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Chapter 1
Scope and Overview

The triple bottom line concept (Elkington, 1998) highlights that at the inter-
section of social, environmental, and economic performance there are acti-
vities that result in long-term economic bene�ts and competitive advantage
for the �rm. Logistics o�ers great opportunity of recognizing such activities,
leading to sustainable supply chain management. Optimization of sustaina-
ble supply networks for Project Based Enterprises (PBEs), in which the core
business is represented by the development of projects where innovation and
planning have to cohabit in order to reach high innovation and sustainability
levels without neglecting the control on the e�ciency dimension, has not de-
served great attention in literature. In fact, make to stock manufacturing can
bene�t from the research literature on production planning and organization
through the application of the largely developed concept of Economic Order
Quantity and the principles of lean throughout the entire supply chain, whi-
le in the construction industry production planning has been investigated in
the �eld of the precast.

Even if precast elements have to feed site requirements and the molds in
most of the cases are custom-made, these models cannot be used for PBEs,
since precast production has large similarities to the manufacturing produc-
tion, due to the fact that the units to produce (e.g. columns, beams and
slabs) are necessary to the concrete building and structural elements which
are obtained by molds usage at a centralized plant and then transported to
the building site for the assembly phase. In PBEs, every project has di�e-
rent scopes, the work-�ow is transient, multiple crafts are involved, projects
are planned and carried on in short time frames and there is a multitude of
material and equipment projected for installation. As a consequence, di�e-
rent trade-o� among the design, procurement, production, and installation
requirements can arise for each project and should be properly managed.

The aim of this work is to present a new model to integrate the com-
plex features characterizing the building construction industry by �nding the
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2 Chapter 1. Scope and Overview

best compromise to meet departments di�erent needs, hence interbreeding
social, environmental and economic aspects to enhance long-term performan-
ces. The program wants to be useful to gain the most coherent to project
speci�cations mid-term production plan and to be a decision support tool
by answering the following questions:

• which elements to be assembled and shipped every week?

• which is the best contractual agreement for the project?

• which storage capacity should be equipped at the production plant and
installation site?

• how much overtime should we consider to make the project feasible?

• which is the loss forecast of the project due to contractual, production
and logistics issues?

In this thesis the model has been applied to a worldwide leading compa-
ny of the Curtain Wall sector, Permasteelisa Group, which is an excellence
operating in the North East of Italy and that gave the availability to suita-
ble interviews, data analysis, production reports, project speci�cations and
contractual intents.

Research

The PBE production planning problem has been modeled and solved by Con-
straint Programming (CP). The main advantage for adopting CP relies on
the unlimited type of relations between variables that a modeler can adopt
to describe the desired properties of the solutions and the objective to be
pursued. Moreover, as compared with techniques such as genetic algorithms,
simulated annealing and tabu search, constraint-based systems are usually
easier to modify and maintain due to the separation of the modeling phase
from the solving one, which allows to easily add or remove constraints while
preserving the main structure of the model. This �exibility can be particu-
larly useful in the case of PBE's, where each project can present peculiarities
to be inserted into the general production planning model.

We coded and solved the model using the Comet package, which provides
an object-oriented language with a number of innovative modeling and con-
trol abstractions, while embedding the best algorithms and the best search
strategies developed by the CP research community. The best sustainable
solution is identi�ed by assigning a cost to feasible solutions. Four main
components have been introduced in order to foster sustainable solutions:

1. the cost of poor utilization of the assembly line;

2. the cost wasted in set-ups;
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3. the cost of poor utilization of the containers' space;

4. capital costs for stock immobilization.

The cost of poor utilization of the assembly line is calculated taking into
account the learning-forgetting phenomenon typical of the limited produc-
tions in PBEs: workers improve their performances according to the produc-
tion sequence, which combines the several product typologies by matching
the contractual milestones. In the learning phase, which lasts as long as the
same typology is being assembled in the production batch, the e�ciency is
going to improve, while, on the contrary, it is going to slow down each time
there is a break.

This concept allows to embrace the social dimension of sustainability and
allows to obtain:

• time feasible and reliable production schedules, in order to meet con-
tractual handover dates;

• accurate project production cost valuing;

• working-stress reducing by considering the actual capacity and e�cien-
cy of workers, thus obtaining a friendly environment.

The reference learning-forgetting model is the one by Jaber M.Y. (1996),
whose goodness has been proven by empirical evidences carried out thanks to
the data gathered from Permasteelisa Group, a worldwide leading Contractor
in the engineering, project management, manufacturing and installation of
architectural envelops and interior systems. Production data belonging to
three di�erent projects of curtain wall have been analyzed in order to �nd out
concrete evidence of the learning and forgetting phenomenon applicability.

A suitable new methodology in order to reach the goal is being proposed
in this study, by basing on the production data achieved from the information
system of the company and the technical/organizational directions given by
people working at the production and tender departments. Interviews have
been held with the production manager, the logistic manager and the tender
leader of the three projects that have been taken into account and their
opitions have been collected and interbred to build the following technique.
As an evidence, the phenomenon occurs in all of the project product families,
so that the learning curve associated to each of them has been drawn.

Further, a set of numerical examples that show how the model of Ja-
ber M.Y. (1996) behaves under a variety of forgetting breaks and di�erent
values of the learning constant, obtained from the previous empirical research
have been performed. As an outcome, the total production time calculated
through the model is always higher than the one simply evaluated as the
multiplying of the tender standard time by the quantity to produce. The
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lack of consideration of the learning-forgetting phenomenon in the produc-
tion planning is misleading since the production time is under-estimated up
to 69%, with negative consequences on the actual planning in terms of time
and capacity on the assembly line, causing delays on the general Project
Plan. This misalignment increases with the number of stops on the assem-
bly line since the bene�ts that comes from the learning e�ect exploiting is
limited by the forgetting phase and a potential expression that explicates
this relationship has been achieved.

The second cost introduced in this thesis model aims at minimizing the
cost for set-ups, since in PBEs, productions cost related may be signi�cant:
due to the huge and varying dimensions of the panels, the automatic conveyor
width of the assembly line must be revised several occasions. These kind of
activity can take at least 4 hours to be ended, thus causing rather a long
unproductive impact.

The environmental dimension of sustainability is taken into account by
fostering full truck loading, so that less travels are required to the con-
struction plant, with related reduction of GHG emissions from fossil fuel
combustion. The lost space in mean of transports, is estimated by assuming
that each part type can be associated with a unit load class: this means
that elements of di�erent part types can be stacked during transport only if
they belong to the same class. Since packs have huge dimensions, number
of packs that can be stacked onto each other and number of columns inside
the mean of transports can be easily calculated, thus lost space is evaluated
as a percentage of the volume of the mean of transport.

The considered cost in the sustainable solution is the one that gives evi-
dence to all of the hidden costs of capital immobilization, which are strongly
connected to the contractual payment agreement with the client. The capital
cost associated to the unproduction of the line is calculated by considering
that the idle time of the assembly line prevents the company for being paid
for the production of the units that could have been assembled if the ope-
rators would not have stopped. By following the same logic, inventory cost
in production and at site can be thought as the postponement payment by
the client because of unshipping and uninstalling a certain number of square
meters.

Main Results

The model presented in chapter 4 has been applied to Manchester One Spin-
ning�elds Building a curtain wall project awarded by Permasteelisa Group
and whose learning-forgetting analysis has been previously performed.

For the �rst 5 weeks of planning in the basic con�guration, the major
cost item is due to set-ups (45%), followed by overtime (19%), capital costs
(18%) and �nally less-than-truck load transports (18%). As an evidence, in
the basic con�guration the pattern of the model is to minimize as much as
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(a) Production planning.

(b) Shipment planning.

Figure 1.1. Production planning for �rst horizon in basic con�guration.

possible the unproduction of the assembly line and the storage at installation
site and the learning-forgetting phenomenon is taken into account in several
occasions through the anticipation of the production of item belonging to the
same family product. The full production planning of the basic con�guration
is reported in �gure 1.1a, where the packs containing the curtain wall of the
building are represented by cells coloured as per product family; the number
inside each cell or pack is the production week suggested by the model.

The shipment plan, shown in �gure 1.1b, where di�erent colours indicate
di�erent crate and so di�erent loading-mode, takes into account the best
trade o� between truck load optimizing, stock at the production plant and
stock at site.

Several simulations have been performed to assess the deviations from
the basic con�gurations:
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• at the changing of the contract type;

• at the changing of the importance of the various step (i.e. procurement,
production, shipment, installation) in the project scope of work;

• at the decision of the �rm to pay more attention at the environmental
aspect by reducing the number of transports;

• when the learning-forgetting phenomenon is neglected.

Conclusions

By changing contract type, due to di�erent payment modes associated to the
project activities, the model can address the �rm in the assessment of the
best contractual agreement with the client by showing which is the related
loss.

With the modi�cation of the weights of the activities, the �rm can model
the planning according to the contractual scope of work, which, for example,
may not include the installation activity.

In the construction market great importance is given to the environ-
mental theme, so the model allows the company to run the project with a
greater impact of the transport cost, in order to take into account not only
the economic aspect, but also the environmental one.

The simulation dealing with the absence of learning-forgetting phenome-
non shows a squeezed planning which is not physically feasible and bearable
by the workers, thus giving a misleading support both in terms of time and
costs.

Contractors are paying more and more attention to environmental stra-
tegy and environmental impact assessment. In this scenario Project Based
Enterprises need a model for the decision making on long, mid and short
terms is needed. Our model is aimed at �nding the best balance between
site and production needs in order to enhance the company performances
from the social, economic and environmental point of views, by taking into
account production loss, set-up and overtime, less-than-truck load transport
costs and capital immobilization �nancial impact. Thanks to the introduc-
tion of the learning-forgetting curve, the model presented in this thesis allows
to reduce working stress on operators by considering more reliable production
planning rates. Moreover decision-making over the mid-term is supported:
the company can test, through di�erent simulations, whether it is necessary
and/or convenient to pay for a storage area where to stock the units produced
in advance on the due date, as well as gathering a resource planning.

The thesis is structured as follows: context and literature overview is
o�ered in chapter 2; the analysis and empirical evidences of the learning-
forgetting phenomenon is explicated in chapter 3; the CP model is presented
in chapter 4; results and simulations are fully described in chapter 5.



Chapter 2
Research Context

The aim of this introductory chapter is to outline the strategic context in
which the thesis has been worked out. Hence, an overview of the objective
of this study, Project Based Enterprises (PBEs), is o�ered. The concept
of sustainability has nowadays to be addressed on three levels: economic,
social and environmental. Therefore, in the construction �eld, which is a
market characterized by a peculiar complexity, it is necessary to develop a
tool that can support �rms in both strategic and operative decisions on the
projects awarded, in order to be competitive over the short, mid and long-
terms. The research proposed here, �lls the gap that comes to the surface
by analysing the literature on the theme, with a new sustainable produc-
tion planning model that integrates the several links of PBEs supply chain.
In paragraph 2.1 an introduction to sustainable supply chains is proposed,
while in 2.1.1 the literature on the speci�c case of the construction market
is reviewed. Finally, in the last subsection, 2.2, there can be appreciated
an overview of the curtain wall segment, which represents the case-study
analysed in this thesis, thanks to the data obtained from the collaboration
with Permasteelisa Group, a worldwide company leader in the development
of building envelopes.

2.1 An Introduction to Sustainability

The most commonly widespread and shared de�nition of sustainability is
the one proposed by Brundtland World Commission on Environment and
Development in 1987 (UN, 1987), which de�nes it as the development that
meets the needs of the present without compromising the ability of future
generations to meet their needs. Carter and Easton (2011) suggest to think
about sustainability as a three factors commingling: environment, society
and economic performances. This perspective is coherent toward the Triple
Bottom Line (TBL) concept, exposed by Elkington (1998), which states that

7
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at the intersection of these three aspects, there are activities to be pursued
by organizations, that positively a�ect the �rst two items and also turn into
long-term competitive advantage and economic bene�ts for the �rm.

As pointed out by Porter and Kramer (2006), logistics o�ers a great set of
activities and initiatives to draw from, so that the development of a Sustai-
nable or Green Logistics becomes indispensable. In fact, the application of
the sustainability concept is becoming a highly relevant issue for Operations
Management, therefore Sustainable Supply Chain Management (SSCM) and,
with a greater focus on environmental issue, Green Supply Chain Manage-
ment (GSCM), have been given particular stress from the international scien-
ti�c community in the latest decades, as it comes to the surface by recent
literature reviews on the theme (Ashby et al., 2012; Seuring, 2013; Winter
and Knemeyer, 2013).

Traditional SCM can be considered as the management of physical, lo-
gical and �nancial �ows in networks of intra- and inter-organizational rela-
tionships jointly adding value and achieving customer satisfaction (Mentzer
et al., 2001; Stock and Boyer, 2001), even if no agreed de�nition is accepted
(Corominas, 2013). By extension, there is uncertainty and unshared state-
ment for SSCM also; Ahi and Searcy (2013) and Hassini et al. (2012) in
their comprehensive review explain it as the creation of coordinated supply
chains through the voluntary integration of economic, environmental and so-
cial considerations with key inter-organizational business systems designed to
e�ciently and e�ectively manage the material, information and capital �ows
associated with the procurement, production, and distribution of products or
services in order to meet stakeholder requirements and improve the pro�ta-
bility, competitiveness, and resilience of the organization over the short- and
long-term.

In recent years, publications have then moved towards the shaping of
supply networks, where several organizations, such as suppliers, producers,
distributors and retailers are involved through a win-win approach. Mu-
la et al. (2010) classify mathematical programming models for production
and transport planning and conclude that there is a need for comprehen-
sive optimization models and tools. Manzini (2012) develops a top-down
tool for the e�ective design, management and control of multi-echelon logi-
stic production-distribution networks, which supports the decision making
process on strategic, tactical and operational issues. Daaboul et al. (2014)
propose a way to model, simulate and analyse a value network as a decision
support system, to overcome the lack of evaluation of the quality of social
relationships, the e�ectiveness and e�ciency of communication and infor-
mation sharing, the satisfaction of the relevant people or groups and also
potentially interfaces, misunderstandings. In order to reach the goal, activi-
ties/processes, resources, �ows, organizations, both operational and tactical
decisions, and values have been modelled in one graph along with the ca-
sual in�uences between immaterial information. A major focus on the very
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�rst-tier actor of the network is then given by Genovese et al. (2013), that
recommend the importance of greening the supplier selection.

2.1.1 SSCM in Construction Industry

Coordination, innovation, reactivity and �exibility between the several SSC
phases are fundamental when considering Project Based Enterprises (Toole
and Chinowsky, 2013), in which the core business is represented by the deve-
lopment of projects where innovation and planning have to cohabit in order
to reach high innovation and sustainability levels without neglecting the con-
trol on the e�ciency dimension. With reference to the Project Management,
a Construction Project can be de�ned by adapting the common statement
referred to a Project (Tonchia and Nonino, 2013), so, as a set of activities
that aim at the handover of a new building to the client within a set period
of time on a de�ned quality system basis, and through limited �nancial and
human resources. When taking into account SSC for PBEs, e.g. facade and
curtain wall �rms, a scarce literature has been worked out, while a speci�c
research should be addressed because of the di�culties of the scenario which
has to be faced by these kind of companies. PBEs, in facts, have to manage
huge variety of materials, products and components peculiar to each single
project or ongoing advanced project schedule to adapt to client/consultant
wishes.

From the environmental point of view, it is acknowledged that construc-
tion activity has major impacts on environment: in the UK market it has
been estimated that construction can potentially in�uence 47% of the total
UK carbon emissions (HM Government, 2010). Therefore, SSCM in con-
struction has tended to focus on the �ow of materials supply to site, since
it not only reduces the environmental and social impact but also improves
the operational e�ectiveness through green design, green operations, green
manufacturing, green packaging, waste minimization, reverse logistics (Da-
dhich et al., 2015). Moreover, as reported by Wong et al. (2013) in their
study, the sensibility to the theme given by architects and contractors is
increasing, so they present a conceptual scheme to understand relationships
among organizational culture, carbon reduction drivers and possible strategy
adoption.

On top of this, focus on greening the supply chain leads researchers to the
proposal of models to assess the sustainability of construction projects, such
as the one in Zhang et al. (2014), where the authors conclude that a project's
sustainability capability can change due to the impact of various dynamic
variables, particularly those relating to technical measures and people's per-
ception. For this reason, as far as construction market is concerned, several
studies have been focused on network integration. Fulford and Standing
(2014) investigates on the ine�ciency caused by the excessive fragmentation
in the construction industry together with disparate project management
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processes and non-standardized information: by reporting three practical
cases they conclude there are great di�erences between construction and
manufacturing SC, the main one being that the majority of manufacturing
organisations have ongoing processes and relationships, whilst construction
organisations, being project based, have short term relationships, one-of-a-
kind products and on site production. Love et al. (2004) previously addressed
the problem with a qualitative model to improve the relationships between
design and production processes; Tennant and Fernie (2014) also encourage
and develop fresh perspectives of supply chain management in construction
by integrating the actors belonging to the supply chain of PBEs.

As for the intra-�rm SSC, in order to embrace the complexity of the
system characterizing construction PBEs, a comprehensive approach on the
logistics should be addressed with the optimization of production and in-
stallation on site or with the decision to have a stocking area supporting
the material �ows to site. In fact, large-scale inventory reduction in the
construction industry is di�cult to achieve, but reduction of waste in other
areas would seem practical. From the economic perspective, Critical Path
Method (CPM) is the primary planning methodology, but not e�ectively
used in day-by-day management of projects. For this reason Seppänen et al.
(2014) propose to utilize the location-based management systems (LBMS),
which is a method of construction planning and production control that is
based on the movement of resources through the job-site by maximizing
continuous use of labour and productivity, while reducing waste and risk;
moreover, LBMS controlling methods forecast production basing on actual
rates rather then the planned ones (used by CPM).

Make to stock manufacturing can bene�t from the research literature on
production planning and organization through the application of the largely
developed concept of Economic Order Quantity and the principles of lean th-
roughout the entire supply chain, while in the construction industry produc-
tion planning and scheduling has been investigated in the �eld of the precast.
Chan and Hu (2002) present a constraint programming model to optimize the
production of the mold where the objective function includes cost of stock,
cost of missing delivery dates, cost of adaptation, cost of mold utilization,
subject to: mold-element relationship (from one mold there can be obtained
several di�erent type of elements), mold production capacity, delivery requi-
rements and inventory stock requirements. Also W.Tharmmaphornphilas
and Sareinpithak (2013) are interested in the same �eld and focus on the
production process: mold preparing, concrete mixing and casting, curing,
stripping, product �nishing and storing. Given a due date, a number of
jobs, a number of molds, and a set of mixing formulas, the authors try to
determine the job assignment to the molds, the formula assignment to the
jobs, and the mold sequence to minimize the product cost while satisfying
the due date through mixed integer programming. This latest technique is
also used by A.Khalilil et al. (2014) to minimize production costs for the
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producer by using the minimum mold types (the authors suggest a grouping
scheme, too) and the minimum instances of each mold type necessary to
produce all building components. The model also attempts to fully utilize
each mold's capacity during its life cycle to reduce resource costs; an optimal
plan is achieved to satisfy installation demands for prefabricated componen-
ts by minimizing molds change-overs. A genetic algorithm-based searching
technique to maximize precast plant production under the constraint of li-
mited resources is proposed by Leu and Hwang (2000). The issue is solved
through the �ow shop problem, which is a scheduling problem taking into
account m di�erent machines (i.e. processors) and n jobs (i.e. precast pa-
nels) that consist in m operations which requires a di�erent machine. The
result sought is the minimization of processing time for panel i on processor
j under a set process order, a certain resource demand and limit. Major
stress on the environmental issue is given by P.Wu and Feng (2014), who
qualitatively tried to identify, through a preset questionnaire submitted to
production managers and site managers belonging to 17 precasters, the non-
value adding activities in precast concrete production that cause low-carbon
emissions.

Even if precast elements have to feed site requirements and the molds in
most of the cases are custom-made, these models cannot be used for PBEs,
since precast production has large similarities to the manufacturing produc-
tion, due to the fact that the units to produce (e.g. columns, beams and
slabs) are necessary to the concrete building and structural elements which
are obtained by molds usage at a centralized plant and then transported to
the building site for the assembly phase. On the contrary, in PBEs, every
project has di�erent scopes, the work-�ow is transient, multiple crafts are
involved, projects are planned and carried on in short time frames and there
is a multitude of material and equipment projected for installation.

Given the complexity of the industry, construction success depends also
on the ways in which project participants collaborate and coordinate to
strengthen internal synergy and adapt to external changes (Hwang and Do,
2014). For this reason is important to outline the social aspect of the triple
bottom line and to �t it into the construction industry, which is characterized
by manual production lines dealing with huge and heavy materials, whose
handling is delicate and dangerous. Moreover, materials to be assembled are
expensive and have great lead time in case of breakages, so that the Project
schedule may be seriously mined in terms of contractual deadlines. Hence,
employees work in plants where the quality and safety issues are fundamental,
by leading to give signi�cance to their welfare. Therefore, a production plan
which is coherent towards the feasible limits of workers operating with this
premises in order to get friendly, e�ective and e�cient working environments.

Stated all the above, the literature review shows a lack of synoptic view
on the economic, environmental and social themes, that, instead, must be
given a all-at-once glance to perform Projects with high pro�tability and
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that can give the company a competitive and durable advantage. The model
presented in this thesis wants to integrate the complex features characterizing
the building construction industry by �nding the best compromise to meet
departments di�erent needs, hence interbreeding social, environmental and
economic aspects to enhance long-term performances.

2.2 Case Study: the Curtain Wall Segment

In this thesis a new model for the production planning in construction Pro-
ject Based Enterprises has been developed by considering the three dimen-
sions of sustainability, and applied to a worldwide leading company of the
Curtain Wall sector, Permasteelisa Group, which is an excellence operating in
the North East of Italy and that gave the availability to suitable interviews,
data analysis, production reports, project speci�cations and contractual in-
tents. Along with the de�nition of the best sustainable production plan,
the model intends to be a decision support tool since the company can te-
st, through di�erent simulations, whether it is necessary and worthy to pay
for a storage area where to stock the produced units, as well as gathering
a resouce planning and comparing the di�erent contractual forms that an
awarded project can be subject to.

Curtain wall envelopes (CW) are de�ned as thin, usually aluminium fra-
med walls, containing in�lls of glass, metal panels or thin stone in addition
to glazed in window or door openings; refer to picture 2.1 for a schematic
understanding. The frame is anchored to the concrete building structure
through a bracketry system and does not have any structural function: the
wind and gravity loads of the CW are transferred typically at the �oor line
(Pond et al., 2015). CW is of paramount importance in terms of building
performance and is a fundamental architectural element, not only from the
aesthetic point of view, but also for a series of factors such as, complexity,
materials and �nishings, performance and magnitude, and location of the
project. The CW procurement process from cradle to grave through design,
manufacturing and installation is perceived as a process with many risk fac-
tors because of the cost involved, the technical and engineering requirements,
and its position on the critical path of projects.

Generally the CW supply chain is composed of many stages which inclu-
de (Kassem et al., 2012): architectural design, shop drawing, procurement,
manufacturing, installation and maintenance. However, there has been signi-
�cant standardization in the CW industry and there are some multinational
organizations that o�er standard CW systems from which the stakeholder
(i.e. architect, consultant, client) involved can select the CW elements for
their projects. While this greatly simpli�es the procurement process, such
standard elements are just extruded sections of aluminium, which still need
to be designed and manufactured. Therefore, even in case of standard pro-
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Figure 2.1. Schematic curtain wall (Kassem et al., 2012) and The Shard Building,
London.

duct, the management of supply chain of curtain wall is a complex pro-
cess involving a complex �ow of information and materials. The CW units
are being pre-fabricated and then transported to site as a unitized frame,
normally pre-glazed.

This thesis relies on data o�ered by Permasteelisa Group, a worldwide
leading Contractor in the engineering, project management, manufacturing
and installation of architectural envelopes and interior systems. The Group
brings its Know-How and expertise to all projects, in particular when dea-
ling with Special Features Buildings, beginning with the design development
phases all the way to the successful completion, achieving the customer's
expectations. Present in four continents, with a network of around 50 com-
panies in 30 countries and 11 production plants, the Group generates a total
turnover of around 1.5 billion euro a year. The mission of the Permastee-
lisa Group is to design and build innovative and avant-garde architectural
works alongside the world's greatest in contemporary architecture, by using
advanced technology and eco-sustainable solutions. The ultimate goal is
to provide design and construction solutions that meet clients' most varied
needs, by working closely with architects and designers from the earliest
planning phase (Permasteelisa Group, 2016).
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Chapter 3
Learning-Forgetting concept and its

applicability

As highlighted by M.Brandenburg et al. (2014) in their literature review,
holistic approaches in SSCM that re�ect all three sustainability dimensions
are relatively rare, even if empirical research shows the growing relevance of
multiple sustainability aspects: SSCM research tends to focus primarily on
environmental issues, while social facets are widely neglected in empirical
and analytical modelling research. In this sense, it is signi�cantly important
to take care of the social aspect of the triple bottom line when drawing up
the production schedule of a construction project. The setting out of the
correct production rate sustainable by workers is fundamental to get:

• time feasible and reliable production schedules, in order to meet con-
tractual handover dates;

• accurate project production cost valuing;

• working-stress reducing by considering the actual capacity and e�cien-
cy of workers, thus obtaining a friendly environment.

In the paragraph 3.1 literature on the Learning and Forgetting pheno-
menon is being analyzed and in paragraph 3.3 Jaber and Bonney's model is
presented. This latest has been chosen as the most suitable one to be applied
in the production model developed in this research and the empirical proof
of this is demonstrated in paragraph 3.4, where real data from three di�e-
rent Permasteelisa Group projects are analyzed in order to shape the best
learning curve that actually occurred. Then the importance of the learning-
forgetting phenomenon introduction into the project production scheduling
model is highlighted in paragraph 3.5, which shows how di�erent production
sequencing and di�erent learning curves have impact on production time and
rates.

15
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Figure 3.1. The learning life cycle (Carlson and Rowe, 1972).

3.1 The Learning-Forgetting phenomenon: a lite-

rature review

A learning curve is a mathematical description of workers' performance in
repetitive tasks (Wright, 1936; Teplitz, 1991; Badiru, 1992; L.Argote, 1999;
Fioretti, 2007). In fact, Carlson and Rowe (1972) applies the concept of
product life cycles to tasks, as being described by graph 3.1 and by the
following three phases:

1. incipient, where there is just a little improvement and the tasks mainly
consist of setup, instructions and tooling;

2. learning, where there is the most improvement and where the learning
phenomena actually happens; it is characterized by reduction of errors,
and time wasting, development of work pattern;

3. maturity, where the production rate becomes asymptotic to the limit.

Several factors can impact on the operators learning performances (An-
zanello and Fogliatto, 2011), such as: training programs; workers' motivation
in performing tasks; prior experience in the tasks; task complexity. Learning
curves are proven to be e�cient tools to monitor workers' performances in
repetitive tasks, to analyse and control productive operations, to allocate ta-
sks to operators according to their learning pro�les, to measure production
costs as workers gain experience in a task and to estimate costs of consulting
and technology implementation. Here comes the importance of considering
such aspect in the production plan of a �rm.

3.1.1 Learning Mathematical Models

Learning curves have been �rstly developed by Wright (1936), who observed
how assembly costs of airplanes reduced with a constant percentage as the
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production doubles. Since this study has been published, a wide range of ma-
thematical models, both univariate and multivariate, have been researched
and extended to several production systems and market segments. Among
the univariate, the log-linear, exponential and hyperbolic are widespread.
Wright's log-linear model expresses a relationship between direct manhours
input and cumulative production in the form:

Tj = T1j
−l (3.1)

where Tj is the time to produce the j -th unit, j is the production count,
T1 is the theoretical time required to produce the �rst unit, and parameter
l (0 < l <1) the learning slope. Values of l close to 1 denote high learning
rate and fast adaption to task execution. Modi�cations in this model have
been carried out to �t speci�c applications and then recognised as alternative
models, one of which is the Standford-B, which incorporates workers' prior
experience through parameter B in equation 3.2.

Tj = T1(j +B)−l (3.2)

Other models, such as DeJong's and Plateau introduce the in�uence of
machinery in the learning process and idle time due to machinery limita-
tions blocking operators' performance improvement. In addition to these
models, others are not so often cited because of their complexity and speci�c
applicability; see Anzanello and Fogliatto (2011) for a full review.

Exponential models present a more complete set of parameters as compa-
red to the log-linear ones, by embodying additional information on workers'
learning process, which lead to a more precise estimation of the production
rates at the expense of simplicity in application. G.Knecht (1974) merged
exponential and log-linear function, by gathering equation 3.3, where c is a
second constant and other parameters have been previously de�ned.

Tj = T1j
−lecj (3.3)

The 3-parameter exponential learning curve is frequently discussed in
literature, see equation 3.4, where y indicates the workers' performance in
terms of number produced after x units of operation time. The three parame-
ters are: k, which is the maximum workers' performance when the learning
process is concluded given as number of items produced per operation time;
p which corresponds to workers' prior experience evaluated in time units;
r, which is the learning rate also given in time units. A slight modi�ca-
tion of this model is o�ered by the so-called Constant Time, proposed by
D.R.Towill (1990), which is also based on operators' previous experience and
allows easier estimation of the time required to achieve a certain performance
level.

y = k(1− e
−(x+p)

r ) (3.4)
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Table 3.1. Comparative analysis of the univariate learning curves.

Author/Name Model Equation Nb. of parameters
Wright log-linear Tj = T1j

−l 2
Standford-B log-linear Tj = T1(j +B)−l 3
Knecht exponential Tj = T1j

−lecj 3

3-Parameter exponential y = k(1− e
−(x+p)

r ) 3
Mazur & Hastie hyperbolic y = k x

x+r 2

A third category of learning models is the hyperbolic, which hosts J.E.Mazur
and Hastie (1978), explicated in equation 3.5, where x is the number of con-
forming units, r is the number of non-conforming units. Hence, y is the per-
centage of conforming units on the total production, multiplied by a constant
k. The same authors also improved this model by adding a new parameter
that enables workers' prior experience.

y = k
x

x+ r
(3.5)

Extensions of the traditional learning curves are provided by multivariate
curves, which are required when modelling learning scenarios based on two
or more independent variables, as displayed in equation 3.6, where K is the
performance (cost) to produce the �rst unit and ci is the coe�cient for the
independent variable i (Anzanello and Fogliatto, 2011).

Cx = K
n∏

i=1

cix
−li
i (3.6)

Reports on multivariate and its applications are limited in literature, mo-
reover provide signi�cant results on variables' interactions but the presence
of non-relevant variables weakens the quality of the model. Hence the use
of univariate models is suggested when the e�ect of additional independent
variables on the learning process is uncertain.

A recap of the univariate learning curves presented so far is o�ered in
table 3.1. Log-linears have been applied to several companies, such as: semi-
conductor industry, electronic and aerospace components manufacturers,
chemical industry, automotive parts manufacturers and truck assemblers.
In particular, according to literature these models describes most manual
operations with acceptable precision o�ering a non-complex mathematical
structure. In addition, R.S.Blancett (2002) applies the model to a building
company to evaluate workers' performances in manufacturing. In the light
of this, log-linear model best �ts the requirement of a PBE, e.g. a curtain
wall manufacturer, which is the objective of this thesis.



3.2. Forgetting Phenomenon 19

3.2 Forgetting Phenomenon

Production systems characterized by frequent interruptions, such as the ones
of PBEs, have to face the negative e�ect of the forgetting phenomenon,
along with the learning one, as a reduction of the production rate after an
inactive period. The forgetting portion of learning cycle can be displayed as
a negative decay function, as in graph 3.2. Carlson and Rowe (1972) compare
an individual's memory as the equivalent of storing electrical charges in the
brain, which implies:

• the initial learning rate is a function of the amount and proximity of
prior experience;

• forgetting always happens but the negative e�ects grows with the
interruption length;

• forgetting curves show rapid initial decrease in performance followed
by a gradual levelling;

• the rate and amount of forgetting decreases as an increased number of
units are completed before interruption occurs.

The forgetting curve relation by Carlson and Rowe (1972) is presented
in equation 3.7, where �Tx is the time for the x -th unit of lost experience
of the forgetting curve, x is the amount of output that would have been
accumulated if interruption did not occur, �T1 is the equivalent time for the
�rst unit of the forgetting curve, and f is the forgetting slope.

T̂x = T̂1x
f (3.7)

This phenomenon has been strongly investigated by Jaber M.Y. (1996),
that modelled the forgetting slope using log-linear based curve being depen-
dent on: the learning slope, the quantity produced and the minimum break
at which total forgetting occurs. They also show how to determine the value
of the forgetting rate once the curve's mathematical formed is assumed, as
detailed in paragraph 3.3. This model has then been integrated to quality
control techniques in M.Y.Jaber and Givi (2015), where the authors assume
forgetting to occur when a worker alternates between the production and
the rework segments of a cycle and when cycles are interrupted by produc-
tion breaks. The result is that the performance of the system improves with
faster learning in production and rework, frequent process restorations and
transfer of learning between cycles. The impact of forgetting in set-ups and
product quality on economic-lot-sizing problem is addressed by M.Y.Jaber
and Bonney (2003) with three cost components: set-up cost, holding cost
and quality cost. The results indicate that with learning and forgetting in
set-up and process quality, the optimal value of the number of lots is pulled
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Figure 3.2. Plot of performance versus time (Carlson and Rowe, 1972).

in opposite directions: learning in set-up encourages smaller lots to be pro-
duced more frequently, while learning in product quality, encourages larger
lots to be produced less frequently.

In this thesis the model by Jaber M.Y. (1996) is being adopted without
modi�cations, since in M.Y.Jaber and Givi (2015) the assumption is that
the time to restore the production process is negligible in comparison to the
cycle time, which is not the case of a PBE working on external envelops,
where, instead, non-conforming units occur when the raw material are not
as per design intent causing the complete unproduction of the piece that
will be produced when the replacement part will arrive. M.Y.Jaber and
Bonney (2003) is also not applicable since the concept of economic-lot-sizing
is suitable for make-to-stock productions.

3.3 Production breaks and learning curve

The learning-forgetting curve concept has here been applied to production
planning of custom and engineer to order units, departing from the study
by Jaber M.Y. (1996), who introduced a model suitable for make to stock
manufacturing plants. The author assume the learning curve by Wright
(1936) (Eq. 3.1) and the forgetting model by Carlson and Rowe (1972) (Eq.
3.7.

Assume q units are produced in each production run and that inter-
ruptions occurs immediately after producing qth unit. In intermittent pro-
duction runs, there is a gap of su�cient length that some of the learning
accumulated in producing q units in the previous lots is not retained when
a new run starts up. Hence the production rate at the recommencement
would not be as high as when the production ceased. The increase in time
to produce the �rst unit in the next production run depends on the length
of the interruption and the time to produce the qth unit which is when the
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Figure 3.3. The decrease and increase in labour hours due to the learning
forgetting e�ects (Jaber M.Y., 1996).

interruption occurred. This learn-forget-learn relationship is illustrated in
�gure 3.3, where R is the number of units that would have been produced in
time tB assuming that there had been no break in production. Production
on the day production stops in the �rst cycle is equal to the production on
the same day of the �rst forgetting cycle, that is:

T1q
−l = T̂1q

f (3.8)

Solving for �T1 yields:

T̂1 = T1q
−(l+f) (3.9)

Substituting equation 3.9 in 3.8 the time to produce the x -th unit after
a lot size of q units is:

T̂x = T1q
−(l+f)xf (3.10)

If the production is interrupted at lot size x = q+R, then solving equation
3.10 for f results in:

f = l
log q

log (q +R)− log q
(3.11)

In order to obtain production break length tB, equation 3.1 has to be
integrated over the limits q and (q+R) as shown in equation 3.12, while,
similarly, the cumulative time to produce a total of q units is expressed in
equation 3.13.

tB =

∫ q+R

q
T1y
−ldy =

T1
1− l

[(q +R)1−l − q1−l] (3.12)
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tP =

∫ q

0
T1y
−ldy =

T1
1− l

q1−l (3.13)

Solving equation 3.12 for (q+R) gives:

(q +R) =

[
1− l
T1

tb + q1−l
] 1

1−l

(3.14)

This latest equation 3.14 when substituted in 3.13 yields:

(q +R) = q[C + 1]
1

1−l (3.15)

C = tB/tP (3.16)

C is explicated in Eq. 3.16 and represents the minimum value of the ratio
of the break time to the production time that will achieve total forgetting.
If the production process experiences smaller interruption periods, tb, where
0<tb<tB, then the time to produce the �rst unit in the next cycle is greater
than the time it took to produce the last unit in the previous cycle but less
than the time to produce the �rst unit in the �rst cycle. The forgetting slope
f can be calculated as follows, by introducing equation 3.15 into 3.11:

f = l
l(1− l) log q

log (C + 1)
(3.17)

In equation 3.17, the value of the forgetting slope, f, is zero whenever the
learning slope, l, is either zero or 1. These two extreme cases correspond to
when there is no learning involved, then there is nothing to forget, and when
a subject improves rapidly, then the forgetting slope is unimportant. The
amount, a, of equivalent units of experience at the beginning of a production
run after an interruption period of length tb is found by equating 3.1 to 3.10
and then solving for a, to obtain:

α = q
l+f
l

(q+s)−
f
l (3.18)

Therefore the time to produce the �rst unit in the next production batch
is:

T̂q+1 = T1[α+ 1]−l (3.19)

where s≤R when tb≤tB.
Hence, the above described Jaber M.Y. (1996) model can recursively be

adopted for every i-th cycle by the followings Eqs. 3.20-3.21, where Ti is
the cumulative time to produce Mi units after a production break and T1,i

is the time for the �rst unit:
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Ti =
T1,i
1− l

M1−l
i (3.20)

T̂1,i+1 = T1,i[αi+1 + 1]−l (3.21)

As further explained in chapter 4, the model presented in this thesis
integrates the previous learning-forgetting curve results, thanks to a prepro-
cessor, which calculates for each potential sequence of learning phases and
breaks during the planning horizon the values of ai+1 and T1i for each pos-
sible q quantities. These values are then passed as input table data to the
main model, which selects the proper parameters on the basis of the current
value of production variables. For example, in a planning horizon involving
n periods, the possible sequences are 2n+1, re�ecting absence/presence of
production in each period and the chance the part has never been assembled
in the previous planning horizons. Corresponding parameters to identify
periods of consecutive productions as well as breaks are used by the main
model to properly associate learning-forgetting values.

3.4 Learning-Forgetting Phenomenon: Empirical Evi-

dences

In this section real production data taken out from Permasteelisa Group
SAP reports are being analyzed in order to �nd out concrete evidence of the
learning and forgetting phenomenon applicability. Three projects, which are
representative of the company product mix, have been taken into account.
A suitable new methodology in order to reach the goal is being proposed in
this study, by basing on the production data achieved from the information
system of the company and the technical/organizational directions given by
people working at the production and tender departments. Interviews have
been held with the production manager, the logistic manager and the tender
leader of the three projects that have been taken into account and their
opinions have been collected and interbred to build the following technique.

3.4.1 Methodology Building

First step of the analysis is to interpret, evaluate and organize the available
data in a signi�cant way, so practically during the very �rst preliminary stage
of the project design process, panels are being grouped by lots according to
their geometry: codes i that have similar components and/or dimensions are
named under the same product family k, because similar panels correspond
to similar production rates, so that the sum of the codes contained in each
family is equal to the total number of the units of the entire Project:
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Table 3.2. Produced quantity per product family through the weeks

Week number
Product family ... 6 7 8 ... 14 15 16 ... 29 20 Total qty

C1F ... 70 113 36 ... 1 58 168 ... 146 2 3403
C1W ... 59 9 10 ... 10 13 0 ... 37 20 782
... ... ... ... ... ... ... ... ... ... ... ... ...
C4A ... 0 0 0 ... 0 0 3 ... 0 0 55
C4F ... 0 0 45 ... 24 18 41 ... 0 0 212
Total qty/week ... 129 212 92 ... 87 121 231 ... 232 158 5295

Table 3.3. Man-hours per week

Week ... 6 7 8 ... 14 15 16 ... 29 20 Total hrs

Man-hrs ... 1303 1369 1259 ... 1182 1062 1336 ... 1050 1391 35507

Project Units =
∑
i,k

codei,k

For each Project, by departing from SAP data reports, tables containing
the code of each curtain-wall family, week and production year, number of
assembled panels, have been drawn, see table 3.2. The second information
that is necessary to get from SAP reports is the number of man-hours worked
per week, i.e. table 3.3.

Third step of the process is to calculate from the merging of tables 3.2
and 3.3 how many man-hours per week have been dedicated to the assembly
of each family of products, e.g. to get how a total amount of 1336 man-
hours that have been worked in week 16 (table 3.3) have been split among
all product family assembled during the same week: C1F, C4A, C4F and so
on (table 3.2). This point is quite critical, since the total hours per week
have been divided according to the Degree of Di�culty (DoD) respect to
the basic con�guration of family product. The DoD is obtained on the basis
of the preliminary evaluation of the family product production rates that
has been done during the tender phase of the project, i.e. a forecast of the
standard production time which is elaborated during the time horizon that
elapses from the bid winning and the technical de�nition of the executive
project details, necessary to start the purchasing and production process of
the pieces to produce. Tender production rate evaluation is a�ected by the
hardness of the production process, which depends on how many compo-
nents have to be assembled and on how and with which sequence they have
to be installed by workers to create the panel itself, thus having impact on
production time. Once tender analysis is �nished, the family product cha-
racterized by the lowest production time is identi�ed as the base, by meaning
that its DoDbase,% is 0%. If more than one family of the project take-o� is
characterized by the same minimum standard time, then all of these cases
are being considered as base. Hence, generally speaking, for the k -th family
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product the DoD can be calculated as:

DoDk,% = 100(
avg std timei
avg std timebase

− 1)

It becomes evident that each code i belonging to family k has the same
DoDk,%:

∀i ∈ k ⇒ DoDk,% ≡ DoDi,%

A family product F1 that has a DoDF1,% = 50% is going to be 1.5 times
more complex than the base family, then its estimated production time is
going to increase with the same percentage. As previously explained, the
de�nition of the DoD is fundamental to the calculation of the average pro-
duction time rate of each family product. In fact, by taking into account SAP
production reports that show quantity produced per family k week by week
(table 3.2), each project family product has been standardized, that means
they have been readjusted on the basis of the family-base product. This
standardization procedure consists in calculating in every week w the Equi-
valent Base Quantity (EBQ), which is the equivalent quantity of assembled
products belonging to the k-th family in terms of base codes:

EBQk,w = qtyk,w(1 +DoDk,%)

where DoDk,% identi�es the degree of di�culty of the k-th family respect
to the base family, e.g. if in one week there have been produced 100 units
of F2 family product, with a DoDF2,% = 80%, then these 100 units are
equivalent to 180 family-base units. The procedure has to be repeated for
each family product and production week, so that the total number of codes
readjusted is given by:

EBQtot,w =

M∑
k=1

EBQk,w

where M is the total number of product family of the entire Project.
By knowing the man-hours per week (table 3.3) it is now possible to gather
the average production time per week per unit Tk,w for all of the i -th code
belonging to the k -th family product:

Tk,w =
total manhoursw

EBQtot,w
(1 +DoDk,%) (3.22)

A summary of the process can be visually gained through picture 3.4,
where the blue colour indicates the data input that this procedure needs,
while pink element represent the newly developed items to be calculated in
order to obtain Tk,w.
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Figure 3.4. Flow chart of the process to calculate Tk,w, where the blue colour
indicates the data input, while pink element represent the newly developed items
to be calculated.

Table 3.4. Final Production Project report.

Week 3 Week 4 Week 5
Familyk DoDk,% qty3,k EBQk,3 Tk,3 qty4,k EBQk,4 Tk,4 qty5,k EBQk,5 Tk,5

C1B 70 20 34 15.3 60 102 8.9 43 73.1 7.8
C1V 0 19 19 9.0 6 6 5.2 5 5 4.6
... ... ... ... ... ... ... ... ... ... ...
C5B 20 24 28.8 10.8 16 19.2 6.3 26 31.2 5.5
C1C 115 0 0 - 0 0 - 4 8.56 9.8

Qtyk,w 64 93 103
EBQtot,k 82.8 138.2 148.1
Manhoursw 743.5 720.8 677.5

By proceeding in this way for each family k in each week inside the
considered planning horizon, a table such table 3.4 is obtainable; this table
is crucial to the plotting of the Wright (1936) learning curve of the Project,
Eq. 3.1.

From a preliminary analysis of Tk,w in table 3.4 it can be noticed that
there is a decreasing trend as the assembled quantity increases through
the weeks, so con�rming there is a learning phenomenon, which is clearly
understandable in family C1B.

It is reasonable to specify that, even if production �ow is continue throu-
gh the horizon, time trend is not always decreasing: for some of the analysed
family product the calculated trend increases so that the learning �ow seems
to stop. This fact is due to several aleatory factors that can a�ect the pro-
duction line time trend and output, such as strokes, absenteeism, induction
of workers, non compliant or damaged raw materials that come to the as-
sembly line. An example of this case can be observed in family C1V, whose
trend is steady and increasing through weeks 17 to 19, while in table 3.3
production time TC1V, w clearly reduces up to 48% in 3 weeks' time. By
giving an example taken from a real working day, if in week 19 the raw ma-
terial to be assembled on the line is out of tolerance or out of the quality
standard or damaged, then the output is going to decrease up to 62% due to
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Table 3.5. Production data for the learning curve drawing of family C1B.

Family product C1B 3 4 5 ... 13 14 15 16
EBQC1B,w 20 60 43 ... 31 11 23 47
TC1B,w 15.3 8.9 7.8 ... 10.0 9.5 9.4 7.2
Cumulated qty 20 80 123 ... 225 236 259 306

extra non-productive time for problem identifying/solving, selection/waste
operations on materials, extra logistics, which have a direct negative impact
on workers e�ciency, even if their learning ability is actually growing.

Increasing trends that, instead, are placed after an unproductive period,
e.g. family code C4V, are explanatory since production break espouse wor-
kers to the forgetting phenomenon as the assembly starts again. In order to
be precise in the learning curves drawing, it has been imagined a continuous
�ow of production, so production breaks such the one of C4V are being ta-
ken into account just for the forgetting phenomenon studying, as explained
afterwards. As production lots are greater than 10 units, weeks that show
less than 5 units produced have been assimilated to break periods. For eve-
ry analyzed Project, starting from table 3.4, a new table like 3.5 has been
created to draw the suitable learning curve for each family product.

From empirical evidence on the assembly line, time to produce the �rst
unit of each production lot can be stated as follows:

T1,k = aTstd,k with a = 5÷ 8 (3.23)

where: T1,k,w is the actual average production time to assemble the �rst
unit of family k ; Tstd,k is the tender evaluated standard time for family k; a
is an empirical multiplying factor.

Graph 3.5 shows learning curve obtained from equation 3.23 and table
3.5 and its relative equation for the j-th unit is:

TC1B,j = 38.366j−0.315 (3.24)

where is evident that:

• time to produce the �rst unit TC1B,W = 38.366 manhours;

• learning curve l = 0.315, corresponding to 80% learning rate, by mea-
ning that as production doubles, time to produce a new unit decreases
of 20% and productivity increases up to 20% correspondingly.

A learning curve as the one reported in graph 3.5 has been created
for each family product of the three Projects examined in the following
paragraphs.



28 Chapter 3. Learning-Forgetting concept and its applicability

Figure 3.5. Empirical learning curve obtained for family C1B.

The forgetting analysis has been conducted following Jaber M.Y. (1996):
for each Project there have been isolated family products formed by a signi-
�cant number of produced units in the considered planning horizon, in order
to calculate all of the parameters described in the learn-forget curve model
when having one or two production runs with one week of forgetting period
between them. The goal of this latter study is to verify if production rates
after the production break obtained with the manipulation of experimen-
tal data (ref. table 3.4), overlap the results that come out from the model
calculations, in order to test its reliability and applicability. Experimental
data highlighted that duration of the production break that causing total
forgetting tB vary linearly with the degree of assembly di�culty, i.e. DoD,
as illustrated in �gure 3.6.

From experimental data, the linear relationship between tB and DoD is
expressed by equation 3.25:

tB,k = 5DoDk,% + 5 (3.25)

The curve trend shows that time to totally forget grows with the growing
of the di�culty in assembling: is evident then, that workers best memorize
the assembly sequencing of complex pieces, hence the forgetting phenomenon
is impacting less. It is important to underline that the value of tB has to
be converted into man-hours in order to be compliant with SAP data sheets
(tables 3.2 and 3.3) with relationship 3.26:

tB,manhours = tB,weeks d h p (3.26)
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Figure 3.6. Total forgetting time tB variation according to DoD.

where d is the number of working days per weeks, h is the number of
working hours per day and p is the number of workers on the assembly line.

This methodology has been applied to achieve the learning curves of
three Permasteelisa Group Curtain Wall Projects, as shown in the following
paragraphs.

3.4.2 Tadawul Tower Project

Tadawul Tower Project is a 200 m tall commercial skyscraper based in Riya-
dh, with 41 �oors above ground of curtain wall facade for a total of 40,000
square meters, which has been produced between January 2014 and March
2015 with site completion scheduled within 2016.

The total panels to be assembled for this project were 6982 and they
have been split into 14 family products - C1B, C1L, C1V, C2V, C4B, C4L,
C4V, C5B, C5L, C5V, C5C, C6L, C6V, C1C - according to the location on
the facade and to the di�erent geometry, to which correspond a di�erent
assembling sequence and components; each family has a clear identi�cation
code, where:

• the �rst character "C" de�nes that the product to be produced is a
curtain wall panel, which is a cell of the facade;

• the second character states the elevation, since this tower has an exa-
gonal footprint, this value can vary from 1 to 6;

• the last character recognizes the geometry of the panel itself:
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Figure 3.7. The Tadawul Tower, Riyadh.

� V : the panel is Visual, by meaning that it is possible to see the
external of the building from the internal part since the glass unit
is transparent - see �gure 3.8 for a better understanding;

� B : the panel is Blind, by meaning that it is not possible to see
the external of the building from the internal part since behind
the glass unit a presswork is installed. Generally these panels
are placed on concrete walls or slab - see �gure 3.9 for a better
understanding;

� C : the panel is a Corner, by meaning that it has to be assembled
on the junctions between 2 elevations of the building - see �gure
3.10 for a better understanding;

� L: the panel is a Louvre, by meaning that it has grid elements
assembled on it - see �gure 3.11 for a better understanding.

Empirical Evidences of The Learning Phenomenon

The learning curves obtained through the implementation of the methodolo-
gy explained in the previous paragraph on all of the 14 product families are
visible in �gure 3.13 and the resulting parameters are collected in table 3.6.



3.4. Learning-Forgetting Phenomenon: Empirical Evidences 31

Figure 3.8. Front and back of a C6V panel (courtesy of Permasteelisa Group).

Figure 3.9. Front and back of a C5B panel (courtesy of Permasteelisa Group).
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Figure 3.10. Front and back of a C1C panel (courtesy of Permasteelisa Group).

Figure 3.11. Front and back of a C6L panel (courtesy of Permasteelisa Group).
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Table 3.6. Learning Curve parameters of Tadawul Tower.

Experimental data Learning Curve
Family DoDk,% Produced qty T1,k Tavg, k T1,k l l%
C1B 70 414 39.6 10.2 38.4 0.315 80
C1L 105 148 46.2 10.4 43.4 0.390 76
C1V 0 2811 21.0 4.8 15.8 0.201 87
C2V 0 90 22.8 4.2 22.0 0.432 74
C4B 20 63 30.6 9.0 31.1 0.360 78
C4L 120 57 51.0 9.4 47.3 0.459 73
C4V 0 298 17.5 4.9 17.4 0.273 83
C5B 20 96 30.6 8.1 31.1 0.385 77
C5C 98 102 39.0 11.1 43.5 0.391 76
C5L 120 60 54.0 10.4 53.0 0.452 73
C5V 0 388 21.0 4.0 20.6 0.295 82
C6L 105 62 40.2 8.0 40.4 0.421 75
C6V 0 256 21.0 4.0 19.2 0.322 80
C1C 114 562 48.6 11.1 50.9 0.298 81

Arithmetic avg 0.357 78
Weighted avg on qty 0.262 83

This latter shows in the �rst 5 columns the sympathized production data
and in the last 3 columns the parameters of the learning curve, obtained
thanks to the experimental data interpolation. It has to be underlined that
statistical value of T1 (6th column) are reliable since they are close to the
experimental value calculated through equation 3.23 and reported in column
4.

As DoD increases in table 3.6, T1,k and the average production time
Tavg,k also grow, which is a logical conclusion that the more complexity
of the part to be assembled arises, the more time is needed to produce
it. Consequently the learning slope follows the same trend too, while the
learning rate slows down, by meaning that, the more the piece is complex,
the more bene�ts coming from the learning phenomenon on productivity
side are being reached, thus resulting in time e�ciency. This evidence is not
respected by families C2V, C1B and C1C which are being neglected in this
analysis, since a lot of interruptions occurred during their production, so
the manifestation of the forgetting phenomenon gives poor signi�cance and
reliability to the results. A fundamental evidence of the obtained curves is
that as the product to assemble becomes complex, workers learn the assembly
sequence in a stronger way, by meaning that they feel more responsibility and
conscious of the professional value of what they are doing, of the quality and
economic negative impact of their negligence or mistake. By summarizing,
there is an increased proactive attitude of operators towards complicated
pieces, hence a better memorization of the production process resulting in
less vulnerability to forgetting. With reference to DoD and learning constant
data reported in table 3.6, it is possible to obtain the analytical relationship
between the two, shown in �gure 3.12, which is instrumental to evaluate
from the DoD obtained during the tender preliminary phase, the learning
constant to apply to the middle-term production schedule drawing up.

It is suitable to underline that for a DoD up to 2.5 times the base-family,
the range of the learning constant is restricted, so it is convenient to use a
single value of the learning constant for all of the project family-products
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Figure 3.12. Learning constant linear interpolation for Tadawul Tower.

in order to simplify production planning carrying out. This value can be
chosen by identifying the weight average of the learning constant, made on
the basis of quantity-per-family, reported in the bottom of table 3.6. As an
alternative, if suitable time and economic resources are available and trade-
o� between time consumption and result is be�tting, then the utilization of
an ad hoc learning curve for each family, would give out extremely precise
pieces of information. The set of all of the learning curves obtained for the
project is available in �gure 3.13.

The Forgetting Phenomenon Analysis

The forgetting phenomenon is begin studied through Jaber M.Y. (1996),
by referring to production data as reported in table 3.5, in order to verify if
experimental data are compliant with the time needed for the �rst production
after a break as calculated through the forgetting model.

The analysis concerns family product C4V, with learning curve reported
in �gure 3.14 and the following data:

• �rst production batch: 12 pcs;

• production break: 1 week with 5 working days and 15 workers on the
assembly line, by meaning that tb = 600 manhours;

• learning slope l = 0.273;

• time for �rst piece to be produced T1 = 17.38 manhours;
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Figure 3.13. Learning curves of Tadawul Tower Project.
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Figure 3.14. Learning curve for Tadawul Tower C4V family product.

• total forgetting time tB is 5 weeks = 3000 manhours;

• experimental average time to produce the units during the �rst week
after the break �T13 = 10.6 manhours;

• second production batch: 13 pcs;

• second production break: 600 manhours;

• experimental average time to produce the units during the �rst week
after the second break �T2 = 9 manhours;

So by using Jaber M.Y. (1996), the production time to accumulate 12
units, the C ratio and the forgetting slope are easily calculable by applying
equations 3.13, 3.16, 3.17 :

t(12) =

∫ q

0
T1j
−l dj =

17.38

1− 0.306
121−0.306 = 144.90 manhours

C =
tB
t12

=
3000

144.90
= 20.70

f =
l(1− l) log q

log(C + 1)
=

0.273(1− 0.273) log 12

log (20.70 + 1)
= 0.160

This forgetting slope corresponds to a forgetting rate equal to 2-0.160 =
89.5%. The total amount that would have been accumulated if no interrup-
tion occurred is:
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(q+s) =

[
1− l
T1

tb + q1−l
] 1

1−l

=

[
1− 0.273

17.38
600 + 121−0.273

] 1
1−0.273

= 113 units

The level of experience expressed in units during the �rst production
batch hat is going to be remembered in the second batch is:

α2 = q
l+f
l

(q+s)−
f
l = 12

0.273+0.160
0.273 (113)−

0.680
0.273 = 3 units

At this point time to produce the 13-th panel is:

T̂13 = T1[α2 + 1]−l = 17.38[4 + 1]−0.273 = 11.7 manhours

If no interruption occurred, then the time to produce the 13-th unit would
have been:

T13 = T1[q + 1]−l = 17.38[12 + 1]−0.273 = 8.6 manhours

It is evident that the loss of production impacts on the e�ciency due
to the forgetting phenomenon is 36.0% and that experimental data �T13 and
calculated �T13 value di�er of 10.3% in favour of the �rst one. The second
production batch has then 13 units with another 600 manhours production
break and the time for the experimental average time to produce the units
during the �rst week of the third lot is 9 manhours. The data of the model
for this second batch are the following:

t(13 + 3) =

∫ q

0
T1j
−l dj =

17.38

1− 0.273
(13 + 3)1−0.273 = 181.1 manhours

C =
tB
t12

=
3000

181.1
= 16.56

f =
l(1− l) log q

log(C + 1)
=

0.273(1− 0.273) log 13 + 3

log (16.56 + 1)
= 0.193

(q+s) =

[
1− l
T1

tb + q1−l
] 1

1−l

=

[
1− 0.273

17.38
600 + (13 + 3)1−0.273

] 1
1−0.273

= 121 units

α3 = q
l+f
l

(q+s)−
f
l = 12

0.273+0.193
0.273 (121)−

0.193
0.273 = 4 units

T̂26 = T̂12+13+1 = T1[α3 + 1]−l = 17.38[4 + 1]−0.273 = 11.3 manhours
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T26 = T12+13+1 = T1[q + 1]−l = 17.38[12 + 13 + 1]−0.273 = 7.1 manhours

In this case the loss of e�ciency is 59.1%, but in any case the learning
process continues even after two interruptions: �T13 > �T26. The di�erence
between the experimental time �T26 and �T26 is 27.0%. The registered error
between experimental data and the calculated one, is due to the fact that it
is not possible to know the time to produce the very �rst unit of the batch,
but just a weekly average time is available (see Eq.3.22). It is reasonable to
conclude that for the �rst units of the weekly production, the rate is higher
then the average, thus reducing the gap between analysis and real data. In
any case the error that would be committed if the forgetting phenomenon
would be neglected, more than doubles the one that occurs if considering it,
hence the forgetting model is fostered to be used.

3.4.3 Val De Fontenay Project

Val De Fontenay is a 90,000 m2 o�ce space that has been build to accommo-
date more than 5,000 employees. Nearly 800 site workers has be working on
site at the peak of construction works from 2015 to end of 2016. Paris archi-
tect Anne Demians was chosen to lead this project, which will include 5 new
buildings, wooded areas, a gym, a business centre and several restaurants.

Figure 3.15. The Val De Fontenay, Paris.

For this project, also, all 7000 panels have been divided into 12 product
families - C1A, C1F, C1W, C2F,C3A, C3F,C4A, C4F, C5F,C5W,C6A,C6F
- which have speci�c coding:
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• the �rst character "C" de�nes the product to be produced is a curtain
wall panel, which is a Cell of the facade;

• the second character states for a particular area of the facade;

• the last character recognizes the geometry of the panel itself:

� F : the panel is Fixed, so it is not possible to open the frame, being
it blind or visual - see �gure 3.16 for a better understanding;

� W : the panel is Window, by meaning that the frame is openable
- see �gure 3.17 for a better understanding;

� A: the panel has a Angle, by meaning that it has to be assembled
on the junctions between 2 elevations of the building - see �gure
3.18 for a better understanding.

Figure 3.16. Front and back of a C2F panel (courtesy of Permasteelisa Group).

Empirical Evidences of The Learning Phenomenon

The Learning curve analysis has been conducted as explained in paragraph
3.4.1. The learning curves obtained for all of the 12 product families are
visible in �gure 3.19 and the resulting parameters are collected in table 3.7.
This latter shows in the �rst 5 columns the production data and in the
last 3 columns the parameters of the learning curve, obtained thanks to the
experimental data interpolation. It has to be underlined that statistical value
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Figure 3.17. Front and back of a C5W panel (courtesy of Permasteelisa Group).

Figure 3.18. Front and back of a C1A panel (courtesy of Permasteelisa Group).
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Figure 3.19. Learning curves of Val De Fontenay Project.
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Table 3.7. Learning Curve parameters of Val De Fontenay.

Experimental data Learning Curve
Family DoDk,% Produced qty T1,k Tavg, k T1,k l l%
C1A 0 136 15 5.1 15.7 0.310 81
C1F 0 3338 17.4 5.1 15.1 0.198 87
C1W 53 771 24.9 9.0 26.1 0.229 85
C2F 50 216 41.4 9.3 41.6 0.293 82
C3A 227 16 73.2 15.8 69.2 0.686 62
C3F 86 189 32.4 8.7 31.7 0.237 85
C4A 227 55 84 15.7 81.4 0.505 70
C4F 106 212 37.2 9.6 37.8 0.333 79
C5F 0 78 17.4 4.1 17.4 0.273 83
C5W 31 31 46.2 10.9 46.2 0.921 53
C6A 16 16 81.6 14.7 81.6 0.604 66
C6F 36 36 54 12.0 54.0 0.486 71

Arithmetic avg 0.423 75
Weighted avg on qty 0.230 85

of T1 (6th column) are reliable since they are close to the experimental value
calculated through equation 3.23 and reported in column 4.

As it can be noticed, experimental and calculated values of the �rst
unit production time T1 are nearly overlapping, hence the learning model
approximates the real production data very well; as the DoD grows, T1

and the average production time Tavg increase also, by meaning that more
complicated units require more time to be produced. As the DoD increases,
the learning slope decreases, with the consequent growth of the learning rate,
so that the higher the piece is complex, the higher is the bene�t obtained by
the learning process. Since this trend is not held by families C3F and C5W,
as their production has been a�ected by lots of breaks, which leads to the
forgetting phenomenon, their results are being neglected in this analysis. For
this project also, there is an evidence that the learning phenomenon impacts
the most where the pieces to assemble have more di�culties. This is justi�ed
by the fact that when operators deal with complex pieces, they recognize
the higher value of the assembled piece, which turns into higher attention,
motivation, remembering and less exposures to the forgetting phenomenon.
Linear relationship between DoD and learning rate can be appreciated in
graph 3.20, where the obtained curve y = -0.0875x + 0.8553 can be used
to calculate the learning slope that corresponds to a speci�c tender DoD, in
order to take this into account as the production schedule is being written
down. By comparing this curve with the Tadawul Project one (image 3.12)
the range of the learning curves is wider, so it is suitable to adopt a di�erent
learning constant when considering the di�erent product families belonging
to the building. These results can be applied to other similar projects so
that at the tendering phase it is possible to know in anticipation and in an
accurate way the learning phenomenon impact on the production schedule
and consequently on the production budget.

The Forgetting Phenomenon Analysis

The forgetting phenomenon is begin studied through Jaber M.Y. (1996) mo-
del, by referring to production data as reported in table 3.5, in order to
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Figure 3.20. Learning constant linear interpolation for Val De Fontenay.

Table 3.8. Forgetting phenomenon on Val De Fontenay C1F.

Run no. Qty t(q) C f f% tb q+s ai+1
�T1,i T1,i �T1,i

i units manhrs manhrs units units manhrs manhrs manhrs
1 236 1503.7 2.0 0.791 57.8 600 359 44 7.1 5.1 8.1
2 319 2125.4 1.41 1.000 47.8 600 495 69 6.5 4.3 6.9

verify if experimental data are compliant with the time needed for the �rst
production after a break as calculated through the forgetting model. The
�rst analysis concerns family product C1F, with learning curve reported in
�gure 3.21 with l = 0.198. The result is shown in table 3.8; time for total
forgetting tB is 4500 manhours.

If the process were not been interrupted, then the percentage of addi-
tional e�ort required to produce the �rst unit after the �rst break is 39.2%
and 51.2% for the second break; in any case the improvement continues even
after the second break, since �T1,1 > �T1,2. The experimental time �T1,i for
�rst unit is 14.8% higher for the �rst break and 6.2% for the second break,
if compared to the calculated �T1,i, by meaning that the error when estima-
ting the production time in a tendering phase is smaller (-62.2% for the �rst
run and -87.9% for the second run) when adoping the forgetting model in
conjunction with the learning one.

The second product family of this analysis is C1W, which has a learning
slope l = 0.229 (refer to image 3.21). In this case, C1W is not a base family,
but its DoD is 53%, by meaning that the total forgetting time, which can be
obtained by the linear relationship shown in graph 3.6, is 7.5 weeks = 4500
manhours. The results are then reported in table 3.9.

If the process were not been interrupted, then the percentage of addi-
tional e�ort required to produce the �rst unit after the �rst break is 31.3%
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Figure 3.21. Learning curve for Val De Fontenay C1F family product.

Figure 3.22. Learning curve for Val De Fontenay C1W family product.

Table 3.9. Forgetting phenomenon on Val De Fontenay C1W.

Run no. Qty t(q) C f f% tb q+s ai+1
�T1,i T1,i �T1,i

i units manhrs manhrs units units manhrs manhrs manhrs
1 78 975.1 4.62 0.446 73.4 600 145.3 23 12.6 9.6 12
2 75 1164.9 3.86 0.512 70.1 600 168.4 29 12 8.3 9.9
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Figure 3.23. Manchester One Spinning�elds (courtesy of Permasteelisa Group).

and 44.6% for the second break; in any case the improvement continues even
after the second break, since �T1,1 > �T1,2. The calculated time �T1,i time for
�rst unit is 5.0% higher for the �rst break and 21.2% for the second break,
if compared to the calculated �T1,i, by meaning that the error when estima-
ting the production time in a tendering phase is smaller (-84.0% for the �rst
run and -52.3% for the second run) when adopting the forgetting model in
conjunction with the learning one.

3.4.4 Manchester One Spinning�elds Project

Manchester One Spinning�elds is a 20 level commercial tower, 92 m height,
20000 m2 located in Manchester, whose production started in February 2016
and is going to end in December 2016, while site activities begun in August
2016 and are going to �nish in May 2017.

This research was conducted while the project production was in pro-
gress, since not all of the family products have been already produced. For
this project, tender product families are slightly di�erent from the lots ac-
tually produced, since the slack time between production and site activities
start was high and there were not so many di�erences from one typology to
another. Stated this, there have been decided to optimize the production in
the best way in order to enhance the margin given by this process, that is
why in this paragraph there product families are being replaced by produc-
tion lots. Production lots have been then grouping several product families
with similar tender production rates and involving 1 or 2 �oors each, as



46 Chapter 3. Learning-Forgetting concept and its applicability

Table 3.10. Production lots of Manchester One Spinning�elds.

Production lot Description Tender Product Family Bulding Floor

L01-01A corner panels 7, 9 1 to 6
L01-02A �at panels 5, 6, 7 1
L01-02B �at panels 1, 2, 3 2
L01-02C �at panels 1, 2, 3 3
L01-03A �at panels 5, 6, 7 4
L01-03B �at panels 1, 2, 3 5
L01-03C �at panels 1, 2, 3 6
L01-03D �at panels 1, 2, 3 7, 8, 10
L01-04A corner panels 8, 10, 11 7 to 13

detailed in table 3.10; examples of the geometry of the panels belonging to
some production lots are visible in pictures 3.24, 3.25, 3.26.

Figure 3.24. Front and back of a L01-01A panel (courtesy of Permasteelisa
Group).

Empirical Evidences of The Learning Phenomenon

In table 3.11 the learning curves relevant to each production lot have been
reported, by applying methodology proposed in paragraph 3.4.1. For this
project also, as DoD increases, time to produce the �rst unit and average
production grow, as a logical consequence.

For the production of this project there have been involved two di�erent
assembly lines, C032 and C033, hence one of the goals is to understand if
similar lots required similar learning constant even in the case; in table 3.11
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Figure 3.25. Front and back of a L01-02A panel (courtesy of Permasteelisa
Group).

Figure 3.26. Front and back of a L01-03C panel (courtesy of Permasteelisa
Group).
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Table 3.11. Learning Curve parameters of Manchester One Spinning�elds.

Experimental data Learning Curve
Family DoDk,% Produced qty T1,k Tavg, k T1,k l l%
L01-01A 218 96 80.5 18.8 65.3 0.425 74
L01-02A 28 158 38.4 7.1 35.2 0.384 77
L01-02B 43 138 30.6 5.1 30.6 0.364 78
L01-02C 37 139 37.2 6.2 37.2 0.363 78
L01-03A 98 139 30 5.7 29.8 0.368 77
L01-03B 42 139 21.0 3.5 21.0 0.363 78
L01-03C 37 139 34.8 5.8 34.8 0.364 78
L01-03D 37 143 24.6 5.0 24.6 0.362 78
L01-04A 164 56 46.2 7.8 46.2 0.444 74

Arithmetic avg 0.382 77
Weighted avg on qty 0.376 77

Table 3.12. Production macro-lots of Manchester One Spinning�elds.

DoD% Lot Assembly line Learning rate

164-218 L01-01A C032 74
L01-04A C033 74

98 L01-02A C032 77
L01-03A C033 77

42-43 L01-02B C032 78
L01-03B C033 78

37 L01-02C C032 78
L01-03C C033 78
L01-03D C033 78

the lots produced by C032 are light grey highlighted, while the ones produced
by C033 are in darker grey. As it can be noticed, trends of DoD against
learning constant are similar through the lines and that the more the pieces
are complex, the more the workers are forgetting phenomenon-proof. For
this project it is interesting to see that learning rates have small variations
between each other, so that di�erent sublots can be grouped into larger ones,
as shown in table 3.12. In this way, it can be ideally imagined to have a single
production line producing just 4 macro-lots, which involve lots with similar
DoD, by resulting in higher production rates performances because of fully
optimization of the assembly line; however this is hardly practicable since
it is fundamental to �nd the correct trade-o� between production and site
needs.

The relationship between learning constant and DoD is then reported
in image 3.27 and it can be used to de�ne the correct learning constant to
use according to the foreseen DoD. It is necessary to underline that for this
project even if the complexity range is large, the learning constant range is
small, so it is suitable to use just a unique value of the learning constant
-such as the arithmetic or weighted average- for the whole project to obtain
an accurate planning result.

The full set of learning curves drawn for this project are available in
�gure 3.28.
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Figure 3.27. Learning constant linear interpolation for Manchester One
Spinning�elds.

Table 3.13. Forgetting phenomenon on Manchester One Spinning�elds L01-02A.

Run no. Qty t(q) C f f% tb q+s ai+1
�T1,i T1,i �T1,i

i units manhrs manhrs units units manhrs manhrs manhrs
1 137 1182.5 5.7 0.571 63.7 600 266.7 51 7.7 5.3 9

The forgetting Phenomenon Analysis.

The forgetting phenomenon is begin studied through Jaber and Bonney's
model, by referring to production data as reported in table 3.5, in order to
verify if experimental data are compliant with the time needed for the �rst
production after a break as calculated through the forgetting model. The
analysis concerns production lot L01-02A, with learning curve reported in
�gure 3.29 with l = 0.384. The result, obtained with the application of
Jaber and Bonney, is shown in table 3.13; time for total forgetting tB is 6000
manhours.

The percentage of additional e�ort required to produce the �rst unit after
the �rst break is 45.3% , while the experimental time �T1,i time for �rst unit
is 16.8% higher if compared to the calculated �T1,i. Even in this case, the
error committed if estimating the production time with the adoption of the
forgetting model is the 26.7% smaller, therefore is important for the company
to apply this concept in a tendering/budget phase.
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Figure 3.28. Learning curves of Manchester One Spinning�elds Project.
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Figure 3.29. Learning curve for Manchester One Spinning�elds L01-02A
production lot.

3.5 The Learning-Forgetting sequencing

This subsection presents a set of numerical examples that show how the
model of Jaber M.Y. (1996) behaves under a variety of forgetting breaks
and di�erent values of the learning constant l, obtained from the analysis
presented in paragraph 3.4. By studying several production sequences it is
possible to understand which is the impact on the schedule evaluation when
considering none or an unsuitable learning constant.

Consider a case where the quantity of panels to produce is 600 pcs within
3 horizons, composed by 5 weeks each.The evaluated standard time is 5
hours/panel and the time to produce the �rst unit being 29 hours. The total
capacity of the assembly line per week is considered to be 1500 hours, the
total forgetting time is 5 periods (=7500 hours) with a learning constant
equal to 0.362. By recapping:

• qtot = 600 pcs;

• Tot weeks = 15;

• Tot horizons = 3;

• tB = 7500 hours;

• Tstd = 5 hours;

• T1 = 29 hours;

• learning constant l = 0.362 (learning rate = 78%).
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Figure 3.30. #1 Production sequence.

Figure 3.30 shows the production sequence along the 3 horizons and each
sequence has been assigned to a di�erent combination of 0 (meaning no pro-
duction in the week) and 1 (meaning production on the assembly line during
the week), that the mathematical model presented in this thesis in detail in
chapter 4 is going to use to assess the production sequence to the suitable
learning forgetting features, in accordance to Jaber M.Y. (1996). In fact,
each binary combination inside the horizon can be associated to a a �ni-
tely production sequence through a suitable parameter (refer to paragraph
4.2.4), which is in turn is used to assign the proper learning and forgetting
time intervals.

The production time required to accumulate the �rst 100 panels, the C
ratio value, in accordance to Eq. 3.13, are:

t(100) =

∫ q

0
T1j
−l dj =

29

1− 0.362
1001−0.362 = 870 manhours

C =
tB
t100

=
7500

870
= 8.62

Forgetting slope for the second production cycle can be calculated as
follows:

f =
l(1− l) log q

log(C + 1)
=

0.362(1− 0.362) log 100

log (8.62 + 1)
= 0.47

This forgetting slope corresponds to a forgetting rate equal to 2-0.47 =
72%. The total amount that would have been accumulated if no interruption
occured and a 4 break period is:

(q+s) =

[
1− l
T1

tb + q1−l
] 1

1−l

=

[
1− 0.362

29
6000 + 1001−0.362

] 1
1−0.362

= 2551 units

The level of experience expressed in units during the �rst production
batch hat is going to be remembered in the second batch is:

α2 = q
l+f
l

(q+s)−
f
l = 100

0.362+0.47
0.362 (2551)−

0.47
0.362 = 1 unit

At this point time to produce the 101-st panel is:



3.5. The Learning-Forgetting sequencing 53

Figure 3.31. #1 Production sequence with forgetting model results.

T̂101 = T1[α2 + 1]−l = 29[1 + 1]−0.362 = 21 manhours

If no interruption occurred, then the time to produce the same unit would
have been:

T101 = T1[q + 1]−l = 29[100 + 1]−0.362 = 6 manhours

The calculations by extending the same procedure to the production
batches of periods 10, 13 and 15 are shown in the �rst part of table 3.15. In
�gure 3.31 the results of the application of Jaber M.Y. (1996) on the same
example have been visually represented on the planning horizon for a better
understanding of all of the interactive steps, which are the followings:

• period 5 is the very �rst production period, so the units remembered
from the past production are a1=0; time to produce the �rst panel
equals the forecast tender evaluation, which is T1,1 = 29 hours;

• second production batch bene�ts of a2=1 remembered unit from period
5, disempowered by the 4 periods break; time to produce the �rst panel
improved to T1,2 = 21 hours (-27.6%); time to produce the 101 units
is t(101)=1134 hours;

• at the beginning of 13th period the accumulated level of experience is
a3=6; time for �rst unit improves again to T1,3=14 hour (-33%)s; time
to produce the 156 units is t(156)=1156 hours;

• at the end of the horizon, remembered units are a4=19; time to produce
the �rst unit after the break is 10 hours (-28.5%); time to produce the
219 pcs is t(219)=1436 hours.

Equivalent logic has been used for a total of 16 di�erent sequences and
4 di�erent learning constants; the data input for each production system
considered, being them spread over 15 periods grouped into 3 horizon, all are
visible in table 3.14. All of the calculation made for the sequences belonging
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Figure 3.32. Total production time behaviour with di�erent learning constants
[manhours].

to the 4 di�erent considered production systems are shown in tables 3.15-3.22
and each sequence is visually available in �gure 3.33. In this latest picture,
total times to produce the production batches are reported for each period
and the very last column on the right represents the additional percentage of
production time respect to the one calculated without the learning-forgetting
model application. It is evident that this percentage is highly in�uenced by
the production sequence: for example by taking into account l = 0.362, the
additional time respect to the standard required to complete the batches
within the 3 horizon, may vary between 19% (sequence #15), when there is
a leveled production and just one break shorter than the total forgetting time
tB, and 61% (sequence #2), when there is a total of 4 breaks, at the end of
every production period. Signi�cant deviations can be seen also if taking into
account the same production sequence while varying the learning constant:
in sequence #5 production time can increase from 4678 manhours (l = 0.362)
to 9820 manhours (l = 0.390), which is approximately 110% more.

Di�erent impact of the learning constant on production time calculation
is also clear when comparing the three sequences in picture 3.32, while by
having a glance at histograms grouped by learning constant, it comes to the
surface which is the impact of the kind of sequence. In the cases of l=0.390
and l=0.604, the relevance of the way the production in sequenced is greater,
being it approximately 13.4% and 15.9% namely when comparing the �rst
and the second sequences.

By having a general overview, as better focused in picture 3.34, it is noti-
ceable that the total production time calculated through Jaber M.Y. (1996)
is always higher than the one simply evaluated as the multiplying of the
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Figure 3.33. Production time comparisons between 16 production sequences
according to di�erent learning constants.
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Table 3.14. Data input for the analysis of the learning-forgetting phenomenon on
di�erent production systems.

1 2 3 4
Qty to produce 600 600 600 600
Total forgetting time tB [manhours] 7500 7500 7500 7500
Evaluated standard production time per unit tstd [manhours] 4.9 11.5 9.5 9.7
Production time for �rst unit T1[manhours] 29 69 57 126
learning constant l 0.362 0.390 0.444 0.604

tender standard time by the quantity to produce. The lack of consideration
of the learning-forgetting phenomenon in the production planning mislea-
ding since the production time is under-estimated up to 69%, with negative
consequences on the actual planning in terms of time and capacity on the as-
sembly line, causing delays on the general Project Plan. This misalignment
increases with the number of stops on the assembly line since the bene�ts
that comes from the learning e�ect exploiting is limited by the forgetting
phase and, as per graph in �gure 3.35 a potential expression explicates this
relationship.

The importance of the choice of the correct learning constant is hi-
ghlighted by histograms in �gure 3.36, where the production system con-
sidered is the 3rd of table, whose standard production time for a batch of
600 units is 600pcs · 9.5hrs = 5700 hrs and whose correct learning constant
is l= 0.444. This total standard time is represented by a red-dot line, while
histograms represent the total production time for di�erent sequences (#1,
#8, #15) along the various learning constant. If the chosen learning constant
would have been l = 0.390, then the danger for the �rm is to under-evaluate
the total production time in all of the three sequences up to 42% (sequence
#15) respect to the total standard time; on the contrary, if the used learning
constant would have been l= 0.362 or l= 0.604, then the total production
time would have been over-estimated up to 63.9% (sequence #1). In both
of the cases, the choice of the wrong learning constant could mislead to
squeezed or extended time and resource plannings.
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(a) l=0.362

(b) l=0.390

(c) l=0.444

(d) l=0.604

Figure 3.34. Total production time for each production sequence.
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Figure 3.35. Production breaks e�ect on the additional percentage over the
standard production time.

Figure 3.36. Production system #3 total time behaviour at learning constant
variation [manhours].



Chapter 4
Sustainable optimization of

production planning

During a construction Project, in order to avoid extra-costs, disruptions or
client charges for delays in work completion, the milestones on critical path
have to be strictly followed by all of the Supply Chain actors which, basically,
are:

• Design department;

• Purchasing department;

• Production department;

• Installation Site.

It comes clear that the activities involving every department lead to
manage signi�cant trade-o�s, since each construction project, due to its pe-
culiarities, has plenty of custom elements to be designed and purchased with
low repetitiveness rates and engineer to order components to be produced.
Stated that all of the process has to be pulled by the contractual due dates,
and that a batch of elements of the same type causes no setup costs or slow-
downs, it becomes relevant to optimize the production on the assembly line
without compromising site activities. In fact, in a curtain wall building pro-
duction, the same element can be installed into di�erent �oors or elevations,
which have di�erent installation priorities, e.g. by referring to picture 4.1,
the production line would like to produce per typologies (�rst green product
family, red one and so on) in order to optimize assembly rates, while di�erent
codes belonging to the same product family can have a di�erent location on
the facade: it is desirable to produce panels 4 and 59 in the same production
batch, but they have to be installed onto 3rd and 7th �oors, respectively.
Handling and logistics on site are tough issues: packs can be moved onto

67
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Figure 4.1. Trade-o� between production and site needs.

�oors just by tower cranes, hoists or mono-rails, hence it is not possible to
deliver a crate with elements that have to be installed into di�erent �oors,
since the pack cannot be wrapped again to move it to upper levels for time
and safety reasons. Moreover, once the pack has been opened on site in
order to install one element, then also the balance of the pieces contained by
the crate has to be installed soon to avoid damages that frequently occur,
thus generating the arise of non-conformities that turn into extra costs for
the re-ordering, re-production, re-handling and consequent scrapping of the
ruined materials. Most construction sites do not have huge space to stock
large elements, so the company cannot deliver much more items than the
ones speci�ed in the delivery schedule, unless stockpiled into the production
plant or into an external warehouse, thus generating inventory costs. On the
other side, if the produced items do not meet site installation demand on
a given day, then delays in the contractual handover of part of the project
may be caused, with the risk of incurring in penalty costs.

A construction PBE, as a common manufacturing �rm, has to improve
the economic result by maximizing the production of items, but the main
di�erence is that each element has a unique location on the building to be
handover to the client within speci�c delivery dates set into the contractual
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program. For this reason, number of transports in a project for a construc-
tion PBE is strictly linked to the production sequence and it has to be taken
into account not only during the scheduling, but also during the planning
phase, since every unit has to come on site by mirroring the installation
program or with a minimum acceptable slack time: unless the project bud-
get allows the usage of an external warehouse or the company is equipped
with a large storage area, the stocking space on site is limited. Therefore
installation scheduling has to be observed and logistically organized on a few
daily basis. Hence, to green the PBE supply chain from the environmental
point of view without compromising site activities, it has to be considered
that production optimization has direct implication on the �lling-up of con-
tainers or trucks. In turn, higher ful�llment rates result in a smaller number
of means of transport to site, therefore less consequent pollutant emissions,
which means environment protection and supply chain greening.

The social theme of the Triple Bottom Line (TBL) can be introduced
into the production planning through the learn-forget curve model, suitable
for limited productions. Workers, in fact, improve their performances ac-
cording to the production sequence, which mixes up the various typologies
of elements by taking into account the due dates stated on the project pro-
gram. Thus, one typology can be produced in more than one batch during
the time horizon by alternating it with the other typologies of the building.
Hence production phase in construction PBEs can be de�ned as disconti-
nuous, subjected to not only learning but also to forgetting phenomenon.
By inserting the learning-forgetting curve into the production planning mo-
del, more realistic cycle times can be calculated and managed, thus reducing
the work stress of the personnel thanks to feasible plans and making factory
environment more friendly, therefore improving performances. Moreover the
planning on the horizon shows the real production capacity of the assembly
line, by making more reliable forecasts during the project planning de�nition.

In this chapter, the �rst paragraph is introductory in the constraint pro-
gramming, which is the paradigm that has been used for the achievement of
the model; section 4.2 describes in detail the sustainable optimization tool
for production this thesis is focused on; in the last section computational
time of the model is assessed.

4.1 Constraint Programming

The Constraint Programming (CP) is a programming paradigm wherein re-
lations between variables are stated in the form of constraints, which do not
specify a step or sequence of steps to execute, but rather the properties of
a solution to be found (Rossi et al., 2006). CP divides the coding into two
phases: modeling and solving. During the �rst one, the problem is being
modeled through constraints on variables, which can be non-linear, as the
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objective function may be. The developer can then focus on the description
of the properties required by the solution, by introducing relations among
variables, rather than on the de�nition of an algorithm to generate the so-
lution itself. During the solving phase, in fact, the developer can rely on a
constraint solver which reduces the search space by pruning values from the
variable domains which cannot appear in any solution. Decades of research
on the best solution search strategy have been implemented into CP soft-
wares, therefore by o�ering advanced and powerful solvers. It is important
to emphasize an important property of constraints: they are independent of
each other and interact only through incremental variables. The resulting
�exibility greatly simpli�es the de�nition of new constraints and objectives
since the di�erentiable objects can be implemented in isolation, and makes
it easy to add constraints in a model without a�ecting the rest of the model
and the search. As underlined by Banaszak et al. (2009), thanks to their rich
language, constraint-based systems are suitable for the modeling of complex
problems, such us the ones faced during an enterprise decision process. By
comparing the CP models to other methodologies, e.g. genetic algorithms,
simulated annealing or tabu search, they are easier to be modi�ed and upda-
ted, characteristic that makes them quickly adjustable to context variations
for which they have been created and makes them extensible to similar situa-
tions with the minimum tuning. In order to enhance the power of obtaining
nearly optimal solutions in reduced computational time, it is possible to in-
troduce local search strategies after having obtained a good solution from
the main CP program. The Large Neighborhood Search (LNS), speci�cally,
introduced by Shaw (1998) can hybridize the CP and local search with op-
timal performances (Van Hentenryck and Michel, 2005). LNS consists in an
iterative process that, by starting from an admissible solution, destroys at
each iteration part of the current solution by using a stated de�nition of clo-
seness and it optimizes again, in order to hopefully improve the result. The
neighborhood procedure chooses a set of variables, so called free-variables,
that have to be assigned again, while the remaining variables do not change
respect to the current solution; the model structure is saved, so that it is
possible to always generate admissible solutions. The problem presented in
this research has been modeled in its complexity according to the Constraint
Programming nature (par. 4.2, and then it has been solved with an hybrid
approach CP + LNS. COMET package has been used both for the modeling
and solving phases.

4.2 The Model

The elements or panels of the facade have been divided into packs that con-
tain a certain number of them; each pack of a construction project is assigned
with a unique code number, which is associated with an installation date,
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Figure 4.2. Gantt schedule of a curtain wall project

set according to the Gantt schedule handover of the levels (whose extract is
given in �gure 4.2 as an example), and a due date, which is the very last date
the element can be shipped in order not to generate delays on requirements
at the construction site. The decision variables of the model are therefore
the period within the planning horizon H during which the pack i should be
produced and the period in which it should be shipped; one more decision
variable sets the period in which a pack already on stock, due to the pro-
duction been made in previous horizons, is convenient to be shipped. The
three variables are set to 0 if element i is not conveniently produced in H.
Auxiliary variables are introduced to easily manage the objective function
and constraints.

Packs are given as an input to the model since they are the minimum
handling unit for truck loads and for site also. Their creation is being done
according to:

• level or elevation of installation of the panel: packs have to be lifted
to �oors all at once to avoid extra handing on site which is a time-
consuming activity subject to availability of logistics in terms of space
and equipment, and dangerous since it enhances the probability of
causing damages to the materials;

• geometry of the panels: packs should contain panels with similar di-
mensions in order to be resistant to transport and handing stress
(geometry grouping often overlaps with family product one);

• capacity and characteristics of handling and lifting equipment in the
production plant and installation site.

An example of pack de�nition can be seen in image 4.3, where di�erent
colours point out di�erent packs. Packs in the picture are at the executive
stage of the project, since the production orders can be created just once the
packing list has been clearly de�ned. At the preliminary stage for which this
model has been thought, pack de�nition is less precise since it is not possible
to know well in advance all of the variables of the project, e.g. to know
where to stock materials which is close to the installation process (which is
the maximum capacity and dimensions of the hoist and of tower crane? do
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the packs have to be lifted at levels, and if so, where? Which is the maximum
load capacity of the inter-�oor slab?), but the process follows the same logic.

4.2.1 Model variables

Model decision and auxiliary variables can substantially be grouped as fol-
lows:

1. production variables: they de�ne the period in which an element has
to be produced in time horizon H;

2. shipment variables: they de�ne the period in which an element has to
be shipped in time horizon H;

3. learning-forgetting variables: they embed the learning-forgetting model
(see chapter 3) into the production time required for each panel to be
assembled;

4. setup variables: they take into account the setup change on the assem-
bly line when di�erent family products have to be produced;

5. transport variables: they calculate the loss of space in a mean of
transport;

All of the variables are in Italic style in model equations and are reported
in table 4.1, where the group of belonging has been reported in the �rst
column.

As for the production variables, the decision one is period[i], which assigns
to every pack to be produced the period in which to assemble it; while the
second group has two decision variables which are the shipment periods,
shipment[i], of packs produced in horizon H, and the shipment period of
the packs which are on stock in the plant warehouse since they have been
produced in previous horizons, shipOnhand[i]. An example of how decision
variables work can be seen in picture 4.4, where both packs 1 and 2 have due
date in period 8, by meaning that they have to be shipped within this period
and their installation period is 10, so at that time production, transport and
stock related costs are going to cease; P is the production period of pack
i, S is the shipment period of pack i, OH is the shipment period of pack i
stack in production plant,ip indicates inventory period in production plant,
is indicates inventory period on site, t is the transport lead time.

According to the picture, result for the �rst horizon is:

• period[pack 1] = 2;

• period[pack 2] = 4;

• shipment[pack 2] = 5.
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Figure 4.3. Building facade elevation divided into packs (courtesy of Permasteelisa
Group).

Figure 4.4. Example of production of 2 packs.
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By following a rolling logic, in horizon #2, when the model starts for the
second time, pack 1 is already on stock:

• shipOnhand[pack 1] = 6;

• ip[pack 1] = 3;

• is[pack 1] = 2;

• ip[pack 2] = 3;

When Learning-forgetting variables play the role, each element contai-
ned in pack i has to be taken into account in order to calculate the total
time to produce the entire pack itself. Since packs have been previously set
according to panels geometry (and so to family products), production can
be optimized as long as packs belonging to the same typology k are being
produced in the same period, since the learning e�ect can be exploited for
a longer time, thus limiting the forgetting phenomenon that inevitably hap-
pens with PBEs discontinuous production system. In this contest, the best
production sequence, as a 0-1 combination, is reach out through variable
prodSeq[k,v], which is correlated to variable t[k,j], i.e. the total time spent
to produce packs belonging to typology k in period j.

In PBEs, productions cost related to set-ups may be signi�cant: due
to the huge and varying dimensions of the panels, the automatic conveyor
width of the assembly line must be revised several occasions. These kind of
activity can take at least 4 hours to be ended, thus causing rather a long
unproductive impact. For this reason, each product family of this model
is associated to its set-up class, which may be shared with other product
families, if possible. Variable setup[u,j] has then been created to assume
value 1 every time the production plan encounters family products belonging
to di�erent set-up classes, so that consequently variable sumSu[j] sums up
the number of di�erent set-up classes carried out in order to let the model
minimize them.

By re�ecting the reality of the production and shipment process of a
PBE, when packs have to be stacked, vertical space exploitation is sought,
therefore minimizing the soil occupation. For this reason, packs have been
assigned a crate typology so that packs with the same crate typology can be
piled. As a consequence, in order to maximize means of transport ful�llment,
these piles, characterized by packs which share the same kind of crating, have
to be load onto the truck bed. Hence Transport variables are de�ned in range
C, that is the number of di�erent crate typologies that can be carried out
throughout the building production.
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4.2.2 Model input data and parameters

The user has to enter the model the data input according to the context
to be faced, and they are listed in regular font in table 4.2, while table 4.3
reports all of the parameters.

These data input and parameters can be divided as follows:

1. technical project data: the user has to set the main characteristic of
the project in terms of number of packs and typologies to produce;

2. programming input: the user has to set the period (e.g. week of the
year) in which the computation has to start according to the Gantt
project, the planning horizon to consider;

3. transport parameters: set of transport lead time;

4. production capacity input: set of the assembly line capacity over hori-
zon;

5. mean of transport capability;

6. learning forgetting input/parameters: set of learning constant and time
for total forgetting (refer to chapter 3);

7. costs;

8. weight of the activities along the supply chain.

Parameter generalInfo[i,r], as text �le, transfers to the model the data
as per table 4.4, so each pack i of the project is associated to the product
family that is inside it, to the parameter dueDate[i] which is the latest date
the pack can be shipped to respect installation schedule, to the number of
panels inside the pack, to the level of the building in which the pack i has to
be installed.

The stock status of each pack is parameterized through stockInfo[i,r],
which is a text �le that has to be updated each time the model rolls to the
next planning horizon because it registers if and when the pack has been
produced, if and when the pack has been shipped, if the pack has been in-
stalled according to the scheduled installation period. These parameters are
fundamental to calculate the stock related costs and to reduce computatio-
nal time through the horizons, since the model considers just the needful
elements in horizon.

The feature of every pack are summarized in table 4.6, which show the
way these parameters are used by the model:

• T̄ k is the estimated standard production time for typology k, evaluated
during the tender phase according to the number of components and
assembly complexity;
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Table 4.2. Model input data; M is the set of di�erent family products to be
assembled; H is the planning horizon. In �rst column: 1 = technical project data; 2
= programming input; 3 = transport parameter; 4 = production capability input;
5 = mean of transport capability; 6 = learning forgetting input/parameters; 7 =
costs; 8 = weight of the activities along the supply chain.

Category Input Range Description
1 nTypes No. of typologies of the project
1 panels No. of panels of the project
1 nPacks No. of packs of the project
1 nSetup No. of possible setups in the project
1 startLev First level of the building
1 endLev Last level of the building
2 start Start period of the planning horizon
2 horizon No. of periods in planning horizon
3 travel Transport lead time [periods]
4 capacity Assembly line capacity over planning horizon[minutes]
4 maxOver Allowed production overcapacity [%]
4 timeSu Cumulated time for set-up [minutes]
5 volume Loading volume of the mean of transport [m3]
6 l[k] k ∈M learning constant of family product k
6 tF[k] k ∈M time to produce the �rst unit of family product k
6 tB[k] k ∈M total forgetting time of family product k
6 std average multiplying factor for �rst unit production time
7 cup Cost for production loss [e/min]
7 csu Cost for line setup [e/min]
7 cltl Cost for less than truck loading [e/m3]
7 cover Extra cost for overtime [e/min]
7 cfacade Sell price for the complete facade [e/m2]
7 rb interest rate for bank capital assets [%]
7 rh risk rate for extra handling over time [%]
7 rd risk rate for material damage over time [%]
8 purchasing weight of purchasing activity [%]
8 production weight of production activity [%]
8 shipping weight of shipping activity [%]
8 installing weight of installing activity [%]
8 sqmavg average square meters per panel [m2]
8 tavg average tender production time per panel [minutes]
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Table 4.3. Model parameters. N is the set of packs of the project, M is the set
of di�erent family products to be assembled, C the set of di�erent types of unit
loads, S is the set of possible learning-forgetting sequences, B is the set of possible
production interruptions.

Group Parameter Range Description
1 generalInfo[i, r] i ∈ N , r ∈ [1..5] Packs characteristics
1 stockInfo[i, r] i ∈ N , r ∈ [1..7] Stock status of pack i
1 typeInfo[k, r] k ∈M , r ∈ [1..7] Facade typologies characteristics
3 crateInfo[c, r] c ∈ C, r ∈ [1..5] Crates typologies characteristics
6 LFsequence[s, v] s ∈ S, l ∈ [0..H*] Possible learning-forgetting sequences
6 seqPar[s, v] s ∈ S, l ∈ [0..H*] Productive sequence with production periods
6 qP[k] k ∈M equivalent production for periods prior to j ∈ H
6 T1[k] k ∈M time to produce �rst unit
6 T1P[k] k ∈M time to produce �rst unit in horizon H

Table 4.4. GeneralInfo[i,r] parameter.

Pack Product family Due date No. of units Installation level
code i in pack i dueDate[i] in pack i of pack i

1 1 24 5 1
2 1 24 6 1
3 2 25 8 1
4 10 26 6 2
5 6 27 7 3
.. .. .. .. ..
N k .. .. endLev

Table 4.5. StockInfo[i,r] parameter, where: P is 1 if pack i has been produced, 0
otherwise; S is 1 if pack i has been shipped, 0 otherwise; I is 1 if pack i has been
installed, 0 otherwise.

Pack code i P P period S S period I I period
1 1 23 1 23 1 25
2 0 0 0 0 0 31
3 0 0 0 0 0 31
4 1 26 0 26 0 30
5 1 25 1 26 1 27
.. .. .. .. .. .. ..
N .. .. .. .. .. ..
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• setup-class de�nes through a number that a typology implies a speci�c
set-up to do, since the width of the conveyor belt has to be modi�ed
according to the width of the panels that it has to transport through
the line;

• crate type points out the category of pallet that has to be used for the
packaging of family k;

• Qstd is the foreseen quantity of panels that have to be produced to
reach Tk: in coherence with the learning model, as a production batch
goes on, time to produce the units decreases asymptotically to the
standard time Tk with the increasing of the assembled units;

• Plast memorizes the last period in which family k has been produced, in
order to calculate the length of the process break, which is necessary
to the implementation of the forgetting phenomenon into the model
production time computing;

• a indicates the level of experience remembered at the beginning of the
next run, after an interruption period (please refer to chapter 3.

Table 4.6. TypeInfo[k,r] parameter, where M is the total number of family
products k.

Family T̄k Setup Crate Qstd Plast a

product k [min] class type [units] [units]
1 294 1 1 480 25 25
2 426 1 2 375 26 3
.. .. .. .. .. .. ..
M .. .. .. .. .. ..

Crate types enumerated in typeInfo[k,r] are linked to their characteristics
through palInfo[c, r] matrix, which is reported in table 4.7 and whose data
are necessary to the evaluation of transport costs and storage area both at
the production and installation sites:

• crateH is the number of crates of typology c that can be stacked onto
each other;

• crateP is the number of columns of piled packs that can be loaded in
the mean of transport;

• crateW is the number of packs that can be stacked in a warehouse;

• crateA is the area occupied by the pack.

Learning-forgetting parameters LFsequence[s, v] and seqPar[s, v] are
being explained in details in the following subsection 4.2.3.
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Table 4.7. CrateInfo[c,r] parameter, where C is the total number of crate types c.

crate c crateH crateP crateW crateA [m2]
1 4 3 2 8
2 2 1 2 9
.. .. .. .. ..
C .. .. .. ..

4.2.3 Model Objective Function

The objective function, shown in equation 4.1, has been build with the aim
of exploiting the bene�ts o�ered by the Triple Bottom Line (TBL) concept,
which, according to Elkington (1998), states that by interbreeding economic,
environmental and social performances, a �rm can approach a competitive
long-term advantage. In the light of this, the model aims at minimizing the
time losses and extra expenses that can a�ect the assembly line, along with
the lack of saturation of the means of transports and the capital costs rela-
ted to the produced/shipped items. In the objective function the di�erent
terms that allow to embrace the three dimensions of sustainability have been
de�ned on cost bases, so that the social and environmental aspects can be
compared to the economic one in an objective way. This gives the oppor-
tunity to focus simultaneously on the three aspects with the minimizing of
the cost, which is the �nal aim to be achieved by companies. This single-
objective approach have been preferred to the multi-objective one, since this
latter leads to the de�ning of weights to give each objective which are liable
to subjectivity. Moreover, through the action research interviews, it came to
the surface that, because of architectural limits, Permasteelisa cannot mo-
dify transports modes nor the materials to be used, therefore the only lever
that can be actually driven are production and transport optimizations from
an economic point of view.

The terms composing the objective function are the following costs:

1. unproduction;

2. set-ups;

3. overtime;

4. less-than-truck load transports;

5. capital costs.

Idle time of the assembly line in terms od manhours can be calculated
as per Eq. 4.2.

Time losses caused by set-ups are considered in the second term of the
objective function and detailed in Eq.4.3; they happen every time there is
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a change in the conveyor belt width, which corresponds to a certain panel
width.

Costs for the operators working overtime are calculated thanks to Eq.
4.4.

min cup
∑
j∈H

unprod[j] + csu
∑
j∈H

sumSu[j] + cover
∑
j∈H

overtime[j]+

cltl
∑
j∈H

unload[j] + Ccapital(unprod,ship)

(4.1)

unprod[j] = capacity− sumT [j]− sumSu[j] (4.2)

sumSu[j] =
∑
u∈U

∑
j∈H

setup[u, j] timeSu (4.3)

unprod[j] < 0⇒ overtime[j] = sumT [j] + sumSu[j]− capacity (4.4)

Lost space in trucks is estimated by assuming that each part type can
be associated with a unit load class: this means that elements of di�erent
part types can be stacked during transport only if they belong to the same
class c (column number 4 of table 4.7). For curtain wall contractors, since
packs have huge dimensions, number of packs that can be stacked onto each
other and number of columns inside the mean of transports can be easily
calculated in a preliminary way, thus when having a set of packs ready for
the shipment, the number of them that ful�ll the truck is evaluated by the
modulo operator % as in Eq. 4.5, where crateH is the number of crates that
is possible to stack by exploiting the height of the truck, while crateP is the
number of piles that can be contained in the length of the truck. Finally the
total loss of space is obtained as a percentage of the volume of the mean of
transport, as per Eq. 4.6.

ltl[c, j] = (
∑
j∈H

∑
i∈N

∑
c∈C

delivery[i, j]%(crateH · crateP) (4.5)

unload[j] = volume(1− ltl[c, j]

crateH · crateP
) (4.6)

The last term of the objective function gives evidence to all of the hidden
costs of capital immobilization (4.8) which are strongly connected to the
contractual agreement with the client. The most frequent kind of contracts
in the curtain wall market are:

A. job order working progress: the company is paid by the client by
steps as the processes Design, Production, Shipment, Installation are
complete;
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B. at work completion: the company is paid by the client once the instal-
lation is complete.

If the company has to face the �rst contract A, then each phase of the
Project process has to be given a percentage weight, so that a capital cost
for each step can be calculated by the program and taken into account in the
objective function. For this reason an interest rate r has to be set, according
to its three components chosen by the user:

r = rb + rh + rd (4.7)

where, as per table 4.2: the �rst term rb refers to the bank interest
rate for the �nancial loan or to gain interest for an alternative investment;
the second item rh is a risk rate that takes into account extra handling of
the stock material over time, since the installation goes up �oor-by-�oor and
trucks may host packs belonging to di�erent �oors, so packs of the same �oor
can be stacked in di�erent locations, thus implying extra-handling; the third
term rd represents the risk rate for damages that the material can undergo
over time (e.g. detriment caused by weather exposure, damages crated by
handling, accidents...).

The total capital cost is formed by three parts, as per Eq. 4.8: the cost
related to unproduction capunprod, the one related to the missing of the ship-
ment activity capunship and the last one which is linked to the postponement
of installation process, capuninstall.

The capital cost associated to the unproduction of the line is calculated
thanks to Eq. 4.9, since the idle time of the assembly line prevents the
company for being paid for the production of the units that could have been
assembled if the operators would not have stopped.

Ccapital(unprod,unship) = capunprod + capunship + capuninstall (4.8)

capunprod = (purchasing+production)·cfacade ·r·
∑
j∈H

unprod[j]
sqmavg

tavg
(4.9)

By following the same logic, inventory cost in production and at site can
be thought as the postponement payment by the client because of unshipping
and uninstalling a certain number of square meters , respectively Eqs. 4.10
and 4.11, where GeneralInfo[i,4] indicates the quantity of panels inside pack
i, as per table 4.4. For capuninst computing, it has been assumed that 2 weeks
for handling are default and unavoidable costs.

capunship =
∑
i∈N

(shipment[i]− period[i])sqmavg GeneralInfo[i,4]·

·shipping · cfacade · r
(4.10)
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capuninstall =
∑
i∈N

(InstallDate[i]− shipment[i]− travel− 3)sqmavg·

·GeneralInfo[i,4] · installing · cfacade · r
(4.11)

Contract typology B sets the payments from the client at the installation
completion phase. For this reason, Eqs. 4.9-4.11 are replaced by Eqs. 4.13-
4.15: capital cost is not represented by the lack of payment at each stage
of the process but as the �nancial immobilization of the assets for the pha-
ses prior to installation and the payment postponement at the installation.
Activities involved are taken into account into di�erent moments respect to
contract A, e.g. since the cost of the unproduction doesn't imply a lack
of payment by the client, its value resides only in the �nancial exposure
the company faced for the purchasing of the raw materials, plus their extra
handling or risk of damage over time, hence in Eq. 4.13 the only activity
impacting is the purchasing one. Moreover, rate r has to be integrated with
an additional risk rate rf (Eq. 4.12) that represents the negative cash �ow
that the �rm has to face throughout all of the processes, until the installation
one.

r = rb + rh + rd + rf (4.12)

capunprod = purchasing · cfacade · r ·
∑
jinH

unprod[j]
sqmavg

tavg
(4.13)

capunship =
∑

i∈N,c∈C
(shipment[i]− period[i])sqmavg GeneralInfo[i,4]·

·producing · cfacade · r
(4.14)

capuninst =
∑

i∈N,c∈C
(InstallDate[i]− shipment[i]− travel− 3)sqmavg·

·GeneralInfo[i,4] · shipping+installing · cfacade · r
(4.15)

Same cost equations have been de�ned for the previously produced packs
belonging to set P through variables onhandGo[i,j] and shipOnHand[i].

4.2.4 Model Constraints

The main constraints of the model are shown in Equations 4.16-4.32. For
sake of simplicity, constraints linking the decision variables to the related
boolean auxiliary variables are omitted.
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Production and Shipment Constraints

The �rst group of constraints sets due dates satisfaction and production-
shipment relations. In particular, every pack i must be assembled matching
its due date (Eq. 4.16) and shipped after its assembly (Eq. 4.16); every ele-
ment can be assembled in one period only (Eq. 4.18) and must be produced
if its due date is within the planning horizon (Eq. 4.19), which must host
all of the packs produced, as declared with constraint 4.20.

period[i] ≤ dueDate[i] ∀i ∈ N (4.16)

period[i] ≤ shipment[i] ∀i ∈ N (4.17)

∑
j∈H

prod[i, j] ≤ 1 ∀i ∈ N (4.18)

dueDate[i] ∈ H ⇒
∑
j∈H

prod[i, j] = 1 ∀i ∈ N (4.19)

period[i] ≥ 0⇒ start ≤ period[i] ≤ (start+horizon-1) ∀i ∈ N (4.20)

Similarly, Eqs. 4.21 to 4.24 set the analogous relations for shipping, in
addition Eq. 4.24 states that if a pack is produced in horizon, then it has to
be shipped at the due date period. This constraint has been introduced in
order to make the model consider all of the possible costs that are related to
the production/shipment outputs: the bene�ts in anticipating the produc-
tion has to be balanced with the risk of having the pack stocked for a certain
period of time, so until the due date in the worst of the cases.

shipment[i] ≤ dueDate[i] ∀i ∈ N (4.21)

∑
j∈H

delivery[i, j] ≤ 1 ∀i ∈ N (4.22)

dueDate[i] ∈ H ⇒
∑
j∈H

delivery[i, j] = 1 ∀i ∈ N (4.23)

∑
j∈H

delivery[i, j] = 0 ∧ period[i] ≥ 0⇒ shipment[i] = dueDate[i] ∀i ∈ N

(4.24)
The same shipment constraints are being set for variables shipOnhand[i]

and onhangGo[i,j] for packs that have already been produced in previous
horizons and it is on stock at the production plant.
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Learning-Forgetting and assembly line constraints

The second group of constraints (Eqs. 4.25 to 4.29) aims at calculating the
total assembly time within the planning horizon, introducing lost times for
setups and learning-forgetting phenomena. In particular, each part type is
assigned to a de�ned class of setup: for exteriors and curtain walls PBEs
it commonly re�ects the di�erent conveyor width needed to transfer a part
along the assembly line and the time needed to adjust it, which is quite con-
stant for every change, typically lasting half working day. Thus the di�erent
type of setups incurred within the planning horizon can be estimated by
Eq. 4.25: each pack typology that appears in horizon H, is associated to its
set-up through TypeInfo[k,3] parameter(column 3 of table 4.6), and hence
the number of di�erent conveyor length that occur during H is equal to the
number of setups that are likely going to happen.

∑
k:TypeInfo[k,3]=u

prodType[k, j] > 0⇒ setup[u, j] = 1, 0 otherwise

forall

k ∈M,u ∈ U, j ∈ H

(4.25)

As concerns learning-forgetting phenomena, to exploit bene�ts of combi-
natorial optimization, each current solution in terms of quantities per part
type (see Eq. 4.26) is associated with the corresponding sequence of pro-
duction periods and breaks by Eqs. 4.27 - 4.29. In fact, by considering an
horizon H with a certain number of periods p, it is possible to generate all of
the possible 0-1 combinations, as explained in previous chapter at paragraph
3.5, and to associate each of them with a �nitely production sequence throu-
gh parameter LFsequence[s,v] (�rst part of Eq. 4.29). This in turn is used
to assign the proper combination s of learning and forgetting time intervals
(second part of Eq. 4.29). For example, if the horizon considered consists of
5 periods, it is possible to have 2p +1 = 64 binary combinations, since each
sequence has to interface with the production in previous horizon Hold, also;
table 4.8 shows parameter LFsequence[s,v] in this case. These combinations
must be associated to one of the 6 production breaks typologies hTypes that
have been identi�ed by applying Jaber M.Y. (1996) and that are listed in
table 4.9, where an example for each type of break is shown; the connection
between the two is ensured by seqPar[s,v] parameter, fully shown in table
4.10. This latter gives the model also the crucial productive and unproducti-
ve periods, which for a 5 period horizon are: p1, the �rst production period;
p2, the starting period of the second production after the �rst break or �rst
production end, according to the considered hType; p3 is the starting pe-
riod of the third (and last possible) production or the end of the second one,
according to the considered hType. For example, with reference to picture
4.5a, the production combination 010101 is being associated by the model
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(a) Break typology hType = 4.

(b) Break typology hType = 1.

Figure 4.5. Examples of productive and unproductive sequence and relative model
parameters.

to sequence #35, thus implying p1 = start =1 (period of �rst production
start), p2 = start =1 (period of �rst production end=), p3 = start + 2=3,
hence identifying the break typology hType = 4. With reference to 4.5b, p1
= start+2 = 3, which is the period of the production start and p2=start+3
= 4 is the end of the batch of production, thus leading to hType = 1.

prodType[k, j] =
∑

i∈N :GeneralInfo[i,2]=k

prod[i, j] GeneralInfo[i, 4] ∀j ∈ H, k ∈M

(4.26)

prodType[k, j] > 0⇒ prodSeq[k, j − start+ 1] = 1 ∀j ∈ H, k ∈M (4.27)

prodType[k, j] = 0⇒ prodSeq[k, j − start+ 1] = 0 ∀j ∈ H, k ∈M (4.28)

prodSeq[k, v] = LFsequence[s, v]⇒ lf [k] = s ∀k ∈M,v ∈ [0..H∗], s ∈ S
(4.29)
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Table 4.8. LFsequence[s, v] parameter for a 5 period horizon H, where 1 =
production in period j, 0 otherwise.

Hold j in H
Sequence 0 1 2 3 4 5

1 0 0 0 0 0 0
2 1 0 0 0 0 0
3 0 0 0 0 0 1
4 1 0 0 0 0 1
.. .. .. .. .. .. ..
32 1 1 1 0 0 0
.. .. .. .. .. .. ..
64 1 1 1 1 1 1

Table 4.9. Possible production breaks typologies hTypes for a 5 period horizon
H, where 1 = production in period j, 0 otherwise.

Hold j in H
hType Description 0 1 2 3 4 5

0 no production 0 0 0 0 0 0
1 new production with no breaks 0 1 1 0 0 0
2 production in previous horizon and 1 break in H 1 1 1 0 0 0
3 new production and 1 break in H 0 1 0 0 1 1
4 new production and 2 breaks in H 0 1 0 1 0 1
5 production in previous horizon and 1 break in H 1 1 0 0 1 1
6 production in previous horizon and 2 breaks in H 1 1 0 1 0 1

Table 4.10. seqPar[s, v] parameter for a 5 period horizon H.

Sequence hType p1 p2 p3
1 0 0 0 0
2 0 0 0 0
3 1 start+4 start+4 0
4 2 start+4 start+4 0
.. .. .. .. ..
32 2 start start+1 0
.. .. .. .. ..
64 2 start start+4 0
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On the basis of such production periods and breaks and the current
production quantities, proper preprocessed parameters for Jaber M.Y. (1996)
equations in section 3.3 can be retrieved. The assignment of proper cycle
times for learning-forgetting phenomena with variable quantities and periods
rely on the table constraint o�ered by Comet. It is a kind of constraint given
in extension, which bounds three variables to take values according to one of
the enumerated triples contained in the table object given as its parameter.
Learning and forgetting data have been organised as such tables, so that
they can be easily assigned to auxiliary variables. In Eq. 4.30 is reported
an example of such constraints used to assign the time interval for the �rst
break tf1, in the case of 1 break only in the production sequence, which arises
from an interruption with respect to the last production in the past, while
production is considered as continuous in the current planning horizon. This
variable in turn is used, together with the equivalent past production qP and
the time for the �rst unit T1, to assign the time to produce the �rst unit
t1P in the current horizon (see Eq. 4.31), which is then introduced into Eq.
4.32 to assess the proper cumulative time for each part type k within the
planning horizon, when learning-forgetting phenomena are considered.

tf1[k] = LfTf [lf [k]] ∀k ∈M (4.30)

t1P [k] = LfTf [tf1[k], qP [k], T1[k]] ∀k ∈M (4.31)

t[k] =
t1P [k]

1− l
(
∑
j∈H

prodType[k, j])1−l ∀k ∈M (4.32)

Stocking Area Output

As a �nal information, the model gives the total square meters needful to
the stocking of the items, both at plant and at installation site, areaP and
areaS in Eqs. 4.33 and 4.34, namely, where: C is the set of crate typologies
and S is the range of the building �oors; crateA is the soil occupation of the
crate, as per table 4.7.

areaP =
∑
i∈N

∑
c∈C

(shipment[i]-period[i]) · crateA (4.33)

areaS =
∑
i∈N

∑
c∈C

∑
l∈L

(InstallDate[i]- shipment[i]-travel− 3) · crateA (4.34)

In equation 4.33 packs are grouped by crate typologies, since packs can
be piled one on another according to geometry analogy, while in the stock
at site computation an additional sum per �oor of belonging is assumed: in
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Table 4.11. CP computational times.

CP optimum CP optimum
Nb. Packs Nb. Types Nb. panels O.F. [e] CPU time [h]

10 1 10 107864 3.81
10 1 20 107033 2.36
10 1 50 105490 60.00
10 3 10 107670 108.94
10 3 20 107560 100.00
10 3 50 104786 10.14
10 5 10 107697 9.00
10 5 20 107439 101.82
10 5 50 104053 7.96

25 1 10 100798 7.15
25 1 20 99540 8.00
25 1 50 98682 9.00
25 3 10 102537 360.00
25 3 20 101042 10.01
25 3 50 97443 24.00
25 5 10 102608 10.15
25 5 20 101370 30.00
25 5 50 98160 30.00

coherence with an installation sequence that progresses level-by-level, it is
important to have pack piles divided by this parameter in order to avoid
extra logistics and handling.

In a tendering phase it is important to know which is the budget to
allocate to the stocking area and this tool gives the chance to get a reliable
number according to the best production and shipment plant. Moreover the
division of the stocking area per location is useful when requesting for rental
quotations.

4.2.5 Problem solving with Constraint Programming and

Large Neighborhood Search

The problem has been �rstly tested with the Constraint Programming (CP),
through the standard COMET research algorithms, on di�erent input data
in terms of number of packs, number of family products, number of panels,
to evaluate their impact on the results and CPU times.

There have been considered lists of 5, 10, 25 packs, with a total of 5, 10
or 25 panels, these latter belonging to 1, 3 or 5 family products. As a result,
computational time drastically increases with the value of the three input,
and becomes unsustainable when reaching 25 panels, from seconds to hours
order of magnitude, up to 100-150 hours (see table 4.11). Therefore, when
considering a whole project, it is unthinkable to seek mathematical optimum,
since the computational time is extremely high, while it is necessary to have
a tool that helps the decision-making process.

It has been then decided to hybridize the CP with the Large Neigh-
bourhood Search, since this solving approach have been shown to perform
very well in complex real life applications (see for example Meneghetti et al.
(2015)), while requiring minimum adjustments of the main CP model. Once
a good solution from the main CP program has been achieved, part of the
variables of the solution are being freed, while the remaining ones continue to
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be set at the values obtained in the previous solution (see paragraph 4.1); in
this way the problem can be restricted and optimized again by using the CP
with a limit on the number of failures. The freed variables are approximately
20% and are random chosen among variables period[i], shipment[i], shipOn-
Hand[i], with i ∈ [1..N], N being the number of packs of the project. With
standard LNS, the solver forces the improvement of the objective function
value respect to the best solution found so far; in some cases, this implicit
constraint could be too restrictive, because it could prevent the exploration
of research space that could include good solutions.

COMET o�ers the lnsOnFailure(nbFailures, nbStable, nbStarts) variant,
which allows the getting over of this problem: with this method a LNS
iteration starts every time the number of failures reaches up to nbFailures
value (20 in this case). A LNS restart can occur for two reasons:because the
failure/time limit is reached; because the search is exhausted. A well-chosen
combination of relaxation procedure and failure limit should, ideally, lead
to roughly the same number of restarts caused by each of these reasons.
Therefore, it is often a good idea to dynamically adapt the LNS failure
or time limit, or the parameters of the relaxation procedure, based on the
cause of the last restart. The method isLastLNSRestartCompleted() of the
solver allows to test the origin of the LNS restart. It returns true in case
of a complete search, and false otherwise. Statement dynamically increases
the failure limit by 10%, whenever the restart is caused by a failure limit,
and decreases it by 10%, whenever it is caused by a complete search Van
Hentenryck and Michel (2005).

Iterations will end when the objective function results to be not impro-
vable for nbStable consecutive iterations (5 in this case); at this point, a
new restart will be executed, by meaning that no implicit constraint to the
objective function will be applied with a potential decay with a consequent
better diversi�cation. The research is going to stop after nbStarts (10 in this
case) restarts. Finally, the best found solution during the entire research
process is being restored.

Hence, the same data input have been secondly tested with CP+LNS,
which has been launched for 5 times each combination. The results are shown
in tables 4.12 to 4.15 .

Graph in �gures 4.6 shows a CPU increasing trend as the number of
family products changes. In fact, the inserting of more than one typology in
the production plan, arises the complexity of the problem, since the model
has to optimize as much as possible the number of set-ups by minimizing
production breaks, thus by limiting the forgetting phenomenon. For problem
restricted to 5 packs, computational time grows up to about 150% (�gure
4.6a); as the packs doubles to 10, time passes from 9.51 s to 5.30 min, but the
order of magnitude changes from minutes to hours when having 25 packs,
since time takes about 2.21 hours to give an output (�gures 4.6b, and 4.6c);
similar trend can be recognized in �gures 4.6d and 4.6e.
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Table 4.12. CP+LNS results at di�erent values of number of packs, number of
family product and number of panels.

5 packs, 1 family product, 5 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 110680 4851 5
2 110693 3608 1
3 110680 4286 5
4 110693 3772 1
5 110680 4176 3
6 110681 3747 8
7 110680 4936 6
8 110693 3612 1
9 110693 3745 1
10 110693 3667 1

5 packs, 1 family product, 10 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 110855 1036 1
2 110855 849 1
3 110855 865 1
4 110855 789 1
5 110855 910 1
6 110855 904 1
7 110855 846 1
8 110855 891 1
9 110855 873 1
10 110855 832 1

5 packs, 1 family product, 25 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 109369 4525 8
2 109390 4103 10
3 109414 3997 1
4 109369 4361 6
5 109369 4214 7
6 109369 4086 9
7 109369 4801 5
8 109369 4248 7
9 109369 4463 4
10 109369 4124 4

5 packs, 3 family product, 5 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 110637 9923 9
2 110637 9720 9
3 110670 7731 1
4 110637 12702 5
5 110637 10381 6
6 110649 8907 9
7 110670 8100 1
8 110649 9271 8
9 110637 9880 7
10 110637 9936 1

5 packs, 3 family product, 25 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 109112 8086 9
2 109123 7078 9
3 109652 4118 1
4 109112 6837 5
5 109112 5353 6
6 109133 7979 9
7 109112 3891 1
8 109652 3589 8
9 109657 6756 7
10 109133 5595 1

5 packs, 5 family product, 10 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 110074 5591 1
2 110074 6081 1
3 110074 6073 1
4 110074 6063 1
5 110074 5952 1
6 110074 6028 1
7 110074 6277 1
8 110074 5556 1
9 110074 5572 1
10 110074 6539 1
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Table 4.13. CP+LNS results at di�erent values of number of packs, number of
family product and number of panels.

5 packs, 3 family product, 10 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 110298 6130 1
2 110256 7595 3
3 110256 7025 6
4 110277 6504 3
5 110256 6746 8
6 110256 6974 6
7 110277 6603 3
8 110256 7014 6
9 110256 7071 3
10 110256 6533 6

5 packs, 5 family product, 5 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 110511 5736 1
2 110511 5568 3
3 110511 5590 1
4 110511 5850 1
5 110511 6787 1
6 110511 5260 2
7 110511 5383 1
8 110511 5666 1
9 110511 6146 1
10 110511 5442 1

5 packs, 5 family product, 25 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 108848 10125 1
2 108848 9172 1
3 108848 9875 1
4 108848 9641 1
5 108848 8828 3
6 108848 9407 1

10 packs, 1 family product, 10 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 107295 43053 3
2 107271 35469 9
3 107899 12196 10
4 107797 21818 7
5 107867 30908 5
6 108376 23261 8
7 107817 27688 7
8 107807 39014 8
9 108366 8105 9
10 108376 12910 8

10 packs, 1 family product, 50 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 106209 15762 9
2 105477 23555 10
3 105467 15255 7
4 104954 128556 6
5 105437 45047 7

10 packs, 3 family product, 20 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 108042 659842 9
2 106855 421547 9
3 107557 694764 10
4 107702 324520 10
5 107681 133876 5
6 107122 86298 6
7 107858 1238403 8
8 107737 279462 9
9 107374 268000 5
10 107681 90537 10

10 packs, 5 family product, 10 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 107616 85859 5
2 107725 379340 8
3 108113 85601 9
4 107699 125931 5
5 107506 379260 7
6 107526 426254 1
7 107505 315013 6
8 107638 480378 10
9 107558 30431 6
10 108092 869973 9
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Table 4.14. CP+LNS results at di�erent values of number of packs, number of
family product and number of panels.

10 packs, 5 family product, 50 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 103874 85859 5
2 104109 379340 8
3 103595 85601 9
4 103595 125931 5
5 103865 379260 7
6 105132 426254 1
7 103564 315013 6
8 103574 480378 10
9 104089 30431 6
10 105136 869973 9

10 packs, 1 family product, 20 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 107262 36967 10
2 107241 23645 6
3 106626 54038 9
4 106622 80759 9
5 107170 95131 3
6 106633 18405 10
7 107176 38066 10
8 107800 37726 9
9 107183 24312 9
10 106622 14264 10

10 packs, 1 family product, 20 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 107745 66755 10
2 107759 129890 3
3 107701 73742 10
4 107181 20144 8
5 107691 52829 8
6 107171 151597 9
7 108276 87647 10
8 107733 214276 10
9 108276 57009 9
10 107175 41463 5

10 packs, 3 family product, 50 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 104982 1840751 6
2 105022 644382 7
3 104554 68328 6
4 105391 582880 10
5 104025 1083314 9
6 104584 1015635 6
7 104268 119752 9
8 104554 922567 8
9 105006 169818 7
10 105476 49388 7

10 packs, 5 family product, 20 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 107354 3500088 10
2 106835 572876 10
3 107828 318931 9
4 107269 321070 10
5 107467 82953 4
6 107667 33775 5
7 107667 286330 7
8 106835 657700 8
9 107809 333881 10
10 107375 512424 8

25 packs, 1 family product, 25 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 100479 318494 10
2 99936 244532 10
3 100480 64359 10
4 99936 196982 9
5 99926 277302 8
6 101606 480249 9
7 99936 255930 7
8 100469 99943 9
9 102153 264935 7
10 100469 353812 10

25 packs, 1 family product, 125 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 99695 49487 9
2 99424 101669 6
3 98346 383254 6
4 99114 211753 10
5 97592 1853370 8
6 100226 97607 10
7 98034 228100 10
8 97624 493786 9
9 97676 252720 9
10 99094 50069 9
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Table 4.15. CP+LNS results at di�erent values of number of packs, number of
family product and number of panels.

25 packs, 3 family product, 50 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 101642 798356 1
2 102250 86086 1
3 101005 205247 8
4 100318 1905956 10
5 99688 1577044 7
6 101561 1813159 3
7 100962 396699 9
8 100913 884764 1
9 102183 1843821 2
10 99900 1043615 10

25 packs, 5 family product, 25 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 102685 3854481 10
2 102084 20021239 6
3 101508 15756200 10
4 101507 6735520 7
5 102142 2839079 9
6 106364 4156148 10
7 103361 9309254 8
8 102189 38162563 6
9 103254 1558540 2
10 100991 12101206 10

25 packs, 5 family product, 125 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 98160 2930162 6

25 packs, 1 family product, 50 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 99325 321473 10
2 98859 404739 8
3 98577 1444846 9
4 100409 550355 6
5 98839 190433 7
6 99852 175319 9
7 100409 186098 8
8 100419 231947 10
9 99873 510403 8
10 98839 1169317 8

25 packs, 3 family product, 25 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 101751 486110 10
2 102293 321115 9
3 102327 1190969 9
4 103478 2256647 2
5 101213 5680221 9
6 101208 2416983 9
7 100598 1810339 10
8 106002 1242716 5
9 104783 799906 10
10 101724 5032570 8

25 packs, 3 family product, 125 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 96891 11474945 10
2 96204 4480397 9
3 98800 1461143 9
4 96258 2693781 2
5 97964 5668528 9
6 97945 1117573 9
7 96421 2896703 10
8 98849 5143729 5
9 97999 1901672 10
10 97096 3959357 8

25 packs, 5 family product, 50 panels
# Launch Obj. Function [e] CPU time [ms] # best iteration

1 104007 4729528 5
2 100567 5275676 9
3 100481 1523838 6
4 99939 3092660 7
5 101249 1710070 8
6 100349 7293967 7
7 101052 3542170 9
8 101091 17273893 10
9 100973 27535640 8
10 104000 7682468 10



4.2. The Model 95

Time variations have also been analyzed in relation to the number of
panels and, as can be gathered from �gure 4.7, it goes up with the number
of panels: with 5 packs CPU time increases by about 65.5% with squared
number of panels (�gure 4.7a), then it goes up to 10 minutes when packs
doubles and panels increase to 50 (�gure 4.7b); when taking into account 25
panels, the percentage of growing in the time is about 129% when panels
quintuple; with 50 packs and 1 family product time passes from 195 s to 514
s (�gure 4.7d), while with 100 packs and 3 types it increases from about 6
to 30 minutes.

A synoptic glance to the graph contained in �gures 4.6 and 4.7 highlights
that both the number of family types and the number of panels have a si-
gni�cant impact on CP+LNS computational time. Anyhow, the deepest
consequence is given by the rising of the inserted number of typologies in-
to the model, since it in�uence set-ups and learning-forgetting phenomena,
then enhancing the complexity of the production system. In fact, as shown
in �gure 4.8, where CPU variation is given as typologies and number of pa-
nels are steady, the model takes much more time in production and shipment
organization when the family products increase from 1 to 3, since the mo-
del has to calculate the best trade-o� between learning-e�ect exploitation,
set-up minimization and shipments ful�llments according to the crate kind;
greatest examples are represented by the production of 25 and 50 packs, who-
se computational time gets high of approximately 598% and 1409%, �gures
4.8a and b respectively.

In the majority of the cases, it has been observed that the best LNS
solution has been found after more than 8 iterations, as reported by graph
in �gure 4.9, so it has been decided to make the model run for nbStarts =
10 cycles even in the case study application. This aspect is signi�cant since
if the best solution had been found on average in less than 5 iterations, then
computational times would have been smaller.

Finally, comparisons between CP and LNS have been studied in order to
assess the reliability of the solution o�ered by this latter method. Stated the
complexity of the problem, it was not possible to get the optimal solution for
the production system composed by more than 25 packs, since it has been
tested that computational times took several days, which is not acceptable
for a �rm decision making tool, such the one presented in this thesis. With
reference to table 4.16, in terms of objective function, even if input packs are
doubled and squared, the error of the LNS remains under 1.21% and 5.76%,
respectively. This result is much appreciated if computational times are
taken into account, since the delta involves one or to orders or f magnitude,
seconds or minutes for LNS and hours or days for the CP.

By considering the above, the �nal choice for the model application must
fall on the LNS technique, since the computational time for the optimal solu-
tion when considering an entire project cannot be engaged with the �exibility
and reactivity that a decision support tool must o�er the company, hence
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(a) packs = 5; panels =25

(b) packs = 10; panels =10 (c) packs = 25; panels =50

(d) packs = 50; panels =50 (e) packs = 100; panels =100

Figure 4.6. CPU times varying with the family products.
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(a) packs = 5; types =5

(b) packs = 10; types =3 (c) packs = 25; types =3

(d) packs = 50; types =1 (e) packs = 100; types =3

Figure 4.7. CPU times varying with the number of panels.

(a) Nb. of family products = 1 (b) Nb. of family products = 3

Figure 4.8. CPU times varying with the number of packs.
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Figure 4.9. Number of iteractions for the best LNS solution.

representing a good trade-o� between time spent and proposed solutions.
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Chapter 5
Simulations and Results

The model presented in chapter 4 has been applied to Manchester One Spin-
ning�elds building (represented in the rendering of �gure 5.1), a curtain
wall project awarded by Permasteelisa Group and whose learning-forgetting
analysis is presented in chapter 3, paragraph 3.4.4.

The building is made of 20 �oors, 2423 curtain wall panels that cover a
surface of 20000 m2.

In this chapter, results for the basic con�guration for the entire pro-
ject over di�erent horizons are being detailed in paragraph 5.1, while in the
following ones, simulations performed.

5.1 Resuts for the Basic Con�guration

Panels have been grouped in 357 packs, according to the �oor of belonging
and their intrinsic geometry, as discussed in the �rst part of paragraph 4.2, in
�gure 4.3. Packs characteristics have been organized as per table 4.4, stock
status is initially set to 0 for both production and shipment as per table 4.5; a
total of 11 family products features have been listed into TypeInfo[k,r] (table
5.1), which is related to a CrateInfo[c,r] (table 5.2), containing 6 di�erent
typologies of crates with the suitable full-truck load information.

Learning-forgetting parameters are being set as per tables 4.8, 4.9, 4.10.

All of the input data for the entire project and for the �rst horizon are
declined in table 5.3 and the contractual type is job order working progress,
where weight given to the several activities, i.e. purchasing, production,
shipping, installing, has been given according to the percentage of payments
agreed with the client as the company progresses with the various stages of
the project.

the considered contract for the choice of the objective function is job
order working progress.
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Figure 5.1. The Manchester One Spinning�elds Building.

Table 5.1. TypeInfo[k,r] parameter at the start of the project, where: Tk is
the estimated standard production time; Setup de�nes through a number that a
typology implies a speci�c set-up to do; crate type points out the category of pallet;
Qstd is the foreseen quantity of panels that have to be produced to reach Tk; Plast

is the last period in which family k has been produced; a indicates the level of
experience remembered

Family T̄k Setup Crate Qstd Plast a

product k [min] class type [units] [units]
1 294 1 1 480 0 0
2 294 1 1 480 0 0
3 294 1 1 480 0 0
4 426 1 2 375 0 0
5 426 1 2 375 0 0
6 426 1 2 375 0 0
7 684 2 3 250 0 0
8 570 2 4 110 0 0
9 684 3 5 250 0 0
10 570 3 5 110 0 0
11 570 4 6 110 0 0
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Table 5.2. CrateInfo[c,r] parameter for the studied project, where: crateH is the
number of crates of typology that can be stacked onto each other; crateP is the
number of columns of piled packs that can be loaded in the mean of transport;
crateW is the number of packs that can be stacked in the warehouse; crateA is the
area occupied by the pack.

crate c crateH crateP crateW crateA [m2]
1 1 3 2 9
2 1 2 2 9
3 2 3 4 3
4 2 3 4 4
5 1 3 2 9
6 2 2 4 9

Figure 5.2. Schematic representation of Manchester One Spinning�elds Building
facade.

A schematic representation of the building facade is available in �gure
5.2, where each cell represents one pack with its unique reference code; each
pack is coloured according to its family product and on the left column,
�oors and due dates are speci�ed.

5.1.1 First horizon results

With reference to the nomenclature presented in chapter 4, the objective
function worth for the �rst 5 weeks of planning is 26712.7 e, split into:

• unproduction: cup
5∑

j=1
unprod[j] = 0.0 e;

• set-ups: csu
5∑

j=1
sumSu[j] = 11980.0e;
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Figure 5.3. Total cost split for basic result, �rst horizon.

• overtime: cover
5∑

j=1
overtime[j] = 4964.2 e;

• less-than-truck load : cltl
5∑

j=1
unload[j] = 4830.00 e;

• capital costs: Ccapital = 4937.76 e;

As shown in picture 5.3, the major cost item is due to set-ups (45%),
followed by less-than-truck load transports (19%), overtime (18%), and �-
nally capital costs (18%). It comes as an evidence that with this plan there
is no idle time of the assembly line, since the activities related to production
(production + purchasing) represent the 62% of the facade cost, as per table
5.3), therefore the model suggest to apply overtime. In fact, the cost related
to the unproduction takes into account not only the idle time of the assembly
line, but also in terms of capitalization, since it prevents the company for
being paid for the production of the units that could have been assembled if
the operators would not have stopped (see Eq. 4.9).

Unproduction and Overtime Costs

The production plan proposed is given in �gure 5.4a, where the packs are
represented by cells coloured as per product family; the number inside each
cell or pack is the production week suggested by the model. The total packs
to produce are 40 and at �rst sight it is possible to appreciate that all of
the panels that have the due date in horizon are being produced and that
the plans suggests a certain anticipation of packs belonging to de�ned family
products. In fact, there are several packs belonging to levels 2 and 3 whose
due date is out of the considered planning horizon, which involves periods
24-28:
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(a) Production planning.

(b) Shipment planning.

Figure 5.4. Production and Shipment plannings for �rst horizon.

• 2 brown packs and 1 green pack of level 3 (blue squared) have been
anticipated in order to exploit learning e�ect of the same typology
being produced in periods 24, 25, 26 for level 1;

• 1 purple pack of level 3 (red squared) has been anticipated in order to
limit the forgetting phenomenon of the same typology being produced
in period 26 for level 1, but also to saturate as much as possible the ca-
pacity of the assembly line in week 28, since this product type requires
more time to be produced than the others considered in this planning
horizon (+33.8%);

• 11 packs of level 2 of other 2 di�erent families have been anticipated
in order to ful�ll the capacity of the assembly line;

The pattern of the model is to minimize as much as possible the un-
production of the assembly line, which is evident in the case of the level
2 anticipation: the model prefers to saturate the line and go for overtime
rather than paying for the assembly line. Moreover, level two is chosen in-
stead of level 3 because it is more convenient and less risky than having the
material immobilized on stock.

Total production time per period in terms of minutes is available in the
histogram of �gure 5.5, where the blue bar is the time worked out on the
assembly line, the red one is the time spent on set-up arranging, the orange
line shows the available capacity on the line that corresponds to 12 workers,
which is the minimum capacity of the assembly line for Permasteelisa Group.
Therefore the part of the bars which exceed the red line represent the ne-
cessary overtime. During periods 24 and 25, the line is fully involved in the
fabrication of the �rst �oor panels which have the due date in horizon, and
over�ow of production time is required, 3.7% and 9.9% namely. The peak is
reached in week 26, when the the planning has to face 2 set-ups: required ca-
pacity is 30053 min against an availability of 23040 min, that means that an
overtime is needed for 7013 min, which corresponds to have approximately
3 more people on the assembly line. This is a bearable additional work-force
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Figure 5.5. Capacity plan for the �rst horizon [minutes].

for these kind of productions, since the product to be assembled is so huge
(typical dimensions of curtain wall panels are approximately 1500x3500 mm)
that there is enough space on the line to face these situations. Another over-
�ow, happens in week 28 when 5210 min are necessary to face set-ups and
to exploit the bene�ts of learning e�ect for the anticipated panels of level 3.

By knowing the resource planning in advance, the �rm can foresee how
many working hours are needed on the assembly line throughout the entire
production process and therefore to manage the work force at the best.

Set-ups Costs

The impact of this production plan on the set-ups, which in a curtain wall
production can last half working date, is given in picture 5.6, where the
cells/packs have been coloured according to the kind family, and inside each
pack the implied set-up class is reported. The red line reveals that an en-
largement of the assembly line is going to happen: in the �rst 2 periods
there are no set-ups, while there will be 2 of them in week 26 and other 2
in week 28. Since the �rst level is formed by family products that belong
to two di�erent setup-classes, the �rst two set-ups are unavoidable to meet
the due dates. The model suggests to operate an additional set-up with the
assembly of the purple unit, which has been chosen in order to minimize the
forgetting phenomenon over periods and to limit the stocking at plant that
would have happened if the pack had been produced with the same typology
packs of level one. Moreover, the model places this pack at the end of period
28, so the adjacent purple pack is going to be the �rst in period 29, in the
perspective of set-up optimization seeking.

Set-up signi�cance is appreciable also in histogram 5.5, since for example
in weeks 26 and 28, the enlargement of the line is causing capacity over�ow
turning into overtime requests.
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Figure 5.6. Production plan per set-up.

Less-than-truck Load Costs

Shipment plan is o�ered in �gure 5.4b, where di�erent colour corresponds to
di�erent crate typology and so to new trucks also, since means of transports
are ful�lled with panels belonging to the same crate family. The choice of
having packs belonging to the same crate typology in the same truck, is
the concretization of the �rm's common practice, since during the tender
phase, to whom this model is addressed to, it is not possible to know the
exact schedule of the production assembly line, hence it is not possible to
know which is the exact sequence of the packs coming out of the line and
consequently which is the exact ful�llment of the trucks. In this phase,
dimensions and number of packs are reliable but indicative, so that this
assumption is being made in order to consider a certain safety margin on
transports calculation.

Actually, packs that are going to be e�ectively shipped, are the ones
belonging to the �rst level, which is the only one whose due date falls into the
planning horizon. In fact, as per constraint given in equation 4.24, the packs
that have due date outside the horizon and whose production is anticipated
must be assigned a shipment date that overlaps the due date. This choice has
been made in order to make the model consider all of the possible costs that
are related to the production/shipment outputs: the bene�ts in anticipating
the production has to be balanced with the risk of having the pack stocked
for a certain period of time, so until the due date in the worst of the cases.
These out-of-horizon anticipated packs, are going to be the on-hand packs
of the next horizon. For these reasons, their stock immobilization is taken
into account in the capital cost for unshipment, but the costs associated to
the unload, which is an amount of 4830.00 e, are related only by the less-
than-truck load of period 27. This latter expense, is due to the fact that for
�rst level there are two groups of mean on transports that, if summarized,
are generating one full-truck loss:

• family #3 �rst level ones (blue packs in picture 5.4b): a truck is ful�lled
with 2 packs of this type (by referring to table 5.2, crateH · crateP =
1 · 2 = 2), so, since there are 23 packs to be shipped, 11 of them are
going to be full and 1 one them is going to be half empty;

• family #6 �rst level ones (violet packs in picture 5.4b): a truck is
ful�lled with 4 packs of this type (by referring to table 5.2, crateH ·
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crateP = 2 · 2 = 4), so, since there are 2 packs to be shipped, just 1
half-truck is needed;

Shipment date, which is reported inside each cell, coincide with the pack
due date: the model suggests to minimize the stock at site in favour of stock
at plant rather than maximizing the truck loading. This is explainable by the
fact that the impact weight set by the user according to the type of contract
with the client, is much higher for the uninstalling than for the unshipment
of the packs, namely 22% and 2% (as per table 5.3).

Capitalization costs

The capitalization costs are the sum of the costs for unproduction, costs for
unshipping and costs for uninstalling, that amount to 4937.8 eand overlaps
with the solely unshipping ones. These costs are hidden costs that are fre-
quently underestimated by the �rm that, by the way, represent the 18% of
the total costs in this case.

The cost linked to the idle time of the assembly line (capunprod), gives the
impact of the loss of productivity during the idle period in terms of payment
postponement by the client, since the �rm is paid for the purchasing and
production activity percentages of the cost facade as the production of the
packs can be invoiced. In this horizon, among the weights of the activities
that deal with the di�erent capital costs, the one related to unproduction
(see Eq.4.9) is the heaviest one (purchasing+production = 62%), therefore
the model seeks the maximum optimization of it and in this case it is even
zero.

The part of the capital cost due the stock on site, which weights the 22%
of the total facade costs according to the impact of the installation process
(Eq. 4.11), is reduced to zero: the stock at plant is preferred by the model,
because the activity related to it (shipping) is worth 8% of the facade cost
(refer to Eq. 4.10). Therefore, just in time shipments are being suggested.

The stock at the plant prevents the company from the income resulting
from the pack shipping activity for all of the stocking period. By following
similar reasonings done for the unproduction capital cost, and by applying
equation 4.10 the total cost of 4937.8 is reached, which corresponds to packs
being stocked at site for an equivalent of 81 periods.

Finally, the model gives the output of the suitable storage area that
should be held in order to respect the production planning proposed, as per
Eqs. 4.33-4.34. In this case, the only area that is needed is at the production
plant and equals 378.25 m2. This information is really useful for the �rm,
since in a preliminary phase a budget for the stocking area has to be set,
therefore the tender department can use the output of the model to de�ne
the correct associated costs.
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(a) Production planning.

(b) Shipment planning.

Figure 5.7. Production and shipment plannings for horizon #2.

Results overview for the next horizons

As for horizon #2 (periods 29-33), with reference to picture 5.7a there have
been proposed:

• the blue squared items in period 30;

• yellow squared production anticipations, in week 31;

• packs highlighted in red have been anticipated in order to limit the
forgetting phenomenon, since the last period of production has been
29 for the green family and 30 for the brown one;

where packs with week written in red are the ones involved and the packs
in black are the ones produced/shipped in the previous horizon.

On the shipment side, by having a look at picture 5.7b, a shipment
grouping has been done with the red squared elements, which, all together,
can �ll up a truck for 2/3 = 66%.

Production and shipment proposals for horizon #3 (periods 34-38), in-
volving weeks 34 to 38, are o�ered in picture 5.8. Anticipation deals with
yellow square: the program seeks set-up minimization of family number 9.
Shipment plan shows that 6 violet underlined packs have been shipped all
together, thus maximizing truck ful�llment, which is reached with 6 units
exactly.

Horizon #4 (weeks 39-43) is planned as per �gure 5.9. As for the produc-
tion plan, panels highlighted with yellow and blue squares have been antici-
pated for set-up seeking. Several shipment groupings have been performed,
as underlined in purple, green, light blue, blue and red squares.
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(a) Production planning.

(b) Shipment planning.

Figure 5.8. Production and shipment plannings for horizon #3.

(a) Production planning.

(b) Shipment planning.

Figure 5.9. Production and shipment plannings for horizon #4.
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(a) Production planning.

(b) Shipment planning.

Figure 5.10. Production and shipment plannings for horizon #5.

Production plans for horizon #5 (weeks 44-48) asks for the anticipation
in yellow, blue, red; shipment plan minimizes the waste of space in trucks
with blue and green highlighted elements.

Objective functions for horizons 1 to 5 are available in table 5.4 and their
percentage composition in �gure 5.11.

Unproduction costs are zero or negligible for horizons 1-4, while it is the
greatest part of horizon 5. This phenomenon is due to the fact that the
necessary capacity to produce the upper levels within the due date is less
than the minimum, which is 12 people on assembly line. Visual impact of this
aspect is given in �gure 5.12, where it can be seen that the total minutes spent
by the assembly line (productive time + set-up) is much smaller than the
unproductive one. By knowing this information in advance, the production
manager can plan a recovery activity for the workers, i.e. spending the
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Table 5.4. Total costs per horizon [e].

1 2 3 4 5|Total
Unproduction 0.00 1703.68 1496.12 113.03 36434.44 39746.83
Set-ups 11980.80 49996.00 3456.00 3456 .00 14976.00 83864.80
Overtime 4964.16 2576.98 10873.54 1297.46 0.00 19712.14
Transports 4830.00 20930.00 19320.00 6440.00 20125.00 71645.00
Stock @ plant 4937.76 10439.28 1108.00 6531.84 4918.32 27935.20
Stock @ site 0 855.36 427.68 4276.80 1283.04 6842.88
Total 26712.72 86502.10 36681.42 22115.13 78371.55 250382.92

Figure 5.11. Total costs partition per horizon [%].

resources into other factory activities (cleaning, warehousing, working into
other projects, development programs). In the light of this, the model o�ers
the possibility to draw the resource capacity plan for the project, which
is o�ered in histogram in picture 5.13, where the blue part is the planned
capacity necessary to assemble the panels, the yellow part is the extra-time
(extra hours to assemble the pieces + set-ups) and the red line represents the
minimum assembly line capacity. As an evidence, during the �rst horizon,
minimum capacity is enough, while in the second one it has to be increased
of the 100% (from 12 to 24 workers) in order to �nd out a feasible solution.
This is possible because with such a huge product, the assembly operations
are long enough to allow the capacity to be increased and even doubled,
if necessary, through the activation of a second assembly line or a second
shift. In these kind of productions, when these measures are adopted, the
over-capacity must be maintained for quite a long time (typically 4/5 weeks)
because of hiring on demand contracts duration, that is why the model has
been set for having a constant capacity over the horizon. 3rd and 4th horizons
require not so much more than the minimum (14 people); in the last horizon,
instead, the minimum capacity is even over�owing.

The resource plan in terms of stocking areas required are visible in table
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Figure 5.12. Total costs per horizon [%].

Figure 5.13. Project capacity plan [minutes].
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Table 5.5. Stocking area plan per horizon [m2].

1 2 3 4 5
Area @ plant 378.25 717.25 128.50 443.50 416.50
Area @ site - 6.00 8.00 48.00 52.00

5.5. The solution found lead to a in-house stocking strategy throughout all
of the horizons, since, as per equations 4.10 and 4.11, the project loses more
money due to the uninstalling, which weights 22%, rather than with the
unshipping.

5.2 Changing Contract Type

Contract type B, payment at work completion, is set in this simulation in
order to �nd out which is the di�erence in costs between the two contractual
agreements. This simulation is very important to the company in a preli-
minary phase, where the contractual agreement with the client has still to
be �xed. In fact, the stakeholders can understand which are the impacts on
the economic side of the project when the client suggests a certain type of
contract. In this case a di�erence is the activities impacting on capital costs,
as explained in previous chapter paragraph, 4.2.3, and summarized in the
following table:

Table 5.6. Activities impacting on capital costs per contract type.

Contract A weight [%] Contract B weight [%]
capunprod purchasing+production 62 purchasing 54
capunship shipping 2 production 8
capuninstall install 22 install+shipping 24

Moreover, an additional risk rate rf = 2% is added to total rate r, in order
to take into accont the �nancial exposure that the �rm has to face with this
contract.

Comparison between the two types of contract is o�ered in picture 5.14.
The total cost is of 36544.08 e, which is 36.8% higher than the contract
type A, by meaning that the company may loose an equivalent gain by
signing contract B. In this con�guration, stock at plant represents the major
deviation, because, even if the actual stocking periods are less than the ones
in contract A (62 and 81 respectively), there is an increasing weight of the
unshipment capital cost, that passes from the 2% to the 8%.

In this case the model is a decision support tool in giving the company the
chance to understand which is the best contractual agreement to be sought
with the client according to the payment method and to the weight assigned
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Figure 5.14. Comparisons costs between the two contract typologies.

to each phase of the project. Therefore it is fundamental to know which is
the �nancial impact of signing one kind of agreement instead of another one,
in order to propose the client the most convenient. On the other hand, if
the best case makes not the deal, the company has the chance to know in
advance how much is the �nancial damage in order to take the corrective
actions accordingly.

5.3 Scope Of Work Adaptation

The scope of this simulation is to state which is the model behaviour when
changing the weight of the activities. This can be useful since there are
projects in which, for example, the installation phase is not in the scope
or work of the contract or it represents a minimum. In this latter case the
weight of the shipment is 22% and installation activity is reduced to 2%
because the installation phase is not in the contractual agreement with the
client.

Costs are split as per �gure 5.15a: the main part of the costs remains
the set-up one, while stocks at plant and at site growths are noteworthy. In
fact the stock at site is 17% here, because the asset immobilization there is
the 18% cheaper than the basic con�guration. For this reason this stock at
site formula is preferred. This is con�rmed by the fact that almost all of the
shipments are just-in-time, as shown in picture 5.16b and that production
anticipations are reduced, as per 5.16a. The increasing of the inventory at
plant respect to the basic con�guration (23% to 3%) is due to the increasing
of the 20% of the shipment activity and its trade-o� with the less-than-truck
load costs, whose impact is greater of 2%.
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(a) Simulation. (b) Basic.

Figure 5.15. Cost split for higher shipment weight simulation, �rst horizon.

(a) Production plan.

(b) Shipment plan.

Figure 5.16. Production and shipment plan for higher shipment weight
simulation, �rst horizon.
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(a) Greener solution.

(b) Basic solution.

Figure 5.17. Shipment plans for green simulation and the basic one.

5.4 Greening the project

In the curtain wall market a great importance is given to the environmen-
tal theme, so much that clients require speci�c certi�cations to assess the
sustainability of the project processes, such as Breem or Leed requirements
(BREEM, 2016; Green Building Conucil Italia, 2016). For this reason, the
company can decide to run the project with a grater impact of the transport
cost, in order to take into account not only the economic aspect, but also
the environmental one.

This simulation shows the result on the shipments, when the transport co-
st is being tripled from 52.5 e to 157.5 e each truck. The new shipment plan
can be seen in picture 5.17, where the result for the basic con�guration is also
shown. The solution proposed e�ectivey points to trucks space ful�lment,
since we have 2 additional groupings respect to the basic con�guration:

• black squared packs: level 19 shipment has been anticipated respect to
the due date in order to reduce the empty space of the trucks, which
can be �lled up to 5/6 of the capacity;

• red squared items: one pack of level 17 has been anticipated to week
44 in order to completely ful�ll a truck.

Table 5.7 contains the comparison between the two con�gurations in
terms of full and less than truck load transports (in this case the percentage
of ful�llment is reported). It is evident that this con�guration is greener than
the basic one: the waste volume is 152.72 m3 against 412.16 m3, which turns
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Table 5.7. Number of full (F) and less-than-load (LTL) transports in green and
basic con�gurations.

week 44 week 45 week 46 week 47 week 48
F LTL F LTL F LTL F LTL F LTL

Green 6 - 3 1(50%) 3 2(1x66%, 1x50%) 6 3(1x66%) 9 -
Basic 5 1 (66%) 3 1(33%) 3 2(1x17%, 1x50%) 5 3(1x33%, 2x50%) 8 1 (50%)

into a smaller amount of trucks to be sent to site, thus reducing transport
carbon dioxide equivalent emissions.

5.5 Absence of Learning-Forgetting E�ect

The aim of this simulation is to study the di�erences between the basic
con�guration result and the ones suggested by the model when no learning
e�ect is taken into account, stated the same input data.

The production time for packs belonging to the same family product k
in period j, t[k,j] is simply given by the multiplying of the standard time re-
quired T̄k, set in TypeInfo[k,r] table (4.6) and the number of units contained
in each pack i (see GeneralInfo[i,r] table 4.4), as per equation 5.1, where N
is the set of all of the packs i of the project:

t[k, j] = T̄[k]
∑

i∈N :GeneralInfo[i,2]=k

production[i, j] ·GeneralInfo[i,4] (5.1)

No learning e�ect means that there are no di�erences in production time
of the units at the start of the production batch, nor at the beginning of
the production after a break. In coherence with this principle, equation 5.1
implies that time required to produce a unit is embodied by a unique value
T̄k, independently from its production planning slot.

With this hypothesis, new objective function value is 20771.99 e, which
is 22.2% less than the one in the basic con�guration. Cost split can be
seen in �gure 5.19a, where it is noticeable that the pattern with the basic
con�guration is very similar. The planning proposal is reported in �gure
5.18, where packs are simply executed as per input sequence.

Along with the cost impact, time planning has a great evidence since in
this con�guration, the plan foresees to produce 45 packs with a capacity of 12
people. Moreover, as it can be seen in picture 5.18, production can start in
period 25, one period after the basic con�guration, so the planning is squee-
zed but not physically feasible. As explained in chapter 3 ad supported by
this simulation, it is fundamental to insert learning-forgetting phenomenon
in order to take into consideration the physiological limits of the workers,
which turns in feasible cycle times, correct resource planning and reliable
costs budgeting. In fact the standard con�guration can be misleading both
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Figure 5.18. Production plan for simulation with standard times, �rst horizon
(25 to 29).

(a) Standard. (b) Basic.

Figure 5.19. Comparison between total cost split for standard time simulation
an basic.

in terms if planning and in terms of costs: it calculates an average cost of
approximately 461e/pack against the 668e/pack that are provided by the
basic results.



Chapter 6
Conclusions

Achieving sustainability-related targets in Construction Projects is increa-
singly becoming a key performance driver, therefore stakeholders are paying
more and more attention to environmental strategy and environmental im-
pact assessment. In this scenario the concept of the triple bottom line by
Elkington (1998) comes to the surface, so that Construction is said to be
sustainable when it meets environmental challenges, responds to social and
cultural demands and delivers economic improvement. When dealing with
this market, which is recognised to be one of the most dynamic, risky and
challenging business sectors, the companies playing the role are the Project-
Based ones (PBE), in which the core business is represented by the deve-
lopment of project where innovation and planning have to cohabit in order
to reach high performances and sustainability levels without neglecting the
control of the e�ciency dimension.

In Construction PBEs, the activities involving every department lead
to manage signi�cant trade-o�s, since each construction project, due to its
unique characterization, has plenty of custom elements to be designed and
purchased with low repetitiveness rates and engineer to order components
to be produced. Each �oor of the building is associated to a contractual
hand-over date, which pulls and determines the activities of the upstream
supply chain in order to avoid extra-costs and disruptions or the applica-
tion of penalties by the client because of installation delays. The entity of
the extra-overs that may incur depend on the contractual conditions of each
project but they can reach the magnitude of hundreds of thousand of euros.
In the light of this, a model that can support decision-making to mitigate
the contractual risk is necessary. Despite the need for a synoptic view on the
economic, environmental and social themes, which must be addressed to per-
form Projects with high pro�tability to o�er the company a competitive and
long-lasting advantage, there is a lack of planning and decision-making tools
that can o�er companies a all-at-once glance on their Operations processes.

121
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In this thesis a new model for the production planning in construction
Project Based Enterprises has been developed by considering the three di-
mensions of sustainability, and applied to a worldwide leading company of
the Curtain Wall sector, Permasteelisa Group, which is an excellence ope-
rating in the North East of Italy and that gave the availability to suitable
interviews, data analysis, production reports, project speci�cations and con-
tractual intents. Along with the de�nition of the best sustainable production
plan, the model intends to be a decision support tool since the company can
test, through di�erent simulations, whether it is necessary and worthy to pay
for a storage area where to stock the produced units, as well as gathering
a resouce planning and comparing the di�erent contractual forms that an
awarded project can be subject to.

The economic result can be enhanced by maximizing the production of
items, by taking into account the idle time of the assembly line along with
the time related to set-ups and overrun. From the environmental point of
view, since each element has a unique location on the building to be handover
to the client within speci�c delivery dates set into the contractual program,
the number of transports in a project is strictly linked to the production
sequence and it has to be taken into account during the planning phase,
thus mirroring the installation program because of the limited area reserved
to logistics on installation site. Hence in the model, it has to be considered
that production optimization has direct implication on the ful�llment of the
means of transport, which have to be ful�lled as much as possible to reduce
GHG emissions along with costs. The social theme of the TBL is addressed
in the production planning through the learn-forget curve model, suitable
for limited productions, which are typical of PBEs, especially when referring
to the curtain wall sector because of the strong requirement for elements to
be packed according to the installation sequence on site. By inserting the
learning-forgetting curve into the production planning model, more realistic
cycle times can be calculated and managed, thus reducing the work stress
of the personnel thanks to feasible plans and making factory environment
more friendly, therefore improving performances. Thus, one typology can
be produced in more than one batch during the time horizon by alternating
it with the other typologies of the building, by leading workers to impro-
ve their performances according to the production sequence, which mixes
up the various typologies of elements by taking into account the due da-
tes stated on the project program. Moreover the planning on the horizon
shows the real production capacity of the assembly line, by making more
reliable forecasts during the project planning de�nition. As highlighted by
M.Brandenburg et al. (2014) in their literature review, holistic approaches in
SSCM that re�ect all three sustainability dimensions are relatively rare, even
if empirical research shows the growing relevance of multiple sustainability
aspects: SSCM research tends to focus primarily on environmental issues,
while social facets are widely neglected in empirical and analytical modelling



123

research. In this sense, it is signi�cantly important to take care of the social
aspect of the triple bottom line when drawing up the production schedule
of a construction project. In the light of this, by inspiring by Jaber M.Y.
(1996), three Permasteelisa curtain wall projects have been analysed in their
production reports and evidences of the learning-forgetting phenomenon ha-
ve been recognized and studied in order to �nd out the suitable parameters
that the model should take into account when performing the best produc-
tion plan. As an outcome, the lack of consideration of the learning-forgetting
phenomenon in the production planning is misleading since the production
time is under-estimated up to 69%, with negative consequences on the actual
planning in terms of time and capacity on the assembly line, causing delays
on the general Project Plan.

The problem has been solved by using the Constraint Programming, be-
cause of the unlimited type of relations between variables that a modeler
can adopt and because of the easy editing, thanks to the separation between
the modelling and solving phases. This �exibility can be really useful when
dealing with PBEs, since every project has its own speci�c features to be
de�ned into the general production planning model. The Objective Function
has been build with di�erent terms that allow to embrace the three dimen-
sions of sustainability on cost bases, so that the social and environmental
aspects can be compared to the economic one in an objective way. This
gives the opportunity to focus simultaneously on the three aspects with the
minimizing of the cost, which is the �nal aim to be achieved by companies.
Hence, the cost items that compose the Objective Function are: (i) unpro-
duction; (ii) set-ups; (iii) overtime; (iv) less-than-truck load transports; (v)
capital costs.

The model has been applied to Manchester One Spinning�elds Building,
a 20,000 m2 curtain wall project awarded by Permasteelisa Group and the
following pieces of information have been gained:

• assembly production and shipment weekly plans;

• di�erent impact between the two most common contractual forms;

• storage capacity which should be equipped on site and in the produc-
tion plant;

• magnitude of the overtime that the company has to consider to make
the project feasible;

• total loss forecast of the project due to contractual, production and
logistics issues.

The results show that the total loss for the company is 250,382.92 e over
5 planning horizons, which represent a total of 25 weeks of production for this
project. The major cost item is due to set-ups (33%), followed by transport
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(29%), unproduction (16%), capital costs (13%) and �nally overtime (8%).
As an evidence, in the basic con�guration the pattern of the model is to
minimize as much as possible the unproduction of the assembly line and the
storage at installation site. The learning-forgetting phenomenon is taken
into account in several occasions through the anticipation of the production
of item belonging to the same family product.

In general, the tool that have been proposed in this thesis can be useful to
take proper decisions both on the tactical level, with the suggestion of a pro-
duction plan and on the strategic level, according to the company-strategy.
From this latter point of view, several simulations have been performed to
assess the deviations from the basic con�guration. By changing the contract
type the model can address the �rm in the assessment of the best contractual
agreement with the client. By balancing the activities in di�erent ways, the
planning can be modelled accoding to the contractual scope of work. With
main evidence on the environmental issue, the model allows the company
to run the project with a greater impact of the transport cost, in order to
take into a di�erent perspective if the client asks for strongly eco-friendly
performances. One more simulation has been run to verify the impact of
neglecting the learning-forgetting phenomenon in the production times: re-
sults show a squeezed planning which is not physically feasible and bearable
by the workers, thus giving a misleading support both in terms of time and
costs.

As for the future developments, the model can be tested and applied on
a brand new starting job in order to obtain a mid-term fasible and reliable
program which can be the base for the development of a new model that can
help the company on operational level. In this context, a production schedule
can be created to understand e�ectively how to ful�ll trucks, i.e. to de�ne
the packing list of each mean of transport, and how to e�ectively alternate
the various typologies on the assembly line day by day. By adding this latest
tool, the model can assist the �rm on three levels, strategic, tactical and
operational, giving then the chance to integrate the several phases of the
project life-cycle at the best.
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