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Abstract

This work consists of three main parts. In chapter 1 the Self-Organizing Maps (SOMs),
proposed by T. Kohonen (1982), are analysed in their particular features. In order to
apply the proposed SOM method to the analysis of geophysical data, the architecture and
processes involved in the training of a SOM map are examined in detail. In the second part
of the first chapter some methods to detect errors in the topological map organization and
to compare, in terms of quality, different trained maps obtained using the same dataset are
discussed. A useful and commonly used method to visualize a SOM map (the U-matrix,
Unified distance matrix) is shown and a procedure is proposed for the automatic detection
of clusters on the map, choosing a dissimilarity threshold below which the code vectors
of the map neurons have features that may be considered statistically similar. A new
discriminant function (the weighted cross-correlation coefficient) is then suggested instead
of the classic Euclidean distance; it will be applied in each part of the SOM process to
calculate the dissimilarity between any pair of vectors (input vectors and/or code vectors).
The first chapter ends with a brief discussion about the advantages of using toroidal maps
rather than flat maps.

The second part of this work (chapters 2 and 3) aims to show the results of some applica-
tions of the proposed SOM method to analyse geophysical data. In particular, in chapter 2,
the SOM process is used to study the dynamical regimes of volcanic systems, starting from
the tremor acquired at the Raoul volcano (Kermadec Islands, New Zealand) and Ruapehu
volcano (North Island, New Zealand).

The Self-Organising Maps allow an automatic pattern recognition, as independent as pos-
sible from any a priori knowledge. In the training phase, volcanic tremor spectra are
randomly presented to the network in a competitive iterative process. Spectra are then
projected, ordered by time, onto the map. Every spectrum will take up a node on the map
and their time evolution on the map can highlight the existence of different regimes and
the transitions between them. We show a practical application on data recorded at Raoul
Island during the period around the March 2006 phreatic eruption which reveals both a
diurnal anthropogenic signal and the post-eruption system excitation.

SOMs are then applied to assess the low level seismic activity prior to small scale phreatic
events at Ruapehu volcano New Zealand. A hierarchical clusterization of the SOM nodes
follows the map training phase and the data projection onto the trained map. Two Ru-
apehu events were examined: a phreatic event on 4 October 2006 which displaced the crater
lake producing a 4 m high wave on the lake edge, and the more energetic 25 September
2007 phreatic eruption. The SOM analysis provides a classification of tremor spectral pat-
terns that cluster into three regimes, labelled by colours. The pattern for both eruptions is
consistent with a pre-eruption spectral pattern including enhanced spectral energy in the
range of 4 to 6 Hz. This gives way to spectra having broader energy between 2 and 6 Hz,
just prior to the eruption. The post eruption pattern includes spectral peaks at generally
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lower frequencies of 2 to 4 Hz. Clusterization into only three groups yields highly non-
unique solutions which cannot explain the variety of processes operating at Ruapehu over
long time periods. However, it is noteworthy that the SOM map trained with 2006 data
can correctly process also data recorded in 2007. In particular, the approach highlights
remarkable similarities that may be explained by a pattern of slow pressurisation under a
hydrothermal or magmatic seal, followed by seal failure and subsequent de-pressurisation
for the two events studied.

In the third chapter the SOM method has been applied to the HVSR technique (or H/V
spectral ratio or Nakamura’s method) with the intent to improve this method that allows
the identification of the fundamental frequency that characterizes the sedimentary deposits
of a site in a cheap and relatively easy way. The main issue is that difficulties in data in-
terpretation occur especially in non-invasive geophysical techniques and/or when the data
are multidimensional, non-linear and highly noisy. Another important task is to ensure an
efficient automatic data analysis, in order to allow a data interpretation as independent as
possible from any a priori knowledge. The application of the proposed SOM method to
ensure a more reliable identification of the peak of the H/V function within the microzona-
tion project for the Salta city area (Argentina) is discussed. SOM results are represented as
two-dimensional maps, with a non-parametric mapping that projects the high dimensional
original dataset in a fashion that provides both an unsupervised clustering and a highly
visual representation of the data.

The third part of this work consists in an appendix that shows the scripts for the imple-
mentation of the proposed SOM method. The SOM process has been entirely implemented
using the free software environment R (http://www.r-project.org/). Some packages were al-
ready available in the repositories of R software (http://cran.r-project.org/web/packages/)
and were adapted to implement some parts of the process, some other parts have been
originally developed from scratch.
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Chapter 1
Self Organizing Maps

Self Organizing Maps (SOMs) are a particular kind of unsupervised artificial neural net-
works. Introduced in 1982 by Teuvo Kohonen, they are used in the analysis and visualiza-
tion of data sets of high dimension. Quoting the man who conceived and formalised the
SOM process, we can say that “the main applications of the SOM are in the visualisation
of complex data in a two dimensional display, and creation of abstractions like in many
clustering techniques” [Kohonen, 2001].

Maps are not only tools of visualization, they also represent an analysis tool. Appropriate
display of clusters can give the analyst an insight that it is impossible to get from reading
tables of output or simple summary statistics. For some tasks, appropriate visualization
is the only tool needed to solve a problem or confirm a hypothesis, even though we do not
usually think of maps as a kind of analysis.

The basic principle of the SOM is that our knowledge organisation at higher levels is
created during learning by algorithms that promote self-organisation in a spatial order.
SOMs are then neural networks that pay attention to spatial order. A SOM consists of a
grid of a predetermined number of equally spaced nodes, it’s aimed at the display of the
sample input data, of arbitrarily large size, in a particularly simple structure and small
size. The grid is usually a bi-dimensional grid, but also three-dimensional grids can be
used. Referring to the bi-dimensional grids, generally the number of nodes varies from a
few hundred to a maximum of a few thousand, depending on the nature of the sample. In
correspondence of each node of the grid is placed a so-called "neuron" (by analogy with
the structure of the cerebral cortex). This is nothing more than a vector with the same size
of the vectors that constitute the data of the sample to be analysed, connected with the
other neurons to form the network. The SOM network evolves during the process and does
it modifying, for any given input, the neuron (and therefore the vector that corresponds
to the unit on the grid) most similar to it and neurons belonging to the grid area defined
as “neighborhood” of that neuron.

The SOM architecture form can be thought as the representation of data features that
assume the form of a self-organizing feature map, geometrically organized on a grid. In
the pure form, the SOM defines an “elastic net” of points (each one is described into the
n-dimensional input space by an n-dimensional vector) that are fitted to the input data
space to approximate its density function in an ordered way. The algorithm takes thus
a set of n-dimensional objects as input and maps them onto nodes of a bi-dimensional
grid, resulting in an orderly feature map. To make sure that the display of the input data
features is significant, the SOM aims at preserving the topological properties of the data
set, so that similar neurons will occupy adjacent positions on the map. Similarly two input
data, considerably dissimilar, have to belong to different neurons on the map and these
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neurons have to occupy two positions not close on the map.

Each input data is associated with one and only one neuron that represents its image on
the grid. Whereas neurons are distributed in the input space as entities of the same size
of the input data, they constitute an approximation of the distribution of the sample: the
more densely populated regions corresponds to a higher number of neurons on the map
and vice versa.

SOM applications are multiple and potentially related to each field of study where the
aim is to identify complex and non-linear statistical relationships in the input space, by
means of simple geometric relationships on the map. Different studies applied SOM for
example to improve the analysis and visualization of gene expression microarray data in
human cancer [Hautaniemi et al., 2003], or to visualize performance data of a GSM network
analysing degradations in signaling and traffic channel capacity of the network [Lehtimaki
and Raivio, 2005], or again to video surveillance involving moving object detection, tracking
and normal/abnormal event recognition [Dahmane, 2005].

1.1 SOM architecture

As previously mentioned, the main goal of a SOM is to associate to a sample of arbitrarily
large size, a map, performing a sort of projection of the data on to the map in such
a way as to ensure that they are organized according to a topological order, that is not
predetermined, but reflects the intrinsic organization of the sample itself. SOM architecture
defines a flexible network of points, called neurons, each neuron is associated with a weight
vector (also called code vector) having the same dimension of data. Each neuron occupies
a different node of the grid and the whole SOM network, allowing the modification of
the weight vectors according to the input data, self-organizes to approximate at best the
sample’s density function. Thus SOM algorithm receives in input a set of n-dimensional
objects, each of which can potentially go to activate any of the neurons. Neurons are fully
connected together and activation, as well as the consequent change of the weight vectors,
does not generally involve only the single activated unit, but a neighborhood area.

Various properties of the brain were used as an inspiration for a large set of algorithms
and computational theories known as artificial neural networks (ANN; Haykin, 1998). Such
algorithms have shown to be successful, however a vital aspect of biological neural networks
was omitted in the algorithm’s development. This was the notion of self-organisation and
spatial organisation of information within the brain. In 1981 Kohonen proposed a method
which takes into account these two biological properties and presented them in his SOM
algorithm Kohonen, 1981.

The SOM algorithm generates a map representing a scaled version of n-dimensional input
data, this map is due to the algorithm’s inspiration from the way that mammalian brains
are structured and operate in a data reducing and self-organised fashion. In the brain,
during growth, a subdivision takes place in specialised areas for input stimuli. Similarly in
the SOM, during learning, takes place the creation of a map subdivided into regions, each
region responding to a particular feature of the input space. An example from the biological
domain is the somatotopic map within the human brain, containing a representation of the
body and its adjacent and topographically almost identical motor map responsible for the
mediation of muscle activity.

Moreover similar types of information (usually sensory information) are held in close spatial
proximity to each other in order for successful information fusion to take place as well as to
minimise the distance when neurons with similar tasks communicate. For example sensory
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information of the leg lies next to sensory information of the sole. The fact that similarities
in the input signals are converted into spatial relationships among the responding neurons,
provides the brain with an abstraction ability that suppresses trivial details and only maps
the most important properties and features along the dimensions of the brain’s map [Ritter
et al., 1992|. A group of neighboring neurons is organized in a high activity “bubble”, well
distinguished from all other neurons in a low activity state. As we shall see, this biological
phenomena, is modeled in a Kohonen network when the weight vectors update is extended
to the neighborhood of the winner neuron (also called Best Matching Unit, BMU), so
defined because among other units of the network, that neuron is the most similar to the
input data.

X1,1

input | %12

vector X7 |... Xn
Xi,n X2

n-dimensional
O »
layer of

source nodes

reduction of
dimensionality

code
vector

dl

y
2-dimensional

Kohonen layer
(discrete map)

Figure 1.1: Illustration of a SOM neural network. The SOM projects the information of an
n-dimensional feature space into a bi-dimensional grid of neurons, whereby the dimension
are reduced. After training and cluster recognition SOM map should be able to identify an
input activating just the corresponding area onto the map in function of input’s features.
The Kohonen layer tipically consists of a localised region of active neurons against the
quiet background (loosely based on Klose [2006], fig. 1a).

The first step in the creation of a SOM is to determine its size and topology. The SOM’s
size is given by the number of neurons, determined as the product of the chosen length of
the two sides of the map. It has been shown that while self-organizing maps with a small
number of nodes behave in a way that is similar to K-means', larger maps rearrange data

K-means clustering is a method of vector quantisation that is popular for cluster analysis in data
mining. K-means clustering aims to partition n observations into k& clusters in which each observation
belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This results in a
partitioning of the data space into Voronoi cells, with the aim to minimise the within-cluster sum of
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in a way that is fundamentally topological in character. Moreover it must be noted that
SOM and K-means algorithms are rigorously identical when the radius of the neighborhood
function in the SOM equals zero. In this case the update only occurs in the winning unit
just as happens in K-means [Bodt et al., 1997].

There are three principal options to choose the size of the SOM map. The first one is to
choose a very large map on which the number of neurons is greater than the number of
input patterns [Ultsch, 1993]. The second and usually the most common option is to build
a medium sized map, smaller than the number of input patterns, but still large enough to
have a few units representing each cluster existing in the data [Kohonen, 2001|. Finally,
there is also the possibility to choose small maps where the number of units is drastically
smaller than the number of input vectors, usually with only one unit for each expected
cluster [Bacao, 2004]. The relevance of the choice of the size of the SOM is such that it
can be argued that SOMs of significantly different sizes constitute different tools, which
may be used to perform different tasks.

When opting for a larger map the underlying assumption is that we wish to explore in
detail the underlying distribution of the data. By using more units than input patterns it
is possible to obtain very large U-matrices (1.4) on which distances between input patterns
can easily be identified. This can be seen as a strictly exploratory exercise. The data
reduction, in this case, is solely based in projecting the n-dimensional space onto a bi-
dimensional space.

The decision to build a medium sized map can be seen as a compromise, in the sense that
although reducing the number of dimensions and creating clusters, it still enables the user
to understand the basic (or broad) distribution of the data, eventually leading to further
and more severe reductions.

Finally, small maps are used when the user is interested in clustering data without concerns
about the detailed analysis of its distribution. In this case the primary objective is to form
clusters of input patterns which are as similar as possible, aiming at a one step substantial
data reduction. In this context the U-matrix is of little value, and component planes
become more relevant as they allow a simple description of the resulting clusters.

Two topology types are frequently used. The first, and more frequently encountered, is
the square topology, where each neuron is connected to four neighbouring neurons at
a unitary distance and four neurons at a distance equal to v/2. The second possibility
is the use of a hexagonal topology, with six neighbours to every neuron, each one at a
unitary distance. The choice of a topology rather than the other involves a variation of
the “neighborhood relations”; the relevance of which will be more clear by analysing the
SOM learning process. Is important to note that at the edges of the map neurons have a
neighborhood less numerous and this implies that these neurons are potentially activated
fewer times.

1.2 SOM algorithm

The SOM belongs to the category of the unsupervised competitive learning networks. It is
called competitive learning because there is a set of nodes that compete with one another
to locate the Best Matching Unit (BMU, the neuron with the most similar code vector to

squares. K-means has problems when clusters are of differing sizes and densities, have concavity shapes
and the dataset has outliers. Due to the effect of the neighborhood parameter which forces units to move
according to each other in the early stages of the SOM process, SOM is less prone to local optima than
K-means [Bagao et al., 2005].
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Figure 1.2: Network size and topology type of a SOM are chosen before training begins.
Notice overall shape difference for SOMs with identical size (side length equal to 5 in both
cases), but different topology type.

the input) that becomes active. Therefore the competitive learning means that a number
of nodes is comparing the same input data with their code vectors and the node with
the best match (say, "winner") is then tuning itself to that input; in addition the BMU
activates its topographical neighbours in the network to take part in tuning to the same
input. The more a node is distant from the winning node the weaker the learning. The
level of similarity between the input data and each code vector is measured typically using
the Euclidean distance as the discriminant function. In this work an unconventional choice
of the discriminant function is proposed.

It is also called unsupervised learning because no information concerning the correct clus-
ters is provided to the network during its training. Like any unsupervised clustering
method, the SOM can be used to find clusters in the input data, and to identify an unknown
data vector with one of the clusters. Moreover, the SOM represents the results of its clus-
tering process in an ordered bi-dimensional space. A mapping from a n-dimensional data
space onto a bi-dimensional grid of nodes is thus defined. Such a mapping can effectively
be used to visualise metric ordering relations of input data.

Neurons code vectors are modified according to two functions:

e during learning, not only the weight vector of the winning neuron is updated, but
also those of its map neighbors and, thus, they end up responding to similar inputs.
This is achieved with the neighborhood function, which is centered at the winning
neuron, and decreases with the grid distance to the winning neuron (the BMU).
During training, the radius of this function will usually decrease, so that each unit
will become more isolated from the effects of its neighbors. It is important to note
that many implementations of SOM decrease this radius to 1, meaning that even
in the final stages of training each unit will have an effect on its nearest neighbors,
while other implementations allow this parameter to decrease to zero. The degree
of lateral interaction between stimulated neuron and neighboring neurons is usually
described by a Gaussian function;

o the learning function, which defines the degree of modification of the activated neu-
rons, allowing these to adapt to the input. As the radius of the neighborhood func-
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tion, also this function decreases monotonically with the number of iterations of
the process, so the maximum learning rate occurs in the initial stage of the SOM
algorithm.

v} ~
. £
¢ ® ® —®
{2
[ 3
T
-
Tt o
b L
3
® - ® ® e
. (5] o L,
=) - 2 )

Figure 1.3: The effect of the neighborhood function in the SOM algorithm. Starting from
a perfect arrangement of the weights of a square grid (full lines), the weights nearest to
the current input (indicated with the cross) receive the largest updates, those further away
smaller updates, resulting in the updated grid (dashed lines).

When an input activates a neuron and then it becomes the BMU, a correspondence between
the input data and the winner neuron is created, among all the neurons on the map, that
neuron is the one that projects the input onto the map with the best approximation. It is
also recalled that the process leads to train the map preserving the topological properties
and thus similar neurons occupy adjacent nodes on the grid, it follows that the SOM leads
to the creation of clusters that split the sample and make viewable the intrinsic relations
existing between the data. This kind of neural networks is called “unsupervised” since any
kind of information is provided during the training phase of the map and about the correct
and expected data clustering. Furthermore, unlike for example K-means algorithm , the
number of clusters is not given in advance.

There are two high-level stages of the algorithm that ensure a successful creation of a
map. The first stage is the global initialisation stage in which we start with a map of
predefined size and not organized at all, with neurons of random nature; a sort of a rough
and incomplete estimation of the input data distribution. Initialisation may be done using
completely random values (which usually involves to slow convergence), or using values
obtained from randomly selected input patterns [Kohonen, 2001|. Once a desired number
of data is used for such initialisation step, the algorithm proceeds to the fine-tuning stage,
where the effect of the input data on the topography of the map is monotonically decreasing
with time, while individual neurons and their neighborhood are activated and thus fine
tuned to increase their discriminant function value towards to the present input.

The original algorithm developed by Kohonen includes initialisation followed by three steps

10
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which are repeated until the process goes through many iterations until it converges, i.e.
the adjustments approach zero:

1. competitive process implies to find the neuron whose code vector is closest to the
input vector in the n-dimensional space. This neuron wins the competition and it’s
called the BMU;

2. cooperative process to identify and activate neighboring neurons;

3. adaptive process implies to adjust the weights of the winning neuron the nodes close
neurons, so that they become still closer to the input vector in the n-dimensional
space.

It is possible to define a number of iterations in advance, alternatively map training process
can be stopped when no more substantial changes to the code vectors are carried out. At
each iteration the entire data set is processed and each data is fed to the map just one
time and in random order.

Formally, the SOM process may be described by the following algorithm:

Let: X Dbe the set of n training patterns xj,x3...x, (n is the number of

input vectors);

W be a pxgq grid of units w;; (pxq is the number of neurons),
where i and j are their coordinates on that grid ;

a be the learning rate, assuming values in |0,1[ , initialised to a
given initial learning rate;

o be the radius of the neighborhood function h(wm,wBMU,U)
initialised to a given initial radius.

while aa >0
{
for k=1 to n
{
for w; ;€W (be i=1,2..p and j=1,2..q)
{

calculate the distance di,j=fDISCRIMINANTFUNCTION{Xk3 WZ'J‘}
select the unit w;; that minimises d;; as the BMU

update each unit w;; €W : w;;= w;; + a-h(w ;,wyy,0)-d;;
decrease the value of o and o

Once the SOM map has accomplished the training phase it should be organised in such a
way to be able to analyse the same data set used during the learning process. Moreover is
also possible to use the same map to analyse other samples whose data are of the same type
as those of the sample used for the training. Fach time that a new data is projected onto
the map, the network finds on the grid the neuron whose code vector has the minimum
dissimilarity from the input vector, then the output value is no more than the location of
that neuron and therefore its cluster.

11
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1.2.1 Code vectors initialisation

In literature the issue that SOM algorithm is very sensitive to code vectors initialisation
and then the solution obtained by SOM strongly depends on that, is often emphasised
[Attik et al., 2005]. Certainly all existing SOM initialisation methods do not guarantee
to obtain the best minimal solution, for this reason clusters shape and number of neu-
rons constituting each cluster may vary. During the performed data analysis it has never
happened that starting from two different map initialisations the process reaches to a com-
pletely different map organisation. Of course clusters position on the map vary and a slight
difference in the number of neurons in each cluster has been noticed sometimes, but the
process every time converged to a minimum in terms of dissimilarity between each input
vector and the corresponding code vector onto the map. Moreover for a chosen threshold
on the dendrogram (see 1.6) the number of clusters doesn’t vary and neither the peculiar
characteristics of the sample found in the clusters. This good result is probably because
of the care that has been taken in the choice of the map size and in the choice of training
parameters.

Two initialisation approaches are usually implemented for clustering methods, namely su-
pervised initialisation approach and unsupervised initialisation approach. The first one is
a supervised selection which assumes that a subset of samples data can be labeled in ac-
cordance with a tentative classification scheme. The second is generally preferred because
of its better computational behaviour, without the manual effort to label unlabeled subset
of data, since usually little or nothing is known about the intrinsic structure of the sample.

Random initialisation approach was found to be a preferable initialisation approach for
its simplicity. This approach is not necessarily the best approach for producing a rapid
convergence to a stable state, but it doesn’t assume any a priori knowledge about the
sample. It can be performed choosing for each component of each code vector a value
randomly from the range of values observed in the data set. Otherwise sample data can be
directly used assigning at each code vector a randomly chosen data taken from the sample.

1.2.2 Competition process

At iteration ¢ the input x(t) is sorted randomly, but without repetition, between the data
of the whole sample X, so that when ¢ equals the number of sample data, each of these has
been presented to the map one and only one time. Generally the same set X is submitted
to the SOM more times.

For each input x(t) € R", each neuron on the map uses the discriminant function to
compute its value of similarity with the input. The neurons compete with each other in
this way, the winner is the neuron that has the greatest similarity value.

Let be x;(t) = [xi1(t), xi2(t) ... z; n(t)] the i-th input vector chosen randomly in, at {-th
process iteration. Let be w;(t) = [wj1(t), wj2(t) ... w;jn,(t)] the code vector of the j-th
neuron on the grid. In order to find the most similar neuron to the input vector, the scalar
products w;(t) - x;(t) (j =1, 2...n,, and n,, is the number of neurons onto the map) are
compared, the neuron whose code vector maximises the scalar product value is chosen to
be the BMU. In other words, the maximum value of the scalar product corresponds to the
minimum Euclidean distance:

n

[1xi(t) = w; ()| = | D [@im(t) — wjm(t)]? (1.1)

m=1

The winner neuron is so defined because it verifies the following condition:

12
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i () = We(a) || = min { [[xi(t) — w; (B)[] } (1.2)

The Euclidean distance is the typical choice of discriminant function, but it isn’t the only
possible similarity measure, some experiments with the correlation coefficients are carried
out. Euclidean distance measure is very restrictive in comparison to the human perception
of time series. A time series and its translated copy appear dissimilar under the Euclidean
distance (because the comparison is made pointwise), whereas a human would perceive
both series as similar. As the human perception is tolerant to translational effects, using
the cross correlation distance would be a better choice than Euclidean distance. Moreover
a measure of similarity should be invariant under admissible data transformations, which
is to say changes in scale too.

It has been demonstrated [de Gelder et al., 2001] that various similarity criteria of two
functions, f(y) and g(y), including the sum of squared differences, the correlation coefficient
and the overlap integral, are related to the cross-correlation function Ry ,(7) at 7 = 0.

Ryq(T /f gy +7)dy

Thus, they cannot provide any information about patterns that are shifted relative to each
other. In this work a generalised expression for similarity proposed by [de Gelder et al.,
2001] , St,q, which is based on a weighted cross-correlation function, a weighting function
z(7) normalised with the product of the two weighted autocorrelation functions:

f 2(1 )ng( T)dr
\/f T)Ryf(1)dr [ 2(T)Ry4(7)dr

z(7) is a triangular weighting function of width defined as z(7) = 1 — I7l/n if |7| < h and
z(1) = 0if |7| > h. The BMU is the neuron w,(,) that maximises the value of the function
S¢g- The overall effect of the competition process is that the continuous input space X of
activation patterns is projected onto the map discrete output space M.

1.2.3 Cooperation process

The winning neuron w,(,) determines the spatial location of a topological neighbourhood
of neurons on the map that have to be excited. A neighbourhood function determines
how strongly the neurons are connected to each other. This function must be uni-modal,
with the lateral distance d(,); = |re 7;| computed on the SOM map. The distance is
calculated between the BMU neuron w,(,) and each generic neuron w; (r. and r; determine

the position of the two neurons on the map). A typical choice of h.g) ; is the Gaussian

dita) g
hc(x),j(t) = exp (20_(th2> (13)

The value of the neighbourhood function also depends on the discrete time t that identifies
the iteration number: at every step ¢, the whole dataset will be (re)processed by the

function:

network.

It is noteworthy that at each step the dataset is re-ordered randomly and the radius o(t)
of the neighbourhood function is decreased monotonically in order to facilitate conver-
gence. The neighborhood radius o(t) defines the width of the neighborhood function and

13
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contributes to establish the degree of influence that the BMU exerts on neurons that the
cooperative process has defined as constituents of its neighborhood. A popular choice for
the effective width of the neighbourhood function is the exponential decay:

o(t) = 7 - exp (—%) (1.4)

where og is the value of o at the beginning of the SOM algorithm, 7" is a time constant
and ¢ identifies the iteration number.

hewy(t)
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Figure 1.4: Plot of the neighborhood function built according to the Gaussian function
defined by equation 1.3 (1.4a and 1.4b). Black dots placed along the x-axis (1.4b) shows
how the influence of the BMU on neurons in its neighborhood decreases away, on the map,
from the same BMU. The value of the neighborhood radius decreases with the increase of
the number of iterations t (1.4c), so the width of the Gaussian function decreases more and
more towards the center, reducing the number of neurons that constitute the neighborhood
of the BMU. At the limit, in the final iterations of the SOM process, only the BMU is
active on the map.

A possible alternative to the Gaussian function is the use of a simple rectangular function
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defined as:

b ) = constant whend < o(t)
() o whend > o(t)

1.2.4 Adaptive process

An adjustment of the code vectors of excited neurons is carried out in order to reinforce
the answer of the BMU neuron for similar input patterns, slowly allowing the map to be
partitioned into consistent clusters. By using discrete-time formalism, the adaptive process
usually takes place according to the following model:

Wit +1) = w;(t) + at) - he), (1) - [xi(t) — w;(t)] (1.6)

where w;(t) = [w;1(t), wj2(t)...w;n(t)] is the code vector of the j-th neuron at the
iteration ¢ and z;(t) is the input vector. w;(t 4+ 1) is the updated code vector that will
take part in the competition process at iteration t + 1. The parameter a(t) (0 < a(t) < 1)
is the learning-rate factor, a monotonic function which also decreases with the regression
step t in order to facilitate convergence. Two suitable functions are shown below:

a(t) = ap - exp <—t> (1.7)

-
a(t) = ag (1.8
®) T+t )
where ¢ is, as usual, the iteration number and 7 is a new time constant (fig. 1.5).
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Figure 1.5: Graphical representation of «, as a function of the the number of iterations ¢.
In fig. 1.5a the diagram of function 1.7 is drawn for ¢ equals to 100 iterations, ag = 0.5
for 7 between 7 = 20 and 7 = 40, increasing the value of 7 in four steps. In fig. 1.5 the
diagram of function 1.8 is drawn for ¢ equals to 100 iterations, ag = 0.5 for 7 between
7 =5 and 7 = 20, increasing the value of 7 in three steps. Any iteration with o = 0 has no
sense, since the network does not improve its organisation when the learning rate is equal
to zero.
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For an explanatory purpose a couple of generic vectors of size 30 are chosen. They would
represent the code vector w;(t) of the BMU (1.6a, red line) for the input vector x;(t)
(1.6a, yellow line). If, as supposed, w;(t) is the code vector of the neuron that has won
the competition process, then the neighborhood function h(,) ;(t) is equal to one (1.6b).
If this is the first iteration of the SOM process, then the learning rate a is maximum and
equal to ag. In the fig. 1.6a the blue line represents the updated code vector w;(t + 1),
modified in accordance with the equation 1.6.

In fig. 1.6b the input vector x;(t) and BMU’s code vector w;(t) are normalised with respect
to the sum of their values. The updated code vector w;(t + 1) has been calculated using
the eq. 1.6. Fig. 1.6c suggests the comparison between the code vector w;(t + 1) that has
been calculated from the not normalised vectors and the same code vector updated from
the vectors x;(t) and w;(t) normalised with respect to the sum.

/ \. Moot | A [\
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Figure 1.6: Graphical representation of a generic input vector x;(¢) and the corresponding
BMU'’s code vector w;(t). The updated code vector w;(t+1) has been calculated using the
eq. 1.6 (1.6a). In fig. 1.6b x;(t) and w;(t) have been normalised with respect to the sum
of their own values. Fig. 1.6c proposes the comparison between the code vector w;(t+ 1)
in fig. 1.6a and the same code vector drawn in fig. 1.6b.

The goal of the SOM process is to minimise the distance of each data input from the
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corresponding neuron on the map. The following example aims to show the organisation
of the map in the input space. For this purpose a data set in a tri-dimensional input
space has been chosen and the SOM map has been initialised choosing the code vectors
randomly among the same input data. The simple data set is composed by three clusters
of data points. The clusters are uniformly distributed about the points (0;0;0), (3;3;3)
and (9;0;0) with a maximum deviation from the center of 1 unit. The three clusters have
an amount of 10, 15 and 20 points respectively.

Since the dimensionality of the input space (tri-dimensional) is larger than the dimension-
ality of the SOM (bi-dimensional), the map will try to balance the competing errors in how
well it maps the data points versus how well it maps the topology, as if the SOM process
would try to bend a sheet of paper to fill the interior of an empty cube.

R S Y AN LY I M N Y W

INITIALIZED

CLUSTER O -~

N N M AN L T ST N A Y )

TRAINED

Figure 1.7: Staying in the tri-dimensional input space, figure shows the position of the data
(red crosses) and the position of the SOM map’s nodes (blue circles) at the initialisation
step (1.7a) and for the trained map (1.7b).

In fig. 1.7a red crosses show the input data and the blue circles show the position of SOM
map’s nodes in the input space. The map is squared and its sides dimension are 5x5. SOM
process has been iterated 100 times and the learning-rate factor o varied between 0,5 and
0,01. In fig. 1.7b the trained map has completed the SOM process and it’s well “stretched”
in the input space.
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1.3 Quality map measures

One of the most remarkable properties of the SOMs is the conservation of the dataset’s
topological order during the projection of the data on the Kohonen grid.

Two widely used SOM quality measures try to evaluate the vector projection, which is
sometimes referred to topology preservation, and vector quantisation, related to data com-
pression techniques. There is a tradeoff between these two measures, because increasing
projection quality usually decreases the projection properties. Topology preservation is a
property that is not easy to define and then to measure, since usually a major reduction of
dimensionality is performed, some information is necessarily lost in the projection process.
Usually a measure of proximity between input and output spaces is performed.

Moreover even if the SOM process is called “unsupervised”, since it’s fully automated from
the first step, the map initialisation, to the last iteration of the training process, some
decisions have to be taken about for example the dimension of the map, the shape of the
neighborhood function and the functions that describe the decrease of the neighborhood
radius and learning rate, together with the choice of their initial and final values.

For these reasons sometimes the need to process multiple times the same data set to get
different SOMs arises. However there is the need to measure the SOMs quality, both in
case of need to compare the maps to choose the one better structured and potentially more
suitable for the data analysis, and in the case that just one map has been trained.

1.3.1 Average quantisation error

The average quantisation error is traditionally related to all forms of vector quantisation
and clustering algorithms. Thus, this measure completely disregards map topology. The
average quantisation error is computed by determining the average distance of the input
vectors to the corresponding code vectors, so an average measure of similarity between
each data and its winning neuron on the map (the BMU) is computed:

N
1
Eq = N ’ Z Hxi - Wc(m),xl” (19)
=1

where N is the data set size, x; is the input data and w,,) ., is the code vector of the
BMU (the subscripts ¢(x), x; indicates that the neuron with the code vector w is elected
to be the BMU by the input x;).

For any given data set, the quantisation error can be reduced by simply increasing the
number of map nodes, because then the data samples are distributed more sparsely on the
map. Because of the tradeoff between vector quantisation and projection properties of the
SOM, changing the training process such that the quantisation error is lowered usually
leads to distortion of the map’s topology.

1.3.2 Weighted distortion measure

The weighted distortion measure can be used to compute an error value for the whole map.

Averaging the quantisation error over all data leads to the distortion or intraclass sum of

squares (which are different names for the same error, used respectively in the information

theory domain and by statisticians). The distances are weighted by the neighborhood
function, since neurons close to the BMU play a more important part in the calculation:
By= 3 h 2 1.1

4= ;k 1 cik 1% — wil| (1.10)
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where N is the number of inputs, K is the number of neurons, ¢; is the best matching
unit (BMU) of input x; and he, x, is the neighborhood function calculated evaluating the
distance between the BMU and neuron k on the grid, the neighborhood radius value has
to be chosen in advance to calculate the weighted distortion measure.

This measure has been proven to be the local energy function for SOM in the case of
a discrete data set and fixed neighborhood function |[Kohonen, 1991]. Vesanto et al.
[2003]showed that it can be decomposed into several components that evaluate the quan-
tisation error and topological preservation separately. Therefore, this measure is able to
evaluate the overall quality of a SOM.

1.3.3 Topographic error

Unlike the two previous measures, assess the topographical order means defining an index
to evaluate if the map is topologically ordered, then check whether similar code vectors
belong to neurons arranged in adjacent positions on the grid and vice versa.

The topographic error is the most simple of the topology preservation measures. For the
whole dataset, the respective best and second-best matching units are determined. If these
are not adjacent on the map grid, this is considered an error Kohonen [2001]. The total
error is then normalised to a range form [0; 1], where 0 means perfect topology preservation.

The topographic error is then defined as follows:

N

1
E, = N-;u(xi) (1.11)

where N is the number of input vectors (the dataset size) and u(x;) is a function so defined:

(x,) {1 it BMU;(x;)and BMUs(x;) are not closer on the map
U\X;) =

0 otherwise

The topographic error is affected by the choice of the neighborhood function and by its
amplitude update during the SOM training, moreover the E; value is related to the dataset
heterogeneity and map dimension.

This kind of topographic error is called Forward Projection Error and it appears when a
couple of similar input vectors x; and x,,, that are closed in the input space, are allocated
to a couple of neurons w, e wy that are not closed on the map. Thus two or more distinct
clusters on the map should merge in one, since the similarity of their data.

There exists a second type of error called Backward Projection Error and it appears when
a couple of neurons wy e wy, that are closed on the grid, are the image of a couple of input
vectors X; e X, that are rather dissimilar and then they stay not closed in the input space.
So happens that dissimilar data are projected into a unique cluster.

The concept of topographic error has a reference to the error that occurs when an embed-
ding is attempted in a too low dimension in respect to the input space dimension (for a full
discussion, please refer to Barazza [2004]). The False Nearest Neighbor method (FNN) can
be used to find the lower embedding dimension ? sufficient to reconstruct a n-dimensional

2In mathematics the set X is “embedded” of the set Y when exist an injective function f : X — Y
and it preserves the topology, so a couple of entities that are near (distant) in the first set, are near
(distant) in the second set too. This kind of function is then a morphism. Some examples of embedding is
the existing relation between natural numbers and whole numbers, between whole numbers and rational
numbers, between rational numbers and real numbers and between real numbers and complex numbers.
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space in a m-dimensional space (m < n) preserving the topological properties of the n-
dimensional space. Two entities are called false nearest neighbor when they are distant in
the higher space and their projection on the lower space makes them neighbors.

Increasing the embedding dimension from m to m 4+ 1 the false nearest neighbor are found
out, they corresponds to that couple of entities that are not more near using the embedding
dimension m + 1. Similarly, the percentage of FNN, for a given embedding dimension
m, can be interpreted as the error that is committed using a space of this size for the
reconstruction of the original n-dimensional space |Barazza, 2004].
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Figure 1.8: Figure shows an example of true neighbors (C and D) and a couple of false
neighbors (A and B) projecting the two-dimensional space in a mono-dimensional space.

It seems that the hexagonal maps preserve the topology respect to this error better than
the rectangular ones. This observation arises from a peculiarity of the topographic error
measure rather than a better organisation of hexagonal maps respect to rectangular ones
[Uriarte and Martin, 2006]. In fact the topographic error in rectangular maps increases due
to nearby diagonal units. Although the topographic error does not consider the diagonal
neuron neighbours, it does not really mean that the map does not conserve the local
relations. It could be said that even if diagonal units are not properly neighbours, they are
“special no neighbours”, but the topographic error does not make any difference between
different kinds of adjacent units. This could be one of the reasons why this error devaluates
the rectangular maps.

1.4 Map visualisation

SOMs can be used in two different manners. Neurons can be identified with clusters in the
data space as it happens in k-means.

Otherwise the map space is regarded as a tool for the projection and visualisation of the
high dimensional data space, with peculiarity that these kind of maps are composed by a
large number of neurons, consisting of thousands neurons. Such SOMs allow the emergence
of intrinsic structural features of the data space. These SOMs are self-organised projections
of high dimensional data onto a two dimensional map, preserving topological relationships
of the input space. The U-matrix (Unified distance matrix) is the canonical tool for the
display of the distance structures of the input data on the SOM map [Ultsch, 1992].
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Moreover the U-matrix can help to understand if the map have a suitable organisation for
data projection, since the U-matrix shows the SOM map partition in clusters.

Following the original idea of Ultsch and Siemon [1990], the U-matrix is constructed on
top of the map and has the aim to identify clusters measuring the similarity of each couple
of code vectors associated with neurons that are neighboring on the grid. The SOM map
visualisation becomes easy and intuitive, with a modest computational effort even with a
high number of neurons.

Let n be a neuron on the map and Nn&-gh(n) be the set of immediate neighbors on the
map, w, the weight vector associated with neuron n, then :

Uneight(n) = Y d[wn — wy)] (1.12)

meNneigh (n)

where d[w;,, — Wy,] is the same kind of distance used in the SOM algorithm to construct
the map. The vectors w,, and w,, are the code vectors of the neuron n and m that are
neighboring on the grid.

The U-matrix is a display of the U-heights on top of the grid positions of the neurons on
the map. An U-matrix is usually displayed as a grey level picture or as three dimensional
landscape. On a good quality map dark areas (transition zones) should separate, as far
as possible, the light areas (clusters). Similarly, using a three-dimensional map, ridges
(transition zones) should separate valleys (clusters).

The equation 1.12 calculates the sum of the distances between the neuron n and the set
Npeigh(n) composed by its neighbors. In this work the U-matrix has been improved to
show the distance between the neuron n and each of its neighbouring neurons. So the cell
corresponding to the neuron n show by a number and a circle the amount of input vectors
projected in that neuron, while the cells around are coloured in gray scale to show the
distances between n and the neighbouring neurons. Each one cell assumes a gray tonality
in accordance to the singular distance:

Uheight (n; m) = d[wn - Wm]

where m € Npeign(n).

For illustrative purposes let M be a rectangular matrix of dimensions 10z8 and each one
of its 80 code vectors it’s a vector of length 4 so defined w; = [1, 1, 1, 1], except the code
vectors of the neurons 23, 24 and 33 that are so defined:

W3 73 76 7.7 8.0
w4 = 74 72 7.3 7.2
w33 41 4.6 4.6 4.8

The distances matrix My is built using the same kind of distance used in the SOM algorithm
at each couple of code vectors of neighboring neurons on the grid. In the case study
exemplify the follow matrix is achieved:
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Figure 1.9: In fig. 1.9a is shown the “classic” U-matrix, gray tone of each cell that contains
a neuron is in reliance on the average dissimilarity from the neuron’s code vector to the
code vectors of the neighboring neurons. The more the dissimilarity between code vectors
is higher, the more is dark the gray tone of the cell. In fig. 1.9b is shown the entire
U-matrix using the improves suggested in this work, for the same example considered in
fig. 1.9a. Each cell coloured in gray tone shows the dissimilarity level between a couple of
neurons, the cells placed on the diagonals show the average dissimilarity of the two couples
of neurons.

Both the U-matrices, the “classic” one and the one obtained by the introduced improve-
ments, are displayed in fig. 1.9. In both figures are detectable three neurons whose weight
vectors are easily distinguished from the vectors of the weights of the other units of the
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grid. Moreover is instantly displayed also the relationships of similarity between each pair
of adjacent neurons.

An U-matrix displays the local distance structure of the data set.

The U-matrix delivers a “landscape” of the distance relationships of the input data in the
data space. Properties of the U-matrix are (taken from Ultsch [2003]):

e the position of the projections of the input data points reflect the topology of the
input space, this is inherited from the underlying SOM algorithm;

e weight vectors of neurons with large U-heights are very distant from other vectors in
the data space;

e weight vectors of neurons with small U-heights are surrounded by other vectors in
the data space;

e projections of the input data points are typically found in depressions;
e outliers in the input space are found in “funnels”,
e “mountain ranges”’ on a U-matrix point to cluster boundaries;

e “valleys” on a U-matrix point to cluster centers.

The U-Matrix realises the emergence of structural features of the distances within the data
space. Outliers, as well as possible cluster structures can be recognised for high dimensional
data spaces. The proper setting and functioning of the SOM algorithm on the input data
can also be visually checked.

A further example of the SOM process application to a simple dataset and the related
U-matrix visualisation of the SOM map is shown below.

Fig. 1.10a shows a solid in the three-dimensional space, it’s composed by 12 edges with
different orientation in the 3D space. The orientation of each one edge can be described
by the direction cosines, then a SOM map has been trained using these vectors of length
equal to three and the dataset is composed by these vectors repeated each one 50 times.
In fig. 1.10b the U-matrix shows the SOM trained map, is easy to notice the 12 clusters,
equals to the number of the edges of the solid.

1.5 Correlation as discriminant function

In general, clustering algorithms are used to group some given objects defined by a set
of numerical properties in such a way that the objects within a group are more similar
than the objects in different groups. Therefore a particular clustering algorithm needs to
be given a criterion to measure the similarity of objects, how to cluster the objects into
groups.

SOM process is entirely based on similarity measure between input vectors and code vec-
tors. Moreover the U-matrix is based on similarity measure between code vectors of the
neighboring neurons. It follows that a proper choice of the discriminant function is funda-
mental to run a capable SOM algorithm.

The Euclidean distance is the most popular choice, but it’s not always the best choice. It
takes into account the difference between two samples directly, based on the magnitude
of changes in the sample levels. This distance type is usually used for data sets that
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Figure 1.10: In fig. 1.10a the 12 edges solid is shown. Each one edge is described by its
three direction cosins, the dataset is built repeating 50 times each one of the 12 vectors of
length three. In fig. 1.10b the SOM map and the obtained dataset clustering are shown
by the improved U-matrix representation.

are suitably normalised or without any special distribution problem, since this distance
measure suffers from a high sensitivity to outliers.

Correlation tends to detect the difference in shapes, rather than to determine the magnitude
of differences between two objects.

Correlation between variables is a measure of how well the variables are related. The
correlation coefficient ranges from —1 to 1. A value of 1 implies that a linear equation
describes the relationship between the variables perfectly, with all data points lying on a
line for which one variable increases as the other one increases. A value of —1 implies that
all data points lie on a line for which one variable decreases as the other one increases. A
value of 0 implies that there is no linear correlation between the variables.

Data dependencies are often described by values of Pearson correlation, since this measure
is closely connected to linear regression analysis via the residual sum of squares to the
fitted line. Pearson correlation describes the degree of linear dependence of vectors x and
w by:

Z:’Ln:l[(xi,m — Ha) - (Wjm — )]
VIt @im = 112)2] - [ (W — )]

(1.13)

T(Xia W]) —
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where, looking at the SOM process, x;(t) = [z;1(t), zi2(t) ... zin(t)] is an input vector
and w;(t) = [wj1(t), wja(t)...w;n(t)] is the code vector of one of the neurons. Data
standardisation makes Pearson correlation invariant to rescalings of whole data vectors
by common multiplication factors and to additive component offsets. In other words, the
favorable invariance feature of Pearson correlation results from implicit data normalisation
realised by equation 1.13.

There is a relation between the Fuclidean distance and the Pearson correlation. The first
step consists to express the correlation of the vectors x and w in terms of covariance using
the scalar product (-,-), then it’s necessary to discard the mean value of the vectors x and
w and yield unit variance (z-score):

i = (X = e - 1)/ var(x;)

W = (W; — Ly - 1)/+/var(w;)

it follows the expression of the correlation of x and w:

(X4, Wj) = <xf,w§> /(n—1) (1.14)
where:
n
(xp,wi)y = (xF, - wp,) (1.15)
m=1
since 7(x;,w;) = r(x7,w7). When this notation is applied to the squared Euclidean

distance of x7 and w7 this yields:

dQ(Xf,wj) = Z(:UZ —wfn)2 = (Xf,xf>—2-<xf,w§>+<wjz-,w§> =2-(n—1)-(1—7r(x;, w;))

M z zZ\ z z j—
since (x7,x7) = <wj,wj> =1

Thus, when data are normalised to discard the mean value and yield unit variance, Pearson
correlation can be easily expressed as distance the square of Euclidean distance. However
the normalisation is a crucial step. In optimisations operating on dynamic data, static
pre-computation by the z-score transform is not available for computational improvements
over equation 1.13 [Strickert and Seiffert, 2007].

It has been demonstrated [de Gelder et al., 2001] that various similarity criteria of two
functions, f(y) and g(y), including the sum of squared differences, the correlation coefficient
and the overlap integral, are related to the cross-correlation function Ry (7) at 7 = 0.

Ry o(r) = / F(w) gy + ) dy

Thus, they cannot provide any information about patterns that are shifted relative to
each other. de Gelder et al. [2001] proposed then a generalised expression for similarity,
St.4, which is based on a weighted cross-correlation function, a weighting function z(7)
normalised with the product of the two weighted autocorrelation functions:
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[ 2(T) Ry 4(7)dr
Ste = ’
VI 2T Rpp(r)dr [ 2(7) Ryy(7) dr
z(7) is a triangular weighting function of width defined as z(7) = 1 — I7l/n if |7| < h and

z(1) = 0if [7| > h. Thus in SOM process the BMU is the neuron w,(,) that maximises
the value of the function Sy 4.

1.6 Cluster recognition

A considerable improvement has been applied to the original algorithm (Carniel et al. 2009,
2012), it’s aim at simplifying result presentation and interpretation, as proposed also by
other authors (Vesanto et al. 2000, Messina and Langer 2011), introducing an automatic
cluster recognition method.

After the data are projected onto the map, an automatic cluster analysis procedure is
applied, again using a weighted cross-correlation to compare the code vectors of each pair
of neurons. First the weighted cross-correlation matrix is calculated, then the hierarchical
clustering performed by the agnes function (R environment, cluster package) is applied
|[Kaufman and Rousseeuw, 1990|. The clustering method that was selected within the
agnes function is the “average” (|unweighted pair-|group average method, UPGMA). Each
observation is thought to be a small “one-node” cluster, that is then progressively merged
with similar alternative clusters, until only one large cluster remains which contains all
the observations. At each stage the two most similar clusters are combined. The result is
a figure called a dendrogram where the clustering procedure described above can be seen
proceeding from bottom to top.

A few examples are shown in the chapters dedicated to the SOM approach applications.

not act on the original data vectors, but on the code vectors, that are already “prototypes”
of a class of data vectors, so this is not equivalent to a direct clustering of data but adds
a further level of “abstraction” and should therefore better extract characteristic features
of the data.

The clustering procedure can be interrupted at any vertical level by choosing an appropriate
similarity threshold, which directly determines a certain number of clusters on the map to
which nodes are assigned. The choice of the threshold is not straightforward and provides
another degree of freedom for the fine tuning of the SOM analysis, because there isn’t a
single optimal threshold for any application or dataset.

Choosing a low threshold increases the number of clusters, and each of them becomes highly
specialised to recognise a particular kind of pattern, so the SOM can recognise very subtle
variations in the data. However, this can often lead to the assignment of data windows
to clusters having lower coherence in time evolution, hence consistent regimes may not be
recognised.

For this reason it is advised to carry out several analyses with different thresholds before
choosing the threshold that best optimises time coherence while maintaining acceptable
“resolution” in terms of distinction between different spectral patterns.

In order to better carry out these tests and present both test and final results in an easy
to interpret way, clusters can be represented by different colours on the SOM and in the
plots of time histories. At the chosen similarity threshold, the different clusters represent

typical spectra with specific characteristics that can be distinguished from one another by
the SOM.
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1.7 Toroidal maps

The grid of neurons is usually embedded in a bi-dimensional space, it has the disadvantage
that neurons at the borders of the map have very different mapping qualities than neurons
in the center of the map. The reason for this is the different number of neighbors of center
versus border neurons. This is important during the learning phase and structures the
projection.

In many applications important clusters appear in the corners of such a planar map (see
for example the previous fig.1.10). The embedding into a borderless grid, such as a torus,
avoids such effects. All figures in the following are such tiled displays.

The solution adopted is then to remove the edges of the maps by transforming the flat
maps into toroidal maps. This is done by virtually sticking together upper and lower
edges vertically and left and right edges horizontally, without any data modification. The
topological improvement is applied to the map lattice, not to the input vectors.

(c)

Figure 1.11: Toroidal SOM map visualisation. This kind of topology aims to remove the
edges of the map, since neurons along edges of flat maps do not have the same number
of neighbors as the others, resulting in an inhomogeneous training process. This is done
by virtually sticking together upper and lower edges vertically and left and right edges
horizontally, without any data modification.
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Chapter 2

Volcanic regime detection

Since volcanoes can devastate and modify the scenery of wide areas, an eruption is likely
to have a significant impact on population and anthropic activities. Volcanoes can remain
in a quiescent state for a long period and the volcanic unrest is often prolonged over a
period of months to years making the identification of precursory patterns of the uttermost
importance.

The basic idea of this work is that if the volcanic system condition is related to some
observed parameters and if the SOM process has produced a well organised map, with every
cluster highlighting at least one distinctive feature with respect to the other clusters and
clusters with similar features staying topologically close on the map, then the projection of
the data onto the map, ordered by time, could detect possible modifications of the volcanic
system condition.

2.1 Procedure

The parameter that has been analysed by the SOM process is the frequency content of
the tremor acquired near a volcanic system. Signal acquisition has been carried out by a
three components seismic single station. In the training phase volcanic tremor spectra are
randomly presented to the network in a competitive iterative process. Spectra are then
projected, ordered by time, onto the trained map. Every spectrum will take up a node on
the map and the time evolution of their distribution on the map can highlight the existence
of different regimes and the transitions between them.

Data processing described below have been carried out using acquired tremor spectrograms,
a single input data for the SOM process is an amplitude spectrum with a given number of
bins. Briefly a spectrogram is a visual representation of the frequency content of a signal,
built from a sequence of spectra by stacking them together in time and by compressing the
amplitude axis into a colour map. The final graph has usually time along the horizontal
axis, frequency along the vertical axis, and the amplitude of the signal at any given time
and frequency is shown as a colour level. A spectrogram is obtained splitting the acquired
signal in temporal windows of a constant width, these windows can be overlapped by an
interval shorter than the window width. An algorithm to compute the discrete Fourier
transform to convert time to frequency is then applied at each temporal window. In this
work the Fast Fourier Transform (FFT!, Cooley and Tukey, 1965) has been applied in the

!The fast Fourier transform (FFT) is an optimised algorithm for the calculation of the Discrete Fourier
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less recently analysis, where the objective was to observe the data distribution on the SOM
map in terms of center of mass, largest node position and moment of inertia, the latter is
calculated as:

N
M = =3 N (e = )+ (e — 1)

=1

where N is the total number of input vectors projected onto the map at the iteration ¢, N,
is the number of input vectors projected onto the cell 7 of the map (with coordinates x.,
and ¥y, ) and the coordinates zp, and yp, define the position of the centre of the distribution.
The moment of inertia assumes higher values when the vector projections fall farther from
the centre of the distribution. On the contrary, a low value of the moment of inertia
indicates a set of vectors very concentrated close to the centre of the distribution. This
is physically analogous to the difference between an object whose mass is spread across a
wide volume and one where the mass is mostly concentrated close to the barycentre.

In the most recent SOM analysis, where the objective was to obtain a coherent data
clustering to observe how data, ordered by time, move onto the map through clusters, the
Welch’s method? [Welch, 1967] has been applied to obtain a spectral density estimation.

Spectrogram normalisation helps to avoid that the more energetic windows, in which the
time series has been splitted, hide the spectra calculated on the less energetic windows.
Moreover normalisation makes the Short Time Fourier Transform (STFT) spectrogram
obey Parseval’s energy conservation property, meaning that the energy in the STFT spec-
trogram equals the energy in the original time domain signal®. During the data analysis
it has been noted that the spectrum normalisation enhances the SOM capability in data
clustering, taking into account the whole range of frequencies for each time window, more
or less energetic. Similar results have been obtained normalising the spectrum with respect
to the sum of their amplitude values as with respect to their maximum amplitude value.

The SOM map training is achieved following the process described in section 1.2: a certain
number of spectra, equal to the number of SOM map neurons, are sorted randomly from
the whole available data set to complete the map training. Once the map is initialised, at
each SOM process iteration the whole data set is given in input to the map, each spectrum

Transform (DFT) and its inverse (the inverse Fourier transform). The FFT is suitable to compute a
DFT of time windows whose length is a power of 2 (N = 2"). Many software and hardware (dedicated
microcircuit) are available for its calculation. The strategy on which the FFT algorithms are based on is
known as divide and conquer, the calculation of a DFT on windows of length N is reduced to compute a
DEFT on shorter windows (decreasing the number of operations needed to compute the DFT).

2The Welch’s method consists in splitting the time series into shorter time windows with possible
overlapping, computing the Power Spectral Density (PSD) of each window, and then averaging the PSD
estimates. The averaging of PSD tends to decrease the variance of the estimate compared to a single
PSD estimate on the entire dataset, although overlap between segments tends to introduce redundant
information. This effect is reduced using of a non-rectangular window, which reduces the importance
given to the end extremities of the overlapped segments with a Hamming window being a common choice.
However the combined use of short data records and non-rectangular windows results in reduced resolution
of the estimator, i.e. there is a tradeoff between variance reduction and resolution, but this variance
reduction can be seen as a filter for the noise at high frequency.

3For periodic signals, Parseval’s theorem shows how the signal’s power is distributed among the har-
monic components. Similarly, for aperiodic signals of finite energy a Parseval’s inference indicates how
the square of the Fourier transform is an energy demnsity revealing the amount of energy at each of the
frequencies. The plot of the square of the Fourier transform is the so called “energy spectrum” of the finite
energy signal and it displays how the energy is distributed over frequency.
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only one time and in random order. At each step the neighborhood function becomes
narrowest and the learning rate value decreases. At the end of the training phase the SOM
map is ready for the data projection phase. Each spectrum, that has contributed or not
to the training phase, is then projected onto the map, ordered by time.

Once the SOM map is trained and the data are projected on the Kohonen grid output
space, it is necessary to analyse data distribution on the bi-dimensional grid. Two main
ways has been taken into account in this work.

The first one deals with the map as a bi-dimensional projection of a surface that is stretched
into the n-dimensional input space to approximate the data distribution. The original idea
is to find some useful parameter able to describe how the spectra corresponding to a selected
time window have been projected among the neurons of the map. For this purpose the
position on the map of the center of mass of the distribution, its moment of inertia and
the position of the neuron with the largest number of projected input are computed. Data
analysis is then performed projecting on the map groups of data of constant dimension
(a certain constant number of temporally consecutive spectra) corresponding to a few
minutes of acquired signal. For each one of these groups the parameters mentioned above
are calculated to detect in which area of the map data are located and to obtain a measure
of how much they are scattered. These three parameters allow to overcome one of the
greatest issues of this in-time analysis, the large number of maps that have to be analysed
and the consequent difficulty to have an overall view of the data set was a possible limit of
the post-processing phase, it’s achieved by summarising results by that three key variables
over time.

The second way to analyse the data distribution starts from an automatic cluster recog-
nition. The dendrogram (see section 1.6) is calculated starting from the weighted cross-
correlation matrix computed among the whole code vectors set. Each code vector is thought
to be a small “one-node” cluster, that is then progressively merged with similar alterna-
tive clusters, until only one large cluster remains which contains all the code vectors. At
each stage the two most similar clusters are combined to obtain the so called dendrogram.
Choosing a threshold for the similarity value, in relation of the chosen discriminant func-
tion properties, the dendrogram is horizontally cut and a certain number of clusters is
detected on the map. FEach spectrum is associated with one of the neurons on the map
and then it’s associated to one of the detected clusters. Is then possible to analyse data
distribution looking at which cluster each spectrum, ordered by time, is associated to.

As outlined above, the data projection phase is conceived to analyse the temporal evolution
of the volcanic system condition, monitoring the frequency content by the SOM pattern
recognition capability. Each spectrum of a group, equivalent to a fixed time length window
of the acquired signal, will take up a position on the map related with its frequency content
and map topology. Since the code vectors are not modified, the map does not change its
topology during the projection phase.

In order to keep the map unchanged during the projection phase, the neighbourhood
function value and/or the learning-rate factor have to be fixed at the null value. For each
group of spectra projected onto the trained map, the discriminant function calculates the
dissimilarity between each input vector and the correspondent BMU code vector. If this
value is low for each input vector of the whole data set, then the map is well organised,
and it is possible to explore the whole input space. Moreover when data that have not
contributed to the training phase are projected onto the map, some of these input vectors
can have a great dissimilarity value from their BMUs. This occurrence highlights singular
data, potentially related to unusual conditions of the volcanic system, which cannot find
a suitable strong similarity to a code vector on the map.
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The possibility to project on the map the data that have not contributed to the training
phase, keeping the map unchanged until the projection errors are moderate, allows to carry
out a real-time analysis, projecting the new spectra as soon as the signal is acquired and pre-
processed. This property of the proposed SOM process allows to highlight the existence of
dynamic regimes that are consistent and coherent over time, identifying possible precursors
of paroxysmal phases of the volcanic system.

Figure 2.1 shows the flow diagram of the proposed SOM process. The first step concerns
the pre-processing phase, so the spectrogram is calculated from the acquired signal and
spectra are eventually normalised and/or smoothed (see section [sub:SOMforRuapehu])
and if necessary cut in the frequency range of interest. The next steps are the SOM map
training phase and the data projection phase. The post-processing phase concerns the
analysis of the distribution of the projected spectra onto the trained SOM map. Data
distribution is described by geometrical parameters as the center of mass, the moment of
inertia and the position of the neuron with the largest number of projected input or by a
clustering analysis.

T ime domaln — Frequency domain

Frojection -

FPre-processing

U-matrix

Dendrograr
Analysis of the distribution
- center of mass position
- greatest node posifion
< rorent of inerfia value
Fost-processing

Figure 2.1: Flow diagram of the proposed methodology for the data analysis.
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The outlined method has been applied to analyse the tremor acquired in proximity of the
Green lake, one of two tiny crater lakes on Raoul Island in the Kermadec Islands (New
Zealand), and the tremor acquired by a seismic station placed not so far from the Crater
lake of Ruapehu volcano (Taupo volcanic zone, New Zealand).

The study of the volcanic regimes of Raoul is a part of the research program funded by
PRIN 2007PTRC4C 002 at the University of Udine (R. Carniel and L. Barbui) and New
Zealand Ministry of Science and Innovation (MSI) funding (A.D. Jolly). The EQC funded
GeoNet Project provided data used in the project.

The EQC funded GeoNet Project and the New Zealand Volcano Database (VoD) provided
data used for Ruapehu volcanic tremor analysis, while the EQC Project “Application of
speaker recognition methods to volcanic systems” funded the specific application of SOMs
presented here.
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2.2 Raoul Island

Raoul Island is the largest and northernmost of the Kermadec Islands, it’s far away 900
km from ’Ata Island of Tonga in SSW direction and 1100 km from New Zealand’s North
Island, in NNE direction. Raoul volcanic system has been the source of vigorous volcanic
activity during the past several thousand years that was dominated by dacitic? explosive
eruptions.
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Figure 2.2: Fig. 2.2a shows the location map of Raoul Island, showing position of
seismic station RAO and major volcanic features. Fig. 2.2b shows a photo of the
Green Lake located in the center of Raoul Island, it has been taken from the website
http://www.geonet.org.nz/.

Of the two calderas that belong to the Raoul volcanic system (fig. 2.2a) the oldest one
(dating back to the Holocene®) is positioned in the center of the island, it measures about

4Dacite is an igneous volcanic rock and usually forms as an intrusive rock such as a dike or sill. Because
of the moderate silica content, dacitic magma is quite viscous and therefore prone to explosive eruption
(as occurred for example at Mount St. Helens in which dacite domes formed and exploded).

5The Holocene is a geological epoch which began at the end of the Pleistocene (about 11000 years ago)
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3.5 km by 2.5 km and it forms the stratovolcano Raoul. The most recent caldera is located
in the bay of Denham and was formed about 2200 years ago, following a violent dacitic
volcanic explosion. It measures about 6.5 km to 4 km wide, with the major axis parallel
to the oceanic rift® called Havre Trough. During the nineteenth and twentieth century,
some eruptions on the island of Raoul affected simultaneously both calderas and consisted
of phreatic eruptions classified as small to moderate in intensity. Some of these eruptions
have seen the consequent formation of temporary islands in Denham caldera.

Raoul Island (fig. 2.2) provides a useful case study of the proposed SOM approach because
volcanic activity was monitored by a single seismic sensor and activity at the volcano
includes a range of volcanic activity including large magmatic eruptions [Healy et al.,
1965, Lloyd and Nathan, 1981, Worthington et al., 1999, Smith et al., 2010|, and small
phreatic events [Christenson et al., 2007]. In addition, a small semi-permanent population
of New Zealand Department of Conservation (DoC) staff is present. Hence, improvements
in near-real time event discrimination may have positive benefits to the local population.

On March 17, 2006 (08:21 NZST) [March 16, 2006 (20.21 UT)]|, a small phreatic eruption
occurred. The event was preceded by a swarm of small earthquakes located 10-20 km
from the seismic sensor [Christenson et al., 2007] on March 12, decaying to background
seismicity by March 16 NZST. The eruption seismic signal (fig. 2.3) was composed of

several pulses and had a duration of 8 minutes |Christenson et al., 2007|. The spectrogram
of the days from March 17, 2006 (NZST) to March 20, 2006 (NZST) is shown in fig. 2.4.

On March 16 (20.21 UT), the phreatic eruption was recorded on the local seismograph.
Apart from the possible seismic precursors, no other significant changes that concern for
example the water level in the lake or its temperature, even during the 24 hours before the
eruptive event, were observed. According to the records of the seismometer installed on the
island, the eruption seems to last longer than 30 minutes, even if the period of maximum
intensity lasts about 5-10 minutes. After the explosion, the level of seismic activity has
doubled, but starting from March 23, the number of earthquakes has been reduced to 10-
20 per day. No thermal anomaly was recorded by the MODIS satellite system during the
month of March.

Unfortunately, the eruption took the life of DoC ranger Mark Kearney, who was in the
volcanic crater at the time of the eruption.

The goal of this analysis is to examine retrospectively the activity of this event and deter-
mine if improvements in seismic data processing and interpretation can be made.

In proximity of the Green lake have been noticed fumaroles of modest temperature (boiling
point) and a slight seepage of surface brackish hydrothermal water (hot springs) along the
beach of Oneraki, outside the caldera. The gases have a composition typically hydrother-
mal, which therefore does not suggest the presence of a magmatic source and rule out the
possibility that exists an unique phase of the steam directly from the source magma to
the surface, but rather suggest the presence of hydrothermal brackish water in depth. Ob-
servations on the eruptions that have affected the caldera of Raoul and the Bay Denham
indicate the existence of an important active system located around the island.

and continues to the present. The Holocene is part of the Quaternary period.

A rift is a linear zone where the Earth’s crust and lithosphere are being pulled apart and is an example
of extensional tectonics.
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Figure 2.3: Original Helicorder recording acquired at seismic station RAO on Raoul Island,
showing the pulsating eruption seismic signal on March 16, 2006 UT. Each line represents
6 minutes of data. The earthquake seen at the very end of the Helicorder recording is a
tectonic event.

2.2.1 A SOM for Raoul

SOM algorithm has been applied to the tremor frequency spectra calculated from the
acquired signal sampled at 40 Hz. Signal has been split in time windows of 512 points
(corresponding to a time window of 12.8 seconds), with a 50% of overlap and Fast Fourier
Transform (FFT) has been applied to each time window to calculate the corresponding
spectrum in a frequency, the range of interest for the SOM analysis is up to 15 Hz.

Each spectrum is an input vector for the SOM analysis, the process is split in two phases:
the training phase and the data projection phase. The training phase has been carried out
using the spectra of the signal acquired during the March 16, 17, 18 and 19 (UT time),
excluding the spectra corresponding to the volcanic eruptive events, because the SOM
trained map must be able to recognise both the hypothetical dynamical regimes occured
during the signal acquisition as well as every singular event that has not contributed to
train the map, such as a volcanic explosion.

During the training phase the whole training data set, composed of about ten thousand
spectra, is presented to the network 100 times. Spectra are normalised with respect to
the sum of their own frequency values, so each spectrum has values in the range [0;1]. At
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Figure 2.4: Spectrogram of the seismic data recorded at seismic station RAO on Raoul
Island from March 15, 2006 to March 20, 2006 UT.

each iteration t, the network processes the training data set examining each input vector
in random order. As the number of iterations t increases, the map topological order is
improved. Obviously, this is a finite process and a large number of iterations causes an
increase in the computation time, so, after many tests, a good compromise value for t has
been found at 100 iterations.

Two opposed needs compete to choose the map size: a larger map increases the number
of clusters that could arise; moreover a larger number of neurons generally increases the
separation between these clusters and so the final resolution of the map. On the other
hand, a large map decreases the SOM capability to provide an overview of the data set
structure and increases the computational effort. A SOM map of dimensions 20x15 has
been chosen.

In this case the SOM analysis has been carried out choosing the Euclidean distance as the
discriminant function of the whole process. Fig. [fig:RaoulMeanDistance| shows the mean
Euclidean distance value of each input vector to its closest unit on the map (the BMU)
for each iteration (the whole data set is presented to the network 100 times) of the SOM
process.

Over the course of the training process iterations the learning rate value has been decreased
linearly from the starting value a; = 0.1 to the final value oy = 0.001. The neighborhood
radius value decreases linearly from the starting value o; = 10 to the final value oy = 0 at
an half of the chosen number of iterations (see the dotted vertical line in fig. 2.5) and it’s
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Figure 2.5: Trend of the averaged projection error calculated as the mean Euclidean dis-
tance between each input vector and its BMU code vector on the SOM map for each
iteration of the training process. The x axis shows the number of iterations, each vertical
leap of the graph before the vertical dotted line correspond to a learning rate value and
neighborhood function width reduction. After the dotted line the graph shows the error
reduction gained keeping the neighborhood function value equal to one (see 1.2.4), so each
input vector modifies just its BMU code vector.

kept equal to zero till the last iteration. So during the second part of the training process
each input vector modifies just its BMU code vector, neurons are no more affected by the
mutual interactions, so the convergence to a minimum averaged error value is optimised.

At the end of the training phase the need to visualise the SOM map arises (see 1.4). The
U-matrix visualisation method [Ultsch and Siemon, 1990] has been chosen and the code
for the R software environment [Team, 2010] has been written (see A.6).
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Figure 2.6: The SOM map obtained at the end of a training phase and visualised using
the U-matrix method |Ultsch and Siemon, 1990|. At the last iteration of the SOM training
process the whole data set is provided in input to the map and the code vectors are modified
for the last time, preserving the information on how many and which spectra end up in
each neuron.

Map nodes correspond to white cells, each node contains one neuron, the number and the
circle dimension in the cell indicates how many input vectors have been mapped into the
node. Cells which do not contain a number use a gray scale to show the similarity of the
nearby neurons code vectors: light gray indicates a strong similarity and vice versa. In
this way the light areas on the map indicate possible clusters consisting of more than one
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node (fig. 2.6).

2.2.2 Raoul data projection and interpretation

The data projection phase is conceived to analyse the temporal evolution of the volcanic
system condition, monitoring the frequency content by the SOM pattern recognition capa-
bility. Each spectrum will take up a position on the map related with its frequency content
and map topology. Since the code vectors are not modified, the map does not change its
topology during the projection phase.

At each step of the projection phase, a group of 120 spectra (corresponding to a window
length of about 13 minutes) is projected onto the map. In order to keep the map unchanged
during the projection phase, the neighbourhood function value and/or the learning-rate
factor have to be fixed at the null value. Fig. 2.7 shows an example of the projection of a
group of spectra onto the trained SOM map.

As previously mentioned, one of the greatest issues of this analysis is the large number
of maps that have to be analysed and the consequent difficulty to have an overall view of
the data set. To avoid this problem the distributions property are summarised by three
parameters, so each point (or pair of points) in fig. 2.8, 2.9, 2.10 and 2.11 show the position
of the centre of mass, the position of the neuron with the largest number of input vectors
and the value of the moment of inertia for one group of spectra. It is important to underline
that the seismic tremor data acquired during March 16 has not been used in order to train
the map.

It has been verified that the error defined as the Euclidean distance between each input
vector and its BMU onto the map always stays low, this assures that the SOM training
produced a well organised map, able to explore the input space data used during the
training as well the data that did not aid the map topology organisation. Only after the
explosion at the Green Lake the mean error shows a slight increase that lasts about one
hour and a half (fig. 2.8). Considering the graphs of the day of the explosion (fig. 2.8) and
the three days after (fig. 2.9, 2.10 and 2.11), it can be noticed that the trend on the position
of the centre of mass, the position of the greatest node and the value of the moment of
inertia for the groups from approximately the 20th to the 40th is considerably different
to the mean trend. This means that the spectra of those groups have been projected
into a restricted (looking at the moment of inertia graph) area onto the map, implying a
strong coherency of such spectra, which show almost the same shape within each of those
groups. Moreover, the area of the map involved is different from the “usual” areas, due to
a different mean frequency content. This excursion occurred each day analysed and at the
same time of the day, hence we interpret the excursion as resulting from an anthropogenic
source. It’s important to note however that the island was evacuated on the day following
the eruption. We surmise that the diurnal cycle for groups 20-40 represents some relict
cultural noise effect, such as an automated scheduled activity, that persisted even after the
human population departed. A natural source for the diurnal cycle is considered unlikely.
Moreover, during the one hour and half after the explosion the data has been arranged
into an area of the map that was previously unfilled. This transition can be interpreted as
a result of the explosion and post explosion system excitation.

The time evolution of summary parameters of the SOM analysis, such as the centre of
mags, the position of the neuron with the largest number of input vectors and the moment
of inertia of the data distribution can provide information about the existence of relatively
stable regimes and about the transitions between them by either slow or abrupt volcanic
processes as expressed by transitions through the areas on the map.
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Figure 2.7: Example of the projection onto the SOM map of a group of spectra. Each day
is subdivided into 112 groups of the same size (120 spectra). Fig. 2.7a and 2.7b show the
distribution of the group of spectra onto the map in two alterative ways (it can be noticed
that the map is the same of that in fig. 2.6, cause it’s not modified during the projection
phase). Fig. 2.7c shows for each input vector (z axis) the corresponding neuron onto the
map (y axis) and Euclidean distance value between the input vector and the code vector
of the corresponding neuron.
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Similar volcanic regime changes have been noticed for Ambrym Volcano (Vanuatu Islands)
[Carniel et al., 2003]. In the seismic tremor acquired there during a one month period,
two regimes were observed, characterised by durations of a few days, that differ in terms
of frequency content and more generally in terms of volcanic activity with different levels
of tremor energy, degassing processes and small explosions at the lava lake. A similar
alternation of two main regimes has been observed at the Stromboli Volcano (Sicily, Italy)
with time scales going from minutes to weeks [Carniel and Tacop, 1996, Ripepe et al.,
2002]. The Erta Ale lava lake (Ethiopia, Africa) also showed a similar alternation of
volcanic activity regimes [Harris et al., 2005, Jones et al., 2006].

At Raoul Island, we observe a transition in spectral characteristics at the onset of the
eruptive activity into a spectral regime that lasted for approximately 1.5 hours. Christenson
et al. [2007] surmised that the proximal cause of the eruption was due to the failure
of a shallow hydrothermal seal which became pressurised by gas released from a deeper
magmatic carapace. The carapace itself is surmised to have failed due to a swarm of hybrid
and volcano-tectonic earthquakes [Lahr et al., 1994] occurring on March 12, which released
gas from magma and caused pressurisation beneath the hydrothermal seal. If this model
is correct, then the failure of the hydrothermal seal was instantaneous and included no
precursors seen in either the observed spectra or the SOM analysis. However, the SOM
highlights the post-failure system excitation which is possibly due to the re-equilibration
of the hydrothermal system.

At Raoul Island, the SOM method allows recognition of diurnal pattern in seismic data
that may be anthropogenic in nature, and are not readily apparent in visual spectrogram
analysis. The SOM did not reveal precursors to the eruption in Raoul Island seismicity,
but it highlighted the post-failure system excitation.
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Figure 2.8: Raoul distribution analysis of the seismic tremor acquired during March 16
(UT time). As the map is bidimensional, two map coordinates, “x” and “y”, are needed to
represent the position of a node on the map. The green line marks the explosion event at
the Green Lake.
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Figure 2.9: Raoul distribution analysis of the seismic tremor acquired during March 17
(UT time).
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Figure 2.10: Raoul distribution analysis of the seismic tremor acquired during March 18
(UT time).
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Figure 2.11: Raoul distribution analysis of the seismic tremor acquired during March 19

(UT time).
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2.3 Ruapehu

Ruapehu volcano (fig. 2.12) is one of New Zealand’s most dangerous volcanoes, due to
the proximity of recreation activities near the active vent and to its frequent and often
unpredictable eruptions. The volcano lies at the southern portion of the Taupo Volcanic
Zone [Hackett and Houghton, 1989] and has produced 8 significant eruptions since 1945,
including magmatic, phreato-magmatic and phreatic events. Eruptions occurring in 1969,
1975, 1988, 2006 and 2007 occurred without evident precursory activity [Sherburn et al.,
1999, Mordret et al., 2010].

‘LH\ | 25km |

Figure 2.12: Location map showing Ruapehu volcanic massif (elevation 2797 m) with to-
pographic contours. Contours are at 500 m intervals relative to sea level and the innermost
contour is at 2500 m. Ruapehu volcano is on the southernmost margin of the Taupo Vol-
canic Zone (TVZ) (inset). Broadband (FWVZ) and short-period seismic sensor (DRZ) are
shown as triangles.

Recent improvements in the seismic monitoring systems around the volcano now allow
the application of increasingly sophisticated volcano monitoring techniques and research
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activities. This work presents a SOM analysis of the evolution of tremor that occurred
before, during and immediately after two small phreatic events at Ruapehu volcano, it
focuses on recent events because the data has improved with the addition of broadband
digital seismic systems. Both volcanic events, occurring on 4 October 2006 [Mordret et al.,
2010] and 25 September 2007 [Christenson et al., 2010, Jolly et al., 2010, Kilgour et al.,
2010] have documented surface expressions and are thought to be phreatic in nature.

It’s shown here how the dynamics of the volcanic system for these eruptive events can be
better understood by application of SOM cluster analysis and offer a new interpretation of
these patterns in the context of both surface observations and the seismological features
associated with mostly sub-surface processes.

The task becomes once again that of highlighting the existence of dynamic regimes that are
consistent and coherent over time and/or identifying them as possible precursors of parox-
ysmal phases. For this SOM cluster analysis several enhancements have been introduced
to the algorithm originally proposed by Carniel et al. [2012] a discussion of the results in
the context of phreatic eruptive activity and shallow hydrothermal models for Ruapehu
follows at the end of this section. The section 2.3.3 shows an alternative SOM analysis of
the data set related to the event of the 25 September 2007 acquired by another seismic
station, the one nearest to the vent that has been destroyed during the same explosion.
It doesn’t involve the cluster recognition, but it analyses the position that data, ordered
in time, take onto the SOM map during the projection phase, with particular attention to
the moment of inertia of the distribution of each group in which the data set is subdivided.

2.3.1 A SOM for Ruapehu

With respect to the original algorithm [Carniel et al., 2012] applied to the Raoul data set
(see sections 2.2.1 and 2.2.2), the classic FF'T has been replaced by the Welch’s method
[Welch, 1967] implementation [Lees, 2012] in the R environment [Team, 2010|. This allows
a better balance between time and frequency resolution (evolfft function, RSEIS package)
and damping of noise effects with an original Konno—Ohmachi smoothing function (Konno
and Ohmachi [1998], see A).

The acquired signal is split into time windows of length Nfft (e.g. Nfft — 2048 points in the
following analysis), then the Nfft window is split into sub-windows of length Ns (e.g. Ns
— 1024 points in the following analysis) overlapped of length Nov (e.g. Nov — 920 points
in the following analysis). On one hand the frequency resolution is controlled by the Nfft
parameter, on the other hand the time resolution is controlled by the sub-window length
(Ns parameter). The evolfft function first resets the mean of each sub-window to zero, then
applies a cosine taper window and extends each sub-window to Nfft length, adding zeros
and finally applying a multivariate Fast Fourier Transform (FFT) to the matrix composed
of the sub-windows arranged in columns. Using a taper window means that the signal near
the time being analysed will have higher weight.

The input vectors for the SOM are still the individual columns of the spectrogram. Each
spectrum is smoothed using the function proposed by Konno—Ohmachi:

sin (log (f/fns))b] !
b

fs(f; frs) = [ (log (£/fns))

where the smoothed frequency value f; depends on its original value f,s, on the bin number
f and on the band width parameter value b. An example of such input spectrogram is
shown in fig. 2.13. Each spectral column becomes an individual input to the SOM learning
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process, where the discriminant function is now based on the weighted cross-correlation
index (see section 1.5) instead of the Euclidean distance used in Carniel et al. [2012].
This better captures spectral shapes rather than point values. Moreover, the patterns
are now compared only in a frequency range of interest, this means that the SOM map
can be trained using just the frequency range that is considered most relevant, but the
time evolution of resulting spectra can be subsequently examined in the entire frequency
range. This is equivalent to saying that the feature vectors are built using only part of
the available spectrogram [Langer et al., 2011]. The frequency range of the training can
be chosen on the basis of previous knowledge or simply by trial and error, evaluating the
resulting map organisation in terms of spatial coherence and therefore clustering, and on
the base of temporal coherence of the resulting “regimes”.
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(=]
1
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Figure 2.13: Time series (top) and spectrogram (bottom) of seismic data recorded at
FWVZ seismic station from 7.00 to 12.00 UTC, 4 October 2006. Spectrograms were
produced using 2048 sample windows and a 1000 sample time step for data digitised at
100 Hz. The 5 hour interval was used to train the SOM. This interval includes a phreatic
event at approximately 09:24 UTC.

In order to avoid the fact that neurons along edges of flat maps do not have the same
number of neighbours as the others, resulting in an inhomogeneous training process, the
SOM map is toroidal (see section 1.7).

A SOM was trained using the spectrograms (fig. 2.13) of the seismic data for a 5 hour
period surrounding the event of 4 October 2006 (from 7:00 to 12:00 UT).

The two events examined exhibit a range of phreatic responses from mild lake level changes
to a relatively large phreatic explosion. It follows a briefly description of them based
on seismic data recorded at station FWVZ (Guralp CMG-40T 60s broadband station at
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Ruapehu volcano) which is sampled at 100 Hz and is located about 3 km from the vent.
Although FWVZ is not the closest station to the crater, it has been used because it
remained operational for both phreatic events. In fact, as mentioned above, the closest
station (DRZ) was destroyed during the 2007 events so that no data are available after
that phreatic explosion (fig. 2.12).

2.3.1.1 The 4 October 2006 event

A seismic transient was detected on 4 October 2006, 22:24 NZDT (09:24 UT) based on
recordings of the seismic station FWVZ (fig. 2.14A). Subsequent visual observations oc-
curred 2 days later and confirmed that a small eruptive event had occurred based on thin
lake edge deposits generated from a 4 to 5 m high wave. The volcanic earthquake’s mag-
nitude was 2.9 ML, based on a fixed location at the volcano summit, but produced no
airwave and no ash ejection into the atmosphere [Mordret et al., 2010]. Based on these
observations, the event is interpreted to have been a small subaqueous eruptive event, that
was followed by a slow (over 13 days) about 1.5 m rise of the lake level [Mordret et al.,
2010] which contributed to the 18 March 2007 tephra dam collapse and lahar [Manville
and Cronin, 2007, Carrivick et al., 2009]. In subsequent detailed analysis, the seismic tran-
sient was found to contain no very long period seismic component (VLP) and the relative
seismic velocity during the days surrounding the eruption was found to be lower than the
long term average value (about 0.8%) based on an ambient noise analysis. This suggests a
localised extension of the volcanic edifice [Mordret et al., 2010].
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Figure 2.14: Waveforms for example volcanic earthquakes. A) 4 October 2006, B) 27
September 2007. The onset of the 25 September 2007 eruption is shown by the black
arrow.
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2.3.1.2 The 27 September 2007 eruption

Ruapehu erupted again on 27 September 2007 at 20:26 NZDT (08:26 UT) producing a
steam cloud that rose to 4600 m above the crater lake, as well as northward directed
ballistic and surge deposits [Kilgour et al., 2010]. The eruption produced a complex seismo-
acoustic sequence including broad-spectrum eruption tremor (fig. 2.14B) with a strong
VLP component [Jolly et al., 2010]. The earthquake had a local magnitude of 3.2 ML
and a moment magnitude of 4.0 MW. The acoustic signal was generally low frequency,
with similar spectral characteristics to the VLP seismic component (6-25 s period). This
event was much more energetic than the 2006 event [Jolly et al., 2010]|, causing injuries,
damaging the seismic station closest to the crater (DRZ) and triggering two lahars down
the Whakapapa and Whangaehu drainages [Kilgour et al., 2010].

2.3.2 Ruapehu data clustering and interpretation

Another improvement to the original algorithm [Carniel et al., 2012] is aimed at simplifying
result presentation and interpretation, as proposed also by other authors [Vesanto et al.,
2000, Messina and Langer, 2011]. After the data are projected onto the map, an automatic
cluster analysis procedure is applied, again using a weighted cross-correlation to compare
the code vectors of each pair of neurons.

First the weighted cross correlation matrix is calculated, then the hierarchical clustering
performed by the agnes function (R environment, cluster package) is applied [Kaufman
and Rousseeuw, 1990|. The clustering method that was selected within the agnes function
is the “average” ([unweighted pair-|group average method, UPGMA). Each observation is
thought to be a small “one-node” cluster, that is then progressively merged with similar
alternative clusters, until only one large cluster remains which contains all the observations.
At each stage the two most similar clusters are combined.

The result is a figure called a dendrogram where the clustering procedure described above
can be seen proceeding from bottom to top. An example is shown in fig. 2.15, which is
derived from the spectrogram of the vertical component of the volcanic tremor shown in
fig. 2.13. It should be noted that the clustering procedure does not act on the original data
vectors, but on the node vectors, that are already “prototypes” of a class of data vectors,
so this is not equivalent to a direct clustering of (spectral) data but adds a further level of
“abstraction” and should therefore better extract characteristic features of the data.

The clustering procedure can be interrupted at any vertical level by choosing an appro-
priate similarity threshold, which directly determines a certain number of clusters on the
map to which nodes are assigned. The choice of the threshold is not straightforward and
provides another degree of freedom for the fine tuning of the SOM analysis, because there
isn’t a single optimal threshold for any application or dataset. Choosing a low threshold
increases the number of clusters, and each of them becomes highly specialised to recognise
a particular kind of pattern, so the SOM can recognise very subtle variations in the data.
However, this can often lead to the assignment of data windows to clusters having lower
coherence in time evolution, hence consistent regimes may not be recognised. For this
reason it is advised to carry out several analyses with different thresholds before choosing
the threshold that best optimises time coherence while maintaining acceptable “resolution”
in terms of distinction between different spectral patterns. In order to better carry out
these tests and present both test and final results in an easy to interpret way, clusters can
be represented by different colours on the SOM and in the plots of time histories. At the
chosen similarity threshold, the different clusters represent typical spectra with specific
characteristics that can be distinguished from one another by the SOM.
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Figure 2.15: Dendrogram summarising the clustering of nodes of the SOM produced by
training using the spectrogram of the seismic data recorded at FWVZ station from the
interval shown in fig. 2.13.

Cutting the dendrogram of fig. 2.15 at a threshold of 1.060 generates 3 clusters, which
have been labelled with the blue, green and red colours respectively. Examining the
spatial distribution of the nodes corresponding to each cluster/colour on the SOM (fig.
[fig:-RuapehuUmatrixClustering]) we notice that the same colour is associated with nodes
geometrically nearby on the map, which demonstrates a topologically consistent training
result.
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Figure 2.16: Modified U-matrix for clustering purposes. SOM showing by colours the nodes
assigned to each of the clusters after the training for 2006 data. The map should be seen
as toroidal, i.e. the top side connects to the bottom, the left side connects to the right.

The different clusters have typical spectra that characterise and distinguish them from
each other. This is illustrated by average spectra computed over time windows belonging
to Cluster 1 (fig. 2.17), Cluster 2 (fig. 2.18) and Cluster 3 (fig. 2.19) respectively. It’s also
possible return to the time domain, to detect when data enters each of the clusters. Long
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durations of the same colour indicate a consistent behaviour of the volcanic system, which
it may be called a volcanic regime.

Cluster 1, 3268 spectra in 649 codes

— mean
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sd
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Figure 2.17: Sample spectrum characteristic of “blue tremor”, obtained averaging only
time windows of 2006 seismic data belonging to Cluster 1.

For instance, it can be noted a significant change of style (see fig. 2.20) shortly before the
eruption, graphically characterised by the transition from an interval dominated by the
green cluster, to another where the blue cluster is more dominant. This is accompanied
by a relatively brief appearance of time windows assigned to the red cluster. It is worth
noting that during the paroxysmal phase of the eruption, the tremor seems often to behave
similarly to the “normal” green spectral cluster.

The same SOM map has been applied, without further training, directly to the data
representing the volcanic tremor preceding the phreatic eruption of 25 September 2007. The
interesting observation is that in 2007 (Fig. 2.21), again at station FWVZ, the behaviour
is similar to that in 2006 (Fig. 2.20). This means that the SOM, which “learned” the
regime transitions shown by the 2006 event, was able to recognise those same transitions
for the much more energetic phreatic eruption of 2007.

SOM analysis based on seismic spectrograms had provided information about the existence
of relatively stable volcanic regimes and highlight (gradual or abrupt) transitions between
them. As a clustering automatic detection has been applied in the post-processing phase,
the transitions between regimes can be represented by discrete colours, so of course a
gradual transition would appear as a transition from a regime strongly dominated by colour
A to another regime strongly dominated by colour B passing through a time window where
neither colour dominates.

Volcanic regime changes on a time scale of a few days have been noticed at Ambrym volcano
(Vanuatu Islands), characterised by the presence of lava lakes, where the transitions were
sometimes associated to the occurrence of tectonic events [Carniel et al., 2003|. Erta
Ale volcano in Ethiopia, also characterised by the presence of an active lava lake, showed
transitions on a shorter time scale (tens of minutes) that could be correlated instrumentally
and visually to two different regimes of “low” and “high” convection in the lava lake [Harris
et al., 2005, Jones et al., 2006]. Similar transitions at similar timescales were observed
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Cluster 2, 6981 spectra in 230 codes
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Figure 2.18: Sample spectrum characteristic of “green tremor”, obtained averaging only
time windows of 2006 seismic data belonging to Cluster 2.

with a multiparameter approach — including seismic, infrasonic and thermal data — also
at Stromboli volcano, characterised by regimes of strombolian activity and degassing of
different intensities [Ripepe et al., 2002].

There also, transitions can be triggered over longer timescales by the occurrence of tectonic
events [Carniel and Tarraga, 2006] or by the occurrence of paroxysmal events [Carniel and
Cecca, 1999|. The analysis of seismic data recorded at Dallol, a geothermal field not far
from Erta Ale in Ethiopia, showed that the alternation of regimes with different spectral
characteristics can also be observed in volcanic areas showing only external geothermal ac-
tivity [Carniel et al., 2010]. This observation was confirmed by the SOM analysis of seismic
data recorded at Raoul Island [Carniel et al., 2012] close in time to the phreatic explosion
of 17 March 2006 (NZST). This supports the observation that a SOM unsupervised pat-
tern recognition scheme can allow the automatic recognition of these regimes. Moreover,
by monitoring also the error in the classification, e.g. as the distance between each input
vector and the correspondent BMU code vector, the SOM approach is potentially able to
recognise outliers, i.e. anomalous states not previously observed, which may be a precursor
to an impending paroxysmal phase.

Ruapehu’s shallow hydrothermal system has been previously described by using the shallow
heat-pipe model [Hurst et al., 1991] which explains the efficient transport of heat within the
shallow volcanic system, without an associated transfer of magmatic mass. Moreover, the
model also explains the intermediate term cyclic behaviour during non-magmatic phases.
More recently, Christenson et al. [2010] showed the importance of CO2 transport through
the shallow Ruapehu system and its role in generating shallow hydrothermal seals through
the formation of an elemental sulphur—anhydrite—natroalunite mineral assemblage. Chris-
tenson et al. [2010] suggest that seal formation could reduce permeability and promote
pressurisation as gases continue to flow from depth. Hence the 2007 eruption could be
a direct result of failure of the shallow hydrothermal seal, resulting in an interval of de-
pressurisation. One interesting aspect of the 2007 eruption is suggested by the location
of pre-eruption volcano-tectonic and VLP seismicity. Jolly et al. [2010] showed that these
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Cluster 3, 126 spectra in 21 codes
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Figure 2.19: Sample spectrum characteristic of “red tremor”, obtained averaging only time
windows of 2006 seismic data belonging to Cluster 3.

events, which occurred about 1-10 min before the eruption, had depths on the order of 3-7
km, deeper than the hydrothermal seal. Evidence for shallower, presumably hydrothermal
tremor, occurred in a period less than 1 min before the eruption and this tremor might be
an alternate indicator of seal failure. In addition, Christenson et al. [2010] found evidence
for a small amount of juvenile magmatic material in the 2007 eruption deposits.

Examining the results of the SOM analysis in the context of the observations from the
2006 and 2007 events, it can be noted the dominance of the ‘green’ tremor pattern prior
to both eruptions and suggest that when the system is pressurised it produces spectra
having features similar to those shown in fig. 2.18. In Fig. 2.18, the spectral peaks
below 4 Hz are reduced compared to spectral peaks at 4.9 and 6.3 Hz — these frequencies
can be considered approximate, as the exact frequencies of the spectral peaks in the time
windows that fall into the ‘green’ cluster are not constant throughout the analysed period.
Such patterns, observed in the ‘green’ cluster, may be then considered representative of a
pressurisation phase in the context of the seal model.

Next, it can be observed a short period with broader spectral character (fig. 2.17) de-
noted by ‘red’ in the SOM analysis. This phase includes some discrete volcano-tectonic
earthquakes whose appearance was recognised for both the 2006 and 2007 events [Mordret
et al., 2010]. This broad spectrum ‘red’ phase is possibly associated with failure of either
the shallow seal, a deeper magma carapace or both. In the latter case can occur both a
failure at depth and a seal rupture at a shallow level. The question remains whether the
process is a top down depressurisation, beginning when the seal breaks and initiating the
deeper ruptures [Christenson et al., 2010] or the other way around [Jolly et al., 2010], i.e.
the occurrence of deeper ruptures starting a bottom up decompression and causing the
failure of the seal of the near-surface hydrothermal system.

Interestingly, the main eruption for both the 2006 and 2007 events have signatures most
similar to the ‘green’ pre eruption pattern, while the post eruption sequence is clearly dom-
inated by the ‘blue’ pattern. Typical spectra for blue phase contain stronger low frequency
excitation in the frequency band 2 to 3 Hz. The spectral shift from higher frequencies to
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Figure 2.20: Time series of seismic data recorded at FWVZ station surrounding the 4
October 2006, 09.24 UT phreatic event, colour-labelled according to the clusterization of
2006 SOM. Each horizontal line represents 5 min. The transition from a “green tremor”-
dominated regime to a “blue tremor’-dominated one through an interval of “red tremor”
is evident.

- il

Figure 2.21: Time series of seismic data recorded at FWVZ station surrounding the 27
September 2007, 08:26 phreatic event, colour-labelled according to the clusterization of
2006 SOM. Please note that SOM was not re-trained with any 2007 data. Fach horizontal
line represents 5 min. The transition from a “green tremor’-dominated regime to a “blue
tremor”- dominated one through an interval of “red tremor” is evident.

lower frequencies is consistent with the depressurisation pattern that has been modelled
for magmatic systems [Neuberg and O’Gorman, 2002| and is directly applicable to tremor
excitation seen here. It is uncertain if the pressurisation of a hydrothermal system below
a mineralogical seal can produce a similar resonance pattern. The observed pattern is also
consistent with ambient noise results obtained by Mordret et al. [2010], who showed that
an anomalous reduction in relative seismic velocities occurred beginning 3-4 days prior to
the 4 October 2006 event. The anomaly disappeared within 3 4 days and seismic veloci-
ties returned to background levels. It is uncertain if longer term changes to the Ruapehu
hydrothermal system, such as those observed at the nearby Tongariro area in 2008 (e.g.,
Johnson and Savage, 2012), could be resolved using a spectral analysis approach. Such
an analysis would have greater data processing requirements and the clusterization pro-
cedure would be more challenging in order to discern these changes from other (variable)
background activity.

Because the proposed clusterization is limited to three clusters for any time window, the
interpretation of the ‘colours’ is without doubt not unique. However, it has been observed
that noteworthy and similar spectral evolutions are seen in the two example eruptions that
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have been recorded on the modern Ruapehu geophysical monitoring network. Obviously,
the same colour can be interpreted differently in different eruptive contexts and even fu-
ture phreatic eruptions may confirm this pattern or may follow another path. The work
presented here however shows the potential value of the SOM approach to geophysical
monitoring and highlights the need for more data describing examples of this Ruapehu
event type.

2.3.3 An alternative SOM analysis for Ruapehu

The SOM training phase has been carried out using the data acquired by the nearest to the
vent seismic station (fig. 2.12) during the days of the 23, 24 and 25 September 2007. The
seismic station has been destroyed by a lahar induced by the explosion of the 25 September,
so just the data acquired during the first 8 hours and 20 minutes are available for the day
of the explosion. Still taking the approach for the detection of possible precursors of the
volcanic crisis, the spectra calculated on the time windows related to the event of the 25
September are not used for the SOM map training, except for some spectra related to the
beginning of the explosion (see the dotted line in fig. 2.22).
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Figure 2.22: Moment of inertia (y axis) trend for the groups of spectra of the days 23,
24 and 25 September 2007. The spectrogram of each day has been subdivided into 140
groups and each group have 120 spectra, corresponding to a time window of about 10
minutes. The thick gray line at the right side of the figure indicates the moment at which
the seismic station stops to acquired tremor and get destroyed, the dotted line indicates
when the explosion starts.

Once the SOM map has completed the training phase, the spectrograms have been split
into groups of 120 spectra (corresponding to a time window of 10 minutes about) and each
group has been projected onto the map. For each group the data distribution has been
analysed in terms of center of mass of the distribution and largest map’s node position and
in terms of moment of inertia value.

Fig. 2.22 shows the trend of the moment of inertia for the distributions of the data
projected onto the SOM map. Each point corresponds to the moment of inertia value of
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one of the groups of 120 spectra in which the spectrograms are subdivided, corresponding
to a time window of about 10 minutes.

The moment of inertia reaches the maximum value in respect to the groups from 6 to
11 (see 2.22). Fig. 2.23 shows where the data of the groups from 6 to 11 of the day 25
September 2007 are projected onto the SOM map. The groups from 6 to 11 are constituted
by the spectra of the signal acquired from 4h 16’ to 3h 25’ before the explosion start (see
the dotted line in fig. 2.22).Then the moment of inertia reaches the minimum value with
the projection of the spectra of the group 26. Fig. 2.24 shows the projection of the spectra
of the groups from 21 to 26. The groups from 21 to 26 are constituted by the spectra of
the signal acquired from 1h 42’ to 51’ before the explosion starts (see the dotted line in
fig. 2.22).
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Figure 2.23: Distribution of the spectra of the groups from 6 to 11 of the 25 September.

Groups 31 and 32 (fig. 2.25) are constituted by the spectra of the signal acquired when
the explosion started (see the dotted line in fig. 2.22). It can be noticed that these spectra
are projected onto an area where any data had been projected before.

The SOM map analysis shows a meaningful trend of the moment of inertia value that
highlight an unusual projection of the spectra onto the map, in respect to the previous
groups projection, that starts from the 120 spectra of the group 6. That’s occur from
4 hours about before the volcanic explosion start, highlighting the existence of dynamic
regimes that are consistent and coherent over time and identifies a possible precursors of
the paroxysmal phases.
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Figure 2.24: Distribution of the spectra of the groups from 21 to 26 of the 25 September.
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Figure 2.25: Distribution of the spectra of the groups 31 and 32 of the 25 September.
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Chapter 3

HVSR tecnique improvement by
SOM

The earthquake engineering has in recent decades developed rapidly, both in theoreti-
cal and experimental field. This development has also led to improve the finite element
software products to carry out complex dynamic analysis of structures, supported by in-
creasingly powerful computers that allow to consider non-linear materials and complex
detailed models.

In respect of increasingly complex and detailed models of the structures, the new con-
struction norms regarding the structural seismic response afford the opportunity to adopt
techniques at various levels of complexity, but without giving any information or guide-
lines on how to obtain the parameters of interest to design new structures or to verify their
performances and adequacy in case of earthquake.

The evaluation of damages due to seismic events shows that, for the same earthquake
and the same structural typology of buildings, the effects can vary prominently among
close sites. Geophysical studies during the last decades have shown that the rocks convey
seismic motions without significant changes; on the other hand, less rigid sedimentary soils
and particular configurations of the sedimentary dump can cause the amplification of the
seismic waves near the surface, with potential disastrous consequences (e.g. the devastating
effects of the Michoacan earthquake in Mexico City ~ more than 300 km away  in 1985).
For this reason the rapid investigation methods based on environmental tremor analysis
for site effects characterisation have assumed increasing relevance.

More attention should be paid to the interaction between soil and structure, even before
the structure itself. The seismic design requires the estimation of the acceleration (or
velocity, or displacement) to which the structure will be subject, at the various frequencies,
in the event of an earthquake. These values are known at the bedrock!, for example in
terms of Peak Ground Acceleration (PGA) and reported onto probabilistic ground motion
hazard maps. Since most of the buildings have their foundations on loose compressible
soil, the need is to determine if the soil can modify the ground motion parameters (e.g.
frequency, acceleration, velocity, displacement and duration) passing through the bedrock
to the surface and in the case that some change occur, then what are the ground motion

!The so called “seismic bedrock” is a semi-infinite space of enough rigid material in which there isn’t
a significative modification of the seismic waves, moreover the soil that can be considered as the “seismic
bedrock” is much more homogeneous in comparison with the layers of sediment lying over this semi-infinite
space.
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parameters at the surface. To evaluate the ground motion at the surface there are two
main methods.

The first one involves a model of the soil, able to calculate the accelerogram at the surface
starting from a given accelerogram at the bedrock. This implies that many parameters
related to the soil structure (e.g. depth of the seismic bedrock, number of recognisable
layers and their thickness over the bedrock, orientation of the geological horizons and
geographic morphology of the surface) and to the soil mechanical properties have to be
evaluated, each one introducing an error due to the complexity of the soil and to the
means and methods of investigation. It’s worth remembering that to determine the seismic
response it’s needed to define the propagation of seismic waves in the ground to a depth of
the order of magnitude of the wavelength associated with the vibration frequency that can
potentially damage the structures present on the area of interest. The estimation of the
propagation velocity of seismic waves (S-waves in particular) and the way in which they
decrease with the frequency (damping factor) in different geological units is of particular
importance [Kramer, 1996, Lanzo and Silvestri, 1999]. These estimates can be obtained
either from laboratory measurements on soil samples collected by drilling, or applying
seismic prospecting techniques for in-situ measurements.

The second method to obtain information about the expected ground motion at the surface
is to provide direct measures applying the so called passive seismic techniques. In this
respect the Horizontal to Vertical Spectral Ratio method (HVSR or Nakamura’s method
- Nakamura [1989, 2000]) is a technique that allows to evaluate, in a cheap and relatively
easy way, the fundamental frequency of a given site and so contributes to choose and verify
the adequacy of the input parameters for the dynamical models of the designed structure.

Unfortunately the evaluation of the fundamental frequency (e.g. the peak of the H/V
function) is not always easy. Problems can derive from directionality of seismic noise, that
can make the estimate along different directions differ. This problem has been tackled in
several previous papers [Carniel et al., 2006, 2009, Barazza et al., 2009]. Additionally, the
acquired signal is split in time windows (upon which the Fast Fourier Transform - FFT -
or the Welch’s method are applied to obtain the corresponding frequency spectrum) but
some of these windows can be affected by a considerable amount of noise, for example
due to anthropogenic sources localised close to the seismic station. When this occur the
sources can’t considered randomly distributed and independent and the identification of
these time windows allows an easier and more reliable location of the H/V function’s peak.
Moreover an important task is to ensure an efficient automatic data analysis, in order to
allow a data interpretation as independent as possible from any a priori knowledge about
the nature of the data and then about the area of investigation. For this reason the SOM
process has been applied to the acquired tremor at the surface, as a suitable methodology
for this purpose.

3.1 The environmental tremor

Passive seismic methods for site effects characterisation are essentially based on the study
of the wavefield associated with the seismic environmental tremor. This tremor is present
in every part of the Earth’s surface due to natural and anthropogenic causes, and it’s
constituted by seismic phases that often have passed through significant portions of the
Earth’s crust. These features make the applicability of passive seismic measurements
virtually unlimited in terms of depth of exploration. The main limitations are related to
the presence of unknown sources that make the interpretation and analysis of data more
complex as compared to active seismic techniques. In the case of passive measures, the
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results are usable for structural purposes only using statistical methods for the analysis of
the average characteristics of the wavefield.

The environmental seismic tremor is related to a variety of possible causes, both natural
(ocean waves, storms, wind, etc.) and artificial (vehicular traffic, industrial activities,
power lines, etc.). Briefly, Bonnefoy-Claudet et al. [2004] suggest that:

e tremor at low frequency (f < 0.5Hz, T" > 2sec), generated by ocean waves at a
great distance, it is stable and consistent and is composed mainly of surface waves;

e tremor at intermediate frequencies (0.5 < f < 1Hz, 1 <T < 2sec) is generated by
waves on the shore at a short distance, by the wind or, in certain circumstances, by
human activities. Stability is much smaller and the content in terms of surface waves
is variable;

e the tremor with frequency f > 1 Hz (T < 1sec) is essentially of local origin and it’s
related to human activities. It’s highly unstable in terms of both amplitude and the
ratio of energy between body waves and surface waves from which it’s composed.

Generally the tremor has a complex structure with an average constant amplitude values
on the scale of tens of minutes, but it can vary depending on the time scale. From the
point of view of spectral content, tremor amplitudes related to the frequencies higher than
1 Hz show systematic variations between day and night, while the relative amplitudes of
lower frequencies (also known as microseisms) remain constant, showing some variability
with respect to the local structure of the substrate.

In the absence of controlled sources, seismic noise is therefore an essentially stochastic
phenomenon that requires specific methods of analysis, both theoretical and experimental.
If the essentially stochastic character of the phenomenon leads up to some problems of
theoretical type, on the other hand it allows to reduce the complexity of the analysis
using the statistics. For example, assuming that the noise is the result of a widespread
distribution of sources that are activated randomly (think to an urban environment), the
average structure of the noise will be statistically independent of the nature and location
of the sources, while will be determined by the structure of the soil.

3.2 HVSR method

The spectral ratios method (HVSR or Nakamura’s method) results from studies carried
out in Japan in the 50s [Nogoshi and Igarashi, 1971, Ameri, 1980, Nakamura, 1989, 2000|
and it has been involved in numerous applications, even if it remains at the center of
a bitter scientific controversy, involving not secondary aspects of the procedure (see e.g.
SESAME [2005], Tokimatsu et al. [1992], Lachet and Bard [1994], Bard [1999], Mucciarelli
and Gallipoli [2001]). The application of the method is very simple and is based on the
analysis of the relationship between the spectral ordinates (the weights of the frequency
components of the signal in which it has been split) of seismic noise measured in the
horizontal component (H) and vertical (V) for a certain time interval.

The basic idea of the procedure is that the relationship between the spectral components
allows to eliminate the role of the source, hypothetically present to the same extent in
both the vertical and the horizontal component, allowing to determine the filtering action
of the soil on the seismic waves propagation. It was verified that the performance of the
spectral ratio between the horizontal and vertical components of the tremor (H/V function)
shows the maximum at the resonant frequencies for the S waves generated by seismic
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contrast impedance in the subsurface. The determination of these resonant frequencies
plays an important role in seismic microzonation (Kramer, 1996) and provides important
information about some characteristics of the velocity profile of the S waves.

It’s important to note that the analysis of the spectral ratios H/V, by itself, is not sufficient
to characterise the complexity of the seismic site effects and especially it’s not able to
determine, by itself, the absolute value of the seismic site amplification. However the HVSR
method has proven to be suitable for evaluating the fundamental period of sedimentary
deposits (particularly when the impedance of these is in great contrast with the impedance
of the bedrock). Therefore the main application of spectral ratios technique is to allow a
fast and quite simple, but not always completely reliable, identification of the fundamental
frequency fy of different areas.

The HVSR technique allows an evaluation of the fundamental resonance frequency of a
soft layer analysing the H/V function of the tremor acquired at the surface. Considering
the typical geological structure of a sedimentary deposit (fig. 3.1), the tremor recorded at
the surface can be considered as composed by surface waves and body waves. These waves
are modified by the filtering action of the soft layer. Two spectra can be defined as related
to measures of surface horizontal motion (Hy) and vertical motion (V). These spectra are
related to the body waves spectra and surface waves spectra by the following formula:

Hf:Ah-Hb-l-Hs
V= Ay Vot Vi

where A;, and A, are the amplification factors of the horizontal and vertical motion of the
body waves. Hj and Vj, are the horizontal and vertical spectra of the motion at the bedrock
and H and V; are the horizontal and vertical spectra of the motion at the surface.

1

tremor

body waves surface waves
Hp Vb Hs. Vs
T, T MW -

Figure 3.1: Simplified structure of a sedimentary basin and entities involved in the defini-
tion of the QTS.

Nakamura then defined the QTS (Quasi-Transfer Spectra) as:

Ay + s
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Fig. 3.2 proposes a comparison between the horizontal component Hy, the vertical com-
ponent Vy and the spectral ratio QTS.

2

Amplitude |a.u.]

0 fo 2fo 3, f[Hz]

Figure 3.2: Comparison between the horizontal component H, the vertical component Vy
and the spectral ratio QT'S = H;/v; (loosely based on Nakamura [2000]).

Assuming that the wave field that characterises the tremor consists of a combination of
seismic waves (P, S and surface waves), to better understand the basis on which the HVSR
technique is based on, it’s useful to analyse separately the contributions of the volume
waves and surface waves:

e The volume waves coming from remote sources reach the site from the bottom with

angles of incidence close to the vertical. For these waves, the amplitudes of the
horizontal and vertical components of the motion are controlled respectively by the
motion phases longitudinal (P) and transverse (S).
Due to the attenuation suffered during the journey, the contribution of these waves
to the total field is presumably little if not at the lowest frequencies of vibration.
The major contribution of the phases related to the volume waves would then come
from local sources (traffic, industrial activities, etc.), probably randomly distributed
around the site and acting independently. Only these local sources of noise are able
to provide a strong contribution of volume waves in the high frequency range.

e Surface waves are generally characterised by a lower geometric attenuation, preserv-
ing considerable amplitudes even at a considerable distance from the source. So both
the surface waves next to the area of measurement as remote sources take part in
composing the seismic tremor. The characteristics of the ground motion associated
to the surface waves depends on both the characteristics of the source and the char-
acteristics of the subsurface between the source and the point of measure.
Assuming the existence of many sources that act independently, it’s reasonable to
assume that, on average, the contributions of the different horizontal and vertical
sources are equal, so, at a given time, the probability that the main stress is related
to the horizontal motion is equal to the probability that the main stress is related to
the vertical motion. Considering numerous independent sources, it is reasonable to
assume that the “equivalent” source provides the same average contribution to the
vertical and to the horizontal components of the motion.
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Starting from these assumptions, the ratio between the vertical components (Rayleigh
waves) and horizontal components (Rayleigh and Love waves) of the motion is con-
ditioned only by the characteristics of the subsurface along the propagation path. In
particular, if the soil is characterised by flat layers parallel and arranged horizontally,
the ratio between the vertical and horizontal components of the motion is determined
only by the velocity profile in correspondence of the measurement point.

Sources randomly distributed around the measurement point produce surface waves
coming from different directions that are summed in the measurement point, then
any form of phase coherence and polarisation is lost (that is commonly observed in
practice). However this does not influence the amplitude ratios between the horizon-
tal and vertical components of the motion, which is instead controlled by the local
velocity profile. This makes the average ratio H/V of surface waves a parameter sen-
sitive to the local structural conditions of the soil and thus substantially independent
from the sources, allowing to correlate the shape of the function H/V to the soil
characteristics at the measurement point.

3.2.1 The quarter wave law

Considering an ideal site (fig. 3.1) characterised by the presence of a soft layer above
the bedrock, when seismic waves pass through the soft layer to reach the surface, they
are modified according to the mechanical and geometrical characteristics of the layer. If
the ideal soft layer is assumed to be homogeneous, elastic and isotropic, it’s possible to
calculate the fundamental resonance frequency according to the quarter wave law:

Vs
- 4-H

fo (3.1)

where V; is the mean velocity of the S waves and H is the depth of the soft layer.

The quarter wave law puts then in relation the natural frequency of resonance fy with the
thickness H of a soft layer placed above a much more compact soil (bedrock) considered
as a semi-infinite solid.

Assuming that the wavefield is dominated by surface waves, it appears that also the tremor
spectral ratio H/V is essentially controlled by such waves and in particular by the ellip-
ticity of Rayleigh waves [Tokimatsu, 1997]. In general it can be observed the presence of
pronounced maximum in the H/V function at the resonance frequency fy of the S waves
in the soft soils. In first approximation the value of the peak frequency is related to the
ratio between the average speed Vi of the S waves in the soft layer and its thickness H,
always according to eq. 3.1.

This interpretation also provides a justification for the lack of correspondence that is found
in some cases between the amplitude of the maximum in the H/V function and the magni-
tude of the amplification of the seismic motion in correspondence of the resonance frequency
(fig. 3.3).
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Figure 3.3: Comparison between the H/V ratio obtained from environmental tremor and
from seismic events (strong motion field). The graph 3.3a shows the comparison of the
frequencies fo, the graph 3.8b shows the comparison of the amplitudes A(fp). Loosely
based on SESAME [2005].
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3.3 A SOM analysis for Salta city

The city of Salta is located in the northern sector of the Lerma valley. The geomorpholog-
ical characteristics of the area are principally a consequence of the presence of the Eastern
Cordillera thrust. The hills that enclose the valley are formed mainly by outcrops of the
bedrock dating back to the Superior Precambrian - Lower Paleozoic, while the Cenozoic
rocks outcrop mainly within the valley and they are often fractured and with different
immersion angles. Finally, the Quaternary deposits occupy the depressed area.

Figure 3.4: Satellite photo of the valley of Salta. The red dot indicates the area involved
in the acquisitions of environmental tremor (from Google Earth).

This application of the SOM process can be considered an enhancement of the previous
SOM analysis procedure [Carniel et al., 2009] to improve the HVSR technique for the
seismic site response evaluation. Applying SOM to several seismic noise records, some
problems and considerations have arisen about data pre-processing, SOM learning process
and results interpretation. In the meanwhile, the National University of Salta (Argentina)
is carrying out a project of microzonation of the city of Salta, since the National Institute
for Seismic Prevention considers the seismic hazard of particular interest among the natural
hazards for the city and its district, given the high population density of the area and the
decisive influence of site effects due to the geo-morphology of the valley. As a case study,
SOM has therefore been applied to the short and highly noisy seismic tremor acquisitions
of Salta city, with the objective of an easier and more reliable determination of the H/V
function’s peak.

The seismic characterisation of the site is converted into a data cluster analysis where the
proposed SOM process is applied to horizontal to vertical spectral ratios. The basic idea is
to handle separately the spectral ratios in east-west (EW) and north—south (NS) directions
and, since the main frequency is a feature of the site, it should be always present in all
spectral ratios, unlike frequencies due to noise, which generally cover limited time intervals
of the records and potentially imply incorrect peaks estimation of the H/V function.
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Figure 3.5: Isopach map of the Lerma valley (loosely based on 7).

The main improvements of the process regard both the procedure and the optimisation of
the algorithms to reduce the computational effort and then the analysis duration. Briefly, in
order to estimate the amplitude spectrum, the classic FFT has been replaced by the Welch’s
method [Welch, 1967 implementation |[Lees, 2012] that allows to damp the noise effects,
reaching also a good balance between time and frequency resolution (ewolfft function,
RSFEIS package, Team [2010]). Moreover, Konno-Ohmachi smoothing function [Konno
and Ohmachi, 1998] has been implemented. In the learning process, the discriminant
function is based on a weighted cross-correlation index instead of the Euclidean distance.
This allows to better consider the spectral shape rather than punctual H/V function values.
Moreover, during the training, a proper choice of the frequency range allows to compare
patterns only in the range of interest, optimising the map organisation and obtaining a
more meaningful data cauterisation. With regard to topological properties, as previously
discussed, flat maps have the disadvantage that neurons along their edges do not have the
same number of neighbours as the others, resulting in a non homogeneous training process.
The solution is to use a toroidal map, removing then the edges of flat SOM maps.

To comply with the objectives of the research program, one of the most significant in-
formation is to define the site frequency response, in order to evaluate the vulnerability
of buildings on the basis of the type of construction and thus obtaining an assessment
about the seismic hazard of the area. The HVSR technique should allows to highlight in
a simple and economical way the fundamental period that characterises the sedimentary
deposits of a certain area, without taking into account any information about the soil struc-
ture and without obtaining a reliable information about the effective site amplification in
correspondence of the identified fundamental frequency.

The data acquisition has been carried out using a three-component seismometer Mark L4

67



SEZ. 3.3
A SOM ANALYSIS FOR SALTA CITY

Figure 3.6: Red dots show the measurement points where the three-component seismome-
ter Mark L4 - 1sec has been placed to acquire the environmental tremor. Each number
correspond to the seismic station number in the following presentation of the SOM results.
Yellow dots show the position of a pair of the available drillings (see fig. 3.7).

with own period of 1 second. For each measuring point, the acquisition has lasted for 3
minutes with a sampling frequency of 50 Hz. The measurement points have been arranged
in a square grid of constant side equal to 300 m to define a detailed map showing the soil
fundamental frequency response.

Researchers of the National University of Salta involved in the project of seismic micro-
zonation project have encountered difficulties in the identification of the peak of the H/V
function, in particular for some time series acquired at certain points of the grid. The
HVSR technique can not provide satisfying results because of some negligence during the
tremor acquisition phase, e.g. a poor soil-sensor coupling, but also environmental and
weather conditions strongly influence the results, e.g. anthropogenic noise, blowing wind,
wet soil etc. [SESAME, 2005].

In the case of Salta time series, the high anthropogenic noise, the density of the buildings
and the short duration of the acquisitions definitely play a role. In order to provide an
example of how the proposed SOM procedure is able to provide additional information with
respect to the classical data analysis techniques, in the following are showing some results
obtained by SOM analysis applied to the worst time series for which the interpretation of
the H/V function peak is particularly uncertain. Fig. 3.8 shows the seismic microzonation
proposed by the research group of the National University of Salta.
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Figure 3.7: Available drillings in the valley of Lerma (as supplied by the National University
of Salta).
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Figure 3.8: Microzonation map of the Lerma valley area on which the city of Salta is located
(as supplied by the National University of Salta). Red dots indicate the measurement points
(see also fig.).
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3.3.1 Stations 5 & 6

As a first example, in the following the SOM analysis for the station 5 & 6 (at the same
measurement point) is discussed. For the other stations (see fig. 3.6) the same procedure
has been applied, with the same SOM parameters (SOM map dimension, learning rate
and neighborhood radius, Konno-Ohmachi smoothing function value, number of process

iterations etc.).
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Figure 3.9: Station N6 - spectrograms for the EW, NS and UD component respectively and
the corresponding averaged spectrum. It’s easy to note the high content of anthropogenic
noise.

In order to estimate the amplitude spectrum (fig. 3.9 shows the spectrograms in EW,
NS and UD direction respectively) the Welch’s method has been used with 1024 points
in the FFT windows (Nfft parameter, evolfft function, RSEIS package), 320 points in the
sub-windows (Ns parameter, evolfft function, RSEIS package) and 305 points of overlap
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(Nov parameter, evolfft function, RSEIS package, Team [2010]). Subsequently the Konno-
Ohmachi smoothing function has been applied to the spectra, with the b-value equal to
40. As the SESAME project [SESAME, 2005] suggestes, in the case of industrial origin
tremor, the H/V peak should become sharper and sharper reprocessing the data with less
and less smoothing, while this is not the case for a “site effects” peak linked with the soil
characteristics. For the local narrow peaks that have an industrial origin, the reprocessing
with different smoothing parameters shows it becomes narrower and narrower, with a larger
and larger amplitude when the b-value (Konno-Ohmachi smoothing function parameter)
is increasing.

Horizontal components rotation has been applied to investigate the differences between
differently polarised horizontal components, since along valley edges a clear differences
may appear between the parallel and transverse components with relation to the elongation
valley axis. The rotation angle is the one that maximises the dissimilarity between the
horizontal spectra components (EW vs NS).

Then the H/V spectral ratios have been calculated (fig. 3.10). Each one spectrogram (EW
and NS component) is handled separately and each one spectra is an input vector for the
SOM process.
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Figure 3.10: Station N6 - H/V spectrograms for the EW and NS component respectively
and at the right side the corresponding mean spectrum is shown.

The SOM map has 1600 neurons (or grid nodes) and it’s square and with a toroidal shape
for the computational purposes, so it has any edges. During the learning process phase,
the discriminant function is based on the weighted cross-correlation index instead of the
Euclidean distance, as previously discussed. In order to analyse the spectra only in the
range of interest, it was considered appropriate a choice of the frequency range between
(.7 Hz and 7 Hz, optimizing the map organization and obtaining a more meaningful data
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clusterization.

The neighborhood radius starts from a value of 40 equal to the SOM map sides and it
decreases over iterations to the value of -40, so after an half of iterations each input vector
activates just the corresponding BMU on the map and its neighbours code vectors are not
modified. The learning rate starts from a value of 0.15, decreasing over iterations to reach
the final value equal to 0.001. The SOM training process lasts for 100 iterations, at each
iteration the whole dataset is processed by the network.

Fig. 3.11 shows, for the EW component (the rotation of the horizontal component has not
been applied in this case), the dendrogram (fig. 3.11a) obtained computing the weighted
cross-correlation matrix among the code vectors of the neurons on the SOM grid. Choosing
a threshold, corresponding to a certain dissimilarity value, a certain number of clusters is
detected onto the map. In this case the threshold is placed at a dissimilarity value equal
to 1.033, corresponding to seven clusters onto the SOM map (fig. 3.11b).

Dendrogrom of agnesis » WCCTTR, S58 = T, mathod « “Tesge’)

€Ll CLO2

Figure 3.11: Station N6, EW component. Fig. 3.11a shows the dendrogram obtained
computing the weighted cross-correlation matrix among the code vectors of the neurons
and the clusterized SOM map (3.11b) that shows the seven detected clusters for the chosen
dissimilarity threshold on the dendrogram.

The choice of the dissimilarity threshold is not unique and this provides another degree
of freedom in the SOM analysis results, since there isn’t a single optimal threshold for
any dataset. Choosing a low threshold increases the number of clusters, and each of them
becomes highly specialized to recognize a particular feature that caracterises the dataset.
For this reason it is advised to carry out a few analyses with different thresholds before
choosing the threshold that best optimises the coexistence of an overall view on the main
features of the dataset and an acceptable “resolution” in terms of distinction between
different spectral patterns.

The last step of the proposed SOM analysis consists in considering each one cluster or at
least the main clusters which have the great number of neurons and consequently collect
the great number of data. The procedure allows to return back in the time domain in order
to analyse at which cluster each time window, on which the corresponding spectra has been
calculated, is assigned. In this way it is possible to evaluate the temporal stability of each
cluster, since the fundamental frequency is an intrinsic property of the site as opposed to
the environmental noise that is reasonably less stable.

The three main clusters for the EW component analysis have been considered and shown
in fig. 3.12. The cluster 1 is the one that occupies the largest portion of the map (fig.
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3.11b) and it’s also the most stable in time (fig. 3.12b, pink lines show the temporal
windows of which spectrum is projected into the cluster 1) and with the largest number of
occurrences (fig. 3.12a). The other clusters don’t show the same temporal stability and are
not comparable in terms of the number of neurons on the map and the data represented.

Cluster 1, 21 spectrs in T22 codes

| ___—H——_ﬁw___,.\_,h_\,./ /\“"—\/L

(a) (b)
— e /\\'\ f e e AT M"—’J\\_/\"
(c) (d)

Figure 3.12: Station N6, EW component. Fig. 3.12a, 3.12¢ and 3.12d show the mean
and the median spectrum for each one of the three largest clusters (cluster 1, 2 and 3
respectively) in the map trained with the H/V spectral ratios in EW direction. Fig. 3.12b
shows data distribution over the three principal clusters.

In previous applications the SOM procedure allowed to identify the time windows with a
not satisfying signal to noise ratio, since the objective was to remove these time windows
to obtain spectral ratios less conditioned by transients due to environmental noise [Carniel
et al., 2009]. After many applications and some improvements of the procedure, the idea
of eliminating a part of the dataset to get a sub-sample composed by only the data that
have presumably a better signal to noise ratio, to provide a more reliable H/V function,
has been set aside. The aim of the SOM process is rather to decompose the dataset into an
arbitrary number of sub-samples (clusters) of uniform features to carry on an evaluation
on each one of these, e.g. in terms of frequency content and temporal stability.

The results of the same kind of analysis are presented also for the largest cluster in the NS
direction (fig. 3.13). As fig. 3.12a and 3.13a show, the largest cluster in both directions is
characterized by a H/V peak at about 4.9 Hz. It’s reasonable then to suppose that this is
the fundamental resonance frequency at that single recording point.
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Figure 3.13: Station N6, NS component. Fig. 3.13a shows the mean and the median
spectrum for the cluster 1 in the map trained with the H/V spectral ratios in NS direction.
Fig. 3.13b shows data distribution over the principal cluster.

Cluster 3, 235 spectrs in 696 codes

Cluster 5, 148 spectrs in 380 codes

Figure 3.14: Station N6 - EW component. Figures at the left side show the mean and
the median spectrum for the two largest clusters (cluster 3 and 5 respectively) in the
map trained with the rotated H/V spectral ratios. The b-value of the Konno-Ohmachi
smoothing function has been fixed to a value equal to 20. The other two graphs (right
side) show the data distribution over the two considered clusters.

In order to verify the stability of the peak at 4.9 Hz of the H/V function, the horizontal
components are rotated and the b-value of the Konno-Ohmachi smoothing function has
been decreased to a value equal to 20 (a smoothing too strong according to the SESAME
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[2005] guidelines). Fig. 3.14 shows that the peak at 4.9 Hz is still present and stable,
it’s therefore reasonable to assume that this is the fundamental frequency in proximity of
the seismic station. This evaluation of the fundamental frequency response differs slightly

from the evaluation proposed by the researchers of the National University of Salta (fig.
3.8).

3.3.2 Station 7

SOM analysis applied to the tremor acquired at the station 7 highlights a peak at about 3
Hz in EW component (horizontal components have been rotated by an angle equal to 60°),
both in the largest cluster (cluster 1) and in the third one in order of size (cluster 3). Even
if the cluster 3 has only one tenth of the number of H/V spectra projected in the cluster
1, it is quite stable in time (looking at the distribution of its spectra over time). For this
reason it’s reasonable to assume that the H/V peak at 3 Hz indicates the fundamental
frequency for this measurement station.

In the NS component a large H/V peak (in the range 2.7 to 3.5 Hz) appears only in the
cluster 5 (the third one in order of size). Since the data projected in this cluster concern
only a limited time window (looking at the distribution of its spectra over time), the
connotative feature of the cluster 5 can’t be considered stable over time.

! - -..__..—-'-~\\_~\ j.‘\/\f\.'_-"//:-_ ___\_T__

Figure 3.15: Station N7 - EW component. Figures at the left side show the mean and
the median spectrum for the largest cluster (cluster 1) and for the cluster 3, the third
one in order of size. Cluster 2, the second one in order of size, is characterized by high
frequency content. The other two graphs (right side) show the data distribution over the
two considered clusters.
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Figure 3.16: Station N7 - NS component. Figures at the left side show the mean and
the median spectrum for the largest cluster (cluster 1) and for the cluster 5, the third
one in order of size. Cluster 2, the second one in order of size, is characterized by high
frequency content. The other two graphs (right side) show the data distribution over the
two considered clusters.

3.3.3 Station 8

SOM analysis applied to the tremor acquired at the station 8 highlights a quite large peak
at about 2.3 Hz in EW component (horizontal components have been rotated by an angle
equal to 70°) in the third cluster in order of size (cluster 1). The largest cluster (cluster 3)
is characterized by a quite flat H/V function and some high frequency content. The cluster
2, the second one in order of size, is characterized by a smooth peak at 2.9 Hz and by high
frequency content. The cluster 3 seems to be considered quite stable in time (looking at
the distribution of its spectra over time), for this reason the H/V peak at 2.3 Hz is not
devoid of interest.

Looking at the NS component something similar to the EW component can be noticed:
the largest cluster (cluster 2) shows a quite flat H/V function, but the third one cluster in
order of size highlights a large H/V peak (in the range 1.8 to 2.3 Hz) and it’s quite stable
over time.
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Figure 3.17: Station N8 - EW component. Figures at the left side show the mean and the
median spectrum for the largest cluster (cluster 3) and for the cluster 1, the third one in
order of size. Cluster 2, the second one in order of size, is characterized by a smooth peak
at 2.9 Hz and by high frequency content. The other two graphs (right side) show the data
distribution over the two considered clusters.

Chuster 2, 384 spacirn in 965 coses

Figure 3.18: Station N8 - NS component. Figures at the left side show the mean and the
median spectrum for the two largest cluster (cluster 2 and 1). Cluster 3, the only other
one, is characterized by high frequency content. The other two graphs (right side) show
the data distribution over the two considered clusters.

3.3.4 Station 9

SOM analysis applied to the tremor acquired at the station 9 shows not reliable results
to characterize the site frequency response at the measurement station. A large flat peak
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centered at the frequency of 2.7 Hz and a narrow peak with low amplitude at 4.5 Hz
characterize the EW component (horizontal components have been rotated by an angle
equal to 40°), while a quite narrow but with low amplitude peak at 1.9 Hz characterizes
the NS component.
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Figure 3.19: Station N9 - EW component. Figures at the left side show the mean and the
median spectrum for the two largest cluster (cluster 1 and 2). The other two graphs (right
side) show the data distribution over the two considered clusters.
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Figure 3.20: Station N9 - NS component. Figures at the left side show the mean and the
median spectrum for the two largest cluster (cluster 1 and 2). The other two graphs (right
side) show the data distribution over the two considered clusters.
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3.3.5 Station 3

Analysing the spectral ratios of the tremor acquired at the station 3, SOM analysis shows
that the EW component (horizontal components have been rotated by an angle equal to
80°) of the H/V function is characterized by a peak at about 3 Hz. In particular the spectral
ratios projected in the cluster 2 enhance this feature and the cluster is quite stable over
time.

SOM analysis applied to the spectral ratios of the NS component shows that the H/V
function if quite flat. Lowering the dissimilarity threshold on the dendrogram to increase
the number of clusters and then let each cluster becomes highly specialised to recognise a
particular kind of pattern, no one of them highlights a realiable peak of the H/V function.

Chuster 1, 238 spacirn in 853 coses

it -
—_— i \/‘_/ = '\
— e SN \\

—— ke N

Figure 3.21: Station N3 - EW component. Figures at the left side show the mean and the
median spectrum for the three largest cluster (cluster 1, 2 and 3). The other three graphs
(right side) show the data distribution over the three considered clusters.
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Figure 3.22: Station N3 - NS component. Figures at the left side show the mean and the
median spectrum for the largest cluster (cluster 3), the only interesting one. The other
graph (right side) shows the data distribution over the considered cluster.

3.3.6 Station 4

Analysing the spectral ratios of the tremor acquired at the station 4, the SOM process
highlights for the EW component (horizontal components have been rotated by an angle
equal to 65°) a result similar to the analysis result at the station3. The H/V function is
characterized by a peak at about 3 Hz.

The largest cluster (cluster 3) in the SOM map for the NS component analysis show a
large peak centered at 2.3 Hz, while the second one cluster in order of size (cluster 1)
is characterized by low frequency content. Both these two main clusters highlight a low
amplitude peak at 4.5 Hz. It’s interesting to compare this low amplitude peak at 4.5 Hz
with the peak at 4.9 Hz that characterizes the H/V funcion at the station 5 and 6.
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Chuster 1, T34 spasirn in 777 coses

Figure 3.23: Station N4 - EW component. Figures at the left side show the mean and the
median spectrum for the three largest cluster (cluster 1, 2 and 3). The other three graphs
(right side) show the data distribution over the three considered clusters.
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Figure 3.24: Station N4 - NS component. Figures at the left side show the mean and the
median spectrum for the two largest clusters (cluster 3 and 1). The other graphs (right
side) show the data distribution over the considered two clusters.
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The SOM analysis discussed above does not completely confirm the microzonation proposed
by the researchers of the National University of Salta for the area of interest (see fig. 3.8).
In particular the low frequency range seems hard to inspect, since the tremor acquisitions
are short, highly affected by anthropogenic noise and the tremor is acquired by a short-
period seismometer.
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Conclusions

This work aimed to investigate the possibility, both at a theoretical and practical level,
to apply a particular kind of artificial neural network, the so called Self-Organizing Maps
(SOMs), to improve the analysis of geophysical data. Data interpretation is one of the most
important and thorny tasks in geosciences. Difficulties occur especially in non-invasive geo-
physical techniques and/or when the data that have to be analysed are multidimensional,
non-linear and highly noisy. Another important task of the proposed SOM process is
to ensure an efficient automatic data analysis, in order to allow a data interpretation as
independent as possible from any a priori knowledge.

The SOM process provides a new capability to explore the input data space applying an
unsupervised pattern recognition algorithm, and allows to recognise outliers as samples
that have been projected onto unusual areas of the map. The analysis of the time evo-
lution of a volcanic system through the SOM methodology offers then the possibility to
highlight data patterns possibly related to a precursory activity of an upcoming volcanic
crisis.

At Raoul Island, the SOM method allowed recognition of diurnal pattern in seismic data
that may be anthropogenic in nature, and are not readily apparent in visual spectrogram
analysis. The SOM did not reveal precursors to the eruption in Raoul Island seismicity,
but it highlighted a transition in spectral characteristics at the onset of the eruptive activ-
ity into a spectral regime that lasted for approximately 1.5 hours. This frequency content
transition seems to support the model proposed by Christenson et al. [2007| for which
the proximal cause of the eruption was due to the failure of a shallow hydrothermal seal
which became pressurised by gas released from a deeper magmatic carapace. The carapace
itself is surmised to have failed due to a swarm of hybrid and volcano-tectonic earthquakes
Lahr et al. [1994] occurring on March 12, which released gas from magma and caused
pressurisation beneath the hydrothermal seal. If this model is correct, then the failure of
the hydrothermal seal was instantaneous and included no precursors seen in either the ob-
served spectra or the SOM analysis. The SOM analysis highlights the post-failure system
excitation which is possibly due to the re-equilibration of the hydrothermal system.

By examining seismic spectra from a single station using a single-trained SOM approach,
we find a consistent evolutionary pattern in two phreatic events that occurred at Ruapehu
volcano. Results are interpreted in context with a model proposed by Christenson et al.
[2010] which suggests that the hydrothermal system may be progressively sealed by pre-
cipitation of an elemental sulphur—anhydritenatroalunite mineral assemblage. This is in
turn associated with a pressurisation beneath the seal. The results are consistent with a
pressurisation and failure of a sealed system, but cannot discriminate whether this seal fail-
ure is in the hydrothermal system or due to a deeper process. The results show the value
of advanced spectral processing of data to elucidate details of the volcanic system that
might otherwise not be detected. Future research should focus on analysis of additional
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examples and expand the analysis to other data streams to examine the robustness of the
present observations and to document alternative evolutionary patterns, if they exist. It is
worthwhile to emphasise that the patterns learned by SOM only by looking at 2006 data
were recognised again in 2007. Although as we have underlined the interpretation of each
colour (pattern) is not unique, with a greater set of example events and a correspondingly
more sophisticated training, the approach towards real-time recognition of such patterns
may prove valuable from a monitoring perspective.

Moreover the alternative SOM analysis, based on the observation of the data distribution
onto the map, carried out for the tremor acquired at Ruapehu during the days 23, 24 and
25 September 2007, highlighted the existence of dynamic regimes that are consistent and
coherent over time and identifies a possible precursors of the paroxysmal phase.

SOM results are represented as two-dimensional maps, with a non-parametric mapping
that projects the high dimensional original dataset in a faghion that provides both an un-
supervised clustering and a highly visual representation of the data relationships.

The proposed analysis process has also been applied to improve the HVSR technique. The
evaluation of the fundamental frequency (i.e. the peak of the H/V function) is not al-
ways easy. The acquired signal is splitted in time windows (upon which the corresponding
frequency spectrum is calculated), but some of these windows can be affected by a con-
siderable amount of noise, for example due to anthropogenic sources localised close to the
seismic station. The identification of these time windows allows an easier and more reliable
location of the H/V function’s peak.

The seismic characterisation of the site is converted into a data cluster analysis where
the proposed SOM process is applied to horizontal to vertical spectral ratios. The basic
idea is to handle separately the spectral ratios in east—west (EW) and north—south (NS)
directions. Being data projection on the map temporally ordered, considerations about
data mapping into a cluster can help to understand if cluster properties are stable or not.
Since the fundamental frequency is a feature of the site, it should always be present in
all spectral ratios. On the other hand, peaks of H/V function due to environmental noise
should not necessarily be stable in time.

The National University of Salta (Argentina) is carrying out a project of microzonation of
the city of Salta, since the National Institute for Seismic Prevention considers the seismic
hazard of particular interest among the natural hazards for the city and its district, given
the high population density of the area and the decisive influence of site effects due to the
geo-morphology of the valley. As a case study, SOM has therefore been applied to the
short and highly noisy seismic tremor acquisitions of Salta city, with the objective of an
easier and more reliable determination of the H/V function’s peak.

The SOM analysis does not completely confirm the microzonation proposed by the re-
searchers of the National University of Salta for the area of interest. In particular the
low frequency range seems hard to inspect, since the tremor acquisitions are short, highly
affected by anthropogenic noise and the tremor is acquired by a short-period seismometer.
On the other hand the SOM analysis results highlight that the H/V function peak moves
towards the low frequency taking in account the stations furthest from the edge of the
valley. This seems to be consistent with the increasing thickness of the deposits towards
the center of the valley.
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Appendix A

R software script

The SOM process proposed in this work has been entirely implemented using the free
software environment R [Team, 2010]. Some packages were already available in the repos-
itories of R software (http://cran.r-project.org/web/packages/) for the implementation of
some parts of the process, some other parts have been written from scratch. Here below is
shown the original code written to implement the parts of the SOM process not available
in the R repository and the scripts that call the appropriate R packages and the original
code and that manage the graphics.

R is a free implementation of a dialect of the S language, the statistics and graphics envi-
ronment for which John Chambers won the ACM Software Systems award. R was designed
for interactive data analysis, blurring the distinction between users and programmers. The
core is an interpreted computer language which allows branching and looping as well as
modular programming using functions.

Since R is free and open, everybody can use R free of charge and can inspect the code and
tinker with it (provided that the terms of the GNU General Public License ver.2, under
which it is distributed, is fulfilled), so thousands of experts around the world have done
just that and their contributions benefit the millions of people who use R. With thousands
of contributors and more than two million users around the world, there’s a wealth of
community resources for R available on the Web, for help in just about every domain.

R is similar to other programming languages, like C, Java and Perl, in that it helps people
perform a wide variety of computing tasks by giving them access to various commands.
As an interactive language, as opposed to a data-in / data-out black-box procedures,
R promotes experimentation and exploration, which improves data analysis. R doesn’t
restrict the user to choosing a pre-defined set of routines, the code contributed by others
can be used in an open-source manner or can be the same user to extend R with its own
functions.

Data visualization through charts and graphs is an essential part of the data analysis
process, so R has excellent tools for creating graphics, from staples like bar charts and
scatterplots to multi-panel lattice charts to brand new graphics of the user own devising.
R has great graphical power, but it’s not a point and click interface. This means that
the user must uses typed commands to get it to produce the graphs. This can be a bit
tedious at first and not very user-friendly, but once a list of useful commands (graphical
functions and their parameters settings) has been learned and saved, this is a good starting
point to begin to visualize data analysis results, quickly pasting that commands into the
R command line and slightly modifying them to obtain original and meaningful graphics.

The code helow is intended as supplementary to the basic R functions and packages. For
each function originally written and shown below, an example of a call of it is shown, so
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as to remove any ambiguity about the form of arguments to be passed. Moreover any
dependency to packages and functions (including the functions original written and shown
below) which the written code references is explicated. Before calling an R function, it’s
necessary to load the corresponding package (the one that includes that function), otherwise
if the function has been originally written then it has to be declared in advance and loaded
in the workspace.

A.1 Time Series and Spectrograms Plotting

TSSP function is written to plot the temporal series and to calculate and plot the cor-
responding spectrograms and the H/V spectral ratios, if the analysis that is carrying on
is a HVSR analysis. TSSP takes from the folder “ /folder/dy” the horizontal and vertical
components that are R objects of the class “vector”, each one named as “fileTOT” and
saved in the folder as “fileTOTew” or “fileTOTns” or “fileTOTud”.

TSSP <— function(folder , dy, component, Fc¢, doSP, Nfft, Ns, Nov, fl, cutTS,
lenFIN | ¢sU, csD, normMax, bKonno, splitTS, filter , flfilt , fhfilt ,
rotate , trwd)

dyDIR <— sprintf(’/%s/%08d’, folder , dy)

dir . create (path=dyDIR, showWarnings=F)

spDIR <— sprintf (’%s/%08d/Spectrograms’, folder , dy)
dir . create (path=spDIR, showWarnings=F)

for (i in 1l:length(component)) # time series components loading
{

strtFT <— sprintf(’fileTOT%s’, component[i])

tsIN <— sprintf( '%s/%08d/%s’, folder , dy, strFT)

fT <— c()

T <— get(load (tsIN))

if(is.finite (cutTS[1]) = T && is.finite (cutTS[2]) = T)

fT <— fT[cutTS[1]:cutTS[2]]
fT <— {fT — mean(fT, na.rm=T) #zero mean

fT <— {T / sd({T, na.rm=T) #unit variance

}
if(is.finite (cutTS[1]) = T && is.finite (cutTS[2]) = F)

fT <— fT[cutTS[1]:length(fT)]
fT <— {fT — mean(fT, na.rm=T)
fT <— {fT / sd(fT, na.rmxT)

if(is.finite (cutTS[1]) =— F && is.finite (cutTS[2]) = T)

fT <— fT[1:cutTS[2]]

fT <— {fT — mean({T, na.rm=T)

fT <— {fT / sd(fT, na.rmT)
}

if(filter — T) # Butterworth filter
{
wl <— f1filt /(Fc%0.5)
wh <— fhfilt/(Fc*0.5)
bttw <— butter (n=7, W=c(wl,wh), type=’pass’, plane=’z")
for(j in 1l:length(component))

fT <— filter (filt=bttw$b, a=bttw$a, x=fT)
}
}
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}

assign (strFT, {T)

if(rotate = T) # horizontal components rotation

}

SPwce <— rep(NA, (90/5)+1)

fiROT <— NA
for(fi in seq(0,90, by—5))
{

fTOTrotl <— fileTOTewx*cos(fi*pi/180) — fileTOTns*sin(fi*pi/180)
fTOTrot2 <— fileTOTews*sin(fi*pi/180) + fileTOTns*cos(fixpi/180)
SProtl <— evolfft (fTOTrotl, dt=1/Fc, Nfft=Nfft, Ns=Ns, Nov=Nov, fl=fl,
fh=Fc/2)
SProt2 <— evolfft (fTOTrot2, dt=1/Fc, Nfft=Nfft, Ns=Ns, Nov=Nov, fl1=f1,
fh=Fc/2)
SPmnrotl <— rowMeans(SProt1$DSPEC)
SPmnrot2 <— rowMeans(SProt2$DSPEC)
SPwee| fi/5+1] <— wce(SPmnrotl, SPmnrot2, trwdth=trwd)
}
fiROT <— ((which.min(SPwcc)—1)%5)
fTOTrotl <— fileTOTew#*cos (fiROT*pi/180) — fileTOTns*sin (fiROTx*pi/180)
fTOTrot2 <— fileTOTews*sin (fiIROT*pi/180) + fileTOTns*cos (fiROT*pi/180)
fileTOTew <— fTOTrotl
fileTOTns <— fTOTrot2
sttROT <— sprintf(’Rotazione_delle_componenti_orizzontali_pari_a_%d_
gradi’, fiROT)
print (sttROT)

else

{
}

fiROT <— NA

for (i in 1l:length(component))

{

strFT <— sprintf(’fileTOT%s’, component|[i])
fileTOT <— c()
fileTOT <— get (strFT)
nFIN <— ceiling(length (fileTOT)/lenFIN)
for (x in 1:nFIN) # time series plotting
{
sspDIR <— sprintf ("%s/%08d/Spectrograms/sSP%02d’, folder , dy, x)
dir . create(path=sspDIR, showWarnings=F)
strplot <— sprintf(%s/%08d%s .png’, sspDIR, dy, component[i])
png(filename = strplot , width = 1440, height = 720)
fTOT <— fileTOT [((x—1)*lenFIN+1) : (xx*lenFIN)] # splitting the time
series
fTOT <— fTOT — mean(fTOT, na.rm=T)
fTOT <— {TOT / sd(fTOT, na.rm=T)
PlotTSsplit (data=fTOT, dy=dy, component=component[i], Fc=Fc, splitTS=

splitTS)
dev. off ()
if (doSP = T) # spectrograms calculation and plotting

SP <— evolfft (fTOT, dt=1/Fc, Nfft=Nfft, Ns=Ns, Nov=Nov, fl=fl, fh=Fc
/2)

nfreq <— length(SP$freqs)

freqs <— SP$freqs

Wb <— ¢()

vSP <— ¢ ()

SPk <— matrix (nrow=nrow (SP$DSPEC) , ncol=ncol (SP$DSPEC) )
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}
}
}

if(is.finite (bKonno) — T) # Konno—Ohmachi smoothing

print ( 'Smoothing_spettrogrammi_con_la_funzione_di_Konno—Ohmachi’)
for (centf in 1:nfreq)
{
cf <— freqs[centf]
h <1
for(f in 1:nfreq)
{
varf <— freqs|[f]
Wb[h] <— ((sin(logl0((varf/cf) bKonno)))/(loglO((varf/cf)"
bKonno) ) ) ~4
if (is .nan(Wb[h]) = T)

Wh[h] <1
}
h<-h+1
}
for (spcol in 1:ncol(SP$DSPEC))

{
vSP|[spcol| <— mean(SP$DSPEC] , spcol]| * Wh)

SPk|centf ] <— vSP

}
SP$DSPEC <— SPk

}
if (normMax =— T)

print ( 'Normalizzazione_spettrogrammi:_ogni_spettro_viene_diviso.
per_il_suo_valore_max’)
for(c in 1:ncol(SP$DSPEC))

SP$DSPEC|[ ,c]| <— (SP$DSPEC]|,c]/max(SP$DSPEC[,c], na.rm=T))

}
}

spOUT <— sprintf("%s/SP.%s’, sspDIR, component[i])

save(SP, file=spOUT)

¢s <— rainbow (128)[110:0]

cs <— c(cs, rep(cs[110],csU))

cs <— c(rep(cs|1],csD), cs)

imgSP <— sprintf{( '%s/SP.%s .png’, sspDIR, component|[i])
png(filename=imgSP, width=960, height=720)

par(cex=1, xaxt='s’, yaxt=’s’, mai=c(0.9,0.7,0.9,2.7), las=2)

# modify ’‘may’ if white lines appear in the spectrogram plot
plotevol (DEVOL=SP, log=1, fl=fl, fh=Fc¢/6.4, col=cs, ylog=F, ygrid=F,
AXE=c(1, 2, 3, 4), CSCALE=F, WUNITS="Amplitude", STAMP=NULL,

STYLE-" fft ")

par(mai=c(0.9,12.3,2.15,0.5) , new=T) # color legend edges

rgSP <— range(SP$DSPEC, na.rm=T)

plot (rep(0,length(cs)), seq(rgSP[1],rgSP[2],length—length(cs)), pch
= 15, col=cs, xaxt="n’, xlab="", ylab="", las=3)

box ()

dev. off ()

sSP <— sprintf(’/sSP%02d’, x)
SPmd(folder—folder , dy—dy, sSP—sSP, SP—SP, component—component[i],
Fc=Fc¢, ampLOG=T, pikFmin=1.0, pikFmax=10, pikN=10)

STRtxt <— sprintf(’%s/%08d/Spectrograms/parametriSP . txt’, folder , dy)

94



158
159
160

161
162

N =

O 00~ Otk W

11
12

13

14
15

0~ O Ut W N~

=)

Capr. A
R SOFTWARE SCRIPT

# parameters values storing in a .txt

SPpar <— toString (SP$wpars)

STRtext <— sprintf(’Parametri_per_lo_spettrogramma_—_pacchetto _RSEIS, _
funzione_evolfft _—\nsample_frequency: _%f\nparameters_ NIft , Ns, _Nov,_fI,
_fh: _%s\ncolor_scale_extension [red—purple |: _%f _%f\nsmoothing _Konno—
Ohmachi: _%f\nnormalizzazione_spettro_i/max[spettro_i]: _%s\nfilter %f_to
Jf\nrotate _%f_degrees\n\n’, Fc, SPpar, c¢sU, csD, bKonno, normMax,
f1filt , fhfilt , AROT)

cat (STRtext, file=STRtxt)

How to call TSSP, an example:

source (' /home/luca/Univ/PhD/BatchVolc/TSSP.R’) # to load the TSSP function
folder <— ’/home/luca/Univ/PhD/MudVolc’ # main folder for SOM
analysts
dy <— 20060623
Fe <— 128 # sampling frequency
# see http://ecran.r—project.org/web/packages/RSEIS/RSEIS. pdf
Nfft <— 768 # fft lenght

Ns <— 384 # number of samples in o window

Nov <— 192 # number of samples of owverlap per window

cutTS <— c((0%x60%60xFc+1),(20%60%Fc)) # to consider just a piece of the time
series

lenFIN <— 20%x60%xFc # length of single analysis window
splitTS <— 2%60«Fc # time series length for each graph row
# e.g. lenFIN=20x60zFc & splitTS=5260zFc => time series
splitted in 4 rows
trwd <— 16 # triangle width for the wcec, given in the number of data
points

TSSP(folder=folder , dy=dy, component=c(’ew’,’ns’,’ud’), Fe=Fc¢, doSP=T, Nfft=
Nfft , Ns=Ns, Nov=Nov, fl1=0.2, cutTS=cutTS, lenFIN=lenFIN & csU=15, csD=55,
normMax=T, bKonno—=60, splitTS=splitTS, filter=T, flfilt =1, fhfilt—=15,
rotate=T, trwd=trwd)

Required packages: signal, RSEIS, wccsom
Required functions: butter (signal), filter (signal), evolfft (RSEIS), plotevol (RSEIS),

wee (weesom), PlotTSsplit (see par. A.2), SPmd (see par. A.3)

A.2 Plotting Splitted Time Series

PlotTSsplit is written to plot the time series subdivided into n-rows. PlotTSsplit is called
by TSSP function.

PlotTSsplit <— function(data, dy, component, Fc, splitTS)
{
data <— data/max(abs(range(data, na.rm=T)))
datal <— (data[1l:splitTS])=*3
range <— 0.5
nTS <— floor (length(data)/splitTS)
par (mai=c(1,1,1.9,1))
plot (datal , type—’'1’, ylim—c(—((nTS*2—1)*range), range), yaxt—’'n’, xaxt—’'n
’, xlab="Time_[min]’, ylab=’"Amplitude’)
axis(side=1, at=seq(0, length(datal), by=Fcx60), labels=seq(0, floor(
length(datal)/(Fc*60)), by—1), cex.axis—1)
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}

axis(side=3, at=seq(0, length(datal), by=Fcx60), labels=seq(0, length(

datal), by Fc%60), cex.axis—1, las—2)

strmain <— sprintf(’Time_series _day_%08d,_component_%s’, dy, component)
title (main=strmain)
segments(rep(0,5), c¢(—1,1,-0.5,0.5,0), rep(length(datal)*1.03.,5), ¢

(-1,1,-0.5,0.5,0), lty=2, col="gray’)

segments(seq (0, length(datal), by=Fc%60), rep(—range*(nTS%x2—1),floor (

length(datal)/(Fc%60))), seq(0, length(datal), by-Fc*60), rep(range,
floor (length(datal)/(Fcx60))), lty=2, col="gray’)

for (i in 2:nTS)

{

}

din <— splitTS#(i—1) + 1

den <— splitTS=*i

datai <— (data[din:den])*3

datai <— datal — rangex(i—1)x2

lines (datai, type=’1’)

segments(rep(0,3), c(—2*rangex*(i—1), —2s«rangex(i—1)+1, —2+rangex(i—1)—1)
, rep(length(datai)*1.03,3), c(—2%range*(i—1), —2xrangex*(i—1)+1, —2x
rangex(i—1)—1), lty=2, col="gray’)

How to call PlotTSsplit, an example: PlotTSsplit can be called from TSSP function
(see par. A.1 at line 89).

Required packages: none

Required functions: none (except the base functions for which a call is not required)

A.3 Averaged Spectrum

SPmd is written to calculate the averaged spectra of the corresponding spectrograms cal-
culated by the TSSP function. SPmd is called by TSSP function.

SPmd <— function(folder , dy, sSP, SP, component, Fc¢, ampLOG, pikFmin,

pikFmax, pikN)

rangeSp <— ¢(—0.3,3.5)

SPlog <— log (SP$DSPEC)

SPmn <— rowMeans(SPlog)

SPsd <— apply(t(SPlog), 2, sd)
SPmnPsd <— SPmn + SPsd

SPmnMsd <— SPmn — SPsd

SPmd <— rep(NA, length-nrow(SPlog))
for (rm in 1:nrow(SP$DSPEC))

{

SPmd|[rm] <— median(SPlog|[rm,], na.rmT)

SPmn <— exp (SPmn)
SPsd <— exp(SPsd)
SPmnPsd <— exp(SPmnPsd)
SPmnMsd <— exp (SPmnMsd)
SPmd <— exp (SPmd)
if (ampLOG — T)
{
SPmn <— log10 (SPmn)
addAMP <— abs(min(SPmn, na.rm=T))
SPmn <— SPmn + addAMP
SPmnPsd <— log10 (SPmnPsd) + addAMP
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25 SPmnMsd <— log10 (SPmnMsd) + addAMP

26 SPmd <— log10 (SPmd) + addAMP

27

28 plotSPmn <— sprintf ( '%s/%08d/Spectrograms%s/SPmnlog.%s .png’, folder , dy,
sSP, component)

29 png(filename=plotSPmn, width=960, height=720)

30 plot (SPmd[1:(nrow(SP$DSPEC)/2)]|, type='1’, lwd=1.5, ylim=rangeSp, xlab=’
Freq_|[Hz]’, ylab=—"Amp’, xaxt—’'n’, log—’'x’, col="green’)

31 numf <— SP$numfreqs/2

32 lines (rep(0, length=numf), col="gray’, lwd=1.25, lty=3)

33 lines(rep(0.25, length-numf), col-"gray’, lwd—1.25, lty—3)

34 lines(rep (0.5, length=numf), col="gray’, lwd=1.25, lty=3)

35 lines (rep(0.75, length=numf), col="gray’, lwd=1.25, lty=3)

36 lines(rep(1, length-numf), col-—’gray’, lwd—1.25, lty—2)

37 text (length (SP$freqs), 1.1, ’sd_=_0", cex=0.9)

38 lines (rep(2, length=numf), col="gray’, lwd=1.25, lty=2)

39 text (length (SP$freqs), 2.1, ’sd_—_1", cex—0.9)

40 lines (rep(3, length=numf), col="gray’, lwd=1.25, lty=2)

41 text (length (SP$freqs), 2.9, ’sd_=_2", cex=0.9)

42 ind <— seq(1, numf, by—2"3)

43 lab <— c(length(ind))

44 for (nIND in 1:length(ind))

45 {

46 lab [nIND] <— ((ind[nIND]|-1) * (SP$freq[numf]—-SP$freq[1]) / (numf-1)) +

SP$freq[1]

47

48 axis(side=1, at=ind, labels=ceiling(labx10)/10)

49 lines (SPmnPsd[1:numf], type=’1’, lty=2, lwd=1.5, col="red’)

50 lines (SPmnMsd[1: numf], type="1’, lty—=2, lwd=1.5, col="blue’)

51 lines (SPsd[1:numf] + 1, type=’1", Ity=2, lwd=1, col="gray’)

52 lines (SPmn|[1:numf], type=’1’, lwd=2.0, col=’black’)

53 legend ("topright", ¢("SP_mean", "SP_+_sd", "SP_—_sd", "sd", "SP_median")
, Ity=c(1), lwd=1.5, col=c(’'black’, ’red’, ’blue’, ’gray’, ’green’))

54

55 # Picking the averaged spectrum (SPmn)

56

57 limFd <— numfxpikFmin/(Fc/2)

58 limFu <— numfxpikFmax/(Fc/2)

59 limSPmn <— order (SPmn|limFd:limFu], decreasing=T)

60 zl <~ 1

61 72 <— 1

62 while(z1 < (pikN+1) && z2 <= length (limSPmn))

63 {

64 fm <— limSPmn[z2] + numfxpikFmin/(Fc/2) — 1

65 z2 <— z2 + 1

66 if(is .na(SPmn{fm—1]) — F && is .na(SPmn[fm+1]) =— F)

67 {

68 if (SPmn|[fm—1] <= SPmn[fm]| && SPmn|[fm+1] <= SPmn|fm])

69

70 segments (fm, —0.3, fm, 6.5/log(z1+7), col="black’, lwd=1.3, lty=2)

71 mtext (text=as.character (floor ((fm*(Fc/2)/numf)*10)/10), at=fm,

padj—6xlog(z1+3), side—3)

72 z1 <— z1 + 1

73 1

74 }

75 }

76 dev. off ()

77}

How to call SPmd, an example: SPmd can be called from TSSP function (see par.
A.1 at line 153).

1 folder [previously declared]
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HVSR (HORIZONTAL TO VERTICAL SPECTRAL RATIO)

dy [previously declared]

sSP [passed by TSSP| # the sub—window (sece lenFIN in TSSP)

SP [passed by TSSP| # the spectrogram calculated by TSSP

component [passed by TSSP]

Fc [previously declared]

ampLOG = TRUE to choose the logarithmic scale for the frequency scale
pikFmin the minimum frequency value from where the picking starts
pikFmax the maximum frequency value from where the picking stops
pikN the maximum number of points detected by the picking

SPmd(folder—=folder , dy—dy, sSP=sSP, SP-SP, component—component|[i], Fc=Fc,
ampLOG=T, pikFmin=1.0, pikFmax=10, pikN=10)

Required packages: none

Required functions: none (except the base functions for which a call is not required)

A.4 HVSR (Horizontal to Vertical Spectral Ratio)

HVSR is written to implement the Nakamura spectral ratio technique [Nakamura, 1989].
HVSR receives in input the spectrograms of the vertical component and of just one or both
the horizontal components of the acquired signal and gives in output the spectrograms
obtained dividing each spectrogram of the horizontal component by the spectrogram of
the vertical component.

HVSR <— function(folder , dy, component, nFIN, Fc, fl, ¢sU, c¢sD, pikFmin,
pikFmax, pikN, splitHV)

{
for (i in 1:length(component))
{
if (component[i] = ’ew’)
for(x in 1:nFIN) # merging the spectrograms splitted by TSSP
{
if(x = 1)
spIN <— sprintf ("%s/%08d/Spectrograms/sSP%02d/SP.ew’, folder , dy,
x)
load (spIN)
SPew <— SP$DSPEC
}
else if(x > 1)
{
spIN <— sprintf ("%s/%08d/Spectrograms/sSP%02d/SP.ew’, folder , dy,
x)
load (spIN)
SPew <— cbind (SPew, SP$DSPEC)
}
}
}
else if(component[i] = ’ns’)
{
for (x in 1:nFIN)
{
if(x — 1)
{

spIN <— sprintf (%s/%08d/Spectrograms/sSP%02d/SP.ns’, folder, dy,
x)
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load (spIN)
SPns <— SP$DSPEC

}

else if(x > 1)

{

spIN <— sprintf( %s/%08d/Spectrograms/sSP%02d/SP.ns’, folder ., dy,

x)

load (spIN)
SPns <— c¢bind (SPns, SP$DSPEC)

}
}
}

else if(component[i] = ’ud’)

{

for (x

{

in 1:nFIN)

if(x — 1)

{

S <— sprint s / 7608 ectrograms/s 002 .u older ,
pIN printf (*%s/%08d/Sp g /sSP%02d/SP.ud’, folder , dy,

x)

load (spIN)
HV <- SP

}

else if(x > 1)

{

spIN <— sprintf(%s/%08d/Spectrograms/sSP%02d/SP.ud’, folder , dy,

x)

load (spIN)

HV$DSPEC <— cbind (HV$DSPEC, SP$DSPEC)

HV$sig <— c(HV$sig, SP$sig)

SPtims <— seq(from=HV$tims[length (HV$tims )|+ (HV$tims[2] -HV$tims

[1]), by-HVS$tims[2] —HV$tims [1], length.out—ncol (SP$DSPEC))

HV$tims <— c(HV$tims, SPtims)

}

SPud <— HV$DSPEC

}
}

for (i in l:length(component))

{

)

if (component[i] = ’ew’)

HV$DSPEC <~ SPew/SPud

hvOUT

<— sprintf('%s/%08d/Spectrograms/HV.ew’, folder , dy)

save(HV, file=hvOUT)

}

)

if (component[i] = ’'ns’)

HV$DSPEC <— SPns/SPud

hvOUT

<— sprintf('%s/%08d/Spectrograms/HV.ns’, folder, dy)

save(HV, file—hvOUT)

if (component[i] != ’ud’)

SPmd(folder=folder , dy=dy, sSP=’’, SP=HV, component=component|[i], Fc=
Fc, ampLOG=T, pikFmin=1.0, pikFmax=14, pikN=10)

cs <—
cs <—
cs <—
hvDIR
imgHV

rainbow (128)[110:0]

c(cs, rep(cs[110],csU))

c(rep(cs|[1],csD), cs)

<— sprintf (%s/%08d/Spectrograms’, folder , dy)
<— sprintf("%s/HV.%s.png’, hvDIR, component|[i])

png(filename=imgHV, width=960, height=720)
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par(cex=1, xaxt='s’, yaxt=’s’, mai=c(0.9,0.9,0.9,2.5), las=2)

# modify ’‘may’ if white lines appear in the spectrogram plot

plotevol (DEVOL=HV, log=1, fl=fl, fh=Fc¢/2, col=cs, ylog=F, ygrid=F, AXE
=c(1, 2, 3, 4), CSCALE=F, WUNITS="Amplitude _H/V", STAMP=NULL, STYLE
_n fftl‘)

par(mai=c(0.9,12.3,2.15,0.5) , new=T) # color legend edges

rgHV <— range(HV$DSPEC, na.rm=T)

plot (rep (0,length(cs)), seq(rgHV[1],rgHV[2],length—length(cs)), pch —

15, col=cs, xaxt="n’, xlab=’’, ylab="", las=3)
box ()
dev. off ()
}
}
if (splitHV = T) # splitting the spectrograms

for(x in 1:nFIN)

{

for (i in 1l:length(component))

{

if (component[i] = ~’

ew’)

spIN <— sprintf (%s/%08d/Spectrograms/sSP%02d/SP.ew’, folder , dy,
x)
load (spIN)
SPew <— SP$DSPEC
}
else if(component[i] = ’ns’)
{
spIN <— sprintf(%s/%08d/Spectrograms/sSP%02d/SP.ns’, folder, dy,
x)
load (spIN)
SPns <— SP$DSPEC
}
else if(component|[i] — ’ud’)
{
spIN <— sprintf ("%s/%08d/Spectrograms/sSP%02d/SP.ud’, folder, dy,
x)
load (spIN)
HV <— SP
SPud <— HV$DSPEC
}

}
for (i in 1l:length(component))
{

if (component[i] = ’ew’)

HV$DSPEC <— SPew/SPud

if (component[i] = ’ns’)

HV$DSPEC <— SPns/SPud
if (component[i] != ’ud’)

¢s <— rainbow (128)[110:0]

cs <— c(cs, rep(cs[110],csU))

cs <— c(rep(cs[1l],csD), cs)

hvDIR <— sprintf( '%s/%08d/Spectrograms/sSP%02d’, folder , dy, x)
imgHV <— sprintf( '%s/HV.%s.png’, hvDIR, component|[i])
png(filename—imgHV, width—960, height—720)

par(cex=1, xaxt="s’, yaxt=’s’, mai=c(0.9,0.9,0.9,2.3), las=2)
# modify ’‘may’ if white lines appear in the spectrogram plot
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plotevol (DEVOL=HV, log=1, fl=fl, fh=Fc¢/2, col=cs, ylog=F, ygrid=F,
AXE-c(1, 2, 3, 4), CSCALE-F, WUNITS-"Amplitude_H/V", STAMP—
NULL, STYLE="fft")

par(mai=c(0.9,12.3,2.15,0.5), new=T) # color legend edges

rgHV <— range(HV$DSPEC, na.rmT)

plot (rep(0,length(cs)), seq(rgHV[1],rgHV[2],length=length(cs)),
pch = 15, col=cs, xaxt="n’, xlab="", ylab="", las=3)

box ()

dev. off ()

How to call HVSR, an example: HVSR can be called from TSSP function after the
line 156 (see par. A.1)

folder [previously declared]

dy [previously declared]
nFIN [returned by TSSP]
Fc [previously declared]

fl the low frequency cut—off (plotevol function)

csU & c¢sD to modify the spectrogram color scale

pikFmin the minimum frequency value from where the picking starts

pikFmax the maximum frequency value from where the picking stops

pikN is the maximum number of points detected by the picking

splitHV — TRUE to split the spectrograms in the corresponding nFIN windows

HVSR(folder=folder , dy=dy, component=c(’ew’,’ns’,’ud’), nFIN=FIN, Fc=Fc, fl
—0.2, ¢sU—45, ¢sD—55, pikFmin—1.0, pikFmax—14, pikN—10, splitHV-T)

Required packages: RSEIS
Required functions: plotevol (RSEIS)

A.5 SOM map

SOMmap is written to carry on the training phase of a SOM map or to project the data on
a trained SOM map. In both cases SOMmap provide the visualization of the map calling
the Umatriz function.

SOMmap <— function(folder , dy, day, sSP, component, SPload, SPcutU, SPcutD,
xdim, ydim, rlen, alpha i, alpha f, rad i, rad f., trwidth, toro, initDIAG
, initCODE) B B B B
{
# ’dy’ is a numeric element of type 20010101 that indicates the day folder
where to save the analysis results
# ’day’ 1s a numeric vector of elements of type 20010101 that indicates the
day folders where to get the data (spectra) for the training and/or
projection phase
# ’sSP’ is a character vector of elements of type '/sSP01’ that indicates
the sub—spectrograms of the spectrogram splitted by TSSP
mapDIR <— sprintf(’/%s/Maps’, folder)
dir . create (path=mapDIR, showWarnings=F)
flIAMAP <— sprintf ("SOM%08d%s" , dy, component)
mapDIR2 <— sprintf(’/%s/Maps/%s’, folder , fIAMAP)
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dir . create (path=mapDIR2, showWarnings=F)

if (SPload — )

for(r in 1l:length(day))

for(s in 1l:length(sSP))
day

# merging the spectrograms

# merging the sub—spectrograms

of different days

of the same

STRload <— sprintf('%s/%08d/Spectrograms%s/SP.%s’, folder, day[r],

sSP[s]|, component)

if(file.exists(STRload) — T & r — 1 & s — 1) # first

spectrogram to be merged

{
load (STRload)
SPna <— SP$DSPEC|c (SPcutD:SPcutU) ,]
of interest
v_sp <— rep(NA, length=ncol(SPna))
<=1
v<— 0
for(n in 1:ncol(SPna))
if (is.na(SPna[l,n|) — F)
{
v_splj] <= n
I<=i+1
v<-v +1
}
}
SPtot <— matrix (nrow=nrow (SPna) ,
spectra
w<— 1
for(i in 1:length(v _sp))
{
if(is.na(v_sp[i]) — F)
SPtot[,w] <— SPna[,v _sp[i]]
w<-w+ 1
}
}

else if(file.exists(STRload) =—= T && (r > 1 ||

# cutting frequency in range

# removing the NA specira

ncol=v) # new matriz without NA

s > 1))

# spectrograms to be merged (except the first one)

ncol=v)

{
load (STRload)
SPna <— SP$DSPEC|c (SPcutD:SPcutU) ,]
v_sp <— rep(NA, length=ncol(SPna))
v<—0
j <=1
for(n in 1:ncol(SPna))
{
if (is.na(SPna[l,n]) — F)
v_splj] < n
j<=i+1
v<—-v +1
}
}
SPnotNA <— matrix (nrow=nrow (SPna) ,
w<— 1
for(i in 1:length(v _sp))
{

if(is.na(v_sp[i]) = F)
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{
SPnotNA[,w] <— SPna[,v _sp[i]]
w<—w+ 1
}
}
SPtot <— cbind(SPtot, SPnotNA)
}

else if(file.exists(STRload) — F)

strNAfile <— sprintf("File_%s_non_trovato", STRload)
print (strNAfile)

}
}
}
}
else if (SPload != ’7)
{

if(file.exists(SPload) — F)

print (’Inserisci_il _percorso_completo_dove_trovare_lo_spettrogramma_(
matrice_righe=freq_bins ,_colonne=spettri)’)

load (SPload)

}
strSPtot <— sprintf ("%s/Maps/%s/SP%08d.%s" , folder , fIdAMAP, dy, component)

save(SPtot, file = strSPtot, precheck=T)
# SOM map initialization
if (initDIAG = T) # diagonal initialization

dimMap <— floor (nrow(SPtot) ~0.5)
if (xdim*ydim > nrow(SPtot))
{
strdim <— sprintf(’Scegliere_una_mappa_quadrata_di_lato_massimo_%d’,
dimMap)
stop (strdim)
}
vdiag <— ¢ (1)
for(d in 2:(ydim—1))

for(dd in 0:(d-1))

i vdiag <— c(vdiag ,(d+dds(xdim—1)))
i‘or(d in ydim:xdim)
{ for(dd in 0:(ydim—1))

j vdiag <— c(vdiag , (d+ddx(xdim—1)))
}

dd <— ydim — 1
for(d in 2:ydim)

{
for (dd in 0:(ydim—d))
{
vdiag <— c(vdiag ,(d*xdim + (dd)*(xdim—1)))
}
}

m diag <— diag(x=10, nrow=xdim*ydim, ncol=nrow(SPtot))
m _init <— matrix(NA, nrow=xdim*ydim, ncol=nrow(SPtot))
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}

for (v in 1l:length(vdiag))
{
m init [vdiag[v],] <— m diag][v,]
}
mSOM <— weesom (t ( SPtot), grid—somgrid (xdim ,ydim, ’rectangular’), rlen—
rlen , alpha=c(alpha i, alpha f),
radius=c(rad i,rad f), trwidth=trwidth, toroidal=toro,
keep.data—T, init-m init, FineTune F)

else if(initCODE != ') # initializing the SOM map using an ezxisting

{

}

map

STRinitCODE <— sprintf(’%s/code’, initCODE)
if (file.exists (STRinitCODE) — T)
{
load (STRinitCODE)
mSOM <— wceesom (t (SPtot), grid—somgrid(xdim,ydim, ’rectangular’), rlen—
rlen , alpha=c(alpha i, alpha f),
radius=c(rad i,rad f), trwidth=trwidth, toroidal=toro,
keep.data—T, init—code, FineTune-F)
}
else
{
print ( 'In_initCODE_scrivi_il _percorso_del_file_\’code\’_da_caricare_]|
senza_\’/code\’]")
}

else # random initialization (using the dataset)

{

}

mSOM <— weesom (t (SPtot), grid=somgrid(xdim,ydim, 'rectangular’), rlen=
rlen, alpha=c(alpha i, alpha f),
radius=c(rad i,rad f), trwidth=trwidth, toroidal=toro,
keep .data=T, FEeTune:F)

code <— mSOMS$code

strcode <— sprintf( '%s/Maps/%s/code’, folder , flAMAP)
save(code, file=strcode)

changes <— mSOM$changes

strchanges <— sprintf(’'%s/Maps/%s/changes’, folder , flAMAP)
save(changes, file=strchanges)

classif <— mSOM$unit.classif

strclassif <— sprintf( '%s/Maps/%s/classif’, folder , flAMAP)
save(classif , file=strclassif)

error <— mSOM$wccs

strerror <— sprintf( '%s/Maps/%s/error’, folder, flAMAP)
save(error, file=strerror)

strtxt <— sprintf('%s/Maps/%s/parametriSOM . txt’, folder , flIMAP)

strday <— toString (day)

strsSP <— toString (sSP)

strtext <— sprintf(’Parametri_mappa_SOM:\ ndata_[day &_component|: _%s_%s\

nsubSP: _%s\ncode_[path]: %s\ncode_init_diag: _%s\ncode_initialization: %
s\nfrequency_cut: _%s_%s\ninit_diag: %s\nxdim: _%s\nydim: _%s\nn_of_
iterations: _%s\nalpha i:_%.4f\nalpha f:_%.4f\nneighborhood_radius_ i:_%s
\nneighborhood_radius_f: _%s\ntrwidth: _%s\ntoroidal: _%s\n\n’, strday,
component , strsSP , strcode, initDIAG, initCODE, SPcutD, SPcutU,
initDIAG , xdim, ydim, rlen, alpha i, alpha f, rad i, rad f,

trwidth ; toro)
cat (strtext , file=strtxt)
Umatrix(folder=folder , flAMAP=fIdMAP, component=component, dy=dy, code=

code, classif—classif , xdim—=xdim, ydim—ydim, trwdth—trwidth, UmcPlot—F)
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How to call SOMmap, an example:

folder [previously declared]

dy [previously declared]

day <— c(dy)

subSP <— c¢(1:1) # if there is just one sub—window with the whole spectrogram
sSP <— sprintf(’/sSP%02d’, subSP)

cmp <— c¢(’ns’)

SPload not null string to load an existing spectrogram

SPcutU & SPcutD to cut the spectrogram in a range of frequencies

xdim & ydim map dimensions

rlen number of iterations for the SOM training process
alpha learning rate for the SOM training process

rad neighborhood radius for the SOM training process
trwd [previously declared]

toro = TRUE for a toroidal SOM map

initDIAG & initCODE to force the SOM map initialization

SOMmap( folder=folder , dy=dy, day=day, sSP=sSP, component=cmp, SPload="",
SPcutU—SPcutU, SPcutD—SPcutD, xdim—xdim, ydim—ydim, rlen—25, alpha i—0.1,
alpha f=0.001, rad i=rad, rad f=—rad, trwidth=trwd, toro=T, initDIAG=F,
initCODE="")

Required packages: wccsom

Required functions: wcecsom (weesom), Umatriz (see par. A.6)

A.6 Umatrix

Umatriz is written to visualize the SOM map implementing the U-matrix (Unified distance
matrix) method proposed by Ultsch and Siemon (1990). Umaltriz is called by SOMmap
function.

Umatrix <— function(folder , flAMAP, component, dy, code, classif , xdim, ydim
, trwdth, thrhold, UmcPlot)

{
if (UmcPlot = F)
WOCm <— matrix( , nrow=nrow(code), ncol=nrow(code))
for(j in 1:nrow(W(Cnm))
{

for(i in 1:ncol(W(Cm))

WCm([i,j] < wcc(code[i,], code[j,], trwdth—trwdth)
# weighted cross—correlation matriz
WCCm[j,i] <— WCCm[i, ]|

}

if (min(WOCm, na.rm=T) < 0)

print ( TATTENZIONE: _indici_di_correlazione_negativi_in _WCOC! )
stop(’'Error’)

}

strtWCCm <— sprintf (%s/Maps/%s /WCm’ , folder , flIMAP)

save (WlCm, file=strWCCm)

WCCmlsu <— 1/W0Cm
agn WCm <— agnes (WCCmlsu, diss=T, method='average’)
# dendrogram calculation
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agnWCCmOUT <— sprintf ('%s/Maps/SOM%08d%s /agn WCOCm A’ , folder , dy,
component )

save (agn WCCm, file=agnWCCmOUT)

Wl <— W0m — min(WOCm, na.rm-T) # WhOmfi;j] > 0
W <~ WOCin / max(WOCn, na.rme=T)  # maa(WC0n[i;j]) = 1
Wl <— WCm™ 25

# Umatriz calculation :

Uydim <— ydim=#2-1
Uxdim <— xdim#2-—1
Un <— matrix(, nrow=Uxdim, ncol=Uydim)
for(j in 1:Uydim) # considering each cell of the Umatriz
{
for (i in 1:Uxdim)
{

if((i+j) %% 2 '= 0) # cells between a pair of code wvectors

if(i %% 2 '=0) # a code vector above another one
{
n2 <— ((i+j+1)/2 + (Uxdim %/% 2)*(j %/% 2)) # number of the
above cell
Dmj <— (n2—(Uxdim %/% 2)-1)

Unm[i, j] <— WOCUn[n2, Dmj] # dissimilarity value of the pair
of codes
}
else # a pair of code wectors side by side
{
n3 <— ((i+j—-1)/2 + (Uxdim %/% 2)*(j %/% 2)) # number of the
cell
Un[i,j] <— WOCn[n3,n3+1] # dissimilarity wvalue of the pair
of codes
}
}
else # cells between 4 code wvectors and cells of the code wectors
{
if(i %% 2 = 0) # cells between 4 code vectors
nl <— ((i+j)/2 + (Uxdim %/% 2)*(j %/% 2)) # number of the top—
left cell
Unm[i,j] <= (WOCm[nl,(nl—(Uxdim %/% 2))] + WOGn[nl1+1,(nl—(Uxdim %
/% 2)-1)]) /2
# mean dissimilarity value of the 4 code wvectors
}
else # cells of the code wvectors
{
Umli,j] <= max(Um)
}

}
}
strUm <— sprintf (’%s/Maps/%s/Un’, folder , flIMAP)
save (Um, file=strUm)

strplot <— sprintf (%s/Maps/%s /Um%08d.%s .png’, folder , flAMAP, dy,
component )

# plotting the U-matriz

png(filename = strplot , width = 960, height = 720)

ncell <— nrow(Um)=*ncol (Um)

s <— seq(0, 1, length — ncell) # gray tome scale

image(z=Um, col=gray(s), xaxt='n’, yaxt='n’)

# correspondence between gray tone and dissimilarity value
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grid (Uxdim, Uydim )

codeclass <— rep(0, (xdim*ydim))
for(k in l:length(classif))
# conversion form "classif" (kohonen package) to "code.sum/[,3]" (wccsom

package)
{

codeclass|[classif[k]] <— codeclass|[classif[k]] + 1
# number of inputs projected onto a map cell

}

for(j in 1:Uydim)
{
for (i in 1:Uxdim)
# drawing circles and numbers into each map cell

{
if ((i %% 2 1= 0) & (j %% 2 = 0))
{
ncode <— ((i+j)/2 + (Uxdim %/% 2)=(j %/% 2))
x <— ((i-1) / (Uxdim — 1))
y <= ((j=1) / (Uydim — 1))
points(x, y, pch=20, cex=(codeclass[ncode]|/max(codeclass))*5.0,
col="orange’)
# circles width according to the number of inputs projected
text(x, y, labels=codeclass|[ncode], font = 2, cex = 0.8)
# drawing the number of the projected inputs
}
}
}
box (lwd=2)
dev. off ()

# drawing clusters onto the U-matriz

if (UmcPlot = T)

strUm <— sprintf(’%s/Maps/%s/Un’, folder , flIMAP)

load (strUm)

Uydim <— ydim#2-1

Uxdim <— xdim#%2—1

ncell <— nrow(Um)+*ncol (Um)

strplot <— sprintf(’%s/Maps/%s/agn THR%.03f/UmClus%08d.%s .png’, folder
fIAMAP, thrhold, dy, component)

png(filename = strplot , width = 960, height = 720)

s <— seq(0, 1, length = ncell)

# gray tome scale

image(z=Um, col=gray(s), xaxt='n’, yaxt='n’)

# correspondence between gray tone and dissimilarity vaelue

grid (Uxdim, Uydim)

strloadagn <— sprintf ('%s/Maps/%s/agn WO(m A’ , folder , flAMAP)

load (strloadagn)

clusEL <— Cluster (agn=agn WCCm, threshold=thrhold, xdim=xdim, ydim=ydim)
STRsaveCL <— sprint{ (’%s/Maps/%s/agn THR%.03f/clusEL A’ folder , flAMAP,
thrhold) B N
save(clusEL, file=STRsaveCL)
¢s <— rainbow (max(clusEL) ) [max(clusEL) :0]
# maz(clusEL) = number of the detected clusters
for(j in 1:Uydim)
{
for (i in 1:Uxdim)
{
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if((i1 %% 2 '=0) && (j %% 2 = 0))
# is it a cell with a code?
{

ncode <— ((i+j)/2 + (Uxdim %/% 2)*(j %/% 2))

# number of the code in that cell

x <= ((i-1) / (Uxdim — 1))

y <= ((j-1) / (Uydim — 1))

points(x, y, pch—23, cex—log(clusEL [ncode]|+5)*1.00, col—=cs|[clusEL]|
ncode]])

# coloured rhombus according to the cluster number

text(x, y, labels—=clusEL |[ncode]|, font = 2, cex = 0.9)

# drawing the cluster number

}
}
}
box (lwd=2)
dev. off ()

}
}

How to call Umatrixz, an example: Umatriz can be called from SOMmap function,
after the line 155 (see par. A.5)
folder [previously declared]

fIAMAP [passed by SOMmap|
component <— cmp [previously declared]

dy [ previously declared]
code [passed by SOMmap]
classif [passed by SOMmap]|
xdim [ previously declared]
ydim [previously declared]

trwidth [previously declared]
UmcPlot = TRUE to plot the cluster U-matrix (only if the clustering
recognition has been completed)

Umatrix(folder=folder , flAMAP=fIdMAP, component=component, dy=dy, code=code,
classif=classif , xdim=xdim, ydim=ydim, trwdth=trwidth , UmcPlot=F)

Required packages: wccsom, cluster

Required functions: wece (weesom), agnes (cluster), Cluster (see par. A.9)

A.7 Plotting the dendrogram and choosing the dissimilarity
threshold

Since the choosing of the dissimilarity threshold is not unique, this part of the code has to
be run line by line.

agnWCCmOUT <— sprintf ( *%s/Maps/SOM%08d%s /agn WC(m A’ , folder , dy, cmp)

load (agnWCCmOUT)

par(cex—0.25, cex.axis—3, cex.lab—3, mgp—<¢(4.7,1.,0), cex.main—3.5, cex.sub
=3, mai=c(0.4,0.4,0.3,0), lwd=0.4) plot(agn WCCm, which.plots=2, xlab="",
ylab="Dissimilarity _Index_[1/correlation]’)

# now choose a dissimilarity threshold

thr <— [the chosen dissimilarity value]

segments(1l, thr |, xdim#ydim, thr, lty=2, col="red’) # drawing an horizontal
line (the threshold) on the dendrogram
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A.8 Plotting the clustering U-matrix

Since the dissimilarity threshold has been chosen, a certain number of clusters has been
detected from the dendrogram. Umatriz function labels each area on the SOM map using
the colour of the corresponding cluster.

codeIN <— sprintf (%s/Maps/SOM%08d%s /code’, folder , dy, cmp)
load (codelIN)
DIRmap <— sprintf(’SOM%08d%s’, dy, cmp)

Umatrix(folder=folder , fliMAP=DIRmap, component=cmp, dy=dy, code=code,
classif=classif | xdim—xdim, ydim—=ydim, trwdth=trwd, thrhold=thr, UmcPlot=
T) # plotting the clustering U-matriz

A.9 Cluster

Cluster is written as an internal function of HVSR function. Cluster returns the vector
clusEL creating the link between each neuron of the map and its corresponding cluster.

Cluster <— function(agn, threshold, xdim, ydim)
{
v_height <— sort(agn$height)
# $height stores the dissimilarity values at which two clusters merge
h <1
v_rowmerge <— c ()
# storing the $merge row numbers above the chosen threshold
for (m in 1:nrow(agn$merge))

{
if (v_height[m] >= threshold)
v_rowmerge[h] <— m
h<-h+1
}
}
k<—1
w<— 1

v_rowmergeout <— c()
# single meurons above the chosen threshold
v_rowmergeel <— c()
# clusters that merge just above the chosen threshold (I order fusions)
v_merge <— as.vector(t(agn$merge[c(min(v_rowmerge) :nrow (agn$merge) ) ,]|))
for(r in 1:length(v_merge))
{
if (v_merge[r] > 0 & v_merge[r] < min(v_rowmerge))
# removing from $merge the rows with II order fusions
{
v_rowmergeel [k] <— v_merge|[r]
k<—k +1
}
else if(v_merge[r] < 0)
# single neurons above the chosen threshold

{
v_rowmergeout [w] <— v_merge|[r ]
w<—w+ 1
}
}
ncluster <— length(v_rowmergeel) # number of clusters of the I order

)

strNcluster <— sprintf(’Ci_sono_%d_cluster
print (strNcluster)

, ncluster)
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41 print (v rowmergeout)
42 print (v rowmergeel)
43 B
44 clusEL <— rep(NA, length=(xdim#ydim))
45 for(c in 1:length(v_rowmergeel)) # taking in account each I order
cluster
46 {
47 7z <— 1
48 k<—1
49 v_cluster <— c()
50 v_clusTMP1 <— agn$merge[v_rowmergeel[c],]
51 v_clusTMP2 <— c()
52 while(k =— 1)
53 {
54 for(q in 1l:length(v_clusTMP1))
55 {
56 if (v _clusTMP1[q] > 0 && is .na(v_clusTMP1[q]) — F)
57
58 v_clusTMP2[c(z,z+1)] <— agn$merge[v clusTMP1[q] ,]
59 7z <— 7 + 2
60 1
61 else if(v_clusTMP1[q] < 0 || is.na(v_clusTMP1l[q]) = T)
62 {
63 #print ('Uno o piu elementi di $merge < 0 o NA’)
64 #v_clusTMP2[c(z,2+1)] <— ¢(NA, NA)
65 #r <— 2z + 2
66 1
67 }
68 v cluster <— c¢(v cluster, v clusTMP1)
69 v_clusTMP1 <— v_clusTMP2
70 v clusTMP2 <— ¢ ()
71 if (length (v clusTMP1) — 0)
72 #af 7)_cl1/,sT_MP1 is empty, there are mo more fusions
73 {
74 k<—0
75 }
76 z <— 1
7 }
78 v_cluster <— as.vector(na.omit(v_cluster))
79 for (ind in 1:length(v_cluster))
80 # now in v_cluster there are just the single neurons [negative values]
81 {
82 if (v_cluster[ind] < 0)
83
84 clusEL[abs(v_cluster[ind]) ] <— ¢
85 }
86 }
87 }
88 return (clusEL)
89 }

How to call Cluster, an example: Cluster can be called from Umatriz function, after
the line 129 (see par. A.6)

1 agn WCm [passed by Umatrix]

2 thrhold [previously declared]
3 xdim [previously declared]
4 ydim [previously declared]
5

6

Cluster (agn=agn WOCm, threshold=thrhold, xdim=xdim, ydim=ydim) # Cluster
returns clusEL
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Required packages: none

Required functions: none (except the base functions for which a call is not required)

A.10 SPCL

SPCL is written to plot the averaged spectrum for each cluster and to return back in the
time domain in order to plot the time series and analyse at which cluster each time window,
on which the corresponding spectra has been calculated, is assigned.

SPCL <— function(folder , dy, sSP, component, Fc¢, threshold, ampLOG, pikFmin,

{

pikFmax, pikN, splitTS, Ns, Nov)

range <— 0.25 # the wvalue must be half of the range value used in
plotTSsplit

rangeSp <— c(—0.3,3.5)

classifIN <— sprintf( '%s/Maps/SOM%08d%s/classif’, folder , dy, component)

load(classifIN)

clusterIN <— sprintf (’%s/Maps/SOM%08d%s /agn THR%.03f/clusEL A’, folder , dy
, component, threshold) - B

load (clusterIN)

# for(d in 1:length(day))
Gt

for(s in 1l:length(sSP))
{
spIN <— sprintf ("%s/%08d/Spectrograms%s /SP.%s’, folder, dy, sSP[s],
component )
load (spIN)
Ns <— SP$wpars$Ns
Nov <— SP$wpars$Nov
sn <— as.numeric(substr(sSP[s], 5, 6))

classifsSP <— classif [((sn—1)*ncol (SPSDSPEC)+1) : (sn*ncol(SP$DSPEC)) ]
# taking in account just the part of classif correspondent to sSP[s]
clusIN <— rep(NA, length(classifsSP))
# clusIN classifies spectra (clusEL classifies codes)
# maz(clusEL) corresponds to the number of clusters
for(cl in 1:length(clusEL))
{
if (is.na(clusEL[cl]) = F)
# clusEL[cl] is the cluster number, ¢l is the code vector number
{
for (clIN in 1:length(classifsSP))
# clIN is the input vector number
# classifsSP[clIN] is the code number
{

if (classifsSP [clIN|] — cl)

clusIN [clIN] <— clusEL[cl]
}
}
}

}
sSPmapDIR <— sprintf ( '%s/Maps/SOM%08d%s /agn THR%.03{%s ', folder , dy,

component , threshold, sSP[s])
dir . create (path—sSPmapDIR, showWarnings—F)
clusINout <— sprintf ('%s/Maps/SOM%08d%s /agn THR%.03 {%s/clusIN_A’,

folder , dy, component, threshold, sSP[s])
save(clusIN , file—clusINout)
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# Plotting the averaged spectrum, its standard deviation and the
median

SPlogTOT <— log(SP$DSPEC| , |)
SPmnTOT <— rowMeans (SPlogTOT, na.rm=T)
SPmnTOT <— exp (SPmnTOT)

if (ampLOG — ’y’)

SPmnTOT <— log10 (SPmnTOT)
addAMP <— abs (min(SPmnTOT, na.rm-T))
SPmnTOT <— SPmnTOT + addAMP

}

for (nC in 1:max(clusIN))

{

SPlog <— log(SP$DSPEC| ,which(clusIN = nC)|)

# searching for the clusIN elements = nC to detect the spectra
projected into the nC cluster

SPmn <— rowMeans(SPlog, na.rm=T)

SPsd <— apply(t(SPlog), 2, sd, na.rm=T)

SPmnPsd <— SPmn + SPsd

SPmnMsd <— SPmn — SPsd

SPmd <— rep(NA, length=nrow(SPlog))

for (rm in 1:nrow(SP$DSPEC))

SPmd[rm] <— median(SPlog|[rm,], na.rm=T)
}
SPmn <— exp (SPmn)
SPsd <— exp(SPsd)
SPmnPsd <— exp(SPmnPsd)
SPmnMsd <— exp (SPmnMsd)
SPmd <— exp (SPmd)
if (ampLOG — ’y’)
{
SPmn <— log10 (SPmn)
addAMP <— abs(min(SPmn, na.rm—T))
SPmn <— SPmmn + addAMP
SPmnPsd <— log10 (SPmnPsd)
SPmnPsd <— SPmnPsd + addAMP
SPmnMsd <— log10 (SPmnMsd)
SPmnMsd <— SPmnMsd + addAMP
SPmd <— log10 (SPmd)
SPmd <— SPmd + addAMP
}
plotSPmn <— sprintf ( '%s/Maps/SOM%08d%s /agn THR%.03 {%s /SPmnlog%s.%s .
png’', folder , dy, component, threshold, sSP[s]|, nC, component)
pung(filename=plotSPmn, width=960, height=720)
nSP <— length (which(clusIN — nC))
nCL <— length (which(clusEL = nC))
plotMain <— sprintf(’Cluster %d, %d_spectra_in_%d_codes’, nC, nSP,

nCL)
plot (SPmd|[1: ( nrow (SP$DSPEC)/2)], type=’1’, lwd=1.5, ylim=rangeSp,
xlab—’Freq_[Hz]’, ylab—’Amplitude’, xaxt—’'n’, log—’x’, main—

plotMain, col="green’)
numf <— SP$numfreqs/2
lines(rep(0, length-—numf), col—’gray’, lwd—1.25, lty—3)
lines(rep(0.25, length=numf), col="gray’, lwd=1.25, lty=3)
lines(rep (0.5, length=numf), col="gray’, lwd=1.25, lty=3)
lines(rep(0.75, length-numf), col—’gray’, lwd—1.25, lty—3)
lines(rep(1, length=numf), col="gray’, lwd=1.25, lty=2)
text (length (SP$freqs), 1.1, ’sd_=_0", cex=0.9)
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lines (rep(2, length=numf), col="gray’, lwd=1.25, lty=2)
text (length (SP$freqs), 2.1, ’sd_—_1’, cex—0.9)

lines (rep(3, length=numf), col="gray’, lwd=1.25, lty=2)
text (length (SP$freqs), 2.9, ’sd_=_2", cex=0.9)

ind <— seq(1, numf, by—2"3)

lab <— rep(NA, length(ind))

for (nIND in 1:length(ind))

lab [nIND] <— ((ind[nIND]—1) % (SP$freq[numf]-SP$freq[1]) / (numf
—1)) + SP$freq[1]
}

axis(side=1, at=ind, labels=ceiling(labx10)/10)

lines (SPrmTOT[1: numf|, type=’1’, lwd=2.0, col="orange’)

# drawing the mean spectrum of the whole spectrogram

lines (SPmnPsd[1:numf], type=’1’, lty=2, lwd=1.5, col="red’)
lines (SPmnMsd |[1:numf|, type=’1’, lty=2, lwd=1.5, col="blue’)
lines (SPsd[1:numf] 4+ 1, type='1", lty=2, lwd=1, col="gray’)
lines (SPmn|[1:numf], type=’1’, lwd=2.0, col=’black’)

legend ("topright", c¢("Sp_mean", "Sp_+_sd", "Sp_—_sd", "sd", "Sp._
median" , "Sp_.mean_TOT"), lty=c(1), lwd=1.5, col=c(’black’, ’'red’,
"blue’, ’gray’, ’green’, ’'orange’))
# picking

limFd <— numfxpikFmin/(Fc/2)
limFu <— numfxpikFmax/(Fc/2)
limSPmn <— order (SPmn[limFd:limFu], decreasing=T)

7zl <— 1

z2 <— 1

while(zl < (pikN+1) && z2 <= length (limSPmn))
{

fm <— limSPmn[z2]| + numf*pikFmin/(Fc¢/2) — 1
z2 <— z2 + 1
if(is .na(SPmn[fm—1]) — F && is.na(SPmn[fm+1]) — F)

if (SPmn[fm—1] <= SPmn[fm| && SPmn[fm+1] <= SPmn|[fm])

segments(fm, —0.2, fm, 6/log(z1+7), col="black’, lwd=1.3, lty
—9)
mtext (text—as.character (floor ((fm*(Fc/2) /numf)*10)/10), at—fm,
padj=Txlog(z1+5), side=3)
z1 <— z1 + 1
}
}

}
dev. off ()

# plotting the temporal series with cluster detection

for (clu in I1:max(clusIN))

strTSplot <— sprintf(’%s/Maps/SOM%08d%s /agn THR%.03{%s/TScl.%s%d . png
’, folder , dy, component, threshold, sSP[s], component, clu)

png(filename = strTSplot, width = 1440, height = 720)

fTOT <— SP$sig — mean(SP$sig , na.rm=T)

fTOT <— {TOT / sd({TOT, na.rmT)

PlotTSsplit (data=TOT, dy=dy, component=component, Fc=Fc, splitTS=

splitTS)
¢s <— rainbow (max(clusIN)) [max(clusIN):0]
clusINcl <— which(clusIN = clu)
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158 for (pt in 1l:length(clusINcl))
159 {
160 posSp <— Ns/2 + (Ns—Nov)x*(clusINcl[pt] — 1)
161 x <— posSp %% splitTS
162 y <— floor(posSp/splitTS) = (—range) * 4
163 points(x, y, pch=20, cex=1.5, col=cs[clu])
164 segments(0, —range, Ns, —range, lwd=1)
165 text (Nsx2.5, —range, labels—'Ns’  cex—1.5, font—3)
166 }
167 dev. off ()
168 }
169
170 strTSplot <— sprintf(’%s/Maps/SOM%08d%s /agn THR%.03{%s/TScl.%s1to%d.
png’, folder , dy, compomnent, threshold, sSP[s], component, max(
clusIN))
171 png(filename = strTSplot, width = 1440, height = 720)
172 fTOT <— SP$sig — mean(SP$sig , na.rmT)
173 fTOT <— fTOT / sd (fTOT, na.rm=T)
174 PlotTSsplit (data={TOT, dy=dy, component=component, Fc=Fc, splitTS=
splitTS)
175 ¢s <— rainbow (max(clusIN)) [max(clusIN):0]
176 for(el in 1l:length(clusIN))
177 {
178 posSp <— Ns/2 + (Ns—Nov)*(el — 1)
179 x <— posSp %% splitTS
180 y <— floor (posSp/splitTS) * (—range) * 4
181 points(x, y, pch=20, cex=1.5, col=cs[clusIN[el]])
182 segments(0, —range, Ns, —range, lwd=1)
183 text (Nsx2.5, —range, labels='Ns’, cex=1.5, font=3)
184 }
185 dev. off ()
186 }
187 # )
188}
How to call SPCL, an example:
1 folder [previously declared]
2 dy [previously declared]
3 subSP <— ¢(1:1)
4 sSP <— sprintf(’/sSP%02d’, subSP)
5 cmp [previously declared]
6 Fc [previously declared]
7 thr [previously declared]
8 splitTS [previously declared]
9 Ns [previously declared]
10 Nov [previously declared]
11

s
[N

SPCL(folder=folder , dy=dy, sSP=sSP, component=cmp, Fc=Fc, threshold=thr,
ampLOG—"y’ ., pikFmin—2, pikFmax—10, pikN—10, splitTS—splitTS, Ns—Ns, Nov—
Nov)

Required packages: none
Required functions: PlotTSsplit (see par. A.2)

114



Bibliography

S. I. Ameri. Topographic organisation of nerve fields. Bulletin of mathematical biology, 42:
339-364, 1980.

M. Attik, L. Bougrain, and R. Alexandre. Self-organizing map initialization. Artificial
Neural Networks: Biological Inspirations - Icann 2005, Pt 1, Proceedings, 3696:357 362,
2005.

F. Barazza. Teoria ed applicazioni di tecniche dinamiche e di decomposizione in components
principali di serie temporali geofisiche e biomeccaniche. Facolta di Ingegneria, Universita
degli studi di Udine, Tesi di Laurea. Relatori: R. Carniel, P. B. Pascolo, 2004.

F. Barazza, P. Malisan, and R. Carniel. Improvement of h/v technique by rotation of the
coordinate system. Communications in Nonlinear Science and Numerical Sitmulation,
14:182-193, 2009.

P. Y. Bard. Microtremor measurements: a tool fo site effect estimation? The effects of
surface geology on seismic motion, pages 1251-1279, 1999.

F. Bacao. Clustering census data: comparing the performance of self-organising maps and
k-means algorithms. In KD-Net Symposium, Knowledge-based services for the public
sector, Bonn, 2004.

F. Bagao, V. Lobo, and M. Painho. Self-organizing maps as substitutes for k-means clus-
tering. Computational Science - Iccs 2005, Pt 3, 3516:476-483, 2005.

E. Bodt, M. Verleysen, and M. Cottrell. Kohonen maps versus vector quantization for data
analysis. In ESANN, 1997.

S. Bonnefoy-Claudet, C. Cornou, J. Kristek, M. Ohrnberger, M. Wathelet, P. Y. Bard,
D. Fiah, P. Moczo, and F. Cotton. Simulation of seismic ambient vibrations: H/v and
array techniques on canonical models. 13th world conference in Farthquake Engineering,
Vancouver, 2004.

R. Carniel and M. Di Cecca. Dynamical tools for the analysis of long term evolution of
volcanic tremor at stromboli. Annali di Geofisica, 42 (3):483-495, 1999.

R. Carniel and F. Tacop. Spectral precursors of paroxysmal fases of stromboli. Annali di
geofisica, XXXIX(2):327 345, march 1996.

R. Carniel and M. Tarraga. Can tectonic events change volcanic tremor at stromboli? Geo-
physical Research Letters, 33 (20):1.20321. http://dx.doi.org/10.1029 /2006 GL027690,
2006.

115



BIBLIOGRAPHY

R. Carniel, M. Di Cecca, and D. Rouland. Ambrym, vanuatu (july-august 2000): spectral
and dynamical transitions on the hours-to-days timescale. Journal of Volcanology and
Geothermal Research, 128:1-13, 2003.

R. Carniel, F. Barazza, and P. Pascolo. Improvement of nakamura technique by singular
spectrum analysis. Soil Dynamics and Farthquake Engineering, 26:55—63, 2006.

R. Carniel, L. Barbui, and P. Malisan. Improvement of hvsr technique by self organizing
map (som) analysis. Soil Dynamics and Earthquake Engineering, 29:1097-1101, 20009.

R. Carniel, E. Munioz Jolis, and J. Jones. A geophysical multi-parametric analysis of
hydrothermal activity at dallol, ethiopia. Journal of African Earth Sciences, 58 (5):
812-819, 2010.

R. Carniel, L. Barbui, and A.D. Jolly. Detecting dynamical regimes by self-organizing
map (som) analysis: an example from the march 2006 phreatic eruption at raoul
island. new zealand kermadec arc.  Bollettino di GeofisicaTeorica ed Applicata,
http://dx.doi.org/10.4430 /bgta0077, 2012.

J.L. Carrivick, V. Manville, and S. Cronin. Modelling the march 2007 lahar from mt
ruapehu. Bulletin of Volcanology, 71 (2):153-169 http://dx.doi.org/10.1007 /s00445-008—
02132, 2009.

B. Christenson, C. Werner, A.G. Reyes, S. Sherburn, B.J. Scott, C. Miller, M.J. Rosenburg,
A.W. Hurst, and K.A. Britten. Hazards from hydrothermally sealed volcanic conduits.
Eos, Trans. Am. Geophys. Un., 88:53 55, 2007.

B.W. Christenson, A.G. Reyes, R. Young, A. Moebis, S. Sherburn, J. Cole-Baker, and
K. Britten. Cyclic processes and factors leading to phreatic eruption events: Insights
from the 25 september 2007 eruption through ruapehu crater lake, new zealand. Journal
of Volcanology and Geothermal Research, 191:15-32, 2010.

J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of Computation, vol. 19, no. 90(51-52):297-301, December 1965.

J. Dahmane, M. Meunier. Real-time video surveillance with self-organizing maps. Com-
puter and Robot Vision, pages 136—143, 2005.

R. de Gelder, R. Wehrens, and J.A. Hageman. A generalized expression for the similarity
spectra: application to powder diffraction pattern classification. Journal of Computa-
tional Chemistry, 22 (3):273-289, 2001.

W.R. Hackett and B.F. Houghton. A facies model for a quaternary andesitic composite
volcano: Ruapehu, new zealand. Bulletin of Volcanology, 51:51-68, 1989.

A. Harris, R. Carniel, and J. Jones. Identification of variable convective regimes at erta
ale lava lake. J. Volcanol. Geotherm. Res., 142:207 223, 2005.

Sampsa Hautaniemi, Olli Yli-harja, Jaakko Astola, Pdivikki Kauraniemi, Anne Kallion-
iemi, and Maija Wolf Jimmy Ruiz. Analysis and Visualization of Gene Expression Mi-
croarray Data in Human Cancer Using Self-Organizing Maps. 2003.

Simon Haykin. Neural networks: A comprehensive foundation. 1998.

J. Healy, E.F. Lloyd, C.J. Banwell, and R.D. Adams. Volcanic eruption on raoul island,
november 1964. Nature, 205:743-745, 1965.

116



BIBLIOGRAPHY

A.W. Hurst, HM. Bibby, B.J. Scott, and M.J. McGuinness. The heat source of ruapehu
crater lake; deductions from the energy and mass balances. Journal of Volcanology and
Geothermal Research, 46:1-20, 1991.

J.H. Johnson and M.K. Savage. Tracking volcanic and geothermal activity in the ton-
gariro volcanic centre, new zealand, with shear wave splitting tomography. Journal of
Volcanology and Geothermal Research, 223-224:1 10, 2012.

A.D. Jolly, S. Sherburn, P. Jousset, and G. Kilgour. Eruption source processes derived
from seismic and acoustic observations of the 25 september 2007 ruapehu eruption -
north island, new zealand. Journal of Volcanology and Geothermal Research, 191:33 45,
2010.

J. Jones, R. Carniel, A. J. L. Harris, and S. Malone. Seismic characteristics of variable
convection at erta ale lava lake, ethiopia. Journal of volcanology and geotermal research,
153:64-79, 2006.

L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis (chapter 5). 1990.

G. Kilgour, V. Manville, F. Della Pasqua, A. Graettinger, K.A. Hodgson, and G.E. Jolly.
The 25 september 2007 eruption of mount ruapehu, new zealand: directed ballistics,

surtseyan jets, and ice-slurry lahars. Journal of Volcanology and Geothermal Research,
191:1 14, 2010.

C. D. Klose. Self-organizing maps for geoscientific data analysis: geological interpretation
of multidimensional geophysical data. Computational Geosciences, 10(3):265-277, 2006.

T. Kohonen. Self-organizing maps: Optimization approaches. in t. kohonen, k. makisara,
o. simula, & j. kangas (eds.). In Proceedings of ICANNII1 International conference on
artifial neural networks vol. 2 (pp. 981-990), 1991.

T. Kohonen. Self-Organizing Maps. Springer-Verlag New York, 2001.

Teuvo Kohonen. Automatic formation of topological maps of patterns in a self-organizing
system. In Proceedings of the 2nd Scandinavian Conference on Image Analysis (Espoo),
1981.

K. Konno and T. Ohmachi. Ground-motion characteristics estimated from spectral ratio
between horizontal and vertical components of microtremor. Bulletin of the Seismological
Society of America, 88:228-241, 1998.

S. L. Kramer. Geotechnical Farthquake Engineering. Prentice Hall, 1996.

C. Lachet and P.Y. Bard. Numerical and teoretical investigations on the possibilities and
limitationd of nakamura’s techinque. Journal of Physics of the Earth, 42(9):377-397,
1994.

J.C. Lahr, B.A. Chouet, C.D. Stephens, J.A. Power, and R.A. Page. Earthquake clas-
sification, location, and error analysis in a volcanic environment: implications for the
magmatic system of the 1989-1990 eruptions at redoubt volcano, alaska. J. Volcanol.
Geotherm. Res., 62:137-151, 1994.

H. Langer, S. Falsaperla, A. Messina, S. Spampinato, and B. Behncke. Detecting imminent
eruptive activity at mt etna, italy, in 2007-2008 through pattern classification of volcanic
tremor data. Journal of Volcanology and Geothermal Research, 200:1-17, 2011.

117



BIBLIOGRAPHY

G. Lanzo and F. Silvestri. Risposta sismica locale. Teoria ed esperienze. Hevelius, 1999.

L.M. Lees. Seismic time series analysis tools, rseis package for r software. http://cran.r-
project.org/web/packages/RSEIS/, 2012.

Pasi Lehtimaki and Kimmo Raivio. A SOM based approach for visualization of GSM
network performance data. 2005.

E.F. Lloyd and S. Nathan. Geology and tephrochronology of raoul island, kermadec group,
new zealand. New Zealand Geol. Surv., Bull. 95:105, 1981.

V. Manville and S.J. Cronin. Breakout lahar from new zealand’s crater lake. FOS. Trans-
actions of the American Geophysical Union, 88 (43), 2007.

A. Messina and H. Langer. Pattern recognition of volcanic tremor data on mt. etna (italy)
with kkanalysis - a software program for unsupervised classification. Computers & Geo-
sciences, http://dx.doi.org/10.1016/j.cageo.2011.03.015, 2011.

A. Mordret, A.D. Jolly, Z. Duputel, and N. Fournier. Monitoring of phreatic eruptions
using interferometry on retrieved cross-correlation function from ambient seismic noise:
results from mt. ruapehu, new zealand. Journal of Volcanology and Geothermal Research,
191:46-59, 2010.

M. Mucciarelli and M. Gallipoli. A critical review of 10 years of microtremor hvsr technique.
Bollettino Di Geofisica Teorica ed Applicata, 42:255-266, 2001.

Y. Nakamura. A method for dynamic characteristic estimation of subsurface using mi-
crotremor on the ground surface. Quarterly report of railway technical research institute,
30(1):25-33, 1989.

Y. Nakamura. Clear identification of fundamental idea of nakamura’s technique and its
application. Proceedings of the 12th World Conference of Earthquake Engineering, 2000.

J. Neuberg and C. O’Gorman. A model of the seismic wavefield in gas-charged magma:
application to soufriere hills volcano, montserrat, in the eruption of soufriere hills vol-
cano, from 1991 to 1999. In: Druitt, T.H., Kokelaar, B.P. (Eds.), Geol Soc. Mem., 21:
603-609, 2002.

M. Nogoshi and T. Igarashi. On the amplitude characteristics of microtremors. Journal of
the Seismological Society of Japan, 24:24 40, 1971.

M. Ripepe, A. J. L. Harris, and R. Carniel. Thermal, seismic and infrasonic evidences of
variable degassing rates at stromboli volcano. Journal of Volcanology and Geothermal
Research, 118:285 297, 2002.

H. Ritter, T. Martinetz, and K.Schulten. Neural computation and self-organizing maps:
an introduction. 1992.

SESAME. Guidelines for the implementation of the h/v spectral ratio technique on ambi-
ent vibrations measurements, processing and interpretation. hitp://sesame-fp5.obs.ujf-
grenoble.fr/, 2005.

S. Sherburn, C.J. Bryan, A.W. Hurst, and J.H. Latter B.J. Scott. Seismicity of ruapehu
volcano, new zealand, 1971-1996: a review. Journal of Volcanology and Geothermal
Research, 88:255-278, 1999.

118



BIBLIOGRAPHY

I. Smith, R.B. Stewart, R.C. Price, and T.J. Worthington. Are arc-type rocks the products
of magma crystallisation? observations from a simple oceanic arc volcano: Raoul island,
kermadec arc, sw pacific. J. Volcanol. Geotherm., 190:219-234, 2010.

M. Strickert and U. Seiffert. Correlation-based data representation. Dagstuhl Seminar
Proceedings 07131, 2007.

R Development Core Team. R: a language and environment for statistical computing. Vi-
enna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-
project.org, 2010.

K. Tokimatsu. Geotechnical site characterization using surface waves. Farthquake Geotech-
nical Engineering, pages 1333 1368, 1997.

K. Tokimatsu, S. Tamura, and H. Kjima. Effects of multiple modes on rayleigh wave
dispersion characteristic. J.Geotechnical Engineering, 118:1529-1543, 1992.

A. Ultsch. Self-organizing neural networks for visualization and classification. In Proc.
Conf. Soc. for Information and Classification, Dortmund, 1992.

A. Ultsch. Self-Organizing Neural Networks for Visualization and Classification, chapter
Information and Classification: Concepts, Methods, and Applications, pages 307-313.
eds O. Opitz, B. Lausen and R. Klar, 1993.

A. Ultsch. U*-matrix: a tool to visualize clusters in high dimensional data. University of
Marburg, Department of Computer Science, Technical Report, 36:1-12, 2003.

A. Ultsch and H.P. Siemon. Kohonen’s self organizing feature maps for exploratory data
analysis. Proc. Intern. Neural Networks, Kluwer Academic Press, Paris, pages 305—308,
1990.

E. A. Uriarte and F. D. Martin. Topology preservation in som. Proceedings of world
academy of science, engineering and technology, 15:1-4, 2006.

J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas. Som toolbox for matlab 5.
report a57. Technical report, Helsinki University of Technology, Helsinki, Finland, 2000.

J. Vesanto, M. Sulkava, and J. Hollmn. On the decomposition of the self-organizing map

distortion measure. In In Proceedings of the workshop on self-organizing maps (pp. 11-
16), 2003.

P.D. Welch. The use of fast fourier transform for the estimation of power spectra: a
method based on time averaging over short, modified periodograms. IEEFE Trans. Audio
and Electroacoust, AU-15:70-73, 1967.

T.J. Worthington, M.R. Gregory, and V. Bondarenko. The denham caldera on raoul
volcano: dacitic volcanism in the tonga-kermadec arc. J. Volcanol. Geotherm., 90:29-48,
1999.

119



