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Abstract

In different industrial fields, the competitiveness on lead times has pushed companies to equip
themselves with advanced computer systems for designing and scheduling integrated logistics.
This trend has increased the attention of the academic community to optimization problems that
arise from real-world logistic applications. However, the gap between problem models presented in
literature and those that occur in the real-world situations is still large.

With this thesis we aim to develop models and metaheuristic search methods to solve complex
real-world problems in the domain of computational logistics. In particular our interest has been fo-
cused to routing and loading problems, which have several practical applications in transportation,
cutting, packing, and scheduling.

As a first step, we present a rich vehicle routing problem which includes a heterogeneous fleet,
a multi-day planning horizon, a complex carrier-dependent cost function for vehicles, and the
possibility of leaving orders unscheduled.

We then analyze and extend the container loading problem by including some practical con-
straints such as box rotations, bearing weights of boxes, multiple containers of different types
and the possibility of associating a destination to each item, such that a loading order has to be
respected.

Lastly, we address a problem which can be considered the combination of the two previous ones.
Starting from the capacitated vehicle routing problem with three dimensional loading constraints,
we redefine the notions of stability of the cargo, fragility of items, loading and unloading policies.
We also consider the case of split the demand of a customer among multiple vehicles.

Our solution approaches are based on local search which works on the search space explored
using multiple neighborhoods. The actual loading is obtained by means of specific heuristics
that load boxes on containers following different packing strategies, taking care of all the loading
constraints.

The outcome is that our solvers have been able to solve complex problems and also to compete
fairly well with state-of-the-art solvers developed ad hoc for the simpler problem.

In addition, we made available to the community a set of challenging real-world instances pro-
vided by industrial partners, that could potentially become a benchmark set for future researches.
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1
Introduction

1.1 Scientific and industrial context

Nowadays companies have to face an ever-growing competition, that inevitably leads not only to
analyze the market in which they act, but also to make internal processes effective and efficient as
possible.

In this context, logistics engineering has been developed with the aim to systematically organize
everything related to the purchase, transport, storage and distribution of products. Although, in
terms of management control, logistics is considered a cost center, actually many activities of the
customer service, which add up value to a product, are related to the logistics. These processes
are strategic and their organization and planning is a key element for the success (or survival) of
a company in the global market. Indeed, every company faces the problem of optimally managing
the resources available in such a way to maximize profits and customer satisfaction. This has
pushed companies to advanced computer systems for designing and scheduling integrated logistics.
This trend has increased the attention of the academic community to optimization problems that
arise from real-world logistic applications.

The capacitated vehicle routing problem (CVRP) [see 163, 127, 117] and container loading
problem (CLP) [see 72, 20] belong to this class of problems. In short, the aim of the VRP is to
design a path for each vehicle such that all customers are visited once and the total distance is
minimized. In the CLP the goal is to load a container with boxes, such that the loaded volume is
maximized.

Gendreau et al. [91] introduced the three-dimensional loading capacitated vehicle routing prob-
lem (3L-CVRP), which is the union of VRP and CLP. In this case, the goal is to plan not only
the optimal vehicle routes, but also the loading of cargo within them. The 3L-CVRP belongs to
a new class of problems called routing problems with loading constraints, which has recently been
introduced in literature [107].

In spite of conceptual simplicity of these issues, they are quite difficult to solve in practice
because real-world problems require to model complex constraints and to solve quickly large-scale
cases.

In fact, modeling a problem requires first a careful analysis of inputs, in order to understand
what is really crucial for the description of the problem; then it is necessary to make a clear
distinction between the constraints of the problem, the properties that a solution must have and
the objective to optimize. The difference between these three notions can sometimes be very subtle
and it can depend on how the problem is modeled. A sharp and efficient modeling of the problem is
the prerequisite for subsequent good performance of the algorithm. In case of real-world problems,
this activity can be a very hard task that requires expertise and an intense collaboration between
algorithm developers and customers.

Another difficulty in solving this kind of problems arises from the fact that the number of
possible solutions from which the best one needs to be selected grows exponentially with the size
of the problem instances.

For these reasons, it is often preferred to use approximate algorithms, which are able to obtain
sub-optimal solutions in a reasonable time, but without any performance guarantee. In addition,
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they generally are flexible enough to handle additional side constraints.
Among all the approximate algorithms, metaheuristics are among the most promising ones

because of their domain-independent quality. A metaheuristic can be defined as an high-level
strategy which typically guides problem-specific heuristics or iterative improvement algorithms, to
increase their performance.

The stochastic local search algorithms (SLS) belong to this algorithm class. They explore the
space of candidate solutions in a not systematic way, but rather with a trial and error approach.
They consist essentially in constructing one or more initial candidate solutions and trying to
improve them by local changes defined by an opportune neighborhood relation between solutions.
The stochastic element of these algorithms is the chance to choose randomly the move to perform.

This work aims to study, develop and validate models for solving optimization real-world prob-
lems in integrated logistics.

1.2 Objectives and contributions

The objective of this work is to develop models and metaheuristic search methods to solve complex
real-world problems in the domain of computational logistics.

Our first goal is therefore to extend the problem formulations available in the literature in the
routing and packing areas, in order to include several constraints that arise in practical situations.
In fact, the gap between problem models presented in literature and those that occur in the real-
world situations can be large. With this aim, we revised and extended the CVRP, the CLP and
the 3L-CVRP.

The classical CVRP has been extended in order to deal with case of a heterogeneous fleet,
a multi-day planning horizon, a complex carrier-dependent cost function for vehicles, and the
possibility of leaving orders unscheduled.

Starting from the CLP, we define a new problem which considers multiple containers of different
dimensions, box rotations and bearable weight of items. In addition, our problem manages the case
of boxes which must be delivered in different places (multi-drop), thus setting additional constraints
on the order of loading the boxes in the container.

We finally address the problem which is a combination of the two previous. Combining two
difficult problems leads to a considerable increase of difficulty, but on the other hand it allows to
obtain a better solution of the corresponding logistic target. Respect to the 3L-CVRP we redefine
the important notions of stability of the cargo, fragility of items, loading and unloading policies.
We also consider the case of split the demand of a customer among multiple vehicles.

Our second goal is to design effective metaheuristic approaches that consider and solve the
whole problems without any simplification. We investigate different LS algorithms based on the
combination of different neighborhoods and techniques. In particular we experimented tabu search
(TS) and simulated annealing (SA) algorithms and the outcome is that our solvers are able to solve
complex problems and also to compete fairly well with state-of-the-art solvers developed ad hoc
for the simpler problem. In addition, we made available to the community a set of challenging
real-world instances provided by industrial partners, that could potentially become a benchmark
set for future researches.

1.3 Scientific publications connected with the thesis

Several chapters presented in this thesis are based on papers we have published or submitted for
publication to conferences or journals.

The design and development of a tabu search algorithm for solving the vehicle routing problem
described in Chapter 5, is based on the following two papers:

• S. Ceschia and A. Schaerf. (2009). Tabu search techniques for the heterogeneous vehicle
routing problem with time windows and carrier-dependent costs. In 4th Multidisciplinary
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International Conference on Scheduling: Theory and Applications (MISTA 2009), pages 594–
605, Dublin, Ireland.

• S. Ceschia, L. Di Gaspero and A. Schaerf, A. (2011). Tabu search techniques for the hetero-
geneous vehicle routing problem with time windows and carrier-dependent costs. Journal of
Scheduling, 14(6):601–615.

The problem definition and the solution approach adopted for multiple container loading prob-
lem given in Chapter 6, is published in:

• S. Ceschia and A. Schaerf. (2009). Local search techniques for 3-dimensional packing. In
8th Metaheuristic International Conference (MIC 2009), Hamburg, Germany.

• S. Ceschia and A. Schaerf. (2011). Local search for a multi-drop multi-container loading
problem. Journal of Heuristics, pages 1–20. Online first. doi:10.1007/s10732-011-9162-6.

An article on the simulated annealing algorithm developed for the problem described in Chap-
ter 7 which combines routing and packing aspects, is submitted to a journal. The preliminary work
on this topic has been the subject of a short conference article.

• S. Ceschia, A. Schaerf and T. Stützle. (2011). Local search for a routing-packing problem.
In 9th Metaheuristics International Conference (MIC 2011), Udine, Italy.

• S. Ceschia, A. Schaerf and T. Stützle. (2011). Local search for a routing-packing problem.
Submitted for publication on a journal.

In the last chapter, we give an outline of our works on timetabling and healthcare which do
not deal with logistics, but that are equally included in this thesis because they share the same
techniques. The publications connected with these issues are:

• S. Ceschia, L. Di Gaspero and A. Schaerf. (2012). Design, engineering, and experimental
analysis of a simulated annealing approach to the post-enrolment course timetabling problem.
Computers & Operations Research, 39(7):1615–1624.

• S. Ceschia and A. Schaerf. (2011a). Local search and lower bounds for the patient admission
scheduling problem. Computers & Operations Research, 30:1452–1463.

1.4 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 describes the background and it is divided
into three parts. The first part introduces combinatorial optimization problems. The second part
provides the basic concepts of local search algorithms and gives the details of our implementation
of tabu search and simulated annealing. In the last part the experimental environment is reported
and we list the software tools used to design, analyze and configure our solvers.

The techniques described in Chapter 2 serve as a basis for designing effective algorithms for
the problems we addressed in the following chapters.

Chapter 3 provides a survey of some vehicle routing problems, whose review is preparatory the
fully understand the problems subsequently tackled. For each problem, we give a mathematical
formulation and we cover exact methods, heuristics and metaheuristics proposed in the literature.

The same has been done in Chapter 4, where we investigate different three dimensional packing
problems and the solution approaches presented in literature.

Chapter 5 introduces the vehicle routing problems with time windows and carrier-dependent
costs (VRPTWCDC), a real-world routing problem which takes into account a heterogeneous
fleet, a multi-day planning horizon, a complex cost function for vehicles, and the possibility of not
visiting all customers. We develop a TS algorithm and we carry out the experimental analysis
of different neighborhood relations on a set of real-world instances. We also test the proposed
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solver on public benchmarks of the vehicle routing problem with private fleet and common carrier
(VRPPC) [23].

Chapter 6 focuses on the multiple container loading problem with bearing weights and multi-
drop (MCLPBWMD), which is a variant of the container loading problems (CLP). It considers
several practical features, such as multiple containers, box rotations, and bearable weight and the
possibility that the boxes must be delivered in different places (multi-drop). We engineer a hybrid
solution approach which combines local search to a specific heuristic procedure which works on the
actual arrangement of boxes into containers. The solver has been tested on both new instances
and benchmarks of the CLP.

Chapter 7 is concerned with an integrated real-world problem in logistics (RPP), which can be
seen as a complex variant of the three-dimensional loading capacitated vehicle routing problem (3L-
CVRP). It includes many several features, some of which are described in our works on VRPPC
(Chapter 5) and MCLPBWMD (Chapter 6). The chapter follows the same structure of the previous
ones by giving the problem formulation and the solution approach; then the solver is tested and
analyzed on new real-world instances, and finally some experimental results on public benchmarks
are shown to asses the quality of our approach compared to other techniques.

An outline of the thesis is shown in Figure 1.1: the CVRP and 3D-PP blocks are enclosed in
a double rectangle because they represent a class of problems, whereas the others are extensions
or variants of these two original ones. The figure also highlights the relationship between the
problems considered: the VRPTWCDC and MCLPBWMD are variants of the CVRP and 3D-PP
respectively. The 3L-CVRP is a union of a CVRP and a 3D-BPP. Finally, the RPP redefine some
aspects of the 3L-CVRP, and it can be considered as the combination of the VRPTWCDC and
the MCLPBWMD.

RPP

VRP
Cap. 3

VRPTWCDC
Cap. 5

MCLPBWMD
Cap. 6

3D−PP
Cap. 4

3L−CVRP
Cap. 3, Cap. 7

Cap. 7

Figure 1.1: Outline of the thesis.

Chapter 8 summarily describe our research on other problems that do not concern the logistic
field but share the same techniques, thus are not included in the core part of this thesis. In
particular we deal with the post enrollment course timetabling problem (PE-CTT) and the patient
admission scheduling (PAS).

The last chapter concludes the thesis with a summary of the main contributions followed by
directions for future research.
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Background

2.1 Combinatorial optimization problems

Generally speaking a problem can be defined as “a question for which you have to find the right
answer, using mathematics or careful thought”. In mathematics, when the set of possible answers
(or solutions) is finite, the problem is called combinatorial. Indeed, a combinatorial problem
consists of finding a solution, among the discrete set of all possible ones, which satisfies certain
constraints.

Depending on the target, combinatorial problems can be divided in three main classes. The
goal of a decision problem is to answer a question whether or not a solution exists. Search problems
aim to find any solution that satisfies the imposed constraints. Finally, for optimization problems,
a criterion which assesses the quality of solutions is defined, and the objective is to find the solution
that satisfies all the constraints and optimizes this quality criterion. A combinatorial optimization
problem can be either a maximization or a minimization problem and, more formally, it consists
of:

• a set of instances I of the problem Π,

• a finite set of possible solutions S and a finite set of feasible candidate solutions F ⊆ S, for
each instance i ∈ I,

• an objective function F (i, s) that assigns to each solution s ∈ S of the instance i ∈ I a value
called solution value or objective function value of s.

The issue is to find an optimal solution, that is a solution s∗ ∈ F such that F (s∗) ≤ F (s) for
all s ∈ F for a minimization problem, or F (s∗) ≥ F (s) for a maximization one.

The objective function is often expresses in terms of constraints (soft constraints), which capture
the optimization goal and can not be all satisfied simultaneously. Therefore the constraints imposed
to a problem can be of two types:

• Soft constraints can be violated but a penalty is added to the objective function in order to
deteriorating the solution quality.

• Hard constraints individuate features that a final solution must have. They must be always
satisfied and they are responsible for restricting the set of candidate solutions S to the set of
feasible solutions F .

It has been demonstrated that most of the combinatorial optimization problems of practical
interest belong to the class of NP-hard problems, therefore (unless P=NP), they can not be solved
in polynomial time. For this reason, there is much interest in approximate algorithm that are able
to obtain near-optimal solutions in a reasonable computation time.
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2.2 Local search algorithms

Local search methods (LS) are approximate algorithms that do not guarantee to find a feasible
(optimal) solution, neither provide any provable solution quality and provable run time bounds.
Indeed, they are defined incomplete or non-exhaustive because the space of the candidate solutions
F is traversed in a non systematic manner, but moving from the current solution to a neighboring
one based on the local knowledge [105].

The fundamental idea behind this approach is to iteratively generate and evaluate candidate so-
lutions; in case of optimization problems the evaluation of a solution means to compute the value of
the respective objective function. New solutions are generated by performing local changes, which
are defined by an opportune neighborhood, on the current solution. If the algorithm makes use
of randomized choices in this process, it belongs to the family of stochastic local search algorithms
(SLS).

The local aspect of LS is in the fact that at each step of the iterative process decisions are made
on the basis of a limited amount of information that covers only solutions partially different from
the current one.

2.2.1 Basic concepts of local search

Given a combinatorial optimization problem Π, a LS algorithm for solving an instance i ∈ I of the
problem can be defined by the following entities:

Search Space: the search space S(i) of an instance i ∈ I is the finite set of candidate solutions
s ∈ S, while F(i) ⊆ S(i) is the set of feasible solutions.

Neighborhood Relation: given a solution s ∈ S, N (s) ⊆ S is the set of neighboring solutions
of s. N (s) is also called the neighborhood of s.

Cost Function: a cost function F (s) is a relation that associates to each solution s ∈ S a positive
value, which rates the solution and assesses its quality.

The neighborhood is usually implicitly defined by a move which partially modifies the current
solution and establishes the possible transitions between it and its neighbors.

The cost function is used to evaluate the neighbors and thus to drive the search toward promising
areas of the solution space. If soft constraints are imposed, the cost function is defined as the
weighted sum of the value of the objective function and the distance to feasibility (which accounts
for the hard constraints). In order to favor feasibility over optimality, an high weight is usually
imposed to hard constraints.

Based on this definition, Figure 2.1 shows the algorithm outlines of a generic LS procedure [62].
The choice of the initial solution, the stop criterion, the condition of selection and acceptance

of a move, depend on the specific LS technique.
The initial solution can be built by an ad hoc greedy algorithm or it can be randomly generated.

Some of most common stop criteria are based on the specific characteristics of a solution, on a
maximum number of iterations, or on a timeout. The selection of a move can be done at random,
or looking for the best or the first improving move in the neighborhood. Finally, a move can be
accepted only if it improves the current solution or also if it worsening, under some condition.

LS algorithms include constructive heuristics, iterative improvement heuristics and metaheuris-
tics. Constructive methods generate candidate solutions by iteratively extending partial solutions.
Iterative improvement techniques try to improve the current solution by performing local changes.
Metaheuristics are high level search strategies that are domain independent.

Metaheuristics can be defined as general-purpose algorithms that are used to guide the under-
lying problem specific heuristics (typically iterative improvement algorithms). Some of the most
popular metaheuristics include hill climbing (HC), simulated annealing (SA) [115], tabu search (TS)
[96, 97], iterative local search (ILS) [125], greedy randomized adaptive search procedures (GRASP)
[83], ant colony optimization (ACO) [68] and evolutionary algorithms (EA) [8].
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procedure LSProcedure(SearchSpace S, Neighborhood N , CostFunction F )
begin
i := 0;
s0 := InitialSolution(S);
while not (StopCriterion(si, i)) do
begin
m := SelectMove(si, F,N );
if (AcceptableMove(m, si, F ))
then si+1 := si �m;
else si+1 := si;
i := i+ 1;

end;
return si;

end;

Figure 2.1: A general local search procedure

In this thesis, we focus on simulated annealing and tabu search algorithms, therefore in the
following section only these techniques are described in detail; we refer the reader to [1, 105] for a
complete review of the other LS algorithms.

2.2.2 Simulated annealing

The origin of simulated annealing (SA) lies in the physical annealing process [115, 169]. In the
literature, many variants of SA have been proposed [see, e.g., 1, 105]. The version used throughout
this thesis, which is shown in Figure 2.3 as a flow chart and in Figure 2.2 as pseudocode, is the
one with probabilistic acceptance and geometric cooling.

In detail, at each iteration of the search process a random neighbor is selected. The move is
performed either if it is an improving one or according to an exponential time-decreasing proba-
bility. If the cost of the move is ∆F > 0, the move is accepted with probability e−∆F/T , where
T is a time-decreasing parameter called temperature. At each temperature level a number Nσ
of neighbors of the current solution is sampled and the new solution is accepted according the
above mentioned probability distribution. The value of T is modified using a geometric schedule,
i.e., Ti+1 = β · Ti, in which the parameter β < 1 is called the cooling rate. The search starts at
temperature T0 and stops when it reaches Tmin.

The procedure shown in Figure 2.3 and Figure 2.2 has four parameters: start temperature T0,
stop temperature Tmin, cooling rate β, and number of neighbors sampled at each temperature Nσ.
The search for adequate parameter values has been the subject of many practical and theoretical
studies over the years [see, e.g., 167, 111, 112].

Firstly, the initial temperature T0 can be set based on trial runs. In this case, an initial
probability of acceptance is defined and T0 is set in proportion to the maximal difference in cost
between any two neighboring solutions, in order to find approximately the fraction of accepted
moves during the initial stage.

The number of neighbors Nσ sampled at each temperature can be fixed depending on the size
of the neighborhoods or the time granted, or it can vary depending on the current temperature T .

Concerning the way to update the temperature, i.e., the cooling schedule, we can basically
distinguish between static and dynamic schedules: In the first case β is fixed, whereas in the latter
one it is adaptively changed during execution of the algorithm. Interested readers can refer to
[166, 162] for further information.

Finally, the final value of the temperature Tmin that determines the stop of the search process
can be fixed at some small value, which may be related to T0 or to the maximum cost difference
between two neighboring solutions [1]. Other stopping criteria can be used to state if the system
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procedure SAProcedure(SearchSpace S, Neighborhood N , CostFunction F , T0, Tmin, β, Nσ)
begin

T := T0;
s := RandomState(S);
sbest := s;
while (T ≥ Tmin) do
begin
n := 0;
while (n < Nσ) do
begin
m := RandomMove(s,N );
∆F := F (s⊕m)− F (s);
if (∆F ≤ 0)
then

s := Apply(s,m);
if (F (s) < F (sbest))
then sbest := s;
end;

else
r := Random(0, 1);

if (r < e
−∆F

T )
then s := Apply(s,m);
end;

end;
n := n+ 1;

end;
T := T · β;

end;
return sbest;

end;

Figure 2.2: The pseudocode of the SA procedure

is frozen, based on the improvement of the cost function in a given interval of iterations.

2.2.3 Tabu search

The key idea of tabu search (TS) [96, 97] is to use the memory of the past search to escape
from local minima. In its simplest version, at each step of the search process a subset of the
neighborhood is explored and the neighbor that gives the minimum cost value becomes the new
solution independently of the fact that its cost value is better or worse than the current one.

The subset is induced by the tabu list (tl), i.e. a list of the moves recently performed, whose
inverses are currently forbidden and thus excluded from the exploration. In many cases, the inverse
is not a single move, but rather a set of moves determined by the values of a collection of attributes
that are considered tabu. The tabu mechanism is introduced to prevent local search to return to
recently visited solutions and to avoid cycling. Nevertheless, the drawback of this short-term
memory approach is that it can also forbid movements towards attractive, unvisited candidate
solutions. For this reason, an aspiration criterion, which permits to override the tabu status of a
move, is allowed under some conditions. The search process usually stops after iimax iterations
without an improvement. Figure 2.5 and Figure 2.4 display the flow chart and the pseudo code of
our implementation of the TS algorithm.

One of the key issues of TS is to define the tabu tenure (tt), that is the number of iterations
that a move should be considered tabu or, in other words, the length of the tabu list. The basic
algorithm is based on a fixed-length tabu list, however in literature different improvements have
been proposed which employs a tabu list of variable length.

We make use of the robust tabu search scheme, as it is called by Taillard [156], in which the
length of the tabu list is dynamic. This is obtained by assigning at random to each performed
move the number of iterations in which it will remain in the tabu list. In detail, we set two values
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n < Nσ

END
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Figure 2.3: Flow chart of the SA procedure

tt and δtt and we assign to each accepted move a tabu tenure randomly selected between tt − δtt
and tt+ δtt.

The tabu status of a move can be overruled by the aspiration criterion which makes a move
acceptable even if it is tabu. In this thesis, we use a basic aspiration criterion which states that
a move is accepted if it improves on the current best solution. This criterion is called NB by
Hvattum [106], who claims that it is a “safe choice” that works well in general cases.

The procedure to select the best move in the neighborhood is quite sophisticated, therefore we
have decided to show in Figure 2.7 and Figure 2.6 both the flow chart and the pseudo code of our
implementation. Starting from the first move, the whole neighborhood is explored. If the cost of
a neighbor solution is less than the current one and the move is not prohibited, the current move
becomes the best one. A move is prohibited if it does not satisfy the aspiration criterion and it is
not tabu. If the value of the cost function is equal than the current best solution and the move is
not prohibited (or all moves are prohibited), the best move is updated with a probability equal to
1/(1 + number of bests). In the other cases, when all moves are tabu and no aspiration applies,
the TS algorithm executes the best of all the moves, thus ignoring the tabu status.
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procedure TSProcedure(SearchSpace S, Neighborhood N , CostFunction F , iimax, tt, δtt)
begin

ii := 0;
tl := {};
s := RandomState(S);
sbest := s;
while (ii ≤ iimax) do
begin
n := 0;
m := BestMove(s,N );
s := Apply(s,m);
if (F (s) < F (sbest))
then

sbest := s;
ii := 0;

else
ii := ii+ 1;

end;
ttm := Random(tt− δtt, tt+ δtt);
tl := UpdateTabuList(tl,m, ttm);

end;
return sbest;

end;

Figure 2.4: The pseudocode of the TS procedure

2.3 Software tools and environment

All the source code of the projects hereinafter described is written in C++ and it is compiled using
the GNU C/C++ compiler, v. 4.4.3. All experiments have been performed on a 2.66Ghz quad-core
PC with 4 GB RAM, running Ubuntu Linux x86 64 (rel. 10.04).

The software is based on the framework EasyLocal++ [63]. EasyLocal++ is an object-
oriented framework that can be used as a general tool for the development and the analysis of LS
algorithms in C++. The abstract classes that compose the framework specify and implement the
invariant part of the algorithm, and are meant to be specialized by concrete classes that supply
the problem-dependent part. It supports the design of combinations of basic techniques and/or
neighborhood structures.

The parameters settings have been configured resorting the nearly orthogonal latin hypercubes
(NOLH) spreadsheet made available by Sanchez [149] and a new implementation of iterated F-race
[17] by López-Ibáñez et al. [124].

As an alternative to the common full factorial design of experiments, for which the number
of runs increases dramatically as the number of factors increase, the NOLH algorithm belongs to
the family of response surface methods, that allow us to fill the parameters’ space using much
less configurations [51]. It constructs latin hypercubes that have good space-filling and are nearly
orthogonal. Given these properties, the NOLH algorithm is used as an experimental design that al-
lows to screen a large number of parameters configuration identifying a modest number of dominant
factors.

The main purpose of iterated F-race (irace) is to automatically configure optimization algo-
rithms by finding the most appropriate settings.The program irace implements the iterated racing
procedure, which is an extension of the F -race procedure proposed by Birattari [15]. Indeed, the
F -race is based on racing and Friedman’s non-parametric two-way analysis of variance by ranks.
This was improved by performing several iterations of F -race that successively refine a probabilistic
model of the parameter space.
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Figure 2.5: Flow chart of the TS procedure
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procedure BestMove(State s, Neighborhood N , CostFunction F , tl)
begin

m := FirstMove(s,N );
mbest := m;
sbest := s⊕mbest;
all moves prohibited := ProhibitedMove(s,m, tl);
m := NextMove(s,N );
while (m 6= FirstMove(s,N )) do
begin
s := s⊕m
if (F (s) < F (sbest))
then

if (!ProhibitedMove(s,m, tl)
then
sbest := s;
mbest := m;
number of bests := 1;
all moves prohibited := false;

else if (all moves prohibited)
then
mbest := m;
number of bests := 1;
all moves prohibited := false;
end;

end;
else if (F (s) = F (sbest))

then if (!ProhibitedMove(s,m, tl)
then if (all moves prohibited)

then
mbest := m;
number of bests := 1;
all moves prohibited := false;

end;
else if (Random(0, number of bests) = 0)

then mbest := m;
end;

number of bests := number of bests+ 1;
end;

else if (all moves prohibited)
then if (Random(0, number of bests) = 0)

then mbest := m;
end;

number of bests := number of bests+ 1;
end;

end;
else if (all moves prohibited)

then if(!ProhibitedMove(s,m, tl))
mbest := m;
sbest := s;
number of bests := number of bests+ 1;
all moves prohibited := false;

end;
end;

end;
m← NextMove(s,N );
end;
return mbest;

end;

Figure 2.6: The pseudocode of the BestMove procedure of TS
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Figure 2.7: Flow chart of the procedure for the selection of the best move in the TS algorithm.
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3
Vehicle Routing Problems: a review

3.1 Introduction

The vehicle routing problem (VRP) was first introduced by Dantzig and Ramser [56] in what
they called the truck dispatching problem. It was formulated as a branch of the traveling salesman
problem (TSP) with multiple vehicles and routes. Subsequently, many other extensions that include
time windows, different depots, pick-up and delivery options, heterogeneous fleet and periodic
routing have been proposed in literature.

In the following sections we describe some of these problem variants whose knowledge and com-
prehension is necessary to fully understand the complex real-world problem described in Chapter 5.

In Section 3.2, the different VRPs’ are formally defined, while in Section 3.3 there is a brief
overview of the solution approaches proposed in the literature.

3.2 Problems’ definition and notation

CVRP

HVRPCVRPTW

VRPTWCDC

HVRPD

HVRPFD

FSMD

FSMFFSMFD

CVRPPC PVRP SDVRP 3L−CVRP

Figure 3.1: A classification of some vehicle routing problems and their interconnections

Figure 3.1 summarizes the problem variants described in the following sections and their inter-
connection. An arrow from problem Π1 to Π2 means that Π2 is an extension of Π1. As shown in
the picture, the problem called VRPTWCDC, which will be fully defined in Chapter 6, is a further
extension that takes some features from different VRPs.

3.2.1 Capacitated vehicle routing problem

The solution of a capacitated vehicle routing problem (CVRP) calls for the determination of a plan
of routes, one for each vehicle, such that all customers are served and the total traveling costs are
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minimized. The vehicles are all identical and they must leave and return to a single central depot.
Each customer has a demand, which is the weight of the goods to be delivered, that may not be
split. There are only capacity restriction, i.e. the total demand of a route must not exceed the
vehicle capacity.

Figure 3.2 gives an example of solution of a CVRP with twelve customers, three vehicles and
a single central depot.

Figure 3.2: A solution of an instance of CVRP.

The CVRP is particularly suitable to be described using the terminology of graph theory. We
call G = (V,A) the graph where V is the set of vertex (or nodes), each one corresponding to a
customer, and A is the set of arcs that connect nodes. The graph is complete such that for each
pair of customer i and j there exists a corresponding arc (i, j). The depot is considered as a special
customer, and it is usually associated with vertex 0.

A cost cij , which represents the routing cost for traveling from node i to node j, is associated
to each arc (i, j). When the routing cost matrix C is symmetric (cij = cji for all arcs), the problem
becomes a symmetric vehicle routing problem. In most of the practical cases, the C matrix satisfies
the triangle inequality (cij + cjk ≥ cik for all i, j, k), meaning that is more convenient to go directly
from a node to another, rather than deviate and pass through intermediate nodes.

A positive demand qi is associated to each customer i (i = 1, . . . , n), while the depot has a
dummy demand equal to zero (q0 = 0). The fleet K is composed by all identical vehicles, each
one with capacity W . We assume that the demand of each customer is lower than the capacity of
vehicles (qi ≤W for all customers).

In literature, many different mathematical formulations have been proposed to model the
CVRP. We use a three-index formulation already presented in [163] belonging to the family of
the vehicle flows formulations, which is usually more adequate to express complex constraints that
are common in real world oriented problems.

It uses two integer variables: xijk that expresses the number of times an arc (i, j) is traversed by
a vehicle k, and yik that indicates if the customer i is visited by vehicle k. The objective function
is:

minimize
∑
i∈V

∑
j∈V

cij
∑
k∈K

xijk (3.1)
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subject to:

∑
k∈K

yik = 1, ∀ i ∈ V \ 0 (3.2)∑
k∈K

y0k = |K|, (3.3)∑
j∈V

xijk =
∑
j∈V

xjik = yik, ∀ i ∈ V \ 0,∀ k ∈ K (3.4)

uik − ujk +Wxijk ≤W − qj ∀ i ∈ V \ 0, i 6= j, such that qi + qj < W,∀ k ∈ K (3.5)

yik ∈ {0, 1} ∀ i ∈ V,∀ k ∈ K (3.6)

xijk ∈ {0, 1} ∀ i, j ∈ V,∀ k ∈ K (3.7)

qi ≤ uik ≤W ∀ i ∈ V \ 0,∀ k ∈ K (3.8)

(3.9)

Constraints 3.2 state that each nodes must be included in exactly one route. Equation 3.3
imposes that the depot is the starting node of each route. Constraints 3.4 establish that the same
vehicle arrives at node and leaves from it. Constraints 3.5 are a generalization to the three index
formulation of the subtour elimination constraints proposed by Miller et al. [131].

The uik variable is a continuous variable that counts the load of the vehicle k after visiting
customer i. If the variable xijk is equal to zero, the constraint is always satisfied because ui ≤W
and uj ≥ qj are always true for definition (3.8). On the other hand, if xijk = 1, the resulting
constraint is qj ≤ uj − ui, which imposes both restriction on capacity and connectivity of a route.

3.2.2 Vehicle routing problem with time windows

The vehicle routing problem with time windows (VRPTW) is probably one of the most studied
extension of the CVRP. In this problem, each customer specifies a time interval (time window) and
the visit must take place during that period. Once arrived, a vehicle must remain to the customer
location for a service time. The vehicle can not arrive at a place after the latest time window, but
if it arrives before the opening of the window, it is allowed to wait until the customer is ready.
A dummy service time equal to zero is assigned to the depot and it is usually assumed that all
vehicles leave the depot at time instant 0. The objective is to find a collection of routes that
minimize the routing costs (or the duration of the routes) while satisfying all constraints about
capacity of vehicles and time windows of customers.

More formally, we call [ei, li] the earliest and the latest time windows of customer i, si the
service time that a vehicle must wait at customer location i and τij the travel time needed to go
from customer i to customer j. The variable tik represents the arrival time of vehicle k at location
i. The objective function remains the same (3.1), but the following constraints, that guarantee a
schedule feasible according to the time windows restrictions, have to be added to the previous ones
(3.9):

xijk(tik + si + τij − tjk) ≤ 0, ∀ i, j ∈ V,∀k ∈ K (3.10)

ei
∑
j∈V

xijk ≤ tik ≤ li
∑
j∈V

xijk ∀ i ∈ V,∀k ∈ K (3.11)

ei ≤ tik ≤ li ∀ i ∈ V, k ∈ K, (3.12)

(3.13)

3.2.3 Heterogeneous vehicle routing problem

The heterogeneous vehicle routing problem (HVRP) addresses the problem of a fleet of vehicles
with different capacities [99]. The vehicles are grouped in m different types (M = 1, . . . ,m), and



20 3. Vehicle Routing Problems: a review

for each type k ∈ M, mk vehicles are available at the depot with capacity Wk. In addition, it
is possible to associated a fixed cost Fk to vehicle each type, which represents the amortization
cost. The objective of the problem is find a set of routes that minimize the sum of routing costs
(variable and fixed), while satisfying all the capacity constraints.

As proposed by Baldacci et al. [10], the formulation 3.9 can be modified as follows to model
the case of different types of vehicles:

minimize
∑
j∈V\0

∑
k∈M

Fkx0jk +
∑
i∈V

∑
j∈V

cij
∑
k∈M

xijk (3.14)

subject to:

∑
k∈M

yik = 1, ∀ i ∈ V \ 0 (3.15)∑
j∈V\0

x0jk = mk, ∀ k ∈M (3.16)

∑
j∈V

xijk =
∑
j∈V

xjik = yik, ∀ i ∈ V \ 0,∀ k ∈M (3.17)

uik − ujk +Wkxijk ≤Wk − qj ∀ i ∈ V \ 0, i 6= j, such that qi + qj < Wk,∀ k ∈M (3.18)

yik ∈ {0, 1} ∀ i ∈ V,∀ k ∈M (3.19)

xijk ∈ {0, 1} ∀ i, j ∈ V,∀ k ∈M (3.20)

qi ≤ uik ≤Wk ∀ i ∈ V \ 0,∀ k ∈M (3.21)

(3.22)

Respect to the classical CVRP, the main difference is the cost function 3.14 that takes into
account also a fixed cost of use of a vehicle. Notice that in this caseM is not the set of all vehicle,
as in CVRP, but the set of vehicle types.

Several variants of this general problem have been proposed in literature, depending on the size
of the fleet (unlimited or limited) and the costs that are taken into account (the fixed cost might
be considered or not, and the routing costs might depend on the vehicle type cijk). Baldacci et al.
[10] proposed a possible classification, reported on Table 3.1, that summarizes the features of each
problem variant:

Problem name fleet size fixed costs routing costs
HVRPFD limited considered dependent
HVRPD limited not considered dependent
FSMFD unlimited considered dependent
FSMD unlimited not considered dependent
FSMF unlimited considered independent

Table 3.1: Taxonomy of vehicle routing problems with heterogeneous fleet

where:

HVRPFD: heterogeneous vrp with fixed costs and vehicle dependent routing costs

HVRPD: heterogeneous vrp with vehicle dependent routing costs

FSMFD: fleet size and mix vrp with fixed costs and vehicle dependent routing costs

FSMD: fleet size and mix vrp with vehicle dependent routing costs

FSMF: fleet size and mix vrp with fixed costs
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Recently, Liu and Shen [120] proposed the fleet size vehicle routing problem with time windows
(FSMVRPTW) which considers the case of an unlimited heterogeneous fleet of vehicle that has to
visit the costumers during their time windows. The objective functions sums the traveling costs
and the fixed cost of vehicles.

3.2.4 Vehicle routing problem with private fleet and common carrier

The vehicle routing problem with private fleet and common carrier (VRPPC) describes a situation
where, by hypothesis, the total demand exceeds the capacity of the internal fleet, so an external
transporter is necessary (common carrier) [50]. In this case the problem is twofold: select customers
that should be served by the external carrier and define routes of the internal fleet to serve remaining
customers. In the VRPPC, the cost of serving a customer by the common carrier is fixed for each
customer without referring to any routing and the fleet is homogeneous, thus M is the set of all
identical vehicles as in Section 3.2.1.

Beside to the fixed cost of use of vehicles, the objective function includes a new component
that counts the cost of the customers served by external carriers, which is totally independent of
distances. The variable zi is equal to one if the customer i is served by an external carrier, 0
otherwise. The mathematical formulation is:

minimize
∑
j∈V\0

∑
k∈M

Fkx0jk +
∑
i∈V

∑
j∈V

cij
∑
k∈M

xijk +
∑
i∈V

γizi (3.23)

subject to:

∑
k∈M

yik + zi = 1, ∀ i ∈ V \ 0 (3.24)∑
k∈M

y0k = |K|, (3.25)∑
j∈V

xijk =
∑
j∈V

xjik = yik, ∀ i ∈ V \ 0,∀ k ∈M (3.26)

uik − ujk +Wxijk ≤W − qj ∀ i ∈ V \ 0, i 6= j, such that qi + qj < W,∀ k ∈ K (3.27)

yik ∈ {0, 1} ∀ i ∈ V,∀ k ∈ K (3.28)

xijk ∈ {0, 1} ∀ i, j ∈ V,∀ k ∈ K (3.29)

qi ≤ uik ≤W ∀ i ∈ V \ 0,∀ k ∈ K (3.30)

(3.31)

Constraints 3.24 ensure that each customer is served either by a vehicle of the internal fleet
or the external carrier. All the others constraints are the same proposed in the model 3.9 for the
CVRP.

3.2.5 Period vehicle routing problem

The period vehicle routing problem (PVRP) [12] is a generalization of the CVRP and it can be
considered a composition of a classical CVRP and an assignment problem. Indeed, the planning
period is not a single day but multiple days, therefore a collection of routes have to be designed
for each day of the horizon.

During the planning period, a customer has to be visited once or several times, and vis-
its have to take place according to a set of allowed combinations of delivery days. For ex-
ample, if a customer requires two visits over a horizon of 5 days, the combinations could be
Monday/Wednesday, Tuesday/Wednesday,Wednesday/Friday.

Lets denote D the set of days in the the planning horizon, each customer i has associated a
service frequency fi and a set of allowable combinations of visit days Hi. It is assumed that the
demand of a customer qi remains the same for all his deliveries.
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We report the mathematical formulation of the problem proposed by Cordeau et al. [53]. The
integer binary variable xijkd takes value 1 if the arc (i, j) is traversed by vehicle k on day d and
the variable yih is positive if the visit combination h ∈ Hi is assigned to customer i. In addition
the binary constant zhd is equal to 1 if day d belongs to visit combination h, 0 otherwise. The
objective function of the problem is:

minimize
∑
d∈D

∑
i∈V

∑
j∈V

cij
∑
k∈M

xijkd (3.32)

subject to:

∑
h∈Hi

yih = 1, ∀ i ∈ V \ 0 (3.33)

∑
j∈V

∑
k∈M

xijkd −
∑
h∈Hi

zhdyih = 0, ∀ i ∈ V \ 0,∀ d ∈ D (3.34)

∑
j∈V

xijkd =
∑
j∈V

xjikd ∀ i ∈ V \ 0,∀ k ∈M,∀ d ∈ D (3.35)

∑
i∈V\0

x0jkd ≤ 1 ∀ k ∈M,∀ d ∈ D (3.36)

uikd − ujkd +Wxijkd ≤W − qj ∀ i ∈ V \ 0, i 6= j, (3.37)

such that qi + qj < W,∀ k ∈M,∀ d ∈ D (3.38)

yih ∈ {0, 1} ∀ i ∈ V,∀ h ∈ Hi (3.39)

xijkd ∈ {0, 1} ∀ i, j ∈ V,∀ k ∈M,∀ d ∈ D (3.40)

qi ≤ uikd ≤W ∀ i ∈ V \ 0,∀ k ∈M,∀ d ∈ D (3.41)

(3.42)

Constraints 3.33 guarantee that only one allowed combination of days is assigned to each
customer, while constraints 3.33 state that a customer has to be visited only on days corresponding
to the selected combination. The other constraints are the usual ones, but int his case they must
be verified for all days of the planning horizon d = 1, . . . |D|.

3.2.6 Split delivery vehicle routing problem

The split delivery vehicle routing problem (SDVRP) [70] is a variant of the capacitated CVRP,
where each customer can be visited more than once and his/her demand can be greater than the
capacity of a vehicle. Therefore the SDVRP can be considered a relaxed version of the CVRP,
where the demand of a customer can be split between more vehicles.

As usual in the mathematical programming formulation, the integer variable xijk counts the
number of times vehicle k travels from i to j, whereas the variable yik stores the quantity of the
demand of i delivered by vehicle k. As presented by Archetti et al. [4] the mathematical model of
the problem is:

minimize
∑
i∈V

∑
j∈V

cij
∑
k∈M

xijk (3.43)

subject to:
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∑
k∈M

∑
i∈V

xijk ≥ 1, ∀ j ∈ V \ 0 (3.44)∑
j∈V

xijk =
∑
j∈V

xjik, ∀ i ∈ V \ 0,∀ k ∈M (3.45)

yik ≤ qi
∑
j∈V

xijk, ∀ i ∈ V \ 0,∀ k ∈M (3.46)

∑
k∈M

yik = qi, ∀ i ∈ V \ 0 (3.47)∑
i∈V

yik ≤W, (3.48)

uik − ujk +Wxijk ≤W − yjk ∀ i ∈ V \ 0, i 6= j, such that yik + qjk < W,∀ k ∈M(3.49)

yik ∈ {0, 1} ∀ i ∈ V,∀ k ∈M (3.50)

xijk ∈ {0, 1} ∀ i, j ∈ V,∀ k ∈M (3.51)

1 ≤ uik ≤W ∀ i ∈ V \ 0,∀ k ∈M (3.52)

(3.53)

Constraints 3.44 guarantee that each customers is visited at least once; constraints 3.45 are the
flow conservation constraints; the subsequent constraints (3.46, 3.47, 3.48) regulate the allocation
of the demand of a customer in different vehicles. Finally, constraints 3.49 are imposed to eliminate
subtours.

3.2.7 Three-dimensional loading capacitated vehicle routing problem

The three-dimensional loading capacitated vehicle routing problem (3L-CVRP) [91] represents a
combination of vehicle routing and three dimensional loading. It consists in finding a set of routes
that satisfies the demand of all customers, minimizes the total routing cost and guarantees a
feasible packing of items.

Differently from the CVRP where the only constraint is about the total weight of boxes that
must not exceed the capacity of vehicles, in the 3L-CVRP the loading is explicitly taken into
account. Indeed, in the 3L-CVRP the demand of a customer is not expressed as the total weight
of items required, but as the set of rectangular three dimensional boxes of a given size. Some of
the loading constraints, coming from the literature on 3D-BPP (Section 4.2), ensure that items
no overlapping, integrity and orthogonality. Others constraints (Section 4.2.1), which arise from
practical consideration in transportation, deal with rotations, fragility, stability and easy unloading
of items. For sake of readability we do not report here a mathematical formulation of the problem
but we refer the interested reader to the article by Moura and Oliveira [134].

We do not give here a detailed description of the problem formulation, as it will be provided in
Section 7.2.1. In fact, the problem we addressed in Chapter 7 can be considered as an extension
of the 3L-CVRP, and it is defined from it.

3.3 Solution techniques

The literature on the CVRP and VRPTW is very extensive, for a complete review the reader is
referred to [163, 127, 117] and [34, 35], respectively. In following sections, we review only the works
in the literature that deal with those variants of the CVRP described in the previous sections.

We grouped the different solution techniques in three main categories: exact approaches (in-
cluding new mathematical formulations and lower bounds), ad hoc heuristics (constructive and
improvement ones) and metaheuristics algorithms.

In Table 3.2 we report a summarizing classification of the manuscripts according to the problem
treated and the solution technique adopted. The table shows that due to the difficulty of these
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exact methods heuristics metaheuristics
HVRP [10, 99, 47, 176] [99, 61, 148, 120] [153, 155, 135, 90, 175,

159, 160, 118, 36]

VRPPC [66] [50, 23] [24, 54]
PVRP [69] [22, 48, 157, 147, 43] [53, 2, 102, 171]
SDVRP [70, 109, 11, 7, 6] [70, 46, 110] [5]
3L-CVRP – – [91, 158, 85, 173, 27,

133]
MP-VRP/PP-VRP – – [67, 165, 177]

Table 3.2: References to manuscripts on VRPs grouped by problem formulation and solution
technique.

variants of vehicle routing problems, heuristic (and metaheuristic) approaches are usually adopted,
while exact technique are often used to provide lower bounds.

3.3.1 Exact methods

Baldacci et al. [10] have given an overview of the mathematical formulations, lower bounds and
approaches used to solve HVRPs. To our knowledge, no exact algorithm has ever been developed
for this class of problems but only different lower bounds have been proposed [99, 47, 176].

Diaby and Ramesh [66] solved exactly (for n < 200) the single vehicle case of the VRPCC
formulated by Volgenant and Jonker [172].

The SDVRP is a relaxation of the CVRP, but nonetheless it seems to be even more difficult
to solve exactly. Dror [69] introduced a mathematical formulation based on integer programming,
proposed some valid inequalities and solved through a constraint relaxation branch and bound
approach. Lower bounds have been proposed by Belenguer et al. [11] while Archetti et al. [7]
studied the complexity of the problem for some classes of instances whose underling graph exhibit
a special structure. Finally, column generation approaches have been presented by Jin et al. [109]
and Archetti et al. [6].

3.3.2 Heuristics

The first study on HVRP, is due to Golden et al. [99] that proposed a constructive heuristics
based on the Clarke and Wright Saving Algorithm [52], where the classical cost-saving procedure
was adapted to take into account of the fixed cost of use of vehicles and the opportunity saving,
that is the saving that might occur by replacing two small vehicle with a large one. Subsequently,
Desrochers and Verhoog [61] extended this approach by developing a matching-based saving heuris-
tic based where, at each iteration, the best merge between routes is selected by solving a weighted
matching problem. Salhi and Rand [148] proposed a complex multi-step heuristic: an initial solu-
tion with all identical vehicles is initially built, then different improvement operators are applied.

In the first work about HVRPTW, Liu and Shen [120] developed a two phase algorithm: in
the constructive stage, an insertion-based algorithm is used to build the routes, and in the following
improvement phase, that intra and inter route perturbations are performed. Dullaert et al. [71]
extended the sequential insertion algorithm used by Solomon [154].

The VRPPC was formally introduced by Chu [50] who solved it heuristically: he firstly applied
a modified version of the classical saving procedure [52] followed by some local exchanges between
routes. Bolduc et al. [23] have proposed a heuristic called SRI that is composed of three steps:
the selection of customer served by the external carrier, the construction of the solution (routing)
and the improvement, through the application of sophisticated exchanges.

The first works on the PVRP was carried out by Bodin et al. [22] and Russell and Igo [146]
who solved heuristically a problem of waste collection. The problem was then formalized in [48].
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In their two stage solution approach, firstly customers are assigned to delivery days according to
meet service level requirements, then an interchange procedure is used to improve the solution.
Other heuristics have been developed by Tan and Beasley [157], Russell and Gribbin [147], Chao
et al. [43]. In particular, in [43] firstly visit combinations are assigned to customers by means of
integer programming, then a modified cost-saving algorithm solves a VRP for each day, and finally
some local improvements are performed.

Dror and Trudeau [70] introduced the SDVRP and proposed a heuristic algorithm; they also
showed that allowing split deliveries can yield to substantial savings in the routing cost and in the
number of vehicle used. Other heuristic approaches have been proposed in [46, 110].

3.3.3 Metaheuristics

The first metaheuristic approach for HVRP was proposed by Semet and Taillard [153] who devel-
oped a TS algorithm to solve a problem with several real-world features. Taillard [155] presented
a heuristic column generation approach: a TS algorithm is used to solve a set of homogeneous
VRPs, one for each type of vehicle, then the solutions obtained are selected and recombined by
solving a set partitioning problem. Other TS approaches for this problem have been developed in
[135, 90, 175]. All these algorithms are extensions to the heterogeneous case of the algorithm used
for the classical CVRP. Tarantilis et al. [159, 160] have presented a list-based threshold accepting
metaheuristic and more recently Li et al. [118] and Bräysy et al. [36] have developed a deterministic
variants of SA.

Also for the VRPPC, the more recent works are on metaheuristics. Bolduc et al. [24] have
presented a perturbation metaheuristic, called RIP (Randomized construction, Improvement, Per-
turbation), which essentially combines a descent method with diversification strategies. Recently,
Côté and Potvin [54] have obtained the best known results on benchmarks using a TS approach.

Cordeau et al. [53] developed a TS algorithm to solve the PVRP based on the GENI heuristic
[89]. Differently from all other heuristics used for this problem, infeasible solutions with respect
to the capacity and duration constraints are allowed during the search, although they are strongly
penalized in the cost function. A scatter search procedure has been proposed by Alegre et al. [2],
while Hemmelmayr et al. [102] presented an application of a variable neighborhood search. Vidal
et al. [171] designed a hybrid metaheuristic, which is mainly based on the GA paradigm, that
addresses the multi-depot VRP (MD-VRP), the PVRP and the multi-depot VRP (MD-PVRP),
obtaining the best known solutions for the benchmark instances of each problem class.

For the solution of the SDVRP, a meta-heuristic approach has been proposed by Archetti
et al. [4] and subsequently used in [5] to show in which case allowing split deliveries is likely to be
beneficial.

In the reminded of the section, we discuss the literature on the 3L-CVRP more in detail, given
that this problem is extensively examined in Chapter 7 and our solver is compared with most of
the solution techniques here described. The literature on the 3L-CVRP shows that this problem is
usually solved by means of a hierarchical solution approach where the master problem, the routing
problem is solved by a metaheuristic technique, while the slave problem, the packing problem,
is delegated to fast and simple packing heuristics, such as the bottom left algorithm [9] and the
touching perimeter algorithm [122]. In the solution technique presented by Gendreau et al. [91],
an outer TS algorithm works in the space of the routing problem moving customers from different
routes, whereas an inner TS routine deals with the packing problem swapping items and iteratively
invoking the loading heuristic. The search space is composed also by infeasible states, in which
there are violations of the capacity of vehicles (exceeding weight) or the loading space of the vehicle
is not sufficient to contain all items. Tarantilis et al. [158] implemented a hybrid TS-Guided Local
Search algorithm. The TS explores the search space of the routing problem, while a bundle of
six different packing heuristics are iteratively reapplied until a feasible loading is obtained. If no
feasible loading is achieved, the items of the sequence are re-sorted for a maximum of three times
(keeping fixed the customer sequence). In addition, as already mentioned, they introduced a new
problem version called Manual 3L-CVRP that modifies the definition of the LIFO constraint as
proposed by Gendreau et al. [91]. The ACO approach described by Fuellerer et al. [85] draws
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on some of the features of the Saving-based ACO [144], which was successfully used to solve the
standard CVRP. To test the feasibility of a route as for loading constraints, two greedy packing
heuristics are repeatedly applied and, if necessary, swaps among items of the same customer are
performed. Recently, Wang et al. [173] developed a two phase TS algorithm. In the first phase
they consider both hard and soft constraints, allowing the search process to go through infeasible
states [as in 91]; in the second phase, they apply five different neighborhood operators (2-opt,
2-swap, move, crossover, splitting), and only feasible solutions are generated and evaluated. In
addition, the classical bottom left algorithm has been adapted to perform effectively also in the
case of the supporting area constraint. Finally, Bortfeldt [27] presented a hybrid approach that
uses a TS algorithm for routing and a tree search algorithm for packing. In the TS algorithm,
he distinguishes two phases by applying different neighborhood structures and different quality
measures: during the first phase, the aim is to reduce the number of vehicles, while in the second
phase the goal is to reduce the total travel distance. The loading of boxes is carried out by means
of a tree search procedure that uses a complex system for ranking boxes not already packed and
for filtering the potential placement points, which are generated using the extreme point-based
heuristic [55].

Moura and Oliveira [133] studied a different integrated vehicle routing and container loading
problem. Their problem takes into account several additional real world features, such as cus-
tomers’ time windows, service times, strongly and weakly heterogeneous cargo, cargo’s orientation,
LIFO constraint and load stability. The objective function is a weighted sum of three components:
the number of vehicles, the total travel time, and the wasted space in vehicles. They propose
two solution approaches: in the first one, called sequential method, they solve simultaneously the
routing and packing problem. In this case, two constraints (the LIFO constraint and the one that
states that each customer belongs to exactly one route) are relaxed, thus the problem turns out to
be a SDVRP. In the second solution approach, the hierarchical method, they first solve the routing
problem and subsequently try to pack the items in the vehicles. Moreover, in the hierarchical
method all constraints are considered. They extensively discuss the interdependency between the
routing and the packing problem in different cases (number of customers per route, heterogeneity
of cargo, density of goods). Their conclusion is that in case of routes with many customers, the
routing aspects dominates the loading ones; on the other hand, when the demand of a customer
is large so that it fills a big part of the vehicle, the loading problem becomes important. Finally,
both problems appear to be relevant when the number of customers per route is small and the
demand is weakly heterogeneous, thus an integrated solution approach is more appropriate. To
our knowledge, the work by Moura and Oliveira [133] is the only one that considers the possibility
of split the customer’s demand in a routing-packing problem context.

In [67], Doerner et al. introduced the multi-pile vehicle routing problem (MP-VRP) which
stems from a company that deliveries timber products. In this case, products that have the same
dimensions are grouped together in pallets which can have fixed width, but length and height
variable within certain values. The objective is to find a loading which respects the sequential
constraints and minimizes the routing costs. The problem has been solved through TS and ACO
[67], and variable neighborhood search and branch-and-cut [165].

Another practical problem that integrates routing and packing aspects is the pallet-packing
vehicle routing problem (PPVRP) [177]. The key difference between the PP-VRP and the other
models is that items must be firstly assigned and packed into pallets [20], which are then loaded
in vehicles. Zachariadis et al. developed a solution technique based on TS to deal with the routing
aspects, whereas the packing heuristic is related to the one described in [158]. In order to allow
to unload easily items, all the demand of a customer must be stacked in the same pallet and the
LIFO constraint is not imposed.

For a recent and comprehensive review on routing problems with loading constraints, the reader
can refer to the survey of Iori and Martello [107].
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Three dimensional packing problems:

a review

4.1 Introduction

Packing problems have several applications, thus many variants of the problems have been de-
veloped depending on the constraints that are imposed. In this thesis we focus on the three
dimensional packing problems (3D-PP) which are a generalization of the one dimensional case,
where a set of items of a given weight have to be packed in the minimum number of bins of fixed
capacity. Figure 4.1 presents a classification of the most important three dimensional packing
problems, along with their interconnections. Each problem will be described in detail in the fol-
lowing section highlighting the distinctive features. Then we describe the more common packing
strategies and the solution approaches adopted in literature.

MCLP

3D−PP

MCPP

CLP 3D−KPP3D−SPP 3D−BPP

Figure 4.1: A classification of Three Dimensional Packing Problems and their interconnections

4.2 Problems classification

Three dimensional packing problems consist in packing a set of rectangular shaped items into
containers. Each item i (with i = 1, . . . , n) is characterized by a width wi, a length li and a height
hi, while the containers (or bins) have all the same dimensions W , L and H. A packing is feasible
if the items are allocate completely inside a container without overlapping and in a orthogonal way,
i.e. with their edges parallel to corresponding edge of the container. Depending on the objective
function and side constraints, these problems can be divided in six categories:
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• Three dimensional bin packing problem (3D-BPP): In this problem, the number of available
containers is unlimited and the objective is to find the minimum number of them necessary
to pack all items.

• Three dimensional strip packing problem (3D-SPP): In this variant of the problem, there is
only one container available which has fixed width and height, but infinite length. Therefore
the objective is to pack all boxes such that the required length is minimized.

• Three dimensional knapsack packing problem (3D-KPP): In this version, only one container
with all fixed dimensions is available and a profit is associated to each item. The prob-
lem consist in choosing and feasible packing a subset of items such that the total profit is
maximized.

• Container loading problem (CLP): In this problem, a single container has to be filled in
such a way that the volume utilization is maximized. Indeed, the CLP can be considered a
(3D-KPP) where the profit of a box is equal to its volume.

• Multiple container loading problem (MCLP): This problem is similar to the 3D-BPP, but the
containers may have different dimensions and a fixed cost of use, thus the objective is to
select the subset of containers with the minimum total cost.

• Multiple container packing problem (MCPP): In this case, a subset of items, each with a
value associated, have to be packed in containers such that the total value of the selected
items is maximized.

For the sake of readability we do no report the mathematical formulation of the different
problem variants, that can be found in [45, 81, 136, 3, 79, 103, 113].

A first classification on packing problems was proposed by Dyckhoff [72], which has been re-
cently improved by Wäscher et al. [174] introducing new categories that have become important in
the last years. In particular, the container loading/packing problems (CLP, MCLP, MCPP) differ
from the other problems also because they are often enriched with real-world constraints.

# containers container dimensions profit/cost objective

3D-BPP unlimited identical, fixed no minimize # containers
3D-SPP 1 variable length no minimize container length
3D-KPP 1 fixed associated to items maximize total profit
CLP 1 fixed no maximize volume utilization
MCLP unlimited different, fixed associated to containers minimize total cost
MCPP unlimited identical, fixed associated to items maximize total profit

Table 4.1: Classification of packing problems

4.2.1 Additional issues

Bischoff and Ratcliff [20] have described a variety of additional issues that may be important in
many real world applications; the most significative of them are:

• Weight limits: Each item can be characterized also by its weight and the total weight of
boxes must not exceed the container limits.

• Weight distribution: Several authors [e.g., 58, 30, 75] have considered the additional issue of
balancing the weight inside the container.

• Rotations: Items may be rotated of 90◦ in any orthogonal direction, or an orientation can
be fixed. For instance, if the vertical orientation can not be changed, only rotations on the
width-length are allowed.
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• Maximum supported weight: Depending on its construction and its contents, for each item it
may be specified the maximum weight per unit of area that it can support. This value can
be different for each side of the box [e.g., 143, 57, 18, 113].

• Stability: To ensure that the cargo do not move significantly during transport, stability
constraints can be imposed. There is not a general definition of what it a stable cargo,
however two measurements are usually adopted: static stability that states that each box
must have its bottom supported by others boxes or the floor, and dynamic stability that is
related to the capacity of the cargo to not move horizontally. In the first case the measure
adopted is the minimum percentage of the base area supported; for the dynamic stability it
is used the minimum percentage of boxes not surrounded by at least three sides [113].

• Multi-drop: If the container is transported by a vehicle and used to make deliveries, the
boxes should be loaded in such a way that boxes of the same delivery are close, and unload
and re-load operations are avoided.

4.3 Solution techniques

The subsequent section is divided in two parts. In the first one, we describe the strategies used
to find the possible positions for placing an item in the loading area. Some of them are heuristics
themselves and correspond to different ways to fill a containers; others are techniques used to
cleverly find and reduce the set of admissible points for placing an item. These packing strategies
are then included in more complex solution approaches, that are described in the second part of
the section.

In the literature, several specific packing procedure have been proposed, however they can be
grouped in the following macro-classes:

• Wall-building: This technique, introduced by George and Robinson [92], fills the container
in layers across the depth. The first box of a layer determines its depth, the wall is then
packed in horizontal (or vertical) strips; a single strip is constituted by several boxes placed
sequentially and parallel to the container width (respectively, height) [19, 151, 140, 123, 132].

• Stack building: This heuristic first packs the boxes in vertical stacks and then arranges the
obtained stacks on the floor of the container [94].

• Horizontal layers. In this case, the container is packed in horizontal layers from the floor
upwards to the ceil of it [21, 20, 151].

• Cuboid arrangements. This approach fills the container with homogenous blocks made up of
identical items with the same orientation [75, 32, 126, 114, 178].

• Corner points: The corner points are the possible positions where an item can be placed
considering the current cargo. In two dimension, they can be individuated as the points
where the slope of the envelope of items changes whereas, in the 3D case, the 2D algorithm
is applied for each distinct value of depth of items. Given a fixed sequence of items to load,
depending on the order in which candidate positions are selected and tested, different loading
strategies can be obtained [128, 129, 55, 60, 3, 91, 158, 85, 173, 27, 177].

• Overlapping graph: In [82, 80] a graph-theoretical approach is presented. A graph is used to
describe the relative position between items and to deduce necessary conditions that define
feasible arrangements.

These specific loading strategies are then embedded in more complex solution approaches.
Table 4.2 summarizes the main contributions in literature, which will be described in detail in the
following sections. The manuscripts are grouped by problem formulation and the solution approach.
Given that 3D-PPs are strongly NP-hard since they are a generalization of the one dimensional
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case [86], heuristic approaches are usually considered as shown Table 4.2. The main reason for this
choice is that approximate algorithms are able to obtain good solutions in a reasonable time, and
they are generally flexible to handle additional side constraints.

exact methods heuristics metaheuristics
3D-BPP [45, 81, 136, 3, 79, 103,

113, 128, 80, 33, 82]
[151, 55, 3] [123, 78]

3D-KPP – – [74]
3D-SPP – [92, 19, 31] [29]
CLP [152, 113] [21, 139, 140, 75, 77,

101]
[30, 87, 32, 126, 26,
132, 137, 121]

MCLP [152] [108, 20, 75, 76, 114,
44, 161, 178]

[76, 44, 178]

MCPP – – [142, 141, 150]

Table 4.2: Manuscripts on packing problems classified by problem formulation and solution tech-
nique.

4.3.1 Exact algorithms

Mathematical formulations of the 3D-BPP are presented in [45, 81, 136, 3, 79, 103, 113]. Martello
et al. [128] discussed some lower bounds and designed an exact branch and bound algorithm.
Subsequently, new improved lower bounds have been computed by Fekete [80] and Boschetti [33].
A tree search algorithm which uses a graph-theoretic characterization has been proposed by Fekete
et al. [82].

Scheithauer [152] proposed a linear programming relaxation for the CLP and MCLP, com-
puted some bounds on these relaxed problem and proposed a column generation solution approach.
Junqueira et al. [113] presented mixed integer linear programming that considers also stability and
supporting constraints.

4.3.2 Heuristics

Constructive heuristics for the 3D-BPP are presented by Scheithauer [151] and Crainic et al. [55];
both extend the next/first/best fit decreasing procedures commonly used for the 2D case. An other
heuristic approach has been proposed by Almeida and Figueiredo [3].

Heuristic procedures for the 3D-SPP are presented by George and Robinson [92], Bischoff and
Marriott [19]. In [31], the authors presented a heuristic derived from branch-and-bound approach
for the CLP of Pisinger [140].

For the CLP, several authors [21, 139, 140, 119] have proposed heuristics. Eley [75] and
Fanslau and Bortfeldt [77] used tree search algorithms that load boxes arranged in cuboid blocks.
In particular, Fanslau and Bortfeldt have recently published the best known results on available
instances for both cases with and without the full support constraint. Recently He and Huang
[101] proposed the fit degree algorithm whose underling idea is to pack items into corners or caves
in the container in such a way that it is as close as possible to the other items.

The literature on the MCLP shows that this problem is often solved by adapting the heuris-
tics used for the single container case. Possible strategies include the sequential approach where
containers are filled in turn one by one [see 108, 20, 75, 76, 114, 44] the pre-assignment strategy,
which first assigns boxes to containers and then performs the loading [161], and the simultaneous
strategy, where a given number of containers are filled at the same time [75, 178].
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4.3.3 Metaheuristics

For the 3D-BPP, a TS algorithm was proposed by Lodi et al. [123] and a GLS technique has been
used by Faroe et al. [78].

Bortfeldt and Gehring [29] presented a TS algorithm and a genetic algorithm (GA) for the
3D-SPP that are an adaptation of the ones presented for the CLP in [28, 30]. The adaption
of these original methods to the 3D-SPP was is performed in two ways: an open container can
be considered and the objective is to minimize the necessary length, or a series of problems with
decreasing container lengths is successively solved.

Egeblad and Pisinger [74] solved the 3D-KPP using a SA algorithm combined with a particular
representation of solutions, called sequence triple, which stores the relative box placements for each
one of the three dimensions,

For the solution of the CLP, in [30, 87] Bortfeldt and Gehring use GA, whereas in [32] and [126]
the authors presented TS and SA methods respectively. In [26] a TS approach is used also to cater
for the multi-container case. GRASP approaches have been presented in [132, 137]. Recently,
Parreño et al. [138] have applied a variable neighborhood search algorithm and Liu et al. [121]
proposed and hybrid TS approach.

In [76, 44, 178], the MCLP was formulated as a set cover problem and solved using column
generation techniques. However, the solution of the pricing problem, which is a CLP itself, is
delegated to an approximate algorithm. Indeed, for solving the single CLP Eley [76] used the
heuristic presented in [75], Che et al. [44] developed a bunch of three different GRASP heuristics,
and Zhu et al. [178] proposed an approach which iteratively alternates a construction phase to an
hill climbing algorithm.

In [142] and [141], the authors presented a GA approach for the MCPP, whereas Sang-Moon
et al. [150] proposed an EA.
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Real-world applications





5
The vehicle routing problems with

time windows and carrier-dependent
costs

5.1 Introduction

Vehicle routing is one of the most studied problems in optimization and many variants of the VRP
have been introduced in the literature, some of which have been already discussed in Chapter 3.
Nevertheless, despite the availability of this large set of classified formulations, often the practical
problem that companies have to face is more complex than the standardized version discussed in
scientific articles.

This is the case of the problem we came across, and thus in this work which has been published
in [40], we consider a new version of the VRP problem. We decided to deal with its exact real-world
formulation, without any concession to “judicious simplification”, that would have allowed us to
borrow results from existing successful solution techniques.

Our formulation, explained in detail in Section 5.2, includes a heterogeneous fleet, a multi-day
planning horizon, a complex carrier-dependent cost function for vehicles, and the possibility of
leaving orders unscheduled.

The problem formulation includes some non-linear constraints and cost components, thus the
use of exact methods for its solution is quite impractical. Therefore, we resort to TS techniques
that have shown to be effective on other variants of VRP. We also make use of a combination of
different neighborhood relations. The experimental analysis is carried out on a set of real-world
instances, and makes use of principled statistical tests to tune the parameters and to compare
different variants.

The final outcome of the experimental analysis is that the most promising techniques are
obtained by a combination of different neighborhood structures.

All the instances employed in the experiments, along with the best solutions found by our
methods, are available on the web at the URL http://www.diegm.uniud.it/ceschia/index.

php?page=vrptwcdc.

In order to evaluate objectively the performance of our solver, we also test it on public bench-
marks of the vehicle routing problem with private fleet and common carrier (VRPPC) [23], which
significantly resembles our problem and allows the comparison with other approaches. The out-
comes of these comparisons show that our results are at the same level of the best ones in literature
and we have been able to obtain a new best-known solution for one case.

The chapter is organized as follows. In Section 5.2 we present the problem formulation. The
application of TS to the problem is illustrated in Section 5.3. Section 5.4 shows the experimental
analysis on our instance and on benchmarks of the VRPPC. Finally, in Section 5.5 we draw some
conclusions and discuss future work.
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5.2 Problem formulation

We present our problem in stages by showing one by one the features (either previously published
or original) that are included in the formulation and the various costs associated with the use of
the vehicles.

5.2.1 Features of the problem

In Chapter 3 we have presented the mathematical formulations of different variants of VRPs, here
we describe our formulation starting from the basic version of CVRP, which is characterized by
the following entities and constraints:

Customers/Orders: The basic entity of the problem is the customer, who requires a supply of
goods, called an order.

More formally we are given a set of n orders O = {1, . . . , n}, each issued by the corresponding
customer. Multiple orders by the same customer are grouped together, so that in this basic
formulation orders and customers are indistinguishable. As a consequence, in the following
we will use the terms customer and order interchangeably unless stated explicitly.

A special customer, denoted by the number 0, represents the depot of the transportation
company.

Each order i has associated a demand qi ≥ 0, which is the amount of goods to be supplied.

Fleet: The transportation of goods is performed by a fleet of vehicles F = {1, . . . ,m}. In the
original formulation all the vehicles are identical (i.e., they have the same capacity Q) and
they are located at the same central depot (called home depot), where they have to return
upon complete delivery.

Routes: A vehicle route (or simply a route) r is a sequence 〈0, v1, . . . , vk, 0〉 starting at the depot,
visiting customers v1, . . . , vk ∈ O in that order, and returning back to the depot. The orders
served by a route r, is the set {v1, . . . , vk}, which will be denoted by ord(r). It is useful to
define the predecessor π(i, r) of a customer i w.r.t. the route r, as the previous customer in
the sequence r.

We allow the possibility of empty routes, that is r = 〈0, 0〉. In those cases, the vehicle is not
used.

Load limits: An important constraint is that the load of each vehicle assigned to a route cannot
exceed the vehicle capacity. If we define q(r) =

∑
i∈ord(r) qi as the total demand of route r,

we impose that q(r) ≤ Q.

Transportation costs: Each route has associated a transportation cost, denoted by t(r). It can
be either the road distance or a different measure of the total expenses of going on a given
way from one customer to the following one (e.g., time, tolls, . . . ).

The solution of a VRP calls for the determination of a set of routes R = {r1, . . . , rm}, (also
called a routing plan), one for each vehicle, that minimize the total transportation cost

∑m
j=1 t(rj)

and additionally fulfills the following constraints:

1. the routes satisfies all orders, i.e.,
⋃m
j=1 ord(rj) = O;

2. each customer is visited only once, i.e., ord(ri) ∩ ord(rj) = ∅, 1 ≤ i < j ≤ n;

3. the demands of all orders are fulfilled1.

1In our formulation this constraint is enforced by construction since we define the total demand of a route as the
sum of the single orders, therefore we implicitly do not allow partial deliveries.
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The first extensions to the problem that we consider are represented by the so-called service
times and time windows, discussed by Solomon [154]:

Service times: Each order is associated with a service time si ≥ 0 needed to unload the goods
from the vehicle. The vehicle must stop at the customer location for the service time.

Travel times: The time for traveling from one customer i to another customer j is estimated by
a travel time τij .

Time windows: Each customer and the depot are associated with a time interval [ei, li] (called
time window) in which the service should take place. The depot time window includes all
the time windows of the customers.

Earliest service time: All vehicles leave at the start time of the depot window (usually set to
0), and in case of early arrivals at the location of each customer, the vehicle is required to
wait until the service can start.

More formally, given a route r = 〈0, . . . , j, i, . . . , 0〉, the earliest service time of order i on r
is defined by α(i, r) = max{ei, δ(j, r) + τji}, where δ(j, r) is the earliest departure time from
customer/depot j. This value is recursively defined as δ(0, r) = 0 and δ(i, r) = α(i, r) + si.

Notice that for each order i on route r, this expression enforces by construction the fulfillment
of the constraint α(i, r) ≥ ei, which prevents early arrivals. Conversely, there is still the
possibility of late arrivals, i.e., situations in which α(i, r) > li. In practice these situations
are usually allowed but they are treated as soft constraints and are penalized as described in
Section 5.2.3.

Secondly, we consider the case of heterogeneous fleet [see, e.g., 153, 90] and the possibility to
outsource part of the transportation to external carriers [172].

Heterogeneous vehicles: Vehicles are not identical as in the original problem but each vehicle
j has its own capacity Qj .

Carriers: Each vehicle j belongs to a carrier, denoted by carrj , which is an external subcontractor
of the transportation company.

Each carrier, including the company itself, uses a different function tj(r) to bill the routing
costs to the transportation company, depending on the capacity of the vehicle employed and
the length of the route (see Section 5.2.2 for details).

Moreover, in our problem, the planning period is not limited to a single day, but it spans over
multiple days and each customer can place more than one order to be delivered in different days.
In order to consider these features, we introduce the following entities:

Planning period: The planning period is composed by a number of consecutive days D =
{1, . . . , d}. Therefore, we have to design a set of routing plans R∗ = {R1, . . . ,Rd}, one
for each day of the planning period.

Each vehicle performs only one route per day (it must return to the depot at the end of each
day) and the same fleet is available on all the days of the planning period. We denote by rjk
the route travelled by vehicle j on day k.

Multiple orders: Each customer can issue different orders in different days. Therefore, at this
stage orders and customers become different but related entities. For each order i we now
define the (unique) customer associated to it, which will be denoted by cust(i).

Delivery dates: As a consequence of introducing a multi-day perspective, there is also the pos-
sibility of specifying an interval of days [ηi, θi] in which the order i should be delivered.

Similarly to time windows case, delivery dates are treated as a soft constraint and their
violations are penalized as described in Section 5.2.3.
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Additional features of the problem we consider, concern the limitations of using some types of
vehicles in particular situations and the possibility to leave orders out of the schedule.

As for the vehicle limitations, sometimes, due to site topology and road barriers, there might
be impossible to use some vehicles to serve certain customers. Other limitations could regard the
area of operation of some carriers, in the sense that they do not accept to deliver in specific regions
(e.g., too far from their headquarters). Both alternatives are modeled by the following constraint:

Site reachability: It is given a compatibility matrix ρ, such that order i can be served by vehicle
j only if ρij = 1.

Since some of the real-world instances could be over-constrained in terms of the number of
orders to be delivered, we give the possibility of define a priority on orders. Therefore we distinguish
between mandatory orders, which must be served in a solution, and optional orders, which can be
excluded. These concepts are captured in the following:

Mandatory/Optional orders: The set of orders O is partitioned into two setsM and P (where
O =M∪P, M∩P = ∅). Orders in M are mandatory, and must be delivered; orders in P
are optional, therefore they can be discarded at a given cost γi.

The original constraints on VRP solutions must be adapted to deal with the new elements
added in these stages. The constraints are modified as follows:

1. the routes satisfy all mandatory orders: M⊆ ⋃mj=1

⋃d
k=1 ord(rjk) ⊆ O;

2. each order is delivered at most once: ord(rjk)∩ord(rj′k′) = ∅, 1 ≤ j < j′ ≤ n, 1 ≤ k < k′ ≤ d;

Finally, since, by regulation, drivers must take breaks during their activity, a set of mandatory
rests of drivers must be set [98]:

Driving rests: After a long consecutive working period, drivers should take a rest of a given min-
imum duration. In our case, a rest of 45 minutes after 4 hours and 30 minutes of consecutive
driving is imposed by law.

Ergo, the earliest arrival time for the delivery of order i on route r = 〈0, . . . , j, i, . . . , 0〉 must
be modified in order to take account of the mandatory rests: α′(i, r) = max{ei, δ(j, r) +
τji + ζ(i, r)}, where ζ(i, r) can be either 0 or 45 minutes according to the working/rest times
patterns of the predecessors of order i in route r.

It is important to observe that in our formulation also service times and waiting times are
accounted as working times for computing rests.

5.2.2 Vehicle cost functions

Since we consider the possibility to rely on external carriers for deliveries, we have to deal with
different ways to compute transportation costs, even within a single problem instance. As an
example, some carrier companies could bill the transportation company for the service on the basis
of the route, other carriers could consider the size of the delivered goods, etc. Therefore, in order
to be general enough, we designed our solver so that an external code for computing these costs
can be invoked.

In the cases we have examined we have identified some common criteria for computing the
transportation costs. In practice, the following four cost functions are used (where distij is the
road distance between customers i and j):

1. A fixed cost for the vehicle c plus a cost ξ1 per travel unit (measured in e/Km). If we denote
with ‖r‖ the total distance traveled in route r, i.e., ‖r‖ =

∑
i∈ord(r) distπ(i,r)i, we have:

t(r) = c+ ξ1 · ‖r‖
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2. A fixed cost for the vehicle c plus a cost ξ2 per load unit (measured in e/Kg), which is
dependent on the farthest location. If we denote the maximum distance between the depot
and a costumer in the route with ‖r‖∗, i.e., ‖r‖∗ = maxi∈ord(r){dist0i}, we have:

t(r) = c+ ξ2 (‖r‖∗) · q(r)

3. A fixed cost for the vehicle c plus a cost ξ1 per travel unit up to a predefined level of load
L (dependent on the vehicle capacity), a cost per load unit ξ2 dependent on the farthest
location for larger loads. That is:

t(r) =

{
c+ ξ1 · ‖r‖ q(r) ≤ L
c+ ξ2(‖r‖∗) · q(r) q(r) > L

4. A fixed cost for the vehicle c plus a cost ξ3 per load unit, which is dependent both on the
total load q(r) and on the farthest location. That is:

t(r) = c+ ξ3 (‖r‖∗, q(r)) · q(r)

Since the value of the load cost coefficients ξ2 and ξ3 depends on the distance of the farthest
customer ‖r‖∗, the carrier should define such a value for each customer (and, in the case of ξ3, also
for each load level). Normally, the carriers partition their area of operation in regions and specify
the load cost coefficient for every region (each customer location belongs to a region). The load
cost coefficient selected to compute the cost is the largest of the route, i.e. the one associated with
the region of the farthest customer.

5.2.3 Constraints and objective function

Similarly to other optimization problems, constraints are split into two categories: hard and soft
constraints. A legal solution to the problem must satisfy all the hard constraints, whereas soft
constraints can be violated and they are included in the objective function to be minimized.

Summarizing, in our formulation we deal with the following hard constraints:

H1 The load of each vehicle must not exceed its capacity, i.e., q(rjk) ≤ Qj , for 1 ≤ j ≤ m, 1 ≤
k ≤ d.

H2 Vehicles must return to the depot before a shutdown time l̄0 (in our case, l̄0 is fixed to 1
hour after the end of the depot time window l0). Notice that late returns within l0 and l̄0
are possible but they will be penalized as explained later, whereas solutions with a return
time to the depot after l̄0 are infeasible.

H3 The compatibility relation must be satisfied, i.e., an order i should be served by vehicle j for
which the ρij relation holds.

H4 All mandatory orders must be delivered, i.e., M⊆ ⋃mj=1

⋃d
k=1 ord(rjk).

H5 The route timetable must obey the regulations on driving rests.

The other problem features described in Section 5.2.1 are considered as soft constraints and
they become part of the objective function F (R∗) = wS1 ·FS1(R∗)+wS2 ·FS2(R∗)+wS3 ·FS3(R∗)+
wS4 · FS4(R∗), which is the linear combination of the following components:

S1 The delivery of an order on a day not included in its delivery days is penalized proportionally
to its demand:

FS1(R∗) =

d∑
k=1

m∑
j=1

∑
i∈ord(rjk)

(
1− χ[ηi,θi](k)

)
· qi
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where χI(x) is the characteristic function of interval I, i.e.,

χI(x) =

{
1 x ∈ I
0 otherwise

S2 The delivery of an order after the end of its time window is penalized proportionally to the
delay:

FS2(R∗) =

d∑
k=1

m∑
j=1

∑
i∈ord(rjk)

max{0, α′(i, rjk)− li}

S3 Optional orders not delivered are penalized according to their cost γi:

FS3(R∗) =
∑

i∈O\
⋃d

k=1

⋃m
j=1 ord(rjk)

γi

S4 The transportation costs for each vehicle is computed according to the carrier agreements tj ,
in one of the forms described in Section 5.2.2:

FS4(R∗) =

d∑
k=1

m∑
j=1

tj(rjk)

The weights of the various components are not fixed at some global level, but they are set
by the operator for each specific case. To this regard, setting such weights is rather a complex
task because the relative importance of the numerous components is difficult to establish. With
the purpose of simplifying this process and having an immediate grasp of the costs, we decide to
represent the costs directly in a real currency (e in our case). Moreover, in order to deal with an
objective function that can be represented in integer arithmetic and it is fine-grained enough, we
set the cost unit to 1/1’000th of e.

5.3 Application of tabu search

First of all, it is important to observe that the presence of non-linear constraints (H5) and cost
function components (the family of FS4 vehicle costs) makes it quite impractical to apply exact
methods on this problem formulation. Therefore we resort to metaheuristic techniques for tackling
the problem.

The solver we developed is based on the TS metaheuristic, which has been already described
in Section 2.2.3. In order to apply TS to our VRP problem we have to define several features. We
first illustrate the search space and the procedure for computing the initial state. Then, we define
the neighborhood structure and the prohibition rules, and finally we describe the set of search
components employed and the high-level strategies for combining them.

5.3.1 Search space, cost function, and initial solution

The local search paradigm is based on the exploration of a search space composed of all the possible
complete assignments of values to the decision variables, possibly including also the infeasible ones.
In our case, a state is composed by a set of routes, one for each vehicle on each of the planning
days.

An order can appear in only one route (i.e., it is scheduled) or it can be left outside, in the set of
unscheduled orders. Thus, for each scheduled order, the solution specifies the day when the order
is delivered, the vehicle, and the position in the corresponding route (the arrival time at the client
is deterministically computed, given its position in the route, according to the rules presented in
Section 5.2.1).
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Figure 5.1: An example of a state composed of 4 routes for 2 days (rjk identifies the route j on
day k).

An example of a state is shown in Fig. 5.1, in which different gray levels are used to highlight
routes performed on each of the two days composing the planning horizon (rjk identifies the route
j travelled on day k). Notice that some customers are left out of all routes whereas others are
visited more than once because they place orders on different days.

The search space is restricted to states that satisfy constraints H3 (site reachability) and H4
(mandatory orders), whereas constraints H1 (vehicle capacity) and H2 (late return) can be violated
and are included in the cost function with a high weight (H5 is satisfied by construction).

The cost function is thus the (monetary) sum of all soft constraints S1–S4, plus the distance
to feasibility for H1 and H2 multiplied by a suitable high weight. For H1 the distance to feasibility
is the sum of the quantities (measured in Kg) that exceed the vehicle capacity. For H2, there
are several ways to define the distance to feasibility. Our choice is to count the number of orders
(including the return to the depot) that are in a route that finishes after the shutdown time. This
solution is more effective than summing up the delays w.r.t. the shutdown time, because it creates
smoother trajectories from solutions with many violation toward the total elimination of them.
For example, in the case of two orders of the same client that are late, if we only count the delays,
in order to obtain an improvement we would need to move both orders at the same time (which is
not done by our neighborhoods). Conversely, in our solution, every single order removed from the
route improves the cost function independently of the fact that the total delay is reduced.

The initial solution is constructed at random, but satisfying some of the constraints. That is,
we create a state of the search space that satisfies the constraints about the site reachability (H3),
the driving rests (H5) and the delivery day (S1). This is made by assigning each order i ∈ O to
a randomly selected feasible day k ∈ [ηi, θi] of the planning horizon D and to a random vehicle j,
chosen among the compatible ones (ρij = 1).
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Once the day and the vehicle are selected, the route r is unequivocally identified, so we can
assign the order to a random position in the selected route. The fulfillment of constraint H5 is
enforced by construction. In addition, in the initial solution, all orders are scheduled, so that
constraints H4 and S3 are also satisfied completely.

5.3.2 Neighborhood relations

The neighborhood of a solution is usually implicitly defined by referring to a set of possible moves,
which define transitions between solutions. A move is composed by attributes that identify the
resources involved in the move. In our problem, we are dealing with the assignment of an order to
three kinds of resources: the day, the vehicle and the position in the route.

We consider the following three neighborhood relations:

Insertion (Ins): This neighborhood is defined by the removal of an order from a route and its
insertion in another one in a specific position. An order can also be inserted in the list of the
unscheduled ones (the position is not meaningful in this case) or put back from this list to
a route. The list of unscheduled orders is in practice treated as an additional special route,
with the main difference that the position of orders in this sequence is irrelevant.

A move m of type Ins is identified by five attributes m = 〈o, or, op, nr, np〉 where o represents
an order, or and op the old route and the old position in the old route, and np and nr, the
new route and new position in the new route, respectively.

Inter-route swap (InterSw): This neighborhood is defined by exchanging an order with another
one belonging to a different route. A move m of this type is identified by six attributes
m = 〈o1, o2, r1, r2, p1, p2〉, where o1 and o2 are orders, r1 and r2 are the routes of o1 and
o2, and p1 and p2 are the positions of the orders in the routes.

Intra-route swap (IntraSw): This neighborhood is defined by exchanging an order with another
one belonging to the same route. A move m of this type is identified by five attributes
m = 〈o1, o2, r, p1, p2〉, where o1 and o2 are orders, r is the route, p1 and p2 are the positions
of the orders in the route.

Notice that, given the state, some of the attributes are dependent from each other. For example,
given an Ins move m = 〈o, or, op, nr, np〉, the order o identifies the pair (or, op) and vice versa. It
is however useful to have all of them in the representation of the move for the definition of the
prohibition rules.

5.3.3 Prohibition rules

In the seminal version of TS, for the purpose to prevent cycling in the search trajectory, when a
move m is in the tabu list, the move m′ that would lead back to the same state (i.e., the inverse
of m) is prohibited.

Nevertheless, in many cases there is a further risk that the search remains trapped in the
proximity of some local minimum and iterates chaotically around it. In these cases, it is necessary
to have some diversification mechanisms for “pushing” the search away from the minimum. This
is obtained by generalizing the prohibition behavior with the definition of a general relation (called
prohibition rule) between pairs of moves (mt,me) that states that move me is excluded from the
neighborhood by the fact that move mt is in the tabu list. This enables the possibility that the
presence of a move mt in the tabu list results in the prohibition of a large set of moves, rather
than the single inverse one. The prohibition rules are based on the values of the attributes of the
two moves, the one in the tabu list mt and the one under evaluation me.

It is quite difficult to tell a priori which is the most suitable prohibition rule for a given
neighborhood, therefore for each of them we have defined and tested several ones, of different
restrictive levels. They are compared experimentally in Section 5.4.3.
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Rule Condition Description of tabu moves Strength
PR1 oe = ot ∧ ore = nrt moves removing the order ot from the route nrt 0.088%
PR2 nre = ort ∧ ore = nrt moves putting back any order from nrt to ort 0.485%
PR3 oe = ot ∧ nre = ort moves reinserting the order ot in the route ort 1.470%
PR4 oe = ot moves involving the same order ot 1.471%
PR5 ore = nrt moves removing any order from the route nrt 5.583%
PR6 nre = ort moves reinserting any order into the route ort 7.978%

Table 5.1: Prohibition rules for TS(Ins).

For the Ins neighborhood, assuming that the move mt = 〈ot, ort, opt, nrt, npt〉 is in the tabu
list and the move me = 〈oe, ore, ope, nre, npe〉 is the move to be evaluated, we consider the six
alternatives shown in Table 5.1. The last column shows the so-called tabu strength, which is defined
as the (average) percentage of the entire neighborhood that a single move in the list prohibits.

Similarly, we have tested several prohibition rules also for the two neighborhoods IntraSw and
InterSw. However, prohibition rules for these two neighborhoods have a more limited influence, and
thus we report only the ones which proved to be the most effective for our instances. Specifically,
for IntraSw, if me = 〈o1e, o2e, re, p1e, p2e〉 is the move to be tested and mt = 〈o1t, o2t, rt, p1t, p2t〉
is in the tabu list, the condition

o1e = o1t ∨ o2e = o2t ∨ o1e = o2t ∨ o2e = o1t

is imposed. It forbids to make a move where any of the two orders of me is equal to any of
those of mt. Its tabu strength is 7.613%. The same condition is used also for InterSw. If me =
〈o1e, o2e, r1e, r2e, p1e, p2e〉 is the move to be tested and mt = 〈o1t, o2t, rt, rt, p1t, p2t〉 is the move
in the tabu list, then

o1e = o1t ∨ o2e = o2t ∨ o1e = o2t ∨ o2e = o1t

is imposed. For InterSw the tabu strength of this prohibition rule is 5.933%.
We make use of the robust tabu search scheme [156] in which the length of the tabu list is

dynamic, as it is described in Section 2.2.3. In detail, we set two values tt and δtt and we assign
to each accepted move a tabu tenure randomly selected between tt − δtt and tt + δtt. In all our
experiments δtt is set to 2 (based on preliminary experiments), whereas tt is subject to tuning.

The basic aspiration criterion which states that a move is accepted if it improves on the current
best solution is applied.

5.3.4 Search techniques

On the basis of the three neighborhood relations defined, we come up with three basic TS tech-
niques, that we call TS(Ins), TS(IntraSw), TS(InterSw).

It is important to observe that the search space is not connected under the IntraSw and InterSw
neighborhood structures. Indeed, both neighborhoods do not change the number of orders in
a route, thus there is no trajectory that goes from a state with a given number of orders in a
route to a state with a different one. Consequently, TS(IntraSw) and TS(InterSw) must be used in
combination with TS(Ins), since they are not effective when used by themselves.

We use a sequential solving strategy for combining TS algorithms based on different neighbor-
hood functions, as proposed (among others) by Di Gaspero and Schaerf [64] under the name of
token-ring search. Token ring works as follows: Given an initial state and a set of algorithms,
it makes circularly a run of each algorithm, always starting from the best solution found by the
previous one. The overall process stops either when a full round of the algorithms does not find an
improvement or the time granted is elapsed. Each single technique stops when it does not improve
the current best solution for a given number of iterations (stagnation).

We identify the following five strategies, applying the token ring to the basic neighborhood
structures. In the following, token ring is denoted by the symbol ..
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1. TS(Ins)

2. TS(Ins) .TS(IntraSw)

3. TS(Ins) .TS(InterSw)

4. TS(Ins) .TS(IntraSw) .TS(InterSw)

5. TS(Ins) .TS(InterSw) .TS(IntraSw).

We also consider solvers that use the union of many neighborhoods: The algorithm based
on this compound neighborhood, denoted by the ⊕ symbol in [64], selects at each iteration a
move belonging to any of the neighborhoods as part of the union. We therefore have three more
strategies:

6. TS(Ins ⊕ IntraSw)

7. TS(Ins ⊕ InterSw)

8. TS(Ins ⊕ IntraSw ⊕ InterSw)

Finally, we experiment two further techniques that use both union neighborhoods and token
ring search:

9. TS(Ins) .TS(IntraSw ⊕ InterSw)

10. TS(Ins) .TS(Ins ⊕ IntraSw ⊕ InterSw)

All these ten strategies will be analyzed and compared experimentally in the next section.

5.4 Experimental analysis

In this section, we first introduce the benchmark instances and the general settings of our analysis,
and then we move to the experimental results. We analyze our techniques in stages, starting from
the simplest algorithm which uses one single neighborhood, then moving to the more complex ones.
Finally we show the results of the best configuration of our solver on benchmarks of the VRPPC.

5.4.1 Benchmark instances

Two cases coming from different real-world scenarios provided by our industrial partner, beanTech
s.r.l., are at our disposal for the experimental part. The main features of these two cases are shown
in Table 5.2. In order to highlight the importance of the various components of the problem,
starting from each case we have created 9 different instances, named with the letters from A to I.
The A instances are the original ones, whereas instances B–I are obtained by perturbing one specific
feature, so as to produce instances that are realistic but specifically biased toward stressing the
use of a particular feature.

Table 5.3 shows the resulting 18 instances, along with the values of a set of indicators that
describe the features (perturbed values are in bold). In detail, the columns are defined as follows:

• Days (D): The number of days in the planning horizon.

• Filling Ratio (FR): The ratio between the total demand and the total capacity of the
vehicles multiplied by the number of days.

• Time Windows (TW): The average ratio between the time window of the orders and the
time window of the depot.
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Inst. #Orders #Customers #Vehicles #Carries #Regions
case1 139 44 7 4 19
case2 166 56 7 4 22

Table 5.2: Features of the two scenarios.

Inst. D FR TW DW C MO SO OUT
case1-A 3 27.47 90.91 89.47 87.97 14.04 10.12 T
case1-B 3 27.47 90.91 89.10 87.97 100.00 11.09 T
case1-C 2 41.21 90.91 76.27 87.89 13.56 9.77 T
case1-D 4 20.60 90.91 64.74 88.83 10.26 7.39 T
case1-E 3 27.47 73.12 89.47 87.97 14.04 10.12 T
case1-F 3 27.47 40.51 89.47 87.97 14.04 10.12 T
case1-G 3 27.47 90.91 89.47 100 14.04 10.12 F
case1-H 3 27.47 90.91 33.33 87.97 14.04 10.12 T
case1-I 3 27.47 90.91 33.33 88.45 14.89 12.27 T
case2-A 3 47.41 90.91 66.30 85.87 16.67 11.06 T
case2-B 3 47.41 90.91 65.84 85.71 100.00 12.29 T
case2-C 2 71.12 90.91 80.25 85.36 17.28 12.29 T
case2-D 4 35.56 90.91 53.47 86.38 14.81 9.21 T
case2-E 3 47.41 81.41 66.30 85.87 16.67 11.06 T
case2-F 3 47.41 41.62 66.30 85.87 16.67 11.06 T
case2-G 3 47.41 90.91 66.30 100 16.85 11.19 F
case2-H 3 47.41 90.91 33.33 84.87 19.12 14.64 T
case2-I 3 47.41 90.91 33.33 85.88 17.05 11.31 T

Table 5.3: Features of instances.

• Day Window (DW): The average number of available days of the orders divided by the
total number of days.

• Compatibility (C): The density of the compatibility matrix between vehicles and orders.

• Mandatory Orders (MO): The percentage of mandatory orders.

• Space Occupancy (SO): The average percentage of space taken by an order in a vehicle.

• Outsourcing (OUT): If this indicator is set to F (False), it means that there are no external
carriers and the routing costs depend only on the total distance travelled; if the indicator is
set to T (True), there are external carriers and consequently different ways to compute costs.

Instances H are modified in such a way that each orders should be dispatched on the first
day of its delivery dates (as soon as possible); alternatively for instances I each order should be
dispatched on the last day of its delivery dates (as last as possible). For all instances the cost γi
of not delivering an optional order i (i ∈ P) is set equal to its demand qi.

Summarising, we tested our algorithms on a benchmark composed of 18 instances, which have
been made available through the web at the URL http://www.diegm.uniud.it/ceschia/index.

php?page=vrptwcdc.

5.4.2 General settings and implementation

All the algorithms have been implemented in the C++ language, exploiting the EasyLocal++
framework [63]. The experiments have been performed on the environment detailed in Section 2.3.

The stopping criterion of the basic algorithms is the detection of stagnation, which can occur
at different times. Therefore, in order to compare different combinations in a fair way, we decide
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to set a maximum number of iterations equal to 1000 for each basic TS(·) component of the
token ring strategy. Moreover, we also impose a maximum of 3 full rounds or 1 idle round as the
stopping criterion of the whole token ring procedure. We run 100 trials for each configuration of
the parameters.

For each individual TS(·) component of the search strategy, the maximum number of iterations
from the last improvement is set to 500 for the Ins neighborhood and all the unions including it,
and 300 for the other neighborhoods.

For the experiments we set wS1 = 30, wS2 = 10, wS3 = 250 and wS4 = 1.

5.4.3 Results on prohibition rules for TS(Ins)

The first set of experiments focuses on the Insertion neighborhood and compares different prohibi-
tion rules for TS(Ins).

Obviously, for each prohibition rule the best tabu list length can be different. Therefore we
have to tune the length for each rule independently and then compare the prohibition rules among
themselves, each with its best setting.

Fig. 5.2 shows, in form of box-and-whiskers plots, the results obtained on the two original
instances for different values of the tabu length and for three prohibition rules, namely PR1, PR4,
and PR5. We select to show PR5 because it provides the best results, and PR1 and PR4 because
they correspond to diverse tabu strength levels.

The figures highlight that the best prohibition rule is PR5, and this is confirmed by performing a
statistical comparison of the different results, yielding to p-values of the pairwise two-sided Student
t-test [170] that are inferior to 0.0001.

They also show an interesting phenomenon regarding the tabu list length for prohibition rules
PR1 and PR4: The curves have two different minima. Our interpretation is that the first one is
related to the depth of local minima in the search space and it represents the “normal” behavior
of TS, the second “spurious” minimum is due to the situation in which most of the moves are
tabu, and the search alternates between performing non tabu moves and tabu moves. Anyway,
this situation provides an effective diversification and, in our case, this second minimum is indeed
the lowest one. This phenomenon is confirmed by the fact that for PR1 and PR4 in such conditions
about 30% of the moves performed are tabu. It is worth remarking that this anomalous behavior
occurs only on the less performing prohibition rules.

The results obtained for the other instances and prohibition rules are similar to those shown
in the figures and are omitted.

5.4.4 Results on inter-route swap and intra-route swap neighborhoods

As already noticed, TS(InterSw) and TS(IntraSw) cannot be used alone because the search space is
not connected under their neighborhood relations. Consequently, it would be meaningless to tune
those algorithms starting from random solutions and instead we apply the tuning procedure to the
strategies TS(Ins).TS(InterSw) and TS(Ins).TS(IntraSw).

In Fig. 5.3 we show the outcome of the experiments. In this case, for TS(InterSw) and
TS(IntraSw) we can see that the results are not really affected by the length of the tabu list.
We select the value 10 for TS(InterSw) and 15 for TS(IntraSw) in the following experiments, al-
though there is no significant statistical difference with the other values. In fact their role is to
diversify during the search process, moving on plateaux of the search space.

5.4.5 Results on composite solvers

Our final experiment on the problem concerns the comparison of composite solvers. For each com-
ponent of the solvers, the parameters are set to the best values found in the previous experiments.

We perform a F -Race selection [16] based on Friedman two-way analysis of variance by ranks
as implemented in the EasyAnalyzer framework [65]. At each step of the selection procedure
each solver is tested on one instance (among the available ones) and it is assigned a rank according
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Figure 5.2: Results for different tabu list lengths of TS(Ins) for case1-A with different prohibition
rules.
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Figure 5.3: Results for different tabu list lengths of TS(IntraSw) and TS(InterSw) for case2-A.
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Figure 5.4: Results of the F -Race selection procedure on the composite solvers.

to the value of the cost function. This way we are able to compare the results on different instances
independently on the inherent difference in the cost functions. As soon as statistical evidence that
a given solver is inferior with respect to the others is collected, it is discarded and the comparison
proceeds only among the remaining ones.

We decide to set p < 0.05 as for the confidence level employed in the F -Race procedure and we
allow for at most 100 replicates.

In this case, in order to compare different solvers in a fair way, we decide to add a timeout
mechanism that stops the overall solver when the total time granted is elapsed. Each solver is
allowed to run for 500 seconds.

The results are presented in Fig. 5.4, in from of box-and-whiskers plots, showing the distribution
of the ranks obtained by each configuration. Moreover, boxes are filled with a gray level which is
proportional to the stage of the F -Race procedure in which the corresponding algorithm has been
discarded (the darker, the sooner). This way, the algorithms that were found as equally good at
the end of the procedure are denoted by white boxes.

The final outcomes of the selection procedure report that only two solvers survive the F -Race,
that are TS(Ins) .TS(IntraSw) .TS(InterSw) and TS(Ins) .TS(InterSw) .TS(IntraSw), revealing that
all three moves are necessary for obtaining high quality solutions.

Interestingly enough, the solver that uses the union of the three moves does not achieve good
results and it has been discarded early by the F -Race procedure. In our opinion, the explanation
of this fact is twofold: On the one hand, the use of IntraSw and InterSw moves in the initial stage
of the search leads to bad quality local minima, because it tends to optimize single routes before
spreading the orders correctly in the various routes. On the other hand, in the later stage of
the search, the presence of a large set of IntraSw and InterSw moves having small improvements
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Inst. S1 S2 S3 S4 S4 H2 Total
Date Time Order Vehicle Vehicle Late Cost

Window Window Outside Fixed Cost Travel Cost Return

case1-A 46.95 101.20 375.25 2700 3205.250 0 6428.650
case1-B 28.38 172.63 0.00 3200 3633.178 1 7034.188
case1-C 291.72 89.33 187.50 3200 3431.114 0 7199.664
case1-D 161.64 110.02 147.50 2600 3703.168 0 6722.328
case1-E 8.43 74.18 40.00 2600 3264.802 0 5987.412
case1-F 24.45 145.21 1039.50 2600 3099.078 0 6908.238
case1-G 14.76 99.93 1149.75 1500 2810.880 0 5575.320
case1-H 714.00 155.81 477.25 2800 3370.175 0 7517.235
case1-I 799.92 74.07 673.25 2500 3874.780 0 7922.020

case2-A 637.68 150.74 11568.75 3200 5197.776 0 20754.946
case2-B 791.82 371.61 0.00 4500 7801.087 8 13464.517
case2-C 316.47 120.85 12631.00 3200 5022.794 0 21291.114
case2-D 583.17 127.72 11501.25 3100 5368.957 0 20681.097
case2-E 462.84 83.88 11847.00 2700 5185.437 0 20279.157
case2-F 437.94 271.39 12263.25 3200 5042.965 0 21215.545
case2-G 237.87 151.19 12860.00 2100 3580.944 0 18930.004
case2-H 1792.44 150.15 11538.50 3000 5390.057 0 21871.147
case2-I 1668.75 213.28 11671.50 3000 5272.349 0 21825.879

Table 5.4: Values (in e) of the different cost components for the best solutions.

prevents the search from making the “disruptive” Ins moves necessary to find deeper local minima.
Conversely, the token-ring solvers, by focusing on each single move type, allow the search to perform
a more effective diversification at different stages of the search.

Table 5.4 shows the costs of the different components of the objective function for the best so-
lution for each instance. The table reports also the number of (hard) violations: the corresponding
value represents the number of orders that are in some routes that return after the shutdown time
(H2).

Unsurprisingly, the main cost comes up from the traveling of the vehicles and their fixed cost
of use. Among the other components, the most relevant is the one related to unscheduled orders
(S3). However, the other two that are related to delivery in the wrong day (S1) and delivery after
the end of the time window (S2) are not negligible.

In addition, looking at the different results for instances A–I of the same case, it is evident that
the tightness of a specific “resource” (time window, day, . . . ) makes the cost of the corresponding
component higher in the best solution.

Indeed, we can see that if all orders are mandatory (B), the solver is not able to find a feasible
solution, and the cost component related to vehicles (S4) increases, because the solver leads towards
solutions that use all available resources. The reduction of the planning horizon (C) causes a larger
number of deliveries on a wrong day (S1) and higher value of vehicle costs; on the other hand, its
extension brings to solutions with less orders unscheduled.

Results highlight that the constraint related to time windows is really tight and its relaxation
(E) or restriction (F) has a strong effect on all other cost components. In addition, as we could
expect, the lowest value of the total cost comes out for the G, confirming the idea that using the
internal fleet is cheaper (if available). Finally, results of the last two cases show that if we schedule
all orders only on the first day (H) or on the last day (I) of the planning horizon, that impacts on
every cost component, and we obtain solutions with the highest total cost.

We must remark that the effect of perturbations is more evident for case1 than for case2; this
is probably due to a higher filling ratio (see Section 5.4.1) for the latter, that leaves less freedom
during the search process.



5.5. Summary 51

Inst. CPLEX Chu Bolduc et al. Bolduc et al. Ceschia et al.
(2005) (2007) (2008) 2011

z sec z sec z sec z sec

Chu-H-01 387.5* 387.5 0.02 387.5 0.00 387.5 0.35 387.5 0.11
Chu-H-02 586.0* 631.0 0.03 586.0 0.02 586.0 1.90 586.0 0.70
Chu-H-03 823.5* 900.0 0.08 826.5 0.03 826.5 3.50 823.5 1.96
Chu-H-04 1389.0* 1681.5 0.06 1389.0 0.08 1389.0 5.85 1389.0 7.79
Chu-H-05 1441.5 1917.0 0.28 1444.5 0.09 1441.5 10.40 1441.5 16.93

B-H-01 423.5* 503.0 0.02 423.5 0.02 423.5 1.85 423.5 0.11
B-H-02 476.5* 476.5 0.05 476.5 0.02 476.5 3.65 476.5 0.76
B-H-03 777.0* 884.0 0.11 804.0 0.03 778.5 4.75 777.0 2.13
B-H-04 1521.0* 1737.0 0.06 1564.5 0.09 1521.0 15.85 1521.0 7.81
B-H-05 1609.5 1864.5 0.16 1609.5 0.13 1609.5 12.90 1578.0 16.30

Table 5.5: Results on benchmarks Chu-H and B-H of the Vehicle Routing Problem with Private
fleet and Common carrier.

5.4.6 Comparison with benchmarks of the VRPPC

In order to evaluate the performance of our solver also on public benchmarks, we adapt it to solve
the vehicle routing problem with private fleet and common carrier.

We test our solver on two instance families, namely Chu-H [50] and B-H [23]. For these instances
the number of customers ranges from 5 to 29, the internal fleet is heterogeneous and the external
carrier cost was set equal to 6 times the distance between the depot and the corresponding customer.
We run one of the two best solvers, namely TS(Ins) .TS(IntraSw) .TS(InterSw), for 400 trials, and
for each instance we set the tabu list length equal to a fifth of the number of orders.

Table 5.5 compares the best solution values obtained by Chu [50], Bolduc et al. [23], and Bolduc
et al. [24] with ours published in [40]. The first column reports the solution values computed by
Bolduc et al. after a maximum of 150 hours of computation time of CPLEX (v. 9.0). The values
marked with * are proven optimal solutions.

The outcome is that our solver is able to obtain the optimum or the best solution value for all
instances, and besides, for instance B-H-05 it has found a new best known result.

5.5 Summary

We have modeled a highly complex version of the classical vehicle routing problem, arising from a
real world situation and we have proposed an approach based on TS for its solution. To this aim,
we have investigated the use of different neighborhoods. The experimental analysis shows that the
best results are obtained by a combination of all of them. Finally, we demonstrate that on public
benchmark instances of vehicle routing problem with private fleet and common carrier our results
are very competitive.
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6
The multiple container loading

problem with bearing weights and
multi-drop

6.1 Introduction

In this chapter, we consider a real-world container loading problem, arising from an industrial
application, that includes several practical features, such as multiple containers, box rotation, and
bearable weight. In addition, the problem takes into account the possibility that the boxes must
be delivered in different places (multi-drop), thus setting additional constraints on the order of the
boxes in the container.

According to the classification of Section 4.2, our problem belongs to the family of container
loading problems. However, we first try to classify our problem in the existing literature, reaching
the conclusion that it represents a combination of features that has not been explored already.
Therefore, no previous approaches are available and, consequently, no benchmark instances.

We solve the problem using a local search approach which works of an indirect search space
composed of sequences of boxes, rather than on their physical position. The actual placing of the
boxes is performed by a heuristic procedure that loads containers according to the constraints,
exploiting as much as possible the presence of sub-sequences of boxes of the same type.

We test our solver on a set of real-world instances provided by our industrial partner beanTech
s.r.l. (http://www.beantech.it). The outcome is that our solution techniques have been able to
find very good solutions on a large variety of practical cases, which improve significantly upon the
previous heuristic solution developed by beanTech.

All instances and solutions are available from our dedicated web site http://satt.diegm.

uniud.it/3DPacking. The web site contains also an application for validating and visualizing
new solutions, so as to allow everybody to perform a fair comparison with ours.

In order to have a more measurable assessment of the quality of our solver, we test it also
on available benchmarks from the literature. The benchmarks refer to much simpler problems
with respect to the one we address, and therefore we solve them by adapting our software, mainly
discarding some of the features.

The paper describing this work has been recently published in the online first version, therefore
all experimental results reported here refer to [39].

6.2 Problem description

We introduce the problem in two stages: we first describe (in Section 6.2.1) what we call the basic
problem, which does not consider the multi-drop feature. In fact, the latter is the most complex
feature to be dealt with and it modifies the model significantly; consequently, it is presented and
modeled separately (in Section 6.2.2).
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6.2.1 Basic problem

The main entities involved in the problem are container types and box types:

Container types: each container type is characterized by: dimensions, number of containers,
weight limit, and fixed cost of use.

Box types: each box type is characterized by: dimensions, allowed rotations, number of boxes,
weight, cost, and bearable weight for each face.

The specific features that are involved in the different formulations have been classified by
Bischoff and Ratcliff [20]. According to their terminology, our problem comprises the following
ones:

Box rotations (BR): the boxes may be rotated in orthogonal directions; possible rotations are
stated for each box type.

Load bearing strength (LBS): the maximum weight per unit area which a box can uphold
depends on its type and its vertical orientation.

Full support (FS): a box should not be placed on top of another with a smaller base area; more
specifically, both dimensions of the base of the box above must be smaller or equal of the
ones of the box below.

Container weight limit (CWL): the sum of the load must not exceed the weight limit of the
container.

Using the classification system proposed by Wäscher et al. [174], our problem could be described
as a three-dimensional regular multiple heterogeneous knapsack problem/ three-dimensional regular
multiple bin packing problem, that means that:

• we deal with three-dimensional items,

• at times we use all the containers available to load the maximum volume of boxes so that some
boxes are left outside (output maximization), at others we use only a subset of containers to
load all the boxes (input minimization),

• we have many boxes of many different dimensions (strongly heterogeneous assortment of small
items), and

• multiple containers of different dimensions (weakly heterogeneous assortment of several large
objects),

• boxes have a rectangular shape (regular shape of small items)

The objective function f is the combination of the following components:

C1. Boxes not loaded: cost of boxes that do not fit in the containers.

C2. Container cost: fixed cost for using each container.

C3. Empty linear space: linear space, in the depth direction, that is empty (available for load-
ing unforeseen items).

More specifically, we define f as follows:

f = w1fC1 + w2fC2 + w3fC3

where fCi is the actual cost of the component Ci, and wi is the corresponding weight.
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In order to simplify the complex process of setting the weights wi and, at the same time, to
have an immediate grasp of the costs, we decide to represent the costs directly in a real currency,
Euro (e) in our case. To the aim of evaluating the monetary costs of each component, we had
to interview our industrial partner and the domain experts. Some costs are relatively easy to be
established, such as the cost of renting a truck; on the contrary, some others are rather intangible
and we could estimate only the approximate cost. For example, the missed delivery of a box leads
to the dissatisfaction of the client thus involving the risk of loosing the client, whose cost is difficult
to be interpreted in monetary terms.

It is worth noticing, that the objective function is almost hierarchical. In fact, intuitively
it is more important to deliver the boxes (C1) than to save a container (C2). In turn, saving a
container is more important than having a large empty linear space in all containers (C3). However,
the function cannot be treated as totally hierarchical because there are situations in which costs
related to C2 are more prominent than those of C1. For example, we prefer to leave a few boxes
undelivered rather than moving one container only for them.

To design an objective function that is fine-grained enough, but can be represented in the integer
domain (so as to use the faster integer arithmetic), we set the unit of cost to the thousandth of e
as already done in Chapter 5 for the VRPTWCDC.

6.2.2 Complete problem

In the complete problem, boxes loaded in the container may be delivered to different destinations.
The input data are extended by including for the box types also the identifier of the destination
d ∈ D, where D is the set of destinations. In the case of boxes of the same dimensions, allowed
rotations, number of boxes, weight, cost, and bearable weighs, but different destinations d1 and
d2, we create separate box types having all data (but the destination and the quantity) identical.

There are two implications of this extension. First, we now aim also to load the containers in
such a way that they make the minimum number of stops; this is obtained by preferring solutions
that group boxes to the same destination in the same container(s). Second, containers with boxes
with multiple destinations must be loaded in such a way that boxes belonging to the earlier
destinations can be unloaded without having to move the other ones.

Regarding the first issue, it is clear that, besides the other constraints and objectives, there
is also an underlying vehicle routing problem (VRP) to be solved. However, for the practical
situations of our industrial partner, distances are very limited and thus the traveling costs are not
taken into account. The additional objective that we include is then to minimize the total number
of stops of the containers. Ideally, each container should go to one single destination, whereas
destinations can be served by many containers.

We therefore introduce a new cost component:

C4. Container stops: sum of the number of distinct destinations of the boxes for each container.

Regarding the second issue, we model it by imposing the constraint that all boxes of a destina-
tion should be able to be unloaded without moving any of the ones of the subsequent destination.

Multi-drop (MD): if a container carries consignments of different destinations, the boxes should
be loaded in such a way that it is possible to set an order of delivery such that no box to a
later destination needs to be moved to unload the boxes of the earlier ones.

An example of a container loaded under the multi-drop constraint is shown in Fig. 6.1, where
the three destinations are highlighted by the different gray levels.

As will be explained in Section 6.3, this is obtained by allowing only loading sequences that
have boxes strictly ordered by destination. Since the loading strategy places the sequences in layers
starting from the bottom of the container towards the door, this ensures that constraint MD is
always satisfied.
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Figure 6.1: Multi-drop container loading.

6.3 Solution for the single destination problem

We first introduce the solution technique for the problem with a single destination, as described
in Section 6.2.1. The multi-drop case is dealt with in Section 6.4.

Our solution technique is not a “pure” local search approach in the sense that local search
works on the space of sequences of boxes to be loaded. The actual load is obtained by means of a
specialized procedure, called loader, which is invoked at each iteration for all containers involved
in the move. The loader inserts the boxes in the container using a deterministic heuristic strategy
which produces a load that is feasible according to all our constraints.

6.3.1 Preprocessing

In some instances, the number of available containers is largely in excess with respect to the boxes
to be loaded. In these cases, the inclusion of all containers in the search space would only result
in a waste of time for the solver.

The task of the preprocessor is to reduce the set of available containers to a set that any
reasonable solution could use. The preprocessor works only on the basis of the volumes of the
containers and the total volume of the boxes, without taking into account the actual boxes.

It makes use of a parameter, called α, which is an estimation of the maximum ratio between the
volume of a container and the volume of the boxes it actually carries. The value of α is based on
runs on known instances, however it can be adjusted in subsequent solutions of a single instance.

The preprocessor uses a simple greedy algorithm, which works as follows.

1. Let Vt be the total volume of the boxes. Set the volume V to be loaded to V = αVt.

2. Select the container with the lowest specific cost defined as the ratio of the fixed cost of use
to the volume of the container; set V = V − Vc where Vc is the volume of the container.

3. If V < 0 exit, otherwise go back to Step 2.

Containers that are not selected are removed from the input data of the solver.

6.3.2 Search space

We use a local search procedure in which a state in the search space is composed by a set of
sequences, one for each container. Each element of a sequence is a block, which is a triple composed
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Figure 6.2: Loader with rigid and flexible layers.

Figure 6.3: Stack construction with aside boxes.

by box type, rotation and number of boxes. A block is also assigned an integer-valued identifier
(which is unique in the state).

In any state of the search space all input boxes must be included in exactly one block. However,
it is possible that the loader leaves some boxes in blocks at the end of a sequence outside the
container. This can happen either because there is no physical room for the box or because the
weight limit of the container is exceeded. We call the set of unloaded boxes the tail of the container,
and the sum of the costs of all tails constitute the component C1 of the objective function.

6.3.3 Loader

The loader is based on the wall building approach by George and Robinson [92] mentioned in
Section 4.3. It fills the container in a number of layers across the depth of it. Every layer is
divided in vertical stacks and each stack is then packed by consecutively inserting boxes, keeping
fixed the loading order of the blocks.

The depth of a layer is set to be the depth of the first box that is inserted in that layer. For
all the following boxes, if they do not fit in that depth they are moved to a new layer.

Similarly, if a box does not fit on top of the previous one in a stack, it is moved to a new stack
or (if there is not enough room) to a new layer. A box might not fit in a stack either because its
height exceeds the container ceiling, or because the base area of the box below is insufficient in at
least one dimension, or because the weight is not bearable by one of the boxes below in the stack.

As already proposed by George and Robinson [92] and Moura and Oliveira [132], the layers are
flexible in the sense that boxes are allowed to slide down in the previous layer if there is enough
room. Fig. 6.2 shows the loading of a container viewed from the top, and it helps to clarify this
point. The sliding down of the boxes of layer 2 has created the space for the two boxes marked
with the cross, which are inserted in layer 2 as well.

Only for boxes belonging to the same block (same dimensions and rotation), we try to put a
box aside the previous one if the composite base area is inside the one of the box below and the
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weight is bearable. See in Fig. 6.3 an example in which two boxes are side by side above a single
one, and four boxes are in turn above the merge of these two.

We do not put aside boxes of different types because of stability problems; that is, the boxes
above might not have an horizontal base to lay on. Note that boxes of different types could in
principle be placed aside if they are on the highest layout (just below the ceiling of the container).
However, experiments with this option showed that this does not lead to better solutions.

Notice that the loader could be improved by selecting the next box to be placed in the container
using some sort of best fit strategy, instead of using the strict order induced by the sequence. The
loader however is not the “optimizer”, but it is just a module of the overall procedure. Indeed,
our idea is precisely that the loader should be simple and fast, and the discovery of improvements
is totally demanded to the main local search procedure that performs the changes in the sequence
given to the loader.

6.3.4 Cost function

All constraints are enforced by construction, thus the cost function that guides the search is the
same as the objective function of the problem; it is a weighted combination of C1, C2, and C3
(remember that C4 is related only to the multi-drop case).

However, an auxiliary component C5 is added to it in order to lead the search toward states
that use less containers. Specifically, the component C5 sums up for each container the square of
its volume minus the square of the volume of the boxes loaded. We use a quadratic term in order
to privilege solutions with asymmetric loading of containers, so that it would eventually lead to
freeing completely the least loaded ones, rather than keeping the load balanced among them.

It is worth noticing that components C2 and C3 are not sufficient to obtain this behavior. In fact,
they come into play only on the removal of the last block from a container and the last block of the
layer, respectively. In the other states, they do not “push” in the direction to have a container with
less blocks. Notice also that some containers are already removed by the preprocessor; however,
the preprocessor works on a rough overestimation of the loading level (α), whereas here we work
on the actual situation.

Indeed, experiments without C5 show a substantial increase of the number of containers used
in the final solutions, and a corresponding increase of the total cost.

6.3.5 Neighborhood relation

The neighborhood consists in moving a block, or a portion of it, in a different container and/or
different position, possibly with a different orientation. Fig. 6.4 shows an example of a move in
which part of a block is moved from container 1 to container 2.

A move is thus represented by five attributes: block identifier, new container, new position,
new rotation, and quantity of boxes moved. The quantity varies from 1 to the size of the block.

When only a portion of a block is moved (i.e., the quantity is less than the size of the block),
the block is split and thus a new block with a new identifier is created. Conversely, when a block is
moved and the two blocks before and after it are compatible (i.e., same box type and rotation), they
are merged summing up their quantities and keeping the identifier of the block before. Similarly if
a block is moved to a position adjacent to a compatible one, they are merged, keeping the identifier
of the one already there.

The neighborhood is restricted in such a way to remove moves that are clearly useless for the
local search. In detail, we exclude the following types of moves:

Tail-to-tail moves: a move that transfers a block from the tail of a container to the tail of another
one. This kind of moves do not change the cost of the objective function.

Duplicated moves: a move that leads to the same state of another move. This are the moves
that move a full block after the one that immediately follows it: the same movement is
already obtained by moving the second block one position backward (Figure 6.5).
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Initial state

Final state

Figure 6.4: An example of move.

Null moves: a move that leads to the same state as the current one. These are the moves that
either the new container, the new position, and the new rotation are all the same of the
current ones of the block or they move part of a block just after the block itself (which then
is rebuild by merging).

When a move is evaluated, the loader is called only on the two containers (or one if the move is
internal to one container) involved in the move. In addition, only the part of the load starting from
the stack that includes the box being moved is recomputed. The preceding part is not affected by
the move and thus it is left unchanged.

6.3.6 Initial solution

The initial solution is obtained by creating one single block for each box type. The container, the
rotation, and the position in the container of each block is selected at random. The rotation is
selected only among the feasible ones for that box type.

The rationale behind this choice of having one block per type is that intuitively we should keep
the blocks as big as possible, because it is easier to pack boxes of the same type when they are
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A B C D

A C DB

A B C D

A C DB

Figure 6.5: An example of duplicated move

Figure 6.6: Example of initial solution.

close to each other. The local search procedure would then split the blocks, when this leads to
better solutions. Figure 6.6 shows an example of initial solution.

6.3.7 Metaheuristics

We developed two main solvers: one based on a TS algorithm and the other on a SA algorithm.
The details of our implementation of the algorithms are described in Section 2.2.2 and 2.2.3. Both
solvers are equipped with the neighborhood described in Sections 6.3.5 only.

6.4 Solution technique for the multi-drop problem

For the multi-drop case, the idea is to solve a multi-drop instance by solving a sequence of sub-
instances obtained by adding one destination at the time.

Letting D = {d1, . . . , dn} be the set of destinations, we sequentially solve n sub-instances, such
that sub-instance i (with i = 1, . . . , n) is obtained considering only the box types belonging to the
destinations dj , such that j ≤ i.

Each sub-instance i is solved by the technique presented in Section 6.3, with some modifications
to take care of the MD constraint and the cost component C4. The modifications are the following:

Reserved containers: If in the final solution of sub-instance i a given container c is fully loaded,
then c is reserved to the destinations that are in c in that solution. This means that during
the solution of all sub-instances j, with j > i, only box types of those destinations can be
inserted in c.

Incremental initial solution: The initial solution of sub-instance i is obtained by starting from
the best solution of instance i − 1 and adding to it the blocks of destination di at random
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Family Conditions Size Cost
Name #I #CT #C #BT #B components
CS1 71

fc1 = 0
fc2 = γ 1–3 1–100 1–124 4–2760 C3

CS2 12 fc2 < γ 1–2 100–200 10–90 23–212 C2 and C3
CS3 31

fc1 > 0
fc2 = γ 1-3 1–100 5–97 27–1612 C1

CS4 3 fc2 < γ 1-2 2–5 2–47 82-1439 C1 and C2

Table 6.1: Families of instances.

only at the end of the sequences of non-reserved containers. For sub-instance 1, the initial
solution is obtained in the same way of Section 6.3.6.

Neighborhood restrictions: The local search procedure takes into account the multi-drop con-
straint by prohibiting to move a box of destination di in container c in position p if one of
the following conditions holds:

• the container c is reserved and di does not belong to its reservation list,

• a box of destination dj (with j < i) is in container c in a position which follows p.

This technique proved experimentally to be more performing than solving the overall problem
with a single local search step.

6.5 Experimental analysis

In this section, we first describe the instances used in the experiments. Secondly, we show the
results of our methods on these instances. Lastly, we show the comparison between our methods
and the ones in the literature on simpler problems.

6.5.1 Instances

We experiment on a set of 117 real-world instances coming from the clients of our industrial partner
beanTech. All instances are available at the URL http://satt.diegm.uniud.it/3DPacking.

The instances exhibit different container types and a high variability in terms of number of
box types and quantity of each type. This large variability can be expressed in terms of the ratio
between the total volume of the boxes and the total volume of the containers, that we call θ.
Normally if θ � 1, we expect that all boxes fit into the containers, and consequently, fC1 = 0 and
the other components become significant. Conversely, when θ ≥ 1, the cost function is dominated
by fC1 and the other components are almost negligible. For the values θ < 1 (but θ 6� 1) it
depends on the specific instance whether fC1 is zero or not.

A further distinction can be made between instances in which all containers are always used,
for which fC2 is fixed to the total cost of the containers (called γ) and the ones for which fC2

varies from run to run, and is thus meaningful.
We thus classify our instances in four families, called CS1–CS4, based on the two conditions

that the best known solution has fC1 = 0 or not, and fC2 = γ or not, respectively. Table 6.1 shows
for each family the number of instances belonging to it, the ranges in terms of containers (#C),
container types (#CT), box types (#BT), and total boxes (#B), and the cost components that
are most meaningful for that family.

6.5.2 Parameter setting

We now discuss the settings of the parameters of the metaheuristics.
Our TS implementation employs a dynamic short-term tabu list so that a move is kept in the

tabu list for a random number of iterations in the range [ttmin, ttmax] and the search stops after a
fixed number of idle iterations (iimax). Therefore the parameters to set are ttmin, ttmax and iimax.
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C3
Technique Avg Dev t-test Running times (secs)
SA 338.256 9.177 – 39.41
TS 351.999 10.235 0.044 83.05

Table 6.2: Results of the C3 component on family CS1.

C2 C3
Technique Avg Dev Avg Dev t-test Running times (secs)
SA 0.088 0.0082 158.802 4.421 – 38.95
TS 0.096 0.016 161.263 4.557 0.16 86.42

Table 6.3: Results of the C2 and C3 components on family CS2.

The SA algorithm requires a starting temperature T0, a final temperature Tmin and a number
of neighbors sampled at each temperature level Nσ. The value of T is modified using a geometric
schedule, i.e., T ′ = β · T , in which the parameter β < 1 is the cooling rate.

A tuning phase has been performed to obtain the configuration of values that would be the
best for the entire data set CS1–CS4. The settings that obtained the best results are the following:

for SA: T0 = 50, Tmin = 0.001, σN = 1000, and β = 0.998

for TS: ttmin = bδc/5, ttmax = ttmin + 2, and iimax = 500, where δ is the number of blocks in
the current solution; as for the inverse relation, a move is prohibited if it involves the same
block of a move in the tabu list.

Notice that δ varies from state to state, so that the tabu list length is adaptive. The results of
the following section are obtained with the above configurations.

6.5.3 Experimental results

We present in Tables 6.2–6.5 the results separately for each family. As mentioned in Section 6.2.1,
we chose to express the cost of the components of the objective function in e.

To compare the results we use the Student’s t-test, provided that the underlying distributions
can be assumed to be normal and independent [170]. If the calculated p-value is below the threshold
chosen for statistical significance (typically p < 0.05), then the null hypothesis, which states that
the two groups do not differ, is rejected in favor of an alternative hypothesis, which states that an
algorithm is superior to another on the proposed instances.

The column t-test shows the p-value of the comparison between best configuration (marked
with a dash) and the other one.

Looking at Tables 6.2–6.4, it is clear that for these instances SA is the technique that works
better than TS, although the confidence is not always high enough to reach a definitive conclusion.
On the other hand, TS preforms well only on instances of family CS4 which is made of only 4
instances.

The reason for these bad performances of TS is in our opinion mainly due to the computational
cost of the full exploration of the neighborhood, which evidently turned out to be less effective
than the random selection of SA.

C1
Technique Avg Dev t-test Running times (secs)
SA 2572.517 167.133 – 52.78
TS 2662.959 164.012 0.060 100.31

Table 6.4: Results of the C1 component on family CS3.
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C1 C2
Technique Avg Dev Avg Dev t-test Running times (secs)
SA 715.346 119.590 0.183 0 0.277 97.39
TS 695.717 156.689 0.183 0 – 153.37

Table 6.5: Results of the C1 and C2 components on family CS4.

Family Size Features Objectives
Name #I #C #BT #B BR LBS FS MD CWL C1 C2 C3 C4
IMM 47 2–55 2–5 47-150

√
—

√
— — —

√
— —

BR 1500 1 3–100 69–476
√

—
√

— —
√

— — —

Table 6.6: Features of the families IMM and BR1–BR15.

The low value of the component C2 in Table 6.3 that computes the fixed cost of using the
containers, can be explained by the fact that, for the instances of family CS2 there are always
available in-house containers (owned by the company), whose cost was set to the fictitious value
of 1 thousandth of e by the operator of the company.

6.5.4 Comparison with related work

Given that the problem is new, it is not possible to compare with other researchers on this problem.
However, in order to have an assessment of the quality of the solver, we use it to solve simpler
problems for which previous results are available.

To this aim we use two public benchmarks: the family IMM proposed by Ivancic et al. [108],
and BR defined by Bischoff and Ratcliff [20]. Our results reported here have been submitted to
Journal of Heuristics in 2010 and recently published in [39].

Table 6.6 summarizes for each family the number of instances (#I), the ranges of the instances
in terms of containers (#C), box types (#BT), and total boxes (#B). The following columns
represent the problem features, and the symbol

√
means that it is present in the family. Finally,

we have the cost components, and here
√

means that it has been considered by the papers that
solve the instances of that family. It is evident that the families IMM and BR cover only a small
subset of the features of this work set and exhibit a much smaller variability of size.

We start discussing the results of IMM instances, which consider one container type (i.e., all
containers are identical), and as objective the number of containers used (i.e., C2 with all costs
equal to 1).

We report in Table 6.7 the number of containers used in the best solution found by our SA
solver, along with the results in the literature. A brief description of the approaches with which
we compare is in Section 4.3. The average running time for a trial of a single instance for SA is
289.37 secs. The best known result is shown in bold; in addition, when it is proven optimal Eley
[by 76] it is marked with *. The values marked with the symbol [ have been inferred by us, as
in [75] it is reported a value that is lower than the lower bound subsequently proven by Eley [76]
himself.

Keeping in mind that we can obtain only an approximate comparison because we do not have
information about the running times and the distributions of all the other solvers, looking at the
bottom line of Table 6.7, it is clear that

Our solver has been able to obtained the best known result for most of the instances. Indeed,
our results improve significantly on the original works by Ivancic et al. [108] and Bischoff and
Ratcliff [20], and upon the recent works by Bortfeldt [26] and Eley [76]. However, our solver has
been recently outperformed by the solution technique of Zhu et al. [178].

All our best solutions to the IMM instances, along with the input files in our format, are
available at our web site http://satt.diegm.uniud.it/3DPacking for verification.

The BR dataset is divided into 15 families of 100 instances each, depending on the number of
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Test Ivancic et al. Bischoff and Ratcliff Bortfeldt Eley Eley Ceschia and Schaerf Zhu et al.
case (1989) (1995) (2000) (2002) (2003) (2011) (2011)
IMM1 26 27 25* 26 25* 25* 25*
IMM2 11 11 10 10 10 10 10
IMM3 20 21 20 22 20 19 19
IMM4 27 29 28 30 26* 26* 26*
IMM5 65 61 51 51 51 51 51
IMM6 10* 10* 10* 10* 10* 10* 10*
IMM7 16* 16* 16* 16* 16* 16* 16*
IMM8 5 4* 4* 4* 4* 4* 4*
IMM9 19* 19* 19* 19* 19* 19* 19*
IMM10 55* 55* 55* 55* 55* 55* 55*
IMM11 18 19 18 18 17 17 17
IMM12 55 55 53* 53* 53* 53* 53*
IMM13 27 25 25 25 25 25 25
IMM14 28 27* 28 27* 27* 27* 27*
IMM15 11* 11* 11* 12 11* 11* 11*
IMM16 34 28 26* 26* 26* 26* 26*
IMM17 8 8 7* 7* 7* 7* 7*
IMM18 3 3 2* 2*[ 2* 2* 2*
IMM19 3* 3* 3* 3*[ 3* 3* 3*
IMM20 5* 5* 5* 5*[ 5* 5* 5*
IMM21 24 24 21 26 20 20 20
IMM22 10 11 9 9 8* 8* 8*
IMM23 21 22 20 21 20 20 20
IMM24 6 6 6 6 6 6 5
IMM25 6 5 5 5 5 5 5
IMM26 3* 3* 3* 3* 3* 3* 3*
IMM27 5 5 5 5 5 5 4
IMM28 10 11 10 10 10 10 10
IMM29 18 17 17 18 17 17 17
IMM30 24 24 22 23 22 22 22
IMM31 13 13 13 14 13 13 12
IMM32 5 4* 4* 4* 4* 4* 4*
IMM33 5 5 5 5 5 4 4
IMM34 9 9 8 9 8 8 8
IMM35 3 3 2* 2* 2* 2* 2*
IMM36 18 19 14* 14* 14* 14* 14*
IMM37 26 27 23* 23* 23* 23* 23*
IMM38 50 56 45 45 45 45 45
IMM39 16 16 15 15 15 15 15
IMM40 9 10 9 9 8 8 8
IMM41 16 16 15 15 15 15 15
IMM42 4* 5 4* 4* 4* 4* 4*
IMM43 3* 3* 3* 3* 3* 3* 3*
IMM44 4 4 3 4 4 3 3
IMM45 3 3 3 3 3 3 3
IMM46 2* 2* 2* 2* 2* 2* 2*
IMM47 4 3* 3* 3* 3* 3* 3*
All cases 763 763 705 721 699 696 693

Table 6.7: Results for family IMM.
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box types (shown in parentheses in Table 6.8). All instances have one single container and one
single objective, namely C1. No cost is associated to the boxes, therefore the objective function is
based on the box volume (volume utilization).

The results are shown in Table 6.8. Again, the comparison is approximate because we do not
have access to all data about the distributions and the running times of all the others. In any case,
the outcome is that our solver improves on the original results of Ratcliff and Bischoff [143] and
achieves results quite close to the heuristic of Eley [75] and the GRASP approach of Moura and
Oliveira [132]. Unfortunately though, it is clearly outperformed by Bortfeldt and Gehring [28] and
Bischoff [18], and the recent results by Fanslau and Bortfeldt [77] and Zhu et al. [178].

However, all the techniques reported in Table 6.8 are specifically designed and tuned for the
case that involves only one container, whereas our technique solves the more general problem that
deals with bearing weights, different container types, multi-drop and other features, as previously
described in Section 6.2.2. In addition, our solution is designed to work equally well in the case of
weakly heterogeneous cargoes, with large quantities of identical boxes, and strongly heterogeneous
ones composed of many different box types.

For instance, Eley takes advantage of the fact that the loading is weakly heterogeneous by
considering a limited number of potential arrangement of pre-designed homogeneous blocks of
boxes. Fanslau and Bortfeldt extend the classical block build approach in order to face also
with a situation of strongly heterogeneous cargo. At each stage of the solution process their
technique generates the packing patterns that come out from the arrangement of blocks made up
of different box type and orientation. Nevertheless, this procedure could result impracticable in
case of simultaneous loading of multiple containers, thus the number of possible arrangements for
each residual space would explode.

It is clear that these approaches would not be applicable in our case, because our instances
have a much larger variability in terms of number and types of boxes and containers, as clearly
shown in Table 6.1.

Other authors [e.g., 126] have solved these instances finding also higher percentages of volume
occupation. For example, Parreño et al. [138] reach an average filling of 94.53 for cases BR1-7.
However, they consider a different notion of stability, in which the base of a box does not need to
be fully supported by the box below, but its base can be also partly outside it. Same comment can
be drawn also for the cutting variant of the algorithm proposed in [77], which was able to obtain
the current best results with an average volume utilization of 93.8 through all the family BR. For
this reason, they are not included in Table 6.8.

6.6 Summary

We have developed a set of techniques for solving a very complex packing problem, including
many features and cost components. Our solvers have been able to deal with a broad assortment
of different practical situations, ranging from cases in which there is an unlimited availability of
containers to cases in which it is not possible to load all the boxes.

With respect to the product currently in list for beanTech, the solver captures a much richer
model as it adds the multi-drop feature, the bearing strength, and the costs of containers and
boxes. In addition, it improves or equals its results on all instances. The average improvement is
about 13% on the tested instances. For the sake of measurability, all the CS instances are available
on the web, along with our solutions and a validator for new solutions.

The experiments have shown that on our complete problem SA outperforms TS in most cases.
They also demonstrate that on public benchmarks our results are very competitive for the multi-
container cases, whereas they still worse than some in the literature for the single container ones.
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Test case
Bischoff
and
Ratcliff

Gehring
and
Bortfeldt

Eley
Moura
and
Oliveira

Bischoff
Fanslau
and
Bortfeldt

Ceschia
and
Schaerf

Zhu
et al.

(# box types) (1995) (2002) (2002) (2005) (2006) (2010) (2011) (2011)

BR1(3) 83.79 88.10 88.05 89.07 89.39 94.51 90.31 93.57
BR2(5) 84.44 89.56 88.44 90.43 90.26 94.73 90.75 93.87
BR3(8) 83.94 90.77 89.23 90.86 91.08 94.74 90.52 94.14
BR4(10) 83.71 91.03 89.24 90.42 90.90 94.41 89.84 93.86
BR5(12) 83.80 91.23 88.99 89.57 91.05 94.13 89.16 93.51
BR6(15) 82.44 91.28 88.91 89.71 90.70 93.85 88.73 93.39
BR7(20) 82.01 91.04 88.36 88.05 90.44 93.2 87.68 92.68

Cases BR1–7 83.45 90.43 88.75 89.73 90.55 94.22 89.57 93.57

BR8(30) 90.26 86.13 92.26 86.36
BR9(40) 89.50 85.08 91.48 85.51
BR10(50) 88.73 84.21 90.86 84.49
BR11(60) 87.87 83.98 90.11 83.58
BR12(70) 87.18 83.64 89.51 83.21
BR13(80) 86.70 83.54 88.98 82.41
BR14(90) 85.81 83.25 88.26 81.91
BR15(100) 85.48 83.21 87.57 80.77

Cases BR8–15 87.69 84.13 89.88 83.53

All cases 88.97 86.74 91.91 86.35

Table 6.8: Results for family BR.
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A routing and packing problem

7.1 Introduction

In Section 3.2.7 we have summarily introduced the three-dimensional loading capacitated vehi-
cle routing problem (3L-CVRP), which can be considered as a combination of two optimization
problems: the capacitated vehicle routing problem and the three-dimensional bin packing problem.

The work described in this chapter aims of solving an integrated real-world problem in logistics,
which can be seen as a complex variant of the 3L-CVRP. Our project includes many real world
features, some of which have been already described in Chapter 5 for the VRPTWCDC and
Chapter 6 for the MCLPBWMD in isolation, but have never been considered together. Indeed,
as is shown in Figure 1.1, the problem addressed in this chapter can be considered the natural
extension and integration of the two previous ones.

As our problem is a combination of two strongly NP-hard problems, it appears to be appropriate
to tackle it by using metaheuristics techniques, in particular to solve large instances in reasonable
computational time. We thus propose a LS approach based on a combination of simulated annealing
and large-neighborhood search that considers the overall problem in one single stage, by including
neighborhood relations that modify both the routes and the container loadings.

The algorithm was tested both on a set of real-world instances and on available benchmarks
from the literature. All instances and best results are available at http://www.diegm.uniud.it/
ceschia/index.php?page=vrclp for future comparisons.

A preliminary work on this problem has been presented on the 9th Metaheuristic Conference
(MIC 2011) [41].

7.2 Problem description

We introduce the problem in stages. Starting from the 3L-CVRP (Section 7.2.1), we describe
progressively the new features in order to be able to fully define the complete problem that we
deal with (Section 7.2.2).

7.2.1 3L-CVRP formulation

The 3L-CVRP formulation is provided by Gendreau et al. [91]. We report it here in order to make
the paper self-contained and facilitate comparisons to the model we are proposing. The main
entities involved in the problem are:

Clients: It is given a set of customers V = {0, 1, . . . , n} each one corresponding to a vertex of the
graph G = (V,A). The depot is treated as a special customer and it is identified with vertex
0. Each edge (i, j) of the graph has an associated cost cij , which is the cost of traveling from
customer i to customer j.

Items: Each customer i ∈ V \ {0} requires a supply of mi items whose total weight is qi. The
demand of customer i is made up of items, that is, three-dimensional rectangular boxes each
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one having width wik, height hik, and length lik (with k = 1, . . . ,mi). Therefore, the total
volume needed by customer i is si =

∑mi

k=1 wikhiklik. In addition, a flag fik is associated to
each item, such that if fik = 1 the corresponding item is fragile. The total number of items
for all customers is M =

∑n
i=1mi.

Vehicles: The delivery of items is performed by a fleet F = {1, . . . , v} of identical vehicles, each
one with weight capacity Q. The three-dimensional rectangular loading space has width W
height H and length L, so the total loading volume available for each vehicle is S = W ·H ·L.

The solution of a 3L-CVRP calls for the determination of a set of routes that minimizes the
total transportation cost and satisfy all the typical constraints of a vehicle routing and packing
problem, as follows:

1. the number of routes must be at most equal to the size of the fleet, i.e. one route per vehicle;

2. each route must start and end at the depot;

3. each customer must be visited exactly once;

4. the demands of all customers must be fulfilled;

5. for each route the total demand weight must not exceed the weight capacity of the vehicle;

6. items must be stowed completely in the vehicle;

7. no two items can overlap;

8. the loading must be orthogonal, i.e. the edges of an item must lie parallel to the edges of the
vehicle.

Furthermore, for each route the loading must be feasible according to these additional condi-
tions:

Fixed vertical orientation (C1): Items can be rotated by 90◦ on the width-length plane, keep-
ing fixed the vertical orientation.

Fragility (C2): Non-fragile items cannot be placed on the top of fragile ones.

Minimum supporting area (C3): The base of each item must be supported by other items or
by the vehicle’s floor at least by a minimum supporting area, which is proportional to the
bottom side of the item.

LIFO policy (C4): The loading order is the inverse of the customers’ visit order. In such a way it
is possible to unload items of a customer without moving items belonging to other customers
that will be visited later. The unloading procedure is performed through straight movements
parallel to the length and height plane.

7.2.2 Complete problem

We now describe the formulation of the complex real-world problem that we tackled, which extends
the 3L-CVRP in several directions.

Weakly heterogeneous cargo and heterogeneous fleet

Firstly, the 3L-CVRP does not consider the possibility of having a cargo composed by large groups
of items of the same dimensions and a heterogeneous fleet.

Indeed in the 3L-CVRP benchmarks, there are only a few large items, all different from each
other. However, in many real cases, there is a large number of identical items to be loaded. As
examples, we refer to the real-world instances described in our work on MCLPBWMD [39] and
those used by Moura and Oliveira [133]. In addition, the fleet may be composed by vehicles that
are not identical. This leads to the definition of new problem entities:
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Item types: Each item i (with i = 1, . . . ,M) belongs to an item type j (with j = 1, . . . , it),
which is characterized by: dimensions (wj , lj , hj), allowed rotations (uwj , ulj , uhj), number
of items of this type (µj), weight (wgj) and bearable weight for each face (bwj , blj , bhj).

The allowed rotations are denoted by the binary-valued parameters uwj , ulj , uhj , which are
given a value of 1 if the corresponding side can be positioned upright, and 0 otherwise. The
bearing weight is the maximum load, expressed in units of weight per area, which may be
placed on the top surface of the item when the corresponding edge is placed upright. Its role
in the problem formulation will be explained in Section 7.2.2.

Vehicle types: Each vehicle i (with i, . . . , v) belongs to a vehicle type j (with j = 1, . . . , vt),
which is characterized by: dimensions (Wj , Lj , Hj), number of vehicles of this type (νj),
weight capacity (Qj) and possible fixed cost of use (Cj).

In case of weakly heterogeneous cargo, an efficient loading can be usually obtained by grouping
items of the same type in homogeneous blocks [75, 77]. Nevertheless, in our model items belonging
to different customers can be of the same type, thus a block homogeneous with respect to the item
type could be heterogeneous with respect to deliveries (i.e. customers). Therefore the packing
strategy has to be modified in order to take into account of different deliveries for a single block,
so as to not violate the C4 constraint.

Load bearing strength

The definition of item fragility and the corresponding constraint C2 is rather simplistic. It needs to
be reformulated by means of introducing the concept of maximum supported weight (that could be
proportional to the weight of the item) whose notion has been already introduced in Section 4.2.1.
Indeed, Figure 7.1 highlights a doubtful situation: box 1, which is not fragile, is supported at least
for the 75% of its base area by box 3, which is not fragile too. Nevertheless, box 2 is as high as
box 3 and it is pushed near box 2 and under box 1. This placement generates a fragility violation
because box 2 is fragile and box 1 is not, although it could reasonably be expected that box 1 is
mainly supported by box 3, independently of box 2.

L

H

NOT FRAGILE

NOT FRAGILE

FRAGILE

1

3 2

Figure 7.1: Violation of the Fragility constraint.

Therefore, the qualitative notion of fragility is replaced by the quantitative one of bearing
strength, which leads us to replace the C2 constraint with the following one:

Load bearing strength (C5): There is a maximum weight per unit area which a box can uphold
depending on its type and its vertical orientation.

Cargo stability

The proposed definition of stability based only on the minimum supporting area between one item
and the underlying one can actually lead to skewed item stacks that are actually unstable (see
Figure 7.2). Therefore, the notion of stability has been reformulated and the constraint C3 was
changed to:
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L

H

Figure 7.2: Skewed item stack

Robust stability (C6): A minimum supporting area has to be guaranteed for all items below the
current one in the stack. This means that for each item, the constraint C3 is applied not
only to the underlying item, but also to all items below it.

Lbe
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A B
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L

Figure 7.3: The Robust Stability constraint

Figure 7.3 highlights the difference between the standard Minimum supporting area (C3) con-
straint and the Robust stability (C7) constraint. Assuming that all items in the Figure 7.3 have the
same width, the supporting area depends only on the length, so the label Lij marks the part of
the item j that supports item i. The C3 constraint establishes that the stability of box B has to be
calculated considering only box C, which is immediately below it. In contrast, the C6 constraint
requires that the stability of the box B is computed taking into account items E and D, too. In
this case, Lbe is too short thus box B is not stable for C6 while Lbe is long enough to guarantee
stability according to C3.

The LIFO constraint

The LIFO constraint, as formulated in the 3L-CVRP, is not realistic, in the sense that it does not
capture correctly the physical constraints that allow the human operator or machine to unload an
item without having to move the others.

In detail, the LIFO constraint proposed by Gendreau et al. [91] establishes that any item of a
customer visited later than the current one, must not be placed above a box of the current customer
or between it and the rear of the vehicle. A variant of this formulation has been already proposed
by Tarantilis et al. [158] leading to the problem called Manual 3L-CVRP (or M3L-CVRP) in order
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to capture situations where boxes are manually unloaded. In this case, boxes are not necessarily
elevated before pulling them out of the vehicle, thus it is possible to place an item of a subsequent
customer above (without contact) a box of the current customer. Figure 7.4 shows an example of
loading that is feasible for the M3L-CVRP and infeasible for the original 3L-CVRP; in fact, the
tour represented below the loading area indicates that the first customer to be visited is customer
1, whose box has above it a box of a customer that is later in the tour (customer 2). This situation
would incur a violation of the classical LIFO constraint, but it is correct for the M3L-CVRP
because a human operator can simply slide out the box without touching the one above.

3

H

3
1

L

2

D D1 2

Figure 7.4: Manual 3L-CVRP: a human operator can simply slide out the box 1 without touching
box 2.

The LIFO constraint requires to be further refined in order to deal with real cases. In fact,
Figure 7.5 draws a situation that is considered feasible for both 3L-CVRP and M3L-CVRP, but in
reality it is totally unworkable. The designed tour establishes that customer 1 is the first one to be
visited, therefore box 1 needs to be unloaded before the others. However, both a human operator
and a forklift are not able to unload it without moving the others, since they are at the rear door
of the vehicle and box 1 is too far away at the bottom side. In this case, any subsequent placement
of the box in a position closer to the rear door would incur in a fragility or stability violation.
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Figure 7.5: Situation impracticable for unloading box 1
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We, thus, introduce a new loading constraint:

Reachability (C7): An item is considered reachable if the distance between it and a human oper-
ator or a forklift is less than or equal to a fixed length λ. It is supposed that the operator
is placed as close as possible to items inside the vehicle, i.e. the position with the minimum
length with respect to the current loading.

D1

1
H

L

2

D2

Figure 7.6: The Reachability constraint

Figure 7.6 shows the position of an operator inside a vehicle and how distances are computed
(Dj is the distance between an operator and item j). In this case, both items 1 and 2 could
be unloaded without moving other items, thus this loading does not violate the standard LIFO
constraint (C4). However, due to the physical limitations of the operator, only item 1 can be
unload, while box 2 is unreachable.

In case of manual unloading λ is set to 50 cm (approximately the length of a human arm),
otherwise it is set to a higher value, typically 100 cm. This way, our solver is implicitly able to
manage cases where both constraints about reachability and manual unloading are enforced, and
cases where only the reachability constraint is applied.

Split deliveries

Finally, as already mentioned, it is possible that a customer has a demand that is greater than
the vehicle capacity; in this case, the demand needs to be split and be delivered by more than one
vehicle (we do not allow that a customer is visited more than once by the same vehicle).

As it will be clear in Section 7.3, this is a significant change that leads to a completely different
search space and much more complex neighborhood operators. In fact, this routing problem falls
into the category of CVRP with split deliveries, which uses approaches that are quite different
from those of the classical CVRP (see Section 3.2.6).

7.3 Solution technique

In this section, we present our solution technique, which is based on LS. Firstly we define the
search space, the cost function, the initial solution, and the neighborhood relations; then we briefly
describe the metaheuristic technique we used.

7.3.1 Search space

Differently from the approaches to the 3L-CVRP cited in Section 4.3 [91, 158, 85, 173, 27], we
design a one-stage local search solver, which works on the items-vehicles space rather than on the
customers-vehicles one. The solver is responsible for

• generating the customers’ routes,
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Figure 7.7: The search space consist of sequences of blocks of boxes.

• setting the order in which the items of each sequence will be loaded, and

• selecting the loading heuristic that will be used to determine the actual loading of items in
the vehicle.

A state in the search space is then a set of sequences, one for each vehicle, where each element
of a sequence is an item or a block of items of the same type (Figure 7.7). Items belonging to
the same customer are consecutive, in such a way each items’ sequence corresponds to a unique
customers’ sequence.

7.3.2 Cost function

The cost function is a weighted sum of the objective function and the distance to feasibility. In
fact, the solver can accept a move that leads to an infeasible state, although violations of hard
constraints are penalized by multiplying their degree of violation with a suitably high weight.

We allow two kinds of infeasibility: exceeding weight (H1) and unloaded volume (H2). The first
one represents the total weight that exceeds each vehicle’s capacity and the second one represents
the total volume of items that do not fit into the vehicles. As already proposed by Gendreau et al.
[91], we set the value of the weight of H1 in dependency of the size of the instance and we fix it
to HW · 100 · c̄/Q, where c̄ denotes the average edge distance and HW is a multiplicative constant.
Conversely, the weight of H2 is set to HW. Preliminary experiments have shown that the best choice
for HW is 3, thus this value has been used during all experimentation.

All other hard constraints are enforced by construction.

7.3.3 Initial solution

The initial solution is constructed at random. Firstly, we randomly choose a customer and we
assign her to a random vehicle. Then, we iteratively select at random a box type and we create
a block of homogeneous items. We append it, with a random rotation, to the sequence of blocks
of the selected vehicle. After that, we rebuild from each sequence of blocks the corresponding
sequence of customers.

7.3.4 Neighborhood relations

We implemented three neighborhood relations: the first two remind the Ins, IntraSw and InterSw
developed in Section 5.3 for the VRPTWCDC, whereas the last one is an adaption of neighborhood
used in Section 6.3.5 for the MCLPBWMD. In detail, the neighborhood relations are the following:
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Move Customer & Change Strategy (MCCS): This neighborhood is defined by the removal
of a customer from a route and its insertion in another one in a specific position. As a
consequence, all the blocks of items belonging to the selected customer are removed from the
old sequence and then inserted in the new one, keeping fixed their relative position and their
orientation. In addition, the loading strategy of the new route can be changed. An MCCS
move is identified by six attributes 〈c, or, op, nr, np, st〉 where c represents a customer, or and
op the old route and the old position in the old route, and np and nr, the new route and new
position in the new route, respectively. Lastly, st is the loading strategy selected for the new
route (Figure 7.8). If the customer is not moved (i.e., if or = nr ∧ op = np), an MCCS move
performs only a change of strategy.
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Figure 7.8: An example of MCCS move.

Swap Customers (SC): This neighborhood is defined by exchanging a customer with another
one. A move m of type SC is identified by six attributes 〈c1, c2, r1, r2, p1, p2〉 where c1 and
c2 are customers, r1 and r2 are routes, p1 and p2 are the positions of the customers in the
corresponding route. Blocks of items belonging to the customers involved in the move are
swapped keeping fixed their reciprocal position and their orientation. If r1 is the same as r2,
the move turns out to be an intra-route exchange.

Move & Rotate Block (MRB): This neighborhood is defined by the removal of a block of ho-
mogeneous items from the blocks’ sequence of a route and its insertion, possibly with a
new orientation, into another route. A move of MRB type is represented by 7 attributes
〈bt, or, op, nr, np, r, qty〉, where bt is the box type identifier, or and op are the old sequence
and the old position in the old sequence, np and nr, the new sequence and new position in
the new sequence, r is the rotation and qty is the number of boxes of the block that are
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involved in the move (Figure 7.9). A block can be completely removed from the old route,
or just partially. In the latter case, the original block is divided in two ones: the past that
remains in the old route, and the new block composed by qty boxes, which is inserted in the
new route.
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Figure 7.9: An example of an MRB move that leads to a split delivery.

Notice that if the new route is different from the old one, an MRB move brings about the
splitting of the demand. In Figure 7.9, a single item of customer 4 is moved from route 1 to route
2, thus the demand is split in two vehicles and the customer is visited twice.

As already proposed for the MCLPBWMD in Section 6.3.3, once a move is performed, a packing
heuristic is called for the blocks’ sequences involved in the move. The packing heuristic takes care
of all the constraints about the loading and returns the total volume loaded. If some items do not
fit in the vehicle, their volume contributes to the cost component H2. The packing heuristic does
not modify the blocks’ sequence, thus, the C4 constraint is always guaranteed.

7.3.5 Loading heuristics

In section 4.3 we have described diverse packing strategies, here we have implemented nine loading
heuristics. Eight of these are variants of the extension to the three-dimensional case of the bottom
left algorithm [9] and the touching perimeter algorithm [122]. These heuristics individuate the
normal position [49], i.e., with the item’s bottom edge touching either the floor of the vehicle or
the top edge of another item, and its left edge touching either the left edge of the vehicle or the
right edge of another item. The detection of normal positions in the three-dimensional case is not
trivial [see 128, 55, 129]; for this task we applied the procedure proposed by Martello et al. [128]
with some modifications that take into account the C3 constraint.



76 7. A routing and packing problem

For each item, the choice of the packing position among all the possible normal positions in a
vehicle depends on the specific strategy. To give an intuition of how each strategy works, in Figure
7.10a we introduce an easy example of loading with only three items: all the normal positions are
labelled with capital letters. The difference between strategies is in the order in which the normal
positions are tested.

In this example there are seven candidate normal positions (A, B, C, D, E, F, G) where it is
possible to place a new item. If we select the Back Low Left strategy, the first position that will
be tested is A; if this placement is feasible (all loading constraints are satisfied), the box is placed
with its bottom left corner in A. Otherwise, the box is rotated and the we check if the A position
is now feasible. In case of infeasibility, the next normal position (B) is tested with the box in the
original orientation, and so on.

For the strategies based on the bottom left algorithm (Back Left Low, Back Low Left, Low Back
Left, Low Left Back, Left Low Back, Left Back Low), Figure 7.10b describes the order of selection
of candidate positions and the direction of loading (vertical walls, horizontal layers, from the left
side, from the back . . . ). The feasibility of a position is evaluated with the current orientation; if
it is not feasible, a rotation on the width-length plane is applied to the item.

The Area and Area No Walls strategies derive from the touching perimeter algorithm: the first
one selects the position with highest score, defined as the percentage of the item’s area that touches
either the vehicle and other items already packed; the second one does not consider the wall of
vehicles in the score. Each position is evaluated only for the current orientation because the
candidate positions are ordered for decreasing score, which is computed considering the current
orientation.

The other packing heuristic (Wall Building) is based on the wall building approach introduced
by George and Robinson [93] for the container loading problem and already used by us for the
MCLPBWMD (Section 6.3.3).

7.3.6 Metaheuristics

We use a sequential solving approach which alternates the SA algorithm and a large-neighborhood
search, called intensifier, as shown in Figure 7.11. The algorithm control is illustrated in the style
of the generalized local search machines (GLSM) proposed by Hoos [104]. Nodes represent search
strategies and arrows represent transitions of the control from one search strategy to another. In
Figure 7.11, F denotes the value of the cost function of the best solution found in the current
state, whereas F best refers to the best solution found so far in the overall solution process. Each
component starts from the best solution of the previous one, and the overall process makes a fixed
number of rounds R.

The SA algorithm has been described in detail in Section 2.2.2. The novelty is the fact that
it is called more than once in the solution process. Therefore, starting from the second round the
initial temperature is not set to T0 but to a lower value, in order to avoid to “destroy” completely
the previous solution. We thus define a new parameter, called ρ, such that the initial temperature
of all rounds but the first is set to T0/ρ. The SA component uses as neighborhood the union of
MCCS, MRB, and SC moves. The random selection prescribed by SA is performed selecting first
the neighborhood used, and then the specific move.

In order to improve the effectiveness of the SA component, it is useful to set the weight of the
hard constraint violation HW to a relatively low value, given that the selection relies on variation
of the cost function. As a consequence, it is possible that the whole process terminates with a
solution that has violations of hard constraints even though a feasible solution could be reached.
For this reason, we introduce a new component in the process, called REPAIR in Figure 7.11,
whose aim is to eliminate violations. In the REPAIR state, HW is set to a particularly high value
and a simple hill climbing (HC) algorithm is invoked.

We also apply a special-purpose operator, called intensifier that uses as neighborhood a com-
position of the two basic neighborhoods MCCS and MRB. At each iteration, the neighborhood
composed by one move of MCCS and one of MRB is explored and the first improving one is se-
lected. In order to reduce the size of the composite neighborhood, we consider only pairs of moves
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that concerns the same customer. The aim of this operator is to intensify the search process in
promising areas.

As shown in Figure 7.11, the intensifier is launched only when SA gives no improvement in the
cost function. This choice is motivated by the fact that the intensifier is computationally expensive
and therefore it should be launched only when SA is clearly stuck. Once it has been launched, the
intensifier is invoked iteratively as long as it finds improvements in the cost function.
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Figure 7.11: A GLSM representation of the control flow of our algorithm. See the text for more
details.

7.4 Experimental analysis

In this section, we first describe the setting of the parameters used in the experiments. Then we
give a description of our new instances and we show our results. Lastly, we compare our approach
with the best ones in the literature on the 3L-CVRP, using the instances introduced by Gendreau
et al. [91] as benchmarks.

7.4.1 Parameter settings

The software is written in C++, it uses the framework EasyLocal++ [63]. For the automatic
tuning of the solver we use the irace package, provided by López-Ibáñez et al. [124]. More details
about the environmental settings can be found in Section 2.3.

The SA algorithm has five parameters to tune: start temperature T0, stop temperature Tmin,
cooling rate α, the number of neighbors sampled at each temperature σN , and restart temperature
ratio ρ. Moreover, given that the solver uses different neighborhoods, we add two parameters γMCCS

and γMRB, which are the probability of drawing a move of type MCCS and MRB, respectively. The
probability of drawing a move of type SC is set to γSC = 1− γMCCS − γMRB.

We decide to tune δ = T0/Tmin instead of Tmin, which turned out to provide a better dis-
tribution of the configurations than using Tmin directly. In addition, in order to give a similar
amount of time to the same instance for each parameter configuration, we let the parameters δ
and α vary, and we compute σN in such a way to have for the SA component exactly the same
number of SA iterations I for each benchmark. In detail, the number of neighbors sampled for
each temperature is σN = I/ logα(δ). For each instance, being v the number of vehicles and n the
number of customers, the total number of iterations granted is I = 104 × v × n. The full solver
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Instance n bt M vt v ϕ θ Gini index
SD-CSS1 11 36 254 1 5 45.17 18.82 98.23%
SD-CSS2 25 15 350 1 13 59.57 29.78 88.29%
SD-CSS3 33 9 285 1 26 41.55 31.77 76.86%
SD-CSS4 37 13 312 1 12 56.58 17.86 89.49%
SD-CSS5 41 47 7035 2 13 5.10 1.57 95.39%
SD-CSS6 43 97 8060 1 35 28.53 22.70 93.21%
SD-CSS7 45 14 284 2 10 62.57 13.60 88.44%
SD-CSS8 48 70 3275 3 36 37.12 27.27 97.19%
SD-CSS9 56 45 1725 1 23 48.10 19.41 97.44%
SD-CSS10 60 29 1840 1 20 23.30 7.64 88.26%
SD-CSS11 92 34 3790 2 13 43.79 6.12 88.67%
SD-CSS12 129 10 745 1 50 53.67 20.64 97.34%
SD-CSS13 129 63 2880 1 35 34.21 9.21 96.53%

Table 7.1: Features of the new real-world instances

stops when it has performed four rounds or one idle round, i.e., a round without an improvement
of the best result.

Preliminary experiments show that α is not significant. This is not surprising, because in
our setting σN is a function of the other parameters. Therefore, α only determines the entity
of the single step in the temperature and not the actual slope of the cooling trajectory, which is
determined by δ. We therefore set α to the fixed value 0.9999. We also experimented with different
values for the probabilities γMCCS, γMRB, but there was no strong evidence in favor of some values.
We therefore set γMCCS = 0.4, and γMRB and γSC to 0.3.

For the benchmark instances, we set a tuning budget for I/F-Race of 4000 experiments. We use
the following domains for the parameter settings: T0 ∈ [10, 105], δ ∈ [102, 106] and ρ ∈ [10−1, 103],
and the set of training instances consist of instances 1–11 published in [91]. For our instances, we
keep the same parameter domains and we use as training instances the set {SD-CSS2, SD-CSS3,
SD-CSS4, SD-CSS7, SD-CSS12}, which are the fastest to be solved.

The outcome of the I/F-Race procedure is that the best configurations are the following: T0 =
12746.634, δ = 28990 so that (Tmin = 439.680, and ρ = 210 for the 3L-CVRP benchmarks, and
T0 = 297143, δ = 88298 (resulting in Tmin = 3.36), and ρ = 810 for our instances. The results for
this configuration are presented in Table 7.2 and Table 7.3 in comparison with previous work.

7.4.2 New instances

Table 7.1 shows the features of each instance in terms of the number of customers (n), box types
(bt), the total number of boxes (M), vehicle types (vt) and the total number of vehicles (v). The
terms ϕ and θ indicate in percentage the ratio between the total volume of boxes and the total
volume of available vehicles and the ratio between the average customer demand (in m3) and the
average volume of vehicles, respectively.

The instances are very diverse for the number of customers, the number of box types and the
number of boxes. In particular it is worth noticing that the number of boxes in seven of the thirteen
instances is greater than one thousand. The terms ϕ and θ give an intuition of how difficult is the
packing subproblem and of the number of nodes per route, respectively.

The Gini index [95] is a measure of the heterogeneity of boxes from the relative frequencies
associated with a box type. A value of 0 expresses that all the boxes are equal, whereas a value
of 100 % that all items are different. We highlight this aspect because different levels of box
heterogeneity need different packing strategies in order to perform the loading effectively.
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Table 7.2: Results on our instances with different constraints (H2 in m3 and z in km).

3L-CVRP formulation No split delivery split delivery
Instance H2 z3L−CVRP H2 z H2 zSD
SD-CSS1 0 5708.57 0 5848.4 0 6420.88
SD-CSS2 0 12033.24 0 12090.49 0 13167.83
SD-CSS3 51.22 – 51.22 – 0 16645.03
SD-CSS4 0 11398.58 0 11820.99 0 12607.49
SD-CSS5 0 11836.71 1.09 – 0 26185.16
SD-CSS6 0 19939.81 3.91 – 0 36676.21
SD-CSS7 0 11809.04 0 12548.78 0 15654.43
SD-CSS8 0 23183.1 15.96 – 0 49579.63
SD-CSS9 0 17724.8 0 18889.95 0 32602.95
SD-CSS10 0 12945.89 0 17859.39 0 27923.13
SD-CSS11 0 26900.47 0 33070.26 0 43790.43
SD-CSS12 0 34807.29 0 35176.91 0 36433.19
SD-CSS13 0 28060.23 0 35897.29 0 66279.74

7.4.3 Experimental results

We applied our solver to different problem formulations: the 3L-CVRP formulation, described
in Section 7.2.1, the complete problem formulation, described in Section 7.2.2, and the complete
problem formulation without split deliveries. The results are shown in Table 7.2. Average running
times vary between 300 seconds and 10000 seconds depending on the average number of boxes for
vehicle.

For some instances, it has been impossible to find a feasible solution, without split delivery.
For such cases, we report the level of violation of the H2 constraint (the H1 constraint is never
violated). In order to give a measure of the quality of a solution that is real-valued, the cost z
is expressed in total km travelled and the value of H2 violations in m3 of boxes that were not
possible to load in the vehicles.

Comparing the 3L-CVRP formulation and the complete one without split deliveries, it is clear
that the first one is able to obtain solutions with lower cost, thus we can conclude that the new
constraints about fragility, stability and reachability have a no negligible impact on the solution
process.

For the remainder of this section we focus on the results of the complete formulation with split
deliveries. Looking at the results for the complete formulation with split deliveries, we notice that
for instance SD-CSS3 this formulation is the only one able to obtain a feasible solution. A possible
explanation is that this instance has the highest θ value, which is the ratio between the average
customer demand and the average volume of vehicles, and the solution of this case might require
to split the demand of customers to different vehicles.

For most instances, the use of the larger space with split deliveries allows us to obtain a feasible
solution (SD-CSS3, SD-CSS5, SD-CSS6, SD-CSS8). On the other hand, when the instance is large
in terms of the number of boxes and vehicles, exploring a larger space is not effective, resulting in
solutions of worse quality. Our experimental results also suggest to use an adaptive strategy in the
complete formulation that switches between the possibility of using or not split delivery. One may
start by forbidding split deliveries. If feasible solutions without split deliveries are found, these are
typically of a better quality w.r.t. the total distance travelled. If feasible solutions are not obtained
relatively quickly, for example, after the first round through the phases simulated annealing and
intensifier, we may switch to the formulation considering split deliveries to increase the chance to
find feasible solutions.

7.4.4 Comparison with related work

Our solver has been tested also on the 27 instances proposed by Gendreau et al. [91], which
have been derived from CVRP instances [164] by specifying the customer demand in the form of
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rectangular three-dimensional items. A detailed description of the instances’ features can be found
in the work by Gendreau et al. [91]. For all benchmarks, the supporting area factor is set to 0.75,
as in previous works.

For the 3L-CVRP, the MRB neighborhood is restricted to exclude moves that lead to split
deliveries. This is done by allowing to reinsert an item only in a position where it is adjacent to
another one belonging to the same customer. Thus, the MRB move can only modify the reciprocal
position of items of the same customer and change their orientation.

Table 7.3 summarizes the features of the instances and shows the computational results. The
best result is shown in bold face. For instances by Gendreau et al. [91], in Table 7.3 we compare
our solver with the reported results of the TS by Gendreau et al. [91], the Guided TS by Tarantilis
et al. [158], the ACO by Fuellerer et al. [85] and the Hybrid TS by Bortfeldt [27] (see Section 3.3
for more details about these techniques). We do not report the results by Wang et al. [173] because
they use a larger number of vehicles, thus they are not comparable.

Since the TS is deterministic, it was invoked only once for each instance and this value is
reported. For the Guided TS we have only the cost of the best solutions available. ACO, Hybrid
TS and our SA are invoked 10 times with different random seeds on each run, and the average and
the minimum cost are reported.

The outcome is that our solver improves on the original results by Gendreau et al. [91] and
those of Tarantilis et al. [158]. It performs worse, however, than the ACO [85] and the Hybrid TS
[27] approaches although in one case (instance 7) is able to find the best known result. However,
all the techniques reported in Table 7.3 are specifically designed and tuned for the case of the 3L-
CVRP and for these instances, whereas our technique solves the more general problem that deals
with split deliveries, weakly heterogeneous cargos, and stability constraints as described below.

7.5 Summary

In the last few year, the interest of the research community for composite and structured problems
has increased and different problem formulations and models have been proposed. In this chapter
we have addressed a complex problem, which combines routing and packing issues, and considers
several features that arise in real-world situations. Our problem extends and enriches the three-
dimensional loading capacitated vehicle routing problem [91] by redefining some constraints with
respect to the notion of stability, loading and unloading policy and the heterogeneity of the cargo.
It also considers the possibility of managing a heterogeneous fleet and to split the demand of a
customer in more vehicles.

We have presented a local search approach based on SA and large-neighborhood search that
solves the integrated problem in one single stage. In fact, a solution is represented as sequences of
items making suitable the use of neighborhood operators that modify both routes and arrangements
in vehicles.

The solution approach has been tested on 13 new real-world instances, that exhibit great di-
versity in size and features and the effect of introducing split deliveries has been analyzed and dis-
cussed. All instances are available at http://www.diegm.uniud.it/ceschia/index.php?page=

vrclp.
In addition, the solver has been tested on benchmark instances of Gendreau et al. [91] for the

3L-CVRP. Although our solver is not designed for that problem, it reaches better or equal solutions
than two algorithms specifically designed for the 3L-CVRP; but it is inferior to two other recent
metaheuristics algorithms for the 3L-CRVP.
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Table 7.3: Computational results for 3L-CVRP on Gendreau et al. [91] instances (time is in
seconds).
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8
Other Problems

During the PhD course, the techniques and the software tools described in Section 2.2 and Sec-
tion 2.3, have been profitably applied to other optimization problems, that belong to the domains
of timetabling and healthcare. These themes do not concern the core topics of this thesis, therefore
in this chapter we only give a brief presentation of our works on these side issues.

8.1 Timetabling problems

Timetabling problems are widespread in many human activities and their solution is a hard opti-
mization task that can be profitably tackled by optimization methods. Educational timetabling is
a sub-field of timetabling that considers the scheduling of meetings between teachers and students.

A large number of variants of educational timetabling problems have been proposed in the
literature, which differ from each other based on the type of institution involved (university, school,
or other), the type of meeting (course lectures, exams, seminars, . . . ), and the constraints imposed.

The university course timetabling (CTT) problem is one of the most studied educational
timetabling problems and consists in scheduling a sequence of events or lectures of university
courses in a prefixed period of time (typically a week), satisfying a set of various constraints
on rooms and students. Many formulations have been proposed for the CTT problem over the
years. Indeed, it is impossible to write a single problem formulation that suits all cases since every
institution has its own rules, features, costs, and fixations.

Nevertheless, two formulations have recently received more attention than others, mainly thanks
to the two timetabling competitions, ITC 2002 and ITC 2007 [130], which have been used by them
as competition ground. These are the so-called curriculum-based course timetabling (CB-CTT) and
post-enrolment course timetabling (PE-CTT). The main difference between the two formulations
is that in the CB-CTT all constraints and objectives are related to the concept of curriculum,
which is a set of courses that form the complete workload for a set of students. On the contrary,
in PE-CTT this concept is absent and the constraints and objectives are based on the student
enrolments to the courses.

In [42] we focused on the PE-CTT problem and we designed a single-step metaheuristic ap-
proach based on Simulated Annealing, working on a composite neighbourhood composed of moves
that reschedule one event or swap two events.

We experimented our solver on all the instances that have been made publicly available (up to
our knowledge). The outcome of our experimental analysis was that our general solver, properly
engineered and tuned, was able to outperform most of the solvers specifically designed and tuned
for a single specific formulation and/or a specific set of instances.

In order to ensure reproducibility, the source code has been made available at the website
http://satt.diegm.uniud.it, along with the best solution found for each instance.
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8.2 Healthcare problems

Healthcare is surely one of the most important application domain of optimization in general and
of metaheuristics in particular. Many papers have been devoted to healthcare, for example to
nurse and physician rostering problems [37, 145], and more generally to timetabling problems in
hospitals [see, e.g., 100].

The patient admission scheduling (PAS) problem consists in assigning patients to hospital rooms
in such a way to maximize both medical treatment effectiveness and patients’ comfort. PAS has
been defined by Demeester et al. [59], and further studied by the same research group [168, 14].

In the proposed PAS formulation, each patient has fixed admission and discharge dates and one
or more treatments to undergo. Each room is characterized by its equipments and location and
may be more or less suitable for a specific patient; and this results in a matrix of patient/room
compatibility costs that contributes to the objective function. In addition, there is a room gender
policy that forbids, for normal rooms, the simultaneous presence of male and female patients.
Finally, patients should possibly not change the room during their stay; a room change is called a
transfer and is penalized in the objective function. The problem then consists in assigning patients
to rooms for each day of their stay in hospital, minimizing all the mentioned costs and respecting
the capacity constraint and the gender policies of the rooms. The planning horizon h is expressed
in days and varies from 2 weeks (h = 14) up to 3 months (h ' 90).

Unfortunately, this long-term version of the problem has little usefulness for most practical
cases where patients might arrive at unpredictable times (urgent and emergency patients) [116, 88].
Furthermore, it is also frequent that the discharge date of the patients is unknown, because it might
depend of the progress of the gradual recovery [73, 84]. In these cases, the long-term solution of
the problem can provide only a provisional assignment that needs to be subsequently modified
several times.

In [38], we proposed a local search approach to the PAS problem that makes use of different
search spaces and neighborhood relations. In addition, we developed a relaxation procedure to
compute lower bounds (using CPLEX v. 12), which are useful to assess the quality of the solutions
more objectively. The outcome of our work is that our results are better than the ones obtained
by Bilgin et al. [13], and in some cases also quite close to the lower bounds.

We also introduced a short-term (daily) version in which the admission dates become known
to the solver only a fixed number of days (called forecast level) before the patient arrivals. We
also solved the short-term version of the problem and we analyzed the behavior of the solver as a
function of the forecast level.



Conclusions

In this final chapter we draw the conclusions about the research lines pursued and the issues
that are still opened. Since the detailed discussion about each original contribution is normally
included as a final section of the corresponding chapter, in the following we outline only some
general discussion about the different topics of this work.

This thesis introduces new problems in the logistic domain which include several practical
constraints that arise in real-world situations. For tackling these issues we propose metaheuristic
approaches based on a complex combination of neighborhood relations.

We collected and published on the web a set of real-world instances, in cooperation with our
current partners. Differently from the benchmark datasets available in literature, these instances
exhibit a great diversity in size and features, making them particularly challenging. The web site
contains also an application for validating new solutions, so as to allow everybody to perform a
fair comparison with ours.

We performed an extensive experimental analysis on both real-world instances and public
benchmarks, making use of principled statistical tests to tune the parameters and to compare
different algorithm variants. In particular, we identified the most important parameters of the
method, select a set of configurations, and eventually compare them using reliable statistical tests.
For the choice of the configurations for tuning the parameters, we used some recently proposed
techniques for the design of experiments, such as nearly-orthogonal latin hypercubes [51] and I/F-
race [17].

The general outcome is that metaheuristics techniques are particularly suitable to solve this
typology of problems, due to the actual complexity of the problem which makes it impossible to
solve large instances in short time and to the ability to model complex constraints, sometimes
non-linear, in a easy and flexible way. Indeed, the comparison of our solution techniques with the
ones specifically designed and tuned for the standard problems presented in the literature shows
that our results are in general competitive with the ones of the state-of-the-art solvers.

We consider this work as the core of a more inclusive project whose objective is to built an ap-
plication able to effectively solve the most common vehicle routing problems and three dimensional
packing problems. Our aim is to obtain a flexible solver that could be adapted to a large variety
of situations, producing solutions (non necessarily optimal) in short time. The solver should be
flexible enough to be able to adapt automatically to different problem formulations. In particular,
it shall be able to attach or leave out cost components and other features at run-time based on the
analysis of the specific instance.

For the future we plan to complete the application that could be used in practice by potential
clients, either interactively (on-line) or in batch mode. The solver will be the algorithmic core
of the application, which needs to be complemented by a graphical front-end and a persistent
managing tool.

From our experience with practitioners and industrial partners, we have learnt that in real-
world applications the cost function which rates a solution is usually rather complex, including
many objectives which are often conflicting. In our approaches we combine all of the objectives
into a single aggregate objective function, which is the weighted linear sum of the objectives; in
order to make the quality of a solution immediately evaluable, comparable and easy to understand,
we decided to represent the value of the cost function in a real currency. However, determining the
appropriate weight for each cost component, especially for those which are related to intangible
aspects, can be a difficult and subjective process, given that it depends on the view of the decision
manager. To overcome this problem, we would like to go towards a multi-objective perspective
that would allow us to work on the frontier of Pareto optimal solutions. Indeed in multi-objective
approaches, the potential users do not need to define the importance of each objective a priori
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by setting the weights, but they have to choose among different (Pareto optimal) solutions by
quantifying the trade-offs in satisfying the different objectives.

We also aim to collect a even larger set of instances that are very different in size and features,
so that it would also be possible to analyze the relationship between performances and instance
properties. As a by-product, we hope that the published instances will be used as new challenging
benchmarks for future researches by other groups. In order to obtain this result, we plan the
undertake several necessary tasks, as suggested by Bonutti et al. [25] for another optimization
problem. In summary, we plan to publish the description of the input and output formats, the
solution validator, and a web application to upload results and lower bounds.

In conclusion, we strongly believe that the integrated solution of routing and loading problems
constitutes a promising research area that opens new possibilities of solving real-world problems
in transportation. Further developments in this field could concern both the enrichment of the
problem model and the design of new solution techniques. In Chapter 7, we have presented our
problem formulation which already includes some new practical features (split deliveries, heteroge-
nous fleet, load bearing strengths, robust stability, reachability), nevertheless we think that much
is still to be done to actually capture the practical problems that companies have to face (vehicle
compartments, items incompatibilities, load balancing, unloading policies, regulations, pickup and
delivery, . . . ). As for the solution techniques, in our opinion new perspectives will be open for this
class of problems by hybrid approaches that combine different metaheuristics or integrate AI/OR
techniques into metaheuristics.



A
Notation

A.1 Combinatorial optimization problems (Section 2.1)

Π problem
I set of instances
S set of candidate solutions
F set of feasible candidate solutions
F (i, s) objective function of the solution s ∈ S of the instance i ∈ I
s∗ optimal solution

A.2 Local search algorithms (Section 2.2)

S(i) search space of an instance i ∈ I
N (s) neighborhood of the solution s ∈ S
F (s) cost function of the solution s ∈ S
m move that identifies a neighborhood
∆F variation of the cost function (F (s⊕m)− F (s))

A.2.1 Simulated annealing (Section 2.2.2)

T temperature
T0 start temperature
Tmin stop temperature
Nσ number of neighbors sampled at each temperature level
β cooling rate
ρ parameter such that the initial temperature of all rounds but the first is

set to T0/ρ
I total number of iterations, i.e., the total number of moves selected
δ temperature range, equal to T0/Tmin

A.2.2 Tabu search (Section 2.2.3)

tl tabu list
tt tabu tenure
δtt variation of the tabu tenure, the length of the tabu list ranges between

tt− δtt and tt− δtt
iimax maximum number of iterations without an improvement
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A.3 Vehicle routing problems

V set of vertex (or nodes) of a graph
A set of arcs that connect nodes in a graph
G graph individuated by arcs and vertices
(i, j) arc of a graph connecting node i with node j
C cost matrix of arcs
cij cost associated to the arc (i, j)
qi demand associated to customer i (weight of goods)
K set of all identical vehicles
W capacity of vehicles (total weight)
xijk integer variable which expresses the number of times an arc (i, j) is

traversed by a vehicle k
yik integer variable which indicates if the customer i is visited by vehicle k
uik continuos variable that counts the load of the vehicle k after visiting

customer i

A.3.1 Vehicle routing problem with time windows (Section 3.2.2)

[ei, li] earliest and latest time windows of customer i
si service time that a vehicle must wait at customer location i
τij travel time needed to go from customer i to customer j
tik time variable that represents the arrival time of vehicle k at location i

A.3.2 Heterogenous vehicle routing problem (Section 3.2.3)

M set of types of vehicles
m number of different types of vehicles
mk number of vehicles available of type k ∈M
Wk capacity of a vehicle of type k
Fk fixed cost associated to each vehicle of type k
cijk cost of traversing arc (i, j) with a vehicle of type k

A.3.3 Vehicle routing problem with private fleet and common carrier
(Section 3.2.4)

zi integer value which indicates if the customer i is served by an external
carrier

A.3.4 Period vehicle routing problem (Section 3.2.5)

D set of days in the the planning horizon
fi service frequency of customer i
Hi set of allowable combinations of visit days for customer i
xijkd integer variable which expresses the number of times arc (i, j) is traversed

by vehicle k on day d
yih integer variable which indicates if the visit combination h ∈ Hi is as-

signed to customer i
zhd binary constant equal to 1 if day d belongs to visit combination h
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A.3.5 Split delivery vehicle routing problem (Section 3.2.6)

yik integer variables which stores the quantity of the demand of i delivered
by vehicle k

A.4 Three dimensional packing problems

n number of items
wi width of item i
li length of item i
hi height of item i
W width of a container (or bin)
L length of a container
H height of a container

A.5 The vehicle routing problems with time windows and
carrier-dependent costs

A.5.1 Problem formulation (Section 5.2)

α(i, r) earliest service time of order i on r
c fixed cost for the vehicle
carrj the carrier to which vehicle j belongs
cust(i) customer of order i
δ(j, r) earliest departure time from customer j on route r
d number of days in the planning period (|D|)
D the planning period
distij road distance between customers i and j
[ei, li] time window of customer i
[ηi, θi] delivery dates of order i
ζ(i, r) working/rest times patterns of order i in route r
F set of vehicles
γi cost of the optional order i, if it is not fullfilled
l̄0 shutdown time
L threshold level of load for changing vehicle cost function
m number of vehicles (|M|)
M set of mandatory orders
n number of orders (|O|)
ξ1 cost per travel unit (e/Km)
ξ2 cost per load unit (e/Kg) dependent on the farthest location
ξ3 cost per load unit dependent both on the total load and on the farthest

location
O set of orders
ord(r) set of orders served by a route r
π(i, r) predecessor of a customer i in the route r
P set of optional orders
qi demand associated to order i
QJ capacity of vehicle j
q(r) total demand of route r
‖r‖ total distance traveled in route r
‖r‖∗ maximum distance between the depot and a costumer in the route r
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rjk route travelled by vehicle j on day k
Rj routing plan of day j
ρij reachability relation that indicates if order i can be served by vehicle j
si service time associated to order i
τij time for traveling from one customer i to another customer j
tj(r) transportation cost of vehicle j associated to each route r
vi ith order to be visited
χI(x) characteristic function of interval I

A.5.2 Application of tabu search (Section 5.3)

m move
o order involved in the move
or old route of order o
op position of order o in the old route or
nr new route fro order o
np position in the new route for order o
Ins Insertion move: removal of an order from a route and its insertion in

another one
o1 first order involved in the move
o2 second order involved in the move
r1 route of the first order o1
r2 route of the second order o2
InterSw Inter-route swap: swap of two orders in different routes
IntraSw Intra-route swap: swap of two orders in the same route
mt move in the tabu list
me move under evaluation which might be excluded from the neighborhood

by the fact that move mt is in the tabu list

A.6 The multiple container loading problem with bearing
weights and multi-drop

D set of destinations
n number of destinations (|D|)
α estimation of the maximum ratio between the volume of a container and

the volume of the boxes it actually carries
Vt total volume of the boxes
Vc volume of the container
V estimation of the actual volume of boxes to be loaded
θ ratio between the total volume of the boxes and the total volume of the

containers
γ total cost of the containers
δ number of blocks in the current solution

A.7 A routing and packing problem

A.7.1 3L-CVRP formulation (Section 7.2.1)

V set of customers (or vertex or nodes)
n number of customer
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A set of arcs that connect nodes in a graph
G graph individuated by arcs and vertices
(i, j) arc of a graph connecting node i with node j
cij cost associated to the arc (i, j)
mi number of items that composed the demand of customer i
qi demand associated to customer i (total weight of items)
wik width of item k belonging to customer i
hik height of item k belonging to customer i
lik length of item k belonging to customer i
si total volume of items belonging to customer i
fik flag which indicated if item k of customer i
M total number of items
F set of vehicles
v number of vehicles (|F|)
Q capacity of a vehicle (total weight)
W width of a vehicle
H height of a vehicle
L length of a vehicle
S total loading volume of a vehicle

A.7.2 Complete problem (Section 7.2.2)

it number of item types
wi width of item type i
hi height of item type i
li length of item type i
uwj binary-valued parameter which indicates if the width can be positioned

upright
ulj binary-valued parameter which indicates if the length can be positioned

upright
uhj binary-valued parameter which indicates if the height can be positioned

upright
µj number of items of type j
wgj weight of items of type j
bwj maximum load which may be placed on the top surface of the item when

the width side is placed upright
blj maximum load which may be placed on the top surface of the item when

the length side is placed upright
bhj maximum load which may be placed on the top surface of the item when

the height side is placed upright
vt number of vehicle types
Wj width of a vehicle of type j
Hj height of a vehicle of type j
Lj length of a vehicle of type j
νj number of vehicles of type j
Qj weight capacity of a vehicle of type j
Cj cost of use of a vehicle of type j
λ fixed length to verify the reachability constraint

A.7.3 Solution technique (Section 7.3)

c̄ average edge distance
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MCCS Move Customer & Change Strategy move: removal of a customer from a
route and its insertion in another, possibly changing the packing strategy

c customer involved in the move
or old route of customer c
op position of customer c in the old route or
nr new route
np position on the new route nr
st packing strategy
SC Swap Customers move: exchanging a customer with another one
c1 first customer involved in the move
c2 second customer involved in the move
r1 route of the first customer c1
r2 route of the second customer c2
p1 position of customer c1 in route r1

p2 position of customer c1 in route r1

MRB Move & Rotate Box: removal of a block from the blocks’ sequence of
a route and its insertion, possibly with a new orientation, into another
route

bt box type identifier
or old route of the block
op position of the block in the old route or
nr new route
np position of the block in the new route nr
r rotation of the block
qty number of boxes of the block that are involved in the move
ϕ ratio between the total volume of boxes and the total volume of available

vehicles
θ ratio between the average customer demand (in m3) and the average

volume of vehicles
R number of rounds of the SA(+intensifier) algorithm
γMCCS probability of drawing a move of type MCCS
γMRB probability of drawing a move of type MRB
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1D-BPP One dimensional bin packing problem

3D-BPP Three dimensional bin packing problem

3D-KPP Three dimensional knapsack packing problem

3D-SPP Three dimensional strip packing problem

3L-CVRP Three-dimensional loading capacitated vehicle routing problem

ACO Ant colony optimization

AI Artificial intelligence

CLP Container loading problem

CVRP Capacitated vehicle routing problem

EA Evolutionary algorithms

FSMD Fleet size and mix vehicle routing problem with vehicle dependent routing costs

FSMF Fleet size and mix vehicle routing problem with fixed costs

FSMFD Fleet size and mix vehicle routing problem with fixed costs and vehicle dependent
routing costs

FSMVRPTW Fleet size vehicle routing problem with time windows

GA Genetic algorithm

GLS Guided local search

GLSM Generalized local search machines

GRASP Greedy randomized adaptive search

HC Hill climbing

HVRP Heterogeneous vehicle routing problem

HVRPD Heterogeneous vehicle routing problem with vehicle dependent routing costs

HVRPFD Heterogeneous vehicle routing problem with fixed costs and vehicle dependent
routing costs

ILP Integer linear programming

ILS Iterative local search

IP Integer programming

irace Iterated F−race

LIFO Last in first out

LS Local search



94 List of Abbreviations

MCLP Multiple container loading problem

MCLPBWMD Multiple container loading problem with bearing weights and multi-drop

MCPP Multiple container packing problem

MD-PVRP Multi-depot periodic vehicle routing problem

MD-VRP Multi-depot vehicle routing problem

MP-VRP Multi-pile vehicle routing problem

NOLH Nearly orthogonal latin hypercubes

NP-hard Non-deterministic polynomial-time hard

OR Operations Research

PAS Patient admission scheduling

PE-CTT Post-enrolment course timetabling

PP-VRP Pallet-packing vehicle routing problem

PVRP Period (or periodic) vehicle routing problem

SA Simulated annealing

SDVRP Split delivery vehicle routing problem

SLS Stochastic local search

TS Tabu search

TSP Traveling salesman problem

VNS Variable neighborhood search

VRP Vehicle routing problem

VRPPC Vehicle routing problem with private fleet and common carrier

VRPTW Vehicle routing problem with time windows

VRPTWCDC Vehicle routing problems with time windows and carrier-dependent costs
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[169] V. Černý. Thermodynamical approach to the traveling salesman problem: An efficient sim-
ulation algorithm. Journal of optimization theory and applications, 45(l):41–51, 1985.

[170] W. N. Venables and B. D. Ripley. Modern applied statistics with S. Statistics and Computing.
Springer, 4th edition, 2002.

[171] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei. A hybrid genetic algorithm
for multi-depot and periodic vehicle routing problems. Technical Report CIRRELT-2011-05,
CIRRELT, 2011.

[172] T. Volgenant and R. Jonker. On some generalizations of the travelling-salesman problem.
Journal of the Operational Research Society, 38(11):1073–1079, 1987.

[173] L. Wang, S. Guo, S. Chen, W. Zhu, and A. Lim. Two natural heuristics for 3D packing with
practical loading constraints. In B.-T. Zhang and M. Orgun, editors, PRICAI 2010: Trends
in Artificial Intelligence, volume 6230 of Lecture Notes in Computer Science, pages 256–267.
Springer Berlin / Heidelberg, 2010.
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