg white 

proteins to be reduced. Based on these considerations, egg white samples 

submitted to UV light treatment were analysed for immunoreactivity by an 

ELISA method. No differences in immunoreactivity were observed between egg 

white exposed to UV light and the untreated one (data not shown). This suggests 

that light-induced structural modifications do not affect the conformation of the 

protein epitopes. Actually, ovalbumin and ovomucoid, which are known to be the 

major allergens of egg white (Hoffman, 1983; Langeland, 1982; Mine & Yang, 

2008), resulted to be scarcely sensitive to UV radiation (Table 4.1.2). 

To understand whether the changes in egg white protein structure upon light 

exposure could be associated also to modifications in their technological 

performances, samples exposed to UV light were also analysed for apparent 

viscosity, gelling and foaming properties (Table 4.1.3).  

Table 4.1.3 Gelling temperature, gel firmness, apparent viscosity, foam volume and foam 

stability in egg white exposed to increasing UV-C light fluence (0, 1.06, 6.37 J cm-2) at 8 

°C. 

 Fluence (J cm-2) 

 0 1. 06 6.37 

Gelling temperature (°C) 70.6±1.2a 68.3±0.7a 69.4±0.6a 

Gel firmness (N) 0.084 ± 0.010a 0.081 ± 0.010a 0.082 ±0.006a 

Apparent viscosity (Pa s) 0.21±0.02b 0.43±0.03a 0.24±0.04b 

Foam volume (mL) 16.5 ± 2.1b 19.5 ± 0.7a 14.0 ± 1.4b 

Foam stability (%) 87.5 ± 0.7b  94.9 ± 0.8a 93.3 ± 0.8a 
a,b  for each property, means indicated by the same letter are not significantly different (P>0.05). 

Gelling temperature and gel firmness were not affected by light exposure. By 

contrast, apparent viscosity, taken as an indicator of the rheological behaviour of 

egg white, was found to significantly increase after exposure to 1.06 J cm-2 UV-C 

light. A decrease in this property was detected on further exposure so that the 

sample treated at 6.37 J cm-2 presented apparent viscosity similar to the control. It 

can be hypothesized that light modified proteins could interact resulting in a weak 

and unstable protein network, justifying the increase in apparent viscosity at 

intermediate electromagnetic energy levels. The structural continuity of this weak 
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network would be probably interrupted by the presence of large protein clusters 

and small fragments formed upon exposure to higher UV-C light fluence (6.37 J 

cm-2). Table 4.1.3 also shows that 1.06 J cm-2 UV-C light exposure increased the 

volume of the foam produced by egg white whipping. A more intense treatment 

was associated to a foam volume similar to that produced by the untreated egg 

white. Changes in the white colour of the foams could not be observed with the 

naked eye. However, foam prepared from egg white exposed to both 1.06 and 

6.37 J cm-2 UV light appeared moist and creamy, contrasting with the brittle and 

dry appearance of those prepared from untreated egg white. Micrographs of just 

prepared foams and of foams held for 30 min at 20 °C are shown in Fig 4.1.1. 

 

 0 min 30 min 

0 J cm-2 

  

1.06 J cm-2 

  

6.37 J cm-2 

  

Figure 4.1.1 Micrographs (100x) of just prepared and 30 min held foams obtained 

from egg white exposed to increasing UV-C light fluence (0, 1.06, 6.37 J cm-2) at 8 °C.  
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Foam micrographs were analysed for bubble diameter. These data were used to 

cluster bubbles in three different categories according to their diameter: small 

(diameter lower than 0.05 mm), medium (diameter from 0.05 to 0.1 mm) and 

large (diameter higher than 0.1 mm) bubbles. Table 4.1.4 shows the percentage of 

small, medium and large bubbles in the foams obtained from untreated and UV-

processed egg white, just after whipping and 30 min after whipping.  

Table 4.1.4 Percentage of small (diameter lower than 0.05 mm), medium (diameter from 

0.05 to 0.1 mm) and large (diameter higher than 0.1 mm) bubbles in foams obtained from 

egg white exposed to increasing UV-C light fluence (0, 1.06, 6.37 J cm-2) at 8 °C. Bubble 

percentage was calculated in just whipped foams and after 30 min from whipping. 

  Bubbles (%) 

Fluence 

(J cm-2) 
Time after whipping 

(min)  
Small Medium Large 

0 0 45.84 20.83 33.33 

 30 1.26 20.75 77.99 

1.06 0 55.36 41.07 3.53 

 30 9.53 28.57 61.90 

6.37 0 75.34 20.55 4.11 

 30 23.53 35.29 41.18 

 

Foams obtained from UV treated egg white presented a remarkably lower 

percentage of large bubbles as compared to the control. Accordingly, a higher 

percentage of small bubbles was measured. The latter increased with the intensity 

of the ultraviolet treatment. As expected, after a 30 min rest at 20 °C, small 

bubbles decreased concomitantly with the increase in large bubbles in all foams. 

However, UV exposed egg white showed a lower tendency to bubble dismutation 

and coalescence, leading to a lower presence of large bubbles. Actually, foams 

obtained from UV treated egg white presented significantly higher stability (Table 

4.1.3). The peculiar properties of the foams obtained from UV processed egg 

white could be reasonably explained based on two different mechanisms. Light 

modified proteins could form a better interfacial network during foaming. This 

effect would be particularly important in the sample exposed to 1.06 J cm-2. In 

fact, the higher apparent viscosity of egg white could increase the viscoelasticity 

of the aqueous phase at the interface. Secondly, it can be inferred that high size 

protein aggregates, which are abundant after exposure to 6.37 J cm-2 UV light 

(Table 4.1.2), could behave as surface-active solid particles begetting a pickering 

foam (Pickering, 1907). The latter would be stabilized not only by the surfactant 

native proteins but also by the solid protein aggregates. As suggested by Murray, 

Durga, Yusoff, & Stoyanov, (2011), native proteins and solid particles could 
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attract each others, increasing the particle jamming in the fluid interstices between 

bubbles. This would cause the formation of a firmer shell, positively affecting 

foaming properties.  

Conclusions 

Similarly to what previously observed for PL treated PPO, results obtained 

suggest that UV-C light processing performed under the tested experimental 

conditions can modify egg white protein structure by both backbone cleavage and 

aggregation phenomena. These structural modifications were not sufficient to 

induce changes in egg white gelling properties. By contrast, an improvement in 

egg white foaming properties was observed upon exposure to UV-C light. This 

effect was attributed to the modification of the viscoelastic behaviour of egg 

white. With regard to biological functions, no changes in egg white proteins 

immunoreactivity were observed upon UV-C light exposure. This result, in 

contrast with the inactivation of PPO observed upon PL exposure, can be 

explained by the higher concentration of proteins in egg white as compared to 

PPO in model solutions.  
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4.2 Effect of PL on egg white proteins 

Aim of the study  

This chapter deals with the effect of PL processing on egg white protein structure 

and functions.  Similarly to UV-C treatments, PL processing can also be regarded 

as an attractive non-thermal alternative to conventional thermal processing for 

microbial inactivation of different food products (Caminiti et al., 2011; Choi, 

Cheigh, Jeong, Shin, & Chung, 2010b; Hierro et al., 2011, 2009; Palgan et al., 

2011; Ramos-Villarroel et al., 2011; Ramos-Villarroel, Aron-Maftei, Martín-

Belloso, & Soliva-Fortuny, 2012; Wuytack et al., 2003). In addition to microbial 

inactivation PL treatments were demonstrated to modify the structure and thus 

potentially the functions of several proteins. As an example, PL was shown cause 

milk protein aggregation by disulphide bonds without further significant changes 

in protein components (Elmnasser et al., 2008). Fernández et al. (2012) showed 

that pulsed light induced conformational changes in β-lactoglobulin, enhancing its 

absorption rate at the air/water interface. In addition, β-lactoglobulin solutions 

treated with pulsed light formed highly elastic interfaces, resulting in more stable 

foams. With regard to protein biologic activity, exposure to pulsed light was 

shown to modify proteins that cause allergy. For instance, a decrease in the IgE 

binding capacity of liquid peanut butter, soybean extracts and egg white proteins 

was observed upon pulsed light treatment (Anugu et al., 2010; Chung et al., 2008; 

Yang et al., 2010). The loss of immunoreactivity was attributed to the formation 

of insoluble aggregates.  

In addition, pulsed light was demonstrated to modify the catalytic activity of 

different enzymes (Charles et al., 2013; Oms-Oliu et al., 2010; Ramos-Villarroel 

et al., 2011). As discussed in Chapter 3, PL was found to reduce PPO enzymatic 

activity by inducing changes in protein structure. In particular, results acquired by 

HPLC-gel permeation analysis (Chapter 3, Table 3.1) suggest PL to promote 

modifications of the structure of PPO by inducing initially both 

unfolding/aggregation phenomena and protein backbone cleavage, and 

degradation of the unfolded and cleaved proteins produced at lower fluences on 

further pulsing. Protein unfolding and aggregation have been previously reported 

for PPO exposed to continuous UV light (Manzocco, Quarta, et al., 2009). 

However, in that case, no degradation of the newly formed large protein was 

detected. These results suggest that PL-induced and UV-C light-induced protein 

structure modifications proceed via different reaction pathways. Conversely, it is 

also possible that similar mechanisms are involved but light spectra and fluence 
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strongly affect the overall extent of protein degradation. For this reason, the effect 

of PL on egg white proteins was also investigated.  

Results and discussion 

Egg white was exposed to PL with increasing fluence, up to 31.50 J cm-2, at room 

temperature. The untreated egg white was taken as control. Analogously to egg 

white samples exposed to UV-C light, PL-treated egg white samples were then 

analysed for structure characteristics. 

Exposure to pulsed light was associated to significant changes in egg white 

absorbance at 280, 380 and 680 nm (Table 4.2.1).  

Table 4.2.1 Absorbance at 280, 380 and 680 nm of egg white exposed to pulsed light with 

increasing fluence.  

Fluence  Absorbance 

(J cm-2) 280 nm 380 nm 680 nm 

0 1.099 c 0.008 f 0.194 g 

5.25 1.135 b 0.029 e 0.361 f 

10.50 1.205 a 0.048 c 0.608 e 

15.75 1.126 b 0.053 bc 0.991 d 

21.00 1.105 c 0.056 ab 1.002 c 

26.25 1.009 d 0.060 a 1.037 b 

31.50 0.944 e 0.039 d 1.203 a 
a,b,c,d,e,f  for each property, means indicated by the same letter are not significantly different (P>0.05). 

Independently on PL fluence, sample temperature never exceeded 40 °C for few 

seconds. With the samples being kept below this temperature, changes in 

absorbance should be attributed to the effect of pulsed light treatment solely. 

Sample absorbance was strongly affected by the PL fluence. In particular, an 

increase in egg white absorbance at 280 and 380 nm was detected up to 10.50 and 

26.25 J cm-2 respectively. The increase in absorbance at 280 nm can be attributed 

to the formation of early non-enzymatic browning reaction products. The latter 

would further react to produce brown melanoidins absorbing at 380 nm (Rizzi, 

1994). Similarly to what observed for egg white exposed to UV-C light (Chapter 

4.1, Table 4.1.1), it is likely that the UV component of pulsed light could 

contribute to induce the development of these reactions. However, the 

melanoidins formed by pulsed light treatment could be further degraded causing a 

maximum of absorbance at 380 nm in the sample exposed to 26.25 J cm-2 PL 

(Table 4.2.1). This result is consistent with the well known capability of intense 

light to bleach pigments.  

The decrease in absorbance at 280 nm of egg white exposed to PL with fluence 

higher than 10.50 J cm-2 could also be explained based on oxidation of Trp 
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chromophores of proteins (Wu et al., 2008). The development of oxidative 

reactions could be directly involved in the occurrence of structural modifications 

of egg white proteins. This hypothesis is supported by the evidence that egg white 

exposed to pulsed light appeared more turbid, as shown by the progressive 

increase in absorbance at 680 nm (Table 4.2.1).  

Dynamic light scattering analysis of fresh egg white showed the prevalence of 

protein particles with average hydrodynamic radius equal to 5.7 nm (Figure 

4.2.1). Upon light exposure, the size of this class of protein particles increased up 

to 27.5 nm. However the percentage of these particles decreased due to the 

presence of a novel class of particles with hydrodynamic radius higher than 100 

nm. The latter were found to approach 32% of the overall particles after exposure 

to 31.50 J cm-2. 

 

Figure 4.2.1 Hydrodynamic radius and percentage of the main particle fraction in egg 

white exposed to pulsed light with increasing fluence.  

The presence of high size particles, in combination with the increase in turbid 

appearance, validates the formation of protein aggregates as a consequence of 

structural modifications of egg white proteins exposed to pulsed light. To 

investigate the nature of these structure modifications, samples were analysed for 

concentration of free sulfhydryl groups (SH). In fact, based on literature data, the 

decrease in free SH could indicate protein cross-linking, while their increase 

generally accounts for both protein unfolding and backbone fragmentation 

(Beveridge et al., 1974). In the case of egg white exposed to pulsed light, the 

concentration of free SH increased up to 15.75 J cm-2 (Figure 4.2.2).  
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Figure 4.2.2 Free sulfhydryl groups in egg white exposed to pulsed light with 

increasing fluence. 

According to Wu et al. (2008), light would affect the structure of proteins 

inducing the reduction of disulphide (S-S) bonds and the formation of protein 

radicals. Based on these considerations, the initial increase in free SH groups 

could be attributed to the breakage of disulphide bonds, which would directly 

disturb the protein structure and promote its partial unfolding. On further pulsing, 

a decrease in free SH groups was observed. At these energy levels, pulsed light 

would favour the reaction between the new generated free thiol groups to form 

intermolecular S-S bonds as well as protein radicals (Wu et al., 2008). As 

previously observed considering the effect of PL and UV-C light on PPO and egg 

white, respectively, newly formed protein radicals could contribute to backbone 

fragmentation and/or formation of high molecular aggregates arising from radical 

termination reaction (Chapters 3, and 4.1, Tables 3.1, 3.2, and 4.1.1)  

In order to confirm these hypotheses, specific information about the structural 

modifications induced by pulsed light treatment of egg white proteins was 

obtained by HPLC-gel permeation analysis. The chromatogram relevant to the 

freshly prepared egg white showed the presence of five main peaks with retention 

time of 20.1, 24.8, 27.3, 31.0 and 37.0 min. By comparison of molecular weight, 

they were attributed to ovomucin (peak 1), ovotransferrin (peak 2), ovalbumin 

(peak 3), ovomucoid (peak 4) and lysozyme (peak 5) respectively (Awadé & 

Efstathiou, 1999; Mine, 1995). Table 4.2.2 shows the evolution of the area of the 

peaks detected in the chromatograms of egg white proteins as a function of PL 

fluence.  
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Table 4.2.2 Peak areas relevant to HPLC-gel permeation analysis of egg white exposed to 

pulsed light with increasing fluence (0, 5.25, 10.50, 15.75, 21.00, 26.25, 31.50 J cm-2). 

Peak 
R.t. 

(min) 
Protein 

Peak area 

(arbitrary units x 1000) 

   0 5.25 10.50 15.75 21.00 26.25 31.50 

1 20.1 Ovomucin 691.4a 184.8b 209.1b 184.7b 3.7c n.d. n.d. 

2 24.8 Ovotransferrin 416.8c 481.1c 826.4b 1044.3a n.d. n.d. n.d. 

3 27.3 Ovalbumin 22007.6a 23458.6a 19820.2a 17929.8b 687.5c 613.7c 595.4c 

4 31.0 Ovomucoid 20.3a  20.2a 19.2a 16.1a n.d. n.d. n.d. 

5 37.0 Lysozyme 1252.2a 1120.1a 811.3b 95.8c 14.9d 4.5e n.d. 

6 18.2 Protein 1 n.d. 966.0a 350.4b 213.4b 38.2c 21.0d 19.4d 

7 35.1 Protein 2 7.6e 19.4d 40.2c 45.3bc 46.2ab 48.4ab 52.0a 

8 41.9 Protein 3 n.d. n.d. n.d. 5.4c 6.8c 19.8b 52.0a 
a,b,c,d,e  for each peak, means indicated by the same letter are not significantly different (P>0.05). 

R.t.: retention time; n.d. not detected. 

Upon pulsed light treatment, a decrease in the peak areas of ovomucin, 

ovalbumin, ovomucoid and lysozyme was observed. The increase in PL fluence 

was associated to a progressive decrease in the mean peak areas of lysozyme. By 

contrast, the peak areas of ovalbumin and ovomucoid showed an abrupt change 

between 15.75 and 21.00 J cm-2. Similarly to what observed in the case of UV-C 

treatment (Chapter 4.1, Table 4.1.2), this result indicates that egg white proteins 

are not similarly sensitive to pulsed light. The area of the peak relevant to 

ovotransferrin was found to increase up to 15.75 J cm-2 and became not detectable 

on further pulsing. It is hardly believable that the amount of this protein could 

increase as a consequence of pulsed light exposure. Rather unfolding or 

aggregation of other proteins could lead to molecules having apparent molecular 

weight similar to that of ovotransferrin.  

The steep decrease in the peak areas relevant to the native egg white proteins 

could be the result of their light-induced interaction to form aggregates. This is 

consistent with the presence of particles with hydrodynamic radius higher than 

100 nm (Figure 4.2.1), leading to a turbid appearance (Table 4.2.1), as well as 

with the decrease of free SH groups after 15.75 J cm-2 (Figure 4.2.2). In addition, 

exposure of egg white to pulsed light was associated to the appearance of a novel 

peak with very short retention time as compared to that of all other proteins 

detected in the untreated sample (Peak 6). Such peak was probably the result of 

protein aggregation/unfolding. This protein appeared in the sample submitted to 

5.25 J cm-2 and its area progressively decreased by increasing PL fluence. In other 

words, the protein fraction eluted in peak 6 was particularly unstable, being 

intensely prone to photodegradation. The peak area of two additional peaks (peak 

7 and peak 8), relevant to molecular species with longer retention time, and thus 

lower apparent molecular weight, was also found to increase with exposure to 
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pulsed light. These evidences show that PL treatments are able to promote the 

modification of egg white protein structure by favouring not only 

unfolding/aggregation phenomena but also protein backbone cleavage. However, 

the protein fragment with lower apparent molecular weight (peak 8) was detected 

only in samples exposed to PL fluences higher than 10.50 J cm-2, indicating that 

severe protein fragmentation requires high energy levels. 

As suggested by many authors, modification of protein structure and development 

of non enzymatic browning could affect protein allergenicity (Gruber, Vieths, 

Wangorsch, Nerkamp, & Hofmann, 2004; Chen & Phillips, 2005; Taheri-Kafrani 

et al, 2009). Egg white samples subjected to PL were then analysed for 

immunoreactivity by an ELISA method (Figure 4.2.3). 

 

 

Figure 4.2.3 Immunoreactive proteins in egg white exposed to pulsed light with 

increasing fluence. 

No differences in immunoreactivity were observed between untreated egg white 

and egg white exposed to a number of light pulses up to 21.00 J cm-2. These 

results are consistent to what observed considering the effect of UV-C light on 

egg white (Chapter 4.1). Also in that case no changes in egg white 

immunoreactivity were observed upon exposure to UV-C light up to 6.37 J cm-2. 

By contrast, higher PL fluences were associated to a significant increase in egg 

white immunoreactivity. The latter occurred in correspondence to the increase of 

the area of peak 8 (Table 4.2.2), which was associated to the smallest protein 

fragments. Actually, egg white immunoreactivity resulted well correlated with the 

area of this peak (R=0.95, p>0.05). It can be hypothesized that protein 
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fragmentation caused by intense pulsed light treatment could lead to a higher 

exposure of the protein epitopes, giving reason for the marked increase in egg 

white immunoreactivity (Figure 4.2.3). 

The increase in egg white immunoreactivity by intense pulsed light treatments 

apparently contradicts data reported by Anugu et al. (2010). These authors 

actually found that PL was effective in reducing egg allergens. However, it is 

noteworthy that this evidence was obtained by studying the effect of PL on 

isolated egg proteins in diluted conditions. These model systems are definitely far 

from the real egg white. In fact, as indicated by Manzocco & Nicoli (2012) and as 

observed for PL treatments of PPO in model solutions (Chapter 3), crowding 

effects could steer the sensitivity of egg white proteins to light exposure. 

Therefore, it seems reasonable to hypothesise that crowding could favour specific 

conformational changes in light treated egg white proteins, affecting 

immunoreactivity in a completely different way from that observed in model 

systems without crowding.  

To understand whether, similarly to UV-C light (Chapter 4.1, Tables 4.1.3 and 

4.1.4, Figure 4.1.1), also PL-induced changes in egg white protein structure could 

be associated to modifications in their technological performances, samples 

exposed to PL were also analysed for apparent viscosity, gelling and foaming 

properties.  

Contrarily to what observed when egg white was subjected to UV-C light 

(Chapter 4.1, Table 4.1.3), no significant changes in apparent viscosity of egg 

white (0.21±0.02 Pa s) were found upon PL treatment. This is quite unexpected 

considering the intense structural changes of egg white protein exposed to PL. It 

is possible that the effects of protein aggregation and backbone cleavage 

counterbalanced each other, leading to negligible changes in the overall apparent 

viscosity of egg white. 

By contrast, gelling temperature was found to progressively decrease with the 

increase in the number of pulses (Figure 4.2.4) but no significant differences in 

gel firmness (0.082±0.01 N) were detected. It is likely that unfolding/aggregation 

phenomena induced by pulsed light (Figure 4.2.1 and Table 4.2.2) could favour 

protein gelling, decreasing the temperature of gel formation but exerting no 

effects on the final strength of the gel.  
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Figure 4.2.4 Gelling temperature of egg white exposed to pulsed light with increasing 

fluence. 

The foam volume obtained from pulsed egg white was similar to that produced by 

the untreated egg white (data not shown). However, as observed in the case of 

UV-C light treated egg white (Chapter 4.1, Fig. 4.1.1) foams prepared from light 

treated egg white appeared moist and creamy, contrasting with the brittle and dry 

appearance of those prepared from untreated egg white. Just prepared and 30 min 

rested foams obtained from egg white exposed to pulsed light were observed 

under a light microscope. Micrographs are shown in Figure 4.2.5. 
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 0 min 30 min 

0 J cm-2 

  

10.50 J cm-2 

  

21.00 J cm-2 

  

31.50 J cm-2 

  

Figure 4.2.5 Micrographs (100x) of just prepared and 30 min held foams obtained 

from egg white exposed to PL with increasing fluence (0, 10.50, 21.00, 31.50 J cm-2). 

Foams obtained from pulsed egg white presented a lower amount of large bubbles 

as compared to the control. In particular, the occurrence of large bubbles was not 

observed in egg white exposed to 31.50 J cm-2. In addition, the higher the 

intensity of pulsed light treatment, the smaller the bubbles in foams. As expected, 
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after a 30 min rest at 20 °C, bubble size increased due to dismutation and 

coalescence. However, these phenomena were less evident in the light treated 

samples. The higher stability of the foams obtained from pulsed egg white was 

tentatively attributed to the presence of high size protein aggregates (Figure 

4.2.2), which could behave as surface-active solid particles begetting a pickering 

foam (Pickering, 1907). The latter would be stabilized not only by the surfactant 

native proteins but also by the solid protein aggregates. As suggested by Murray 

et al. (2011), native proteins and solid particles could attract each others, 

increasing the particle jamming in the fluid interstices between bubbles. This 

would cause the formation of a firmer shell, positively affecting foaming 

properties.  

Conclusions 

Similarly to what observed in the case of UV-C light treatment, PL treatment 

induced structural modifications of egg white proteins by means of both backbone 

cleavage and aggregation phenomena. These observations suggest the photo-

induced structural modification of proteins to occur via similar reaction pathways 

in the case of UV-C and PL light. However, in the case of PL processing the 

higher intensity of the process resulted in protein structural modification of a 

larger extent as compared to UV-C light.  

The increase in immunoreactivity as well as the decrease in gelling temperature, 

which were not observed when egg white was subjected to UV-C light, can be 

attributed to the much intense structural modifications of egg white proteins. By 

contrast, similar improvement was observed in foaming properties of PL treated 

egg white as compared to UV-C light treated egg white.  

These results suggest that when proteins are sitting in similar environmental 

conditions, the intensity of the light treatment is the major factor affecting their 

structure and thus their functions. Based on these results, both PL and UV-C light 

processing can be regarded as technologies allowing the functional properties of 

globular proteins (i.e. PPO, egg white proteins) to be modified.  
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Chapter 5 Effect of PL on Gluten proteins 

Aim of the study 

In this chapter the effect of PL on wheat gluten proteins will be discussed. Gluten 

was chosen as an example of a mix of globular and fibrous proteins. Gluten is a 

viscoelastic complex mixture of proteins, containing many, probably several 

hundred, polypeptides, about half of the protein being monomeric (gliadins) and 

the remaining being disulphide- cross linked polypeptides that form the polymeric 

glutenin fraction. The molecular weights (MWs) of native proteins range from 

around 30,000 to more than 10 million (Gianibelli, Larroque, MacRitchie, & 

Wrigley, 2001; Wieser, 2007; Wrigley, 1996). Glutenin forms a network of fibres 

in which globular gliadins are entrapped. In other words, gluten can be considered 

to be like a dough in which the diluting effect of starch is no longer present. 

Traditionally the most common use of gluten proteins has been in baked products. 

However, due to its unique technological properties and favourable costs as 

compared to other proteins, the use of gluten as an ingredient has extended to a 

variety of food products (Day, Augustin, Batey, & Wrigley, 2006). With regard to 

their biological properties, gluten proteins are well known to cause allergenic 

response in people with coeliac disease. Coeliac disease is one of the most 

frequent food intolerances worldwide, and affected people can only avoid 

symptoms by maintaining a strict gluten-free diet for their entire life (van Eckert 

et al., 2010; Wieser & Koehler, 2008). 

Literature evidences, as well as results presented in Chapters 3 and 4.2, show that 

PL can be efficiently exploited to modify protein structure, thus leading to 

modification of protein functionalities (Charles et al., 2013; Elmnasser et al., 

2008; Fernández et al., 2012; Oms-Oliu et al., 2010; Ramos-Villarroel et al., 

2011). However, it was suggested that globular and fibrous protein can react 

differently on light exposure (Delincée, 1983; Stewart, 2001). Therefore, the aim 

of the present study was to investigate the effects of PL on gluten protein 

structure and immunoreactivity. 

Results and discussion 

Gluten powder was exposed to increasing pulsed light fluence at room 

temperature (22.1±0.4 °C). To assess the effect of hydration on gluten 

photoreactivity, aqueous suspensions containing 1% (w/v) gluten powder were 

also prepared and light treated. The temperature of the samples was measured just 

after the treatment and did not exceed 40 °C (Figure 5.1). 
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Figure 5.1 Temperature of gluten powder and 1% (w/v) gluten suspension exposed to 

pulsed light with increasing fluence (0, 8.75, 17.50, 26.25 J cm-2). 

Being this temperature much lower than that associated to conformational 

modifications of gluten proteins (Guerrieri, Alberti, Lavelli, & Cerletti, 1996), 

any modifications of gluten proteins should be attributed to the sole effect of 

pulsed light. In order to investigate the effect of pulsed light on gluten protein 

structure, spectrophotometric analyses of gluten samples were performed. Upon 

exposure to pulsed light, a significant increase in gluten absorbance at 280 and 

320 nm was observed as compared to the control untreated gluten (Table 5.1). 

Table 5.1 Absorbance at 280 and 320 nm of untreated gluten (Control), gluten powder 

and 1% (w/v) gluten suspension exposed to pulsed light with increasing fluence (0, 8.75, 

17.50, 26.25 J cm-2). 

 Powder 1% Suspension 

Fluence (J cm-2) Abs 280 nm Abs 320 nm Abs 280 nm Abs 320 nm 

0 (Control) 9.13±0.11 d 3.65±0.06 b 9.13±0.11 b 3.65±0.06 b 

8.75 9.69±0.20 c 3.89±0.18 a 13.66±0.06 a 5.71±0.08 a 

17.50 10.33±0.30 b 4.28±0.18 a 13.87±0.93 a 5.81±0.47 a 

26.25 10.79±0.16 a  4.38±0.09 a 13.72±0.19 a 6.14±0.11 a 
a,b,c,d Means on the same column indicated by the same letter are not statistically different (P>0.05). 

When gluten powder was treated, the increase in light fluence was associated to a 

progressive increase in absorbance at both wavelengths. It is noteworthy that 

wheat gluten powder usually contains approximately 75% protein, up to 8% 

moisture, and varying amounts of starch, lipids and fibre. The starch and fibre are 

entrapped in the cohesive matrix of the protein (Day et al., 2006). Given the 
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intimate contact between proteins and polysaccharides in the sample, the increase 

in gluten absorbance at 280 nm could be the result of the formation of early non-

enzymatic browning reaction products. The latter are highly reactive molecules, 

easily consumed to produce brown melanoidins absorbing at 320 nm (Table 5.1). 

The development of non-enzymatic browning in gluten exposed to pulsed light is 

supported by previous results indicating that this reaction can occur in egg white 

proteins upon exposure to both UV-C and PL (Chapters 4.1 and 4.2, Tables 4.1.1 

and 4.2.1) as well as by literature evidences (Sheldon et al., 1988). Condensation 

reactions typical of non-enzymatic browning are well known to be favoured by 

hydration due to the increase in reactants mobility (Roos, 2003). For this reason, 

hydrated gluten resulted much more prone to photo-induced non-enzymatic 

browning than gluten powder (Table 5.1). With the increase in the number of 

pulses, the gluten suspension showed a progressive increase in brown melanoidins 

absorbing at 320 nm, while negligible changes in early non-enzymatic reaction 

products were detected. This result suggests that the expected increase in 

absorbance at 280 nm was probably counterbalanced by the development of other 

reactions affecting gluten spectrum. The UV component of pulsed light is actually 

reported to be absorbed by protein endogenous chromophores (e.g. Trp or Phe 

residues) causing oxidative reactions (Davies, 2003). The latter may not only 

decrease protein absorbance at 280 nm but also induce modifications in protein 

structure as previously observed in the case of egg white (Chapter 4.1 and 4.2, 

Tables 4.1.1 and 4.2.1). To this regard, photo induced structural changes have 

been previously reported also in different proteins, including lysozyme, 

ovalbumin, lactoglobulin (Fernández et al., 2012; Wu et al., 2008). The 

occurrence of structural modifications in gluten was thus assessed by microscopy 

analysis. The micrograph of untreated gluten showed the presence of starch 

granules embedded in the protein clusters (Figure 5.2). The latter are composed of 

high molecular weight (HMW) glutenins, low molecular weight (LMW) 

glutenins, and gliadins, which form a protein network by means of S-S bonds 

(Shewry, Halford, Belton, & Tatham, 2002). These protein clusters were not 

altered by pulsed light when gluten powder was treated (data not shown). 

Whereas, pulsed light treatment of gluten suspension led to the disruption of the 

protein clusters into small particles (Figure 5.2).  
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Figure 5.2 Micrographs (100x) of untreated (control) gluten and 1% (w/v) gluten 

suspension exposed to 26.25 J cm-2 of pulsed light. 

Microscopy observations were supported by particle size analysis of the samples 

(Table 5.2).  

Table 5.2 Percentage distribution of small (ø < 50 nm), medium (100 < ø < 400 nm) and 

large (ø > 1000 nm) particle fractions in untreated gluten (control), gluten powder and 1% 

(w/v) gluten suspension exposed to pulsed light with increasing fluence (0, 8.75, 17.50, 

26.25 J cm-2). 

 Powder 1% Suspension 

Fluence 

(J cm-2) 

Particles (%) Particles (%) 

Small Medium Large Small Medium Large 

0 (Control) 7.4 ± 1.1 a 42.8 ± 7.8 b 60.3 ± 11.5 a 7.4 ± 1.1 a 42.8 ± 7.8 c 60.3 ± 11.5 a 

8.75 3.6 ± 0.6 b  40.2 ± 7.3 b 63.0 ± 11.9 a 1.9 ± 0.2 b 73.6 ± 12.8 b 41.2 ± 6.8 b 

17.50 1.7 ± 0.2 b  99.3 ± 18.9 a  n.d. 1.9 ± 0.3 b 95.7 ± 7.7 a n.d 

26.25 1.1 ± 0.1 c  90.7 ± 17.2 a n.d. 1.2 ± 0.2 b 86.3 ± 13.9 a n.d 
a,b,c,d Means on the same column indicated by the same letter are not statistically different (P>0.05). 
n.d.: not detected. 

In the untreated control sample three classes of particles were observed: small, 

medium and large particles, having diameter lower than 50 nm, between 100 and 

400 nm, and higher than 1000 nm, respectively. The relative distribution of these 

classes was significantly affected by light exposure. In particular, an increase in 

the percentage of medium size protein particles was detected to the detriment of 

the larger and smaller ones. In addition, changes in particle distribution resulted 

much more evident in the case of the gluten suspension as compared to the gluten 

powder. The changes in particle size distribution support the hypothesis of photo-

induced modification of intra- and inter-molecular protein-protein interaction. To 

verify this hypothesis changes in free sulfhydryl (SH) groups were measured 

(Figure 5.3). 

26.25 J cm-2 Control 
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Figure 5.3 Free sulfhydryl groups in gluten powder and 1% (w/v) gluten suspension 

exposed to pulsed light with increasing fluence (0, 8.75, 17.50, 26.25 J cm-2). Means 

indicated by the same letter are not statistically different (P> 0.05). 

Significant changes in free SH groups of gluten were observed upon light 

exposure (Figure 5.3). In particular, a slight and progressive increase in free SH 

groups was detected in the gluten powder. On the other hand, gluten suspension 

showed a marked increase in SH groups upon exposure to 8.75 J cm-2 PL fluence 

and no significant changes in this parameter at higher fluences. In other words, in 

both the cases a saturation curve was obtained, however with different end levels 

depending on gluten hydration level. As reported in the literature (Wu et al., 

2008), light would affect the structure of proteins inducing the reduction of 

disulphide (S-S) bonds. The location of inter- and intramolecular S-S bonds is 

crucial for the state of aggregation of HMW glutenins with LMW glutenins as 

well as with gliadins. Therefore, the S-S/SH exchange would directly disturb the 

structure of the protein matrix, possibly leading to its disruption and 

rearrangement, as suggested also by microscopy and particle size data (Figure 5.2 

and Table 5.2). Further information about protein structural modifications induced 

by pulsed light treatment were obtained by HPLC-gel permeation analysis (Figure 

5.4).  
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Figure 5.4 Chromatograms relevant to untreated gluten (A), gluten powder (B) and 1% 

gluten suspension (C) exposed to 26.25 J cm-2 PL fluence. 

The chromatogram relevant to the untreated gluten showed the presence of two 

broad peaks with retention times of 21.8 (peak 1) and 30.0 min (peak 2). Apparent 

molecular weight of proteins eluted in these peaks were roughly estimated to be 

84.2 and 14.7 kDa respectively. By comparison of apparent molecular weight 

with literature data, peak 1 was attributed to large polymer protein fractions whilst 

peak 2 was ascribed to small monomer protein fractions (van der Zalm, van der 

Goot, & Boom, 2011). Upon exposure of gluten to pulsed light, the signal 

intensity of peaks 1 and 2 progressively decreased with concomitant appearance 

of a large band between them (Figure 5.4). This effect resulted much more intense 

in the case of gluten suspension as compared to gluten powder and is consistent 

with the increase in medium size particles observed by dynamic light scattering 

(Table 5.2). To better understand the nature of photo-induced gluten modification, 

samples were analysed by SDS-PAGE. Samples reduced by using β-

mercaptoethanol as a reducing agent were also considered (Figure 5.5).  

A 

B 

C 

1 

2 

1 

1 

2 

2 



 

63 

 

 

Figure 5.5 SDS PAGE of untreated gluten (A), gluten powder exposed to 26.25 J cm-2 

(B), and 1% (w/v) gluten suspension exposed to 8.75 J cm-2 (C) and 17.50 J cm-2 (D) 

unreduced (Unreduced) and reduced with β-mercaptoethanol (Reduced by 2-ME). 

(MW: standard molecular weights). 

Gluten protein fractions were identified by comparison of molecular weight and 

literature data (Belitz, Kieffer, Seilmeier, & Wieser, 1986; Shewry & Tatham, 

1997; Wieser, 2007; Zilić, Barać, Pešić, Dodig, & Ignjatović-Micić, 2011). In 

particular, unreduced gluten not exposed to PL (A, Unreduced) showed several 

bands relevant to HMW-glutenins (66-150 kDa), few intense bands relevant to ω-

gliadins (46-65 kDa), as well as few thick bands associated to LMW-glutenins, 

α/β- and γ-gliadins (28-43 kDa). In addition, the high intensity and the smearing 

of the band at the top of the lane suggested the presence in the untreated gluten of 

high molecular weight protein fractions unable to enter the gel. As known, SDS is 

an anionic surfactant able to disrupt non covalent bonds, such as hydrogen bonds, 

hydrophobic and electrostatic interactions among proteins. Therefore, the protein 

fractions unable to enter the gel probably account for the protein clusters based on 

S-S bonds. SDS-PAGE of untreated gluten suspension under reducing conditions 

confirmed this hypothesis. In fact, sample reduction by β-mercaptoethanol 

increased the mobility of these large protein fractions, leading to the appearance 

of a higher number of sharp bands in the HMW-glutenins as well as broad intense 
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bands in the LMW-glutenins, α/β- and γ-gliadins regions. The thick intense bands 

in the region of ω-gliadins probably account for other protein fractions with 

similar molecular weight. In fact, being ω-gliadins poor in sulphur residues, it is 

hardly believable this protein fraction was affected by reducing conditions. No 

changes in the electrophoretic pattern of gluten powder exposed to PL were 

observed (Figure 5.5, B). By contrast, marked modifications were detected for 

gluten suspensions (Figure 5.5, C and D). The electrophoretic pattern of the 

unreduced gluten exposed to PL lacked the sharp bands relevant to HMW-

glutenins and, in their place, diffuse background coloration was observed. When 

samples were reduced by β-mercaptoethanol a higher mobility of the large protein 

fractions was observed. These results were attributed to photo-induced partial 

depolymerisation of HMW glutenins by means of S-S/SH exchange. The 

progressive decrease in intensity of the bands corresponding to ω-gliadins as well 

as to LMW-glutenins, α/β- and γ-gliadins suggested pulsed light to induce the 

modification of these protein fractions as well. With regard to ω-gliadins, this 

protein fraction is regarded to be poor in cysteine residues, but rich in aromatic 

residues (Lutz, Wieser, & Koehler, 2012; Wieser, Antes, & Seilmeier, 1998; 

Wieser, 2007). The latter could absorb the electromagnetic energy relevant to the 

UV fraction of PL, leading to protein structure modification (Wu et al., 2008). On 

the other hand, LMW-glutenins, α/β- and γ-gliadins are rich in cysteine residues 

and are known to form both intra- and inter-molecular crosslinks by means of 

disulphide bonds (Lutz et al., 2012; Wieser et al., 1998; Wieser, 2007). It can be 

inferred that PL induced SS/SH exchange would affect the structure of these 

protein fractions leading to both depolymerisation of oligomeric fractions and 

unfolding of monomeric fractions. In addition, it is not excluded that unfolded 

and depolymerised proteins would further interact leading to form protein species 

characterised by a broad range of molecular weights. This hypothesis is supported 

by the smearing of the upper part of the lanes of PL treated gluten suspension, as 

well as by the presence of few and more distinct bands in the lanes relevant to the 

reduced gluten samples.  

As observed by many authors as well as in the case of egg white (Chapter 4.2, 

Figure 4.2.3), the modification of protein structure and the development of non 

enzymatic browning could affect protein allergenicity (Gruber et al., 2004; 

Taheri-Kafrani et al., 2009). Based on this consideration, gluten samples were 

also analysed for immunoreactivity by an ELISA method (Figure 5.6). 
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Figure 5.6 Immunoreactive gliadin in gluten powder and 1% (w/v) gluten suspension 

exposed to pulsed light with increasing fluence (0, 8.75, 17.50, 26.25 J cm-2). Means 

indicated by the same letter are not statistically different (P> 0.05). 

A slight decrease in immunoreactive gliadin was detected upon treatment of 

gluten powder. In the gluten suspension, immunoreactive gliadin decreased by 

50% upon 15 light pulses. It is likely that structural changes caused by pulsed 

light could lead to a lower exposure of gliadin epitopes or to their degradation, 

giving reason for the marked decrease in gluten immunoreactivity. The decrease 

in immunoractive gliadin by PL is in agreement with literature data suggesting 

that this technology may promote the decrease in food allergenicity (Anugu, 

Yang, Shriver, Chung, & Percival, 2010). However, opposite results were 

obtained considering egg white proteins exposed to pulsed light (Chapter 4.2). 

These results suggest that the effect of pulsed light on allergens is strictly 

dependent not only on protein nature but also on processing conditions and 

hydration level. To this regard, it has been hypothesised that protein 

photoreactivity would only occur at concentrations lower than the critical 

concentration for macromolecular crowding (Manzocco & Nicoli, 2012). As 

observed in the case of PPO and egg white exposed to PL (Chapters 3 and 4.1), at 

higher concentrations, proteins could be fully photo-resistant since their vicinity 

in the suspension would favour conformations that are less prone to structural 

rearrangements induced by light exposure.  
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Conclusions 

Results obtained suggest that PL could be efficiently exploited to decrease gluten 

immunoreactivity as a consequence of gluten structure modification. However, 

similarly to what observed in the case of PPO (Chapter 3), the sensitivity of 

gluten to pulsed light was strongly affected by hydration. While gluten powder 

was highly resistant to photo-induced structure modification, pulsed light induced 

partial depolymerisation of oligomeric fractions and unfolding of monomeric 

fractions of hydrated gluten by promoting S-S/SH group exchange. The latter 

would also favour further structural rearrangement of unfolded and depolymerised 

proteins, leading to protein species having a broad range of molecular weights. 

If in the case of both PPO and egg white proteins (Chapters 3, 4.1, and 4.2) light 

processing accounted for modification of both protein conformation and 

secondary structure, in the case of gluten protein only conformational changes 

could be observed. This can be attributed to the different nature of proteins. In 

fact, both PPO and egg white proteins are globular proteins, which are probably 

free enough to unfold, interact with other vicinal proteins, and even break upon 

intense light exposure. By contrast gluten proteins, structured in a network of 

fibrous glutenin entrapping globular gliadins, are probably spatially hampered to 

react upon light exposure.  
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Chapter 6 Effect of PL on starch 

Aim of the study 

Wheat starch was chosen as a polysaccharide matrix. Starch is an important 

biopolymer in foods. It is a major storage product in plants and one of the most 

important carbohydrate sources for human nutrition. It is composed of a mixture 

amylose and amylopectin and occurs in form of granules (Belitz, Grosch, & 

Schieberle, 2001). Starch is semi-crystalline and birefringent as can be observed 

under polarised light. Starch is important in many food applications because of its 

unique ability to modify the texture of different food matrices such as extruded 

breakfast cereals and snacks (Chanvrier, Uthayakumaran, & Lillford, 2007; 

Dogan, McCarthy, & Powell, 2005). All these food products are obtained by 

means of a thermal treatment, which defines their final quality characteristics. 

Upon heating, starch undergoes gelatinisation, and loss of birefringence. 

Gelatinisation is regarded as the hydration and irreversible swelling of the 

granule, the destruction of molecular order within the starch granule and the 

melting of starch crystals (Zobel, 1988). Gelatinization is a major step to exhibit 

featured characteristics of starch (Li & Yeh, 2001). Tester & Morrison (1990) 

suggested swelling to be a property of amylopectin. Crosslinking was found to 

enhance the molecular interactions by covalent bonding and reduce the swelling 

volume of corn starch (Ziegler, Thompson, & Casasnovas, 1993). 

Photocrosslinking of starch by means of UV exposure has been suggested to 

improve the performances of starch-based films. Based on these considerations, 

light processing could be exploited to modify starch structure and thus functions. 

To this aim wheat starch suspension was exposed to PL (26.25 J cm-2), and 

analysed for structure and function characteristics. 

Results and discussion 

Wheat starch suspension (1% w/v) was exposed to 26.25 J/cm-2 PL fluence. PL 

treatments were performed at room temperature (22.4±0.8 °C). The temperature 

of the samples was measured just after the treatment and did not exceed 40 °C 

(36.9±3.1 °C). Therefore, gelatinisation of starch during the treatment can be 

excluded and any modifications of starch samples should be attributed to the sole 

effect of PL. In order to investigate the effect of PL on starch structure, 

spectrophotometric analyses of starch samples were performed (Table 6.1). 
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Table 6.1 Absorbance at 280 and 320 nm of untreated starch (Control), and 1% (w/v) 

starch suspension exposed to pulsed light with 26.25 J cm-2 fluence. 

Fluence (J cm-2) Abs 280 nm Abs 320 nm 

0 (Control) 2.07±0.09 a 2.23±0.05 a 

26.25 2.07±0.11 a  2.21±0.09 a 
a Means on the same column indicated by the same letter are not statistically different (P>0.05). 

Contrarily to what observed in egg white and gluten samples (Chapters 4.1, 4.2 

and 5, Tables 4.1.1, 4.2.1, and 5.1), PL did not induce any changes in starch 

absorbance at both 280 and 320 nm. This result suggests PL not to induce the 

formation of compounds absorbing at these wavelengths.  

The occurrence of structural modifications in starch samples was further 

investigated by measuring the sample optical density at 640 nm during 15 min 

taken as an index of turbidity. Results are shown in figure 6.1.  

 

Figure 6.1 Turbidity of untreated (Control) and PL treated (26.25 J cm-2) 1% starch 

suspension as a function of measuring time.  

The optical density at 640 nm was found to decrease as a function of time in both 

the untreated and the PL treated starch suspension with a similar trend. This 

decrease in turbidity can be associated to the sedimentation of starch particles on 

the bottom of the cuvette during the measurement time. Turbidity of starch 

suspension exposed to pulsed light was similar to that of the untreated starch at 

the beginning of the measurements (0-5 min). At longer observation time, a slight 

increase in turbidity was observed in starch suspension exposed to PL as 

compared to the untreated sample. It was inferred that the slightly slower 

sedimentation kinetic of PL treated starch might account for a modification in 

starch particle size. To verify this hypothesis starch samples were analysed for 
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particle size by light scattering analysis (Figure 6.2) as well as for microstructure 

by microscopy analysis (Figure 6.3). 

 

Figure 6.2 Particle size of untreated (control) starch and 1% (w/v) starch suspension 

exposed to 26.25 J cm-2 of pulsed light. 

Light scattering analysis of untreated starch showed the presence of one class of 

particles with average diameter of 960 nm. Upon exposure to PL, a decrease in 

the average diameter of starch particles was detected. This slight difference, even 

if not significant, could reasonably explain the decrease in sedimentation 

observed by spectrophotometric analysis (Figure 6.1).  

Light microscopy analysis of starch was also performed in order to confirm these 

results. The micrograph of PL treated starch suspension (26.25 J cm-2) showed no 

significant difference in the size and shape of starch granules as compared to the 

untreated sample (Figure 6.3). 

  

 

Figure 6.3 Micrographs (200x) of untreated (control) starch and 1% (w/v) starch 

suspension exposed to 26.25 J cm-2 of pulsed light. 
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Results obtained suggest that starch structure is not modified by PL exposure. The 

lack of chromophores in starch polymer chain and the absence or scarce presence 

of contaminants that can serve as photosensitizers, make starch photoresistant 

(Delville, Joly, Dole, & Bliard, 2003; Zhou, Ma, Zhang, & Tong, 2009; Zhou, 

Zhang, Ma, & Tong, 2008). As foods are rather complex matrices, the presence of 

contaminants that can behave as photosensitizers cannot be excluded. 

To confirm this observation, gelatinisation of untreated and PL treated at 26.25 J 

cm-2 starch suspension was performed. Samples were then analysed by light 

microscopy (Figure 6.4). 

 

 

Figure 6.4 Micrographs (100x) of untreated gelatinised (Control) starch and 1% (w/v) 

starch suspension exposed to 26.25 J cm-2 of pulsed light and gelatinised. 

No significant differences were observed in untreated gelatinised starch and PL 

treated gelatinised starch suspension. 

Conclusions 

Contrarily to what observed for proteins (Chapeters 3, 4.1, 4.2, and 5) no changes 

in starch structure could be observed upon exposure to PL. Consequently also 

starch performances were not affected by PL processing.  The lack of absorption 

site capable to absorb light radiation within starch molecule, as well as the 

compact semi-crystalline structure organisation of starch granules makes starch 

photoresistant. Therefore, PL treatment could be potentially exploited as a 

sanitisation treatment, for instance against moulds, without impairing starch 

performances

Control 26.26 J cm-2 
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Chapter 7 Effect of PL on wheat flour 

Aim of the study 

This chapter focuses on the effect of PL on wheat flour, taken as an example of a 

matrix composed of a mix of polysaccharides and proteins. Wheat flour is mainly 

composed of starch (ca. 70–75%), and gluten proteins (ca. 10–12%) (de Vuyst et 

al., 2005). As previously discussed, when starch was subjected to PL treatments, 

no changes in its structure and gelatinisation were observed (Chapter 6). On the 

other hand, conformational changes of gluten proteins resulting in a decrease in 

their immunoreactivity were detected upon exposure to PL (Chapter 5). The 

concomitant presence of both starch and gluten proteins in the food matrix could 

determine different effects of PL processing. For instance, gluten proteins could 

serve as photosensitizers favouring structural changes of starch. Likewise, starch 

granules, which are the major component of wheat flour, could conceal gluten 

proteins thus hindering the absorption of light radiation. Therefore, the aim of the 

present study was to investigate the effect of PL processing on the structure and 

function of a complex food matrix, such as wheat flour. 

Results and discussion 

Similarly to gluten samples, wheat flour (powder) and wheat flour suspension 1% 

(w/v) were exposed to increasing PL fluence at room temperature (22.7±0.7 °C). 

The temperature of the samples was measured just after the treatment and did not 

exceed 40 °C (Figure 7.1). 

 

Figure 7.1 Temperature of flour powder and 1% (w/v) flour suspension exposed to 

pulsed light with increasing fluence (0, 8.75, 17.50, 26.25 J cm-2). 
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Being this temperature much lower than that associated to both conformational 

modifications of gluten proteins (Guerrieri et al., 1996), and gelatinisation of 

starch (Zobel, 1988), any modifications in the structure of flour constituents 

should be attributed to the sole effect of PL. The effect of PL on flour constituent 

structure was evaluated by spectrophotometric analyses of flour samples (Table 

7.1). 

Table 7.1 Absorbance at 280 and 320 nm of untreated flour (Control), flour powder and 

1% (w/v) flour suspension exposed to pulsed light with increasing fluence (0, 8.75, 17.50, 

26.25 J cm-2). 

 Powder 1% Suspension 

Fluence (J cm-2) Abs 280 nm Abs 320 nm Abs 280 nm Abs 320 nm 

0 (Control) 4.43±0.09 b 4.34±0.07 a 4.43±0.09 b 4.34±0.07 b 

8.75 4.46±0.07 b 4.14±0.01 b 4.87±0.10 a 4.69±0.03 a 

17.50 4.58±0.03 a 3.74±0.02 c 4.73±0.24 a 4.74±0.31 a 

26.25 4.56±0.14 a,b  3.82±0.16 c 4.74±0.21 a 4.38±0.03 b 
a,b,c Means on the same column indicated by the same letter are not statistically different (P>0.05). 

Flour powder exposed to PL showed a slight increase in absorbance at 280 nm 

and a decrease in absorbance at 320 nm. On the other hand, flour suspension 

exposed to PL showed an increase in absorbance at both the wavelengths. In 

particular, a marked increase in absorbance at 280 nm was observed when flour 

suspension was subjected to 8.75 J cm-2 PL fluence, and no additional increase 

was observed on further pulsing. Besides, a similar increase in absorbance at 320 

nm was observed upon exposure to 8.75 and 17.50 J cm-2, whilst absorbance 

values similar to the control samples were detected on further pulsing (26.25 J cm-

2). Similarly to the case of egg white and gluten proteins (Chapters 4.2.1 and 5, 

Tables 4.2.1 and 5.1), the increase in absorbance at these wavelengths can be 

attributed to the development of non-enzymatic browning reactions (Sheldon et 

al., 1988). In addition, as previously observed in gluten samples (Chapter 5, Table 

5.1), the increase in absorbance was higher in flour suspension than in flour 

powder. Also in the case of flour, the higher hydration of the system would favour 

the condensation reactions typical of non-enzymatic browning due to the increase 

in reactants mobility (Roos, 2003). However, given the scarce presence of 

reducing groups in starch, PL light induced non-enzymatic browning was much 

lower in flour samples than what observed for both gluten and egg white samples.  

The occurrence of structural modifications in wheat flour was further investigated 

by microscopy analysis (Figure 7.2). 
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Control 

  

Powder 8.75 J cm-2 1% Suspension 8.75 J cm-2 

  

Powder 17.50 J cm-2 1% Suspension 17.50 J cm-2 

  

Powder 26.25 J cm-2 1% Suspension 26.25 J cm-2 

 

Figure 7.2 Micrographs (40x) of untreated flour (Control), flour powder, and 1% (w/v) 

flour suspension exposed to PL with increasing fluence (0, 8.75, 17.50, 26.25 J cm-2). 
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The micrograph of untreated flour showed the presence of large clusters. The 

latter are probably formed due to the interaction between gluten protein and starch 

granules. A slight decrease in the size of these clusters was observed when flour 

powder was treated with 8.75 J cm-2 PL, and no additional changes in particle size 

were observed at higher PL fluences. By contrast, when flour suspension was 

exposed to PL, a progressive decrease in the size of the clusters was observed, 

accompanied by an increase in free starch granules, which were homogenously 

distributed in the sample. Observations made under light microscope were 

supported by light scattering analysis of flour samples (Figure 7.3).  

 

Figure 7.3 Particle diameter of untreated flour (Control), flour powder, and 1% (w/v) 

flour suspension exposed to pulsed light with increasing fluence (0, 8.75, 17.50, 26.25 J 

cm-2). 

In the untreated control sample, one class of particles was observed with average 

diameter of 976±150 nm. Upon exposure to PL, flour powder showed an initial 

decrease in particle size upon 8.75 J cm-2 PL fluence, and no additional 

modifications on further pulsing. These results and those obtained by microscopy 

analysis suggest that flour powder microstructure is not significantly affected by 

PL exposure. On the other hand, a progressive decrease in particle size was 

detected upon PL treatment of flour suspension. The decrease in particle size of 

the clusters as well as the increase in free starch, observed under light microscope 

(Figure 7.2), might account for PL-induced modifications of the interactions 

between starch and gluten proteins. Since no modifications of starch granules 

could be observed by light microscopy (Figure 7.2), the changes in particle size 

might be due to changes of gluten protein structure. As reported in the literature 
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(Wu et al., 2008), and accordingly to what observed for gluten proteins treated by 

PL (Chapter 5, Figure 5.3), light would affect the structure of proteins inducing 

the reduction of disulphide (S-S) bonds. As inter- and intramolecular S-S bonds 

are crucial for the state of aggregation of HMW glutenins with LMW glutenins, 

and gliadins, the S-S/SH exchange would directly disturb the structure of the 

protein matrix. To verify this hypothesis changes in free sulfhydryl (SH) groups 

were measured (Figure 7.4). 

 

Figure 7.4 Free sulfhydryl groups in flour powder and 1% (w/v) flour suspension 

exposed to pulsed light with increasing fluence (0, 8.75, 17.50, 26.25 J cm-2). Means 

indicated by the same letter are not statistically different (P> 0.05). 

Free SH groups of flour proteins were found to increase with PL fluence (Figure 

7.4). In agreement with microscopy, as well as to particle size analysis, flour 

powder showed a slight initial increase in free SH groups upon exposure to 8.75 J 

cm-2 PL fluence, and no significant changes in this parameter at higher fluences. 

These results are consistent whit the hypothesis that flour powder microstructure 

is not significantly altered by PL treatment. By contrast, a progressive increase in 

free SH groups was detected in flour suspension. To this regard, it is worth noting 

that a different trend in the increase in free SH groups as a function of PL fluence 

was observed for gluten proteins in flour, as compared to gluten samples (Chapter 

5, Figure 5.3). In particular, a progressive increase in free SH groups was 

observed when gluten powder was exposed to PL. By contrast, gluten suspension 

showed a steep initial increased in free SH, and no changes in this parameter on 

further pulsing. The latter were attributed to the ability of intense PL fluences to 

induce oxidation of the newly formed SH groups, leading to rearrangements of 
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protein structure. This effect was not observed for gluten powder, which showed a 

similar trend to that of flour suspension. On the basis of these results, it was 

inferred that the effect of PL on gluten proteins could be reduced by the presence 

of starch in flour samples.  

Further information about PL-induced protein structural modifications in flour 

samples were obtained by SDS-PAGE analysis (Figure 7.5). 

 

Figure 7.5 SDS PAGE of untreated flour (A), flour powder exposed to 17.50 (B), and 

26.25 J cm-2 (C), and 1% (w/v) flour suspension exposed to 8.75 (D), 17.50 (E), and 

26.25 J cm-2 (F). (MW: standard molecular weights). 

Gluten protein fractions in flour samples were identified by comparison of 

molecular weight and literature data (Belitz et al., 1986; Shewry & Tatham, 1997; 

Wieser, 2007; Zilić et al., 2011). In particular, untreated flour (A) showed few 

bands relevant to HMW-glutenins (66-150 kDa), ω-gliadins (46-65 kDa), as well 

as some intense bands associated to LMW-glutenins, α/β- and γ-gliadins (28-43 

kDa). In addition, the high intensity and the smearing of the band at the top of the 

lane suggested the presence in the untreated gluten of high molecular weight 

protein fractions unable to enter the gel. As known, SDS is an anionic surfactant 
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able to disrupt non covalent bonds, such as hydrogen bonds, hydrophobic and 

electrostatic interactions among proteins. Therefore, the protein fractions unable 

to enter the gel probably account for protein clusters based on S-S bonds. Similar 

observations were made for gluten and confirmed by analysing gluten samples 

under reducing conditions (Chapter 5, Figure 5.5). When flour powder was 

exposed to PL, no significant changes in the electrophoretic pattern of flour 

proteins could be observed (Figure 7.5, B and C). By contrast, marked changes in 

the electrophoretic pattern proteins in flour suspensions exposed to PL were 

detected (Figure 7.5, D, E, and F). The electrophoretic patterns of PL treated flour 

proteins showed a progressive decrease in the intensity of the bands relevant to 

HMW-glutenins. These results confirm that PL can induce partial 

depolymerisation of HMW-glutenins by means of S-S/SH exchange, accordingly 

to what previously observed in the case of gluten (Chapter 5, Figure 5.5). Upon 

exposure to 8.75 J cm-2 (Figure 7.5, D), an intense background coloration of the 

upper part of the lane was also observed. This coloration suggests that the 

depolymerisation of HMW-glutenins induced by PL treatment resulted in the 

formation of protein with a broad distribution of molecular weights. In addition, 

electrophoretic analysis of flour proteins supports the hypothesis that gluten 

proteins present different photosensitivity, being HMW-glutenins the most 

sensitive to PL exposure. Upon exposure to higher PL fluences, a progressive 

disappearance of the bands relevant to ω-gliadins, as well as to LMW-glutenins, 

α/β- and γ-gliadins was observed. These results are consistent with literature 

evidences, and confirm that PL can induce structure modification of proteins rich 

in aromatic and cysteine residues, such as the ω-gliadins, and LMW-glutenins, 

α/β- and γ-gliadins respectively (Lutz et al., 2012; Wieser et al., 1998; Wieser, 

2007; Wu et al., 2008). Similar results were obtained also in the case of gluten 

proteins subjected to PL. However, when gluten was treated by PL, protein 

depolymerisation and degradation was  accompanied by new protein-protein 

interaction, as suggested by the smearing and background coloration of the upper 

part of the lanes (Chapeter 5, Figure 5.5). By contrast, a diffuse background 

coloration of the whole lane relevant to PL treated flour suspension was observed, 

suggesting PL to induce changes in flour protein structure by means of 

depolymerisation and degradation phenomena solely (Figure 7.5, E and F). It can 

be inferred that the interactions which take place between gluten and starch 

granules in flour (Figure 7.2) could hinder gluten proteins to react upon light 

exposure. In fact results relevant to both free SH groups and SDS-PAGE (Figures 

7.4 and 7.5), show that the lower the interaction between gluten and starch, the 

higher the photosensitivity of gluten proteins.  
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As previously observed for egg white and gluten proteins (Chapter 4.2 and 5, 

Figure 4.2.3 and 5.6), the modification of protein structure could affect protein 

allergenicity. In particular, on the one hand egg white immunoreactivity was 

found to increase, and on the other hand gluten immunoreactivity was found to 

decrease as a consequence of PL treatments. To evaluate whether the different 

protein structure modifications, could also result in different changes in protein 

functions, flour samples were analysed for immunoreactivity by an ELISA 

method (Figure 7.6). 

 

Figure 7.6 Immunoreactive gliadin in flour powder and 1% (w/v) flour suspension 

exposed to pulsed light with increasing fluence (0, 8.75, 17.50, 26.25 J cm-2). Means 

indicated by the same letter are not statistically different (P> 0.05). 

No changes in protein immunoreactivity of flour powder could be observed upon 

PL exposure. This result was actually expected, since no significant changes in 

flour protein structure could be observed as a consequence of PL treatment 

(Figures 7.2, 7.3, 7.4, 7.5). By contrast, immunoreactive gliadin decreased by 

40% when flour suspension was exposed to 26.25 J cm-2 PL fluence. Therefore, as 

hypothesised in the case of gluten, it is likely that structural changes caused by 

pulsed light could lead to a lower exposure of gliadin epitopes or to their 

degradation, giving reason for the decrease in gluten immunoreactivity.  

Conclusions 

Results obtained suggest that PL could modify the structure and thus the 

immunoreactivity of gluten proteins in flour suspension. However, the extent of 

protein structural modifications was found to much lower when gluten was 
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included in a more complex matrix, such as flour, as compared to the gluten 

alone. The apparent interaction between starch granules and gluten proteins in 

flour samples seemed to hinder photoinduced modifications of gluten proteins. In 

fact, when the interaction between starch and gluten was not affected by PL (in 

flour powder), no changes in both protein structure and immunoreactivity could 

be observed. By contrast, in the case of flour suspension, the lower the interaction 

between gluten proteins and starch granules, the higher the photosensitivity of 

gluten proteins. Therefore, results achieved within this study, together with those 

relevant to the other investigated matrices (Chapters 3-6), show that besides 

processing conditions, hydration level, and protein nature, also the presence of 

other biomolecules are a key factor determining the effect of PL processing.   

 



 

80 

 

 

  



 

81 

 

 

Conclusions Part I 

The first part of this PhD thesis dealt with the effect of UV-C and PL processing 

on food biomolecules. The potential of light processing to modify the structure of 

selected food biomolecules, and thus their functions was studied. Data obtained in 

this PhD thesis show that light processing, based on UV-C light or applied in a 

pulsed mode, can be exploited to modify biopolymer structure leading to 

functional changes. However, the overall effects of light on food biopolymers 

depend on several factors: 

 

1) Intrinsic photosensitivity of the target biomolecule  

Not all biopolymers are equally photosensitive. Biopolymers can be regarded as 

characterised by a different photosensitivity, which is strictly dependent on their 

chemical nature. In fact, the common feature of photoreactive biomolecules is the 

presence of light absorbing chemical sites, such as aromatic residues, conjugated 

double bonds, and chromophores. The latter should not only be present in the 

matrix but also be able to initiate photoreactions leading to structural modification 

of the polymer. In the light of these considerations and on the basis of the results 

acquired, proteins can be regarded as photosensitive biomolecules, as they are 

rich in aromatic residues, that can absorb radiation, leading to the occurrence of 

photoreactions. By contrast, starch, which does not include any absorption site in 

its molecule, can be considered as a photostable biomolecule. Therefore, when 

light processing is intended for food sanitization purposes, it can be efficiently 

exploited to decontaminate photostable biomolecules without impairing their 

functionalities. On the other hand, light processing can provide advantages well 

beyond decontamination when it is applied to photosensitive food biomolecules, 

such as proteins. In this case, it may allow interesting possibilities to steer 

biopolymer structure and functionality. 

 

2) Intensity of light radiation 

The nature and extent of structure/function modifications strictly depends on the 

prevalent wavelength of the radiation applied as well as on its intensity. By using 

UV-C light, which consists of short wavelength UV radiation (254 nm), 

biomolecule structure and functions are modified by means of photochemical 

effects. Whereas, by using PL, which includes also the visible and infrared 

radiations of the electromagnetic spectrum, localized heating phenomena can 
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occur leading to photothermal effects. Nevertheless, structure modifications 

observed in proteins seem to be due mainly to the UV component of PL, which is 

responsible for the activation the absorbing sites. For a same photosensitive 

matrix exposed to a given radiation, the higher the intensity of the light, the 

higher the extent of protein structure modifications. For instance, when the effect 

of either PL or UV-C light was investigated on different food proteins (PPO, egg 

white proteins and gluten proteins), in a wide range of fluence, similar 

mechanisms of structure modification were observed. For instance, upon UV-C 

and PL exposure structure modifications of egg white proteins, by means of 

aggregation/unfolding or backbone cleavage, could be observed and the higher 

the intensity of light processing, the larger the extent of the structure 

modifications. In this context, the processing variable which can be used to 

predict the extent of structural/function modifications can be the fluence, 

expressed as J cm-2. To this regard, literature results showed PPO to undergo 

unfolding/ aggregation and cleavage phenomena upon UV-C light exposure. 

Similar structure modifications were also observed upon exposure to PL, however 

the delivery of additional fluence to PPO samples resulted in further changes of 

the protein. 

 

3) Structural arrangement of the target biomolecule  

The nature of the chemical changes promoted by light treatment are significantly 

affected by the interactions of the target biomolecule occurring at both intra- and 

inter molecular level. In the case of PPO and egg white, photoinduced structure 

modifications were found to occur by both conformational changes and backbone 

cleavage. Whereas, in the case of gluten proteins only conformational changes 

could be observed. The occurrence of different mechanisms of photoreactivity 

was attributed to the different structural arrangement of proteins. In fact, both 

PPO and egg white proteins are globular proteins, which are probably free enough 

to unfold, interact with other vicinal proteins, and even break upon intense light 

exposure. By contrast gluten proteins, which are structured in a network made of 

fibrous and globular proteins, are spatially hampered to react upon light exposure. 

In flour, gluten proteins closely interact with starch granules in a complex 

network. In this matrix, the photosensitivity of gluten proteins was found to be 

even lower than in the sole gluten. In general terms, the higher the possibility of 

the protein to undergo conformational changes, the higher its photosensitivity. 

Reversely,  when the complexity of the interactions in the food system increases, 

conformational changes are structurally limited, controlling the overall 

photosensitivity of the system.  
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4) Environmental conditions experienced by the target biomolecule during 

the treatment. 

The nature and extent of photo-induced structure/function changes is considerably 

affected by the environmental conditions experienced by the molecule during 

irradiation. In the case of proteins, the kinetics of conformational changes and 

aggregation phenomena are well known to depend on macromolecular crowding 

effects. Data relevant to PPO and gluten proteins show that the photostability 

increases with their concentration in the system. Similarly, the presence of starch 

significantly decreased the photosensitivity of gluten in flour. Environmental 

crowding can favour specific conformations, so that the higher the 

macromolecular concentration, the more compact and photostable the protein. 

Ideally, protein photosensitivity could be steered by changing its concentration in 

the system or adding macromolecules with high excluded volume.    

 

These factors should be carefully considered when light processing is intended for 

modification of protein functionalities. Figure C schematically shows the 

combined effect of the different factors on the overall photosensitivity of some 

biomolecules considered in this study. 

 

Figure C Combined effect of structural arrangement (structure) and chemical nature 

(presence absorption sites) on biomolecules photosensitivity. 
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The figure also shows that photoinduced structure modifications account for 

different modifications of biomolecule functions.  

With regard to protein functionality, results obtained when egg white was 

exposed to PL showed that PL could efficiently improve the foaming properties 

of egg white proteins, but also increase their immunoreactivity. This suggests that 

light processing can concomitantly induce positive or negative effects on 

functionalities of the same protein matrix (egg white). Moreover, PL was found to 

increase the immunoreactivity in egg white proteins on the one hand, but on the 

other hand a decrease in gluten proteins immunoreactivity could be observed 

upon PL exposure. These results suggest that the effects of light processing on 

food proteins can be very different, since the overall effect of the process depends 

on a variety of factors that may interplay potentially leading to positive, negligible 

or negative function modifications.  
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PART 2 Effect of HPH on food biomolecules 

The second part of this PhD research aimed to investigate the effects of HPH 

processing on selected food biomolecules focusing on the process-structure-

function relationship. Two different matrices were chosen, namely egg white and 

tomato puree, as an example of protein- and polysaccharide-containing matrix.  

The following chapters will discuss the effect of HPH on structure, technological 

performances (viscosity, gelling and foaming properties) and immunoreactivity of 

egg white proteins as well as the effect of HPH on structure, technological 

performances and carotenoid bioaccessibility of differently coloured tomato 

pulps. 

 

Chapter 8 Effect of HPH on egg white 

Aim of the study 

Similarly to UV light processing, HPH processing represent a promising non-

thermal alternative to conventional thermal processing for microbial inactivation 

of different food products (Diels, Callewaert, et al., 2005; Donsì et al., 2009; 

Maresca et al., 2011; Patrignani et al., 2013; Pedras & Pinho, 2012; Picart et al., 

2006; Thiebaud et al., 2003). Beside microbial inactivation, the intense 

mechanical stresses induced by HPH have been shown to affect the structure of 

food proteins, resulting in changes in their functional properties. For instance, in 

liquid whole egg HPH induced unfolding of egg proteins, resulting in slight 

changes in product viscosity and improved foaming properties. In addition, HPH 

was shown to induce denaturation and/or aggregation of whey proteins, 

depending on the intensity of mechanical forces and/or the temperature of the 

sample (Bouaouina et al., 2006; Grácia-Juliá et al., 2008). Also, HPH-induced 

denaturation of soybean proteins resulted in better emulsifying and gelling 

properties (Wang et al., 2008). With regard to protein biologic activity, changes in 

enzymatic activity of several enzymes were observed as a consequence of HPH 

induced protein conformational changes (Calligaris et al., 2012b; Suárez-Jacobo 

et al., 2012; Vannini et al., 2004). On the basis of these evidences, HPH could be 

exploited to obtain protein-rich foods with specific functionalities. As mentioned 
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before, egg white is an interesting protein rich ingredient, which is extensively 

used in the food industry due to its multifunctional properties. The aim of this 

study was to investigate the effect of HPH on egg white protein structure and 

selected functional properties.  

Results and discussion 

Egg white was cooled at 4 °C and homogenised at 150 MPa for up to 17 passes. 

Untreated egg white and egg white homogenised at 0 MPa via a single pass were 

taken as controls. In order to minimise the increase in temperature during 

processing, the inlet and outlet of the homogeniser were connected to a cooling 

system set at 4 °C. Operating under these conditions, the temperature of 

homogenised egg white never exceeded 35 °C (Figure 8.1). 

 

Figure 8.1 Egg white temperature of untreated egg white (Control), egg white 

homogenised at 0 MPa (0 MPa), and egg white homogenised at 150 MPa via multiple 

passes (2, 4, 8, 12, 17 passes).   

Being this temperature far lower than the denaturation temperature of 

ovotransferrin (61 °C), which is the most heat-sensitive egg white protein  (Mine, 

1995), any changes that have occurred in the samples can be attributed to the sole 

effect of the homogenisation process. 

High pressure homogenisation induced changes in egg white optical density at 

680 nm (Figure 8.2).  
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Figure 8.2 Optical density (O.D.) at 680 nm, and visual appearance (inset) of untreated 

egg white (Control), egg white homogenised at 0 MPa (0 MPa), and egg white 

homogenised at 150 MPa via multiple passes (2, 4, 8, 12, 17 passes). Bars indicated by 

the same letter are not statistically different (P>0.05). 

The initial decrease in optical density after a single homogenisation pass at 0 MPa 

was followed by a progressive increase upon multiple homogenisation passes at 

150 MPa. These changes were accompanied by a progressive shift of egg white 

colour from yellow towards milky white (Figure 8.2, inset), suggesting the 

formation of protein aggregates/network able to scatter light. Dynamic light 

scattering analysis (Table 8.1) of untreated egg white showed the presence of two 

classes of particles with average diameter about 143 nm and larger than 8000 nm. 

The latter was the main class of particles in the sample and accounted for protein 

aggregates formed through non-covalent weak interactions. It is well known that 

in fresh egg white ovomucin, which is a highly glycosylated protein with a very 

high molecular weight, can aggregate with other egg white proteins by means of 

electrostatic interactions. In particular, the carboxylic groups of the ovomucin 

sialic acids can interact with the amino group of lysozyme lysine residues to form 

a lysozyme-ovomucin complex that would be responsible for the gel-like 

structure of egg white (Kato et al., 1975; Mine, 1995). These weak interactions 

would be easily broken by a single homogenisation pass at 0 MPa, leading to a 

significant increase in the presence of particles with average diameter equal to 

143 nm as well as to the formation of smaller particles with average diameter 

about 35 nm. No significant differences in the size distribution of protein particles 

were observed upon further homogenisation at 150 MPa up to 8 passes. By 

contrast, egg white homogenised at 150 MPa for 12 and 17 passes showed the 
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occurrence of a novel class of particles with average diameter equal to 473 nm. 

The latter might account for HPH-induced protein unfolding or aggregation.  

Table 8.1 Percentage distribution of particles with average hydrodynamic radius (ø) equal 

to 13, 35, 143, 473, and larger than 8000 nm in untreated egg white (Control), egg white 

homogenised at 0 MPa (0 MPa), and egg white homogenised at 150 MPa via multiple 

passes (2, 4, 8, 12, 17 passes). 

 Particles (%) 

 ø ≈ 13 nm ø ≈ 35 nm ø ≈ 143 nm ø ≈ 473 nm ø > 8000 nm 

Control n.d. n.d. 14.70 ± 2.19 n.d. 87.44 ± 9.59 

0 MPa n.d. 5.37 ± 1.79 84.90 ± 13.19 n.d. n.d. 

2 passes n.d. 4.75 ± 1.64 92.02 ± 4.34 n.d. n.d. 

4 passes 3.47 ± 1.25 n.d. 90.82 ± 6.19 n.d. n.d. 

8 passes n.d. 3.65 ± 0.64 85.30 ± 4.63 n.d. n.d. 

12 passes 1.40 ± 0.66 n.d. 40.90 ± 4.16 58.43 ± 4.65 n.d. 

17 passes 0.80 ± 0.01 n.d. 49.67 ± 10.07 56.85 ± 6.01 n.d. 

n.d.: not detected 

To investigate the nature of HPH-induced protein structural modifications, 

samples were analysed for the concentration of free sulfhydryl groups (SH) 

(Figure 8.3). As previously mentioned, the decrease in free SH could indicate 

protein cross-linking, while their increase generally accounts for both protein 

unfolding and backbone fragmentation (Beveridge et al., 1974). In the case of egg 

white homogenised at 0 MPa via a single pass, an increase in free SH was 

observed. Such increase can be consistent with the exposure of free SH upon 

disruption of the large protein aggregates having hydrodynamic radius higher than 

8000 nm (Table 8.1). With regard to the egg white homogenised at 150 MPa, after 

2 homogenisation passes an intermediate content in free SH between the control 

and the egg white homogenised at 0 MPa was observed. On the other hand, 

further homogenisation passes led to a concentration of free SH similar to that of 

the egg white homogenised at 0 MPa.  
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Figure 8.3 Free SH groups in untreated egg white (Control), egg white homogenised at 

0 MPa (0 MPa), and egg white homogenised at 150 MPa via multiple passes (2, 4, 8, 

12, 17 passes). Bars indicated by the same letter are not statistically different (P> 0.05). 

The initial decrease and subsequent increase in free SH upon multiple 

homogenisation passes at 150 MPa supports the hypothesis of protein structural 

modification by means of both unfolding and aggregation phenomena. The latter 

would be concomitantly induced by HPH, leading to counterbalancing effects on 

the changes in free SH. Two different mechanisms have been suggested for 

protein aggregation. First, the exposure of the hydrophobic regions as a 

consequence of protein unfolding can lead to hydrophobic interactions (Rao & 

Labuza, 2012). Second, sulfhydryl groups and disulphide bonds, which are buried 

in the native state of the protein, can become available in the unfolded proteins 

and react to form intermolecular cross-links (Ferry, 1948). In the present case, the 

changes in free SH groups are more likely attributable to the formation and 

breakage of hydrophobic interactions, rather than to protein crosslinking. In fact, 

weak interactions such as the hydrophobic ones can be easily formed and broken 

upon HPH. Instead, covalent bonds responsible for protein crosslinking are 

known to be hardly affected by HPH (Subirade et al., 1998). 

To confirm this hypothesis egg white samples were analysed by SDS-PAGE 

(Figure 8.4). 
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Figure 8.4 Electrophoretic pattern of untreated egg white (Control), egg white 

homogenised at 0 MPa (0 MPa), and egg white homogenised at 150 MPa via multiple 

passes (2, 4, 8, 12, 17 passes). Molecular weight standards (MW) are in the far left 

lane.  

As known, SDS is an anionic surfactant able to disrupt non covalent bonds, such 

as hydrophobic interactions among proteins, and impart a negative charge to 

proteins. The SDS-PAGE pattern of the untreated egg white exhibited three main 

bands that, by comparison with the standard molecular weights (MW) and 

literature information (Awadé & Efstathiou, 1999; Guérin-Dubiard et al., 2006; 

Mine, 1995), were attributed to ovotransferrin, ovalbumin/ovomucoid, and 

lysozyme. Whatever the pressure level, no difference between the SDS-PAGE 

patterns of the homogenised egg white samples and that of the untreated egg 

white was observed. Therefore, polyacrylamide gel electrophoresis under 

dissociating conditions confirmed that HPH-induced aggregation occurred mainly 

through hydrophobic interactions and not by the formation of covalent bonds. 

Similar results were also reported by Grácia-Juliá et al. (2008) for whey protein 

dispersions homogenised at pressures higher than 250 MPa, and by Marco-Molés 

& Hernando (2009) for liquid whole egg homogenised at 100 MPa for 3 cycles.   

Results relevant to the distribution of the particle size (Table 8.1), free SH (Figure 

8.3) and protein fractions (Figure 8.4) suggest HPH to promote structural 
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modifications of egg white proteins by means of unfolding and aggregation 

phenomena. In particular, homogenisation initially induced partial unfolding of 

egg white protein leading to exposure of protein hydrophobic regions. On further 

homogenisation partial aggregation of unfolded proteins also took place due to 

hydrophobic interactions. 

To understand whether the HPH-induced unfolding and hydrophobic interaction 

among egg white proteins could be associated to modifications in their functional 

properties, samples were also analysed for apparent viscosity, gelling and 

foaming properties (Table 8.2).  

 

Table 8.2 Apparent viscosity, gel firmness, foam ability and stability of untreated egg 

white (Control), egg white homogenised at 0 MPa (0 MPa), and egg white homogenised at 

150 MPa via multiple passes (2, 4, 8, 12, 17 passes).  

 Apparent viscosity  

(Pa s) 

Gel firmness  

(N) 

Foam ability  

(mL) 

Foam stability  

(%) 

Control 0.057 ± 0.005 a 0.148 ± 0.016 b 18.7 ± 0.6 a  86.1 ± 4.1 a 

0 MPa 0.035 ± 0.006 b 0.181 ± 0.022 a 19.0 ± 1.0 a 89.1 ± 7.1 a 

2 passes 0.047 ± 0.006 a,b 0.067 ± 0.003 e 19.0 ± 1.0 a 84.0 ± 7.1 a 

4 passes 0.050 ± 0.001 a,b 0.080 ± 0.005 e 18.7 ± 0.6 a 86.0 ± 3.8 a 

8 passes 0.055 ± 0.007 a 0.095 ± 0.007 d,e 17.7 ± 0.6 a 88.7 ± 4.4 a 

12 passes 0.057 ± 0.005 a 0.110 ± 0.002 c,d 18.7 ± 0.6 a 85.2 ± 3.3 a 

17 passes 0.055 ± 0.013 a 0.118 ± 0.002 c 18.7 ± 0.6 a 84.3 ± 6.3 a 

 a,b,c,d,e Means on the same column indicated by the same letter are not statistically different 

(P>0.05). 

Apparent viscosity, taken as an indicator of the rheological behaviour of egg 

white, was found to decrease after a single homogenisation pass at 0 MPa. This 

effect can be attributed to the disruption of the weak and unstable network 

characterising the large protein aggregates naturally occurring in the untreated 

egg white (Table 8.1). Upon further homogenisation passes at 150 MPa, viscosity 

values progressively approached that of the untreated egg white (Table 8.2), 

reasonably due to the formation of a novel protein network by weak hydrophobic 

interactions. Gel firmness, defined as the maximum load needed to puncture the 

gel, was also analysed as an indicator of the textural properties of egg white gels 

(Table 8.4). The firmest gel was obtained from the egg white homogenised at 0 

MPa. By contrast, the least firm gel was obtained from the egg white 

homogenised at 150 MPa for 2 passes. Although on further homogenisation 

passes a progressive increase in gel firmness was observed, the egg white 

homogenised at 150 MPa always produced softer gels than those obtained from 

the untreated and 0 MPa homogenised egg white. As known, the thermal 

transformation of egg white proteins into a gel involves partial protein unfolding 
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with exposure of functional groups. Thereafter, ovalbumin, ovotransferrin and 

lysozyme form intermolecular β-sheet structures through hydrogen-bonding, 

electrostatic and hydrophobic interactions, resulting in a gel network (Mine, 

1995). The strength of the protein gel network was reported to be dependent on 

the balance between protein hydrophobic interactions and electrostatic repulsive 

forces. In particular, the better the balance between electrostatic and hydrophobic 

interactions, the stronger the gel (Hatta et al., 1986). The decrease in particle 

dimensions (Table 8.3) in combination with the evidence of protein unfolding 

(Figure 8.3) after homogenisation at 0 MPa might favour the balance between the 

electrostatic and hydrophobic interactions and thus the formation of a firmer gel. 

Upon homogenisation at 150 MPa both protein unfolding and aggregation 

phenomena due to hydrophobic interactions were observed. It can be inferred that 

these concomitant phenomena unbalanced the attractive and repulsive forces 

between egg white proteins, favouring the formation of softer gels. 

With regard to foaming properties (Table 8.3), no differences were observed in 

foam ability of HPH-treated egg white. Foams obtained from untreated and 

homogenised egg white samples were also held during 30 min at room 

temperature to evaluate foam stability. As expected, foam stability of all the 

samples was found to decrease after 30 min resting. The foam stability of the 

untreated egg white after 30 min was about 86% of the just prepared foam and no 

changes in egg white foam stability were observed upon homogenisation at both 0 

and 150 MPa. These results were supported by microscopy analysis of just 

prepared and 30 min held egg white foams. As an example micrographs relevant 

to the foams obtained from the untreated egg white, egg white homogenised at 0 

MPa, and egg white homogenised at 150 MPa for 17 passes are presented in 

figure 8.5. Microscopy images clearly show that no changes in bubble size could 

be observed among the samples for both just prepared foams and 30 min held 

foams. 
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Figure 8.5 Micrographs (100x) of just prepared (0 min) and 30 min held (30 min) 

foams obtained from untreated egg white (Control), egg white homogenised at 0 MPa 

(0 MPa), and egg white homogenised at 150 MPa via 17 passes. 

Despite the great nutritional relevance of egg white, it also represents a critical 

issue for its allergenic potential. Ovalbumin, ovomucoid, lysozyme, and 

ovotranferrin are the major allergenic proteins of egg white (Mine & Yang, 2008). 

However, literature evidences as well as results obtained in the first part of this 

thesis (Chapters 4.1 and 4.2), show that thermal treatments and non-thermal 

processes can modify egg white allergenicity (Mine & Yang, 2008; Shriver & 

Yang, 2011). Based on these considerations, egg white samples processed by 

HPH were analysed for immunoreactivity by an ELISA method. 
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Figure 8.6 Immunoreactive proteins in untreated egg white (Control), egg white 

homogenised at 0 MPa (0 MPa), and egg white homogenised at 150 MPa via multiple 

passes (2, 4, 8, 12, 17 passes). Bars indicated by the same letter are not statistically 

different (P> 0.05). 

A slight, but significant decrease in immunoreactivity was observed upon HPH 

processing of egg white. Protein immunoreactivity was reduced by circa 10% 

when egg white was homogenised at 150 MPa for 4 or more passes. This suggests 

that HPH induced protein unfolding and aggregation might partially hide protein 

epitopes, leading to the decrease of immunoreactivity. 

Conclusions 

Present results confirm the potential of HPH to modify protein structure and 

functions. In fact the intense shear the egg white samples underwent during 

multiple-pass HPH treatment resulted in the unfolding and formation of 

intramolecular interactions between proteins. Contrary to UV processing, HPH 

could induce only conformational changes in egg white proteins, even at very 

high shear intensity. Such conformational changes, which resulted in the 

formation of a weak and unstable protein network, did not affect the foaming 

properties of egg white. On the other hand, these structural modifications turned 

out to be sufficient to induce a decrease in egg white gel firmness and 

immunoreactivity. To this regard, by choosing proper processing conditions, 

some egg white functionalities, such as gel firmness and immunoreactivity, can be 

steered to obtain egg white with specific functional properties.  
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Chapter 9 Effect of HPH on tomato pulps   

Aim of the study 

This chapter focuses on the effect of HPH on structure and carotenoid 

biaccessibility of differently coloured tomato pulps. The production of tomato 

derivatives, such as juices, pulps, or concentrates, involves the mechanical 

disruption of the plant material. The result is a dispersion that is a combination of 

a liquid phase containing pectic material, sugars and organic acids and a dispersed 

phase formed of all the plant insoluble solids such as cell wall material (Lopez-

Sanchez, Nijsse, et al., 2011) The texture and rheological properties of tomato-

based products are determined by the structure of the cell wall polysaccharide 

pectin (Sila et al., 2009). HPH has been shown to affect polysaccharides in fruit- 

and vegetable-based products, thus leading to modification of their textural and 

rheological properties. For instance, HPH has been shown to decrease the 

viscosity of carrot and broccoli puree (Christiaens et al., 2012; Lopez-Sanchez, 

Nijsse, et al., 2011). By contrast, the increase in viscosity of tomato puree and 

juice was attributed to the formation and strengthening of a fibre network due to 

HPH processing (Augusto, Ibarz, & Cristianini, 2013; Bayod et al., 2007; 

Beresovsky et al., 1995; Colle et al., 2010; Lopez-Sanchez, Svelander, et al., 

2011; Lopez-Sanchez, Nijsse, et al., 2011). Such structural modifications have 

been suggested to affect the release and bioaccessibility of micronutrients, such as 

carotenoids, from the food matrix (Parada & Aguilera, 2007; van het Hof et al., 

2000). Carotenoids are naturally occurring fat-soluble pigments responsible for 

tomato colour. They have received much attention because of their health related 

functions, such as preventing and protecting against cancer, heart disease, and 

macular degeneration (Rao & Rao, 2007). Health protective effects of carotenoids 

strongly depend on their bioavailability and bioaccessibility. The latter is defined 

as the fraction of the ingested carotenoids that is released from the food matrix, 

incorporated into mixed micelles and thus available for intestinal absorption 

(Parada & Aguilera, 2007).  The structure of the food matrix, as well as the 

species of carotenoid, and their localisation within the plant tissue, seem to play a 

major role in determining carotenoid bioaccessibility (Castenmiller & West, 

1998). The latter can be improved by the disruption of the matrix (van het Hof et 

al., 2000; Knockaert, Lemmens, Van Buggenhout, Hendrickx, & Van Loey, 2012; 

Svelander, Lopez-Sanchez, Pudney, Schumm, & Alminger, 2011). On the other 

hand, the formation of the network can trap carotenoids and impair their 

bioaccessibility (McClements, Decker, & Park, 2009). The aim of this study was 
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thus to investigate the effect of HPH on tomato pulp structure and carotenoid 

bioaccessibility.  

Results and discussion 

Pulps from tomatoes having different flesh colour (red, orange and yellow) were 

submitted to increasing homogenisation pressure and analysed for structural 

characteristics.  

As HPH is known to induce mechanical disruption of the food matrix, tomato 

pulps were analysed for their particle size distributions (PSDs) (Figure 9.1).  

 

Figure 9.1 Volumetric particle size distribution of red (A), orange (B), and yellow (C) 

tomato pulps homogenised at different pressure levels. 
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In the non homogenised red tomato pulp, particles with mean diameter around 

600-700 μm were found. Nevertheless, the non homogenised orange and yellow 

samples presented particles with smaller mean diameter (300-500 μm). As 

expected, the increase of homogenisation pressure induced a progressive decrease 

in particle dimensions. After homogenisation at 100 MPa the mean particle 

diameter in red tomato pulps was about 100-200 μm. Moreover, the higher the 

homogenisation pressure the narrower the PSD and thus the more uniform the 

tomato particles. The same behaviour was observed in the orange and yellow 

tomatoes. However, in these cases the decrease in particle dimension with 

homogenisation pressure was less gradual than in red tomato. 

PSD results are consistent with the observations made under light microscope 

(Figure 9.2). 
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Figure 9.2 Light micrographs of tomato pulps stained with toluidine blue 

(magnification: 10x). From top to bottom: red, orange and yellow tomato pulp. From 

left to right: non-homogenised and homogenised pulps at 20, 50 and 100 MPa. 

In the non homogenised pulp of red tomato, cell clusters consisting of several 

cells were observed. Their presence accounts for the higher mean particle 

diameter (Figure 9.1). Upon homogenisation at 20 MPa, only single cells and 

broken cell material were observed in the sample. Homogenisation at 50 MPa led 

to further disruption of cell material and only cell fragments were observed in the 

samples. At 100 MPa the complete breakage of cells occurred and cell material 
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was uniformly distributed. In the non homogenised orange and yellow tomato 

pulps, only single cells and fragments of cell material were observed while no 

clear clusters were visible. The complete cell disruption and the release of the 

cellular content occurred by homogenisation at only 20 MPa and no clear 

additional structure modifications were observed on further increase in 

homogenisation pressure. 

In order to evaluate the effect of HPH on the textural properties, the consistency 

index of tomato pulps was determined using a Bostwick consistometer (Figure 

9.3).  

 

Figure 9.3 Bostwick consistency indices of tomato pulp homogenised at different 

pressure levels. Inset: Light micrographs of non-homogenised tomato pulps stained 

with iodine, magnification 40x. 

Non homogenised tomato pulps of different colours presented different 

consistency indices, with yellow tomato being the most consistent, followed by 

the orange and the red tomatoes. Such differences might be attributed to the 

amount of starch present in the different tomato pulps. The inset of Figure 9.3 

shows micrographs of tomato pulps stained with iodine. The black spots represent 

the starch granules. Iodine staining of tomato pulps thus revealed a higher amount 

of starch for yellow tomatoes compared to orange and red tomatoes.  

During HPH (Figure 9.3), increased pressure levels resulted in lower consistency 

indices and thus in higher consistency values for all the tomato pulps. As reported 

by other authors (Colle et al., 2010; Svelander et al., 2011), HPH would favour 

the interaction between cell wall polysaccharides (pectins, hemicellulose, and 
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cellulose) leading to the formation of a network, that determined the increase in 

consistency of tomato pulps. Similarly, Kjøniksen, Hiorth, & Nyström, (2005), 

observed thickening effects in aqueous pectin solution upon oscillatory and steady 

shear. The thickening effect was attributed to pectin association in a network by 

means of hydrogen bonds. Despite the differences observed in non homogenised 

samples, the trend of the consistency increase was similar for all the tomato 

varieties. 

In order to determine the type and quantity of carotenoids present in red, orange 

and yellow tomatoes, HPLC analyses were performed on the corresponding non 

homogenised pulps. Results are shown in table 9.1.  

Table 9.1 Content of the main carotenoids in pulp (C0) and digest (Cd) of non-

homogenised red, orange and yellow tomatoes. 

  C0 (μg/g pulp) Cd (μg/g pulp) 

Red tomato Lycopene 45.77 ± 2.41 a 44.57 ± 3.02 a 

 Lutein n.d. 1.48 ± 0.06 

Orange tomato ζ-carotene 6.62 ± 0.72 a 7.43 ± 0.81 a 

 Lutein n.d. 0.80 ± 0.10 

Yellow tomato Lutein 0.68 ± 0.13 a 1.70 ± 0.13 b 

n.d. not detected 
a,b means with the same letter in the same row are not significantly different (P<0.05) 

As expected, chromatograms showed the presence of lycopene (λmax: 444; 471; 

502 nm; retention time: 36 min) and lutein (λmax: 421; 444; 472 nm; retention 

time: 10 min) in red and yellow tomato respectively. The chromatograms relevant 

to orange tomato showed the presence of one peak with retention time similar to 

that of β-carotene (retention time: 23 min) but a completely different spectrum 

(λmax: 379; 400; 425 nm). By comparison with literature information (Mackinney 

& Jenkins, 1949; Tomes, Quackenbush, & North, 1953) and spectral 

characteristics (comparison with standards, data not shown), this peak was 

tentatively attributed to the elution of ζ-carotene. Since the spectral characteristics 

revealed the presence of a second component, it is likely that, together with ζ-

carotene, other carotenoid compounds (such as prolycopene) are eluted with the 

same retention time (Tomes et al., 1953). 

Since digestive enzymes could promote the release of carotenoids from the 

matrix, analyses of the carotenoid content were also performed after digestion of 

the different tomato pulps (Table 9.1). No differences for lycopene and ζ-carotene 

content in the pulp and in the digest were observed. Lycopene and ζ-carotene, 

being carotenes, do not contain hydroxyl groups which can form esters. The latter 

could hinder carotenoid extraction from the food matrix, giving reason for the 

difference in carotenoid amount between the digest and the pulp. As regards 



 

100 

 

lutein in yellow tomatoes, the content in the digest was found to be two times 

higher than in the pulp. In red and orange tomato, lutein was detected only in the 

digest. It was speculated that lutein might be embedded in the matrix 

(xanthophylls can form esters more easily due to the presence of oxygen groups) 

and is thus hardly extractable by hexane solely. Comparing the different tomato 

varieties, lutein content in red and yellow tomatoes was similar and twice as much 

as the amount that was observed in the orange tomato digest. 

Light microscopy was also performed to visualise the carotenoid containing 

chromoplasts in the different tomato varieties (Figure 9.4).  
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Figure 9.4 Light micrographs of chromoplasts of tomato pulps (magnification: 100x). 

From top to bottom: red, orange and yellow tomato pulp. From left to right: non 

homogenised and homogenised pulps at 20, 50 and 100 MPa.  

Two types of chromoplast structures were observed in the red tomato pulp: red, 

large and needle-shaped chromoplasts and yellowish round-shaped chromoplasts. 

The former type was largely the most abundant. Based on the colour and shape as 

well as by comparison with literature evidences (Jeffery, Holzenburg, & King, 

2012; Schweiggert, Steingass, Heller, Esquivel, & Carle, 2011; Schweiggert, 

Steingass, Mora, Esquivel, & Carle, 2011), it was speculated that the needle-

shaped structures contain crystalline lycopene, and the yellowish round-shaped 

structures contain lipid dissolved lutein. However, further analysis could be 
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performed to confirm this hypothesis. Upon homogenisation, chromoplasts 

containing crystalline lycopene were reduced in size, while no differences were 

observed for the globular lutein containing ones. It can be hypothesised that 

crystalloid chromoplasts are more fragile than the globular ones and thus more 

prone to mechanical rupture. In orange and yellow tomato, only round-shaped 

chromoplasts probably containing lipid dissolved ζ-carotene and lutein 

respectively were present. In the homogenised samples of both varieties, 

chromoplasts were found to be distributed all over the medium as a consequence 

of matrix disruption, but no changes in their dimension were observed. 

The effect of HPH on the bioaccessibility of the carotenoids occurring in the 

different tomato varieties was studied (Table 9.2). 

Table 9.2 Relative amount of carotenoid incorporated in micelles (% Cm/Cd) of red, 

orange and yellow tomato pulp submitted to different homogenization pressure levels. 

Tomato 

variety 
Carotenoid 

Homogenization pressure (MPa) 

0 20 50 100 

Red Lycopene 13.1 ± 0.9 a 9.4 ± 0.7 b 6.7 ± 1.1 c 7.1 ± 0.8 c 

 Lutein 93.0 ± 4.0 a 92.4 ± 5.7 a 78.3 ± 3.9 b 72.1 ± 6.7 b 

Orange ζ-carotene 29.4 ± 3.2 a 17.7 ± 1.9 b 14.7 ± 1.7 c 13.7 ± 1.6 c 

 Lutein 74.2 ± 22.3 a 64.5 ± 9.0 a 68.5 ± 11.3 a 63.0 ± 13.2 a 

Yellow Lutein 96.2 ± 9.8 a 81.1 ± 8.5 b 69.2 ± 6.6 b 73.3 ± 6.0 b 
a,b,c means with the same letter in the same row are not significantly different (P<0.05) 

Interestingly, as regards the non homogenised tomato pulps, the relative amount 

of lycopene and ζ-carotene incorporated into micelles was about 13 and 30% 

respectively. By contrast, the average content of lutein in micelles was circa 88% 

for the different tomatoes. These differences might be explained by considering 

the nature of the carotenoid compounds and the structure of the chromoplasts in 

which they are embedded in the different tomato varieties (Figure 9.4). Among 

the carotenoids under consideration, lycopene is, indeed, the most hydrophobic 

followed by ζ-carotene and lutein. The higher incorporation of lutein into mixed 

micelles compared to ζ-carotene and lycopene is in agreement with previous 

studies demonstrating that the extent of incorporation of lipophilic compounds 

into mixed micelles was inversely related to their hydrophobicity (Borel, 2003; 

Schweiggert, Mezger, Schimpf, Steingass, & Carle, 2012). Therefore, despite its 

larger total amount (Table 9.1), lycopene turned out to be the carotenoid, which is 

the least bioaccessible. The molecular structure of ζ-carotene is similar to that of 

lycopene. Nevertheless, microscopy analysis highlighted a marked structural 

difference between lycopene and ζ-carotene bearing chromoplasts, the former 

being crystalloid and the latter being globular. Literature data indicate that the 

higher incorporation into mixed micelles of ζ-carotene can be explained by the 
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better release of carotenoids from non-crystalline chromoplasts (Schweiggert et 

al., 2011; Vasquez-Caicedo, Heller, Neidhart, & Carle, 2006). The present results 

show that HPH resulted in an overall decrease of carotenoid in vitro 

bioaccessibility for all carotenoids and for all matrices. Lycopene and ζ-carotene 

bioaccessibility in red and orange tomatoes respectively decreased as 

homogenisation pressure increased up to 50 MPa. No significant differences were 

observed on further increasing homogenisation pressure. Similarly, lutein 

bioaccessibility was found to decrease in red and yellow tomatoes upon HPH at 

increasing pressure levels. A slight decrease could also be observed in orange 

tomato, however the differences between the non- and the homogenised samples 

were not significant. The low amount of lutein measured in orange tomato (Table 

9.1) could impair bioaccessibility data accuracy, giving reason for the apparent 

limited effect of HPH. 

Based on the present HPLC data and in agreement with literature results (Colle et 

al., 2010; Svelander et al., 2011), the decrease in carotenoid bioaccessibility upon 

HPH (Table 9.2) can not be attributed to their loss or isomerisation. By contrast, it 

is more reasonable to hypothesise a relation between structural modifications and 

carotenoid in vitro bioaccessibility (Parada & Aguilera, 2007). 

The data obtained demonstrate that HPH affects the tomato matrix by means of 

two counterbalancing effects: (i) the disruption of the matrix (Figures 9.1 and 9.2) 

which facilitates carotenoid release; (ii) the increase in consistency (Figure 9.3) 

due to the formation and strengthening of a fibre network entrapping carotenoids 

(Colle et al., 2010; McClements et al., 2009). The observed decrease in 

carotenoid in vitro bioaccessibility with increasing homogenisation pressure 

suggests the structure enabling effect of HPH to dominate on the disruption one. 

In order to clearly observe this relationship, The relative in vitro bioaccessibility 

of lycopene, ζ-carotene, and lutein was thus plotted against the average Bostwick 

consistency of tomato pulps (Figure 9.5). Regression lines, equations and 

determination coefficients values (R2) are also shown.  
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Figure 9.5 Relative amount of carotenoids incorporated into micelles as a function of 

the Bostwick consistency index of homogenised tomato pulps. Results of the regression 

analysis are also shown. 

The high values of the determination coefficients (R2) confirm the relation 

between the amount of carotenoids incorporated into micelles and the Bostwick 

consistency index. Figure 9.5 clearly shows that the values of the slope (β) of all 

the regression lines are positive, indicating this relation to be positive. Basically, 

the higher the consistency of the matrix the lower the bioaccessibility of 

carotenoids. Analogous results were also reported by Colle et al. (2010) and 

Anese, Mirolo, Beraldo, & Lippe (2013). These authors observed a decrease in 

lycopene in vitro bioaccessibility upon process-induced structurisation of tomato 

pulps. 

The dependence of bioaccessibility on Bostwick consistency (Figure 9.5) was also 

affected by both the tomato nature and the carotenoid species. As regards red 

tomato, the increase in consistency upon HPH had minor effects on lycopene 

bioaccessibility (β=1.02) while it considerably affected that of lutein (β=3.11). 

Although HPH seemed not to modify the structure of lutein bearing chromoplasts 

(Fig 9.4), the possible formation of a fibre network could impair lutein release 

from the matrix. By contrast, HPH would lead to the breakage of crystalloid 

lycopene chromoplasts (Fig 9.4), possibly lowering the effect of the network 

formation on its bioaccessibility. In orange tomato, a similar dependence of ζ-

carotene and lutein bioaccessibility on the Bostwick consistency was observed 

(β=1.91 and 1.83 respectively), probably due to the similar structure of the 

chromoplasts they are embedded in. The highest dependence of bioaccessibility 

on the Bostwick consistency was found for the lutein in the yellow tomato. In this 
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case, the fibre network formed upon HPH seemed to markedly hinder the release 

of lutein from the matrix. Nevertheless lutein in vitro bioaccessibility was found 

to be always higher than circa 70%.  

A remarkable observation in this study is that in one matrix, i.e. red 

(homogenised) tomato, both carotenoids with a very high bioaccessibility (lutein) 

and carotenoids with a very low bioaccessibility (lycopene) are present. This 

suggests the carotenoid bioaccessibility to be not dependent on the matrix solely. 

The importance of the carotenoid species for the bioaccessibility can clearly be 

seen in Fig. 4, since it shows that different types of carotenoids were clearly 

separated into two groups: lycopene and ζ-carotene in the lower part (low 

bioaccessibility), and lutein in the upper part of the graph (high bioaccessibility). 

In general it can thus be concluded that the matrix effects, as well as carotenoid 

characteristics are important factors for carotenoid bioaccessibility. 

Conclusions  

Accordingly to literature evidences, present results show that HPH can be used to 

improve the texture and stability of tomato pulps.  In fact, HPH resulted in the 

formation and strengthening of a polysaccharide (pectin) network, and in the 

decrease of particle size due to matrix disruption. Unfortunately, HPH results also 

in a decrease in the relative bioaccessibility of all the carotenoids. Such decrease 

was attributed to the presence of the fibre network, which can trap carotenoids 

thus hindering their release from the food matrix and incorporation into micelles. 

Nevertheless, the differences among the carotenoid species and tomato varieties 

suggest that considering the structure enabling effect of HPH solely is not 

sufficient to predict the consequences of the process on carotenoid 

bioaccessibility. A particular matrix can contain different carotenoid species, 

which can have considerably different bioaccessibility. This was e.g. the case for 

the red tomatoes. On the other hand, different tomato varieties can have very 

different structural characteristics. Therefore the characterisation of other factors, 

such as the activity of endogenous enzymes, as well as the composition of the cell 

wall and membranes, would deliver useful additional insights into the effects of 

HPH on carotenoid bioaccessibility. The design of a process aimed to improve 

both the structural and nutritional properties of plant-based foods should therefore 

take into account the complex interplay of these factors. 
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Conclusions part II 

Results obtained in the second part of this PhD thesis show that HPH processing 

can be regarded as a promising technological strategy for improving the 

functional properties of both proteins and polysaccharides. In the case of globular 

proteins (egg white), HPH-induced modifications included the destruction of the 

original protein-protein interactions, protein unfolding, and formation of novel 

intramolecular interactions between unfolded proteins that resulted in the 

formation of a weak and unstable network. With regard to fibrous polysaccharides 

(cell wall polysaccharides in tomato), HPH promoted the interactions between 

fibres resulting in the formation of a network.  

Despite different mechanisms are involved in the formation of protein and 

polysaccharides network, it is noteworthy that HPH induced structure 

modification of both proteins and polysaccharides by favouring the interactions 

between biomolecules functional groups. In particular, the disarrangement and 

rearrangement of proteins in a novel architecture is driven by the occurrence of 

hydrophobic interaction between proteins. By contrast, the formation of the pectin 

network upon shear stresses was suggested to be due to the formation of hydrogen 

bonds.  

The observed protein and polysaccharide structure modifications accounted for 

different function modifications. With regard to egg white proteins, structure 

modification did not impair the technological functionalities, but turned out to be 

sufficient to hide protein epitopes, leading to a slight decrease in egg white 

immunoreactivity. In the case of tomato pulps, if on the one hand the formation of 

structure in the food matrix could improve texture, stability and sensory attributes, 

on the other hand this structure could impair the bioavailability of micronutrients, 

such as carotenoids.  

Based on the results acquired HPH could be exploited to steer the rheological 

properties of foods, by modulating the strength of protein and polysaccharide 

networks. In addition, the exploitation of HPH to engineer the natural structuring 

effect of food components, such as globular proteins and plant fibres, offers the 

interesting possibility to obtain food products with improved textural quality 

without the addition of texturizing agents, thus meeting consumers’ demand for 

fresh-like, healthier, and natural food products.  
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Final remarks 

Driven by new consumers’ needs, over the last years, food processing shifted 

from the prior emphasis in process and unit operations to the design of products 

meeting specific requirements in terms of nutritional, biological and functional 

properties (tailor made foods). As food structure and functions are closely 

interlinked, structural changes of food constituents can lead to new product 

characteristics or improved functionalities. The development of unconventional 

technologies addresses these new consumer needs and represent an interesting 

tool to modify the structure of food biomolecules and thus their functions.  

Results obtained during this PhD research project show that unconventional 

technologies, such as light and HPH processing represent promising technological 

strategies to fulfil the new consumers’ needs towards safe, fresh-like, healthier 

food products. UV-C and PL or HPH processes can be exploited as driving forces 

to modify the structure of food biomolecules and their technological and 

nutritional functions. In this context, UV processing can be regarded as an 

interesting tool to modify protein structure and functionalities. Similarly, HPH 

resulted to be effective in modifying both protein- and polysaccharide-containing 

food matrices.  

The choice of the type of processing is driven by the nature of the biomolecule 

and the expected effect on its structure and functions. For instance, intense protein 

structure modifications, up to the cleavage of protein backbone, can be only 

achieved by exploiting high energetic levels of electromagnetic radiation. In this 

case, the electromagnetic energy captured by the absorbing site is converted to a 

chemical signal due to photoisomerisation. The latter allows the chemical signal 

to be easily transferred to the functional part of the protein that controls its overall 

properties. By contrast, turbulence, cavitation and impacts induced by HPH 

generally increase hydrophobicity at the protein surface. The latter are hardly 

associated to significant changes of proteins secondary structure, but modify the 

interactions among particles, leading to a novel structural arrangement of the 

protein network. As a consequence, only the functions, which directly depend on 

the modification of protein network and availability of functional groups, will be 

affected by HPH.  
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By contrast, HPH can be efficiently exploited to modify biomolecules that do not 

include absorbing sites, such as polysaccharides. The latter can not react upon 

light exposure, unless they might be activated by a photosensitizer which serves 

as a trigger of photoreactivity. 

Results acquired show that the functions of proteins and polysaccharides can be 

steered by choosing the proper process with adequate processing conditions. To 

this regard, the results of this thesis suggest that the designing of the process 

should be carefully evaluated on a case by case basis, since undesired effects (i.e. 

increase in immunoreactivity of proteins or decrease in micronutrients 

bioaccessibility) may also occur under specific technological conditions. For this 

reason, understanding the mechanism that control the effect of the process on 

food structure and functions is crucial for engineering food biomolecule and 

obtaining foods with the desired characteristics. 
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