
UNIVERSITÁ DEGLI STUDI DI UDINE

Dipartimento di Ingegneria Elettrica Gestionale e Meccanica Dottorato in
Ingegneria Industriale e dell’Informazione

XXIV

Tesi di Dottorato

Techniques for Efficient Peer-To-Peer
Streaming

Relatore:

Prof. Riccardo Bernardini

Co-Relatore: Dottorando:

Prof. Roberto Rinaldo Ing. Roberto Cesco Fabbro

Coordinatore:

Prof. Roberto Rinaldo

To my mother

Abstract

This thesis presents the Peer-To-Peer Epi-Transport Protocol (PPETP). In its early stage
PPETP initially was known as Peer-To-Peer protocol, used for the transmission of live
streaming over Internet to a large number of residential users, typically, with asymmetric
and limited upload bandwidth. It then evolved into a more generic protocol and nowadays it
could be considered what is called a multicast overlay protocol. In this thesis all the actual
features of this protocol including the technician and practical motivations considered in
its construction, are presented. Together with the main characteristics of PPETP, other
functionalities that allow the creation of a complete library for the PPETP utilization are
also presented. The main topics that will be addressed are the specified functionality for
the configuration of the protocol, for peers reachability and security issues. As will be clear
during the lecture of this thesis, the main feature of PPETP, at this time, is the utilization of
Network Coding (NC) procedures as main coding technique.

To justify this choice, before the presentation of the protocol, two studies are indro-
duced. The first shows how an opportune use of the NC allows for a reduction of the delay
jitter. This characteristic allows an increment of the performance of the applications that
utilize PPETP (or more in general of all the applications that utilize the NC).

The latter study concerns the packet loss probability always found in a Peer-To-Peer
(P2P) network implementing the NC. This is obviously an extremely important parameter
in all network applications using an unreliable transmission protocol, but while in unicast
transmissions, this parameter can be “easily” predicted, in a P2P network there are many
parameters, often random, that can affect this probability. This study shows some asymp-
totic results and bounds that can provide useful assistance in the project of developing P2P
networks.

I

Techniques for Efficient Peer-To-Peer Streaming

II Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Contents

Introduction 1

1 Jitter reduction in P2P networks 9
1.1 Preliminary remarks . 10
1.2 Video buffer . 10

1.2.1 Network . 10
1.2.2 Delay Model . 10

1.2.2.1 Delay statistical distribution . 11
1.2.3 Order Statistic . 12

1.3 Theoretical Results . 12
1.3.1 Reduction to iid case . 12

1.3.1.1 Reduction to mX = 0, σ2
X = 1 . 12

1.3.2 The iid case . 13
1.4 Experimental results . 13

1.4.1 Approximated moments . 14
1.4.2 Simulations . 14
1.4.3 Planetlab test . 16

1.5 Conclusions . 17

2 Packets Loss Probability in Network Coding enabled P2P networks 19
2.1 Introduction . 19
2.2 Notation . 19
2.3 Abstract P2P streaming system . 20

2.3.1 Reduction procedures . 20
2.3.2 Node behaviour . 20
2.3.3 Fragment Propagation . 21

2.4 Network model . 21
2.4.1 Limited spread network . 21
2.4.2 Stratified networks . 22

2.4.2.1 Notation for stratified networks . 22
2.4.2.2 Constant geometry networks . 22
2.4.2.3 Modular networks . 22

2.5 Asymptotic Analysis . 22
2.5.1 Reduction to the analysis of {FK}K∈N . 22
2.5.2 Asymptotic behaviour of {FK}K∈N . 24
2.5.3 Extension to more general cases . 26

2.5.3.1 Non-constant geometry stratified networks 26

III

Techniques for Efficient Peer-To-Peer Streaming

2.5.3.2 Non-stratified networks . 26
2.6 Simulation results . 26
2.7 Conclusions . 27

3 PPETP: Peer-To-Peer Epi-Transport Protocol 29
3.1 Introduction . 29
3.2 Overview . 30
3.3 Typical Applications . 32

3.3.1 Streaming . 32
3.3.2 Software update . 33
3.3.3 Conferencing . 33
3.3.4 Gaming . 34

3.4 Characteristics of PPETP . 34
3.5 Generalized Address . 34

3.5.1 Generalized addresses structure . 35
3.5.2 IP address class . 35
3.5.3 ICE address class . 36

3.6 Reduction profiles . 36
3.6.1 Vandermonde profile . 37

3.7 Channels . 38
3.8 Packets . 38

3.8.1 Data Packets . 38
3.8.1.1 Motivation of the I flag . 39

3.8.2 Control Packets . 39
3.8.2.1 Request types . 40
3.8.2.2 TLV format . 41
3.8.2.3 Control packets retransmission . 42
3.8.2.4 Control packets elaboration . 42

3.8.3 Routed control packets . 43
3.8.3.1 Routed packet elaboration . 44
3.8.3.2 Use of reflectors . 45

3.9 Congestion Control . 46
3.10 Puncturing . 46
3.11 PPETP Attributes . 46
3.12 Packets processing . 48

3.12.1 Control packets transmission procedure . 48
3.12.2 Control packets acknowledge procedure . 48

3.13 Peer handshaking . 48

4 PPETP Details 51
4.1 Security considerations . 51

4.1.1 Poisoning attack . 51
4.1.1.1 Large bandwidth nodes . 51

4.1.2 Multiple stream session . 52
4.1.3 Defamatory attack . 52
4.1.4 Security Model . 52

4.1.4.1 Node classes . 52

IV Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

4.2 PPETP Configuration . 53
4.3 Bootstrap configuration protocol . 53

4.3.1 Address of a PPETP session . 53
4.3.2 Design goals . 53
4.3.3 Protocol structure . 54
4.3.4 Query packet . 54
4.3.5 Response packet . 54
4.3.6 Attributes . 55

4.3.6.1 Packet Signing . 57
4.3.6.2 15-bit integers encoding . 58

4.3.7 Compact Configuration Format . 58
4.3.8 Configuration defaults . 60

4.4 ICE . 61

Conclusions 63

A PPETP builtin profiles 64
A.1 Reduction profiles . 64

A.1.1 How to define a reduction profile . 64
A.1.2 Basic reduction profile . 64

A.1.2.1 Profile name and parameters . 64
A.1.2.2 Payload construction . 64
A.1.2.3 Profile-related definitions . 65

A.1.3 Vandermonde reduction profile . 65
A.1.3.1 Profile name and parameters . 65
A.1.3.2 Payload construction . 65
A.1.3.3 Profile-related definitions . 67

A.2 Sender signature profiles . 67
A.2.1 How to define a sender signature profile . 67
A.2.2 Shared key signature profile . 67

A.2.2.1 Profile name and parameters . 67
A.2.2.2 Payload construction . 68
A.2.2.3 Remarks . 68

A.2.3 Void signature profile . 68
A.2.3.1 Profile name and parameters . 68
A.2.3.2 Creating the signature . 69
A.2.3.3 Verify the signature . 69

A.3 Source signature profiles . 69
A.3.1 How to define a source signature profile . 69
A.3.2 Rabin signature profile . 69

A.3.2.1 Profile name and parameters . 69
A.3.2.2 Creating the signature . 69
A.3.2.3 Verifying the signature . 70

Bibliography 71

Acknowledgment 79

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine V

Techniques for Efficient Peer-To-Peer Streaming

Acronyms

ABNF Augmented Backus-Naur Form

ADSL Asymmetric Digital Subscriber Line

CEP Connection Establishment Procedures

CDN Content Delivery Networks

DAG Direct Acyclic Graph

DCCP Datagram Congestion Control Protocol

DHT Distributed Hash Table

DoS Denial of Service

FEC Forward Error Correction

JSON JavaScript Object Notation

HMAC Keyed-Hashing for Message Authentication

iid Independent and Identically Distributed

ICE Interactive Connectivity Establishment

IETF Internet Engineering Task Force

LC Layered (or Scalable) Coding

LRD Long-Range Dependency

MDC Multiple Description Coding

NAT Network Address Translator

NC Network Coding

NTP Network Time Protocol

PPETP Peer-To-Peer Epi-Transport Protocol

P2P Peer-To-Peer

QoE Quality of Experience

RFC Request for Comments

RTP Real-Time Transport Protocol

RTCP RTP Control Protocol

SDP Session Description Protocol

SRD Short-Range Dependency

TFRC TCP Friendly Rate Control

TLV Type Length Value

VI Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Introduction

At present, the transmission of video content over the Internet has assumed a key role in the total
network traffic. In fact it is estimated that about 26% of all network traffic is due to on-line video content
compared to about 30% for data and 25% for Peer-To-Peer (P2P) traffic [1]. With the general lowering
of the residential bandwidth cost, it is not surprising that users have turned their attention towards this
kind of content, unavailable until a short time ago. An addition to incrising badwidth, the evolution
in the video coding field has also contributed significantly to the diffusion of video content. With
the development of new video codecs as the state-of-the-art H.264/AVC standard, with the bandwith
available it is now possible to view high quality video at user’s homes.

With these technologies, a number of Content Providers normally active in traditional television
systems have taken the opportunity to diffuse their contents over the Internet, providing a considerable
number of services such as video-on-demand and live transmissions of their channels.

However, although there may be not particular problems for the users with the bandwidth and com-
putational power required for video consumption, the same cannot be said for the content providers.
This is evident with very popular contents that have a very high number of users attempting to access
them simultaneously. For example, even if a high performance video codec like H.264/AVC is used, the
access to elementary 300 Kbit/s streams requires a server bandwidth of 300 Mbit/s for every 1000 users.

A trivial solution is to use a multi-server architecture where replicas of the same content are made
on all the servers, as with the case of the Content Delivery Networks (CDN) [2, 3]. In this example the
users are shared amongst the servers. Generally, the servers are located in strategic points (geographi-
cally and administratively) within the network. An accurate assignment of the most appropriate server
available to the user allows the content-provider to reduce the costs and to increase the quality of the
service 1 [4]. The scalability of this system is simply proportional to the number of the available servers
of the CDN 2. The use of a large number of servers certainly leads to very high costs, but nonetheless is
still a very widly used system [5, 6, 7] because it can be used not only for streaming applications but for
every other service available via the Internet. Due to the numerous contents replicas, CDN are particu-
larly robust to Denial of Service (DoS) attacks because in order to damage the service functionality, it
needs attack contemporary a very large number of servers, before the control system detects and reacts
to the attack.

Normally, the traffic that travels over Internet is of type unicast that is called a point-to-point proto-
col; both the hosts of the communication are associated with a public unicast IP address identified in the
network 3. A particular type of IP addresses exist (the class D with addresses in the range [224-239].x.x.x
[8]) that is not used to identify a single host, but rather an arbitrary number of these, aggregated in the

1It reduces the costs because strategic point positioning and an accurate choice for the user decreases the use of intra-ISP links
and increases the quality of the stream in terms of delay, jitter and packets probability loss.

3In reality the association could be not so easy, for example for the presence of Network Address Translator (NAT)

1

Techniques for Efficient Peer-To-Peer Streaming

same group [9]. To join the group, a host utilizes the interested multicast address to inform the network
(its router) if its intention to join the group. After this phase, the host is inserted in the group and is
then ready to receive the streams packets. The transport model used by the IP multicast is one-to-many,
which means that data flow is distributed from one source toward many receivers. The main difference
between unicast and multicast is that in the latter case, the source produces only one flow and are the
routers of the network that duplicate it as needed, toward the others subnets up to reach the hosts, in
this way creating a flow tree where the server is the root, and the leaves are the hosts. In the Fig. 1
the difference between unicast and multicast is shown graphically: in Fig. 1(a) it is shown the unicast
case where it is visible how the server must produce a stream for every client and how these streams go
throughout the entire network. In Fig. 1(b) the multicast is shown; and the efficiency of this scheme is
evident, because the links are through by only one stream. It is clear that multicast optimizes the traffic

(a) Unicast

(b) Multicast

Figure 1: Path of a stream with and without the Multicast IP.

both on the network and on the server. The transport protocol that must be used with multicast IP is
similar to UDP because of the unidirectionality of the multicast. As with UDP unicast, the IP multicast
is subject to packet’s loss and duplication. The loss is typical of the IP networks, while duplications are
usually due to redundant links between routers. It should also be noted that it is possible for multicast
to be congested or have limited bandwidth links, and in these cases losses are possible.

Recently, the use of P2P networks for live streaming has attracted interest in the research community
[10, 11, 12, 13, 14, 15, 16, 17]. These networks allow the diffusion of a multimedia stream to a large
number of users in a more scalable way, while respecting client-server or CDN technologies. In the
P2P approach, every new client, called also peer, share its resources (mainly the upload bandwidth) to
provide the stream to new clients. If the peer A feed another peer B it is said that A is an upper-peer of

2 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

B and that B is a lower-peer of A (Fig. 2). The bandwidth the server must provide is about equal to the
difference between the total download bandwidth (stream’s bandwidth times the number of peers) and
the total upload bandwidth of the peers:

Figure 2: Concept of Upper and Lower peer.

DWServer '
∑
Peers

DWPeers −
∑
Peers

UPPeers

There are a number of problems associated with transmitting a stream over P2P networks as the
asymmetry of the users bandwidth, particularly when the upload bandwidth is not enough to retransmit
the entire stream, the churn that is the evanescence of the peers that could join or leave the network at
any time, the presence of networks devices like firewall and Network Address Translator (NAT) [18]
that make the exchange of informations with the client problematic. For the first two problems listed
above, several of techniques have been developed for working on the network structures and on the
coding of the information that is transmitted on those networks. Concerning the structure, the P2P
networks for video delivering can be classified, at first glance, as structured and unstructured: in the
first category it is possible to identify a pattern of the stream flow between the peers; the most well-
known are tree and multi-tree structures, where the stream starts from the root and travels toward the
leaves. [19] considers the case of a single transmission tree and analyzes the upload capacities of the
peers. Multi-tree overlays were considered in [20, 21, 22] where it is shown that this type of network
has a “phase transition” behaviour if Forward Error Correction (FEC) are employed.

In the latter category, the unstructured (or mesh), there is no particular streams flow; the peers
exchange informations with each other about the pieces of stream that they have, called buffer-maps,
and then following a scheduling algorithm, those pieces of stream are exchanged among the peers.

Many works in the literature consider the case of a mesh network based on pull approach [17, 23, 24].
P2P networks of this type are fairly common and are typically based on a BitTorrent-like approach:
the multimedia content is split into chunks that are exchanged among the peers. The other type of
approach (the push) is more similar to multicast where the data flow is pushed through an overlay
network (typically, but not necessarily, organized as multiple tree) [13, 14, 15, 16, 25].

The problem of estimating the performance of P2P networks is very important because it allows
to construct a P2P network according to the projected needs. Because of the number of possible ap-
proaches to P2P streaming, and of the number of possible performance indicators, literature about the
performance of P2P networks is quite variegated. For example, some works consider the delay in a P2P
networks and its impact on scalability and data loss [26, 27]; others consider the effect of churn and
channel changes [28, 29, 30]. Finally, the most recent study [31] considers the effect of packet losses

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 3

Techniques for Efficient Peer-To-Peer Streaming

and node churn on the availability of packets at network nodes. The network model considered in [31]
is a multiple-tree overlay multicast, where packets are distributed in round-robin fashion among the dif-
ferent trees.

The multimedia coding technique is also very important for the performance of a video streaming
P2P system, and it must be chosen carefully. As said, a P2P system is affected by churn, which means
that are possible losses of packets until the structure is restored. For this the stream should be provided
with systems to reduce the impact of these losses. For example, in a motion estimated coding, if an infra
frame is lost it is not possible to reconstruct the sequence until the next intra frame. In this situation a
codec used for network streaming should insert, if possible, frequently infra-frames to reduce the impact
of losses. However, this comes at the price of a decrease of the compression efficiency, as the scheme
reported in [32, 33].

Two of the most well-known techniques of video coding, particularly used for adapting for video
for video streaming, are the Layered (or Scalable) Coding (LC) and the Multiple Description Coding
(MDC).

LC consists of the subdivision of the stream into hierarchical importance layers. It is composed of
a base layer, which is the most important and has the lowest quality, and by some enhancement layers.
To reconstruct the original stream, it is necessary to receive at least the base layer, while the reception
of the others layers adds to the total quality of the stream. It is important to remember that the enhance-
ment layers are hierarchical and all the previous layers must therefore be received before a successive
layer can be obtained for enhancement. A simple example could explain easily this concept; let call B
the base layer and L1, . . . , LN the Ns enhancement layers. If it wants to obtain a full quality video it
must receive the base layer B and all the enhancement layers Li with i = 1, . . . , N , while the lower
quality video is composed only by the B layer. All others quality levels are composed by B and Li
with i = 1, . . . ,K with K < N . If it receives B and L1, L2, L4, . . . , LN the total quality is the same
that it is possible to obtain receiving only B and L1, L2 because it doesn’t receive the layer L3; a lack
is not permitted. Often, because of its importance, the base layer is more protected from losses than
the other layers, because its correct reception is essential to reconstructing the video. In this way, a
stream can always be reconstructed, even if it is with a lower quality. A scheme of this procedure is
presented in Fig. 3 and a detailed description is reported in [34]. In this figure it is visible as a single
encoder that produces all the layers, while the decoders, are able to obtain a certain quality according
to the layers received, shown on their left. The first and the fourth decoders reconstruct, respectively,

Figure 3: Layered Coding scheme.

4 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

the lowest video quality and the full video quality, because the first receives only the base layer and the
fourth receives all the layers. The second and the third decoder can reconstruct a video with the quality
corresponding to the enhancement layer L1: the first because it receives only the base layer and the first
enhancement layer L1, while the latter, even if it receives the layer L3, cannot reconstruct a full quality
video because it does not receive the enhancement layer L2.

MDC is another kind of encoding that as the LC subdivide the stream in more sub-streams or de-
scriptions. Different to LC, the sub-streams have all the same importance, so it is not the progressive
reception of all the layers that is important, but the total quality of the reconstructed stream is propor-
tional to the number of the received descriptions. In this case a scheme of this concept is also reported
in Fig. 4 and a more detailed description of this technique is described in [35]. This coding naturally

Figure 4: Multiple Description Coding scheme.

adapts to multi-tree networks [36, 37], in fact each description could be sent on a tree where a user is
connected to one or more trees receiving a different quality stream. It is not important which tree is
connected, but how how many trees it is connected to. This allows the server to code a video only once,
and then distribute it with a multi-resolution capability.

There is another important coding technique widely used with P2P networks called Network Coding
(NC) [38, 39]. It is very different from the other techniques seen before because it doesn’t encode
directly the frames of the video, instead works at stream level 4. The stream, essentially, is a bits
sequence generated by an encoder that is considered such a sequence of elements of a finite field.

The encoding procedure, called also reduction procedure, is done in three steps: the first is the
creation of the reduction vector r = [α1, α2, . . . , αR] of R elements of the finite field. R is called
reduction factor, because as will be explained shortly, the data volume resulting by the encoding proce-
dure is about R times smaller than the original data. The data to be encoded is organized as a matrix C

called Content data (or content packet) of R rows and any number of columns.

C =

P1 PR+1 . . .

P2 PR+2 . . .
...

...
PR P2R . . .

 (1)

The encoding procedure is the left multiplication of the reduction vector times the content packet to
obtain the reduced data (or reduced packet) u :

u = rC (2)
4The stream could be produced by any kind of source.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 5

Techniques for Efficient Peer-To-Peer Streaming

For the decoding or reconstruction of the Content Packet, at leastR reduced packet ui are necessary,
obtained from linearly independent reduction vector ri. With these is possible to construct the following
system

u1

u2

...
uR

 =

r1

r2

...
rR

C (3)

that written in matricial form become

U = RC (4)

Because of the linear independence of the reduction vectors, the matrix R can be inverted, and this
allows to retrieve the original data packet

C = R−1U (5)

A method for using this technique to distribute a video over a P2P network is reported in [40].
A very interesting characteristic of the NC is the versatility and the number of possibilities created

by this technique. Differently from MDC and LC, network coding is not designed to encode only video,
but it is suitable to encode data of any kind. In fact, data is seen as an element of a finite field independent
of its meaning, in this way encrypted data can also be coded. The network coding is a lossless encoding
which means that the decoded data is exactly equal to the original data.

As indicated in [39] and [40] it is possible to achieve a more robust system based on NC using
redundant data, that is obtained using more reduced packets then the minimum necessary for the recon-
struction, such as in FEC systems. It is possible to collect more than R reduced packets, obtaining the
redundant system

u1

u2

...
uR

...
uN

=

r1

r2

...
rR
...
rN

C (6)

Not all the equations of this system are necessary in order to obtain the Content Packet again, for this
reason some of them are discarded (or can be lost) to obtain a system like that of Eq. (3). This allows
corrupted reduced packets, or that obtained from linearly dependent reduction vectors, to be discartded.
Moreover, receiving reduced packets from more sources than necessary increases the probability of
reconstruction in a lossy network, because, even if pakets are lost, it is probable that the receiver receives
enough packets for the reconstruction.

The NC has been adapted particularly to be used on unstructured P2P networks, in fact the NC al-
lows an exchange of reduced packets among peers without the needs of a determined flow; the only
requirements are that the coefficients used for the reduction must be different, and that the network
should be acyclic. In Fig. 5 is shown a typical use of the network coding in a P2P network. In the fig-
ure, a reduction factor of two is used. The source S produces two different version of reduced packets.
The peers that cannot reconstruct the original packets5 (because they receive only one reduced packet)
forward the received packet toward the other nodes connected to them. The peers that can reconstruct
the content packets reduce them again, producing new reduced packets, and then forward them toward

5In the Fig. 5 are drawn as white circles, while the nodes that can reconstruct the packets are white circles with a label inside.

6 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

Figure 5: Use of the Network Coding in a P2P network.

the other nodes of the network.

In this thesis, Peer-To-Peer Epi-Transport Protocol (PPETP), an emerging protocol for the transmis-
sion of data in a multicast fashion is presented. It is based on a P2P network using NC as main coding
technique. Together with PPETP some advanced features for the configuration of it are also shown, for
the realization of practical applications. Furthermore, some theoretical and practical demonstrations of
the impact of the NC on the characteristics of P2P systems are presented to demonstrate the possibilities
created by this technique.

In the Chapter 1 an analysis of the delay jitter on a P2P network using NC is discussed. This is
a very important parameter in many applications, especially for video streaming systems. This study
proves the possibility of the reduction of this parameter by varying the parameters of the NC.

Together with the jitter, another important parameter is the packet loss probability experienced by a
node of a P2P network using NC procedures. The effects of packets loss is particularly critical in P2P
environments, because together with the loses experienced within a normal network, extra the losses
are added due to the churn. In the Chapter 2 this probability is analyzed asymptotically, on different
network structures, to obtain some boundaries to the network size.

After these preliminary studies, the Chapters 3 and 4 present PPETP. In the first of these two
chapters, the application of the protocol and its main features are presented, while in the second chapter
some more advanced, but nonetheless important characteristics are described. This chapter also is shows
a “PPETP-related” configuration protocol that is not mandatory for the functioning of PPETP but rather
for its configuration.

The Appendix A shows the main PPETP plugins. As explained in subsequent chapters, some of the
features of PPETP are delegated to plugins to make the protocol more expandable for future or specific
improvements. This Appendix presents the pre-build plugins that allow for the construction of complete
working applications.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 7

Techniques for Efficient Peer-To-Peer Streaming

8 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Chapter 1

Jitter reduction in P2P networks

One of the most important parameters, in the study of P2P networks for live streaming applications on
the Internet, is definitely the jitter. This is the variability of the delay spent by packets to traverse the
path between the source and the network clients. At the receiver the stream is decoded according to a
precise time scheduling and given the uncertainties of the arrival instant of packets from the network
is required the interposition of a packet’s buffer. Greater is the delay variance and greater must be the
size of the buffer (see Section 1.2). This causes a significant delay start up, which is very unlikely to
the user that had to wait until the buffer fills up before being able to play the stream. For this reason,
the characterization of this parameter is important for the design and optimization of systems for live
streaming.

In cases where there is a single source (server) that provides the stream to the clients, the character-
ization of this parameter depends mainly on the state of the network, and is relatively easy to measure.
However interesting results are reported in [41, 42, 43, 44]. These studies reveal the statistical self-
similarity (or fractal) nature of the delays on the Internet. In addition, Li and Mills show that this
characterization is highly dependent on the interval elapsed between one package and the others. When
this interval is short, the network exhibits the so called Short-Range Dependency (SRD), while when
this interval is long it refers to Long-Range Dependency (LRD).

In this Section P2P networks that use network coding for streaming are discussed. With NC it is
possible, as explained in the Introduction, to utilize a greater number of upper-peer respect the minimum
necessary for the reconstruction of the content packet. This is in order to achieve an increase in the
robustness and, as it will be shown, a decrease in the mean jitter of the network. Calling N the number
of upper-peers and K the minimum number of packets to reconstruct the content packet, the choice of
a determinate upper-peer’s degree of redundancy (N/K), allows the content packet reconstructions as
soon as the first K packets arrive; these packets are sent by the K “faster” upper-peers. This thereby
leads to a decrease of the overall delay and jitter. Obviously, increasing the ratio N/K corresponds
decrease of the jitter, but at the same time there is an increase of the bandwidth overhead, becauseN−K
packets travel over the network but are not utilized. Therefore it is important to find a compromise based
on the desired features of the system.

9

Techniques for Efficient Peer-To-Peer Streaming

1.1 Preliminary remarks

1.2 Video buffer

Previously, it was said that in order to counteract the presence of the jitter, normally in the video stream-
ing player, a buffer is intrduced. In this brief section the motivation for this is explained. Considering
that the stream server sends packets every nT seconds with T fixed and n ∈ N and for simplicity the
network delay, corresponding at the n-th packet is the random variable xn, with Gaussian distribution
N (m,σ2). Supposing the receiver has a buffer of ∆ seconds, the playback time of the video packets are
nT + ∆. This means that if nT + xn > nT + ∆ the player will not be able to correctly reproduce the
video. From the dimension of the buffer and from the distribution of the delay it is possible to calculate
the reconstruction error probability.

P [err] = P [nT + xn > nT + ∆]

= P [xn > ∆]

= P

[
ηn >

∆−m
σ

]
= 1− Φ

(
∆−m
σ

)
(1.1)

More interesting is to calculate the dimension of the buffer to ensure a given error probability ε

P [loss] ≤ ε⇒ 1− Φ

(
∆−m
σ

)
≤ ε

1− ε ≤ Φ

(
∆−m
σ

)
Φ−1 (1− ε) ≤ ∆−m

σ

∆ ≥ σ
[
Φ−1 (1− ε)

]
+m (1.2)

clearly highlighting the relation between the jitter σ and the buffer size ∆. From the Eq. (1.2), it seems
that the mean of the delay also deeply affects deeply the buffer size. In reality, this can be neglected, as
it can only be seen as that the server and the client are not synchronized.

1.2.1 Network

The network model that will be analyzed is reported in Fig. 1.1. In this model, a stream server encodes
the stream with network coding and provides at least K different reduced versions toward peers of the
P2P networks. A client (or node) C is connected to N ≥ K upper-peers Un, with n = 1, . . . , N , of the
network.

1.2.2 Delay Model

Let’s callD the time necessary for a packet, transmitted by the server, to reach the client. This delay can
be seen as composed by two elements: the time necessary for the packet to reach the upper-peer, and the
time required to travel from the upper-peer to the client. In this section it is considered only the latter
delay is considered and particularly its standard deviation σD that could be seen as the client’s jitter.

From the point of view of the delay D analysis, the Fig. 1.1 could be simplified as in Fig. 1.2. In
this figure, a packet P leaves the server at the instant t0 (it is possible to choose t0 = 0 without loss of

10 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

Client

U1

U2

U3

U4

Upper
peers

Streaming
Server

P2P
Newtork

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������
�������������
�������������
�������������

�����
�����
�����

�����
�����
�����

Figure 1.1: Network Model.

Client

S
P
L
I
T

J
O
I
N

Streaming
Server

:
:

Content
packets

Reduced
packets

To the application
(e.g., decoder)

Delay XN

Delay D=OK(X1, ..., XN)

Figure 1.2: Equivalent model.

generality), it is divided into its reduced version P̂n, produced by the upper-peers Un, and each reduced
version is sent to the client. The time requested at the packet P̂n to reach the client is modeled with the
random variable Xn, which takes into account the time required for the whole path server→ peer Ui→
client.

1.2.2.1 Delay statistical distribution

In the following, it will be supposed that the overall server-client delays Xn, for packets received from
the upper-peer Un, are modeled as independent random variables with conditional distribution Fn(x) =

GX|θ(x|θn) where θn is a random parameter belonging to a suitable parameter space Θ and distributed
according to probability density fθ.

Remark 1.1. More precisely, we will suppose that pairs (Xn, θn), n = 1, . . . , N , are Independent and
Identically Distributed (iid) random variables assuming values inR×Θ, that fθ is the marginal density
of θn and that GX|θ(x|θn) is the conditional distribution of Xn given θn.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 11

Techniques for Efficient Peer-To-Peer Streaming

This model can account for the fact that the delay of packets arriving through different Un may
exhibit a distribution with, for instance, mean values chosen randomly. In other words, it model the fact
that the delays corresponding to different paths can have a given distribution, possibly, for instance, with
a different mean.

1.2.3 Order Statistic

The time D at which a packet P is recovered, is equal to the time the K-th reduced packet arrives, that
is, D = OK(X1, . . . , XN), where OK : RN → R denotes the function that distributes its arguments
in increasing order and returns the K-th. When convenient, it is possible to write OK(X) instead of
OK(X1, . . . , XN), with X = [X1, . . . , XN].

1.3 Theoretical Results

1.3.1 Reduction to iid case

The model introduced in Section 1.2.2.1, where random parameters θn are allowed for correspond to iid
Xn, as claimed by the following property.

Property 1.1. Let (Xn, θn) be as in Section 1.2.2.1. Then Xn, n = 1, . . . , N , are iid random variables
with distribution

FX(x) :=

∫
Θ

GX|θ(x|t)fθ(t)dt. (1.3)

Because of Property 1.1, in the remaining part of this study it will be supposed the delays iid. The
delay from the n-th node to the peer will be represented by Xn. Mean mX and standard deviation σX
will be named, respectively, basic delay and basic jitter and will represent the average delay and jitter
that a node would experience when receiving data from a randomly chosen peer.

Note that the model above (with distributions depending on a random parameter), is suitable for
obtaining the “average performance” through a set of clients. See also [45] for results related to the case
where each Xn is distributed according a fixed distribution.

1.3.1.1 Reduction to mX = 0, σ2
X = 1

Besides reducing the problem of studying D in the iid case, it is also possible to assume, without loss of
generality, Xn normalized to zero mean and unit variance. More precisely, let mX and σ2

X be the mean
and variance of Xn and let Xo

n := (Xn −mX)/σX be the “normalized” version of Xn. It is easy then
to prove the following property.

Property 1.2. Let FD and FDo be, respectively, the distributions of D and Do := OK(Xo
1 , . . . , X

o
N).

The following equality holds

FD(x) = FDo

(
x−m
σ

)
. (1.4)

Moreover, if mD,mDo , σ2
D and σ2

Do , denote the mean and variance of D and Do, the following equali-
ties hold

mD = σXmDo +mX (1.5)

σ2
D = σ2

Xσ
2
Do . (1.6)

12 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

Note that from Property 1.2, it follows that the ratio σD/σX between the jitter with network coding
and the basic jitter depends only on N,K and the normalized distribution of Xn. This property allows
one to present the results (as shown in Section 1.4) on jitter reduction in a “normalized” form that does
not depend on the basic jitter σX .

1.3.2 The iid case

From Order Statistics theory [45], the distribution of OK(X1, . . . , XN) has the expression:

FD(x) =

N∑
j=k

(
N

j

)
FX(x)j(1− FX(x))N−j . (1.7)

From (1.11), one can easily obtain the `-th moment of D

m
(`)
D = E[D`]

= N

(
N − 1

K − 1

)∫ ∞
−∞

u` · FK−1
X (u) (1− FX(u))

N−K
dFX(u).

(1.8)

By changing variable u in (1.8) with x = FX(u), one obtains

m
(`)
D = N

(
N − 1

K − 1

)∫ 1

0

[
F−1
X (x)

]` · xK−1(1− x)N−Kdx. (1.9)

From (1.9), it is possible to calculate the expectation mD = m
(1)
D , the statistical power MD = m

(2)
D of

D and the jitter σD = (MD −m2
D)1/2.

The calculation of the Eq. (1.9) requires the numerical resolution of a complex integral, depending
on the inverse cumulative distribution function

[
F−1
X (x)

]`
. For the sake of numerical computation, it is

possible to estimate (1.9) by approximating
[
F−1
X (x)

]`
with a polynomial

[
F−1
X (x)

]` ≈ d∑
n=0

an,`x
n. (1.10)

By using (1.10) in (1.9) the following is obtained

m`
D ≈

d∑
n=0

an,` ·N
(
N − 1

K − 1

)∫ 1

0

xK+n−1(1− x)N−Kdx

=

d∑
n=0

an,`b
(N,K)
n ,

(1.11)

where

b(N,K)
n = N

(
N − 1

K − 1

)
β(K + n,N −K + 1). (1.12)

and β denotes the Beta function [46]. For the sake of completeness, in the Tab. 1.1 are reported the
coefficients an,`, relative to the case, considered in [42], ofXn Gaussian withmX = 0 and σ2

X = 1 (this
suffices because of Property 1.2). Moreover, for the Gaussian distribution, it was taken in consideration
that F−1(x) is an odd function, hence it is been approximated with an odd polynomial, while [F−1(x)]2

is an even function, therefore the approximating polynomial is also even.

1.4 Experimental results

Three different types of experiments have been executed:

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 13

Techniques for Efficient Peer-To-Peer Streaming

Table 1.1: Polynomials coefficients for the Gaussian case.
a0 a1 a2 a3 a4

F−1(x) 3.386 -5.079 -5.030 -1.669
[F−1(x)]2 19.414 -38.828 35.194 -15.780 2.733

0 20 40 60 80 100
−3

−2

−1

0

1

2

3
Mean in function of K

K

M
ea

n

N = 100

approximate
theoretic
simulated

Figure 1.3: Comparison between theoretic, approximate and simulated mean delay for N = 100 (peer
delays distributed as N (0, 1).)

1. Verification of the quality of the approximation (1.11) in the Gaussian case (Section 1.4.1).

2. Verification of the theoretical results by means of simulation (Section 1.4.2).

3. Verification of the predicted results against a test carried out on the real Internet, using the Plan-
etlab [47] network (Section 1.4.3).

1.4.1 Approximated moments

The first suite of experiments was aimed at verifying the quality of approximation (1.11) in the Gaussian
case for the calculation of the mean and the variance. It was computed the “exact” values of the moments
by numerically evaluation of the integral in (1.9) for N = 100 and K = 1, . . . , N . The approximate
moments were calculated via (1.11) using the coefficient of Tab. 1.1 for the same values of N and K.
Both the exact and the approximate results are compared in Figs. 1.3 and 1.4 where it can be seen that
the quality of the approximation is well within in the range K = 20, . . . , 80.

1.4.2 Simulations

In this set of experiments, the mean delay mD and the jitter σD was obtained by generating 1000
times a vector of N = 100 Gaussian random variables (with zero mean and unit variance) and then
calculating the mean and the variance of the resultingK-th order statistics. This procedure was repeated
for K = 1, . . . , N . The results are reported in Figs. 1.5 and 1.6. It is interesting to observe, in Figs.

14 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Jitter in function of K

K

Ji
tte

r

N = 100

approximate
theoretic
simulated

Figure 1.4: Comparison between theoretic, approximate and simulated jitter for N = 100 (peer delays
distributed as N (0, 1)).

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

N

M
ea

n

K=N/5
K=N/4
K=N/2
K=(7/10) N
K=(3/4) N

Figure 1.5: Mean delay as function of N (peer delays distributed as N (0, 1)).

1.5 and 1.6, the mean and the standard deviation of D, as a function of N for fixed values of the ratio
ρ = K/N . Note that the mean and the statistical power of D converge, for large N , to a value that
depends only on ρ , while the jitter (the standard deviation of D) goes to zero as 1/

√
N and is almost

independent on ρ . Such behaviour is actually predicted by some results of asymptotic theory of order
statistics, and it even holds in more general cases (see, for example, Chapter 9 of [45]). This implies
that on a first approximation, the expected reduction in jitter depends only on N and not on ρ , or on the
exact statistical distribution of the delays.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 15

Techniques for Efficient Peer-To-Peer Streaming

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N

Ji
tte

r

K=N/5
K=N/4
K=N/2
K=(7/10) N
K=(3/4) N

Figure 1.6: Jitter as function of N (peer delays distributed as N (0, 1)).

1.4.3 Planetlab test

The objective of the last set of experiments was to validate the theoretical results presented erlier with
a test done on the real Internet. The testbed of the experiment was the Planetlab network. A network
of 101 nodes, it has been used as such: one node played the role of client, while the others, like upper-
peers, sent data to it. Each packet carried a sequence number (that allowed to match packets received
from different peers) and a timestamp with the time the packet was sent over the network. With these
informations the client could calculate the delay experienced by the packet. The nodes were synchro-
nized by means of Network Time Protocol (NTP) [48], with a synchronization error smaller than 10 ms
(comparable to the interrupt frequency of the Linux kernel used by the Planetlab nodes). Each node sent
1000 packets, one packet every 0.5 seconds. Fig. 1.7 shows the histogram of the peer’s delay. Note
that the nodes can be partitioned into two groups: one group with a very small delay (< 0.06 seconds)
and another group with larger delays. The origin of these groups is probably due to the geographical
distance between the nodes and/or network conditions. In collecting the results, since jitter is more crit-
ical for packets with a large delay, only the second group of packets with delay greater than 0.06 s was
considered. Moreover, the error due to the precision of NTP synchronization and the multi-task nature
of the system, was of the same order of magnitude than the average delay of the first group, making the
data from this group less reliable. The average and the standard deviation associated with the second
group of nodes are, respectively, m = 92 ms and σ = 3.8 ms (σ2 = 14.5µs2). The values of the mean
delay and jitter of the second group were utilized to predict the mean and the jitter of reconstruction
time for K = 1, . . . , N , where now N = 50 by approximating the delay distribution with a Gaussian
with mean m and variance σ2.

Figs. 1.8 and 1.9 compare the measured mean delay and jitter with the corresponding theoretical
prediction. By exploiting Property 1.2, the times on the y axes in Figs. 1.8 and 1.9 are normalized to
(measured in units of) σ. Note that, with this time unit, the basic jitter is equal to 1. The agreement
between experimental data and theoretical prediction can be considered fairly good, considering the
fact that the data of Fig. 1.7 (second group) have only roughly a Gaussian distribution. Note that, for

16 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

−0.05 0 0.05 0.1 0.15
0

5

10

15

20

25
Histogram of peers delay

Delay [s]

N
um

be
r

of
 p

ee
rs

Figure 1.7: Histogram of peer delays.

0 10 20 30 40 50

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

K

M
ea

n
[s

]

Planetlab
Theoric

Figure 1.8: Experimental and predicted mean delay as function of K (in units normalized to basic jitter).

K = 10, . . . , 40 Fig. 1.9 shows that with N = 50 nodes the jitter is reduced from 1 (in normalized
units) to approximately 0.14 ≈ 1/

√
N , coherently with the results of Section 1.4.2.

1.5 Conclusions

In this chapter the delay jitter experienced by a node that receives data, streamed over a P2P network,
that employs network coding procedures was analyzed and explained. The analytical results have been

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 17

Techniques for Efficient Peer-To-Peer Streaming

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

K

Ji
tte

r
[s

]

Planetlab
Theoric

Figure 1.9: Experimental and predicted jitter as function of K (in units normalized to basic jitter).

validated by means of experiments, on the real Internet network, with good agreement. The analytical
and experimental results show also that the jitter experienced by the node decreases as 1/

√
N , where N

is the number of upper peers of the node. This demonstrate that theoretically, it is possible to reduce the
jitter arbitrarily, at the cost of an increase in bandwidth.

18 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Chapter 2

Packets Loss Probability in Network
Coding enabled P2P networks

2.1 Introduction

This study is interested in the packet loss probability experienced by the application that “sees” the
P2P network look like an erasure channel with an equivalent loss probability Peq . The type of network
that is analyzed in this work is stream-based and chunkless, as in Octoshape [13], Lava [14], PPETP
[25] (and Chapter 3), R2 [15] and Splitstream [16]. The model analyzed here is more general than the
multiple-tree model analyzed in [31]. One key point is that it allows each node to lower its upload
bandwidth by applying reduction procedures to the multimedia content (e.g., as the NC explained in
the Introduction). The reduction procedure employed, allows nodes with limited upload bandwidth to
contribute to transmission, and in some cases, to increase the reliability of the system.

Among the papers cited earlier, [31] is closest to this work, although it uses a different network
model and different performance metrics. More precisely, in [31], the authors consider the “global
metric” represented by the probability that a randomly chosen node in the network can reconstruct a
given packet, while this work is interested in the asymptotic behaviour of Peq as a function of the
distance between a node and the server. The main result is shown here is that, although the value of Peq
experienced by a node converges to 1 when the distance from the server grows to infinity, it is possible
to choose network parameters that make this converge very slow, so that Peq remains negligible in
networks of practical size. This is shown by deriving analytical bounds from the Peq convergence rate.

2.2 Notation

In this study some particular symbols to denote different concepts will be used; The symbol δa,b is
the Kronecker delta, that is, δa,b = 1 if a = b and δa,b = 0 otherwise. Markov chains with a finite
alphabet are also considered; it is used the symbol → to denote a one-step reachability relation, that
means it is possible write a → b if the chain can transit from a to b in one step. It is used a →n b if
there is a path of length n from a to b and a →∗ b if there is a path of any length from a to b. If the
Markov chain is homogeneous, it is possible to use the shorthand P (a→ b1 → b2 → . . . bN) to denote
P [sn+N = bn, . . . , sn+1 = b1|sn = a]. Note that this notation factorizes, that is, P (a → b → c) =

P (a→ b)P (b→ c).

19

Techniques for Efficient Peer-To-Peer Streaming

2.3 Abstract P2P streaming system

2.3.1 Reduction procedures

The P2P streaming system considered, is an abstract system that generalizes the behaviour of many ex-
isting P2P streaming systems of push type type, such as Octoshape [13], Lava [14], R2 [15], Splitstream
[16] and PPETP. An important characteristic of most of these schemes is that the streams produced
by the nodes are not copies of the whole content stream, but are instead reduced stream that require a
fraction of the bandwidth of the content stream. This approach has several advantages, the most obvious
being the fact that in this way, even nodes with small upload bandwidth can contribute to data propa-
gation. Other advantages include a greater reliability of the system, and protection from some attacks
such as the stream poisoning attack [40], [49]. The details of how the reduced streams are produced are
not important for the scope of this work. In this study, the abstract reduction procedure is described by
supposing that the P2P streaming scheme defines a set of reduction functions1 {φµ}µ∈M, indexed by
a setM of reduction parameters. Each node selects a reduction parameter µ ∈ M and process each
content packet c with the correspondent reduction function to obtain the reduced versions rµ = φµ(c)

that are forwarded to the lower-peers. The size of rµ is, typically, a fraction of the size of c. In this
study, it is assumed, for the sake of concreteness, that the size of rµ is R times smaller with respect to
the size of c. In this context the details of the definition of φµ are not interesting, it suffices that the set
{φµ}µ∈M satisfies the following R-reconstruction hypothesis.

Hypothesis 2.1. (R-reconstruction). Content packet c can be recovered from the knowledge of any set
of R different reduced versions rµ1

= φµ1
(c), . . . , rµR

= φµR
(c).

Remark 2.1. The easiest way to satisfy the R-reconstruction property is by using Reed-Solomon codes
[13], [25], [16] but other solutions are possible [50].

2.3.2 Node behaviour

Supposing that the R-reconstruction hypothesis holds, the typical node behaviour in this model is the
following:

1. When a node starts, it choose a reduction parameter µ ∈ M and then, contacts N ≥ R upper
peers.

2. As soon as the node receives at least R different reduced version of c, it recovers c and moves
it to the application level. The node then processes c with φµ and forwards the results to its
lower-peers.

Remark 2.2.

1. Note that each node does not forward the received reduced packets, but it regenerates c before
creating a new reduced version which is sent to the lower peers.

2. If N > R the node receives a redundant set of data. This can be exploited to make the system
more robust with respect to packet loss, churn and poisoning attacks [40].

3. The reduction parameters chosen by the N upper peers must be different from one another. This
can be granted by assigning them in a centralized way, but ifM is large enough, peers can choose
their parameter at random and still have a small probability of duplicated parameters [40].

1Function φµ is typically a linear combination (in a finite field) of the data in c but this is not necessary.

20 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

4. The abstract system described here can also be adapted to other schemes such as the round-robin
scheme in [31]. To this end, one can consider c as a “macro packet” collecting τ consecutive
packets, and defining τ reduction function φ1, . . . , φτ , where φµ “extracts” the µ-th packet from
the macro-packet c.

2.3.3 Fragment Propagation

It is possible that, because of packet losses, the node receives less than R reduced version of c. In
this case the node cannot recover c, but can nevertheless help to continue propagating the information
about c, by forwarding to its lower peers one of the reduced packets received by its upper peers. If this
happens, it is said that the P2P scheme employs fragment propagation.

2.4 Network model

The P2P network will be represented by a Direct Acyclic Graph (DAG) where the edges link each node
to its lower-peers. The server(s) will be clearly represented by node(s) that do not have upper-peers. If
more than one server is present, it is supposed that they are organized as a CDN and feed their lower-
peers with the reduced versions of the same content packet. For the sake of notational simplicity, it is
also assumed that every node has N ≥ R upper peers and that every link is an erasure channel that
drops packets with probability P`.

Each node m of the network is associated the random variable Wm, defined by the following ex-
periments: the server sends a single packet to the network and Wm ∈ {0, 1, . . . , N} is the number of
reduced packets received by the node m . From the knowledge of the statistical properties of Wm, it is
possible to determine several values of interest. For example, the packet loss probability Peq seen by
the application can be calculated as Peq = P [Wm < R]. As explained in Section 2.3.3, a node sends
reduced packets to its lower-peers if it receives at least T reduced packets, where T = 1 if fragment
propagation is employed and T ≥ R otherwise. If node n receives at least T reduced packets (i.e., if
Wn ≥ T) it is said that the node is active or in firing state. It is possible to define the random variable
Fn to be equal to 1 if the node n is in firing state and 0 otherwise.

2.4.1 Limited spread network

One difficulty in studying the behaviour of the abstract P2P system considered here is that the statistical
properties of Wn depend on the network topology, a characteristic that is not easily captured by a small
set of parameters. In order to simplify the study, it is convenient to put some constraints on the topology.

A useful constraint that is nevertheless general enough to describe practical networks is the hypoth-
esis of limited spread. Let n be a node of the network, consider the lengths of the paths joining n with
the server and define d(n) and D(n) ≥ d(n) as the minimum and the maximum of these lengths. Value
D(n) known as the depth of node n , and difference D(n)− d(n) is called spread of n . The network is
said to have ∆-limited spread if D(n)− d(n) ≤ ∆ for every node n .

The hypothesis of limited spread is quite natural, and it is expected that these types of networks will
be the natural outcome of the tentative of maximizing locality. Moreover, it is possible to show that a
large spread can increase the jitter experienced by the node, and this suggests that practical networks
will keep the spread value as small as possible.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 21

Techniques for Efficient Peer-To-Peer Streaming

2.4.2 Stratified networks

In this study a special case of limited networks is considered, namely, stratified networks2. In a stratified
network, the nodes can be partitioned into set (strata) SK ,K ∈ N, such that all the upper-peers of a
node in SK belong to SK−1. It is easy to verify that a network is stratified if and only if it has a
0-limited spread and that the stratum index coincides with the node depth. Fig. 2.1 shows few examples
of stratified networks, namely a tree network, a network made of parallel trees and a “onion skin”
network3.

2.4.2.1 Notation for stratified networks

Here it is denoted as LK the number of nodes in each layer represented by K . The n-th node in stratum
K,n = 0, . . . , LK − 1, is named (K,n). The set of upper-peers of (K,n) is represented by the vector
uK,n ∈ {0, 1}LK−1 whose m-th component is 1 if (K − 1,m) is an upper-peer of (K,n) and zero
otherwise.

All the random variables WK,n and FK,n, relative to the nodes of the stratum K are collected in the
vectors WK and FK defined as

[Wk]n = WK,n [Fk]n = FK,n (2.1)

It is useful to have a special notation for some states in {0, 1}LK . More precisely, the empty state is
defined as φ = [0, 0, . . . , 0] (no node in active state), the full state as Ω = [1, 1, . . . , 1] and for every
k ∈ {0, . . . , LK − 1}, the k-th singleton state, ek as [ek]n = δk,n (only the k -th node is active).

2.4.2.2 Constant geometry networks

A stratified network is said to be a constant geometry network if every stratum has the same number of
nodes (denoted as L in the following) and uK,n depends only on n , that is , uK,n = uM,n for every
M,K ∈ N and n ∈ {0, . . . , L− 1}.

2.4.2.3 Modular networks

A constant geometry network is said to be a modular network if the following holds

[uK,n]m =

1 if m = (n+ k) mod L, k = 0, . . . , N − 1

0 else

2.5 Asymptotic Analysis

For the sake of notational simplicity, in this section it is assumed that the number of nodes per stratum
is constant, and drops the subscript from LK .

2.5.1 Reduction to the analysis of {FK}K∈N

As anticipated, this study is focued on the asymptotic behaviour of the variables WK,n when K goes to
infinity. It is clear that, in a stratified network, the random variable sequence {WK}K∈N is a Markov

2It is used the term stratified to avoid confusion with the term layered possibly used in other contexts.
3Onion skin networks are interesting because the ratio of non-streaming nodes goes to zero when the network size goes to

infinity.

22 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

(a)

(b)

(c)

Figure 2.1: Examples of stratified networks (a) tree, (b) parallel trees and (c) onion skin. The dashed
lines mark stratum boundaries .

chain with the alphabet {0, 1, . . . , N}L and that the chain is homogeneous if the network has constant
geometry. It is immediate to verify that the transition probability is 4

P [WK,n = a|FK = s] = P [B(stuK,n, 1− P`) = a] (2.2)

4Note that StuK,n is equal to the number of upper peers of (K,n) in active state.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 23

Techniques for Efficient Peer-To-Peer Streaming

where B(M,p) is a binomial random variable with M trials and success probability 1− P`. According
to Eq. (2.2), the transition probability between two different states in {0, 1, . . . , N}L depends only on
the pattern of active nodes at stratum K − 1 and not on the actual number of received packets. By
exploiting Eq. (2.2), it is possible to show that the sequence of random vectors {FK}K∈N is also a
Markov chain. Note that, because of Eq. (2.2), it is sufficient to study the statistical behaviour of the
chain {FK}K∈N.

Let M be the matrix of transition probabilities

Mr,c := P (r → c) = P [FK−1 = r] (2.3)

and let λi be the eigenvalues of M, ordered by decreasing modulus, that is, |λ1| ≥ |λ2| ≥

2.5.2 Asymptotic behaviour of {FK}K∈N

The first, maybe obvious, but important result is the following:

Property 2.1. The steady state probability of {FK}K∈N is

lim
K→∞

P [WK = s] = δs,φ (2.4)

This means that the state of {FK}K∈N will eventually converge to the empty state.

Property 2.1 is a consequence of the fact that φ is absorbing.
Eq. (2.4) could be taken as bad news for the streaming over P2P networks, since it claims that nodes

which are “very far” from the server will not receive any packets. In order to first determine what “very
far” means, it is important to study λ2 which, as is well known, controls the velocity of convergence
of Eq. (2.4). In order to state the main result about λ2, we need a generalization of the concept of
absorbing state.

Definition 2.1. Consider a Markov chain with alphabet A and absorbing state φ ∈ A. A state s ∈ A is
said to be a trapdoor state if there is an integer Ls such that P (s→Ls φ) = 1.

Note that an absorbing state is a trapdoor, and that a trapdoor state can transitate only to another
trapdoor state.

The following theorem gives upper and lower bounds on λ2.

Theorem 2.1. Consider the case of a constant geometry network with transition matrix M. Let T be
the set of trapdoor states. If the network is such that Ω can be reached by every non-trapdoor state (that
is, a→∗ Ω for every a /∈ T) then λ2 is real and strictly larger then |λ3| and the following bounds hold

P (Ω→ Ω) ≤ λ2 ≤ 1− P (Ω→ φ) (2.5)

Proof. In this demonstration, some simple details are skipped. Transition matrix M can be written in
the form:

M =

 1 0 0

∗ H 0

∗ ∗ Q

 (2.6)

where the first row (and column) corresponds to the absorbing state φ, the second block of rows (and
columns) correspond to the trapdoor states and the third block to non-trapdoor states.

It is clear that λ1 = 1 and the remaining eigenvalues of M are distributed between the eigenvalues
of Q and the eigenvalues of H. By definition of the trapdoor state, it follows that H is nil-potent and
that all the non-zero eigenvalues of M are eigenvalues of Q.

24 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

In order to prove that the λ2 is strictly dominant, one shows that Q is irreducible and primitive by
observing that (i) for every a,b /∈ T one has a→∗ Ω→ b, and (ii)P (Ω→ Ω) 6= 0.

The lower bound in Eq. (2.5) is a result of the fact that the spectral radius of a non-negative matrix
is never smaller then the diagonal elements. The upper bound in Eq. (2.5) is a result of the fact that in a
non-negative matrix the spectral radius is not larger than the maximum row sum, that is

λ2 ≤ max
r∈T c

∑
c∈T c

P (r → c) = max
r∈T

1− P (r → T) (2.7)

Since φ is a trapdoor state, P (r → T) ≥ P (r → φ) one can infer that

λ2 ≤ max
r∈T

1− P (r → φ) = 1− P (Ω→ φ) (2.8)

where the last equality results from the fact that P (r → φ) is minimized when r = Ω.

It is worth explicitly writing the probabilities in Eq. (2.5)

P (Ω→ Ω) = P [B(N, 1− P`) ≥ T]L (2.9a)

P (Ω→ φ) = P [B(N, 1− P`) < T]L (2.9b)

that in the case of fragment propagation become

P (Ω→ Ω) = (1− PN`)L ≈ 1− LPN` (2.10a)

P (Ω→ φ) = PNL` (2.10b)

Exemple A simple numerical example can help us to understand the meaning of Theorem 2.1. Con-
sider the case of fragment propagation, P` = 0.1, N = 8 upper-peers per node and L = 100 nodes per
stratum. According to (2.5) and (2.10a), λ2 is not smaller than

P (Ω→ Ω) ≈ 1− 100 · 0.18 = 1− 10−6 (2.11)

It therefore easy to confirm that in order to have λK2 < 0.99 it is necessary to have K > 104. This
shows us that although nodes that are “very far” away will receive very few packets, the convergence is
very slow and it is quite unlikely that one will find “very far” nodes in practical contexts.

In the case of no fragment propagation and R = 5, the lower bound λ2 is

P (Ω→ Ω) = P [B(8, 0.9) ≥ 5]100 ≈ 0.6 (2.12)

which is much smaller than (2.11). Although this is only a lower bound, it suggests that convergence to
the empty state can occur very quickly, if fragment propagation is not used.

Theorem 2.2. The reconstruction probability 1−Peq experienced by a node at stratum K can be lower
bounded as

1− Peq ≥ P (Ω→ Ω)K−1P [B(N, 1− P`) ≥ R] (2.13)

Theorem 2.2 can be proved by observing that even “the node (K,n) recovers the packet” includes the
event “all the strata from 1 to K − 1 are in the full state and node (K,n) receives at least R out of the N
packets sent by its upper peers”. Furthermore, the right hand side of Eq. (2.13) is the probability of the
latter event.

Note that, if the fragment propagation is employed, the term P (Ω→ Ω)K−1 in (2.13) can be made
as close to 1 as desired without increasing the redundancy, since it depends only on P [B(N, 1− P`)] ≥
R. According to (2.13), if P (Ω → Ω) is large enough, the node in stratum K does not “notice” the
presence of K − 1 strata between itself and the server, and it experiences a packet loss probability on
every link almost equal to the “basic” loss probability P`.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 25

Techniques for Efficient Peer-To-Peer Streaming

2.5.3 Extension to more general cases

2.5.3.1 Non-constant geometry stratified networks

The results above have been derived within the hypothesis of a constant geometry network. However,
the bounds in Eq. (2.5) do not depend on the connections between consecutive layers and this suggests
that a similar result can also hold in the case of non-constant geometry networks.

Moreover, note that bound (2.13) holds exactly even in non-constant geometry networks since
P (Ω→ Ω) does not depend on the connection pattern.

2.5.3.2 Non-stratified networks

If P (Ω→ Ω) is large enough, the decay is so slow that, intuitively, it should not make much difference
if the node at stratum K receives its data from layer K − 1 or K − ∆, as long as ∆ is not too large.
This suggests that, at least in the P (Ω→ Ω) ≈ 1 case, similar results could also hold for non stratified
networks.

2.6 Simulation results

Some simulations were carried out in order to complement the analytical results. To obtain the following
results, three different types of networks have been utilized:

• A modular network.

• A constant random network, which is a constant geometry network where vectors u1,1, . . . ,u1,L

are independently drawn from a set UN of vectors in {0, 1}L with N entries equal to one.

• A totally random networks where every uK,j , is a randomly drown from UN .

For every network, packet propagation across strata has been simulated 100 times, when the frequency
of packet reception at each node was measured. In the case of random networks (i.e., constant random
and totally random networks) the above procedures were repeated 20 times, with randomly chosen link
layouts, and the results were averaged.

Figs. 2.2(a),(b) and (c) show the measured probability of receiving at least one packet for, respec-
tively, the modular network case, the constant random network case and the totally random case. In
every case, the following were utilized L = 10, N = 3 and P` = 0.5.

Remark 2.3. Such a large value of P` was chosen in order to have the probability decay visible. Even
slightly smaller values of P` make the decay almost unnoticeable.

Note the exponential decay of the probability in the constant geometry networks (Fig. 2.2(a) and
Fig. 2.2(b)) as predicted by the theory above. However, note as well, that the same exponential decay
happens in the case of Fig. 2.2(c), corresponding to a non-constant geometry network, supporting the
claim in Section 2.5.3.1.

Note that the two random networks (Fig. 2.2(b) and Fig. 2.2(c)) exhibit a very similar decay rate,
faster than the decay rate of the modular network (Fig. 2.2(a)). Although more investigation is necessary
to fully understand this phenomenon, it is supposed that this is due to the fact that, in a modular network,
every node has exactly N lower-peers, while in a random network the number of lower-peers may vary
(even if the number of upper-peers of each node is fixed to N). In a random network if a node at stratum
K does not receive any packet and has more then N lower-peers, many lower-peers at stratum K + 1

will experience a higher loss probability, thereby possibly making the network more fragile.

26 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

(a) Modular Network

(b) Constant Random

(c) Random

Figure 2.2: Probability of packet reception in (a) a modular network, (b) a contant random network and
(c) a totally random network. In all the plots L = 10, N = 3, and P` = 0.5.

2.7 Conclusions

This study analyzed the packet loss probability Peq experienced by the application when a stream-
based, chunkless network is employed. It was shown that, although in the limit Peq converges to 1, it is
possible choose the network parameters to make this convergence so slow that such probability remains
negligible in networks of practical size. Moreover, such a convergence can be made as slow as desired
without increasing the redundancy in the network.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 27

Techniques for Efficient Peer-To-Peer Streaming

28 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Chapter 3

PPETP: Peer-To-Peer Epi-Transport
Protocol

3.1 Introduction

PPETP is a protocol initially developed for the video streaming over P2P networks on which the nodes
have enough download bandwidth to receive the entire stream but not enough upload bandwidth for
its retransmission. Today this is a very common condition, considering that a good quality video, ob-
tained with a high performance codec as H.264/AVC needs at least a bandwidth of 300 kbit/s1 and the
traditional residential lines, working with the Asymmetric Digital Subscriber Line (ADSL) technology
usually provide some Mb/s of download bandwidth and few hundred kb/s of upload bandwidth. To
efficiently exploit the bandwidth characteristic of each user, PPETP uses mainly NC, which allows a
reduction in the bandwidth requested, in order to upload the stream without decreasing its quality.

The structure of PPETP has evolved in past few years, and has now become a sophisticated and very
versatile protocol that could be considered as a multicast overlay protocol based on a P2P structure, also
able to efficiently exploit the nodes with a limited upload bandwidth. With this protocol, the transport
of all kind of information is possible, not only of multimedia, which makes this protocol adaptable to
many different applications. As will become clear later in this thesis, applications view PPETP as sim-
ply a transport protocol, similar to the IP multicast. A task of the protocol is the management of the
peers, and of the messages necessary for a correct exchange of information among them. Differently
from many others P2P solutions, PPETP does not impose a specific network structure or bindings in
the nodes selection, but focuses uniquely on the transport level. The network characteristics are chosen
by the applications, and in this way the best solution can be applied for the context. For example, in
same circumstances, a centralized system can be used to select the peers that a node must contact. This
allows for accurate control of the entire system. In others contexts a distributed method for the peers
selection, for example, with a Distributed Hash Table (DHT) system can be chosen. At first glance this
could seem to be a deficit of the protocol, but on the contrary, this allows for an increasing in versatility.
Other transport protocols do the same, for example in TCP specifications it is not specified as the IP
address and the ports must be determinate, it supposes that these are known.

In the following chapters, the latest developments in PPETP are described, which is under devel-

1For HD video the stream arrives at some Mb/s.

29

Techniques for Efficient Peer-To-Peer Streaming

opment at the University of Udine within the Sourceforge project Corallo and the Ministry founded
program PRIN2 Arachne.

In order to better understand the building details of PPETP, an introduction and short overview of its
main functionalities is provided. In this way, it is possible to become familiar with most of the aspects
of the protocol without focusing too much on the implementation details. After this deliberately short
overview, some typical applications are presented that can find benefit with the use of a P2P network,
and in particular by PPETP, because its characteristics are very well adapted to solving these problems,
without discharge the efforts of the network management on the applications.

After these two sections, a the detailed presentation of PPETP will begin. It was chosen to not
include every single particular of the protocol in the thesis, but only enough details to estabilish a proper
undestanding of the protocol’s behaviour. When necessary, it is possible refer to the Internet Engineering
Task Force (IETF) draft [25] for more details. PPETP is still under development, and the information
contained in this thesis are up to date with the actual, quite stable, version of the protocol (December
2011). However for for more up to date information it is better to refer to the site version of the draft.

3.2 Overview

As mentioned above, PPETP was born from an application for video streaming over P2P networks,
therefore it has inherit a number of features from this application. In this section some key features are
introduced in an informal manner, and in this way it is possible to have an overview of the characteristics
before addressing with them in a more complete form.

The first important characteristic is the possibility of utilizing NC as a tool to face the problem of
the band asymmetry. The operations of the NC, or as we will see later, the operations of encoding and
decoding in general, take the name of Reduction profiles and include a complex series of operations that
are addressed in Section 3.6. Normally, a peer is connected to more lower-peers, and in this case it is
natural to give the possibility give different coding parameters to different lower-peers (in this way it is
possible to produce different versions of the output contents). This characteristic is obtained by means
of Channels (see Section 3.7) that are sets of peers sharing the same coding parameters.

Another aspect very important in the real P2P applications is “peers reachability”. Often in the P2P
papers the operations needed because the nodes are able to communicate each other are omitted, but
they merely explain the algorithm on a conceptual level rather than in a real one. This often suggests, to
non-experts, that this is always an easy operation, in fact it is not the case. Often, the users (particularly
the residential ones) are not directly connected to the network, but are connected to it by means of
firewall or NAT [18], as shown in Fig. 3.1.

These devices normally make it very difficult, if not impossible, to contact these users from others
users that are on the opposite side of these devices. To resolve this problem, but not in all the cases, some
techniques called Connection Establishment Procedures (CEP) are available. These are procedures that
permit the hosts to exchange their addresses list with each others, and the selection of a pair of addresses
means the hosts should be able to communicate. In the Section 4.4 is explained briefly a CEP called
Interactive Connectivity Establishment (ICE).

The use of a classic IP address and a port makes no sense in these contexts because they are not
sufficient to grant a connection in all the conditions. To effectively identify the peers, also in the pres-

2PRIN: Research Project of National Interest.

30 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

Figure 3.1: Connection of a computer to Internet by mean of a NAT.

ence of the NATs, the generalized address (Section 3.5) is utilized, which contains all the information
necessary to contact the peers. In case a peer is not covered by a NAT, its generalized address coincides
with the IP address and port.

A P2P application is a distributed system in which a large number of users exchange data each other.
There are two kinds of packets: the first type are the content data (Section 3.8.1) which content is the
applications payload, and the latter consists of commands (Section 3.8.2) that application exchange each
other for the management of the entire system.

Because of these exchanges of information between users, it is also possible to have security prob-
lems that must be considered, both for commands and contents information. It is possible, in fact, that
users deliberately inject incorrect data, with the risk that the entire system suffers the consequences.
There are many different attacks, some of them are reported in Section 4.1, which the protocol (or in
some cases the applications that use it) should remedy. PPETP gives some features that grant that the
packets received effectively come from the desired users, and the information that they contain are cor-
rect and have not been modified. This feature is obtained through appropriate authentication functions
based on cryptology (Section 4.1).

Because of timing problems, stream-oriented applications usually use UDP packets for the trans-
mission of the data. PPETP also can use these kind of packets. The use of this protocol is preferable
because, differently for example from TCP, there is no retransmission of lost packets and congestion
control, which slow down the stream transmission. This is not acceptable in real time applications,
because a packet that arrives too late is useless for the video decoder. On the other hand, UDP does
not have a congestion control, which means that in presence of congested links, the source continues to
send packets at the same rate, increasing the congestion. For this reason, the IETF suggests the utiliza-
tion of a control rate algorithm [51]. PPETP accepts this advice and provides the TCP Friendly Rate
Control (TFRC) algorithm [52] for controlling the rate (Section 3.9). In any case PPETP is compatible
with both TCP and Datagram Congestion Control Protocol (DCCP) [53] that provide rate control. The
latter protocol is similar to UDP, but natively provides a congestion control algorithm more “stream
friendly” respect TCP. Unfortunately, DCCP is not widely utilized because some operating systems do
not implement it, for this PPETP is used as default UDP with an implementation of the control rate
rather than leave this purpose at the underlying transport level.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 31

Techniques for Efficient Peer-To-Peer Streaming

In many circumstances the stream can be composed of many different “sub-streams” with different
characteristics. Typical cases are the streaming services (Section 3.3.1), where a single server can dis-
tribute different streams for audio, video and text content, and also in conferencing (Section 3.3.3) and
gaming (Section 3.3.4) environments where there are many sources that “share” the same stream. In
all these cases it is necessary to distinguish between the different streams. With PPETP this is obtained
by introducing the concept of the stream_ID, which is simply an identifier associated with the different
“sub-stream”.

In some contexts it can be useful to assign different levels of importance to the packets. A typical
example of this can be when a LC codec is utilized. As seen in the introduction, the layers have different
importance; the base layer is the most important and the following enhancement layers have decreasing
importance. PPETP manages the “importance” of the packets allowing us to assign them a priority
class, that is an 8-bit integer. It is not specified how the classes must be assigned, the only constraint is
that the priority must be a non-decreasing function of the value of this field meaning that class 0 has the
highest priority.

The priority class is used in the following context:

• It may be utilized in the reduction procedures (Section 3.6) to adapt the reduction parameters in
function of the class.

• In the congestion control procedures (Section 3.9), to drop packets in function of their class pri-
ority.

• It can be used in the puncturing procedures (Section 3.10), associating different lose probability
to different classes.

3.3 Typical Applications

There are a number of applications that have the necessity to share data with a large number of users in
a multicast fashion. The most known applications for this kind of data transport are surely the streaming
(live or not) of video and audio contents, software update, conferencing and gaming, but other applica-
tions also can be developed. All of these applications can use a P2P approach to deliver data to their
clients in a more efficient and economic manner.

3.3.1 Streaming

Probably, the most common use of a protocol such as PPETP is the streaming of video and/or audio data.
Very often, these kinds of multimedia contents are intended for a large number of users, spread over the
network. Considering the large requirement of bandwidth for these streams, a multicast delivering is
optimal to decrease the costs for the content and network providers and to avoid network congestions. It
is necessary to place the stream applications into two mains categories: Live Streaming and On-Demand
Streaming.

The first category is comparable to the traditional radio and television systems where there is a
content broadcaster that transmits a program on the air. A user can be tuned and receive the transmission,
can turn off the receiver and turn on again: what is happened in the middle is lost and what will happen
in the future is yet unknown, therefore it is said that the transmission is real time.

The latter category, the on-demand, is comparable with the use of a CD or DVD player: the user can
play the media when they want, it can pause it, re-play, etc.

32 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

While using traditional radio and television is easy to realize real time systems and is more compli-
cated to develop the on-demand ones, working in the Internet environment the opposite is true. With
the Internet, the on-demand streaming is simply a particular kind of file download from a server, there-
fore it is sufficient that the downloaded data allows the reconstruction of the media with respect to the
play-time scheduling. However, if the user has enough bandwidth it can also download the following
data because the entire file is already present in the server. In live streaming, this is not possible because
a file does not exist on the server. The media is produced and immediately sent to the network, and,
for correct decoding the data must arrive at the receiver before their play-time. Otherwise, if the data
arrives too late, it is useless, and the decoder is unable to reconstruct the correct media. It is possible,
and usually is done, to bufferize some amount of data in the user’s application to have a little delay
margin, but this degrades the quality of the system.3

When both these systems have a small number of users, the use of a unicast stream is perhaps the
best solution because of its simplicity, but when this number grows this solution cannot be adopted. As
said in the introduction the best solution is the multicast IP. Because this architecture is infeasible on a
large scale, another approach is necessary, as was proposed with PPETP which is a multicast overlay,
based on a P2P network. Every peer that is downloading a stream provides, compatibly with its upload
bandwidth, to retransmit it toward other users. With this approach the server, and also partially the
network4 is unload from the huge traffic requested by the total download bandwidth. Also for the on-
demand content, this approach is possible, with an accurate project of the applications that use PPETP.
In this case the user that wants to download a stream contacts some users that have already downloaded
it. In fact, if these users have saved a little cache of the downloaded file on their disk, they are able to
retransmit it toward the new user.

3.3.2 Software update

Nowadays, lots of software such as operating systems and antivirus software require periodic, if not
daily, updates. Also in this case, as for streaming, a lot of users update their software simultaneously
or in a short amount of time, hence the servers responsible for the update are heavily loaded. A very
simple solution is that these servers work like broadcaster repeatedly sending their data as a stream over
PPETP. In this way, the software that must be updated is able to receive an entire update by staying
connected to the “broadcasting” for a sufficient amount of time.

3.3.3 Conferencing

Thanks to new technology that allows this kind of communication, tele-conferencing is one of the most
desired application for use mainly by companies, but also by individuals. Many companies have de-
veloped products in this sector5, but they are not compatible with each other. Therefore, all the clients
must use the same system, limiting a large diffusion of these systems. Considering that normally, a
company interacts with many other companies, and a common protocol shared by different products,
would probably would allow for a larger diffusion of these systems. Differently from the two previous
applications where there was a single source and many users, in conferencing applications every user
is also a source. The communication delay is also very important for this application because the users
interact each other, and a large delay6 makes the interaction very difficult. A trivial solutions to this is

3For example in a multi-channel system, when the user changes channel, it must wait until that the buffer is full enough before
the media is played.

4It depend also from the P2P network structure.
5For example HP with Halo, Cisco with its Cisco TelePresece Systems and many others.
6Often greater than some hundred milliseconds.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 33

Techniques for Efficient Peer-To-Peer Streaming

the use of a central server that receives the stream by all the participants at the conference, mixes the
streams, and re-sends a new stream to all the users. In practice, this scheme can work only for a small
number of users, beacuse of both server bandwidth and processing power. PPETP manages this scenario
in a very interesting manner, by allowing the streaming of one or more flows produced by one or more
sources indicated simply by a stream identifier.

3.3.4 Gaming

More than conferencing, nowadays network games are very popular. In these games, all users share the
same game’s environment, collaborating to reach a common objective or challenge to win a match. The
scenario is very similar to that of conferencing applications, as there are many users that are also the
source of the data. Very often, the time requisition are also as restrictive as with conferencing. PPETP
can also be used to reach the objective of exchanging data among all the participants.

3.4 Characteristics of PPETP

Following this general overview of PPETP, as covered in the previous section, the most important details
are presented here. These characteristics are almost sufficient to make the protocol work, however, some
other important details are included in the next chapter.

3.5 Generalized Address

To contact a host in the Internet, its IP address and the port on which the application is listening must be
known. Nowadays, most of the residential users are behind NATs, which means that having only the IP
and port is not sufficient to contact them, because only the applications know the internal IP and port of
the host, while the outside world knows only the public IP address and port of the NAT as depicted in
Fig. 3.2. Moreover, the NATs imposes some roles denying packets from the outside to pass through the

Figure 3.2: Change of address due to the NAT.

NAT if not authorized by a role. The same thing applies if a firewall is present. In order to contact a host
behind a NAT, some CEP exist that in some cases allow the host to be contacted. An example of these
procedures is the ICE explained in [54], which is the default CEP of PPETP (Section 4.4). To identify a
PPETP host, the generalized address is used, which is a used to describe IPv4 and IPv6 addresses, or to
describe the data necessary for the CEP. Currently, there are two classes of addresses:

IP This class contains an IP address (IPv4 or IPv6) and a port. It is used when a host is directly
connected to the network by means of a public address.

34 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

ICE This class contain information for the CEP based on ICE protocol. It contain the address of the
bridge server and an ID of the remote host to contact.

3.5.1 Generalized addresses structure

When it is necessary to include the generalized address in a packet it must be converted into a binary
format, whose structure is reported in Fig. 3.3. The five most significant bits of the first byte represent

0 1

0 1 2 3 4 5 6 7:8 9 0 1 2 3 4 5

+-+-+-+-+-+-+-+-+

| Class | X |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

: Address Core :

: (variable size) :

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Length (16 bit) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3.3: Generalized address structure.

the address class (for a total of 32 possible classes) while the following three bits depend on the class.
Actually, class 0 is defined as that is the generalized IP address, and the class 1 is defined as the ICE
class. Classes from 2 to 30 are undefined, and class 31 is reserved for future extensions. The last 2
octets is an integer number representing the total length of the structure. The length is at the end of
the structure because in same context (like routed packets described in Section 3.8.3) it is easier start
reading from the end of the structure. The remaining bytes are the address data, whose format depends
on the class.

3.5.2 IP address class

The format for the IP address class is reported in Fig. 3.4, and the meaning of the fields are the following:

0 1 2 3

0 1 2 3 4 5 6 7:8 9 0 1 2 3 4 5:6 7 8 9 0 1 2 3:4 5 6 7 8 9 0 1

+-+

| 0 | V |0| Protocol | Port |

+-+

: :

: Address :

: (size depends on Version and Protocol) :

+-+

Figure 3.4: IP address core format.

address class (bits 0-4) This field indicates the IP class address, and it is set to 0.

version (bits 5-6) Indicates the version of the IP protocol: if its value is 0 it indicates an IPv4 address.
Otherwise if it is 1, it indicates an IPv6 address. The other two values are reserved for future
extension.

unused (bit 7) This bit is not used, and must be setted to 0.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 35

Techniques for Efficient Peer-To-Peer Streaming

port (bits 16-31) If the transport protocol is based on ports (e.g., UDP, TCP and DCCP) this field
indicates the port of the destination host, otherwise it is set to 0.

address Contains the address of the host, and the size of this field depends on the version field V. For
an IPv4 address, its length is 32 bits, while for an IPv6 address its length is 128 bits.

3.5.3 ICE address class

The format for the ICE address class is reported in Fig. 3.5, and the meaning of the fields are the
following:

0 1 2 3

0 1 2 3 4 5 6 7:8 9 0 1 2 3 4 5:6 7 8 9 0 1 2 3:4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| 1 | V |0| EXCH Protocol |

+-+

| Peer ID |

+-+

: Bridge Address :

: (size depends on Version) :

+-+

: Private data (size and format depend on EXCH Protocol) :

+-+

Figure 3.5: ICE address core format.

address class (bits 0-4) This field indicates the ICE class address and it is set to 1.

version (bits 5-6) Indicates the version of the IP protocol of the bridge address: if its value is 0, it
indicates an IPv4 address. Otherwise if it is 1, it indicates an IPv6 address. The other two values
are reserved for future extensions.

unused (bit 7) This bit is not used, and must be set to 0.

EXCH Protocol (bits 8-15) Indicates the procedures used by the nodes to exchange the ICE candidate,
here the values can assume: 0 if an HTTP-based procedure is used, 1 that is equal to the protocol
0, but it uses HTTPS. The values from 2 to 254 are unused and the value 255 is reserved for future
uses.

Peer ID The 32 bit PEER_ID of the remote host.

Bridge address The IPv4 or IPv6 address of the bridge node.

Other data This field can be used to store data that can be used by the candidate exchange protocol.
The size and the format of this field depends on the field EXCH PROTOCOL.

3.6 Reduction profiles

In PPETP, there is a deep separation between the management of all the aspects of the protocol and
treatment of the data. A first distinction is at the packets level, where there is a separation between
control packets and data packets. The firsts are elaborated, as explained in Section 3.8.2, by the “core”
of the protocol, while the latter are elaborated by mean of Reduction Profiles. The reduction profiles

36 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

are a set of procedures (parameterized) that define how to elaborate the data for the reduction and the
reconstruction. The term reduction7 is used when the data are elaborated for the transmission, and re-
construction when the data are elaborated after the reception. Currently two different reduction profiles
are defined: the Basic profile that does not make any operation in either reduction or reconstruction, and
the Vandermonde profile that is a NC with a particular structure of the reduction matrix, as reported in
Section 3.6.1. The basic profile was introduced in PPETP for its simplicity. It does not have an algo-
rithm for reducing the size of the data, or to change its format, hence it was developed mainly for test
purposes or for very low bandwidth stream, while the Vandermonde profile is the main profile normally
used in the transmission of data. It is easy to add other reduction profiles, since the data packets are not
aware of the content of their payload, seen simply as a byte sequence. It is only in the configuration
phase that the used profile is specified. This choice allows us to not limit the protocol to a little set of
reduction profiles, but allows us to expand in the future or to specific features. Normally, the reduction
function produces only one reduced packet for every data packet, but this is not mandatory. The recon-
struction procedure generally takes place after the reception of an adequate number of reduced packets,
enough to sufficiently reconstruct the original data. After the reconstruction, the data is passed to the
application and to the channels to be reduced again and sent to the lower-peers.

3.6.1 Vandermonde profile

The Vandermonde profile is the main profile of PPETP, and was the idea on which this protocol was
developed. All of the proprieties of the reduction with this profile are described in [40], while the
detailed construction of the profile are described in the Appendix A.1.3. In this section the key points
of this technique are reported.

In the Introduction, the general concept of NC was presented, and the Vandermonde profile is a
particular kind of this technique. Let call R the reduction factor and P the content packet that must be
reduced. P, possibly padded, is organized as a matrix of R rows of elements of the finite field GF (2d)

where R and d are fixed in the configuration phase. R is the reduction factor, while d is used to specify
the dimension of the finite field, as explained in Appendix A.1.3, where d = 8 · gf_size, in PPETP
this parameter can assume the value of 1,2 or 4. Always in the configuration phase, an element b of
the GF (2d) is chosen, and with this the reduction vector rb =

[
1, b, b2, . . . , bR−1

]
is constructed. The

reduced packet ub is obtained computing

ub = rb ·P

This operation collapses all the columns of the matrix into single elements, so in this way ub is a vector
about R times smaller than P.

The reconstruction of the content packet is not feasible through the reception of a single reduced
packet ub, but at least R packets constructed with a different reduction vector rb are necessary. This
means that of all these vectors have been constructed by different elements bi. With the reception of the
R packets {ub1 ,ub2 , . . . ,ubR} it is possible to construct the linear system:

ub1
ub2

...
ubR

 =

1 b1 b21 · · · bR−1

1

1 b2 b22 · · · bR−1
2

...
...

...
. . .

...
1 bR b2R · · · bR−1

R

 ·P
The matrix with the powers of bi elements is a Vandermonde matrix and could be inverted when all the
coefficients bi are different. This is a sufficient condition because the determinant of a Vandermonde

7It is used the term reduction because the size of the data after this procedure is often smaller than the initial size.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 37

Techniques for Efficient Peer-To-Peer Streaming

square matrix B of order n and coefficients αi is

det(B) =
∏

1≤i<j≤n

(αj − αi) (3.1)

which is not zero if all the coefficients are different form each other.

3.7 Channels

Nodes in PPETP can produce more than one version of reduced packets, processing it several times
with different parameters8. Each different version is said to have been produced by a Channel. At every
channel an arbitrary number of lower-peer can be connected, limited only by the upload bandwidth,
while the maximum number of channels is 16. It should be considered that every reduction operation
requires processing power; therefore for highly complex reduction profiles this consideration should be
taken into account.

3.8 Packets

The packets exchanged by the peers that use PPETP can be classified as Data Packets (Section 3.8.1)
and Control Packets (Section 3.8.2). Obviously, the first are used to transport the reduced packets, while
the latter are used to transport the commands, used in all the operations of stream flow control and for
the management of the P2P network. The command packets generally need to be acked while the data
packets no (see Section 3.8.2.3). In the next sections, only the format and the main characteristics of the
packets are described, while the complete description of all the fields are described in detail in the draft
[25].

3.8.1 Data Packets

The data packets are the most frequent ones in a PPETP session, in fact, they are designed to transport
all the reduced stream’s data. The structure of these packets is depicted in Fig. 3.6.

Without entering in the details of the fields V and C are used to determine the protocol version, and to
distinguish data packets from control packets, the flag P indicates if the payload is padded and the flags
I,F,G,H are used to give information about the payload. Their meaning depend on the reduction profile,
with one singularity: the meaning of flag I, that indicates if the reduction parameters are inserted into
the payload (see Section 3.8.1.1). The TIMESTAMP with ERT and RTT fields are parameters used by the
congestion control mechanism (see Section 3.9), while the PPETP MAGIC is a constant whose decimal
value is 95 and it is used to simplify the distinction between the PPETP packets and the others. This field
is necessary because in the same port (port of the transport protocol e.g. UDP) used by PPETP other
kind of packets can be received. For example, it is necessary to use this port to receive STUN packets
when the ICE protocol is used. The SENDER SIGNATURE is used to authenticate the packet. This
signature is applied by the upper-peer who produces the packet and is used to avoid a defamatory attack
(Section 4.1). The remaining fields contain information about the stream. The SEQUENCE NUMBER is
a sequential number assigned the content packet. The CHANNEL is the PPETP channel that it is used to
specify which reduction parameters were used to reduce the content of this packet (see Section 3.7) and
the STREAM ID is a stream identifier of the original content packet. The CLASS identifies the priority
class of the packet. The value 254 is reserved for future extensions, while the value 255 is invalid.

8For example, using different bi when the Vandermonde profile is utilized.

38 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

0 1 2 3

0 1 2 3 4 5 6 7:8 9 0 1 2 3 4 5:6 7 8 9 0 1 2 3:4 5 6 7 8 9 0 1

+-+

|V=0|C|P|I|F|G|H| Timestamp | PPETP Magic |

+-+

| Class |Channel|ERT|Res| Stream ID | RTT |

+-+

| Sequence Number |

+-+

: :

: Payload (variable size) :

: :

+-+

: :

: Sender Signature (variable size) :

: :

+-+

Figure 3.6: PPETP Data Packet.

The last field is the PAYLOAD which obviously contains the data produced by the reduction profile,
eventually padded9.

3.8.1.1 Motivation of the I flag

With NC, a node after the reception of an adequate number of reduced packets reconstructs the content
packet and then reduces it again with its parameters. In the case that the node does not receive enough
reduced packets, it cannot propagate its own version of the reduced packet to its lower-peers. This
decreases the probability that the lower-peers are in turn able to reconstruct their content packet. To
remedy this problem a node that is unable to reconstruct the content packet can forward a reduced
packet toward its lower-peers that is received by its upper-peers. This operation is also called Fragment
Propagation as explained in Section 2.3.3. The problem of this method is that lower-peers do not have
the reduction parameters used to reduce these packets, for this the node must insert them into the packets
before sending them. The I flag is used to indicate the presence of these parameters.

3.8.2 Control Packets

The second kind of packets that are presented in PPETP are the control packets. These types of packets
are designed to transport information for the management of the network and for the stream flow control.
The behaviour of the peers in the presence of the control packets is different with respect to that of
the data packets. Different from the data packets, control packets are not processed by the reduction
profiles, but are processed by the “core” of PPETP. After this, an acknowledged packet is sent to
confirm the reception and execution of the command (Section 3.8.2.3). The structure of these packets,
depicted in Fig. 3.7, is not much different from that of the data packets (Fig. 3.6), but the complexity
of these packets resides in the payload. For every kind of request a particular payload containing all the
information needed for the execution of the command is defined.

There are a number of fields that have the same meaning as the correspondents of the data packets,

9It could be not only the data produced by the reduction function, for example if the flag I is set there are also the reduction
parameters.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 39

Techniques for Efficient Peer-To-Peer Streaming

0 1 2 3

0 1 2 3 4 5 6 7:8 9 0 1 2 3 4 5:6 7 8 9 0 1 2 3:4 5 6 7 8 9 0 1

+-+

|V=0|C|P|Request| Timestamp | PPETP Magic |

+-+

|R| SSN | Reserved |

+-+

| Sequence Number |

+-+

: :

: Payload (variable size) :

: :

+-+

: :

: Sender Signature (variable size) :

: :

+-+

Figure 3.7: PPETP Control Packet.

and these are the flags V, C, P, the fields TIMESTAMP, PPETP MAGIC. The SEQUENCE NUMBER also
has the same meaning as that the data packets, but these sequence numbers are not shared with them of
the data packets, hence is possible to receive a data packet and a control packet from the same sender
with the same sequence number. The last field in common is the SENDER SIGNATURE. The new fields
are the fields REQUEST that contain the command type (see Section 3.8.2.1) the flag R that indicates if
the packet is a routed one (see Section 3.8.3), the sub sequence number SSN that is used together with
the SEQUENCE NUMBER to identify a single control packet (see Section 3.8.2.3). The last field is the
PAYLOAD that contains the request information.

3.8.2.1 Request types

There actually are 9 different commands in the PPETP protocol. Some of them (SET_PARAMETER,
ACKNOWLEDGE, CLOSING, HELLO, OPEN_CONNECTION and FEEDBACK) are used for generic op-
erations, while the others (START, STOP and REDIRECT) are specialized for the flow control between
the nodes. The latter typology of packets could also be sent, for example, by a control entity within
the scope of network management. With the exception of the ACK and FEEDBACK, all the requests are
required to be acknowledged. The request types are:

Set_Parameter (Request 0): This request is sent from an upper-peer to a new lower-peer during the
handshake phase to communicate the set of the reduction parameter used. The payload consists on
a set of attributes (see Section 3.11) in the Type Length Value (TLV) format (see Section 3.8.2.2).
The payload can also be empty, in this case its meaning is a no-op and it is used to trigger an
acknowledge packet which is used to keep a NAT hole open, or to check if a peer is still alive.

Acknowledge (Request 1): This type of control packet is used to acknowledge the receipt of the other
control packets. The payload is formed by the sequence number and SSN of the packet to be ac-
knowledged and by an error code (see Tab. 3.1). This request does not require acknowledgement.

Start (Request 2): This command is used to ask a node to start the handshaking procedure with a node
(Section 3.13). The payload contains the channel, the generalized address of the new peer, and

40 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

a list (eventually empty) of attributes (see Section 3.11) such the PUNCTURING and the ROUT-
ING_PROBABILITY.

Stop (Request 3): Is used to ask a peer to stop sending data toward a lower-peer. The payload contains
the channel and the Peer_ID of the lower-peer.

Redirect (Request 4): It works like a stop followed by a start command, but it works as an atomic
command (this grant resources availability). The payload contains the Peer_ID and the channel
of the old peer, the generalized address of the new peer, and the new channel. There is also a list
of attributes such the PEER_CREDENTIAL, the PUNCTURING and the ROUTING_PROBABILITY.

Closing (Request 5): This request is used to communicate to a lower peer the intention to stop the
transmission of one or more channels. The payload is the concatenation of the channel numbers
that will be closed, therefore if there is no payload, all the channels will be closed. Additionally,
if the node does not receive the acknowledgement of this packet, it may close the transmission
anyway.

Hello (Request 6): This packet is used in the handshaking phase to transport a cryptographic certificate
with the information needed for creating and/or verifying the sender signature. This packet does
not require the senders signature field (because it cannot by verified again), and it is considered
valid if the payload contains a valid certificate.

Open_Connection (Request 7): This request requires the node to start a CEP toward the peer. The
payload is the concatenation of the Peer_ID of the new peer and its generalized address.

Feedback (Request 8): This packet is sent by the lower-peer to give the upper-peer a feedback about
its reception statistics for the congestion control described in Section 3.9. The payload, shown
in Fig. 3.8 contains the 32 bit timestamp of the last received data packet, the processing delay,
the reception rate in packets/RTT, and the estimated loss event rate. This request does not require
acknowledgement.

Table 3.1: Values for the Result field of the Acknowledge packet.
Name Value Explanation

OK 0 The request was processed successfully
No Resource 1 It was not possible to satisfy the request for lack of

resources (e.g., upload bandwidth)
No Reply 2 An handshaking procedure did not complete because

no Acknowledge was received to a Set_Parameters re-
quest

Bad Target 3 It was requested to stop the data streaming to a node
that is not a lower peer

3.8.2.2 TLV format

The TLV format is an easy way to create a list of different kind of data. The format, depicted in Fig.
3.9, is composed by three fields: the first indicates the information type, the second is the length of the
third field which contains the information or value.

This is useful because in a list of TLV elements it is possible to easily read each element and also
skip some of them by simply reading the type and the length of each element.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 41

Techniques for Efficient Peer-To-Peer Streaming

0 1 2 3

0 1 2 3 4 5 6 7:8 9 0 1 2 3 4 5:6 7 8 9 0 1 2 3:4 5 6 7 8 9 0 1

+-+

| Received Timestamp |

+-+

| Processing Delay | Reception rate | Ploss |

+-+

Figure 3.8: Payload of the feedback request.

0 1 2

0 1 2 3 4 5 6 7:8 9 0 1 2 3 4 5:6 7 8 9 0 1 2 3

+-+

| Type | Length |

+-+

: Value (Following length octets) :

+-+

Figure 3.9: TLV format.

3.8.2.3 Control packets retransmission

With data packets, the peer that has sent them does not care if the packets have been received by the
lower-peers. With control packets, instead, the peer must be aware of the reception and execution of
the command. For this, a command packet must be acknowledged after its execution. Normally, when
a peer sends a control packet, it waits for an ACK packet. The ACK packet is sent by the peer that had
received the control packet after its execution. Let us call A the peer that had sent the packet, and B the
peer that should execute it. After A has sent the packet, it waits for a determinate amount of time for
the ACK by B; the control packet has a certain sequence number and the SSN field has value of zero.
If A does not receive the ACK before the scheduled timeout, it re-sends the same packet, but with the
SSN incremented by one. These operations are repeated a predetermined number of times, after which
A considers B not reachable. On the other side, when B receives the packet, executes it, than sends the
ACK to A and saves its sequence number and SSN (to avoid to execute twice the same command, and to
not acknowledge it too many time). It is possible, due to packets duplications, or a loss of the previous
ACK packet, that a command arrives more than once, in this case the peer does not execute it but instead
re-sends the ACK packet. If the packet is acknowledged too many times or it is too old, with respect the
actual SEQUENCE NUMBER, it is ignored.

3.8.2.4 Control packets elaboration

The first thing that a peer controls when it receives a control packet (and also for the data packets) is the
SENDER SIGNATURE10. If the signature is not valid, the peer discards the packet. Otherwise, it controls
the R flag, and if this flag is set it means that this packet is routed, and the following elaborations are
explained in Section 3.8.3.1. If the flag R is not set, the peer checks the SEQUENCE NUMBER and the
SSN that must be unique. If these fields are positively checked, it elaborates the content of the payload,
and at the end sends an acknowledgement packet to the command source.

10If it is required by the security rules in the configuration.

42 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

3.8.3 Routed control packets

In some circumstances, either the network manager or a central server must send control packets to a
peer. If the peer is behind a NAT, this operation can be not easy. A trivial solution is that the peer
continually sends a SET_PARAMETER packet to the server for a predetermined amount of time to keep
the NAT hole open, but this solution could pose scalability problems. The solution proposed by PPETP
is to use the overlay to propagate the command to the desired peer, as visible in Fig. 3.10. In the
upper side of the picture, a server that tries to send a control packet to a client is shown, but this action
is blocked by the NAT/firewall of the client. For this reason, as shown in the lower part, it sends the
control packet as a routed packet, together to the stream. In this way, are the peers of the network that
propagate the command through the NATto the client, that will send an ACK message to the server.

Figure 3.10: Use of routed packet.

To carry out this operation, the R flag of the control packet (see Section 3.8.2) is set and its payload
has the structure reported in Fig. 3.11.

In this structure are present the Peer_ID of the peer recipient of the packet, the generalized address
of the packet’s source where the acknowledgement must be sent, and the Peer_ID. There can be present
also the signature (not mandatory) of the packet and the payload of the command.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 43

Techniques for Efficient Peer-To-Peer Streaming

0 1 2 3

0 1 2 3 4 5 6 7:8 9 0 1 2 3 4 5:6 7 8 9 0 1 2 3 4:5 6 7 8 9 0 1

+-+

| Target PEER ID |

+-+

: :

: ACK Target :

: (variable size, generalized address of class IP) :

+-+

: :

: Payload (variable size) :

: :

+-+

: :

: Source signature (variable size) :

: :

+-+

| Source Peer ID :

+-+

Figure 3.11: Payload of a routed packet.

3.8.3.1 Routed packet elaboration

If the flag R of a control packet is set the peer must execute a more complex control of the packet pay-
load, because it contains other information that must be checked before the execution of the command.
The operation successive at the control of the R flag is the control of the fields of the payload. The first
thing to check is the SOURCE PEER_ID and the SOURCE SIGNATURE to be sure the packet was gener-
ated by a valid source. If not, the packet is discarded. If it is a valid packet the next fields are the number
and the SSN, to verify that it is not a duplicated packet, and the last thing is the TARGET PEER_ID, that
indicates which peer must execute the command. If this field contains a Peer_ID different from that of
the peer, the packet should be propagated to the lower-peers. Hovever, if the packet is directed to this
peer, the command contained in the payload must be executed and the acknowledgement must be sent
to the address indicated in the field ACK TARGET.

As said, the packets that are not directed to this peer are sent to the lower-peers, and at a first glance
this flooding of packets can seem to be a huge waste of bandwidth. In the reality, it is not for the
following reason:

• It is expected that the rate of the routed packets, is much smaller than the rate of the data packets
hence the increase of the total load is expected to be minimal.

• If a peer receives the same packet twice (checked by the SEQUENCE NUMBER and SSN), it does
not propagate it again.

• The first checked field is the SENDER SIGNATURE, therefore only valid sources can create packets
that are propagated in the network. It is expected that valid sources do not sends routed packet if
they are not needed.

• It is possible control the propagation of the routed packets setting for each peer in the configuration
phase, a certain ROUTING_PROBABILITY to each lower-peer11. In this way it is possible to create

11By default is setted to 1.

44 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

a “routing network” that must be a connected to a sub-graph of the actual PPETP network, to
ensure that every peer is reachable.

3.8.3.2 Use of reflectors

In the explanation of the routed packets, it was considered that the server that sent the routed packets
has a public IP address, but this is not always the case. For some particular configurations it is possible
that some users should also be able to send routed packets, even if they are behind a NAT. In this
case, the peer is able to send routed packets, but not for receiving the ACK from the destination peer, as
depicted in the upper side of the Fig. 3.12. This is because the NAT outgoing command is sent toward a
peer of the network different from that sending the ACK, hence this scheme cannot work. To make this

Figure 3.12: Use of reflectors.

operation possible, a solution is the use of a server with a public IP that is used to “reflect” the routed
packets and the ACK, shown on the lower side of the Fig. 3.12. The peer that needs to send the routed
packet sends the packet to the reflector (in this way it open a hole in its NAT toward the reflector server).
The reflector than changes the field ACK TARGET of the routed packet (see Fig. 3.10), putting inside
its address, sends the packet, and then waits for the acknowledgement from the recipient of the packet.
When the acknowledgement arrives, it can send it to the original peer, and this is possible because the

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 45

Techniques for Efficient Peer-To-Peer Streaming

hole in the NAT is supposed to be still open.

3.9 Congestion Control

In most of cases, is implemented over UDP, an unreliable and connectionless service without rate con-
trol. This means that packets can arrive out of order, duplicated, or do not arrive at all. Moreover, the
packets rate depends on the applications and is limited only by the speed of the network connection.
In presence of network congestion or packets loss, there is no mechanism that informs the host to slow
down the packets rate, and this concur to increase the congestion of the network. For this reason, the
IETF in the Request for Comments (RFC) “Unicast UDP Usage Guidelines for Application Design-
ers” [51] promotes the utilization of a rate control mechanism when UDP are heavily used. PPETP
implements the TFRC: «TFRC is a congestion control mechanism for unicast flows operating in a best-
effort Internet environment. It is reasonably fair when competing for bandwidth with TCP flows, but
has a much lower variation of throughput over time compared with TCP, making it more suitable for
applications such as streaming media where a relatively smooth sending rate is of importance» [52].
To work, the TFRC needs some information to determine the characteristics of the network. This can
be extracted by the data packet in the fields TIMESTAMP and SEQUENCE NUMBER and by the control
packet FEEDBACK. As it is possible to see in [52], this information allows for execution of the rate
control’s algorithm.

3.10 Puncturing

The Punturing is a technique that allows fine control of the upload bandwidth of the peers. Very often,
the only reduction factor given by the reduction profile does not allow to exploiting of the entire upload
bandwidth of the user, because its granularity is very broad12. When the reduction profile allows for
some packets loss, for example when some redundancy of packets is granted, a peer can chose not to
send all the packets to its lower-peers. This is known as puncturing, a programmed “loss” of packets,
made by upper-peers. Obviously, by not sending all the packets, there is a decrese in the uploading
bandwidth with respect to that requested by the reduction profile. In PPETP, there are two typologies of
puncturing that can be applied to every peer in every channel and for every priority class:

Probabilistic (mode=0) With probabilistic puncturing, each lower-peer is associated a packet-loss prob-
ability. The packets that should be sent to the peer are discarded according to this loss probability.

Deterministic (mode=1) With deterministic puncturing, otherwise, packets are discarded according to
their sequence number. Each peer is associated with a set of 8-bit numbers. At configuration
time, a set {m1,m2, . . . ,mL} and a number M are specified; calling N the sequence number of
a packet: if (N mod (M + 1)) ∈ {m1,m2, . . . ,mL} then the packet is sent.

3.11 PPETP Attributes

As introduced in Section 3.8.2, some commands include one or more parameters embedded in the TLV
format (see Section 3.8.2.2). These parameters are called Attributes. Currently, the following attributes
are defined:

12Only for very high values of the reduction factor this only parameter can be sufficient for a fine control of the bandwidth, but
not ever increasing this parameter is a good choice.

46 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

Peer_Credential (Type=0) This attribute is used to transmit the information that the upper peer needs
in order to sign the packets for the new lower peer. The value of this attribute is a credential
certificate whose format is shown in Fig. 3.13.

Punturing (Type=1) This parameter is used to specify the parameters for the puncturing operations.
(Section 3.10). The format of the attribute is reported in Fig. 3.14.

Routing Probability (Type=2) It is used to specify the routing probability, and has the same format as
the probabilistic puncturing attribute (Fig. 3.14).

Reduction parameters (Type=3) This is used to specify the reduction parameters of a channel. In the
first byte, the channel number is reported, while the rest is an opaque value that must be interpreted
by the reduction profile.

0 1 2 3

0 1 2 3 4 5 6 7:8 9 0 1 2 3 4 5:6 7 8 9 0 1 2 3 4:5 6 7 8 9 0 1

+-+

| Peer ID |

+-+

|P| Cred. Type | Cred. Size |

+-+

: Credential Value :

: (variable size) :

+-+

|Cert. Type(opt) |

+-+

: Certificate :

: (optional, variable size) :

+-+

Figure 3.13: Format of credential certificate .

(a) Deterministic

(b) Probabilistic

Figure 3.14: PUNCTURING and ROUTING ATTRIBUTES format.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 47

Techniques for Efficient Peer-To-Peer Streaming

3.12 Packets processing

3.12.1 Control packets transmission procedure

All of the control packets (with the exception of the ACKNOWLEDGE and FEEDBACK packets) require
acknowledgement; if this packet does not arrive, the peer must assume that the command has not been
processed. After the transmission of a command, the peer sets a timeout period within which the ac-
knowledgement must be received. Three cases can occur:

1. A positive ACK is received before the timeout: the command was successfully executed.

2. A negative ACK is received before the timeout: the command was received but the procedure
terminates with a failure.

3. No ACK is received before the timeout: the peer cannot know if the command or the acknowledge-
ment was lost. In this case, the same command with the same sequence number, the sub-sequence
number incremented by 1 is sent again, and a new timeout is set. If the number of retransmission
reaches a threshold the procedure terminates with a failure. The transmission timer must be set
according to [55].

3.12.2 Control packets acknowledge procedure

On the other side of the transmission, a peer that must acknowledge a received packet must follow the
following guidelines:

• The node must send the acknowledgement only after the packet was processed.

• If the received packet has the same sequence number and SSN of an already acknowledgeed
packet, it must send another acknowledgement, but it must not process it again.

• Packets whose sequence number is too old respect the most recent sequence number, or those
which were acknowledged too many times must be ignored.

3.13 Peer handshaking

In order for two peers to be able to communicate, the following operations, shown also in Fig. 3.15, are
necessary:

0 If the generalized addresses of the nodes are not IP addresses, a CEP procedure must be executed
in order to obtain an IP address that can be used to communicate with the other peer.

1. The lower-peer sends an HELLO packet with its credentials (if needed) to the upper-peer. This
packet is not signed but it is considered valid if the carried certificate is valid.

2. The upper-peer sends the acknowledgement for the HELLO. This packet is signed, but the lower-
peer cannot verify it, because it does not know again the sign of the upper-peer, therefore it waits
for the upper-peers HELLO before accepting this packet.

3. The upper-peer, sends its HELLO to the lower-peer, and with the reception of this packet the
lower-peer can verify the validity of the previous ACK packet.

4. The lower-peer sends the acknowledgement to the received HELLO.

48 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

5. When the upper-peer receives the ACK, it sends the packet SET_PARAMETER with the reduction
profile parameters.

6. When the ACK for the SET_PARAMETERS is received, the upper-peer can start streaming.

Figure 3.15: Handshake procedure.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 49

Techniques for Efficient Peer-To-Peer Streaming

50 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Chapter 4

PPETP Details

After the presentation of the main characteristics of PPETP in the previous chapter, here some other
features will be shown. Particularly, a protocol for the configuration of PPETP is presented. This is not
mandatory for the protocol’s operation, but it was designed as a common tool for its configuration, by
means of a configuration authority. This protocol can facilitate the diffusion of PPETP because it allows
different software1 to work together using a standard protocol.

4.1 Security considerations

The PPETP project was realized by taking into account some security considerations. Being a distributed
protocol, all critical operations should be expressly authorized before being performed. Otherwise,
malicious users could compromise the correct functioning of the protocol. To allow an easy deployment
of applications based on this protocol, it is possible define the security rules that need to be applied in
the configuration procedure. It is possible to develop applications without any security rules, until we
arrive at a scenario in which control, data packets, and peers must all be authenticated.

4.1.1 Poisoning attack

In this kind of attack, a peer (or more than one in a coordinated attack) sends to another peer “bogus”
data packets that are useless for the reconstruction of the content packet. If not discovered, this method
allows a corrupted stream to be propagated by a large set of peers through the P2P mechanism. If
the data is authenticated, it is possible to discover this attack after the reconstruction, and chose not to
propagate the data again. Using a NC profile, it is possible to do something more, receiving the stream
by a number of upper-peers greater than the minimum requested for the reconstruction. In this condition,
after an erroneous reconstruction it is possible to try to do it again by changing the used packets. With
this technique, it is also possible to discover which peer sent the corrupted packet.

4.1.1.1 Large bandwidth nodes

Considering the case where a node N has a large upload bandwidth with many channels, it is possible
that a peer U is completely fed by N . In this case, N can produce an arbitrary stream that will be
correctly reconstructed by its lower-peer. The poisoned stream is then propagated to the lower-peer of
U , but this, if it is also fed by other upper-peer, will identify the corrupted packets.

1E.g., it is possible use a configuration server and a player developed by different teams.

51

Techniques for Efficient Peer-To-Peer Streaming

4.1.2 Multiple stream session

A different type of poisoning attack is when a node injects on the session packets belonging to a different
stream. In this case, the victim does not recognize the attack, since the packet arrives from a single
source only. In order to avoid this attack, it is important to specify the ID of the allowed streams in the
security policies.

4.1.3 Defamatory attack

When a peer produces malicious packets and it is discovered, in some contexts it could be notified to
a system authority, that can ban the peer from the network. In this situation, a defamatory attack is
possible, that is the poisoning of the stream while pretending to be another user. To prevent this attack
with PPETP it is possible to request that an upper-peer sign every data packet using a secret key, shared
in the configuration phase.

4.1.4 Security Model

As seen in Section 3.8.2, there are some particular kinds of commands that are used to control some
important characteristics of the network. These sensitive actions are:

• Sending data-flow control commands (Start/Stop/Redirect).

• Send third party data-flow control commands. A third party control packet is a packet sent by a
peer that is not the target of the command. For example, in the commands START and STOP it is
possible to specify which peer is the target of the command.

• Sending routed packets.

Associated with these capabilities PPETP defines the same capabilities, partitioned in classes:

1. Self data-flow control class:

• SELF_START.

• SELF_STOP.

• SELF_REDIRECT.

2. Third party data-flow control class:

• 3RD_START.

• 3RD_STOP.

• 3RD_REDIRECT.

3. Routing packets class.

In the configuration phase, one peer can be assigned zero, one or more than one of the capabilities above.

4.1.4.1 Node classes

As said, in the configuration phase the capabilities of the privileged peers are specified. To do this
without an explicit declaration, a set of the Peer_ID are reserved. The initial segment 1, 2, . . . , 2L − 1,
of the Peer_ID space is reserved for privileged peers, while the remaining IDs are for non-privileged
peers. By default, L = 10, but it can be modified. The first most significant bits denote the class of the
peer, while the other bits identify a specific peer in the class. More details are reported in [25].

52 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

4.2 PPETP Configuration

In order to join a PPETP session a node needs some informations for the configurations of the parameters
of a session, for example information regarding the reduction profile used for the whole session, the
channels, and some information regarding security, such as sender and source signatures algorithm and
parameters, privileged classes peers and credentials. Moreover, these information, a peer needs to know
its upper-peers hence the configuration contains a list of them, or enough informations to find them (e.g.,
a method to contact a DHT to be queried).

4.3 Bootstrap configuration protocol

4.3.1 Address of a PPETP session

Since a PPETP session is a distributed object, it makes little sense to refer to it with the classic IP address.
For compatibility with currently available protocols (e.g., SDP [56]) it could be useful refer to a session
with a <pseudo-address,pseudo-port> pair compatible with the common <IP address, port> pair. In
many cases the configuration is automatically downloaded from a server by a configuration protocol.
Therefore, the pseudo-address of a PPETP session is the IP address of the configuration server and the
pseudo-port indicates a specific session on that server. The address of a PPETP session is therefore
defined as the pair <IP address,session_ID>, where the session_ID is a 16 bit unsigned integer.

4.3.2 Design goals

The design of the configuration protocol was thought to satisfy some requirements:

• Must allow user authentication.

• Must be light-weight and suitable to a stateless implementation on server.

• For complex configuration needs, the server should be able to redirect the user to an alternative
configuration protocol (that is why it is called “Bootstrap configuration protocol”).

The typical dialogue between a node and the server is expected to be similar to this:

1. The client sends a query to the server with the session number (often the address of the server and
the session number is founded in a Session Description Protocol (SDP) file [56]).

2. If the server requires client authentication, it sends a reply with an “UNAUTHORIZED” error code.

3. The client repeats the request, but this time it includes its credentials.

4. The server checks the credentials and, if satisfied, sends back the configuration information. The
reply can assume two different forms:

(a) In the simplest cases the configuration data can be included in the payload of the reply.

(b) In more complex cases (for example, if some negotiation is required) the reply will redirect
the client to use a different server and/or a different configuration protocol.

The motivation for the redirection toward a configuration server is to avoid DoS attacks, because a
complex protocol requires the allocation of resources to store the status of a transaction. With this
double server approach only the authorized clients are redirected to the configuration server.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 53

Techniques for Efficient Peer-To-Peer Streaming

4.3.3 Protocol structure

The configuration protocol has a query/response paradigm. The node that wants to join a PPETP session
sends a query message to the configuration server and the latter responds with a response message. Both
query and response packets are composed of a 32 bit header and a list of zero or more attributes in the
TLV format similar, but slightly different, from that of Section 3.8.2.2. The first octet denotes the type,
the length is a 15 bits integer encoded in one or two bytes as described in Section 4.3.6.2, and the
successive LENGTH bytes is the attribute.

4.3.4 Query packet

The first type of configuration packets are the Query Packets. They are composed of a header followed
by a list, possibly empty, of attributes. The header of the query packet is depicted in Fig. 4.1. It is
composed of:

Session_ID Contains the Session_ID (see Section 4.3.1) of the desired session.

Query_number Is a sequence number that uniquely identify a query. The same number is inserted in
the response packet.

V It is the minimum version of the protocol understood by the client and the server. If the server version
is unknown (because is the first request that the client does), it is the version of the client protocol.

Magic It is used to distinguish the configuration protocol packets from the other packets.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Session_ID | Query_Number | V | Magic |

+-+

Figure 4.1: Header of a query packet

Query packets are sent using the same port used by PPETP, in this way the remote server can learn the
socket address of the PPETP session. If the node is behind a NAT, it inserts the SOCK_ADDR attribute
(see Tab. 4.2) into the request. Normally the configuration protocols packets are sent to the TBD port
of the server, but this can be changed for example using the PPETP-CONFIG-PORT attribute in the SDP
file.

4.3.5 Response packet

The latter type of configuration protocol packets are the Response Packets that are used to reply to
a query packet. The structure of the header, as shown in Fig. 4.2 is very similar to the structure of
the query packets Fig. 4.1. The main difference is the substitution of the SESSION_ID field with

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Error_code | Query_Number | V | Magic |

+-+

Figure 4.2: Header of a response packet.

54 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

the ERROR_CODE field. This field contains a number that indicates the correct or incorrect execution
of the query that QUERY_NUMBER is reported in the response packet. The possible values of the
ERROR_CODE field are reported in Tab. 4.1 and the complete description is reported in [25].

Table 4.1: Values for the Result field of the Acknowledge packet.
VALUE MEANING

200 OK
300 Try alternate
400 Bad request
401 Unauthorized
406 Non acceptable
420 Unknown attribute
438 Stale nonce
500 Internal server error

4.3.6 Attributes

The query and the response packet can both carry attributes, and there are many attributes possible, so
for the sake of semplicty they are reported in the single Tab. 4.1.

Table 4.2: Attributes of the bootstrap configuration protocol.

Value Name Meaning

0 ACCEPTED-PROTOCOLS A list of integers identifying the version of the config-
uration protocol implemented by the client

1 PROTOCOL The protocol that the client must use to get the con-
figuration data

2 PARAMETER It is a parameter whose meaning depends on the par-
ticular protocol specified by PROTOCOL

3 ACCEPTED-CONTENTS A list of integers identifying a configuration descrip-
tion format understood by the client

4 CONTENT-TYPE Is an integer that is used when the configuration data
is included in the reply

5 CONTENT The configuration description. The format of this at-
tribute depends on the value of CONTENT-TYPE

6 USERNAME This field identifies the username and password com-
bination used to generate the signature

7 REALM It is an unquoted realm-value that matches the gram-
mar "realm-value" as described in [57] but without the
double quotes and surrounding white-space

Continued on next page

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 55

Techniques for Efficient Peer-To-Peer Streaming

Table 4.2 – continued from previous page

Value Name Meaning

8 USE-NONCE This field is present when one part requires the other
to authenticate itself

9 LOCAL-NONCE This field is filled with a verbatim copy of the attribute
USE-NONCE

10 REMOTE-NONCE When one of the parts wants to authenticate itself, it
MAY add this attribute whose meaning and objective
is similar to the “cnonce” field in [58]

11 ACCEPTED-ALGORITHMS A list of integers identifying a signature computing
algorithm that the node (client or server) can use

12 ALGORITHM Is an integer that specifies the algorithm used to com-
pute the value in the field SIGNATURE

13 USE-ALGORITHM Is an integer that specifies the algorithm to use in the
computation of the value in the field SIGNATURE.
If this field is missing, algorithm MAC described in
Section 4.3.6.1 is used

14 ACCEPTED-HASHES Many authentication algorithms make use of hash
functions. This attribute is a integer list where each
number identifies a hash function that the node (client
or server) can use

15 HASH Is an integer that specifies the hash function used

16 USE-HASH Is an integer that specifies the hash function to be used
in the computation of the value in the field SIGNA-
TURE

17 SIGNATURE This attribute, if present, MUST be the last one. A
packet taht has this field in a different position MUST
be discarded and if the packet is a query packet the
server must reply with the error code 400. This field
is computed by using the algorithm specified in the
attribute ALGORITHM

18 REASON The reason phrase is meant for user consumption, and
can be anything appropriate for the error code

19 UNKNOWN-ATTRIBUTES This attribute is present only in an error response
when the response code in the ERROR-CODE at-
tribute is 420

Continued on next page

56 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

Table 4.2 – continued from previous page

Value Name Meaning

20 SOCK-ADDR Is a generalized address of class IP and it is used by
the client to send the (address, port) pair used to re-
ceive PPETP data. By comparing the address found
in SOCK-ADDR with the address found in the IP
packet, the server can deduce whether the node is be-
hind a NAT or not

4.3.6.1 Packet Signing

The configuration protocol allows both client and server to request the authentication of each other.
There are two reasons because a client decides to send signed query:

1. A reply packet with the attribute USE-NONCE was received.

2. Spontaneously. For example if the client receives the nonce in an SDP file.

while a server signs a response if

1. The request packet includes a USE-NONCE attribute and

2. The request packet includes a valid user signature.

To not discourage DoS attacks, the server should not reply with a signed response to a non-signed query.
The procedure for creating a signed packet is the following:

1. A packet signed by the client must contain at least the attribute USERNAME.

2. The value of USE-NONCE (if present) is copied in the attribute NONCE. The value of attribute
REALM (if present) is copied in the packet.

3. The Attribute LOCAL-NONCE is added.

4. If necessary, attributes ALGORITHM and HASH are set.

5. The packet, completed with any other attribute related with the query, is processed together the
value of USERNAME and REALM to obtain a string of bits. The resulting string of bits is used
as value of the attribute SIGNATURE.

HMAC Signature

The specification of the PPETP protocol allows future definition for signature algorithm. In order to
grant at least one algorithm, it is specified that this signature algorithm must be implemented in every
client and server. The Keyed-Hashing for Message Authentication (HMAC) signature algorithm [59]
is based on the knowledge of a secret shared between the client and the server. This secret can be a
long-term password or a temporary secret communicated in a secure channel. It is supposed that the
shared secret can be found from the knowledge of USERNAME and REALM. Using the notation of
[59] “TEXT” is the whole packet to be signed, while the key K is obtained as:

K = H(S|NONCE)

where S is the shared secret, NONCE is the value of the attribute USE-NONCE, “|” is the concate-
nation operation and H is the selected hash function.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 57

Techniques for Efficient Peer-To-Peer Streaming

Algorithm 4.1: Pseudo-code of 15-bit integer encoding.

b1 : Byte ;
b2 : Byte ;
N: I n t e g e r ; # 0 <= N < 32768

Begin
i f N < 128

b1 := N; # b2 unused
e l s e

b1 := 128 + (N mod 1 2 8) ;
b2 := i n t (N/ 1 2 8) ;

end
End

Algorithm 4.2: Pseudo-code of 15-bit integer decoding.

. . .
Begin

i f (b1 and 128) == 0
N := b1 ;

e l s e
N = (b1 mod 128) + 128 ∗ b2 ;

end
End

4.3.6.2 15-bit integers encoding

In many cases, it is necessary to store an integer number into bytes. Very often, these integer numbers
have a value smaller than 100, but in some cases they can be larger. The algorithm presented here is an
efficient method of storing numbers up to 127 (using only one byte), but allowing values up to 32767
(using two bytes). The algorithm in pseudo-code is reported in the Algorithm 4.1.

In other words, the most significant bit of the first byte indicates whether it is one or two bytes used
to store the value. If this bit is 0, only one byteis used, otherwise two byte are used. To retrieve the
value, pseudo-code of the inverse algorithm is reported in the Algorithm 4.2.

4.3.7 Compact Configuration Format

In order to configure a PPETP session, the configuration server must provide the new peer with a lot of
information. This information can be passed with the Compact Configuration Format Protocol that was
deigned for this purpose. This protocol is inspired to SDP, but it is designed to be more compact by
eliminating some useless characters used by that protocol. The lines that are used in the configuration
are the following, where in the square brackets, the mandatory lines with the character “*” are marked,
the lines that can appear more than once are marked with “+” and lines that can be followed by an
arbitrary number of attributes are marked with “a”.

The complete format of these lines, in the Augmented Backus-Naur Form (ABNF) format [60], are
reported in [25], while in this section only their meaning is reported.

58 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

s [*] Stream line

p [* a] Profile line

Y [] Informations about the node itself ("Y" is for "Yourself")

C [+a] Informations about the channels opened by the node

c [+a] Connection line(s)

a [+] Attribute line(s)

f [a] Peer search method ("f" is for "find")

n [+a] Peer line(s) ("n" is for "node")

k [+a] Security related data (e.g., public keys)

P [+a] Security policies

X [] Data puncturing lines

x [] Routing puncturing lines

Stream line (“s”) The parameters on this line are the identifiers of the allowed streams. If the peer
receives a packet with a Stream_ID that is not in this list it must discard it. If the line is missing
or if there are no IDs, any ID is allowed.

Profile line (“p”) The first parameter of this line is the name of the utilized profile while the other
parameters, if there are any, are defined by the profile. This line can be followed by any number
of attribute lines, whose meanings are defined by the reduction profile.

Self information (“Y”) The first parameter indicate the Peer_ID that the node must use or the ’*’
character, meaning that the node can chose its Peer_ID by itself. The second parameter is the
number of channels to open; in this case the symbol ’*’ can also appear, meaning that the number
of channels is specified by the number of ’C’ lines that follow. If there are no other parameters,
the node cannot produce any stream. Otherwise, the following parameters are the Stream_IDs
that the peer can produce. There are some possibles methods to specifies the IDs:

1. A list of integer, where every integer is a Stream_ID that the peer can produce.

2. The line can end with a single asterisk, in which case the peer can produce any number of
streams whom ID is selected by the peer.

3. The line can terminate with an asterisk followed by an integer; in this case, the number of
streams that the peer can produce is limited by the integer.

Output channels (“C”) This line specifies the reduction parameters to be applied to a channel. Similar
to the profile line, the parameter, or the following attribute lines are specified by the profile. If
the character “C” is followed by an asterisk and a number, it means that there are two consecutive
channels with the same parameters.

Connection (“c”) This line specifies a generalized address. It can appear as part of a peer-block or by
itself. In the latter case, the field “label” is mandatory. The first parameter identifies the class
of the address, allowing the IP and ICE classes to be identified. If the following parameter is a

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 59

Techniques for Efficient Peer-To-Peer Streaming

label, identified by the ’@’ as the first character, it means that the address can be referred in the
remaining of the description simply by the label. The information necessary for the connection
can be given as positional parameters or as attributes.

Peer searching (“f”) The list of the upper-peers can be specified in the rest of the configuration or it
can be obtained using another search method indicated with this line. The first parameter indicate
the method used for searching while the other parameters and/or attributes are specified by the
method. For example, a method can be a DHT and the other parameters are used to execute a
search on it.

Peer line (“n”) This line it is used to describe a peer of the node. The first parameter is a character that
indicates the peer-type; it can assume the values ’u’ for upper-peers, ’l’ for lower-peer and ’o’ for
the other peers. The last case it is used for those nodes that need to communicate with the peer,
but are not a lower or an upper peer (e.g., the bridge in the ICE-based NAT transversal). The ’o’
type does not require the channel parameter, while for the ’u’ this parameter indicate the channels
of the upper-peer required, and for the ’l’ peers it indicates the channel used for it. After these
information there is the generalized address of the peers, as a connection-body, or label, or with
the ’c’ lines.

Security policies (“P”) This line specifies the actions that a peer can do. The first parameter indicates
the “capability” and is followed by the list of the Peer_ID of the peers authorized for that capabil-
ity. Further than the Peer_ID, it is possible to indicate some keywords used to identify the same
categories of peers.

Attribute (“a”) This line is used to assign parameters in a nominal way. It is composed by the at-
tribute’s name, followed by the symbol ’=’ and then the attribute’s value. The interpretation of
the value depends on the attribute.

Security related data (“k”) Not again specified.

4.3.8 Configuration defaults

The complete configuration of a PPETP session requires many parameters as seen in the previous sec-
tion. In order to simplify the configuration step and minimize the amount of required data, this section
defines some configuration defaults that can provide a good setup for most of the application contexts.

• Data and control packets signed with sender signature described in Appendix A.2.

• Routed control packets require a source signature. The source signature is done with the RABIN

procedure described in Appendix A.3.

• Only authorized nodes can send routed packets.

• Only authorized nodes can sign credential certificates.

• Only authorized nodes can send flow control command.

• The session carries only one stream with Stream_ID equal to 1.

60 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

4.4 ICE

To allow PPETP to work with client behind devices like firewall and NAT, this version of the protocol
implements ICE [54] as its default CEP. The information necessary to execute the ICE’s algorithm is
usually contained in the generalized address (see Section 3.5.1) or in the configuration file as explained
in the Section 4.3.7. The generalized address contains, among other things, the address of a “bridge”
node used by the peers to exchange the lists of the candidates. The lists, collected by both of the peers
are sent to the bridge by an HTTP/HTTPS request. The protocol implements the JavaScript Object
Notation (JSON) [61] format to encode the candidates list, but other formats can be used in future. The
complete JSON schema for the candidates list is reported in [25]

The bridge, after receiving both the lists, exchanges the lists amongst the two peers, after that, the
check for connectivity can begin. So that this may happen, the bridge needs some other information.
This information is the Peer_ID of the requiring and requested peer and the session identifier. This
information allows to create a unique association between the peers and the peers lists. Note that a
session identifier is also necessary because the same peers can be connected to each other in more than
one session. These sessions can also share the same address but not also the same port, for this a new
CEP is required.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 61

Techniques for Efficient Peer-To-Peer Streaming

62 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Conclusions

The study on the delay jitter clearly shows that a P2P network, using NC procedures such as coding
technique, allows for a reduction of the jitter experienced by a node. This improvement can signifi-
cantly increase the Quality of Experience (QoE) of the users applications, because of the possibility of
reducing the player’s buffer size. This results in a time decrease when the user turns on the software
or, in a multi-channel system, when it changes channel. The drawback of the proposed technique is an
increase in the overall bandwidth size due to the redundancy introduced by this scheme.

The second topic addressed in the thesis was a study of the asymptotic packets loss probability. It
was shown that the equivalent loss probability Peq , experienced by a node of a P2P network employing
NC, converges to 1 at the increase of of the network size. However, it is possible to control the conver-
gence velocity, meaning that is possible make it “very slow”, while operating on the network parameters.
In this way it is possible to make the Peq negligible in networks of typical size without increasing the
redundancy.

The main contribution of this thesis was the presentation of PPETP. This protocol allows for the
distribution of contents through the Internet in a multicast fashion, exploiting an overlay build on a P2P
network. It includes many features such as the possibility to distribute many streams together, that can
be produced by a single or multiple sources, different levels of security management, the availability of
NAT traversing procedures, and a versatile and extendible information coding technique. The design of
the protocol takes into account the possibility of configuring and expanding most of the functionality of
PPETP, making it a very versatile protocol adaptable to many applications. The best thing about PPETP
is the avoidance for the applications that use it, of most of the aspects of network management and data
flow. In this way, it appears similar to a transport protocol, making the development of new applications
and the adaptation of already existing ones easier, while giving them the possibility to exploit a P2P
architecture.

63

Appendix A

PPETP builtin profiles

PPETP demands some duties for several “plugins” (e.g., reduction and signature profiles, NAT traversal
procedures) whose definition is not part of the PPETP “core”. In order to make PPETP usable with-
out waiting for the definition of all the necessary plugins, this section defines few basic reduction and
signature plugins.

A.1 Reduction profiles

A.1.1 How to define a reduction profile

To specify a reduction profile, it is necessary to specify at least:

• The profile name and the name and type of every profile parameter.

• Which reduction parameters are “global” to the whole PPETP session and which are “local” to
each peer.

• The algorithm to map a content packet into the data packet payload.

• The format used to store the parameters in the payload of the SET_PARAMETER request and in
the payload of a data packet if the flag INLINE is setted.

• The meaning of the FLAGS field in the data packet.

• Any reduction-profile specific request.

A.1.2 Basic reduction profile

This is a very simple profile that just copies the content packet in the payload. It can be used to distribute
streams with a low bitrate (e.g., RTP Control Protocol (RTCP) [62] streams).

A.1.2.1 Profile name and parameters

The name of the profile is BASIC and there are no other parameter to specify.

A.1.2.2 Payload construction

The payload is a verbatim copy of the content packet.

64

Techniques for Efficient Peer-To-Peer Streaming

A.1.2.3 Profile-related definitions

• Data packet flags: Flags F, G, H and I are unused.

• SET_PARAMETERS payload: SET_PARAMETERS carries no payload.

• Profile-specific request: This profile defines no profile-specific request.

A.1.3 Vandermonde reduction profile

A.1.3.1 Profile name and parameters

The profile name is VANDERMONDE. This profile defines the following parameters:

gf_size This parameter can assume the values 1, 2 and 4 and determines the size of the Galois field
used. More precisely, GF_SIZE is the size in octets of an element of the Galois field, therefore the
Galois field relative to GF_SIZE is GF (28·gf_size).

reduction-factor This is (approximately) the ratio between the size of a content packet and its reduced
version. This value was called R in Section 3.6.1.

reduction-base This is the element of GF (28·gf_size) used to construct the reduction vector. This
value was called b in Section 3.6.1.

The parameters GF_SIZE and REDUCTION-FACTOR are global for the whole PPETP session, while the
value REDUCTION-BASE is local to each node. Depending on the configuration, the REDUCTION-BASE

can be chosen autonomously by the peer or it can be imposed by some external entity.

A.1.3.2 Payload construction

The payload construction is based on the ideas of [40]. The payload is constructed as follows

1. Define, for the sake of compactness, d = 8 ∗ gf_size, B = reductionbase and R = reduction-
factor.

2. Let the elements of GF (2d) be represented as described in Appendix A.1.3.2.1.

3. At startup the node constructs the row vector r = [1, b, b2, · · · , bR−1].

4. The packet to be reduced is mapped in a matrix G with R rows and L/(gf_size ∗ R) columns
with entries in GF (2d) as follows:

(a) The packet is padded, as described in Appendix A.1.3.2.2, to a length multiple of gf_size ∗
R octets. Let L be the length, in octets, of the padded packet.

(b) Let b[n] be the n-th octet of the padded packet, with n = 0 denoting the first octet. For
every m = 0, 1, . . . , L/gf_size, interpret the sequence of GF_SIZE octets: b[gf_size ∗
m], b[gf_size ∗ m + 1], . . . , b[gf_size ∗ (m + 1) − 1] as an element of GF (2d) as de-
scribed in Appendix A.1.3.2.1. Let g[m] be the element ofGF (2d) associated to b[gf_size∗
m], b[gf_size ∗m+ 1], . . . , b[gf_size ∗ (m+ 1)− 1].

(c) Define G as the matrix whose element in row r and column c is g[r + R ∗ c], where r =

0, 1, . . . , R− 1 and c = 0, 1, . . . , L/(R ∗ gf_size)− 1.

5. Matrix G is left-multiplied by vector r to obtain row vector U = r ∗G.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 65

Techniques for Efficient Peer-To-Peer Streaming

6. Every element of U is mapped to gf_size octets (still according to the representation described
in Appendix A.1.3.2.2) to obtain a string of L/R octets that represents the payload of the data
packet.

A.1.3.2.1 Galois field implementation If d = 8, 16 or 32, let GF (2d) be the field of polynomials
with coefficients in GF (2) (i.e., the integers modulo 2) modulo the polynomials shown in Tab. A.1

Table A.1: Polynomials used to define GF (2d).

d Polynomial defining GF (2d)

8 x8 + x4 + x3 + x2 + 1

16 x16 + x5 + x3 + x2 + 1

32 x32 + x15 + x9 + x7 + x4 + x3 + 1

The element of GF (2d) associated with

cd−1x
d−1 + cd−2x

d−2 + ...c1x+ c0

(where each cn = 0, 1) is represented by the d-bit unsigned integer

C = 2d−1cd−1 + 2d−2cd−2 + ...2c1 + c0

This integer can be represented as a sequence of octets b0, b1, bd/8−1 in little endian order, that is

C = b0 + 256b1 + 2562b2 + . . .

A.1.3.2.2 Packet padding

1. Let LENGTH(P) be the size in octets of the content packet P to be padded and let the padding
length L be

L = (gf_size ∗R)− (length(P) mod (gf_size ∗R))

2. Note that L + length(P) is always a multiple of R ∗ gf_size. Note also that if LENGTH(P)
is already a multiple of R ∗ gf_size, the packet will be padded with L = R ∗ gf_size bytes,
although no padding would be necessary. It was chosen to add the padding also when LENGTH(P)
is already a multiple of R ∗ gf_size for the sake of simplicity, in order to not handle special
cases. The overhead in bandwidth is expected to be negligible (an average of GF_SIZE bytes
every R ∗ gf_size packets, that is, 1/R byte per packet).

3. (a) Append L zeros to the packet.

(b) Decompose L as
L = A ∗ 128 +B

where 0 ≤ B < 128.

(c) If A = 0 (that is, the padding length is less than 128), write B in the last octet of the padded
packet.

(d) IfA > 0, writeB+128 in the last octet of the padded packet and writeA in the penultimate
octet.

66 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

The algorithm above can be summarized by saying that the most significant bit of the last octet of the
padding acts as a flag: if it is zero, we know that the padding length was less than 128 and that its value
is in the last octet; if it is one, we know that the padding length was greater or equal than 128 and that
its value is stored in the last two octets. Note that using only one octet would limit the padding size to
255 and that we cannot always use two octets because the padding size could be 1.

A.1.3.3 Profile-related definitions

• Data packet flags: Flags F, G and H are unused; flag I has its default meaning of “Inline”.

• SET_PARAMETERS payload: The payload of the SET_PARAMETERS command is used to trans-
fer the value chosen for reduction-base. Such a value is represented as a sequence of GF_SIZE

octet used as the payload of SET_PARAMETERS.

• Payload with the INLINE bit set: If the INLINE bit is set, the value of reduction-base, encoded as
explained above, is prepended to sequence of octets resulting from the reduction procedure. The
result is the payload of the data packet.

• Profile-specific request: This profile defines no profile-specific request.

A.2 Sender signature profiles

A.2.1 How to define a sender signature profile

A sender signature profile document must specify at least

• The profile name and name and type of any required parameter.

• Which parameters are “global” to the whole PPETP session and which are “local” to each peer.

• The algorithm to obtain the source signature field from the packet.

• Any profile-specific request.

A.2.2 Shared key signature profile

A.2.2.1 Profile name and parameters

The name of this profile is SHARED-KEY. This profile requires the following parameters:

• An h-bit hash function H, at least SHA-256 must be supported. The name of this parameter is
HASH. The only value currently accepted for hash is SHA-256, but other values can be added in
future.

• A symmetric encryption algorithm C, at least AES-256 MUST be supported. The name of this
parameter is ENCRYPTION. The only value currently accepted for encryption is AES-256, but
other values can be added in the future.

• Two positive integers ID-SIZE and MAC-SIZE, both multiple of 8 and with MAT-SIZE ≤ h.

The nodes agree on these parameters via extra-PPETP means. A summary of the parameters together
with the accepted values is given in Tab. A.2.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 67

Techniques for Efficient Peer-To-Peer Streaming

Table A.2: Configuration parameters for the shared key signature profile.

Parameter Attribute name Accepted values

Hash function HASH SHA-1

Encryption function ENCRYPTION AES-256

ID size in octets ID-SIZE non-negative integer ≤ 8

MAC size in octets MAC-SIZE non-negative integer ≤ 16

A.2.2.2 Payload construction

This signature profile supposes that the sender and the receiver share a common secret K. The sender
is identified by an ID represented by a ID-SIZE-bit number. The signature of a packet is the pair (ID,
MAC), where MAC is calculated as follows

1. The whole packed is processed with hash function H.

2. The result of the hash is encrypted with C using K as key.

3. The first MAC-SIZE bits of the encrypted hash are the MAC.

The signature payload is obtained by linking the ID-SIZE-bit number representing the ID and the MAC-
SIZE-bit number representing the MAC. Since both ID-SIZE and MAC-SIZE are a multiple of 8, the
signature will always take an integer number of octets.

A.2.2.3 Remarks

• This profile does not say how the two nodes agree on the common secret K, this is supposed
to be done via extra-PPETP means. For example, if the two nodes are a server and a user, K
could be a long-term password, whereas if the two nodes are two peers K could be the result of a
Diffie-Hellman key agreement procedure.

• In order to ensure that the packet was signed by a node A, it is necessary to be sure that both ID
and K refer to A. This will typically require some form of authentication that must be done via
extra-PPETP means.

• In order to allow for an autonomous Diffie-Hellman key exchange between the nodes without
involving a central server, a node can communicate its ID and its public Diffie-Hellman key in the
PEER_CREDENTIAL attribute of the DATA_CONTROL/START packet.

• The possibility of having the MAC shorter than the hash allows for a reduction of the bandwidth
required by the signature in those applications that do not need the strength of the full MAC.

A.2.3 Void signature profile

This profile does not add any signature to the packet. It is defined for those cases where signatures
would be redundant.

A.2.3.1 Profile name and parameters

The name of this profile is VOID. This profile defines no parameters.

68 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

A.2.3.2 Creating the signature

This profile does not create any signature. The payload is empty.

A.2.3.3 Verify the signature

The signature check is always positive.

A.3 Source signature profiles

A.3.1 How to define a source signature profile

A source signature profile document must specify at least

• The profile name and name and type of any required parameter.

• Which parameters are “global” to the whole PPETP session and which are “local” to each peer.

• The algorithm to obtain the source signature field from the packet.

• Any profile-specific request.

A.3.2 Rabin signature profile

This profile is based on the Rabin signature algorithm [63].

A.3.2.1 Profile name and parameters

The name of this profile is RABIN. This profile defines the following parameters:

• A parameter SIGN-SIZE assuming positive values less than or equal to 16.

• A parameter TAIL-SIZE assuming positive values less than or equal to 8.

A.3.2.2 Creating the signature

The procedure to compute the source signature is the following:

1. The procedure is parametrized by two positive integer values: s ≤ 16 and u ≤ 8.

2. At the beginning the node generates two 4∗SIGN-SIZE-bit prime numbers p and q (the node private
key) and calculates the sign-size-octets value n = p ∗ q (the public key).

3. To sign a packet, the node concatenates the whole routed packet (including the routing data block,
but not the signature) with a tail-size-octets random value U and process the result with SHA-256.
Let Y be the final value.

4. The node finds x such that Y = x2 mod n. If such an x does not exist, the node draws a new
U , goes back to the previous step and tries again. The expected number of trials is four. Note that
the node can find x efficiently because it knows p and q.

5. The signature is given by the (sign-size+tail-size)-octets value 28∗tail−size ∗ x+U . Such a value
is stored in the Source Signature field with any unused most significant bits set to zero.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 69

Techniques for Efficient Peer-To-Peer Streaming

A.3.2.3 Verifying the signature

The procedure to verify the signature is the following:

1. From the knowledge of the source ID, determine the source public key N. If no public key is
associated with the source ID, the verification fails.

2. Extract values x and U from the Originator Signature field.

3. Concatenate U with the packet and process the result with SHA-256 to obtain T .

4. Verify that T = x2 mod n.

The association of the public keys with the corresponding peer ID is supposed to be done by extra-
PPETP means.

70 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Bibliography

[1] C. System, “Cisco visual networking index: Usage study.” http://www.cisco.com/en/

US/solutions/collateral/ns341/ns525/ns537/ns705/Cisco_VNI_Usage_

WP.html, October 2010.

[2] A. Vakali and G. Pallis, “Content delivery networks: status and trends,” Internet Computing, IEEE,
vol. 7, pp. 68 – 74, nov.-dec. 2003.

[3] R. Buyya, M. Pathan, and A. Vakali, eds., Content Delivery Networks (Lecture Notes Electrical
Engineering). Springer-Verlag Gmbh, 1 ed., 2008.

[4] N. Bartolini, E. Casalicchio, and S. Tucci, “A walk through content delivery networks,” in Per-
formance Tools and Applications to Networked Systems (M. Calzarossa and E. Gelenbe, eds.),
vol. 2965 of Lecture Notes in Computer Science, pp. 1–25, Springer Berlin Heidelberg, 2004.

[5] ““akamai”, http://www.akamai.com.”

[6] ““mirror image”, http://www.mirror-image.com.”

[7] ““webvisions”, http://www.webvisions.com.”

[8] S. Deering, “Host extensions for IP multicasting.” RFC 1112 (Standard), Aug. 1989. Updated by
RFC 2236.

[9] B. Williamson, Developing IP Multicast Networks, Volume I. Cisco Press, 1999.

[10] F. Pianese, “A Survey of P2P Data-driven Live Streaming Systems” in Streaming Media Architec-
tures, Techniques and Applications: Recent Advances, ch. 12, pp. 295–310. Eds. Hershey, NY,
USA: Information Science Reference, 2011.

[11] F. Mathieu and D. Perino, “Epidemic Live Streaming” in Streaming Media Architectures, Tech-
niques and Applications: Recent Advances, ch. 13, pp. 311–336. Eds. Hershey, NY, USA: Infor-
mation Science Reference, 2011.

[12] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang, “LayerP2P: Using layered video chunks
in P2P live streaming,” Multimedia, IEEE Transactions on, vol. 11, pp. 1340–1352, Aug. 2009.

[13] S. Alstrup and T. Rauhe, “Introducing Octoshape – a new technology for large-scale streaming
over the Internet,” July 2005.

[14] M. Wang and B. Li, “Network coding in live peer-to-peer streaming,” IEEE Transactions on Mul-
timedia, vol. 9, pp. 1554–1567, Dec. 2007.

71

Techniques for Efficient Peer-To-Peer Streaming

[15] M. Wang and B. Li, “R2: Random push with random network coding in live peer-to-peer stream-
ing,” in IEEE Journal on Selected Areas in Communications, Special Issue on Advances in Peer-
to-Peer Streaming Systems, pp. 1655–1666, 2007.

[16] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Splitstream: High-
bandwidth multicast in cooperative environments,” pp. 298–313, 2003.

[17] X. Zhang, J. Liuy, B. Liz, and P. Yum, “CoolStreaming/DONet: a data-driven overlay network for
efficient live media streaming,” in Proceedings of IEEE International Conference on Computer
Communications, IEEE Computer Society, Mar. 2005.

[18] K. Egevang and P. Francis, “The IP Network Address Translator (NAT).” RFC 1631 (Informa-
tional), May 1994. Obsoleted by RFC 3022.

[19] T. Small, B. Liang, and B. Li, “Scaling laws and tradeoffs in peer-to-peer live multimedia stream-
ing,” in Proceedings of the 14th annual ACM international conference on Multimedia, MULTI-
MEDIA ’06, (New York, NY, USA), pp. 539–548, ACM, 2006.

[20] G. Dán, V. Fodor, and I. Chatzidrossos, “On the performance of multiple-tree-based peer-to-peer
live streaming,” in INFOCOM 2007. 26th IEEE International Conference on Computer Commu-
nications. IEEE, pp. 2556 –2560, may 2007.

[21] G. Dán, V. Fodor, and G. Karlsson, “On the stability of end-point-based multimedia streaming,” in
in Proc. of IFIP Networking, pp. 678–690, May 2006.

[22] G. Dán, V. Fodor, and I. Chatzidrossos, “Streaming performance in multiple-tree-based overlays,”
in in Proc. of IFIP Networking, pp. 617–627, May 2007.

[23] ““pplive”, http://www.pplive.com.”

[24] ““ppstream”, http://www.ppstream.com.”

[25] R. Bernardini, R. Cesco Fabbro, and R. Rinaldo, “Peer-to-peer epi-transport protocol draft-
bernardini-ppetp.” http://tools.ietf.org/html/draft-bernardini-ppetp,
July 2011.

[26] I. Chatzidrossos, G. Dán, and V. Fodor, “Delay and playout probability trade-off in mesh-based
peer-to-peer streaming with delayed buffer map updates,” Peer-to-Peer Networking and Applica-
tions, 2010.

[27] G. Dán and V. Fodor, “Delay asymptotics and scalability for Peer-to-Peer live streaming,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 20, pp. 1499–1511, Nov. 2008.

[28] D. Wu, Y. Liu, and K. Ross, “Modeling and analysis of multichannel p2p live video systems,”
Networking, IEEE/ACM Transactions on, vol. 18, pp. 1248 –1260, aug. 2010.

[29] D. Wu, Y. Liu, and K. Ross, “Queuing network models for multi-channel p2p live streaming
systems,” in INFOCOM 2009, IEEE, pp. 73 –81, april 2009.

[30] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for p2p streaming systems,” in INFOCOM
2007. 26th IEEE International Conference on Computer Communications. IEEE, pp. 919 –927,
may 2007.

[31] G. Dán and V. Fodor, “Stability and performance of overlay multicast systems employing forward
error correction,” Perform. Eval., vol. 67, pp. 80–101, February 2010.

72 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Techniques for Efficient Peer-To-Peer Streaming

[32] L. D. Soares, P. Nunes, and F. Pereira, “Efficient network-aware macroblock mode decision for
error resilient h.264/avc video coding,” SPIE, September 2008.

[33] P. Nunes, L. D. Soares, and F. Pereira, “Automatic and adaptive network-aware macroblock intra
refresh for error-resilient h.264/avc video coding,” in Proceedings of the 16th IEEE international
conference on Image processing, ICIP’09, (Piscataway, NJ, USA), pp. 3037–3040, IEEE Press,
2009.

[34] J.-R. Ohm, “Advances in scalable video coding,” Proceedings of The IEEE, vol. 93, pp. 42–56,
2005.

[35] V. K. Goyal, “Multiple description coding: Compression meets the network,” Signal Processing
Magazine, IEEE, vol. 23, no. 5, pp. 74–94, 2001.

[36] S. Zezza, E. Magli, G. Olmo, and M. Grangetto, “Seacast: a protocol for peer-to-peer video stream-
ing supporting multiple description coding,” in Proceedings of the 2009 IEEE international con-
ference on Multimedia and Expo, ICME’09, (Piscataway, NJ, USA), pp. 1586–1587, IEEE Press,
2009.

[37] J. R. Taal and R. Lagendijk, “Hybrid temporal-snr multiple description coding for peer-to-peer
television,” in Picture Coding Symposium, 2006.

[38] R. Ahlswede, N. Cai, S.-y. R. Li, and R. Yeung, “Network information flow,” IEEE TRANSAC-
TIONS ON INFORMATION THEORY, vol. 46, no. 4, pp. 1204–1216, 2000.

[39] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proceedings of the 41st Annual
Allerton Conference on Communication, Control, and Computing, 2003.

[40] R. Bernardini, R. Rinaldo, and A. Vitali, “A reliable chunkless peer-to-peer architecture for multi-
media streaming,” in Proc. Data Compr. Conf., (Snowbird, Utah), pp. 242–251, Brandeis Univer-
sity, IEEE Computer Society, Mar. 2008.

[41] Q. Li and D. Mills, “On the long-range dependence of packet round-trip delays ininternet,” ICC
98. Conference Record.1998 IEEE International Conference on Communications, 1998., vol. 2,
pp. 1185–1191, 1998.

[42] Q. Li and D. Mills, “Investigating the scaling behavior, crossover and anti-persistence of internet
packet delay dynamics,” in Proceeding of IEEE GLOBECOM’99, Rio De Janeiro, pp. 1843–1852,
1999.

[43] Q. Li and D. Mills, “Jitter based delay boundary prediction of wide-area networks,” IEEE/ACM
Transactions on Networking, vol. 9, pp. 578–590, 2001.

[44] Q. Li and D. Mills, “The implication of short-range dependency on delay variation measurement,”
in IEEE International Symposium on Network Computing and Applications, pp. 374–380, 2003.

[45] H. A. David, Order Statistics 2nd edition. Wiley-Interscience, 1981.

[46] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. National Bureau of Stan-
dards, 1965.

[47] ““planetlab”, http://www.planet-lab.org.”

[48] D. Mills, “Network Time Protocol (Version 3) Specification, Implementation and Analysis.” RFC
1305 (Draft Standard), Mar. 1992. Obsoleted by RFC 5905.

Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine 73

Techniques for Efficient Peer-To-Peer Streaming

[49] X. Hei, Y. Liu, and K. Ross, “IPTV over P2P streaming networks: the mesh-pull approach,” IEEE
Communications Magazine, vol. 46, pp. 86–92, Feb. 2008.

[50] R. Bernardini, R. Cesco Fabbro, and R. Rinaldo, “Group-based reduction schemes for streaming
applications,” ISRN Communications and Networking, vol. 2011, 2011.

[51] L. Eggert and G. Fairhurst, “Unicast UDP Usage Guidelines for Application Designers.” RFC
5405 (Best Current Practice), Nov. 2008.

[52] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “TCP Friendly Rate Control (TFRC): Protocol
Specification.” RFC 5348 (Proposed Standard), Sept. 2008.

[53] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control Protocol (DCCP).” RFC
4340 (Proposed Standard), Mar. 2006. Updated by RFCs 5595, 5596.

[54] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol for Network Address
Translator (NAT) Traversal for Offer/Answer Protocols.” RFC 5245 (Proposed Standard), Apr.
2010.

[55] V. Paxson and M. Allman, “Computing TCP’s Retransmission Timer.” RFC 2988 (Proposed Stan-
dard), Nov. 2000. Obsoleted by RFC 6298.

[56] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session Description Protocol.” RFC 4566 (Pro-
posed Standard), July 2006.

[57] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley,
and E. Schooler, “SIP: Session Initiation Protocol.” RFC 3261 (Proposed Standard), June 2002.
Updated by RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626, 5630, 5922, 5954, 6026, 6141.

[58] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart,
“HTTP Authentication: Basic and Digest Access Authentication.” RFC 2617 (Draft Standard),
June 1999.

[59] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Message Authentication.”
RFC 2104 (Informational), Feb. 1997. Updated by RFC 6151.

[60] D. Crocker and P. Overell, “Augmented BNF for Syntax Specifications: ABNF.” RFC 4234 (Draft
Standard), Oct. 2005. Obsoleted by RFC 5234.

[61] E. K. Zyp, “A json media type for describing the structure and meaning of json documents.” http:
//tools.ietf.org/html/draft-zyp-json-schema-03, November 2010.

[62] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-
Time Applications.” RFC 3550 (Standard), July 2003. Updated by RFCs 5506, 5761, 6051, 6222.

[63] M. O. Rabin, “Digitalized signatures and public-key functions as intractable as factorization,” tech.
rep., Cambridge, MA, USA, 1979.

74 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

List of Figures

1 Path of a stream with and without the Multicast IP. 2
2 Concept of Upper and Lower peer. 3
3 Layered Coding scheme. 4
4 Multiple Description Coding scheme. 5
5 Use of the Network Coding in a P2P network. 7

1.1 Network Model. 11
1.2 Equivalent model. 11
1.3 Comparison between theoretic, approximate and simulated mean delay for N = 100

(peer delays distributed as N (0, 1).) . 14
1.4 Comparison between theoretic, approximate and simulated jitter for N = 100 (peer

delays distributed as N (0, 1)). 15
1.5 Mean delay as function of N (peer delays distributed as N (0, 1)). 15
1.6 Jitter as function of N (peer delays distributed as N (0, 1)). 16
1.7 Histogram of peer delays. 17
1.8 Experimental and predicted mean delay as function of K (in units normalized to basic

jitter). 17
1.9 Experimental and predicted jitter as function of K (in units normalized to basic jitter). . 18

2.1 Examples of stratified networks (a) tree, (b) parallel trees and (c) onion skin. The dashed
lines mark stratum boundaries . 23

2.2 Probability of packet reception in (a) a modular network, (b) a contant random network
and (c) a totally random network. In all the plots L = 10, N = 3, and P` = 0.5. . . . 27

3.1 Connection of a computer to Internet by mean of a NAT. 31
3.2 Change of address due to the NAT. 34
3.3 Generalized address structure. 35
3.4 IP address core format. 35
3.5 ICE address core format. 36
3.6 PPETP Data Packet. 39
3.7 PPETP Control Packet. 40
3.8 Payload of the feedback request. 42
3.9 TLV format. 42
3.10 Use of routed packet. 43
3.11 Payload of a routed packet. 44
3.12 Use of reflectors. 45
3.13 Format of credential certificate . 47
3.14 PUNCTURING and ROUTING ATTRIBUTES format. 47

75

Techniques for Efficient Peer-To-Peer Streaming

3.15 Handshake procedure. 49

4.1 Header of a query packet . 54
4.2 Header of a response packet. 54

76 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

List of Tables

1.1 Polynomials coefficients for the Gaussian case. 14

3.1 Values for the Result field of the Acknowledge packet. 41

4.1 Values for the Result field of the Acknowledge packet. 55
4.2 Attributes of the bootstrap configuration protocol. 55

A.1 Polynomials used to define GF (2d). 66
A.2 Configuration parameters for the shared key signature profile. 68

77

Techniques for Efficient Peer-To-Peer Streaming

78 Tesi di dottorato di Roberto Cesco Fabbro discussa presso l’Università degli Studi di Udine

Acknowledgment

First and foremost, I am deeply grateful to my advisor, Prof. Riccardo Bernardini, for his great help,
inspiration and the immense knowledge he provided me with these past years. With his guidance I was
able to conclude my project successfully, as well as this very important step of my instruction, which
was a personal challenge for me as well.

I am equally grateful to my co-adviser, Prof. Roberto Rinaldo, for his continual availability and for
the help gave me during these past years as well as for the many opportunities he gave me.

I would also like to show my gratitude to Prof. Fernando Pereira, Prof. Paulo Nunes, and Prof.
Luis Ducla Soares for their full support during my time in Lisbon, and for their constructive criticism,
which allowed me to expand my research in new and different directions. This is always a precious
contribution for people that seek to improve themselves.

I would like to thank all my friends who shared with me the happiest and the saddest moments during
these years, while giving me the necessary motivation to continue my efforts. Together with the “old”
friends, I am grateful also to the friends and collegues at the Multimedia Signal Processing Group of the
Lisbon site of Instituto de Telecomunicações, and to the other friends I met in that city, who helped me
in many aspects of my stay in Portugal, and made me feel at home.

As is tradition, I have left the most important and heart felt acknowledgements to the end. None of
this would have been possible without the love and the help of my family who always encouraged me
during the moments of difficulty and enjoyed with me my successes.

I want to reserve a particularly important thanks for my Mother Rosanna, who always believed in
me and encouraged me throughout my years of my study, although unfortunately she is not able to see
the result.

79

