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Abstract 

 

microRNAs (also called miRs or miRNAs) are a large class of small regulatory RNAs that 

function as nodes of signaling networks. This implicates that miRs expression has to be 

finely tuned, as observed during cell cycle progression. Using an expression profiling 

approach, we provide evidence that the CDK inhibitor p27kip1 regulates miRs expression 

following cell cycle exit. By using wild type and p27KO cells, harvested in different phases 

of the cell cycle, we identified several miRs regulated by p27kip1 during the G1 to S phase 

transition. Among these miRs, miR-223 was a miR specifically upregulated by p27kip1 in 

G1 arrested cells. During the work of this PhD thesis, we demonstrated that p27kip1 

regulates the expression of miR-223, via two distinct mechanisms. First, p27kip1 directly 

stabilized mature miR-223 expression, acting as a RNA binding protein. Second, p27kip1 

controlled E2F1 expression that, in turn, regulated miR-223 promoter activity. The resulting 

elevated miR-223 levels ultimately participated to cell cycle arrest following contact 

inhibition. 
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1 microRNA 

The first evidence of the existence of microRNAs (also called miRs or miRNAs) came from 

the discovery of a 22-nucleotide non-coding RNA (lin-4) partially complementary to 7 

conserved sites located in the 3′-untranslated region (3’-UTR) of the lin-14 gene (1, 2). 

Strikingly, the negative regulation of lin-14 protein expression required an intact 3′-UTR of 

its mRNA, as well as a functional lin-4 gene (1, 2). It was reported that lin-4 and let-7, the 

first miR genes identified, control developmental timing in nematodes by modulating the 

expression of other genes at the post-transcriptional level (1, 2, 3).  

miRs are a class of 20–25 nucleotide-long noncoding RNAs that modulate gene expression 

through canonical base pairing between the seed sequence of the miR (nucleotides 2–8 at its 

5′ end) and its complementary seed match sequence (which is present in the 3′ UTR of target 

mRNAs) (4). 

Current estimates suggest that the human genome contains at least hundreds of distinct miRs, 

which potentially regulate a large fraction of the transcriptome and are potentially involved in 

any phisiological and pathological condition, including cancer (4). 

 

 

1.1  microRNA biogenesis and mechanism of action 

The generation of miRs is a multistage process (4, 5): miRs are transcribed as primary 

transcripts (pri-miRs) by RNA polymerase II. Each pri-miR contains one or more hairpin 

structures that are recognized and processed by the microprocessor complex, which consists 

of the RNase III type endonuclease Drosha and its partner, DGCR8 (Figure 1). The 

microprocessor complex generates a 70-nucleotide stem loop known as the precursor miR 

(pre-miR), which is actively exported to the cytoplasm by exportin 5. In the cytoplasm, the 

pre-miR is recognized by Dicer, another RNase III type endonuclease, and TAR RNA-

binding protein (TRBP; also known as TARBP2). Dicer cleaves this precursor, generating a 

20-nucleotide mature miR duplex. Generally, only one strand is selected as the biologically 

active mature miR and the other strand is degraded. The mature miR is loaded into the RNA-

induced silencing complex (RISC), which contains Argonaute (Ago) proteins and the single-

stranded miR (miRISC). Mature miR allows the RISC to recognize target mRNAs through 

partial sequence complementarity with its target. In particular, perfect base pairing between 

the seed sequence of the miR (from the second to the eighth nucleotide) and the seed match 

sequences in the mRNA 3′ UTR are crucial. The RISC can inhibit the expression of the target 



   Introduction 

4 

 

mRNA through two main mechanisms that have several variations: one is the deadenylation, 

while the other is the translational repression.  

Deadenylation of mRNAs is mediated by GW182 proteins which interact with AGOs and act 

downstream of them.  

 

 

 

Figure 1 microRNA biogenesis and mechanisms of action 

The canonical pathway of microRNA processing (from Winter et al., 2009) 

 

While the amino-terminal part of GW182 interacts with AGO, the carboxy-terminal part of 

mammalian GW182 proteins interacts with the poly(A) binding protein (PABP) and recruits 

the deadenylases CCR4 and CAF1 (6). When the miRISC containing AGO2 in mammals 

encounters mRNAs bearing sites nearly perfectly complementary to miR, these mRNAs are 

endonucleolytically cleaved and degraded (7). 

On the other hand, the translational repression occurs when miRISC and target mRNAs 

interact with sites of imperfect complementarity. This mechanism affects the cellular 

translation at the initiation step or at the elongation step. When directed to mRNAs via these 
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interactions, Ago proteins perform a still incompletely defined activity that results in 

accelerated turnover and reduced translation of the targeted transcript (7, 8).  

 

 

1.2 Regulation of microRNAs: expression, stability and intracellular localization 

miRs expression can be regulated either through the regulation of miR gene transcription 

(transcriptional mechanisms) as well as through miR processing (post-transcriptional 

mechanisms). Transcription of miR genes is regulated in a similar manner to that of protein-

coding genes and is a major level of control responsible for tissue-specific or development-

specific expression of miRs. The presence of CpG islands, TATA box sequences, initiation 

elements and certain histone modifications indicates that the promoters of miR genes are 

controlled by transcription factors (TFs), enhancers, silencing elements and chromatin 

modifications (6). Many TFs, such as Myc, E2F1 and p53 regulate miR expression positively 

or negatively in a tissue-specific or developmental-specific manner (9-11). On the other 

hand, many evidences suggest that the two endoribonucleolytic cleavage steps represent 

crucial nodes for miR regulation. In the nucleus, Drosha-DGCR8-mediated processing of let-

7 pri-miRs can be inhibited by Lin28B (12), whereas the protein hnRNPA1 specifically binds 

to pri-miR-18a to promote its processing (13). Dicer-mediated processing requires 

sophisticated regulation and clearly represents another regulatory node (14): Dicer, in 

association with TRBP and PACT can promote or inhibit the maturation of pre-miRs via 3’ 

end uridylylation (15). Particularly, TRBP binding to Dicer alters dicing kinetics and 

cleavage site selection, increasing substrate affinity and enzymatic turnover and the 

generation of miR isoforms (isomiRs) (16, 17). Beyond alteration of the seed sequence, 

Dicer-mediated tuning of the miR has consequences for guide strand selection (16). Over the 

last years, increasing attention has been focused on how the regulation of miRs impinges on 

their stability. The stability of miRs is generally robust and mature miRs  persist for hours, or 

even days, after their production is arrested (18-20). miR recycling can be limited by target 

regulation, which promotes posttranscriptional modifications to the 3’ end of the miR and 

accelerates the miR’s rate of decay (18). Control of steady-state miR concentration directly 

relates to the control of miR function. Interestingly, although crucial for the regulation of 

steady-state miR levels, little has been uncovered about the regulation of miR half-life and 

stability in the cell, following processing. The increased stability of selected miRs is unlikely 

to be related to a 3’ modification of these miRs, as indicated by a recent genome-wide study 
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that failed to demonstrate an impact of 3’ adenylation on miR stability (21). A work by Bail 

et al. suggests that exosomes can control miR decay in human cells. The exosome 3'-5' 

exoribonuclease complex was identified as the primary nuclease involved in miR-382 decay 

with a more modest contribution by the Xrn1 and no detectable contribution by Xrn2 (22). 

In addition, argonaute proteins seem to be other key regulators of microRNA stability, 

increasing microRNA abundance through their stabilization (23). Considerable efforts have 

been put into establishing whether components of miRISCs are associated with particular 

cellular structures and whether miR repression can be regulated at this level. P-bodies and 

stress granules have emerged as being potentially relevant to miR repression, as have 

multivesicular bodies (MvBs) (6). Blocking MvB formation by depleting endosomal sorting 

complex required for transport (eSCRT) factors, inhibits miR silencing, whereas blocking 

MvB turnover by inactivation of the Hermansky–Pudlak syndrome 4 (HSP4) gene stimulates 

repression by miRs (6). In addition, components of  the miRISC loading complex, such as 

Dicer and AGO2, have been found to be associated with membranous fractions (24, 25). 

Nucleo-cytoplasm partitioning can also be a determining factor in regulating miRs 

expression. miR-mediated repression is considered to be a cytoplasmic event, altough 

substantial amounts of  AGO2 and miRs have been found in the nuclei of different 

mammalian cell lines (26, 27). 

 

 

1.3 microRNAs in cancer 

The first evidence of dysregulation of miR expression in cancer came from a work by Calin 

et al., in which they discovered that the loss of miR-15a and miR-16-1 was the target of 

13q14 deletion that drove chronic lymphocytic leukaemia pathogenesis (28). Following that 

discovery, expression profiling data of many different types of tumors evidenced that 

aberrant miR expression is the rule rather than the exception in cancer (29-32). Members of 

the let-7 family of miRs that map to chromosome regions that are deleted in multiple tumors 

were found to be lost in multiple different malignancies, including those of lung, breast, 

urothelial, ovarian and cervical cancers (33). 

The miR-17-92 cluster, which maps to a region that is amplified in lymphoma, was found to 

be overexpressed in many different tumors (32). Interestingly, consistent changes in miR 

expression were also observed in tumors without evident specific cytogenetic abnormalities, 

suggesting that pathways commonly dysregulated in human cancer could directly affect and 
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deregulate miR expression (32). All these evidences contributed to the the discovery that 

miR-expression profiles can classify human cancers and miR expression fingerprints 

correlate with clinical and biological characteristics of tumors, including tissue type, 

differentiation, aggression and response to therapy (30, 34-36). 

The general concept is that miRs located in genomic regions that are amplified in cancers 

function as oncogenes, whereas miRs located in portions of chromosomes deleted in cancers 

function as tumor suppressors (29, 33). The mechanisms through which miRs expression can 

be deregulated in cancer are genetic, epigenetic and transcriptional mechanisms (Figure 2). In 

a fashion similar to protein coding genes, miR genes are also subject to epigenetic changes in 

cancer mainly related to the methilation status (37-39). Deregulation of miR expression can 

result from aberrant transcription factor activity in cancer cells (40). To this regard, it has 

been documented that miR can be suppressed by oncogenic transcription factors as well as by 

loss of tumor suppressor transcription factors (40).  

 

 

 

Figure 2 microRNA deregulation in cancer 

Deregulation of miR gene transcription in cancer through genetic, epigenetic and 

transcriptional mechanisms (from Jansson and Lund, 2012) 

 

For example, Myc can down-modulate several microRNAs with documented 

antiproliferative, pro-apoptotic and tumor suppressor effects, such as let-7, miR-15a/16-1, 

miR-26a and miR-34 family members (41), while Ras and Zeb1 can modulate miR-143/145 

expression and miR-200 respectively (42, 43). On the other hand, transcription of miRs with 

anti-tumorigenic effects is often activated by transcription factors that are themselves tumor 

suppressors. One of the best example is represented by p53 that is higly deregulated in cancer 
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and it can activate the transcription of the miR34 family (44, 45), whose targets include 

cyclin E2, CDK4 and CDK6, CDC25c, Myc and BCL2 (46). 

 

 

1.4 microRNAs in cell cycle 

Recent evidences suggest that miRs can control the expression of multiple cell cycle 

regulators and can therefore control cell proliferation (47-49). miRs control cell cycle 

progression by direct targeting of critical modulators, such as cyclins, CDKs and CDK 

inhibitors (50-54) (Figure 3).  

 

 

 

Figure 3 An overview to cell cycle control by microRNAs  

(from Bueno and Malumbres, 2011) 

 

Central to cell cycle regulation, the retinoblastoma (pRb) pathway is altered in the vast 

majority of human cancers (55, 56). Components of the cell cycle machinery such as the 
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cyclins and cyclin dependent kinases (CDKs) are key targets of growth-suppressing miRs 

(40, 53). The levels of D-type cyclins are downregulated by let-7, miR-15 family, miR-17, 

miR-19a, miR-20a, and miR-34 (53). On the other hand, the expression of negative 

regulators of the cell cycle can be regulated by miRs. To this regard, the role of microRNAs 

in regulating p27kip1 (hereafter p27) expression is documented in several tumor tissues: the 

fine tuning of p27 expression during cell cycle entry can be ascribed to miRs 221/222, and 

the significance of this regulation in cancer progression has been well documented (50, 57). 

In cells exposed to mitogenic stimuli, when p27 protein expression decreases (58, 59), miR 

221/222 expression increases, determining an amplification of pro-mitogenic stimuli that 

ultimately favors the entrance in S phase (57).  

It has been reported that miR-221/222 expression affects the proliferation potential of human 

prostate carcinoma cell lines by targeting p27 (60). In gastric cancer, miR-196a and miR-

148a are upregulated and promotes cell proliferation by downregulating p27 (61, 62). 

Interestingly, in myeloid cells it was demonstrated that miR-181a regulates cap-dependent 

translation of p27 (63). Several miRs are known to be induced or repressed by critical 

transcription factors that control the cell cycle. To this regard, Myc was found to induce the 

expression of  the mir-17-92 cluster (9), while at least four miR clusters (let-7a-d, let-7i, mir-

15b-16-2, and mir-106b-25) are direct targets of E2F1 and E2F3 during G1/S and are 

repressed in E2F1/3 null cells (54). Interestingly, it has been shown that cell cycle 

progression can affect miR stability (47-49) and transcription (51, 54). Oncogenic miRs, 

often overexpressed in cancer, can act to facilitate entry and progression through the cell 

cycle, while tumor suppressor miRs lost in cancers assist in the induction of cell cycle arrest.  

 

 

1.5 microRNAs in contact inhibition 

Widespread gene expression changes occur when cells enter quiescence, including both      

repression and activation of genes (64-67). Several evidences suggest that the quiescience 

state (serum deprivation and contact inhibition) relies primarily on the increased expression 

of the CDK inhibitor p27 (59, 68). Nevertheless, the drivers and mechanisms of the gene 

expression changes in quiescence are still not known. microRNAs have been implicated in a 

wide range of biological processes related to quiescence, including cell proliferation control, 

stem cell renewal, developmental timing, and cancer (69). One of the first evidences about 

the involvement of microRNAs in the context of cell-cell contact came from the evidence 
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that the overexpression of one of the component of RISC (SND1) resulted in the irreversible 

loss of contact inhibition in rat intestinal epithelial cells (70). Recently, it was demonstrated 

that the quiescent state induced both by serum deprivation and contact inhibition is definitely 

an active state: microRNAs both increase and decrease in abundance upon entry into 

quiescence (71). Specifically, the quiescence state is associated with the down-regulation of 

miR-29 and the consequent release from repression of its targets related to collagen and 

extracellular matrix proteins (71). On the other hand, the expression of miR-125 and let-7 is 

induced by quiescence and the overexpression of either one alone resulted in slower cell 

cycle re-entry from quiescence, while the combination of both together slowed cell cycle re-

entry even further (71). Regarding the molecular mechanisms underlying miRs regulation 

under cell-cell contact, it was found that in diverse animal cell lines, the global efficiency of 

miR biogenesis is intimately linked to cell density (72). The achievement of high confluence 

increases both the activity of Drosha and RISC complex, revealing 2 posttranscriptional 

control points that link miR abundance to cell density (72). Recently, it was demonstrated 

that a cell cycle regulatory mechanism is involved in the proliferation arrest that follows 

contact inhibition (73). The final stage of wound closure is preceded in keratinocytes by a 

strong accumulation of miR-483-3p, which acts as a mandatory signal triggering cell cycle 

arrest when confluence is reached (73). Similarly, in breast cancer miR-200c downregulates 

ZEB1 and ZEB2, resulting in an increased formation of stable cell-cell contacts through  the  

modulation of E-cadherin (74). 

 

 

2 microRNA-223 

microRNA-223 (miR-223) was first identified bioinformatically and subsequently 

characterized in the haematopoietic system, where it is specifically expressed in the myeloid 

compartment (75, 76).  

Few years later, it was demonstrated that miR-223 contains a conserved proximal genomic 

region that acts as a myeloid-specific promoter that drives miR-223 transcription through the 

cooperative binding of the transcription factors PU.1 and C/EBP (77).   

The role of miR-223 has been described in several papers in hematological malignancies. 

One of the first evidences, showed that a leukemia fusion protein (Aml1/Eto) could 

epigenetically silence miR-223 genomic locus driving leukemia pathogenesis (78), and miR-

223 down-regulation observed in chronic lymphocytic leukemia was shown  as predictive of 
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treatment-free survival and overall survival (79, 80). Pulikkan et al. described a molecular 

network in which E2F1 and miR-223 comprise an autoregulatory negative feedback loop in 

acute myeloid leukemia. In leukemia samples E2F1 is able to physically bind to miR-223 

promoter and inhibit its transcription, accounting for miR-223 down-regulation observed in 

the tumor samples (81). On the other hand, miR-223 over-expression blocks cell cycle 

progression in leukemia cells by targeting E2F1 (81). Furthermore, miR-223 repression 

induced by Notch1 expression has been shown to impinge on IGF1R regulation in T-cell 

acute lymphoblastic leukemia (82). 

The use of the knock-out mice for miR-223 strengthened the role of miR-223 in 

hematopoiesis, revealing that its absence induces neutrophil hyperactivity and the miR-223 

mutant mice spontaneously develop inflammatory lung pathology and exhibit exaggerated 

tissue destruction after endotoxin challenge (83). 

Despite its primary role in hematological malignancies, miR-223 has been shown to regulate 

hepatocellular carcinogenesis as well: a strong down-regulation of miR-223 is observed in 

hepatocarcinoma samples and its re-expression resulted in a consisted inhibitory effect on 

cell viability mediated by the repression of stathmin 1 (84). Interestingly, the miR-223 

oncosuppressive role has been also observed in esophageal carcinoma where it suppresses a 

known tumor-metastasis gene (ARTN) eventually decreasing cell migration and invasion 

(85). Moreover, in osteosarcoma its tumor suppressive function is mediated through the 

regulation of PI3K/Akt/mTOR pathway (86). Finally, it was demonstrated that miR-223 

exerts an oncosuppressive function in glioma as well where miR-223 expression suppresses 

tumorigenesis in a mechanism mediated by the repression of nuclear factor I-A (NFIA) (87). 

In contrast to the well-defined oncosuppressive role of miR-223 in several tissues, some 

evidences suggest that miR-223 can also act as oncogenic miR, in gastric cancer, where it 

promotes invasion and metastasis through the targeting of the tumor suppressor EPB41L3 or 

FBXW7/hCdc4 (88, 89).  

Finally, several evidences show that miR-223 can be secreted, has a certain degree of 

stability and can exert different functions: for instance on one side miR-223 has been 

recognized as a circulating miR in hepatocellular and in nasopharyngeal carcinoma where it 

could be used as a biomarker for liver injury and for nasopharyngeal carcinoma detection 

(90, 91). On the other hand, it can be secreted from macrophages and internalized in breast 

cancer cells through an exosome-mediated mechanism, eventually promoting invasion of 

breast tumour cells (92).  
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3 Cell cycle  

The term “cell cycle” defines the process by which a cell correctly divides into two daughter 

cells, which is central to the understanding of all life (93). 

To ensure that DNA faithfully replicates and that the replicated chromosomes correctly 

segregate into the two newly divided cells, in all eukaryotic cells, cell cycle progression is 

stringently controlled (94, 95). In particular, several mechanisms ensure that S-phase is 

completed before mitosis begins and that M phase starts only if the DNA has been faithfully 

replicated. This is possible since two Gap phases (the G1 separating the M and S-phases, and 

the G2 between the S and M phases) are present in somatic cells and dictate the timing of cell 

division during which the control mechanisms principally act. In living organisms the cells 

are usually in a state of quiescence called G0 and can re-enter into the cell cycle after stimuli 

derived from the local microenvironment such as growth factors stimulation. The beginning 

of the G1 phase is the only part of the cell cycle that seems to be dependent on growth factors 

stimulation. When cells are stimulated by growth factors to enter the cycle from G0, they 

generally require continuous mitogenic stimulation to be driven to the restriction point, after 

which mitogens can be withdrawn and cells will enter S-phase and complete the cycle in their 

absence. At this point, in the G2 phase, before the mitosis (M phase) could start, the cell 

controls that DNA has been faithful duplicated and checks the internal signalling events 

necessary for a successful division. Progression of mitosis is controlled by signalling 

pathways that monitor the integrity of microtubule function, to ensure the fidelity of 

chromosome segregation. As cells exit mitosis, the cell cycle is reset, allowing the 

establishment of a new competent replication state in G0 or G1 phase. 

 

 

3.1 Cyclins and CDKs 

Progression through the cell cycle is orderly driven by Cyclin-Dependent Kinases (CDK) 

activity (Figure 4). CDKs are serine and threonine kinases, and their actions are dependent on 

associations with their activating subunits, cyclins (96-98). Cyclin abundance is regulated by 

protein synthesis and degradation and the activity of CDKs is regulated to a large degree by 

the presence of different cyclins. Cyclin specificity can be achieved in various ways: cyclins 

are expressed or are present at stable levels at different times; they are differentially sensitive 

to cell-cycle-regulated inhibitors; they are differentially restricted to specific subcellular 

locations; or they bind specifically to some phosphorylation targets. 
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Figure 4. Schematic representation of cell cycle regulation 

Mitogenic stimuli promote cell cycle progression from G0 to G1 inducing the expression of 

D type cyclins and lowering the expression of p27. Sequential activation of cyclin E-CDK2, 

cyclin A-CDK2, cyclin A-CDK1 and cyclin B-CDK1 allows the cells to pass through the 

restriction point (R) and to complete the mitotic division. The passage through the R point is 

due to the inactivation of the pRB protein by CDKs-dependent phosphorylation (from 

Belletti et al., 2005) 

 

Cyclins are regulated at the level of protein degradation by ubiquitin-mediated proteolysis 

and this constitutes an important mechanism for cyclin specificity in controlling the cell-

cycle machinery.  

Restriction point control is mediated by two families of enzymes, the cyclin D- and E-

dependent kinases. The D-type cyclins (D1, D2, and D3; 99-100) combinatorially interact 

with two distinct catalytic partners: CDK4 and CDK6 (101, 102). Whereas CDK4 and CDK6 

are relatively long-lived proteins, the D-type cyclins are unstable, and their induction, 

synthesis, and assembly with their catalytic partners all depend upon persistent mitogenic 

signalling. The mitogen-dependent accumulation of the cyclin D-dependent kinases triggers 

the phosphorylation of the Retinoblastoma protein (Rb), thereby helping to cancel its growth-

repressive functions (101, 103, 104).  
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Rb represses the transcription of genes whose products are required for DNA synthesis, such 

as the E2Fs (105). Rb phosphorylation by the G1 CDKs relieves E2Fs that can act as 

transcriptional activators. Then, E2Fs can induce cyclin E and A genes. Cyclin E then enters 

into a complex with its catalytic partner CDK2 (106-109) and collaborates with the cyclin D-

dependent kinases to complete Rb phosphorylation (110-112). The activity of the cyclin E-

CDK2 complex peaks at the G1-S transition, after which cyclin E is degraded and replaced 

by cyclin A. Cyclin A is of particular interest among the cyclin family, because it can 

activate two different CDKs and act in both  S and M phases. Finally, the cyclin-CDK 

complexes are further regulated by the binding to specific CDK inhibitors (113). 

 

 

3.2 CDK inhibitors  

The CDK inhibitors (CKIs) can be divided into 2 families on the basis of their sequence: the 

INK4 family and the Kip/Cip family (114). The INK4 proteins comprise four members: 

p15INK4b (115), p16INK4a (116), p18INK4c (117, 118) and p19INK4d (118, 119). The 

INK4 family inhibits CDK4 and CDK6 by competing for binding with the D-type cyclins 

(117, 118). 

On the other hand, the Kip/Cip family comprises three proteins: p21Cip1/Waf1/Sdi1 (120-

122), p27 (68, 123) and p57Kip2 (124, 125). These inhibitors are differently regulated 

following specific stimuli. p57 is imprinted (125, 126) and has been implicated in cell 

differentiation (127) and response to stress. p21 transcription is upregulated in response to 

DNA damage by wild type but not mutant p53, and p27 was initially identified as the factor 

responsible for inhibiting proliferation in contact-inhibited and TGFβ-treated cells (68, 128). 

The Kip/Cip family members are 38-44% identical in the first 70 amino acid region of their 

amino terminus, and this region is sufficient to inhibit cyclin-CDK activity (129-131). The 

kinase inhibitory domain, in fact, maps to the N-terminus (1-82) and contains the cdk binding 

site (28-82).  

 

 

4 Contact inhibition 

Contact inhibition is a regulatory mechanism through which cells enter a stage of  reversible 

G1 arrest, that occurs when cells enter in contact with neighbouring cells at high density 
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 (132). While in adult tissues contact inhibition is continuously active and cells arrest in G1 

phase, embryonic cells, as well as cells in continuously renewing tissues, are instead less 

subject to contact inhibition (132, 133). In contrast to most non-transformed adherent cells 

whose growth usually decreases as cell density increases (133-135), loss of contact inhibition 

is usually associated with abnormal growth and the appearance of multilayered foci in culture 

associated with malignant transformation (68, 132, 133). Most human cancer cells are indeed 

refractory to contact inhibition. As a consequence, they are able to continue proliferation in 

spite of interactions with neighboring cells and substrata. In more aggressive stages, the 

dividing cancer cells can invade the surrounding tissue to achieve unlimited growth and can 

eventually metastasize to secondary sites. 

Many established cancer cell lines also exhibit growth in vitro that is impervious to contact 

inhibition, and often display anchorage-independent growth in soft agar. The loss of contact 

inhibition and the gain of anchorage-independent growth are hallmarks of cancer cells in 

vitro (136), suggesting that many oncogenic alterations either uncouple cell proliferation 

from the mechanism that subjects it to contact inhibition, or alter the contact inhibition 

mechanism itself. 

Contact inhibition is apparently initiated by cell-cell interaction, even if the specific 

molecular mechanisms are still not well-defined. The characterization of contact-dependent 

regulation would require the identification of: (1) cell surface receptors that are engaged by 

the physical interaction between cell surfaces; (2) growth regulatory signaling pathways that 

are affected by those receptors in a contact-dependent fashion; and (3) molecular 

mechanisms that functionally and biochemically couple those surface receptors and 

intracellular signaling pathways together (137). Intercellular adhesion molecules for example, 

have been shown to be necessary for non-transformed cells growing in a monolayer tissue 

culture to become quiescent when they reach confluence (138-140).   

At this regard, a major role in determining growth arrest at high cell density is played by E-

cadherin that is expressed in epithelial tissues where it regulates cell-cell adhesion, cell 

migration and polarity. Some evidences show that modulation of cadherin-mediated  

interactions by lowering Ca
2+

 concentration in the culture medium or by inhibitory 

antibodies, can stimulate cell proliferation (140), whereas overexpression of VE-cadherin, N-

cadherin or E-cadherin can inhibit cell growth (141, 142). Furthermore, where cells 

demonstrated contact inhibition, proliferation was resumed after disrupting E-cadherin 

function using function-blocking antibodies (143). Studies that first recognized the 
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phenomenon of contact inhibition also appreciated that, as cultured cells reach confluence, 

the response to serum growth factors is progressively inhibited despite the continuous 

replenishment of growth factors in the medium (135). NIH3T3 cells, which are extremely 

sensitive to contact inhibition (144) exhibit a saturation density that is directly proportional to 

the serum concentration in which they are grown (145). Studies of EGF-induced and PDGF- 

induced proliferation in fibroblasts concluded that the ability of cells to respond to individual 

growth factors decreases with high cell density (146, 147). The EGF receptor (EGFR) was 

the first member of the receptor tyrosine kinase (RTK) family of growth factor receptors to 

be identified and was found to localize to lateral cell junctions in confluent cells in a Ca
2+

-

dependent and cadherin-dependent fashion (139). The establishment of contacts between 

cells elicits a series of signals that are transduced intracellularly and ultimately lead to 

changes in the expression and/or the activity of genes involved in the regulation of the G1/S 

transition of the cell cycle. Among the cell cycle regulators, the CDK inhibitor p27 has been 

implicated in the negative regulation of G1 progression in response to a number of 

antiproliferative signals, including cell-cell contact (141, 142). Interestingly, contact-induced 

proliferative arrest mediated by p27 is initiated by the activation of cadherin signalling 

induced by the establishment of cell-cell contacts (141, 142). 

 

 

5 p27  

p27 plays a crucial role in the G1-S transition by interacting with and inhibiting cyclin E-

CDK2 and cyclin A-CDK2 activity, thus blocking cell cycle progression. In early G1, p27 

promotes cyclin D-CDK4/6 complex assembly and nuclear import, increasing cyclin D 

stability, all without inhibiting CDK4 kinase activity. In proliferating cells, p27 is mainly 

associated with cyclin D-CDK4/6 complexes, but these complexes are catalytically active, 

whereas in G1 arrested cells p27 preferentially binds and inhibits cyclin E-CDK2. The 

sequestration of p27 by cyclin D-CDK4/6 complexes effectively releases CDK2 from 

inhibition, allowing both CDK4/6 and CDK2 to remain active. In this way mitogen induction 

of cyclin D expression determines cell cycle progression both by activating CDK4 and by 

sequestering p27 thus favouring cyclin E-CDK2 activation. Once cyclin E-CDK2 is 

activated, it phosphorylates p27 on Threonine 187, allowing p27 to be recognized by the 

ubiquitin ligases and targeted for destruction by the 26S proteasomes (148-150). It follows 

that once cyclin E-CDK2 is activated, p27 is rapidly degraded, contributing to the 
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irreversibility of passage through the restriction point. If cells are persistently stimulated with 

mitogens, cyclin D-dependent kinase activity remains high in the subsequent cell cycles, p27 

levels stay low, and virtually all of the p27 can be found in complexes with the cyclin D-

CDK4/6. However, when mitogens are withdrawn, cyclin D is rapidly degraded, and the pool 

of previously sequestered Cip/Kip proteins is mobilized to inhibit cyclin E-CDK2, thereby 

arresting progression generally within a single cycle. 

Multiple extracellular stimuli regulate p27 abundance, which functions as a sensor of external 

signals to cell cycle regulation (Figure 5). 

 

 

Figure 5 Schematic representation of the principal p27 domains and of its phosphorylation 

sites (from Belletti et al., 2005) 

 

In normal cells p27 is expressed at high levels in quiescence phase, whereas it decreases 

rapidly after mitogen triggering and cell cycle re-entry. A number of studies have shown that 

many anti-mitogenic signals induce the accumulation of p27, including cell-cell contact, 

growth factor deprivation, loss of adhesion to extracellular matrix, TGF-β, cAMP, rapamycin 

or lovastatin treatment (151). 

 

 

5.1 p27 in contact-inhibition 

p27 was first identified in cells treated with transforming growth factor TGF-β or in contact 

inhibited cells where it was found as an inactive form bound to CDK2-cyclin E (68, 128). 

p27 is an essential component of the pathway that connects mitogenic signals to the cell 

cycle. Constitutive expression of p27 in cultured cells causes cell cycle arrest in the G1 phase 

(123). Conversely, its ablation in contact-inhibited cell extracts allows the kinase MO15 to 
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phosphorylate CDK4 and to activate it, indicating that p27 plays a crucial role in contact 

inhibition by keeping the Cyclin-D-CDK4 complex inactive (152). Furthermore, the 

deprivation of serum mitogens in murine BALB/c-3T3 fibroblasts results in p27 

accumulation, in the inactivation of G1-cyclin-CDK complexes and cell cycle arrest in G1. 

Interestingly, the capacity of cells to arrest in response to p27 was found to be governed 

mainly by cell density (153). Apparently, the proliferation of cells at high density seems to 

require an event that is inhibited by pocket protein complexes containing Rb and/or p130 

(153). Growth of cultures to high density results in G0 arrest, an increase in p27 levels, and a 

decrease in cyclin/CDK activity. As a consequence, Rb- and p130-containing complexes 

remain intact, and the expression of gene products required for the proliferation of high-

density cells is prevented (153). Another evidence shows that CDK4 and p27 expression are 

density dependent and contact inhibited cells that achieve the already elevated p27 level are 

able to maintain a G1 arrest state (154). Interestingly the involvement of p27 in contact 

inhibition has been observed in several different tissues: in low-grade glioma cells as well as 

in astrocytes, growth arrest by contact inhibition is accompanied by the induction of p27 

expression (155, 156). Human thyroid cancer cell lines are found to be responsive to contact 

inhibition depending on their ability to upregulate p27 at  high cell confluence (143). 

Strikingly, the antisense inhibition of p27 upregulation at confluence in thyroid cells sensitive 

to contact inhibition, prevents growth arrest induced by confluence, whereas it has little 

effect in cells resistant to contact-dependent growth arrest (143). Moreover, the maintenance 

of a functional E-cadherin/β-catenin complex is necessary for the proper upregulation of p27 

and the accomplishment of contact-dependent growth arrest (143). In endothelial cells the 

induction of the cell-cell contact activated Rac1, up-regulated p27 mRNA and protein, 

facilitating the cell cycle arrest (157). Interestingly, cell-adhesion-dependent activation of 

APC/Cdh1 ubiquitin ligase complex, has been found to increase ubiquitination and 

degradation of Skp2, resulting in a decreased ubiquitination and degradation of p27, and, 

ultimately, in p27 accumulation, which drives cell-cycle arrest (158). 
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Aim of the study 

 

Loss of contact inhibition represents a hallmark of cancer. The understanding of the 

molecular mechanisms that drive the proliferative arrest under high cell-cell contact 

represents an important issue in the field of cancer biology. 

The lack of  proliferation arrest when cells are grown at high density is associated with 

abnormal growth and appearance of multilayered foci in culture. Contact inhibition is 

characterized by a G1 cell cycle arrest associated with an increase in p27 protein expression. 

p27 is a cell cycle inhibitor whose main function is to inhibit cell cycle progression at G1/S 

transition by impairing cyclin E-CDK2 and cyclin A-CDK2 activity. Neverthless, its role and 

its intracellular partners during contact inhibition have not been clearly elucidated. In the last 

few years, an increasing number of evidences suggest that the G1 cell cycle arrest is tightly 

controlled by the expression of several miRs whose interactions with targets can be 

extremely important for a better understanding of how the complex cell cycle machinery is 

orchestrated.  

In this PhD project we aimed to elucidate the contribution of miRs in the regulation of cell 

cycle progression, specifically focusing on G1 arrest imposed by contact inhibition and on 

the role played by p27. We used a microarray approach which revealed that the expression of 

several microRNAs can be influenced by cell cycle progression.  

The data produced during this three years of PhD work describe a novel pathway which 

couples a key cell cycle regulator, p27, with the regulation of miR expression to control cell 

cycle exit following contact inhibition.   

This new mechanism, which is deranged in human cancer, represents a promising field of 

future investigation for cancer research and anti-cancer therapeutics, especially in breast 

cancer.
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1 p27 contributes to the regulation of miR-223 expression in G1 arrested cells. 

In order to identify miRs potentially regulated by p27 in G1 arrested cells we exploited two 

strategies. First, using primary mouse embryo fibroblasts (MEF) from WT and p27KO 

embryos we compared the miR expression profiles in cells collected under exponential 

growth (EG) vs G1 arrested (G1). We identified 59 miRs differentially expressed in WT 

MEFs between EG vs G1 (Figure 6A). Among these, 15 miRs were not in common with the 

157 differentially expressed in EG vs G1 p27KO MEFs, thus potentially representing the 

miRs linked to G1 arrest in a p27-dependent manner (Figure 6A). Second, we compared miR 

profiles from WT MEFs in G1 vs S phase (S). 45 miRs were differentially expressed (Figure 

6A) and, among them, 8 miRs were in common with the 59 identified in WT MEF, EG vs G1 

group, reasonably representing miRs specifically modulated by G1 arrest. To select only p27-

dependent miRs necessary for the G1 arrest, we compared the group of 15 miRs with the 

group of 8 miRs (Figure 6A). Three miRs, mmu-miR-223, mmu-miR-712 and mmu-miR-

719, were regulated by both G1 arrest and the presence of p27 (Figure 6A). Among them, 

mmumiR-223 (hereafter miR-223) was the only one with an identified human homolog and 

was therefore chosen for further analyses. Quantitative RT-PCR (qRT-PCR) analyses on 

RNA from the same MEF population (Figure 6A, middle graph) and on 4 other independent 

MEF preparations/genotype (Figure 6B) confirmed the arrays data. G1 arrest, induced either 

by serum deprivation or by contact inhibition, elicited a marked increase of miR-223 levels in 

WT MEFs (Figure 6B), although only contact inhibition caused statistically significant 

differences (Figure 6B). The combined use of serum deprivation and contact inhibition 

further increased the levels of miR-223 in WT cells (Figure 6B). Transition from G1 to S  

phase led to progressive decrease of miR-223 levels, similarly to what observed in EG cells 

(Figure 6B). miR-223 levels paralleled the expression of p27 protein, as demonstrated by 

immunofluorescence (Figure 6C) or western blot analyses (Figure 6D). When p27KO MEFs 

were analyzed under the same culture conditions no significant fluctuation in miR-223 levels 

was observed. Only when contact inhibition and serum deprivation were used together a 

modest increase in miR-223 expression was appreciated (Figure 6B). 
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Figure 6 p27 regulates miR-223 expression following contact inhibition. 

A, Schematic representation of miR expression profile analyses. Venn diagram on the left 

shows numbers of differentially expressed miRs in EG vs G1 WT and p27KO MEF.Venn 

diagram on the right shows numbers of differentially expressed in EG vs G1and S phase vs 

G1 WT MEF. In the graph, qRT-PCR validation of miR-223 expression in the same MEF 

population used for the array is reported. Data represent the 2
-∆CT

 values obtained by 

normalizing miR-223 with snoRNA234 expression. B, miR-223 expression in 4 independent 

MEF preparations/genotype, cultured as indicated. Data represent the 2
-∆CT

 values obtained 

by normalizing miR-223 with U6 expression. C, Immunofluorescence analyses of p27 

expression and localization (green) in primary MEFs fixed in exponential growth (EG), high 

confluence (HC) or serum starved (ST) conditions. On the right, box plot quantification of 

p27 fluorescence, calculated using the Volocity program (Perkin Elmer) in at least 50 

independent cells/condition, expressed as fluorescence gray units. Significance was 

calculated using the Mann-Whitney unpaired t-test. D, Western blot analyses of E2F1 and 

p27 expression in WT and p27KO MEFs harvested in the indicated culture conditions. EG = 

Exponentially growing cells; ST= Serum Starved; HC= High Confluence; HC ST, starved 

and grown at high confluence; R13/R15= Cells blocked in G1 by serum starvation and high 

confluence and then released in complete medium for 13 or 15 hours. Vinculin was used as 

loading control. In the lower graph, levels of miR-223 in the same conditions are reported.  

Abbreviations in this figure are: G1= cells arrested in G1 phase of the cell cycle by contact 

inhibition and serum deprivation for 24 hours; EG = Exponentially growing cells; S= S phase 

cells collected 10 hours after release from a double thymidine block. ST= Serum Starved; 

HC= High Confluence; HC ST, grown at high confluence and serum starved; R13/R15= 

Cells blocked in G1 by serum starvation and high confluence and then released in complete 

medium for 13 or 15 hours. 
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2 p27 is a critical mediator of miR-223 expression after contact inhibition. 

Next, we investigated in more detail the regulation of miR-223 by p27 in G1 arrested cells 

following contact inhibition. By exposing WT MEFs for 24 hours to conditioned medium 

harvested from WT MEFs under EG or highly confluent (HC) conditions, we excluded that 

secreted/diffusible factors produced in HC could induce miR-223 expression (Figure 7A). 

Conversely, by splitting cells from HC culture into low or high confluence conditions (Figure 

7B) or by treating HC cells with EGTA to disrupt the cell-cell contacts (Figure 7C), we 

observed that cell-cell contact was necessary in WT but not in p27KO MEFs to sustain the 

expression of miR-223. 

 

 

3  miR-223 stability is affected by transcriptional and post-transcriptional mechanisms. 

To dissect the mechanism whereby p27 regulated miR-223 expression following contact 

inhibition we blocked RNA transcription with Actinomycin D (Act-D) and measured the 

levels of miR-223. In HC WT MEFs miR-223 remained stable over time even in the presence 

of Act-D, while its levels significantly decreased in p27KO cells (Figure 8A). The use of α-

amanitin, a specific inhibitor of RNA Polymerase II, which is responsible of miRs 

transcription (159), confirmed these data. Both in WT and p27KO MEFs α-amanitin 

completely blocked pri-miR-223 expression (Figure 8B), but only in p27KO MEFs mature 

miR-223 levels dropped after treatment (Figure 8C), suggesting that the expression of p27 

was necessary for the stability of mature miR-223. Accordingly, when pre-miR-223 was 

ectopically expressed under the control of an exogenous CMV promoter and cell-cell 

contacts were disrupted by EGTA treatment, levels of miR-223 remained stable in WT while 

they dropped in p27KO MEFs (Figure 8D). 

 

 

4 A miR-223/E2F1 regulation loop controls cell cycle exit after contact inhibition. 

The above data suggested that cell-cell contact triggered miR-223 transcription, which was 

eventually stabilized by p27 expression. To validate this hypothesis we measured the levels 

of endogenous pri-miR-223 demonstrating that pri-miR-223 levels increased in HC 

conditions in both WT and p27KO cells (Figure 9A). These data implied that in primary 

MEFs contact inhibition directly signaled on the miR-223 promoter, in a manner at least 

partially independent from p27 expression. 
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Figure 7 p27kip1 is a critical mediator of miR-223 expression after contact inhibition.  

A, miR-223 expression in 3 independent MEF preparations cultured in EG or HC condition 

or in EG condition in the presence of conditioned medium (CM) from EG or HC cells as 

indicated. Data represent the 2
-∆CT

 values obtained by normalizing miR-223 with U6 

expression. B, miR-223 expression in 3 independent WT (left graph) or p27KO (right graph) 

MEF preparations cultured in HC, then split and replated at high (HC) or low (LC) 

confluence for up to 24 hours. Data are expressed as fold increase of miR-223 respect to the 

T0 (HC harvested cells). p values were obtained by unpaired student t-test, using either Excel 

or Prism softwares. C, miR-223 expression in 3 independent WT or p27KO MEF 

preparations cultured in HC condition and then treated with EGTA for 1 hour. Data represent 

the 2
-∆CT

 values obtained by normalizing miR-223 with U6 expression. 
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Figure 8 miR-223 stability is affected by transcriptional and post-transcriptional 

mechanisms. 

A, miR-223 expression in 3 independent WT or p27KO MEFs preparations cultured in HC 

condition in the presence or not of actinomycin-D (ACT-D) for up to 8 hours. Data are 

expressed as fold increase of miR-223 levels respect to the T0 (HC harvested cells). B, and 

C, pri-miR-223 (B) or miR-223 (C) expression in 3 independent WT or p27KO MEF 

preparations cultured in HC in presence or not of α-amanitin, for up to 9 hours. Data are 

expressed as fold increase of pri-miR-223/miR-223 levels respect to the T0 (HC harvested 

cells). D, miR-223 expression in WT and p27KO MEFs transduced with lentiviruses 

encoding for pre-miR-223 under the control of a CMV promoter, cultured in HC condition 

and then treated with EGTA for 1 hour. Data represent the 2
-∆CT

 values obtained by 

normalizing miR-223 with U6 expression. 
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Figure 9 Contact inhibition regulates miR-223 transcription. 

A, Pri-miR-223 normalized expression in 3 independent WT or p27KO MEF preparations, 

cultured in Exponential Growth (EG) or High Confluence (HC). B, miR-223 promoter 

activity in WT and p27KO cells grown in EG or HC conditions. In the inset, miR-223 

promoter constructs used are depicted. FL= full length; E2F1 Del= deleted of the 2 putative 

E2F1 binding sites. C, Western blot analysis of E2F1 and p27 expression in WT and p27KO 

MEFs harvested at the indicated culture conditions. Vinculin was used as loading control. In 

the lower graph, miR-223 expression levels in the same culture conditions are reported. EG = 

Exponentially growing cells; ST= Serum Starved; HC=High Confluence; HC ST, starved and 

grown at high confluence; R13/R15= Cells blocked in G1 by serum starvation and high 

confluence and then released in complete medium for 13 or 15 hours. 
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Indeed, achievement of cell confluence increased mouse miR-223 promoter activity in 

both WT and p27KO cells, as judged by luciferase reporter assay (Figure 9B). It has been 

proved that the transcription factor E2F1 binds and represses miR-223 promoter in 

human acute myeloid leukemia (AML) (81) and that miR-223 promoter regulation is 

conserved among human and mouse (77, 78). Given the established role of E2F1 in cell 

cycle progression (160), we tested whether cell-cell contact regulated miR-223 promoter 

activity via E2F1. This hypothesis was confirmed by several observations. In WT cells 

E2F1 was regulated by cell-cell contact and its expression levels inversely correlated with 

those of miR-223 (Figure 9C). The deletion of two putative E2F1 binding sites in the 

miR-223 promoter (E2F1Del in Figure 9B) significantly increased its activity in WT 

cells, only when cultured in EG condition. This effect was specifically due to the two 

predicted-E2F1 binding sites since similar results were obtained when these two E2F1 

binding sites were point mutated (Figure 10A). In contrast, deletion of E2F1 sites 

increased miR-223 promoter activity in p27KO cells both in EG and HC, although 

differences did not reach statistical significance (Figure 9B). The latter observation was 

in accord with endogenous protein levels, demonstrating that in HC p27KO cells E2F1 

expression was not completely downmodulated (Figure 9C). Bioinformatic analyses 

highlighted the presence of a conserved site for miR-223 binding in the mouse E2F1 

3’UTR (not shown), as previously demonstrated in human AML (78), supporting the 

possibility that also in mice a feedback regulation loop exists. Western blot and qRT-PCR 

analyses proved that in HC WT MEFs miR-223 knock-down resulted in the upregulation 

of E2F1 (2.9 folds) (Figure 10B). Conversely, in S phase WT MEFs, when miR-223 

levels dropped and E2F1 expression raised (Figure 9C), miR-223 overexpression resulted 

in a significant downregulation of E2F1 protein (Figure 10B, right panels). Importantly, 

this feedback regulation loop played critical a role in the regulation of cell cycle entry and 

exit. Indeed, in WT cells miR-223 knock-down partially rescued the G1 arrest imposed 

by contact inhibition (Figure 11A) and miR-223 overexpression delayed of about 3 hours 

the S phase entrance of serum starved MEF following serum stimulation, as demonstrated 

by BrdU assay and FACS analyses of cell cycle distribution (Figure 11B and C). Our and 

literature data demonstrated that WT and p27KO MEFs equally arrested following 

contact inhibition (161 and data not shown), although p27KO cells showed a faster 

entrance into the cell cycle following serum stimulation (162 and Figure 11D). 
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Figure 10 A miR-223/E2F1 regulation loop controls cell cycle exit after contact 

inhibition. 

A, miR -223 promoter activity in WT and p27KO cells. On the top, the miR-223 promoter 

constructs used are depicted. FL= full length; E2F1 Mut 1= mutation of the first E2F1 

binding site; E2F1 Mut 2= mutation of the second E2F1 binding site; E2F1 Mut 3= mutation 

of both E2F1 binding sites. B, Western blot analyses of E2F1 expression in WT HC and WT 

R13 cells transfected with anti-miR or miR mimics, as indicated. In the lower graph, levels of 

miR-223 in control and transfected cells are reported. Data represent the 2
-∆CT

 values 

obtained by normalizing miR-223 with U6 expression. 
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Figure 11 miR-223 controls cell cycle exit in WT MEFs. 

A, BrdU incorporation assay of WT MEFs transfected with anti-miR-223 (Anti-223) or 

control oligo (Control), grown at EG or HC. Percentage of BrdU positive cells in each 

condition from two different MEF preparations is reported. B, BrdU incorporation assay of 

WT MEF overexpressing or not miR-223, grown at high confluence, serum starved (HC-ST) 

and released in complete medium for 13, 16, 18 hours. Data are expressed as fold induction 

respect to T0 (HC-ST) and represent the mean (±SD) values obtained from three different 

MEFs preparation. C, Cell cycle distribution of WT MEF overexpressing or not miR-223, 

grown at high confluence and serum starved (HC-ST) and released in complete medium for 

13, 16, 18 hours (R-13, R-16, R-18), measured by FACS analysis. Data represent the mean 

values obtained from two different MEFs preparation/treatment. 

D, BrdU incorporation assay of WT and p27KO MEF overexpressing or not miR-223, grown 

at high confluence and serum starved (HC-ST) and released in complete medium for 13, 16, 

18 hours (R-13, R-16, R-18). Data represent the mean of two different MEFs 

preparation/treatment. 
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However, overexpression of miR-223 had only a partial effect on p27KO MEFs cell cycle 

entry (Figure 11D), suggesting that other mechanisms were also implicated or that 

compensatory mechanisms existed in p27 null cells. 

 

 

5 p27 is a RNA binding protein and directly stabilizes miR-223. 

Data collected so far did not account for the differences observed in the stability of the 

mature miR-223 between WT and p27KO cells. To get more insights in the regulation of 

miR-223 stability by p27, we overexpressed p27 wild type (p27WT) or p27CK- and p27KR 

mutants in p27KO 3T3 fibroblasts (Figure 12A and B). p27CK- is unable to bind the 

Cyclin/CDK complexes, thus it does not block the phosphorylation of Retinoblastoma 

proteins (163). p27KR carries two point mutations (K165A and R166A) in the nuclear 

localization signal and therefore preferentially locates into the cytoplasm (164). All 

exogenously expressed p27 proteins were able to significantly increase the levels of 

endogenous miR-223 in p27KO cells (Figure 12C), demonstrating that the extent of miR-223 

increase was not influenced by the loss of nuclear localization or by the loss of cyclin/CDK 

binding ability and suggesting that p27 stabilized miR-223 expression via a cytoplasmic and 

CDK-independent activity. These data prompted us to use an in vitro degradation assay in 

which cell lysates from p27 null cells were used to test the half-life of a synthetic miR-223 

oligo, in the presence or not of recombinant p27. This assay demonstrated that in vitro, the 

recombinant p27 protein was able to significantly lengthen the half-life of miR-223 but not of 

control-miR or of the un-related miR-1 (Fig 13A and B), suggesting the hypothesis that p27 

directly bound and protected from degradation miR-223. This possibility was supported by 

the in silico analyses (BindN prediction program) showing that both human and mouse p27 

proteins contains several putative RNA binding domains (Figure 13C). Using RNA 

immunoprecipitation (RIP) assay, we then assessed that human p27 was able to bind miR-

223 in a cytoplasmic and CDK- independent manner, by a region comprised between 

aminoacids (aa) 86 and 154 (Figure 14 A-C). Two putative RNA-binding sites are present in 

this region and one of them is highly conserved among mammals (Figure 15A). The most 

conserved RNA binding site was the region comprised between aa 86 and 154 (Figure 14A-C 

and 15A). In silico analyses demonstrated that three point mutations in R93, P95 and K96 

would be sufficient to completely disrupt this binding site (Figure 15B). We thus generated 

this mutant (hereafter called p27MUT1) and demonstrated that it barely binds miR-223, 
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with an affinity below the threshold we set as significant when the fold enrichment was 

calculated (Figure 15C). Next, we tested the possibility that also the region between aa 134 

and 142 could bind miR-223. In doing so, we took advantage of the notion that in human 

breast cancer it has been recently isolated a mutant form of p27 carrying one base deletion at 

codon 134, resulting in the frameshift of p27 open reading frame and in a truncated protein. 

We generated this mutant, named p27K134fs and our RIP assay demonstrated that it is still 

able to bind miR-223, although with very low affinity (Figure 15C). When the two RNA 

binding site where concomitantly destroyed (p27dMUT mutant) (Figure 15A and C) we 

observed no binding between p27 and miR-223. These data suggested that miR-223 could 

bind primarily the region between aa 86 and 154 that it is highly conserved among species, 

and that the region between aa 134 and 142 could participate in the binding (Figure 15A). 

Accordingly, RIP performed on endogenous p27 immunoprecipitated from HC or EG WT 

and p27KO MEFs confirmed that miR-223 was readily recovered only in WT HC cells 

(Figure 15D).  

 

 

6 Regulation of miR-223 by p27 in breast cancer. 

Loss of contact inhibition is a hallmark of cancer and the role of p27 is of particular 

importance during breast cancer progression. The CDKN1B gene, encoding for p27, has been 

found mutated in some histotypes and deregulated in others (reviewed in 114, 165). 

Moreover, p27 deregulated expression is often considered a negative and independent 

prognostic factor in cancer. We thus evaluated the expression of p27 and miR-223 in a panel 

of breast cancer derived cell lines, grown in EG or HC. p27 was considerably upregulated by 

contact inhibition only in fibroadenoma-derived MCF10A cells (a model of semi-normal 

mammary gland epithelial cells) (Figure 16A) and this was paralleled by upregulation of 

miR-223. In contrast, in tumor-derived cells miR-223 expression was not modified by 

contact inhibition (Figure 16B), suggesting that p27 could affect miR-223 regulation in 

mammary epithelial cells and that it could contribute to loss of miR-223 in breast cancer. To 

test this hypothesis, we interrogated The Cancer Genome Atlas (TCGA) data set, containing 

miR expression in 83 normal breast tissues and 697 breast cancers (166). miR-223 levels 

were generally reduced in the different types of breast cancers, with the exception of  Triple 

Negative Breast Cancer (TNBC) (Figure 16C). 
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Figure 12 p27kip1 stabilizes miR-223 expression via a cytoplasmic and CDK-

independent activity. 

A, Western blot analyses of  p27 expression in 3T3 p27KO fibroblasts transfected with the 

indicated p27 mutants. Two different anti-p27 antibodies were used to recognize mutants: 

Ab#BD-Cl57, raised against the CDK binding domain of p27, does not recognize the CK- 

mutant. Ab#SC-C19, raised against the C-terminus of p27, recognizes the CK- mutant. B, 

Immunofluorescence analyses of p27 expression and localization (green) in 3T3 p27KO, 

transfected as indicated. The propidium iodide staining of the nuclei is shown in red. C, miR-

223 expression in p27KO 3T3 fibroblasts transduced with retroviruses encoding for p27WT, 

p27CK- and p27KR, as indicated. Data represent the 2
-∆CT

 values obtained by normalizing 

miR-223 with U6 expression. p values were obtained by unpaired student t-test, using either 

Excel or Prism softwares.  
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Figure 13 p27kip1 stabilizes mature miR-223 by preventing its degradation. 

A, In vitro miR degradation assay. Expression of miR-223, miR-1, control miR and p27 

protein after 0, 90 and 120 minutes of incubation with lysate from p27KO cells is reported. 

Human recombinant p27 protein was added where indicated. B, Quantification of miR-223 

(left graph) and miR-1 (right graph) levels from the in vitro miR degradation assay described 

in (A). Data represent the mean of three experiments performed in duplicate and are 

expressed as fold of miR levels respect to T0. C, Schematic representation of EGFP-fusion 

proteins used in RIP assays, based on in silico prediction results from BindN software. 
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Figure 14 p27kip1 binds miR-223. 

A, Expression of miR-223 and p27 protein using the anti-EGFP or the anti-p27 antibodies 

(Ab#Cl57), in lysates and RIP from MDA-MB-231-miR-223 cells transfected with the 

indicated p27 constructs and immunoprecipitated using an anti-EGFP or control IgG 

antibodies, as indicated. In the lower graph qRT-PCR analyses, evaluating miR-223 binding 

to p27WT or mutant proteins expressed as fold enrichment respect to miR-223 binding to 

EGFP transfected cells. B, Expression of miR-223 and p27 protein using the anti-EGFP 

antibody in lysates and IP from MDA-MB-231 cells transfected with miR-223 and the 

indicated p27 constructs. C, Expression of miR-223 and p27 protein using the anti-EGFP 

antibody in lysates and IP from HT-1080 cells transfected with miR-223 and the indicated 

p27 constructs. 
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Figure 15 miR-223 is bound to p27 through a conserved region. 

A, Comparison of p27 protein sequence among mammals in the putative miR-223 binding 

region. The aminoacids predicted to bind RNA in human p27 using the BindN resource are 

highlighted in red (score 1 to 9, with 1=lowest and 9=highest value). Aminoacid substitutions 

in the different mammals are highlighted in yellow. The graph on the right reports miR-223 

binding to p27
WT

 or mutant proteins, expressed as fold enrichment respect to miR-223 

binding in GFP transfected  HT-1080 cells. B, Schematic representation of the 3 mutants 

used to precisely map the miR-223 binding domain in p27. The p27
MUT1

 construct carries 

three substitutions (R93A, P95A and K95A) that completely alter the RNA binding domain 

between aa 90 and 103 as predicted using the BindN resource. The p27
K134fs

 construct carries 

one base deletion (A420) resulting in the frame shift of the protein from K134 and in the 

generation of a truncated protein of 143 aa that lost the RNA binding domain between aa 134 

and 143 (the alternate frame is reported in red).  The p27
dMUT

 (double mutant) construct 

carries both RNA binding domains deletions. C, Expression of miR-223 and p27 protein 

using the anti-p27 antibodies (Ab#Cl57), in lysates and RIP from MDA-MB-231-miR-223 

cells transfected with the indicated p27 constructs and immunoprecipitated using an anti- 

EGFP or control IgG antibodies, as indicated. The fold enrichment value (calculated as in A) 

is reported under the blot. D, qRT-PCR analyses evaluating miR-223 binding to endogenous 

p27 protein expressed as fold enrichment respect to miR-223 binding to control IgG in WT 

and p27KO cells, cultured in exponential growth (EG) or at high confluence (HC). On the 

right, expression of miR-223 (upper panel) and p27 protein (lower panel) is reported. 

Different MEF preparations (1 and 2) are indicated. p values were obtained by unpaired 

student t-test, using either Excel or Prism software. 
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Figure 16 p27-miR-223 axis is deregulated in breast cancer. 

A, Western blot analysis of p27 expression in breast cancer cell lines, harvested in 

exponential growth (EG) or at high confluence (HC). Increase of p27 expression in cells 

grown at HC, expressed as fold increase respect to EG condition, is reported in the figure. 

Vinculin was used as loading control. B, miR-223 expression in the indicated breast cancer 

cell lines grown at HC. Data are expressed as fold increase of miR-223 levels in HC respect 

to EG. Expression of miR-223 (C), p27 (D), p27 pT157 (E) and p27 pT198 (F) in the TGCA 

dataset, evaluated by microarray analyses (C) or RPPA (D-F). 
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By looking at the expression and phosphorylation of p27 in the same data set (403 cancer 

specimens analyzed by reverse-phase protein array, RPPA) (166) we showed that, although 

p27 levels were higher in ER+ and PR+ breast cancers (Figure 16D), its phosphorylation on 

T157 (Figure 16E) and T198 (Figure 16F) was higher in TNBC. Interestingly, 

phosphorylation on T157 but not on T198 significantly correlated with miR-223 expression 

in TNBC (Figure 17A). T198 phosphorylation has been linked to p27 degradation (163) 

while T157 phosphorylation has been linked to p27 displacement in the cytoplasm (167), 

suggesting that the latter could participate in the regulation of miR-223 binding. To this aim 

we generated a non-phosphorylable T157 mutant (p27T157A) and a pseudo phosphorylated 

mutant (p27T157D) to be tested in RIP assays (Figure 17B). Data showed that p27 ability to 

bind miR-223 paralleled the levels of T157 phosphorylation, with the p27T157D mutant 

displaying the greatest ability (Figure 17B and C), thus providing an explanation for the 

positive correlation observed in breast cancers (Figure 17A). 
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Figure 17 The cytoplasmic displacement of p27-pT157 positively correlates with miR-

223 expression and binding. 

A, Correlation between miR-223 and p27-pT157 expression in the TCGA breast cancer 

dataset, using the Spearman’s correlation test.  B, Expression of miR-223, p27 T157 and p27 

in lysates and RIP from MDA-MB-231-miR-223 cells, transfected with the indicated EGFP-

p27 constructs and immunoprecipitated using an anti-EGFP or control IgG antibodies, as 

indicated. C, miR-223 expression in RIP described in (B), evaluating binding to p27WT or 

mutant proteins and expressed as fold enrichment respect to miR-223 binding in EGFP 

transfected cells. 
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An increasing number of evidences indicates that miRs control cell cycle progression by 

direct targeting of critical modulators, such as cyclins, CDKs and CDK inhibitors (50-54). 

The crucial cell cycle checkpoints are tightly controlled at several levels by different miRs 

(53). For example, the mir-15a-16-1 cluster induces cell cycle arrest by targeting critical cell 

cycle regulators, such as CDK1, CDK2 and CDK6, as well as cyclins (D1, D3 and E1) (168). 

Indeed, these and other promoters of the cell cycle, such as cyclins (45) and cell division 

cycle phosphatases, like CDC25A (169), are also known to be targeted by other miRs to 

inhibit the cell cycle and different reports show that these miRs are downregulated or lost in 

tumor cells (53, 170). 

Conversely, cancer cells frequently up-regulate the expression of miRs that target inhibitors 

of cell cycle progression. For example, pRB and family members p107 and p130 are targets 

of miRs found to be upregulated in certain cancers (32, 171).  

One of the best characterized link between cell cycle repressors and miRs is represented by 

the role of miR-221/222 in the regulation of p27 expression (50, 57). It has been 

demonstrated that in cells exposed to mitogenic stimuli, when p27 protein expression 

decreases (58, 59) miR 221/222 expression increases, determining an amplification of the 

pro-mitogenic stimuli that ultimately favors the entrance in S phase (53, 57).  

The role of miRs in the control of cell cycle progression is intimately correlated with the 

alteration of cell proliferation and the relevance of cell cycle regulation induced by miRs in 

cancer is well documented in several cancer tissues (47-49).  

During this PhD project we studied the role of p27 in the regulation of cell cycle-related 

miRs and we uncovered a novel role for p27 in the control of cell cycle arrest, mediated by 

the control of miR expression and stability.  

To approach this issue, we used wild type and p27KO cells harvested in different phases of 

the cell cycle and identified the miRs regulated by p27 during the G1 to S phase transition. 

We found that miR-223 was the most up-regulated miR in G1 arrested MEFs. The major 

increase in miR-223 levels was achieved when the G1 arrest was imposed by contact 

inhibition occurring in highly confluent cells. Interestingly, in the absence of p27 miR-223 

levels were strongly reduced and unaffected by cell cycle arrest. 

Contact inhibition occurs in normal cells and is lost in cancer cells, allowing for uncontrolled 

growth even after that the confluence is reached (132, 136).  

p27 is a master regulator of G1 arrest following contact inhibition and its protein expression 

is highly increased when cells reach high confluence (59, 68, 143, 153, 154). Nevertheless, 
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the molecular mechanisms that drive contact inhibition through the up-regulation of p27 

expression are still unclear. Generally, it has been observed that widespread gene expression 

changes occur when cells enter quiescence, including both repression and activation of genes 

(64-67). Several important regulators of this process have been described, particularly the 

MYC and E2F families of transcription factors, that coordinate cell cycle re-entry and repress 

cell cycle genes during quiescence (66, 172, 173). In the last few years, also regulation of 

miR expression has been correlated with the quiescent state (174). Four microRNAs were 

upregulated and over 100 microRNAs were downregulated as T98G glioblastoma cells 

progress from quiescence into the proliferative status (174). Recently, it was demonstrated 

that the quiescence state induced by contact inhibition promotes the down-regulation of miR-

29 and the consequent release from repression of its targets, contributing to the reinforcement 

of the concept that contact inhibition is an active state (71). 

We thus decided to pursue the study of our interesting results, by investigating  by which 

molecular mechanisms p27 expression could trigger miR-223 up-regulation when high 

cellular confluence was reached. First of all, we decided to test whether cell-cell contacts 

were necessary to sustain the expression of miR-223. Our results clearly demonstrated that 

the establishment of stable cell-cell contacts was the initiating event that led to a sustained 

expression of miR-223 and this in turn required the presence of p27. 

It is known that regulation of miRs expression can be achieved either by acting on miR 

transcription (175, 176) or by post-transcriptional mechanisms (72, 177). Interestingly, we 

found that the impairment of miR transcription did not affect miR-223 levels in the presence 

of p27, while in p27KO cells miR-223 levels dramatically dropped (Figure 8A-C), indicating 

that p27 mediated miR-223 stability through a post-transcriptional mechanism. Strikingly, 

using a microRNA in vitro degradation assay, we demonstrated that p27 was able to 

specifically lengthen the half-life of a synthetic miR-223 oligo, suggesting that p27 stabilizes 

and protects miR-223 from degradation (Figure 13A and B). These results were of particular 

interest considering that, in the last few years, increasing attention has been focusing on the 

mechanisms that regulate miR stability (72, 176, 177). miRs are found to be generally stable 

and mature miRs persist for hours, or even days, after their production is arrested (18-20). 

However, although crucial for the regulation of steady-state miR levels, little has been 

uncovered about the regulation of miR half-life and stability in the cell, following processing. 

Although >10 fold more stable than mRNA (the median half-life of which is 10 h), some 

miRs, such as miR-125b, are more persistent than others (19).  
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Our results therefore added a new piece of knowledge in the understanding of the post-

transcriptional mechanisms that control miR stability.  

Moreover, using RNA immunoprecipitation assay, we proved that miR-223 is physically 

bound to p27 (Figure 13C, 14A-D) and that this interaction is conserved from mouse to 

human (Figure 13C, 14A and E). We identified two possible miR-223 binding motifs (RNA-

BM) in human p27: one between aa 90-103 and the second between aa 134-142. It is 

intriguing to note that two point mutations within the first RNA-BM (P95S and K96Q) have 

been found in MEN syndromes (178), thus strongly supporting the idea that this binding is 

relevant in cancer. The K96Q substitution, predicted to profoundly alter the miR-223 binding 

motif in p27 (by BindN software analysis) is also associated with the presence of breast 

cancer in MEN patients (178). More interestingly, two frame shifts mutations (K134fs and 

P137fs) found in luminal A breast cancer (reviewed in ref. 165) completely disrupt the 

second RNA-BM, reinforcing the potential significance of our findings in breast cancer onset 

and/or progression. 

In this PhD project, we demonstrated that contact inhibition is an active state in which the 

coupled increase of p27 and miR-223 is crucial to lead to G1 arrest. Our data convincingly 

establish that p27 regulates miR-223 stabilization and protects from degradation through a 

physical interaction. 

However, our data did not explain the increase in miR-223 transcription induced by cell-cell 

contact in both WT and p27KO cells. We thus investigated how cell confluence could trigger 

miR-223 transcription and our results demonstrated that p27 regulates miR-223 also by 

another mechanism, related to its ability to inhibit pRB phosphorylation by CDKs, thus 

eventually blocking E2F1 activity. We discovered an auto regulatory feedback loop between 

E2F1 and miR-223, in which E2F1 repressed the miR-223 promoter and miR-223 

downregulates E2F1 expression (Figure 9B, 10A and B).  

Importantly, this E2F1-miR-223 feedback loop plays a role in the regulation of cell cycle exit 

since miR-223 silencing in p27WT cells rescues the G1 arrest imposed by contact inhibition 

(Figure 11A). Conversely, miR-223 overexpression resulted in a delayed S phase entrance 

(Figure 11B and C). 

Our data, showing that in p27KO cells contact inhibition failed to properly downregulate 

E2F1 (Figure 9C), add new elements to the mechanism by which this crucial transcription 

factor is regulated and open interesting lines of future investigation. Our results are in accord 

with the phenotypes of p27 (161) and miR-223 (83) knock-out animals, both presenting 
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features of hyper proliferation. Future investigation will establish whether the mechanism 

highlighted here plays a role in the physiology/pathology of lymphoid organs, particularly 

enlarged in both p27 and miR-223 knock-out mice (161, 83). 

In summary, the present PhD thesis shows that contact inhibition induces accumulation of 

p27 and this in turn impinges on miR-223 expression in a dual manner. Nuclear p27 

counteracts E2F1 activity by impairing RB phosphorylation, thereby increasing miR-223 

transcription. Cytoplasmic p27 directly binds mature miR-223 increasing its stability. 

This work uncovers a new function of p27 that through a physical interaction with miR-223 

regulates its stability to enhance the proliferative arrest following contact inhibition. 

Future investigation will address if and how post-translational modifications of p27 following 

contact inhibition modulate its ability to bind and stabilize miR-223. It is conceivable that 

one of these modifications might be the phosphorylation of p27 on T157 that correlates with 

miR-223 levels in TNBC and significantly increases the binding of p27 to miR-223 in vitro. 

In conclusion, we highlight a new pathway that participates to the control of cell proliferation 

both in vitro and in vivo and represents a promising field of future investigation for cancer 

research and anti-cancer therapeutics, especially in breast cancer. 
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Cell culture 

Primary wild type (WT) and p27 knock-out (p27KO) mouse embryo fibroblasts (MEFs) were 

prepared from embryos at day 13.5, as previously described (179).  

Primary MEFs (at least 3 different preparations/genotype) were frozen at passage 1 and used 

in all subsequent experiments between passage 2 and 4, without significant differences. The 

correct genotype of WT, p27KO cells was determined by PCR, as described (179). 3T3 

fibroblasts were obtained from primary MEFs following the 3T3 immortalization protocol, as 

described elsewhere (144). MEFs and 3T3 fibroblasts were cultured in Dulbecco modified 

Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS) (Sigma). 

MDA-MB-231, HT-1080, BT-474, HBL-100, SK-BR-3, MCF-7, T47-D, MCF-10A and 

293T-17 cell lines were obtained from ATCC (LGC Standards). 293FT cell line was 

purchased from Life Technologies (Invitrogen). Cells were all cultured in DMEM 

supplemented with 10% FBS, except for MCF-10A cells, cultured in Mammary Epithelial 

Cell Growth Medium supplemented with bullet kit (Promo Cell). 

 

mmu-miR-expression profile and qRT-PCR 

Total RNA (5 µg) was reverse transcribed using biotin end-labeled random octamer 

oligonucleotide primers. Hybridization of biotin-labeled complementary DNA was 

performed using a custom miR microarray chip (OSU-CCC Human and Mouse MicroRNA 

Microarray Version 4.0) which contains 1,600 miR oligo probes derived from 474 human 

and 373 mouse miR genes and printed in duplicates. The hybridized chips were washed and 

processed to detect biotin-containing transcripts by streptavidin–Alexa647 conjugate, 

scanned and quantitated using an Axon 4000B scanner (Axon Instruments, Downingtown, 

PA) and the GenePix 6.0 software (Axon Instruments, Downingtown, PA). Three replicates 

were tested for each sample. Average values of the replicate spots of each miR were 

background subtracted, normalized, and further analyzed. Normalization was performed 

using the global median method. We selected the miRs measured as present in at least as 

many samples as the smallest class in the data set (50%). Absent calls were thresholded to 

6.2 (log2 scale) before statistical analysis, representing the average minimum intensity level 

detectable in the system. Differentially expressed miRs were identified using the Class 

Comparison Analysis of BRB tools version 3.6.0 (http://linus.nci.nih.gov/BRB-

ArrayTools.html). The criterion for inclusion of a gene in the gene list is a p-value less than 
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0.05. The miR expression data have been submitted to the Gene Expression Omnibus (GEO) 

with accession number GSE 45538. 

RNA from exponentially growing (EG), G1-blocked (G1) and S-phase (S) p27WT and 

p27KO MEFs used for the array data were further used for miR validation by qRT-PCR. 

 

Vectors 

Retroviral vectors (murine stem cell virus retroviral vectors, MSCV; Clontech) or EGFP-

tagged vectors encoding for human p27WT, mutant p27CK- (R30, L32, F62, F64 in 

Alanine), mutant p27KR (K165, R166 in Alanine), mutant p27T157
A 

(T157 in Alanine) or 

p27T157
D 

(T157 in Aspartate) in  were produced by site directed mutagenesis using a 

dedicate kit (Stratagene) as described elsewhere (163). The EGFP-tagged p27 deletion 

mutants were previously described (179) or generated by PCR starting from human p27 

cDNA using the following primers: 

p27 P 1 FW: 5’-GGATCCCATATGTCAAACGTGCGAGTG-3’ 

p27 P 26 FW: 5’-GGATCCCATATGCCCTCGGCCTGCAGGAAC-3’ 

p27 P 42 FW : 5’-GGATCCCATATGACCCGGGACTTGGAGAA-3’ 

p27 P 78 FW : 5’-GGATCCCATATGGAGGTGGAGAAGGGCAGC-3’ 

p27 P 85 RV: 5’- GGATTCCTCGAGGGGCAAGCTGCCCTTCTC-3’ 

p27 P 154 RV: 5’-GGATCCCTCGAGTCGCTTCCTTATTCCTGC-3’ 

p27 P 170 RV: 5’-GGATCCCTCGAGTGTTCTGTTGGCTCTTTT-3’ 

p27 P 198 RV: 5’-GGATCCCTCGAGTTACGTTTGACGTCTTCT-3’ 

 

Lentiviruses expressing miR-223 were produced in 293-FT cells (Invitrogen), by calcium 

phosphate transfection. To this purpose, the System Biosciences (SBI, USA) microRNA 

Precursor Constructs were used, containing expression of the specific microRNA, encoding 

also for the puromycin resistance for simple identification and monitoring of cells positive 

for transduction. In particular, MDA-MB-231 and HT-1080 cell lines were transduced with 

lentiviruses expressing precursor of miR-223 and transduced cells were selected using 1.5 

µg/ml puromycin. Production of bacterial recombinant p27 protein was performed as 

previously described (163). Briefly, p27WT cDNA was cloned in the pQE-30 vector 

(Qiagen). Escherichia coli (M15) cells were transformed with the expression plasmid to 

produce recombinant proteins containing His-tag at the N-terminus. Proteins were 

subsequently purified with Ni-nitrilotriaceticacid (NiNTA) resin (Qiagen). 
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Cell Treatment and qRT-PCR  

MEFs were harvested at several culture conditions: exponential growth (EG), serum 

starvation (ST), release in complete medium (10% FBS) for 13-15 hours (R13, R15), high 

confluence (HC) and high confluence followed by serum starvation (HC ST). 

In the conditioned media experiment, exponentially growing p27WT MEF were grown in 

conditioned media harvested from exponentially growing (EG) or highly confluent (HC) 

MEFs. RNA was then extracted after 24 hrs for qRT-PCR analysis. In the cell-splitting 

experiment, p27WT and p27KO MEFs were cultured in HC condition and then replated at 

high (HC, 4x10
4 

cells/cm
2
 dish) or low (LC, 1x10

4 
cells/cm

2
) confluence. RNA was then 

extracted after 4, 8 and 24 hrs for qRT-PCR analysis.  In the EGTA experiment, MEFs grown 

at HC were treated with 5mM EGTA. RNA from treated and untreated cells was extracted 

after 1 hr for qRT-PCR analysis.  In the Actinomycin D experiment, MEFs grown at HC 

were treated with Actinomycin D (5 mg/ml, Sigma-Aldrich). RNA was extracted at each 

indicated time for qRT-PCR analysis. In the α-amanitin experiment, MEFs grown at HC 

were treated with α-amanitin (20µg/ml, as described in Chen et al., 2012). RNA was 

extracted at each indicated time for qRT-PCR analysis. In the experiment of miR-223 

exogenous expression, MEFs were transduced with lentiviral vectors encoding for miR-223 

and 72 hrs later cells were cultured at HC and then treated with 5mM EGTA for 1 hour.  In 

the experiment of miR-223 expression in 3T3 fibroblasts, 3T3 p27KO cells were clones were 

transduced with retroviral vectors encoding for p27WT, p27CK- and p27KR proteins. 

Exponentially growing fibroblasts were then harvested for RNA preparation and qRT-PCR 

analysis. RNA was extracted using Trizol reagent (Invitrogen) and retro-transcribed using the 

TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems). MicroRNAs 

expression levels were quantified by qRT-PCR, using the Single Tube TaqMan microRNA 

Assay and the Universal Master Mix (Applied Biosystems). Normalization of the data was 

performed using the U6 snRNA expression. Reverse Transcriptase reactions and Real-Time 

PCR were performed according to the manufacturers’ instructions. qRT-PCR reactions were 

run in the MyiQ2 Two Color Real-time PCR Detection System (Biorad). Comparative real-

time PCR was performed in triplicate, including no-template controls. Relative expression 

was calculated using the comparative 2
^-∆Ct

 method. In the pri-miR-223 experiment, RNA 

from EG or HC MEFs was retro-transcribed with AMV Reverse transcriptase to obtain 

cDNAs, 
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according to provider’s instruction, (Promega). Absolute quantification of mouse pri-miR-

223 was evaluated by qRT-PCR using SYBR Green dye-containing reaction buffer (GoTaq 

qPCR 2x Master Mix, Promega). Standard curves (10-fold dilution from 10
1
 to 10

-4
 

attomoles) were prepared for both pri-miR-223 and housekeeping genes. The incorporation 

of the SYBR Green dye into the PCR products was monitored in real time using the MyiQ2 

Two Color Real-time PCR Detection System (Biorad). Ct values were converted into 

attomoles. Then normalized pri-miR-223 value was obtained by using at least two different 

housekeeping genes (GAPDH, GUSB). The following primers (Sigma) were used: 

mouse pri-miR-223 FW: 5’-TCCAGTTGCACATCTTCCAG-3’ 

mouse pri-miR-223 RV: 5’-TGTAGGCAGCAGGCTATGTG-3’ 

mouse GusB FW: 5’-CTCTGGTGGCCTTACCTGAT-3’ 

mouse GusB RV: 5’-CAGTTGTTGTCACCTTCACCTC-3’ 

mouse GAPDH FW: 5’-TGAGGACCAGGTTGTCTCCT-3’ 

mouse GAPDH RV 5’-CCCTGTTGCTGTAGCCGTAT-3’ 

 

Luciferase assay and mutagenesis 

A 5'-flanking fragment of mouse pri-miR-223 (AK036748, according to 77) from position –

758 to +23 relative to the transcription start site (+1) was amplified from mouse genomic 

DNA (C57/BL6 mouse), using specific primers carrying restriction endonuclease sequences 

XhoI (in the sense primer) and Hind III (in the antisense primer). PCR product was digested 

with Xho I and Hind III, unidirectionally subcloned into the promoter-less pGL3 basic vector 

(Promega) creating miR-223 promoter full length (FL). 

Putative binding sites for E2F1 transcription factor were explored by conducting the 

Transcription Element Search System (http://www.cbil.upenn.edu/tess/index.html) and by 

PROMO 3.0 (alggen.lsi.upc.es/recerca/menu_recerca.html ). 

For the E2F1 deleted fragments (E2F1Del) a sense primer downstream of the two putative 

E2F1 binding sites with restriction endonuclease sites XhoI was used and cloned as described 

for FL vector.  

 

mmu-miR-223 promoter FL F: 5ACGCTCGAGGGTGCTGTTACAAAGATAAGGCAAA-3’ 

mmu-miR-223 promoter FL R: 5’-ACGAAGCTTAAGTGGTGCCTTTGTCTTGG-3’ 

mmu-miR-223 promoter E2F1Del F: 5’-ACGCTCGAGGGGAAGTCAGTGTTTTTGGAG-3’ 
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For the  point mutations of E2F1 binding sites site-directed mutagenesis of the FL vector was 

performed using the QuikChange Site-Directed Mutagenesis Kit (Stratagene) according to 

the manufacturer’s instructions using the following primers: 

 

mmu-miR-223 promoter E2F1 Mut 1 F:  

5’-GCTCTGATATTTAAAGATCTCAATTGCTCTAGGG-3’ 

mmu-miR-223 promoter E2F1 Mut 1 R:  

5’-CCCTAGAGCAATTGAGATCTTTAAATATCAGAGC-3’ 

mmu-miR-223 promoter E2F1 Mut 2 F: 

 5’-GTACTTCCTGCTTCACTCTGTAGCATG-3’ 

mmu-miR-223 promoter E2F1 Mut 2 R:  

5’ -CATGCTACAGAGTGAAGCAGGAAGTAC-3’ 

 

E2F1 Mut 3 vector was generated  using  E2F1 Mut 1 as template  and mmu-miR-223 

promoter E2F1 Mut 2 as primers for mutagenesis assay performed as described above. 

For the luciferase assays, MEFs were cotransfected with 15µg of one of the reporter 

constructs (ppri-mir-223-full length, ppri-mir-223-E2F1-del or pGL3 basic vector) and 2.5µg 

of pTK-RL vector (internal control) using Lipofectamine reagent (Invitrogen) according to 

manufacturer’s recommendations. 

After transfection, cells were plated at EG and HC and 24 hrs later, cell lysates were assayed 

for luciferase activity using the Dual-Luciferase reporter assay system (Promega). Values 

were normalized using Renilla luciferase.  

 

BrdU assay and FACS analysis 

For BrdU incorporation assay, MEFs were transfected with a synthetic miR-223 inhibitor 

(Life Technologies) using oligofectamine reagent (Life Technologies). 

Cells were then harvested at EG or at HC from 60mm dishes (BD, Falcon) containing 

coverslips (Menzel-Glaser, 12 mm) and were incubated for 3 hours with 10 µM BrdU 

(Roche). WT and p27KO MEF overexpressing miR-223 or control empty vector  were 

starved and grown at high confluence (HC-ST) and then released in complete medium  for 

13, 16, 18 hours (R-13, R-16, R-18). Cells were then fixed in 4% paraformaldehyde (PFA) in 

PBS at room temperature (RT) and permeabilized in HCl 1,5 N for 30 minutes at 37°C. 

Coverslips were then washed 2 times in Borate Buffer 0.1 M pH 8.5 and 2 times in PBS. 
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Incubation with primary antibody anti-BrdU (Roche) was performed 1 hour at 37°C, and 

samples were washed in PBS and incubated with secondary antibody (anti-mouse Alexa 

Fluor488-conjugated, Invitrogen) for 1 hour at RT.  Finally, nuclear staining with propidium 

iodide 3 µg/ml + RNase 100 µg/ml for 30 minutes at RT was performed and coverslips were 

mounted on glass slides with Mowiol 488 (Calbiochem). 

Cell cycle distribution was analyzed by flow cytometry (FACS). WT MEF overexpressing 

miR-223 or control empty vector  were starved and grown at high confluence (HC-ST) and 

then released in complete medium for 13, 16, 18 hours (R-13, R-16, R-18). Cells were then 

collected, fixed in ice-cold 70% ethanol, washed in PBS 1x and resuspended in propidium 

iodide staining solution (50 µg/ml propidium iodide and 100 µg/ml RNase A, in PBS 1X). 

Stained cells were subjected to FACS analysis with a FACScan or a FACSCalibur instrument 

(BD Biosciences). Distribution of cells in G1, S and G2/M phases of the cell cycle was 

calculated using the WinMDI2.8 software. 

 

Immunofluorescence analysis 

For immunofluorescence analysis EG, ST and HC MEFs and EG 3T3 p27KO fibroblasts 

(+p27
WT

, +p27
CK-

, +p27
KR

) were harvested from 60mm dishes (BD Falcon) containing 

coversplips (Menzel-Glaser, 12 mm) and fixed in phosphate-buffered saline (PBS)–4% 

paraformaldehyde (PFA) at room temperature (RT), permeabilized in PBS–0.2% Triton X-

100, and blocked in PBS–1% bovine serum albumin (BSA). Incubation with primary anti-

p27 antibody (sc-528, Santa Cruz) was performed overnight at 4°C in PBS–1% BSA, then 

samples were washed in PBS and incubated with secondary antibodies (Alexa Fluor 488-

conjugated anti-rabbit antibody, Invitrogen) for 1h at RT. Antibody incubation was followed 

by nuclear staining with propidium iodide solution (propidium iodide 3 µg/ml + 100 µg/ml 

RNase in PBS)  for 30 min at RT. Stained cells were observed using a confocal laser-

scanning microscope (TSP2 Leica) interfaced with a Leica DMIRE2 fluorescent microscope. 

 

In vitro microRNA degradation assay  

The in vitro microRNA degradation assay was essentially performed as described elsewhere 

(180). Proteins from p27KO MEF cells were extracted at 4°C using degradation buffer 

(50mM Tris–HCl, pH 8.0, 10mM MgCl2, 75mM KCl, 5mM DTT, 10mM ascorbic acid and 

protease inhibitor cocktail, Roche) and after 2 cycles of freeze 
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and thaw lysates were centrifuged to pellet debris. 5µg of RNA oligos hsa-miR-223, hsa-

miR1 or control miR (Sigma Aldrich) were added to 100µg of protein lysate and incubated at 

25°C for 90 and 120 min with the addition of 1µg/µl recombinant p27 protein (1µg/sample) 

or degradation buffer as a control. At indicated times, each reaction was split in two aliquots: 

one aliquot for evaluation of oligo RNA levels, to which 2x loading dye (8M urea, 20mM 

Tris–HCl pH 8.0, 1mM EDTA, pH 8.0, 0.025% xylene cyanol FF and 0.025% bromophenol 

blue) was added; the other aliquot for evaluation of protein expression, to which 2x Laemli 

buffer was added. Samples were denatured at 95°C for 5 min. Oligo RNAs were separated on 

a 15% denaturing polyacrylamide gel, while total proteins were separated in 4-20% SDS-

PAGE (Criterion Precast Gel, Biorad). 

 

RNA immunoprecipitation 

For prediction of RNA-binding residues of p27 protein, a search using BindN web-tool 

(http://bioinfo.ggc.org/bindn/) as described (181) was conducted using human and mouse p27 

amino acid sequence as inputs. 

Stable cell lines expressing miR-223 (MDA-MB-231, HT-1080) described before, were 

transfected with 10µg of pEGFP-p27 expression vectors using FuGENE HD transfection 

reagent (Promega). 48 hours later cells were harvested for protein extraction. 

RNA immunoprecipitation assay (RIP) was performed essentially as previously described 

(182). To extract total proteins cells were scraped on ice using cold RIPA lysis buffer 

(150mM NaCl, 50mM Tris HCl pH 8.0, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS ) 

plus a protease inhibitor cocktail (Complete™, Roche) and supplemented with 1 mM 

Na3VO4 (SIGMA), 1 mM DTT (SIGMA) and 100U/ml rRNasin RNase Inhibitor (Promega). 

The lysate was incubated on ice for 5 minutes. Protein A and protein G Sepharose 4 Fast 

Flow (GE Healthcare Life Sciences) beads were pre-swollen in NT2 buffer (50 mM Tris-HCl 

(pH 7.4), 150 mM NaCl, 1 mM MgCl2, 0.05% NP40) supplemented with 5% BSA to a final 

ratio of 1:5 for at least 1 h at 4 °C. Antibody anti-GFP (Roche) was added to the bead slurry 

and incubated overnight, tumbling end over end at 4 °C. Antibody-coated beads were washed 

with 1 ml of ice-cold NT2 buffer 4 times. After the final wash, beads were resuspended in 1 

ml of ice-cold NT2 buffer and 200 units of rRNasin RNAse inhibitor were added. Lysates 

were centrifuged at 15,000g for 15 min to clear from large particles. The cleared lysate (2mg 

for endogenous miR-223, 1mg for miR-223 overexpressing cells) was added to the antibody 

mixture and incubated for 4 h at 4 °C tumbling end over end. Beads were then washed twice 
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with each of the following wash buffer: low salt wash buffer (20mM Tris HCl pH 8.0, 

150mM NaCl, 0.1% SDS, 1% triton X-100 and 2mM EDTA), high salt wash buffer (20mM 

Tris HCl pH 8.0, 500mM NaCl, 0.1% SDS, 1% triton X-100 and 2mM EDTA) and NT2 

buffer supplemented with 2M Urea and 1% sodium deoxycholate. Beads were then 

resuspended in 1 ml of NT2 buffer and 400 µl were saved for Western blotting analysis after 

the addition of 3x laemmli buffer. The remaining 600 µl were used for qRT-PCR analysis: 

beads were pelletted down and resuspended in 50 µl of NT2 buffer supplemented with 30 µg 

of proteinase K. The mixture was incubated at 55°C for 30 min and Trizol reagent was then 

added to isolate the RNA from the immunoprecipitated pellet. The extracted RNA was 

retrotranscribed using the TaqMan MicroRNA Reverse Transcription Kit and analyzed by 

qRT-PCR using TaqMan MicroRNA Assays, as described before. The PCR products were 

also separated on a 15% non denaturing-polyacrylamide gel. 

 

Preparation of protein lysates and immunoblotting  

3T3 p27KO fibroblasts overexpressing p27 (p27WT, p27CK
-
, p27KR) were grown in 

DMEM with 10% FBS and harvested at exponential growth. 

MDA-MB-231, HT1080 cell lines overexpressing miR-223 were transfected with p27 

expression vectors using FuGENE HD transfection reagent (Promega), as described above 

and 48 hours later cells were harvested. 

p27WT and p27KO MEFs were harvested at EG, HC, ST, HC+ST, ST and released in 

complete medium (10% FBS) for indicated time. Mammary cell lines (MDA-MB-231, BT-

474, HBL-100, SK-BR-3, MCF-7, T47-D, MCF-10A) were harvested at EG or HC. 

To extract total proteins, cells were scraped on ice using cold RIPA lysis buffer (150mM 

NaCl, 50mM Tris HCl pH 8.0, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS ) or NP40 

lysis buffer (0.5% NP40; 50 mM HEPES pH 7; 250 mM NaCl; 5 mM EDTA; 0.5 mM 

EGTA, pH 8) plus a protease inhibitor cocktail (Complete™, Roche) and supplemented with 

1 mM Na3VO4 (SIGMA), 10 mM NaF (SIGMA) and 1 mM DTT (SIGMA).  

For immunoblotting analysis, proteins were separated in 4-20% SDS-PAGE (Criterion 

Precast Gel, Biorad) and transferred to nitrocellulose membranes (GE Healthcare Life 

Sciences). Membranes were blocked with 5% dried milk in TBS-0.1% Tween20 or in 

Odyssey Blocking Buffer (Licor, Biosciences) and incubated at 4°C overnight with primary 

antibodies. Then, membranes were incubated 1 hour at RT with horseradish peroxidase-

conjugated secondary antibody (GE Healthcare Life Sciences) for ECL detection (GE 
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Healthcare Life Sciences) or with IR-conjugated (Alexa Fluor 680, Invitrogen or IRDye 800, 

Rockland) secondary antibodies for infrared detection (Odyssey Infrared Detection System, 

Licor). For IPs, anti-Rabbit IgG and anti-Mouse IgG True Blot (eBioscience) secondary 

HRP-conjugated antibodies were used. 

Primary antibody were purchased from BD Biosciences: p27; from Santa Cruz: p27 (SC-

C19), E2F1 (SC-193), vinculin (SC-7694); phospho-p27 (T157) (AF1555) from R&D 

Systems; from Roche: GFP (11814460001). 

 

TCGA statistical analyses 

We downloaded clinical, miR expression  and Reverse Phase Protein Array (RPPA) data 

from TCGA (The Cancer Genome Atlas) available through the associated files of the paper 

Comprehensive molecular portraits of human breast tumors, Nature, September 27, 2012 

https://tcga-data.nci.nih.gov/docs/publications/brca_2012/ (166). 

Statistical analyses were performed in R (version 2.14.2) (http:///www.r-project.org/). All 

tests were two-sided and considered statistical significant at the 0.05 level. The Log-rank test 

was employed to determine the significance of the association between miR-223 

(MIMAT0000280) expression and total p27, p27 T157 and p27 T198 RPPA.   

The Spearman's rank-order correlation test was applied to measure the strength of the 

association between miR-223 expression and p27T157 RPPA levels.   

The Shapiro-Wilk test was applied to determine whether data followed a normal distribution.  

The analysis of variance test was applied to normally distributed data, otherwise the Kruskal-

Wallis test was applied to assess the association of  miR/RPPA levels with breast tumor 

subtypes.  
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