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Chapter 1 
 

Sonographic Bidimensional examination of the Fetal Brain 
Guidelines for performing the “basic examination” and the “fetalneurosonogram” 

 

 

 

 

 

 

 

 

 

 

1.1 General considerations 

Gestational age 

Ultrasound has been used for nearly 30 years as the main modality to help diagnose 

fetal CNS anomalies. The scope of guidelines is to review the technical aspects of an 

optimized approach to the evaluation of the fetal brain in surveys of fetal anatomy, 

that will be referred to in this chapter as a basic examination.  

Detailed evaluation of the fetal CNS (fetal neurosonogram) is also possible but 

requires specific expertise and sophisticated ultrasound machines. This type of 

examination, at times complemented by three-dimensional ultrasound, is indicated in 

pregnancies at increased risk of CNS anomalies. 

The appearance of the brain changes throughout gestation. To avoid diagnostic errors, 

it is important to be familiar with normal CNS appearances at different gestational 

ages. Most efforts to diagnose neural anomalies are focused around midgestation. 

Basic examinations are usually performed around 20 weeks’gestation. 

The advantage of an early fetal neuroscan at 14–16 weeks is that the bones are thin 

and the brain may be evaluated from almost all angles. 
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Usually, a satisfying evaluation of the fetal CNS can always be obtained in the second 

and third trimesters of pregnancy. In late gestation, visualization of the intracranial 

structures is frequently hampered by the ossification of the calvarium. 

 

Technical factors 

Ultrasound transducers 

High frequency ultrasound trandsucers increase spatial resolution but decrease the 

penetration of the sound beam. The choice of the optimal transducer and operating 

frequency is influenced by a number of factors including maternal habitus, fetal 

position and the approach used.  

Most basic examinations are satisfactorily performed with 3–5-MHz transabdominal 

transducers. 

Fetal neurosonography frequently requires transvaginal examinations that are usually 

conveniently performed with transducers between 5 and 10 MHz. (1,2) Three 

dimensional ultrasound may facilitate the examination of the fetal brain. (3, 4) 

 

Imaging parameters 

The examination is mostly performed with gray-scale bidimensional ultrasound. 

Harmonic imaging may enhance visualization of subtle anatomic details, particularly 

in patients who scan poorly. In neurosonographic studies, Color and power Doppler 

may be used, mainly to identify cerebral vessels. Proper adjustment of pulse repetition 

frequency (main cerebral arteries have velocities in the range of 20–40 cm/s during 

intrauterine life) and signal persistence enhances visualization of small vessels. (5) 
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1.2 Basic examination 

Qualitative evaluation 

Transabdominal sonography is the technique of choice to investigate the fetal CNS 

during late first, second and third trimesters of gestation in low risk pregnancies.  

The examination should include the evaluation of the fetal head and spine. 

Two axial planes allow visualization of the cerebral structures relevant to assess the 

anatomic integrity of the brain. (6)  

These planes are commonly referred to as the transventricular plane and the 

transcerebellar plane.  

A third plane, the so-called transthalamic plane, is frequently added, mostly for the 

purpose of biometry. (Figure 1) 
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Structures that should be noted in the routine examination include the lateral ventricles, 

the cerebellum and cisterna magna, and cavum septi pellucidi. Head shape and brain 

texture should also be noted on these views. (Table 1) 

 
Table 1 - Structures that are usually noted in a basic ultrasound examination of the fetal central nervous system 

__________________________________________________________________________________ 
 

Head shape 

Lateral ventricles 

Cavum septi pellucidi 

Thalami 

Cerebellum 

Cisterna magna 

Spine 

_________________________________________________________________________________ 

 

 

The transventricular plane 

This plane demonstrates the anterior and posterior portion of the lateral ventricles. The 

anterior portion of the lateral ventricles (frontal or anterior horns) appears as two 

comma-shaped fluid filled structures. They have a well defined lateral wall and 

medially are separated by the cavum septi pellucidi (CSP).  

The CSP is a fluid filled cavity between two thin membranes. In late gestation or the 

early neonatal period these membranes usually fuse to become the septum pellucidum. 

The CSP becomes visible around 16 weeks and undergoes obliteration near term 

gestation. With transabdominal ultrasound, it should always be visualized between 18 

and 37 weeks, or with a biparietal diameter of 44–88 mm. (7)  

Conversely, failure to demonstrate the CSP prior to 16 weeks or later than 37 weeks 

is a normal finding. The value of visualizing the CSP for identifying cerebral 

anomalies has been debated. However, this structure is easy to identify and is 

obviously altered with many cerebral lesions such as holoprosencephaly, agenesis of 

the corpus callosum, severe hydrocephaly and septo-optic dysplasia. (8) 
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From about 16 weeks the posterior portion of the lateral ventricles (also referred to as 

posterior horns) is in reality a complex formed by the atrium that continues posteriorly 

into the occipital horn.  

The atrium is characterized by the presence of the glomus of the choroid plexus, which 

is brightly echogenic, while the occipital horn is fluid filled. Particularly in the second 

trimester of gestation both the medial and lateral walls of the ventricle are parallel to 

the midline and are therefore well depicted sonographically as bright lines.  

Under normal conditions the glomus of the choroid plexus almost completely fills the 

cavity of the ventricle at the level of the atrium being closely apposed to both the 

medial or lateral walls, but in some normal cases a small amount of fluid may be 

present between the medial wall and the choroid plexus. (9, 10) 

In the standard transventricular plane only the hemisphere on the far side of the 

transducer is usually clearly visualized, as the hemisphere close to the transducer is 

frequently obscured by artifacts. However, most severe cerebral lesions are bilateral 

or associated with a significant deviation or distortion of the midline echo, and it has 

been suggested that in basic examinations symmetry of the brain is assumed. 

 

The transcerebellar plane 

This plane is obtained at a slightly lower level than that of the transventricular plane 

and with a slight posterior tilting and includes visualization of the frontal horns of the 

lateral ventricles, CSP, thalami, cerebellum and cisterna magna. The cerebellum 

appears as a butterfly shake structure formed by the round cerebellar hemispheres 

joined in the middle by the slightly more echogenic cerebellar vermis. The cisterna 

magna or cisterna cerebello-medullaris is a fluid filled space posterior to the 



 9 

cerebellum. It contains thin septations, that are normal structures and should not be 

confused with vascular structures or cystic abnormalities. In the second half of 

gestation the depth of the cisterna magna is stable and should be 2–10 mm. Early in 

gestation the cerebellar vermis has not completely covered the fourth ventricle, and 

this may give the false impression of a defect of the vermis. In later pregnancy such a 

finding may raise the suspicion of a cerebellar abnormality but prior to 20 weeks’ 

gestation this is usually a normal finding. (11) 

 

The Transthalamic plane 

A third scanning plane, obtained at an intermediate level, is also frequently used in the 

sonographic assessment of the fetal head, and is commonly referred to as the 

transthalamic plane or biparietal diameter plane. The anatomic landmarks include, 

from anterior to posterior, the frontal horns of the lateral ventricles, the cavum septi 

pellucidi, the thalami and the hippocampal gyruses. (12) 

Although this plane does not add significant anatomic information to that obtained 

from the transventricular and transcerebellar planes, it is used for biometry of the 

fetal head. It has been proposed that, particularly in late gestation, this section plane 

is easier to identify and allows more reproducible measurements than does the 

transventricular plane. (13) 

 

1.3 Quantitative evaluation 

Biometry is an essential part of the sonographic examination of the fetal head. In the 

second trimester and third trimester, a standard examination usually includes the 

measurement of the biparietal diameter, head circumference and internal diameter of 
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the atrium. Some also advocate measurement of the transverse cerebellar diameter and 

cisterna magna depth. 

Biparietal diameter and head circumference are commonly used for assessing fetal age 

and growth and may also be useful to identify some cerebral anomalies. They may be 

measured either in the transventricular plane or in the transthalamic plane. Different 

techniques can be used for measuring the biparietal diameter. Most frequently the 

calipers are positioned outside the fetal calvarium (so called outside to outside 

measurement). (14) 

However, some of the available charts have been produced using an outer to inner 

technique to avoid artifacts generated by the distal echo of the calvarium. The two 

approaches result in a difference of a few millimeters that may be clinically relevant 

in early gestation. It is important therefore to know the technique that was used while 

constructing the reference charts that one uses. If the ultrasound equipment has ellipse 

measurement capacity, then head circumference can be measured directly by placing 

the ellipse around the outside of the skull bone echoes. Alternatively, the head 

circumference (HC) can be calculated from biparietal diameter (BPD) and 

occipitiofrontal diameter (OFD) by using the equation HC = 1.62 Å~ (BPD + OFD). 

The ratio of the biparietal diameter over the occipitofrontal diameter is usually 75–

85%. Moulding of the fetal head particularly in early gestation is however frequent, 

and most fetuses in breech presentation have some degree of dolicocephaly. 

Measurement of the atrium is recommended because several studies suggest that this 

is the most effective approach for assessing the integrity of the ventricular system, and 

ventriculomegaly is a frequent marker of abnormal cerebral development. (15) 

Measurement is obtained at the level of the glomus of the choroid plexus, 
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perpendicular to the ventricular cavity, positioning the calipers inside the echoes 

generated by the lateral walls. (Figure 2) 

The measurement is stable in the second and early third trimesters, with a mean 

diameter of 6–8 mm and is considered normal when less than 10 mm. (16, 17, 18, 19, 

20) 

Most of the biometric studies on the size of the lateral ventricles have used ultrasound 

equipment that provided measurements in millimeters. (21) 

As, with modern equipment, measurements are given in tenths of millimeters, it is 

uncertain which is the most reasonable cut-off value. We believe that particularly at 

midgestation a value of 10.0 mm or greater should be considered suspicious. (22) 

The transverse cerebellar diameter increases by about one millimeter per week of 

pregnancy between 14 and 21 menstrual weeks. This measurement, along with the 

head circumference and the biparietal diameter is helpful to assess fetal growth.  

The depth of the cisterna magna measured between the cerebellar vermis and the 

internal side of the occipital bone is usually 2–10 mm. (23) With dolicocephaly, 

measurements slightly larger than 10 mm may be encountered. 

 



 12 

 

 

1.4 Fetal Neurosonogram 

It is commonly accepted that dedicated fetal neurosonography has a much greater 

diagnostic potential than that of the standard transabdominal examination, and is 

particularly helpful in the evaluation of complex malformations.  

However, this examination requires a grade of expertise that is not available in many 

settings and the method is not yet universally used. 

Dedicated fetal neurosonography is useful in patients with an increased risk of CNS 

anomalies, including cases in which the basic examination identifies suspicious 

findings. 

The basis of the neurosonographic examination of the fetal brain is the multiplanar 

approach, that is obtained by aligning the transducer with the sutures and fontanelles 

of the fetal head. (1, 24) 

When the fetus is in vertex presentation, a transabdominal/transvaginal approach can 

be used. In fetuses in breech presentation, a transfundal approach is used, positioning 

the probe parallel instead of perpendicular to the abdomen. Vaginal probes have the 
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advantage of operating at a higher frequency than do abdominal probes and therefore 

allow a greater definition of anatomical details. For this reason, in some breech 

presenting fetuses an external cephalic version may be considered in order to use the 

transvaginal approach. 

 

Fetal brain 

Whether the exam is performed transvaginally or transabdominally, proper alignment 

of the probe along the correct section planes usually requires gentle manipulation of 

the fetus. A variety of scanning planes can be used, also depending upon the position 

of the fetus. (1) 

A systematic evaluation of the brain usually includes the visualization of four coronal 

and three sagittal planes. 

In the following, a description of the different structures that can be imaged in the late 

second and third trimesters is reported. Apart from the anatomic structures, fetal 

neurosonography should also include evaluation of the convolutions of the fetal brain 

that change throughout gestation. (24, 25, 26, 27, 28) 

 

Coronal planes (Figure 3) 

The transfrontal plane or Frontal-2 plane. The visualization of this plane is obtained 

through the anterior fontanelle and depicts the midline interhemispheric fissure and 

the anterior horns of the lateral ventricles on each side. The plane is rostral to the genu 

of the corpus callosum and this explains the presence of an uninterrupted 

interhemispheric fissure. Other structures observed are the sphenoidal bone and the 

ocular orbits. (22) 



 14 

 

The transcaudate plane or Mid-coronal-1 plane  

At the level of the caudate nuclei, the genu or anterior portion of the corpus callosum 

interrupts the continuity of the interhemispheric fissure. Due to the thickness of the 

genu in coronal planes it is observed as a more echogenic structure than the body of 

the corpus callosum. 

The cavum septi pellucidi is depicted as an anechogenic triangular structure under the 

corpus callosum. The lateral ventricles are found at each side surrounded by the brain 

cortex. In a more lateral position the Sylvian fissures are clearly identified. (22) 

 

 

The transthalamic plane or Mid-coronal-2 plane 

Both thalami are found in close apposition but in some cases the third ventricle may 

be observed in the midline with the interventricular foramina and the atrium of the 

lateral ventricles with the choroid plexus slightly cranial on each side (Mid-coronal-3 
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plane). Close to the cranial base and in the midline the basal cistern contains the vessels 

of the circle of Willis and the optic chiasma. (22) 

 

The transcerebellar plane or Occipital-1 and 2 plane. 

This plane is obtained through the posterior fontanels and enables visualization of the 

occipital horns of the lateral ventricles and the interhemispheric fissure. Both 

cerebellar hemispheres and the vermis are also seen in this plane. (22) 

 

 

Sagittal planes (Figure 4) 

Three sagittal planes are usually studied: the midsagittal; and the parasagittal of each 

side of the brain. 

 

The midsagittal or median plane shows the corpus callosum with all its components; 

the cavum septi pellucidi, and in some cases also the cavum vergae and cavum veli 

interpositi, the brain stem, pons, vermis and posterior fossa. Using color Doppler the 

anterior cerebral artery, pericallosal artery with their branches and the vein of Galen 

may be seen. 

 

The parasagittal or Oblique plane depicts the entire lateral ventricle, the choroid 

plexus, the periventricular tissue and the cortex.  (22) 

 

 

1.5 Effectiveness of Ultrasound Examination of the Fetal Neural Axis 

 

In a low risk pregnancy around midgestation, if the transventricular plane and the 



 16 

transcerebellar plane are satisfactorily obtained, the head measurements (head 

circumference in particular) are within normal limits for gestational age, the atrial 

width is less than 10.0 mm and the cisterna magna width is between 2–10 mm, many 

cerebral malformations are excluded, the risk of a CNS anomaly is exceedingly low 

and further examinations are not indicated. (22) 

It is beyond the scope of these guidelines to review the available literature on the 

sensitivity of antenatal ultrasound in the prediction of neural anomalies. Some studies 

of low risk patients undergoing basic examinations have reported sensitivities in 

excess of 80%. (29, 30) 

However, these results probably greatly overestimate the diagnostic potential of the 

technique. These surveys had invariably very short follow-up and almost only included 

open neural tube defects, whose recognition was probably facilitated by systematic 

screening with maternal serum alphafetoprotein.  

Diagnostic limitations of prenatal ultrasound are well documented and occur for a 

number of reasons. Some even severe anomalies may be associated with only subtle 

findings in early gestation. 

The brain continues to develop in the second half of gestation and into the neonatal 

period thus limiting the detection of anomalies of neuronal proliferation (such as 

microcephaly, tumors and cortical malformations). (31) 

Also, some cerebral lesions are not due to faulty embryological development but 

represent the consequence of acquired prenatal or perinatal insults. Even in expert 

hands some types of anomalies may be difficult or impossible to diagnose in utero, in 

a proportion that is yet impossible to determine with precision. (22) 
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Chapter 2 

Intracranial Fetal Vascularization 
 

 

 

 

 

 

 

 

 

 

 Anatomy of Cerebral Blood Arteries 

2.1 Extracranial Origins 

The brain is supplied by four arteries: two internal carotids (ictd) and two vertebrals 

(vert).  

The contributions of blood flow to the brain by these arteries is almost three fourths 

of the total for the carotids and one fourth for the vertebrals. All these vessels originate 

from branches stemming out of the aortic arch (ao). (32) 

Phylogenetically, six branchial arches are identified of which in mammals the fourth 

gives origin to the aortic arch on the left and the subclavia artery (sbcl) on the right.  

The third branchial arch and the remnants of the primitive dorsal aorta originate the 

internal carotid, while the remnants of the primitive ventral aorta turn into the external 

carotid (ectd).  

A brachiocephalic trunk (bcph) originates from the convexity of the aorta and gives 

origin to the right subclavian and right common carotid artery (cctd). 

On the left side, the common carotid and subclavian arteries originate separately from 

the aorta to the left of the brachiocephalic trunk origin.  

The vertebral arteries originate from the subclavians and run dorsally and medially to 
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reach the transverse foramen of the sixth cervical vertebra (C6). They continue 

rostrally within the transverse canal, formed by the superposition of the transverse 

foraminae of the cervical vertebrae. (33) 

The forebrain (telencephalon and diencephalon) receives its arterial supply from the 

internal carotids, which divide intracranially into the anterior (acer), middle (mcer) 

cerebral arteries (Figure 1) and the anterior choroidal artery.  

The hindbrain (metencephalon and myelencephalon) as well as the mesencephalon 

receive their arterial supply from the vertebral arteries (Figure 2), which join to form 

the basilar artery (Figure 2 – Figure 3).  

This vessel inturn divides into the two posterior cerebral arteries (Figure 2 – Figure 

3).  

The carotid and the vertebrobasilar system are connected by a pair of posterior 

communicating arteries (pcoma) (Figure 3). (34) 
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Figure 1 - Segmental anatomy of the anterior cerebral artery in sagittal (top) and coronal (bottom) projections.  

The segments of this artery are defined thus: A1 from the internal carotid artery bifurcation to the anterior communicating, A2 to 

the junction of genu and rostrum of the corpus callosum, A3 around the genu, A4 to the plane of the coronal suture and A5 from 
the coronal suture to the terminal branches. 1str, lenticulo striate arteries from anterior cerebral (acer) and middle cerebral (mcer); 

ictd, internal carotid artery. 

 

 

Figure 2 - Projection on the sagittal plane of the posterior arterial circulation.  
Vert, vertebral artery; pica, posterior inferior cerebellar; its medullary (med), and supratonsilar (supratons) segments, and its 

inferior hemispheric (inf) and inferior vermian (inf. Vermian) branches; bas, basilar; aica, anterior inferior cerebellar; scba, 

superior cerebellar with its superior vermian (sup. Vermian) branch; pcer, posterior cerebral; thp, thalamo perforating; calc, 
calcarine; poa, parieto occipital; psp, perisplenial; pch (lat), lateral posterior choroidal; pch (med), medial posterior choroidal. 
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Figure 3 - X-ray image obtained after injection of radioopaque material postmortem. Acom, anterior communicating; acer, 

anterior cerebral; ictd, internal carotid; ach, anterior choroidal; cod, choroidal-diencephalic; scba, superior cerebellar; aspa, 
anterior spinal; vert, vertebral; aica, anterior inferior cerebellar; bas, basilar; pcer, posterior cerebral; pcoma, posterior 

communicating. 

 

 
 
2.2 The Carotid System 
 

The common carotid bifurcates into an external and an internal carotid at or slightly 

below the level of the hyoid bone, on the projection of the C3-C4 or C4-C5 vertebrae.  

The internal carotid then courses in a cephalad direction, medial to the internal jugular 

vein with the vagus nerve interposed between the two vessels. 

The internal carotid artery lies first posterolaterally and then medially to the external 

carotid artery.  

The internal carotid artery lies inside a major sinus (cavernous), which drains blood 
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from the orbit and nasal cavities. After the internal carotid artery exits the cavernous 

sinus, it gives off the ophthalmic artery (oph), which provides the main arterial supply 

to the eye and the orbital contents. In the early stages of human development (35 

day,12–14 mm embryo), the internal carotid artery divides intracranially into four 

vessels: anterior, middle, and posterior cerebral (pcer), and anterior choroidal (ach) 

arteries. (Figure 4) (35)  

The posterior cerebral arteries anastomose caudally with the two terminal branches of 

the basilar artery, which supply the ventral mesencephalon and continue beyond that 

point to supply the dorsal mesencephalon and caudal portion of the diencephalon. As 

the telencephalon develops, the posterior cerebral artery also supplies its caudal 

portion. Up until birth, the entire territory of the posterior cerebral artery appears to 

be supplied from the internal carotid artery.  

Anterior cerebral artery courses rostromedially, dorsal to the optic nerve, to reach the 

interhemispheric fissure. At the midline, it anastomoses with its contralateral 

homonymous vessel through the anterior communicating artery. (acom) (Figure 3)  

Along its precommunicating segment (A1), the anterior cerebral artery supplies 

perforator branches to the septal nuclei, the anterior portion of the hypothalamus, 

including the supraoptic nuclei, and the anterior portion of the striatum. 

(lenticulostriate arteries, lstr) (Figure 1)  
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Figure 4 - Continuity of the great anastomotic arch between common carotid and subclavian arteries established in the embryo 

(shown in this figure as representation at 35 days of age). Structures abbreviations: Telen, telencephalon; Mes, mesencephalon; 

chp4v, choroid plexus of fourth ventricle; Spinal c., cervical spinal cord. Arteries abbreviations: olfa, primitive olfactory; acer, 
anterior cerebral; mcer, middle cerebral; arch, anterior choroidal; pcoma, posterior communicating; pch, posterior choroidal; dar, 

diencephalic; mta, mesencephalic tectum arteries; pcer, posterior cerebral; scba, superior cerebellar; bas, basilar; pica, posterior 

inferior cerebellar; aspa, anterior spinal; ictd, internal carotid; cctd, common carotid; scbls, subclavian; Aorta (asc.) , ascending 

aorta; apul, pulmonary; aorta (thor.), thoracic aorta; ectd, external carotid. 

 
 

 

Figure 5 - Postmortem angiogram in which the entire cerebral cortex has been flattened to show the multiple anastomoses 
between the territories of the anterior (acer), middle (mcer) and posterior (pcer) cerebral arteries. The thalamo - perforating 

branches (thp) are also shown. The corpus callosum is outlined for reference, OcP, occipital pole; FrP, frontal pole; TL, 

temporal lobe. 
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The anterior cerebral artery continues rostrodorsally, curves around the genu of the 

corpus callosum as the pericallosal artery supplies the medial aspect of the frontal lobe 

(Figure 1) through the internal frontal branches (anterior, middle, and posterior) as 

well as the corpus callosum, its adjacent cortex, septum pellucidum, anterior pillars of 

the fornix, and the anterior commissure. Its largest branch, the callosomarginal artery, 

courses laterally into the cingulate sulcus. The terminal portion of the anterior cerebral 

artery branches anastomose with the cortical and perisplenial branches of the posterior 

cerebral artery. The medial aspects of both hemispheres could be irrigated from a 

single anterior cerebral artery, when a pericallosal artery provides branches to the 

contralateral side, or even more completely when an azygos (unpaired) anterior 

cerebral artery is present. (36) 

The middle cerebral artery is considered the continuation of the internal carotid. It is 

a vessel of paramount functional significance since in its territory are found the 

cortical representations of motor, somatosensory, language, and higher cognitive 

functions. It also provides irrigation to most of the striatum and long ascending and 

descending tracts. This artery originates from the internal carotid artery just lateral to 

the optic chiasm, and then it proceeds laterally, ventral to the olfactory trigone to enter 

the Sylvian fissure.  

The middle cerebral artery is considered the continuation of the internal carotid, it 

originates from this vessel just lateral to the optic chiasm, and then it proceeds 

laterally, ventral to the olfactory trigone to enter the Sylvian fissure. In its territory are 

found the cortical representations of motor, somatosensory, language, and higher 

cognitive functions. It also provides irrigation to most of the striatum and long 

ascending and descending tracts.  
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Along the middle cerebral artery proximal trajectory, a variable number of perforators 

arise from its dorsal aspect and penetrate the base of the brain through the anterior 

perforated substance. (Figure 1) The middle cerebral artery divides into its cortical 

branches generally at the level of the limen insulae, dorsal to the temporal pole. (37) 

This division may take place, however, anywhere between 1 and 4 cm from its origin 

from the internal carotid artery, and this point may be different on each hemisphere 

of the same brain. (36) 

The pattern of arborization of this artery on the cortical surface consists of a 

bifurcation (78% of hemispheres), trifurcation (12%), or division into multiple trunks 

(10%). (38) 

The anterior temporal branch irrigates the temporal pole and a variable extent of the 

lateral temporal lobe. It originates as part of a trifurcation of the middle cerebral artery 

or in a common trunk with the orbitofrontal artery that distributes over the inferior 

and middle frontal gyri and the orbital surface of the frontal lobe. The prefrontal and 

precentral arteries cover two triangular-shaped areas of the frontal lobe with vertices 

toward the temporal pole, situated between the frontal pole and the precentral gyrus. 

The rolandic arteries supply the precentral and postcentral gyri. The angular artery 

runs caudally over the superior temporal gyrus and reaches the occipital lobe.  

The cortical branches of the middle cerebral artery anastomose with branches of the 

anterior cerebral artery and posterior cerebral artery. (Figure 5) The region over which 

these anastomosis occur has been diagramatically represented as a large diameter 

circle. 

This area is considered of clinical significance because it appears to be the site of 

“watershed” infarctions. (37) 
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The anterior choroidal artery (ach) branches out of the posterior wall of the internal 

carotid artery proximal to the origin of the middle cerebral artery and anterior cerebral 

artery and distal to the posterior cerebral-internal carotid anastomosis. (Figure 3)  

The first branches from this vessel supply the amygdala and the rostral hippocampus. 

The anterior choroidal then continues caudally giving branches that irrigate the rest 

of the hippocampus, optic tract, the tail of the nucleus caudatus, medial pallidum, 

ventral thalamus, the posterior limb of the internal capsule, and lateral geniculate. The 

vessel then proceeds caudolaterally giving numerous branches to the choroid plexus 

of the temporal horn of the lateral ventricle.  

The anterior choroidal artery anastomoses with branches of the anterior cerebral 

artery, posterior cerebral artery, and middle cerebral artery.  

 

2.3 Vertebrobasilar System 

The vertebral arteries run together to form the basilar artery (Figure 3) which starts its 

course over the ventral portion of the medulla, usually at or a few millimeters below 

the inferior border of the clivus. The anterior spinal artery (aspa) originates from both 

vertebral arteries, close to the point where they join, or occasionally from only one of 

them. (Figure 3)  

The remaining medial branches of the intracranial portion of the vertebral artery 

supply the anterior medulla and pyramids. The lateral branches of this portion include 

the posterior inferior cerebellar artery (pica) and branches to the inferior cerebellar 

peduncle, lateral medulla and the inferior olive and associated structures. The pica, 

which may alternatively originate from the basilar or from the extracranial portion of 

the vertebral, irrigates the inferolateral cerebellar hemisphere. (Figure 2) The extent 
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of the cerebellar distribution of the pica is variable and inversely related to the size of 

the territory covered by the anterior inferior cerebellar artery (aica), a branch of the 

basilar artery.  

On its course toward the cerebellum, the pica gives branches to the lower medulla and 

fourth ventricle.Blood flow in the basilar artery is laminar, as in practically all normal 

arteries in the body with the possible exception of the root of the aorta during the 

ejection phase. (39) 

Numerous branches, called perforator arteries because they penetrate the substance of 

the brainstem, originate from the basilar artery along its course. (Figure 6 – Figure 7) 

Median perforators (mper) originate from the posterior wall of the basilar and 

penetrate the pons and midbrain to irrigate structures near the midline, reaching the 

floor of the fourth ventricle. 

 

 

Figure 6 - Angiography of the pons (rostral end) shown in a coronal section. Pn, pontine nucleus; scp, superior cerebellar 

peduncle. Arteries abbrevations: bas, basilar; mper, median perforators; lper, lateral perforators; circ, pontine circumflex. 



 27 

 

Figure 7 - Angiography of the mesencephalon (caudal end) shown in a coronal section. PAG, periacqueductal gray; Aq, cerebral 
acqueduct; MTec, mesencephalic tectum; SN, substantia nigra. Arteries abbrevations: bas, basilar; mper, median perforators; 

scba, superior cerebellar; circ, mesencphalic circumflex. 

 

The aica originates from the basilar as a single vessel or as several smaller twigs 

(Figure 2).  It corse caudolaterally and provides several perforators to the pons before 

it reaches the inferior surface of the cerebellar hemisphere. (Figure 8)  

Its area of distribution, as stated previously, depends on the size of the territory of the 

pica.  

The superior cerebellar artery (scba) arises at or just caudal to the rostral division of 

the basilar into the two posterior cerebral arteries. (Figure 2) A large perforator arises 

from this artery at its origin or sometimes from the basilar, and a number of smaller 

perforators originate from the superior cerebellar artery and distribuite to the pontine 

lateral tegmental region.  

There are usually three cerebellar branches of the scba: the medial, distributing mostly 

over the vermis, and the intermediate and lateral, over the cerebellar hemispheres. 

(Figure 8) (40) 
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Figure 8 - Postmortem angiogram in which the entire cerbellar cortex has been flattened to show the multiple anastomoses 

between the territories of the superior cerebellar (scba) and the posterior inferior cerebellar (pica) arteries. The lateral (lat.), 
intermediate (int.) and medial (med.) branches of the scba are shown. The rostral inferior edge of the cerebellum is at the top 

and the rostral superior edge at the bottom of the figure. The line labeled "X" represents the most caudal edge of the cerebellar 

cortex. 

 

The basilar artery terminates dividing into two posterior cerebral arteries, which 

connect with the posterior communicating arteries (pcoma) and then curve around the 

midbrain. At this level, their position is usually superomedial to the tentorium and 

they terminate in a number of cortical vessels over the calcarine fissure. (Figure 3) 

Three segments are commonly described in the posterior cerebral artery: P1 from its 

origin until the anastomosis with the posterior communicating, P2 from the end of P1 

to the back of the midbrain, and P3 as the segment running through the lateral portion 

of the quadrigeminal cistern. (41) 

The medial posterior choroidal artery (Figure 2) originates from the P2 segment and 

courses around the brainstem giving off branches contributing to the irrigation of the 

midbrain, tectal plate, pineal gland, posterior thalamus, habenula, and medial 

geniculate body. It also supplies the homolateral choroid plexus of the third ventricle. 

(40) 
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Lateral to the medial posterior choroidal artery originate a number of lateral posterior 

choroidal arteries, up to nine per side. These vessels supply parts of the midbrain crus, 

the pineal body, splenium, posterior commissure, tail of the caudate nucleus, 

thalamus, and fornix. They enter the lateral ventricle where they supply the choroid 

plexus and then enter the foramen of Monro to anastomose with the medial posterior 

choroidal arteries. (41) 

The cortical branches of the posterior cerebral artery are the more distal to the origin 

of this artery and distribute to the inferior and medial surface of the temporal lobe 

(anterior and posterior temporal branches) and to the medial aspect of the occipital 

lobe and posterior parietal lobe (calcarine and parietooccipitalbranches). Arteries at 

the edge of the posterior cerebral artery territory anastomose with the terminal 

arborizations of the middle cerebral and anterior cerebral arteries.  (Figure 5) 

 

2.4 The Arterial Circle 

One of the notable characteristics of cerebrovascular anatomy is the abundance of 

anastomoses between large arteries, extracranially (angular to ophthalmic arteries) 

and intracranially (the arterial circle at the base of the brain) as well as between small 

arteries on the surface of the brain (the leptomeningeal plexus). (Figure 9) (42) 
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Johan Vesling (1595–1649), from the School of Padua and the anatomist Johan 

Wepfer (1620–1695) also described the arterial circle.  

Thomas Willis, Sedleian Professor of Natural Philosophy at Oxford, was also aware 

of this feature and asked his friend Christopher Wren, the architect of Canterbury 

Cathedral, to illustrate the arterial circle which he did masterfully. The image is 

somewhat idealized (Figure 3, top right) because all vessels appear symmetrical and 

with almost the same diameter, a condition that is indeed rare in the adult human brain. 

(43) 

In 1947, Padget (1944) summarized the findings of a large number of anatomical 

specimens reported in the literature at the time. Starting with a “typical” circle with 

the anterior communicating as half to two thirds the size of the anterior cerebral, in 

turn half the size of the internal carotid, and the pcoma with half the size of the 

posterior cerebral, in turn half the size of the basilar, agreement of the posterior 

portion of the circle (posterior communicating and posterior cerebral arteries) with 

this pattern was found in less than 50% of 1033 cases. The anterior portion of the 

Figure 9 – Schematic three-dimensional representation of the cerebral cortex vascular architecture. 
Arteries and veins run at a distance and connect at all levels through capillary loops inside the cortex. 

Small arterial circles join the cortical arteries giving origin to multiple perforators 
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circle (anterior cerebral and anterior communicating arteries) was considered to be 

more dependable than the posterior one as a source of collateral circulation, although 

no quantitative data was presented to support this statement. 

Quantitative estimates of the prevalence of circle anomalies in 994 specimens indicate 

that a complete “typical” circle is found in only 20% of cases. (37) 

Anomalies included absence or hypoplasia of the anterior communicating artery 

(20%), posterior communicating arteries on one or both sides (38%), and proximal 

anterior cerebral artery (12%). The rest of the anomalies were represented by 

hypoplasia of the divisional branches of the basilar artery. 

A serious limitation of the anatomical studies is that although they can identify cases 

of anatomical compromise of collateral circulation through the arterial circle when 

some of its component vessels are severely hypoplastic or absent, they cannot 

ascertain whether a vessel of “normal” caliber would be able to sustain a significant 

amount of additional blood flow to compensate for stenosis or occlusion of one or 

more of the circle-supplying vessels.  

The ability of the posterior communicating artery to supply collateral blood flow, for 

instance, has been found to depend not only on its diameter but also on the resistance 

of its afferent and efferent vessels. (42) 

IAA and MRA can provide information on direction of flow in the component vessels 

of the circle in addition to the anatomical information. However, the transcranial 

color-coded duplex ultrasonography technique (TCCD) can provide currently the 

most accurate information regarding blood velocity (although not volumetric blood 

flow due to lack of vessel cross-sectional area information) in the blood vessels that 

supply the brain. 



 32 

It is important to note that in the presence of anatomically complete arterial circle, 

blood velocity in the homolateral middle cerebral artery decreased between 25% and 

67% during brief unilateral carotid compression. In this context, it is important to note 

that failure of adequate collateral blood flow compensation during sudden unilateral 

internal carotid occlusion, defined as a decrease of middle cerebral artery blood 

velocity > 40%, has been reported to be followed by hemodynamic cerebral infarction 

if the occlusion becomes permanent. (43) 

 

2.5 Microvascular Anatomy 

The diagram shown in Figure 9 illustrates the existence of a network of anastomosing 

pial arteries (the leptomeningeal plexus) from which penetrating vessels emerge at 

right angles, capillarize and drain into collecting veins that course to the pial surface 

widely separated from the supplying arteries. The detailed anatomy of the intervening 

capillary plexus is extremely complex and highly dependent on the neuronal anatomy, 

to the extent that observation of the blood vessel network allows sometimes to 

recognize the underlying neuronal substrate. Detailed analysis of the intracortical 

vascular network reveals arterioles that traverse all cortical layers with minimal or no 

branching to reach the deeper layers and the subcortical white matter, where they give 

off capillaries that orient themselves in compliance with the general trajectories of 

nerve fibers. 

Other groups of arteries give branches to subcortical and cortical levels (Figure 10, 

A5) all cortical levels (Figure 10, A4) or restricted cortical layers. (Figure 10, A1-A3) 

In most areas of the cortex, many arteries converge over a single intracortical vein 

that are less numerous than arteries and of a larger caliber, with their afferent vessels 
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joining at right angles (Figure 10, V4 - V5). (42) 

 

Vascular Territories 

A large number of descriptions of the territories covered by the various cerebral 

arteries are available in the literature. The line of separation between the territories of 

the anterior cerebral artery, middle cerebral artery, and posterior cerebral artery, for 

instance, depend on the hemodynamic conditions in each territory that determine the 

extent to which the three main supplying vessels contribute to their irrigation. Thus, 

proximal occlusion of the middle cerebral artery may induce the anterior cerebral 

artery and posterior cerebral artery territories to expand over that of the middle 

cerebral artery. Another condition of a shift in distribution of arterial supply may be 

found as described earlier with a high-flow arteriovenous malformation that would 

create a “sump” effect drawing blood from arteries of neighboring territories. (42) 
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Chapter 3 

Doppler Analysis Ultrasound of Fetal Circulation in normal 

pregnancy 
 

 

 

 

 

 

 

 

 

 

In the last twenty years the capacity of ultrasound flow imaging have really increased. 

Color flow imaging is now ordinary and facilities such as ‘Power’ or ‘Energy’ 

Doppler provide new ways of imaging flow.  

With such versatility, it is tempting to employ the technique for ever more demanding 

applications and to try to measure increasingly subtle changes in the maternal and 

fetal circulations.  

Figure 10 – Schematic two-dimensional representation of the types of arteries and veins found in the cerebral 

cortex. Arteries distribute to the superficial layers only (A1, A2), to layers I-V (A3), to all layers (A4, A5), or 
preferentially to the subjacent white matter (A6). This segmental arrangement creates the anatomical substrate 

for a differential control of blood flow to cortical layers. Veins (shown in solid balck) are usually larger and 

receive afferent branches at right angles from circumscribed (V1-V3) or wide (V4, V5) distributions. I-VI, 

cortical layers; SC, subcortical white matter. 
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3.1 Basic Principles 

Ultrasound images of flow, whether Color flow or spectral Doppler, are obtained from 

measurements of movements.  

In ultrasound scanners, a series of pulses is transmitted to detect movement of blood. 

Echoes from moving scatterers exhibit slight differences in the time for the signal to 

be returned to the receiver. (Figure 1)  

These differences can be measured as a direct time difference or, more usually, in 

terms of a phase shift from which the ‘Doppler frequency’ is obtained (Figure 2). 

They are processed to produce either a color flow display or a Doppler sonogram. 

 

 

Figure 1  - Ultrasound velocity measurement. The diagram shows a scatterer S moving at velocity V with a beam/flow angle φ. 

The velocity can be calculated by the difference in transmit-to-receive time from the first pulse to the second (t2), as the scatterer 

moves through the beam. 
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Figure 2 - Doppler ultrasound. Doppler ultrasound measures the movement of the scatterers through the beam as a phase change 

in the received signal. The resulting Doppler frequency can be used to measure velocity if the beam/flow angle is known. 

There has to be motion in the direction of the beam in fact if the flow is perpendicular to the beam, there is no relative motion 
from pulse to pulse.  

 

The size of the Doppler signal is dependent on: 

(1) Blood velocity: as velocity increases, so does the Doppler frequency; 

(2) Ultrasound frequency: higher ultrasound frequencies give increased Doppler 

frequency. As in B-mode, lower ultrasound frequencies have better penetration. 

(3) The choice of frequency is a compromise between better sensitivity to flow or 

better penetration; 

(4) The angle of insonation: the Doppler frequency increases as the Doppler 

ultrasound beam becomes more aligned to the flow direction (the angle φ between the 

beam and the direction of flow becomes smaller). (Figure 3) (44, 45) 
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Figure 3 - Effect of the Doppler angle in the sonogram. (A) higher-frequency Doppler signal is obtained if the beam is aligned 

more to the direction of flow. In the diagram, beam (A) is more aligned than (B) and produces higher-frequency Doppler signals. 
The beam/flow angle at (C) is almost 90° and there is a very poor Doppler signal. The flow at (D) is away from the beam and 

there is a negative signal. 

 

 

Methodology of Doppler assessment of the placental and fetal circulations  

 

Doppler ultrasound provides a non-invasive method for the study of fetal 

hemodynamics and umbilical arteries gives information on the perfusion of the 

uteroplacental and fetoplacental circulations, respectively, while Doppler studies of 

selected fetal organs are valuable in detecting the hemodynamic rearrangements that 

occur in response to fetal hypoxemia. 

 

 

3.2 Uteroplacental Circulation 

Anatomy 

The blood supply to the uterus comes mainly from the uterine arteries with a small 

contribution from the ovarian arteries. These vessels anastomose at the cornu of the 
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uterus and give rise to arcuate arteries that run circumferentially around the uterus. 

The radial arteries arise from the arcuate vessels and penetrate at right angles into the 

outer third of the myometrium. These vessels then give rise to the basal and spiral 

arteries, which nourish the myometrium and decidua and the intervillous space of the 

placenta during pregnancy, respectively. (46, 47, 48) 

 

3.3 Physiological changes in pregnancy 

Physiological modification of spiral arteries is required to permit the increase in 

uterine blood flow which is necessary to satisfy the respiratory and nutritional 

requirements of the fetus and placenta.  

The conversion of the spiral arteries to uteroplacental arteries is termed ‘physiological 

change’. It occurs in two stages: the first wave of trophoblastic invasion converts the 

decidual segments of the spiral arteries in the first trimester and the second wave 

converts the myometrial segments in the second trimester. (49) As a result of this 

‘physiological change’, the diameter of the spiral arteries increases from 15–20 to 

300–500 mm, reducing impedance to flow and optimizing fetomaternal exchange in 

the intervillous space. 

 

Uterine artery 

Schulman described the use of continuous wave Doppler ultrasound to identify the 

uterine artery. The Doppler probe was directed into the parauterine area in the region 

of the lower uterine segment and rotated until a characteristic waveform pattern was 

obatined.  

The patterns of uterine, arcuate and iliac vessels could be differentiated from each 
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other and from other vessels in the pelvis. The presence of an early diastolic notch 

was noted and was found to disappear between 20 and 26 weeks. 

Arduini compared color flow imaging and conventional pulsed Doppler in the study 

of the uterine artery. (50) 

Color flow imaging was used to visualize the flow through the main uterine artery 

medial to the external iliac artery and the Doppler sample gate was placed at the point 

of maximal color brightness. Color flow imaging was found to allow a higher number 

of reliable recordings to be obtained, to shorten the observation time and to reduce the 

intra and interobserver coefficients of variation. (Figure 4) (51) 

 

 

Figure 4 - Ultrasound image with conventional color Doppler showing the uterine artery and the external iliac artery. Normal 

flow velocity waveforms from the uterine artery at 24 weeks of gestation demonstrating high diastolic flow. 

 

Impedance to flow in the uterine arteries decreases with gestation. The initial fall until 

24–26 weeks is thought to be due to trophoblastic invasion of the spiral arteries, but a 

continuing fall in impedance may be explained by a persisting hormonal effect on 

elasticity of arterial walls. Impedance in the uterine artery on the same site as the 

placenta is lower, which is thought to be due to the trophoblastic invasion only taking 

place in placental spiral arteries and the fall in impedance engendered by this being 
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transmitted to other parts of the uterine circulation through collaterals. The intra- and 

interobserver coefficients of variation in the measurement of impedance to flow from 

the uterine arteries are both 5–10%. (Figure 5) (50) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5 - Pulsatility index (PI) in the uterine artery with the gestation (mean, 95th and 5th centiles). 

 

Umbilical artery 

The umbilical artery was the first fetal vessel to be evaluated by Doppler velocimetry. 

Flow velocity waveforms from the umbilical cord have a characteristic saw-tooth 

appearance of arterial flow in one direction and continuous umbilical venous blood 

flow in the other. Continuous wave Doppler examination is simple. The transducer is 

manipulated to obtain the characteristic waveforms from the umbilical artery and vein.  

With a pulsed wave Doppler system, an ultrasound scan is first carried out, a free-

floating portion of the cord is identified and the Doppler sample volume is placed over 

an artery and the vein (Figure 6) (51) 
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Figure 6 - Ultrasound image with color 

Doppler showing the umbilical cord, red umbilical artery and blue umbilical vein (left). Normal flow velocity waveforms from 

the umbilical vein (bottom) and artery (top) at 32 weeks of gestation. 

 

With advancing gestation, umbilical arterial Doppler waveforms demonstrate a 

progressive rise in the end-diastolic velocity and a decrease in the impedance indices. 

(Figure 7)  

 

 

 

 

 

 

 

 

Figure 7 - Pulsatility index (PI) in the umbilical artery with the gestation (mean, 95th and 5th centiles). 

 

Human placental studies have demonstrated that there is continuing expansion of the 

fetoplacental vascular system throughout the pregnancy. Furthermore, the villous 

vascular system undergoes a transformation, resulting in the appearance of sinusoidal 
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dilatation in the terminal villous capillaries as pregnancy approaches term, and more 

than 50% of the stromal volume may be vascularized.  

The intra- and interobserver variations in the various indices are about 5% and 10%, 

respectively. (50) 

 

Cerebral Arteries 

With the color Doppler technique, it is possible to investigate the main cerebral 

arteries such as the internal carotid artery, the middle cerebral artery, the anterior and 

the posterior cerebral arteries and to evaluate the vascular resistances in different areas 

supplied by these vessels.  

A transverse view of the fetal brain is obtained at the level of the biparietal diameter. 

The transducer is then moved towards the base of the skull at the level of the lesser 

wing of the sphenoid bone. Using color flow imaging, the middle cerebral artery can 

be seen as a major lateral branch of the circle of Willis, running anterolaterally at the 

borderline between the anterior and the middle cerebral fossae. (Figure 8) (52) 

 

 

 

 

 

 

Figure 8 - Transverse view of the fetal head with color Doppler showing the circle of Willis (left). Flow velocity waveforms 

from the middle cerebral artery at 32 weeks of gestation (right). 

The pulsed Doppler sample gate should be placed on the middle portion of this vessel 

to obtain flow velocity waveforms. Due to the course of this blood vessel, it is almost 

always possible to obtain an angle of insonation which is less than 10°. During the 
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studies, care should be taken to apply minimal pressure to the maternal abdomen with 

the transducer, as fetal head compression is associated with alterations of intracranial 

arterial waveforms.  

In healthy fetuses, impedance to flow in the fetal aorta does not change with gestation 

during the second and early third trimesters of pregnancy, but it subsequently 

decreases. (Figure 9) (48) 

 

 

 

 

 

 

 

 
Figure 9 - Pulsatility index (PI) in the middle cerebral artery with the gestation (mean, 95th and 5th centiles). 

 

 

Ductus venosus 

The ductus venosus plays a central role in the return of venous blood from the 

placenta: well-oxygenated blood flows directly towards the heart. Approximately 

40% of umbilical vein blood enters the ductus venosus and accounts for 98% of blood 

flow through the ductus venosus, because portal blood is directed almost exclusively 

to the right lobe of the liver. (48) 

The typical waveform for blood flow in venous vessels consists of three phases. The 

highest pressure gradient between the venous vessels and the right atrium occurs 

during ventricular systole (S), which results in the highest blood flow velocities 
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towards the fetal heart during that part of the cardiac cycle. Early diastole (D), with 

the opening of the atrioventricular valves and passive early filling of the ventricles (E-

wave of the biphasic atrioventricular flow waveform), is associated with a second 

peak of forward flow. The nadir of flow velocities coincides with atrial contraction 

(a) during late diastole (A-wave of the atrioventricular flow waveform). During atrial 

contraction, the foramen ovale flap and the crista dividens meet, thereby preventing 

direct blood flow from the ductus venosus to the left atrium during that short period 

of closure of the foramen ovale. (Figure 10)  (51) 

 

 

Figure 10 - Normal flow velocity waveform of the ductus venosus. The first peak indicates systole, the second early diastole and 

the nadir of the waveform occours during atrial contraction. 

 

 

 

 

Chapter 4 

Doppler Analysis Ultrasound of Fetal Circulation in Fetal 

Growth Restriction 
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4.1 Bidimensional Doppler Assessment of the Fetus with Fetal Growth 

Restriction 

The condition of Intra Uterine Growth Retardation (IUGR) or Fetal Growth 

Restriction (FGR) is defined as sonographic estimated fetal weight < 10th percentile 

for gestational age. (53, 54) 

According to the American College of Obstetricians and Gynecologists, FGR is “one 

of the most common and complex problems in modern obstetrics”.  

This characterization is understandable considering the various published definitions, 

poor detection rate, limited preventive or treatment options, multiple associated 

morbidities and increased likelihood of perinatal mortality associated with FGR. 

Suboptimal growth at birth is linked with impaired intellectual performance and 

diseases such as hypertension and obesity in adulthood. (55, 56) 

Current challenges in the clinical management of FGR include accurate diagnosis of 

the truly growth-restricted fetus, selection of appropriate fetal surveillance and 

optimizing the timing of delivery.  

Despite the potential for a complicated course, antenatal detection of FGR and its 

antepartum surveillance can improve outcomes. (57) 

We acknowledge that defining small for gestational age (SGA) (birthweight < 10th 

percentile for gestational age) by general population charts vs customized charts is an 

important issue. (54, 56) 
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Pathological findings in FGR Fetuses 

Fetal growth restriction is associated with an inadequate quality and quantity of 

maternal vascular response to placentation.  

In this condition, there are characteristic pathological findings in the placental bed. 

 

Uterine arteries 

In pregnancies complicated by fetal growth restriction, impedance to flow in the 

uterine arteries is increased. (Figure 1) (58) 

Studies in women with hypertensive disease of pregnancy have reported that, in those 

with increased impedance (increased resistance index or the presence of an early 

diastolic notch), compared to hypertensive women with normal flow velocity 

waveforms, there is a higher incidence of pre-eclampsia, intrauterine growth 

restriction, emergency Cesarean delivery, placental abruption, shorter duration of 

pregnancy and poorer neonatal out come. (49) 

 

 

Figure 1 - Normal (left) and abnormal (right) flow velocity waveforms from the uterine arteries at 24 weeks of gestation. (S= 

peak systolic; D= End diastolic) 
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Umbilical artery Doppler  

Doppler velocimetry of the umbilical artery assesses the resistance to blood perfusion 

of the fetoplacental unit (Figure 20). As early as 14 weeks, low impedance in the 

umbilical artery permits continuous forward flow throught the cardiac cycle. (59, 60) 

Maternal or placental conditions that obliterate small muscular arteries in the placental 

tertiary stem villi result in a progressive decrease in end-diastolic flow in the umbilical 

artery Doppler waveform until absent (Figure 21) and then reversed (Figure 22) flow 

during diastole are evident. (61) 

Reversed end-diastolic flow in the umbilical arterial circulation represents an 

advanced stage of placental compromise and has been associated with obliteration > 

70% of arteries in placental tertiary villi. (57) 

Absent or reversed end-diastolic flow in the umbilical artery is commonly associated 

with severe (birthweight < 3rd percetile for gestational age) FGR and 

oligohydramnios. (62) 

Althought there are other quantitative assessments of umbilical artery Doppler (eg. 

Resistance index) available, the systolic to diastolic (S/D) ratio and pulsatility index 

are commonly used and either may be sufficient to manage most cases of suspected 

FGR. When end-diastolic flow is absent, the S/D ratio is immeasurable and PI may 

be used. 

In clinical practice, Doppler waveforms of the umbilical artery can be obtained from 

any segment along the umbilical cord. Waveforms obtained near the placental end of 

the cord reflect downstream resistance and show higher and-diastolic velocity than 

waveforms obtained near the abdominal cord insertion.  
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To optimize reproducibility, we suggest interrogating the umbilical artery at the 

abdominal cord insertion. The S/D ratio and PI should be obtained in the absence of 

fetal breathing and when the waveform is uniform. (57) 

 

 

Fetal arterial blood flow redistribution 

In fetal hypoxemia, there is an increase in the blood supply to the brain, myocardium 

and the adrenal glands and reduction in the perfusion of the kidneys, gastrointestinal 

tract and the lower extremities. Although knowledge of the factors governing 

circulatory readjustments and their mechanism of action is incomplete, it appears that 

partial pressures of oxygen and carbon dioxide play a role, presumably through their 

action on chemoreceptors. This mechanism allows preferential redistribution of 

nutrients and oxygen to vital organs, thereby compensating for diminished placental 

resources. However, compensation through cerebral vasodilatation is limited and a 

plateau corresponding to a nadir of pulsatility index (PI) in cerebral vessels is reached 

at least 2 weeks before the development of the fetus is jeopardized. Consequently, 

arterial vessels are unsuitable for longitudinal monitoring of growth-restricted fetuses.  

Venous velocity waveforms give more information regarding fetal well-being or 

compromise. (57) 

 

Middle cerebral artery  

In the hypoxemic FGR fetuses, due to impaired placental perfusion, the Pulsatility 

Index (P.I.) in the umbilical artery is increased while in the fetal middle cerebral artery 

the PI is decreased; consequently, the ratio between the umbilical artery and middle 
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cerebral artery (UA/MCA), called cerebro – placental ratio (CPR),  is increased. 

(Figure 2) (63, 64, 65)  

 

Figure 2 - Color Doppler examination of the circle of Willis (left). Flow velocity waveforms from the middle cerebral artery in 

a normal fetus with low diastolic velocities (right, top) and in a FRG fetus with high diastolic  velocities (right, bottom). 

 

Ductus venosus 

In severe hypoxemia, there is redistribution in the umbilical venous blood towards the 

ductus venosus at the expense of hepatic blood flow. Consequently, the proportion of 

umbilical venous blood contributing to the fetal cardiac output is increased. There is 

a doubling of umbilical venous-derived oxygen delivery to the myocardium and an 

increase in oxygen delivery to the fetal brain. 

In FGR fetuses there is an increase of reverse flow in the inferior vena cava during 

atrial contraction  suggesting a higher pressure gradient in the right atrium. 

The next step of the disease is the extension of the abnormal reversal of blood 

velocities in the inferior vena cava to the ductus venosus, inducing an increase of the 

S/A ratio, mainly due to a reduction of the A component of the velocity waveforms. 

(Figure 3) (66) 
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Figure 3 - Color Doppler examination of the ductus venosus with normal 

flow velocity waveforms (A). Abnormal waveform with revesal of flow 
during atrial contraction and markedly increased pulsatility in a FGR fetus 

(B, C).  

 

 

Two different populations of fetuses affected by FGR had been identified according 

to the gestational week in which FGR had occured. 

Early onset FGR fetuses, presenting before 34 gestational weeks, is associated with a 

progressive increase in blood flow resistance in the umbilical artery (UA), followed 

by a vasodilatation in the middle cerebral artery (MCA) and a deterioration in venous 

Doppler parameters and in the fetal biophysical score. UA end-diastolic velocity could 

became absent, or reversed, requiring preterm delivery. 

Late onset FGR fetuses, presenting after 34 gestational weeks, is associated with 

mildly elevated, or even normal UA Doppler parameters and isolated cerebral 

vasodilation. (57) 
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Cerebral Placental Ratio (CPR)  

The cerebroplacental ratio (CPR) is calculated as MCA-PI/UA-PI, offering the 

advantage of detecting the redistribution of blood flow earlier than the independent 

evaluation of both vessels.  

Normal CPR values are above 1, meaning that MCA PI is higher than UA PI. 

However, when the process of brain vasodilatation begins, or the placental resistance 

increases, the CPR approaches 1. When the CPR is 1 or lower, there is a clear process 

of brain vasodilatation because the MCA PI is lower than the UA PI.  

Consequently, the CPR can become abnormal when the UA-PI and MCA-PI are still 

within normal range. This characteristic becomes a disadvantage in early-onset IUGR 

fetuses with severe placental insufficiency as virtually all cases will show an abnormal 

CPR. Its clinical application seems to be orientated to late-onset IUGR fetuses with 

normal UA-PI. (67, 68) 

 

4.2 Assessment of Fetal Brain Circulation in the management of FGR  

Blood supply to the fetal brain is provided by the carotid and vertebral arterial systems 

forming the circle of Willis. After entering the fetal skull, each internal carotid artery 

gives two branches: the posterior communicating artery (PComA) and the anterior 

choroidal artery, then continuing with its terminal branches, the middle (MCA) and 

the anterior cerebral arteries (ACA). 

The first segment of the ACA (ACA S1) reaches the midline, then continues towards 

the anterior wall of the skull as the ACA segment 2 (ACA S2), finishing as the 

pericallosal artery. The PComA plays a key role as a physiological hemodynamic 

shunt between the carotid and vertebral–basilar systems as it is connected with the 
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first segment of the posterior cerebral artery (PCA S1), which is the terminal branch 

of the vertebral system. From this point emerges the PCA segment 2 as a combination 

of both blood flow streams.  (Figure 4) (57) 

 

 

 

 

Figure 4 - Pulsed Doppler 
evaluation of the major fetal 

cerebral arteries: (a) anterior 

cerebral artery segment 1, (b) 
middle cerebral artery, (c) 

posterior cerebral artery 

segment 2, and (d) pericallosal 
artery 

 

 

 

The vertebral arteries enter the brain through the foramen magna and joint in the 

middle forming the basilar artery, which runs in the midline of the brain stem until 

bifurcating in its two final branches, the left and right first segments of the PCA. 

Application of the Doppler technique in the human fetus allows recognition and 

estimation of fetal blood flow and peripheral vascular impedance through the 

calculation of the pulsatility and resistance indices.  

Original devices combined a linear real-time array and a fixed pulsed Doppler emitter.  

With the improvement of Doppler technology and the incorporation of color 

directional Doppler, it was possible to evaluate the complete intracranial circulation. 

Thus, the middle cerebral artery (MCA) became the first intracranial fetal vessel to be 

assessed, and is still considered as the clinical standard for the hemodynamic 

evaluation of the fetal brain. (69, 70)  
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Nevertheless, other arterial and venous territories have also been studied during the 

brain blood flow redistribution process.  

Dubiel et al. suggested that in IUGR fetuses, the anterior cerebral artery might be 

affected earlier than the MCA. (71)   

This concept was further explored by Figueroa-Diesel et al. who studied all major 

fetal cerebral arteries in IUGR fetuses at different stages of deterioration and found 

differences in their individual behavior.(28)   

Benavides-Serralde et al. explored the MCA and two segments of the ACA at different 

stages of blood flow deterioration of the umbilical artery (UA) in IUGR fetuses, and 

found that both ACA segments presented earlier signs of vasodilatation than MCA. 

(72) 

Although at early stages of fetal deterioration, the anterior and posterior cerebral 

arteries seemed to be already affected, MCA deteriorates later. Similarly, in a recent 

longitudinal study on term small for- gestational age (SGA) fetuses with normal UA 

Doppler, Cruz-Martinez et al. demonstrated that ACA pulsatility index (PI) becomes 

abnormal on average one week before abnormalities in the MCA can be detected. (73, 

74) 

 

Fractional Moving Blood Volume 

A novel ultrasound derived technique termed fractional moving blood volume 

(FMBV) has been applied to indirectly evaluate changes in the fetal cerebral blood 

perfusion.  

FMBV analyzes changes in amplitude (power) of the backscattered Doppler 

ultrasound signals originated from red blood cells. FMBV estimation aims to 
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compensate the effect that depth, tissue interfaces, and attenuation have on the PDU 

signals. (75, 76, 77, 78) 

FMBV has been validated in experimental studies showing a high correlation with 

true blood flow changes and a good intraobserver and interobserver reliability.  

In the fetal brain, four different regions of interest (ROI) have been explored, the 

frontal lobe, basal ganglia, complete midsagittal cerebral plane and posterior fossa 

(Figure 5); normal reference values throughout gestation for all regions are available 

in the literature. (75, 76) 

 
 
Figure 5 - Power Doppler evaluation of the fetal brain. (a) Midsaggital view of the complete brain and frontal lobe; (b) Basal 

ganglia obtained in a parasaggital view; (c) posterior fossa in a transverse view with the fetus facing down; (d) 3D power 
Doppler render of the arterial circle of Willis. 

 

In normal fetuses, FMBV estimation is similar in all regions except the posterior fossa 

where the images are obtained through the occipital bone thus reducing the total 
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number of PDU signals reaching the US probe. 

In mild IUGR affected fetuses, there is an increment in the blood flow perfusion to all 

cerebral regions with a preferential flow to the frontal lobe. As the IUGR fetus 

deteriorates, this perfusion pattern changes, increasing the blood flow towards the 

basal ganglia and decreasing it towards the frontal lobe. Recent research shows that 

this increased FMBV in the frontal lobe is already associated with altered 

neurodevelopment at birth. (79, 80) 

 

Three – Dimensional Power Doppler Ultrasound 

Three-dimensional ultrasound has been extensively used in obstetrics in order to 

visualize the body surface of the fetus, to obtain a volumetric analysis of fetal organs 

and placenta or to study the fetal morphology offline. 

The fetal cerebral vascularization has been studied in the past using color and power 

Doppler, both with transabdominal and transvaginal probes, to evaluate 

haemodynamic changes in normal and complicated pregnancies or simply to study 

the morphology of the vascular tree of the fetal brain. The use of transvaginal Power 

Doppler, specifically, allows to detect very small vessels with extremely slow blood 

flow, such as medullary veins in the brain parenchyma. 

Recently a new technology has enabled the study of blood flow in a sample volume. 

This new method is called 3D power Doppler (3DPD) ultrasound and it was 

introduced in obstetrics and gynecology in order to estimate semi-quantitative indices 

of vascularization and blood flow in the female pelvic organs, in the placenta and in 

fetal organs. 

Three-dimensional power Doppler ultrasound (3D-PDU) has been recorded in the 
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fetal brain. 3D-PDU rendering is performed using the virtual organ computer-aided 

analysis (VOCALTM) technique applying a spherical tool for the delimitation of the 

ROI.  

Three perfusion indices based on the voxel information of the PDU signals can be 

calculated within the rendered volume: the vascular index (VI, percentage of voxels 

in the volume), flow index (FI, mean voxel intensity in the volume) and vascular/flow 

index (VFI). (81)  

The potential value of 3D-PDU indices is the calculation of blood perfusion in a 

volume of tissue, offering amore complete perspective of regional hemodynamic 

changes. Several reports on the fetal brain using 3D-PDU perfusion indices have been 

published confirming the increment in brain blood flow perfusion in IUGR fetuses. 

(82, 83, 84, 85) 

The main limitations of applying 3D-PDU in the fetal brain are that, in order to 

construct the volume, the PDU signals must pass through different tissue interfaces, 

including the fetal skull. 

Signals traveling through the fontanel will be brighter than signals passing through 

the skull. In addition, there is no method to compensate the effect that depth and brain 

tissue interfaces have on the PDU signals. This is not happening with FMBV, where 

acquisition of images is mainly performed through a region free of bone. Another 

limitation of 3D-PDU is the delineation of the region of interest.  

The available reports apply the spherical virtual organ computer aided analysis tool 

to segment either, the complete fetal head or the circle of Willis; however, no specific 

landmarks have been proposed for the different cerebral segments. Using fundamental 

ultrasound for volume acquisition, 



 57 

Benavides-Serralde et al. (2009) proposed specific landmarks for defining several 

fetal brain ROIs on 3D ultrasound volume files. (83) 

 

4.3 Chronic Hypoxia and Brain Blood Flow Circulation 

When fetal IUGR is suspected due to an estimated fetal weight <10th centile, or an 

abdominal circumference below 2 standard deviations, a complete Doppler evaluation 

must be performed.  

This evaluation provides important information on the fetal hemodynamic adaptation 

to the hypoxic insult and on the fetal deterioration process thus optimizing the 

identification for the optimal time of delivery. 

Previously, the Doppler fetal examination was applied stepwise starting with the 

umbilical artery and followed by the MCA.  

This approach has been questioned as recent studies show that IUGR cases with 

normal flow in the umbilical artery might present signs of brain vasodilatation. These 

fetuses also show an increased risk for an abnormal neurodevelopment after birth. (86, 

87, 88) 

This evidence shows that the increment of blood flow to the fetal brain might be an 

early indicator of neurological damage, challenging the concept of a protective effect 

of the brain sparing mechanism. It is possible that the brain sparing effect might 

present two different components: an initially protective period followed by a stage 

of decompensation. Konje et al. reported that a late increment in the impedance 

indices is highly correlated with an increased risk of perinatal mortality, probably 

related to intracranial edema at the final stages of fetal Deterioration (Figure 8) (88) 
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Fig 8 –Clinical significance of alterated fetal brain Doppler parameters 

 

Nonetheless, this sign appears late and cannot be used for clinical follow up as it is a 

marker of brain hemodynamic claudication.  

When present, it must be considered for an urgent delivery. In cases followed 

prospectively, other parameters must be first considered for identifying the moment 

when the protective sparing mechanism is lost. The anterior cerebral artery and the 

placental cerebral ratio seem to identify cases at earlier stages of deterioration. (89, 

90, 91)  

Additionally, evaluation of the waveform velocities might also contribute in 

identifying the moment when the protective brain sparing effect is lost. This precise 

moment is still unknown but the longitudinal evaluation of several vascular territories 

might help to define when the brain vascular system loses its adaptive mechanism 

increasing the risk for neurological damage. 

In severe and early IUGR affected fetuses, the main objective of the fetal surveillance 

is to identify the best moment for delivery balancing neonatal and fetal morbidity and 
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mortality, when reasonable neonatal survival is achieved, the decision to deliver 

should be taken.  

Evaluation of the fetal cerebral circulation must be part of the routine clinical follow 

up of early-onset IUGR; however, only in a small proportion of cases it can be 

independently used for the clinical decision to delivery. Other Doppler parameters, 

such as ductus venosus PI and the absence or reversed diastolic flow in the umbilical 

artery, are generally considered for this clinical decision. (92, 93) 

It must be assumed that in early-onset IUGR fetuses, almost all cases already have 

brain vasodilatation increasing the risk of abnormal neuroadaptation or 

neurodevelopment after birth.  In such cases, the aim of the fetal cerebral evaluation 

is to identify acute signs of intracranial edema that could orientate the clinical decision 

for delivery. After 32 weeks of gestation, the fetal cerebral vascular evaluation might 

be used to define the best moment of delivery reducing the risk of neurological 

damage. At this gestational age, in a tertiary center with an acceptable perinatal 

survival, the main aim of the surveillance is to avoid long term neurological damage. 

Therefore, increased impedance in the umbilical artery combined with brain 

vasodilatation might be indications of delivery despite still having diastolic flow in 

the umbilical artery and/or a normal flow in the ductus venosus. (94, 95) 

  

Fetal Brain Circulation and the risk of neurological damage 

Term infants have a different pattern of brain lesion as a consequence of perinatal 

asphyxia. Although the brain is less vulnerable to white matter damage, when 

compared with preterm infants, the HIE with involvement of the cerebral cortex is an 

event that may result in neurodevelopment disabilities, including cerebral palsy, 
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mental retardation, and learning disabilities. (96, 97) 

On the contrary, structural neurological damage in preterm infants is usually 

manifested as intraventricular hemorrhage (IVH) and/or perivenrticular leucomalacia 

(PVL).  Both manifestations can be present before birth but usually appear within the 

first 72 h of life and are strongly associated with long-term cognitive and motor 

disabilities. (98, 99, 100) 

Growing evidence shows that the increment of blood flow to the fetal brain might be 

an early indicator of neurological damage. Earlier studies demonstrated that a 

reduction in the vascular impedance of the carotid arteries was associated with 

abnormal fetal blood gases.  

Mari et al. studied the MCA-PI in IUGR premature fetuses at 25 to 34 weeks of 

gestation and found a higher incidence of IVH in fetuses with reduced MCA-PI. (101)  

Padilla-Gomes et al. studied early-onset IUGR neonates with abnormal Doppler 

evaluation in the umbilical UA (UA-PI above the 95th percentile) and MCA (MCA-

PI below the 5th percentile) and found an increased prevalence of transient 

periventricular echogenicities, periventricular leucomalacia, and intraventricular 

hemorrhage than normally grown neonates with normal blood flow in both vessels. 

(102, 103) 

Aside for the PI of the brain arteries, different authors suggest a potential contribution 

of the waveform velocities in the identification of infants at risk of developing brain 

damage. 

Levene et al. showed that at 24 to 72 h of life, infants with moderate or severe 

postasphyxial encephalopathy had high cerebral blood flow (CBF) velocities and a 

significantly lower resistance index, with a positive predictive value of 94% for death 
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or severe neurological impairment. (103) Ilves et al. reported that at 12 h after birth, 

the mean blood flow velocity in the ACA or MCA is decreased in asphyxiated infants 

developing mild or moderate stages of HIE. (104) 

Abnormal CPR has been also associated with an increased risk of neurological 

damage after birth. Jugovic et al. found an increased association between an abnormal 

CPR and the presence of transient periventricular echodensities and intraventricular 

hemorrhage. 

Maunu et al. reported a significant association of increased CPR and reduced brain 

volume in neonates born small for gestational age and Roza et al. (2008) showed an 

altered neurodevelopment in IUGR neonates with abnormal CPR. (105)  

The prevalence of cerebral palsy was higher within the group of infants with higher 

peak blood flow velocities. 

 

4.4 Long Term Neurodevelopment in IUGR Fetuses with Brain Sparing 

Clinical studies evaluating long term neurodevelopmental outcome of IUGR fetuses 

showed differences in the anatomy (CNCO) and function of the fetal brain.  

Leitner et al. followed a cohort of IUGR newborns for more than 10 years, 

documenting a wide spectrum of neurological complications, including visual and 

acoustic impairments, deficiencies in logical reasoning and problem-solving abilities. 

(106)  

Martin et al. also followed a long-term cohort of IUGR newborns with abnormal 

Doppler evaluation during gestation and found reduced cognitive skills, abnormal 

optic nerve morphology, and altered visual capacity. They reported that the degree of 

weight deviation and Doppler abnormalities correlated with a reduction of the axonal 
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area of the optic nerve. These children also showed mild altered coordination and poor 

balance at 7 years of age, probably associated with alterations in the cerebellum and 

basal ganglia. Children born with IUGR were less successful in scholarly 

achievements and showed more learning disabilities than those children normally 

grown at birth. (107) 

 

4.5 Small for Gestational Age Fetuses and Late Intrauterine Growth Restriction 

Term SGA fetuses with normal UA Doppler account for nearly 10% of the pregnant 

population. Although earlier reports suggested that these fetuses might essentially 

represent constitutionally normal small fetuses, recent evidence demonstrates that this 

diagnostic category contains a proportion of cases with late-onset IUGR that will 

present a higher incidence of adverse perinatal outcome, abnormal neurobehavior, and 

suboptimal neurodevelopment in childhood. (108, 109, 110) 

In many of these SGA fetuses presenting an adverse perinatal outcome, longitudinal 

studies demonstrated that UA impedance remains normal throughout pregnancy, 

suggesting that the degree of placental insufficiency is not reflected in the UA Doppler 

but probably in other vascular territories. This was also demonstrated by Hershkovitz 

et al. who showed that in SGA fetuses at the end of the pregnancy, the middle cerebral 

artery and the fetal biophysical profile performed better that the UA Doppler in 

identifying cases at risk for adverse perinatal outcome. (111, 112) Almost half of term 

SGA fetuses with normal UA Doppler show signs of brain sparing before delivery, 

which can be identified using different brain Doppler parameters. Each vascular 

territory has a different sensitivity for early detection of brain redistribution and a 

different pattern of deterioration. 
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Fetal brain blood perfusion became affected at around 37weeks in 45% of SGA 

fetuses, followed by the CPR one week later in 305 cases and finally by the anterior 

cerebral artery. Finally, MCA-PI decreases below the 5th percentile in less than 15% 

of cases at around 39 weeks of gestation, indicating a relatively advanced stage of 

brain blood flow redistribution. (113) 

In a retrospective study of 231 SGA fetuses, Severi et al. reported that SGA fetuses 

with MCA vasodilatation showed an OR of 3.1 for an emergency intrapartum 

cesarean delivery. Most recently, a prospective clinical study by Cruz- Martinez et al. 

reported that in 420 SGA cases, the combination of the CPR and MCA Doppler before 

the onset of labor can be useful in the identification of fetuses at high risk of 

emergency cesarean delivery for fetal distress and neonatal acidosis. Thus, the 

possibilities to tolerate the uterine contractions and the chances for a successful 

vaginal delivery are reduced when the CPR or MCA-PI are reduced. When the CPR 

is abnormal, but MCA-PI is still within normal range, the risk of emergency cesarean 

delivery for fetal distress increases to 40% in comparison to 20% in the group with 

normal CPR. (114) 

In the presence of MCA vasodilatation, the risk of fetal distress increases to 60% and 

the risk of neonatal acidosis to 20%, indicating a reduced fetal tolerance reserve. In 

addition, cases with MCA vasodilatation have an altered neonatal neurobehavior 

manifested as an abnormal state of organization and motor skills. Similarly, at 2 years 

of age, up to 52% of SGA fetuses with abnormal MCA Doppler show an abnormal 

neurodevelopment scoring lower in communication abilities and problem-solving 

areas. (106) 

SGA fetuses with increased frontal perfusion showed a 30% risk of abnormal 



 64 

neurobehavior expressed in social interactive organization, state organization, and 

attention capacity. Although there are recommendations that term SGA fetuses should 

be continuously monitored as high-risk pregnancies, it is still unclear whether 

induction of labor is of benefit when signs of brain vasodilatation are present. (107) 

Growing evidence supports the potential benefits of monitoring the fetal brain 

Doppler parameters in term SGA fetuses with normal UA Doppler. It might be 

possible that an abnormal CPR, ACA-PI, FMBV, or MCA-PI can select a group at a 

higher risk of abnormal neurodevelopment and consider them as late-onset IUGR. 

The fetal cerebral hemodynamic evaluation might contribute in establishing 

subgroups of SGA fetuses with progressive risk of fetal distress and in optimizing the 

optimal time for delivery. 

In early and severe IUGR affected fetuses, almost all cases will show signs of brain 

sparing. The main purpose of the cerebral hemodynamic evaluation is to identify signs 

of cerebral edema manifested as a late increment in the cerebral vascular resistance. 

When present, it increases the risk of perinatal mortality and should be considered an 

ominous sign to deliver fetus. (110, 111, 112, 113) 

In severe IUGR fetuses reaching 32 weeks of gestation, a balanced decision must be 

taken as the neonatal survival rate is at this stage is reasonable. At this moment it 

might be possible to deliver the fetus in presence of altered umbilical and cerebral 

circulation but still having normal flow in the ductus venosus. 

In late-onset IUGR fetuses, mainly in those ith normal blood flow in the umbilical 

artery, a fetal cerebral hemodynamic evaluation should be performed. Cases with 

signs of brain sparing have an increased risk of adverse perinatal out come and 

abnormal neurodevelopment after birth. Unfortunately, there is still no data available 
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on the benefits of inducing labor in these cases. A detailed post natal evaluation of the 

neuroadaptation and neurobehavior might be considered. 

Despite encouraging results obtained from the evaluation of the fetal brain 

hemodynamics, more research is needed as some of the techniques previously 

described are not yet available in all centers. The brain vascular evaluation is routinely 

performed but rarely used as an isolated parameter for delivering a compromised 

fetus.  

The contribution of the US techniques here described might help to identify its value 

in the surveillance of mild and severely affected intrauterine growth restricted fetuses. 

 

 

 

 

 

 

 

 

 

Chapter 5 

Evaluation of Fetal Cerebral Blood Flow using Power 

Doppler Ultrasound Angiography in Fetuses affected by 

Intrauterine Growth Restriction. A pilot study. 
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5.1 Introduction 

The evaluation of fetal brain blood flow can be considered very important because 

deficits in the perfusion of this territory may lead to inadeguate development of the 

central nervous system and even jeopardize fetal vitality. (115, 116, 117) 

Fetal intrauterine growth restriction (IUGR) associated with placental insufficiency 

can present well-recognized perinatal and long-term consequences. Some authors 

demonstrated that neurodevelopment dysfunction in IUGR infants involves general 

cognitive competence, suggesting dysfunction in the frontal lobe networking limbic 

system and hippocampus and changes in the morphology of neural structures such as 

the retinal optical nerve. (116, 117) 

The presence of neurological damage originating in different brain areas is associated 

with an unpaired blood supply. (118) 

We can recognise two kind of  IUGR fetuses on the basis of the onset of the defect of  

fetal growth: 

 Early – onset IUGR (before 34 weeks of gestation) is associated with 

escalating blood flow resistance  in umbilical artery (UA), accompained by 

brain sparing followed by deterioration of venous Doppler parameters.  

 Progression is determinated by how quickly UA end-diastolic velocity 

 becomes absent or reversed often necessitating preterm delivery. 
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 Late – onset IUGR (after 34 weeks of gestation) is associated with mildly 

elevated, or even normal, UA Doppler parameters and isolated brain sparing. 

 The deterioration of biophysical parameters is equally subtle and  therefore 

 often hard to detect. Cerebro-placental ratio (CPR) decreases with either 

 normal or only minimally elevated UA Doppler indices. 

 This is followed by intracerebral redistribution of blood flow towards 

 frontal lobe  and basal ganglia. A decreased MCA Doppler index may 

 occur as an isolated finding also without a preeceding increase in UA 

 Doppler Index. 

The “brain sparing effect” (blood flow centralization process) can be considered as an 

adaptive response that preserves brain oxygen supply in the presence of chronic 

hypoxia.  (119, 120) 

This process is identified clinically by a reduced Doppler pulsatility index (PI) in the 

middle cerebral artery (MCA) however, vasodilatation of the MCA might have a poor 

sensitivity to detect fetuses in the initial stages of increased brain perfusion. 

longitudinal studies on Doppler evaluation of different brain arteries in the presence 

of growth restriction suggest that MCA PI is reduced in a later stage than other brain 

vessels, such as the anterior cerebral artery. (120, 121, 122) 

The standard technique used to assess fetal blood flow is usually the bi-dimensional 

Doppler. In contrast to this conventional method, which analyzes the frequency shift 

of blood velocity information, power Doppler sonography uses the amplitude 

component of the signals received to represent the number of moving blood cells. 

(123) 

In fact power Doppler is useful in situations of low-velocity blood flow because it 
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allows the detection of minimal alterations in blood flow. (124, 125) 

Moreover, power Doppler does not show aliasing effect and the colour map is 

independent of the insonation angle. (126) 

The introduction of 3D power Doppler (3D-PD) and the vascularization histogram 

allowed to quantify the vascularization and blood flow to the placenta and several fetal 

organs. (127, 128) 

The use of 3D-PD is useful in the evaluation of fetal brain vessels because of their 

small caliber. 

 

5.2 Aim of the study 

The aim of the present study is to explore the possible use of 3D Power Doppler 

Angiography (3D-PDA) using VOCALTM software (General Electric Healthcare, 

USA) in the assessment of different cerebral regions in normal and growth restricted 

fetuses (IUGR). This is a pilot study, that means a small experiment designed to test 

the method and gather information prior to a larger study. 

 

5.3 Materials and Methods 

Between January 2011 and October 2014, 70 singleton pregnancies with intrauterine 

growth restriction (IUGR) and 183 appropriate for gestational age pregnancies (AGA) 

as control cases were included. Pregnancies with maternal complications, fetal 

malformations or chromosomal defects, or conceived after assisted reproduction, were 

excluded. Gestational age at the enrollment varied between 22 and 38 weeks, based on 

first trimester ultrasound dating of pregnancy. In all cases the growth potential of each 

fetus was confirmed after birth. 
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All ultrasound examinations were performed using General Electric E8 (General 

Electric Corp., Milkwaukee, WI, USA) with a 5-Mhz transabdominal probe equipped 

with automatic volume measurements, colour, pulsed and power Doppler options. 

IUGR was defined as an ultrasound-estimated fetal weight below the 10th centile for 

gestational age according to the Hadlock 4 Equation for fetal weight estimation using 

biparietal diameter, head circumference, abdominal circumference and femur length. 

(129, 130) 

Pulsed wave Doppler flow analysis of the umbilical artery was obtained from a free-

floating central section of the cord at an angle close to 0°. 

The MCA is sampled at the proximal end of the vessel close to the circle of Willis with 

a near 0° angle of insonation. each uterine artery can be assessed using the colour 

Doppler flow to identify the crossing over with the internal iliac artery and vein just 

before it enters the uterus. Three subsequent blood velocity waveforms for each vessel 

were analyzed for PI according to Gosling et al. (131) 

 For each of these three vessels, an abnormal PI was defined as a deviation from the 

mean by 20%. The results were checked against previously published reference ranges. 

(132, 133, 134) 

3D-PDA images of the fetal brain were acquired during fetal rest, and using the same 

presets for each acquisition. The angle of acquisition was set at 35°, the pulsed 

repetition frequency (PRF) of the power Doppler at 0,9. Power Doppler signals from 

the fetal brain were recorded in the biparietal plane including landmarks like the 

thalami, the third ventricle, the cavum septi pellucidi (CSP), the tentorial hiatus, and a 

symmetrical display of the calvaria (See Figure 1). 
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Figure 1 

 

 

Figure 1 

 

 

 

 

After displaying three simultaneous perpendicular planes on the monitor (axial, 

sagittal and coronal) the size of the region of interest (ROI) was adapted manually to 

create the 2 zones of the fetal brain to be analyzed.  (Figure 2) 
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Figure 2  - Three Dimensional Multiplanar View of Fetal Brain 

 

These 2 zones of the fetal brain were defined by using anatomy landmarks to realize a 

high good reproducibility of this method among different operators. The first zone, 

named Frontal Zone (Zone 1), was obtained by tracing the contour of the anterior part 

of the fetal brain up to the perpendicular line crossing the anterior delineation of the 

CSP (Figure 3, Figure 4). This zone is mainly sprinkled by Anteriore Cerebral Artery 

(ACA). 

The second one, called Temporal Zone (Zone 2), is defined by a rectangle reaching 

from both temporal bones with the width of CSP included. This zone is sprinkled by 

Middle Cerebral Artery (MCA) (Figure 3, Figure 5). 

[Digitare una citazione 
tratta dal documento o 
il sunto di un punto di 
interesse. È possibile 
collocare la casella di 
testo in qualsiasi punto 
del documento. 
Utilizzare la scheda 
Strumenti casella di 
testo per cambiare la 
formattazione della 
citazione.] 
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Figure 3 – Definition of 2 Fetal Brain Zones: Frontal Zone (Area 1), Temporal Zone (Area 2) 

 

 

Figure 4 – Frontal Zone of Fetal Brain 

 

The volume of the investigated zones and the blood flow indices were calculated using 

VOCAL™ software. A rotation step for each contour plane was selected with a 30° 

degree angle chosen arbitrarily. 

This procedure of rotating the reference plane was done until a full rotation of 180 
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degrees was achieved. The fetal brain volumes were calculated after all contours traced 

(6 steps). Then the Vocal histogram switch was activated for the automatic calculation 

of the 3D-PDA vascular indices (VI = vascularization index, FI = flow index, VFI = 

vascularization and flow index). The VI identifies the number of coloured voxels in 

the ROI, which is an estimate of the number of vessels within that tissue. 

The FI is the average colour value of all the colour voxels and represents both the 

average blood flow intensity. The VFI is the average colour value of all the gray and 

colour voxels and represents both blood flow and vascularization 

 

 

 

Figure 5 – Temporal Zone of Fetal Brain 

 

For further analysis IUGR fetuses were categorized into one of the following three 



 74 

groups, based on the Umbilical Artery (UA) Pulsatility Index (PI), Middle Cerebral 

Artery (MCA) PI and the Ductus venosus (DV) PI: 

 Group 1 (Late onset IUGR): associated with normal UA PI, normal MCA PI 

and normal DV PI 

 Group 2 (Early onset IUGR):fetuses with abnormal UA PI (> 2 SD), normal 

MCA PI and normal DV PI 

 Group 3 (Early onset IUGR). fetuses with IUGR have an abnormal UA PI (> 

2 SD), an abnormal MCA PI (< 2 SD) and an abnormal DV PI (> 2 SD). 

The results of 3D-PDA analysis of zone 1 and zone 2 were correlated with pregnancy 

outcome parameters at birth, such as gestational age (GA) at delivery, caesarean 

section (CS) rate, preeclampsia, birthweight, APGAR score, neonatal intensive care 

unit (NICU) admission, in-utero mortality, neonatal mortality, perinatal mortality. 

Differences between AGA and growth-restricted foetuses were evaluated using 

Student’s test and differences within different IUGR groups were evaluated by 

AnOVA test. P < 0,05 was considered significant. The study was approved by the local 

ethics Committee and written consent was obtained from all participants. 

 

5.4 Results 

Table 1 shows the perinatal outcomes and characteristics of the population studied. 70 

IUGR fetuses and 183 appropriate-for-gestational age (AGA) fetuses matched by 

gestational age were evaluated. Considering the IUGR Groups the gestational age 

(GA) at delivery was similar between all the Groups. Caesarean Section rate was 

gradually higher in Group 1, Group 2 and in Group 3 compared with the Control 

Group. 19 cases of IUGR were associated with preeclampsia equally divided among 
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the 3 different groups. The mean birthweight was lower in Group 1, Group 2 and 3 if 

compared with Controls. APGAR scores at 1 and 5 min were comparable. The 

admissions at the Neonatal Intensive Cure Unit (NICU) were more frequent for fetuses 

affeccted by Early Onset IUGR (Group 2, Group 3) compared with Group 1 (Late 

Onset Group) and Control Group (AGA).  There was one case of intra-uterine fetal 

death in Group 1. 

 

Table 1 – Perinatal outcomes of the study population ( Mean (range or standard deviation) or %)0  
 

 Control Group 

(AGA n = 183 ) 

Group 1 

Late Onset 

IUGR 

(n= 34) 

Group 2 

Early Onset 

IUGR 

(n=18) 

Group 3 

Early Onset 

IUGR 

(n=18) 
Gestational age (GA) at delivery  39ws+1d 

(37+1 – 41+3) 

35ws+0d 

(33+1 – 37+2) 

34ws+5d 

(32+5 – 36+3) 

34ws+0d 

(31+5 – 36+2) 

Caesaren section rate % 23 % (42/183) 40% (14/34) 48% (8/18) 65% (12/18) 

Pre-eclampsia % 2% (4/183) 20%(7/34) 25% (5/18) 40% (7/100) 

Birth weight (mean) gr 3342 gr 

(503) 

1916 gr* 

(99) 

2020 gr* 

(65) 

1767 gr* 

(170) 

Apgar Score (1/5 min) 8/9 

(1,39/1,92) 

7/8 

(0,89/0,81) 

8/8 

(0,57/0,57) 

6/9 

(1,99/0,48) 

NICU admission 2% (3/183) 20%  (7/34) 33% (6/18) 33% (6/18) 

In utero mortality 0 0,3%(1/34) 0 0 

Neonatal mortality 0 0 0 0 

Perinatal Mortality 0 0 0 0 

* p < 0,01 vs Control Group (ANOVA) 

 

 

Table 2 shows the values of the vascular parameters (VI, FI and VFI) and the volume 

of the sampled brain in zone 1 for the Control Group and for the IUGR Groups at 

different hemodynamic stages (Group 1, Group 2 and Group 3). 

VI and VFI values were significantly increased in Late Onset IUGR fetuses (Group 1) 

compared to Control Group (AGA). 

Table 2 – Three dimensional Power Doppler Angiography  parameters values  in Zone 1 in the  Control Group and  Foetuses 

with Intrauterine Growth Restrictions at different hemodynamic stages (Group 1, Group 2 and Group 3) 
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 Vascularity 

Index (V.I.) 

Flow Index 

(F.I.) 

Vascularity 

Flow Index 

Volume 

(cm3) 

Control Group 

(AGA n = 183 ) 
 

2,27 (0,3) 

 

31,96 (7) 

 

0,73 (0,3) 

 

32,92 (6,27) 

Group 1 

Late Onset IUGR 

(n= 34) 

 

5,53* (2,1) 

 

24,12 (5,8) 

 

1,35* (0,6) 

 

17,25 (4,6) 

Group 2 

Early Onset IUGR 

(n=18) 

 

1,48 (0,25) 

 

26,6 (5,9) 

 

0,55 (0,025) 

 

20,87 (5,6) 

Group 3 

Early Onset IUGR 

(n=18) 

 

2,16 (0,2= 

 

31,21 (6,9) 

 

0,75 (0,05) 

 

29,0 (6,1) 

 
Mean value and standard deviation of 3DPDA in each Group. Group 1, normal umbilical artery (UA) pulsatily index (PI) and 

normal middle cerebral artery (MCA) PI ;Group 2 , abnormal umbilical artery (UA) pulsatily index (PI) (mean > 2 SD) and 

normal middle cerebral artery (MCA)  PI ; Group 3 abnormal umbilical artery (UA) pulsatily index (PI) (mean >2 SD) and 
abnormal middle cerebral artery (MCA) PI (PI < 2 SD) and pathological  ductus venous (DV) PI (mean>2 SD). AGA, 

appropriate for gestational age.* P<0,05 vs Controls (Student’s t-test)  and p<0,05 vs Group 2 and Group 3 (ANOVA).  

 

 

 

Table 3 shows the results of the VI, FI and VFI and the volume of the sampled brain 

in zone 2 in the Control Group and in the fetuses with IUGR at different hemodynamic 

stages.  

VI and VFI values were significantly decreased in fetuses with Late Onset IUGR 

(normal values of fetal arterial and venous Doppler (Group 1) compared to Control 

Group.  

The VFI both in the Group 2 and 3 (Early Onset IUGR) were very significantly 

increased compared to Control Group. Besides, the volume of the sampled brain (zone 

2) is significantly increased in the fetuses with an abnormal UA PI and a normal MCA 

PI. 

 

 

 
 

 

 
Table 3 – Three dimensional Power Doppler Angiography vascular parameters values  in Zone 2  in the  Control Group and  

Foetuses with Intrauterine Growth Restrictions at different hemodynamic stages (Group 1, Group 2 and Group 3) 
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 Vascularity 

Index (V.I.) 

Flow Index 

(F.I.) 

Vascularity 

Flow Index 

Volume 

(cm3) 

Control Group 

(AGA n = 183 ) 
 

3,38 (0,6) 

 

27,67 (5,8) 

 

1,15 (0,3) 

 

5,13 (1,2) 

Group 1 

Late Onset IUGR 

(n= 34) 

 

0,95* (0,3) 

 

26,56 (7,6) 

 

0,21* (0,1) 

 

2,81 (0,7) 

Group 2 

Early Onset IUGR 

(n=18) 

 

4,95 (1,2) 

 

30,29 (7,7) 

 

2,10* (0,2) 

 

7,10* (2,3) 

Group 3 

Early Onset IUGR 

(n=18) 

 

5,17 (1,2) 

 

34,09 (6,3) 

 

3,5** (0,2) 

 

5,21 (1,5) 

 

Mean value and standard deviation of 3DPDA in each Group. Group 1, normal umbilical artery (UA) pulsatily index (PI) and 

normal middle cerebral artery (MCA) PI ;Group 2 , abnormal umbilical artery (UA) pulsatily index (PI) (mean > 2 SD) and 
normal middle cerebral artery (MCA)  PI ; Group 3 abnormal umbilical artery (UA) pulsatily index (PI) (mean >2 SD) and 

abnormal middle cerebral artery (MCA) PI (PI < 2 SD) and pathological  ductus venous (DV) PI (mean>2 SD). AGA, 

appropriate for gestational age. 
* P<0,05 vs Controls (Student’s t-test)  and p<0,05 vs Group 2 and Group 3 (ANOVA) 

** P<0,05 vs Controls (Student’s t-test)  and p<0,05 vs Group 1 and Group 2 (ANOVA) 

 

 

 

 

5.5 Discussion 

In Late Onset IUGR fetuses (Group 1), presenting  normal Bidimensional Doppler 

flow indices of umbilical and middle cerebral arteries, Vascularity Index (VI) and 

Vascular Flow Index (VFI) of the frontal zone of the fetal brain resulted increased 

demonstrating the “frontal brain sparing effect” . On the other hand, these vascular 

parameters were decreased in the temporal zone suggesting a vascular redistribution 

during brain sparing effect according to a regional increase in bloody supply to the 

frontal region sprinkled mainly by the anterior cerebral artery. This shift may indicate 

that general cognitive functions, such as impulse control, language, memory, problem 

solving and socialization may be preferentially preserved suggesting a hierarchical 

order in the protection of the brain functions. (135) 

Besides our preliminary findings are in line with recent studies in growth-restricted 
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fetuses, suggesting that the anterior cerebral artery shows Doppler signs of 

vasodilatation before these are observed in the MCA.  (121, 122) 

The data on the Vascular Flow Index of the Temporal Zone, sprinkled mainly by the 

Middle Cerebral Artery, in both Groups of Early Onset IUGR, with and without 

abnormal bidimensional Middle Cerebral Artery findings (Group 2 and 3), revealed a 

preferential increment in bloody supply to the temporal region. 

Most current clinical protocols for fetal growth restriction are based on the 

assumptions that the onset of a brain-sparing effect is indicated by a reduced Middle 

Cerebral Artery Pulsatility Index (MCA PI), representing a protective hemodynamic 

response in the entire fetal brain.  

The results obtained by power Doppler Angiography (3D-PDA) show a different 

pattern of vascular blood distribution in the brain of IUGR fetuses in relation to the 

bidimensional Doppler findings. 

MCA vasodilatation (MCA PI reduction) may do not represent a protective response 

but rather the starting point after which the protection of the frontal area begins to 

decline.  

The “real brainsparing effect” seems to be marked by hemodynamic changes in the 

anterior cerebral artery (ACA) and consequently in its districts. If confirmed, these 

findings might have important implications, especially since Doppler findings may be 

subtle and accurate identification of growth restriction arising in the third trimester 

still provides a challenge.  

The clinical significance of the observations reported in the present study remains to 

be established by larger prospective studies with long term postnatal neurological 

follow-up. 
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According to these results, 3D sonography and power Doppler angiography can be 

considered as new techniques offering to study additional vascular parameters of the 

fetal brain allowing the evaluation of non invasive “brain sparing markers” in IUGR 

fetuses. 

Three Dimensional Power Doppler Angiography (3D PDA) could be considered as an 

important tool to evaluate fetal well-being for fetus affected by Late Onset IUGR, 

adding more informations compared with traditionl parameters obtained using only 

bidimensional Doppler. 

Three Dimensional Power Doppler Angiography (3D PDA) could be considered as a 

new method to detect high risk pregancies and it should be included in the protocols 

to define the timing of the delivery. 

Furthermore, construction of reference charts and an intra- inter- observer variability 

study of vascular indices of fetal brain circulation obtained in 3D-PDA mode in normal 

pregnancies will be planned. 

The clinical significance of the observations reported in the present study remains to 

be established by larger prospective studies with long term post - natal neurological 

follow-up. 
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