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Abstract

In this work the behaviour of large deformable droplets dispersed in a wall bounded
turbulent flow has been investigated focusing on the role of the droplets deformability.
A simplified physical problem has been considered: density differences and viscosity dif-
ferences between the two fluids have been neglected while surface tension effects and
coalescence/breakup events have been considered. A wide range of Weber numbers We
(ratio between inertial forces and surface tension) have been investigated at moderate
friction Reynolds numbers Reτ = 100÷ 150. Under these assumptions the problem rep-
resents an archetypal model of an industrial turbulent multiphase flow in which only
hydrodynamics and capillary effects are considered. The problem has been studied ap-
plying a hierarchical decomposition: first the momentum transfer at the interface of a
single large deformable non-breaking droplet in turbulence has been investigated, then
the analysis has been extended to a swarm of large droplets: effects on the turbulent
wall-drag and the coalescence rate have been measured. The results show flow field mod-
ifications in the vicinity of the droplet interface: the flow field deflections at the interface
are smaller the larger is the interface deformability. As a consequence also an increment
of the local shear stress is observed when decreasing the droplet deformability (namely,
decreasing We). The role of deformability is central in the wall drag modifications pro-
duced by a large number of droplets; droplets with large Weber number can transport
more efficiently small velocities from the near wall regions towards the high velocity
regions of the channel center and vice-versa. The deformability is also a leading param-
eter in determining the coalescence rate and the possibility of breakup of the droplets
swarm: when We < 1 (inertia smaller than surface tension), the coalescence rate is al-
most universal, while different coalescence rates and breakup phenomena are observed
when We > 1 (inertial larger than surface tension). As a conclusion, large droplets in
wall bounded turbulence can produce modifications of the flow field depending on their
deformability. Significant Drag Enhancement (DE) is registered when the Weber number
is smaller than a critical value (We < Wec), in particular the smaller is We, the larger
is DE. Increasing We over a critical value Wec, no effects are observed on the flow. The
coalescence events appear to be decorrelated from the DE: a universal coalescence rate is
observed up to We > 1, while Wec < 1. This indicates that the wall drag modifications
are weakly dependent on the droplet diameters d when their size is comparable to the
channel height.
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1
Introduction

The injection of small amounts of a disperse phase in wall bounded turbulent flows can
produce a significant reduction of the wall drag that can reach 80%, depending on the
flow characteristics. This effect has been known for long time: in 1948 Toms [121] ob-
served an “unusually low friction factor” in dilute dispersed multiphase flows. Since
then, for more than 60 years, the Drag Reduction (DR) produced by the injection of a
dispersed phase in turbulent flows has been extensively investigated because of its wide
practical and theoretical relevance: significant energy savings can be achieved in diverse
industrial applications (i. e. long-distance fluid transport or movement of large size ships
and vessels). Moreover, the study of dispersed turbulent multiphase flows has profound
implications in the advancement of the fundamental knowledge of turbulence. Based on
these motivations, many authors focused on the experimental, theoretical and numerical
analysis of the DR phenomena in turbulent multiphase flows, showing that significant DR
can be achieved with the adoption of limited amounts of polymers [129, 91, 134], fibers
[51, 85, 8], additives [143, 133] or gas bubbles. Among these investigations, in the last
decades many authors focused on the wall-drag modifications produced by the injection
of air bubbles much larger than the dissipative turbulence scale in the near-wall region
of a turbulent flow observing significant DR [126, 96, 82, 17]. Such turbulent multiphase
system is very attractive because it has an important practical application: the reduction
of the fuel consumption of large ships and vessels [64, 65, 136]. In fact the air injected
near the vessels hull is a non-polluting, largely-available and economic gas that can be
freely released in seas and oceans. Moreover, the ships hulls have a large flat bottom
where, driven by buoyancy, the released bubbles can persist in the proximity of the wall
[56].

Despite the DR produced by bubbles injection is widely known and many investigations
have quantified the effect in diverse systems, the models and correlations proposed still
give non-univocal and only qualitative results. The development of reliable and accurate
models require a clear and robust knowledge of the DR mechanism that, at the moment,
lacks. Since the presence of large deformable bubbles produce important modifications
of the turbulence structures, the detailed investigation of the turbulence-interface inter-
actions is required for a correct modelling of DR. These analysis have been limited by the
complexity of the experimental and computational techniques necessary for the detailed
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observation of the turbulence-interfaces interactions. From the experimental point of
view, the presence of a carried phase is a limiting factor for the optical measurement of
the flow field [25], moreover the detection of the interface properties (i. e. deformations
and velocity fields) is extremely complex [95]. From the numerical and theoretical point
of view the analysis has been limited by three main factors: i) the detailed numerical
description of the turbulent field [79, 90]; ii) the numerical description of deformable
interfaces [28, 59, 5]; iii) the numerical approximation of large thermophysical properties
gradients [123, 50] As a result, only few recent numerical and experimental studies have
focused on the detailed description of the wall drag modification produced by large de-
formable bubbles in turbulence [70, 126, 128]. The Direct Numerical Simulations (DNS)
of Lu et al. [70] highlighted the role of bubbles deformability in the wall-drag modifica-
tion produced by a large number of bubbles with the same viscosity of the surrounding
fluid and with a small density ratio (ρf/ρd = 10). They observed that large deformable
bubbles released in a turbulent channel flow can produce Drag Reduction (DR) or Drag
Enhancement (DE), depending on their deformability. Two situations were observed: i)
bubbles characterized by large deformability produced a near-wall streamwise vorticity
cancelling, resulting in DR; ii) bubbles with small deformability were slowed down by
the near-wall flow field, producing an obstruction to the flow and resulting to DE. The
mechanism proposed to explain the streamwise vorticity cancelling is the following: in
their near-wall motion, the bubbles that can slide over the quasi-streamwise vortices lo-
cated in the proximity of the wall. The bubbles squeeze the vortical structures against the
opposite sign streamwise vorticity regions attached to the wall. As a result a mutual can-
celling of the vorticity is obtained and the wall-drag is reduced. The recent experimental
work of Van Gils et al. [128] measured important DR (up to 40%) when large deformable
bubbles (with viscosity ratio ρfνf/ρbνb = 100 and a density ratio ρf/ρd = 1000) were
released in a turbulent Taylor-Couette flow, highlighting the central role of the the bub-
bles deformability. The results of both investigations emphasized the importance of the
bubbles deformability in the wall drag modification, however the DR mechanism is still
not completely clear and further analysis are required. Those studies focused on bubbles
characterized by inertial effects smaller than those of the surrounding fluid (ρb << ρf ),
in particular, combining their evidences, it appears that when the bubbles inertia is
negligible DR is always achieved [128]. On the contrary, when the bubbles inertia is
small, but still comparable with that of the surrounding fluids, the bubbles can produce
both DR or DE, depending on their deformability [70] (governed by their surface tension).

In order to further clarify the role of the deformability in the contest of large deformable
droplets or bubbles dispersed in turbulent wall-bounded flows, in this work the problem
has been simplified neglecting the density differences and the viscosity differences be-
tween the droplets and the external flow, considering only the surface tension σ. Since
the complex topological changes are dominated by the surface tension [42, 66, 113], also
coalescence and breakup phenomena have been retained. The physical system defined
through this simplifications is governed by two effects only: i) droplet deformability that
is controlled by the surface tension; ii) droplet inertia that is comparable to that of the
surrounding fluid. As a result the problem is set to its simplest configuration, where
a minimal physics is involved. Through this simplification, the surface tension effects
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Figure 1.1 – Schematics of the physical system respect to the Weber number We and the surface
tension σ. Two limit cases are identified: We → ∞ (σ → 0) yields to a single phase flow; We → 0
(σ → 0) yields to the dispersion of rigid fluid spheres.

are highlighted and a parametric analysis of the role of the droplet deformability can
be performed in a system where the inertia of the droplet is non negligible. With this
simplification, the droplets can be ideally created through the following procedure: once
a fluid system is defined, a volume of fluid is divided from the surrounding fluid by
introducing a membrane endowed with surface tension σ. Varying the surface tension
the described physical systems can span from the single phase flow σ = 0 to the case
of rigid fluid spheres σ → ∞. A schematics of this process is reported in Fig. 1.1,
where the connection to the Weber number We ∝ 1/σ is introduced. In order to give
a comprehensive analysis of the phenomena involved, in this work the the simplified
problem has been studied applying a hierarchical decomposition: first the behaviour of
a single large deformable droplet in turbulence has been investigated, focusing on the
momentum exchange at the interface. Then the analysis has been extended to a swarm
of large droplets, considering their macroscopic effects on the wall drag turbulence and
their collective behaviour (i.e. droplet-droplet collisions, coalescences and breakups)

The numerical analysis of the simplified system described above has been performed
adopting a Direct Numerical Simulation (DNS) of the turbulent wall bounded flow, cou-
pled with the Phase Field Model (PFM) for the interface tracking. The DNS technique
allows to solve all the length and time scales involved in the turbulent flow, giving a
complete and predictive description of the complex turbulent motions [54, 79, 90]. The
PFM is a comprehensive theoretical framework that allows to describe, with high accu-
racy, the behaviour of deformable fluid interfaces. In particular the PFM is one of the
most accurate methods for the numerical analysis of breakup [92, 86] and coalescence
[113, 73, 86, 140] phenomena. Thus, the DNS-PFM technique adopted in this work rep-
resents one of the most developed frameworks for the quantitative analysis of turbulent
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multiphase flows with complex interfacial dynamics.

Thesis outline

The present work is structured as follows:

• Chap. 2: the governing equations are reported and discussed in detail; in the first
section the different approaches for the interface modelling are proposed and in the
second section the governing equations of the diffuse interface model are derived. In
the third section the mass conservation equation and momentum balance equations
are introduced and particularized for the multiphase system under analysis. In the
last section the dimensional analysis of the governing equations is proposed.

• Chap. 3: the numerical algorithm adopted for the solution of the governing equa-
tions is derived and discussed in detail. In the first section, the governing equations
are rewritten and the solution algorithm is exposed; in the second section the spec-
tral approximation of the solution is shown and, in the last section, the discretized
set of equations is reported.

• Chap. 4: the numerical method proposed is validated against selected benchmarks.
In the first section the problem of a single droplet deformed under shear flow is
solved and the results are compared to the available analytical solution. In the
second section the accuracy of the method is discussed in comparison with two
widely adopted Lattice Boltzmann multicomponent algorithms.

• Chap. 5: the transport of momentum across the interface of a deformable droplet in
a turbulent channel flow is investigated considering a wide range of Weber numbers.
In the first section the problem is posed and the details of the simulations are
provided; in the second section the droplet deformation and the turbulence features
at the droplet interface are discussed in detail.

• Chap. 6: the role of deformability in the dispersion of a large number of droplets
in a turbulent channel flow is investigated. The droplet-droplet interactions and
the wall-drag modifications produced by the droplets swarm are studied exploring
a wide range of Weber numbers. In the first section the problem is described, pro-
viding the details of the simulations. In the second section the coalescence regimes
are discussed in detail and in the third second section the flow field modifications
are quantified.
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Methodology





2
Governing equations

In this chapter the governing equations are reported and discussed in detail. In the
first section the different approaches for the multiphase flows modelling are summarized
and briefly reviewed. In the second section the phase field model is introduced, then its
governing equations are derived and adapted to the physical problem here considered.
In the last section the dimensional analysis of the governing equations is proposed.

2.1 Multiphase numerical simulations

The theoretical and numerical analysis of dispersed turbulent multiphase flows requires
the definition and solution of a set of governing equations that describe the behaviour of
each constituent of the system. Depending on the physical properties of the constituents,
their governing equations can be based on diverse approaches: i.e. the continuous fluid
phases are usually described by a set of Eulerian continuity and momentum balance
equations (Navier-Stokes equations), while diverse approaches can be adopted for the
dispersed phases. In the most general case, the governing equations of the different
constituents have to be coupled together, in this way mass, momentum and energy ex-
changes between the system constituents can be accounted (i.e. drag forces, collisions
and capillary forces). Following this general description, the physical model equations
can be extremely complex and their solution can require numerical algorithms and com-
putational resources beyond those currently available (i.e. direct numerical simulations
of turbulent flows at high Reynolds numbers are still non feasible nowadays). However
several approximations can be introduced depending on the properties of the physical
system considered and, accordingly, different numerical frameworks can be adopted (i.e.
the point-wise approximation of particles [24] or Large Eddy Simulation LES of high
Reynolds number flows). When considering multiphase flows laden with finite size de-
formable bodies, namely the dispersion of large deformable droplets in turbulence, the
evolution of the system can be summarized in two steps: i) interface advection, ii) flow
field solution. Fig. 2.1 shows a schematic representation of these two steps, where the
initial conditions at time t and the final solution at time t + ∆t are represented by the
subscripts n and n + 1, respectively. First the interface Ωn is advected and the new
interface Ωn+1 is obtained; the displacements of the interface are computed on the basis
of the velocity field un that are known at time t. This step requires the definition of
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a theoretical and numerical framework able, in principle, to reproduce the pure advec-
tion of the interface on the basis of the local velocity field. Once the interface has been
advected, the local surface forces f = σ/r̄ are computed and introduced into the Navier-
Stokes equations; in this case only the local capillary forces are considered, but more
complex interfacial phenomena can be accounted. The solution of the flow field govern-
ing equations modified with the local surface forces requires particular theoretical and
numerical models able to treat efficiently the local force variations produced by the pres-
ence of the interface. Moreover, since the problem considered in this work involves the
Direct Numerical Simulation (DNS) of turbulent flows, a robust and accurate numerical
algorithm is required.

i) Interface advection ii) Flow field solution

f

f

f

f
un

Ωn Ωn+1

un+1

f

f = σ/r

Figure 2.1 – Schematic representation of the simulation of a multiphase flow with a deformable
interface, subscripts n and n+1 stand for the time level t and t+∆t, respectively. Given the velocity
field un, the interface Ωn is advected and the resulting interface is represented by the dashed blue
line Ωn+1 (left panel). Once the interface position Ωn+1 is known, the local surface forces f are
computed (i.e. the capillary forces here presented are proportional to the local curvature 1/r̄ and
directed along the interface normal direction n) and the velocity field is modified adding the force to
the Navier-Stokes solution. As result the updated velocity field un is obtained.

2.1.1 Advection of interfaces

The time evolution of a deformable interface, namely the interface advection, requires
to describe the interface position at any time; the interface movement is the result of
the displacements produced by the velocity field over the single small interface elements
(see the schematic representation of Fig. 2.1). The deformed interface reacts with a
local force f that modifies the local flow field, in this way the surface tension effects
are kept into account. This procedure requires the the development of a theoretical
and numerical frameworks that can be either based on the continuous description of
the interface, or on the sharp description of the interface. In the sharp description, the
interface is represented as a two dimensional surface, namely a zero-thickness interface;
the advection of such a surface is obtained adopting different numerical methods, as the
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Front Tracking (FT) [125] or the Volume Of Fluids (VOF) [43]. The FT is based on
the Lagrangian advection of some marker points deployed over the interface (or front),
once their position is updated, the interface shape is reconstructed adopting tailored
geometrical approaches. The VOF is based on a concentration function C defined at the
computational cells center; C assumes uniform values C = 1 and C = 0 in the bulk fluids,
while it assumes values 0 ≤ C ≤ 1 in cells crossed by the interface. The concentration
function C is evolved in time considering the cell faces fluxes and, from the cell value
of C the interface is reconstructed. Both FC and VOF require interface reconstructions
that involve complex algorithms (in particular for three dimensional simulations) that
can lead to inaccurate computation of the local normal vectors n and the local curvature
radius r̄ that are required for the flow field forcing. Moreover complex topological changes
(i.e. breakup and coalescence) need to be carefully and often artificially accounted. By
contrast VOF is extremely accurate in the local mass conservation and the FT appears
to be more flexible in the introduction of complex physical behaviours. In the continuous
description, the interface evolved in time through the advection of a continuous scalar
function φ(x) whose level-set φ = 0 identifies the actual position of the interface. Within
this framework, the most common approach is the so-called Level Set (LS) method [102],
were the continuous field φ is evolved in time by solving the following pure advection
equation:

∂φ

∂t
+ u · ∇φ = 0. (2.1.1)

Due to numerical round-off errors that are present even with the high order schemes
adopted (i.e. 5th order WENO schemes), the solution of Eq. 2.1.1 is affected by a nu-
merical diffusion that degrades the interface in time and, as a result, correct computation
of local properties (i.e. curvature and normal vectors) requires the solution of a reini-
tialization equation that does not ensure the local mass conservation [50]. Among the
interface tracking methods based on the continuous approach, the Phase Filed Model
(PFM) can be found. In this method the numerical diffusion that is the origin of the in-
terface degrading, is circumvented by advecting the scalar field φ through a conservative
potential-driven advection-diffusion equation. A detailed description of the method will
be given in section Sect. 2.2.

2.1.2 Flow field solution

From the theoretical point of view, the evolution of the fluid field is given by a set of
independent governing equations (i.e. mass, momentum and energy) written for each
fluid domain and coupled through a set of interface boundary conditions, yielding to a
free-boundary problem [60, 6]. The interface boundary conditions are obtained through
mechanical equilibrium concepts that involve the interface properties, such as the surface
tension. I. e. the stress balance across a sharp interface endowed with surface tension σ
yields to the following jump condition of the stress tensor τ :

τ |oi =
σn

r̄
−∇σ, (2.1.2)

where 1/r̄ is the interface local mean curvature, n is the interface normal vector and the
superscripts o, i refer to the different sides of the interface. When considering immiscible
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fluids, there is no mass transfer at the interface and the mass balance across the interface
yields to the following jumps of the interface-normal velocity component:

u · n|oi = un|oi = 0. (2.1.3)

Applying then the no-slip condition at the interface, also the tangential velocity compo-
nent is continuous:

u · t|oi = ut = 0, (2.1.4)

where t is the interface tangential vector. According to the problem under analysis, the
stress and velocity jumps (2.1.2)-(2.1.4) can assume various formulations, in particular,
when the surface tension is uniform, τ |oi = σn/r̄ (refer to Leal [66] and Gatignol et
al. [30] for a complete discussion). The theoretical framework described above can be
numerically solved by adopting either a sharp approach or a continuous approach. Among
the sharp approaches, the Ghost Fluid Method (GFM) [28] is one of the most adopted for
the Direct Numerical Simulations (DNS) of turbulent flows. Within this approach, the
interface boundary conditions are applied as jumps of velocity and stress tensors across
a zero-thickness interface. Despite the computational accuracy granted by the GFM,
its application is convenient only adopting prediction-correction algorithms, moreover
smearing of the viscous stresses is usually required across the interface [33] limiting
the sharp nature of the method. In the continuous approach the local surface forces
are applied by adding a continuous volume force smeared over a thin layer across the
interface location; in this way the conditions on the velocity continuity are immediately
satisfied by solving the continuity equation. Among these approaches the most used are
the Force Coupling (FC) [124], and the Phase Field Model (PFM); these two methods
can be coupled with both a continuous or sharp interface advection methods but in most
of its applications a comprehensive PFM framework is adopted for both the advection of
the interface and the flow field solution. The direct equivalence between PFM and the
FC will be given in the next Sect. 2.2.4

2.2 The Phase Field Model

2.2.1 Origins of the model

The study of multiphase immiscible fluid systems focused the attention of several authors
on the nature of the interface. The first idea, proposed by Young Laplace and Gauss in
the early 19th century, was to consider the fluid-fluid interface as a sharp zero-thickness
surface provided by some physical properties (i.e. surface tension). During the mid 19th

century, almost simultaneously to the development of the sharp or classical approach,
Poisson [89], Maxwell [76] and Gibbs [32] started to study the continuous nature of the
fluid-fluid interfaces. They represented the interface as a steep but continuous variation
of the thermophysical properties from one fluid to the other; in particular Gibbs intro-
duced the concepts of “dividing surface” and surface “excess quantities”, that were the
basis for the development of the equilibrium thermodynamics of the continuous approach
also known as Diffuse Interface (DI) model. Based on those works, Lord Rayleigh [93]
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and Van der Waals [127] started to developed in detail the diffuse interface theory and,
in particular, Van der Waals used his equation of state to predict the interface thickness
of a mixture, showing that it tends to infinite when the mixture approaches critical con-
ditions. In this contest, Korteweg [57] developed the constitutive law for the capillary
stress that arises at the fluid-fluid interfaces. Despite the idea of the diffuse interface
was introduced only few years after the sharp interface approach, for almost one century
it played a minor role remaining almost undeveloped. In the middle of 20th century,
the increased interest on the near-critical phenomena triggered the development of the
diffuse interface models. Cahn and Hilliard [15, 16] adopted the diffuse approach to the
description a binary fluid mixture undergoing spinoidal decomposition. Then, based on
the constitutive law developed by Korteweg, the diffuse description of the interface was
coupled with the hydrodynamics [52, 115, 44] referring to the “Model-H” which only
later was named “diffuse interface model” and known also as “phase field model”. In the
last 40 years the increased computational resources created the necessary conditions for
the development of the Phase Field Model (PFM) that requires high resolutions and ro-
bust numerical schemes. The main reasons for its success are the possibility to overcame
certain theoretical limits of the sharp interface methods: i) problems where the inter-
face thickness lξ is comparable to the problem length scale (i.e near critical phenomena)
are the natural environment for the diffuse interface models; ii) detailed interface-solid
walls interaction can be easily introduced (i.e. contact angle or interface laden by solid
particles); iii) topological changes (i.e. breakup or phase transitions) can be correctly
and easily reproduced because of the thermodynamic origin of the model. In particular
the PFM models can be adopted as predictive tools in the analysis droplet coalescence
[113, 73, 86, 140] or in droplet breakups [92, 86]. From the numerical point of view the
diffuse approximation of the interfaces can overcame some unwelcome features of other
approaches: i) larger accuracy is granted in the interface description: the thermodynam-
ically conservative nature of the model avoids the interface detriment and the need of
correction techniques; ii) the constitutive law for the capillary stress yields to an accurate
description of the interfacial forces; iii) proper scaling of the equation parameters allow
to extend the model also to the description of immiscible fluid systems. However the
diffuse interface model is characterized by some limitations that reduce its applicability:
some issues concerning the local mass conservation still arise when modelling immiscible
multiphase flows [141, 99, 100]. Moreover the governing equations involve high order
(namely 4th-order) operators that require robust and stable numerical methods [5]. The
PFM is based on a continuous approach in which the interface between two fluids is a
layer of finite thickness rather than a sharp discontinuity. Across the interfacial layer the
physical properties of the fluid components vary in a smooth and continuous way from
one fluid to the other: the interface volume is a region of controlled diffusion where the
two fluids can mix. This assumption has realistic theoretic foundations when considering
near-critical mixtures: the interface thickness increases when approaching the critical
conditions (as observed by Van der Waals [127]). When the continuous approach is ap-
plied to the description of immiscible fluid systems far from the critical region, a fictitious
enlargement of the interface should be applied: real interfaces have a thickness of few
molecules, namely O(lξ) = 10−9m [78, 31], that require numerical resolutions that are
beyond the current available limits. At that scales the continuous nature of the interface



12 2. Governing equations

emerges (mixing layer of few molecules thickness), however the continuum hypotheses
does not apply, thus, in those cases, the applicability of this approach should be consid-
ered with attention. In the Phase Field Model the state of the system is described, at
any time, by a scalar order parameter φ, which is a function of the position vector x.
Differently from the Level Set (LS), in the PFM the order parameter directly represents
one of the physical properties of the fluid (i.e. density or molar concentration) and all
the remaining properties are in turn modelled as proportional to φ(x) [5, 99]. According
to the continuous approach, the order parameter is mathematically continuous over the
entire computational domain (due to the continuous approximation of the interface) and
it shows smooth variations across the interface between single fluid regions, where it
assumes mostly uniform values. Coupling the continuous representation of the two fluid
field with a conservative transport equation of the order parameter, the system evolution
can be resolved in time. It worth notice that the conservative nature of the model is
a key point for its application to the description of immiscible fluid systems, in fact in
this way the detriment of the interfacial layer is avoided and the capillary properties of
the interface (i.e. surface tension) are recovered. The best-known PFM is represented
by the Cahn-Hilliard equation, where the evolution of the order parameter is driven by
the minimization of a suitable chemical potential. Cahn and Hilliard [15, 16] generalized
the work of Van der Waals [127] to a time-dependent system by approximating inter-
facial diffusive fluxes as being proportional to the chemical potential gradients. Within
the PFM theoretical framework, the capillary effects produced by the interface on the
surrounding fluid are described through a force that is derived from the Korteweg stress
tensor [57]. This local force is consisten with the thermodynamic derivation of the Cahn-
Hilliard equation, as a result the PFM gives a coherent physical description of both the
interface advection and the flow field solution.

2.2.2 The Cahn-Hilliard equation

Following the approach proposed by Cahn and Hilliard [15, 16], the evolution of the
multiphase system is described by a generalized mass conservation equation:

Dφ

Dt
= −∇ · J, (2.2.1)

where J = −M∇µ is a phase field flux (i.e. a generalized mass flux) responsible to
drive the system toward its equilibrium conditions following a chemical potential µ.
Substituting the phase flux into Eq. (2.2.1) and expanding the total derivative, the
convective Cahn-Hilliard equation is obtained:

∂φ

∂t
= −u · ∇φ+∇ (M∇µ) , (2.2.2)

where u is the velocity field, M = M(φ) is the mobility or Onsager coefficient that
controls the interface relaxation time and µ is a chemical potential that controls the
interfacial layer behaviour. Eq. (2.2.2) models the evolution in time of a diffuse interface
in particular it can represent the advection of the scalar field φ where the interface
does not degrade by numerical diffusion [48, 139, 18] and where complex topological
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interfaces modifications, namely breakup, coalescence and critical phenomena [81, 61].
Those phenomena are driven by the minimization of the chemical potential µ that is
defined as the functional derivative of the free energy functional f [φ]:

µ =
δf [φ(x)]

δφ
. (2.2.3)

The free energy f [φ] is a conservative, thermodynamically consistent functional that can
assume suitable definitions according to the problem under analysis. The PFM repre-
sentation of an immiscible binary mixture of isothermal fluids is given by the following
free energy functional:

f [φ(x)] = f0 +
1

2
κ|∇φ|2 (2.2.4)

where, in this case, φ represents the relative concentration of the two fluid components.
The first term on the right-hand-side of Eq. (2.2.4) is the ideal part of the free energy
that keeps into account the tendency of the system to separate in pure fluids clusters.
For two immiscible fluids, the phobic behaviour can be approximated by a double-well
formulation [36] which shows two minima corresponding to the two stable fluid phases:

f0 =
α

4

(
φ−

√
β

α

)2(
φ+

√
β

α

)2

, (2.2.5)

where α and β are two positive constants that define the interface properties. The
functional (2.2.4) is also know as the Gizburg-Landau free energy. In the continuous
diffuse representation of the multiphase fluid system, the two fluids are allowed to mix
into the interfacial layer where they store a mixing energy that is kept in account by the
non-local term 1/2κ|∇φ|2 of Eq. (2.2.4). The mixing energy stored into the interfacial
layer is controlled by the positive parameter κ and it is the origin of the surface tension in
to the PFM. Introducing the double-well potential (2.2.5) into Eq. (2.2.4), the chemical
potential for an immiscible binary mixture is obtained:

µ(φ) = αφ3 − βφ− κ∇2φ. (2.2.6)

The relative concentration equilibrium profile across the interface is given by the compe-
tition of the two terms appearing in the free energy formulation and can be obtained by
minimizing the free energy functional (2.2.4) with respect to the variations of the order
parameter, namely setting the chemical potential (2.2.6) to zero:

µ =
δf [φ]

δφ
= 0⇒ αφ3 − βφ− κ∇2φ = 0. (2.2.7)

The integration of Eq. (2.2.7) for a mono-dimensional planar interface, where φ(z →
±∞) = φ±, yields two stable solutions φ± = ±

√
β/α and the following non-uniform

solution:

φ(z) = φ+ tanh

(
z√
2ξ

)
. (2.2.8)
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The capillary width ξ =
√
κ/β is the interface length scale; in particular −0.9 ≤ φ/φ+ ≤

0.9 across a layer of lξ = 4.164ξ that contains the 98.5% of the interface surface tension
[5, 139]. The profile of a plane interface and the double well free energy f0 are reported
in the left and right panels of Fig. 2.2, respectively.
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Figure 2.2 – Schematic representation of the equilibrium interface profile φ(z) across a flat interface
(left) and the Gizburg-Landau free energy f0 (right).

2.2.3 The incompressible Navier-Stokes equations

In the PFM, the velocity field evolution for a multiphase system is given by a single
set of continuity and momentum equations written for the whole system, in which the
thermophysical properties are dependent on the order parameter φ. Through this model
the capillary forces that arise at the interface are introduced using the Korteweg stress
tensor [57]:

τc = κ∇φ×∇φ. (2.2.9)

Considering a system composed by of Newtonian fluids with matched densities and
matched viscosities, the modified Navier-Stokes equation yields to the following:

ρ
∂u

∂t
+ u · ∇u = νρ∇ ·

(
∇u +∇uT

)
−∇p+∇ · τc, (2.2.10)

where u is the velocity vector, p the pressure term, ρ is the fluid density and ν is the fluid
kinematic viscosity. In the most general case, the fluids are characterized by different
density and viscosity that can be described as dependent to the phase field ρ = ρ(φ) and
ν = ν(φ). In those cases the adoption of a variable viscosity is straightforward (see [146]
for a detailed description of the variable viscosity treatment), whereas variable densities
lead to so called quasi-incompressible systems that are still argument of debate in the
PFM community [69, 27]. The “stress form” of the momentum balance equation (2.2.10)
can be rewritten in an equivalent “potential form” [48] where the capillary force term
shows a direct dependence on the chemical potential µ:

ρ
∂u

∂t
+ u · ∇u = νρ∇ ·

(
∇u +∇uT

)
−∇p̃+ µ∇φ, (2.2.11)
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where p̃ = p + ∇f is a modified pressure term and µ∇φ is the capillary force. The
dimensional form of the continuity equation reads:

∇ · u = 0. (2.2.12)

Since ρ = const, Eq. (2.2.12) is exactly the same of adopted to describe incompressible
single phase flows. Thanks to the conservative nature of the PFM, the interfacial layer
does not diffuse; as a result∇φ keeps the property of a signed distance and the momentum
transfer to the flow field is resolved with high accuracy. The surface tension σ is defined
as the specific energy stored into the interfacial layer; applying the definition to Eq.
(2.2.7), the following value of the surface tension is obtained:

σ = κ

∫ +∞

−∞
(∇φ · n)

2
dn =

√
8

3

κ
1
2 β

3
2

α
. (2.2.13)

Once the interface thickness ξ and the equilibrium solutions φ± are fixed, Eq. (2.2.13)
allows to define the free energy parameters α, β and κ necessary to achieve the desired
surface tension value. Although the fictitious enlargement of the interface necessary for
its numerical resolution1, the PFM can describe the desired value of σ by a selection of
the free energy functional coefficients [139]. The derivation described above has been
adopted and reviewed by several authors [1, 63] moreover the convergence of Eq. (2.2.2)
to the “sharp interface limit” has been recently proven by Yue [142] and Magaletti [73]
among the others.

2.2.4 Matching with the Force Coupling

In order to directly compare the PFM with the force coupling method, the modified
Navier-Stokes Eq. (2.2.11) is rewritten in the following way, where the adoption of the
modified pressure p̃ is avoided:

ρ
∂u

∂t
+ u · ∇u = νρ∇ ·

(
∇u +∇uT

)
−∇p+ µ∇φ−∇f. (2.2.14)

The force term fc = µ∇φ−∇f is expanded introducing the free energy functional of Eq.
(2.2.4):

fc = µ∇φ−∇f (2.2.15)

=
(
αφ3 − βφ

)
∇φ− κ∇2φ∇φ− ∂f

∂φ
∇φ

= −κ (∇ · ∇φ)∇φ.

Starting from a scalar field φ, the average curvature 1/r̄ = 1/2(1/r1 +1/r2) and the local
normal vector n of each level-set curve are:

1

r̄
= −∇ ·

(
∇φ
|∇φ|

)
= −∇

2φ

|∇φ|
+

1

|∇φ|2
∇φ · ∇ (|∇φ|) , (2.2.16)

1At least three mesh-points are necessary to fully resolve the interface. Larger number of mesh-points
can be required according to the accuracy of the numerical scheme adopted.
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n = − ∇φ
|∇φ|

, (2.2.17)

where definitions (2.2.16) and (2.2.17) are valid only if φ has the properties of a signed
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Figure 2.3 – Schematic representation of the equilibrium interface profile φ(s) along the interface
normal direction s in comparison with the δ-function δ(s) (left panel). On the right panel the δ/r̄
term of Eq. (2.2.22) is proposed and normalized by the theoretical curvature radius r0. The modulus
of the difference between the theoretical curvature and δ/r̄ is also proposed.

function, namely each of its iso-surfaces is parallel to the others. This property is con-
served when advecting φ through the Cahn-Hilliard equation (2.2.2). In particular,
as proposed by Magaletti et al. [73], the interfacial layers are properly conserved if
M ∝ ξ3U/L where U and L are the velocity and length scale of the problem. With this
scaling the controlled diffusion in the interfacial layer is fast enough to restore the local
modification of the interface profile produced by the convective effects. As a result the
profile of φ across the interface is always described by Eq. (2.2.8), that has the proper-
ties of a signed function. Substituting Eq. (2.2.16) and (2.2.17) into Eq. (2.2.15), the
following force is obtained:

fc = −κ
r̄
|∇φ|2n + κ∇φ · ∇ (|∇φ|)n. (2.2.18)

If the interface is correctly described, the surface tension σ = (
√

8/3)κφ2
+/ξ is a constant

and, substituting to Eq. (2.2.18) it yields the following:

fc = − 3√
8

|∇φ|2

φ2
+

ξσ
1

r̄
n + κ∇φ · ∇ (|∇φ|)n. (2.2.19)

The following δ-function can be isolated:

3√
8

|∇φ|2

φ2
+

ξ = δ(x) =⇒
∫
s

δ(x)ds = 1, (2.2.20)

where the integral is performed along a direction s oriented along the interface normal
n and the integration extrema are, by definition, ±∞. Integrating in the same way Eq.
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(2.2.19), the equivalent surface force applied on a sharp interface is obtained:∫
s

fcds = −σn
∫
s

δ(x)
1

r̄
ds+

∫
s

(κ∇φ · ∇ (|∇φ|)n) ds, (2.2.21)

where the last integral is zero because it is the integral of the product between a symmetric
positive function by a antisymmetric function. The resulting force has a formulation that
matches exactly the Force Coupling proposed by:∫

s

fcds = −σn
∫
s

δ(x)
1

r̄
ds ' −σ 1

r̄0
n (2.2.22)

The difference between
∫
δ/r̄ and 1/r̄0 is due to the computation of the local curvature

that is based on a finite thickness layer rather than on a zero-thickness layer. The error
committed with this approach is in any case small when the curvature radius is large
with respect to the interface thickness. In Fig. 2.3 the difference between

∫
δ/r̄ and 1/r̄0

for an interface with a curvature radius r0/ξ = 25 is proposed; the resulting difference
has a maximum magnitude of 0.1% of r0. However this inaccuracy affects are in fact
negligible, moreover all the other continuous approaches (LS) are affected by this minor
inaccuracy. The derivation proposed above has been already shown by Chella et al. [19]
while, among the other authors, [1] examined the same problem adopting variational
approaches.

2.3 Dimensional analysis

In this work, the governing equations (2.2.2), (2.2.6), (2.2.11) and (2.2.12) have been
solved on a flat channel geometry, where two infinite parallel walls are deployed at a
distance Lz = 2h. With reference to Fig. 2.4, the governing equations can be rewritten

Z,
 w

Y, v

X, u

L
y

L x

L z

O Flow

Figure 2.4 – Channel geometry
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in a non dimensional form by using the following non dimensional variables (denoted by
apex “-”):

x− =
x

h
, u− =

u

Uτ
, t− =

tUτ
h
, p̃− =

p̃h

ρU2
τ

, φ− =
φ

φ+
(2.3.1)

where h is the channel half height, φ+ is the positive uniform solution of a planar interface
(2.2.8) and Uτ =

√
τw/ρ is the friction velocity, where τw is the shear stress at the channel

walls. The non dimensional form of the governing equations reads:

∂φ−

∂t
= −u− · ∇φ− +

1

Pe
∇2µ−, (2.3.2)

µ− = φ−
3

− φ− − Ch2∇2φ− = 0. (2.3.3)

∇ · u− = 0, (2.3.4)

∂u−

∂t−
+ u− · ∇u− =

1

Reτ
∇ ·
(
∇u− +∇u−

T
)
−∇p̃− +

√
8

3

1

We · Ch
µ−∇φ−. (2.3.5)

The following dimensionless groups appear through the non-dimensionalization proce-
dure:

Reτ =
Uτh

ν
, We =

ρU2
τ h

σ
, Ch =

ξ

h
, Pe =

hUτ
Mβ

. (2.3.6)

The friction Reynolds number Reτ represents the ratio between the inertial forces Uτh
and the viscous forces ν; the Weber number We is the ratio between inertial forces ρU2

τ h
and the surface tension σ. The Cahn number Ch is the ration between the capillary length
ξ and the the channel half height h and it represents the dimensionless capillary length l−ξ .
The Peclet number Pe is the ratio between the diffusive time-scale hUτ and the convective
time-scale Mβ and it controls the interface relaxation time. The Reynolds number can
be set considering the flow field and the geometry; once the friction Reynolds number is
fixed, the surface tension σ can be imposed through the Weber number. The interface
thickness depends, in general, on the problem under analysis and it may assume values
ranging several orders of magnitude; this work focuses on the study of immiscible binary
mixtures, where the physical interface has a real thickness of O(Ch−9)). This interface
thickness would require numerical resolutions beyond the current computational limits,
moreover at that scales the continuum hypotheses breaks down. As a result a fictitious
enlargement of the interface is required and the the Cahn number should be set to the
minimum value allowed by the numerical scheme adopted, that in general is at least of
three mesh points. To overcome this apparent lack of physical meaning and keep the
results independent from the interface thickness, a proper scaling between Ch and Pe
should be adopted. In the past few years different scaling laws have been proposed based
on asymptotic expansion [69, 53, 73]; apparently the best results are obtained imposing
Pe ∝ αs/Ch, where the effects of the constant αs are negligible if O(αs) = 1.



2.3. Dimensional analysis 19

2.3.1 The wall units

The results of Part II are reported adopting the so-called “wall-units” (denoted by the
superscript “+”), that are defined using the shear velocity Uτ and the cinematic viscosity
ν of the fluid. The dimensionless variables are the following:

x+ =
xUτ
ν
, u+ =

u

Uτ
, t+ =

tU2
τ

ν
. (2.3.7)

Since the phase-field do not depend on the fluid scaling variables, it remains unaltered
when described in wall-units: φ− = φ+.
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3
Numerical method

In this work the dynamics of large deformable droplets in turbulent multiphase flows
is investigated by Direct Numerical Simulation (DNS) of turbulence coupled with the
Phase Field Model (PFM) for the interface description. In this chapter, the numerical
algorithm adopted for the solution of the governing equations of Chap. 3 is derived and
discussed in detail. In the first section, the governing equations are rewritten and the
solution algorithm is exposed; in the second section the spectral approximation of the
solution is shown and, in the last section, the discretized set of equations is reported.

3.1 Solution algorithm

In this section the dimensionless governing equations (2.3.2)-(2.3.5) are rewritten in a
formulation suitable to match the solution algorithm. The momentum and mass balance
are rewritten in the so-called “normal-velocity normal-vorticity” formulation; the Cahn-
Hilliard equation is rewritten adopting a particular “operator-splitting” technique. A
schematic representation of the solution procedure is shown in Fig. 3.1.

3.1.1 Velocity-vorticity formulation

The dimensionless momentum equation (2.3.5)is rewritten as follows (the superscripts
have been removed for sake of brevity):

∂u

∂t
= S +

1

Reτ
∇2u−∇p̃′, (3.1.1)

where the modified pressure term p̃ has been decomposed into its fluctuating and mean
components, p̃ = p̃′ + Π̃. The mean pressure gradient ∇Π̃, the non-linear convective
terms and the source terms have been collected in to the S term:

S = −u · ∇u−∇Π̃ +
3√
8

1

We · Ch
µ∇φ. (3.1.2)

To solve the equation system (2.3.4)-(2.3.5) the fluctuating pressure term ∇p̃′ is removed
by taking the curl of eq. (3.1.2), as result the transport equation for the vorticity ω is
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obtained:
∂ω

∂t
= ∇× S +

1

Reτ
∇2ω, (3.1.3)

where the identity∇×∇p̃′ = 0 has been substituted. Taking twice the curl of Eq. (3.1.2),
substituting the continuity Eq. (2.3.4) and the identity ∇×∇× c = ∇(∇· c)−∇2c, the
following 4th-order equation for the velocity u is obtained:

∂∇2u

∂t
= ∇2S−∇(∇ · S) +

1

Reτ
∇4u (3.1.4)

Equations (3.1.3)-(3.1.4) are solved for the wall-normal components of the vorticity ωz
and velocity w, adopting the “velocity - vorticity” algorithm developed by Kim et al.
[54]; rewriting Eq. (3.1.3)-(3.1.4) for ωz and w, respectively, the following are obtained:

∂ωz
∂t

=
∂Sy
∂x
− ∂Sx

∂y
+

1

Reτ
∇2ωz, (3.1.5)

∂(∇2w)

∂t
= ∇2Sz −

∂

∂z

(
∂Sx
∂x

+
∂Sy
∂y

+
∂Sz
∂z

)
+

1

Reτ
∇4w. (3.1.6)

With a suitable set of boundary conditions, ωz and w are computed and then the stream-
wise velocity component u and the span-wise velocity component v are obtained from
the continuity equation ad the vorticity definition:

∂w

∂z
= −∂u

∂x
− ∂v

∂y
, (3.1.7)

ωz =
∂v

∂x
+
∂u

∂y
. (3.1.8)

Once the velocity field is fully resolved, the fluctuating pressure p̃′ can be obtained by
solving a Poisson-type equation:

∇2p̃′ = ∇ · S. (3.1.9)

3.1.2 Cahn-Hilliard equation splitting

The solution of the Cahn-Hilliard equation requires robust numerical schemes due to
the high order operators that it involves; expanding Eq. (2.3.2), a 4th-order operator is
highlighted:

∂φ

∂t
= −u · ∇φ+

1

Pe

(
∇2φ3 −∇2φ− Ch2∇4φ

)
. (3.1.10)

To reduce the stability requirements and adopt the same pseudo-spectral solution in-
volved for the momentum equations, Eq. (3.1.10) is rewritten in the following way:

∂φ

∂t
= Sφ +

s

Pe
∇2φ− Ch2

Pe
∇4φ, (3.1.11)
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The operator splitting ∇2φ = s∇2φ − (s + 1)∇2φ is similar to that adopted by Yue et
al. [139] and is obtained through a positive coefficient s that is chosen considering the
temporal discretization; similar procedures can be found in [5, 62]. The convective term,
the non-linear term and the terms rising from the operator splitting are collected in the
Sφ term:

Sφ = −u · ∇φ+
1

Pe
∇2φ3 − (s+ 1)

Pe
∇2φ. (3.1.12)

3.2 Spectral approximation

Equations (3.1.5), (3.1.6) and (3.1.12) are solved adopting a pseudo-spectral spatial dis-
cretization: solutions are approximated by Fourier transforms along the two periodic
directions of the channel geometry x and y, respectively; Chebyshev polynomials are
adopted to approximate the solution along the wall-normal direction. In order to avoid
convolutions in the Fourier-Chebishev space, the multiplication of spectral variables (i.e.
convective terms) is obtained transforming back the variables to the physical space, tak-
ing the multiplications and the re-transforming to the Fourier-Chebyshev space. For
this reason these class of algorithms is also known as “pseudo-spectral algorithms”. A
signal g, projected in to the Fourier space along the periodic directions x and y, can be
represented by the following sum of harmonics:

g(x, y, z) =

1
2Nx∑

nx=−Nx2 +1

1
2Ny∑

ny=−Ny2 +1

ĝ(kx, ky, z)e
j(kxx+kyy), (3.2.1)

where j =
√
−1 is the imaginary unit of the complex representation, ĝ is the Fourier

coefficient of the signal in the modal coordinates (kx, ky); at this point dependence on
the physical coordinate z is still present. The two periodic directions are treated with a
Fast Fourier Transform (FFT) algorithm imposing periodicity lengths of Lx and Ly and
projecting the velocity vector on to Nx and Ny Fourier modes in the x and y directions
of the geometry of Fig. 2.4. Through the Fourier transform, the variables are mapped
an a uniform grid in the physical space and the nodes spacing is:

∆x =
Lx

Nx − 1
, ∆y =

Ly
Ny − 1

. (3.2.2)

The signal is decomposed in a sum of periodical functions characterized by wavenum-
ber and amplitude; the former represents the frequency of the corresponding harmonic,
whereas the latter is the magnitude of the harmonic. Each mode nx or ny is characterized
by the following wave-numbers:

kx =
2πnx
Lx

, ky =
2πny
Ly

. (3.2.3)
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Since the Fourier basis is orthogonal, the Fourier transform ĝ can be obtained as follows:

ĝ(kx, ky, z) =
1

NxNy

1
2Nx∑

nx=−Nx2 +1

1
2Ny∑

ny=−Ny2 +1

g(x, y, z)e−j(kxx+kyy). (3.2.4)

Along the wall normal direction z, the transformed signal ĝ(kx, ky, z) is approximated
through the sum of Chebyshev polynoms Tn(z):

ĝ(kx, ky, z) =

N ′
z∑

nz=0

h(kx, ky, nz)Tn(z), (3.2.5)

where the prime indicate the first term halving. The Chebyshev polynomial of order nz
in z is defined as follows:

Tnz(z) = cos [nz arccos(z)] , (3.2.6)

where nz is one of the Nz Chebyshev modes and −1 ≤ z ≤ 1. The orthogonality property
holds also for the Chebyshev polynomials and the inverse transform is:

ĥ(kx, ky, nz) =
2

Nz

N ′
z∑

nz=0

ĝ(kx, ky, z)Tn(z). (3.2.7)

The variables described in the Chebishev space are mapped in the physical space accord-
ing to the following mapping:

z = cos

(
nzπ

Nz

)
. (3.2.8)

With adoption of Chebychev polynomials for the approximation of the solution along
the wall-normal direction, the spatial discretization is characterized by a large resolution
near the walls (z = ±1), where large velocity gradients need to be resolved. A complete
review of the method can be find in Boyd [12] Concluding, adopting the transformations
of Eq. (3.2.1) and Eq. (3.2.5), the spectral representation of a three-dimensional signal
is the following:

g(x, y, z, t) =

1
2Nx∑

nx=−Nx2 +1

1
2Ny∑

ny=−Ny2 +1

N ′
z∑

nz=0

ĥ(kx, ky, nz, t)Tn,z(z)e
j(kxx+kyy). (3.2.9)

Due to the presence of products taken in to the physical space, the computational algo-
rithm needs the introduction of de-aliasing procedures also in the Chebyshev transforms;
following Boyd [12] a the “2/3 rule” is applied, keeping only the first two thirds of the
modes after the application of the pseudo-spectral multiplications.
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3.3 Discretization and solution of the equations

3.3.1 Velocity equation

Using the spectral representation of Sect. 3.2, Eq. (3.1.6) reads:

∂

∂t

(
∂2

∂z2
− k2

xy

)
ŵ =

(
∂2

∂z2
− k2

xy

)
Ŝz (3.3.1)

− ∂

∂z

(
ikxŜx + ikyŜy +

∂

∂z
Ŝz

)
+

1

Reτ

(
∂2

∂z2
− k2

xy

)(
∂2

∂z2
− k2

xy

)
ŵ,

where k2
xy = k2

x + k2
y. The equation above stresses that the z derivatives are taken

in a different way, due to the adoption of Chebyshev polynomials. Eq. (3.3.1) is dis-
cretized in time adopting an hybrid IMplicit EXplicit (IMEX) scheme: (i) a second-order
Adams-Bashfort explicit scheme is adopted for the non-linear convective terms; (ii) the
implicit Crank-Nicholson implicit scheme is applied to the diffusive operators. The time-
discretized form of Eq. (3.3.1) reads:

ŵn+1 − ŵn

∆t

(
∂2

∂z2
− k2

xy

)
ŵ =

3

2

(
∂2

∂z2
− k2

xy

)
Ŝnz (3.3.2)

− 1

2

(
∂2

∂z2
− k2

xy

)
Ŝn−1
z

− 3

2

∂

∂z

(
ikxŜ

n
x + ikyŜ

n
y +

∂

∂z
Ŝnz

)
+

1

2

∂

∂z

(
ikxŜ

n−1
x + ikyŜ

n−1
y +

∂

∂z
Ŝn−1
z

)
+

1

Reτ

(
∂2

∂z2
− k2

xy

)(
∂2

∂z2
− k2

xy

)
ŵn+1 − ŵn

2
,

where superscripts n− 1, n, n+ 1 indicate the three consecutive time levels t−∆t, t and
t+ ∆t, respectively and ∆t is the time-step. Eq. (3.3.2) is rearranged and, introducing
the coefficient γ = ∆t/2Re, the following is obtained:[
1− γ

(
∂2

∂z2
− k2

xy

)](
∂2

∂z2
− k2

xy

)
ŵn+1 =

3∆t

2

(
∂2

∂z2
− k2

xy

)
Ŝnz (3.3.3)

− ∆t

2

(
∂2

∂z2
− k2

xy

)
Ŝn−1
z

− 3∆t

2

∂

∂z

(
ikxŜ

n
x + ikyŜ

n
y +

∂

∂z
Ŝnz

)
+

∆t

2

∂

∂z

(
ikxŜ

n−1
x + ikyŜ

n−1
y +

∂

∂z
Ŝn−1
z

)
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+

[
γ
∂2

∂z2
+
(
1− k2

xy

)]( ∂2

∂z2
− k2

xy

)
ŵn.

The discretized continuity Eq. (3.1.7) is:

ikxû+ iky v̂ +
∂w

∂z
= 0, (3.3.4)

substituting Eq. (3.3.4) into Eq. (3.3.3) and introducing the coefficient λ2 = (1+γk2
xy)/γ,

the following is obtained:

− γ

(
∂2

∂z2
− λ2

)(
∂2

∂z2
− k2

xy

)
ŵn+1 = (3.3.5)

− k2
xy

(
3

2
Ŝnz −

1

2
Ŝn−1
z

)
∆t− k2

xy

[
γ
∂2

∂z2
+
(
1− γk2

xy

)]
ŵn

− ∂

∂z
ikx

(
3

2
Ŝnx −

1

2
Ŝn−1
x

)
∆t− ∂

∂z
ikx

(
γ
∂2

∂z2
+
(
1− γk2

xy

))
ûn

− ∂

∂z
iky

(
3

2
Ŝny −

1

2
Ŝn−1
y

)
∆t− ∂

∂z
iky

(
γ
∂2

∂z2
+
(
1− γk2

xy

))
v̂n.

The historical terms Ĥn
x , Ĥn

y and Ĥn
z are defined as follows:

Ĥn
x =

(
3

2
Ŝnx −

1

2
Ŝn−1
x

)
∆t+

[
γ
∂2

∂z2
+
(
1− γk2

xy

)]
ûn (3.3.6)

Ĥn
y =

(
3

2
Ŝny −

1

2
Ŝn−1
y

)
∆t+

[
γ
∂2

∂z2
+
(
1− γk2

xy

)]
v̂n

Ĥn
z =

(
3

2
Ŝnz −

1

2
Ŝn−1
z

)
∆t+

[
γ
∂2

∂z2
+
(
1− γk2

xy

)]
ŵn,

introducing Eq. (3.3.6), Eq. (3.3.5) reads:(
∂2

∂z2
− λ2

)(
∂2

∂z2
− k2

xy

)
ŵn+1 =

1

γ

[
k2
xyĤ

n
z +

∂

∂z

(
ikxĤ

n
x + ikyĤ

n
y

)]
. (3.3.7)

Collecting Ĥn = k2
xyĤ

n
z + ∂

∂z (ikxĤ
n
x + ikyĤ

n
y ), the final form of the discretized Eq.

(3.1.8) is obtained: (
∂2

∂z2
− λ2

)(
∂2

∂z2
− k2

xy

)
ŵn+1 =

Ĥn

γ
. (3.3.8)

Introducing the auxiliary variable θ̂ =
(
∂2

∂z2 − k
2
xy

)
the 4th-order equation can be split

in two 2nd-order equations: (
∂2

∂z2
− λ2

)
θ̂ =

Ĥn

γ
, (3.3.9)
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(
∂2

∂z2
− k2

xy

)
ŵn+1 = θ̂. (3.3.10)

Eq. (3.3.10) is solved imposing the following boundary conditions:

ŵn+1(±1) = 0,
∂ŵn+1

∂z
(±1) = 0, (3.3.11)

which are obtained from the non-slip condition at the wall and from the continuity
equation coupled with the non-slip condition at the wall. The solution of Eq. (3.3.10)

requires a set of boundary conditions on θ̂ that lack in the physical model definition. To
circumvent this problem, θ̂ is rewritten as follows:

θ̂ = θ̂1 + Âθ2 + B̂θ3, (3.3.12)

where Â and B̂ are complex constants to be determined. The three components, θ̂1,
θ2 and θ3 are the particular solution and two homogeneous solution of Eq. (3.3.9),
respectively. Their solution is obtained as follows:(

∂2

∂z2
− λ2

)
θ̂1 =

Ĥn

γ
, θ̂1(1) = 0, θ̂1(−1) = 0, (3.3.13)

(
∂2

∂z2
− λ2

)
θ2 = 0, θ2(1) = 0, θ2(−1) = 1, (3.3.14)

(
∂2

∂z2
− λ2

)
θ3 = 0, θ3(1) = 1, θ3(−1) = 0. (3.3.15)

In a similar way, also ŵ is rewritten as a sum of a particular solution ŵ1 and two
homogeneous solutions w2, w3:

ŵn+1 = ŵ1 + Âw2 + B̂w3. (3.3.16)

Similarly to the solution of θ̂, the solutions for ŵ1, w2 and w3 can be obtained applying
the no-slip BC: (

∂2

∂z2
− k2

xy

)
ŵ1 = θ̂, ŵ1(1) = 0, ŵ1(−1) = 0, (3.3.17)

(
∂2

∂z2
− k2

xy

)
w2 = 0, w2(1) = 0, w2(−1) = 0, (3.3.18)

(
∂2

∂z2
− k2

xy

)
w3 = 0, w3(1) = 0, w3(−1) = 0. (3.3.19)

The unknown constants Â and B̂ are determined applying the ∂ŵ/∂z = 0 BC:

∂ŵ1

∂z
(1) + Â

∂w2

∂z
(1) + B̂

∂w3

∂z
(1) = 0 (3.3.20)
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∂ŵ1

∂z
(−1) + Â

∂w2

∂z
(−1) + B̂

∂w3

∂z
(−1) = 0.

From Eq. (3.3.16), ŵn+1 is obtained. The solutions of equations (3.3.13)-(3.3.15) and
(3.3.17)-(3.3.19) are obtained adopting the Chebysev-Tau solution algorithm proposed
in [54] and the resulting tridiagonal equations system is solved adopting the Gauss elim-
ination procedure.

3.3.2 Vorticity equation

The wall-normal vorticity component ω̂z is obtained solving Eq. (3.1.5); following the
discretization described in Sect. 3.3.1, Eq. (3.1.5) reads:(

∂2

∂z2
− λ2

)
ω̂n+1
z = − 1

γ

[
ikxĤ

n
y − ikyĤn

x

]
. (3.3.21)

The solution of Eq. (3.3.21) is obtained adopting the Chebyshev-Tau algorithm with the
following BC:

ω̂n+1
z (±1) = ikxv̂

n+1 − ikyûn+1 = 0. (3.3.22)

The resulting tridiagonal equations system is then solved adopting a Gauss elimination
technique. Once the wall-normal vorticity component ω̂z is known, the other two veloc-
ity components ûn+1 and v̂n+1 can be derived from the spectral representation of the
vorticity definition and the spectral representation of the continuity equation:

−ikyûn+1 + ikxv̂
n+1 = ω̂n+1

z , (3.3.23)

−ikxûn+1 + iky v̂
n+1 =

∂ŵn+1

∂z
. (3.3.24)

3.3.3 Cahn-Hilliard equation

Eq. (3.1.11) is discretized in space adopting the spectral representation shown in Sect.
3.2 and applied in Sect. 3.3.1 and Sect. 3.3.2:

∂φ̂

∂t
= Ŝφ +

s

Pe

(
∂2

∂z2
− k2

xy

)
φ̂ (3.3.25)

− Ch2

Pe

(
∂2

∂z2
− k2

xy

)(
∂2

∂z2
− k2

xy

)
φ̂,

The Cahn-Hilliard equation solutions are characterized by a the presence of high fre-
quency harmonics, that need to be damped in order to keep the solution bounded. The
adoption of weakly damping schemes, such as the Crank-Nicholson adopted for the veloc-
ity field equations in Sect. 3.3.1 leads to aliased solutions [3]. For this reason, following
[139], a 1th-order Backward Difference Formula (BDF) is adopted. In particular the non
linear convective Sφ term is discretized adopting a 2nd order Adams-Bashfort:

φ̂n+1 − φ̂n

∆t
=

3

2
Ŝnφ −

1

2
Ŝn−1
φ +

s

Pe

(
∂2

∂z2
− k2

xy

)
φ̂n+1 (3.3.26)
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− Ch2

Pe

(
∂2

∂z2
− k2

xy

)(
∂2

∂z2
− k2

xy

)
φ̂n+1.

Introducing the coefficient γφ = (∆tCh2)/Pe, Eq. (3.3.26) yields:[
1

γφ
− s

Ch2

(
∂2

∂z2
− k2

xy

)
+

(
∂2

∂z2
− k2

xy

)2
]
φ̂n+1 =

Ĥφ

γφ
, (3.3.27)

where the historical term Ĥφ has been introduced:

Ĥφ

γφ
=

1

γφ

(
φ̂n +

3∆t

2
Ŝnφ −

∆t

2
Ŝn−1
φ

)
. (3.3.28)

Defining the auxiliary variable θφ = λφφ +∇2φ, the 4th-order Eq. (3.3.27) can be split
in two 2nd order equations:(

∂2

∂z2
− k2

xy − λφ − s
)
θ̂φ =

Ĥφ

γφ
, (3.3.29)

(
∂2

∂z2
− k2

xy − λφ
)
φ̂n+1 = θ̂φ. (3.3.30)

In order to recovery Eq. (3.3.25), the coefficients λφ yields to the following:

λφ =
s

2Ch2

(
−1−

√
1− 4Ch4

γφs2

)
, (3.3.31)

where s ≥
√

4Pe/∆tCh2. Eq. (3.3.30) is solved imposing the following boundary condi-
tions that emerge imposing a normal contact angle for the interface at the walls:

∂φ̂n+1

∂z
(±1) = 0,

∂3ŵn+1

∂z3
(±1) = 0. (3.3.32)

The BC on θ̂φ lack prom the physical problem definition, as a result a procedure similar
to that adopted to solve Eq. (3.3.9) is employed. Eq. (3.3.29) and Eq. (3.3.30) are
solved through a Chebyshev-Tau algorithm and the resulting tridiagonal linear system
is solved by Gauss elimination.
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Initialization

Calculation of θφ:eq. 2.3.28

Calculation of φ:
eq. 2.3.29

Calculation of u,v:
eq. 2.3.24

Calculation of θ:
eq. 2.3.9

Calculation of w:
eq. 2.3.10

Calculation of ωz:eq. 2.3.23

End of calculations

n

n+1

Figure 3.1 – Flux diagram of the phase field-flow field solution algorithm
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In this chapter the numerical method proposed in Chap. 3 is validated against selected
benchmarks; in the first section the problem of a single droplet deformed under shear
flow is solved and the results are compared to the available analytical solution. In the
second section the accuracy of the method is discussed in comparison with two widely
adopted Lattice Boltzmann multicomponent algorithms.

4.1 Droplet deformation under laminar shear flow

In this section the governing equations of Chap. 2 are applied to the problem of a
droplet deformation under laminar shear flow; a schematic of the problem is reported in
Fig. 4.1. The analytic solution of the problem was obtained by Taylor [120]: adopting a
sharp interface approach he solved the unbounded creeping flow equations in the limit of
vanishing droplet deformations. Under these hypothesis, the deformed droplet assumes
the shape of a prolate ellipsoid whose major axes is contained in the shear gradient plane
and it is tilted according to the velocity profile. After the initial transient, the capillary
forces at the interface balance the external shear forcing and the droplet deformation D
is proportional to the capillary number Ca:

D =
35

32
Ca. (4.1.1)

The deformation parameter D = (la − lb)/(la + lb) is computed measuring the length of
the major an minor axis of the ellipsoid in the shear gradient plane, la and lb, respectively.
The third axes lc, normal to the shear gradient plane, remains almost unaltered for small
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Figure 4.1 – Schematics of the problem under analysis: a single deformable droplet under laminar
shear flow.

deformations. Eq. (4.1.1) holds for vanishing deformations and matched viscosities1

yielding to accurate predictions for small deformations, namely D < 0.3. The capillary
number is defined as follows:

Ca =
γ̇νρd

2σ
, (4.1.2)

where γ̇ = ρuw/h is the shear rate, d is the undeformed droplet diameter and σ is the
surface tension. The extension of the work of Taylor to wall bounded shear flows can be
found in [112].

4.1.1 Problem definition

With reference to the schematics of Fig. 4.1, a spherical droplet of diameter d is initialized
in the middle of the channel domain of and the initial fluid velocity is set to zero: u = 0.
A a stream-free shear flow is applied setting the walls velocity to u(z = −h) = −uw and
u(z = h) = uw, respectively; the other two velocity components are set to zero at the
walls: v(±h) = w(±h) = 0. With the numerical framework discussed in Chap. 3, the
shear flow condition is obtained setting the following vorticity BCs (3.3.22):

ω̂n+1
z (±1) = ∓ikyûn+1

w . (4.1.3)

Adopting the non-dimensional variables of Sect. 2.3, the Capillary number (4.1.2) yields:

D =
We

Reτ

d−

2
. (4.1.4)

The value of the Reynolds number has been chosen to ensure complete creeping flow
conditions: Rew = |uw|h/ν = 0.2 and, imposing a dimensionless wall velocity |u−w | = 1,

1A more general law, where different viscosities are considered, can be found in [120].
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the friction Reynolds number yields to Reτ = 0.2. A droplet of initial diameter d− =
1.0 = h has been initialized in the middle of a computational domain of 2πh×2πh×2h in
x, y and z directions, respectively and the grid resolution has been set to 128×128×129.
In order to describe the interface with at least five mesh points, the Cahn number has
been set to Ch = 0.05 and, adopting the scaling proposed by [73], Pe = Ch−1 = 20.

4.1.2 Results

 0

 0.1

 0.2

 0.3

 0.4

 0  0.1  0.2  0.3  0.4

D

Ca

Simulations
Taylor law

Figure 4.2 – Deformation parameter D for different Capillary numbers Ca: Comparison with the
analytic Taylor law.

Fig. 4.2 shows the results for four different Capillary numbers Ca; good agreement
is observed up to the limit of validity of the Taylor law (4.1.1) D = 0.3. Some of the
discrepancies that can be observed are probably due to the uncertainties on the exact
interface location; due to the diffuse nature of the interface, it location is determined
with the iso-surface φ = 0.

4.2 Comparison with multicomponet Lattice Boltz-
mann models

In this section the PFM proposed in Chap. 2 is modified and solved on selected bench-
marks to provide a quantitative comparison with two of the most used multicomponent
PFM lattice Boltzmann Models (LBM). Objective of this analysis is the comparison of
the peculiar features of the PFM with the features of other widely adopted methods,
focusing in particular on the accuracy of the capillary forces modelling and on the local
mass conservation.
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4.2.1 Introduction to multicomponent LBM

In this section the stochastic LBM for multicomponent fluid modelling is briefly proposed;
a detailed discussion on this approach can be found in the literature [35, 116, 38, 39, 117,
145, 34]. Many of the kinetic models developed for the study of mixtures are based on
the linearised Boltzmann equations, especially the single-relaxation-time model due to
Bhatnagar, Gross, and Krook [11], also named BGK-model:

∂g(x,u, t)

∂t
+ u · ∇g(x,u, t) + a · ∇ug(x,u, t) = Ω(x, t) = (4.2.1)

= − 1

τg

[
g(x,u, t)− g(eq)(x,u, t)

]
,

where g(x,u, t) is the probability density function to find at the space-time location (x, t)
a particle with velocity u. The collisional kernel, on the right hand side of Equation
(4.2.1), stands for the relaxation (with a characteristic relaxation time τg) towards the
local equilibrium g(eq)(x,u, t) which, in turn, depends on the local macroscopic variables,
as density and momentum:

ρ(x, t) =

∫
g(x,u, t)du ρu(x, t) =

∫
(g(x,u, t)u) du. (4.2.2)

a · ∇ug(x,u, t) represents the effect of a volume/body force density, a, on the kinetic
dynamics. Modern discrete-velocity counterparts of (4.2.1), the so-called Lattice Boltz-
mann methods (LBM), are able to simulate multiphase and multicomponent fluids and
have attracted considerable attention from the scientific community [71, 72, 106–109,
119, 13, 14, 104]. The LBM is an discrete form of Boltzmann kinetic equation describing
the dynamics of a fictitious ensemble of particles [10, 135, 118, 20], whose motion and
interactions are confined to a regular space-time lattice. This approach consists in the
following evolution:

gi(x + ci∆t, t+ ∆t)− gi(x, t) = −∆t

τg
[gi(x, t)− g(eq)

i (x, t)], (4.2.3)

where gi(x, t) is the probability density function of finding a particle at site x and time
t, moving in the direction of the i-th lattice speed ci with i = 0, . . . , b. Systematic ways
to derive the discrete set of velocities in these models are either the discretization of the
Boltzmann equation on the roots of Hermite polynomials [111, 88, 114, 110, 74, 77, 83] or
the construction of high-order lattices for more stable LBM based on entropic approaches
[22, 21]. At the same time, the translation of the body/volume force a · ∇ug(x,u, t)
onto the discrete-lattice framework represented one of the most challenging issues in
the last years of Lattice Boltzmann research [106–109, 119, 13, 14, 40, 74, 41, 138, 58].
Through one of the first approaches proposed in the literature, the so called Shan-Chen
(SC) approach [106, 107], the non-ideal interactions have been introduced directly at
the discrete lattice level among the constituent (kinetic) particles [106, 107, 103]. These
lattice forces embed the essential features and are able to produce phase separation (i.e.
a non-ideal equation of state and a non-zero surface tension) as well as a detailed diffuse
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interface structure. The application of the SC models has been particularly fruitful
for many applications [47, 58, 144, 7, 97, 9]. Despite that, its theoretical foundations
have been object of debate in the recent years [40, 103, 7, 97], mainly because of the
thermodynamic consistency of the mesoscopic interactions involved. However, in the
so called Free-Energy (FE) models [119, 13, 14], the collisional properties of the model
have been chosen in such a way that the large scale equilibrium is consistent with an
underlying free energy functional, embedding both hard core effects and weak interacting
tails. In this case, more traceable theoretical foundations have been provided, at least
from the point of view of a continuum theory [132]. Among others, some studies have
also performed where more elaborated lattice models, including the effect of an exclusion
volume based on Enskog theory [40, 41, 74], effective equilibria [144], or even effective
SC forces, were designed to match the desired bulk pressure of a given fluid [138, 58].

4.2.2 Advantages and disadvantages of the methods

Multicomponent LBM and PFM have demonstrated excellent performances to predict
the dynamics of multiphase and multicomponent flows. Yet, both methods show their
own peculiar characteristics and drawbacks which can limit their use, performances and
range of validity. A particular unexpected, and unwanted, feature of multiphase and
multicomponent solvers is the manifestation of non physical velocities near equilibrium
interface, present even for systems at rest. From a physical viewpoint the velocity should
clearly vanish at equilibrium but, as it has been observed by many authors, small spurious
currents most often exist in the proximity of the interfaces. In an attempt to remove
these unwanted features several improvement to the LBM have been proposed in recent
years [37, 23, 131, 67, 103, 98]. It worth noticing that some of these improvement are
capable to remove these spurious current to machine precision [67]. Spurious currents
have also been observed in other numerical methods including the PFM [49, 94, 101].
Because of the magnitude of these spurious current drastically depend on the actual
variant of the LBM or PFM, the comparison between the two methods may be somewhat
ill defined. Here we aim at comparing the LBM vs. the PFM for their most widespread
and used variants. Our answer will thus not provide a general statement valid for the
two methods as such, but will still provide some extremely useful insight in what can
be expected from the most employed variations of the approaches. As a side results, we
will also quantitatively compare two of the most widely used lattice Boltzmann variants,
the SC-LBM and the FE-LBM, under the same conditions (i.e. same diffuse interface
model, same surface tension, same chemical potential, etc.). In order to achieve our goal,
the problem of a one-to-one matching of the PFM with SC/FE multicomponent LBM
needs to be addressed first. The one-to-one matching of the two methods gives also the
opportunity to clarify how they compare with respect to the computational costs. In
order to address these issues we start by analysing the SC model for two population with
inter-particle repulsion; the large scale continuum limit is reviewed and formulated in
terms of a diffuse interface model with an underlying thermodynamic FE functional. In
this way one of the crucial issues in the matching of SC model vs. the corresponding
FE model is being solved. Then, starting from the matched SC/FE multicomponent
LBM, a new formulation for the free-energy of the PFM is derived in order to directly
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compare them. Finally, a comparison of the numerical results obtained, on the same
problem, from both LBM and PFM is presented, focusing in particular on unwanted
spurious currents or mass leakage in sheared suspensions. This work focuses only the
case of binary mixtures, even if modelling more than two components is nowadays far
from trial extension [2, 4, 105, 55, 84].

4.2.3 Matching the diffuse interface model

In this section the free energy (2.2.4) of the PFM for a multicomponent fluid system
discussed in Chap. 2 is rewritten to match the LBM models here adopted. According
to Scarbolo et al. [99], the free energy functional f0 necessary to describe the system
and match the LBM models features, gives the following τg-dependent chemical potential
µ(τg)(φ):

µ(τg)(φ) =
c2S
2

log

(
ρ+ φ

ρ− φ

)
−
g

(τg)
AB

2
c2Sφ−

g
(τg)
AB

4
c4S∇2φ, (4.2.4)

where the surface tension parameter is κ = g
(τg)
AB c

4
S/4 and the coupling coefficient is

g
(τg)
AB = (τggAB)/(τg − 1/2). Using the chemical potential (4.2.4), the Cahn-Hilliard

equation yields:
∂φ

∂t
+ u · ∇φ = M(ρ, τg)∆µ

(τg)(φ). (4.2.5)

In order to match the same hydrodynamical properties of the multicomponent LBM, the
capillary stress µ∇φ is obtained adopting the following chemical potential:

µ(φ) =
c2S
2

log

(
ρ+ φ

ρ− φ

)
− gAB

2
c2Sφ−

gAB
4
c4S∆φ. (4.2.6)

Equation (4.2.6) is derived from the matching procedure proposed in [99]. Within this
formulation, µ(φ) represents the large τg-limit of the equation (4.2.4), and µ(τg) → µ
when τg � 1/2. The equations of the PFM implemented in this benchmark are the
following:

∇ · u = 0, (4.2.7)

∂φ

∂t
+ u · ∇φ = M(ρ, τg)∇2µ(τg)(φ), (4.2.8)

∂u

∂t
+ u · ∇u = −∇p+ ν(τg)∇ · (∇u +∇uT ) + µ(φ)∇φ, (4.2.9)

where the chemical potentials µ and µ(τg) are given by equations (4.2.6) and (4.2.4)
respectively. Their formulation is similar to that used by Mauri et al. [75], Vladimirova
et al. [130] and Molin et al. [80]. The mobility coefficient of equation (4.2.8) is M(ρ, τg) =
ρ (τg − 1/2), whereas the kinematic viscosity of equation (4.2.9) reads ν(τg) = c2S(τg −
1/2). The coefficients τg, ρ, gAB and c2S = 1/3 are the LBM input parameters and
their definitions are reported in Tab 4.1. Equations (4.2.7)-(4.2.9) have been rewritten in
a dimensionless form using the dimensionless variables (2.3.1), where the characteristic
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Table 4.1 – Definition of the Lattice Boltzmann input parameters and of the corresponding phase
field model dimensionless groups.

ν = c2S
(
τg − 1

2

)
M = ρ

(
τg − 1

2

)
κ =

gABc
4
S

4

β =
gABc

2
S

2 β(τg) =
g
(τg)

AB c2S
2 ξ =

√
κ
β

Pe = UH
β(τg)M

Ch = ξ
H Ca = νρU√

βκ

Re = UH
ν(τg)

length, velocity and concentration h, Uτ and φ+ assume different values depending on
this particular problem. Starting from equation (4.2.4), the chemical potential yields to:

µ−(φ) =
1

GAB
log

(
ρ− + φ−

ρ− − φ−

)
− φ− − Ch2∇2φ−, (4.2.10)

consistently, equation (4.2.6) reads:

µ(τg)−(φ) =
1

G
(τg)
AB

log

(
ρ− + φ−

ρ− − φ−

)
− φ− − Ch2∇φ−, (4.2.11)

where ρ− = ρ/φ+, GAB = gABφ+ and G
(τg)
AB = g

(τg)
AB φ+. The dimensionless form of

equations (4.2.7), (4.2.8) and (4.2.9) are:

∇ · u− = 0, (4.2.12)

∂φ−

∂t−
+ u− · ∇φ− =

1

Pe
∇2µ(τg)−, (4.2.13)

∂u−

∂t−
+ u− · ∇u− = −∇p̃− +

1

Re
∇ · (∇u− +∇u−

T

) +
1

ReChCa
µ−∇φ−. (4.2.14)

The non-dimensional groups introduced into the equations system (4.2.10)-(4.2.14) are
the Cahn number, the Peclet number, the Reynolds number and the Capillary number,
which are defined as follows:

Ch =
ξ

H
, Pe =

UH

β(τg)M
, Re =

UH

ν
, Ca =

νρU√
βκ

. (4.2.15)

The dimensionless groups (4.2.15) appear to be different from those defined for the chan-
nel geometry (2.3.6); in this particular case the physical parameters are mapped to match
the LBM input parameters, explaining the differences with (2.3.6), in any case their phys-
ical meaning still holds. The Cahn number is the ratio between the interface thickness ξ
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and the length-scale H, the Peclet number is the ratio between the diffusive time-scale
H2/(β(τg)M) and the convective time-scale H/U . The Reynolds number is the ratio
between the inertial forces HU and the viscous forces ν. Finally the capillary number is
the ratio between the viscous forces νρU and the capillary forces

√
βκ at the interface.

All the dimensionless groups and the definitions of the fluid properties with respect to
the LBM input parameters are reported in Tab 4.1.

4.2.4 The numerical method

The solution procedure discussed in Chap. is applied to the equations system (4.2.10)-
(4.2.14); with the adoption of the chemical potential (4.2.11), the operator splitting
adopted for the solution of the Cahn-Hilliard equation yields (where the apex “-” has
been removed for sake of simplicity):

∂φ

∂t
= Sφ + s

Ch2

Pe
∇2φ− Ch2∇4φ. (4.2.16)

The non linear term Sφ yields:

Sφ = −u · ∇φ+
1

Pe
∇

[
1

G
(τg)
AB

log

(
ρ+ φ

ρ− φ

)
− 3φ

]
(4.2.17)

− (s+ 1)
Ch2

Pe
∇4φ,

In this benchmark a periodic two dimensional domain is considered; to this aim the
numerical algorithm proposed in Chap. 3 has been simplified by neglecting the wall
normal direction. As a result, the solution is obtained using Fourier transforms only,
thus the Chebyshev-Tau solution has been removed and the resulting linear equations
system is solved by Gauss elimination.

4.2.5 Numerical tests

In this section the numerical results obtained from both the PFM and the LBM ap-
proaches are discussed. Two different tests have been performed with the three models,
SC-LBM, FE-LBM and PFM. First, the equilibration of a two dimensional static droplet
has been simulated until the steady state has been reached. Then, starting from the set-
tled droplet, its deformation under a Kolmogorov flow has investigate. For the numerical
analysis a SC-LBM model with τg = 0.55, ρ = 1.4 and gAB = 0.164 has been used. The
interaction parameter τg has been chosen small enough to avoid spurious contributions
from the pressure tensor. The other parameters (gAB and ρ) have been chosen in order
to obtain φ = ρA−ρB = ±1 inside the pure components. The simulations have been car-
ried out on a two dimensional fully periodic grid of 100× 100 nodes, on a computational
domain of dimensions Lx × Ly = 100 × 100. The same simulations performed with the
SC model have been repeated with the FE-LBM. Then the PFM simulations have been
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performed on a two dimensional fully periodic grid2 composed by 128× 128 nodes on a
computational domain of dimensions Lx ×Ly = 2πH × 2πH = 100× 100. In particular,
PFM dimensionless numbers have been calculated following the definitions reported in
Tab 4.1 and their values are collected in Tab 4.2. In order to match φ = ±1 in the regions
of pure components, the scaling concentration parameter has been chosen φ∗ = 1. As
result SC/FE-LBM and the phase field model have been set with the same interface and
transport properties and thus the results can be both qualitatively and quantitatively
compared.

Table 4.2 – Definition of the Lattice Boltzmann and phase field input values.

ρ τg gAB g
(τg)
AB c2S

1.4 0.5 0.164 1.804 1
3

Pe Ch Ca Re
0.7930 0.0256 0.0021 1.000

4.2.6 A steady droplet

A two dimensional static droplet with radius approximately d/Lx ' 1/8 initiated in a
resting fluid has been studied. The simulations have been run letting the drop attain
a stationary, equilibrium state. The kinetic energy at the curved interface (Fig 4.3)
and the associated stationary configuration of velocity field and order parameter (Fig 4.4
and Fig 4.5) have been measured. The spurious currents shown by the PFM simulations
are found almost one order of magnitude smaller that the ones from the LBM. On the
other hand both FE and SC LBM models show comparable velocity magnitudes. The
flow fields patterns are similar within the three methods, even if in the PFM case these
currents are confined in a thinner layer along the interface. Fig 4.6 displays the temporal
evolution of the surface tension σ, which is proportional to the difference between the
pressure inside the drop (Pi) and the pressure outside the drop (Po):

σ(t) =
d

2
[Pi(t)− Po(t)] . (4.2.18)

Both the left panel of Fig 4.5 and Fig 4.6 show that the interface properties of the three
models are the same (i.e. the same interface structure and the same surface tension
at the curved interface). Nevertheless, the oscillations observed in the LBM models in
Fig 4.6 are probably non-physical pressure fluctuations which are ruled out in the PFM
simulations. The most important feature observed appears to be the change in magnitude
and structure of spurious currents: in both the LBM simulations approximately the
same spurious currents are found while their intensity is reduced in the case of PFM

2Due to the use of a spectral solver it is convenient to choose a power of 2 for the number of grid
nodes.
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Figure 4.3 – Contour plots of the local kinetic energy, per unit density, 1
2

(u2+v2) due to the spurious
currents for the FE-LBM (top), SC-LBM (center) and PFM (bottom) methods when simulating a
stationary two dimensional droplet. The snapshots are taken at the same time when a steady state
has been attained. The intensity and structure of the spurious kinetic terms comparable in the lattice
Boltzmann models and is reduced by a factor 100 in the PFM (i.e. a factor 10 on the velocity
magnitudes).

simulations. Nevertheless, it is important to remark that the LBM used here are basic
versions of the two widely adopted approaches. Improvements can be obtained by curing
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Figure 4.4 – Vector plots of the velocity field due to the spurious currents contributions for the FE-
LBM (top), SC-LBM (center) and PFM (bottom) simulations for the two dimensional static droplet.
The plots are taken at the same time when the steady state has been reached. The velocity field
of the Lattice Boltzmann simulations (top and center plots) have been magnified by a factor 104

whereas the vector field of the PFM simulation have been magnified by a factor 5 · 104 for the sake
of readability.

discretization errors in the computation of the intermolecular force causing parasitic
currents as described by Lee & Fischer [67]. Such improvements have been shown to
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Figure 4.5 – Local concentration and velocity profiles from FE-LBM, SC-LBM and PFM simulations
of a two dimensional static droplet. On the left the local order parameter, φ = ρA − ρB , is plotted
as a function of the coordinate, y, for fixed x = 50. On the right the local (spurious) velocity in
the vertical direction, uy , is plotted as a function of the coordinate, y, for fixed x = 50. The order
of magnitude of both spurious contributions is comparable in the lattice Boltzmann models while is
reduced by a factor 10 (for the velocity, 100 for energy) in the PFM. Improvements in the LBM can
be obtained by curing discretization errors in the computation of the intermolecular force as described
by Lee & Fischer [67].

eliminate currents to roundoff if the potential form of the intermolecular force is used
with compact isotropic discretization. For the sake of completeness the results obtained
with the Lee-Fischer scheme have been reported in Fig 4.5.
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Figure 4.6 – Time evolution of the surface tension (Laplace test) from FE-LBM, SC-LBM and PFM
simulations of a two dimensional static droplet. Starting from the same initial conditions, the local
value of surface tension σ(t) is plotted as a function of time.

4.2.7 Droplet deformation under Kolmogorov flow

Starting from the equilibrium droplet obtained from the simulation of Section 4.2.6, a
sinusoidal forcing has been applied on the flow field until a new stationary state was
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reached. The forcing term has been chosen with the following formulation in order to
generate a Kolmogorov flow:

Fx(x) = ρA sin

(
2πy

Ly

)
, (4.2.19)

where A = 10−6. In the PFM the dimensionless forcing term is:

F−x (x) =
AH

U2
sin

(
2πy

Ly

)
. (4.2.20)

The evolution of the total kinetic energy reported in the right panel of Fig 4.9 shows
a good matching between the three models, thus the same hydrodynamical transport
properties have indeed been imposed. Little discrepancies (less than 10%) between PFM
and LBM simulations are shown in the total kinetic energy of the steady state. Moreover
little deformation differences can be observed for the concentration iso-contours of Fig
4.8, with the PFM showing a slightly less deformed drop with respect to both LBM. On
the contrary both LBM models (SC and FE) show the same concentration profile. The
differences in kinetic energy and deformation seem to be consistent one with the other,
in fact the less deformed the droplet, the less energy is absorbed from the flow and thus
the higher the total kinetic energy (for same external forcing). Qualitative snapshots
of the kinetic energy are reported in Fig 4.7, where the iso-contours of φ = −0.9 and
φ = 0.9 have been superposed to show the interfacial layer location. Similar patterns
and magnitudes are observed within the three models, confirming the correct matching
of the models. To test the importance of spurious mass flux across the interface, the
mass leakage ∆m has been monitored in time:

∆m(t) =
m(t)

m0
, (4.2.21)

where M(t) and M0 are the number of computational nodes inside the droplet at time
t and at time t = 0, respectively. The nodes with a local order parameter φ(x) ≥ φT ,
with φT = 0.0, have been considered as belonging to the droplet. The results reported in
Fig 4.10 show a negligible mass leakage (less than 0.5%) for the PFM and FE, whereas
it slightly higher (in the order of 1-3%) for SC-LBM.
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Figure 4.7 – Contour plot of the local kinetic energy per unit density 1
2

(u2 + v2) for the FE-LBM
(top), SC-LBM (center) and PFM (bottom) simulations of a two dimensional droplet deformation
under Kolmogorov flow. The plots are taken at the same time when the steady state has been reached.
Similar magnitudes and patterns can be observed for all the models.
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Figure 4.8 – Isocontour plot of the concentration field at φ = 0 for the FE-LBM, SC-LBM and PFM
for a stationary two dimensional droplet under shear.
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Figure 4.9 – Time evolution of the total kinetic energy from FE-LBM, SC-LBM and PFM simulations
of a two dimensional droplet deformation under Kolmogorov flow. Starting from the same initial
conditions, the total value of the kinetic energy

∫∫
(u2 + v2)dxdy is plotted as a function of time.

Similar evolution in time is registered for all the models, even if the PFM showed an asymptotic value
higher than the LBM. The CPU elapsed time of both PFM (TPFM ) and SC (TSC) methods have
been measured through this simulation. The Lattice Boltzmann method was roughly three times

faster than the analogous Phase Field Model (TPFM
TSC

= 2.9).



46 4. Numerical model validation

 0.99
 0.995

 1
 1.005
 1.01

 1.015
 1.02

 1.025
 1.03

 1.035
 1.04

0.0e+00 5.0e+04 1.0e+05 1.5e+05

L

t

SC
FE

PFM

Figure 4.10 – Time evolution of the relative leakage of the order parameter from FE-LBM, SC-LBM
and PFM simulations of a two dimensional droplet deformation under Kolmogorov flow. Starting
from the same initial conditions, the relative leakage L(t) is plotted as a function of time. Longer
simulations show that the leakage reached the saturation value for all the three methods.
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Reproduced in part from:

L. Scarbolo and A. Soldati, “Turbulence modulation across the interface of a large deformable drop”, J. Turb.,

14 (2013).

In this Chapter a single large deformable droplet dispersed in a turbulent channel flow
is investigated focusing on the momentum transfer at the interface and its correlation
with the Weber number. In the first section the problem is posed and the details of the
simulations are provided; in the second section the simulation results are analysed and
discussed in detail.

5.1 Problem definition

With reference to the schematic of Fig. 5.1 the evolution of a single fluid droplet of
diameter d released in a fully developed turbulent channel flow is analysed. The two fluids
are considered immiscible, incompressible, Newtonian, density-matched and viscosity-
matched. The interface between them is physically maintained by the surface tension
σ. With this assumptions the system is set to its simplest configuration, allowing to
isolate the surface tension effects and the turbulence interface interactions. Under these
hypotheses the droplet can be considered as a portion of the fluid domain that has been
separated from the contiguous fluid introducing an elastic membrane. Setting the Weber
number, different systems can be analysed, from a single phase flow when We → ∞ to
the dispersion of a rigid fluid sphere in the limit of vanishing Weber number: We → 0
(see Fig. 1.1). In this analysis only small Weber number droplets are considered in order
to limit the average deformations, avoiding breakup and getting a linear correlation
between We and deformations [95, 92]. The reference coordinate system is located at
the center of the channel and x-, y- and z-axes point in the stream-wise, span-wise and
wall-normal directions, respectively. The size of the channel is 4πh × 2πh × 2h in x, y,
and z directions, respectively and h is the channel half-height. The chosen domain size
guarantees the complete decorrelation of the velocity field along the periodic directions,
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Figure 5.1 – Computational domain and problem under analysis: a single deformable droplet is
released in a fully developed turbulent channel flow.

thus the droplet behaviour is not affected by periodicity effects. The droplet is initialized
by superposing the phase field φ over a fully developed turbulent flow obtained from
previous single phase DNSs in a statistically steady state. The CHNS equations system
(2.3.2)-(2.3.5) are here recalled in their non-dimensional form, where the superscript “−”
indicates non-dimensional quantities. The scaling variables here adopted are Uτ , h, and
φ+, where Uτ =

√
τw/ρ is the shear velocity based on the wall shear stress τw and ρ is

the fluid density; φ+ =
√
β/α is one of the two stable solutions given by the chemical

potential (2.2.6).
∂φ−

∂t−
= −u− · ∇φ− +

1

Pe
∇2µ−, (5.1.1)

∇ · u− = 0, (5.1.2)

∂u−

∂t−
= −u− · ∇u− −∇p− +

1

Reτ
∇2u− +

3√
8

1

We · Ch
µ−∇φ−, (5.1.3)

µ = φ3− − φ− − Ch2∇2φ−. (5.1.4)

The dimensionless groups (2.3.6) are here recalled:

Reτ =
Uτh

ν
, Pe =

Uτh

Mβ
, We =

ρU2
τ h

σ
, Ch =

ξ

h
. (5.1.5)

Reτ is the shear Reynolds number, that is the ratio between inertial forces and viscous
forces and Pe is the Peclet number that represents the interface relaxation time. We
is the Weber number, that is the ratio between inertial forces and the surface tension
and Ch is the Cahn number that represents the dimensionless capillary width. All the
results reported in this section are measured in wall-units (denoted by the superscript
“+”) that are obtained normalizing by Uτ , ρ, ν and φ+ (Sect. 2.3.1).
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5.1.1 Simulation parameters and accurancy

In this analyses, Reτ , We, Ch and Pe are macroscopic input parameters defined con-
sidering the physical fluid properties, the flow regime, the simulated surface tension and
the diffuse interface modelling. Once fixed the shear Reynolds number, the value of
the surface tension is chosen by changing the Weber number. When considering immis-
cible fluids, the interface thickness depends on the numerical algorithm only, thus the
Cahn number can be fixed to the smallest possible value. To obtain results indepen-
dent from Ch, the Peclet number should be properly chosen: for this reason the scaling
proposed by Khatavkar [53] has been adopted. Eq. (5.1.1)-(5.1.5) have been solved us-
ing a pseudo-spectral algorithm discussed in Chap. 3. In this work the shear Reynolds
number based on the half channel height is Reτ = 100, leading to a fully developed
turbulent flow; namely the bulk Reynolds number based on the mean flow velocity ub
is Reb = 2ubh/ν = 2500; following [53], the Peclet number is Pe = 2.56 · 105. Four
different Weber numbers have been considered: We = 0.0053, 0.0106, 0.0212, 0.0424 and
a single droplet diameter d+ = 80. This diameter is much larger than the Kolmogorov
length scale η−κ at all the positions in the domain: the ratio between the Kolmogorov
length scale and the droplet diameter is 0.06 ≤ η+

κ /d
+ ≤ 0.13. The simulations were

run on a 256 × 128 × 129 fixed cartesian grid which is fine enough to resolve the small-
est length scale of the turbulent flow (max[∆z+] < ∆x+ ' ∆y+ < η+

κ )1, while the
time step ∆t+ = 10−2 has been chosen to resolve correctly the smallest temporal scales
and respond to the numerical stability requirements associated with the grid resolu-
tion. The pseudo-spectral scheme adopted can resolve accurately the interfacial layer
with a minimum number of three mesh-points [5, 99]. With reference to Eq. (2.2.7)
the interface thickness is l+ξ = 4.164ReτCh, yielding to a variation of the order pa-

rameter −0.9 ≤ φ+ ≤ 0.9. Choosing Ch = 0.036, the interfacial layer is described by
three-mesh points along x and y directions, where a uniform discretization is adopted
(∆y+ ' ∆x+ = 4Reτπh/255). Along the z direction, a finer non-uniform discretization
is adopted: l+ξ is described by a minimum number of seven mesh-points. The DI models
cannot completely fulfil local mass conservation [141] and this issue has been observed
also in this work. However, thanks to the accuracy of the numerical scheme adopted,
the mass loss is in any case small and the estimated jumps of the interface-normal ve-
locity component across the interface are of O(10−5) [99]. In particular, after the entire
simulation (3 · 105 time-steps), losses of volume V + (or equivalently of mass m) range
from 4% to 14% for We = 0.0053 to We = 0.0424, respectively. This correspond to a
maximum reduction of 6% of the equivalent droplet diameter d+

eq = 3
√

3V +/4π and a
relative mass transfer ∆(m/m0)/∆t+ = 5 · 10−3. A collection of the relevant parameters
of each simulation is reported in Tab. 5.1.

1The Chebyshev transform, adopted along the wall-normal direction, produces a non-uniform grid
spacing highly refined at the walls where large gradients have to be resolved.
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Table 5.1 – Summary of the simulation parameters and average deformation 〈S/S0 − 1〉 for each
simulation.

Simulation We Reτ Ch Pe 〈S+/S+
0 − 1〉

W1 0.0053 100 0.036 2.56 · 105 0.39 · 10−3

W2 0.0106 100 0.036 2.56 · 105 1.28 · 10−3

W3 0.0212 100 0.036 2.56 · 105 2.41 · 10−3

W4 0.0424 100 0.036 2.56 · 105 6.54 · 10−3

5.2 Results and Discussion

In this Chapter, the effects of surface tension on the turbulent velocity fluctuations
at the interface of a large deformable droplet released in a turbulent channel flow are
investigated. To study the features of the turbulent flow in proximity to a deformable
interface moving in a non-homogeneous flow, first the velocity field over the droplet
interface has been examined (Sect. 5.2.2), then the behaviour of the flow field at both
sides of the interface has been analysed (Sect. 5.2.3) and, finally, the turbulence inside of
the droplet has been compared with that outside the droplet (Sect. 5.2.4). To examine
these different issues of the problem, the analysis has been performed adopting different
viewpoints, so that the investigate features have been highlighted. In Fig. 5.2, the three
different fluid domains considered for the analysis are reported: velocity field over the
droplet surface (Fig. 5.2-a), velocity field across the interface of the droplet (Fig. 5.2-b)
and turbulent field inside and outside of the droplet (Fig. 5.2-c). Time-independent
statistical results have been obtained by time averaging over a window ∆T+

sim = 3000,
that corresponds to a ∼ 30 eddy turnover times Te = h/Uτ .

5.2.1 Droplet behavior and turbulent features

After released in the fully developed turbulent channel flow (Fig. 5.1), the droplet is
advected by the flow field, and its center of mass moves with non-zero stream-wise veloc-
ity u+

cm. Due to the turbulent fluctuations, the droplet also moves along the span-wise
and wall-normal directions with a meandering trajectory and, during the entire simula-
tion, the droplet never reaches wall distances closer than 20w.u.. Since the droplet has
a density equal to that of the external fluid, its velocity and position are affected by
inertial effects: the main difference from a rigid body is due to the deformability, thus
inertial effects are expected to be dependent on We. When We is small (simulation W1),
the surface tension prevents the turbulent motions from deforming the interface while
increasing the Weber number, the interface of the droplet reduces its ability to react to
the external turbulent forcing resulting in larger deformations. To quantify the droplet
instantaneous deformations, the external surface of the droplet S+ = S+(t+) is moni-
tored in time. The time averaged deformation 〈S+/S+

0 − 1〉 is reported in Fig. 5.3 for
a wide range of Weber numbers, where S+

0 = S+
0 (t+) is the area of an equivalent sphere
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Figure 5.2 – Sketch of the fluid domains adopted for data analysis. Statistics on the droplet surface
(a) are obtained considering all the points pi on the droplet surface, where n, t1 and t2 are the
interface-normal vector and the interface-tangential vectors, respectively. Statistics across the inter-
face (b) are computed considering first the interface-normal directions at points pi(x, y, zcm) of the
interface, where zcm is the wall-normal coordinate of the droplet center of mass. Averages are made
over the ensemble of points located at distance δ from the interface. Statistics inside of the droplet
(c) are obtained considering the points pi the volume of fluid inside the droplet interface; statistics
outside of the droplet are made on the points pj of the volume of fluid external to the droplet and
limited to the channel flow buffer layer (30w.u. ≤ z+ ≤ 170w.u.)

computed from the the instantaneous droplet volume2 (brackets denote time averaging).
The Weber number range reported in Fig. 5.3 has been extended up to breaking droplets;
in the next sections, only cases of non-breaking droplets will be considered and in partic-
ular the chosen We lead to small average deformations: (0.03% < 〈S+/S+

0 −1〉 < 0.7%).
The droplet deformation shows almost linear behaviour 〈S+/S+

0 − 1〉 ∝We up to values
close to a critical We, where the turbulent forcing is strong enough to split the droplet.
This behaviour is consistent with the experimental observations of Risso et al. [95] and
the numerical analysis of Qian et al. [92], who found an almost linear behaviour of the
deformations in the limit of non breaking bubbles. Since for the considered Weber num-
bers (W1-W4) the droplet deformations are linear with We and ultimately with 1/σ, it
is possible to directly correlate the Weber number with the droplet deformability. The
presence of the interface is responsible for the modification of the local turbulent struc-
tures and in particular of turbulent transport at length scales l+ ∝ d+. In Fig. 5.4 the
vortical structures near the interface are shown for two different We: snapshots of sim-
ulation W1 (small deformations) and W4 (large deformations) at non-dimensional time
t+ = 1600 are reported in Fig. 5.4-a and Fig. 5.4-b, respectively. Coherent structures
are identified using the second invariant Q of the velocity gradient tensor ∇u+ [46]:

Q =
1

2
(ΩijΩij − SijSij) , (5.2.1)

where Ωij = 1/2(u+
ij − u

+
ji) and Sij = 1/2(u+

ij + u+
ji) are the anti-symmetric and sym-

metric components of ∇u, respectively. The vorticity magnitude |ω+| has been superim-

2The small mass losses are sufficient to affect the average deformation if the nominal droplet radius
is considered to compute S+

0 . Adopting an equivalent spherical radius computed from the instantaneous
volume yields to an accurate prediction of the droplet deformation.
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Figure 5.3 – Average droplet deformation 〈S+/S+
0 − 1〉 at various Weber numbers We: plain dots

represent the Weber numbers considered also for the velocity field analysis, filled dots complete the
discussion on the droplet deformation and breakup.

posed to the vortices identified with iso-surfaces Q = Qt > 0, where the threshold value
Q = 0.0038 has been chosen for a non biased representation of the eddies. When the
deformability is low (W1, Fig. 5.4-a), the region of fluid near the droplet is populated
by a larger number of turbulent structures than in the large deformability case (W4,
Fig. 5.4-b). The reduced number of coherent structures observed is probably due to
the elastic behaviour of the interface that first damps the turbulent forcing, releasing
it at different lengths scales, at different times, and at different positions over the sur-
face. The release of energy acts as a non-synchronous damper in the turbulent chain,
producing fluid motions which are not coherent with those responsible for the energy
accumulation. By contrast the higher number of coherent structures observed in the low
deformability case (W1) is probably due to the deviation of the flow produced by the
interface that yields to structures smaller in size than the typical channel flow vortices.
These structures are coupled with peaks of vorticity magnitude, which are likely due to
the shear stress induced by the interface, while, when the interface is more deformable,
the vorticity levels appear to be comparable to those registered in the buffer layer (see
vorticity contours in Fig. 5.4).

5.2.2 Velocity fluctuations over the droplet surface

In this section the surface-normal velocity fluctuations u+,∗
n and the surface-tangential

velocity fluctuations u+,∗
t measured over the surface of the droplet are analysed. Since

the droplet is a finite size body moving in a non-homogeneous flow field, the definition of
homogeneous statistical directions is not trivial, therefore Probability Density Functions
(PDF) of the normal an tangential velocity fluctuations are presented. The interface has
been defined as the position where φ = 0 and the velocity components have been projected
on the directions normal and tangential to the surface. Since two tangential vectors are
identified at each interface location, only the magnitude of the tangential component
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Figure 5.4 – Interactions between vortical structures and droplet for different Weber numbers at
time t+ = 1600: (a) simulation W1, (b) simulation W4. Vortices are identified with iso-surfaces of
the second invariant of the velocity gradient: Q = 0.0038 (Q-criterion). Contour plots of the local
vorticity magnitude ω+ = |ω+| are superposed to the vortices. The droplet interface is located by the
iso-surface φ+ = 0 and is rendered in red. The entire computational domain along the wall-normal
direction is shown (portion of the bottom wall is shown for clarity), while only a portion of it is shown
along the length-wise and span-wise directions (∆x+×∆y+ = 400×250). Near the more deformable
droplet (W4), the observed turbulent structures density is reduced and their size is larger compared
to those near the stiffer droplet (W1). Peaks of vorticity magnitude are observed near the stiffer
droplet.

has been considered u+,∗
t = |u+,∗

t |. To compare the results with those available in
the literature in absence of mean flow, the velocity fluctuations u+,∗ have been defined
with respect the droplet center of mass velocity u+

cm: u+,∗ = u − ucm. Adopting this
decomposition, also the convective effects are better highlighted. In Fig. 5.5, PDFs of
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u+,∗
n and u+,∗

t are shown for the different Weber numbers. Increasing We, a reduction
of the interface-normal component (Fig. 5.5-a) coupled with a strengthening of the
interface-tangential component (Fig. 5.5-b) is observed. This effect can be attributed
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Figure 5.5 – Probability Density Functions (PDF) of the velocity fluctuations u+,∗ (computed with
respect to the droplet center of mass velocity) on the surface of the droplet at various Weber num-

bers We: (a) surface-normal velocity fluctuations u+,∗
n ; (b) surface-tangential fluctuations u+,∗

t .
Interface-normal components increase with the droplet deformability (increasing We), whereas tan-
gential components reduce with the interface deformability.

to the wall-blocking effects, as indicated by Perot and Moin [87], who showed how the
flow streams impacting solid interfaces are deflected from the interface-normal direction
to the interface-tangential directions (intercomponent energy exchanges). In our case,
responsible for the wall blocking effect is the local normal stress τn = σ/r̄ · n that arises
at the droplet interface because of the surface tension and the finite curvature radius r̄.
A first effect is due to the dependency of τn on the surface tension: the wall-blocking
effects increase when We is reduced and, in turn, intercomponent exchanges are larger for
smaller We (as observed also by Trontin [122]). A second effect is related to the normal
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stress dependency on the local deformations: large and energetic structures impacting
on the interface act to reduce the local curvature, corresponding to a reduction of τn.
This can explain the dependence of u+,∗

n on We confined in a range of small velocities
(0.5 ≤ |u+,∗

n | ≤ 0) observed in Fig. 5.5. The velocity field modification in the proximity
of the droplet is shown in in Fig. 5.6: the vector plot of the fluctuating velocity field
u′ and the contour plot of the turbulent kinetic energy k+ = u′ · u′ are depicted on
a x-y plane (parallel to the walls) that crosses the droplet center of mass. The flow
stream impacting on the droplet surface for the smaller Weber number (W1, Fig. 5.6-b)
is deflected from the interface-normal to the interface-tangential direction, generating
then some small vortical structures. By contrast, when the interface is more deformable
(W4, Fig. 5.6-b), the flow stream impacting on the droplet can deform the droplet,
flattening the interface and, as a result, the velocity modifications are of smaller entity.
The presence of intercomponent exchange effects dependent on We is also consistent with
the increment of small coherent structures observed in Fig. 5.4.
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Figure 5.6 – Detail of the interactions between the droplet interface and the fluctuating velocity field
for different Weber numbers at time t+ = 1500: (a) simulation W1, (b) simulation W4. Contour
plots of the local turbulent kinetic energy k+ = u+ · u+ are depicted on a x-y plane that crosses the

droplet center of mass. The vector plot of the fluctuating velocity field u+′
= u+− û+(z) is reported

and the droplet interface is located by the iso-surface φ+ = 0. Near the less deformable droplet (W1),
the velocity field is deflected by the interface; in the proximity of the more deformable droplet (W4)
the velocity field is less modified and the droplet interface is flattened.

5.2.3 Statistics across the interface of the droplet

To clarify the intercomponent exchange discussed in Sect. 5.2.2, the behaviour of the tur-
bulent field across the interface is analysed. Turbulence kinetic energy k+ = u+,∗ · u+,∗,
vorticity magnitude ω+/ω+

0 = |∇×u+|/ω+
0 and Root Mean Square (RMS) of the veloc-

ity fluctuations have been analysed across the interface (identified by the surface where
φ = 0). The vorticity has been normalized with the average vorticity magnitude ω+

0

measured in the buffer layer of a single phase flow. and the same velocity decomposition
presented in Sect. 5.2.2 has been maintained: u+,∗ = u+ − u+

cm. With reference to the
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interface points pi shown in Fig. 5.2-b, the analysis has been performed along the direc-
tions normal to the droplet surface at pi. Then, considering the droplet center of mass
position xcm = (xcm, ycm, zcm), only the interface points pi with wall-normal coordinate
zcm have been considered: pi = pi(xφ=0, yφ=0, z = zcm). Along those interface-normal
directions, the quantities under analysis have been measured at distances δ+ from the
interface ranging from −20w.u. ≤ δ+ ≤ 60w.u., where δ+ = 0 represents the inter-
section with the droplet interface and δ+ increases moving outside of the droplet (see
Fig. 5.2-b). With the adoption of this framework, the quality of the statistical samples
is improved: since zcm is in confined in the channel buffer layer for most of the time,
measures are made in regions of limited wall-normal non-homogeneity. Furthermore, the
velocity fluctuations u+,∗ show a nearly flat profile in the center of the channel. In ad-
dition the selected range of Weber numbers yields to small average deformations, thus
to small variations of curvature and in the end to small deflections of n from the x-y
planes. As a result, the accuracy of the statistical analysis is increased. The measured
quantities have been time and ensemble averaged (denoted by brackets), where ensemble
averaging has been made over all the realizations obtained at the same distance δ+ from
the interface. The evolution of the turbulence kinetic energy and the evolution of the
vorticity magnitude along the interface normal direction are shown in Fig. 5.7-a and Fig.
5.7-b, respectively. The turbulent kinetic energy is damped moving from outside of the
droplet to the droplet interface for all the Weber numbers considered (Fig. 5.7-a). The
damping rate ∆k+/∆δ+ is larger near the interface and it reduces at larger δ+. Inside
of the droplet (δ+ < 0) a damping of 80% of k+ is observed with respect to the value
measured at δ+ = 60w.u. and, across the interface (half-thickness of 7.4w.u. measured at
φ+ = ±0.9 [5]), k+ shows a magnitude comparable to that observed inside the droplet.
The results indicate that the damping effects take place in a region outside of the droplet
and, as expected, the interface effects reduce moving far from the interface. Near the in-
terface a vorticity production (ω+/ω+

0 > 1) can be observed for all the considered Weber
numbers and at both sides of the interface (Fig. 5.7-b). In the outer side of the interface,
production is due to the intercomponent energy transfer (wall-blocking effect [87]) that
yields to the generation of the small coherent structures highlighted in Sect. 5.2.1. Since
the wall-blocking effect depends on the surface tension, the vorticity production peak
increase when We reduces. This result is consistent with the results of Trontin [122]
and Li [68] and with the wall-blocking mechanism discussed in Sect. 5.2.2. The peak of
production is registered in a region of 7w.u. ≤ δ+ ≤ 14w.u, then vorticity production
reduces increasing the distance from the interface and, at δ+ = 60w.u., ω+/ω+

0 ≈ 1.1.
This behaviour indicates a weaker flow field deviation with respect to the near interface
region, where the blocking effect is larger. By contrast, at δ+ = 60w.u., the droplet
effects on the turbulent kinetic energy are still important. The evolution of the RMSs of
the interface-normal and the interface-tangential velocity fluctuations along the interface
normal direction are shown in Fig. 5.8-a and Fig. 5.8-b, respectively. The RMSs of the
interface-normal fluctuations decrease moving from large δ+ to the droplet surface (Fig.
5.8-a), in particular their behaviour appear to be almost independent from We and the
profiles collapse on a single line. The interface effects are non-negligible along the whole
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Figure 5.7 – Statistics across the droplet interface at various Weber numbers We: (a) averaged
turbulent kinetic energy 〈k+〉 = 〈u+,∗ · u+,∗〉 (where u+,∗ is computed with respect to the droplet
center of mass velocity); (b) average normalized vorticity magnitude 〈ω+/ω+

0 〉 = 〈(∇ × u+)/ω+
0 〉.

Turbulent kinetic energy decays moving closer to the droplet, while vorticity increases in the proximity
of the interface. Vorticity production peak decreases with the droplet surface tension (decreasing We).

distance considered δ+ = 60w.u., thus statistics extended3 to larger δ+ are needed to
define the complete range of spatial interaction. At distances δ+ ≥ d+/2, the RMSs

decay is compared with the δ+1/3

scaling law showing a qualitative consistency with the
theory developed by Hunt and Graham [45] for a solid interface in a free-stream flow. The
authors indicated that the distortion in the velocity field can be seen up δ+ ∝ L where
L is the size of the largest vortex of the flow and that the interface-normal RMS decays

as δ+1/3

in regions close to distances L. In our case the droplet is expected to interact
with eddies of size spanning from the Kolmogorov length scale η+

k (2.5w.u− 11w.u.) to
the droplet diameter d+ = 80w.u., furthermore the droplet interface is deformed by large
and energetic structures. As a result discrepancies from theory [45] are observed. The

3The extension to larger distances can lead to an increasing statistical non-homogeneity of the sample,
thus different analysis framework should be adopted.
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Figure 5.8 – Statistics across the droplet interface at various Weber numbers We: (a) interface-

normal velocity fluctuations 〈RMS(u+,∗
n )〉; (b) interface-tangential velocity fluctuation 〈RMS(u+,∗

t )〉.
Velocity fluctuations u+,∗ are computed with respect to the droplet center of mass velocity. Both
velocity components are damped approaching the droplet interface. Near the droplet 〈RMS(u+,∗

t )〉
shows a faster decay with respect to 〈RMS(u+,∗

n )〉. A qualitative comparison with the scaling δ+
0.3

at distances δ ∝ d+ [45] is proposed.

RMSs of the interface-tangential components (Fig. 5.8-b) show a fast decay in a region
close to the droplet interface 15w.u. (corresponding to large vorticity production), while
smaller reduction rates are observed at larger distances. The simultaneous damping of
u+,∗
t and u+,∗

n is the origin of the reduction of k+ and is probably associated to the vor-
ticity production ω+/ω+

0 that yields to an incomplete energy transfer between the two
components. These effects are large in the near interface regions δ+ ≤ 15w.u., where the
flow field deflection (and the vorticity production) is large, while they reduce moving far
from the interface.
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5.2.4 Velocity fluctuations inside the droplet

In Sect. 5.2.3 the damping of the turbulent kinetic energy across the droplet interface
has been shown. To quantify the modulation effects produced by the presence of the
interface on the fluid embedded inside of the droplet, the velocity fluctuations inside the
droplet have been measured. In this case the usual turbulent channel flow decomposition
u+′

= u+− û+(z) has been adopted to compare the fluctuating field u+′
with the single

phase turbulent channel flow statistics. The PDFs4 of the velocity fluctuations measured
inside of the droplet (points pi in Fig. 5.2-c) have been compared with the PDFs of the
velocity fluctuations measured outside of the droplet: a channel slab parallel to the walls
with the same height of the deformed droplet and centered into the droplet center of
mass has been considered (points pj in Fig. 5.2-c). In both cases the statistical ensemble
has been restricted to the points of the volume of fluids contained in the channel flow
buffer layer (defined as the region 30w.u. far from both walls). Even if the droplet surface
sometimes reaches positions 20w.u. close to to the walls, the largest part of its volume
lies into the buffer layer, thus the PDFs of the velocity fluctuations can be compared with
the single phase turbulent channel flow statistics [26]. A schematic of the fluid domains
considered for this analysis is shown in Fig. 5.2-c, while the PDFs of u+′

, v+′
and

w+′
are shown in Fig. 5.9-a, Fig. 5.9-b and Fig. 5.9-c, respectively. The presence of the

droplet shows a small influence on the outer flow field, except for stream-wise fluctuations
u+′ ≤ −3 where some damping effects can be observed. These effects could be due to
two different mechanisms: first, the droplet moves in a region characterized by a negative
skewness factor [146], thus the damping effects introduced are expected to affect more
the negative velocity components. Second, the meandering motion of the droplet from
the channel center to the near-wall regions introduce an higher mean flow component
that can damp the negative fluctuations and enhance the positive components. Since the
velocity difference is smaller for the positive components, their enhancement is negligible
compared to the negative fluctuations damping. All the three velocity components are
damped inside the droplet (dots), with respect to the velocity fluctuations measured
outside the droplet (lines). Due to the damping of turbulence kinetic energy discussed
in Sect. 5.2.3, the velocity fluctuations near the droplet interface are small and, as a
result, the momentum transfer across the interface is limited. Inside of the droplet, the
negative skewed stream-wise velocity distribution is shifted toward an almost centered
shape (Fig. 5.9-a). The increased isotropy of u+′

, observed inside the droplet reducing
We, can be explained by the redistribution of the external turbulent forcing over the
whole interface produced by the surface tension. This process is more effective when
surface tension is high, by contrast a more deformable interface can easily transfer the
external field features to the fluid inside of the droplet across its local deformations.

4As in Sect. 5.2.2, The results analysis across Probability Density Functions allow to treat the sample
non homogeneity.
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5.3 Conclusions

In this chapter the surface tension effects on the velocity field in the proximity of a large
deformable droplet in turbulence have been analysed for a wide range of Weber numbers
in which the average deformation is linear with We. The velocity fluctuations relative
to the droplet center of mass, measured at the droplet interface have been analysed in
terms of interface-normal and interface-tangential components. The normal components
are reduced increasing the surface tension, whereas the tangential components show an
opposite behaviour, according to the presence of the wall-blocking effects [87, 68, 122].
The presence of the interface produces a deviation of the surrounding velocity field, that
results in a vorticity generation dependent on the surface tension and in a damping of the
turbulence intensity near the interface. These effects are experienced at larger distances
from the interface increasing the surface tension. Furthermore the turbulent features
observed at the surface of the droplet show similarities to those observed for solid walls
in free-stream flows [45]. As a result, the convective effects at the droplet surface are
damped, the momentum transport across the interface is reduced and the turbulence
inside the droplet is weaker.



5.3. Conclusions 63

10-4

10-3

10-2

10-1

100

-5 -2.5  0  2.5  5

P
D

F
(w

′)

w′

(c)

W1
W2
W3
W4
W1
W2
W3
W4
SF

10-4

10-3

10-2

10-1

100

-8 -6 -4 -2  0  2  4  6  8

P
D

F
(u

′)

u′

(c)

(a)

W1
W2
W3
W4
W1
W2
W3
W4
SF

10-4

10-3

10-2

10-1

100

-5 -2.5  0  2.5  5

P
D

F
(v

′)

v′

(c)

(a)

(b)

W1
W2
W3
W4
W1
W2
W3
W4
SF

Figure 5.9 – Probability Density Functions (PDF) of the velocity fluctuations u+′
(computed with

respect to the channel flow mean velocity), measured inside the droplet (dots), in the buffer layer
outside the droplet (lines) and for a single phase flow (SF) at various Weber numbers We: (a) stream-

wise fluctuations u+
′
; (b) span-wise fluctuations v+

′
; (c) wall-normal fluctuations w+′

. Velocity
fluctuations are damped inside of the droplet, whereas the effects produced on the external velocity
components are of small entity.
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Large number of droplets

Reproduced in part from:

L. Scarbolo and A. Soldati, “Wall drag modification by large deformable droplets in turbulent channel flow”,

Comp. Fluids, (2013) under review.

L. Scarbolo, F.Bianco and A. Soldati, “Turbulent motions of large coalescing droplets”, J. Fluid Mec., (2013)

in preparation.

In this chapter the behaviour of a swarm of large deformable and coalescing droplets
in wall-bounded turbulence is examined. Droplet-droplet interactions and the wall-drag
modifications are investigated exploring a wide range of Weber numbers. In the first sec-
tion the problem is posed and the details of the simulations are provided; in the second
section the coalescence regimes are discussed in detail and in the third second section
the flow field modifications are quantified.

6.1 Problem definition

A swarm of droplets of initial diameter d0 dispersed in a fully developed turbulent channel
flow is simulated; the two fluids are considered immiscible, incompressible, Newtonian,
density-matched and viscosity-matched. Moreover the complex droplet-droplet interac-
tions (i.e. collisions and coalescences) and the breakup phenomena are properly modelled
through the PFM. With this assumptions the system is set to its simplest configuration,
allowing to isolate the surface tension effects and the role of droplets deformability on
the wall-drag modification. With reference to figure 6.1 the coordinate system is located
at the center of the channel and x-, y- and z-axes point in the streamwise, spanwise
and wall-normal directions, respectively. The size of the channel is 4πh × 2πh × 2h in
x, y, and z directions, respectively, and h is the channel half-height. The droplets are
initialized by superposing the phase field φ over a fully developed turbulent flow obtained
from previous single phase DNSs in a statistically steady state. The CHNS equations
(2.3.2)-(2.3.5) have been recalled in their non-dimensional form, where the superscript
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Figure 6.1 – Schematics of the problem under analysis: dispersion of a swarm of large deformable
droplets in a turbulent channel flow.

“−” indicates non-dimensional quantities. The scaling variables here adopted are Uτ , h,
and φ+, where Uτ =

√
τw/ρ is the shear velocity based on the wall shear stress τw and

the fluid density ρ; φ+ =
√
β/α is one of the two stable solutions given by the chemical

potential (2.2.6).
∂φ−

∂t−
= −u− · ∇φ− +

1

Pe
∇2µ−, (6.1.1)

∇ · u− = 0, (6.1.2)

∂u−

∂t−
= −u− · ∇u− −∇p− +

1

Reτ
∇2u− +

3√
8

1

We · Ch
µ−∇φ−, (6.1.3)

µ = φ3− − φ− − Ch2∇2φ−. (6.1.4)

where the Eq. (6.1.4) is the dimensionless chemical potential (2.2.6). The following
dimensionless groups appear:

Reτ =
Uτh

ν
, Pe =

Uτh

Mβ
, We =

ρU2
τ h

σ
, Ch =

ξ

h
. (6.1.5)

The shear Reynolds number (Reτ ) is the ratio between inertial forces and viscous forces,
the Peclet number (Pe) represents the interface relaxation time, the Weber number (We)
is the ratio between inertial forces and the surface tension and the Cahn number (Ch) is
the dimensionless capillary width. In our approach, Reτ , Pe, We and Ch are governing
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parameters that defined by considering the physical fluid properties, the flow regime, the
simulated surface tension and the phase field modelling. Once the shear Reynolds number
is fixed, the value of the surface tension is chosen by changing the Weber number. When
considering immiscible fluids, the interface thickness depends on the numerical algorithm
only, thus the Cahn number can be fixed to the smallest possible value. To obtain results
independent from Ch, the Peclet number should be properly chosen: for this reason the
scaling proposed by Magaletti et al. [73] has been adopted: Pe ∝ Ch−1. The adoption
of a proper scaling between Pe and Ch ensures also a correct description of breakup and
coalescence phenomena [140, 113]. Eq. (6.1.1)-(6.1.4) have been solved using a pseudo-
spectral algorithm discussed in Chap. 3 and previously adopted in Chap. 5. All the
results reported in this section are measured in wall-units “+” obtained by normalizing
with Uτ , ρ, ν and φ+.

6.1.1 Simulation parameters

In this work the shear Reynolds number based on the half channel height is Reτ =
150, leading to a fully developed turbulent flow. A large number of droplets (nd,0 =
256) of initial diameter d+

0 = 60w.u. yielding a volume fraction ϕ = 0.053 have been
simulated considering wide range of Weber numbers: We = 0.18 ÷ 2.8. The droplet
diameter is much larger than the Kolmogorov length scale η+

κ at all the positions in
the domain: the ratio between the Kolmogorov length scale and the droplet diameter
is 0.027 ≤ η+

κ /d
+ ≤ 0.063. During the simulations the droplet can coalesce, as a result

their diameter increases; moreover the breakup events produce daughter droplets always
larger than the Kolmogorov length scale. The simulations were run on a 512× 256× 257
fixed cartesian grid fine enough to resolve the smallest length scale of the turbulent flow,
while the time step ∆t− = 3·10−2 has been chosen to resolve the smallest temporal scales
and respond to the numerical stability requirements associated with the grid resolution.
The pseudo-spectral scheme adopted can resolve accurately the interfacial layer with a
minimum number of three mesh-points [5, 99, 100]. The interface is described by three
mesh-points along x and y directions (where a uniform discretization is adopted) and by
a minimum number of seven mesh-points along the z direction where a finer non-uniform
discretization is adopted (Chebyshev polynomials). With reference to Eq. (2.2.7) the
interface thickness (a layer where −0.9 ≤ φ+ ≤ 0.9) is fixed choosing Ch = 0.0185
and, adopting the scaling law proposed by Magaletti et al. [73], the Peclet number is
Pe = 162.2. The PFM cannot completely fulfil local mass conservation [141]; thanks to
the accuracy of the numerical and to the small interface thickness adopted, however, the
mass loss is in any case small1. A collection of the relevant parameters of each simulation
is reported in Tab. 6.1.

1After the entire simulation (2 · 105 time-steps, corresponding to ∼ 50 channel length covered by the
mean flow), losses of volume V + (or equivalently of mass m) range from 2% to 10%.
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Table 6.1 – Collection of simulation parameters

Simulation We Reτ Ch Pe ϕ

WE1 0.18 150 0.0185 168.2 0.053
WE2 0.21 150 0.0185 168.2 0.053
WE3 0.25 150 0.0185 168.2 0.053
WE4 0.28 150 0.0185 168.2 0.053
WE5 0.35 150 0.0185 168.2 0.053
WE6 0.71 150 0.0185 168.2 0.053
WE7 1.41 150 0.0185 168.2 0.053
WE8 2.83 150 0.0185 168.2 0.053

6.2 Droplet-droplet interactions

After a short transient, droplets start to interact and collide, fostered by two distinct
effects: the presence of a mean shear, thus regions of the domain with different mean
streamwise velocity, and turbulent fluctuations. In general, not every collision results in
a coalescence event and, in particular, two leading mechanisms can prevent the coales-
cence: i) turbulent fluctuations that cause a trajectory deviation so that droplets move
away from each other before colliding; ii) the presence of a thin film between the collid-
ing droplets does not drain rapidly enough causing droplets deformation and bouncing.
Supported by a simple scaling analysis, the coalescence can be prevented more efficiently
by the turbulent velocity field; as a result coalescence is expected to be the most likely
event to observe provided that the two droplets collide. In particular, approximating two
droplets as spheres of diameter dl > ds with dl ∼ O(ds) colliding at velocity ur, their
collisional momentum Qd can be estimated. In a similar way, the momentum of the thin
film of fluid that separates two colliding droplets Qf can be estimated:

Qd = ρf
4πd3

s

3
ur, Qf = ρfhf

π`2f
4
uf . (6.2.1)

The film is approximated by a thin disk of heigh hf and diameter `f while uf is the
characteristic velocity at which the film is drained; following Frostad et al. [29], uf can
be estimated adopting the lubrication theory into the film: uf ' (2σh2

f )(µfds`f ). Hence,
the film-droplet inertial ratio results:

Qf
Qd
∼
(
ρf
ρd

)(
ds
`f

)(
uτ
ur

)(
Reτ
We

)(
hf
ds

)3

. (6.2.2)

In the present simulations, ρf/ρd = 1 and the ratio ds/`f can be safely considered as
O(1). Since a large number of droplets is dispersed in a three-dimensional turbulent
flow, the exact features of every single collision event are difficult to detect. It is possible
to roughly estimate ur as the relative velocity between a pair of nearest neighbours
droplets, averaged over all the pairs, for each time step. The ratio 〈uτ/ur〉 is in general
O(1) (slightly decreasing in time) for every set of tested Weber number. We explore
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regimes Reτ/We from O(102) to O(103) while (hf/ds)
3 varies in time, at least in the

initial transient, because droplets increase in volume while they coalesce. However, since
hf is of the order of the interface thickness (hc ' 4Ch ' 0.04), on average O(2 · 10−6) ≤
〈(hf/ds)3〉 ≤ O(·10−4). Consequently, the ratio Qf/Qd varies from O(10−1) to O(10−4)
meaning that, in average, colliding droplets have larger inertia with respect to the thin
fluid film. The local Reynolds number into the film, can be roughly estimated as:

Ref =
ρfufhf
µf

=
Re2

τ

We

h3
f

d2
sH

. (6.2.3)

Ref is relatively small at the early stages of the simulations (O(10−2) for large We)
because of the small droplets diameters but, in general, it is larger because of droplets
growth (up to O(101) for the largest droplets and the smallest We). Therefore, since
droplets inertia is larger with respect to the film inertia and viscous forces into the film
play a minor role during drainage, droplets bouncing is likely to be observed only in
the early stages of simulations while, most of the time, the coalescence of two colliding
droplets is expected. Hence, the only way to prevent coalescence, when droplets are
large, is avoiding collision by transport mechanisms. The number of distinct droplets
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Figure 6.2 – Time evolution of the normalized number of droplets nd/nd,0 and normalized droplet
averaged diameter 〈d〉/d0 varying the Weber number We.

in the channel (nd/nd,0) is shown in Fig. 6.2-a as function of time for different Weber
numbers. As expected, nd/nd,0 decreases in time and it stabilizes toward an asymptotic
value after a transient. By contrast the average droplet diameter 〈d〉 increases in time
due to the coalescence events and the volume conservation. Two different dynamics of
coalescence are observed depending on the Weber number.

6.2.1 Small Weber number: We < 1

For small Weber numbers (WE1 ÷WE6), a strictly monotonic reduction of the total
number of droplets (nd/nd,0) is observed. This trend is possible only if breakups events
do not exist and this behaviour is consistent with the balance between inertial forces and
surface tension given by We < 1. In order to shed some light on the coalescing events, in
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Fig. 6.3 the time evolution of a coalescence event (top panels) is compared with the case
in which the collision is prevented (bottom panels). The fluctuating streamwise velocity
field is rendered on a slice crossing the two droplets. It seems that the coalescence
or separation of the droplets is driven by the successive flow regions experienced by the
droplets. In the bottom panels, at the beginning, both droplets are experiencing a similar
velocity region, as a result their distance is not reduced. After 15t+ the front droplet
encounters a region of positive velocity fluctuations that drives it apart from the droplet
behind. After 30t+, the droplets separated by different spanwise velocities, indicating
that the large scales turbulent structures encountered are, in this case, preventing the
coalescence. It worth noting that in case of no coalescence, the liquid film between the
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Figure 6.3 – Time evolution of two coalescing droplets (top panels) and two non coalescing droplets
(bottom panels) taken at time distances of 15t+. The streamwise velocity fluctuations u′+ are ren-
dered over a x − y plane crossing the droplets (z+ = 50w.u. and z+ = 250w.u. for the top panels
and bottom panels, respectively). The time sequences are taken at the same initial time 390t+, at
different positions on the computational domain and for simulation WE1.

droplets produces only a slightly flattening of the front droplet interface and, proceeding
in time, the local shape do not differ much from a spherical shape (`f < ds). In this case,
as predicted in the momentum scaling of Sect. 6.2, the film inertia is negligible and the
collision dynamics is controlled by the velocity field. On the contrary the initially non
homogeneous flow regions encountered by the coalescing droplets ( A and B depicted in
the top panels), move the droplets closer fostering collision. The fluid film is squeezed by
the motion of the droplets and, as a result, large negative streamwise velocity fluctuations
(u′+ ' 3) can be observed into the film. After 15t+ the film is completely drained and
the droplets interface collide; after 30t+ a large bridge between the droplets is generated.
It worth notice that, as proposed by Yang et al. [137], the coalescence because the
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film drainage characteristic time `f/uf is smaller than the characteristic collision time
hf/ur. In fact, in this case uf ' 3〈ur〉, and hf ' `f , since no flattening of the droplet
is observed. Fig. 6.4 helps to clarify the coalescence driving mechanism: it is evident

X
Y

Z

-2.0     -1.0      0.0      1.0      2.0  

Spanwise velocity fluctuations

Figure 6.4 – Time evolution of the coalescence process depicted in the top panels of Fig. 6.3. The
snapshots are taken at time distances of 15t+ and the spanwise velocity fluctuations v′+ are rendered
over the droplets isosurfaces (that are identified by φ = 0).

that the spanwise velocity fluctuations are acting to push the droplets tips close together.
Combining top panel of Fig. 6.3 and Fig. 6.4 a coalescing event in a xy plane can be
summarized: i) the spanwise velocity fluctuations push the droplets closer, ii) the film
drains in the streamwise direction helped by the local velocity fluctuations; iii) the bridge
between the droplets forms. Finally, in the early stages (t+ < 2000) the coalescing regime
shows a weak dependence from We, while, for t+ > 2000 the number of droplets observed
in the asymptotic regime is almost universal. For larger t+ coalescence becomes a rare
event confirming that for larger droplets coalescence is driven by the turbulent mixing
that becomes ineffective when the average distance between the droplets is large. [ht!]
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Figure 6.5 – Time evolution of the average minimal distance 〈lm〉 normalized by the average droplet
diameter 〈d〉. Small Weber numbers (WE1÷WE6) are reported in panel (a). Large Weber numbers
(WE7, WE8) are reported in panel (b) where the case We = 0.71 is also shown for sake of comparison.

Fig. 6.5-a shows the minimal distance between the two closest droplets, averaged over all
the droplets pair 〈lm〉 and normalized by the average droplet diameter 〈d〉. In the case
of small Weber numbers the distance increases in time, consequently the probability of
interaction decreases in time. At large times the minimal distance can be 〈lm〉/〈d〉 ' 2÷3,
such that droplets are essentially too distant to interact and coalescences are dramatically
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reduced.

6.2.2 Large Weber number: We > 1

In the case of large We (WE7 and WE8), nd/nd,0 decreases in time until an asymptotic
behaviour is observed. However, if We is larger than a critical value, here We > 1,
nd is not decreasing monotonically. Such behaviour is due to the breakups produced
by the combined action of mean and turbulent shear stress. As shown in Fig. 6.2-
a, local increments of the number of droplets are observed after an early transient in
which breakups are rare. Indeed, at this stage (t+ < 1000), droplets are small and the
local shear produced by the velocity fluctuations requires large We to produce large
deformations, as a result, nd/nd,0 is first dominated by coalescence. Growing in size the
droplets can be large enough to be subjected to velocity fluctuations strong enough break
them. This behaviour is consistent with the critical stable diameter pointed out by Hinze
[42]. After an initial transient that depends on the Weber number, an asymptotic regime
(in the statistical sense) is reached and coalescence/breakup events are in a dynamic
equilibrium. Droplets generate by breakup are compensate by other coalescences and, as
a result, at equilibrium the number of droplets is much larger than that observed in the
case of small Weber numbers. For instance, We = 1.41÷ 2.82 yield to a steady number
of droplets that is from one to two magnitude orders larger than the small Weber number
cases Sect. 6.2.1. Fig. 6.6 depict the time evolution of a breakup event; subjected to the
local velocity field the droplet loses its initial sphere-like shape and deforms assuming an
elongate shape with a neck where the pinch-off will take place. Observing the streamwise
velocity fluctuations u′+ rendered over the droplet surface, it seems that the local velocity
field is responsible to create a curvature that will allow the surface tension to complete
the breakup. When the concave curvature is produced, the local velocity field that tends
to pull apart the thin neck helps the surface tension to finalize the breakup. Fig. 6.5-b
shows how the breakup events tend to create an upper bound to 〈lm〉/〈d〉; on average
the minimal distance between a droplet pair is not larger than a diameter 〈d〉. Due to
the bounded 〈lm〉/〈d〉, the probability of droplet-droplet collisions and coalescences is
larger. The droplets produced by coalescence can have a diameter larger than the stable
size for the given We, resulting in a new breakups. This mechanism is repeated in time,
producing the dynamical equilibrium observed in Fig. 6.2-a.

XY

Z

-1.0     -0.5      0.0      0.5      1.0  

Streamwise velocity fluctuations

Figure 6.6 – Time evolution of a breakup event observed in the We = 1.41. The snapshots are taken
at time distances of 15t+ starting from an initial time of 1170t+. The streamwise velocity fluctuations
u′+ are rendered over the droplets isosurfaces.
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6.3 Wall-drag modification

The wall-drag modifications produced by the droplets in have been studied focusing
on the correlation between the droplets deformability and the wall-drag modifications.
Time-independent statistical results have been obtained by time and ensemble averaging
(denoted by brackets “〈〉”); the time window adopted corresponds to a∼ 24 eddy turnover
times Te = h/Uτ .

6.3.1 Qualitative analysis

Fig. 6.7 and Fig. 6.8 show the detail of one droplet moving in the near wall region: in
panels (a) a small Weber number case (WE1) is shown and in panels (b) a large Weber
number case (WE6) is depicted. In Fig. 6.7 the streamwise component of the velocity
field relative to the droplet velocity (u+

r = u+−u+
d ) is shown by the contour plot reported

on a x−z slice that spans all the channel height (300w.u.). The droplets are modified by
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Streamwise relative velocity 

Figure 6.7 – Detail of the near-wall motion of a droplet for different Weber numbers: (a) simulation
WE1, (b) simulation WE6. The contour plot of the streamwise velocity u+r relative to the droplet
streamwise velocity u+d is depicted on a x− z plane passing across the droplet. The droplet interface
is located by the iso-surface φ = 0 and is rendered in green. The entire computational domain along
the wall-normal direction z is shown, while only a portion of ∼ 300w.u. is shown along the streamwise
direction.

the turbulent structures encountered in their motion: when the Weber number is small
(We = 0.18), the small deformations observed are limited to the near wall region and
are probably due to the wall mean shear; when the Weber number is large (We = 0.71),
the deformations are much larger and the droplet assumes an elongated shape that is
oriented in the direction of the stream flow. The relative velocity u+

r increases reducing
We: higher magnitude are measured in the channel center, while the regions of negative
u+
r shrink toward the walls. This effect is due to the droplet velocity u+

b that decreases
with We: in this particular case the less deformable droplet (WE1) has a mean velocity
u+
d = 13.5, while the more deformable droplet (WE6) has an higher mean velocity
u+
d = 16.7. Droplets with small deformability are slowed down by the near wall velocity

field where they move in a negative relative velocity region, as observed in the fluid
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regions near the droplet of (Fig. 6.7-a). The shape of droplets with large deformability
show deformations that correlate with the relative velocity field: the droplet seems to be
forced and deformed by two opposite sign flow regions (Fig. 6.7-b): a region of positive
u+
r acting on its back side and a region of negative u+

r insisting on its front side. As a
result the flow field modifications are larger the smaller is the Weber number and droplets
with large deformability can be more easily deformed by the surrounding flow field. In

X

Z

(a) (b)

0.0   0.05    0.1   0.15   0.2  0.25  

Streamwise vorticity  

Figure 6.8 – Detail of the near-wall motion of a droplet for different Weber numbers: (a) simulation
WE1, (b) simulation WE6. The contour plot of the streamwise vorticity component ω+

x is depicted
on a x − z plane passing across the droplet and the vector plot of the velocity fluctuations u are
superposed on it. The droplet interface is located by the iso-surface φ = 0 and is rendered in green.
The entire computational domain along the wall-normal direction z is shown, while only a portion of
∼ 300w.u. is shown along the streamwise direction.

Fig. 6.8 the contour plot of the streamwise vorticity component (ω+
x ) is reported on a x-z

plane spans all the channel height (300w.u.). The vector plot of the velocity fluctuations
u′+ is superposed on the same plane. The effect of produced by the presence of droplets
with small deformability (WE1) is highlighted by the high vorticity regions observed in
the back side of the droplet: the droplet moves faster than the near-wall fluid, as a result
a its back side is characterized by local intense vortical regions. By contrast the vorticity
magnitude in the proximity of the droplet with large deformability is almost comparable
to that measured in the channel center.

6.3.2 Velocity statistics

To analyse the effects of the droplets dispersed in the turbulent channel flow, first the
the streamwise mean velocity 〈u+〉 is measured. Since the simulations are run with fixed
average pressure gradient, the flow rate depends on the shear stress at the wall; small
mean velocity fluctuations are ruled out by the ensemble and time averaging procedure.
Fig. 6.9 shows that the mean streamwise velocity profile is shifted down when decreasing
the Weber number (and thus the droplets deformability). Compared with the turbulence
wall law, 〈u+〉 is reduced when We is small (WE1 ÷WE4) and the resulting velocity
profile is characterized by a logarithmic region that is shifted down and reduced in slope.
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In agreement with the observations of Lu et al. [70], droplets with small deformability
produce Drag Enhancement (DE). On the contrary, when the We is large (simulations
WE5 ÷WE8), 〈u+〉 is slightly increased with respect to the single phase flow, but no
significant Drag Reduction (DR) is observed. In order to correlate DE and DR with
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Figure 6.9 – Mean streamwise velocity profile 〈u+〉 along the wall-normal direction z+ for different
Weber numbers. Arrow points in the increasing Weber number direction (increasing deformability).
The average streamwise velocity decreases reducing the droplets deformability (reducing We) with
respect to the single phase profile SP .

We and with the droplet deformability, the averaged friction coefficient Cf has been
computed:

Cf =
τw

1
2ρ〈u0〉2

, (6.3.1)

where 〈u0〉 is the flow average bulk velocity. Fig. 6.10-a shows the friction coefficient
normalized with its value measured for a single phase flow Cf,s; plain dots refer to
simulations where DE is observed, while filled dots are cases of no DE (or slight DR). The
friction coefficient increases up to 11% for the smaller Weber number (simulation WE1),
while a slight reductions of 1% ÷ 2% is observed for large Weber numbers (simulations
WE6÷WE8). The DE observed in [70] for small Weber number bubbles was addressed
to the flow obstruction produced by droplets with streamwise velocity smaller than the
surrounding fluid. Based on this evidence the average droplets velocity u+

d has been
investigated. Fig. 6.10-b shows that increasing the Weber number, the droplet average
velocity increases reaching an almost uniform value when the DE vanishes (filled dots);
this result confirms the qualitative behaviour observed in Fig. 6.7 and it is in agreement
with [70]. In particular, the droplet average velocity seems to correlate well with the
inverse of the friction factor represented by the dashed line in Fig. 6.10-b, confirming
that the DE observed for small Weber number droplets is likely due to the slip velocity
between the droplets and the surrounding fluid. In particular, since the droplets average
diameter 〈d〉 increases in time (see Fig. 6.2-b), the droplets motion can easily decorrelate
from the flow. As a result the DR mechanism [70] cannot be observed.
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Figure 6.10 – Average friction coefficient Cf normalized with the single phase flow friction coefficient
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(panel b). Plain dots refer to simulations where DE is observed; filled dots refer to simulations with
no DE. The normalized friction coefficient increases reducing the droplets deformability (reducing
We), while the droplets average velocity reduces reducing the deformability. The droplets average
velocity correlate with the inverse of the friction factor (dashed line).

6.3.3 Vorticity fluctuations statistics

In a flow where large and highly deformable bubbles are dispersed, the DR is mainly due
to the streamwise vorticity cancelling produced by the bubble motion in the near-wall
region [70, 128]. Fig. 6.11 shows the near-wall behaviour of the Root Mean Square (RMS)
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Figure 6.11 – Root Mean Square of the streamwise vorticity component fluctuations 〈ω′+x 〉 along
the wall-normal direction z+. Arrow points in the increasing Weber number direction (increasing
deformability). In the near-wall region, the average streamwise vorticity fluctuations increase reducing
the droplets deformability (reducing We) with respect to the single phase profile SP .

of the streamwise vorticity fluctuations 〈RMS(ω′+x )〉; when We is small (simulations
WE1 and WE2), the vorticity fluctuations at the wall are increased with respect to the
single phase flow, while, when We is large (simulations WE5 ÷ WE8), 〈RMS(ω′+x )〉



6.3. Wall-drag modification 77

collapses over the single phase flow vorticity. Thus the presence of small We droplets
is responsible for the enhancement of the near-wall streamwise vorticity fluctuations,
while large We is not affecting 〈RMS(ω′+x )〉. In Fig. 6.12 the RMS of the spanwise
vorticity fluctuations 〈RMS(ω′+y )〉 is shown; in near-wall region there is an enhancement
of 〈RMS(ω′+y )〉 that is larger the smaller is We and the profiles collapse over the single
phase flow curve when theWe is large. In this region the wall-normal vorticity component
(not displayed for brevity) has no major deviations from the single phase behaviour. In
the channel center (in a region from 70w.u. to 230w.u.) the spanwise vorticity fluctuations
are increased reducing We; this behaviour is observed also in the wall-normal vorticity
component (not displayed for brevity) which is affected in a similar way, but on a wider
region ( 40w.u. to 260w.u.). The vorticity behaviour suggests that when a droplet moves
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Figure 6.12 – Root Mean Square of the spanwise vorticity component fluctuations 〈ω′+y 〉 along
the wall-normal direction z+. Arrow points in the increasing Weber number direction (increasing
deformability). In the near-wall region, the average spanwise vorticity fluctuations increase reducing
the droplets deformability (reducing We) with respect to the single phase profile SP . Also in the
channel center (70w.u. to 150w.u.) a similar behaviour is observed.

from the channel center towards the wall, it transports an higher streamwise velocity in
the near wall region producing an increment of the near wall vorticity components. At
the same time the droplet velocity is slowed down thus, when the droplet is transported
again towards the center of the channel, it introduces a smaller streamwise velocity in
that region. As a result the droplet is accelerated and the local vorticity fluctuations are
enhanced. This mechanism is much more effective when the droplet behaves like a rigid
body: once the velocity in some regions of the droplet surface are slowed down, also the
neighbourhood regions velocity are reduced because of the limited displacements allowed
by the high surface tension. On the contrary when the droplet deformability is large, the
interface can deform and adapt to the velocity difference in different regions, introducing
a smaller obstruction to the flow (Fig. 6.7-a).
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Figure 6.13 – Root Mean Square of the wall-normal vorticity component fluctuations 〈ω′+z 〉 along
the wall-normal direction z+. Arrow points in the increasing Weber number direction (increasing
deformability). In the channel center ( 40w.u. to 150w.u.), the wall-normal vorticity fluctuations
increase reducing the droplets deformability (reducing We) with respect to the single phase profile
SP . Near the wall no significant modifications are observed.

6.4 Conclusions

In this chapter the behaviour of a swarm of large deformable and coalescing droplets
in wall-bounded turbulence is examined. Droplet-droplet interactions and the wall-drag
modifications are investigated exploring a wide range of Weber numbers. The deforma-
bility is a leading parameter in determining the coalescence rate and the possibility of
breakup of the droplets swarm. When We < 1, the coalescence rate is almost universal
and no breakups are observed. In this regime the number of droplets reaches an asymp-
totic value that is due to the increased distance between the droplets. When We > 1
different coalescence rates are observed and breakup phenomena can be detected. Due
to the breakups, the droplet distance cannot increase over an upper limit and coales-
cences are always possible. As a result a dynamical equilibrium between coalescences
and breakups is observed. The presence of the droplets produces an increment of the
wall drag that decreases with the droplet deformability: significant DE is produced by the
less deformable droplets, while these effects reduce increasing the deformability. When
the deformability is sufficiently large, no DE is observed and an almost negligible DR is
produced. The analysis of the droplet average velocity and of the vorticity fluctuations
suggest that the DE is likely due to the droplet slip velocity. The absence of the vorticity
cancelling can be explained keeping into account the differences between the physical
system considered here and the system considered by [70] and [128]: the inertia of the
droplets considered in this work is much larger because of their density and their diam-
eter, thus the droplets can easily decorrelate from the vortical structures encountered.
As a result the droplets do not produce the near-wall streamwise vorticity cancelling and
they act as a flow obstruction when their slip velocity increases.



Conclusions and further
developments

In this work the effects produced by the dispersion of large deformable droplets in wall
bounded turbulence have been investigated focusing on the role of the droplet deformabil-
ity. Many experimental investigations pointed out that the dispersion of large deformable
bubbles can produce significant modifications of the turbulence features and in particular
of the wall shear stress, that yields to Drag Reduction (DR) or Drag Enhancement (DE)
phenomena. In spite of the large practical relevance of these effects, a clear knowledge
of the mechanisms underpinning the turbulence modifications is still missing. The few
available detailed investigations of turbulence-interface interactions emphasized the cen-
tral role of the bubbles deformability in the wall turbulence modification. Moreover it
seems that when deformable bodies (bubbles or droplets) lighter than the surrounding
fluid are dispersed, DR is always achieved. On the contrary increasing the density of
the deformable body to values comparable with that of the surrounding fluid, both DR
or DE is obtained depending on the deformability (governed the surface tension). In
order to further clarify the role of the deformability on the wall turbulence modifications
produced by the dispersion of large deformable droplets in turbulence, in this work the
problem has been simplified neglecting the density differences and the viscosity differ-
ences between the droplets and the external flow, considering only the surface tension
σ. In this way the described physical system is governed by two leading phenomena:
i) droplet deformability that is controlled by the surface tension (and the Weber num-
ber); ii) droplet inertia that is comparable to that of the surrounding fluid. In Chap.
5 the momentum transfer at the interface of a large deformable droplet released in tur-
bulence has been analysed. The modifications of the near-interface flow field have been
quantified and correlated with the the Weber number (that is proportional to the av-
erage droplet deformability). The velocity fluctuations relative to the droplet center of
mass, measured at the droplet interface have been analysed in terms of interface-normal
and interface-tangential components. The interface-normal components are reduced re-
ducing the deformability, whereas the interface-tangential components increase reducing
the deformability. This behaviour is likely due to the presence of wall-blocking effects
[87, 68, 122] that yield to a deviation of the interface-normal components toward the
interface-tangential direction. The presence of the interface produces a deviation of the
surrounding velocity field, that results in a vorticity generation dependent on the surface
tension and in a damping of the turbulence intensity near the interface. These effects are
experienced at larger distances from the interface increasing the surface tension. Fur-
thermore the turbulent features observed at the surface of the droplet show similarities to
those observed for solid walls in free-stream flows [45]. Responsible for the wall blocking
effect is the local normal stress τn = σ/r̄ · n that arises at the droplet interface because
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of the surface tension and the finite curvature radius r̄. A first effect is due to the depen-
dency of τn on the surface tension: the wall-blocking effects increase when We is reduced
and, in turn, intercomponent exchanges are larger for smaller We. A second effect is
related to the normal stress dependency on the local deformations: large and energetic
structures impacting on the interface act to reduce the local curvature, corresponding
to a reduction of τn. The effectiveness of this mechanism is likely due to the inertia of
the droplet that act obstructing the flow motion, producing a wall-blocking effect that is
modulated by the surface tension. As a result the flow field modifications in proximity
of the droplet interface depend on the droplet deformability. In Chap. 6 the behaviour
of a swarm of large deformable and coalescing droplets in wall-bounded turbulence is
examined. Droplet-droplet interactions and the wall-drag modifications are investigated
exploring a wide range of Weber numbers. The deformability is a leading parameter in
determining the coalescence rate and the possibility of breakup of the droplets swarm.
When We < 1, the coalescence rate is almost universal and no breakups are observed.
In this regime the number of droplets reaches an asymptotic value that is due to the
increased distance between the droplets. When We > 1 different coalescence rates are
observed and breakup phenomena can be detected. Due to the breakups, the droplet
distance cannot increase over an upper limit and coalescences are made possible. As a
result a dynamical equilibrium between coalescences and breakups is observed. The most
evident effect produced by the droplets on the flow field is a significant increment of the
wall drag (DE) that is measured through a reduction of the streamwise average velocity.
The effect decreases with the droplet deformability: significant DE is produced by the
less deformable droplets, while these effects reduce increasing the deformability. When
the deformability is sufficiently large, no DE is observed and an almost negligible DR is
produced. The analysis of the droplet average velocity and of the vorticity fluctuations
suggests that the DE is likely due to the droplet slip velocity, in fact the droplet average
velocity is reduced reducing We. This result is confirmed by the qualitative correlation
between the average droplets velocity and the inverse of the average friction coefficient.
An important feature observed in this analysis is the absence of the vorticity cancelling
that is the source of DR in the work of Lu et al. [70]. The apparent contrast can be
explained keeping into account the differences between the physical system considered
here and the system considered by [70] and [128]: the inertia of the droplets considered in
this work is much larger because of their inertia and diameter, thus they can easily decor-
relate from the vortical structures encountered, increasing the flow obstruction produced
by the slip velocity and, in fact, avoiding the droplets to couple with the near-wall vortical
structures. As a results the necessary conditions for the DR [70] are not recovered. The
results of this work confirm that the role of deformability is a central factor in the turbu-
lence modifications produced by large droplets. The investigation have also highlighted
a particular aspect of the dispersion of deformable bodies in turbulence that requires
further investigations: the droplet inertia. The most important difference between the
droplets and bubbles is the difference of density, that yields to a larger inertia in the cases
of droplets. When air bubbles dispersed in a water flow are considered [128] the density
ratio is large (ρf/ρd = 1000) and large DR is observed. Increasing the bubbles density
of two magnitude orders (ρf/ρd = 10), both DR and DE can be achieved depending
on the deformability [70]. When the two fluids have the same density (ρf/ρd = 1), as
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in the physical system considered in this work, no DR is observed but significant DE is
measured. From this simple analysis it is immediate to connect the increased inertia as
a limiting factor to the DR, thus a systematic analysis of the droplets density effects can
push further ahead the knowledge on the DR mechanisms. .
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