
Tommaso Urli

Hybrid Meta-Heuristics for

Combinatorial Optimization

Ph.D. Thesis

Università degli Studi di Udine

Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica

Dottorato di Ricerca in Ingegneria Industriale e dell’Informazione

Typeset in LATEX.

Self-published in March 2014.

The front page platypus illustration is by Tommaso Urli.

author

Tommaso Urli

address

Via delle Scienze, 208

33100 – Udine (UD)

Italy

web http://www.diegm.uniud.it/urli

mail tommaso.urli@uniud.it

Copyright ©2014 Tommaso Urli

http://www.diegm.uniud.it/urli
tommaso.urli@uniud.it

Tommaso Urli

Hybrid Meta-Heuristics for

Combinatorial Optimization

Ph.D. Thesis

Advisor
Prof. Luca Di Gaspero

To my family.

i

Acknowledgements

Before getting to the central topic of this thesis, I’d like to thank a

bunch of people for sharing with me this three-years-long journey.

First of all, I wish to thank my advisor, Luca, one of the most

knowledgeable persons I know, for the many hours of fruitful dis-

cussion, the countless pair programming sessions, and for always

promoting my personal initiative. I also wish to thank my other

advisor, Andrea, for the many research advice, for conveying me

the value of perseverance, and for always helping me to put dif-

�culties in the right perspective. Particular thanks go also to my

friend, colleague, and o�ce mate Sara, for pushing me to apply for

a position at what ended up to be a great research unit. I wish to

thank you all for being such nice and fun people to work with.

Special thanks go to Andrea Roli and Nysret Musliu for accept-

ing to review this thesis, and for providing useful insight on how

to improve it.

I wish to thank Amos, for the endless and passionate discus-

sions about what can, and cannot be, considered proper music, and

for being a good friend. I also wish to thank Roberto, which ini-

tially talked me into starting a doctoral career, and Ruggero, for

sharing with me his statistics knowledge.

I wish to thank Markus Wagner, one of the hardest working

person I have ever met, for being a great co-author and friend, and

Frank Neumann, for hosting me in his wonderful research unit in

Adelaide. I wish to thank Andrea, for being one of the best co-

authors I have worked with. I am also obrigado to Tiago de Oliveira

Januario, for being an early adopter (and beta tester) of json2run,

and for supporting me in my quest to learn Portuguese.

I wish to thank Martina, for teaching me the value of always

aiming high, and Paolo, for being the best friend that I have ever

had. I got from the two of you more than you, and I, could imagine.

Finally, I wish to thank my family. My parents, Erme and Nor-

berto, who never denied me an opportunity to make an experience,

and my sister, Valentina, for always backing me. You are truly ex-

traordinary people, and I love you.

ii

Contents

Introduction ix

I Background 1

1 Combinatorial Optimization 3

1.1 Terminology . 3

1.1.1 Problems, variables and constraints 3

1.1.2 Instances 4

1.1.3 Solutions and search space 4

1.1.4 Combinatorial problems 5

1.2 Decision and search problems 6

1.3 Complexity . 6

1.3.1 Languages and strings 7

1.3.2 Problems and languages 7

1.3.3 Turing machines 8

1.3.4 P and NP classes 9

1.3.5 P-complete and NP-complete classes . . . 10

1.4 Optimization problems 11

1.4.1 Objective function 11

1.4.2 Hard and soft constraints 12

1.4.3 Multi-objective optimization 13

1.4.4 Scalarization 13

1.4.5 Example: Traveling Salesperson Problem . . 14

1.5 Search methods . 15

1.5.1 Complete and incomplete methods 15

1.5.2 Perturbative and constructive methods . . . 16

iii

iv CONTENTS

2 Constraint Programming 19

2.1 Modeling . 20

2.1.1 Variables, domains, and constraints 20

2.1.2 Problems and solutions 20

2.1.3 Global constraints 23

2.1.4 Example: Traveling Salesperson Problem . . 24

2.2 Search . 26

2.2.1 Constraint propagation 26

2.2.2 Backtracking 32

3 Neighborhood search 41

3.1 Modeling . 42

3.1.1 Delta costs 42

3.1.2 Example: Traveling Salesperson Problem . . 43

3.2 Search . 44

3.2.1 Hill climbing (HC) 46

3.2.2 Steepest descent (SD) 46

3.2.3 Local optima and plateaux 47

3.2.4 Simulated Annealing (SA) 49

3.2.5 Tabu Search (TS) 51

4 Swarm intelligence 55

4.1 Particle Swarm Optimization (PSO) 56

4.1.1 Overall procedure 56

4.1.2 Parameters 58

4.1.3 Variant: constriction factor 59

4.2 Ant Colony Optimization (ACO) 60

4.2.1 State transition rule 61

4.2.2 Pheromone update rule 61

4.2.3 Overall procedure 62

4.2.4 Parameters 63

4.2.5 Heuristic information 64

4.2.6 Variant: max-min ant system (MMAS) . . . 64

CONTENTS v

II Hybrid meta-heuristics 67

5 Overview of hybrid methods 69

5.1 Combining together meta-heuristics 70

5.1.1 Memetic algorithms 70

5.1.2 Hyper-heuristics 70

5.1.3 GRASP . 71

5.1.4 Multi-level techniques 71

5.2 Combining meta-heuristics with CP 72

5.3 Other hybrid methods 73

6 Reinforcement learning-based hyper-heuristics 75

6.1 The hyper-heuristics framework 76

6.2 CHeSC Competition 77

6.3 Our approach . 77

6.3.1 Environment 78

6.3.2 Actions . 79

6.3.3 Reward function 79

6.3.4 Policy . 79

6.3.5 Learning function 80

6.4 Parameter tuning 80

6.4.1 Common parameters 80

6.4.2 Parameters for RLHH-MLP 81

6.4.3 Parameters for RLHH-ET 82

6.4.4 Parameter in�uence 83

6.4.5 Tuning procedure 85

6.5 Comparison with others 85

6.6 Other �ndings: ILS-like behavior 87

7 Propagation-based meta-heuristics 89

7.1 Large Neighborhood Search (LNS) 89

7.1.1 Algorithm idea 90

7.1.2 Variants . 93

7.1.3 Implementation: gecode-lns 94

7.2 ACO-driven CP (ACO-CP) 96

7.2.1 Algorithm idea 96

7.2.2 Implementation: gecode-aco 97

vi CONTENTS

III Applications 101

8 Balancing Bike Sharing Systems 103

8.1 Related work . 104

8.2 Problem formulation 105

8.3 Modeling . 107

8.3.1 Routing model 107

8.3.2 Step model 115

8.4 Search by Large Neighborhood Search 121

8.4.1 Common components 122

8.4.2 Destroy step 126

8.4.3 Experimental evaluation 126

8.5 Search by ACO-driven CP 130

8.5.1 Handling of routing variables 130

8.5.2 Handling of operation variables. 132

8.5.3 Pheromone update 132

8.5.4 Experimental evaluation 133

9 Curriculum-Based Course Timetabling 137

9.1 Related work . 138

9.1.1 Meta-heuristic approaches 138

9.1.2 Constraint programming 139

9.1.3 Exact methods and lower bounds 139

9.1.4 Instance generation 141

9.2 Problem formulation 141

9.3 Modeling . 143

9.3.1 Neighborhood search 144

9.3.2 Constraint programming 145

9.4 Search by Simulated Annealing 146

9.4.1 Feature-based tuning 149

9.4.2 Results . 158

9.5 Search by Large Neighborhood Search 160

9.5.1 Algorithm overview 161

9.5.2 Parameter tuning 163

9.5.3 Results . 164

CONTENTS vii

10 Other contributions 167

10.1 Virtual Camera Control 167

10.1.1 Pixel-accurate evaluation of visual properties 169

10.1.2 E�cient viewpoint computation with PSO . 169

10.2 Runtime analysis of Genetic Programming 169

A Parameter tuning 171

A.1 De�ning the competing parameter setups 172

A.1.1 Full factorial 172

A.1.2 Sampling 173

A.2 Finding the best con�guration with race 175

A.3 Feature-based parameter tuning 176

A.4 json2run . 176

B Reinforcement learning and neural networks 179

B.1 Reinforcement learning 179

B.1.1 The acting-learning loop 180

B.2 Multi-layer perceptrons 183

B.2.1 Storing action-values in a multi-layer per-

ceptron . 186

B.2.2 Eligibility traces 187

Conclusions 191

viii CONTENTS

Introduction

Combinatorial optimization problems arise, in many forms, in vari-

ous aspects of everyday life. Nowadays, a lot of services are driven

by optimization algorithms, enabling us to make the best use of

the available resources while guaranteeing a level of service. Ex-

amples of such services are public transportation, goods delivery,

university time-tabling, and patient scheduling.

Thanks also to the open data movement, a lot of usage data

about public and private services is accessible today, sometimes

in aggregate form, to everyone. Examples of such data are tra�c

information (Google), bike sharing systems usage (CitiBike NYC),

location services, etc. The availability of all this body of data allows

us to better understand how people interacts with these services.

However, in order for this information to be useful, it is necessary

to develop tools to extract knowledge from it and to drive better

decisions. In this context, optimization is a powerful tool, which

can be used to improve the way the available resources are used,

avoid squandering, and improve the sustainability of services.

The �elds of meta-heuristics, arti�cial intelligence, and oper-

ations research, have been tackling many of these problems for

years, without much interaction. However, in the last few years,

such communities have started looking at each other’s advance-

ments, in order to develop optimization techniques that are faster,

more robust, and easier to maintain. This e�ort gave birth to the

fertile �eld of hybrid meta-heuristics.

In this thesis, we analyze some of the most common hybrid

meta-heuristics approaches, and show how these can be used to

solve hard real-world combinatorial optimization problems, and

ix

x Introduction

what are the major advantages of using such techniques.

This thesis is based on results obtained by working together

with many local and international researchers, and published in a

number of peer-reviewed papers. In the following, I summarize the

major �ndings, and refer to the relative publications.

Hyper-heuristics. Chapter 6, describes the development of an

adaptive optimization algorithm, which is able to automatically

drive itself through the search space, by using the collected knowl-

edge to change its behavior in time. The chapter is based on the

following two papers about reinforcement learning-based hyper-

heuristics

• Luca Di Gaspero and Urli Tommaso. A reinforcement le-

arning approach to the cross-domain heuristic search

challenge. In Proceedings of the 9th Metaheuristics Interna-
tional Conference (MIC 2011). 2011.

• Luca Di Gaspero and Urli Tommaso. Evaluation of a fam-

ily of reinforcement learning cross-domain optimiza-

tion heuristics. In Learning and Intelligent Optimization
(LION 6). 2012.

Balancing bike sharing systems. Chapter 8 describes the math-

ematical models that we developed to optimize the re-balancing

operations for bike sharing systems, and Chapter 7 describes two

propagation-based meta-heuristics that we developed to operate

on such models. These two chapters are based on the following

papers

• Luca Di Gaspero, Andrea Rendl, and Tommaso Urli. A Hy-

brid ACO+CP for Balancing Bicycle Sharing Systems.

In Proceedings of HM’13: 8th International Workshop on Hy-
brid Metaheuristics. 2013.

• Luca Di Gaspero, Andrea Rendl, and Tommaso Urli. Con-

straint based approaches for Balancing Bike Sharing

Systems. In Proceedings of CP’13: the 19th International Con-
ference on Principles and Practice of Constraint Programming.

2013.

xi

Moreover, a follow-up journal paper [87] about our latest work

on this problem has been recently submitted for acceptance to the

Constraints journal.

Curriculum-based course timetabling. Chapter 9 describes mo-

dels and algorithms developed to tackle the problem of generating

university timetables, and is based on the following papers

• Ruggero Bellio, Sara Ceschia, Luca Di Gaspero, Andrea Scha-

erf, and Tommaso Urli. A simulated annealing approach

to the curriculum -based course timetabling problem.

In Proceedings of MISTA ’13: the 6th Multidisciplinary Interna-
tional Scheduling Conference: Theory and Applications. 2013.

• Tommaso Urli. Hybrid CP+LNS for the Curriculum-Ba-

sed Course Timetabling Problem.. In Doctoral Program
of CP’13: the 19th International Conference on Principles and
Practice of Constraint Programming. 2013.

Other contributions. Chapter 10 describes a number of other

research projects I have contributed to in my doctoral career. In

particular, it describes some of the results obtained with the Evolu-

tionary Computation research unit at the University of Adelaide,

Australia, in the �eld of theoretical runtime analysis of Genetic Pro-

gramming (machine learning, multi-objective optimization), and in

the �eld of virtual camera control (3D graphics, continuous opti-

mization). The chapter is based on the following papers

• Tommaso Urli, Markus Wagner, and Frank Neumann. Ex-

perimental Supplements to the Computational Com-

plexityAnalysis ofGenetic Programming for Problems

Modelling Isolated Program Semantics. In Proceedings of
PPSN 2012 - 12th International Conference on Parallel Problem
Solving From Nature. 2012.

• Anh Quang Nguyen, Tommaso Urli, and Markus Wagner.

Single- andMulti-ObjectiveGenetic Programming: New

Bounds for Weighted Order and Majority. In Post-pro-
ceedings of FOGA 2013 - Foundation of Genetic Algorithms.
2013.

xii Introduction

• Roberto Ranon, Marc Christie, and Tommaso Urli. Accu-

rately Measuring the Satisfaction of Visual Properties

in Virtual CameraControl. In Proceedings of Smart Graph-
ics 2010. 2010.

• Roberto Ranon and Tommaso Urli. Improving the e�cien-

cy of Viewpoint Composition. IEEE Transactions on Visu-
alization and Computer Graphics. 2014.

Additionally, a number of software tools have been developed and

made public, as a fundamental element of my research. All these

tools are distributed under the permissive MIT license.

• Gecode-LNS, a search engine for the Gecode constraint sys-

tem, to perform large neighborhood search (LNS) based on a

CP model. Available at https://bitbucket.org/tunnuz/gecode-

lns.

• Gecode-ACO, a search engine for the Gecode constraint sys-

tem, to perform an ant colony optimization (ACO)-driven CP

sarch. Available at https://bitbucket.org/tunnuz/gecode-aco.

• json2run [105], a tool that allows to automate the design,

running, and analysis of computational experiments, as well

as perform parameter tuning. Available at https://bitbucket

.org/tunnuz/json2run.

• CP-CTT [104], a hybrid CP-based large neighborhood search

(LNS) solver for the Curriculum-Based Course Timetabling

(CB-CTT). Available at https://bitbucket.org/tunnuz/cpctt.

• GPFramework, an extensible Java framework built to study

the runtime analysis of tree-based Genetic Programming (GP).

Available at https://bitbucket.org/tunnuz/gpframework.

The thesis is organized in three major parts, which cover dif-

ferent aspects of our research. Part I describes the needed back-

ground in order to address the central topic of this thesis. In par-

ticular, Chapter 1 describes the domain of combinatorial optimiza-

tion, Chapter 2 is a brief introduction to one of the most popu-

lar exact approaches to combinatorial optimization problems, na-

mely Constraint Programming, Chapter 3 describes the main ideas

https://bitbucket.org/tunnuz/gecode-lns
https://bitbucket.org/tunnuz/gecode-lns
https://bitbucket.org/tunnuz/gecode-aco
https://bitbucket.org/tunnuz/json2run
https://bitbucket.org/tunnuz/json2run
https://bitbucket.org/tunnuz/cpctt
https://bitbucket.org/tunnuz/gpframework

xiii

and the most popular algorithms in Neighborhood Search, a fam-

ily of practical techniques to tackle large optimization problems,

�nally Chapter 4 presents Swarm Intelligence algorithms, a class

of nature-inspired and population-based algorithms. Part II intro-

duces the central topic of this thesis, namely hybrid Meta-Heuris-

tics. Speci�cally, Chapter 5 gives a brief overview of the existing

families of hybrid approaches, Chapter 6 describes the research we

carried out in the �eld of learning Hyper-Heuristics, Chapter 7 des-

cribes the research carried out at the intersection between neigh-

borhood search and constraint programming, and neighborhood

search and swarm intelligence. Part III is devoted to the discus-

sion of the application of the investigated approaches to real-world

combinatorial optimization problems, namely the rebalancing of

bike sharing systems (Chapter 8), and the optimization of univer-

sity time-tables (Chapter 9). Chapter 10 describes some additional

contributions in the �eld of optimization that are not directly re-

lated to the main topic of the thesis. Additionally, the thesis fea-

tures two Appedices that address some important aspects of the

research we carried out, namely reinforcement learning and pa-

rameter tuning.

xiv Introduction

Part I

Background

1

Chapter 1

Combinatorial

Optimization

In this chapter, we outline the domain of combinatorial optimiza-

tion, and present its core concepts. Moreover, we introduce a repre-

sentative example problem that will be used throughout the Part I

of this thesis.

1.1 Terminology

Before proceeding to the rest of this chapter, we must agree on

some terminology. In particular, we need to de�ne, at least in-

formally, the fundamental notions of problem, problem instance,

decision variable, constraint, solution, and combinatorial problem.

1.1.1 Problems, variables and constraints

In optimization, a problem Π (also called problem formulation) is a

mathematical representation of a decision process, built so that it is

possible for a software solver to reason about it, and come up with

one or more possible decisions. Problems are stated in terms of

decision variables (or simply variables), representing the decisions

to be taken, and constraints, restrictions on the values that can be

given to the variables. Coming up with an e�ective mathematical

3

4 Combinatorial Optimization

representation of a problem, i.e. modeling the problem, is one of

the fundamental tasks in optimization.

Example 1.1 (Sudoku). Sudoku is a popular puzzle game played

on a 9-by-9 board splitted into nine 3-by-3 subregions. Each match

starts with a board in which k < 92
cells have already been pre-

�lled with digits in {1, . . . , 9}. The goal of the game is to �ll in

each remaining cell, according to the following rules

1. on each row a digit may only be used once,

2. on each column, a digit may only be used once,

3. on each subregion, a digit may only be used once.

A Sudoku puzzle can be represented with n = 92 − k decision

variables, where k is the number of cells that have been pre-�lled.

Every time a digit is chosen for a cell, the set of possible values for

the other cells on the same row, column, or subregion, is reduced.

1.1.2 Instances

While a problem formulation is a general description of a decision

process, e.g., the set of rules that de�ne the game of Sudoku, a prob-
lem instance (or simply instance) π ∈ IΠ is a speci�c occurrence of

the problem. With reference to Example 1.1, a Sudoku instance

speci�es the values of k cells (see Figure 1.1).

Sometimes it is convenient to use the term problem to refer to a

problem instance. In the following, the meaning will be clear from

the context.

1.1.3 Solutions and search space

A solution s to an instance π is an assignment of all n decision vari-

ables (i.e., a n-tuple). For example, a solution to a Sudoku instance is

one that assigns a digit to every cell of the board. The search space
Sπ of an instance is the set of all possible assignments to its decision

variables, i.e., the Cartesian product of its variables domains, which

are normally bounded. A distinction is usually made between the

set Fπ ⊆ Sπ of solutions that satisfy all the imposed constraints

1.1 Terminology 5

Figure 1.1: A Sudoku instance with k = 30.

(feasible solutions), and the solutions which violate some of the

constraints (infeasible solutions). When not otherwise speci�ed,

we will use the term solution to indicate a generic solution (i.e.,

s ∈ Sπ); if s ∈ Fπ , it will be clear from the context, or explicitly

stated.

Whenever an instance of a problem has at least one feasible

solution, we call it feasible. Similarly, an instance without feasible

solutions is called infeasible.

1.1.4 Combinatorial problems

A combinatorial problem is one whose decision variables have dis-

crete and �nite domains. As a consequence, a combinatorial prob-

lem has a �nite number of solutions, although typically exponen-

tial in the number of variables. Once again, Sudoku is an example

of a combinatorial problem, with 992−k
possible solutions, most of

which are, however, infeasible.

Note in the following, we will use the symbols S,F, I, . . . , instead

of Sπ,Fπ, IΠ, . . . , whenever the problem, or problem instance, un-

der discussion is generic, or clear from the context.

6 Combinatorial Optimization

1.2 Decision and search problems

Given a problem instance, there are various questions that can be

answered using a solver. At the most basic level, one may be inter-

ested in �nding out whether an instance has at least one feasible

solution. Answering to such question is commonly referred to as

the decision problem associated with the instance. With respect to

a decision problem, instances can be classi�ed into yes instances

(Iyes ⊆ I), instances for which the decision problem has a positive

answer, and no instances (Ino = I \ Iyes), instances for which the

decision problem has a negative answer. Note that some decision

problems can be undecidable, i.e., it is not possible to construct an

algorithm that halts on all instances giving a positive or negative

answer. Among such problems are semi-decidable problems, i.e.,

problems for which it is possible to write an algorithm that halts

on yes instances and might run forever on no instances.

On a pragmatic level, a more useful task is to compute one or

more feasible solutions for the instance. We call this task the search
problem associated with the instance. Of course, �nding a feasible

solution for an instance also implies solving the associated decision

problem. The converse is not necessarily true, as, in principle, it

might be possible to produce a proof of feasibility for a problem,

without providing a solution to it.

1.3 Complexity

Complexity theory deals with classifying problems, by analyzing

the amount of resources (time and space) needed to solve them us-

ing well de�ned computational models. In this brief section, we

present two of these models, namely (deterministic) Turing ma-

chines (TM) and Nondeterministic Turing machines (NTM), which

are at the basis of the characterization of the P and NP problem

classes.

1.3 Complexity 7

1.3.1 Languages and strings

An alphabetΣ is a �nite set of symbols with at least two elements.

A string w of length k over the alphabet Σ is an element 〈w1, . . . ,
wk〉 of the Cartesian product Σk

, in which commas and brackets

are usually dropped. The set of strings of any length over the alpha-

bet Σ, including the empty string ε, is called the Kleene’s closure

of Σ, and denoted by Σ∗. A language L over Σ is a subset of the

Kleene’s closure of Σ. B is the set {0, 1}.

1.3.2 Problems and languages

In the following, we give a formal de�nition of a decision problem,

extend it to include arbitrary problems, and clarify how a problem

can be represented by a language
1
.

De�nition 1.1 (Decision problem [91]). Let Σ be an arbitrary �-
nite alphabet. A decision problem Π is de�ned by a set of instances
IΠ ⊆ Σ∗ of the problem, and a condition φΠ : IΠ 7→ B that has
value 1 on yes instances and 0 on no instances. Then, IΠyes = {π ∈
IΠ |ψΠ(π) = 1} are the yes instances, and IΠ \ IΠyes are the no

instances.

De�nition 1.2 (Language associated with a decision problem [91]).

The yes intances of a decision problemΠ are encoded as binary strings
by an encoding function σ : Σ∗ 7→ B∗, that assigns to each
π ∈ IΠyes a string σ(π) ∈ B∗. With respect to σ, the language
L(Π) associated with a decision problem Π is the set L(Π) =
{σ(π) |π ∈ IΠyes}.

De�nition 1.3 (Problem, language [91]). A decision problem can
be generalized to a problem Π characterized by a function f : B∗ 7→
B∗ described by a set of ordered pairs (w, f(w)) where each string
w ∈ B∗ appears once as the left-hand side of the pair. Thus, a lan-
guage is de�ned by problems f : B∗ 7→ B and consists of the strings
w on which f(w) = 1.

1

most of the de�nitions in this section are adapted from [91].

8 Combinatorial Optimization

Note that the following results on languages hold for languages

associated with problems as well. As a consequence, they can be

used to classify problems based on the amount of resources needed

to process their associated languages.

1.3.3 Turing machines

The Turing machine is a classical computation model (an hypothet-

ical device), designed to study the limits of computing. To date no

other computational model has been found, that computes func-

tions that a Turing machine cannot compute.

A Turing machine is composed by a (possibly unlimited) tape

of m-bits cells, and by a control unit (a �nite states machine) ca-

pable of reading from the cell under its head, writing to the cell

under its head, and moving left or right on the tape. At each unit

of time, the control unit reads a word from the cell under its head,

updates its state, write a word to the cell under its head, and moves

left or right, by at most one position, on the tape. In the following

we formally de�ne the model.

De�nition 1.4 (Turing machine [92]). A Turing machine (TM)
is a six-tupleM = 〈Γ, β,Q, δ, s, h〉), where Γ is the tape alphabet
not containing the blank symbol β, Q is a �nite set of states in which
the control unit can be, δ : Q × (Γ ∪ {β}) 7→ (Q ∪ {h}) × Γ ∪
{β} × L,N,R is the next-state function, s is the initial state,
and h 6∈ Q is the accepting halt state. If M is in state q with a
symbol a under the head and δ(q, a) = (q′, a′,C), then the control
unit enters state q′, writes a′ in the cell under its head and moves the
head left, right or not at all, if C is, respectively, L,R, or N.

A Turing machine M accepts the input string w ∈ Γ∗ if,

when started in state swithw placed left-adjusted on its otherwise

blank tape, and the head at the leftmost tape cell, the last state

entered byM is h. Every other halting state is a rejecting state. A

Turing machine M accepts the language L(M) ⊆ Γ∗ consisting

of all strings accepted byM . If a Turing machine halts on all inputs,

we say that it recognizes the language.

Nondeterministic Turing machines (NTM) are identical to stan-

1.3 Complexity 9

dard Turing machines, except for the fact that the control unit ac-

cepts an external choice input to determine the next state.

De�nition 1.5 (Nondeterministic Turing machine [92]). A non-
deterministic Turing machine (NTM) is the extension of the TM
model by the addition of a choice input to its control unit. Thus a NTM
is seven-tupleM = 〈Σ,Γ, β,Q, δ, s, h〉), where Σ is the choice in-
put alphabet, and δ : Q ×Σ × (Γ ∪ {β}) 7→ (Q ∪ {h}) × (Γ ∪
{β})×L,N,R ∪ {⊥} is its next-state function. If δ(q, c, a) =⊥
then there is no successor for the current state with input choice c. If
M is in state q with a symbol a under the head, reading choice input
c, and δ(q, c, a) = (q′, a′,C), then the control unit enters state q′,
writes a′ in the cell under its head and moves the head left, right or
not at all, if C is, respectively, L, R, or N. At each step, the NTMM
reads one symbol of its choice input string c ∈ Σ∗.

A nondeterministic Turing machine M accepts the input st-

ringw ∈ Γ∗ if there is a c ∈ Σ∗ such that the last state entered by

M ishwhenM is started in a state swithw left-adjusted on its oth-

erwise blank tape and the head at the leftmost tape cell. A nonde-

terministic Turing machineM accepts the languageL(M) ⊆ Γ∗

consisting of those strings w that it accepts. Therefore, if w 6∈
L(M), there is no choice input for which M accepts w.

1.3.4 P and NP classes

Turing machines allow us to formally de�ne the class of P lan-

guages (and thus problems).

De�nition 1.6 (P [92]). A language L ⊆ Γ∗ is in P if there is
a Turing machine M with tape alphabet Γ and a polynomial p(n)
such that, for every w ∈ Γ∗, a) M halts in p(|w|) steps, and b) M
accepts w if and only if w ∈ L.

Similarly, Nondeterministic Turing machines allow us to de�ne

the class of NP languages (and thus problems).

De�nition 1.7 (NP [92]). A language L ⊆ Γ∗ is in NP if there

10 Combinatorial Optimization

is a nondeterministic Turing machineM and a polynomial p(n) such
thatM accepts L, and for each w ∈ L there is a choice input c ∈ Σ∗

such thatM on input w with this choice input halts in p(|w|) steps.
The choice input c is said to verify the membership of the string in a
language.

The membership of a string inNP can thus be veri�ed in poly-

nomial time, with a choice input string of polynomial length.

1.3.5 P-complete and NP-complete classes

While it is obvious thatP ⊆ NP (because it is possible to simulate

a deterministic Turing machine on a Nondeterministic Turing Ma-

chine by �xing a choice input string), it is not known whether the

opposite stands, which would imply that P and NP are the same

class. This question, denoted P ?
= NP , has been open for decades,

and it is possibly the most important unsolved question in com-

puter science. The approach taken to answer this question, is to

identify problems that are hardest in NP , and then try to prove

that they are, or are not, in P .

De�nition 1.8 (Complete language). A language L0 is hardest
in its class, if i) L0 is itself in the class, and ii) for every other language
L in the class, a test for the membership of a string w in L can be
constructed by translatingw with an algorithm to a string v and then
testing for membership o v inL0 . If the class isP , the algorithmmust
use at most a space logarithmic in the size of w, if the class is NP ,
the algorithm must use at most time polynomial in the length of w.
If these conditions hold, L0 is said to be a complete language for its
class.

We now give the formal de�nitions for P-complete and NP-

complete languages (and thus problems).

De�nition 1.9 (P-complete language [92]). A languageL0 ⊆ B∗
isP-complete if it is inP and, for every languageL ⊆ B∗ inP there
is a log-space deterministic program that translates eachw ∈ B∗ into
a string v ∈ B∗ so that w ∈ L if and only if v ∈ L0.

1.4 Optimization problems 11

De�nition 1.10 (NP-complete language [92]). A languageL0 ⊆
B∗ isNP-complete if it is inNP and, for every languageL ⊆ B∗ in
NP there is a polynomial-time deterministic program that translates
eachw ∈ B∗ into a string v ∈ B∗ so thatw ∈ L if and only if v ∈ L0.

If a NP-complete problem were found to be in P , this would

mean that every problem inNP would be in P , and thus the ques-

tion P ?
= NP would have a positive answer. Since many decades

of research have failed to show this, the classic approach when

faced with a complex problem, is to prove that it is NP-complete.

This is a testimonial, but not a proof, of its complexity. In particu-

lar, to date, the only general algorithm to solve instances of such

problems, is the exhaustive enumeration of solutions, which has a

worst-case run time exponential in the size of the input.

1.4 Optimization problems

In most combinatorial problems, an instance may have more than

one feasible solution. While for search and decision problems is

enough to �nd any solution that satis�es the constraints, optimiza-

tion problem require to �nd a solution that is better than the others

according to some measure.

1.4.1 Objective function

The natural way to evaluate the goodness of a solution with respect

to the others is to de�ne an objective function to measure the utility

of the solution in the original decision process.

De�nition 1.11 (Objective function). An objective function is a
function f : F 7→ R, that associates a value to each solution s ∈ F.
Such function can encode a quality measure for s that must be maxi-
mized (in this case we call itmaximization function), or a penalty
that must be minimized (in this case we call itminimization func-
tion). We refer to f(s) as the objective value of a solution s ∈ F.

Note that, in some communities, the objective function can as-

12 Combinatorial Optimization

sume di�erent names. For instance, in the �eld of evolutionary

computation, the term �tness function is broadly used to indicate

the underlying maximization function, because of its parallel with

natural sciences, e.g., survival of the �ttest. In other communities

the term cost function is used, to denote a “defect” of the solution,

which should be minimized through the optimization process. In

such cases, we refer to the objective value, respectively, as to the

�tness or the cost value.

It can be shown that solving minimization or maximization

problems is, in fact, equivalent, since it is trivial to translate a prob-

lem of one class into a problem of the other. As such, without loss

of generality, we follow the convention used in most optimization

communities, and treat every objective function as a cost function,

and every problem as minimization problem.

Note, also, that every optimization problem can be treated as a

decision problem where the goal is to tell whether there is a feasible

solution so that f(s) < K where K is a given threshold.

De�nition 1.12 (Combinatorial optimization problem [36]). An
instance π ∈ IΠ of a combinatorial optimization problem Π, is a
triple 〈S,F, f〉, where S is the (�nite) search space of π, F ⊆ S is
the set of all feasible solutions of π, and f is an objective function
associated with the problem.

Solving the optimization problem associated with an instance π,

consists in �nding a global optimum for π, i.e., a solution s∗ ∈ F,

so that f(s∗) ≤ f(s),∀s ∈ F (note that there might still exist an

infeasible u∗ ∈ S \ F s.t. f(u∗) ≤ f(s∗)).

1.4.2 Hard and soft constraints

In many problem formulations, constraints are split in hard con-
straints and soft constraints. Hard constraints represent restrictions

of the original decision process, that cannot be violated for any rea-

son, e.g., laws of physics, regulations. Their violation prevents a

solution from being feasible at all, and thus they de�ne the bound-

aries of the search space.

1.4 Optimization problems 13

Soft constraints, on the other hand, may be violated, as their vi-

olation does not hinder feasibility, but at a price of a higher solution

cost. As such, their violations must be minimized by the optimiza-

tion process. Soft constraints are by far the most common way to

de�ne an objective function. For this reason they are sometimes

called cost components.

1.4.3 Multi-objective optimization

In multi-objective optimization (MOO), instead of just one objec-

tive function f , we have a m-tuple 〈f1, . . . , fm〉 of objectives. As

a consequence, each solution s has an associated objective vector
〈f1(s), . . . , fm(s)〉 measuring its cost in each objective. A solu-

tion s1 ∈ F is said to Pareto-dominate another solution s2 ∈ F, if

fi(s1) ≤ fi(s2), ∀i ∈ {1, . . . ,m} ∧ ∃j ∈ {1, . . . ,m} s.t. fj(s1) <
fj(s2), i.e., if it is at least as good as s2 in all objectives, and better

than s2 in at least one. Note that Pareto dominance de�nes a par-

tial order on the solutions, therefore some of the solutions may be

incomparable.

The goal, in multi-objective optimization, is to �nd a set F∗ ⊆
F of solutions that are non Pareto-dominated. This set of solutions

is commonly denoted Pareto optimal set, and the respective set of

objective vectors is called the Pareto front. Solutions in the Pareto

optimal set are incomparable with each other. Moreover, they ex-

hibit Pareto e�ciency, i.e., it is impossible to improve one objective

without making another worse.

1.4.4 Scalarization

Most optimization problems arising in real-world domains have

multiple objectives. Solving a multi-objective optimization prob-

lem, however, requires more e�ort with respect to a single-objec-

tive one. To deal with this issue, a common practice is to scalarize
the problem, i.e., to combine together the objectives, so to turn the

multi-objective problem to a single-objective one.

A popular (but not the only) way to scalarize a multi-objective

problem is to use m weights {w1, . . . , wm} to linearly combine the

various objective values in a single value

14 Combinatorial Optimization

f(s) =
m∑
i=0

wi · fi(s).

The introduction of weights as a means to transform hard con-

straints into components of the objective function is often called

Lagrangian relaxation. Note that, by construction, when perform-

ing a linear scalarization, some points int the Pareto optimal set

will not be optima anymore. For instance, a solution s∗ ∈ F∗ of

the multi-objective problem that dominates all the others in one

single objective, might not be an optimum of the single-single ob-

jective problem because of the choice of weights.

1.4.5 Example: Traveling Salesperson Problem

The Traveling Salesperson Problem (TSP) is a well-known combi-

natorial optimization problem, which deals with �nding the short-

est round trip to serve n customers, so that each customer is visited

exactly once. In the TSP, the (hard) constraints are that the route

be a round trip, and that it visits each customer exactly once; the

objective is that the route be minimal, i.e., the length of the route

is the cost of a solution.

TSP can be modeled with a weighted, undirected, and (usually)

complete graph G = 〈V,E〉, where each node v ∈ V represents

a customer, each edge e = (v1, v2) ∈ E, v1, v2 ∈ V represents

the leg from v1 to v2 and the weight we of each edge represents

the resources (time or distance) needed to get from one customer

to another. Given G, the TSP consists in �nding the Hamiltonian

cycle of minimal length. The decision problem associated with an

instance seeks whether it is possible to �nd an Hamiltoninan cycle

s, subject to the hard constraint that∑
e∈s

we < K

where K is a positive integer.

The TSP is an interesting problem for a number of reasons.

First, it stands in the notable class of NP-hard problems, and its as-

sociated decision problem is NP-complete. Second, the TSP, some-

1.5 Search methods 15

times even in its standard formulation, appears as a subproblem in

many other combinatorial optimization domains, such as logistics,

DNA sequencing, planning and chip design.

In the next chapters, we will provide various models for the

TSP, which will allow us to solve it using di�erent methods.

1.5 Search methods

There are many ways of classifying search methods for optimiza-

tion. For instance, one may make a distinction between population-

based algorithms and algorithms that only keep track of one solu-

tion, or discriminate algorithms that can explore discrete search

spaces from algorithms that operate in the continuous domain.

In this section, we present two useful criteria for classifying

search methods, respectively capturing i) what is known about the

found solutions, and ii) how the solutions are built.

1.5.1 Complete and incomplete methods

When solving an optimization problem, an important aspect in the

choice of the search method is the kind of guarantees it provides ab-

out the found solutions. Complete methods explore the search space

exhaustively, keeping track of the best solutions they �nd. There

are three main advantages in using such methods. First, since the

search is exhaustive, if a solution exists, a complete method is guar-

anteed to �nd it. Second, the best solution found, when the search

stops, is also the guaranteed optimum, i.e. the best solution in the

search space. Third, it is always possible to know when to stop se-

arch. Unfortunately, since most interesting problems in combina-

torial optimization are NP-complete, the exhaustive exploration

of the search space can have an exponential worst-case run time,

with respect to the size of the input, which is considered infeasible

for practical applications. Moreover, in many real-world domains,

it is often unnecessary to cer�ciate that a solution is optimal, be-

cause a good one is enough. Among complete methods are, Linear

Programming (LP) [35], Logic Programming and Constraint Pro-

gramming [89] (see Chapter 2).

16 Combinatorial Optimization

A possible solution to the performance issue is the use of in-
complete methods. Such methods explore the search space in a non-

exhaustive (and, possibly, stochastic) way, usually improving an

incumbent solution iteratively. In general, incomplete methods can

not o�er any guarantee about the quality of the solutions found,

because they cannot detect when the search space has been com-

pletely explored, which might never happen. On the other hand,

they have two important advantages. First, since they do not have

to be exhaustive, they can explore promising regions of the search

space much earlier than complete methods. Second, since they can

move freely through the search space, without sticking to a �xed

systematic exploration rule, they usually exhibit better anytime
properties, i.e., the more time is given to a search method, the bet-

ter is the returned solution. Examples of incomplete methods are

domain-speci�c greedy heuristics, and stochastic neighborhood se-

arch [57] (see Chapter 3).

In most complete approaches, the exploration of the search

space is exhaustive, but not a mere enumeration of all the solutions.

A common technique to implement this is to keep an incumbent

solution, and try to prove that speci�c regions of the search space

cannot contain better solutions, in order to avoid them (pruning).

However, if the search strategy is unfortunate for the problem being

solved, exhaustive or almost exhaustive search can occur.

Figure 1.2 shows a brief classi�cation of the most popular op-

timization techniques.

1.5.2 Perturbative and constructive methods

Another possible way of classifying search methods is based on

how they build solutions. Constructive methods start from an com-

pletely or partially unassigned solution, and iteratively set all of

the variables according to some policy. Among constructive meth-

ods are Constraint Programming (Chapter 2) and Ant Colony Opti-

mization (ACO) [45] (see Section 4.2). On the other hand, perturba-
tive methods start from a complete solution, obtained randomly or

using a greedy heuristic, and generate new ones by changing the

values of some variables. The initialization step can either generate

1.5 Search methods 17

Perturbative
methods

Constructive
methods

Complete
methods

Incomplete
methods

Linear
Programming

Constraint
Programming

Genetic
Algorithms

Ant Colony
Optimization

Neighborhood
Search

Greedy
Heuristics

Mixed-Integer
Programming

Figure 1.2: Classi�cation of some search methods.

a feasible solution, or an infeasible one. All neighborhood search

methods (see Chapter 3) are of this kind. The advantage of pertur-

bative methods is that, no matter when they are stopped, they can

always provide a complete solution.

Conclusions

We have described the domain of combinatorial optimization, wh-

ich is where our research stands. We have the origin of the implicit

complexity of the optimization problems that belong to this class.

We have described a relevant example of combinatorial optimiza-

tion problem, namely the TSP, that will be used in the following

sections to show how the modeling and resolution is carried out in

di�erent search paradigms. Moreover, we provided a brief but use-

ful taxonomy of search methods for combinatorial optimization,

pointing out their advantages and disadvantages.

18 Combinatorial Optimization

Chapter 2

Constraint Programming

Constraint Programming (CP) [89] is a declarative search paradigm

for combinatorial optimization. A problem is modeled in CP by

declaring which are the decision variables, what are their domains,

and which combinations of values are forbidden.

Unlike other methods, such as neighborhood search (see Chap-

ter 3), in which modeling and search are tightly intertwined, CP

embraces the principle of separation of concerns to decouple mod-

eling from search. Once a problem is modeled, (virtually) no infor-

mation about how the solutions are to be found is needed in order

to solve it. As such, the search for a solution in CP relies mostly

on general techniques for reasoning about constraints (propaga-

tion, see Section 2.2.1), in conjunction with backtracking (see Sec-

tion 2.2.2).

Referring to the classi�cation in Section 1.5, CP is traditionally

a complete and constructive approach. However, by virtue of the

decoupling between modeling and search, many alternative search

methods, not necessarily complete or constructive, have been de-

vised.

19

20 Constraint Programming

2.1 Modeling

In this section, we give some necessary de�nitions
1
, and describe

the available facilities for modeling problems.

2.1.1 Variables, domains, and constraints

In the following, we assume that the domains of variables are �-

nite and discrete (as per De�nition 1.12), and thus, without loss of

generality, we represent them as �nite subsets of Z. Given a set of

variables X = {x1, . . . , xn}, we denote the domain of each xi by

D(xi) (Di, for short), and the Cartesian product of their domains

by×xi∈X Di ⊆ Zn.

De�nition 2.1 (Constraint). A constraint c is a relation de�ned on
a sequence of variables X(c) = 〈xi1 , . . . , xi|X(c)|〉, called the scope

of c. c is the subset of Z|X(c)| that contains the combination of values
(or tuples) τ that satisfy c. |X(c)| is called the arity of c. Testing
whether a tuple τ satis�es a constraint is called a constraint check.

A constraint may be speci�ed extensionally, by listing all the

tuples that satisfy it, or intensionally, i.e., through a formula, e.g.,

x1 < x2 + 5. We will sometimes write c(x1, . . . , xn) for a constra-

int c with scope X(c) = 〈x1, . . . , xn〉. A constraint whose scope

consists of two variables is called binary. A constraint de�ned over

one variable is called unary. Note that posting a unary constra-

int on a variable is equivalent to modifying its domain, however

domains are traditionally given in extension.

2.1.2 Problems and solutions

Now we proceed de�ning the concepts of constraint satisfaction
problem (CSP), where the goal is to �nd a solution that satis�es

all the constraints, and of constraint optimization problem (COP),

in which, additionally, an objective function must be optimized.

A convenient way to represent a CSP is as a constraint network,

i.e., a hyper-graph (see Figure 2.1) where nodes represent the vari-

1

Many of the de�nitions in this section are adapted from [11].

2.1 Modeling 21

x1 x2

x3 x4

{1..4}
{1..4}

{1..4}{1..4}

Figure 2.1: A hyper-graph representing a constraint network with

variablesX = {x1, . . . , x4} and constraintsC = {(x4 = 2), (x1 =
x3), (x3 ≥ x2), (x1 + x2 + x4 ≤ 5)}.

ables, and hyper-edges (edges possibly connecting more than two

nodes) represent constraints between them. In the following, we

will often use the terms CSP and constraint network (or network)

interchangeably.

De�nition 2.2 (Constraint satisfaction problem (CSP)). A con-
straint satisfaction problem (or constraint network, or simply
network) N is a triple 〈X,D,C〉, where X is a n-tuple of vari-
ables X = 〈x1, . . . , xn〉, D is a corresponding n-tuple of domains
D = 〈D1, . . . , Dn〉 such that xi ∈ Di, and C is a t-tuple of con-
straints C = 〈C1, . . . , Ct〉, that specify what values or combination
of values are allowed for the variables.

Whenever the ordering of variables, domains, or constraints is

not important, we will use sets, e.g., {x1, . . . , xn} instead of tuples,

e.g., 〈x1, . . . , xn〉, to simplify the notation. Moreover, we will often

refer to the variables, domains, and constraints in a network N
with, respectively, XN , DN , and CN .

We now de�ne some operators on variables, that will be used

throughout this chapter.

22 Constraint Programming

De�nition 2.3 (Restriction, projection, intersection, union, and

join). Given a tuple τ on a sequence X of variables, and given
Y ⊆ X , τ [Y] denotes the restriction of τ to the variables in Y
(modulo reordering). Given a constraint c and a sequence Y ⊆ X(c),
πY (c) denotes the projection of c on Y , i.e., the relation with scheme
Y that contains tuples that can be extended to a tuple on X(c) sat-
isfying c. Given two constraints c1 and c2 sharing the same scheme
X(c1) = X(c2), c1∩c2 (resp. c1∪c2) denotes the intersection (resp.
union) of c1 and c2, i.e., the relationwith schemeX(c1) that contains
tuples τ satisfying both c1 and c2 (resp. satisfying c1 or c2). Given a
set of constraints {c1, . . . , ck}, 1kj=1 cj (or 1 {c1, . . . , ck}) denotes
the join of the constraints, i.e., the relation with scheme

⋃k
j=1X(cj)

that contains the tuples τ such that τ [X(cj)] ∈ cj for all j, 1 ≤ j ≤
k.

We can now formally de�ne a solution to a CSP problem.

De�nition 2.4 (Instantiation, solution). Given a constraint net-
work N = 〈X,D,C〉, an instantiation I on Y = 〈x1, . . . , xk〉 ⊆
X is an assignment of values 〈v1, . . . , vk〉 to the variables xi ∈ Y .
An instantiation I on Y is valid if, ∀xi ∈ Y, I[xi] ∈ Di. An in-
stantiation I on Y is locally consistent if 1) is valid, and 2) for all
c ∈ C s.t. X(c) ⊆ Y , I[X(c)] satis�es c . A solution to a network
N is an instantiation I on X which is locally consistent. The set of
all solutions of N is denoted by sol(N). An instantiation I on Y is
globally consistent (or just consistent) if it can be extended to a
solution, i.e., ∃s ∈ sol(N) with I = s[Y].

A CSP is a search problem, where the feasible solutions are the

locally consistent assignments to its variables. As such, we can

de�ne the associated optimization problem by considering an ad-

ditional objective function.

De�nition 2.5 (Constraint optimization problem (COP)). A con-
straint optimization problem is a networkN = 〈X,D,C〉, where
〈X,D,C〉 is a CSP, and f :×xi∈X Di 7→ R is an objective func-

tion, de�ned on the variables inX , that assigns an objective value to

2.1 Modeling 23

every solution of N . An optimal solution to a minimization (resp.
maximization) COP is a solution s∗ ∈ sol(N) that minimizes (resp.
maximizes) the value of f .

Referring to the terminology introduced in Section 1.1, the se-

arch space of a constraint optimization problemN = 〈X,D,C, f〉
is the Cartesian product×xi∈X Di of the domains of its variables,

the hard constraints are represented by the constraints ci ∈ C , and

the soft constraints are embedded in the cost function f .

2.1.3 Global constraints

Particularly useful, when modeling a constraint programming prob-

lem, are global constraints, i.e., constraints that can involve an arbi-

trary number of variables, and that capture common subproblems.

The importance of such constraints is twofold. First, they make

modeling more concise, because they describe complex relations

between variables, which, alternatively, would require the use of

many elementary constraints. Second, they bear a performance ad-

vantage, because they come with speci�c propagation algorithms

that allow to eliminate inconsistent values from the variables do-

mains much faster than with general constraint propagation.

Most constraint programming systems, e.g., Gecode [96], Mini-

Zinc, or Choco, implement a broad set of global constraints
2
, wh-

ich should be used as much as possible in modeling.

Examples of very common global constraints are the alldifferent
(x1, . . . , xk) constraint, which states that all the speci�c variables

take di�erent values, and the gcc (global cardinality constraint, or

counting constraint), which ensures that, given a set of variables

and a set of values, the number of variables that instantiate to a

certain value is between some speci�ed lower and upper bounds

(possibly speci�c to each value). Another common global constra-

int is the element(a, i, v) constraint, which takes an array of vari-

ables a, an index variable i, and a free variable v, and enforces the

equality v = a[i].

2

A complete and up-to-date catalog of global constraints can be found at

http://www.emn.fr/z-info/sdemasse/gccat.

http://www.emn.fr/z-info/sdemasse/gccat

24 Constraint Programming

2.1.4 Example: Traveling Salesperson Problem

We show how the TSP, introduced in Section 1.4.5, can be mod-

eled in a constraint programming system. We present two di�er-

ent models, one built upon elementary constraints, the other fully

exploiting the global constraints available in Gecode. At the end

of the section, we report a brief comparison of performance.

In both models, a solution involving n customers, is represen-

ted by an array (next) of n decision variables with domains Di =
{1, . . . , n}, i ∈ {1, . . . , n}, each one representing the next cus-

tomer to visit after the current one. For instance, if next4 = 9,

then customer 9 will be visited right after customer 4 in the tour.

Moreover, as customary in Gecode, we use one auxiliary variable

c to represent the solution cost, and an array (cost) of n auxiliary

variables, to represent the costs of the legs going from each i to

nexti. A global constraint

c = sum(cost)

connects (in both models) the local cost of each leg to the global

cost of the soution.

Model with elementary constraints

Since all customers must be visited, and we have n decision vari-

ables, the �rst step is ensuring that all next are assigned di�erent

values. We achieve this by posting (n − 1)2/2 non-equality con-

straints.

nexti 6= nextj , ∀i, j ∈ {1, . . . , n}, i < j (2.1)

The second step is to ensure that, for each customer i, the next

customer nexti is di�erent from itself. This can be done by posting

n more non-equality constraints.

nexti 6= i,∀i ∈ {1, . . . , n} (2.2)

The matrix of distances between customers is represented as a

one dimensional array (distance) of size n2
, where the cost of the

leg (i, nexti) is at the index i · n + nexti (Gecode convention).

2.1 Modeling 25

Since the chosen legs, and thus the indices, depend on the solution

being evaluated, we need n linear constraints, to store this index

in n auxiliary variables e(i,nexti).

e(i,nexti) = n · i+ nexti, ∀i ∈ {1, . . . , n} (2.3)

Once the e variables are constrained, it is possible to use n
element constraints to collect the local costs of each leg in the cost

variables.

element(distance, e(i,nexti), costi), ∀i ∈ {1, . . . , n} (2.4)

Model with global constraints

This model replaces all the constraints posted in Equations 2.1, 2.2,

2.3, and 2.4, with a single circuit global constraint

circuit(next, distance, cost, c)

which ensures, at the same time, that the next variables form a

round trip, and that the costs of the legs are stored and accumu-

lated, respectively, in the cost and c variables. Moreover, our

second model features a redundant alldifferent constraint (dubbed

distinct in Gecode), to help the propagation.

distinct(next)

The use of global constraints makes the model much more read-

able, conveying the actual meaning of the constraints, and improv-

ing the performances of the model, thanks to the speci�c propaga-

tion algorithms.

As an example, on a randomly generated problem with 10 cus-

tomers, and distances di,j ∈ {5, . . . , 20}, i, j ∈ {1, . . . , 10}, i 6= j,
the elementary constraints model generates 110 propagators, and

�nds the best solution with 8000+ constraint propagations. On the

same problem, the global constraints model generates 14 propaga-

tors, and �nds the optimal solution in less than 3000 propagations.

26 Constraint Programming

2.2 Search

A common way to solve constraint optimization problems is through

the interleaved cooperation of constraint propagation, whose aim

is to reduced the size of the search space, and to detect subre-

gions of the search space that cannot provably contain feasible so-

lutions, and backtracking algorithms, which explore the reduced

search space. In this section we will outline both techniques.

2.2.1 Constraint propagation

The role of constraint propagation is, given a network N , to gen-

erate a tightening N ′ of N , i.e., a network “smaller” than N so that

sol(N) = sol(N ′). Intuitively, a smaller network can be explored

in shorter time by a backtracking algorithm.

In the following, we give a formal de�nition of these concepts.

De�nition 2.6 (Preorder� on networks). Given two networksN
and N ′, we say that N ′ � N if and only if XN ′ = XN and any
instantiation I on Y ⊆ XN locally inconsistent in N is locally in-
consistent in N ′ as well.

As a consequence, given the two networks in De�nition 2.6,

N ′ � N if and only if XN ′ = XN , DN ′ ⊆ DN , and for any con-

straint c ∈ CN , for any tuple τ on X(c) that does not satisfy c,
either τ is invalid in DN ′ or there exists a constraint c′ ∈ CN ′ ,
X(c′) ⊆ X(c), such that τ [X(c′)] 6∈ c′. That is, given an incon-

sistent instantiation τ on N , either τ is inconsistent in N ′ because

its domains are more restrictive, or because there is a constraint

making it inconsistent.

De�nition 2.7 (Tightenings of a network). The space PN of all
possible tightenings of a network N = 〈X,D,C〉 is the set of net-
works N ′ = 〈X,D′, C ′〉 such that D′ ⊆ D and for all c ∈ C,∃c′ ∈
C ′ with X(c′) = X(c) and c′ ⊆ c. We denote by PsolN the set of
tightenings of N that preserve sol(N).

The set of networks PN , together with �, forms a preordered

2.2 Search 27

set. The top element of PN according to � is N itself, while the

bottom elements are the networks with empty domains.

De�nition 2.8 (Globally consistent network). Let N = 〈X,D,
C〉 be a network, and GN = 〈X,DG, CG〉 be a network in PsolN so
that GN � N ′, N ′ ∈ PsolN , then any instantiation I on Y ⊆ X
which is locally consistent in GN can be extended to a solution ofN .
GN is called a globally consistent network.

Unfortunately, a globally consistent network is in general ex-

ponential both in size and in time to compute. The constraint pro-

pagation approach to this problem, is to approximate GN with an-

other element of PsolN that can be computed at a more reasonable

cost.

This is accomplished by de�ning a local consistency property

φ, and enforcing φ-consistency on the network through propaga-
tors (or �ltering algorithms). While, in general, tightenings of a net-

work can be generated either by restricting its domains, by restrict-

ing its constraints, or by adding new constraints, most constraint

propagation techniques are domain-based.

De�nition 2.9 (Domain-based tightenings). The space PND of
domain-based tightenings of a networkN = 〈X,D,C〉 is the set
of networks in PN with the same constraints as N . That is, N ′ ∈
PND if and only if XN ′ = X , DN ′ ⊆ D, and CN ′ = C . We de-
note by PsolND the set of domain-based tightenings of N that preserve
sol(N).

De�nition 2.10 (Partial order ≤ on networks). Given a network
N , the relation� restricted to the set PND is a partial order (denoted
by ≤).

In principle, any propertyφ can be used as a domain-based local

consistency notion. However, properties that are stable under union
have particularly useful properties.

De�nition 2.11 (Stability under union). A domain-based prop-
erty φ is stable under union if and only if, for any φ-consistent

28 Constraint Programming

networks N1 = 〈X,D1, C〉 and N2 = 〈X,D2, C〉, the network
N ′ = 〈X,D1 ∪D2, C〉 is φ-consistent.

De�nition 2.12 (φ-closure). Let N = 〈X,D,C〉, be a network
and φ be a domain-based local consistency. Let φ(N) be the network
〈X,Dφ, C〉 where Dφ =

⋃
{D′ ⊆ D | 〈X,D′, C〉 is φ-consistent}.

If φ is stable under union, then φ(N) is φ-consistent and is the unique
network in PND such that for any φ-consistent networkN ′ ∈ PND,
N ′ ≤ φ(N). φ(N) is called the φ-closure of N .

Two properties of φ(N) make it particularly interesting. First,

it preserves sol(N). Second, it can be computed by a�xpoint pro-

cedure, by iteratively removing values that do not satisfy φ until

no such value exists. A network N in which all constraints are φ-

consistent is φ-consistent. Enforcing φ-consistency on a network

N is equivalent to �nding φ(N).

We now present some of the most important local consistency

properties, which are implemented in many constraint systems.

Node consistency

The most basic form of local consistency is node consistency, which

is de�ned on unary constraints, i.e., constraints on the individual

domains of variables.

De�nition 2.13 (Node consistency (N)). A unary constraint c on
the variable xk with domain Dk is node consistent if, ∀di ∈ Dk,
di ∈ c.

Node consistency can be enforced using a propagator that sets

Dk = Dk ∩ c, and removes constraint c from the network (this

is possible because c is now embedded in the domain). The com-

plexity of this propagation on a networkN = 〈X,D,C〉 isO(nd),

where d = maxxi∈X(|Di|) and n = |X|.

Arc consistency

Arc consistency is possibly the better-known form of local consis-

tency. It is de�ned on normalized binary networks.

2.2 Search 29

De�nition 2.14 (Normalized, binary network). A network N =
〈X,D,C〉 is normalized if ∀c ∈ C, |X(c)| = 2. A binary network
is normalized if every pair of variables (xi, xj), i 6= j appears in
at most one constraint. As a consequence, in a normalized binary
network we denote a constraint c ∈ C s.t. X(c) = {xi, xj} by cij .
Also, cij and cji represent the same constraint.

De�nition 2.15 (Arc consistency (AC)). A binary constraint c on
the variabls x1 and x2 with respective domains D1 and D2 is arc
consistent if, for all values d1 ∈ D1,∃d2 ∈ D2 such that (d1, d2) ∈
c, and vice versa.

AC can be generalized to constraints with arbitrary arity, in

this case it is called generalized arc consistency (GAC).

De�nition 2.16 (Generalized arc consistency (GAC)). A constra-
int c on the variables x1, . . . , xn with respective domains D1, . . . ,
Dn is called generalized arc consistent if, for each variable xi and
each value di ∈ Di there exists compatible values in the domains of
all the other variables of c, that is, there exists a tuple τ ∈ c (also
called a support for c) such that τ [xi] = di.

In time, several algorithms for enforcing AC (and GAC) have

been proposed. Most of them are based on Mackworth’s AC3 [76].

Algorithm 1 describes the generalized AC3 algorithm (GAC3). Note

that modern constraint systems may use slightly more complex

propagators, that trade some time complexity for space complexity.

The time complexity of GAC3 is O(er3dr+1), where e = |C|,
r = maxc∈C |X(c)|, and d = maxxi∈X(|Di|). Note that every

network N can be transformed in an equivalent network com-

posed only of binary constraints, on such network, the complexity

of GAC3 (AC3) is O(ed3).

Weaker local consistencies

Often, enforcing GAC on a network is not computationally feasible.

As a consequence, a number of weaker local consistency notions

have been proposed, that can be enforced at a lower computational

30 Constraint Programming

Algorithm 1 GAC3

procedure GAC3(N)

Q← {(xi, c) | c ∈ CN , xi ∈ X(c)}
repeat

(xi, c)← pop(Q)

if Revise (xi, c) then
if Di = ∅ then

return false

else

Q← Q ∪ {(xj , c′) | c′ ∈ CN ∧ xi, xj ∈ X(c′) ∧ j 6= i}
end if

end if

until Q 6= ∅
return true

end procedure

function Revise(xi, c)
deleted← false

for all d ∈ Di do

if 6 ∃τ ∈ c ∩ πX(c)(D) | τ [xi] = d then
Di ← Di {d}
deleted← true;

end if

end for

return deleted

end function

cost.

De�nition 2.17 (Bound consistency (BC)). A constraint c on the
variables x1, . . . , xn with respective domains D1, . . . , Dn is called
bound consistent if, for each variable xi and each value di ∈ {min
(Di), . . . ,max(Di)} there exist compatible values between themin
and the max domain of all the other variables of c, i.e., there exists
a value dj ∈ {min(Dj), . . . ,max(Dj)},∀j 6= i such that 〈d1, . . . ,
di, . . . , dn〉 ∈ c.

De�nition 2.18 (Range consistency (RC)). A constraint c on the
variables x1, . . . , xn with respective domains D1, . . . , Dn is called
range consistent if, for each variable xi and each value di ∈ Di

there exist compatible values between themin and themax domain

2.2 Search 31

of all the other variables of c, i.e., there exists a value dj ∈ {min(Dj),
. . . ,max(Dj)},∀j 6= i such that 〈d1, . . . , di, . . . , dn〉 ∈ c.

Stronger local consistencies

Similarly to the ones presented in the previous section, some str-

onger forms of local consistency have been de�ned. While (G)AC,

BC, RC, and node consistency sort out values from single variables

domanins, the following local consistency notions can be used to

prune combinations (pairs, triples, etc.) of values, for this reason

they are sometimes called higher order local consistencies.

Path consistency (PC) says that, if for a given pair of values 〈di,
dj〉 on a pair of variables 〈xi, xj〉, there exists a sequence of vari-

ables from xi to xj such that we cannot �nd a sequence of values

for these variables starting at vi and �nishing at vj , and satisfying

all binary constraints along the sequence, then 〈vi, vj〉 is inconsis-

tent. The following is the formal de�nition of PC.

De�nition 2.19 (Path consistency). LetN = 〈X,D,C〉 be a nor-
malized network. Given two variables xi and xj in X , the pair of
values 〈di, dj〉 ∈ Di × Dj is path consistent if and only if, for
any sequence of variables Y = 〈xi = xk1 , . . . , xkp = xj〉 such that
for all q ∈ {1, . . . , p − 1}, ckq ,kq+1 ∈ C there exists a tuple of val-
ues 〈di = dk1 , . . . , dkp = dj〉 ∈ πY (D) such that for all q ∈ {1,
. . . , p− 1}, (dkq , dkq+1) ∈ ckq ,kq+1 .

It can be shown that it is su�cient to enforce PC on paths of

length 2 (composed by 3 variables) in order to obtain the same level

of local consistency as full PC. PC can be enforced inO(d2n3) time.

K-consistency ensures that each time we have a locally con-

sistent instantiation of size k − 1, we can consistently extend it to

any kth variable.

De�nition 2.20 (K-consistency). Let N = 〈X,D,C〉 be a net-
work. Given a set of variables Y ⊆ X with |Y | = k − 1, I on Y is
k-consistent if and only if, for any kth variable xik ∈ X \ Y there
exists a value dik ∈ Dik such that I ∪{(xi, vi)} is locally consistent.
The network N is k-consistent if and only if, for any set Y of k − 1

32 Constraint Programming

variables, any locally consistent instantiation on Y is k-consistent.

Enforcing k-consistency has time complexity O(nkdk).

Partial order on domain-based local consistencies

It is possible to de�ne a partial order on domain-based local con-

sistency notions, that express how much they manage to go down

the partially ordered set (PsolND,≤).

De�nition 2.21 (Partial order� on local consistencies). A doma-
in-based local consistency φ1 is at least as strong as another local
consistency φ2 if and only if, for any network N , φ1(N) ≤ φ2(N).
If, in addition, ∃N ′ so that φ1(N ′) < φ2(N ′), then φ1 is strictly
stronger than φ2.

According to this de�nition, GAC � RC � BC � N.

2.2.2 Backtracking

A constraint propagation step has three possible outcomes

1. propagation yielded empty domains for some of the variables,

i.e., the instantiation being propagated is inconsistent with

some constraint, and cannot be extended to a complete solu-

tion,

2. the propagation reduced the domain of each variable to one

single element (singleton), i.e., a solution has been found, or

3. there are still multiple values in the domains of some of the

variables.

The last situation is the most general, and it means that propa-

gation alone is not su�cient to generate a complete solution, or to

prove that none exists. In this case, search is needed.

Backtracking

Of course, the naïve search strategy, i.e., generating all the pos-

sible solutions and testing them for consistency, is not feasible in

2.2 Search 33

general, as it exhibit aO(dn) worst-case time complexity. A better

strategy consists in instantiating one variable at a time, performing

constraint propagation (pruning) after each instantiation, and go-

ing back (backtracking) to the last consistent partial instantiation

if empty domains are detected by propagation.

Such a search strategy can be seen as the depth-�rst explo-

ration of a search tree (see Figure 2.2), where each inner node is

a partial instantiation of the variables, each branch is an assign-

ment of a value to one of the unassigned variables at the above

node, i.e., a branching constraint, and leaves are either complete

solutions or (complete or incomplete) inconsistent instantiation of

the variables.

xi = di1 xi 6= di1

xj = dj1 xj 6= dj1 xi = di2 xi 6= di2

Figure 2.2: Example of a search tree

The role of propagation is both to reduce the domains of the

variables, and thus the number of branches that must be explored,

and to detect dead ends, i.e., nodes which cannot possibly lead to so-

lutions. Moreover, since the cost of a solution is typically modeled

as an auxiliary variable, propagation allows to re�ne the upper and

lower bounds on the cost, enabling the use of cost-based pruning

techniques, e.g., branch & bound (see Section 2.2.2).

The simplest backtracking algorithm is cronological backtrack-
ing (BT), which we outline in Algorithm 2. The algorithm is ini-

tially called with parameters (U = X,L = ∅, C), where U is the

set of unassigned variables (all in the beginning), L (called a label-
ing) is the set of assigned variables, and C is the set of constraints.

34 Constraint Programming

At each step, a variable xi is selected using a variable selection heu-
ristic (SelectVar), then its possible assignments are tried in order

according to a value selection heuristic (SelectVal), consistency is

tested through propagation (ConstraintPropagation), and then

the search procedure is called recursively on the propagated net-

work. If constraint propagation detects inconsistencies (in form of

empty domains for some of the variables), the recursive call stack

ensures that the search restarts from the last consistent instantia-

tion.

The shape of the generated search tree depends on the branch-
ing strategy used to extend incomplete instantiations of the vari-

ables. Moreover, the performance of the search depend on the cho-

sen variable and value selection heuristics.

Branching strategies

Traditionally, each branch in the search tree corresponds to posting

a unary constraint on a chosen branching variable (albeit strate-

gies involving non-unary constraints have been devised). There

are several possible ways to to this

Enumeration the chosen variable xi is assigned, in turn, each

value in its domain. A branch is generated for each value,

thus if after the previous propagation k = |Di|, there will

be k branches out of the node (this is the approach taken in

Algorithm 2).

Binary choice points the chosen variable xi is assigned a value

dj ∈ Di, each node has two outgoing branches, one repre-

senting (xi = dj), the other representing (xi 6= dj).

Domain splitting the domain of variable xi is reduced by select-

ing a value dj ∈ Di and generating two branches (xi ≤ dj)
and (xi > dj).

Since enumeration can be simulated with binary choice points,

and the latter has better theoretical properties, branching with bi-

nary choice points is the most common method in CP with �nite

domains (even though most constraint systems allow the de�ni-

tion of custom branching strategies). Domain splitting is used in

2.2 Search 35

CP with real-valued variables [9], were assigning speci�c values to

variables would not be feasible.

Variable and value selection heuristics

Variable and value selection heuristics play an important role in

determining the performance of a CP solver on a problem. Unfor-

tunately, the choice of the right heuristic depends greatly on the

problem instance being solved. Indeed, if the problem has solu-

tions, the selection heuristics should explore promising values of

the variables �rst, so that the solutions be located about the left-

most branch of the search tree, which is the �rst to be explored by

the search. On the other hand, if the problem does not have any

solution, selection heuristics should explore unpromising variables,
so to prove, as soon as possible, that the subregion of the search

space being explored (and, ultimately, the whole search space) can-

not contain any solution.

The task of chosing the right heuristics is further complicated

by the fact that, by the very nature of tree search, choices made

near the root of the search tree have a great impact on the whole

search process. In both cases, however, the chosen heuristic should

try to minimize the overall size of the serch tree. Many selection

heuristics are based on this principle. Here, we report some of the

most popular ones.

Variable selection. Static heuristics are the less informed, and

choose the variables according to orderings de�ned beforehand,

e.g., the order in which they are declared, or a random permutation

of it.

Dynamic heuristics, on the other hand, exploit information ab-

out the current or the past state of the search, and try to guess a way

to obtain a smaller search tree. Among these we have the �rst-fail
heuristic, that always chooses the variable with the smallest cur-

rent domain. The rationale behind this heuristic, is that it is prefer-

able to fail close to the root of the search tree, in order to prune

larger subtrees. Similarly, the max degree heuristic chooses the

variables based on their degree, i.e., number of constraints pend-

36 Constraint Programming

ing on them. Intuitively, the more constrained is a variable, the

more likely is to fail. Weighted heuristics keep track of the num-

ber of failures generated by variables, and choose the most failing

variables earlier. Various combinations of these heuristics exist.

Value selection. Similarly, static value selection heuristics al-

ways choose the value to assign according to �xed rules, e.g., small-

est value, greatest value, random value, etc.

Among the dynamic heuristics are the ones based on the re-
duced cost that can be achieved by choosing a speci�c value.

Often, constraint systems allow to de�ne application speci�c
variable and value selection heuristics, that exploit some domain

knowledge, in order to implement smarter strategies.

Nogood recording and explanations

One of the most e�ective techniques to improve propagation is by

adding implied (or redundant) constraints. A constraint c is im-

plied, for a network N = 〈X,D,C〉, if sol(〈X,D,C〉) = sol(〈X,
D,C ∪ {c}〉).

Implied constraints can either be added to a network during

the modeling phase (as we did for the alldifferent constraint in

Section 2.1.4), or generated automatically after inconsistencies are

found during the search [100].

De�nition 2.22 (Nogood). A nogood is a set of assignments and
branching constraints that is not consistent with any solution.

De�nition 2.23 (Eliminating explanation). Let p = {b1, . . . , bj}
be a node in the search tree, and let d ∈ Di be a value that is removed
from the domain of a variable xi by constraint propagation at node
p. An eliminating explanation (or simply explanation) for d,
denoted expl(xi 6= d), is a subset (not necessarily proper) of p such
that expl(xi 6= d) ∪ {xi = d} is a nogood.

During the search, each dead end encountered corresponds to

a nogood. It is therefore possible to add its negation to the network

2.2 Search 37

without changing the set of solutions. Of course, the smaller the

nogood, the more e�ective the propagation. More useful (although

not necessarily minimal) nogoods can be generated recursively by

inspecting the dead end node.

De�nition 2.24 (Jumpback nogood). Let p = {b1, . . . , bj} be a
dead end node in the search tree, where bi, 1 ≤ i ≤ j is the branching
constraint posted at level i. The jumpback nogood for p, denoted by
J(p), is de�ned recursively as follows.

• p is a leaf node. Let xk be a variable whose domain has become
empty, and Dk being the initial domain of xk

J(p) =
⋃
d∈Dk

expl(xk 6= d)

• p is not a leaf node. Let {b1j+1, . . . , b
k
j+1} be all the possible

extensions of p attempted by the branching strategy, each of
which has failed

J(p) =

k⋃
i=1

J(p ∪ {bij+1})− {bij+1}

Nogoods can be generated during constraint propagation, by

making propagators nogood-aware. Generating nogoods from global

constraints is a bit more complicated, because if the constraints are

used as black-boxes, many nogoods can be generated that sort out

all, or almost all, the variables, which are not very useful. A more

re�ned solution is to take into account the semantics of global con-

straint, and generate nogoods that capture it.

Advanced backtracking techniques

Cronological backtraking is a starting point for more sophisticated

ways to explore a search tree.

38 Constraint Programming

Branch & bound (B&B). Branch & bound is a search technique

that uses information about the objective function f of a COP to

speed-up the search, by proving that some subregions of the search

space cannot provably contain solutions better solutions than the

current one. Recall that the inner nodes of a search tree represent

incomplete instantiations of the decision variables, i.e., instantia-

tions in which the domains of some of the variables have not yet

been reduced to a single value. As a consequence, also the cost

c = f(s) of an incomplete solution s, can take a range of values

Dc. We callmin(Dc) the lower bound of c andmax(Dc) the upper
bound of c. In branch & bound, the solver keeps track of the best

solution found during the search. Every time a new best solution

is found, the solver dynamically post a constraint on the network,

requiring the next solutions to have a lower cost with respect to

the best one. Because of constraint propagation, subtrees in which

the lower bound of the cost is higher than the cost of the current

best solution can be safely pruned, because they cannot provably

contain better solutions. Branch & bound thus e�ectively reduces

the size of the search tree.

Backjumping (BJ). Backjumping is a backtracking techniques

that exploits jumpback nogoods. Upon discovering a dead end, a

backjumping procedure backtracks to the closest branching con-

straint that is responsible for dead end, where responsibility is dis-

covered using nogoods.

For more details about advanced backtracking, see [107].

Conclusions

We have introduced constraint programming, a popular search pa-

radigm belonging to the category of exact approaches. In partic-

ular, we have showed how to use the high-level constraints lan-

guage to model a combinatorial optimization problem, and how

the problem can be solved starting from this model. Finally, we

tried to cover brie�y the main aspects related to solving combina-

torial problems with constraint programming, e.g., the choice of

2.2 Search 39

branching heuristics and the use of global constraints.

40 Constraint Programming

Algorithm 2 BT (chronological)

procedure BT(U,L,C)

if U = ∅ then
return L

end if

xi ← SelectVar(U)
for all d← SelectVal(Di) do

if Consistent(U \ {xi}, {xi = d} ∪ L,C) then
R← BT(U \ {xi}, {xi = d} ∪ L,C)
if R 6= fail then

return R

end if

end if

end for

return fail

end procedure

function Consistent(U,L,C)

ConstraintPropagation(U ∪ L,C)
if ∃xi ∈ U s.t. Di = ∅ then

return false

end if

for all c ∈ C do

if AllAssigned(L) ∧ L 6∈ c then
return false

end if

end for

return true

end function

Chapter 3

Neighborhood search

Neighborhood search (NS) is a family of incomplete and perturba-

tive search methods. Such methods start from a candidate solution

s, and iteratively look for a better candidate to replace it, among the

ones in its neighborhood. The neighborhood N (s) of a candidate

solution s is the set of solutions that can be generated by making

some change to s. Such a change corresponds to a local movement

in the search space, for this reason neighborhood search is often

referred to as local search (LS).

Although they cannot guarantee that a solution is optimal, or

that a solution exists at all, NS methods are extremely useful in

practice, for several reasons. First, they are quite memory-e�cient,

since they only need to store a constant number of solutions (of-

ten just one or two). Second, they typically exhibit good anytime

properties, reaching good solutions very fast, compared to most

complete methods. Finally, they can be de�ned at a general (meta)

level, so that they can be applied to many di�erent problems, by

just changing the neighborhood de�nition.

NS methods have been applied successfully to many combina-

torial optimization problems, such as scheduling [28], timetabling

[6], bin-packing [29], and vehicle routing [27].

41

42 Neighborhood search

3.1 Modeling

In addition to the the de�nition of a search space, NS modeling

involves de�ning neighborhood relations in terms of moves.

De�nition 3.1 (Neighborhood relation [36]). Given a problem Π,
an instance π ∈ IΠ, and a search space S for it, we assign to each
element s ∈ S a set N (s) ⊆ S of neighboring solutions of s. The set
N (s) is called the neighborhood of s, and each member s′ ∈ N (s)
is a neighbor of s.

Typically, the neighborhood N (s) of s is not given explicitly,

but rather de�ned implicitly in terms of moves, i.e., changes to s
that generate all the solutions in N (s). For this reason, we will

sometimes abuse of the notation and say m ∈ N (s), where m is a

move transforming s in one of its neighbors.

During modeling, domain knowledge is introduced in the mo-

del by de�ning neighborhood relations that re�ect the structure

of the problem. When feasibility is enforced by the NS method,

i.e., only feasible solutions can be generated, a move is commonly

called feasible if it yields a feasible solution, and infeasible other-

wise.

3.1.1 Delta costs

The primary metric employed by a NS method to choose whether

to keep working on the current solution s, or to move to one of its

neighbors s′ ∈ N (s), is the di�erence

∆f = f(s′)− f(s)

between their cost values. Such value, often called the delta cost, is

calculated for several thousands of candidates and incumbent so-

lutions before the end of the optimization run. As such, calculating

it e�ciently is fundamental in order to obtain good performances.

Not surprisingly, computing the f -values for the two solutions

and then subtracting them is not the most e�cient way to com-

pute the delta cost. A better technique involves considering some

knowledge about the move m that transforms s in s′, possibly in

3.1 Modeling 43

conjunction with data structures that store redundant data about s.
We will use the following notation to denote the delta cost relative

to a move m with respect to a solution s (regardless of how it is

computed)

∆f (s,m) = f(s⊕m)− f(s).

where ⊕ denotes the application of a move to a solution, speci�-

cally s⊕m denotes the solution obtained by applying the move m
to a solution s.

3.1.2 Example: Traveling Salesperson Problem

One possible NS model for the TSP involves representing a solu-

tion as a n-tuple of customers to be visited in order. Note that this

solution semantic is di�erent from the one of next, used in the

CP model of Section 2.1.4; this facilitates the computation of delta

costs. The search space is therefore the space of all permutations of

the customers, and feasible moves are the ones that produce valid

permutations.

Modeling with swap moves

One possible neighborhood, for a solution s, is the one de�ned by

swap moves, i.e., the set of all solutions that can be obtained by

choosing a customer in s and swapping it with another. For in-

stance

〈1, 3,5, 2, 4〉 swap7→ 〈5, 3,1, 2, 4〉
With such neighborhood relation, given the indices of two cus-

tomers i, j ∈ {0, . . . , n−1}, the cost function f , and let dh,k denote

the distance between node h and node k, then the delta cost relative

to the swap of the customers at indices i and j can be computed as

∆f (s, swap(i, j)) =− [di−1,i + di,i+1 + dj−1,j + dj,j+1]

+ [di−1,j + dj,i+1 + dj−1,i + di,j+1]

where i− 1, i+ 1, j − 1, and j + 1 are considered modulo n.

44 Neighborhood search

1

2 3

4 5
6

1

2 3

4 5
6

Figure 3.1: Example of 2-opt move.

Modeling with 2-opt moves

Another popular neighborhood is the so-called 2-opt, where, given

the indices of two customers i, j ∈ {0, . . . , n− 1}, the order of the

customers served between them is inverted

〈1,2,5,6,4,3〉 2-opt7→ 〈1,2,4,6,5,3〉

the move is depicted in Figure 3.1. In the case of 2-opt, the delta

costs are computed

∆f (s, 2-opt(i, j)) =− [di,i+1 + dj−1,j]

+ [di,j−1 + di+1,j]

in case of symmetric TSP (where di,j = dj,i), but must reconsider

all the intermediate customers between i and j in case of non-

symmetric TSP.

3.2 Search

All neighborhood search methods share a common structure, wh-

ich is described in Algorithm 3.

The �rst step consists in generating a starting solution (Initia-

lizeSolution). The initial solution can be built either randomly, or

according to a greedy heuristic for the problem being solved. For

example, for the TSP, one could build an initial solution by always

choosing the closest node as the next customer (nearest neighbor).

3.2 Search 45

Algorithm 3 Neighborhood search (NS)

procedure NeighborhoodSearch(S,N , f)

ibest ← i← 0
sbest ← s← InitializeSolution(S)
while ¬StoppingCriterion(s, i, ibest) do

m← SelectMove(s,N , f)
if m = Null then

return sbest
end if

if AcceptableMove(m, s, f) then
s← s⊕m
if f(s) < f(sbest) then

sbest ← s
ibest ← i

end if

end if

i← i+ 1
end while

return sbest
end procedure

Then, the procedure enters a loop in which the next move to

apply is chosen by the function SelectMove, and, if the move

is deemed acceptable by the function AcceptableMove, it is ap-

plied to s to obtain a new s. Note that the implementation of both

SelectMove and AcceptableMove depends on the speci�c NS ap-

proach being used. Apart from the current solution s and the iter-

ation number i, the procedure stores the best solution found from

the beginning of the search sbest, along with the iteration ibest in

which it was found.

The optimization run proceeds until a stopping criterion is met,

or if a call to SelectMove returns a Null move. There are sev-

eral possible choices for the StoppingCriterion, among the most

common are

• stop when the allotted timeout tmax is depleted,

46 Neighborhood search

• stop when i ≥ itermax, where itermax is the maximum

number of iterations allowed, and

• stop when i − ibest ≥ idlemax, where idlemax is the maxi-

mum number of non-improving iterations allowed.

In the following sections, we describe some of the most popular

NS methods, and address some of the pitfalls of NS, and how to deal

with them.

3.2.1 Hill climbing (HC)

The most basic NS method is hill climbing (HC), which gets its

name from its application to maximization problems (see Figure 3.2).

In HC, when the neighborhood N (s) of the current solution s is

explored in random order, the �rst move that does not decrease

the solution quality is selected. The process is described in Algo-

rithm 4, where RandomMove samples a random move (without

replacement) in the neighborhood N (s) of s, and returns Null if

the whole neighborhood has been explored.

Algorithm 4 Components of hill climbing (HC)

function SelectMove(s,N , f)

return RandomMove(s,N)
end function

function AcceptableMove(m, s, f)

return ∆f (s,m) ≤ 0
end function

3.2.2 Steepest descent (SD)

Another basic NS method is steepest descent (SD), which, unlike

HC, gets its name from its application to minimization problem.

In SD, the search procedure always chooses the best move in the

neighborhood N (s) of the current solution s.
Since the whole neighborhood must be explored in order to

�nd the best move to apply, steepest descent is, in general, more

3.2 Search 47

computationally demanding than HC. However, SD is guaranteed

to converge to a local optimum in a �nite number of steps. The

components of SD are shown in Algorithm 5. Note that, for consis-

tency with the other NS algorithms presented in this chapter, the

iteration counter i must be updated as i ← i + |N (s) after each

move selection, as all the neighborhood of s is always explored.

Moreover, the stopping criterion assumes that idlemax = 0, i.e.,

the algorithm stops after the �rst iteration without improvement.

Algorithm 5 Components of steepest descent (SD)

function SelectMove(s,N , f)

costm ← Inf
m← Null

for allm′ ∈ N (s) do
costm′ = ∆f (s,m′)
if costm′ ≤ costm then

m← m′

costm ← costm′

end if

end for

returnm
end function

function AcceptableMove(s,m, f)

return ∆f (s,m) < 0
end function

function StoppingCriterion(s, i, ibest)
return i− ibest > idlemax

end function

3.2.3 Local optima and plateaux

The mapping from solutions s ∈ S to their relative objective values

f(s), can be visualized as a �tness landscape (see Figure 3.2), where

the components of each solution correspond to coordinates, and

48 Neighborhood search

the cost corresponds to the elevation of the terrain.

f(s)

s1

s2

global optimum

local optimum

Figure 3.2: Example of a �tness landscape for a maximization prob-

lem.

The goal of optimization is to �nd a global optimum, i.e., the �t-

ness landscape coordinates with the highest (in case of maximiza-

tion), or lowest (in case of minimization), elevation. Note that, in

general, there might exist multiple equivalent optima. One limi-

tation of neighborhood search methods, is that, at each step, they

only consider local knowledge about the neighborhood N (s) of a

solution s. As such, they can be easily attracted by local optima,

i.e., solutions which are the best in their neighborhood, but not

the overall best. Such solutions constitute a hindrance to the over-

all optimization process, because without a policy to accept worse

solutions, the search can get stuck. Many of the NS approaches

described in the following sections deal with this aspect.

A similar complication is due to plateaux, i.e., areas of the �t-

ness landscape where the objective value is constant. A simple

mechanism to guarantee that the search is eventually able to exit

a plateau is accepting sideways moves, i.e., moves which do not

change the objective value of the current solution. This principle is

applied in Algorithms 4 and 5, where weak inequality (≤) is used

3.2 Search 49

to compare moves, instead of strict inequality (<).

3.2.4 Simulated Annealing (SA)

One of the most e�ective ways to escape local optima, is to ac-

cept, every now and then, moves that reduce the solution quality.

Simulated annealing (SA) [67] achieve this by accepting a worsen-

ing move m ∈ N (s) with a probability depending inversely on

∆f (s,m). That is, the greater is the decrease in quality induced by

m, the less likely m will be selected. Of course, if a move improves

the quality of the solution, it is always chosen.

To control the frequency of acceptance of worsening moves, a

parameter t (for temperature) is introduced. At the beginning of

the search t is initialized to a value t0 (which can be computed

heuristically, or tuned for the speci�c problem being solved), and

is then updated according to a cooling schedule as the time passes.

With t, the probability of selecting a move m ∈ N (s) is computed

as

P(m | s, t) =

{
e−∆f (s,m)/t

if ∆f (s,m) > 0

1 otherwise.

In order to make SA behave stochastically based on P(m | s, t),

a random number r is sampled uniformly at random in (0, 1). If

r < P(m | s, t) the move is accepted, otherwise it is rejected.

Because of the e�ect of t, the algorithm changes its behavior over

time. At the beginning of the search, when t is high, many wors-

ening moves are accepted. As t decreases, the algorithm behaves

less and less erratically until, in the �nal phases of the search, it

performs standard hill climbing.

The customary way to decrease the temperature, is to use a

geometric cooling schedule, i.e., to select a cooling rate parameter

0 < λ < 1, and to update the temperature with the formula

t = λ · t
after a number neighbors_sampledmax of moves have been tested

for acceptance. The main algorithm components are described in

Algorithm 6.

50 Neighborhood search

Algorithm 6 Components of simulated annealing (SA)

function SelectMove(s,N , f)

return RandomMove(s,N)
end function

function AcceptableMove(s,m, f)

neighbors_sampled← neighbors_sampled+ 1
if neighbors_sampled ≥ neighbors_sampledmax then

t← λ · t
neighbors_sampled← 0

end if

return ∆f (s,m) ≤ 0 or UniformRandom(0, 1) <
e−∆f (s,m)/t

end function

Traditionally, the search stops when t < tmin, where tmin is a pa-

rameter of the algorithm, however several others stopping criteria

have been used in practice (maximum number of iterations, time-

out, . . .).

Variant: cuto�s

There are other possible ways to decrease t during the search. One,

described by [60] under the name cuto�s, consists in decreasing t
whenever a speci�c number of neighboring solutions have been

accepted (rather than sampled, as in Algorithm 6). The rationale

behind this technique, is that fewer iterations should be spent at the

beginning of the search when the algorithm behaves erratically, in

favor of the �nal phases of the search, where iterations are needed

to obtain a good intensi�cation.

Other variants

More information about variants of Simulated Annealing, and a

thorough analysis of the appraoch, see [60, 61] and [108].

3.2 Search 51

3.2.5 Tabu Search (TS)

A di�erent approach to avoid getting stuck in local optima is the

one taken by tabu search (TS) [49, 50]. In TS, the move selection

procedure explores a subset of the neighborhood N (s) of a solu-

tion s, and always chooses the move with the lowest delta cost (see

Algorithm 7).

While at a �rst glance it could seem that TS behaves like SD,

there are two major di�erences between the two approaches. First,

it is completely legitimate for TS to choose a move which increases

the cost of the solution. As a consequence, local optima are not

an issue for TS, as it can escape them by climbing the least steep

slope. However, for the same reason, TS is prone to looping be-

tween neighboring solutions. The second di�erence with SD aims

at �xing this problem, and consists in a prohibition mechanism

to exclude, from N (s), the moves that would lead to looping, i.e.,

moves that reverse the e�ect of a previous move.

The prohibition mechanism is usually implemented as a FIFO

list T (the tabu list), which is initially T = ∅, in which all the

accepted moves m are enqueued. When the neighborhood N (s)
is explored, all the moves InverseMoves(m) of any move m in T
are excluded from the selection.

The tabu list T has usually a limited size and, as such, it must be

regularly freed of old moves, to make room for new ones. The basic

approach to manage this process is to remove, at each iteration i
the move mi−t selected at iteration i− t, where t is a parameter to

the algorithm (and also the length of the tabu list).

Another way of managing the tabu list, is to sample, at the mo-

ment of the insertion into T , a number r ∈ [t − δ, t + δ], which

represents the number of iterations that the move has to spend in-

side the tabu list.

Aspiration criteria

A further feature of TS involves exceptions to the prohibition mech-

anism. At each iteration, the procedure samplesN (s)\T as usual,

however some of the moves in T can be selected, if they satisfy

an aspiration criterion A(s,m). A very common aspiration crite-

52 Neighborhood search

Algorithm 7 SelectMove in TS

function SelectMove(s,N , f)

costm ← Inf
m← Null

for allm′ ∈ N (s) \ {InverseMoves(m) |m ∈ T} do
costm′ = ∆f (s,m′)
if costm′ ≤ costm then

m← m′

costm ← costm′

end if

end for

returnm
end function

function AcceptableMove(s,m, f)

T← (T \ {mi−t}) ∪ {m}
return true

end function

rion involves enabling the prohibited moves that would generate a

solution better than the best one s∗ found so far.

Variants

The one presented in this section is a rather simple (and di�use)

variant of tabu search, for a more extensive analysis of the ap-

proach see the two original technical reports [49, 50] and the book

by Glover and Laguna [51].

Conclusions

We have presented neighborhood search as an e�ective family of

general methods to tackle large combinatorial optimization prob-

lems in a heuristic way. We discussed aspects related to problems

modeling, highlighting issues related to local optima and plateaus,

which can constitute a hindrance to the search process. Moreover,

3.2 Search 53

we presented the most popular algorithms to successfully handle

such issues.

54 Neighborhood search

Chapter 4

Swarm intelligence

The algorithms presented in Chapter 3 operate on a a single so-

lution, improving its quality as the time passes. Population-based
algorithms, on the other hand, keep track of multiple solutions at

once. One of the obvious advantages of such an approach is that

the algorithm is less sensitives to issues, such as local optima, con-

cerning a single solution. Another advantage, is that optimizing

several solutions at once allows to get a broader coverage of the

search space, which can possibly result in the discovery of areas

of higher solution quality. Finally, population-based methods are

naturally parallelizable, since the search can proceed more or less

independently for the various solutions.

The class of population-based algorithms is very broad, and in-

cludes more speci�c classes of algorithms. Among these classes

are evolutionary algorithms, e.g., genetic algorithms [109], evolu-

tion strategies [53], genetic programming [70], etc., which rely on

operators inspired by genetics, such as crossover and mutation, to

make the solutions evolve across successive generations. Another

class is the one of swarm intelligence algorithms. In swarm intelli-

gence algorithms, the processes in charge of optimizing each solu-

tion cooperate by sharing local information, in order to implement

global reasoning.

In this chapter we introduce two representatives of this latter

class, namely particle swarm optimization (PSO), and ant colony op-
timization (ACO), which are both inspired by foraging behaviors of

55

56 Swarm intelligence

animals in nature.

4.1 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a perturbative population-ba-

sed algorithm for optimization in continuous domain. The algo-

rithm is inspired by the behavior of birds �ocking as they look for

food. The algorithm was �rst proposed in [62], and then extended

in [47], as a method for training the weights of a multi-layer per-

ceptron. A more general formulation, which is also the most popu-

lar, was later introduced in [98]. A revision of the several proposed

variants of PSO can be found in [99]. Moreover, discrete domain

versions of PSO [63] have been proposed over the years
1
.

In the contex of this thesis, PSO has been used to optimize view-
point computation, a continuous non-stationary problem which is

found in many 3D applications (see Chapter 10).

Given a function f : Rd 7→ R to optimize, the idea behind PSO

is to let a swarm of d-dimensional particles, representing solutions

to the optimization problem, �y through the search space, exploit-

ing their collective knowledge about the �tness landscape of f to

locate the global optimum.

4.1.1 Overall procedure

The overall PSO procedure, as described in [99], is reported in Al-

gorithm 8. First, both the position (~posj) and the velocity (
~velj) of

the n particles are initialized. In the general PSO formulation, the

position is sampled uniformly at random inside the search space

S ⊂ Rd, however, results [?] show that, having InitializePosition

implement a problem- or instance-aware initialization strategy, can

have a huge bene�t on the performance of the algorithm. The ve-

locity of each particle is typically initialized to a random d-dimen-

sional vector, whose components are relatively small with respect

to the range of the search space.

1

The website http://www.swarmintelligence.org contains an rich bibliogra-

phy about PSO and other swarm intelligence algorithms.

http://www.swarmintelligence.org

4.1 Particle Swarm Optimization (PSO) 57

Algorithm 8 Particle Swarm Optimization (PSO)

procedure PSO(S, f, n, c1, c2, w)

g ← Null

i← 0
for j ∈ {1, . . . , n} do . Initialize n particles

velj ← InitializeVelocity(S)
best_posj ← posj ← InitializePosition(S)
best_costj ← costj ← f(posj)
if best_costj < best_costg then

g ← j
end if

end for

while ¬StoppingCriterion(i) do
for j ∈ {1, . . . , n} do . Update particles, g

posj ← posj + velj
costj ← f(posj)
if costj ≤ best_costj then

best_posj ← posj
best_costj ← costj
if best_costj ≤ best_costg then

g ← j
end if

end if

r1 ← UniformRandom(0, 1)
r2 ← UniformRandom(0, 1)
velj ← w · velj

+ c1r1 · (best_posj − posj)
+ c2r2 · (posg − posj)

end for

i← i+ 1
end while

return posg
end procedure

58 Swarm intelligence

At each time step t, each particle j is accelerated stochastically

towards two points of the search space according to the update rule

~vel
t

j =w · ~vel
t−1

j + (4.1)

c1r1 · (~best_pos
t−1

j − ~post−1
j)+ (4.2)

c2r2 · (~post−1
gt−1 − ~post−1

j). (4.3)

The velocity update rule is composed of three terms. The �rst

one (4.1) models the inertia of the particle, i.e., its resistance to

steering. This term is controlled by the parameter w which rep-

resents the weight of the particle. According to [98], the use ofw is

fundamental to balance the trade-o� between local and global se-

arch, and the parameter should be decreased over time to facilitate

the convergence to the global optimum. The second term (4.2) ac-

celerates the particle j towards
~best_pos

t−1

j , the best position vis-

ited by j itself since the start of the search, which consistutes a local
knowledge. The �nal term (4.3) represents the acceleration towards

~post−1
gt−1 , the current position of the best particle of the swarm, i.e.,

the particle g that has visited the best position so far (according

to f), which consistutes a global knowledge. The two acceleration

terms are controlled, respectively, by the cognitive parameter c1,

which represents the trust of the particle in itself, and by the so-
cial parameter c2, which represents the trust of the particle in the

leader of the swarm. Moreover, the amount of acceleration towards

~best_posj and ~posg is stochastic, because of the e�ect of r1 and r2,

which are two numbers sampled uniformly at random in [0, 1].
After the position of each particle has been updated, the par-

ticles are re-evaluated, to check whether there is a new leading

particle g, and (possibly) to update the best past position of each

particle. Then the main loop restarts, unless a stopping condition,

e.g., maximum number of iterations exceeded, timeout, etc., is met.

4.1.2 Parameters

With respect to other approaches, PSO has many parameters which

control its behavior. Setting (or tuning) such parameters appropri-

ately, is clearly determinant for attaining good performance, and

4.1 Particle Swarm Optimization (PSO) 59

Parameter name Symbol Suggested value

Number of particles n -

Cognitive parameter c1 2
Social parameter c2 2
Inertia weight w [0.9, 1.2]

Table 4.1: Parameters of PSO, with suggested values in [98]

the values should be determined in an application-dependent way.

However, according to [98], there are some good default values for

the PSO parameters, which are summarized in Table 4.1. While

these values cannot possibly be valid for every application domain

(see [112]), it is reasonable to pick them as starting points for a

more thorough parameter tuning. The number of particles n rea-

sonably depends on the size of the search space and on the number

of dimensions, and there is no suggested setup for it. Also, con-

sider that when w is decreased over time, at least one additional

parameter must be used, i.e., w becomes winit and wend.

4.1.3 Variant: constriction factor

A known issue, with the previously described velocity update rule,

is that the velocity is unbounded, and can grow arbitrarily large

under certain conditions. One approach to mitigate this e�ect is to

bound the magnitude of the velocity by a vector
~velmax dependent

on the size of the search space, e.g., 10% of the search space range

in each component.

Another approach, reported in [99], is to use a slightly di�erent

velocity update rule

~vel
t

j = K · [~vel
t−1

j +

c1r1 · (~best_pos
t−1

j − ~post−1
j)+

c2r2 · (~post−1
gt−1 − ~post−1

j)]

whereK is a constriction factor that multiplies the update formula,

reducing the risk of growing velocities. K can be computed as

60 Swarm intelligence

K =
2∣∣∣2− φ−√φ2 − 4φ

∣∣∣
where φ = c1 +c2, so that φ > 4 holds. Note that the inertia of the

particle is completely neglected in this update rule. Also, it should

be recognized that the use of a constriction factor does not rule out

completely the chance of growing velocities, only reduces it.

4.2 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) [44] is a constructive swarm intel-

ligence meta-heuristic for combinatorial optimization, which sim-

ulates the foraging behavior of real ants. Although the �rst ACO

contributions date back to the early ’90s, in this section we focus on

a more recent variant of the algorithm, dubbed hyper-cube frame-
work (HCF) for ACO, which was originally proposed in [17], and

further developed in [15]. This variant of ACO is insensitive to the

scale of the objective function, and is thus more robust with respect

to the original.

The fundamental principle behind ACO is that of reinforcement
learning (see Appendix B). When a (real) ant �nds a source of food,

it lays down a trace of pheromone on its way back to the nest. The

pheromone can be sensed by the other ants, which are thus able

to follow the trace and, ultimately, to �nd the food. As more ants

reach the food the trace gets reinforced, because every ant lays

down additional pheromone. As soon as the food depletes, the ants

stop laying down pheromone, which naturally evaporates erasing

the trace. The pheromone trace is represents an information left by

the ants in the environment in order to in�uence the behavior of

the colony. Such kind of information is sometimes called stigmergic
[101].

In the context of combinatorial optimization, food is represen-

ted by good solutions, i.e., sequences of assignments of values to

variables of the form cij = (xi, dj), where dj ∈ Di, i ∈ {1, . . . , n}.
Consequently, each solution component cij represents a segment of

the path that lead to the food, whose trace must be reinforced. Fol-

4.2 Ant Colony Optimization (ACO) 61

lowing the same metaphor, ants are (possibly parallel) search pro-

cesses that build up solutions according to a state transition rule. In-

tuitively, the underlying assumption of all ACO techniques, is that

components of good solutions are good, and solutions built upon

good components are good as well. This is true for some domains

more than others, and is one of the reasons of the success of ACO

algorithms in routing problems, where using short path segments

also yield shorter, and thus better, paths.

4.2.1 State transition rule

Being ACO a constructive method, each of the n ants chooses, at

every step, a variable among the unassigned ones, and assigns a

value to it (possibly enforcing feasibility), until a complete solution

is built. In particular, once a variable xi has been chosen, its value

is selected according to a probabilistic model called the pheromone
model, parametrized by |C = {cij | xi ∈ X, dj ∈ Di}| pheromone
trail parameters τij . Given a partial solution sp and a variable xi
to assign, the value τij determines the probability of choosing the

value dj ∈ Di for xi. The probability itself is calculated according

to the following state transition rule

P(cij | spi) =

τij∑

cik∈J(spi) τik
if cij ∈ J(spi)

0 otherwise

(4.4)

where J(spi) denotes the set of all the feasible components for sp of

the form (xi, dk), dk ∈ Di, i.e., the ones for which sp ∪ {(xi, dk)}
is a feasible solution.

4.2.2 Pheromone update rule

Many ACO variants use the state transition rule in Equation 4.4, but

di�er in the way the pheromone trail parameters are updated. In

the HCF for ACO, after n solutions have been built, the pheromone

model is updated according to the following pheromone update rule

62 Swarm intelligence

τij = (1− ρ) · τij + ρ·
∑

s∈U |cij∈s

F (s)∑
s′∈U F (s′)

(4.5)

where U are the last solutions produced by the n ants, ρ ∈ (0, 1]
is an evaporation rate that controls how fast the ant colony forgets

about a non-reinforced trace, and F is a quality function that mea-

sures the goodness of a solution (usually chosen as 1/f , where f
is the cost function).

The terms highlighted in red, in Equation 4.5, represent the

novelties introduced in the HCF for ACO, with respect to the for-

mer Ant System (AS) approach proposed in [44]. The introduced

terms guarantee that the pheromone trail parameters τij can only

assume values in [0, 1]. Apart from the obvious advantage regard-

ing the independence on the scale of the objective function, this

has another important implication. If we represent each solution

sk in the search space by a binary vector ~vk of length |C| specify-

ing whether each component cij appears in sk or not, then we can

see the pheromone trail parameters as a vector ~τ in the hypercube

that has the ~vk as vertices.

Each update

~τ =(1− ρ) · ~τ + ρ · ~m

~m =
∑
~s∈U

F (~s)∑
~s′∈U F (~s′)

· ~s

to the pheromones slightly moves the head of ~τ towards the solu-

tion composed by the best components in U (accumulated in ~m),

thus favoring the choice of some components over others in the

construction of new solutions.

4.2.3 Overall procedure

The overall ACO procedure is described in Algorithm 9. The Initia-

lizePheromone procedure sets the τij to small values. In HCF for

ACO, since the range for the pheromone values is known (τij ∈
[0, 1]), the pheromones trail parameters are initialized to 0.5, which

4.2 Ant Colony Optimization (ACO) 63

guarantees a fair probabilistic choice at the beginning of the search.

In approaches, such as AS, where the normalization term is miss-

ing in the update rule, setting an initial value for the pheromone

trail parameters is much more di�cult. Once all the n solutions

have been built stochastically by the BuildSolutions procedure,

they are used to update the pheromone trail parameters based on

the Equation 4.5.

Algorithm9Ant Colony Optimization (ACO) in the HCF frame-

work

procedure ACO(S, f, n, ρ)

τ ← InitializePheromone(0.5)
i← 0
best← Null

while ¬StoppingCriterion(i) do
U← BuildSolutions(n, τ) . See Equation 4.4

τ ← UpdatePheromone(τ,U, ρ) . See Eq. 4.5

best← arg minj∈U∪{best}f(j)
i← i+ 1

end while

return best
end procedure

4.2.4 Parameters

The only two parameters of the HCF for ACO are the number of

ants n, and the evaporation rate ρ. Again, for the number of ants

there is no clear setup, as it highly depends on the available com-

putational resources. Intuitiveluy, using more ants is more compu-

tationally demanding, but improves exploration, and should con-

verge faster to good solutions. As for ρ, values around zero (low

evaporation rate) correspond to very small updates, and a high

trust in the past solutions, while values close to 1 mean that the

approach adapts very quickly to new solutions. This parameter

should be tuned appropriately for the problem being solved.

64 Swarm intelligence

4.2.5 Heuristic information

In many ACO implementations, heuristic information ηij is used,

along with pheromone values, to decide which component should

enter a partial solution. Ideally, such information should be ba-

sed on some knowledge about the problem, and should be �xed

throughout the optimization run. The relative in�uence of τij and

ηij is usually modeled through two parameters, α and β. The tran-

sition rule becomes then

P(cij | spi) =

ταijη

β
ij∑

cik∈J(spi) τ
α
ikη

β
ij

if cij ∈ J(spi)

0 otherwise.

(4.6)

4.2.6 Variant: max-min ant system (MMAS)

Over the years, many attempts have been done to improve the per-

formance of ACO algorithms. One of the main lines of research of

this kind, consists in designing ACO algorithm that exploit more

aggressively the gathered search experience.

A notable variant belonging to this class is the Min-Max Ant

System (MMAS) [101]. In MMAS, a single solution sbest among the

ones produced by the n ants is used, at each iteration, to update

the pheromone model. This solution may be either be the global

best solution found since the beginning of the search sgb, or, more

commonly, the best solution found during the current iteration sib.
Also, the update function is slightly di�erent from the one in Equa-

tion 4.5

τij = (1− ρ) · τij + F (sbest). (4.7)

Since the update rule in Equation 4.7 is unbounded, and be-

cause of the fact that the updates are on a single solution, MMAS

is prone to early convergence. This can happen if, at each choice

point, the level of pheromone in one component is much more high

than the others. Because of this, the MMAS generates very often

4.2 Ant Colony Optimization (ACO) 65

the same solution, which in turn contributes to reinforce its compo-

nents. To cope with this issue, MMAS limits the pheromone level

range to two values, τmin and τmax by clamping the new phero-

mone values at the moment of the update. The role of τmin is to

guarantee that even upon convergence, the ants still produce di-

verse solutions (the probability of choosing a component is always

non-zero if τmin > 0). Moreover, the pheromones are initially set

to τmax to foster an initial exploration of the available components.

This works because, even though the �rst solutions produced have

a high quality, the pheromone levels of the non-used components

are maximal, thus promoting the generation of solutions based on

di�erent components.

Note that an approach similar to MMAS can be implemented

in the HCF for ACO.

Conclusions

We brie�y discussed swarm intelligence methods, pointing out what

are their advantages and disadvantages with respect to single-solu-

tion search mechanisms. We then presented two of the most pop-

ular swarm intelligence approaches, namely particle swarm opti-

mization and ant colony optimization, which are notable examples

of two very di�erent ways of sharing information in order to carry

out optimization.

66 Swarm intelligence

Part II

Hybrid meta-heuristics

67

Chapter 5

Overview of

hybrid methods

Over the years, the meta-heuristics community has developed many

successful general purpose optimization algorithms. Because of

this success, researchers have rarely sought to integrate meta-heu-

ristics with approaches being developed in other communities, such

as arti�cial intelligence (AI) or operations research (OR). However,

in the past few years, the realization that a performance limit had

been hit in the �eld of meta-heuristics, led the researchers towards

the exploration of methods to integrate meta-heuristics with other

techniques [16]. This trend originated the �eld of hybrid meta-
heuristics, which brought together practitioners from many opti-

mization paradigms, e.g., constraint programming, mathematical

programming, machine learning. The hybrid meta-heuristics com-

munity has now come of age, and has its own set of conferences

and journals. Moreover, many well-established hybrid search tech-

niques, that can bene�t from the complementary capabilities of a

wide range of algorithms, have been developed in the recent years.

In this chapter, we will brie�y overview some of the major re-

search lines in hybrid meta-heuristics. However, for a proper dis-

cussion of many other hybrid approaches, we refer the reader to a

recent survey [16]. The ideas behind some of the techniques pre-

sented in this chapter, and their implementation will be discussed

in detail in Chapters 6 and 7.

69

70 Overview of hybrid methods

5.1 Combining together meta-heuristics

A broad range of hybrid meta-heuristics are based on the princi-

ple of mixing together di�erent meta-heuristic approaches. In the

following sections, we brie�y address the most popular ones.

5.1.1 Memetic algorithms

One of the main goals of hybrid meta-heuristics, is to integrate al-

gorithms with di�erent capabilities in order to get “the best of the

many worlds”. This idea underlies the integration of population-

based algorithms, which are very good in the exploration of large

search spaces and are little in�uenced by local optima, with neigh-

borhood search meta-heuristics, which are good at locating and

exploiting local optima.

Memetic algorithms are population based algorithms, mostly

coming from the �eld of Evolutionary Computation, in which neigh-

borhood search steps are taken in order to improve the quality of

the solutions obtained, e.g., by cross-over and mutation. A straight-

forward example of such approaches is the extension of iterated
local search (ILS) to a population of solutions. Standard ILS starts

from a solution s, and iteratively improves its quality by repeatedly

applying a neighborhood search technique until a local optimum

is found, then the solution is perturbed and a new starting solution

is obtained. The extension of ILS to multiple solutions consists in

keeping a population of n solutions, each one evolved using the

ILS scheme. At each generation additional n solutions are gener-

ated through neighborhood search, thus totaling 2n solutions. A

straightforward selection scheme which discards the nworst solu-

tion is then used to generate a new population of n solutions.

5.1.2 Hyper-heuristics

Hyper-heuristics are high-level search methods for selecting or gen-

erating heuristics in order to solve optimization problems [21]. Un-

like meta-heuristics, which directly explore the search space of

a problem, hyper-heuristics explore the space of domain-speci�c

heuristics and perform optimization by combining them together

5.1 Combining together meta-heuristics 71

or activating them to operate on solutions. A hyper-heuristic thus

works at a higher level of abstraction, and does not know any-

thing about the underlying problem, which makes it applicable to

a broader range of problems.

5.1.3 GRASP

Greedy randomized adaptive search procedures (GRASP) [48] is a

constructive meta-heuristic that iteratively improves the quality of

an incumbent solution by means of two alternated steps: a con-
struction step, which builds a new solution in a biased but stochas-

tic fashion, and a local search step which improves the newly con-

structed solution until a local optimum is found. The construc-

tion step is the peculiar feature of GRASP and works as follows.

First, an empty solution is initialized, then each solution compo-

nent is assigned probabilistically a value from a restricted candidate
list (RCL). The RCL is a list of values containing the best ones ac-

cording to a learned preference function. After each assignment,

the preference function is updated based on the result of the as-

signment. The intuition behind GRASP is that obtaining a better

initial solution at each iteration improves the e�ectiveness of the

subsequent local search step.

5.1.4 Multi-level techniques

Multi-level techniques [110] are methods to tackle large optimiza-

tion problems, based on the idea that �nding a solution to a sim-

pli�ed version of a problem, and extending it to be a solution of

the original problem, is much more tractable than solving the orig-

inal problem in the �rst place. Multi-level techniques apply this

principle repeatedly, simplifying the original problem through a

problem-speci�c coarsening heuristic, until a number of levels, rep-

resenting more and more simpli�ed versions of the problem, are

generated. Then, they proceed by �nding a solution to the last

level k, and they iteratively re�ne the solution so that it becomes a

solution to level k − 1. The process continues until the solution is

extended to a solution of the original problem.

72 Overview of hybrid methods

Such techniques were originally developed in the �eld of graph

theory, where several techniques exist to obtain coarser versions of

a graph. However, their extension to other optimization problems

has been widely explored. For instance, [110] shows examples of

multi-level techniques applied to combinatorial optimization prob-

lems such as set covering and the TSP.

5.2 Combining meta-heuristics with CP

One of the most popular research lines in hybrid meta-heuristics

consists in the integration of meta-heuristics with exact approa-

ches. The motivation behind this, is that such classes of methods

are good at di�erent tasks, which suggests that integrating them

could give birth to more robust approaches. In particular, exact

methods are known to be very e�ective in solving constraint sat-

isfaction problems, i.e., tackling hard constraints, but they are not

very good at tackling objective functions. On the other hand, meta-

heuristics are good at optimizing objective functions, but less good

at �nding feasible solutions [16].

Because of the popularity of constraint programming [89] amo-

ng exact methods, it is natural that a number of hybrid meta-heu-

ristics be devised to combine the power of strong constraint pro-

pagation techniques with the explorative power and performance

of meta-heuristics.

In particular, when such an hybridization is considered, it is

important to clarify which approach should be the master and wh-

ich one the slave. On one side we have meta-heuristics approaches

that use constraint programming as a sub-procedure. An example

of such an approach is large neighborhood search (LNS), where CP

is used within a general neighborhood search loop. On the other

side we have constraint solver which use meta-heuristic techniques

inside their �ow. An example of this kind of approaches is ACO-

driven onstraint programming. Both approaches are described in

Chapter 7.

5.3 Other hybrid methods 73

5.3 Other hybrid methods

Many other strategies to integrate meta-heuristics with other se-

arch approaches have been devised in the recent years. Some, called

math-heuristics [77] aim at combining meta-heuristics with well-

established mathematical programming techniques, for which high-

performance solver exist, e.g., linear programming, mixed integer

linear programming, and the like. Other approaches include the in-

tegration of meta-heuristics with dynamic programming (e.g, Dy-

naSearch [33]), relaxations, decomposition techniques, and tree se-

arch (e.g., Beam-ACO [14]). Such approaches are, however, out of

the scope of this thesis, and are not discussed here. For an overview

of such methods, we again refer the reader to [16].

Conclusions

We presented a brief overview of hybrid meta-heuristic approa-

ches, highlighting the main lines of research in this �eld, and point-

ing out some reasons for their adoption. Some of the presented ap-

proaches will be discussed in-depth later in this thesis, while for

some others we provided references and reading directions.

74 Overview of hybrid methods

Chapter 6

Reinforcement

learning-based

hyper-heuristics

Hyper-heuristics (see Section 5.1.2) are search methods for select-

ing or generating heuristics to solve computational search prob-

lems [21]. As such, they operate at a higher level of abstraction

with respect to standard meta-heuristics. Speci�cally, while meta-

heuristics operate directly on the space of solutions of a problem,

hyper-heuristics operate on the space of heuristics or meta-heuris-

tics for the problem. The primary goal of the research in hyper-

heuristics, is to raise the level of generality of optimization algo-

rithms, so that it is possible to devise solvers that can solve a prob-

lem without knowing the speci�c details about the problems being

solved.

In this chapter we consider a particular family of hyper-heu-

ristics, namely online-learning algorithms to select low-level heu-

ristics. Speci�cally, we describe our e�ort in designing a hyper-

heuristics to compete in the �rst Cross-Domain Heuristic Search

Challenge (CHeSC’11) [20]. The results described in this chap-

ter have been published in two papers, [41] and [42], which I co-

authored, and which have been presented respectively at MIC’11,

the 9th Metaheuristics International Conference, and at LION 6,

75

76 Reinforcement learning-based hyper-heuristics

the Learning and Intelligent OptimizatioN conference (2012).

6.1 The hyper-heuristics framework

In this section we describe the ideal hyper-heuristics framework

[22], whose speci�cation is concretized in a framework [83] for the

design and analysis of cross-domain heuristic search.

The main idea behind the hyper-heuristic framework, is that

there is a conceptual domain barrier between the hyper-heuristic

algorithm and the modules implementing speci�c problem domains

(see Figure 6.1). The domain modules must implement, at the very

least, i) a method to initialize one or more solutions si with i ∈ {1,
. . . , k}, ii) an objective function f to measure the quality of a solu-

tion, and iii) a number of low-level heuristics hj with j ∈ {1, . . . , n}
that can be applied to a solution si to yield a new solution s′i..

Hyper-heuristic

Determines (at each decision step) which low-level
heuristic i to apply to which candidate solution j, and

where to store the resulting solution, based on the past
history and on returned cost function values.

Domain barrier

...
Problem
domain 1

Problem
domain 2

Problem
domain k

h1

h2

hn h1

h2

hn h1

h2

hn

s1 s2

sk

(i,j)f(si')

......

...

...

...

Figure 6.1: Hyper-heuristic framework.

The only way the hyper-heuristic can communicate with the

domain modules, is by specifying, at each step, the index i of the

next solution to modify, and the index j of the domain-speci�c

heuristic to apply, whose nature is unknown to it. The domain

6.2 CHeSC Competition 77

module applies the chosen heuristic hj to the speci�ed solution si,
and yields a new solution s′i, which can be accepted or rejected

by the hyper-heuristic based on its objective value f(s′i). Apart

from these constraints, the hyper-heuristic algorithm can imple-

ment whatever logic in order to optimize the function.

6.2 CHeSC Competition

Concretely, the hyper-heristic framework has been implemented as

a Java library called HyFlex, which also served as the battleground

for the �rst Cross-Domain Heuristic Search Challenged (CHeSC’11).

HyFlex is an API that provides basic functionalities for i) loading

problem instances, ii) generating new solutions, and iii) applying

low-level heuristics to solutions. Low-level heuristics are treated

as black-boxes, and only information about their family is known

(e.g., mutations, local search moves, cross-overs, . . .). Furthermore,

it is allowed to tune the e�ect of low-level heuristics through the

intensity of mutation and depth of search parameters, depending on

the speci�c heuristic family.

The six problem domains considered in the competition are:

Boolean Satis�ability (in the MAX-SAT formulation), 1-Dimensional
Bin Packing, Permutation Flow Shop Scheduling, Personnel Schedul-
ing, Traveling Salesperson Problem, andVehicle Routing Problem (how-

ever the last two were undisclosed until the day of the competition,

to avoid overtuning on the other four). We refer the reader to the

CHeSC’11 website
1

for further details, including the scoring sys-

tem and the sources of the benchmark instances.

6.3 Our approach

The hyper-heuristic that we presented at the competition is based

on a reinforcement learning (RL, see Appendix B for an overview

of the basic idea and some advanced techniques), and has been se-

lected automatically among a family of variants that were devel-

oped in the pre-competition stages. In order to describe them, we

1

Address: http://www.asap.cs.nott.ac.uk/external/chesc2011

http://www.asap.cs.nott.ac.uk/external/chesc2011

78 Reinforcement learning-based hyper-heuristics

need to instantiate the following elements:

• the environment,
• the reward function,

• the set of actions,
• the policy, and

• the learning function.

In the following we describe our design choices about these aspects.

6.3.1 Environment

Given that problem domains are hidden by the HyFlex framework,

at each decision step the only information available about the en-

vironment is the objective value of the current solution. Therefore,

we need a way to build a state representation by only using this

information. Unfortunately, these values have a completely di�er-

ent scale depending on the problem domain at hand, and on the

search phase (start of the search, end of the search), moreover they

don’t convey enough information to drive the decisions of an agent

(i.e., they are not Markov states [102]). For these reasons, the way a

state s is represented inside the agent is non-trivial. After attempt-

ing some variants, we resorted to an adaptive state representation

which tries to capture the concept of relative recent reward obtained

by the agent, i.e. the reward trend. By “relative” we mean that each

reward is normalized with respect to the problem’s cost scale. In or-

der to obtain the relative reward, we thus divide it by an (adaptive)

measure of low reward (e.g., if 2.8 is the measure of low reward,

an absolute reward of 8 will yield a relative reward of 2.86). The

intuitive meaning of this operation is to obtain a reward measure

which is both problem-independent and adaptive with respect to

the search phase. With “recent” we mean that past experience is

discounted [102], hence newer information is trusted more than old

one. At each step, the new state is thus computed as

si+1 = b(si + β ∗ (ri − si))c
where the reactivity β is a parameter that will be explained later

on and ri is the last relative reward received.

6.3 Our approach 79

6.3.2 Actions

We de�ned a possible action a as the choice of the heuristic fam-

ily to be used, plus an intensity (or depth of search) value in the

quantized set of values 0.2, 0.4, 0.6, 0.8, 1.0. Once the family has

been determined, a random heuristic belonging to that family is

chosen and applied to the current solution with the speci�ed in-

tensity (or depth of search). The action application yields a new

solution and a reward. Moreover, a special action performs a so-

lution restart (without resetting the learned policy). In addition,

heuristics belonging to the cross-over family require to operate on

two solutions. For this reason we keep a number of independent

agents, each one with its own solution, and use them for breeding

when needed.

6.3.3 Reward function

The reward r is computed as the di�erence ∆cost in the cost of

the solution before and after the application of an action. More

complex variants are possible, for instance

r = ∆cost/timeaction

(reward over time), but this simple formulation is easier to under-

stand, and makes the reward enough informative for our scopes.

6.3.4 Policy

As for the the policy, each state-action pair 〈s, a〉 is assigned an

action ωs,a, which represent a degree of suitability of the action

in the given state. We experimented with two classical reinforce-

ment learning policies, namely a softmax action selection, using a

Boltzmann distribution with an exponential cooling schedule, and

an ε-greedy action selection. The ε-greedy selection policy scored

overall better and was chosen to participate in the competition.

80 Reinforcement learning-based hyper-heuristics

6.3.5 Learning function

As for the learning function, we have considered various techniques

to update action values. In the simplest case, the action value after

a speci�c 〈s, a〉 is executed, is set to the discounted average of the

rewards (i.e. ∆cost) received before, according to the formula

ωs,a = ωs,a + α ∗ (r − ωs,a)

where the learning rate α is needed to tackle non-stationary prob-

lems, as explained in Appendix B.

A second investigated method is Sarsa [102], an on-line tem-

poral -di�erence method in which the value of an action is also

dependent on the stored value of the next action, thus implement-

ing a sort of look-ahead strategy. However, the simplest method

obtained better performance on the benchmark instances, and was

selected for the competition.

6.4 Parameter tuning

We performed an extensive experimental analysis of the algorithm

variants described in Appendix B, namely tabular reinforcement

learning (RLHH), reinforcement learning with MLPs (RLHH-MLP),

and reinforcement learning with eligibility traces (RLHH-ET), with

the purpose of understanding the most relevant parameters (see

Table 6.1) and their relationships. In order to properly tune all the

algorithmic features, we ran an F-Race [13] on all the benchmark

instances that were provided before the day of the competition (40).

As for the experimental setup, we ran all the con�gurations to be

tested on three di�erent Intel machines equipped with quad core

processors (resp. at 2.40, 2.40 and 3.00 GHz) and running Ubuntu

11.04. Di�erences in performance were leveled by using the CHeSC

benchmarking tool provided by the organizers of the competition.

6.4.1 Common parameters

While each di�erent approach has its own speci�c parameters, some

of them (see Table 6.1) are common to every hyper-heuristic. In the

6.4 Parameter tuning 81

following paragraph we are going to explain their meaning and list

the possible values they can take.

Parameter name Domains

Number of agents 3, 4, 5, 6, 8, 10
Cross-over with best_agent, optimum
α (learning rate) 0.1, 0.2, 0.3
β (reactivity) 0.05, 0.1, 0.25, 0.5, 0.9
ε 0.01, 0.05, 0.1

Table 6.1: Common hyper-heuristic parameters.

The parameter number of agents determines how many learn-

ing agents are deployed in the search space. These agents share

the same information about action values (either a table or a MLP)

but have separate solutions to work on. An agent has access to the

solutions of the other agents only during cross-over operations wh-

ich, depending on the parameter cross-over with, can be carried out

with the best solution overall (optimum mode) or with the agent

which has the best current solution at the moment (best_agent

mode). The reactivity β determines how promptly an agent up-

dates its state when receiving a new reward, if the value is set to

1.0 the agent always substitutes its current state with the new re-

ward, however as the value approaches 0.0 the state is updated

more and more slowly. The learning rate α has a similar seman-

tic, except that it models how fast action values are changed when

receiving a new reward (see Appendix B). Finally, the probability

for an agent to choose a random action instead than the one with

highest value is denote by ε.

6.4.2 Parameters for RLHH-MLP

With respect to RLHH, RLHH-MLP requires a number of extra pa-

rameters (see Table 6.2) which are related to MLP learning. The pa-

rameters hidden layers and hidden neurons determine the complex-

ity of the function that the MLP is able to approximate. Intuitively,

having more hidden neurons allows to have a greater resolution

(�t better the training data), and using more hidden layers leads

82 Reinforcement learning-based hyper-heuristics

to easier approximation of complex functions. The parameters in-
put scale and absolute maximum decay are used to scale the MLP

input in order to accelerate the convergence of gradient descent.

Finally, learning rate decay, learning rate change and error step size
are related to a technique known as adaptive learning rate [2] for

the training of neural networks whose explanation is beyond the

scope of this chapter.

Parameter name Domains

Hidden layers 1, 2
Hidden neurons 20, 30, 40
Input scale 1, 3
Absolute maximum decay 0.9999
Learning rate decay 0.9999
Learning rate change 0.001, 0.01
Error step size 0.1

Table 6.2: RLHH-ET parameters.

6.4.3 Parameters for RLHH-ET

RLHH-ET only introduces two parameters: the threshold tr and

trace decay λ (see Table 6.3), which are used to compute the length

of the eligibility queue using Equation B.3.

Parameter name Domains

tr (threshold) 0.01
λ (trace decay) 0.5, 0.9

Table 6.3: RLHH-MLP parameters.

Since the evaluation has to be performed across di�erent do-

mains and on instances with di�erent scales of cost functions we

decided to consider as the response variable of our statistical tests

the normalized cost function value at the end of the run. That is,

the cost value y is transformed by means of the following trans-

formation, which is applied by aggregating on the same problem

instance π

6.4 Parameter tuning 83

e(y, π) =
y(π)− y∗(π)

y∗(π)− y∗(π)

where y∗(π) and y∗(π) denote the best known value and the worst

known value of cost on instance π. This information has been com-

puted by integrating the data gathered by our experiments with the

information made public by CHeSC organizers
2
.

6.4.4 Parameter in�uence

The �rst experimental analysis has the aim of understanding the

in�uence of the di�erent parameters on the outcome of the al-

gorithms. For this purpose we perform an analysis of variance
(ANOVA) on a comprehensive dataset including all con�gurations

run throughout all the problem domains. Each algorithm variant

has been run on each single instance for 5 repetitions.

We perform separate analysis for each variant of the algorithm

and we set the signi�cance level of the tests to 0.95. The outcome of

this analysis will allow us to �x some of the parameters to “reason-

able” values and to perform a further tuning of the relevant ones.

RLHH. The results of the ANOVA procedure on the RLHH vari-

ant are shown in Table 6.4. The model tested looked for the �rst-

order e�ects of all RLHH parameters and the second-order interac-

tion of crossover with and number of agents. The results show that

the most relevant parameters are the selection of the crossover and

the number of agents, but there seems to be no detectable interac-

tion among them. As for this variant, the ε value is also signi�cant.

RLHH-ET. Moving to the RLHH-ET parameters, the results of

the ANOVA are reported in Table 6.5. Also in this case we test for

the �rst-order e�ects of all RLHH parameters and the second-order

interaction of the crossover with and number of agents.

2

We have generated the equivalent normalized function plots with the data

made public by the CHeSC organizers about the competition results, the plots are

available (together with the R/ggplot2 code to generate them and the original

data) at the addres http://www.diegm.uniud.it/urli/?page=chesc

http://www.diegm.uniud.it/urli/?page=chesc

84 Reinforcement learning-based hyper-heuristics

Sum Sq Mean Sq F value Pr(>F)

Number of agents (1) 0.74 0.18428 3.9860 0.003112 **

Crossover with (2) 2.41 2.41167 52.1648 5.509e-13 ***

ε 0.33 0.16684 3.6087 0.027125 *

α 0.05 0.02666 0.5766 0.561834

(1)× (2) 0.03 0.01464 0.3167 0.728581

Residuals 425.15 0.04623

Table 6.4: ANOVA for the RLHH variant.

The results show that in the case of this variant, the relevant

parameter is the trace decay, apart of the selection of the agent

for the crossover that was relevant also in the basic variant of the

algorithm. For this variant, the number of agents seems not to be

relevant and it has been set to 4 in the subsequent experiments.

Sum Sq Mean Sq F value Pr(>F)

Number of agents (1) 0.034 0.0169 0.4074 0.6654

Crossover with (2) 3.012 1.5060 36.2430 3.637e-16 ***

ε 0.105 0.1046 2.5171 0.1128

Trace decay λ 4.156 4.1562 100.0202 < 2.2e-16 ***

(1)× (2) 0.321 0.0803 1.9318 0.1026

Residuals 76.792 0.0416

Table 6.5: ANOVA for the RLHH-ET variant.

RLHH-MLP. Finally, for the RLHH-MLP variant, we tested all

the parameters of the MLP and their second-order interactions.

The results are summarized in Table 6.6 and they show that, apart

cross-over with, the input scale and hidden neurons are relevant in

explaining the di�erences in the performance of the algorithm. We

discovered no signi�cant second-order interaction among MLP pa-

rameters, and this lead to hypothesis that neural network parame-

ters are quite orthogonal in this setting.

6.5 Comparison with others 85

Sum Sq Mean Sq F value Pr(>F)

Cross-over with 1.395 1.39471 28.6795 8.965e-08 ***

ε 0.043 0.04305 0.8852 0.346840

Hidden neurons (1) 1.814 0.90714 18.6536 8.555e-09 ***

Learn. rate change (2) 0.425 0.42484 8.7361 0.003136 **

Reactivity (β) 0.220 0.11017 2.2655 0.103893

Input scale 5.318 2.65898 54.6769 < 2.2e-16 ***

(1)× (2) 0.249 0.12453 2.5608 0.077357 .

Residuals 219.130 0.04863

Table 6.6: ANOVA for RLHH-MLP variant.

6.4.5 Tuning procedure

The winning parameter con�gurations found out through F-Race

for the three variants of the algorithm are reported in Table 6.7

(parameter names and values have been compacted in a non-am-

biguous way because of space issues).

Variant ag cw ε α β tr λ is hl hn lrc
RLHH 5 opt. 0.05 0.2 0.5

RLHH-ET 4 opt. 0.1 0.1 0.1 0.01 0.5

RLHH-MLP 4 opt. 0.05 0.1 0.5 1 1 20 0.001

Table 6.7: Winning con�gurations (parameters with singleton do-

mains have been omitted for brevity).

6.5 Comparison with others

To conclude, we perform a comparison with the other participants

in the competition. In Figure 6.2 we report the distribution of re-

sults achieved by the three variants of our algorithm and by the

other participants on the whole benchmark set (6 problem domains).

The values reported are the normalized function values and the al-

gorithms are sorted from bottom to top by the median value of the

normalized cost function (the smaller the better).

From the �gure it is possible to note that we improve our results

86 Reinforcement learning-based hyper-heuristics

● ●● ●

● ●

● ●

●●

●●● ●

●●

●

●●

● ●

●●●●●●●● ●●●● ● ●●●●● ●●●●●

●● ●● ●

● ●●● ●●●●●● ●

AdapHH

ML

PHUNTER

VNS−TW

NAHH

ISEA

EPH

HAEA

GenHive

HAHA

ACO−HH

KSATS

ShafiXCJ

DynILS

SelfS

RLHH−MLP

RLHH−ET

RLHH

SA−ILS

AVEG

MCHH−S

GISS

Ant−Q

0.00 0.25 0.50 0.75 1.00
Normalized function value

H
yp

er
−

he
ur

is
tic

Figure 6.2: Comparison of our hyper-heuristics with the other par-

ticipants.

6.6 Other �ndings: ILS-like behavior 87

with respect to the version of the algorithm we submitted to the

competition (denoted by AVEG in the plot). The other interesting

thing to point out is the fact that function approximation through

the multi-layer perceptron has shown to be very useful and has

lead to an improvement of the results. On the contrary, eligibility

traces have not provided any improvement over the basic RLHH

when all the variants have been properly tuned.

6.6 Other �ndings: ILS-like behavior

Iterated local search (ILS) consists in repeatingly improving the

quality of a solution s by performing a neighborhood search until

stagnation, and then restarting the search by strongly perturbing

the obtained local optimum. Figure 6.3 is a visual log of a run of

the hyper-heuristic on a SAT instance, and shows how the policy

learned by RLHH implements an ILS-like behavior.

Figure 6.3: ILS-like behavior of RLHH on a SAT problem instance.

Each point corresponds to the application of a low-level heuris-

tic, where the colors encode speci�c heuristic families (local search

88 Reinforcement learning-based hyper-heuristics

in green, ruin recreate in blue, mutation in purple, and cross-over
in red) and the position on the y-axis the cost of the obtained so-

lution. It is quite easy to see that the search is iterative, with an

initial perturbation through a ruin-recreate heuristic, followed by

a long sequence of local search steps. When the cost reaches a local

optimum, the reward obtained by local search decreases, and the

action values of local search heuristics decreases, and gets lower

than the value of ruin-recreate heuristics, which are activated in

order to restart the search.

Conclusions

We presented our results about reinforcement learning-based hyper-

heuristics, in the context of the �rst cross-domain search challenge

(CHeSC’11). Moreover, in Appendix B we discuss some of the main

underlying concepts behind the presented hyper-heuristics. Fi-

nally, we provided some interesting �ndings that emerged from

this research.

Chapter 7

Propagation-based

meta-heuristics

In this chapter we discuss a popular class of hybrid heuristics, na-

mely propagation-based meta-heuristics. Such methods take advan-

tage of the extensive research about constraint propagation carried

out in the constraint programming community, to improve the per-

formance of meta-heuristics. In particular, we explore two di�er-

ent paradigms of integration. The �rst considered meta-heuristic is

large neighborhood search, where constraint propagation is used

as a sub-procedure to reduce the size of neighborhoods in a neigh-

borhood search algorithm. The second one takes the opposite per-

spective, and uses the learning capabilities of ant colony optimiza-

tion to bias the value selection heuristics of a master constraint

solver.

In both cases, we provide a detailed explanation of the approach,

and we present a practical implementation of the approaches as

Gecode extensions.

7.1 Large Neighborhood Search (LNS)

Large Neighborhood Search (LNS) [97, 84] is a neighborhood se-

arch meta-heuristic based on the observation that exploring a large
neighborhood, i.e., perturbating a signi�cant portion of a solution,

89

90 Propagation-based meta-heuristics

generally leads to local optima of much higher quality with respect

to the ones obtained with regular neighborhood search. While this

is an undoubted advantage in terms of search, it does not come

without a price. In fact, exploring a large neighborhood struc-

ture can be computationally impractical, and, in general, requires

a much higher e�ort than exploring of a regular neighborhood.

In order to cope with this aspect, LNS has been coupled more

often than not with �ltering techniques, aimed at reducing the size

of the neighborhood by removing beforehand those moves that

would lead to unfeasible solutions. In particular, a very natural way

to implement LNS is to integrate the underlying neighborhood se-

arch mechanism with a constraint programming model, in order to

leverage the power of constraint propagation to reduce the size of

the neighborhood while traveling from one candidate solution to

another in the search space. Such kind of approach has been suc-

cessfully employed to tackle complex routing problems, e.g., VRP

with time windows [10, 90].

In this section, we �rst present the large neighborhood search

meta-heuristic as described in [84]. Then, we discuss some im-

provement to the basic algorithm, which can be used to improve the

performance of the approach. Finally, we brie�y overview a LNS

meta-engine for the Gecode framework, which can be applied to

any CP model, provided that it is extended with the right methods.

7.1.1 Algorithm idea

A the overall structure of LNS is shown in Algorithm 10, where the

perturbative structure of a standard neighborhood search (NS) can

be recognized.

Initialization

The algorithm is started with a COPN = 〈X,D,C, f〉 and, through

an InitializeSolution function, it generates a starting feasible so-

lution (10). In principle, whatever procedure can be used to gener-

ate the starting solution, e.g., a domain-speci�c heuristic or a tree

search. The only requirement for InitializeSolution is that it

7.1 Large Neighborhood Search (LNS) 91

Algorithm 10 Large neighborhood search (LNS)

procedure LargeNeighborhoodSearch(N = 〈X,D,C,
f〉, d)

i← 0
s← InitializeSolution(N)
while ¬StoppingCriterion(s, i) do

N ′ ← Destroy(s, d,N)
n← Repair(N ′, f(s))
if n 6= Null then

s← n
end if

i← i+ 1
end while

return s
end procedure

generates a feasible solution. Of course, generating an initial solu-

tion which is also good provides a head start to the LNS procedure,

and is therefore highly recommended.

Destroy-repair loop

Once the initial solution has been generated, the algorithm enters

a re�nement loop, which consists of two alternate steps. First,

the destroy step, carried out by the Destroy function, unassigns

(or relaxes) a subset of the decision variables, yielding a new COP

N ′. Second, the repair step, carried out by the Repair function, re-

optimizes the relaxed variables, typically by means of an exhaus-

tive tree search. In fact,N ′ is a domain-based tightening ofN . The

main idea behind LNS is that the problem N ′ faced by the repair

step is much tractable than N for two reasons

1. the number of variables in N ′ is smaller, and often much

smaller, than the number of variables in N , and

2. the domains of the free variables inN ′ are smaller than their

counterparts inN , because of the constraint propagation due

to the assigned variables in N ′.

92 Propagation-based meta-heuristics

In the following we describe in more detail these two steps.

Variable relaxation. In the destroy step, a fraction of the vari-

ables is relaxed. There are many ways to specify the number of

variables that are relaxed, a common one is to de�ne a destruction
rate d ∈]0, 1], and then to relax d · |X| variables, where X is the

set of decision variables. This allows to choose the fraction of vari-

ables to relax based on the size of the problem. Of course, di�erent

values of d originate di�erent neighborhoods and imply di�erent

search e�orts. For instance, at the most extreme cases, when d = 1
the original solution is completely replaced by a new one and local

information is lost, while if d ≈ 0 most of the solution is retained,

and only a small neighborhood is explored. Note that if d = 1, them

th method is equivalent to a full tree search (and is then complete).

As for the speci�c variables to relax, the Destroy function can

either implement an unbiased strategy, in which the variables are

chosen uniformly at random, or a heuristic strategy, in which the

variables are chosen considering some knowledge of the problem.

A typical choice, in the latter case, consists in relaxing those vari-

ables whose variables are responsible for the cost of the solution

being high. A third family of relaxation strategies consists in mix-

ing unbiased and heuristic strategies, e.g., follow an heuristic most

of the time, but every now and then perform a random relaxation.

Re-optimization. Once a subset of the decision variables have

been relaxed, a new solution is produced through a Repair func-

tion. Ideally, the repair function should return the optimal solution

for the subproblem N ′, i.e., the assignment of the free variables

that minimizes the cost function. Unfortunately, depending on the

number and the choice of the relaxed variables, coming up with

the optimal solution for N ′ might not be possible. A strategy, in

this case, is to give a resource budget to the tree search, e.g., time

limit or maximum number of dead-ends, and obtain a good solution

instead than the best one.

The search proceeds until the StoppingCondition is met, wh-

ich can be any of the ones described in Section 3.2 for standard NS.

7.1 Large Neighborhood Search (LNS) 93

7.1.2 Variants

Of course, the one presented in the previous section is just a basic

variant of LNS. Some more sophisticated versions have been pro-

posed over the years, here we bri�y describe two possible ones.

Destruction rate adaptation

So far, except for custom destroy strategies, the performance of

our LNS approach depends on a single parameter d. While this

makes parameter tuning much easier, this also means that �nding

the right value for d is critical for the performance. On the one

hand, if the destruction rate is too small, the search could become

stuck, e.g., we relax 2 variables, but it is impossible to improve the

solution by perturbing less than 3 variables. On the other hand, if

the destruction rate is too large, the tree search might become slow,

and disrupt the neighborhood search mechanism.

A common way to cope with this issue, is to adapt the destruc-

tion rate d as the search proceeds. In particular, the idea is to start

the search with d = dinit. If this is su�cient to �nd an improving

solution often enough, then the search continues until the stop-

ping condition. However, if the search gets stuck in a situation as

the one described above, then, after a number of iterations with-

out improvements, the d is increased, up to a maximum of dmax.

In the standard destruction rate adaptation scheme, when a new

improving solution is found, d is reset to dinit.

Of course, this increases the number of parameter of the al-

gorithm by one, as d is removed and dinit, dmax are introduced.

Moreover, a strategy to increase d towards dmax has to be devised.

A common one is to transform d as an integer however it provides

to LNS an additional �exibility, which is a point for its use in prac-

tical applications.

Constraining the subproblems (solution acceptance)

A typical concern, when implementing LNS, is whether the Repair

function should be constrained to provide solutions of better qual-

ity than the current one, or not. On the one hand, if the repair step

94 Propagation-based meta-heuristics

is constrained, the tree search can bene�t from cost-based constra-

int propagation (as in branch & bound), and it is impossible for the

method to cycle and always return the same solution. However, an

unfortunate choice of the variables to relax could block the search,

especially when using a �xed heuristic for relaxation. On the other

hand, leaving the tree search unconstrained is similar in spirit to

Tabu Search, where the only requirement for a solution to be ac-

cepted is that it be the best in the neighborhood. As we have seen

in Section 3.2.5, this is a good technique for avoiding local optima,

but is prone to cycling, as there is no mechanism to prevent that

the same solution is always returned. Moreover, the e�ect of cost-

based constraint propagation is disrupted.

A number of trade-o�s between these two alternatives can be

devised. A family of techniques consist in allowing a limited in-

crease of the cost value, without leaving the search completely un-

constrained. The technique we describe here is inspired to sim-

ulated annealing (SA, Section 3.2.4), which in which a worsening

solution is accepted with a probability p = e−t/∆, where ∆ is the

di�erence in quality from the current solution and t is the current

value of the temperature parameter. The mechanism we employ

is the following. First, we draw a random number p ∼ U(0, 1).

This corresponds to the probability of acceptance in the classic SA.

Then, we reverse the probability formula of SA, and we compute

∆ as

∆ = −(t ln p)

where t is the current temperature. ∆ can be used to constrain the

cost of the next solutions to be generated by Repair, thus achieving

cost-based constraint propagation, while allowing worse solutions

to be generated. Note that when employing this strategy, all the pa-

rameters in SA (t0, tmin, λ, and ρ in case of cuto�s) must be added

to the algorithm and tuned.

7.1.3 Implementation: gecode-lns

We have implemented the LNS approach described in the previous

sections as a generic Gecode meta-engine (Gecode-LNS) which

7.1 Large Neighborhood Search (LNS) 95

uses the built-in branch & bound engine to implement the repair

step. Gecode-LNS can be applied to every CP model implemented

in gecode, provided that the following methods are implemented

InitialSolutionBranching posts a random branching strat-

egy on the model, that will be used to generate the initial fea-

sible solution through the built-in branch & bound engine.

NeighborhoodBranching posts a heuristic (non random) br-

anching strategy on the model, that will be used to generate

the neighboring solutions of the current solution s through

the built-in branch & bound engine.

Relax(N ′, d) (activated on s) given an empty copy N ′ of the

original COPN (space in Gecode) and the current solution s,
assigns a fraction 1−d ofN ′’s variables so that they are equal

to the variables in s. This is equivalent to relaxing a fraction

d of variables in s; the di�erent perspective is a consequence

of the fact that Gecode is a copying constraint system, as op-

posed to trailing constraint systems (fore more details on the

di�erence, see [95]).

RelaxableVars returns the total number of variables that can

be relaxed, i.e., |X|. This is needed to compute the number

of variables to relax based on d.

Improving(s) (activated on n) returns whether the new solution

n is improving with respect to s (this must be implemented

because Gecode supports both minimization and maximiza-

tion problems).

Constrain(s,∆) (activated on N ′) constrains the cost of next

solution n to be smaller than the cost of s plus a ∆. This

method is necessary to implement the cost bound described

in Section 7.1.2.

All the parameters described in the previous sections are accessible

through Gecode’s command line interface (CLI). The meta-engine

has been open-sourced, and it is available under the permissive

MIT License at the address https://bitbucket.org/tunnuz/gecode-

lns.

https://bitbucket.org/tunnuz/gecode-lns
https://bitbucket.org/tunnuz/gecode-lns

96 Propagation-based meta-heuristics

7.2 ACO-driven CP (ACO-CP)

As we have seen in Section 4.2, ACO is a constructive meta-heuristic

that, during the search process, learns how to assign values to vari-

ables in an optimal way. Because of its constructive nature, the way

ACO builds the solutions resembles that of a CP solver. Moreover,

similarly to ACO, many CP solvers employ dynamic value selec-

tion heuristics to choose the values for the decision variables. It is

therefore natural to think of an integration of ACO and CP.

The �rst attempt in the literature is [79], where a method for

solving a Job-Shop Scheduling problem is presented. The proposed

procedure employs ACO to learn the branching strategy used by CP

in the tree-search. The solutions found by CP are fed back to ACO,

in order to update its probabilistic model. In this approach, ACO

can be conceived as a master online-learning branching heuristic

aimed at enhancing the performance of a slave CP solver. A sligh-

tly di�erent approach has been taken in [64, 65]. Their algorithm

works in two phases. At �rst CP is employed to sample the space of

feasible solutions and the information collected is processed by the

ACO procedure for updating the pheromone trails. In the second

phase, the pheromone information is employed as the value order-

ing used for CP branching. Unlike the previous one, this approach

uses the learning capabilities of ACO in an o�ine fashion.

In this section we present an integration between ACO and CP

which shares some similarities with the one presented in [79], but is

based on the hyper-cube framework (HCF) for ACO [17]. We then

present an implementation of the approach, which can be applied

to any Gecode model.

7.2.1 Algorithm idea

The overall structure of the algorithm is presented in Algorithm 11.

First, the pheromone values are set to an initial value (in our case

0.5, as suggested in [17]). Then the algorithm enters the main re-

�nement loop, in which, at each iteration, nants solutions are gen-

erated stochastically according to the transition rule described in

Equation 4.4. The generated solutions are �rst checked to iden-

7.2 ACO-driven CP (ACO-CP) 97

tify a new best, and then are added to a temporary set U which

will be used to update the pheromones. After all the nants solu-

tions have been added to U, the pheromone trail parameters are

updated by the UpdatePheromone function, according to the for-

mula in Equation 4.5.

Since the one described in Algorithm 11 is essentially a special

case of the HCF for ACO described in Section 4.2, the behavior of

the approach is controlled by the same parameters (ρ, nants). Also,

the discussed variants, i.e., MMAS and the heuristic information η,

can be easily integrated in the method.

7.2.2 Implementation: gecode-aco

We have implemented this ACO-driven CP approach as a Gecode

meta-engine (Gecode-ACO) which employs a custom branching

strategy based on the stored pheromone matrix. The software de-

Algorithm 11 ACO-driven CP (ACO-CP)

procedure ACO(N = 〈X,D,C, 〉nants, ρ)

τ ← InitializePheromone()
i← 0
best← Null

while ¬StoppingCriterion(i) do
U← ∅
for a ∈ {1, . . . , n} do

ua ← TreeSearch(N, τ) . See Equation 4.4

if f(ua) < f(best) then
best← ua

end if

U ← U ∪ {ua}
end for

τ ← UpdatePheromone(τ,U, ρ) . See Eq. 4.5

i← i+ 1
end while

return best
end procedure

98 Propagation-based meta-heuristics

sign is similar to the one of Gecode-LNS: the solver can be used

on any model, provided that some hook methods are implemented.

Namely

Vars returns an array of all the decision variables that must be

handled with ACO. Note that using Gecode-ACO on a subset

of the variables is a sensible choice, since ACO can tackle

some kind of problems better than some others.

�ality (activated on each uk) measures the quality of a solu-

tion, by default 1/f(s) if the solution is complete, and 0 if

the solution is incomplete (on minimization problems).

BetterThan tells whether the considered solution is better than

another solution by comparing the cost (this must be im-

plemented because Gecode supports both minimization and

maximization problems).

All the parameters described in the previous sections are ac-

cessible through Gecode’s command line interface (CLI). Moreover,

some additional options are available to control the behavior of the

solver, namely −aco_constrain ∈ {0, 1} activates the bounding

on the cost for the generation of the new solutions, and −aco_

update_on_best ∈ {0, 1} activates a variant of the algorithm in

which the pheromones are updated every time a new best is found.

The meta-engine has been open-sourced, and it is available un-

der the permissive MIT License at the address https://bitbucket.org

/tunnuz/gecode-aco.

Conclusions

We discussed propagation-based meta-heuristics, a class of hybrid

meta-heuristics standing at the cross-roads between constraint pro-

gramming and meta-heuristics. In particular, we accurately de-

scribed two approaches, namely large neighborhood search, wh-

ich consists of a neighborhood search algorithm enhanced with

constraint propagation, and ACO-driven constraint programming,

a constraint programming solver driven by a learning branching

https://bitbucket.org/tunnuz/gecode-aco
https://bitbucket.org/tunnuz/gecode-aco

7.2 ACO-driven CP (ACO-CP) 99

heuristic. The advantage of using such methods is that the mod-

eling phase can be easily separated from the solving phase, thus

achieving separation of concerns, one of the main advantages in

constraint programming. Moreover, this allows to use incomplete

methods, while still taking advantage of the high-level modeling

language provided by constraint programming.

100 Propagation-based meta-heuristics

Part III

Applications

101

Chapter 8

Balancing Bike

Sharing Systems

Bike sharing systems are a very popular means to provide bikes

to citizens in a simple and cheap way. The idea is to install bike

stations at various points in the city, from which a registered user

can easily loan a bike by removing it from a specialized rack. After

the ride, the user may return the bike at any station (if there is a free

rack). Services of this kind are mainly public or semi-public, often

aimed at increasing the attractiveness of non-motorized means of

transportation, and are usually free, or almost free, for the users.

Such systems have recently become particularly popular, and an

essential service, in many big cities all over the world, e.g., Vienna,

New York, Paris, and Milan.

Depending on their location, bike stations have speci�c pat-

terns regarding when they are empty or full. For instance, in cities

where most jobs are located near the city centre, the commuters

cause certain peaks in the morning: the central bike stations are

�lled, while the stations in the outskirts are emptied. Furthermore,

stations located on top of a hill are more likely to be empty, since

users are less keen on cycling uphill to return the bike, and often

leave their bike at a more reachable station. These di�erences in

�ows are one of several reasons why many stations have extremely

high or low bike loads over time, which often causes di�culties: on

the one hand, if a station is empty, users cannot loan bikes from it,

103

104 Balancing Bike Sharing Systems

thus the demand cannot be met by the station. On the other hand, if

a station is full, users cannot return bikes and have to �nd alterna-

tive stations that are not yet full. These issues result in substantial

user dissatisfaction which may eventually cause the users to aban-

don the service. This is why nowadays most bike sharing system

providers take measures to rebalance them.

Balancing a bike sharing system is typically done by employ-

ing a �eet of trucks that move bikes overnight between unbalanced

stations. More speci�cally, each truck starts from a depot and trav-

els from station to station in a tour, executing loading instructions

(adding or removing bikes) at each stop. After servicing the last

station, each truck returns to the depot.

Finding optimal tours and loading instructions for the trucks

is a challenging task: the problem consists of a vehicle routing

problem that is combined with the problem of distributing single-

commodities (bikes) to meet the demand. Furthermore, since most

bike sharing systems typically have a large number of stations (≥
100), but a small �eet of trucks, the trucks can only service a sub-

set of unbalanced stations in a reasonable time, therefore it is also

necessary to decide which stations should be balanced.

This chapter describes algorithms and methods to rebalance

bike sharing systems, and it is based on the results described in two

papers, [39] and [38], which I co-authored, and that have been pre-

sented respectively at HM’13, the 8th International Workshop on

Hybrid Metaheuristics, and at CP’13, the 19th International Con-

ference on Principles and Practices of Constraint Programming.

8.1 Related work

Balancing bike sharing systems (BBSS) has become an increasingly

studied optimization problem in the last few years. A number of

proposed approaches are based on ILP and MILP models of the

BBSS problem. For instance, in [8], the authors consider the rebal-

ancing as hard constraint and the total travel time as an objective

to minimize. They study approximation algorithms on various in-

stance types and derive di�erent approximation factors for based

on speci�c instance properties. Furthermore, they present a branch

8.2 Problem formulation 105

& cut [80] approach based on an ILP model including subtour elim-

ination constraints. In [34] the dynamic variant of the problem is

considered, and a MILP model with alternative Dantzig-Wolfe (col-

umn generation) and Benders (row generation) decompositions is

proposed to tackle large instances of the problem. [88] describes

two di�erent MILP formulations for the static BBSS and also con-

sider the stochastic and dynamic factors of the demand. In [30], a

branch & cut approach based on a relaxed MILP model is used in

combination with a Tabu Search solver that provides upper bounds.

Another research line focuses on very e�cient local search me-

thods for BBSS. In [85] a heuristic approach for the BBSS is de-

scribed, which couples variable neighbourhood search (VNS) for

route optimization, with an helper algorithm that takes care of

�nding the optimal loading instructions. Finally, [94] propose a

new cluster-�rst route-second heuristic, in which the clustering

problem simultaneously considers the service level feasibility con-

straints, and the approximate routing costs. Furthermore, they

present a constraint programming model for the BBSS that is based

on a scheduling formulation.

8.2 Problem formulation

In the following, we consider the static case of the BBSS, in wh-

ich it is assumed that no bikes are moved independently between

stations during the rebalancing operations (in other words, no cus-

tomers are using the service during rebalancing, which is a valid

approximation for balancing systems overnight).

Bike sharing systems consist of a set bike stations S = {1,
. . . , S} that are distributed all over the city. Each station s ∈ S
has a maximum capacity of Cs bike racks and holds, at any in-

stant, bs bikes where 0 ≤ bs ≤ Cs. The target value ts for station

s states how many bikes the station should ideally hold to satisfy

the customer demand. The values for ts must be derived in ad-

vance from a user demand model, usually based on historical data,

so that 0 ≤ ts ≤ Cs (see [103] for an example). Please note that,

depending on the demand and on the formulation, stations can be

considered either as “sinks” or “sources”. This means that bikes

106 Balancing Bike Sharing Systems

cannot be removed from “sink” stations, and bikes cannot be added

to “source” stations.

A �eet of vehicles V = {1, . . . , V } with capacity cv > 0 and

initial load b̂v ≥ 0 for each vehicle v ∈ V, can be used to move

bikes between stations s ∈ S to reach the target values ts. Each

vehicle starts its tour from the depot, denoted by D, and must go

back to it at the end of the service. Thus, the set of possible stops in

a tour is denoted Sd = S∪{D}. The vehicles have a budget of t̂ > 0
time units to complete the balancing operations (after which every

vehicle must have reached the depot). The traveling times between

all possible stops are given by the matrix travel_timeu,v where

u, v ∈ Sd. Note that, in some formulations, the traveling times

matrix also includes an estimate of the processing time needed to

serve the station.

The goal is to �nd a tour for each vehicle, including loading

instructions for each visited station. The loading instructions state

how many bikes have to be removed from, or added to every sta-

tion. Clearly, the loading instructions must respect the maximum

capacity and current load of both the vehicle and the station. Fur-

thermore, each vehicle can only operate within the overall time

budget, and, in the considered formulation [85], must distribute all

the loaded bikes before going back to the depot (i.e., the trucks must

be empty at the end of their tours).

After every vehicle has returned to the depot, each station s ∈
S has a new load of bikes, denoted b′s. The closer b′s is to the the

desired target value ts, the better the solution. Thus, the objective

is to �nd tours that manipulate the station states such that they

are as close as possible to their target values. Moreover, among all

the possible routes, we are interested in �nding the lower-cost one

rv for each vehicle v ∈ V. For this reason, the cost function also

includes a time component.

The objective function f contains two components: the sum of

the deviation of b′s from ts over all stations s ∈ S, and the travel

time for each vehicle

f(σ) := w1

∑
s∈S
|b′s − ts|+ w2

∑
v∈V

∑
(u,w)∈rv

travel_timeu,w.

8.3 Modeling 107

Note that this de�nes a scalarization over a naturally multi-objec-

tive problem. As such, some points in the Pareto optimal set are

hence neglected by construction. The main reason for this choice

is the need to compare with the current best approaches [85], which

employ an equivalent scalarization. Furthermore, multi-objective

propagation techniques are still a relatively unexplored research

area.

8.3 Modeling

In this section, we describe two di�erent CP models for the BBSS

problem, namely the routing model and the step model. The �rst

one is an adaptation of the constraint model for the classical Vehi-
cle Routing Problem (VRP) proposed in [66]. The second considers

BBSS as a planning problem with a �xed horizon (number of steps).

For each model, we present the decision and auxiliary variables,

the involved constraints, and a custom branching stragtegy that is

used to explore the search tree.

8.3.1 Routing model

The routing model employs successor and precessor variables to

represent the path of each vehicle on a special graph GV RP that

consists of three di�erent kinds of nodes: i) the starting node for

each vehicle (the respective depot, which is typically the same for

all vehicles), ii) the nodes that should be visited in the tour, and

iii) the end node for each vehicle, again the respective depot. In

summary, GV RP contains 2V + S nodes, where V is the number

of vehicles and S is the number of nodes to visit. This graph struc-

ture allows to easily de�ne successor and predecessor variables to

represent paths. Note that, in this encoding, the starting and end-

ing depots of the vehicles (which are mapped on the unique depot

D) are treated as separate nodes.

This VRP-based model is extended to allow unvisited stations

and to capture loading instructions on a per-station basis. To achi-

eve this, we introduce a dummy vehicle vdummy that (virtually) vis-

its all the unserviced stations. This arti�ce allows us to treat unvis-

108 Balancing Bike Sharing Systems

ited stations as a cost component, and makes it easier to ensure that

no operations are scheduled for unvisited stations, by constraining

the load of the dummy vehicle to be always zero. This results in

an extension of the GV RP graph to a graph GBBSS that contains

2(V +1)+S nodes, where V +1 is the number of vehicles including

the dummy vehicle.

Such encoding is illustrated in Figure 8.1, where the basic struc-

ture is shown on the lower layer, and the encoded GBBSS and a

possible solution is shown on the upper layer.

We store all the nodes of GBBSS in an ordered set U which is

de�ned as follows

U = { 0, . . . , V, Vs: start nodes

V + 1, station 1
V + 2, station 2
. . . , . . .
V + S, station S
V + S + 1, . . . , 2V + S + 2 Ve: end nodes

}

Thus, U contains �rst the starting nodes (depots) for the V vehicles

and the dummy vehicle, followed by the S regular stations, and

�nally the end nodes (also depots) for the V real vehicles plus the

dummy one. Note, that Vs = {0, . . . , V } is the set of start nodes

of vehicles and Ve = {V + S + 1, . . . , 2V + S + 2} is the set of

end nodes of each vehicle. In summary, the tour of vehicle v ∈ V
starts at a depot in Vs, continues to some station nodes in S and

ends at a depot in Ve.

Variables

The vehicle routes are represented by |U| successor variables succ

with domains {1, . . . , |U|}, where each succi represents the node

following node i ∈ U. Moreover, we morel the inverse relation

using |U| predecessor variables pred, with the obvious seman-

tics. Though redundant, pred variables result in stronger propa-

gation [66] when channeled with succ variables.

Vehicles are associated to the respective nodes by means of |U|
vehicle variables vehicle ranging over {0, . . . , V }. Note that, as

8.3 Modeling 109

6 7
1

2

3

4 5

G

3

4

5

6 7

0v1

1v2

2vdummy

8

9
10

GBBSS

service4 = −5

succ2 = 7

Figure 8.1: Graph encoding of the BBSS problem employed in the

routing CP model. The lower layer shows the original graph,

whereas the upper layer shows the encoded graph in the case of

two vehicles, and a solution. The path starting at node 2 and end-

ing at node 10 (i.e., the dummy vehicle) corresponds to the set of

unserved nodes.

a consequence, every node i ∈ U must be visited by exactly one

vehicle (that is, vehiclei).

The loading instructions for each node are captured by |U| op-

eration variables service, representing the number of bikes that

are added or removed at node i ∈ U, and ranging over [−c,+c],
where c = max(Cmax, cmax), andCmax and cmax are respectively

the maximum capacities of stations and vehicles. The amount of

bikes on the trucks after visiting each node i ∈ U, is modeled by

|U| load variables load.

In order to model time constraints, we introduce |U| time vari-

ables time, where timei constitutes the arrival time at which vehi

clei vehicle arrives at node i. Recall that in the considered prob-

lem formulation, the arrival time also includes the processing time,

i.e., the time for handling the bikes at the node i. Moreover, for

the problem variant in which loading and unloading times must be

considered in the time constraints, we have |U| processing vari-

ables which measure how much time is needed to perform service

110 Balancing Bike Sharing Systems

Name Dim. Dom. Description

succ U U successor of i ∈ U
pred U U predecessor of i ∈ U
vehicle U U vehicle serving i ∈ U
service U [−c,+c] transferred bikes at i ∈ U
load U [0, cv] load of vehicle v after i ∈ U

time U [0, t̂v] arrival time of v at i ∈ U

processingU [0, L̂] processing time at i ∈ U
deviation U S deviation at s ∈ S
cost 1 [l, u] overall cost

Table 8.1: Variables in the CP Model, i is the index of a node.

at station iinU.

Finally, we use S deviation variables deviation to represent

the deviation from the target values (unbalance) at station s ∈ S
after the balancing tours. Such variables are used to model the de-

viation component of the cost function (cost variable).

Of the above variables, only service, vehicle, and succ are

decision variables, the others are auxiliary variables for modeling.

All the variables of the routing model are summarized in Table 8.1.

Constraints

In the following, we present the constraints of the routing model,

separating the essential constraints, that are required to compre-

hensively model the problem, from the redundant constraints, that

are used to help the solution process.

Essential constraints. In order to build valid routes for the ve-

hicles, we use two circuit constraints, that cause the succ and pred

variables to form a Hamiltonian path covering all nodes. Note that

this requires a post-processing step to split the single Hamilto-

nian path into V + 1 paths, one for each vehicle, plus one for the

dummy vehicle. In a previous version of the model, we employed

two alldifferent constraints to model a similar restriction, however

8.3 Modeling 111

circuit has better sub-tour elimination properties.

circuit(succ)

circuit(pred)

The next step is to establish the successor-predecessor chain for

each regular station

predsuccs = s ∀s ∈ S

succpreds = s ∀s ∈ S

and the successor-predecessor chain for the start and end nodes

where ŝ = V+S represents the index of �rst end node in U

predv = ŝ+ v ∀v ∈ Vs

succŝ+v = v ∀v ∈ Vs.

As for the vehicle constraints, we �rst set the respective vehicle

v ∈ Vs for each start- and end-node (depots) in the path

vehiclev = v ∀v ∈ Vs

vehicleŝ+v = v ∀v ∈ Vs

and then we propagate the vehicle chain over the path variables,

to ensure that each separate route (sequence of nodes) is served by

the same vehicle

vehiclesucci = vehiclei ; ∀i ∈ U

vehiclepredi = vehiclei ; ∀i ∈ U.

Regarding the loading constraints, we �rst �x the initial load to b̂v
(except for the dummy vehicle, which is constrained to be always

empty)

loadv = b̂v ∀v ∈ Vs \ {V }
loadV = 0

then, we state the relation between load and service along a path

loadsucci = loadi − servicei ∀i ∈ U.

112 Balancing Bike Sharing Systems

and we constrain every vehicle to be completely empty at the end

of the route

loadv = 0 ∀v ∈ Ve. (8.1)

Furthermore, we constrain the load of the vehicle after visiting sta-

tion s ∈ S so that it doesn’t exceed its capacity cvehicles :

loads ≤ cvehicles ∀s ∈ S.

Next come the operation constraints. At �rst, we model the op-
eration monotonicity, i.e., services at station s should either force

loading or unloading bikes depending on the current number of

bikes bs and the target value of bikes ts (“sinks” and “sources”)

services ≤ 0 ∀s∈S : bs > ts (8.2)

services ≥ 0 ∀s∈S : bs < ts. (8.3)

Note that a service value of 0 is allowed in both cases since a sta-

tion could remain unserved (e.g., because of the time budget con-

straints). Additionally, if station s is not served by the dummy ve-

hicle (V), then the service must not be zero, and vice versa

(vehicles 6= V) ⇐⇒ (services 6= 0) ∀s ∈ S.

Then, the service and processing time at the start and end nodes

(depots) i is set to zero for all vehicles

servicei = 0 ∀i ∈ Vs

servicei = 0 ∀i ∈ Ve

processingi = 0 ∀i ∈ Vs

processingi = 0 ∀i ∈ Ve.

Moreover, the service is limited by the maximum number of bikes

in the station, and forbidden to yield a negative number of bikes

bs + services ≤ Cs ∀s ∈ S

bs + services ≥ 0 ∀s ∈ S

8.3 Modeling 113

Finally, we state the time constraints. First, the arrival time (and

processing time) at the start depots is �xed to zero

timev = 0 ∀v ∈ Vs

then, the time chain for the successor and predecessor variables is

established

timev = timepredv + processingpredv
+ travel_timepredv,v ∀v ∈ S ∪Ve

timesuccv = timev + processingv + travel_timev,succv ∀v ∈ Vs ∪ S.

At last, the overall working time for each vehicle must be within

its time budget

timeŝ+v ≤ t̂v ∀v ∈ V. (8.4)

The model can be enhanced by some redundant constraints,

that will take care of some particular substructures of the problem.

Revisits. In our model, we allow a vehicle to visit a station more

than once and with a maximum limit of visits M . In order to mo-

del this aspect, we replicated each non depot node of the GBBSS
graph M times. This addition makes it necessary to add two more

types of constraints to keep the model consistent with the formu-

lation. In particular, also for symmetry breaking, we want to make

sure that the replicas of a station are used in order, i.e., it does not

make sense to visit a replica of a station if the station itself is not

visited. This is stated through a set of activity variables, that tell

whether the service at a station is di�erent from zero, and through a

DFA-based regular expression constraint, that forces the sequence

of activity variables on a station to only have zeroes at the end.

reg(1*0*, [activitys, . . . , activitys+M−1]) ∀s ∈ S

The second type of constraints regarding revisits is a unary schedul-

ing constraint, which ensure that multiple visits to the same station

do not overlap in time.

unary([times, . . . , times+M−1],

[processings, . . . , processings+M−1],

[activitys, . . . , activitys+M−1]) ∀s ∈ S

114 Balancing Bike Sharing Systems

Redundant constraints. First, because of the monotonicity con-

straints (8.2,8.3), the stations requiring the unloading of bikes can

be removed from the successors of the starting depots

succi 6= j ∀i ∈ Vs, j ∈ {s ∈ S | bs < ts}.

Similarly, because of constraint (8.1), which requires empty vehi-

cles at the end of the path, the stations requiring the loading of

bikes must be removed from the predecessors of the ending depots

predi 6= j ∀i ∈ Ve, j ∈ {s ∈ S | bs > ts}.

Finally, we integrate an early failure detection for the working time

constraint (8.4): if the working time of the current partial solution

plus the time to reach the �nal depot exceeds the total time budget,

then the solution cannot be feasible

timei + processingi + travel_timei,ŝ+vehiclei ≤ t̂vehiclei ∀i ∈ S.

This is also enforced by a custom propagator that will perform a

one-step look-ahead of this constraint. The idea of this propagator

(see Figure 8.2) is to prune a node s from the succi variable if all

two-step-paths from i to an ending depot dv passing through swill

exceed the time budget t̂v .

Cost function. The cost function of the problem is a hierarchical

one, and comprises two di�erent major components: the level of

unbalancing and the working e�ort.

The unbalancing component is de�ned in terms of the devia-

tion variables, which are set to be the absolute value of the devi-

ation from the target number of bikes at each station after service

has been performed, i.e.:

deviations = |bs + services − ts| ∀s ∈ S

The working e�ort is the sum of the total traveling time (i.e., the

sum of the times at which each vehicle reaches its ending depot)

plus the overall activity performed throughout the path (i.e., the

8.3 Modeling 115

t̂v

i

s1

sk

s2

.
.
.

d1

d3

d4

timei timesucci timedv > t̂v

vehiclei ∈ {1, 3, 4}
t

Figure 8.2: Illustration of the look-ahead propagator. Value s2 can

be removed from the domain of succi if all two steps paths from i
through s2 to a compatible ending depot dv will exceed the corre-

sponding time budget t̂v .

absolute value of the service). The cost function is the weighted

aggregation of the two components, i.e.:

cost = w1

∑
s∈S

deviations

+ w2(
∑
v∈S

timeŝ+v +
∑
s∈S
|services|)

where w1 = 1 and w2 = 10−5
[85], so that the satisfaction of the

�rst component prevails over the second one. Note that the two

objectives are slightly con�icting, as in order to reduce deviation,

the service must increase.

8.3.2 Step model

The step model considers BBSS as a planning problem with an hori-

zon ofK steps. Thus, the aim is to �nd a route (with the respective

loading instructions) with a maximum length of K for each vehi-

cle, where the �rst and the last stop are the depot D. As such we

introduce a set of steps K = {0, . . . ,K}, where 0 is the initial state

116 Balancing Bike Sharing Systems

6 7
1

2

3

4 5

G

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2route_,2

route_,1

service2,2,2 = −5

Figure 8.3: Solution representation for the step model. The lower

layer shows the original graph, whereas the upper layer shows the

decision variables of the step model, i.e., the routes variables for

two vehicles, and an example of the service variables.

and step K is the �nal state, thus each vehicle visits at most K − 1
stations. K is set to an estimated upper bound

K =

⌈
t̂

t̃

⌉
+ 1

where t̃ is the median of all travel times.

In contrast to the routing model, this formulation allows to di-

rectly represent the route of each vehicle by a sequence of stations,

as shown in Figure 8.1. By using this encoding, we can formulate

some of the constraints more naturally.

Variables

In the step model, we model the routes using K ·V route variables

route, ranging over the possible stops S, where routek,v denotes

the k-th stop in the tour of vehicle v ∈ V.

The service at the various stations is modeled by the service

variables where servicek,s,v represents the number of bikes that

are removed or added to station s ∈ S at step k ∈ K by vehicle

v ∈ V and therefore ranges over [−c,+c], where c = Cmax =
maxs∈SCs denotes the maximum capacity over all stations. The

load of a vehicle is represented by the load variables where loadk,v
is the load of vehicle v ∈ V at step k ∈ K. The variables n_bikesk,s

8.3 Modeling 117

Name Dim. Domain Description

route K · V S stop of vehicle v ∈ V at step k ∈ K
service K · S · V [−c,+c] transferred bikes at station s ∈ S

by vehicle v ∈ V at step k ∈ K
activity K · S · V [0, c] transfers at stop s ∈ S

by vehicle v ∈ V at step k ∈ K
load K · V [0, c] load of vehicle v ∈ V after step k ∈ K
time K · V T time when vehicle v ∈ V arrives

at station at step k ∈ K
processing K · S [0, S] time spent at stop s ∈ S at step k ∈ K
n_bikes K · S [0, c] bikes at stop s ∈ S after step k ∈ K

Table 8.2: Variables of the step model

model how many bikes are stored at station s ∈ S at step k ∈ K.

Additionally to K, the set K−1 = {0, . . . ,K − 1} represents the

set of steps excluding the last step and KS = {1, . . . ,K−1} is the

set of steps that concern stations, but not the depots (�rst and last

step).

All in all, only the route and service variables are in fact

decision variables. All the model variables are summarized in Ta-

ble 8.2

Constraints

In the following, we present the constraints of the step model, sep-

arating the essential constraints, that are required to comprehen-

sively model the problem, from the redundant constraints, that are

used to help the solution process. Note that revisits are implicit

in the step model, and thus only need to be limited to a maximum

number of visits.

Essential constraints. First, we constrain the initial state of the

solution: the �rst stop of the route of each vehicle v ∈ V is the

depot, and the initial load of v is b̂v

route0,v = D ∀v ∈ V

load0,v = b̂v ∀v ∈ V

118 Balancing Bike Sharing Systems

moreover, the initial service is set to zero, as well as the initial time,

and the initial number of bikes at station s equals bs

service0,s,v = 0 ∀s ∈ S, v ∈ V

time0,v = 0 ∀v ∈ V

n_bikes0,s = bs ∀s ∈ S.

Second, we make the formulation consistent by constraining

the activity at station s ∈ S for vehicle v ∈ V at step k ∈ K to

be the absolute value of the respective service

activityk,s,v = |servicek,s,v | ∀k ∈ K, s ∈ S, v ∈ V

moreover, every vehicle v ∈ V may only perform actions on at

most one station at each step k ∈ K, thus the activity is zero in at

least S − 1 stations

atleast(activityk,v, 0, S − 1) ∀k ∈ K, v ∈ V.

As for time constraints, we constrain time to be always increas-

ing, and we enforce the monotonicity (sink and source stations) by

stating that the stations that need to receive bikes to reach their

target value must have positive service (8.5), while stations from

which bikes need to be removed to reach their target value, must

have negative service (8.6)

timek,v ≤ timek+1,v ∀k ∈ KS , v ∈ V

servicek,s,v ≥ 0 ∀k ∈ K, v ∈ V, s ∈ S s.t. bs − ts ≤ 0 (8.5)

servicek,s,v ≤ 0 ∀k ∈ K, v ∈ V, s ∈ S s.t. bs − ts ≥ 0. (8.6)

Then, we de�ne the relation linking service variables and the

load of a vehicle v ∈ V at consecutive time steps (8.7), and simi-

larly are the number of bikes at a station after the visit of a vehicle

(8.8), and the time of arrival of a vehicle at a station (8.9)

loadk+1,v = loadk,v +
∑
s∈S

servicek+1,v,s∀k ∈ K−1, v ∈ V (8.7)

n_bikesk+1,s = n_bikesk,s −
∑
v∈V

servicek+1,v,s∀k ∈ K−1, s ∈ S (8.8)

timek+1,v ≥ timek,v + travel_timeroutek,v,routek+1,v
∀k ∈ K−1, v ∈ V (8.9)

8.3 Modeling 119

Note that the syntax here is simpli�ed, e.g.

travel_timeroutek,vroutek+1,v

is actually expressed using a element constraint.

The route and activity variables are then linked, and it sta-

ted that if vehicle v ∈ V has returned to the depot before reaching

the maximum number of stepsK , then it may not leave it anymore.

This allows more �exibility, as each vehicle can visit up toK nodes,

but does not necessarily have to

(activityk,s,v ≥ 0)⇔ (routek,v = s) ∀k ∈ K, v ∈ V, s ∈ S

(routek,v = D)⇒ (routek+1,v = D) ∀v ∈ V, k ∈ K−1.

Then, we make the model time consistent: two di�erent vehicles

v1 6= v2 ∈ V cannot visit the same station at the same time (equiv-

alently, can only visit the same station at di�erent times k1, k2 ∈
K−1). We model this through a unary global constraint, similarly

to the routing model

(routek1,v1 = routek2,v2 ∧ routek1,v1 6= D)⇒
unary([timek1,v1, timek2,v2], [processingk1,v1, processingk2,v2])

∀k1, k2 ∈ {1 . . .K − 1}, v1, v2 ∈ V, v1 6= v2

moreover, we use a count constraint (plus a temporary variable c)
to ensure that a station is visited at most vmax times in a solution.

For the current formulation vmax = 1, however using a di�erent

value is legitimate in the step model, and e�ectively enables station

revisiting

count(routev, c), dom(c, 0, vmax) ∀v ∈ V.

As required by the formulation, the last station visited by each ve-

hicle v ∈ V must be the depot, where the load is constrained to be

zero, as the service

loadK,s,v = 0 ∀s ∈ S, v ∈ V

routeK,v = D ∀v ∈ V

serviceK,s,v = 0 ∀s ∈ S, v ∈ V

120 Balancing Bike Sharing Systems

Branching Strategies

We have implemented two di�erent branching strategies on both

models. Here we describe their logic and the conditions for em-

ploying them.

The “cost-wise” strategy (Figure 8.4) cycles through the avail-

able vehicles, assigning, at each turn, �rst the service and then the

successor of the last station in the route of the selected vehicle (ex-

cept for the initial depot, where the service is �xed, Figure 8.4a).

Both the service (Figures 8.4b and 8.4d) and the successor (Figures

8.4c and 8.4e) of each station are chosen so as to greedily optimize

the objective function. To do so, the strategy always chooses the

service which maximizes the balancing, and then chooses the suc-

cessor that can yield the highest balancing at the next step, con-

sistently with the current load of the vehicle. As a consequence

of using this branching strategy, in the run depicted in Figure 8.4,

the solver achieves a �nal unbalance of 14 in 10 steps (some of

them have been omitted for brevity). This brancher typically ob-

tains very good solutions, but can generate a great number of fail-

ures if the vehicles are required to be empty at the end of their

service. This happens because, when behaving greedily, it is often

necessary to do a lot of backtracking in order to obtain a solution

with empty vehicles at the end.

The “feasibility-wise” strategy (Figure 8.5) does not aim at op-

timizing the objective function. Instead, it attempts to obtain a fea-

sible solution fast, by taking advantage of a simple invariant. After

every branching step (which corresponds to extending a route by

two legs), the load of each vehicle must be zero, so that the vehi-

cles can always choose to go back to the depot, yielding a feasible

solution. This allows to always satisfy the constraint requiring the

vehicles to be empty before returning to the depot. To do so, the

strategy considers all the pairs of nodes whose unbalance is com-

plementary, and chooses the one whose mutual rebalancing would

be maximal. Thus, at each single branching step, two successors and

two services are �xed (Figures 8.5a, 8.5b, and 8.5c). This, of course,

is a restriction over the initial problem Ãš formulation, i.e., this

branching strategy does not explore the whole search space. Nev-

8.4 Search by Large Neighborhood Search 121

ertheless, this is an appropriate brancher to �nd a reasonably good

initial solution, or for priming a heuristic search strategy (such as

LNS, described in then next Section) procedure, when the formu-

lation requires that the vehicles be empty at the end of the service.

As a consequence of using this branching strategy, in the run de-

picted in Figure 8.5, the solver achieves a �nal unbalance of 36 in

only 4 steps.

8.4 Search by Large Neighborhood Search

As mentioned in Section 7.1, LNS is a template method whose ac-

tual implementation depends on problem-speci�c details. In par-

ticular LNS requires to specify the following aspects

• how the solution initialization is carried out;

• the way in which the Destroy procedure is implemented,

i.e., which variables are chosen for relaxation;

• the way in which the Repair step is de�ned, i.e., which tree

search method is used (branch & bound, depth-�rst search,

. . .), which branching heuristics are employed;

• whether the search for the next solution stops at the �rst fea-

sible solution, at the �rst improving solution or continues

until a local optimum is found;

• whether d is evolved during the search or not and the range

of values it can assume;

• whether the acceptance criterion is strict improvement, equal

quality or it is stochastic, e.g., as described in 7.1.2;

• the employed stopping criterion.

Note that the LNS version implemented for this problem di�er sli-

ghtly from the one described in Section 7.1, as d directly represents

the number of variables to be freed at the next Destroy step. As

such, dmin and dmax are integer parameters which must be tuned.

While this does not scale along with the dimension of the instance

being solved, it makes the duration of the Repair step much con-

trollable.

122 Balancing Bike Sharing Systems

(a) (Service and) successors of depot. (b) Service of vehicle 1’s last station.

(c) Successor of vehicle 1’s last station. (d) Service of vehicle 2’s last station.

(e) Successor of vehicle 2’s last station. (f) Vehicles return to depot.

Figure 8.4: Illustration of the “cost-wise” brancher operations.

8.4.1 Common components

In our approach, most of these aspects are common to both CP mo-

dels. However, some components, in particular the destroy steps,

8.4 Search by Large Neighborhood Search 123

(a) Complementary nodes matched. (b) Complementary nodes matched.

(c) Complementary nodes matched. (d) Vehicles return to depot.

Figure 8.5: Illustration of the “feasibility-wise” brancher opera-

tions.

are model-speci�c because they depend on the variables employed

for modeling or on the branching strategy. We defer the description

of the model-speci�c components to the last part of this section.

Solution initialization

We obtain the initial solution by performing a tree search with

a custom branching strategy tailored for each model. The idea

behind our branching strategy is to choose the next station and

amount of service so that the total reduction of unbalancing is max-

imal. Search is stopped after �nding the �rst feasible solution.

124 Balancing Bike Sharing Systems

Repair step

Similarly to the initialization, the repair step consists of a branch &

bound tree search with a time limit, subject to the constraint that

the next solution must be of better quality than the current one.

The search starts from the relaxed solution and the time budget is

proportional to the number of free variables (tvar ·nfree) in it. The

tree search employs the same branching strategy used for solution

initialization.

Acceptance criterion

Our implementation of the algorithm supports various di�erent ac-

ceptance criteria, described in the following.

Accept improvement (strict): A repaired solution xt is accepted if

it strictly improves the previous best xbest. If the repair step

cannot �nd a solution in the allotted time limit, then an idle
iterations counter ii is increased. When ii exceeds the max-

imum number of idle iterations iimax, d is updated.

Accept improvement (loose): A repaired solution xt is accepted

if it is equal or improves the previous best xbest, i.e., side-

ways moves are allowed. If the repair step cannot �nd an

improving solution in the allotted time limit, then the idle it-

erations counter ii is increased (an equivalent solution does

not constitute an improvement). When ii exceeds the maxi-

mum number of idle iterations iimax, d is updated.

Simulated annealing (SA): First, we draw a number p ∼ U(0, 1)
uniformly at random, then we compute the allowed cost in-

crease of the new solution as ∆ = −(t ln p) (reversed SA

rule), where t is the typical temperature parameter in SA.

The temperature t is updated as t = t ·λ, with 0 < λ < 1 af-

ter ρ solutions have been accepted at such temperature. Once

∆ has been computed, we use it to bound the cost of the re-

laxed solution, and we accept whatever solution results from

the branch & bound step. If the repair step cannot �nd an im-

proving solution in the allotted time limit, then the idle itera-

8.4 Search by Large Neighborhood Search 125

tions counter ii is increased. When ii exceeds the maximum

number of idle iterations iimax, d is updated.

A repaired solution n is accepted as the new best only if it is

strictly improving over the previous best best. If the repair step

cannot �nd an improving solution in the allotted time limit, then

the non-improving iterations counter iteridle is increased. When

the iteration counter exceeds the maximum number of idle itera-

tions idlemax a new initial solution is designated by using a random

branching, and the search is restarted.

Adaptive d

The destruction rate d evolves during the search in order to im-

plement an intensi�cation / diversi�cation strategy and to avoid

stagnation of the search. In our implementation, at each step its

value is updated as follows

d =

{
min(d+ 1, dmax) if xt > xbest and ii > iimax

d = dinit otherwise

(8.10)

where ii is current the number of idle iterations performed with

destruction rate d, and iimax is the maximum number of such it-

erations. This update scheme will increase the radius of the neigh-

borhood to allow solution diversi�cation when the repair step can-

not �nd an improving solution in a given neighborhood. When a

new best solution is found, the original initial neighborhood ra-

dius is reset, so that the exploration of the newly discovered so-

lution region is intensi�ed. When d is updated, the counter ii is

reset. If d = dmax and the maximum number of idle iterations

have been used, the search restarts by perturbing the solution with

a d = 2dmax destruction rate.

As soon as a new best solution is found, the original initial

neighborhood radius is reset, so that the exploration of the newly

discovered solution region is intensi�ed.

126 Balancing Bike Sharing Systems

Stopping criterion

We allow the algorithm to run for a given timeout, when the time

is up, the algorithm is interrupted and the best solution found is

returned.

8.4.2 Destroy step

As mentioned before, the only model-speci�c component of our

implementation is the destroy step. In fact, this is the most relevant

aspect of LNS since it requires a careful selection of the variables

that have to be relaxed to de�ne the neighborhood. This selection

strongly depends on some speci�c knowledge about the problem

structure in order to avoid unmeaningful combinations.

Destroy step for the routing model.

In the case of the routing model, the relaxed solution is generated

by selecting d stations from each route Ri and resetting the succ,

service, and vehicle variables of these stations to their original

domains. Moreover, also the succ variable of the stations precid-

ing the relaxed ones are reset to their original domain to allow for

di�erent routes. Note that since we are considering also these vari-

ables the �nal fraction of variables relaxed is in fact greater than

d.

Destroy step for the step model.

The relaxed solution of the step model is produced by selecting d
internal nodes (i.e., excluding the depots) among all the routes and

resetting the route and service variables.

8.4.3 Experimental evaluation

In this section we report and discuss the experimental analysis of

the algorithms. All the experiments were executed using json2run

[105] on an Ubuntu Linux 12.04 machine with 16 Intel Xeon CPU

E5-2660 (2.20GHz) cores. For fair comparison, both the CP and the

LNS algorithms were implemented in Gecode (v3.7.3), the LNS

8.4 Search by Large Neighborhood Search 127

variant consisting of a specialized search engine and two special-

ized branchers.

The LNS parameters (iimax, dinit, dmax and tvar) have been

tuned by running an F-Race [13] with a con�dence level of 0.95
over a pool of 150 benchmark instances from Citybike Vienna.

Each instance, featuring a given number of stationsS ∈ {10, 20, 30,
60, 90}, was considered with di�erent number of vehicles V ∈
{1, 2, 3, 5} and time budgets t̂ ∈ {120, 240, 480}, totaling 900 prob-

lems. The tuning was performed by letting the algorithms run for

10 minutes. The best con�gurations were iimax = 30 for the rout-

ing model and iimax = 18 for the step model, tvar = 350 and

dmin = 2 for both models, dmax = 20 for the routing model and

dmax = 10 for the step model. As for the acceptance criterion, the

loose improvement strategy was the best for both models.

For benchmarking, we let the winning con�gurations for LNS

and the pure CP models run for one hour, the results are summa-

rized in Table 8.3.

Model and solution method comparison

The main goal of this comparison is to understand and analyze the

behavior of the branch & bound and LNS solution methods for the

two problem models. Figure 8.6 shows exemplarily the evolution of

the best cost within one search run on an instance from the City-

bike Vienna benchmark set featuring 30 stations. The pink and

turquoise dashed lines represent the resolution using branch and

bound respectively on the routing and the step model. The solid

lines represent the median of 10 runs of LNS on the two models.

The dark areas represent the interquantile range at each time step,

while the light areas represent the maximum range covered by LNS

over the 10 runs.

From the plot it is possible to see that, regarding the pure CP

approaches, the routing model is clearly outperforming the step

model. As for the LNS-based solvers, the situation is quite the op-

posite, with the step model outperforming the routing model on

the median run. However, it should be considered that perfor-

mance data collected on a single instance is of limited statistical

128 Balancing Bike Sharing Systems

Instance CP MILP LNS VNS

features Routing Step Bounds Routing Step

S V t̂ f f ub lb f f f

10 1 120 28.3348 28.3348 28.3348 28.3348 28.3348 28.3348 28.3348

10 1 240 4.6027 6.2027 4.2694 0.0042 4.2028 4.3361 4.2694

10 1 480 0.0032 4.3363 0.0033 0.0028 0.2699 0.0032 0.0032

10 2 120 10.6026 10.6026 9.8027 9.4377 10.2027 10.6026 9.9360

10 2 240 0.0034 4.0033 0.0034 0.0032 0.2701 0.0034 0.0034

10 2 480 0.0032 4.6032 0.0033 0.0028 0.2699 0.2033 0.0032

20 2 120 58.0029 57.8696 55.8029 26.4201 56.2029 55.9363 55.3363

20 2 240 11.6057 12.0057 19.7388 0.0038 4.9391 6.2724 4.2058

20 2 480 6.2062 6.8063 1.8091 0.0036 0.8729 0.6731 0.0061

20 3 120 42.0041 41.4041 37.3376 1.3478 34.0043 34.5376 31.7376

20 3 240 7.9398 8.1399 6.1408 0.0040 0.8066 0.2067 0.0065

20 3 480 8.2732 8.4733 13.3419 0.0032 0.8063 0.4067 0.0061

30 2 120 112.3362 111.6029 106.9363 55.9491 106.2030 105.8697 104.7363

30 2 240 48.0726 47.6726 74.9389 0.0049 39.8060 40.6726 34.6061

30 2 480 7.8095 8.0764 69.7407 0.0046 1.3428 0.1430 0.0093

30 3 120 91.9375 89.6042 90.4042 16.3045 82.7377 80.8710 78.1377

30 3 240 20.0751 19.4085 61.6072 0.0046 11.9419 12.4085 7.0752

30 3 480 7.4099 8.8766 175.4000 0.0002 1.0763 0.4099 0.0093

60 3 120 270.6710 273.0042 274.2710 157.3735 263.2711 264.2710 253.8046

60 3 240 163.3423 171.5424 370.2000 0.0000 151.2091 147.5426 126.7428

60 3 480 40.0175 37.9508 – – 28.3508 21.8841 6.6176

60 5 120 250.2735 250.7401 289.2711 34.6978 217.6070 211.9405 196.6075

60 5 240 104.2144 125.0811 370.2000 0.0000 92.5478 63.8813 41.4816

60 5 480 22.9547 36.8216 – – 16.0219 3.8210 0.0190

90 3 120 466.0043 470.7376 492.2032 290.5999 453.9378 452.3378 441.6047

90 3 240 343.1426 359.6760 566.2667 0.0000 327.1427 319.0095 294.4765

90 3 480 172.5516 177.7517 – – 164.6182 135.8851 100.9522

90 5 120 428.6736 436.2736 566.2667 0.0000 402.4071 393.7406 376.0743

90 5 240 265.9483 304.3482 – – 253.9482 206.4820 174.2157

90 5 480 102.2955 95.0287 – – 127.8287 20.0954 1.4285

Table 8.3: Comparison of our approaches with the MILP and the

best VNS approach of [85]. These results are published in [40].

signi�cance. As for the comparison between pure CP approaches

and LNS-based ones, the latter exhibit better anytime properties,

reaching low areas of the objective function much faster then their

branch & bound counterparts. Of course this comes at the price of

completeness, and we expect CP approaches to rival with or out-

perform the LNS-based ones given enough time. It is worth notic-

8.4 Search by Large Neighborhood Search 129

Figure 8.6: Evolution of the best cost for the pure CP (branch &

bound) and LNS solution methods for the routing and the step mo-

del (30 stations, 2 vehicles, time budget 480 minutes)

ing that this result is quite consistent across the whole benchmark

set.

Comparison with other methods

In this second experiment, we compare our CP and LNS solution

methods with the state-of-the-art results of [85], who solved the

same set of instances using a Mixed Integer Linear Programming

(MILP) solver and a Variable Neighborhood Search (VNS) strategy.

The result of the comparison against the best of the three di�erent

VNS approaches in [85] are reported in Table 8.3. The reported re-

sults in each row are averages over 150 instances, grouped by size,

130 Balancing Bike Sharing Systems

number of vehicles and available time for the trucks to complete

the tour. Cells marked with a dash refer to instance classes for wh-

ich the algorithm cannot reach a feasible solution within a hour. In

these cases it makes no sense to compute a mean.

We �rst proceed in comparing approaches belonging to the

same family of methods: i.e., exact / heuristics. As for the exact

methods (namely the two CP variants and MILP), it is possible to

observe that the CP models consistently reach better results than

MILP for mid- and big-size instances (S ≥ 30). Moreover they are

able to �nd at least one solution on instances for which MILP was

not able to �nd any result. In these settings, the routing model

performs better than the step model.

Moving to the comparison of heuristic methods, the clear (and

overall) winners are the VNS procedures [85]. Nevertheless, it is

possible to notice that LNS is further improving over the solutions

found by CP, justifying its use on this problem.

Overall, our LNS approach appears more robust with respect

to the largest instances, where pure CP often fails to �nd even a

feasible solution. However, similarly to the pure CP method, also

in this case there is no clear winner.

8.5 Search by ACO-driven CP

In our CP model for the BBSS problem, there is a natural partition of

the decision variables into two families, i.e., routing and operation

variables.

8.5.1 Handling of routing variables

The �rst set of variables, succi, is handled very naturally by ACO,

which has been shown to be particularly e�ective in solving rout-

ing problems. In our approach, ACO is embodied by a two-phase

branching strategy which takes care both of variable and value se-

lection. This process is illustrated in Figure 8.7.

8.5 Search by ACO-driven CP 131

3

4

5

6 7

η0,i

1

2

8

9

10

τ0,3

τ0,4

τ0,5

τ
0,6

τ0,7

τ0,8

(a) The ant is �rst placed at the starting depot of

the �rst vehicle.

3

4

5

6 7

0

1

2

8

9

10

τ6,3

τ 6
,4

τ
6
,5

τ6,7

τ6,8

(b) The value of the succi variable is selected ac-

cording to the pheromones τi,j .

3

4

5

6 7

0

1

2

9

10

(c) Once the ending depot is reached, the ant starts

with the route of the next vehicle.

3

4

5

6 7

0

1

8

9

10

(d) All remaining nodes are assigned to the dummy

vehicle (i.e., they are left unserved).

Figure 8.7: Illustration of the graph traversal performed by one ant.

Variable selection

The �rst variable to be selected, according to the heuristic, is the

succ of the �rst vehicle starting depot (Fig. 8.7a). As for the next

variable to assign, we always choose the one indicated by the value

of the last assigned variable, i.e., the succ of the last assigned node

(Fig. 8.7b). By following this heuristic, we enforce the completion

of existing paths �rst. If the successor of the last assigned node

is a �nal depot (Fig. 8.7c), then we cannot proceed further on the

current path, and we start a new one by assigning the successor of

the next starting depot. Once the paths of all vehicles are set, the

remaining unserved nodes will be assigned to the dummy vehicle

(Fig. 8.7d).

Value selection

Once the next variable to assign is chosen, all the values in its cur-

rent domain are considered as candidates. Note that, in this, we are

132 Balancing Bike Sharing Systems

in fact exploiting problem-speci�c knowledge, as the domain of a

variable is, at any time, determined by the constraint propagations

activated earlier in the search.

The next step is where ACO comes into play. For our approach

we have used the HCF for ACO algorithm described in Section 7.2.

As most other ACO approaches, HCF for ACO maintains a phe-

romone table in which each 〈Xi, vj〉 (variable, value) pair has a

corresponding τi,j pheromone value indicating the desirability of

value vj for the variable Xi.

In line with the majority of ACO variants, our value selection

heuristic is stochastic, with the probability of choosing a speci�c

value being proportional to the corresponding τ -value. In particu-

lar, our transition rule is the one described in Equation 4.4.

8.5.2 Handling of operation variables.

The operation variables are assigned through a depth-�rst tree-

search based on deviation variables, which are the main compo-

nent of our cost function. We employ a minimum value heuristic

which gives priorities to lower values when assigning deviation

variables. As a consequence, lower cost solutions are produced be-

fore bad ones. Note that this is possible as the deviation does not

appear in any hard constraint, and so there is no danger of gener-

ating unfeasible solutions.

While other choices are possible, e.g. a full exploration of the

tree by branch & bound, in this context we aim at �nding quickly

feasible solutions, so that they can be used for learning. The ra-

tionale behind this choice is that decisions taken towards the root

of the search tree have a greater impact than the ones taken to-

wards the leaves, and τ -updates are the only way to improve our

ACO-based value selection heuristic.

8.5.3 Pheromone update

The pheromone update implements the update rule described in

Section 7.2. All the solutions U generated by the nants ants are

thus used to update the τ -values.

8.5 Search by ACO-driven CP 133

8.5.4 Experimental evaluation

For fair comparison and convenience, both the pure CP and the

ACO-CP methods were implemented in Gecode (v3.7.3), the ACO

variant consisting in specialized branching and search strategies.

All the experiments were run with json2run on an Ubuntu

Linux 12.04 machine with 16 Intel Xeon CPU E5-2660 (2.20GHz)

cores.

All pheromones were initially set to τmax = 1, as suggested by

[101] in order to foster initial exploration. The ρ parameter and the

number of ants nants have been tuned by running an F-Race with

a con�dence level of 0.95 over a pool of 210 benchmark instances

from Citybike Vienna. Each instance, featuring a given number of

stations, was considered with di�erent number of vehicles (V ∈
{1, 2, 3, 5}) and time budgets (t̂ ∈ {120, 240, 480}). Moreover, the

algorithms were allowed to run for three di�erent timeouts (30, 60,

120 seconds), totaling 7560 problems.

We tuned the number of ants n ∈ {5, 10, 15, 20} and the le-

arning rate ρ together, as we expected an interaction between the

two parameters. The 8 candidate values for ρ were instead sam-

pled from the low-discrepancy Hammersley point set in [0.4, 0.8].
This interval was chosen according to previous exploratory exper-

iments, with ρ ∈ [0, 1] and 32 samples.

The result of the tuning process is that, for the considered set

of problems, the best setup involves 5 ants and ρ = 0.65.

Comparison between CP and ACO-CP.

The main goal of this comparison is to understand if a dynamic

branching strategy based on ACO can indeed outperform a static

branching strategy. Figure 8.8 shows the results on an instance

from the Citybike Vienna benchmark set featuring 30 stations. The

choice of this instance has been driven by the fact that a time bud-

get of 2 minutes was too low for CP to obtain even a single solution

on larger instances.

The results of the tuning show that ACO-CP clearly outper-

forms the pure CP approach. In fact, the CP solver is declared sig-

ni�cantly inferior by the F-Race procedure after just 15 iterations.

134 Balancing Bike Sharing Systems

120 240 480

100

150

50

100

150

50

100

150

0

50

100

150

1
2

3
5

0 30 60 90 120 0 30 60 90 120 0 30 60 90 120
Time (s)

O
bj

ec
tiv

e
fu

nc
tio

n

Algorithm ACO+CP CP

Figure 8.8: Comparison between ACO-CP (dark, solid lines) and

CP (light, thin lines) on a problem instance with 30 stations. The

columns of the graph matrix represent the vehicle time budget and

the rows represent the number of available vehicles.

The superior behavior of ACO-CP is con�rmed also from the anal-

ysis reported in Figure 8.8, for the variants of a single problem in-

stance with 30 stations. Note that the ACO-CP data is based on 5
repetitions of the same experiment, as the process is intrinsically

stochastic.

It is possible to see that the cost values achieved by ACO-CP

are always lower than those of CP and in one case (namely time

budget 480 and 5 vehicles) CP is even not able to �nd a solution

within the granted timeout despite the fact that it is somehow a

8.5 Search by ACO-driven CP 135

loosely constrained instance.

Comparison with other methods.

In this second experiment, we compare both ACO-CP and CP with

state-of-the-art results of [85]. Note that these experiments were

carried out with a previous version of the model, described in [39],

and upon which the ACO-CP approach was developed (this is the

reason why the results in the CP columns of Table 8.3 di�er from

the ones in the next table). The main di�erence in the two versions

of the model regard the “feasibility-wise” strategy for branching

and the better use of global constraints. The results of the compar-

ison are reported in Table 8.4, where we compare against the best

of the three di�erent VNS strategies described in [85]. The results

reported are averages across instances with the same number of

stations.

In this respect, the results are still unsatisfactory, since the best

VNS approach is outperforming our ACO-CP on almost all instances.

Nevertheless, our ACO-CP is able to do better than the MIP ap-

proach for mid- and large-sized instances.

Conclusions

We discussed a speci�c combinatorial optimization problem, na-

mely the problem of balancing bike sharing systems (BBSS). We

presented two orthogonal constraint programming models for the

same problem formulation, and showed how to solve those mo-

del through propagation-based hybrid meta-heuristics. Our results

were compared with the state-of-the-art results on this problem.

136 Balancing Bike Sharing Systems

I
n
s
t
a
n
c
e

C
P

A
C
O
+
C
P

M
I
P

[
8
5
]

V
N
S

[
8
5
]

S
V

t̂
ob
j 3

0
ob
j 6

0
ob
j 1

2
0

ob
j 3

0
ob
j 6

0
ob
j 1

2
0

u
b

lb
ti
m
e

ob
j

ti
m
e

1
0

1
1
2
0

2
8
.3

4
7
7

2
8
.3

4
7
7

2
8
.3

4
7
7

2
8
.5

3
4
4

2
8
.7

4
7
7

2
8
.5

4
7
8

2
8
.
3
4
7
7

2
8
.3

4
7
7

4
2
8
.
3
4
7
7

2

1
0

1
2
4
0

1
4
.0

9
0
8

1
1
.4

9
1
5

9
.5

5
8
9

5
.2

2
7
6

4
.7

6
0
9

4
.4

8
1
0

4
.2

9
4
2

0
.0

4
2
4

3
6
0
0

4
.
2
9
4
1

1
0

1
0

1
4
8
0

1
4
.8

2
4
7

1
3
.2

9
2
2

9
.8

9
4
2

0
.4

3
2
2

0
.9

1
2
0

0
.6

0
5
2

0
.0

3
2
0

0
.0

2
7
6

3
6
0
0

0
.
0
3
1
7

1
7

1
0

2
1
2
0

1
0
.2

2
6
6

1
0
.2

2
6
6

1
0
.2

2
6
6

1
0
.4

0
0
1

1
0
.6

6
6
7

1
0
.4

2
6
8

9
.
8
2
6
9

9
.4

7
6
8

9
1
1

9
.9

6
0
1

3

1
0

2
2
4
0

5
.3

6
5
2

4
.6

9
8
7

2
.7

6
6
2

0
.4

3
4
2

0
.9

2
7
4

0
.1

0
0
9

0
.0

3
4
0

0
.0

3
2
2

8
5
6

0
.
0
3
3
9

1
9

1
0

2
4
8
0

5
.3

6
3
7

4
.8

9
7
1

3
.2

9
7
6

0
.4

8
5
4

0
.4

5
8
6

0
.8

5
8
4

0
.
0
3
1
7

0
.0

3
1
3

1
2
4
5

0
.
0
3
1
7

1
5

2
0

2
1
2
0

7
2
.4

9
4
2

7
0
.4

2
7
9

6
8
.7

6
1
4

6
4
.2

5
5
8

6
2
.9

4
9
2

6
1
.4

5
6
1

5
.
8
2
9
4

2
6
.9

0
1
2

3
6
0
0

5
5
.3

6
2
8

8

2
0

2
2
4
0

7
4
.2

4
2
2

7
2
.3

7
5
4

7
1
.5

0
8
7

1
8
.3

9
0
4

1
7
.3

3
7
2

1
5
.3

9
0
7

1
9
.7

8
8
4

0
.0

3
8
3

3
6
0
0

4
.
2
5
7
5

5
8

2
0

2
4
8
0

7
4
.1

0
9
3

7
2
.7

0
9
3

7
2
.5

7
5
6

3
.9

7
4
8

2
.7

7
4
3

2
.8

9
4
3

1
.8

9
0
6

0
.0

4
0
3

3
6
0
0

0
.
0
6
1
5

1
4
2

2
0

3
1
2
0

6
7
.5

7
1
2

6
4
.1

0
5
1

6
1
.5

0
5
3

4
8
.4

2
8
7

4
7
.1

6
2
2

4
5
.0

5
5
7

3
7
.3

7
5
9

1
.4

7
7
0

3
6
0
0

3
1
.
7
7
6
3

1
3

2
0

3
2
4
0

7
4
.3

8
1
3

7
4
.1

8
1
1

7
4
.1

1
4
3

7
.5

5
1
1

5
.8

3
1
0

4
.7

6
4
1

6
.2

0
8
3

0
.0

4
0
1

3
6
0
0

0
.
0
6
5
0

6
5

2
0

3
4
8
0

7
4
.3

8
1
4

7
4
.1

8
1
1

7
4
.1

1
4
4

4
.5

8
7
8

2
.5

2
1
1

2
.5

8
7
4

1
3
.4

1
9
1

0
.0

3
1
6

3
6
0
0

0
.
0
6
1
4

1
1
4

3
0

2
1
2
0

1
2
7
.5

6
0
4

1
2
6
.4

9
3
9

1
2
5
.5

6
0
8

1
2
2
.4

5
5
2

1
1
9
.2

0
2
2

1
1
8
.0

8
2
3

1
0
6
.9

6
3
1

5
6
.3

9
0
8

3
6
0
0

1
0
4
.
7
6
3
3

1
2

3
0

2
2
4
0

1
1
7
.2

5
2
0

1
1
6
.5

8
5
7

1
1
6
.3

1
8
8

7
5
.7

6
3
7

7
3
.2

1
7
3

7
0
.4

3
0
9

7
4
.9

8
8
6

0
.0

4
8
7

3
6
0
0

3
4
.
6
6
0
8

1
0
9

3
0

2
4
8
0

1
0
1
.8

6
5
0

1
0
1
.8

6
5
0

1
0
1
.4

6
5
2

1
3
.5

1
7
3

1
1
.1

3
1
1

9
.3

8
4
7

6
9
.8

0
6
9

0
.0

4
3
2

3
6
0
0

0
.
0
9
2
5

4
9
1

3
0

3
1
2
0

–
1
1
7
.7

0
5
8

1
1
5
.6

3
9
3

1
0
7
.7

8
7
9

1
0
5
.1

7
4
8

1
0
2
.0

5
5
4

9
0
.4

4
1
9

1
6
.6

4
5
4

3
6
0
0

7
8
.
1
7
7
3

2
1

3
0

3
2
4
0

1
0
4
.6

0
5
2

1
0
4
.4

7
1
9

1
0
4
.0

0
5
4

4
6
.0

5
6
4

4
2
.7

5
0
2

4
0
.5

7
6
9

6
1
.6

7
1
5

0
.0

4
6
1

3
6
0
0

7
.
1
5
2
3

1
9
1

3
0

3
4
8
0

1
0
0
.7

4
2
2

1
0
0
.6

0
8
9

1
0
0
.6

0
8
9

–
1
0
.7

4
5
0

8
.5

5
9
5

1
7
5
.4

0
0
0

0
.0

0
1
5

3
6
0
0

0
.
0
9
2
5

3
9
9

6
0

3
1
2
0

–
–

–
3
0
7
.8

1
4
8

3
0
4
.4

2
8
3

3
0
0
.2

1
5
4

2
7
4
.3

1
0
1

1
5
7
.7

3
5
0

3
6
0
0

2
5
3
.
8
4
6
2

4
5

6
0

3
2
4
0

–
–

–
2
4
5
.3

3
7
4

2
3
8
.1

6
4
4

2
3
3
.6

5
8
5

3
7
0
.2

0
0
0

0
.0

0
0
0

3
6
0
0

1
2
6
.
8
2
8
2

5
2
1

6
0

3
4
8
0

2
0
5
.8

8
7
1

2
0
5
.8

8
7
1

2
0
5
.8

8
7
0

1
2
7
.2

7
4
4

1
2
2
.7

2
8
6

1
1
7
.6

2
2
3

–
–

3
6
0
0

6
.
7
7
5
8

3
6
0
0

6
0

5
1
2
0

–
–

–
2
8
3
.0

5
3
7

2
7
8
.0

5
4
0

2
7
2
.8

1
4
5

2
8
9
.3

1
1
1

3
4
.9

7
8
4

3
6
0
0

1
9
6
.
6
7
4
9

9
9

6
0

5
2
4
0

–
–

–
1
8
4
.7

3
7
1

1
7
9
.0

5
7
2

1
7
3
.6

7
1
0

3
7
0
.2

0
0
0

0
.0

0
0
0

3
6
0
0

4
1
.
6
1
6
1

1
5
5
6

6
0

5
4
8
0

–
–

–
–

–
–

–
–

3
6
0
0

0
.
1
9
0
2

3
6
0
0

9
0

3
1
2
0

–
–

–
5
1
1
.8

8
0
7

5
0
7
.2

9
4
3

5
0
4
.2

0
1
3

4
9
2
.2

3
1
9

2
9
0
.8

9
9
0

3
6
0
0

4
4
1
.
6
4
7
3

8
2

9
0

3
2
4
0

–
–

–
4
5
1
.7

2
3
2

4
4
5
.4

7
0
5

4
3
8
.2

0
4
4

5
6
6
.2

6
6
7

0
.0

0
0
0

3
6
0
0

2
9
4
.
5
6
4
6

9
8
5

9
0

3
4
8
0

–
–

–
3
3
4
.6

6
1
0

3
2
6
.4

3
5
0

3
1
9
.5

8
2
6

–
–

3
6
0
0

1
0
1
.
1
2
2
1

3
6
0
0

9
0

5
1
2
0

–
–

–
4
9
0
.3

1
9
3

4
8
0
.7

7
3
9

4
7
3
.9

3
4
5

5
6
6
.2

6
6
7

0
.0

0
0
0

3
6
0
0

3
7
6
.
1
4
3
2

1
6
9

9
0

5
2
4
0

–
–

–
3
9
3
.4

4
3
3

3
8
3
.3

3
7
5

3
7
5
.5

9
1
5

–
–

3
6
0
0

1
7
4
.
3
5
6
6

3
3
0
4

9
0

5
4
8
0

–
–

–
2
1
3
.3

1
4
0

2
0
2
.3

0
1
7

1
9
2
.3

8
3
2

–
–

3
6
0
0

1
.
6
8
5
5

3
6
0
0

T
a
b
l
e

8
.4

:
C

o
m

p
a
r
i
s
o

n
o

f
C

P
a
n

d
A

C
O

-
C

P
w

i
t
h

M
I
P

a
n

d
t
h

e
b

e
s
t

V
N

S
a
p

p
r
o

a
c
h

i
n

[
8
5
]
.

Chapter 9

Curriculum-Based

Course Timetabling

Course Timetabling (CTT) [93] is a popular combinatorial opti-

mization problem, which deals with generating university timeta-

bles by scheduling weekly lectures, subject to con�icts and avail-

ability constraints, while minimizing costs related to resources and

user discomfort. Thanks mainly to the international timetabling

competitions ITC-2002 and ITC-2007 [78], two formulations have,

to some extent, arisen as “standard”. These are the so-called Post-
Enrollment Course Timetabling (PE-CTT) [72] and Curriculum-Ba-
sed Course Timetabling (CB-CTT) [37]. These two formulations

have received attention in the research community, so that many

recent articles deal with either one of them. The distinguishing

di�erence between these two formulations is the origin of con�icts

between courses, which is based on student enrollment, in PE-CTT,

and on prede�ned curricula, in CB-CTT. This is however only one

of the di�erences, which actually include also many other distinc-

tive features and cost components. For example, in the PE-CTT,

each course is a self-standing event, whereas in CB-CTT a course

consists of multiple lectures. Consequently, the soft constraints are

di�erent: in PE-CTT they are all related to events, penalizing late,

consecutive, and isolated ones; in CB-CTT they mainly involve cur-

ricula and courses, ensuring compactness in a curriculum, trying

137

138 Curriculum-Based Course Timetabling

to evenly spread the lectures of a course in the weekdays, and pos-

sibly preserving the same room for a course.

In this chapter, we address the CB-CTT variant of the problem,

which has been used up to recently to schedule the courses at the

University of Udine. More speci�cally, we show two di�erent solu-

tion methods, namely a neighborhood search by Simulated Anneal-

ing (SA), and a Large Neighborhood Search (LNS) based on a novel

CP model for CB-CTT. The chapter is based on the results described

in two papers, [5] and [104], which I respectively co-authored and

authored, and have been presented to the 6th Multidisciplinary In-

ternational Conference on Scheduling: Theory and Applications

(MISTA’13), and to the Doctoral Program of CP’13. Moreover, a

follow-up of [5] has been recently submitted to a relevant journal

of the �eld.

9.1 Related work

In this section, we brie�y discuss the literature on CB-CTT. The

section is organized as follows: �rst we report meta-heuristic and

constraint-based resolution techniques. Then, we revise exact me-

thods and lower bounds. Finally, papers that investigate additional

aspects related to the CB-CTT problem, such as instance genera-

tion, are discussed.

9.1.1 Meta-heuristic approaches

In [81], the author presents a constraint-based solver which incor-

porates several local search algorithms operating in three stages:

a construction phase which uses an Iterative Forward Search algo-

rithm to �nd a feasible solution, a �rst search phase delegated to a

Hill Climbing algorithm, followed by a Great Deluge or Simulated
Annealing to escape from local minima. The algorithm won two

out of three tracks of ITC-2007 and was among the �nalists in the

remaining track. Also the Adaptive Tabu Search proposed by [74]

follows a three-stage scheme: in the initialization phase a feasible

timetable is built using a fast heuristic; then the intensi�cation and

diversi�cation phases are alternatively applied through an adaptive

9.1 Related work 139

tabu search, in order to reduce the soft constraints. A novel hybrid

meta-heuristic technique, obtained combining Electromagnetic-like
Mechanisms and the Great Deluge algorithm, has been applied by

[1]. They obtained good results on both CB- and PE-CTT testbeds.

Finally, [75] investigated the search performance of di�erent neigh-

borhood relations used by local search algorithms. The behavior of

neighborhood is compared using di�erent evaluation criteria, and

new combinations of neighborhoods are explored and analyzed.

9.1.2 Constraint programming

In [26] a hybrid approach for PE-CTT is described, which shares

many similarities with the hybrid approach described later in this

chapter. Among other things, the authors propose a CP model, cou-

pled with a LNS search strategy, to tackle complex instances of the

problem. Some interesting insight is given on the approach. First,

the authors stress the importance of releasing the right variables

during the LNS step. Second, they propose a Simulated Anneal-

ing (SA) acceptance criterion to escape local minima. Third, they

handle feasibility and optimization in separate search phases. In et
al. [32] a framework for the integration of a CP solver with LNS

is presented, anda simple CTT variant, where con�icts are solely

determined by the availability of teachers, is solved.

9.1.3 Exact methods and lower bounds

Several authors employed exact methods with the twofold objec-

tive of �nding solutions and lower bounds.

In [24] a hybrid method based on the decomposition of the

whole problem in di�erent sub-problems, each one solved using

a mix of di�erent IP formulations is implemented. Subsequently

[19], the same authors presented a new MIP formulation based on

the concept of “supernode” which is used to model graph color-

ing problems. This new encoding has been applied also to CB-CTT

benchmarks, and compared with the standard two-index MILP mo-

del developed in CPLEX, showing that the supernodes formulation

is able to considerably reduce computational time. Lastly, in [23]

140 Curriculum-Based Course Timetabling

Instance [24] [71] [23] [54] [54]\ [3][[25] Best known

comp01 5 4 4 4 4 0 5 5
*

comp02 6 11 11 0 12 16 16 24

comp03 43 25 25 2 38 28 52 66

comp04 2 28 28 0 35 35 35 35
*

comp05 183 108 108 99 183 48 166 29

comp06 6 12 10 0 22 27 11 27

comp07 0 6 6 0 6 6 6 6
*

comp08 2 37 37 0 37 37 37 37
*

comp09 0 47 46 0 72 35 92 96

comp10 0 4 4 0 4 4 2 4
*

comp11 0 0 0 0 0 0 0 0
*

comp12 5 57 53 0 109 99 100 30

comp13 0 41 41 3 59 59 57 59
*

comp14 0 46 0 51 51 48 51
*

comp15 38 28 66

comp16 16 18 18
*

comp17 48 56 56
*

comp18 24 27 62

comp19 56 46 57

comp20 2 4 4
*

comp21 61 42 75

Table 9.1: Lower bounds for the comp instances. Provably optimal

results in the “Best known” column are denoted by an asterisk.

a procedure is developed and lower bounds are obtained for vari-

ous formulations. In [71], the authors propose an IP approach that

decomposes the problem in two stages: the �rst one, whose goal

is to assign courses to periods, is focused mainly on satisfying the

hard constraints; the second one takes care of soft constraints and

assigns lectures to rooms by solving a matching problem. [54] des-

cribes a partition-based approach to compute new lower bounds:

The original instance is divided into sub-instances through an It-
erative Tabu Search procedure, and each subproblem is solved via

an ILP solver using the model proposed by [71]. The lower bound

for the original problem is obtained summing up the lower bounds

9.2 Problem formulation 141

of the sub-instances. Recently, [25] computed new lower bounds

using an approach somewhat similar to the one by [54], however

in this case the partition is based on soft constraints. Once the ini-

tial problem is partitioned, two separated problem are formulated

as ILPs and then solved to optimality by a Column Generation tech-

nique. In [3], the authors present an application of several satis�a-

bility (SAT) solvers to the CB-CTT problem. The di�erence among

these SAT-solvers is in the encoding used, that de�nes in each case

which constraints are considered soft or hard. Using di�erent en-

condings, they were able to compute new lower bounds and ob-

tain new best solutions for the benchmarks. Finally, [4] translate

the CB-CTT formulation into an Answer Set Programming (ASP)

problem and solve it using the clasp ASP solver.

A summary of the results of the cited contributions is given

in Table 9.1. There are reported lower bounds for the instances

of the ITC-2007 testbed, called comp, where the tightest ones are

highlighted in bold. In the table, we also report the best results

known at the time of writing. Best values marked with an asterisk

are guaranteed optima (i.e., they match the lower bound).

9.1.4 Instance generation

The �rst instance generator for CB-CTT has been devised in [19],

based on the structure of the comp instances. This contribution

has been later improved in [73] by Lopes and Smith-Miles, who

base their work on a deeper insight on the features of the instances.

Some of the results in the rest of this chapter, speci�cally the tuning

process, takes advantage of the generator developed in the latter

work, which is publicly available.

9.2 Problem formulation

The formulation of the problem that we use in this paper is the

one proposed for the ITC-2007, which is by far the most popular

one. Alternative formulations are described in [18]. The CB-CTT

formulation of ITC-2007 can be also found in [37]. However, for

the sake of self-completeness, we brie�y report it here.

142 Curriculum-Based Course Timetabling

The problem consists of the following entities

• Days×Timeslots = Periods. We are given a set D of teach-

ing days, each one partitioned in a set of timeslots T ⊆ N.

Each p ∈ P = D×T de�nes a period which is unique within

a week.

• Rooms. Lectures can be scheduled in a set R of rooms, each

one with a speci�c capacity kr for r ∈ R. Additionally, a

roomslot rs ∈ RS = R×P represents a room in a speci�c

period.

• Courses. A course c ∈ C is composed of a set Lc of lec-
tures, that must be scheduled at di�erent times. Each course

is taught by a teacher tc and is attended by a set of students
Sc. In addition, the lectures of a course should be scattered

over a minimum number of working days wc, and must not

be scheduled in any period u ∈ Uc ⊂ P declared as un-

available. The complete set of lecture is L =
⋃

Lc for all

c ∈ C.

• Curricula. Courses are organized in curricula q ∈ Q that

students can enrol to. Each curriculum has a set of courses

Cq ⊆ C. Lectures pertaining courses in the same curricu-

lum cannot be scheduled together, in order to allow students

of each curricula to attend all courses.

A feasible solution of the problem is an assignment of a period and

a room, to each lecture, that satis�es the followinghard constraints

• Lectures. All lectures L must be scheduled.

• Room occupancy. Two lectures l1, l2 ∈ L, l1 6= l2 cannot

take place in the same roomslot, no matter what course or

curriculum they pertain to.

• Con�icts. Lectures in the same course or in con�icting co-

urses i.e., same teacher or same curriculum, may not be sched-

uled at the same time.

• Availabilities. A course may not be taught in any of its

unavailable periods.

Feasible solutions can be ranked on the basis of their violations of

the following soft constraints

9.3 Modeling 143

Violation Weight Symbol

Room capacity 1 rc
Room stability 1 rs
Minimum working days 5 mwd
Isolated lectures 2 il

Table 9.2: Weights of the various types of violations [18]

• Room capacity. Every lecture l ∈ Lc for c ∈ C should

be scheduled in a room r ∈ R so that kr ≤ |Sc|, which can

accomodate all of its students. If this is not the case, |Sc|−kr
room capacity violations are considered.

• Room stability. Every lecture l ∈ Lc for c ∈ C should be

given in the same room. Every additional room used for a

lecture in course c generates a room stability violation.

• Minimum working days. Lectures Lc of a course c ∈ C
should be scattered over a minimum number of working days

wc. Each time a course is scheduled in d < wc days, counts

as wc − d working days violations.
• Isolated lectures. When possible, lectures of the same cur-

riculum should be adjacent within a day. Each time a lecture

is not preceded or followed by lectures of courses in the same

curriculum counts as a isolated lectures violation.

Therefore, in addition of being feasible, a solution s should have

the minimal linear combination of soft violations (see weights in

Table 9.2)

cost(s) = rc(s)·wrc+rs(s)·wrs+mwd(s)·wmwd+il(s)·wil (9.1)

For all the details, including input and output data formats and

validation tools, see [37].

9.3 Modeling

In this section we present two possible models for the CB-CTT

problem, one based on neighborhood search, the other on constra-

int programming.

144 Curriculum-Based Course Timetabling

9.3.1 Neighborhood search

The proposed neighborhood search method is based on Simulated
Annealing (see Section 3.2.4), in particular, the approach is based,

and improves, the one in [7]. As for all local search methods, we

need to de�ne a search space, a proper neighborhood relation, and

a cost function.

Search space

The search space is composed of all the assignments of lectures

to rooms and periods for which the hard constraint availabilities is

satis�ed. On the contrary, hard constraints con�icts and room occu-
pancy are considered in the cost function, however their violation

is highly penalized (see Equation 9.2).

Neighborhood relations

We employ a composite neighborhood relation, de�ned by the set

of solutions that can be reached by applying either of the following

moves to a solution

MoveLecture (ML) Move one lecture from its currently assigned

period and room to another period and/or another room.

SwapLectures (SL) Take two lectures of distinct courses in di�er-

ent periods and swap their periods and their rooms.

The overall neighborhood relation is the union of ML and SL. How-

ever, since previous studies [7] revealed that the ML neighborhood

is more e�ective by restricting to moves towards an empty room

in the new timeslot, the same restriction is applied where possible,

i.e., where the room occupancy is less than 100%, as there are no

empty rooms in such case.

In order to control how often each neighborhood is used, we

use a swap rate parameter sr ∈ [0, 1]. In detail, the move selec-

tion strategy proceeds in two stages: �rst the neighborhood is ran-

domly selected with a non-uniform probability with bias sr, then

a random move in the selected neighborhood is uniformly drawn.

9.3 Modeling 145

Cost function

In our model, the cost function is augumented with some of the

hard constraints (the ones constituting a hindrance to the genera-

tion of the �rst solution), namely con�icts (co(s)) and room occu-
pancy (ro(s))

cost′(s) = cost(s) + co(s) · whard + ro(s) · whard (9.2)

wherewhard is a parameter to the algorithm (see Table 9.3). In fact,

this value should be high enough to give precedence to feasibility

over the objectives, but it should not be too high so to allow the

SA meta-heuristic (whose move acceptance criterion is based on

the di�erence in the cost function) to select also moves that will

increase the number of violations in early stages of the search.

9.3.2 Constraint programming

In the following, we present the variables and constraints that de-

�ne the CP model for CB-CTT. At the best of our knowledge, this

is the �rst CP model for this formulation of the CTT problem.

Variables

We represent a solution as a set of l roomslot variables roomslot,

that encompass both the room and the period a lecture l ∈ L is

scheduled in. The variable domains are initialized as dom(room
slotl) = {1 . . . |R| · |P|}. Additionally, we use some redundant

variables (namely dayl, periodl, timeslotl, rooml with the obvi-

ous channellings) as modeling sugar.

Hard constraints

Since we are using exactly |L| decision variables, expressing the

lectures and room occupancy constraints is trivial

alldifferent(roomslot)

To model the Con�icts constraint, we must take into account pairs

of con�icting courses and constrain their lectures to be scheduled

146 Curriculum-Based Course Timetabling

at di�erent periods

alldifferent({roomslotl | l ∈ Lc1∪ Lc2})

∀ c1, c2 ∈ C, conflicting(c1, c2) where conflicting checks

whether two courses belong to the same curriculum or have the

same teacher (note that this holds when checking a course against

itself). Finally, the availabilities constraint can be modeled by im-

posing that

periodl 6∈ Uc, ∀ c ∈ C, l ∈ Lc

Note that, for our purposes, some of the hard constraints are avail-

able both as hard and soft constraints. In particular, the lectures and

con�icts constraint can be transformed into soft constraints by im-

posing nvalues and count constraints between the roomslot and

period variables and two auxiliary variables, and then embedding

the auxiliary variables in the cost function.

Soft constraints

For each of the soft constraints, we de�ne an auxiliary variable to

accumulate the violations of the constraints. For some of them,

such as room stability, this involves counting, for each c ∈ C how

many di�erent values (nvalues) were taken by {roomslotl | | l ∈
Lc}, and then subtracting it from |Lc| to calculate how many extra

rooms were used by the course. A similar approach is taken to com-

pute the violations for minimum working days, while set variables

and cardinality constraints are used for isolated lectures. The com-

plete model is publicly available at https://bitbucket.org/tunnuz/cp

ctt.

9.4 Search by Simulated Annealing

In this section, we describe the solution method for the neighbor-

hood search model presented in Section 9.3.1. In [7] the meta-

heuristic that guides the search is a combination (token-ring) of

Tabu Search and a “standard” version of SA. The method presented

in this section shows that an enhanced single-stage version of the

https://bitbucket.org/tunnuz/cpctt
https://bitbucket.org/tunnuz/cpctt

9.4 Search by Simulated Annealing 147

SA, once properly tuned, can outperform such a combination. The

main di�erences of the SA approach implemented in this algorithm

with respect to the SA in [7] are the following

1. a cuto�-based temperature cooling scheme [60], and

2. a di�erent stopping condition for the solver, based on the max-

imum number of allowed iterations.

Another major di�erence with respect to previous work consists

in the statistical analysis and the tuning process (see Section 9.4.1).

In particular, the tuning is carried out on a very broad set of in-

stances, described in Section 9.4.1. The statistical analysis aims

at distinguishing a �xed setting of the parameters that generalizes

reasonably well over the whole set of instances, and an automatic

procedure to predict the ideal parameter setup, on the basis of com-

putable features of the instance at hand.

In the rest of this section we describe the main algorithmic as-

pects of the SA method, and defer the explanation of the statistical

analysis and the tuning process to Section 9.4.1.

Cuto�-based cooling scheme. In order to better exploit the

time at its disposal, the implemented approach employs a cuto�-

based cooling scheme. In practice, instead of sampling a �xed num-

ber ns of solutions at each temperature level (as it is customary in

SA implementations), the algorithm is allowed to decrease the tem-

perature prematurely, i.e., by multiplying it for the cooling rate cr,

if a portion na ≤ ns of the sampled solutions has been accepted al-

ready. This allows to speed-up the search in the initial stages of the

search, thus saving iterations that can be used in the �nal stages,

where intensi�cation sets in.

Stopping condition. To allow a fair comparison with the ex-

isting work in literature, the considered SA variant stops when

an iteration budget (which is roughly equivalent to a time bud-

get, given that the cost of one iteration is approximately constant)

expires, rather than when a speci�c temperature tmin is reached.

This has the drawback that when the budget runs out, the temper-

ature might still be too high. In order to overcome this problem,

148 Curriculum-Based Course Timetabling

the expected minimum temperature tmin is �xed to a reasonable

value and the number ns (see Equation 9.3) of solutions sampled at

each temperature is computed so that the minimum temperature is

reached when the maximum number of iterations is met.

ns = itermax

/(
− log (t0/tmin)

log cr

)
(9.3)

Because of the cuto�-based cooling scheme, at the beginning of

the search the temperature decreases before all ns solutions have

been sampled, thus tmin is reached k iterations in advance, where

k depends on the cost landscape and on the ratio na/ns. These k
iterations are thus saved to be exploited at the end of the search, i.e.,

when tmin has been reached, to carry out further (intensi�cation)

moves.

Moreover, given the dependence of the cuto�-based scheme on

the ratio na/ns, in order to simplify the parameters of the algo-

rithm, we decided to specify indirectly the value of the parameter

na by employing a real-valued parameter ρ ∈]0, 1] that represents

the ratio na/ns of the number of sampled solutions that will be

accepted.

Summary of parameters. Our algorithm accepts many param-

eters. In order to refrain from making any “premature commit-

ment” [58], all the parameters are scrutinized in our statistical anal-

ysis. All the parameters are summarized in Table 9.3, along with

the ranges involved in the experimental analysis which have been

�xed based on preliminary experiments.

Note that the iterations budget has been �xed to the single

value (itermax = 2.31 · 108
) that provides the algorithm with a

running time (on our test machines) which is equivalent to the

one allowed by ITC-2007 computation rules (the original ITC-2007

benchmarking tool was used to perform this measurement, allow-

ing a running time of 408 seconds).

9.4 Search by Simulated Annealing 149

Parameter Symbol Interval

Starting temperature t0 [1, 100]

Neighbors accepted ratio (na/ns) ρ [0.01, 1]

Cooling rate cr [0.99, 0.999]

Hard constraints weight whard [10, 1000]

Neighborhood swap rate sr [0.1, 0.9]

Expected minimum temperature tmin [0.01, 1]

Table 9.3: Parameters of the search method

9.4.1 Feature-based tuning

In order to come up with a successful algorithm, we carry out an

extensive and statistically principled parameter tuning. The aim is

to investigate the possible relationships between the instance fea-

tures, reported in Table 9.4, and the ideal setup of the solver param-

eters. The ultimate goal of this study is to �nd, for each parameter,

either a �xed value that works well on a broad set of instances, or

a formula to predict the best value based on measurable features of

each instance. Ideally, the results of this study should carry over

to unseen instances, thus making the approach more general than

typical parameter tuning. This is, in fact, an attempt to alleviate the

e�ect of the No Free Lunch Theorems for Optimization [112], which

state that, for any algorithm (resp. any parameter setup), any ele-

vated performance over one class of problems is exactly paid for in

performance over another class.

In this section we �rst present the instances involved in the

analysis, then proceed to describe the statistical metodology and

the most important result. Finally, we compare the results with the

ones of the best approaches in literature.

Instances

According to the customary cross-validation guidelines [55], we

split the considered instances into two sets: a set of training in-
stances used to tune the algorithm, and a set of validation instances
used to evaluate and possibly revise the tuning .

150 Curriculum-Based Course Timetabling

Training instances. The �rst group is a large set of arti�cial in-

stances, created using the generator by [73], which has been specif-

ically designed to reproduce the features of real-world instances.

In order to avoid overtuning phenomena, only this set has been

used for the tuning phase and the individual results on these in-

stances will not be reported. The generator is parametrized upon

two features of the instances: the total number of lectures and the

percentage occupation of the rooms. For each pair of values of

the two parameters we generate 5 instances. As for the number

of number of lectures, our instances range from 50 to 1200, using

step 50, while the percentage of occupation takes the four values

{50%, 70%, 80%, 90%}. On overall, the full testbed consists of 480
instances (5 · 24 · 4). After screening them in detail, we realized

that not all instances generated were useful for our parameter tun-

ing purposes. In fact, four classes of instances were excluded from

the analysis in an early phase, namely provably infeasible instances,

instances with unrealistic room endowment (featuring courses with

more users than the capacity of the rooms), too hard instances (not

feasible with limited runtime, possibly infeasible), and too easy is-

ntances (where the 0-cost solutions can be found rather quickly).

Validation instances. The second group is the set of instances

employed in the literature. It comprises the usual set of instances,

the so-calledcomp ones, which is composed by 21 elements, mainly

from the University of Udine, that have been used for ITC-2007.

These instances were used to validate the goodness of the approach

emerging from the parameter tuning, against the other approaches

in literature.

Summary of features. Table 9.4 summarizes the available fami-

lies of instances, highlighting some aggregate indicators (i.e., min-

imum and maximum values) of the most relevant features of the

instances belonging to each family. All instances employed in this

work are available from the CB-CTT Problem Management System

http://satt.diegm.uniud.it/ctt.

http://satt.diegm.uniud.it/ctt

9.4 Search by Simulated Annealing 151

Family #I Co Le R Pe Cu

comp 21 30 – 131 138 – 434 5 – 20 25 – 36 13 – 150

test 4 46 – 56 207 – 250 10 – 13 20 – 25 26 – 55

DDS 7 50 – 201 146 – 972 8 – 31 25 – 75 9 – 105

Udine 9 62 – 152 201 – 400 16 – 25 25 – 25 54 – 101

EasyAcademy12 50 – 159 139 – 688 12 – 65 25 – 72 12 – 65

Erlangen 4 738 – 850 825 – 930 110 – 176 30 – 30 738 – 850

Family RO Co Av RS DL

comp 42.6 – 88.9 4.7 – 22.157.0 – 94.2 50.2 – 72.4 1.5 – 3.9

test 86.2 – 100.0 5.7 – 6.2 76.8 – 97.6 69.8 – 87.2 2.0 – 2.1

DDS 20.1 – 76.2 2.6 – 23.921.3 – 91.4 53.6 – 100.0 1.9 – 5.2

Udine 50.2 – 76.2 4.0 – 6.6 70.1 – 95.5 57.5 – 71.3 1.7 – 2.7

EasyAcademy 17.6 – 52.0 4.8 – 22.255.1 – 100.041.8 – 70.0 2.7 – 7.7

Erlangen 15.7 – 25.1 2.3 – 2.9 66.7 – 71.4 49.5 – 56.0 1.0 – 1.2

Table 9.4: Minimum and maximum values of the features for the

families of instances (#I: number of instances): courses (Co), to-

tal lectures (Le), rooms (R), periods (Pe), curricula (Cu), room oc-

cupation (RO), average number of con�icts (Co), average teachers

availability (Av), room suitability (RS), average daily lectures per

curriculum (DL).

Experimental setup

Our analysis is based on the 480 training instances described in

Section 9.4.1. The compared parameter setups are sampled from

the Hammersley point set [52], for which the ranges whose bounds

are reported in Table 9.3. This choice has been driven by two pro-

perties that make this point generation strategy particularly suit-

able for parameter tuning. First, the Hammersley point set is scal-
able, both with respect to the number of sampled parameter setups,

and to the dimensions of the sampled space. Second, the sampled

points exhibit low discrepancy, i.e., they are space-�lling, despite

being random-like. For these reasons, by sampling the sequence,

one can generate any number of representative combinations of

any number of parameters. Note that the sequence is determinis-

tic, and must be seeded with a list of prime numbers. Also, the se-

152 Curriculum-Based Course Timetabling

quence generates points p ∈ [0, 1]n, which must then be re-scaled

in their desired intervals.

All the experiments were generated and executed using json2

run [105] on an Ubuntu Linux 13.04 machine with 16 Intel
®

Xeon
®

CPU E5-2660 (2.20 GHz) physical cores, hyper-threaded to 32 vir-

tual cores. A single virtual core has been dedicated to each experi-

ment.

Exploratory experiments

Before carrying out the experimental analysis, we executed two

preparatory steps. The �rst involved running a F-Race(RSD) tun-

ing [13] over the training instances with a 95% con�dence, in or-

der to establish a baseline for further comparisons. The race ended

with more than one surviving setups, mainly di�ering for the val-

ues of whard and cr, but giving a clear indication about the good

values for the other parameters. This suggested that setting a spe-

ci�c value for whard and cr, at least within the investigated inter-

vals, was essentially irrelevant to the performance, which allowed

to simplify the analysis, by �xing whard = 100 and cr = 0.99 (see

Table 9.5). Observe that removing a parameter from the analysis

has the double bene�t of removing some experimental noise, and

to allow a �ner-grained tuning of the other parameters, at the same

computational cost. We thus repeated the race, which resulted in a

single winning setup, �xing ρ = 0.0364, t0 = 30, tmin = 0.16 and

sr = 0.43.

The second step consisted in testing all the sampled parameter

setups against the whole set of training instances. This allowed us

to further re�ne the study in two ways. First, from the result it was

clear that the initial estimates for the parameters intervals were too

conservative, encompassing low-performance areas of the param-

eters space. In particular, a notable �nding was that, on the whole

set of training instances, a golden spot for sr was around 0.43,

the same value found with F-Race; this parameter was thus �xed,

along with whard and cr. Table 9.5 summarizes the whole parame-

ter space after this preliminary phase (parameters in boldface have

not been �xed in this phase, and are the subject of the following

9.4 Search by Simulated Annealing 153

analysis). Second, we ran a Kruskal-Wallis test [56] with signi�-

cance 90% on the dependence of the cost distribution on parameter

values, which revealed that some of the instances were irrelevant

to our analysis. As a consequence, the analysis was furthered only

on a signi�cant subset of 314 original instances.

Parameter Symbol Interval

Starting temperature t0 [1, 40]

Neighbors accepted ratio (na/ns) ρ [0.034, 0.05]

Cooling rate cr {0.99}
Hard constraints weight whard {100}
Neighborhood swap rate sr {0.43}
Expected minimum temperature tmin [0.015, 0.21]

Table 9.5: Revised intervals for investigated parameters

Once the parameter domains were pruned, and the instances

reduced to the signi�cant ones, we sampled 20 parameter setups

from the remaining 3-dimensional (t0, ρ, tmin) Hammersley point

set, and we executed 10 independent runs of each parameter setup

on every instance. The following analysis is based on this data.

Statistical analysis

In order to train a model to predict the ideal parameters values for

each instance, two elements are needed. The �rst is a set of in-

stances with known or measurable features (the training set de-

scribed in Section 9.4.1). The second is the known ideal parameter

setup for each of these instances.

Per-instance parameter tuning. For each instance, the basic

idea is to approximate the cost as a function of the algorithmic

parameters by a regression model, with the parameters coded as

experimental factors assuming values in the [-1,1] range. Since it

is not possible to exclude from the analysis any interactions be-

tween the three algorithm parameters under study, all the param-

eters need to be considered together.

154 Curriculum-Based Course Timetabling

In particular, in our analysis, we took into account three di�er-

ent models.

Linear model (M1) A simple model approximating the cost as a

linear function of the algorithmic parameters. Namely, for

{i = 1, . . . , n}, with n equal to the sample size for each in-

stance (n = 20 · 10), the deterministic component of the

model is given by

g1(xi, β) = β0 +

3∑
j=1

xij βj

where xij is the i-th value for the j-th coded algorithmic

parameter (j = 1, 2, 3) and xi = (xi1, xi2, xi3), whereas β =
(β0, β1, β2, β3) are coe�cients that are estimated from the

experimental data.

�adratic model (M2) This model extends the previous one by

including quadratic terms for each coded algorithmic param-

eter and interaction term

g2(xi, β) = β0 +

3∑
j=1

βj xij +

3∑
j=1

βj+3 x
2
ij

+ β7 xi1 xi2 + β8 xi1 xi3 + β9 xi2 xi3.

Group-e�ect model (M3) These models simply assume a con-

stant level of cost at each di�erent experimental point, na-

mely

g3(xi, β) = βj ,with j = m(i)

where m(i) is the function that returns the experimental

point associated to each observation, namelym(i) ∈ {1, . . . ,
20}.

The last model can be seen as the model corresponding to one-

way ANOVA analyses. Based on the idea of experimental response

surfaces [7], we �rst �tted both M1 and M2, and we compared

them with M3. From the result of the preliminary Kruskal-Wallis

9.4 Search by Simulated Annealing 155

test it was already known that the selected instances were those

where M3 was a meaningful model, therefore the task performed

at this step aimed at checking whether a lower-dimensional linear

or quadratic function of the algorithmic parameters could approx-

imate su�ciently well the �t provided by the group-e�ect model.

All the models were �tted by median regression, rather than

ordinary least squares. Median regression assumes that the deter-

ministic function gj(xi, β), j = 1, 2, 3 approximates the median

cost, rather than the mean cost, corresponding to a certain combi-

nation of algorithmic parameters. Denoting by yi the cost of the

i-th observation, the estimated β coe�cients are the coe�cients

that minimize the objective function

n∑
i=1

|yi − gj(xi, β)| (9.4)

and therefore the technique is also known as Least Absolute De-

viation (LAD) regression. Being based on the median rather than

the mean, median regression is much less in�uenced by outliers in

the response then ordinary least squares. As a consequence, me-

dian regression is suited for robust estimation of regression models

from experimental data where outliers may arise in the response,

such as in the algorithm under study here. Inferential usage of the

method does not require the normality assumption of the response

variable, hence it is not crucial to choose the right scale for the cost.

This is a clear advantage when data from multiple instances are

analyzed, as the normalizing transformations of cost varies widely

across the instances. Last but not least, median regression models

can be easily trained by casting the optimization of (9.4) as a linear

programming problem, as done by the R package qantreg [69].

All in all, median regression, or, more generally, quantile regres-

sion, seems reasonably suited for the analysis of the performances

of stochastic algorithms.

The model among M1, M2, and M3 that provided the best �t

was selected by means of the Akaike Information Criterion (AIC)

for model selection [68], which is known to have good perfor-

mances for prediction. When the linear or quadratic regression

models were selected, the parameter setup corresponding to the

156 Curriculum-Based Course Timetabling

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

P
re

di
ct

or

F
−

R
ac

e

50

100

150

200

0 10 20 30
Start temperature

S
ol

ut
io

n
co

st

Figure 9.1: Relation between t0 and cost distribution on a single

training instance with Le = 1200. Shown are also the ideal t0
found by F-Race and by the feature-based predictor.

minimum predicted cost was then chosen, and the corresponding

parameters deemed as being optimal. When the group-e�ect mo-

del was selected by the AIC criterion, we chose the design point

corresponding to the smallest sample median, as M3 model �tted

by median regression corresponds to computing a di�erent sam-

ple median at each design point. Figure 9.1 displays the box-plots

of cost values on a single training instance corresponding to each

design point, projected on t0.

Feature-based regression of optimal parameter values. Once

we indenti�ed the ideal parameter setup for each instance, instance

features were included in the regression. We thus built one median

regression model for each parameter to predict, and the instance

features, together with the identi�ed ideal setups, were used to

train the model. Clearly, not all features are equally relevant for the

prediction of the parameters, therefore the process started from a

model involving the complete set of features and, again by using

the AIC criterion, we sorted out one feature at once until the best

�tted model was reached, i.e., the one with smallest AIC.

As it turns out, only three of the considered features are sig-

ni�cant for predicting the algorithm parameters, namely the total

number of lectures (Le), the number of curricula (Cu), and the av-

erage number of daily lectures per curriculum (DL). Moreover, dif-

ferent parameters are predicted by di�erent features. In particular,

9.4 Search by Simulated Annealing 157

Param. Intercept Le Cu DL

t0 16.5 0.019 −0.027 0

ρ 0.043 −9.95 ·10−6 1.99 ·10−5 0

tmin 0.073 −1.17 ·10−5 0 4.58 ·10−2

Table 9.6: Coe�cients for parameter predictors. Le is the number

of lectures, Cu the number of curricula, DL the average number of

daily lectures per curriculum.

in order to predict the ideal t0 and ρ one needs to know the total

number of lectures and the number of curricula, while to compute

the ideal tmin the number of lectures and the average number of

daily lectures per curriculum are needed. Table 9.6 reports the co-

e�cients of our �tted linear models, together with the intercept

term.

By looking at the predicted parameter values for the valida-
tion instances, with respect to their features (see Figure 9.2), we

can draw come conclusions. First, t0 and ρ are highly correlated

with the number of lectures, a feature which, in literature, is com-

monly considered as a measure of instance hardness. In particular,

as the number of lectures increases, the predicted initial temper-

ature increases as well, suggesting that, when instances become

more di�cult, it is bene�cial to accept a lot of worsening solutions

at the beginning of the search. This was, in fact, an expected result

of the analysis, as raising the initial temperature fosters the explo-

ration of the search space in the hope of �nding basins of attrac-

tion of lower cost. Moreover, the ideal number of neighbors that

have to be accepted before decreasing the temperature gets lower

when the problem gets harder. This indicates that the cuto�s mech-

anism described in Section 9.4 plays a determinant role in achiev-

ing good performances on the larger instances. Finally, the ideal

minimum temperature increases linearly with the increase of the

average number of lectures per curriculum, which is another mea-

sure related to instance hardness. The consequence of this choice

is that the temperature will decrease more quickly on larger in-

stances, supporting the e�ect of cuto�s, and performing a lot of

158 Curriculum-Based Course Timetabling

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

15

20

25

30

200 300 400
Lectures

St
ar

t t
em

pe
ra

tu
re ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.038

0.040

0.042

0.044

200 300 400
Lectures

N
ei

gh
bo

rs
 a

cc
ep

te
d

ra
tio ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.14

0.16

0.18

0.20

0.22

0.24

200 300 400
Average daily lectures per curriculum

M
in

im
um

 te
m

pe
ra

tu
re

Figure 9.2: Comparison between the parameters found by F-Race

(cyan line), and the ones predicted by the model based on the fea-

tures of each instance (pink dots). The points represent instances

in the validation set, and consider the most in�uential feature for

each parameter.

intensi�cation towards the end of the search. Note that, in order

for this strategy to perform a su�cient amount of diversi�cation,

the initial temperature must be higher (as suggested by the predic-

tor).

9.4.2 Results

In the following, we report the comparison of our approach both

against the F-Race baseline, as well as some results against the best

approaches in literature.

Comparison with the baseline

In order to compare the quality of feature-based tuning against the

standard F-Race approach, we ran our algorithm, tuned with both,

on the validation instances.

The experiments revealed that there is almost no di�erence in

the cost distributions, with each approach outperforming the other

about half of the times. This result was somewhat surprising, since

feature-based tuning, in virtue of its use of feature information, is

expected to exhibit a better generalization behavior over unseen

instances. We looked for an explanation of this e�ect in the train-

ing phase of our regression models, and found out that, in fact, the

9.4 Search by Simulated Annealing 159

per-instance tuning (ideally the best possible, see Subsection 9.4.1),

has itself a quality comparable to standard F-Race. By looking at

Figure 9.1, which is representative of a large portion of the train-

ing instances, it is possible to see why. The parameter space (in

this case for t0) is split in two well-distinct parts. One part (the

leftmost in Figure 9.1) yields poor results, while any choice of val-

ues inside the other part is reasonably safe. In our scenario, the

portion of the parameter space leading to poor results is typically

very narrow, while the portion leading to better results is broader.

This suggests that the chosen algorithm is rather robust with re-

spect to parameter choice, at least for this kind of problem. As a

consequence, it is possible, for F-Race, to �nd a parameter setup

that works consistently well across a large set of instances.

From a practical point of view, achieving feature-based tuning

is, in general, much more expensive than running a parameter race.

However, the outcomes of this process are both an insight on the

meaning and relevance of parameters, and a mechanism (i.e., our

parameter predictors) that will expectedly scale to a higher degree

on new, unseen, problem instances. For these reasons, while rec-

ognizing the e�ectiveness and time-e�ciency of F-Race, we chose

to resort to feature-based tuning for the comparison with the state

of the art.

Comparison with other approaches

In order to validate the quality of our approach, we compared its

results against the best ones in literature using the ITC-2007 time-

out and instances. For the sake of fairness, the results that are ob-

tained by allotting a higher runtime, for example those of [3], who

use 10’000 to 100’000 seconds instead of about 300-500 seconds as

established by the competition rules, have been excluded from the

comparison.

Table 9.7 shows the average of 31 runs of the algorithm, in wh-

ich we have highlighted in bold the lowest average costs. For the

sake of completeness, we have reported the results obtained with

standard F-Race tuning as well, but we have not considered them in

the comparison, as our method of choice is the one using feature-

160 Curriculum-Based Course Timetabling

based tuning. The �gures show that our approach matches or out-

performs the state of the art algorithms in more than half of the

instances, also improving on our previous results.

Inst. [81] [74] [1] [7] Us Us (F-Race)

comp01 5.00 5.00 5.00 5.00 5.16 5.26

comp02 61.30 60.60 53.90 51.60 55.93 55.49

comp03 94.80 86.60 84.20 82.70 80.87 82.55

comp04 42.80 47.90 51.90 47.90 39.48 39.61

comp05 343.50 328.50 339.50 333.40 340.87 338.97

comp06 56.80 69.90 64.40 55.90 55.64 55.98

comp07 33.90 28.20 20.20 31.50 28.68 27.87

comp08 46.50 51.40 47.90 44.90 45.03 44.77

comp09 113.10 113.20 113.90 108.30 106.96 107.16

comp10 21.30 38.00 24.10 23.80 23.26 24.58

comp11 0.00 0.00 0.00 0.00 0.00 0.00

comp12 351.60 365.00 355.90 346.90 337.80 336.29

comp13 73.90 76.20 72.40 73.60 74.70 74.22

comp14 61.80 62.90 63.30 60.70 58.51 58.94

comp15 94.80 87.80 88.00 89.40 79.93 80.68

comp16 41.20 53.70 51.70 43.00 39.54 40.35

comp17 86.60 100.50 86.20 83.10 79.29 78.74

comp18 91.70 82.60 85.80 84.30 80.90 82.16

comp19 68.80 75.00 78.10 71.20 67.80 69.06

comp20 34.30 58.20 42.90 50.60 47.74 49.00

comp21 108.00 125.30 121.50 106.90 104.19 103.55

avg 87.22 91.26 88.13 85.06 83.44 83.58

Table 9.7: Best results and comparison with other approaches over

the validation instances. Values are averages over multiple runs of

the algorithms.

We consider this outcome as very representative of the quality

of the presented approach, especially considering that validation

instances were not involved in the tuning process, to avoid over-

tuning, and that the algorithm itself is very simple.

9.5 Search by Large Neighborhood Search

Our CP model for the CB-CTT problem (see Section 9.3.2) was im-

plemented in Gecode (v4.2.0), enabling its resolution with branch

9.5 Search by Large Neighborhood Search 161

& bound. However, the tackled problem revealed to be quite hard

to solve for branch & bound alone, as all but the easiest instances

failed to provide even a feasible solution within a time budget equal

or comparable to the one allowed by the ITC-2007 rules. In partic-

ular, the essential Lectures and Con�icts hard constraints proved to

be very hard to tackle. This prompted us to seek for a di�erent

search strategy.

9.5.1 Algorithm overview

The approach we describe in this section is a mix of branch & bound

and Large Neighborhood Search (LNS, see Section 7.1) based on the

CP model described in Section 9.3.2. In particular, in our approach,

we deal with the Lectures and Con�icts hard constraints by relax-

ing them, and including them in the cost function as soft constraint.

Then we proceed to solve the lexicographic minimization problem

where �rst all the violations of the relaxed constraints are elimi-

nated, and then the objective function as de�ned in the formulation

(Equation 9.1) is minimized.

The algorithm iteratively improves an incumbent solution s.
Each resolution starts with a 10-seconds branch & bound attempt

to solve the complete model, in order to get an advantage on easier

instances. This is reasonable as, for such instances, it is conve-

nient to use a search mechanism with strong propagation proper-

ties. Then an iterative phase starts, where, at each step, we select

a number d of roomslot variables from s, we reset their domains

to the original ones (see Section 9.3.2), and we re-optimize them

through branch & bound. The algorithm stops when the allotted

time budget expires.

In the rest of this section, we present the speci�c components

of our LNS technique, some of which are specialized from CB-CTT,

as suggested in Section 7.1.

Biased relaxation

When the variables must be chosen for relaxation, a fraction of

them is chosen heuristically based on the constraints being violated

by the solution. For instance, if a lecture l ∈ L causes a con�ict,

162 Curriculum-Based Course Timetabling

we release roomslotl as well as the roomslot variables related

to lectures con�icting with it. In general, whenever we detect a

variable causing a violation, we release it. The rest of the variables

is chosen uniformly at random until the number of variables to

relax d is reached.

Branch & bound time budget

Once d variables have been relaxed, a new solution is generated by

re-optimizing them. This corresponds to solving a domain-based

tightening of the original problem, i.e., a subproblem induced both

by the variables that are already �xed, and by the propagation ac-

tivated by these �xations. In general, one could try to get the opti-

mal solution for the subproblem, however, according to our exper-

iments, it is much more bene�cial to save time and execute many

iterations. As such, our branch & bound is time bounded by

t = tvar · d

where tvar is a parameter of the algorithm. Thus, the more vari-

ables are relaxed by the destroy step, the more time is given to the

repair step to come up with a good solution.

Simulated annealing-like cost bound

Being LNS a special case of neighborhood search, we need a strat-

egy to deal with local optima. For this problem, we decided to use

the simulated annealing-like cost bound, described in Section 7.1.2.

Note that, by using this technique, we can still get the cost-based

propagation (since the cost of the next solution is bounded), while

being able to escape local optima. However, this introduces four

parameters in the algorithm, since we use the SA with cuto�s.

Variable neighborhoods

The search process starts by relaxing d = dmin variables. After

a number itermax · d of iterations have been spent at a certain d
without any improvement, d is increased by one, and up to d =
dmax · |L|. Here itermax, dmin, and dmax are parameters of the

9.5 Search by Large Neighborhood Search 163

algorithm, that must be tuned. Whenever d = dmax, the search

restarts with a new solution di�ering from the original one in 2 ·
dmax, and the d is reset to dmin. The restart solution is found using

a random branching strategy.

Adaptive dmin

In some situations, it may be necessary to release more than dmin
variables to get any solution improvement. This means that, until

itermax iterations have passed, it is not possible to improve. To

cope with this aspect, at each restart, the new dmin is set to the d
that yielded the highest number of (temporary) best solutions in

the past iterations.

9.5.2 Parameter tuning

The presented LNS approach involves a number of parameters, wh-

ich are summarized in Table 9.8, together with their initial inter-

vals. Here we split the parameters with continuous domains (which

have to be sampled) from the parameters with discrete domains, for

which every value in the domain is tried. Note that ρ and itermax
are considered as a continuous parameters, even though their val-

ues are truncated to their integer part after sampling. Moreover,

some of the parameters, such as dmin, dmax, and tvar were �xed or

discretized after some preliminary experiments.

Parameter Symbol Domain

Min. free variables dmin {2} discrete

Max. free variables (ratio) dmax {0.05} discrete

Max. iterations itermax [150.0, 350.0] continous

Msec to �x a variable tvar {7, 10, 20, 50} discrete

Init. temperature tinit [1.0, 100.0] continuous

Cooling rate λ {0.95, 0.97, 0.99} discrete

Neighbors accepted before cooling ρ [1, 50] continuous

Table 9.8: LNS parameters

For the tuning process, we have used the same approach de-

scribed in Section 9.4.1 to compute the F-Race baseline. We thus

164 Curriculum-Based Course Timetabling

sampled 32 parameters setups from the Hammersley point set ba-

sed on the continuous parameters, and assigned each value in turn

to the discrete parameters. Then we ran an F-Race with 95% con-

�dence, over a set of instances including the ones in the ITC-2007

competition. The result of the race is the following winning setup:

tvar = 10, tinit = 35, ρ = 5, itermax = 250 and λ = 0.97.

9.5.3 Results

Table 9.9 shows our results (grey column) against the current best

ones in literature, on the ITC-2007 testbed. Overall, the proposed

approach is outperformed by most approaches in literature. This

is likely explainable by the fact that most approaches are based

on very fast neighborhood search strategies, while LNS involves

cloning constraint networks and performing propagation, and prob-

ably requires more time (i.e., dropping the competition rules) in

order to attain good performance.

One advantage of using an underlying CP model is that adding

side constraints to the model is rather trivial, which makes the ap-

proach �exible and much more applicable to real-world situations.

However, the rather noticeable di�erence in performance with re-

spect to the other approaches is still an important limit to over-

come.

Conclusions

In this chapter, we presented a popular combinatorial optimization

problem, namely curriculum-based course timetabling (CB-CTT),

which arises in many universities every semester. We solved the

problem using two very di�erent approaches. The �rst one is a

simulated annealing neighborhood search, whose parameters are

tuned on the �y based on the features of the instance being solved.

The second approach is a large neighborhood search based on a

novel CP model for the problem.

9.5 Search by Large Neighborhood Search 165

Inst. [37]∪[81] [74] [1] [7] CP+LNS Best

avg best avg best avg best avg best med best

comp01 5.0 5 5.0 5 5.0 5 5.00 5 6.0 5 5

comp02 61.3 43 60.6 34 53.90 39 53.0 40 219.5 158 24

comp03 94.8 72 86.6 70 84.20 76 79.0 70 226.0 158 66

comp04 42.8 35 47.9 38 51.90 35 38.3 35 92.0 62 35

comp05 343.5 298 328.5 298 339.5 315 365.20 326 931.5 637 290

comp06 56.8 41 69.9 47 64.40 50 50.4 41 174.0 130 27

comp07 33.9 14 28.2 19 20.20 12 23.8 17 156.5 97 6

comp08 46.5 39 51.4 43 47.90 37 43.6 40 162.5 70 37

comp09 113.1 103 113.2 99 113.90 104 105.0 98 216.0 173 96

comp10 21.3 9 38.0 16 24.10 10 20.5 11 137.5 91 4

comp11 0.0 0 0.0 0 0.0 0 0.00 0 0.0 0 0

comp12 351.6 331 365.0 320 355.90 337 340.5 325 716.0 616 300

comp13 73.9 66 76.2 65 72.40 61 71.3 64 152.0 120 59

comp14 61.8 53 62.9 52 63.30 53 57.9 54 131.0 103 51

comp15 94.8 – 87.8 69 88.00 73 78.8 70 226.5 150 66

comp16 41.2 – 53.7 38 51.70 32 34.8 27 124.5 93 18

comp17 86.6 – 100.5 80 86.20 72 75.7 67 198.5 152 56

comp18 91.7 – 82.6 67 85.80 77 80.8 69 144.5 116 62

comp19 68.8 – 75.0 59 78.10 60 67.0 61 199.0 141 57

comp20 34.3 – 58.2 35 42.90 22 38.8 33 185.0 137 4

comp21 108.0 – 125.3 105 121.50 95 100.1 89 257.5 209 75

Table 9.9: Comparison with the best approaches in literature on

ITC-2007 instances. Timeout (5 minutes) has been calculated using

the competition benchmarking tool.

166 Curriculum-Based Course Timetabling

Chapter 10

Other contributions

During the course of my doctorate, I have worked with local and

international researchers on research projects involving optimiza-

tion at di�erent levels. This chapter is an attempt to give a very

brief overview of the attained results, however an in-depth discus-

sion of these works is out of the scope of this thesis.

Section 10.1 is devoted to Virtual Camera Control, a research

topic at the cross-roads between optimization and computer graph-

ics. The results addressed in this section are based on work, carried

out before and during my doctoral course with, Prof. Roberto Ra-

non
1
, and Prof. Marc Christie

2
.

10.1 Virtual Camera Control

In a computer graphics application, such as a videogame or a scien-

ti�c visualization, the user experiences the virtual world through

the lenses of a virtual camera. Virtual camera control (VCC) is a

branch of computer graphics which deals with positioning and mov-

ing a virtual camera within a virtual environment, and also encom-

passes other aspects such as shot editing and virtual cinematogra-

phy. Since the quantity and quality of information perceived by the

user is dependent on the way the camera is handled by the system,

1

Department of Mathematics and Computer Science, University of Udine, Italy

2

IRISA/INRIA Rennes Bretagne Atlantique, France.

167

168 Other contributions

camera control is one of the fundamental aspects of the interaction

of the user with the virtual world.

In its most common form, a virtual camera (see Figure 10.1) is a

geometric object which can be de�ned through seven parameters:

position (x, y and z), orientation (through the Euler angles φ, θ, and

ψ), and �eld of view (γ, which represents the zoom).

Figure 10.1: A virtual camera.

A common way to achieve automatical control of the virtual

camera is the following. First, a set of objective functions that mea-

sure the degree of satisfaction of some desired visual properties

of the �nal image (or shot) are de�ned. Then, a general-purpose

solver is used to maximize the linear combination of such objective

functions, thus transforming the problem of �nding a good virtual

camera setup in a continuous-domain optimization problem. When

the problem consists in �nding a virtual camera at a speci�c instant

in time, it is often referred to as viewpoint computation.

Two main issues arise when such an approach is used to solve

viewpoint computation problems. First, in order to obtain good re-

sults, the algorithms computing the satisfaction of the visual pro-

perties should return accurate measures. Second, in order for an

automatic approach to be useful, its performance should be com-

patible with real-time environments, i.e., scenes where the objects

might quickly change their position. We brie�y address these is-

sues in the following sections, and defer the interested reader to

the relative papers.

10.2 Runtime analysis of Genetic Programming 169

10.1.1 Pixel-accurate evaluation of visual properties

In [86] we describe a language for reasoning about visual properties

in terms of operations, e.g., counting and overlap assessment, on

pixel sets. The described language allows to de�ne new properties

as sub-routines, and upon execution over a virtual environment,

employs the capabilities of the graphical processing unit (GPU) to

assess the satisfaction of such properties.

This approach can be used to assess the accuracy attained by

automatic virtual camera control algorithms, but it cannot be used

in a solving phase, because of the high computational cost of the

executed operations.

10.1.2 E�cient viewpoint computation with PSO

In [?], we present a viewpoint composition library based on parti-

cle swarm optimization (PSO, see Section 4.1). The library is based

on a previous work by some of the same authors, but the focus of

the new research is on the performance. In particular, we propose

a new technique for initializing PSO particles, which makes use

of problem-speci�c information to guess good candidate positions.

Moreover, we carry out an extensive parameter tuning and perfor-

mance analysis in order to obtain performances that are compliant

with real-time applications.

The described library is publicly available under the permis-

sive MIT license at https://bitbucket.org/rranon/smart-viewpoint-

computation-lib.

10.2 Runtime analysis of

Genetic Programming

In the last decade, genetic programming (GP) [70] algorithms have

found various applications in a number of domains. However, their

runtime behaviour is hard to understand in a rigorous manner. In

particular, the implicit stochasticity in many components of GP al-

gorithms, make it di�cult to establish clear upper bounds for the

application of GP to a lot of problems.

https://bitbucket.org/rranon/smart-viewpoint-computation-lib
https://bitbucket.org/rranon/smart-viewpoint-computation-lib

170 Other contributions

In the last few years, researchers in the �eld of runtime analy-

sis and evolutionary computation, have devised a number of prob-

abilistic techniques, e.g., drift analysis [43] and �tness-based parti-

tions [111], to come up with expected upper bounds to the running

time.

In [106], we provide experimental evidence to the theoretical

results obtained in a recent work [46], which analyzed the runtime

of GP on two simple study problems. The purpose of our experi-

mental analysis is twofold. On the one hand we want to con�rm

the expected runtimes obtained through the theoretical study. On

the other hand, we want to conjecture expected runtimes for situ-

ations in which a proven upper bound has not been found.

In [82], we analyze, both from a theoretical standpoint, and

from an experimental one, the runtime of single- and multi-objective

GP algorithms on generalized versions of the said study problems.

We give proofs for new bounds for some algorithmic setups, and

provide experimental evidence for some aspects for which a bound

is currently missing.

A complete discussion of the results in [106, 82] out of the scope

of this thesis.

Conclusions

We presented two additional bodies of work, which are not directly

related with the topic of this thesis, but constitute original research

work carried out during my doctoral course. These include an ap-

plication of particle swarm optimization to the problem of gener-

ating snapshots of a 3D environment which satisfy some desired

visual properties, and some interesting results in the runtime anal-

ysis of both single- and multi-objective genetic programming.

Appendix A

Parameter tuning

All of the approaches described in this thesis, and in general most

optimization algorithms, expose a number of parameters which

control their behavior. To make an example, the initial temperature

t0 and the cooling rate λ in simulated annealing (see Section 3.2.4)

determine the balance between diversi�cation and intensi�cation

obtained by the algorithm. Of course, depending on the explored

�tness landscape, it might be preferable to diversify or to intensify,

but this is not known in advance. In general, the success of a spe-

ci�c approach over a given problem instance, depends on setting

correctly the values for all its parameters.

Unfortunately, in most cases, there is no general rule of thumb

concerning the correct setting of the parameters. It is thus neces-

sary to use automatic techniques that are able to use experiments

in order to come up with a good parameter setup. Such techniques

belong to the class of parameter tuning algorithms.

In this appendix, we describe two techniques for parameter

tuning, namely single-point parameter tuning and feature-based pa-
rameter tuning. We present a popular algorithm to achieve the for-

mer, and the general idea behind the latter. Concerning feature-

based parameter tuning, since it is still a domain-dependent tech-

nique, we refer the reader to a possible implementation in the con-

text of curriculum-based course timetabling (CB-CTT) in Section

9.4.1.

171

172 Parameter tuning

A.1 De�ning the competing parameter setups

Regardless of the employed tuning technique, a common prepara-

tory step consists in de�ning the alternative parameter setups that

are compared. This preparatory step involves two phases. The �rst

one consists in de�ning the parameter ranges. For some parame-

ters, this is trivial, because the range is implicit in the parameter

semantics. For instance, the implicit rate for the cooling rate λ
in simulated annealing is]0, 1]. However, note that even for such

parameters, more restrictive ranges can be devised in order to con-

centrate the tuning in better areas of the parameters space. To fur-

ther the previous example, reasonable values of the cooling rate are

usually in [0.9, 1.0]. For other parameters, the reasonable ranges

must be de�ned with exploratory experiments. Exploratory experi-

ments consist in running the algorithm under study, with various

parameter setups, on a reasonable number of problem instances.

These exploratory experiments should roughly sample the space

of parameters, hence the initial ranges for the parameters should

be very large.

Note that so far we have not considered categorical parameters,
i.e., discrete parameters that de�ne alternative implementations of

algorithms or their components. For instance, in a neighborhood

search algorithm, whether to only solutions that strictly improve

upon the incumbent one, or accept sideways moves. Ideally, such

variants should be exposed as parameters and optimized through

parameter tuning, as suggested in [58] in the philosophy of pro-
gramming by optimization.

Also, note that it is not possible, to optimize one parameter at

a time, as in most algorithms the parameter interact and concur in

determining the behavior of the algorithm. This is the single most

important underlying assumption of parameter tuning.

A.1.1 Full factorial

One way to come up with a number of candidate parameter setups,

is to de�ne discretizations over the identi�ed parameter ranges,

and then considering the Cartesian product of such discrete sets.

A.1 De�ning the competing parameter setups 173

Such approach is called the full factorial. This method allows to

obtain space-�lling setups, i.e., parameter setups that cover all the

space of possible parameters. Speci�cally, let n be the number of

parameters, for every set of n − 1 parameters, the remaining pa-

rameter takes all the values in its discretized range.

The disadvantage of such approach is obvious, as the number

of generated parameter setups is very large (see Figure A.1, wh-

ich depicts 1′000 parameter setups generated from 3 parameters in

[0, 1] with 10 values per parameter).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

p1

p2

p3

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

(a) 3D view of the parameter space

with the generated parameter se-

tups.

p1

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

p2

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

p3

(b) Projections of the parameter se-

tups on each pair of dimensions of

the parameter space.

Figure A.1: Setups generated as Cartesian product of ranges.

Of course, generating that many parameter con�gurations just

to adequately represent the parameter space has its drawbacks,

since in order to choose the best parameter setup, many experi-

ments must be carried out.

A.1.2 Sampling

In order to avoid generating the full factorial, one approach in-

volves sampling a number of con�gurations from the parameter

space. This can be done by using techniques that allow to generate

representative sets of points, while keeping the number of gener-

ated setups low.

174 Parameter tuning

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

p1
p2

p3 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) 3D view of the parameter space

with the generated parameter se-

tups.

p1

0.0 0.2 0.4 0.6 0.8 1.0

●● ●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ●● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

p2 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p3

(b) Projections of the parameter se-

tups on each pair of dimensions of

the parameter space.

Figure A.2: Setups sampled using the Hammersley point set.

One such parameter is the Hammersley point set [52], which

we employed for the �rst time in [5]. Two properties, in partic-

ular, make this point generation strategy particularly suitable for

parameter tuning. First, the Hammersley point set is scalable, both

with respect to the number of sampled parameter setups, and to

the dimensions of the sampled space. Second, the sampled points

exhibit low discrepancy, i.e., they are space-�lling, despite being

random-like. For these reasons, by sampling the sequence, one can

generate any number of representative combinations of any num-

ber of parameters. Note that the sequence is deterministic, and

must be seeded with a list of prime numbers. Also, the sequence

generates points p ∈ [0, 1]n, which must then be re-scaled in their

desired intervals. Figure A.2 shows 100 space-�lling parameter se-

tups generated with this method.

Other techniques for sampling include the nearly-orthogonal
latin hypercubes [31], which have been successfully employed in

[7].

A.2 Finding the best con�guration with race 175

A.2 Finding the best con�guration with race

Once a set of alternative parameter setups has been identi�ed, we

need to �nd the best one (or ones). One popular approach for this

task is to employ an approach called F-Race [12].

An F-Race consists in a controlled execution of experiments,

in which, at each step, some of the parameter setups are possibly

sorted out. The general idea of the algorithm is the following. First,

all the competing con�gurations are run against an initial block of

instances of �xed size. A typical value for the block size is around

10, but it strongly depends the available resources, i.e., instances,

time budget. After the experiments have been executed, each in-

stance is considered and a natural ranking of the parameter setups

is calculated. Then, each parameter setup is considered and the

sum of the ranks obtained in the various instances is calculated.

At this point, a Friedman rank sum test with a given con�dence is

executed on the parameter setups, and a post-hoc analysis is used

to sort out the ones that are “provably” inferior.

After the �rst set of parameter setups have been pruned, the ex-

perimentation restarts with the remaining ones, and at each new

instance a new pruning is attempted. Note that the number of pa-

rameter setups is only reduced if the Friedman test produces a su�-

ciently low p-value. Also, note that with this mechanism, the over-

all cost of parameter tuning is reduced, as not all parameter setups

are tried against all instances.

The race stops when there is only one con�guration remaining,

or all the instances have been tried. Note that the result of this

tuning is a con�guration which is overall better than the others at

tackling the whole set of instances. By de�nition, this means that,

on some speci�c instance, a di�erent approach might be better than

the winning one, but not overall. This makes sense as, if we identify

an algorithm with a given parameter setup, then the NFL theorems

hold.

176 Parameter tuning

A.3 Feature-based parameter tuning

A more involved statistical analysis can be carried out to produce

a more instance-speci�c tuning, i.e., which is less doomed by the

NFL theorems. In order to to this, one needs

• the best parameter con�guration for each instance, and

• a set of features that represent each instance.

Features are computable metrics about a problem instance, that

can be computed o�ine or quickly computed online when the in-

stance is loaded in the solver. For instance, Table 9.4 describes some

of the most relevant features in CB-CTT instances. The overall pro-

cedure works as follows. First, a per-instance overtuning is carried

out, to �nd the parameter setup that is the best for each instance.

Then, a statistical model is �tted using the features of each instance

as inputs, and the ideal parameter values as outputs.

If the model is constructed correctly, it can be used perform re-

gression, i.e., to predict the ideal parameter values based on mea-

surable information about the instance. In practice, many features

are not actually needed in estimating the correct parameter values.

Moreover, it is possible that the noise in the experimental data is

too high to allow any reliable modeling.

The process of building a feature-based predictor for simulated

annealing parameters based on CB-CTT instance features, is de-

scribed in Section 9.4.1.

A.4 json2run

json2run [105] is a Python-based command line tool to automate

the running, storage, and analysis of experiments. The main ad-

vantage of json2run (over a home-brewed experiment suite) is

that it allows to describe a parameter space concisely as a JSON
1
-

formatted pseudo-logical parameter tree, such as the following (note

the presence of parameter de�nitions as well as logical operators

to combine them).

1

Website: http://www.json.org

http://www.json.org

A.4 json2run 177

{
"type": "and",
"descendants": [

{
"type": "discrete",
"name": "p1",
"values": ["foo", "bar", "baz"]

},
{

"type": "or",
"descendants": [

{
"type": "discrete",
"name": "p2",
"values": { "min": 0.0, "max": 1.0, "step": 0.25 }

},
{

"type": "continuous",
"name": "p3",
"values": { "min": 2.0, "max": 3.0 }

}
]

}
],
"postprocessors": [

{
"type": "hammersley",
"points": 20

}
]

}

Parameter generations work as a coroutine, i.e., every call to the

parameter generation facility produces the next parameter setup.

The nodes of the parameter tree are handled recursively as follows

Discrete nodes are leaf nodes which generate one discrete pa-

rameter at a time, as de�ned in their values. The values

can be speci�ed extensionally (see p1 in the example), or in-

tensionally through a step parameter (see p2).

Continuous nodes are special nodes, which describe (but do not

generate) discrete parameters. Instead, they generate inter-

val parameters that must be later be processed by postproc

essors.

And nodes generate the Cartesian product of the discrete pa-

rameters generated by their descendants. That is, they �rst

activate once all their descendants to generate the �rst pa-

rameter setup. At the subsequent calls, they only activate

the last descendant and keep the �rst ones �xed, until the

last descendant has produced all the possible values (of com-

bination of values if it contains more and nodes). The process

goes on until all the con�gurations are generated.

178 Parameter tuning

Or nodes activate their descendants one at a time, thus can be

used to generate alternatives.

Post-processors can perform additional operator on the parame-

ter setups generated by the node they are attached to. For in-

stance, they can process the continuous parameter in order

to implement sampling, they can perform rounding opera-

tions on speci�c parameters, and generate parameters based

on custom Python expressions.

Thus, the above parameter tree would generate the following se-

quence of experiments

./solver --p1 foo --p2 0.0

./solver --p1 foo --p2 0.25

./solver ...

./solver --p1 foo --p3 2.05

./solver --p1 foo --p3 2.1

./solver ...

./solver --p1 bar --p2 0.0

./solver --p1 bar --p2 0.25

./solver ...

./solver --p1 bar --p3 2.05

./solver --p1 bar --p3 2.1

./solver ...

Note that parameter generation is recursive, thus the parameter

tree can be arbitrarily complex. Post-processors can be attached to

every non-leaf node (thus and and or nodes only).

No matter how a parameter tree is speci�ed, it can be used ei-

ther to run an F-Race (between all the de�ned parameter setups), or

run an exhaustive experimental analysis. The results of the anal-

ysis are automatically stored in a MongoDB
2
, where they can be

accessed by parameter values. The json2run distribution also con-

tains an R script with functions to retrieve the experiments from

the database and convert them to R data frames.

json2run is publicly available under the permissive MIT li-

cense, and its main features are described in [105].

2

Website: http://www.mongodb.org

http://www.mongodb.org

Appendix B

Reinforcement learning

and neural networks

In this appendix, we brie�y introduce the basics of reinforcement

learning (RL, [102]) and multi-layer perceptrons (MLP, [2] a kind

of neural networks), a special kind of arti�cial neural networks

(ANN). We then describe how a RL agent can use a multi-layer per-

ceptron to store the information about its acting policy, and why

this is necessary.

B.1 Reinforcement learning

Reinforcement learning (RL) is a machine learning method whose

goal is to train a learning agent to behave optimally inside an ini-

tially unknown environment. The learning is only based on posi-

tive and negative rewards that the environment gives to the agent

in response of its actions. The main components of a reinforcement

learning system are therefore

Environment whose observable features can be sensed by the le-

arning agent in form of states.
Actions the operations that the agent is allowed to perform in the

environment.

Reward function which is a numeric feedback that the environ-

ment gives to the agent in response of its actions.

179

180 Reinforcement learning and neural networks

Policy i.e., the rule according to which the agent chooses a spe-

ci�c action based on the state of the environment. The policy

is usually parametrized by a number of weights ωs,a that en-

code the desirability of applying a speci�c action a, given a

speci�c state s of the environment.

Learning function the rule which is used to update the parame-

ters of the policy.

The implicit goal of a learning agent, is to maximize its long-term
utility, i.e., the sum of all the rewards it receives during its lifetime.

The various choices for the above components de�ne a range of

di�erent algorithms. In fact, RL should be seen more as a family of

techniques, rather than a single one.

Figure B.1: The agent-environment architecture

B.1.1 The acting-learning loop

Reinforcement learning is intrinsically iterative. By performing ac-

tions and updating its knowledge, the agent learns how to behave

more and more optimally in order to achieve its goal. This acting-

learning loop is shown in Figure B.1.

Algorithm 12 describes the structure of the basic reinforcement

learning loop, in which knowledge is updated right after each ac-

tion application. This way of updating knowledge is known as on-
line learning as opposed to batch learning where knowledge is only

updated after a number of iterations (and thus actions) have been

executed.

B.1 Reinforcement learning 181

Algorithm 12 Reinforcement learning loop

procedure RL(env)

ω ← InitializeActionValues()
while ¬StoppingCriterion() do

s← Observe(env)
a← Policy(s, ω)
r ← Execute(a, env)
Learn(s, a, r, ω)

end while

end procedure

State update. The state of the environment is observed (Observe)

at the beginning of each iteration. The state represents the agent’s

knowledge about the environment at a speci�c time during its trip

towards the goal, and representing the state in the proper manner

is key to a correct learning.

The representation of the state is subject to a typical trade-o�.

On the one hand, if the state representation is coarse-grained (few

dimensions), it will be di�cult for the agent to distinguish to states

which are similar, however, learning how to behave optimally in

every state will be easier. On the other hand, if the state represen-

tation is �ner (many dimensions), the agent will be more informed,

but it will have a hard time learning how to behave properly in ev-

ery state. Unfortunately there is no rule of thumb about this as-

pect, as it strongly depende on the environment’s constraints and

observability. Ideally, one state should report important features of

the environment, without describing every single detail of it, i.e., it

should be able to generalize.

Policy. At each iteration, the agent selects which action to take

in the current state according to its Policy. The policy is a function

for selecting an action s, given a state s, based on its recorded action
value ωs,a. For instance, a simple policy could consists in always

selecting the action with highest value (the so-called greedy policy),

or selecting a random action with probability ε ∈]0, 1] and behav-

ing greedily with probability 1− ε (ε-greedy policy). An agent be-

182 Reinforcement learning and neural networks

having greedily is said to exploit its knowledge, while an agent be-

having randomly is said to explore. Balancing exploitation and ex-

ploration is one of the key points of achieving a good reinforcement

learning. Note that, once a particular policy (greedy, ε-greedy, . . .)

has been selected, the behavior of the agent is completely deter-

mined (except for stochastic e�ects) by the set of action values ω.

The action values are initialized at the beginning of the loop, by

the InitializeActionValues() function. Here, a good heuristic is

to set high initial action values, so to promote an initial exploration

of the possible actions. Moreover, in order to keep the learning ef-

fective over time, one should always ensure that each action has a

non-zero probability of being selected. This allows to choose ac-

tions which were maybe bad when they were �rst tried, but could

be good in the present, and avoid early convergence of the policy.

The randomness in ε-greedy policies has precisely this function.

Reward function. Once the action has been selected the agent

executes it in the environment, possibly changing its state. The

action execution (Execute) yields a reward r, a real-valued indica-

tor of the action goodness in that particular situation. The reward

can be seen as a measure of how much the action application has

moved the agent towards its goal. In principle, nothing guaran-

tees that the same action in the same state will produce the same

reward, because the environment could be non-stationary, or the

information in the state not su�cient to completely describe the it.

For this reason, the knowledge of the agent, which is represented

by action values in speci�c states, must be updated continuously

or until convergence.

Learning function. Knowledge update is carried out through

the learning function. This function modi�es the values of actions

in order to change the outcome of the policy and thus the agent’s

behavior. A simple but e�ective way of updating knowledge is the

one in Equation B.1, which is similar in spirit to the update rule of

ACO (Equation 4.5).

ωs,a+ = α(r − ωs,a) (B.1)

B.2 Multi-layer perceptrons 183

Figure B.2: (Single-layer) perceptron.

Here r is the reward obtained in the last iteration, by applying

action a in state s, and α is a the learning rate, most commonly a

number in the interval]0, 1] which determines how fast the agent

learns information from the newly obtained rewards.

If α is low, e.g. 0.01, the agent will converge very slowly to an

optimal policy, while if the value is high, e.g. 1.0 the reward will

completely replace the previous action value. Since one usually

wants to avoid sudden changes in the action values, a popular value

for learning rate is around 0.1, however this strongly depends on

the environment and the goal. A constant learning rate allows to

tackle non-stationary problems, since the policy never really con-

verges.

Two things must be noted here. First, if the action value and

the reward are equal (the prediction about the value of the action

was correct), the update doesn’t change the ω. Second, information

about action values is kept on a per-state basis, therefore when we

refer to action values, we actually mean state-action values.

B.2 Multi-layer perceptrons

Multi-layer perceptrons (MLP) are a function approximation mech-

anism which belongs to the class of supervised machine learning

algorithms. We are going to brie�y revise MLPs in this section, by

starting from the simpler concept of perceptron.

A (single-layer) perceptron is a processing unit with a number

184 Reinforcement learning and neural networks

of weighted inputs (one of which has a constant value of 1.0) and

an output. Its only operational capabilities consist in computing

the weighted sum of its inputs, process this sum with an activation

function and output it.

The algorithm implemented by the perceptron in Figure B.2 can

be summarized with the formula

h(~x) = Activation(~wT~x)

where ~w is the vector of weights and ~x is the vector of inputs wh-

ich is of the form [1, x1, x2, . . .] (remember that the �rst input is

always 1.0).

The nature of the Activation function determines the kind of

function which is possible to approximate. For instance, by using

the identity as the activation function, a perceptron is able to ap-

proximate, after it is trained, any linear function in any number of

variables since, by expanding the equation, we get

h(~x) = ~w0 + ~w1~x1 + ~w2~x2 . . .

which is the equation of a line.

Training a perceptron means setting the weights of the arcs so

tominimize the error function between the output of the perceptron

and the desired function of the input. A popular choice for the error

function is the squared error, i.e.,

E~w(~x, y) =
1

2
(h(~x)− y)2

where the training instance (~x, y) represents an input-output pair

in which y is the correct result that we would like the perceptron

to compute for ~x. The fractional term doesn’t change the behavior

of the learning algorithm and simpli�es the whole equation later.

Note that the error function is parametrized on ~w, therefore

in order to minimize it we need to update ~w. To do so, we must

consider the error over the entire set of training instances (sum of

squared errors), i.e.,

E~w =
1

2n

n∑
i=1

(h(~xi)− yi)2

B.2 Multi-layer perceptrons 185

There are a number of ways to minimize the error, depending

on the properties of the error function, some of the most popular

being variations of the gradient descent method. The idea behind

gradient descent is that if we update ~w in the direction of the neg-

ative gradient of the error function, we will eventually reach the

minimum of the function. Fixing h(x) = ~wT~x, the gradient of the

error function, with respect to ~w and a single training instance is

computed as:

∇E~w(~x, y) =
∂(h(~x)− y)2

∂ ~w
= (h(~x)− y)2~x

therefore the update on ~w is:

~w = ~w − α(h(~x)− y)2~x

where α is a learning rate. This kind of update makes sense if we

don’t know in advance the whole set of training instances however,

if we do, a batch update (in which the error is averaged over the

whole set of training instances) can be used:

~w = ~w − α 1

n

n∑
i=1

(h(~x)− y)2~x

Note that this kind of training will only do if the function we want

to approximate is linear. For approximating non-linear functions,

however, the logistic function h(~x) = 1

1+e−~wT ~x
is mostly used.

MLPs (Figure B.3) are layered networks of perceptrons in wh-

ich the output of each perceptron in a layer k is connected to all

the inputs of perceptrons in the layer k + 1. Because perceptrons

are actually inspired to neural cells, these networks are commonly

known as feed-forward neural networks (FFNN), where feed-forward
refers to the fact that signals are always propagated from the input

to the output layer, and perceptrons are usually referred to as neu-
rons.

There are no constraints on the number of hidden layers, or the

number of neurons in a layer, however it has been demonstrated

[59] that MLPs with a large-enough single hidden layer are able to

approximate any non-linear function of the input, thus learning a

186 Reinforcement learning and neural networks

Figure B.3: Multi-layer perceptron.

mapping f : Rn 7→ Rm. Unfortunately, there is no rule of thumb

on the right number of hidden neurons, which must be worked out

with parameter tuning.

Tranining a MLP with gradient descent is a bit more involved

than training a single perceptron, however the theoretical founda-

tion is the same. The di�erence is that the error function must be

back-propagated through the neural network since we don’t have

correct values for the hidden neurons. We are not going to cover

back-propagation in this appendix (see [2] for more information).

B.2.1 Storing action-values in amulti-layer perceptron

When the states and actions of a RL system are discrete and �-

nite, a simple way to store action values is to keep them in a bi-

dimensional table. This solution is sometimes called tabular rein-
forcement learning. However, when the states or the actions are

B.2 Multi-layer perceptrons 187

continuous, or the number of states is just too large, this tech-

nique, although simple, is no more feasible. In these cases, a popu-

lar choice is to treat action values as a continuous function and use

techniques to approximate it. MLPs have been used to approximate

action values in many applications [102].

One simple approach for using a MLP as action values store, is

to apply the selected action, collect the reward and then train the

MLP by using the 〈s, s〉 pair as input, and the obtained reward as

the output. This can be done either after each action application

(online learning) or after a number of steps (batch learning). Note

that the state representation can be composed by several features
(distinct pieces of information about the environment), which can

be fed in di�erent inputs of the MLP.

The main advantage of this approach is that the amount of

weights one must update depends only on the structure (i.e., num-

ber and layout of the perceptrons) of the MLP, rather than on the

number of states and actions. A second advantage is that MLPs are

good at generalizing. In tabular RL, the update of an action value

ws,a a�ects only the selection of action a in state s. As a conse-

quence, since the size of the table can be very large, the algorithm

can take a lot of iterations before updating each single value. When

using MLPs, similar states share the e�ect of updates, thus leading

to faster convergence of the policy.

B.2.2 Eligibility traces

Eligibility traces (ET) are a mechanism used in RL for temporal
credit assignment. Let’s look at the simple example in Figure B.4.

Suppose that the cost of a solution s at time t is f(st), then the re-

ward of the action applied at time t is calculated as f(st)−f(t+1),

i.e., the more the cost is reduced, the higher the reward. In this ex-

ample, actions 1, 2 would receive a positive reward since they re-

duce the value of the cost function, but in fact they bring the agent

in a local optimum. Conversely, actions 3, 4, 5, and 6 would obtain

a very bad reward, because their activation causes the cost func-

tion to increase, but they bring the agent out of the local optima,

and eventually towards the global optimum.

188 Reinforcement learning and neural networks

Figure B.4: Sequence of actions during exploration of a cost func-

tion.

The idea of temporal credit assignment is that the reward (ei-

ther positive or negative) should be used to update the whole se-

quence of 〈s, a〉 pairs which led to the current situation, rather than

just the last one. Following this idea, actions 1, 2 should be pun-

ished (and thus made harder to choose) for bringing the agent to

the local optimum, and actions 3, 4, 5, and 6 should be rewarded

(and thus made easier to choose) for leading the agent out of the

local optimum, and eventually to a better optimum. In this case,

making actions 3, 4, 5, and 6 easier to choose would make easier,

in the future, to escape from local optima by applying the same (or

a similar) sequence of actions.

In practice, eligibility traces can be easily implemented by keep-

ing a table of values which are updated as follows

es,a =

{
1 if state is s and action is a

λes,a otherwise

where λ is a decay factor in [0, 1[which determines how much pre-

vious 〈s, a〉 pairs should be updated towards the latest reward. If

the decay is set to 0, the agent has no memory about past actions

and the update is described by Equation B.1. As the decay factor

approaches 1, temporal credit assignment is enforced. The value

of es,a is then used in a simultaneous update of all 〈s, a〉 pairs ac-

cording to

B.2 Multi-layer perceptrons 189

ωs,a+ = α(r − ωs,a)es,a (B.2)

This kind of eligibility traces is commonly known as replacing
traces, because 1 always replaces the previous value of es,a when

we perform action a in state s. This mechanism can be imple-

mented e�ciently by keeping a queue with the the last

d log(tr)

log(λ)
e (B.3)

pairs where tr is the value of e under which the update is consid-

ered negligible, and updating pairs proportionally to λp where p is

their position in the queue.

190 Reinforcement learning and neural networks

Conclusions

This thesis investigated two classes of hybrid meta-heuristics (see

Chapter 5), namely hyper-heuristics (Chapter 6 and propagation-

based meta-heuristics (Chapter 7). We described their application

to several combinatorial optimization problem that arise in real-

world situations. Speci�cally, we showed how to solve the prob-

lem of balancing bike sharing systems (BBSS) by means of CP-

based large neighborhood search (LNS) and ACO-driven constra-

int programming (ACO-CP). Moreover, we showed how to tackle

the problem of generating highly constrained university timetables

(CB-CTT) by means of a simulated annealing approach which is

tuned at optimization time based on measurable information about

the instance being solved (Chapter 9). Such results were obtained

by means of statistical model and machine learning techniques.

Moreover, the CB-CTT problem was also tackled by means of CP-

based large neighborhood search (LNS), albeit without outstanding

results. As for hyper-heuristics, we discussed the development of

the algorithms based on reinforcement learning (Appendix B) that

we submitted to the �rst cross-domain heuristic search challenge

(Chapter 6).

In this thesis, we tried to keep the discussion of search meth-

ods independent from the discussion of speci�c domains of appli-

cations, so to highlight the necessity of separating the modeling

and the solving phases in order to increase the applicability of the

described apparoaches. We have shown that such separation of

concerns can be achieved very easily with the investigated hybrid

meta-heuristics. Speci�cally, hyper-heuristic attain it by reasoning

at a higher level, without exploiting any domain-speci�c informa-

191

192 Conclusions

tion about the problem being solved. The considered propagation-

based meta-heuristics, on the other hand, are based on constraint

programming models, and little or no information is needed in gen-

eral to apply them to those models.

Apart from the obtained results, in this thesis we have pre-

sented (see Chapter 7 and Appendix A) several optimization and

research support tools and libraries which have been developed in

the context of this research. Among other things, this e�ort al-

lows us and other researchers to repeat our results, in the hope of

improving the quality of research and the comparison of di�erent

approaches.

The �ndings discussed in this thesis, sparked new research di-

rections for the future. We can identify at least four research lines

which look promising for extending our research.

A �rst research direction is the one concerning the initializa-
tion of algorithms, an aspects which has been often received lim-

ited attention in our previous research. Results regarding particle

swarm optimization for viewpoint computation [?], revealed that

having a good initialization policy can be determinant for obtain-

ing good time-e�ectiveness and solutions of good quality.

A second line of research, concerns the use of multi-level tech-
niques (Section 5.1.4) as an e�ective method for reducing the com-

plexity of large instances of combinatorial optimization problems.

Such approaches share the same underlying idea of large neighbor-

hood search, and could be integrated easily in our framework, for

instance, by coarsening the problem through constraint relaxation

and then re�ning the solutions through LNS.

Another promising research direction is the one of feature-based
tuning (Section 9.4.1), which we already applied in the context of

CB-CTT. Feature-based tuning would allow to alleviate the e�ect

of the no free lunch (NFL) theorems for optimization. However, the

e�ort needed to implement it is still a hindrance to its di�usion, and

a clear methodology has yet to be developed. Our previous e�ort

in this sense can be seen as the �rst step in this direction.

Finally, in this thesis we have treated all problems as single-

objective optimization problems. However, as pointed out in Sec-

tions 1.4.3 and 1.4.4, many real-world combinatorial optimization

193

problems are multi-objective in nature. As a consequence, trans-

forming them, e.g., through scalarization, into singe-objective ones,

eliminates some of the optimal solutions. Therefore, a possible

line of research consists in tackling them directly through multi-

objective algorithms. Particularly in the context of propagation-

based hybrid meta-heuristics, this constitutes a real challenge, since,

to the best of our knowledge, multi-objective propagation tech-

niques are still a relatively unexplored research area.

Apart from the above directions for further research, the appli-

cation of the presented hybrid meta-heuristics should be extended

to di�erent problems. In particular, we are interested in problems

concerning sustainability, both in the production and distribution

of goods, e.g., delivery problems with particular constraints, and in

sustainable mobility, e.g., car pooling and intermodal public trans-

portation.

194 Conclusions

Bibliography

[1] Salwani Abdullah, Hamza Turabieh, Barry McCollum, and

Paul McMullan. A hybrid metaheuristic approach to the

university course timetabling problem. Journal of Heuristics,
18(1):1–23, 2012.

[2] Ethem Alpaydin. Introduction to Machine Learning. The MIT

Press, 2010.

[3] Roberto Asín Achá and Robert Nieuwenhuis. Curriculum-

based course timetabling with SAT and MaxSAT. Annals of
Operations Research, 2012.

[4] Mutsunori Banbara, Takehide Soh, Naoyuki Tamura, Kat-

sumi Inoue, and Torsten Schaub. Answer set programming

as a modeling language for course timetabling. Theory and
Practice of Logic Programming, 13(4-5):783–798, 2013.

[5] Ruggero Bellio, Sara Ceschia, Luca Di Gaspero, Andrea

Schaerf, and Tommaso Urli. A simulated annealing approach

to the curriculum-based course timetabling problem. In

MISTA’13: the 6th Multidisciplinary International Conference
on Scheduling: Theory and Applications, 2013.

[6] Ruggero Bellio, Sara Ceschia, Luca Di Gaspero, Andrea

Schaerf, and Tommaso Urli. Feature-based tuning of simu-

lated annealing applied to the curriculum-based course time-

tabling problem. Submi�ed, 2014.

[7] Ruggero Bellio, Luca Di Gaspero, and Andrea Schaerf. De-

sign and statistical analysis of a hybrid local search algo-

195

196 BIBLIOGRAPHY

rithm for course timetabling. Journal of Scheduling, 15(1):49–

61, 2012.

[8] Mike Benchimol, Pascal Benchimol, Benoît Chappert, Ar-

naud De la Taille, Fabien Laroche, Frédéric Meunier, and Lu-

dovic Robinet. Balancing the stations of a self service bike

hire system. RAIRO – Operations Research, 45(1):37–61, 2011.

[9] Frédéric Benhamou, David A. McAllester, and Pascal

Van Hentenryck. Clp(intervals) revisited. Technical report,

1994.

[10] Russell Bent and Pascal Van Hentenryck. A two-stage hy-

brid local search for the vehicle routing problem with time

windows. Transportation Science, 38(4):515–530, 2004.

[11] Christian Bessiere. Handbook of Constraint Programming:
Constraint Propagation. Elsevier, New York, NY, USA, 2006.

[12] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus

Varrentrapp. A racing algorithm for con�guring metaheu-

ristics. In Proceedings of GECCO’02: the Genetic and Evolu-
tionary Computation Conference, pages 11–18. Morgan Kauf-

mann Publishers Inc., 2002.

[13] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and

Thomas Stützle. F-race and iterated f-race: An overview.

In Experimental methods for the analysis of optimization al-
gorithms, pages 311–336. Springer, 2010.

[14] Christian Blum. Beam-acoâĂŤhybridizing ant colony op-

timization with beam search: An application to open shop

scheduling. Computers & Operations Research, 32(6):1565–

1591, 2005.

[15] Christian Blum and Marco Dorigo. The hyper-cube frame-

work for ant colony optimization. Systems, Man, and Cyber-
netics, Part B: Cybernetics, IEEE Transactions on, 34(2):1161–

1172, 2004.

BIBLIOGRAPHY 197

[16] Christian Blum, Jakob Puchinger, Günther R. Raidl, and An-

drea Roli. Hybrid metaheuristics in combinatorial optimiza-

tion: A survey. Applied Soft Computing, 11(6):4135–4151,

2011.

[17] Christian Blum, Andrea Roli, and Marco Dorigo. Hc–aco:

The hyper-cube framework for ant colony optimization. In

Proceedings of MIC’01: the 4th Metaheuristics International
Conference, volume 2, pages 399–403, 2001.

[18] Alex Bonutti, Fabio De Cesco, Luca Di Gaspero, and Andrea

Schaerf. Benchmarking curriculum-based course timetabl-

ing: formulations, data formats, instances, validation, visual-

ization, and results. Annals of Operations Research, 194(1):59–

70, 2012.

[19] Edmund Burke, Jakub Mareček, Andrew Parkes, and Hana

Rudová. A supernodal formulation of vertex colouring with

applications in course timetabling. Annals of Operations Re-
search, 179(1):105–130, 2010.

[20] Edmund K. Burke, Michel Gendreau, Matthew Hyde, Gra-

ham Kendall, Barry McCollum, Gabriela Ochoa, Andrew J.

Parkes, and Sanja Petrovic. The cross-domain heuristic se-

arch challenge–an international research competition. In Le-
arning and Intelligent Optimization, pages 631–634. Springer,

2011.

[21] Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela

Ochoa, Ender Özcan, and John R. Woodward. A classi�cation

of hyper-heuristic approaches. In Handbook of Metaheuris-
tics, pages 449–468. Springer, 2010.

[22] Edmund K. Burke, Graham Kendall, Jim Newall, Emma Hart,

Peter Ross, and Sonia Schulenburg. Hyper-heuristics: An

emerging direction in modern search technology. Handbook
of Metaheuristics, pages 457–474, 2003.

[23] Edmund K. Burke, Jakub Mareček, Andrew J. Parkes, and

Hana Rudová. A branch-and-cut procedure forâĂătheâĂău-

198 BIBLIOGRAPHY

dine course timetabling problem. Annals of Operations Re-
search, 194:71–87, 2012.

[24] Edmund K. Burke, Jakub Mareček, Andrew J. Parkes, and

Hana Rudová. Decomposition, reformulation, and diving in

university course timetabling. Computer and Operations Re-
search, 37(3):582–597, 2010.

[25] Valentina Cacchiani, Alberto Caprara, Roberto Roberti, and

Paolo Toth. A new lower bound for curriculum-based course

timetabling. Computers & Operations Research, 2013.

[26] Hadrien Cambazard, Emmanuel Hebrard, Barry OâĂŹSulli-

van, and Alexandre Papadopoulos. Local search and constra-

int programming for the post enrolment-based course time-

tabling problem. Annals of Operations Research, 194(1):111–

135, 2012.

[27] Sara Ceschia, Luca Di Gaspero, and Andrea Schaerf. Tabu se-

arch techniques for the heterogeneous vehicle routing prob-

lem with time windows and carrier-dependent costs. Journal
of Scheduling, 14(6):601–615, 2011.

[28] Sara Ceschia and Andrea Schaerf. Local search and lower

bounds for the patient admission scheduling problem. Com-
puters & Operations Research, 38(10):1452–1463, 2011.

[29] Sara Ceschia, Andrea Schaerf, and Thomas Stützle. Local

search techniques for a routing-packing problem. Computers
& Industrial Engineering, 66(4):1138–1149, 2013.

[30] Daniel Chemla, Frédéric Meunier, and Roberto Wol�er

Calvo. Bike sharing systems: Solving the static rebalancing

problem. Discrete Optimization, 2012.

[31] Thomas M. Cioppa and Thomas W. Lucas. E�cient nearly

orthogonal and space-�lling latin hypercubes. Technomet-
rics, 49(1), 2007.

BIBLIOGRAPHY 199

[32] Ra�aele Cipriano, Luca Di Gaspero, and Agostino Dovier. A

multi-paradigm tool for large neighborhood search. In Hy-
brid Metaheuristics, volume 434 of Studies in Computational
Intelligence, pages 389–414. Springer, 2012.

[33] Richard K. Congram, Chris N. Potts, and Steef L. Van

De Velde. An iterated dynasearch algorithm for the single-

machine total weighted tardiness scheduling problem. Com-
puting, INFORMS Journal on, 14(1):52–67, 2002.

[34] Claudio Contardo, Catherine Morency, and Louis-Martin

Rousseau. Balancing a Dynamic Public Bike-Sharing Sys-

tem. Technical Report CIRRELT-2012-09, CIRRELT, Mon-

treal, Canada, 2012.

[35] George B. Dantzig. Maximization of a linear function of vari-

ables subject to linear inequalities. Activity Analysis of Pro-
duction and Allocation, 1951.

[36] Luca Di Gaspero. Local Search Techniques for Scheduling
Problems: Algorithms and Software Tools. PhD thesis, Dipar-

timento di Matematica e Informatica, Universt‘a degli Studi

di Udine, 2013.

[37] Luca Di Gaspero, Barry McCollum, and Andrea Schaerf. The

second international timetabling competition (ITC-2007):

Curriculum-based course timetabling (track 3). Technical re-

port, Queen’s University, Belfast, UK, August 2007.

[38] Luca Di Gaspero, Andrea Rendl, and Tommaso Urli.

Constraint-based approaches for balancing bike sharing sys-

tems. In CP’13: The 19th International Conference on Princi-
ples and Practice of Constraint Programming, pages 758–773.

Springer, Berlin-Heidelberg, 2013.

[39] Luca Di Gaspero, Andrea Rendl, and Tommaso Urli. A hybrid

aco+cp for balancing bicycle sharing systems. In HM’13: The
8th International Workshop on Hybrid Metaheuristics, pages

198–212. Springer, Berlin-Heidelberg, 2013.

200 BIBLIOGRAPHY

[40] Luca Di Gaspero, Andrea Rendl, and Tommaso Urli. Bal-

ancing bike sharing systems with constraint programming.

Constraints (submi�ed), 2014.

[41] Luca Di Gaspero and Tommaso Urli. A reinforcement le-

arning approach for the cross-domain heuristic search chal-

lenge. MIC’11: the 9th Metaheuristics International Confer-
ence, Proceedings of, 2011.

[42] Luca Di Gaspero and Tommaso Urli. Evaluation of a fam-

ily of reinforcement learning cross-domain optimization

heuristics. In LION 6: the Learning and Intelligent Opti-
mization Conference, Proceedings of, pages 384–389, Berlin-

Heidelberg, 2012. Springer.

[43] Benjamin Doerr, Daniel Johannsen, and Carola Winzen.

Multiplicative drift analysis. Algorithmica, 64(4):673–697,

2012.

[44] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant

system: optimization by a colony of cooperating agents. Sys-
tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Trans-
actions on, 26(1):29–41, 1996.

[45] Marco Dorigo and Thomas Stützle. Ant Colony Optimization.

MIT press, 2004.

[46] Greg Durrett, Frank Neumann, and Una-May O’Reilly. Com-

putational complexity analysis of simple genetic program-

ming on two problems modeling isolated program seman-

tics. In FOGA’11: the 11thWorkshop on Foundations of Genetic
Algorithms, Proceedings of, pages 69–80. ACM, 2011.

[47] Russell C. Eberhart and James Kennedy. A new optimizer

using particle swarm theory. In Micro Machine and Human
Science, 1995., Proceedings of MHS’95: the Sixth International
Symposium on, pages 39–43. IEEE, 1995.

[48] Thomas A. Feo and Mauricio G. C. Resende. Greedy ran-

domized adaptive search procedures. Journal of Global Op-
timization, 6(2):109–133, 1995.

BIBLIOGRAPHY 201

[49] Fred Glover. Tabu search - part i. ORSA Journal on Comput-
ing, 1(3):190–206, 1989.

[50] Fred Glover. Tabu search - part ii. ORSA Journal on Comput-
ing, 2(1):4–32, 1990.

[51] Fred Glover and Manuel Laguna. Tabu search, volume 22.

Springer, 1997.

[52] John Michael Hammersley, David Christopher Handscomb,

and George Weiss. Monte carlo methods. Physics today,

18:55, 1965.

[53] Nikolaus Hansen. The cma evolution strategy: a comparing

review. In Towards a new evolutionary computation, pages

75–102. Springer, 2006.

[54] Jin-Kao Hao and Una Benlic. Lower bounds for the ITC-

2007 curriculum-based course timetabling problem. Euro-
pean Journal of Operations Research, 212(3):464–472, 2011.

[55] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
Elements of Statistical Learning, 2nd Edition. Springer, New

York, 2009.

[56] Myles Hollander and Douglas A. Wolfe. Nonparametric Sta-
tistical Methods, 2nd Edition. Wiley, New York, 1999.

[57] Holger Hoos and Thomas Stüzle. Stochastic Local Search:
Foundations & Applications. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2004.

[58] Holger H. Hoos. Programming by optimization. Communi-
cations of the ACM, 55(2):70–80, 2012.

[59] Kurt Hornik, K. Stinchombe, Maxwell, and Halber White.

Multilayer feedforward networks are universal approxima-

tors. Neural networks, 2(5):359–366, 1989.

[60] David S. Johnson, Aragon Cecilia R., Lyle A. McGeoch, and

Catherine Schevon. Optimization by simulated annealing:

202 BIBLIOGRAPHY

an experimental evaluation; part I, graph partitioning. Op-
erations Research, 37(6):865–892, 1989.

[61] David S. Johnson, Aragon Cecilia R., Lyle A. McGeoch, and

Catherine Schevon. Optimization by simulated annealing:

an experimental evaluation; part II, graph coloring and num-

ber partitioning. Operations Research, 39(3):378–406, 1991.

[62] James Kennedy and Russel C. Eberhart. Particle swarm op-

timization. In Neural Networks, 1995., Proceedings of the
IEEE International Conference on, volume 4, pages 1942–1948.

IEEE, 1995.

[63] James Kennedy and Russell C. Eberhart. A discrete binary

version of the particle swarm algorithm. In Systems, Man,
and Cybernetics, 1997., Proceedings of the IEEE International
Conference on, volume 5, pages 4104–4108. IEEE, 1997.

[64] Madjid Khichane, Patrick Albert, and Christine Solnon. In-

tegration of aco in a constraint programming language. In

Ant Colony Optimization and Swarm Intelligence, pages 84–

95. Springer, 2008.

[65] Madjid Khichane, Patrick Albert, and Christine Solnon.

Strong combination of ant colony optimization with con-

straint programming optimization. In Andrea Lodi, Michela

Milano, and Paolo Toth, editors, CPAIOR’10: the 7th Interna-
tional Conference on Integration of Arti�cial Intelligence (AI)
and Operations Research (OR) techniques in Constraint Pro-
gramming, volume 6140 of Lecture Notes in Computer Science,
pages 232–245, Berlin-Heidelberg, Germany, 2010. Springer.

[66] Philip Kilby and Paul Shaw. Handbook of Constraint Pro-
gramming: Vehicle Routing. Elsevier, New York, NY, USA,

2006.

[67] Scott Kirkpatrick, Daniel C. Gelatt, and Mario P. Vecchi. Op-

timization by simmulated annealing. Science, 220(4598):671–

680, 1983.

BIBLIOGRAPHY 203

[68] Roger Koenker. Quantile regression. Cambridge University

Press, 2005.

[69] Roger Koenker. quantreg: Quantile Regression, 2013. R

package version 5.05.

[70] John R. Koza. Genetic Programming: on the programming of
computers bymeans of natural selection, volume 1. MIT press,

1992.

[71] Gerald Lach and Marco Lübbecke. Curriculum based course

timetabling: new solutions to Udine benchmark instances.

Annals of Operations Research, 194(1):255–272, 2012.

[72] Rhyd Lewis, Ben Paechter, and Barry McCollum. Post enrol-

ment based course timetabling: A description of the prob-

lem model used for track two of the second international

timetabling competition. Technical report, Cardi� Univer-

sity, Wales, UK, 2007.

[73] Leo Lopes and Kate Smith-Miles. Pitfalls in instance gen-

eration for udine timetabling. In LION 4: the Learning and
Intelligent Optimization Conference, Proceedings of, 2010.

[74] Zhipeng Lü and Jin-Kao Hao. Adaptive tabu search for co-

urse timetabling. European Journal of Operations Research,

200(1):235–244, 2009.

[75] Zhipeng Lü, Jin-Kao Hao, and Fred Glover. Neighborhood

analysis: a case study on curriculum-based course timetabl-

ing. Journal of Heuristics, 17(2):97–118, 2011.

[76] Alan K. Mackworth. Consistency in networks of relations.

Arti�cial Intelligence, 8(1):99–118, 1977.

[77] Vittorio Maniezzo, Thomas Stèutzle, and Stefan Voss.

Matheuristics: hybridizing metaheuristics and mathematical
programming, volume 10. Springer, 2009.

[78] Barry McCollum, Andrea Schaerf, Ben Paechter, Paul Mc-

Mullan, Rhyd Lewis, Andrew J. Parkes, Luca Di Gaspero,

204 BIBLIOGRAPHY

Rong Qu, and Edmund K. Burke. Setting the research

agenda in automated timetabling: The second international

timetabling competition. INFORMS Journal on Computing,

22(1):120–130, 2010.

[79] Bernd Meyer and Andreas Ernst. Integrating aco and con-

straint propagation. In Marco Dorigo, Mauro Birattari,

Christian Blum, Luca Gambardella, Francesco Mondada, and

Thomas Stützle, editors, Ant Colony Optimization and Swarm
Intelligence, volume 3172 of Lecture Notes in Computer Sci-
ence, pages 166–177. Springer, Berlin-Heidelberg, Germany,

2004.

[80] John E. Mitchell. Branch-and-cut algorithms for combinato-

rial optimization problems. Handbook of Applied Optimiza-
tion, pages 65–77, 2002.

[81] Tomáš Müller. Itc2007 solver description: a hybrid approach.

Annals of Operations Research, 172(1):429–446, 2009.

[82] Anh Nguyen, Tommaso Urli, and Markus Wagner. Single-

and multi-objective genetic programming: new bounds for

weighted order and majority. In FOGA’13: the 12thWorkshop
on Foundations of Genetic Algorithms, Proceedings of, pages

161–172. ACM, 2013.

[83] Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A.

Vazquez-Rodriguez, James Walker, Michel Gendreau, Gra-

ham Kendall, Barry McCollum, Andrew J. Parkes, Sanja

Petrovic, et al. Hy�ex: a benchmark framework for cross-

domain heuristic search. In Evolutionary Computation in
Combinatorial Optimization, pages 136–147. Springer, 2012.

[84] David Pisinger and Stefan Ropke. Large neighborhood

search. In Handbook of Metaheuristics, pages 399–419.

Springer, 2010.

[85] Marian Rainer-Harbach, Petrina Papazek, Bin Hu, and Gün-

ther R. Raidl. Balancing bicycle sharing systems: A vari-

able neighborhood search approach. In Martin Middendorf

BIBLIOGRAPHY 205

and Christian Blum, editors, Evolutionary Computation in
Combinatorial Optimization, volume 7832 of Lecture Notes in
Computer Science, pages 121–132, Berlin-Heidelberg, 2013.

Springer.

[86] Roberto Ranon, Marc Christie, and Tommaso Urli. Accu-

rately measuring the satisfaction of visual properties in vir-

tual camera control. In the 10th International Symposium
on Smart Graphics, Proceedings of, pages 91–102. Springer,

Berlin-Heidelberg, 2010.

[87] Roberto Ranon and Tommaso Urli. Improving the e�-

ciency of viewpoint composition. Visualization and Com-
puter Graphics, IEEE Transactions on, 2014.

[88] Tal Raviv, Michal Tzur, and Iris A. Forma. Static reposition-

ing in a bike-sharing system: Models and solution approa-

ches. Transportation and Logistics, EURO Journal on, 2012.

[89] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook
of Constraint Programming. Elsevier, New York, NY, USA,

2006.

[90] Louis-Martin Rousseau, Michel Gendreau, and Gilles Pesant.

Using constraint-based operators to solve the vehicle routing

problem with time windows. Journal of Heuristics, 8(1):43–

58, January 2002.

[91] John E. Savage. Models of computation, volume 136. Addison-

Wesley, Reading, MA, USA, 1998.

[92] John E. Savage. Models of computation, volume 136. Addison-

Wesley, Reading, MA, USA, 1998.

[93] Andrea Schaerf. A survey of automated timetabling. Arti�-
cial Intelligence Review, 13(2):87–127, 1999.

[94] Jasper Schuijbroek, Robert Hampshire, and Willem-Jan van

Hoeve. Inventory rebalancing and vehicle routing in bike

sharing systems. Technical Report 2013-E1, Tepper School

of Business, Carnegie Mellon University, 2013.

206 BIBLIOGRAPHY

[95] Christian Schulte. Comparing trailing and copying for con-

straint programming. In ICLP, volume 99, pages 275–289,

1999.

[96] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist.

Modeling and programming with gecode, 2010.

[97] Paul Shaw. Using constraint programming and local search

methods to solve vehicle routing problems. In Michael J. Ma-

her and Jean-Francois Puget, editors, CP’98: the 4th Interna-
tional Conference on Principles and Practice of Constraint Pro-
gramming, 1998, Proceedings of, volume 1520 of Lecture Notes
in Computer Science, pages 417–431. Springer, 1998.

[98] Yuhui Shi and Russell C. Eberhart. A modi�ed particle

swarm optimizer. In Evolutionary Computation, 1998., Pro-
ceedings of the IEEE International Conference on, pages 69–73.

IEEE, 1998.

[99] Yuhui Shi and Russell C. Eberhart. Particle swarm optimiza-

tion: developments, applications and resources. In Evolu-
tionary Computation, 2001., Proceedings of the Congress on,

volume 1, pages 81–86. IEEE, 2001.

[100] Richard M. Stallman and Gerald J. Sussman. Forward rea-

soning and dependency-directed backtracking in a system

for computer-aided circuit analysis. Arti�cial Intelligence,
9(2):135–196, 1977.

[101] Thomas Stützle and Holger H. Hoos. Max–min ant system.

Future generation computer systems, 16(8):889–914, 2000.

[102] Richard S. Sutton and Andrew G. Barto. Reinforcement learn-
ing: An introduction, volume 1. Cambridge University Press,

1998.

[103] Tommaso Urli. Balancing bike sharing systems (bbss): in-

stance generation from the citibike nyc data. arXiv preprint
arXiv:1305.1112, 2013.

BIBLIOGRAPHY 207

[104] Tommaso Urli. Hybrid cp+lns for the curriculum-based co-

urse timetabling problem. CP’13: Doctoral Program, page 73,

2013.

[105] Tommaso Urli. json2run: a tool for experiment design &

analysis. arXiv preprint arXiv:1305.1112, 2013.

[106] Tommaso Urli, Markus Wagner, and Frank Neumann. Exper-

imental supplements to the computational complexity anal-

ysis of genetic programming for problems modelling isolated

program semantics. In PPSN’12: Parallel Problem Solving
from Nature, Proceedings of, pages 102–112. Springer, Berlin-

Heidelberg, 2012.

[107] Peter van Beek. Handbook of Constraint Programming: Back-
tracking Search Algorithms. Elsevier, New York, NY, USA,

2006.

[108] Peter J. M. Van Laarhoven and Emile H. L. Aarts. Simulated
Annealing: Theory and Applications. Springer, 1987.

[109] Markus Wagner and Frank Neumann. A fast approxima-

tionguided evolutionary multi-objective algorithm. In Pro-
ceedings of GECCO’13: the 15th Annual Conference on Genetic
and Evolutionary Computation. ACM Press, 2013.

[110] Chris Walshaw. Multilevel re�nement for combinatorial op-

timisation problems. Annals of Operations Research, 131(1-

4):325–372, 2004.

[111] Ingo Wegener. Methods for the analysis of evolutionary al-

gorithms on pseudo-boolean functions. Evolutionary Opti-
mization, pages 349–369, 2003.

[112] David H. Wolpert and William G. Macready. No free lunch

theorems for optimization. Evolutionary Computation, IEEE
Transactions on, 1(1):67–82, 1997.

	Introduction
	I Background
	Combinatorial Optimization
	Terminology
	Problems, variables and constraints
	Instances
	Solutions and search space
	Combinatorial problems

	Decision and search problems
	Complexity
	Languages and strings
	Problems and languages
	Turing machines
	¶and NP classes
	¶-complete and NP-complete classes

	Optimization problems
	Objective function
	Hard and soft constraints
	Multi-objective optimization
	Scalarization
	Example: Traveling Salesperson Problem

	Search methods
	Complete and incomplete methods
	Perturbative and constructive methods

	Constraint Programming
	Modeling
	Variables, domains, and constraints
	Problems and solutions
	Global constraints
	Example: Traveling Salesperson Problem

	Search
	Constraint propagation
	Backtracking

	Neighborhood search
	Modeling
	Delta costs
	Example: Traveling Salesperson Problem

	Search
	Hill climbing (HC)
	Steepest descent (SD)
	Local optima and plateaux
	Simulated Annealing (SA)
	Tabu Search (TS)

	Swarm intelligence
	Particle Swarm Optimization (PSO)
	Overall procedure
	Parameters
	Variant: constriction factor

	Ant Colony Optimization (ACO)
	State transition rule
	Pheromone update rule
	Overall procedure
	Parameters
	Heuristic information
	Variant: max-min ant system (MMAS)

	II Hybrid meta-heuristics
	Overview of hybrid methods
	Combining together meta-heuristics
	Memetic algorithms
	Hyper-heuristics
	GRASP
	Multi-level techniques

	Combining meta-heuristics with CP
	Other hybrid methods

	Reinforcement learning-based hyper-heuristics
	The hyper-heuristics framework
	CHeSC Competition
	Our approach
	Environment
	Actions
	Reward function
	Policy
	Learning function

	Parameter tuning
	Common parameters
	Parameters for RLHH-MLP
	Parameters for RLHH-ET
	Parameter influence
	Tuning procedure

	Comparison with others
	Other findings: ILS-like behavior

	Propagation-based meta-heuristics
	Large Neighborhood Search (LNS)
	Algorithm idea
	Variants
	Implementation: gecode-lns

	ACO-driven CP (ACO-CP)
	Algorithm idea
	Implementation: gecode-aco

	III Applications
	Balancing Bike Sharing Systems
	Related work
	Problem formulation
	Modeling
	Routing model
	Step model

	Search by Large Neighborhood Search
	Common components
	Destroy step
	Experimental evaluation

	Search by ACO-driven CP
	Handling of routing variables
	Handling of operation variables.
	Pheromone update
	Experimental evaluation

	Curriculum-Based Course Timetabling
	Related work
	Meta-heuristic approaches
	Constraint programming
	Exact methods and lower bounds
	Instance generation

	Problem formulation
	Modeling
	Neighborhood search
	Constraint programming

	Search by Simulated Annealing
	Feature-based tuning
	Results

	Search by Large Neighborhood Search
	Algorithm overview
	Parameter tuning
	Results

	Other contributions
	Virtual Camera Control
	Pixel-accurate evaluation of visual properties
	Efficient viewpoint computation with PSO

	Runtime analysis of Genetic Programming

	Parameter tuning
	Defining the competing parameter setups
	Full factorial
	Sampling

	Finding the best configuration with race
	Feature-based parameter tuning
	json2run

	Reinforcement learning and neural networks
	Reinforcement learning
	The acting-learning loop

	Multi-layer perceptrons
	Storing action-values in a multi-layer perceptron
	Eligibility traces

	Conclusions

