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Introduction 
 

 

 

The importance of considering the environmental performance of buildings during 

conceptual stages of the design process is growing as a consequence of the restrictive 

requirements of building regulations and energy certification. This also reflects a 

more global concern to develop a new strategy to limit the effects of climate change. 

As the building industry is responsible for an extensive amount of energy being 

consumed and, as a result, of carbon emissions being produced, today the design of 

buildings is required to respond to climate change in more than one way. In the first 

place a reduction of carbon dioxide emissions is necessary in order to respond to the 

growing need of mitigation of their effects on the environment; secondarily the 

concept of integrated design is being increasingly acknowledged as a key issue to 

address sustainability in order to deal with the adaptation of building design to the 

actual and future conditions [1]. 

The façade plays a key role in the design of buildings that need to meet strict 

requirements of energy efficiency and at the same time provide internal comfort 

conditions. In air-conditioned buildings, and especially in office buildings that have 

highly glazed curtain wall façades, the energy consumption levels for heating, 

cooling and artificial lighting strongly depend on solar exposure and on the 

performance of the building envelope, since the latter is responsible for heat losses, 

solar heat gains and it allows for daylighting. The complicated interactions between 

the various parameters involved make the design of a good façade a very challenging 

task. It is extremely important to take into account all aspects that affect the energy 

and comfort performance of the building at the same time and to find the best 

balance between the resultant contradictory requirements. 

In the published work the importance of building envelope design in ensuring 

thermal and visual comfort conditions is a widely discussed topic [2,3], and its 

implications in office buildings are analyzed in depth both on a theoretical point of 

view and with practical applications [4,5]. An interesting example is given by a 

toolkit developed by CIBSE (The Chartered Institution of Building Services 

Engineers, UK) for the selection of suitable façade systems based on prior 

investigation of the performance of 37 different highly glazed curtain wall façades 

[6]. Extensive analysis of different façade parameters and how they influence office 

internal conditions and energy consumption is provided by Hausladen et al. [7]. The 

integration of photovoltaic technologies in the building envelope is also a topic 

worthy of note, and for example the electricity benefits of daylight and building 

integrated photovoltaics are studied by Vartiainen for various façade layouts in office 

buildings [8]. 
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The traditional techniques used to study the impacts of design variables on building 

operation usually involve parametric studies to compare different alternatives, often 

employing dynamic energy simulation programs. While these can be valuable tools 

to assess the performance of different envelope configurations in early stages, yet the 

exploration of the design space is usually not complete and thus ineffective in 

determining the sought-after solutions. Additional design methods and tools to help 

with decision-making in the concept phase are needed to cope with the complexity of 

the problem and to be able to generate and compare many potential design 

alternatives. 

Simulation based optimisation is a procedure that couples an optimisation program to 

a simulation program whose function is to calculate a certain performance of a 

model. By means of an optimisation algorithm it is possible to perform an automated 

search for one or more optimal solutions exploring the design space in depth but 

without having to consider all possible solutions, which would be an extremely time 

consuming task. In the field of building design, the simulation can be carried out by 

any program that can evaluate a model of the object under study. This includes 

available dynamic energy simulation programs (EnergyPlus, TRNSYS, etc.) or 

lighting analysis programs (Radiance), as well as custom made programs or routines. 

Different types of algorithms can be used for the optimisation process, and they can 

usually be classified as belonging to two main groups: deterministic gradient based 

algorithms and probabilistic ones. Evolutionary algorithms have been employed for a 

number of building related optimisation problems, including building envelope 

design, because of their capability in handling big amounts of variables and potential 

solutions. They are a family of probabilistic algorithms that base their search for 

optimal solutions on the principles of evolution of the species or the behaviour of 

groups of animals; among others they comprehend Genetic Algorithms (GA), 

Evolutionary Neural Networks (ENN) and Particle Swarm Optimisation (PSO). 

There is a wide selection of works where evolutionary algorithms are employed to 

optimize both building envelopes and HVAC systems parameters [9,10,11]. The 

most outstanding is the one by Magnier et al. [12], where a multi-objective 

optimisation is performed by means of both genetic algorithm and artificial neural 

network, and with the use of TRNSYS simulation software. Sticking to envelopes 

only, some authors focused on residential buildings optimising the size of windows 

[13], or all characteristics of the envelope [14], in terms of overall energy 

performance. Other authors involved also the shape of the building into the 

optimisation process, studying the impact of different climates [15], or searching for 

the trade-off between construction costs and environmental impact [16]. Hasan et al. 

[17] used PSO algorithms to optimise life-cycle cost of a single detached house in 

Finland, while Stephan et al. [18] used a hybrid PSO-Hooks Jeeves algorithm for the 

optimisation of envelope openings in order to ensure desired natural ventilation. In 

more recent times, the design of energy efficient façades was optimised via ENN for 

both single and multi-objectives in the work of Zemella et al. [19]. Moreover, in a 
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previous effort the author of the present thesis applied PSO algorithms to optimise 

the curtain wall of office buildings in terms of carbon emissions [20].  

Although the optimisation techniques employed are not regarded as evolutionary 

algorithms, another notable and interesting work in the field of simulation based 

envelope design optimisation is the one by Mahdavi and Mahattanatawe [21,22]: the 

authors developed a computational environment that derives the optimal basic 

properties of a “virtual” enclosure given a set of indoor climate requirements, and 

then uses the found values to identify an actual building enclosure construction from 

a linked database. 

Both free and commercial programs exist to support engineers or designers in using 

simulation based optimisation techniques in a wide range of applications. However, 

their operation is usually quite complicated and arranging an optimisation process 

can require a lot of effort and knowledge of the tool itself. Moreover, as they are 

typically general optimisation tools, they do not focus specifically on simulation 

programs used in the field of building design. 

For the work of this thesis, a simulation-optimisation tool was developed in Matlab 

environment to automate the coupling of the free energy simulation program 

EnergyPlus to the optimisation capabilities of the genetic algorithms included in 

Matlab‟s Optimisation Toolbox. Besides the routines and functions that make up the 

structure of the program, a graphical user interface was also created to make the 

process of setting up a simulation based optimisation more straightforward and 

quick. The program was then employed in different case studies to create and 

perform automated optimisation processes to search for the optimal values of 

selected envelope parameters.  

In the first chapter the role of the building envelope as an interface is described and 

the challenges of designing an energy efficient façade are underlined. In the second 

chapter simulation based optimisation methods are thoroughly explained, along with 

the theory of genetic algorithms and the operation of the energy simulation program 

EnergyPlus. In the third chapter the custom made program ePlusOpt is presented, 

illustrating both the underlying processes and programming and its function as a 

graphical user interface. The program was then employed for different optimisation 

processes in three case studies, whose results are reported in the following chapters. 
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1 
Building envelope design 

 

 

 

1.1 The façade as interface 

The façade of a building is responsible for the interaction between the interior and 

the external environment: it has to provide thermal insulation, acoustic insulation, 

weather tightness, allow for daylight and for a view to the outside (figure 1.1). 

Moreover, it confers the building its aesthetical appearance so its design is also 

tightly related to the architectural concepts and ambitions. Since all these factors are 

strongly interrelated and they give rise to a number of functional conflicts, the design 

of a building envelope can be a very complex task.  

 

 

Figure 1.1 – The façade as interface 
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The role of the façade with respect to energy consumption (and the consequent 

carbon emissions) and indoor climate is to guarantee internal comfort conditions to 

the greatest possible extent while reducing the operation energy requirements, all 

under the dynamically changing conditions of the outdoor climate. To give an idea of 

how complicated this role of the façade as an interface is, let us consider how 

different requirements lead to conflicts of objectives. The envelope must maximise 

solar heat gains through windows in winter, but prevent the entry of too much solar 

radiation in summer; at the same time it has to provide daylight deep into the room 

during the period of building use and a good level of natural ventilation. The 

admission of the desired amount of solar radiation in winter and the optimum use of 

natural light often lead to glare problems. The solar screening needed in summer 

results in a reduction of daylight entering the interior. A strategy that involves strong 

natural ventilation of the building in city centres is usually accompanied by the entry 

of unwanted noise. The objective in envelope design is thus to find a compromise 

between the various requirements, bearing in mind the type of building use and the 

specific location. 

The following paragraphs intend to give a general overview of the main envelope 

functions taking into account the energetic and indoor climatic characteristics of a 

general façade of an office building in winter and in summer, alongside some aspects 

of the use of natural light. The featured examples contribute to highlight the 

conflicting requirements that must be faced when designing an efficient façade from 

both energy and comfort points of view. 

 

 

1.2 Thermal model used for the parametric studies 

For all the parametric studies presented in the rest of the chapter the same model of a 

typical office building was used. The office room considered has a 4.5m width, a 5m 

depth and a 3m height as shown by figure 1.2.  

 

 

Figure 1.2 – Image of the room modelled in EnergyPlus 
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The assumptions made for internal gains, internal surfaces, ventilation and air 

conditioning strategies are summarized in table 1.1. All internal surfaces are 

considered adiabatic, no thermal mass in the floor and ceiling is present. Most of the 

characteristics of the façade, such as the wall thermal transmittance, the glazing type 

and percentage, or the presence of external shading devices, are varied throughout 

the different examples. To compute the energy required for the artificial lighting a 

daylighting control model was employed, based on two reference points positioned at 

desk level inside the room as pictured in figure 1.3. According to the levels of 

daylight coming in from the windows, the use of artificial lights in the room is 

regulated. The illuminance design level was set at 500 lux, the lights being turned on 

whenever this level is not met, working with a continuous dimming strategy. 

 

TYPE VALUE 

Internal gains  

Electric equipment 460 W
 

People (62 people) 108 W/person
 

Lights 8 W/m
2 

Surface reflectance  

Walls 60 % 

Ceiling 80 % 

Floor 20 % 

Ventilation  

Infiltration 0.15 ach 

Mechanical Ventilation 1 ach (max) 

Operating strategy  

Heating setpoint / setback 22°C / 12°C 

Cooling setpoint / setback 24°C / 30°C 

Heating and Cooling 

availability 

8am – 6pm on 

workdays 

Table 1.1 – Model design assumptions 

 

 

 
Figure 1.3 – Disposition of daylighting 

reference points in the model 

 

 

 

 

 

 

1.3 The façade in winter 

The main concern in winter is the reduction of transmission heat losses, which are 

influenced mainly by the insulation thickness and the quality of the glazing system. 

In addition, especially after the improvement of insulation standards, particular 

attention must be paid to thermal bridges, which can also cause surface condensation 

problems. Obviously the heat losses reduce with increasing insulation thickness, but 
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other factors are to be kept in mind because the preferred thickness can depend on 

the type of construction, the percentage of window area, and the amount of internal 

heat loads for example. The same aspects can influence also the selection of the type 

of glass to install. Double glazed units are the standard, with the option of applying 

low emissivity coatings to improve they performance. Three-pane units can lower the 

glazing U-value down to 0.5 W/m
2
K but they are much more expensive and complex 

to build. Figures 1.4 and 1.5 show the effect of insulation standard and of percentage 

of glazed area respectively on the annual heating demand for the aforementioned 

office room under the particular conditions summarised in the tables next to them. 

 

Insulation Standard 
Wall U-value 

(W/m
2
K) 

Glazing U-value 

(W/m
2
K) 

Poor 0.5 1.4 

Medium 0.3 1.1
 

Good 0.2 0.8
 

Table 1.2 – Insulation standards used in figure 1.4 

 

 
Figure 1.4 – Effect of insulation standard on heating 

energy demand 

 

 
Climate Paris 

Glazing % 50 

Glazing g-value 0.6 

Blinds Strategy Closed if: 

Glare I > 22 

or 

Ifac > 200 W/m
2
 

Table 1.3 – Model assumptions 

applicable to figure 1.4 
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Figure 1.5 – Effect of percentage of glazed area on 

heating energy demand 

 

 

 
Climate Paris 

Glazing U-value 1.1 W/m
2
K 

Glazing g-value 0.6 

Wall U-value 0.3 W/m
2
K 

Blinds Strategy Closed if: 

Glare I > 22 

or 

Ifac > 200 W/m
2
 

Table 1.4 – Model assumptions 

applicable to figure 1.5 

 

 

 

Solar heat gains from the windows also play an important role in reducing the 

heating demand during the winter months. They depend essentially on the orientation 

of the façade, the area of the glazed surfaces and their g-value, but also on the 

presence and characteristics of shading devices. However, caution must be used 

because the usability of these gains depends on the particular climatic conditions, on 

the presence of thermally exploitable storage masses and again on the internal loads. 

Finally, ventilation heat losses must be taken into account: first of all a high degree 

of air tightness of the envelope is essential to reduce unwanted leaks, secondly the 

rate of air changes should be planned in order to reduce ventilation energy demand to 

the possible extent, and finally heat recovery systems should be considered where 

high flows of exhaust air are expected.  

 

 

1.4 The façade in summer 

Assuring a good room climate in summer can be a difficult task especially when 

dealing with office buildings where the internal heat loads are particularly high and 

the desire for transparency often leads to an increased entry of solar radiation and a 

reduced thermal storage mass. The internal conditions of buildings during the 

summer months are mainly determined by the following factors: orientation, 

proportion of glazed area, glazing type and solar shading strategy.  

The orientation determines the azimuth and altitude angles of the sun to the façade 

and the intensity of the solar irradiance, which, along with the outside temperature 

profile, can strongly affect the comfort levels during office hours. For this reason 

strategies to provide appropriate solar screening and ventilation must be developed 

according to the characteristics of the façade arising from its orientation.  
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Figure 1.6 – Effect of percentage of glazed area on 

cooling energy demand 

 

 
Climate Rome 

Wall U-value 0.3 W/m
2
K 

Glazing U-value 1.1 W/m
2
K 

Glazing g-value 0.45 

Blinds Strategy Closed if: 

Glare Ind > 22 

or 

Ifac > 200 W/m
2
 

External 

Shading 

Overhang, 

depth 1 m 

Table 1.5 – Model assumptions 

applicable to figure 1.6 

 

The percentage of glazed area achievable without exceeding internal comfort criteria 

also depends on the orientation: as rules of thumb north facing façades can usually 

have larger glazed areas, the south side allows higher transparency than the east or 

west sides because of the different angle of incidence of solar radiation. In general 

the cooling energy demand rises almost in direct proportion to the percentage of 

window area (figure 1.6). The design of an accurate solar screening scheme has a 

considerable impact on both cooling loads and comfort conditions. The total solar 

energy heat gains through a window are determined by the solar energy 

transmittance of the glazing (g-value) and by the shading factor of the solar screening 

provided. Solar control glass or blinds systems in the glazing cavity can influence the 

g-value, while the shading factor depends on the type and placement (internal or 

external) of system used (figure 1.7). Internal screening is inexpensive and low 

maintenance, but not able to keep out much of the solar radiation. External systems 

are more efficient but in certain cases can be affected by the weather conditions.  

 

Shading strategy External shading device Glazing g-value  

Type 1 Overhang, 1 m deep 0.6 

Type 2 Overhang, 1 m deep 0.35
 

Type 3 
Louvres, 0.2 m deep,  

0.2 m spaced 
0.6 

Type 4 
Louvres, 0.2 m deep,  

0.2 m spaced 
0.35

 

Table 1.6 – Shading strategies used in figure 1.7 

 

Nevertheless, the design of solar screening must always take into account the 

orientation of the building and its interaction with the proportion of window area. 
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Furthermore, control strategies on the automation of shading devices need to be 

carefully thought through because they can significantly alter the overall efficiency 

of the whole screening system.  

 

 
Figure 1.7 – Effect of shading strategy area on cooling 

energy demand 

 

 
Climate Rome 

Orientation South 

Wall U-value 0.3 W/m
2
K 

Glazing % 70 

Glazing U-value 1.1 W/m
2
K 

Blinds Strategy Closed if: 

Glare Ind > 22 

or 

Ifac > 200 W/m
2
 

Table 1.7 – Model assumptions 

applicable to figure 1.7 
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2 
Simulation based optimisation 

 

 

 

2.1 Concepts and process 

Optimisation is a process aimed at finding the best solutions of a problem by means 

of minimising an objective function that somehow describes its performance. The 

procedure comprehends a model that describes the problem and an optimisation 

algorithm that minimises the objective function. The optimisation model is made up 

of variables, constraints and the aforementioned objective function. 

In simulation based optimisation the objective function is computed by running an 

external program that simulates the behaviour of a particular model that represents 

the problem. Inside the optimisation algorithm there must be a call for the simulation 

solver every time the performance of a potential solution needs to be evaluated. Once 

the simulation produces its output, this is retrieved by the algorithm and used to 

calculate the objective function. This procedure is repeated throughout the whole 

progression of the optimisation until the algorithm reaches its stopping criterion; at 

this point the process stops and the optimum solution found is returned. 

 

 
Figure 2.1 – Scheme of simulation based optimisation process 
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In the field of building design, the simulation side consists of dynamic simulations of 

thermal models run by proper software tools (see paragraph 5 of this chapter). The 

coupling of the two programs is not straightforward and to be achieved requires a 

rather large amount of programming. There are some optimisation programs that 

provide tools to assist the user in setting up this coupling. The next chapter will 

explain how the self made program ePlusOpt is automatically programmed to 

perform this task.  

 

 

2.2 Mathematical background of optimisation problems 

 

2.2.1  Basic optimisation problems 

In the most general form, the optimisation problems can be stated as follows [23]: let 



X n  be a user-specified constraint set, and let 



f :n  be a user-defined cost 

function that is bounded from below. The constraint set X consists of all possible 

design options, and the cost function 



f   measures the system performance.  

The aim of the optimisation process is to find a solution to the problem: 



min
xX

f x  

This problem is usually solved by iterative methods, which construct infinite 

sequences of progressively better approximations to a “solution”, i.e. a point that 

satisfies an optimality condition.  

 

2.2.2  Problems with continuous and discrete variables 

It is possible to distinguish between problems whose design parameters are 

continuous variables, discrete variables, or both. In the latter case, the constraint set 

that comprises all the possible solutions becomes the following: 



XXc  Xd  with 



x xc,xd nc nd  

The constraints on the continuous variables are:  



Xc x nc | li  x i  ui,i 1,....,nc   

where the limits are 



 li  ui ,i 1,...,nc . 

The constraints for the discrete variables are: 



Xd  Z
nd  

that is a set with a finite number of integers for each variable. 

The cost function becomes: 



f :nc nd  
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2.2.3  Problems where the cost function is computed by a simulation software 

When the value of the cost function derives from simulations run by proper software 

tools the function 



f :n  cannot be mathematically evaluated, but can be 

approximated numerically by approximating cost functions 



f*:

p n , 

where the first argument is the precision parameter of the numerical solvers. In such 

programs, computing the cost involves solving a system of partial and ordinary 

differential equations that are coupled to algebraic equations. In general, it is only 

possible to obtain approximate numerical solutions. Hence, the cost function 



f x  

can only be estimated by an approximating cost function 



f * ,x , where 



 

p  is 

a vector that contains precision parameters of the numerical solvers. Consequently, 

the optimisation algorithm can only be applied to 



f * ,x  and not to



f x .  

In such thermal building simulation programs it is common that the termination 

criteria of the solvers that are used to solve the partial differential equations, ordinary 

differential equations, and algebraic equations depend on the independent variable x. 

Therefore, a perturbation of x can cause a change in the sequence of solver iterations, 

which causes the approximating cost functions 



f * ,x  to be discontinuous in x. 

Consequently, 



f * ,  is discontinuous, and a descent direction for 



f * ,  may 

not be a descent direction for 



f  . Therefore, optimisation algorithms can terminate 

at points that are non-optimal. In general, even if the optimisation terminates at a 

point that is non-optimal for 



f  , the obtained system performance can be expected 

to be better than the one that would be found without any optimisation. However 

choosing the proper algorithm can significantly reduce this risk.  

 

2.2.4  Multi-objective optimisation problems 

Multi-objective optimisation deals with the minimisation of a vector of objectives 



F x  that can be the subject of a number of constraints or bounds [24]:  



min
xn

F x  

subject to:  



Gi x  0,i 1,K ,ke;   

  



Gi x  0,i  ke 1,K ,k;   

  



l  x  u  

Since F(x) is a vector of competing components, there is no unique solution to the 

problem and the concept of non-inferiority [25] (also called Pareto optimality [26]) 

must be introduced to characterize the objectives. A non-inferior solution is one in 

which an improvement in one objective requires a degradation of another. To better 

understand this concept, consider an element x in the feasible region Ω of the 

parameter space: 



 x n  
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subject to:  



Gi x  0,i 1,K ,ke;  



Gi x  0,i  ke 1,K ,k;  



l  x  u  

The corresponding feasible region for the objective function space Λ is defined as 

follows:  



  y m : y  F x ,x   

As pictured in figure 2.2, the performance vector F(x) maps the parameter space into 

the objective function space.  

 

 
Figure 2.2 – Mapping from parameter space into objective function space 

 

A point 



x  is defined as a non-inferior solution if for some neighbourhood of 



x  

there does not exist a 



x  such that: 



x x   and  



Fi x
 x  Fi x ,i 1,K ,m  and 



Fj x
 x  Fj x   for at least one j.  

Figure 2.3 shows the set of non-inferior solutions in a two-dimensional 

representation: that is the curve the lies between points C and D.  

 

 
Figure 2.3 – Set of non-inferior solutions 
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Points A and B are examples of non-inferior points, because an improvement in one 

objective requires a degradation in the other: F1B < F1A, F2B > F2A.  

Multi-objective optimisation is concerned with the generation and selection of non-

inferior solution points, also called Pareto optima.  

 

 

2.3 Single-objective vs. multi-objective optimisation 

 

2.3.1  Multi criterion decision making (MCDM) 

MCDM methods are used to support decision makers facing problems involving 

multiple criteria. Since there does not exist a unique optimal solution to such 

problems that can be obtained without incorporating preference information, it is 

necessary to evaluate the impact of the trade-off between the different design criteria 

on the design solutions. 

The process has two elements [27]: 

1. Decision as to which trade-off between the criteria has to be used; 

2. Search for one or more solutions that reflect the desired trade-off. 

The relationship between decision and search has three forms: 

 A priori: decide first, then search; leads to one optimum design solution (the 

single point in figure 2.4); 

 Progressive: decide and search concurrently; leads to various optimum design 

solutions (multiple colored points in figure 2.4); 

 A posteriori: search first, then decide; leads to a complete set of optimum 

design solutions (the trade-off curve in figure 2.4). 

 

 
Figure 2.4 – Representation of MCDM for two criteria 
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The concept of an optimal solution is often replaced by that of non-dominated 

solutions. A non-dominated solution has the property that it is not possible to move 

away from it to any other solution without sacrificing in at least one criterion. 

Therefore, it makes sense for the decision maker to choose a solution from the non-

dominated set. Otherwise, he could do better in terms of some or all of the criteria, 

and not do worse in any of them.  

 

2.3.2  Comparison of the two techniques 

In single-objective optimisation, there is an “a priori” relationship between decision 

and search. The objective function is made up by the weighted sum of the different 

criteria: 



f (x) w1  f1 x w2  f2 x K wn  fn x  

This means that the search is for a single optimal design solution, which represents 

the chosen trade-off between the different criteria. 

On the other hand, multi-objective techniques involve an objective function for each 

criterion implicated and perform a search for a set of possible optimal solutions, each 

corresponding to a different trade-off between the objectives. In this case the 

decision as to which solution to adopt is made “a posteriori”. 

The most used method to determine the trade-off curve is the Pareto Theory. A 

ranking scheme is employed to find the non-dominated solutions: the ranking of a 

solution represents the number of solutions that have a lower value in both criteria 

(figure 2.5). The non-dominated solutions are the ones indicated by a ranking of zero 

and they make up the Pareto set of solutions, also called Pareto Front (figure 2.6). 

 

 
Figure 2.5 – Pareto ranking scheme        Figure 2.6 – Pareto Front 

 

In the field of building design, where many complicated and interrelated issues are 

involved, it is usually not advisable to use weighting factors for the different criteria 

because a lot of assumptions would have to be made and only one or a small number 

of solution would be found. Instead, it would be much more beneficial to provide the 
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decision makers with various good alternatives to choose from during the early 

design stages. That‟s the reason why multi-objective optimisation techniques are 

more appropriate. 

 

2.3.3  Algorithm selection 

There are many available algorithms that can be used for a large variety of 

optimisation problems: the choice of the most suitable one to handle the optimisation 

process depends on the number and type (continuous and/or discrete) of variables 

involved, and on the way the objective function is calculated.  

In simulation based optimisation, where external dynamic simulations are employed 

to compute the value of the objective function, the latter is highly discontinuous and 

non differentiable. Therefore it is essential to use algorithms that can cope with these 

characteristics of the objective function when solving the optimisation problem. 

Evolutionary algorithms have proved to be particularly suitable in this field, and they 

offer the additional advantage of their capability in handling huge amounts of 

variables and potential solutions. Genetic algorithms are the most common in this 

family of population based probabilistic algorithms, which includes also PSO 

(Particle Swarm Optimisation) and ENN (Evolutionary Neural Networks). Wetter e 

Wright demonstrated the suitability of probabilistic optimisation algorithms to treat 

non-smooth, simulation based optimisation problems [28].  

 

 

2.4 Genetic Algorithms 

 

2.4.1  Brief history 

The idea to apply Darwin‟s theories of evolution on optimisation tools for 

engineering problems initiated in the 1950s and 1960s. There were several 

independent projects, but the common idea was to evolve a population of candidate 

solutions to a given problem using operators inspired by natural selection and genetic 

variation [29]. 

John Holland is recognised as the inventor of Genetic Algorithms (GAs), which he 

developed with his colleagues at the University of Michigan in the 1960s and 70s. 

His main goal was to find a general way to import the mechanisms of natural 

adaptation into computer systems. He explained these concepts in his book 

“Adaptation in Natural and Artificial Systems”, where he presented the genetic 

algorithm as an abstraction of biological evolution. 

 

2.4.2  Basic principles 

Genetic algorithms are population based probabilistic methods based on natural 

selection and genetic recombination, the processes that drive biological evolution. A 

population of individuals (possible solutions) is first randomly generated and then 

repeatedly modified through genetic operators. At each step, the GA selects 
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individuals from the current population to be parents based on their fitness function 

value, and uses them to produce the children for the next generation. Over 

successive generations, the population "evolves" toward an optimal solution. The 

crucial steps of the algorithm operation are outlined in figure 2.7. 

The main differences in comparison to a classical, derivative-based, optimisation 

algorithm are that the GA generates a population of points at each iteration and that it 

selects the next generation by computation using random number generators. 

 

 
Figure 2.7 – Outline of GA operation 

 

2.4.3  Terminology 

o Fitness function – the objective function that has to be minimised; 

o Individual – any point to which the fitness function can be applied, so any 

possible solution to the problem; 

o Score – the value of the fitness function of a particular individual; 

o Genome (or Chromosome) – the “genetic” information contained in any 

individual, i.e. the values of the variables; 

o Gene – the entries of the genome, i.e. each variable encoded; 

o Population – an array of individuals; 

o Generation – each newly formed successive population; 

o Parents – the individuals selected to create the next generation; 

o Children – the individuals that will form the next generation; 
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o Elite children – individuals of the current generation with the best score; 

o Diversity – the average distance between individuals in a population. 

 

 
Figure 2.8 – Genome and genes 

 

2.4.4  Genetic operators 

There are three main types of rules that are brought into play at each step to create 

the next generation from the current population. Their procedure mimics some 

processes of biological evolution, this is why they are called genetic operators. 

 Selection rules select the individuals, called parents, that will build the 

population of the next generation; 

 Crossover rules combine two parents to form children for the next generation; 

 Mutation rules apply random changes to individual parents to form children.  

Each operator can implement different types of rules and can have some parameters 

to adjust. Which ones are the most appropriate for a specific problem is very difficult 

to know; however some general guidelines can be followed. 

 

 
Figure 2.9 – Selection rule: Tournament with size 4 

 

Figure 2.9 illustrates the working of a Tournament type selection rule, where four 

individuals (the size can be changed) are randomly picked from the current 

population and evaluated against each other in terms of their score. The one with the 

higher score will be selected as a parent for the next generation. The next figure 

explains how children are created by the different operators. The crossover and 

mutation operators can involve many different rules as how to create the children, the 

one pictured are just an example. 
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Figure 2.10 – Creation of children 

 

 

2.5 The energy simulation program: EnergyPlus 

 

2.5.1  How the program works 

EnergyPlus [30] is an energy simulation program for the analysis of the behaviour of 

buildings in applications that concern heating, cooling, lighting, ventilation, and any 

other source that takes part in the energy balance. It is written in the Fortran 90 

programming language and owes many of its peculiar characteristics to programs 

such as Blast and DOE-2 which laid the foundations for energy modelling since the 

80‟s. The aim of this thesis is not to analyse in detail the way the software work, 

therefore only a brief description of its main features will follow. 

The software is made up by a modular system where different parts interact with 

each other to evaluate the energy requirements of buildings, by means of dynamic 

simulations that take into account different environmental and operating conditions. 

Such parts do not interfere in the calculation, but take part in it only when the 

simulation demands it; this is the reason for the availability of different solution 

algorithms. The core of the simulation is the energy model, which is based on the 

fundamental principles of thermal balance. The model is assisted by a control system 

to handle the great amount of data required to simulate the high number of 

combinations of systems and plants in relation to different environmental conditions.  

EnergyPlus is a simulation engine and does not incorporate any graphical user 

interface neither for the input of data nor for the visualization of the output. These 

functions can be carried out by a number of different third party programs that 

provide user interfaces. The input model consists basically of text files which are 

interpreted by the Simulation Manager, that can also interact with external modules 

to interpret data coming from different sources. This broad-spectrum architecture of 

the program is explained in figure 2.11. 
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Figure 2.11 – General interaction of modules in EnergyPlus 

 

Differently from other simulation programs, EnergyPlus doesn‟t calculate the 

required thermal loads prior to the plant simulation, but at every cycle it makes use 

of the values obtained from the latter to compute the new loads required for the next 

cycle. This basically means that it runs an integrated simulation, where all the major 

parts, i.e. building, system and plant, are solved simultaneously to obtain a physically 

realistic simulation. In programs with sequential simulations, such as BLAST or 

DOE-2, the building zones, air handling systems, and central plant equipment are 

simulated sequentially with no feedback from one to the other. The sequential 

solution begins with a zone heat balance that updates the zone conditions and 

determines the heating/cooling loads at all time steps. This information is fed to the 

air handling simulation to determine the system response, but that response does not 

affect zone conditions. Similarly, the system information is passed to the plant 

simulation without any feedback. This simulation technique works well when the 

system response is a well-defined function of the air temperature of the conditioned 

space. 

However, in most situations the system capacity is dependent on outside conditions 

and/or other parameters of the conditioned space. In sequential simulation methods 

the lack of feedback from the system to the building can lead to non-physical results. 

In order to obtain a simulation that is physically realistic, the elements have to be 

linked in a simultaneous solution scheme. The entire integrated program can be 

represented as a series of functional elements connected by fluid loops. In 

EnergyPlus all the elements are integrated and controlled by the Integrated Solution 
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Manager. The loops are divided into supply and demand sides, and the solution 

scheme generally relies on successive substitution iteration to reconcile supply and 

demand, using the Gauss-Seidell philosophy of continuous updating.  

 

 
Figure 2.12 – EnergyPlus program schematic 

 

The basis for the zone and system integration incorporates a shortened simulation 

time step, typically between 0.1 and 0.25 hours, and uses a time-marching method 

having the zone conditions lagged by one time step. The error associated with this 

approach depends significantly on the time step. The smaller the step size the smaller 

the error, but the longer the computation time. In order to permit increasing the time 

step as much as possible, while retaining stability, zone air capacity was also 

introduced into the heat balance. 

The resulting method is called “lagging with zone capacitance”. Although requiring 

substantially more time to execute than sequential simulation methods, the improved 

realism of the simultaneous solution of loads, systems and plant simulation is 

desirable. 

The method of lagging with zone capacitance uses information from previous time 

steps to predict system response and update the zone temperature at the current time. 

The time constant, , for a zone is on the order of: 



 
Vc p

Q
.

loadQ
.

sys

      (eq. 2.1) 

where the numerator is the zone air heat capacitance and the denominator is the net 

rate of heat energy input. The value of  can vary because the zone load and system 

output change throughout the simulation. Therefore, a variable adaptive time step 

shorter than one hour is used for updating the system conditions. For stability reasons 

it was necessary to derive an equation for the zone temperature that included the 
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unsteady zone capacitance term and to identify methods for determining the zone 

conditions and system response at successive time steps. The formulation of the 

solution scheme starts with a heat balance on the zone. 



Cz
dTz

dt
 Qi

.

i1

Nsl

  hiAi(Tsi Tz)
i1

Nsurfaces

  mi

.

Cp (Tzi Tz)
i1

Nzones

  m
.

infCp (T Tz)Q
.

sys  

(eq. 2.2) 

where:  



Q


i

i1

N sl

  is the sum of the convective internal loads, 



hiAi(Tsi Tz)
i1

Nsurfaces

  is the convective heat transfer from the zone surfaces, 



m


infCp (T Tz) is the heat transfer due to infiltration of outside air, 



m


iCp (Tzi Tz)
i1

Nzones

  is the heat transfer due to interzone air mixing, 



Q
.

sys is the system output and 



Cz
dTz

dt
 is the energy stored in the air. 

If the air capacitance is neglected, the steady state system output is: 



Q


sys  Q


i hiAi(Tsi Tz) m


iCp (Tzi Tz) m


infCp (TTz)
i1

NZones


i1

NSurfaces


i1

Nsl

      (eq. 2.3) 

Air systems provide hot or cold air to the zones to meet heating or cooling loads. The 

system energy provided to the zone, 



Q
.

sys, can thus be formulated from the difference 

between the supply air enthalpy and the enthalpy of the air leaving the zone: 



Q
.

sys m
.

sysCp(TsupTz)        (eq. 2.4) 

Equation 4 assumes that the zone supply air mass flow rate is exactly equal to the 

sum of the air flow rates leaving the zone through the system return air plenum and 

being exhausted directly from the zone. If equation 2.4 is substituted into equation 

2.2, we have: 



Cz
dTz

dt
 Qi

.

i1

Nsl

  hiAi(Tsi Tz)
i1

Nsurfaces

  mi

.

Cp (Tzi Tz)
i1

Nzones

  m
.

infCp (T Tz) m
.

sysCp (Tsup Tz)

 (eq. 2.5) 
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The sum of zone loads and system output now equals the change in energy stored in 

the zone. In order to calculate the derivative term, a finite difference approximation 

may be used, such as: 



dT

dt
 t 

1
Tz
t Tz

tt O t 
   

 (eq. 2.6) 

The use of numerical integration in a long time simulation is a cause for some 

concern due to the potential build-up of truncation error over many time steps. In this 

case, the finite difference approximation is of low order that further aggravates the 

problem. However, the cyclic nature of building energy simulations should cause 

truncation errors to cancel over each daily cycle, so that no net accumulation of error 

occurs, even over many days of simulation. All the terms containing the zone mean 

air temperature were then grouped on the left hand side of the equation. Since the 

remaining terms are not known at the current time, they were lagged by one time step 

and collected on the right hand side; therefore the formula for updating the zone 

mean air temperature becomes: 



Cz
Tz
t Tz

tt

dt
 Tz

t hiAi
i1

Nsurfaces

  m
.

iCp
i1

Nzones

  m
.

infCp  m
.

sysCp















Q
.

i

t

i1

Nsl

  m
.

sysCpTsupply

t  hi
i1

Nsurfaces

 AiTsi  m
.

iCpTzi
i1

Nzones

  m
.

infCpT















tt
          (eq. 2.7) 

One final arrangement is to move the lagged temperature in the derivative 

approximation to the right side of the equation: 



Tz
t 

Q


i

t

 m


sysCpTSupply
t  Cz

Tz

t
 hiAiTsi  m



iCpTzi  m


infCpT
i1

Nzones


i1

Nsurfaces
















tt

i1

Nsl



Cz

t
 hiAi  m



iCp  m


infCp  m


sysCp
i1

Nzones


i1

Nsurfaces
















   

(eq. 2.8) 

Equation 2.8 could be used to estimate zone temperatures. 

The simulation follows a Predictor/Corrector process, which can be briefly 

summarised in these three steps: 

1) using equation 2.3, an estimate is made of the system energy required to 

balance the equation with the zone temperature equal to the setpoint 

temperature; 

2) with that quantity as a demand, the system is simulated to determine its actual 

supply capability at the time of the simulation; 
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3) the actual system capability is used in equation 2.8 to calculate the resulting 

zone temperature. 

 

 

2.5.2  The use of energy models within an optimisation process 

As previously stated, an energy model to be used as input for EnergyPlus is 

essentially a text file that contains objects written with a certain syntax to allow the 

program to read it and decode it. The extension used to identify these input files is 

“.idf”. Irrespective of the method used to build it (third party interface, “IDF editor” 

in EnergyPlus, or plain text editor), the file contains information on every component 

included in the model in the form of simple lines of text.  

When it comes to including simulations into an optimisation process, the input file 

representing the model is required to provide a means to identify within its 

components the variables of the problem which will be iteratively changed during the 

procedure every time a simulation of a different model is called for. This brings forth 

the necessity for the model to undergo a step of manual preparation in order to 

replace the value of any input item that represents a variable with some kind of 

identifier. A function or script will then be employed every time a simulation is 

needed to search for this identifier inside the input text file and to replace it with the 

actual value that the variable assumes in that specific case. 

 

2.5.3  The use of Input Macros to improve flexibility in EnergyPlus input files 

The Input Macros feature provided by the program allows to increase the flexibility 

of the input files in different ways. These include the following capabilities:  

 incorporating external files containing pieces of IDF into the main Energy 

Plus input stream; 

 selectively accepting or skipping portions of the input; 

 defining a block of input with parameters and later referencing this block; 

 performing arithmetic and logical operations on the input. 

These capabilities are invoked in the EP-MACRO program [31] by inserting macro 

commands in the input file. Macro commands are preceded by “##” to distinguish 

them from regular input commands. To let EnergyPlus know that the input file 

contains Input Macros, the file extension must be changed from “.idf” to “.imf”. In 

this way the EP-MACRO processor is called first and its execution produces an IDF 

file where the macro commands are converted into regular lines of EnergyPlus input; 

at this point the solver is called and supplied with this resultant IDF input file.  

For the advantage they can bring into simulation based optimisation processes, the 

most important of these features are the inclusion of external files into the main input 

stream and the option to define and later reference any block of input. 
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The ##include command puts all the lines of an external file into the EnergyPlus 

input stream starting right after the command line. The name of the file that is 

included is the concatenation of {prefixPathName}, entered using ##fileprefix , and 

{fileName.idf}. When all the lines in the external file have been read in, input reverts 

back to the original input file at the line following the  ##include command. Thus the 

use of the following commands in the main input file: 

 

##fileprefix {prefixPathName} 

##include {fileName.idf} 

 

will incorporate in it the file whose full name is “prefixPathName/fileName.idf”. 

 

The ##def command allows a block of input text to be defined and given a name. 

The block of text can then be inserted anywhere in the EnergyPlus input stream by 

simply referencing the name of the block. The block can have parameters (also called 

arguments) that can be given different values each time the block is referenced. The 

following syntax defines a macro with the name “macroName” and arguments "arg1" 

through "argn". "MacroText" is one or more lines of EnergyPlus input text.  

 

##def   macroName  [arg1,..,argn ]  

    MacroText  

##enddef   

 

The next command is the same as ##def but there are no arguments and there is only 

one line of text so that the terminating command is not required. 

 

##set1  macroName  MacroText  

 

To reference, and thus insert, any block of input anywhere in the input stream, it is 

enough to write its name followed by the arguments (if any) in square brackets. 

The benefits that can be brought by these features to the exchange of data between 

the simulation side and the optimisation side of the process are obvious. For example 

the model can be broken down into different parts, or “data sets”, that will then be 

included into the main input file, allowing for a better organisation of the 

components of the model. Blocks of input, or just a single parameter, can be defined 

at the beginning of the file and then referenced anywhere. In this way, changing the 

definition of an item causes the same change to happen wherever that item is 

referenced throughout the whole input stream. Combining these two features it is 

possible to create a data set with the definition of all those input parameters that have 

been chosen as variables, and then tell the main input file to include it. The 

parameters can then be referenced in the objects of the model that represent the 

variables. To explain the procedure better, an example is reported in the following 
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figures. The first one pictures an excerpt of a data set file named “ExampleFile.idf” 

that contains the definition of both a block of input and a single line parameter. The 

second one represents the main input file where this data set is included with the 

appropriate command, and where the two defined items are referenced. 

 

 
Figure 2.13 – Use of Input Macros: example of the definition of a block of input 

 

 
Figure 2.14 – Use of Input Macros: example of inclusion of an external file 
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3 
ePlusOpt: a Matlab program for EnergyPlus 

simulation based optimisation 
 

 

 

3.1 Introduction 

In optimisation problems where the objective function is calculated by an external 

simulation program, there is the need to configure the correct communication 

between the latter and the optimisation solver. The program ePlusOpt was developed 

through Matlab programming language with the specific aim to automate as much as 

possible the interaction between the simulation program EnergyPlus and Matlab‟s 

optimisation tools. Given that the user has already prepared the energy simulation 

model to be employed for the EnergyPlus simulations, the program‟s graphical 

interface allows the user to easily set up an optimisation problem, to launch the 

optimisation process and to automatically save the results at its end. 

On the optimisation side, the program makes use of the Genetic Algorithm included 

in Matlab„s Global Optimisation Toolbox, which implement genetic algorithms to 

minimise single-objective or multi-objective functions. These objective functions are 

calculated for each possible solution by running the energy simulation of the 

corresponding model in EnergyPlus.  

Figure 3.1 illustrates on a program level the mutual interactions between the different 

elements that are involved when the program is run. An in depth description of the 

program‟s structure and operation will be presented in the next paragraphs. 
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Figure 3.1 – General interactions on a program level 

 

 

3.2 ePlusOpt as interface  

The main purpose of ePlusOpt is to serve in simulation based optimisation problems 

as an interface between the optimisation side, characterized by the genetic algorithms 

in Matlab, and the simulation side, constituted by the thermal simulation engine 

EnergyPlus. By means of a graphical user interface (GUI), it allows the user to 

define the optimisation problem, to save its definition, and to run it within Matlab 

environment. At the end of the optimisation process, the output is automatically 

saved in the form of Matlab data but also in other formats to make it available for 

post-processing. 

Figure 3.2 shows how the program interacts with the different agents and 

components involved in the process. According to inputs coming from the user 

through the graphical interface, it builds the needed items to set up and run an 

optimisation problem in Matlab, and to configure the user-supplied energy model to 

work correctly during all steps of the process. On the simulation side, it can write 

into EnergyPlus input files, start the simulation and read from the output files. On the 

optimisation side, it can call the Genetic Algorithm, control its progression and get 

the results.  

The next paragraph explains how the program configures the coupling of 

optimisation and simulation and assures the correct execution of their interaction. 
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Figure 3.2 – Detailed interactions between ePlusOpt and the other components 

 

 

3.3 The coupling of Matlab’s GA and EnergyPlus 

The coupling of simulation and optimisation is managed through a series of functions 

and scripts that configure the communication between the GA in Matlab and the 

EnergyPlus software. The core of this interaction happens inside the fitness function 

which is called by the GA to compute the objectives of the optimisation. For every 

possible solution to the problem, hence for every individual in the population, a 

simulation of the corresponding energy model is necessary to obtain the values of the 

parameters required for the evaluation of the objective function. To achieve this, the 

process outlined in figure 3.3 is carried out in the fitness function for every individual 

in the population. The combination of the variables encoded in the chromosome of 

each individual is passed to a function that writes them inside a data set that is part of 

the energy model used for the simulations. Subsequently another Matlab function 

starts the simulation of the updated input file by calling the EnergyPlus executable 

file. This is accomplished by means of executing a system command line that was 

previously and automatically built by the program according to some simulation 

parameters entered by the user. When the simulation ends and the output files are 

produced, a third function retrieves from them the values of the output variables that 

were requested by the user. The fitness function finally uses these values to compute 

the objective(s). 
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Figure 3.3 – Coupling of the GA and EnergyPlus 

 

 

3.4 The object-oriented programming at the base of the program 

Matlab programming language allows to work with object oriented programming, 

which is a very valuable tool when developing programs that need to be flexible and 

re-usable. The main concepts of object oriented programming are the ones of class 

and object. A class is a definition that specifies certain characteristics that all 

instances of the class share. These characteristics are determined by the properties, 

methods, and events that define the class and the values of attributes that modify the 

behaviour of each of these class components. Class definitions describe how objects 

of the class are created, what data the objects contain, and how you can manipulate 

this data. A class is like a template for the creation of a specific instance of the class. 

This instance or object contains actual data for a particular entity that is represented 

by the class. Objects are not just passive data containers. Objects actively manage the 

data contained by allowing certain operations to be performed. An important aspect 

of objects is that you can write software that accesses the information stored in the 

object via its properties and methods without knowing anything about how that 

information is stored, or even whether it is stored or calculated when queried. The 

object isolates code that accesses the object from the internal implementation of 

methods and properties. This characteristic of objects is called encapsulation.  

The following is some basic terminology of object oriented programming and related 

concepts in Matlab: 
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o Class definition -  Description of what is common to every instance of a class 

o Properties - Data storage for class instances 

o Methods - Special functions that implement operations that are usually 

performed only on instances of the class 

o Events - Messages that are defined by classes and broadcast by class 

instances when some specific action occurs 

o Attributes - Values that modify the behaviour of properties, methods, events, 

and classes 

o Objects - Instances of classes, which contain actual data values stored in the 

objects' properties 

To exploit the features of object oriented programming, some classes were created to 

be used as the base for storing and managing data in ePlusOpt. Figure 3.4 pictures a 

UML class diagram that describes these classes and their relationship. UML stands 

for Unified Modelling Language and it is a representation standard that comprises 

concepts and notations used for creating models of object oriented computer 

software.  

 

 
Figure 3.4 – UML class diagram 
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Basically, the three classes can generate objects that are designed to do the 

following: 

- caseStudy: hold general information on the case study and reference any 

optimisation run that has been performed; 

- optRun: store complete information on an optimisation run, comprehending 

simulation parameters, GA settings, variables, and, once the optimisation has 

been performed, the results; 

- generation: store the results of each iteration of the optimisation process to be 

available for later inspection and to build the program outputs. 

The hierarchy of the objects is further explained graphically in figure 3.5. 

The user does not need to know how the objects are created or how the data is stored 

or manipulated because everything is managed automatically by the code that stands 

behind the graphical user interface. In case the user wants to directly access the 

information saved in the objects, this can be easily done in Matlab by loading the 

corresponding variables in the workspace. 

 

 
Figure 3.5 – Hierarchy of objects 

 

 

3.5 Folders and files structure 

The program is designed to work with a specific arrangement of folders and files 

contained by a main project folder. The user must be aware of this structure in order 

to know how to interact with the program correctly. The main folder is laid out in 

figure 3.6, while a detailed account of the “caseStudies” and the “energyPlus” folders 

is displayed in the subsequent figures. 
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Figure 3.6 – Structure of project folder 

 

The folders highlighted in light green colour are the ones where some kind of user 

interaction happens. For example the “optimisation” folder is where the fitness 

functions must be placed after having modified a template found in the same folder. 

Every time a new case study is made from the GUI (see paragraph 3.7), a new folder 

with the user supplied name is automatically created inside the “caseStudies” folder. 

As shown in figure 3.7 this will hold the information about the case study and all the 

results of the optimisations performed. Hence, once an optimisation run ends, its 

output files can be found inside a subfolder of the main case study folder. In 

particular, three types of output are generated:  

 a Matlab variable file with extension “.m” with the results; 

 a comma separated (extension “.csv”) file with information about the whole 

optimisation process and its results; 

 one or more graphs in form of a Matlab figure file that depend on the kind of 

optimisation performed (single or multi objective). 

 



 

 
3.   ePlusOpt: a Matlab program for EnergyPlus simulation based optimisation 

 47 

 
Figure 3.7 – Structure of “caseStudies” folder 

 

At case study creation, another folder with the same name is also automatically 

added to the “dataSets” folder to accommodate the data set files associated with any 

Energy Plus model that will be employed for the specific case study. However, the 

main input files for the Energy Plus model must be placed inside the “inputFiles” 

folder, because the program will look for them in this location. The next paragraph 

informs on how these files must be prepared to work within the optimisation process. 

 

 
Figure 3.8 – Structure of “energyPlus” folder 

 

 

3.6 Preparation of EnergyPlus input files to use with ePlusOpt 

The energy model used for the EnergyPlus simulations is made up by one or more 

input text files. The users of ePlusOpt are required to write and arrange these text 

files in a specific way in order to work properly within the program. This is 

necessary because the read and write operations that involve these files take place by 
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means of low level input/output functions that are programmed to work with specific 

files and a defined syntax.  

As seen in chapter 2, it is possible to split a basic EnergyPlus input file into parts 

(also called data sets) that get included into the main file once the application is run. 

Taking advantage of this feature, it is possible to declare in different files all the 

parameters and variables of a model that will have to be iteratively changed during 

an optimisation process. The benefits of doing so are an improvement in the model 

clarity and the fact that the function that iteratively writes the value of the variables 

does not have to search through the entire input text file. This is managed in 

ePlusOpt in the following way: all energy models main input files added to the 

previously mentioned “inputFiles” folder must reference the following two data sets 

contained in the case study folder that was created in the “dataSets” folder: 

 0_Parameters.idf, that will include the definition of any parameter that the 

user might want to change frequently before starting an optimisation; 

 0_Variables.idf, that will include the definition of all the variables of the 

optimisation problem.  

These data set files are automatically copied from templates into the directory when 

the case study folder is created, and initially contain only the instructions for how 

they should be filled out. The “Parameters” file actually includes also the definition 

of two default items that can be regulated from the program GUI: the location to use 

for the simulations and the orientation of the building. Any other parameter and its 

value can be added by the user. The “Variables” file is the one that will be modified 

by the “modifyVars.m” function before running every simulation according to the 

combination of variables coming from the GA (see figure 3.3). An excerpt of both 

files is displayed in figures 3.9 and 3.10, along with an example of variable 

declaration. 

 
Figure 3.9 – excerpt of “0_Parameters.idf” data set file 
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Figure 3.10 – Excerpt of “0_Variables.idf” data set file 

 

Please note that all the parameters declared in these files must obviously be 

referenced in the EnergyPlus objects that make use of them. For instruction on how 

to include data sets into the main input file and how to set and reference parameters 

inside EnergyPlus files, refer to chapter 2, end of section 2.5.  

 

 

3.7 The graphical user interface (GUI) 

ePlusOpt works mainly through a graphical user interface that allows users to set up 

the optimisation problem after having previously fulfilled some tasks. These 

essentially consist in writing a Matlab function that computes the objectives, 

preparing the energy simulation model and copying it into the appropriate folder. 

When the program is launched, a start up message (figure 3.11) warns the user about 

taking care of these tasks before proceeding. 

 

 
Figure 3.11 – GUI start up message 
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The main panel of the GUI is divided in five parts, or boxes, that group together 

settings of different kinds. In the following section, the features of each of these 

boxes are explained in detail. Once all fields have been completed, pressing the “Run 

Optimisation” button causes the program to perform the following tasks:  

- create a new subfolder for the optimisation in the folder of the selected case 

study; 

- save an “optRun” object with all the information entered inside this folder; 

- call the GA and run the optimisation; 

- at optimisation end save the results. 

 

 
Figure 3.12 – GUI main panel 

 

3.7.1  Case Study box 

As pointed out earlier, any optimisation is part of a case study, whose folder will 

accommodate all the subfolders corresponding to the optimisation runs performed. In 
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the first box of the interface an existent case study must be selected or a new one can 

be created. The “Select” button opens a dialog box that lets the user choose any 

“caseStudy” object contained inside the main case studies folder; its contents will be 

automatically loaded. The “Make New” button opens an edit box (figure 3.13) that 

prompts the user for the information needed to create a new “caseStudy” object.  

 

 
Figure 3.13 – Edit box to create a new case study 

 

3.7.2  Optimisation Run box 

Every optimisation process must be characterized by a name and a brief description. 

The name entered in this box will be used to identify the subfolder where the 

optimisation output files will be placed, and a Matlab variable containing the 

corresponding “optRun” object that will be saved inside this folder. The user must 

then select the fitness function to be used for the optimisation, which should have 

been previously prepared and placed in the appropriate folder. The “Load” button 

allows to load information on an optimisation run that was previously run or just 

defined. This functionality comes to hand when the user wants to re-run a previous 

optimisation with one or more altered parameters, because he doesn‟t have to define 

a new one from scratch but he can load and the modify an already existent one.  

 

3.7.3  Simulation Settings box 

In this section the energy model to be used for the simulations is chosen by selecting 

the main EnergyPlus input file prepared by the user. Moreover, two general 

parameters for the simulations can be indicated, namely the location and the 

orientation of the building. The selection of the location occurs by means of a drop-

down menu that is connected to a list of the weather files that are present in the 

“simulation/energyPlus/general” folder. If the desired location is not in this list, it 

means that the corresponding weather file is missing. To provide a new location, the 

user must manually add the weather file to the folder and update the aforementioned 

list. 

A further section of the box is dedicated to the definition of the output variables that 

the user wants to retrieve from the EnergyPlus output files. Entering the number of 
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desired output variables and pushing the “Define Output Variables” button opens the 

new panel pictured in figure 3.14. Any output variables that the energy models 

produces can be defined just by entering its complete name as reported in 

EnergyPlus output files, i.e. the “.eso”, “.mtr” and “.csv” files. The type of the 

requested variables shall be chosen among three options (“Timestep”, “Hourly” or 

“Run Period”), and a unique name shall be assigned to each of them. ePlusOpt will 

automatically read the values of these output variables from the simulation output 

files and make them available inside the fitness function for any processing needed to 

compute the objectives of the optimisation. Output variables definitions can be saved 

into a Matlab variable and loaded in any successive optimisation session. 

 

 
Figure 3.14 – Output variables definition panel 

 

3.7.4  Algorithm Options box 

The next chapter talks about the implementation of the GA algorithm in Matlab and 

describes its parameters. Although most of them are fixed for the use in ePlusOpt, 

the main characteristics can be edited directly from the user interface. These include 

the number of individuals in the Population, the number of Generations that are 

reckoned necessary to find the sought after minimum, and the Crossover Fraction, 

that is the percentage of children that will be generated through crossover (the 

remaining children will be generated through mutation). Another essential choice 

that can be made in this box is the one between a simple GA to deal with single 

objective optimisation problems and a multi-objective GA to manage multi objective 

problems. When the multi-objective GA is selected, an additional parameter can be 

set: the Pareto Fraction, or the percentage of points in the population that will be 

used to form the Pareto front.  

In case the user wants to edit more of the parameters that define the GA behaviour, 

this can be done by modifying the “setOptOptions.m” function in the “optimisation” 

folder. The future development of the program will include the opportunity to edit 

more GA characteristics directly from the GUI. 
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3.7.5  Variables box 

An additional panel that opens after entering the number of desired variables and 

clicking on the “Define variables” button serves as interface to define the variables of 

the optimisation problem. A name ought to be specified for every variable, along 

with the name it has in the previously described “0_Variables.idf” data set text file. 

This is essential to build the link between the variables in Matlab and the 

corresponding ones in the EnergyPlus model. Furthermore, a drop-down menu lets 

the user choose the type between continuous, discrete numeric, and discrete letter 

based. Based on this choice, the next fields shall be completed by entering a lower 

bound, upper bound and a step for a continuous variable, or a set of comma separated 

values for a discrete one. 

An example of variables definition can be see in figure 3.15, where the rwo entries 

match the ones defined as an example in the excerpt of the “0_Variables.idf” data set 

file (figure X). Variable definitions can be saved in a Matlab file to be re-used later. 

 

 
Figure 3.15 – Variables definition panel 

 

 

3.8 Implementation of Matlab’s Genetic Algorithm 

The Global Optimisation Toolbox comprehends a simple genetic algorithm and a 

multi-objective genetic algorithm. Both can be run either from a GUI or directly 

from the command line. In ePlusOpt everything is automated so the algorithms are 

called from the command line inside specific functions.  

 

3.8.1  Customisation of the GA 

Standard genetic algorithms in Matlab work only with numeric or logical data type, 

which means that the variables of the problem (the genes) can be represented only by 

numbers. However, the user has the option to supply the algorithm with some self 
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written functions in order to make it work with a custom-built data type. In 

particular, the following three functions, which deal with the management of the 

variables within the population inside the GA, must be provided: 

 a Creation Function that generates the initial population; 

 a Mutation Function that determines how mutation children are created; 

 a Crossover Function that determines how cross-over children are created. 

This process was carried on in the development of the ePlusOpt tool since the 

maximum flexibility in the definition of the problem‟s variables was sought after. 

The data type that could best provide this flexibility was Matlab‟s cell array, a type 

which can hold any kind of other data types in its cells. In this way, when declaring 

the variables of the problem, the user can choose freely between numeric, logical, 

character or string data types. Using the typical expressions of evolutionary 

algorithms, each gene can be represented by any of the basic data types, and a 

combination of these inside a cell array makes up the chromosome. The custom GA 

operators that were implemented are the following: 

 myCreation: a creation function that randomly generates the initial 

population, with the possibility to apply a “rule” on the creation; 

 myMutation: a mutation function; 

 myXover: a crossover function. 

 

3.8.2  Fixed parameters of the GA 

The GA has several options than can be set to control the optimisation process. In the 

development of ePlusOpt, it was decided to let the user modify only some of these 

options while keeping the others fixed.  

In the Population section, the fixed parameters are the following: 

- Population Type, specifies the data type for the variables that will be used in 

the fitness function: as mentioned earlier, there was the need to define a 

bespoke data type, so the Custom option is selected; 

- Creation Function, specifies the function that creates the initial population for 

the GA: the custom written function “myCreation” is used, which randomly 

generates the population based on the user-supplied definition of the 

variables; 

- Initial Population, makes it possible to supply an initial population for the 

GA: no initial population is provided in the current settings; 

- Initial Scores, as there is no initial population, no initial scores are provided; 

- Initial Range, as there is no initial population, no initial range is provided; 
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- Stopping Criteria, tells the algorithm when to stop its execution: the 

Generations option is selected, meaning that the algorithm stops only when 

the maximum number of generations is reached. 

The following options deal with the properties of the genetic operators: 

- Selection, identifies the method used to choose among the current population 

the individuals which will generate the following generation based on their 

“scores”: the Tournament selection function is chosen with a value of 2 (this 

means that 2 individuals are randomly selected and the best one gets picked); 

- Reproduction, determines the scheme used by the algorithm to generate the 

children at each iteration: the number of elite children, the individuals that 

live on to the next generation, is fixed at 2, while the crossover fraction has a 

default value of 0.8 (meaning that 80% of the new generation will be 

populated by children generated from cross-over operations) but is one of the 

parameters that the user can change (see afterwards);  

- Mutation, specifies the function that defines how to perform the mutation of 

an individual to create its mutated child: the custom written function 

“myMutation” is used; 

- Crossover, specifies the function that defines how to perform the cross-over 

between two parents to create their children: the custom written function 

“myXover” is used; 

- Migration, describes the movements of the individuals among sub-

populations: not active in the current settings. 

 

3.8.3  How the GA is called inside ePlusOpt 

When the “Run Optimisation” button is pressed in the GUI (see figure 3.12) after 

having entered all the needed information, the program builds an optRun object 

where it stores this information and saves it inside the automatically generated 

corresponding folder inside the case study main folder. Then the function 

“runGAopt” is run (see flowchart in figure 3.16), inside which the Matlab variables 

needed for the genetic algorithm are created and a number of side processes are 

handled. Among these, storage for the output of all simulations performed is created 

in order to add the capability to re-use this information instead of running another 

simulation when the same model needs to be evaluated for a second time during the 

optimisation. Then the genetic algorithm is finally called with the optimisation 

options and the handle to the fitness function as arguments.  

Figure 3.17 illustrates the progression of the algorithm, which is the typical GA 

process with the only difference that the fitness function is called with the 

introduction of the aforementioned “simulated” storage. The way this new element is 

exploited is better understood by looking at the flowchart unfolding the fitness 
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function process in figure 3.18. From the same flowchart is also possible to better 

comprehend how the evaluation of each individual is achieved through an energy 

simulation (the “simulationStart“ function) and the post-processing of the output 

variables retrieved from it by the “simOutputReader” function.  

When the GA stops execution because the stopping criteria has been met, it returns 

its output to the “runGAopt” function which in turn returns it to the main process of 

the ePlusOpt program.  

 

 
Figure 3.16 – Flowchart of “runGAopt” function inside ePlusOpt 
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Figure 3.17 – Flowchart of genetic algorithm process 

 



 

 
3.   ePlusOpt: a Matlab program for EnergyPlus simulation based optimisation 

 58 

 
Figure 3.18 – Flowchart of the general fitness function process 
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4 
Case Study I 

General façade of an office building 
 

 

 

4.1 Description 

The model of the office room that was used for the parametric studies in the first 

chapter was employed in this first case study to optimise the design of a general 

façade under different conditions. Most of the characteristics defining the façade 

were considered as variables, while all other design assumptions correspond to the 

ones described in the first chapter. The aim of this first case study is primarily to give 

evidence that the developed optimisation tool is functional and that the algorithm 

correctly finds the optima of the problem. 

First a single-objective optimisation was carried out for a base case and a sensitivity 

analysis on the genetic algorithm parameters was performed in order to choose the 

ones that can find the optimal solution in the shortest amount of time without loosing 

accuracy. Then a double-objective optimisation was run in order to examine the 

trade-off between two criteria and to compare this kind of analysis to the single-

objective one. 

 

 

4.2 Variables 

The variables characterising the composition of the façade that were chosen to be 

optimised are described in detail in the following table and figures. 

 

VARIABLE TYPE 
Range/Step (if continuous) 

Possible Values (if discrete) 

Glazing percentage Continuous 33 – 100 % / 7.5 %
 

Type of glazing Discrete Triple, LowE, Sel1b, Sel2b, Sel3 

Insulation thickness Continuous 4 – 20 cm / 4 cm 

Overhang depth Continuous 0.5 – 1.2 m / 0.2 m 

Fins depth Continuous 0.3 – 1 m / 0.2 m
 

Table 4.1 – Variables of the problem 
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The basic window area consists of a strip of one meter height that spans the whole 

width of the façade corresponding to 33% of the total surface. The height can 

increase by steps of 0.25 m, initially in the upper part of the façade and then, when 

this one is completely glazed, also in the lower part. The result is 9 different possible 

glazing percentages that will be explored. The external shading is provided by an 

overhang and four louvres arranged as shown in figure 4.1. The depth of each type of 

device can vary as defined in table 4.1. The solar screening strategy also 

comprehends automated internal blinds on the windows that close when the glare 

index exceeds 22 or when the solar radiation incident on the façade is greater than 

200 W/m
2
.  

 

 

Figure 4.1 – Variables that define the geometry of the façade 

 

The thermal and solar parameters of the six types of glass modelled are displayed in 

table 4.2. They range from a triple glazing to a normal low emissivity one, to four 

different types of solar control glass with different combinations of g-value and 

lighting transmittance. The last variable to be optimised is the thickness of the 

insulation layer, which is made of fibreglass with a thermal conductivity of 0,45 

W/mK.  
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Variable 

Name 
Glazing Type 

External glass pane 

used 
g-value LT (%) 

U-value 

(W/m
2
K) 

Triple Clear Triple Glazing Planibel TopN 0.50 72 0.8 

LowE Simple Low Emissivity Planibel TopN 0.58 75 1.1
 

Sel1b Selective type 1b Iplus Sun 0.43 69 1.1 

Sel2b Selective type 2b Stopray Safir 61/32 0.35 58 1.1 

Sel3 Selective type 3 Ipasol 50/25 0.28 48 1.1
 

Sel4 Selective type 4 SunGuard SN40 0.24 38 1.1
 

Table 4.2 – Solar and thermal performance of glass types modelled 

 

 

4.3 Single-objective optimisation 

 

4.3.1 Objective function 

The aim of the first optimisation process is to find out the façade configuration that 

guarantees the best environmental performance, in terms of  minimum emission of 

CO2. Therefore the considered objective function is the annual amount of carbon 

dioxide emitted due to the operational energy consumption for heating, cooling and 

artificial lighting.  



F 
fgas

H
QH  fel  QL 

QC

COP









   [kg CO2] 

where:  

 QH , QL and QC [kWh] are the annual energy consumptions due to heating, 

artificial lighting and cooling respectively, which are calculated by the 

simulation program;  

 fgas and fel [kgCO2/kWh] are the carbon intensity factors for gas and electricity, 

which relate the amount of carbon emissions to the energy consumption of gas 

(for heating) and electricity (for cooling and artificial lights); these values have 

been assumed to be fgas = 0.194 kgCO2/kWh and fel = 0.422 kgCO2/kWh [1];  

 ηH [-] is the overall annual efficiency of the heating system, which has been 

assumed to be 0.89 considering heat production only [32];  

 COP [-] is the coefficient of performance of the cooling system; normally it 

depends on the type of system installed and on the climatic conditions, but for 

this study an average value of 3 was assumed. 
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4.3.2 Results  

For the main study the model was set with the façade exposed to the south in the 

climate of Paris. Before performing the optimisation, the whole design space was 

evaluated. The chosen variables give rise to 5625 possible combinations. This is not 

a very big design space, but it was intentionally kept to a limited size in order to be 

able to run the simulations corresponding to all the possible solutions in a reasonable 

time stretch. The procedure took around 27 hours on a 2.5 Giga Hertz MacBookPro. 

In this way the performance of the optimisation algorithm can be assessed because it 

is possible to identify the real minimum of the problem.  

The optimisation was run initially with a population of 20 individuals for 20 

generations. The length of the process was around 40 minutes, during which 147 

simulation were carried out. Figure 4.2 illustrates the evolution of the algorithm 

through the generations. It can be observed that the minimum is found already at the 

sixth generation. As it can be inferred from the progress of the mean objective 

function value, the convergence is quite fast in the first generations, where the 

exploration of the initially spread out solutions quickly concentrates in the area of the 

minimum. The number of simulations performed to reach the optimal point 

represents only the 2.6 % of the total possible solutions.  

The configuration of the façade that corresponds to the value of 174 kgCO2 found as 

the minimum presents the characteristics reported in table 4.3. 

 

 

Figure 4.2 – Algorithm progress for single-objective optimisation 

 

 

 

 



 

 
4.   Case Study I: General façade of an office building 

 63 

VARIABLE VALUE 

Glazing percentage 33 % 
 

Type of glazing Sel1b 

Insulation thickness 20 cm 

Overhang depth 1 m 

Fins depth 0.6 m
 

Table 4.3 – Optimal façade configuration  

 

4.3.3 Sensitivity analysis on algorithm parameters 

The optimisation was repeated with different population sizes and with different 

numbers of generations. Table 4.4 reports the different settings for the seven cases 

analysed and the corresponding results found. Images depicting the progress of the 

algorithm for each case are reported in Appendix B. In two optimisations the real 

minimum was not reached, because the population was not big enough to guarantee a 

proper exploration of the design space (case 5) or because the number of generations 

was too small for the algorithm to achieve a complete convergence (case 1). 

Nevertheless it is encouraging to observe that most of the times the real minimum 

can be found with a very limited number of model evaluations (or simulation 

performed). It is interesting to notice that in the cases where the minimum is 

achieved, it can actually be found in different stages of the algorithm. The reason for 

this lays in the probabilistic nature of genetic algorithms, as every time the initial 

population is randomly generated and the also the genetic operators work with a 

certain amount of probability when shaping the new generation.  

 

 

Case 

number 
Population Generations 

Minimum 

(kgCO2) 

Minimum 

found at 

generation 

Number of 

simulations 

performed 

1 20 10 178 - 108 

2 20 15 174 12 125
 

3 20 20 174 6 147 

4 20 25 174 7 163 

5 15 15 176 - 102 

6 25 15 174 9 179
 

7 30 15 174 9 193
 

Table 4.4 – Results with different settings of the algorithm 
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4.4 Double-objective optimisation 

 

4.4.1 Objective function 

When dealing with office buildings one of the most difficult challenges is to find a 

proper compromise between the cooling loads and the artificial lights usage, as they 

are two extremely opposing criteria. Therefore the Pareto front in this double-

objective optimisation will consist in the trade-off curve between the annual energy 

demand for cooling and for lighting. 



F1 
QC

COP
    [kWh] 

Where a value of 3 was assumed for the coefficient of performance of the cooling 

system as in the previous case. 



F2 QL     [kWh] 

The lights energy demand is based on the daylighting strategy described in the first 

chapter, which assumes that the artificial lights are controlled by the two sensors 

placed inside the room and that their intensity is regulated according to the levels of 

daylight that enter through the windows. 

 

4.4.2 Results 

The results of the simulations performed for the evaluation of the whole design space 

in the single-objective optimisation were used to build the whole design space also 

for this double-objective problem. Next the points on the real pareto front were 

identified in order to later compare them to the ones obtained from the optimisation 

process. The fact that the two objectives are completely opposing helps in generating 

a very well defined pareto front composed by 163 points. All the points in the 

objective space and on the front are displayed in figure 4.3.  
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Figure 4.3 – Complete design space 

 

Two different double-objective optimisations were performed, with the options listed 

in table 4.5. The corresponding pareto fronts found are displayed in figure 4.4 and as 

predictable the one achieved with a bigger population is more accurate than the 

other. It is interesting to notice how the points towards the two extremes are found 

with good precision while the ones in the central area are more far away from the 

real front. In the first case the points are not evenly distributed and there are some 

evident discontinuities, hence the number of individuals and of generations are 

clearly not enough to reach a satisfactory solution. In the second case the resulting 

front is more balanced and the solutions uniformly spread out.  

 

Case 

number 
Population Generations 

Points on 

Pareto Front 

Simulations 

performed 

1 30 15 12 315 

2 40 20 16 500
 

Table 4.5 – Different options of the algorithm investigated 
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The number of points on the front is limited, but enough to correspond to groups of 

solutions with significantly different characteristics. In fact, among the 163 points on 

the real pareto front the ones that fall very close to each other are likely to be almost 

identical solutions, with only small variations in one or two variables at a time. When 

conducting a search of this kind in building related problems, what is most important 

is to be presented with a range of solutions that can represent different trade-offs of 

the objectives. This is achieved with an acceptable accuracy in the second case. If a 

bigger number of solutions were required, the number of individuals in the 

population should be increased; this would mean that a bigger number of simulations 

were to be run. In the second case this number summed up to 500, which is about 9 

% of the total possible solutions, so increasing it would mean more than 10 % of the 

design space were to be evaluated. In a problem of this level, where the space is 

rather small and the simulations are fast (around 20 seconds each), it could still be 

feasible to do it, but in problems with a larger design space it would be time 

consuming and the concept of the optimisation process would lose its value. 

 

 
Figure 4.4 – Pareto fronts for different cases compared to real front 
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5 
Case Study II 

BiPV on test building in Austria 
 

 

 

5.1 Description 

During a period of study at the “Department of building physics and building 

ecology” of the “Vienna Technical University” in 2011, a collaboration for an 

optimisation project was established. The object of the project was a test building by 

an Austrian private research centre named Fibag with whom the department has a 

partnership for the development of joint research projects. The centre is located in 

Styria and it operates in the field of "integral construction engineering", in particular 

offering solutions for the integration of energy technologies into the building 

envelope or the optimisation of the entire energy balance of a building through the 

combination of the technologies used in the envelope with the technical facilities of 

the building itself 
1
. 

 

Figure 5.1 – External view of the Fibag test building 

 



 

 
5.   Case Study II: BiPV on test building in Austria 

 68 

The building contains eight main rooms on two different floors and some of them 

were made available to the department to be used for experimental studies. Since the 

building envelope consists in a continuous curtain wall façade, the idea was to try to 

optimise its design from the point of view of investment and operation costs 

including the use of building integrated photovoltaics. Only one of the rooms was 

picked out to be analysed, with a floor area of 50 m
2
 and the main façade facing 

south. The basic principle was to create a modular façade where each of the modules 

could be either glazed, opaque, or equipped with a photovoltaic panel. 

 

 
Figure 5.2 – Sketch of the original façade 

 

The original assembly of the façade, sketched out in figure 5.2, consists in eight 

curtain wall units fully glazed from floor level to ceiling level, and with spandrel 

panels covering the service spaces above and below. It was decided to change its 

composition in order to attain a higher degree of flexibility in the possible layouts. 

Consequently the key area, ignoring the spandrel panels, was subdivided in three 

rows and four columns, thus generating a sort of grid of twelve equal modules with 

an area of 2.5 m
2
 each. The two central ones were assumed to be fixed and glazed in 

order to provide a minimum window area which corresponds to 10% of the floor 

area, while the other ten modules were assumed to be variable and each of them 

could be any of the three types.  

A base configuration where all the variable modules were chosen to be simple 

spandrel panels was taken as reference case. The energy consumption levels for 

space heating, cooling and artificial lights stemming from the energy simulation of 

this case were recorded to be later compared with the ones arising from all other 

possible compositions generated during the optimisation process.  
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Figure 5.3 – Layout of the façade used in the study 

 

 

5.2 Thermal model 

An EnergyPlus thermal model of the room was built: all internal partitions are 

considered adiabatic, the east façade facing outdoors is completely opaque with a 

thermal transmittance of 0,25 W/m
2
K. The main façade is modelled with a backing 

surface that embodies the behaviour of the aluminium frames of the curtain wall 

units. The thermal transmittance of this part is a mean value of the real transmittance 

of the frames, calculated as 4.2 W/m
2
K. All modules are sub-surfaces “cut-out” in 

this backing surface, with characteristics described in the “Variables” section below.  

Two reference points positioned at desk level inside the room as pictured in figure 

5.5 are used to control the daylighting in the zone. Based on the levels of daylight 

coming in from the windows, they trigger the use of artificial lights in the room. 

 

Figure 5.4 – Image of the EnergyPlus model 
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The illuminance design level was set 

at 500 lux, the lights being turned on 

whenever this level is not met and 

working with a continuous dimming 

strategy. Besides, all the windows 

have internal blinds equipped with 

automatic glare control: the blinds are 

deployed whenever the glare index 

calculated in the reference points 

exceeds the target value of 22.  

All other design assumptions are 

summarised in table 5.1. The plant 

system is considered to have unlimited 

capacity and can thus always maintain 

the required setpoint temperatures 

during the periods of peak heating and 

cooling loads. 

 

Figure 5.5 – Disposition of daylighting 

reference points in the model 

 

The overall annual efficiency of the heating system is assumed to be 0.8, while for 

the coefficient of performance of the cooling system a value of 2.5 is taken. The 

simulations were carried out for a year time period using the Vienna Schwechat 

weather file.  

 

TYPE VALUE 

Internal gains  

Electric equipment 15 W/m
2 

People (max 6 people) 126 W/person
 

Lights 8 W/m
2 

Surface reflectance  

Walls 50 % 

Ceiling 70 % 

Floor 30 % 

Ventilation  

Infiltration 0.15 ach 

Mechanical Ventilation 1 ach (max) 

Operating strategy  

Heating setpoint / setback 20°C / 12°C 

Cooling setpoint / setback 25°C / 32°C 

Heating and Cooling availability 7am – 7pm on workdays 

Table 5.1 – Model design assumptions 
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5.3 Variables 

Except the fixed upper and lower spandrel parts and the two central glazed panels, all 

the other ten modules of the façade can vary. Each of them can be either a spandrel 

panel, a glazed panel, or a BiPV panel. This gives rise to 3
10

 = 59049 possible 

combinations. Moreover, a “rule” was implemented in the algorithm so that when 

glazed panels are present, they are first positioned in the two upper rows, and then in 

the lower row only if the former are completely filled with windows.  

 

- Spandrel Panel 

The construction is that of a simple opaque panel made up of an outer cladding layer, 

an insulation layer and a vapour barrier followed by an internal gypsum board. The 

thermal transmittance adds up to 0,25 W/m
2
K. 

 

- Glazed Panel 

It is constituted of a double glazing unit with a clear internal glass pane and a low 

emissivity external pane. The thermal, solar and visual characteristics are reported in 

the next table. 

 

U-value g-value LT 

1.14 W/m
2
K 0.58 75 % 

Table 5.2 – Characteristics of the glazing modelled 

 

- Photovoltaic Panel 

The BiPV panels construction is the same as the spandrel panel with the addition of 

the layer containing the photovoltaic cells on the external surface. Although in the 

main case the panels feature polycrystalline silicon photovoltaic cells, other two 

types of photovoltaic panels are considered later in the study, so all three kinds are 

described. 

 

     
        Polycrystalline PV           Thin Film PV       Monocrystalline PV 

         Efficiency: 14 %          Efficiency: 7 %         Efficiency: 18 % 

 

The PV panels are modelled in EnergyPlus with objects that simply apply their 

overall energy conversion efficiency to the incident solar radiation. They are then 

connected to an inverter object with an efficiency of 0.9 that transforms the direct 

current produced by the panels into alternate current that can be fed to the grid.  
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5.4 Objective functions 

The double-objective optimisation aim is to investigate the trade-off between the 

costs related to the improvement of the façade and the resultant savings associated 

with the operation of the building. The first criterion is therefore defined by the 

investment costs to be faced when upgrading the reference façade with more glazed 

panels or with building integrated photovoltaics: 



F1  nG  pG  nPV  pPV    [€] 

where: 



nG  is the number of glazed panels (in addition to the two fixed ones) 

 



pG  is the price to replace a spandrel panel with a glazed panel 

 



nPV  is the number of photovoltaic panels 

 



pPV  is the price to replace a spandrel panel with a photovoltaic panel 

The following assumptions were made on the prices: 

 

Replacement of a spandrel panel PRICE 

with a glazed panel 200 € 

with a polycrystalline-Si PV panel 600 €
 

with a thin film PV 200 €
 

with a monocrystalline-Si PV 1000 €
 

Table 5.3 – Prices assumptions 

 

The savings in energy costs related to the building operation are calculated in 

comparison to the base case and are defined as follows: 



sOC UPV * dEheat  tGAS  dEcool  dElights  tEL 13 EPV  tFEEDIN    [€] 

where the differential energy consumptions for heating, cooling and artificial lights 

are respectively: 



dEheat  Eheat,ref  Eheat   [kWh] 



dEcool  Ecool,ref  Ecool   [kWh] 



dElights Elights,ref  Elights  [kWh] 

It is clear from these expressions that a decrease in energy consumption compared to 

the base case yields a positive value for the savings, and vice versa. 



EPV  is the energy produced by the photovoltaic panels, in kWh, and if present is 

obviously always positive. 



 

 
5.   Case Study II: BiPV on test building in Austria 

 73 

The energy tariffs for the supply of natural gas, used for space heating, and of 

electricity, used for space cooling and artificial lighting, were taken directly from the 

main Austrian energy supplier
1
 and are displayed in table 5.4. 

 

Energy type Tariff [€/kWh] 

Natural gas, tGAS 0.065 

Electricity, tEL 0.172 

Table 5.4 – Energy tariffs 

 

In Austria the system of feed-in tariffs, better known as “Einspeisepreis-

Verordnung”, is active since 2001. The actual tariffs for 2011, reported in table 5.5, 

are determined by the ÖSVO 2011
2
 and are applied to thirteen years long contracts. 

The value for building integrated photovoltaic systems with a power greater than 20 

kW was assumed in the study. 

 

Peak power [kW] BiPV [€/kWh] 
Stand-alone PV 

[€/kWh] 

5 < P ≤ 20 0.38 0.35 

P > 20 0.33 0.25
 

Table 5.5 – Feed-in tariffs fixed by the Ökostromverordnung 2011 in Austria 

 

The operating costs were considered for a period of thirteen years in order to 

correspond to the length of the feed-in contracts for PV production prefigured by the 

Austrian law. Since the feed-in tariff value is guaranteed during this period, the 

yearly savings arising from PV energy production are just multiplied by thirteen. On 

the other hand, the yearly operation costs cannot be considered constant over the 

years because the energy prices are likely to rise during a thirteen year period. 

Besides, since the evaluation of the costs is done at present time, there‟s the need to 

calculate the present value of these non-uniform amounts recurring over the period 

considered. Hence, using life-cycle cost analysis concepts, the modified uniform 

present value factor is calculated with the following formula: 



UPV*
1 e

d  e
 1

1 e

1 d











n







12.15 

in which the following values for the parameters were assumed:  

                                                 
1
 http://www.wienenergie.at/ 

2
 Ökostromverordnung 2011, published on the Bundesgesetzblatt 28/01/2011. The full text can be 

found at the following address: 
 http://www.ris.bka.gv.at/Dokumente/BgblAuth/BGBLA_2011_II_25/BGBLA_2011_II_25.pdf 
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 n = 13 for the number of years; 

 d = 3% for the real interest rate; 

 e = 2% for the escalation in energy price. 

This factor represents the present value of recurring annual amounts that change 

from year to year at a constant escalation rate over a certain number of years, given a 

fixed interest rate. It the present problem, the UPV* factor is applied to the annual 

savings arising from the operation of the building. 

Finally, since the energy cost savings need to be maximized and not minimized, but 

the optimisation algorithm works only by minimizing the functions, the second 

objective must be expressed as the energy cost savings with a minus sign in front: 



F2 sOC    [€] 

 

 

5.5 Results for the base case 

The double-objective optimisation was run for the south facing façade, using 

polycrystalline silicon PVs for the building integrated photovoltaics. The resultant 

optimised solutions are displayed in figure 5.6. For visual clarity the second 

objective is displayed as the maximised operation savings, hence with positive 

values. That‟s the reason why the points in the graph appear reversed compared to 

the usual Pareto Front representation. One additional solution with zero investment 

costs and zero savings was excluded since it corresponded to the reference case. The 

dotted blue line corresponds to the equivalence in investments and savings, thus 

marking the separation between the zones of overall losses and savings. As it can be 

observed, all optimised solutions fall in the savings zone. The red line is a 

polynomial tendency line that interpolates the solutions, giving a more clear graphic 

idea of how they denote the Pareto Front. The fact that the solution points do not 

actually fall on an exact exponential curve is to be ascribed to the heavy 

discontinuity of the objective functions.  
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Figure 5.6 – Optimal solutions for base case  

 

It is straightforward that as the investments increase, so do the savings in operation 

costs. However, when analysing the total savings (savings in operation costs minus 

investment) compared to the reference case, it can be noted that the solution that 

maximises the total savings is not the one the maximises the savings in operation 

costs. This is revealed in the next graph (figure 5.7), where it can be observed that 

the difference in total costs (or savings since they are negative) increases to a 

maximum corresponding to solution 8 and then starts decreasing.  

As illustrated afterwards, the increase in investment costs essentially corresponds to 

a gradually bigger number of PV panels in the solutions, as the number of glazed 

panels present in the solutions is always limited to one. In the light of this fact, the 

decrease in total savings that happens in the solution with the highest investment 

costs means that after integrating a certain number of PV panels in the façade it is not 

profitable to add more of them because the extra investment wouldn‟t be balanced by 

the monetary gain received from selling the resultant higher electricity produced. 
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Figure 5.7 – Differences in costs compared to reference case for all solutions  

 

Some of the solutions are now analysed in depth by showing a scheme of the façade 

configuration and a graph with the breakdown of the savings in operation costs in 

terms of differential costs compared to the reference case. The first solution presents 

the same façade configuration of the reference case with the addition of one PV 

panel: the savings are exclusively due to the PV production and the difference in 

total costs is negligible. 
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Solution 2 – Total savings = 596 € 

 
 

The additional glazed panel brings 

forth significant savings in artificial 

lights energy consumption as it 

increases the daylighting levels in the 

room. The small losses in cost for 

heating and cooling are abundantly 

outnumbered by the income resulting 

from the selling of the energy produced 

by the PV panel. 

 

 

Figure 5.8 – Savings / Losses for Solution 2 

 

Solution 5 – Total savings = 781 € 

 
 

Like in the previous solution, savings 

in the cost for artificial lighting are 

guaranteed by the additional window. 

The losses in cost for heating and 

cooling remain essentially constant 

while the four PV panels generate 

significantly higher savings due to the 

selling of the electricity produced.  

 

Figure 5.9 – Savings / Losses for Solution 5 

The other solutions follow the same trend, presenting one additional glazed panel and 

an increasing number of PV panels as the investment costs grow. Hence the savings 

or losses in operation costs remain basically constant, while the money gains from 

the selling of the electricity produced boost as the number of PVs increases. 

It is interesting to point out that the additional window is always placed in the upper 

row, meaning that is spans from a two to a three metres height. The reason is that this 

configuration allows more light into the room without causing additional glare, 
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which would have an influence on the deployment of the automated blinds and 

would thus lower the amount of daylight from the window itself. 

 

Solution 8 – Total savings = 967 € 

 
 

The savings in artificial lights costs 

and the losses in heating and cooling 

costs remain the same as the previously 

analysed case. The only difference is 

the bigger contribution arising from the 

selling of the PV produced electricity 

due to the bigger number of panels 

installed.  

 

 

Figure 5.10 – Savings / Losses for Solution 8 

Solution 10 – Total savings = 731 € 

 
 

The same thing happens in the last 

solution, where the number of PV 

panels integrated in the façade is 

maximum. The savings deriving from 

the selling of the electricity produced 

rise further, but as explain earlier in 

this case they do not overcome the 

investment costs, hence the total 

savings are lower then the previous 

solution. 

 

Figure 5.11 – Savings / Losses for Solution 10 

 

All solutions are reported in detail in appendix C. 
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5.6 Additional results and sensitivity analyses 

 

5.6.1  Results for different types of PV panels 

The same optimisation was run using different technologies for the BiPV panels: 

monocrystalline-Si cells first, and thin film in a second time. The different 

relationship between the efficiency and the investment cost of these different kinds 

of PVs led to quite diverse optimised solutions compared to the base case. As it can 

be observed in figure 5.12, the higher efficiency of monocrystalline PV can produce 

higher savings in operation costs but the elevated investment cost assumed for this 

technology makes it less cost-effective than polycrystalline PV. With higher 

investments, so when a bigger number of panels is employed, the solutions fall in the 

overall losses area, thus becoming unprofitable from a total cost point of view. On 

the other hand, thin film panels provide a much better correlation between 

investment and savings. Although the savings in operation costs are generally lower 

compared to the other cases due to the minor efficiency of thin film, their small 

investment cost makes them very profitable, generating higher total savings. 

 

 
Figure 5.12 – Optimal solutions for different types of BiPV panels 
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The next three graphs show the average distribution of panels types in all solutions 

that yield positive total savings. In the case of monocrystalline-Si PVs, only a limited 

number of BiPV panels lead to cost-effective solutions, while with polycrystalline-Si 

PVs more panels can be employed; the number grows further in the case of thin film 

technology.  

 

 

 

Figure 5.13 – Percentage of each type of panel in all solutions that yield positive savings 

 

From inspection of all solutions it can be noticed that almost all of them comprehend 

only one additional glazed panel, while the ratio of spandrel to PV panels changes. 

Therefore an analysis on the differential total costs in relation to the number of BiPV 

panels installed on the façade can be carried out for each of the panel types. The 

results are displayed in figure 5.14, from which the advantage of using a large 

number of thin film PV panels emerges clearly.  

 

 
Figure 5.14 – Differential total costs in relation to number of BiPV installed 

 



 

 
5.   Case Study II: BiPV on test building in Austria 

 81 

As already seen in the analysis of the base case, Polycrystalline-Si PVs are profitable 

in all found solutions but their benefits tend to diminish when the panels installed 

exceed a certain number. Finally, under the cost assumptions made, monocrystalline 

PVs are much less effective in producing actual savings, and when installed in large 

number can actually generate big losses in the overall differential costs. 

 

5.6.2  Sensitivity analysis on feed-in tariffs 

A major role in the search for the optimal solutions is played by the money gains 

arising from the energy produced by the photovoltaic system that is sold to the grid. 

A study was conducted to assess the influence of the feed-in tariffs on the solutions. 

Besides the base tariff of 0,33 €/kWh taken from the Austrian legislation, two 

different figures were considered: a lower one of 0,25 €/kWh and a higher one of 

0,40 €/kWh. The results of the new optimisations runs, along with the base case 

ones, are displayed in the next figure. 

 

 
Figure 5.15 – Comparison of optimal solutions for different feed-in tariffs 

 

As predictable, the bigger gains resulting from a higher feed-in tariff make the front 

of the optimised solutions shift towards the area of bigger savings, while the opposite 
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happens for the lower tariff. The difference is less significant for small investments 

(small number of PV panels involved) and it grows for bigger ones.  

The horizontal orange line in the graph marks a constant investment of 3800 €, 

corresponding in all cases to a solution with one additional glazed panel, and six 

BiPV panels. The graph in figure 5.16 shows the savings that are achieved in this 

solution depending on the feed-in tariff considered: the ones stemming from PV 

energy production increase with the tariff itself, and the total differential costs follow 

this trend as the other savings remain constant since the thermal and visual 

characteristics of the façade are the same. However, for the 0,25 €/kWh tariff the 

total differential costs actually result in losses because the money paid for the PV 

energy was not enough to meet the investment costs. This proves the influence of the 

price paid out for the energy produced by the PVs on the final solutions and therefore 

it‟s a parameter that should affect the choices in the design stages. 

 

 
Figure 5.16 – Savings resulting from an investment of 3800 € for different feed-in tariffs 

 

It is interesting to compare solutions that lead to the same amount of total savings in 

different scenarios of tariffs. In figure 5.17 the solution that in the base case yields 

the maximum total savings is considered, and starting from it a line that denotes 

equivalent savings is traced. The solution found for the case where the feed-in tariff 

is higher that falls on this line is obtained with a significantly lower investment. 
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Figure 5.17 – Solutions with equivalent total savings for different feed-in tariffs 

 

The configurations of the façade for these two solutions are displayed in the 

following figures: obviously the one corresponding to the higher feed-in tariff can 

reach the same level of savings with a smaller number of BiPV panels.  

 

   

Figure 5.18 – Solution for base case   Figure 5.19 – Solution for 0,40 €/kWh feed-in 

 

5.6.3  Influence of façade orientation 

It was thought of interest to estimate the behaviour of the façade also for different 

orientations. Hence the model was rotated in order to carry out optimisations with the 

façade facing the other three main cardinal points. The influence of the orientation on 

the optimised solutions found can be observed in figure 5.20: as it shifts from south, 

through west and east, to north, the curves representing the solutions grow steeper, 

with the same investment generating gradually smaller savings in operation costs. 
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Figure 5.20 – Comparison of optimal solutions for different orientations of the façade 

 

For little investment costs the optimal solutions yield positive total savings in all 

orientations; these solutions are generally characterised by one or two additional 

glazed panels in the upper row that guarantee a better daylight distribution and hence 

smaller costs for the artificial lights. This is more beneficial for the north, west and 

east facing cases than it is for the south facing one. Eventually, the addition of one 

PV panel can add a contribution to the total savings, the south orientation being the 

one that benefits the most from it.  

As the investments increase, the number of glazed panels in the solutions remains 

more or less constant while progressively more PV panels are used; the influence of 

the savings resulting from the selling of the energy produced on the total savings is 

greater and thus the orientation that guarantees the maximum exposition to the sun 

(south) is privileged, while the one that catches little direct solar radiation (north) 

leads to considerable losses in total costs. The west and east orientation follow a 

similar in-between trend, with solutions providing overall savings up to a certain 

level of investment, which is bigger in the case of a west facing façade. This can be 

more clearly detected from the graph in figure 5.21, where the difference in total 

costs compared to the reference case is shown in direct relation to investment costs. 
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It is evident that when searching for the optimal configurations of the façade the 

orientation should be carefully taken into consideration. As a rule of thumb resulting 

from this study, it can be said that increasing the glazing percentage in the upper part 

of the façade is advantageous in all cases, but as the number of BiPV to install can be 

large in a south facing façade, it should be restrained in a west facing one, only a few 

PVs should be installed in an east facing façade, and preferably none on a north 

facing one. 

 

 
Figure 5.21 – Differential total costs in relation to orientation of the façade 
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6 
Case Study III 

Real office building in London 
 

 

 

6.1 Description 

As the outcome of a collaboration with Arup Façade Engineering (AFE) London, this 

case study deals with an architectural project that was commissioned to AFE in 

march 2011 for consultancy. The building in question is a seven storeys building that 

for the most part accommodates open plan offices; it is located in London and is 

designed by an English architectural firm.  

 

  

Figure 6.1 – Rendering of the office building in London 
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The original enquiry of the architects was for the evaluation of the solar performance 

of the main glazed façade. In particular the solar heat gains through the windows 

were to be assessed in order to comply with two different UK standards: “Criterion 3 

of Part L2A 2010” and the “BCO (British Council for Offices) Guide to 

Specification 2009”. The first one limits the amount of solar gains from beginning of 

April to end of September: it sets a limit that is equivalent to the cumulative solar 

gains through a 1-metre high east-facing window along the width of the façade with 

a g-value of 0.68. The resulting solar gains through the reference window are 230 

kWh/m (per linear meter of facade). The latter recommends a maximum range for 

solar gains as 50-65 W/m² (of floor area for the first 4.5m of the perimeter) and it is 

generally referred to when the comfort criterion is considered.  

The work carried out by the building physics engineers at AFE consisted in studying 

a module of the longer façade (pointed out in figure 6.2 and seen from the inside in 

figure 6.3) in which different percentages of glazing and different shading options 

were investigated. A thermal model comprehending the chosen façade module and 

the 4.5m deep corresponding part of the office plan (considered as area of influence 

of the windows) was build to be used with the simulation software EnergyPlus. For 

each possible configuration an iterative process was employed to derive the g-value 

of the glazed area required to meet the different criteria.  

 

 

Figure 6.2 – The module of the façade under study (taken from the architectural model) 

 

As a result of the analysis, the maximum g-values necessary to meet the different 

criteria were found for each of the twenty options considered, thus presenting the 
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architects with a set of possible solutions. However, the solutions could not be said to 

be optimised, and they didn‟t take into account other important performance indexes, 

such as the amount and distribution of daylight in the room for example.  

It was thus decided to carry on a new study that involved a wider range of variables, 

hence expanding the design space, and that implemented an optimisation process to 

search for the optimal solutions among all the possible ones. It was also decided to 

add a new design criterion to assess the daylight behaviour of the façade, 

consequently aiming to solve a double-objective optimisation problem. 

 

 

Figure 6.3 – Inside view of the façade module (taken from the architectural model) 

 

 

6.2 Thermal model 

The EnergyPlus model developed by AFE building physics engineers was used; only 

some minor modifications were necessary to make it work with the optimisation 

program ePlusOpt. As mentioned in the previous paragraph, it consists of a module 

of the main façade, with a width of 6m and a height of 4m; the depth of the room 

lying behind is fixed at 4.5m to represent the area of influence of windows.  
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Figure 6.4 – Image of the room modelled in EnergyPlus 

 

Since the partitions do not exist in reality because the office is an open plan, they are 

modelled with a very low surface reflectance (10%) to account for the fact that no 

reflections of the light rays should occur on these surfaces.  

 

TYPE VALUE 

Internal gains  

Electric equipment 15 W/m
2 

People (max 3 people) 120 W/person
 

Lights 11 W/m
2 

Surface reflectance  

Partitions 10 % 

Ceiling 90 % 

Floor 30 % 

Ventilation  

Infiltration 0.2 ach 

Mechanical Ventilation 0.8 ach (max) 

Operating strategy  

Heating setpoint / 

setback 
22°C / 12°C 

Cooling setpoint / 

setback 
24°C / 28°C 

Table 6.1 – Model design assumptions 

 

All other design assumptions are 

summarized in table 6.1. The 

simulations carried out were one year 

long and they were based on London 

Gatwick‟s weather file.  

To control the daylighting in the zone, 

two reference points were placed in the 

centre of the room at desk level and at 

different distances from the façade as 

pictured in figure 6.5. Besides 

monitoring the levels of daylight from 

the windows, they also act as sensors 

triggering the use of artificial lights in 

the room. The illuminance design level 

was set at 500 lux, the lights being 

turned on whenever this level is not 

met. 
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Figure 6.5 – Disposition of daylighting reference points in the model 

 

Different scenarios for the use of automated blinds on the windows were investigated 

in the study, they will be explained more accurately in the results section. The blinds 

modelled were opaque slats with a tilt of 45° degrees and a reflectance of 50%.  

 

 

6.3 Variables 

Five variables characterising the façade and the shading devices were selected to be 

optimised. They are described in detail in the following table and figures. The 

possible combinations of the variables can give rise to 5040 different solutions.  

The glazing can be selected among the five types already described in detail in the 

first case study. The percentage of glazing of the façade is regulated by the variable 

that defines the height of the spandrel panel added at the bottom (see next figure): 

considering only the area that can actually be glazed, it can vary from a maximum of 

100 % (no spandrel) to a minimum of 72 %.  

 

VARIABLE TYPE 
Range/Step (if continuous)  

Possible Values (if discrete) 

Type of glazing Discrete LowE, Sel1b, Sel2b, Sel3, Sel4 

Spandrel height (H) Continuous 0 – 900mm / 150mm
 

Louvres depth (D) Continuous 100 – 150mm / 10mm 

Louvres spacing (s) Continuous 100 – 150mm / 10mm
 

Louvres reflectance Continuous 30 – 60 % / 10 %
 

Table 6.2 – Variables of the problem 

 



 

 
6.   Case Study III: Real office building in London 

 92 

 
Figure 6.6 – Scheme of façade module with variable spandrel height 

 

The shading device designed by the architects consists in two sets of thin louvres 

positioned slightly detached from the windows and with a tilt angle of approximately 

17.5 degrees from the plane of the façade, used to allow the direct view on a nearby 

park. Each louvre is 2.4 m long, while the depth and spacing can vary between the 

bounds identified in table 6.2. The last variables considered is the surface reflectance 

of the louvres, which can control to a certain extent the amount of daylight reaching 

the shading device that is reflected inside the room. 

 

 
Figure 6.7 – Variable louvres characteristics 
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6.4 Objective functions 

Having to decide which of the standards to base the research upon, the BCO standard 

was chosen because the study by AFE had shown that it represented a significantly 

more restrictive requirement than Part L, leading to lower g-values in all cases. 

Therefore, the first criterion for the optimisation corresponds to the solar gains per 

floor area for the first 4.5m of the perimeter. More precisely the objective function is 

defined as the annual fifth higher value of hourly solar radiation transmitted through 

the windows. The fifth value and not the first one was used to account for possible 

singularities arising from the simulation of the model. 



F1  SHGpeak,5th    [W] 

For the second criterion, an index of daylighting performance was necessary. The 

choice fell on the yearly average daylight availability, in percentage of the lighting 

requirement. Daylight availability (DA) is defined as the amount of available light at 

a given point and time within a building interior and it can be expressed in 

percentage of the design lighting level: 



DArefP 
illrefP

500
  [%] 

Only the hours of the day when the office is occupied (7am – 7pm) are considered, 

and only the working days throughout the whole year of simulation. 



avgyear DArefP 
DArefP

hocc


hocc
  [%] 

where hocc are the number of hours when occupation is not zero. 

The average over the two reference points makes up the second objective function: 



F2  
avgyear(DArefP,1) avgyear(DArefP,2)

2
   [%] 

The minus at the beginning is needed because the wish is to maximize this function, 

not to minimize it, in order to have a better daylighting performance. 

The two criteria are obviously contrasting, as lower solar gains imply a higher global 

shading coefficient, which causes less natural light to be let inside the building, and 

consequently lower daylight availability. 

 

 

6.5 Results and discussion 

No indication about the presence of automated blinds on the window was given by 

the architects, hence two different models were prepared and two optimisation 

processes were carried out. The first model had no blinds on the windows, while in 

the second one the windows were equipped with automated blinds with glare control. 

The limit on the glare index was fixed at a value of 22 as suggested for offices by 
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most standards, and glare was evaluated in the model for an occupants view parallel 

to the façade.  

The optimisation processes produced the results displayed in figure 6.8, where the 

pareto fronts are quite visibly defined. As in the previous case study, the front 

appears reversed because the second objective (the annual average DA) was 

maximised and not minimised.  

 

 

Figure 6.8 – Results of optimisation 

 

Obviously the case with no blinds yielded higher values of annual average daylight 

availability, as the only shading is provided by the external louvres. However, these 

solutions would probably cause glare problems, the entity of which will be analysed 

later. It is interesting to note that with the shading system designed by the architects, 

it is in any case impossible to achieve a daylight availability higher than 80 % in the 

case with no blinds and 78 % when automated blinds with glare control are installed. 

In both pareto fronts a subdivision of the optimum points based on the type of glass 

chosen can be observed to follow a straightforward trend. The normal low emissivity 

glass has a high solar and visible transmittance, so it generates solutions with good 

daylight availability but high solar gains. As the glass gets darker, the solutions 

found present lower values for both DA and peak solar gains. Among the points of 

each of these categories the distinctions in objective function values are the result of 

the different percentages of glazing and configurations of the louvres selected by the 

 
Low E 

Sel 1 

Sel 2 

Sel 3 Sel 4 
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optimisation algorithm. This demonstrates that generally the shading power of the 

glazing is stronger than the one of the external louvres. 

Before proceeding to analyse the single solutions, it is useful to apply the restrictions 

dictated by the BCO standard, which, as previously stated, specifies a maximum 

range for solar gains as 50-65 W/m². This limitations cut out a good number of the 

solutions found, leaving only the ones in the lower part of the pareto front to be 

considered as feasible. Two regions have been identified in figure 6.9, corresponding 

to the peak solar heat gains exceeding the upper and lower bounds of the range set by 

the standard. The solutions that fall in the first region must be discarded, and these 

include all the ones featuring simple low emissivity glass.  

 

 
Figure 6.9 – Application of BCO standard to optimal solutions  

 

The façade characteristics of the solutions falling in the second region are reported in 

the table 6.3 in decreasing order of daylight availability achievable. They 

comprehend three points on the curve representing the case with the automated 

blinds and two points on the one representing the case without blinds. 

Solutions B1 and A3 present the same façade configuration, except for a slight 

discrepancy in the depth of louvres. Their diversity in terms of objective functions is 

caused exclusively by the presence of the automated blinds. From a deeper 

examination, it can be gathered that in solution B1 the glare index exceeds the 

maximum limit set for visual comfort 248 hours in the course of a year. It happens 

Sol A1 

Solutions that do not comply 
with the BCO standard 

Sol B1 

Sol B2 

Sol A2 

Sol A3 

Sol A4 
Sol A10 
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exclusively during the central hours of the day in winter or autumn months, so when 

the sun‟s direct radiation can penetrate inside the room more easily. The same 

happens to various extents for all solutions found for the case with no blinds. 

 

 
Spandrel 

Height (mm) 
Glazing Type 

Louvres Depth 

(mm) 

Louvres 

Spacing (mm) 

Louvres 

Reflectance 

(%) 

Sol B1 600 Sel 2B 100 140 60 

Sol B2 750 Sel 2B 120 120 60 

Sol A1 750 Sel 1B 100 120 30 

Sol A2 750 Sel 1B 120 120 30 

Sol A3 600 Sel 2B 110 140 60 

Table 6.3 – Solutions falling within the range: 50 W/m
2
 < peak SHG < 65 W/m

2
 

 

Therefore, if a comfort criterion based on the presence of glare is to be considered, 

all these solutions should be discarded. Nevertheless, they give a good idea of the 

extent to which the optimal solutions can change if the internal blinds are not 

considered. For this reason, when optimising the layout of the façade and the external 

shading device the presence of internal blinds and eventually the strategy for their 

automation should be known and taken into account. This concept will be further 

investigated in the next section.  

The remaining solutions retain a peak solar heat gain below the threshold of 50 

W/m
2
, and the corresponding annual average daylight availabilities span from a 

maximum achievable value of 72 % (Sol A4) to a minimum of 59 % (Sol A10). The 

configurations of the façade representing all solutions are reported in the following 

table, once again in decreasing order of DA achievable.  

 

 
Spandrel 

Height (mm) 
Glazing Type 

Louvres Depth 

(mm) 

Louvres 

Spacing (mm) 

Louvres 

Reflectance (%) 

Sol A4 900 Sel 2B 110 150 30 

Sol A5 900 Sel 2B 120 150 30 

Sol A6 900 Sel 2B 140 130 30 

Sol A7 600 Sel 4 100 140 60 

Sol A8 900 Sel 4 100 140 60 

Sol A9 900 Sel 4 130 100 60 

Sol A10 900 Sel 4 140 100 30 

Table 6.4 – Solutions with peak SHG < 50 W/m
2
 

 

The resulting façade compositions can be divided in two groups according to the 

selected type of glazing, however they all present minimum or near minimum 

glazing percentage. Solutions A4 to A6 have windows with a g-value of 0.35 while 
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in A7 to A10 the chosen glazing is the darkest, with a g-value of 0.24. Within each 

group, the louvres change from a more “open” arrangement to a more “closed” one 

as the peak SHG decreases.  

Since all the optimal configurations found have a reduced glazed area and dark or 

very dark glass, thus being quite penalizing for daylight penetration, the effectiveness 

of the strategy used for the automation of the blinds was questioned. The visual 

performance of three meaningful solutions (table 6.5) was compared by calculating 

the lighting levels inside the room for each of them during a winter day, a spring day 

and a summer day. The results of this analysis are shown in the following graphs. 

 

 Peak SHG (W/m
2
) Annual average DA (%) 

Sol A1 64 75.2 

Sol A4 48 71.7 

Sol A8 31 65 

Table 6.5 – Solutions chosen for daylighting comparison 

 

It‟s easy to observe that the daylight levels in the office room are very high during 

summer and spring for all three analysed cases, largely exceeding the design level of 

500 lux. However, these big amounts of daylight entering the room most of the times 

don‟t cause glare problems, because the external shading is efficient in blocking the 

direct radiation coming from the sun at high or middle altitudes.  

 

    

Figure 6.10 – Lighting levels in reference points 1 and 2 for a winter day 
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Figure 6.11 – Lighting levels in reference points 1 and 2 for a spring day 

 

    

Figure 6.12 – Lighting levels in reference points 1 and 2 for a summer day 

 

On the other hand, in winter the lower position of the sun makes the louvres 

inefficient in blocking direct rays, causing the blinds to be shut down in the central 

part of the day to avoid glare problems. The effect of the closed blinds can be clearly 

seen in the first figure.  

When trying to cut down the peak solar heat gain, this strategy proves to be very bad, 

as the higher solar heat gains are likely to be registered during the hot season, and 

that‟s when the blinds operating with glare control are never shut. As a result, the 

daylight levels are pointlessly very high during these months while no additional 

shading is provided to avoid high heat gains through the windows. A different 

strategy for the closure of the blinds based on the actual level of solar radiation that 

reaches the façade would probably be more efficient in this case. 

Consequently, a new automation strategy based on incident solar radiation on the 

windows was modelled, with a threshold of 300 W/m
2
 fixed for the closure of the 

blinds. An additional strategy that combined both types of automations (glare and 
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solar radiation) was also implemented and two new optimisation runs were carried 

out. As expected, the results, displayed in figure 6.13, are much better than the 

previous ones. The peak solar heat gains are significantly lower and all solutions 

comply with the upper limit of 65 W/m
2
 set by the BCO standard, while the limit of 

50 W/m
2
 is exceeded only by two points in each case. All this while retaining high 

levels of annual average daylight availability. 

 

 

Figure 6.13 – Results of optimisations for different internal shading strategies 

 

The case with just solar control leads to even higher levels of DA, but from 

inspection of the simulation outputs it can be gathered that in all cases the glare index 

is exceed for a large number of hours during the year. Hence, although they provide a 

great performance in both objectives, all these solution should not be taken into 

account. Table 6.6 reports the variable values for all points of the curve obtained 

with the combined glare and solar strategy for the blinds. Undoubtedly this is the 

case that produced the best solutions in terms of trade-off between the two objectives 

without causing any visual discomfort. 

It is interesting to point out that all the optimal configurations found present a very 

“open” composition of the external louvres, with the minimum depth, the maximum 

or near maximum spacing, and mostly high reflectance. The reason for this is tightly 

connected to the specific strategy used for the blinds automation: the criterion on 

Solutions that do not comply 
with the BCO standard 

Sol C1 

Sol C15 

Sol C3 
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incident solar radiation causes the blinds to be shut much more frequently than in the 

case with glare control only (see figure 6.14), thus providing a more constant 

additional shading to both visual and thermal radiation. Consequently it is preferable 

to have an external shading that allows more light to pass through, otherwise the 

daylight in the room would be poor.  

 

 
Spandrel 

Height (mm) 
Glazing Type 

Louvres Depth 

(mm) 

Louvres 

Spacing (mm) 

Louvres 

Reflectance 

(%) 

Sol C1 0 Low E 100 150 60 

Sol C2 0 Low E 100 150 30 

Sol C3 450 Low E 100 140 60 

Sol C4 600 Low E 100 140 50 

Sol C5 0 Sel 1B 100 140 60 

Sol C6 750 Sel 1B 100 150 60 

Sol C7 900 Sel 1B 100 150 60 

Sol C8 450 Sel 2B 100 140 50 

Sol C9 600 Sel 2B 100 150 50 

Sol C10 900 Sel 2B 100 140 60 

Sol C11 900 Sel 2B 100 150 30 

Sol C12 750 Sel 3 100 150 60 

Sol C13 900 Sel 3 100 150 60 

Sol C14 750 Sel 4 100 150 60 

Sol C15 900 Sel 4 100 150 30 

Table 6.6 – Solutions for the case with both glare and solar control on internal blinds 

 

 

Figure 6.14 – Number of hours in a year in which the blinds are shut for different controls strategies 
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Thanks to this combined external and internal shading approach the annual average 

daylight availability still retains high values, and at the same time the solar heat gains 

are cut down more efficiently during the hot months mainly due to the more frequent 

closing of the internal blinds (see figures 6.15 to 6.17 that show daylight levels for 

solutions C1 and C3). In fact, the solar radiation that passes through the windows is 

in part reflected back by the blinds. As one would expect, this effect is stronger for 

the glazing types with a higher g-value than it is for the dark selective ones because 

the ratio of the amount of radiation blocked by the glazing to the one blocked by the 

blinds increases as the g-values decreases. This can be observed also from the 

comparison of the pareto front to the one obtained for just glare control on the blinds. 

The solutions that benefit the more in terms of a decrease in peak solar gains are 

clearly the ones on the right end of the curve, which are the ones using glazing with 

lower g-values. From a closer analysis of the results, it can be said that with the solar 

control on the blinds the peak SHG were cut down by 45-50%. As a result, this 

scheme for the shading devices supports the use of simple Low-E glass, a type that 

was completely cut out of the feasible solutions in the previous results because it led 

to extremely high peak solar heat gains. 

 

    

Figure 6.15 – Lighting levels in reference points 1 and 2 for a winter day 
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Figure 6.16 – Lighting levels in reference points 1 and 2 for a spring day 
 

    

Figure 6.17 – Lighting levels in reference points 1 and 2 for a summer day 
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Conclusions 
 

 

 

The role of the building envelope as interface between the interior and the exterior 

environment makes it a key actor in the design of buildings that need to respond to 

strict energy requirements and provide good internal comfort conditions. Designing 

an energy efficient façade can be a challenging task due to the conflicting 

requirements arising from its different functions, since the façade is responsible for 

heat losses, solar heat gains and it allows for daylighting.  

Parametric studies involving dynamic energy simulation programs are traditionally 

used to compare different design alternatives in early stages, but in order to deal with 

the complexity of the problem additional methods that explore the design space to a 

larger extent are needed. 

In this thesis, the program ePlusOpt, an optimisation-simulation tool developed by 

the author in Matlab, is presented and described in depth. ePlusOpt integrates energy 

simulations to be performed with EnergyPlus within the optimisation process; it does 

so by automating the exchange of information between the two programs. Genetic 

algorithms taken from Matlab’s Optimisation Toolbox and properly customised are 

employed for the optimisation. A graphical user interface facilitates the description, 

arrangement and execution of optimisation problems, given that the energy model to 

be used for the simulations is supplied by the user. The straightforward use of the 

program makes it possible to overcome the otherwise complicated practice of setting 

up simulation based optimisation problems. 

The ePlusOpt program is then employed to carry out optimisations of façade design 

for three different case studies. In the first case analysed the general façade of an 

office building is optimised to minimise the carbon emissions resulting from 

operation; subsequently the trade-off between cooling loads and artificial lights 

energy use is investigated through a double-objective optimisation. The comparison 

of the results to the whole design space which was previously prepared shows that 

the algorithms, with proper settings of parameters, are efficient in finding the sought-

after optimal solutions. 

The second case deals with the cost analysis of a façade with building integrated 

photovoltaics. The two objectives considered are the investment and operation costs. 

The optimised solutions found provide diverse design alternatives, as they represent 

different trade-offs between the two cost based objectives. The impact on the results 

of some design factors, such as the efficiency of the PV panels and the value of the 

feed-in tariff, is also studied in order to show how it is possible to give additional 

indications on the preferable solutions according to different design scenarios.  

The last case study illustrates how the optimisation process can be applied to 

practical projects by taking into consideration the façade of a real office building in 

London. The variables are the type and percentage of glazing and the characteristics 
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of the external shading device, while the double objective optimisation takes into 

account the annual peak solar heat gain and the annual average daylight availability. 

Optimised solutions are found to be effective in finding different compromises 

between the two conflicting objectives. Considering the complexity of solar shading, 

different strategies for the automation of the window blinds are investigated, thus 

showing how the results are deeply influenced by the chosen shading strategy.  

The encouraging results found for the case studies confirm that simulation based 

optimisation can be a valuable instrument in the design of energy efficient façades 

because it can provide a number of optimised solutions to be presented to the 

decision makers for the ultimate choice. Moreover, the developed program ePlusOpt, 

thanks to the user friendly graphical interface and the automatic coupling of the 

programs, has proven to be a good tool to set up and carry on simulation based 

optimisation processes. 
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Appendix A 
 

 

List of functions written for ePlusOpt program. 

 

 

GA Operators 

 

FUNCTION NAME EXPLAINATION 

myCreation 
Custom creation function: creates a random 

initial population of cell array type  

myMutation 
Custom “uniform” type mutation function: 

defines how mutation children are created 

myXover 
Custom “scattered” type crossover function: 

defines how crossover children are created 

 

 

Functions For Optimisation 

 

FUNCTION NAME EXPLAINATION 

checkIfSim 

Checks whether individual has already been 

simulated or not. If so, returns its fitness 

function(s) value(s) and the simulation output 

variables values 

setMyOptions Sets base options for the GA  

populationRule (optional) 
Adds a custom written rule to be applied to the 

creation of the population 

runGAopt 
Runs a single-objective optimisation for the 

defined problem using the normal GA 

runMOGAopt 
Runs a multi-objective optimisation for the 

defined problem using the MOGA 

 

 

 

 

 

Template Fitness Functions 
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FUNCTION NAME EXPLAINATION 

SO_fitFun_Template 
Template fitness function for a single-

objective optimisation 

MO_fitFun_Template 
Template fitness function for a multi-

objective optimisation 

 

 

Functions For Energy Plus 

 

FUNCTION NAME EXPLAINATION 

buildEpCall 
Builds the command line to call energyPlus 

with the right input file and weather file 

callEplus 
Runs a script that contains the command line 

to launch energyPlus 

CSVreader 

Reads the “.csv” energyPlus output text file 

and retrieves the values of the requested 

“Hourly” output variables 

getSimOutput 
Manages the provision of the requested 

energyPlus output variables 

meterCSVreader 

Reads the “Meter.csv” energyPlus output text 

file and retrieves the values of the requested 

“RunPeriod” output variables 

modifyParameters 

Modifies the simulation main parameters 

(Location and Buiding orientation) in the 

“0_Parameters.idf” data set text file 

simulationStart 
Starts the simulation by calling 

“writeVariables” first, and then “callEplus” 

writeAdditionalVars 

(optional) 

Modifies the values of additional (dependent) 

variables in the “0_Variables.idf” data set text 

file 

writeVariables 
Modifies the values of the variables in the 

“0_Variables.idf” data set text file 
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Appendix B 
 

 

Case study I, single-objective optimisation: progress of the algorithm for different 

settings of the parameters. 

 

 

Case 1 – Population 20, Generations 10 

 

 
 

 

Case 2 – Population 20, Generations 15 
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Case 3 – Population 20, Generations 20 

 

 
 

 

Case 4 – Population 20, Generations 25 
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Case 5 – Population 15, Generations 15 

 

 
 

 

Case 6 – Population 25, Generations 15 
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Case 7 – Population 30, Generations 15 
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Appendix C 
 

 

Case study II, double-objective optimisation: all solutions for base case. 

 

 

Solution 1 

 

Costs € 

Investment costs 600 

Difference in operation costs -662 

Total savings 62 

 

 

 
 

Solution 2 

 

Costs € 

Investment costs 800 

Difference in operation costs -1396 

Total savings 596 

 

 

 
 

Solution 3 

 

Costs € 

Investment costs 1400 

Difference in operation costs -1965 

Total savings 565 

 

 

 
 

Solution 4 

 

Costs € 

Investment costs 2000 

Difference in operation costs -2719 

Total savings 719 
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Solution 5 

 

Costs € 

Investment costs 2600 

Difference in operation costs -3381 

Total savings 781 

 

 

 
 

Solution 6 

 

Costs € 

Investment costs 3200 

Difference in operation costs -4043 

Total savings 843 

 

 

 
 

Solution 7 

 

Costs € 

Investment costs 3800 

Difference in operation costs -4705 

Total savings 905 

 

 

 
 

Solution 8 

 

Costs € 

Investment costs 4400 

Difference in operation costs -5367 

Total savings 967 
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Solution 9 

 

Costs € 

Investment costs 5000 

Difference in operation costs -5935 

Total savings 935 

 

 

 
 

Solution 10 

 

Costs € 

Investment costs 5600 

Difference in operation costs -6331 

Total savings 731 
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