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Abstract

Stepwise perturbed NMR spectra analysis is a powerful tool capable of de-

scribing kinetic, thermodynamic, structural aspects of proteins at a residue

level and of following the physical and chemical changes of the system. The

analysis of an NMR spectrum still offers compelling challenges to the auto-

matic identification of the chemical shift evolution.

We designed and developed a data-analysis method which allows automatic

peak detection in every spectrum, peak tracking between spectra and peak

reconstruction for BLUU-Tramp sessions, a stepwise isotopic exchange ex-

periment producing few hundreds of 2D NMR spectra.

The method has been named TinT (Trace in Track), referring to the idea

that a gaussian decomposition traces peaks within the tracks recognized

through 3D mathematical morphology. TinT is capable of determining the

evolution of the chemical shifts, intensity and linewidths of each tracked

peak.

The performances obtained in term of track reconstruction and correct as-

signment on realistic synthetic spectra were high above 90% when a noise

level similar to that of experimental data were considered. TinT was ap-

plied successfully to several protein systems during a temperature ramp in

isotope exchange experiments. The comparison with a state-of-the-art algo-

rithm showed very good results for great numbers of spectra and low signal

to noise ratios, when the graduality of the perturbation is appropriate.

In the thesis, in addition to the description of the current version of TinT,

some observations and considerations that can allow future revisions or im-

provements on BLUU-Tramp protocol or its analysis are also described.
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1

Introduction

In the last few years it seems that we are witnessing an epochal transition fostered by a

rapid evolution of techniques, technology and tools that is modifying humankind habits

and behaviors in every aspects of our life: communications, commerce, knowledge and

research. Following the distinction that Dyson suggests in his article “Is science mostly

driven by ideas or by tools?” [1] it seems that we are in between a Galisonian and a

Kuhnian scientific revolution.

On one hand, Peter Galison highlighted in his 1997 book, “Image and Logic” [2],

the key role of tools in driving science, that is what we are assisting [3]. In fact,

increasing computing powers of CPU and GPU allow users to face increasingly complex

calculations in less time; vastness of RAM and Hard-disk are moving the attention from

“less but good” to the chance to explore more and more new horizons with detailed

description; finally faster communications lines (ADSL, fiber, 4G, 5G) have created

pressure to share all kind of data in web site, in data banks or in the Cloud. The cloud

computing gathers all these positive aspects and it is arising as the newest powerful

service available for researchers and no.

On the other hand, data explosion and the falling cost of computing, storing and

communications are also affecting the scientific method. Shared data means that re-

searchers can work not only with their own data collection but also manipulate a huge

amount of data produced all over the world. In this way they can generate models

and hypotheses combining and mining the pool of data already available. Data explo-

ration becomes a valuable approach to generating new knowledge. It is rising a shift

in the scientific thinking, a ‘paradigm’ shift in the Kuhnian sense [4], dubbed by Bell,
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1. INTRODUCTION

Hey and Szalay “the 4th paradigm” [5]. In fact, science was born empiric, as obser-

vational description of natural phenomena. Then, in parallel to the development of

the mathematical sciences, a theoretical branch was grown for the generalization and

modeling. These are classically considered the first two paradigms. Subsequently, in

the last decades a computational science or simulation has emerged as the third pillar

of the scientific process, completing the experimental-theoretical framework. Driven by

inexpensive, opportunity and necessity, more and more data are acquired. In front of

this bulk of available data, science is discovering the abundant vastness of data as a

source of knowledge. This is the new era of data-intensive science [6].

In Jim Gray’s last talk [6] to the Computer Science and Telecommunications Board

on January 11, 2007, he said: “We have to do better at producing tools to support the

whole research cycle – from data capture and data curation to data analysis and data

visualization”. All the scientific community is invited to consider the many opportunities

and challenges for data-intensive science.

1.1 NMR spectroscopy opportunities

With the growing storage capability of the modern computers and their decreasing cost,

it is more and more feasible to acquire series of stepwise perturbed 2D NMR spectra in

various kind of experiments designed to characterize molecular behavior during variation

of physical and chemical conditions. In fact it is possible to monitor modifications in

NMR spectra following structural and functional changes of molecules in solution due

to thermal, pH or external pressure variation, chemical reactions, solvation, complex

formation or ligand binding.

What is observed is a strong correlation between the chemical and physical changes

of the systems under study and the features of the NMR spectrum, i.e. chemical shifts,

intensities, peak multiplicity, peak onset and/or loss. It is theoretically and experi-

mentally confirmed that the major alterations are experienced by those peaks that are

correlated to residues that are involved in the process under consideration (see reviews

[7, 8, 9] and references therein) which makes high resolution NMR a so powerful and

informative technique in chemistry, physics and biophysics.

In particular the displacement of the chemical shift and the modification of signal

linewidth and intensity are used to probe relevant events in experiments such as drug
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1.2 Literature review

screening [10], SAR by NMR [11, 12], protein-protein interaction [13, 14, 15, 16, 17],

chemical shift covariance analyses [18], isotopic exchange at single temperatures [19, 20,

21], BLUU-Tramp [22, 23] and titration in general [24].

Very often the NMR experiment of choice, for such studies on proteins, is the highly

sensitive 2D HSQC of 15N-enriched proteins [25, 26] or fast acquisition versions such as

HMQC-SOFAST [27] and BEST-TROSY [28], because they allow one to obtain infor-

mation at single residue resolution with one signal for each N-H pair. When no enriched

product is available, however, homonuclear 2D TOCSY is also often used. Mapping and

quantitative evaluation of peak evolution allows one not only to effectively gather ex-

perimental points, but also to accurately trace and reconstruct the function, modeling

the process, to which thermodynamic formulae, statistical and clustering analyses can

be applied.

Although algorithmic approaches have been developed, NMR spectroscopy has not

yet raised an appropriate interest by the specialist programmers [29], that could address

these issues with an automatic approach. In fact, though the human perceptual capa-

bility remains the source of inspiration for new methods, it is likely to fail providing the

best results, especially regarding the performance precision, the timing and the analysis

completeness, when dealing with massive data, i.e. circumstances in which computers

outperform even an expert operator to give an unbiased result. Stepwise perturbed

NMR spectra analysis and high throughput screening still offer compelling challenges

to automation of peak picking and peak tracking because of noise, peak overlap, cross

shifting and long distance correlation peaks.

1.2 Literature review

In the literature peak picking and peak tracking analyses are two distinct concepts and

are often considered separately.

As for the former procedure, the first proposal has been STELLA [30] in 1990 with

a naive point by point reconstruction and the software currently used are based on

a variety of methods, such as peak properties [31, 32], machine learning algorithms

[33, 34, 35, 36], spectral decomposition [37, 38, 39, 40], wavelet smoothing [41], Ben-

jamini-Hochberg procedure [42], computer vision [43], Monte Carlo stochastic approxi-

3



1. INTRODUCTION

mation and Bayesian statistics [44]. A comprehensive review has been given by Liu and

coworkers in the introduction of the article describing their algorithm WaVPeak [41].

Fewer articles deal with the automation of the tracking procedure. The proposed

methods in the literature are: APET/PROPET (in Felix-Autoscreen) [45], based on

bipartite graph matching by systematic tree search methods and simulated annealing

approach with heuristic simplification, Nvmap (NMRViewJ [32]) [46], based on search

of the nearest pair with a greedy algorithm, GAPT [47] based on best-score-selection

under constrain with heuristic simplification, PeakWalker [48] based on many-to-one

mapping through maximum weighted k-dimensional matching of the graph. On one

hand, all of them have implemented algorithms with a list-based approach considering

matching among their own generated peak lists or given by one of the aforementioned

peak pickers. Any error or artifact present in the peak list is not correctable since the

main routine does not check the actual data. On the other hand, they differ in the

score function used for the matching and in the level at which the best choice is made:

peaks, pair of spectra or whole paths. Moving from local to global strategies brings all

the approaches beyond computational possibilities for protein NMR spectra due to the

NP-completeness of the problem [48].

1.3 BLUU-Tramp

Our attempt in automation stems from the need to analyze data resulting from BLUU-

Tramp experiment [22, 23]; therefore some methodological choices reflect features of the

method.

An experimental session of BLUU-Tramp produces two sequences of around 200

2D HMQC spectra (Fig. 1.1), that are acquired at regular temperature increments

(usually 0.1-0.2 K) and time intervals. The choice of a tiny temperature step provides

a quasi-continuum evolution.

During the first thermal ramp, the protein, previously deuterium-exchanged, un-

dergoes a D-H isotopic exchange with the aqueous solvent. The second thermal ramp,

analyzed by our routine TinT, is used as reference in absence of isotopic exchange and

it monitors the evolution of the NMR peaks as the temperature slowly changes: every

peak shows a slow chemical shift drift (variation of the position in the 15N and 1H

frequency space) along with a gradual modification of the intensity and linewidth.
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Figure 1.1: Design of BLUU-Tramp experiments: plots of temperature and intensity of
one peak over time. In the second graph, the observed intensity of one peak is plotted in
green. The dotted line represent the intensity of the same peak without the H-D exchange
process.

For each peak, the derived quantity used to evaluate the isotopic exchange process

during a BLUU-Tramp session, cleaned from the (unwanted) contribution of the thermal

dependence of spin relaxation, is the following:

N [s] =
Iref [s]− Iexc[s]

Iref [s]
∀s (1.1)

where Iexc[s] and Iref [s] are arrays that collect the intensity evolution of one peak in

each spectrum s during the two thermal ramps, with and without an exchange process,

respectively (Fig. 1.2).

N [s] becomes N(t) once a regression model is defined (see chapter 6).

Theoretically [22, 23], the physical phenomenon of the isotopic exchange is described

by the following formula:

N(t) = N(0) exp

{
−
∫ t

0
k(T (t′))dt′

}
(1.2)

Solving equation (1.2) for k(T(t)), the following description is obtained:

k(T (t)) = − d

dt
lnN(t) (1.3)
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Figure 1.2: Main data from BLUU-Tramp experiment: plots over time of reference and
exchange intensities and their derived quantity N(t) in blue, green and red respectively.

Therefore, having a mathematical description of N(t) and solving for that the equa-

tion (1.3), k(T (t)) can be obtained.

The first main point is to collect Iref [s], Iexc[s] for every peak in each spectrum; this

kind of analyses is related to peak tracking and reconstruction.
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2

Aim of the project

The aim of this project was to design and develop an automatic data-analysis method

which allows peak detection (picking) in every spectrum and peak tracking between

spectra and their reconstruction.

The first part of my PhD course aimed at the conception and the implementation

of the main part of the routine, developing the code with functions and procedures and

defining the internal data structure. The software is named TinT (Trace in Track).

The second part of the PhD work was to optimize the implementation. I improved

functions and routines to compute faster and to reduce the amount of memory used by

the internal data-flow. To strengthen the automation, a starting subroutine was created

minimizing the need to involve the user in the choice of the default starting parameters.

The use of an input file, auto-generated the first time the routine is run, allow the user

to edit these values. An effort for the simplification of the input and output procedures

was made to allow the use of the software even by inexperienced users. Great attention

was devoted to the visual and graphical inspection of the intermediate stages.

The last part of the work was intended to prove the validity of the software with

both real and synthetic data. Three BLUU-Tramp sessions on three different proteins

were analyzed by TinT and the results were compared with a state-of-the-art algorithm,

PeakWalker. A procedure was implemented to generate synthetic BLUU-Tramp sessions

from the results of the analysis on the real protein data. The results of this work were

published in an article in high impact-factor journal [49].

An additional part of this project was the assessment of critical aspects in the

analysis of BLUU-Tramp experiment that can allow future revisions or improvements

7



2. AIM OF THE PROJECT

on the protocol or its analysis.
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3

Methods and algorithms

3.1 TinT

Our method is applicable to a series of spectra in which the features of the peaks undergo

small modifications from one spectrum to the next due to quasi-continuum progressive

sample perturbations. To deal with this issue we propose a novel approach based on

morphological filtering [50, 51, 52] and decomposition. A selection of the region of

interest is performed around local maxima collected over a threshold, roughly chosen

low enough to maintain all the signal; subsequently signal-peaks are singled-out based

on their persistence among the sequence of spectra, considered simultaneously. This is

allowed by the application of 3D mathematical morphology which produces the removal

of the fluctuating noise and the clustering by contact of the signal peaks. The result

is a set of masks selecting each group of connected peaks. The estimated number of

peaks of each selection is used by a later subroutine that performs a decomposition to

obtain the parameters of the peaks, modeled as gaussians. A statistical validation stage

reduces the amount of artifacts.

The validity and the efficiency of TinT are demonstrated first on realistic synthetic

data, where more than 90% of the tracks are correctly recognized, and then by its

application to three BLUU-Tramp experimental sessions using 1H-15N HMQC spectra

on three different human proteins: Acylphosphatase (hAcP), β2-microglobulin (β2-m)

and Lysozyme (hLys).

9



3. METHODS AND ALGORITHMS

3.2 Mathematical morphology

The novelty of our approach is to find a solution of the tracking issue in the theoret-

ical framework of mathematical morphology, a powerful theory for image processing

[51, 52] based on nonlinear geometric approach [50]. For an introduction to Mathemat-

ical morphology for image processing see e.g. a chapter by Glasbey [53]. The basic

morphological tools are the dilation (⊕) and the erosion (⊖) algorithm that work on a

black and white image by altering the distribution of the two colors in two opposite way

(Fig. 3.1): dilation extends the white portion over the black one following a shape de-

fined by the user through a “Structuring Element” (SE); erosion works in the same way,

but inverting the colors of the SE. These 2D-image operations can be easily extended

�
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�	�
���
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��������
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Figure 3.1: Behavior of the morphological operators. The arrows represent the specified
algorithms that transform the input images in output images, with the given SE

to be applied on multidimensional binary matrices, defining:

dilation A⊕ S =
⋃

z∈S Az

erosion A⊖ S =
⋂

z∈S Az

where Az is a translation of the image A and S is a SE.
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3.3 TinT algorithm/structure

Their combination defines new operators with more complex and sophisticated ac-

tion (Fig. 3.1) such as:

opening ◦ = ⊖⊕ (3.1)

closing • = ⊕⊖ (3.2)

We took advantage from the potentiality of the opening operator to erase details

smaller than a SE while maintaining unaltered the remainder (Fig. 3.5b). Then we

exploit the capability of the closing operator to connect structures separated by volumes

smaller than a SE (Fig. 3.5c).

3.3 TinT algorithm/structure

The TinT algorithm is coded in Octave (version 4.0.0) [54] with the following packages:

• image (version 2.4.1),

• optim (version 1.4.1)

• statistics (version 1.2.4)

The work-flow of the routine is composed by five steps:

1. Default setting parameters definition: this procedure overcomes the need of

manual parameter specification. An output file summarizes all the parameters

and permits their modification.

2. Selection of the region of interest: identification of all the local maxima over

a rough intensity threshold in every spectrum and association of a corresponding

area.

3. Morphological filter: sequence of morphological operators to track all peak rep-

resentations along different spectra, while discriminating signal from noise. This

stage allows us to group peaks that sooner or later overlap along their evolution,

assembling them in a 3D structure that we shall refer to as 3D-blob.

4. Weighted decomposition: fitting all evolving peaks in each 3D-blob slice with

2D-gaussians.

11



3. METHODS AND ALGORITHMS

5. Results validation: parameters statistical analysis to select internally coherent

results.

The output of TinT is the evolution of the five fundamental descriptors of each

peak in every spectrum: intensity (I), 1H and 15N frequency positions (δH, δN) and

linewidths (λH, λN).

In the following subsection, each step of the procedure will be described in some

detail.
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Figure 3.2: The MIDNE method applied to the first hAcP spectrum. The distribution
of the intensity is represented with a histogram. The green dashed line was half of the
maximum bin height. The bins higher than this value, shown in red, are used to reconstruct
the gaussian distribution shown with the red line. The baseline (B) and the noise level (N)
are estimated by the center (µ) and the width (γ) of the distribution. The three magenta
dotted lines show µ− γ, µ and µ+ γ of the distribution.

3.3.1 Default setting parameters definition

A starting procedure was written to help the user to manage parameters needed by the

algorithm, although the possibility of modification is maintained with an auto-generated

output file. The automatic definition of all the default values through a fast analysis

12



3.3 TinT algorithm/structure

of the first spectrum avoids human bias. The typical expected peak linewidths, λH̄

and λN̄ , are statistically defined as the median of the set of evaluated linewidths since

the signals of protein HSQC spectra can be guessed to exhibit similar shapes in prin-

ciple. The peak linewidths are estimated, for the first twenty highest peaks, as half

horizontal and vertical pixel dimension of the peak section with a threshold of 66% of

the maximum. λH̄ and λN̄ will be involved in the determination of the limit radius

(see section 3.3.2), in the computation of σ for the weight function (see Eq. (3.5)) and

as starting guess in the decomposition procedure (see section 3.3.4).

In order to let the user define the rough threshold used to initially filter the spectra,

an estimation of baseline (B) and the noise level (N) are necessary. Following the white

noise definition and the observation that the total signal area occupies a minority of the

spectrum area, we compute the center (µ) and the width (γ) of the distribution of the

intensities fitted by a gaussian, that estimate the baseline and noise level, respectively.

The fitting is performed around the statistic mode value because the contribution of

signals affects the gaussian shape only at very high intensities, as evidenced in Fig. 3.2.

This estimation method has been named MIDNE (Modeling Intensity Distribution for

Noise Estimation). TinT will propose setting the threshold at B + 5N [55].

3.3.2 Region of interest selection

All the spectra are uploaded with a zeroing of all points below the previously estimated

intensity threshold. A selection of local maxima within a given window is implemented.

To apply the subsequent morphological filter, an area, called spot, has to be assigned

to each of the recognized maxima: we chose the base of the peak portion above a local

threshold corresponding to a given percentage of the peak intensity (Percentage Local

Threshold, PLT).

It was soon noted that low intensity local maxima can strongly affect the area of the

selected spot when overlapping with higher intensity peaks (Fig. 3.3). The proposed

solution is to limit the area of the lower spot by a disk of a radius equal to 1.5 times

the maximum between λH̄ and λN̄ . In this way, a black and white image is obtained

from each spectrum containing all the signal spots (Fig. 3.4).
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Figure 3.3: Example of spot evaluation for two overlapped peaks: PLTs are shown with
contour lines in red and blue. The low intensity peak affects and overestimates the area
around the higher peak. The magenta dotted line shows the circumference limiting the
area of the lower peak to avoid the overestimation of areas. The filled areas are assigned
to two maxima.
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3.3 TinT algorithm/structure

a)

b)

c)

d)

Figure 3.5: Elaboration of data
during the morphological filter.
The input 3D-matrix (a), the
output of the opening algorithm
(b), the output of the closing al-
gorithm (c) and the output of
the connected-components label-
ing algorithm (d) are shown.
Gaps (filled by the closing opera-
tor) are indicated by the arrows.
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3. METHODS AND ALGORITHMS

3.3.3 Morphological filter

The input for the filter is a 3D-matrix composed by the obtained black and white images,

stacked one over the other, in which the planar dimension are 1H and 15N frequencies

of the 2D spectrum itself and the third dimension is the time/temperature (Fig. 3.5a).

The signal spots are persistent from one spectrum to another or, at most, a slow shift is

observed due to thermal drift. In this way, slanted columns, isolated or intersecting each

other, will be assembled in the matrix along the third dimension. At variance, noise

which is by definition uncorrelated between single spectra, tends to create shorter and

unoriented 3D connected structures. Both described features are easily recognizable in

Fig. 3.5a. We designed a filter that cleans the matrix exploiting these different behaviors.

It works by erasing (with a morphological opening) black volumes smaller than a given

SE (Fig. 3.5b) and then connecting (with a morphological closing) the surviving volumes

closer than the proper SE (Fig. 3.5c). This SE has been chosen with a cylindrical

shape with the height along the third dimension, to better resemble the silhouette of

the column. Minimum radius and height are chosen to be sure to maintain the shape

of the peaks however they can be adjusted by the user by modifying the parameters in

the file auto-generated by the starting procedure. The connected-components labeling

algorithm is subsequently used to uniquely identify subset of connected components,

one for each surviving 3D structure (3D-blob) (Fig. 3.5d). The filtered 3D-matrix is

used as a mask to select the signal data and each 3D-blob recalls one group of peaks at

a time.

To exclude noise artifacts we analyze only blobs whose persistence is longer than

an established cutoff (two times the length of the opening SE). This choice allows

anyway to take in account peaks that disappear or emerge as the physical and chemical

conditions are changing.

3.3.4 Weighted decomposition

The aim of this procedure is the reconstruction of synthetic spectra by decomposition

and modeling of peaks as gaussians. This procedure allows one to obtain I, δH, δN ,

λH and λN of the 2D gaussian for each peak in each spectrum.

As a prerequisite, the procedure needs an estimation of the number of the involved

peaks (nG) in every 3D-blob. In fact, at this stage, the 3D-blobs that contain one
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3.3 TinT algorithm/structure

recognized peak for each layer are already tracked in their evolution. If more than one

peak is involved in a blob, the appropriate number of gaussians must be used for the

decomposition to identify and isolate their contribution to the overall landscape.

A routine estimates nG by the following steps:

• the number of recognized maxima for each layer in the 3D-blob is stored in an

array, A;

• A is processed with a median filter to smooth sharp fluctuations;

• the first 2 modal values are calculated and the highest is chosen if its frequency

is greater than a given percentage (5%) of the total number of spectra.

nG also allows to identify the best layer in the 3D-matrix in which the decomposition

procedure starts: within the longest interval of coincidence between nG and A[i], the

most distant layer from the interval borders is chosen, because in the corresponding

spectrum the peaks are well distinguished.

The decomposition is implemented as a minimization algorithm with weighted data

as target (Fig. 3.7). For each layer, the decomposition modifies the parameters

x̄ = {Ik, δHk, δNk, λHk, λNk|k = 1, ..., nG}

to minimize a cost-function,

C(x̄) =
∑
p̄

Hr
(
w(p̄) ∗

[
D(p̄)−R(p̄; x̄)

])
(3.3)

where w, D, and R are the weight function, the original data and the reconstructed

spectrum in the spectral coordinate space (p̄ = (F1, F2)), respectively. Hr is the Huber

function

Hr(v) =

{
1
2v

2, |v| < r
rv − 1

2r
2, |v| ≥ r

(3.4)

where r is a cutoff value equal to the initial threshold value (see section 3.3.1). The

Huber function (shown in Fig. 3.6) substitutes the square function, normally used for

minimization, to reduce the contribution of original data outliers and to obtain a more

robust evaluation of the reconstruction.

The weight function focuses the solution of the optimization on the neighborhood of

the recognized maxima: we propose to use as weight function the section of the 3D-blob
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Figure 3.6: Comparison between Huber function (green), linear function (red) and square
function (blue).
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d)

Figure 3.7: Weighted deconvolution: data (a), weight function (b), peak reconstruction
(c) and remainder (d).
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3.3 TinT algorithm/structure

relative to the considered layer in which the sharp transition at the borders is smoothed

by extending it with a gaussian shape having a linewidth comparable with the peaks

(Fig. 3.7b):

w(p̄) =

{
1 p̄ ∈ M

e
−
(

d(p̄,M)
σ

)2

p̄ ̸∈ M
(3.5)

where M is the morphological recognition set, d
(
p̄,M

)
is the minimum Euclidean dis-

tance between the p̄ point and all the point in M and σ is a distance cutoff chosen as the

maximum typical expected peak linewidth evaluated in the starting procedure (section

3.3.1).

The peak reconstruction (example in Fig. 3.7c) in the starting layer needs a guess of

the 5 parameters involved for each peak. I, δH and δN can be directly taken from the

recognized maxima (section 3.3.2), while λH̄, λN̄ (section 3.3.1) are used to estimate

λH, λN . After every estimation λH, λN will be forced to be positive.

For all the other layers, along the downstream direction the starting parameters

are estimated using the evaluated ones of the previous spectrum, while the upstream

starting parameters consider the next spectrum in the sequence.

3.3.5 Result validation

Statistical analysis is performed on position and linewidths of peaks resulting from the

decomposition stage to select valid results. The following condition must be sequentially

met:

1. δH and δN must be within the analysis window around the weight function;

2. δH and δN must not be within the areas of a different blob with respect to the

analyzed one;

3. λH and λN must be limited by half of the spectrum dimension;

4. in every spectrum, λH and λN must be within the interval centered on the median

of the linewidths of the isolated peaks at the same temperature and 6 MAD

(Median Absolute Deviation) wide.

It must be noticed that filtering the results after the decomposition, instead of

imposing the conditions as a constrain to the optimizer, allows to use the same results
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3. METHODS AND ALGORITHMS

as a discriminant for the quality of the peak identification. In fact results that do not

meet the above criteria are symptoms of various kind of error such as:

• peaks that disappear or appear during physical evolution,

• excessive overlap between peaks,

• wrong estimation of involved peaks in a blob (nG).

3.4 Experimental methods

3.4.1 Synthetic spectra

For testing purposes synthetic spectra were generated with realistic features. In partic-

ular, one hundred chemical shifts were randomly selected from the (N,HN) assignments

of hLys. Consistently with most tracks, the chemical shift temperature dependence was

approximated to be linear. The experimental reconstruction of complete tracks from

the spectra of the three analyzed proteins, i.e. hAcP, β2-m, hLys, provided the temper-

ature coefficients which were randomly assigned to the synthetic peaks. Intensities and

linewidths were randomly assigned in a range of 0.4 to 1.5, and 0.8 to 1.2, respectively,

relative to the averages observed on the three proteins. The time dependence of the in-

tensity was assumed to be at most quadratic, whereas linewidths decrease exponentially

towards 60% to %90 of their starting values, consistent with experimental observation

(e.g. in Fig. 4.1). 210 spectra were generated. Noise was added by convolving gaus-

sian white noise with a bidimensional gaussian with parameters optimized to reproduce

experimental noise.

3.4.2 NMR Experiments

The BLUU-Tramp sessions of β2-m (100 amino acids, 279.2 K - 317.2 K), hAcP (99

amino acids, 290.9 K - 315.8 K) and hLys (130 amino acids, 283.0 K - 336.0 K) are used

to demonstrate the effectiveness of our algorithm.

Chemical shift changes during the thermal ramp were monitored in 1H-15N HMQC-

SOFAST [27] or 1H-15N BEST-TROSY [28]. The spectra of 15N-labeled protein samples

were acquired on a Bruker Avance operating at 500 MHz (1H frequency) or a Bruker
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3.4 Experimental methods

Avance III equipped with cryoprobe and operating at 600 MHz (1H frequency), respec-

tively at Biophysics laboratory of Udine University and Core Technology Platform of

New York University Abu Dhabi. Data were collected over sweep widths of 14 ppm

(1H) and 32 ppm (15N) with 768 and 80 points, respectively. All remaining conditions

were set according to the protocol previously reported [22, 23].

3.4.3 Spectral data processing

The spectra were processed with NMRpipe [56] with a sinebell squared apodization func-

tion. 1K × 512 points real spectra were obtained after t1 linear prediction, apodization,

zero-filling and finally Fourier transformation.
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4

Results and Discussion

4.1 Results on synthetic data

Synthetic data, generated as described in 3.4.1, were analyzed by TinT. In order to

evaluate the accuracy of the method, for each spectrum the matrix of distances between

reconstructed and original peaks was computed. All peaks which were closer than the

original linewidths to an original peak, were considered compatible with the original

peak. Compatibility at this stage is meant in a many-to-many relationship, due to

overlaps or proximity within linewidths. Finally, the most persistent matches are used

to produce the output one-to-one mapping between TinT and original tracks. Once

a one-to-one mapping has been obtained, the accuracy of TinT was evaluated by two

tests:

• the number of complete tracks reconstructed over the total number of original

tracks;

• the number of correct peak assignments in all spectra over the product of number

of original tracks times number of spectra, in order to account for both complete

and partial track reconstructions.

The analysis was repeated for different noise level (with standard deviation from zero

to 10% of the peak intensity mean, ranging up to 25% of the lowest intensity peak),

and by progressive downsampling of the dataset. All results are reported in table 4.1

and table 4.2.
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4. RESULTS AND DISCUSSION

Table 4.1: TinT results for synthetic data with increasing noise level

N/S(mean) N/S(min)
complete

tracks

detailed

reconstruction

0 % 0.0 % 97 % 99.96 %

1 % 2.6 % 98 % 99.8 %

2 % 5.2 % 96 % 99.7 %

3 % 7.7 % 87 % 97.2 %

4 % 10.3 % 89 % 97.8 %

5 % 12.9 % 83 % 96.8 %

6 % 15.5 % 73 % 96.9 %

7 % 18.1 % 65 % 90.4 %

8 % 20.6 % 64 % 86.2 %

9 % 23.2 % 52 % 80.4 %

10 % 25.8 % 42 % 75.0 %

Table 4.2: TinT results for downsampled synthetic data with a 2% N/S(mean) ratio.

downsampling
complete

tracks

detailed

reconstruction

1 96 % 99.7 %

2 93 % 99.1 %

3 90 % 97.4 %

4 76 % 90.2 %

5 69 % 85.4 %

6 56 % 79.8 %

It is seen from the tables that the performance of TinT in both complete tracks

and detailed reconstruction is excellent for realistic noise levels (say up to 2%) and it

starts to deteriorate going to extreme noise levels. Although the effect of downsampling

24



4.2 Results on experimental data

depends on the specific experimental conditions (e.g. the temperature interval between

consecutive spectra) it seems important that a quasi-continuous variation of spectral

features is met in the experiments, as it can be inferred from the results in table 4.2.

4.2 Results on experimental data

We tested TinT on three BLUU-Tramp experimental sessions using 1H-15N HMQC

spectra on three different human proteins hAcP, β2-m and hLys of 100, 99 and 130

residues, respectively.

For each recognized peak, I(t), δH(t), δN(t), λH(t) and λN(t) were determined

(an example is shown in Fig. 4.1).

a)

c)

b)

d)

Figure 4.1: Evolution of the five fundamental parameters of one hAcP peak: I(t) (a),
δH(t) and δN(t) (b), λH(t) (c) and λN(t) (d).

The high number of spectra, peaks and complexities, such as the appearance and

the disappearance of signals as well as extensive overlapping do not allow to establish a

ground truth, i.e. exact number of peaks and their positions and shapes. Nevertheless
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4. RESULTS AND DISCUSSION

in a single spectrum we expect to observe a number of peaks close to the number of

N-H pairs. Thus we refer the number of the resulting tracks to the protein length. Con-

sidering a reasonable track the one spanning at least half of the number of experiments,

the estimated percentages of TinT recognition are around 90%, 88%, 94% for hAcP,

β2-m and hLys, respectively (table 4.3).

Table 4.3: TinT results for hAcP, β2-m and hLys considering tracks spanning at least
half of the number of experiments

Protein Residues Tracks Coverage

hAcP 100 90 90%

β2-m 99 87 88%

hLys 130 123 94%

It must be noticed that our method allows us to recognize nonlinear paths, as shown

in Fig. 4.2, similar to those seen in ligand binding studies [24].

126.5

127

127.5

128

8.58.558.68.658.78.75

F
1
 
(
p
p
m
)

F2 (ppm)

Figure 4.2: Recognition of a non linear path in hLys NMR spectrum. Lines show the
evolution of the position of the recognized peaks. The flow of the time is represented with
a chromatic scale.
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4.3 Comparison with PeakWalker

4.3 Comparison with PeakWalker

To better evaluate the method we compared TinT output with the results of PeakWalker

[48], a state-of-the-art peak tracking algorithm. It must be noted that PeakWalker has

been designed to analyze a smaller number of spectra with larger chemical shift changes

than the one analyzed here. Moreover multiple runs of the program (which are not per-

formed here) would result in better estimation of tracks, and finally it provides multiple

choices for track end point mapping, whereas our focus is on track reconstructions. For

this reasons the following comparisons should be regarded with some caution. In the

following we describe our usage of the program to the best of our possibilities.

In order to reduce human biases in the comparison concerning thresholds, peak

picking and validation, the following precautions were adopted:

• the same threshold was used for both methods;

• the peaks coordinates calculated by the region of interest selection were used to

fill the peaklists needed for PeakWalker;

• no inferior limit was given to the tracks length.

Figure 4.3: Comparison between TinT (left) and PeakWalker (right) resulting tracks

There were cases in which PeakWalker followed with the same track the evolution

of more than one peak (Fig. 4.3). To better evaluate the performance of the algorithm,

these cases should be filtered but a proper filter would need a prior knowledge of the

27



4. RESULTS AND DISCUSSION

position of each peak in all the spectra and reconstructing the whole tracks manually

would have been impractical.

Each experimental set was analyzed with two different thresholds: a high threshold

(TH), that selects mainly the signals discarding low intensity peaks, and a low threshold

(TL), that keeps those peaks but allows also some noise to enter in the process. Following

the Rose criterion [55], they were set as follows:

TL = B + 4N (4.1)

TH = B + 8N (4.2)

where B is the baseline and N is the noise level, both calculated with the starting proce-

dure (see section 3.3.1) on the first spectrum, which is the one less affected by thermal

noise. Tables 4.4, 4.5 and 4.6 report the number of signals at different thresholds,

grouped by track length.

Table 4.4: hAcP. Comparison between TinT and PeakWalker results: number of recog-
nized tracks at TL and TH , grouped by track length.

track length

0-26 26-51 51-76 76-101 101-126 126-150 150-175 175-200 200-225 225-250

TinT
TL 31 2 5 1 3 2 2 5 7 75
TH 18 5 3 2 3 0 3 4 5 65

PeakWalker
TL 118 31 10 9 8 6 12 1 5 5
TH 29 9 6 2 2 1 5 4 9 51

TL TH
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Figure 4.4: hAcP. Comparison between TinT (blue) and PeakWalker (red) results at TL

(a) and TH (b): number of recognized tracks, grouped by track length.
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Table 4.5: β2-m. Comparison between TinT and Peakwalker results: number of recog-
nized tracks at TL and TH , grouped by track length.

track length

1-22 22-43 43-64 64-85 85-106 106-126 126-147 147-168 168-189 189-210

TinT
TL 21 5 8 4 1 1 0 3 2 82
TH 11 3 0 2 2 2 4 6 5 68

PeakWalker
TL 101 38 13 8 4 7 3 4 0 5
TH 64 19 15 7 6 10 7 5 7 45

TL TH
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Figure 4.5: β2-m. Comparison between TinT (blue) and Peakwalker (red) results at TL

(a) and TH (b): number of recognized tracks, grouped by track length.

Table 4.6: hLys. Comparison between TinT and Peakwalker results: number of recog-
nized tracks at TL and TH , grouped by track length.

track length

0-22 23-44 45-66 67-88 89-110 111-132 133-154 155-176 177-198 199-213

TinT
TL 50 17 9 6 6 8 7 7 12 93
TH 11 3 8 5 9 5 10 7 10 79

PeakWalker
TL 205 87 39 2 5 1 0 0 0 0
TH 81 101 18 11 23 10 12 4 10 8

The outcomes highlight that, at a given threshold, TinT was able to recognize a

higher amount of longest tracks than PeakWalker and this is more evident when the TL

is used (Tables 4.4, 4.5, 4.6 and Figures 4.4, 4.5 and 4.6). Furthermore, on decreasing

the threshold from TH to TL, the number of long tracks recognized by TinT increased,

while decreasing for PeakWalker (tables 4.4, 4.5, 4.6).

The high number of short tracks recognized by PeakWalker at low thresholds is not

due to a better performance with respect to TinT, but rather to the capability of the
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Figure 4.6: hLys. Comparison between TinT (blue) and Peakwalker (red) results at TL

(a) and TH (b): number of recognized tracks, grouped by track length.

latter of recognizing much more long tracks than PeakWalker within the same pool of

experimental data.
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5

Model for loss correction

The TinT tracking routine, applied to BLUU-Tramp experiments, results in the de-

tailed description of both the exchange and the reference subsession intensities, Iexc

and Iref , respectively. In this chapter, a simple model is described to understand how

this output is affected by chemical and physical phenomena, such as conformational

changes, aggregation and other unknown events that result in a permanent signal loss.

NMR theory states that the NMR signal is proportional to the concentration of the

molecule in solution, therefore we can devise a simplified model in which each protein

molecule can be represented like a sequence of signal emitters a = {ak|k = 1 : K},
with K the total number of H-N pairs; in this simple model, ak represent the single

molecule contribution of the k-th peak and it is an artificial function that hides all the

dependence of each intensity peak with the relaxation time to isolate the dependence

of Ik with the amount of protein in that conformation Q0:

ak(t) =
Ik(t)

Q0
.

Every modification time- or temperature-driven of the amount of protein in the

considered configuration affects also Iobsk as following:

Iobsk (t, T ) ∝ ak(T )Q(t, T ) (5.1)

Chemical-physical phenomena that alter the quantity of the “emitters” can be ex-

pressed as a loss function P in the formula describing the evolution of Q with time:

Q(t) = Q0P (t) (5.2)
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5. MODEL FOR LOSS CORRECTION

where Q0 is the initial quantity of molecules in the considered conformation.

(5.1) and (5.2) bring to the following:

Iobsk (t, T ) ∝ ak(T )Q
0P (t, T ) (5.3)

It must be noticed that different phenomena can affect simultaneously intensities of

all the peaks (e.g. aggregation) or have an effect only on a part of them (e.g. local

conformational changes). Consequently even the loss function must be differentiated

for each k-th peak: Pk.

In the following sections we will describe and graph the Ideal situation and three

special cases: Time dependent loss, Thermal trigger loss, One-step loss. It must be

stressed that none of these cases is meant to accurately represent a real case, but they

can approximate basic behaviors.

The subscript k is omitted to simplify the writing.
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5.1 Ideal situation

5.1 Ideal situation

To work properly, a BLUU-Tramp experiment should be performed on a protein that

can tolerate two thermal ramps. All the modifications occurring to the protein during

the fist ramp must be reversible, so that the pause between two thermal ramps allows

the protein to retrace the same intensity evolution. In this case the quantity of protein

in the observed conformation can be described by a constant function, Q(t) = Q0

(Fig. 5.1)
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Figure 5.1: Plots of the k-th peak during a BLUU-Tramp experiment in the ideal situa-
tion: Temperature, single molecule contribution, amount of emitters and intensity of the
peak.
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5. MODEL FOR LOSS CORRECTION

5.2 Time dependent loss

Some chemical or physical events can affect the quantity of emitters as time progresses.

In this case, the quantity of emitters decreases during the whole time frame in which

the experiment takes place.
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Figure 5.2: Plots of the k-th peak during a BLUU-Tramp experiment with time dependent
loss: Temperature, single molecule contribution, amount of emitters and intensity of the
peak. Dotted lines show the ideal situation.
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5.3 Thermal trigger loss

5.3 Thermal trigger loss

In this case the quantity of the emitters decrease only when temperature is higher than

a thermal threshold, Tt (Fig. 5.3).

Considering the theoretical linearity of the intensity evolution over the temperature,

this model can potentially explain deviation from said linearity: as can be seen in Fig

5.3, the existence of a temperature threshold, that triggers the signal loss, lowers the

intensity slope in the last part of the ramp. This effect can be reversible or not.

Therefore, the observation of a slope of the intensity curve which is lower than the

expected one might be linked to events of conformational changes or aggregation.
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Figure 5.3: Plots of the k-th peak during a BLUU-Tramp experiment with thermal trigger
loss: Temperature, single molecule contribution, amount of emitters and intensity of the
peak. Dotted lines show the ideal situation.
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5.4 One-step loss

In this model the whole loss of the emitters happens in the specific time frame between

the two ramps.
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Figure 5.4: Plots of the k-th peak during a BLUU-Tramp experiment with one-step loss:
Temperature, single molecule contribution, amount of emitters and intensity of the peak.
Dotted lines show the ideal situation.

Among the models shown, this one is the most unrealistic and cannot be related

to any physical and chemical process. However its loss can be easily corrected since

BLUU-Tramp focuses its attention only on the intensities acquired during the ramps.

During the second ramp, the quantity of emitters observed can be related to the one
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before the loss by a multiplicative factor α defined as following:

α =
Qi

Qf

Consequently

Iref = αIobsref

where Iref is the reference intensity to be used in equation (1.1) and Iobsref is the observed

intensity during the reference ramp.

5.5 Comparison
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Figure 5.5: Comparison of the BLUU-Tramp experiment loss models: the ideal situation
(dotted blu), time dipendent loss (red), thermal trigger loss (green) and one-step loss
(orange).
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For comparison purposes the final protein loss is equal in all aforementioned models.

It can be immediately noticed that the intensity curves for the different loss models

Time dependent loss and Thermal trigger loss lead to very similar profiles during both

the exchange and the reference ramp. Similarly, One-step loss adequately retraces their

plots during the reference phase. In the exchange phase, this model does not correct

the observed curve, however it sufficiently approximates the others during the first half

of the ramp that is he relevant part since most of decays have already reached their

inflection point in the first half allowing the evaluation of the exchange rate. These

considerations along with the simplicity of One-step loss correction make it a good

candidate for the emitter loss modeling.
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6

Regression Model

The aim of TinT applied to BLUU-Tramp analysis is to obtain a reliable evaluation

of the intensity evolution for each peak during the exchange and reference phases. As

anticipated in the section 1.3,we can compute the quantity that describes the isotopic

exchange process N [s] point by point using the eq. (1.1):

N [s] =
Iref [s]− Iexc[s]

Iref [s]
∀s (6.1)

At this stage, N [s] is a sequence of data, but to apply the equation (1.3) and obtain

k(T (t)) a regression function must be used.

It must be highlighted that, since there is no theoretical reasons behind the choice

of the model, the regression can be valid in a limited range centered on the inflection

point.

6.1 Regression functions

Due to the experimental BLUU-Tramp protocol (see section 1.3), the curve describing

N(t) must:

• be a monotonic decreasing function of the temperature,

• have an right horizontal asymptote at zero,

• have N(T (0)) ≤ 1.

It is also experimentally observed that N(t) has a decay trend (an example is shown

in Fig. 6.1) or a sigmoidal trend (shown in Fig. 6.2).
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Figure 6.1: Main data from BLUU-Tramp with a decay trend: plots over time of reference
and exchange intensities and their derived, N(t), for the 58th AcP track in blue, green and
red respectively.
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Figure 6.2: Main data from BLUU-Tramp with a sigmoidal trend: plots over time of
reference and exchange intensities and their derived, N(t), for the 65th AcP track in blue,
green and red respectively.
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6.1 Regression functions

6.1.1 decay function

A decay plot like the one shows in Fig. 6.3 can be fitted with a decreasing exponential

function:

N(t) = N(0)e−λt

It is mathematically described by only two parameters that define the initial quantity

(N(0)) and the decay rate (λ).
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0
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0.4

0.6

0.8

1

time (min)

S

S (exponential decay)

λ = 0.02

λ = 0.01

λ = 0.005

λ = 0.0025

Figure 6.3: Examples of four exponential decays with N(0) = 1 and varying λ parameter.

Since two parameters are not enough to describe a curve with two curvatures like the

one showed in fig 6.2 the exponential function can be ruled out as a suitable regression

function. A sigmoidal function is instead a good candidate to describe the highest num-

ber of experimental curves being able to approximate an exponential decays when the

decreasing part of the curve is around the initial values of the horizontal axis (Example

in Fig. 6.4 with b = 0.01 and a = −0.1 or a = −1).

6.1.2 Gompertz function

Among all the sigmoid functions, the Gompertz Curve [57] (shown in Fig. 6.4) was

historically chosen [22, 23]

N(t) = N(0)eae
bt

(6.2)

where parameters must be a < 0 and b > 0 to obtain a function that satisfy the first

two theoretical constraints, while the third condition on N(0) must be checked after

the fitting or forced in cases in which data do not show the initial plateau because

without it the fitting routine has not any data to find a realistic value for the left-hand
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6. REGRESSION MODEL

asymptote. In Fig. 6.4 the effect of varying parameters a and b are shown: a affects the

displacement and b defines the slope of the function. Furthermore, in the figure it can

be observed that the left-hand value (asymptote) is approached much more gradually

by the curve than the right-hand asymptote.
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Figure 6.4: Graphs of Gompertz function varying separately a or b.

Applying 1.3 to 6.2, the following equation is obtained:

k(T (t)) = − d

dt

(
ln
(
N(0) ea ebt

))
= −b · aebt (6.3)

The latter equation (6.3) shows that the choice of Gompertz function (as the fitting

function) forces the description of the target unknown function, K(T (t)), to have a

pure exponential behavior. Using only three parameters the function 6.4 can’t take into

account data with a non-zeros left asymptote. Furthermore it can’t shape differently

the gradient of the slope or modify the intrinsic asymmetry.
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6.1 Regression functions

6.1.3 Gompertz function with baseline

When data shows a right horizontal asymptote different from zero, the function (6.2)

can be generalized in the following:

N(t) = N(0) ea ebt + d (6.4)

Experimental reasons of this behavior could be found in a non complete final back

exchange or due to an unknown intensity loss between the exchange and the reference

stages (described in section 5).

Applying 1.3 to 6.4, the following equation is obtained:

k(T (t′)) = − d

dt

(
ln
(
N(0) ea ebt + d

))
= −b · a ebt ·N(0) ea ebt

N(0) ea ebt + d

= −b · a ebt · 1

1 + d
N(0) e

−a ebt
(6.5)

6.1.4 Generalised logistic function

To overcome the limitation of the asymmetric description of the function 6.2 the fol-

lowing generalized logistic function [58] could be used:

N(t) = A+
K −A(

C + e−B(t−t0)
) 1

ν

(6.6)

A and K define left and right asymptote value respectively. As it is shown in Fig. 6.5, t0

and B define the displacement and the slope of the curve while ν affects the symmetry.

Variability of C is not useful in our case and it should be fixed as C = 1.
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Figure 6.5: Plots of Generalized logistic function varying separately t0, B or ν. Other
parameters are fixed as: A = 1, K = 0, C = 1

Applying 1.3 to 6.6, the following equation is obtained:

k(T (t)) = − d

dt
logN(t)

= − d

dt
log

⎛⎝A+
K −A(

C + e−B(t−t0)
) 1

ν

⎞⎠
= − 1

A+ K−A

(C+e−B(t−t0))
1
ν

·
(K −A) ·

(
− 1

ν

)(
C + e−B(t−t0)

) 1
ν
−1

· (−B)e−B(t−t0)

=
(A−K) ·

(
1
ν

)
·Be−B(t−t0)

A+ K−A

(C+e−B(t−t0))
1
ν

· 1(
C + e−B(t−t0)

) 1
ν
−1

=

(
(A−K)B

ν

)
e−B(t−t0) 1

A ·
(
C + e−B(t−t0)

) 1
ν
−1

+ (K−A)

(C+e−B(t−t0))

(6.7)
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6.2 Considerations

k(T(t)) was derived for all the introduced models, showing their viability as regression

models for N [s].

Due to its greater versatility, the Generalised logistic function is consequently a

promising regression in that, unlike the Gompertz function, it allows separate control

on the slope and the asymmetry.
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7

Conclusion

We developed TinT, a novel method for peak picking and tracking based on mathe-

matical morphology and decomposition, tailored for the analysis of stepwise perturbed

spectra. TinT can be suitable for monitoring various kind of NMR and in general

spectroscopic experiments and it is able to give a detailed description of all the funda-

mental parameters of each peak during a stepwise evolution. The method was tested on

synthetic spectra showing excellent results on realistic noise levels an performing well

even in extreme noise conditions. TinT was proved to be successful in tracking peaks

in sets of hundreds of spectra resulting from BLUU-Tramp sessions performed on three

different proteins amenable to NMR analysis. Quasi-continuous changes in spectral

parameters between consecutive spectra are required for the method to work at best,

as seen on downsampled synthetic data. In experiments where the latter condition is

met the method is able to reconstruct complete peaks’ evolution. The results of this

work were published in an article in high impact-factor journal [49]. Along with the

development of TinT we further evaluated some improvements on critical aspects of

the subsequent BLUU-Tramp data analysis, namely the loss correction and the fitting

of the derived quantity N[s].
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