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Chapter 1

Introduction

The self-fulfilled prophecy called Moore’s law [1] has been driving the evolution of electron
device technology over the last 50 years. This law states that the number of transistors in
an integrated circuit doubles every 2 years (Fig. 1.1), a growth rate that has been possible
only thanks to the improved performance at lower cost achieved by means of dimensional
scaling of the planar MOSFET, which is the elementary building block of CMOS ICs [2, 3,
4]. Dimensional scaling has recently led to critical issues related to:

• static power consumption due to leakage current (gate tunnelling and sub-threshold
channel current);

• short channel effects [5];

• limited or even reduced ON current when channel length is in the decananometer
range;

• increased dynamic power consumption per unit of area due to the inability of lowering
the supply voltage [6].

Various solutions have been proposed to mitigate these issues, which go under the general
name of technology boosters. Some of these solutions are:

• introduction of strain in the channel region [7, 8, 9];

• replacement of the SiO2 gate oxide with high-k materials [10, 11];

• replacement of the poly-silicon gate with a metal gate [10, 11];

• replacement of the planar bulk or SOI architecture with a 3D structure, like FinFET
or gate-all-around devices [12, 13];

• replacement of the silicon channel, source or drain with alternative channel material,
such as Ge, SiGe or III-V compounds as InAs, GaAs, InGaAs and GaSb [14, 15, 16,
17, 18].
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Figure 1.1: Transistor count of various CPUs with respect to the date of introduction. The
count doubles approximately every two years

1.1 III-V compound semiconductor materials

III-V compounds are crystals made from elements belonging to the third and fifth group
of the periodic table. The most investigated as possible replacement of silicon are InAs,
GaAs, InGaAs, and GaSb. These materials have some advantages over silicon; among
these: a direct band-gap, higher electron mobility, higher injection velocity1. Figure 1.2
reports the measured carrier velocities at the virtual source versus the gate length different
III-V semiconductors. The velocity at the virtual source in III-V is more that twice the
velocity in a silicon device at half the supply voltage. A supply voltage of 0.5V is lower
than what the ITRS roadmap for semiconductors [19] predicts for III-V devices for the
next years (0.63 V for year 2018 and 0.54 V for year 2026).

III-V materials can be very helpful when trying to reduce dynamic power consumption.
In fact the dissipated power is

Pdyn = CG · ngate · fck · V 2
DD (1.1)

where CG is the gate capacitance, ngate the average number of gate switching events in a
clock period, fck the switching frequency and VDD is the supply voltage. Clearly, we would
like to reduce the supply voltage, but this has some negative effects. The ON current of a
nanoscale MOSFET is:

ION = W · CG(VDD − VT )vV S (1.2)

where W is the width of the device, VT is the threshold voltage and vV S is the velocity
of the carrier at the virtual source. If we reduce VDD we reduce the ON current. This is
bad because low ON current implies longer switching times for a load capacitance that

1The injection velocity is the velocity of the carriers at the virtual source, which is defined as the position
of the top of the source/channel potential energy barrier.
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Figure 1.2: Measured carrier velocities at the virtual source of different III-V devices. Data
from [20].

stays fixed or decreases less than ION itself. We can compensate this detrimental effect
by reducing the threshold voltage but this causes variability issues and has an impact on
the OFF current, which goes as exp(−eVT /kbT ). The other option is having a larger vV S ,
which is exactly what III-V materials can provide. Looking again at the ITRS roadmap
[19], we can see that for year 2018 the traditional high performance devices should have an
ON current of 1.61 mA/µm for a VDD of 0.78V, whereas for the same year, III-V devices
should have an ON current of 2.2 mA/µm for a VDD of 0.68 V.

The implementation of these materials into CMOS technology however has also some
disadvantages:

1. The gate stack: one big advantage of silicon is its native oxide SiO2. Interfaces
between these two materials have a low amount of defects. No such oxide exists for
III-V materials. Interfaces between high-k and III-V materials have a high amount of
interface states. States in the gap affect the sub-threshold slope [20] and states in the
conduction band trap the free electrons and cause Fermi level pinning [20, 21]. Both
effects reduce the ON current for a given OFF current. However, promising results
were obtained from Al2O3/GaAs interfaces fabricated via atomic layer deposition
[22].

2. The effective mass of the Γ valley in bulk materials is very low (0.043 m0 for
In0.53Ga0.47As) and yields a low density of states (DoS) that reduces the inversion
charge, hence, the current [23, 24]. In fact, due to the low DoS, part of the applied
VGS is lost to move the Fermi level with respect to the conduction band edge in the
semiconductor, resulting in a so-called ”quantum-capacitance” [25] in series with Cox.

1.2 TCAD approaches for III-V devices

To assess the possible advantages of new devices, one has to investigate a large number of
architectural, geometry and material choices. Exploring experimentally all possibilities is
unfeasible, due to the exceedingly large time and money. TCAD software comes then into
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play by helping researchers in the R&D centres to explore the different engineering options
and to select a small set to be fabricated and tested. The history of TCAD begun in the
late sixties with the work of Gummel [26], Loeb [27] and Schroeder and Muller [28] and has
evolved to fairly complex models and simulators of today. Among these the Drift-Diffusion
model is perhaps the simplest and is still the core of many commercial TCAD products.

1.2.1 Drift Diffusion model

We take as starting point the semi-classical Boltzmann transport equation (BTE) [29]:

∂f

∂t
+ v · ∇Rf + F · ∇pf =

∂f

∂t

∣∣∣∣
coll

+ s(R,p, t) (1.3)

for the distribution function f , which gives the probability of finding a particle with
position R and momentum p at time t. Carriers are considered to be point particles with
momentum p = m∗ · v where m∗ is the carrier effective mass. The electron density is
expressed as:

n(R, t) =
1

Ω

∑
p

f(R,p, t) (1.4)

where Ω is the normalisation volume and f is the distribution function. From the zero-th
order moment of the BTE we can write the continuity equations for both electrons and
holes [29]:

∂n

∂t
− 1

e
∇R · Jn + Un = 0 (1.5a)

∂p

∂t
+

1

e
∇R · Jp + Up = 0 (1.5b)

where n and p are the electron and hole concentrations and Un and Up are the electrons
and holes net recombination rate.

If we assume that the semiconductor is not degenerate, we can express the distribution
function using Maxwell-Boltzmann statistics:

f(E) = exp

(
−E − EF

kbT

)
(1.6)

where kb is the Boltzmann constant and T is the lattice temperature. The electron and
hole current densities are then given by:

Jn = −eµnn∇φ+ eDn∇n (1.7a)

Jp = −eµpp∇φ− eDp∇p (1.7b)

where µn and µp are the electrons and holes mobilities and Dn and Dp are the electrons
and holes diffusion coefficients. The diffusion coefficients are linked to the mobilities by
the Einstein relations: Dn = kbTµn/e and Dp = kbTµp/e. The additional equation of the
model is the Poisson equation:

∇ · ε∇φ = −e(p− n+ND −NA) (1.8)
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From the Eqs. 1.7 and Einstein relations it is clear that the mobilities are crucial parameters
of the model.

The Drift-Diffusion model is well established and it has been developed to the point
that commercial tools can describe with it complex 3D geometries. Sentautus Device from
Synopsys is one of these tools. Finite element methods are typically used to solve the
equations of the model.

The Drift-Diffusion model suffers from several limitations. It was derived for near-
equilibrium conditions. Transport at high fields was addressed by including velocity
saturation to the model but this entails the assumption that the velocity and field are
gradually changing along the channel. Monte Carlo simulations have proven that this is
not true [30, 31] in sub-micron devices. In addition, quantisation effects are not considered
although they play a key role in ultra-scaled MOSFETs. Commercial TCAD tools try to
overcome this limit by implementing the so called density gradient correction [32, 33] or
MLDA [34]. Additional comparisons between drift-diffusion model and Monte Carlo are
reported in [35].

1.2.2 Hydrodynamic models

Another transport model that can be derived from the Boltzmann equation is the hydro-
dynamic model [36]. In this model we retain the Poisson equation 1.8 and the continuity
equations 1.7 but we also need energy-balance equations. For electrons we have [37]:

∂nwn
∂t

+∇ · Sn = E · Jn − Unwn + n
dwn
dt

∣∣∣∣
coll

(1.9)

In the equation above, wn = 0.5tr(kBT̂n) + 0.5m∗nv
2
n represents the electrons mean energy.

T̂n is the electron temperature tensor defined as:

nkB(Tn)ij = m∗n

∫
(uni − vni)(unj − vnj)fnd3un (1.10)

where tr(T̂n) = T11 +T22 +T33, m∗n is the electron effective mass, un is the electrons group
velocity and vn is the electrons mean velocity and i and j identify components along the
axes.

Sn is the the energy flow, which is given by:

Sn = −κn∇Tn − (wn + kBTn)
J

e
. (1.11)

where κn is the thermal conductivity. The collision term of the balance equation is:

dwn
dt

∣∣∣∣∣
coll

= −wn − 1.5kbT0

τwn
(1.12)

where τwn is the energy relaxation time for the electrons. Finally

Jn + nτpn
d

dt

(
Jn
n

)
= −eµnn∇(φ− kBTn/e) (1.13)
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where τpn is the electron momentum relaxation time. A similar set of equations can be
written for the holes. The big difference with the drift-diffusion model is that now the
electrons temperature can be different with respect to the lattice temperature. This is
especially true for high electric fields, where the electrons are “hot” and is reflected by the
Tn appearing in the equations above. The main drawback is that it does not work well in
the near ballistic regime [38].

1.2.3 Full quantum models

Full quantum transport simulators were introduced when devices sizes became so small that
quantisation effects could not be neglected anymore. Established models can be classified
according to the functions on which they are based on. The Non-Equilibrium Green’s
Function (NEGF) [39] is one of the most widespread formalism. The non-equilibrium
Green’s function method solves the quantum transport problem in the most consistent
and complete way, supports tunnelling through barrier and has been applied to 1D[40],
2D [41] and 3D problems [42]. It is a very general approach that can be used with many
Hamiltonians, from atomistic [43] to EMA ones [44].

The main drawback of full quantum NEGF transport simulations is the heavy compu-
tational burden. In fact, if we take the Green’s function G(r, t, r′, t′) as introduced in [45],
we can see that it depends on two vector arguments (positions r and r′) and two scalar
arguments (the times t and t′). A 3D discretisation would result in an enormous amount of
mesh points. The inclusion of scattering mechanisms is very complicated and increases the
already high computational requirements. Also, setting the proper boundary conditions
requires specific calculations.

1.2.4 3D Monte Carlo

The Monte Carlo method is a statistical method which provides an exact solution of the
Boltzmann transport equation without any a-priori assumption on the carrier distribution.
This method solves the BTE by simulating the motion of a set of particles, motion
interrupted by scattering events.

The first application of the method to the solution of the BTE was presented by
Kurosawa in 1966 but it took almost 20 years before this technique got widespread use [46,
47, 48]. This method can be extended easily to support the description of new scattering
mechanisms but it does not include quantisation effects in the direction normal to transport
(subband formation) and along the transport direction (e.g. source/drain tunnelling). The
former shortcoming is addressed by the Multi-Subband Monte Carlo.

1.2.5 Multi-Subband Monte Carlo

The traditional Monte Carlo method is an excellent tool for the simulation of a free carrier
gas in far from equilibrium conditions, but the evolution of modern MOSFET devices
requires a proper modelling of carrier quantisation phenomena which have important
physical consequences on the device:

• the charge is displaced from the dielectric/semiconductor interface. This displacement
affects the electrostatics;
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• the scattering rates depend on the subband structure and on the corresponding
wave-functions.

Quantum corrections have been proposed [49, 50] to address these consequences but they
affect only the electrostatics and cannot capture effects such as subband splitting and
modulation of the scattering rates [51, 52].

The Multi-subband Monte Carlo [53] (MSMC) method extends the Monte Carlo method
for a free carrier gas by including quantisation effects, in the vertical direction (normal to
transport), via the solution of the 1D Schrödinger equation. The inclusion of these effects
makes this method quite demanding from a computational point of view but still much
more efficient than the NEGF. The state of the art when this thesis began was that many
hours were required to complete the simulation of one bias point including all the relevant
scattering mechanisms.

1.3 Purpose of the work

The Multi-subband Monte Carlo method is at the foundation of the simulator developed
by the nano-electronics research group of the University of Udine [30]. It is the focus of
this work and will be described in Chapter 2. Considering the general remarks given so far
about the MSMC method and about III-V materials, the main contributions of this work
refer to three main areas:

1. the MSMC method requires lots of computational resources. Also, the computation
time is increased because of the support of metal gate/high-k/III-V materials gate
stacks, which requires the modelling of additional scattering mechanisms with respect
to conventional silicon MOSFETs with SiO2 dielectric. A careful optimisation work
is required in order to reduce the simulation time and make it acceptable not only by
academic research groups, but also by researchers in pre-industrial R& D centres of
the semiconductor industries. Also, a code parallelisation work is needed to exploit
properly the performance improvements provided by modern CPUs. Chapter 3
describes how these two tasks were carried out. To our knowledge this is the first
implementation of parallelisation of MSMC solvers.

2. The improved version of the simulator must be tested on the field, comparing the
results it delivers with experimental results and with other models. Chapter 4 reports
comparisons with real devices and with two NEGF simulators, one based on an
atomistic hamiltonian and one on a k.p hamiltonian.

3. III-V materials lack native oxides. The interfaces between these materials and high-k
dielectrics show a much higher density of defects than the usual SiO2/Si interfaces.
These defects have an impact on device performance and must be properly modelled.
Chapter 5 focuses on how we extended the MSMC simulator to support the description
of interface defects for long channel device mobility simulations and to evaluate the
current in short channel devices.

Finally, Chapter 6 gives some final remarks and describes possible future works.
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Chapter 2

The Multi-subband Monte Carlo
simulator

The Monte Carlo (MC) method is a powerful technique for solving the Boltzmann Transport
Equation [1, 2]. This method aims to simulate the motion of a set of particles moving
inside an electron device and, specifically, the channel of a MOS transistor. The motion
of these particles is in general not ballistic since scattering events invariably occur while
moving through the device.

The time of the simulation is divided into a discrete set of intervals called time steps.
During each time step, two main phases occur [2]. During the first one, called “free flight”,
a particle is moved for a given time according to Newton’s law. The electric field (and a
possible lateral magnetic term) provides the driving force. This is a deterministic step.
The second phase begins when a scattering event ends the free flight. Scattering events
change the momentum of the particle and are stochastic in nature.

Two versions of the Monte Carlo method can be categorised according to how the
motion of the particles is simulated during the time steps: a single-particle Monte Carlo
computes the motion of a particle through all the time steps before considering the next
particle [2, 3]; an ensemble Monte Carlo algorithm simulates the motion of all the particles
for one time step before beginning computations of the next time step [2].

Particle statistics are collected periodically and in particular: before scattering in single
particle MC and at the end of each time step in ensemble MC. A new estimate of the
particle distribution is thus periodically obtained, and is then used to solve the Poisson
equation to obtain an updated potential energy profile. This corresponding potential
energy profile is used to compute the driving force for the next iteration of the Monte
Carlo transport phase.

The iteration between the transport phase and the solution of the Poisson equation is
performed until convergence is reached [4, 5] where convergence is typically evaluated in
terms of time stability of the averages and reduction of variance.

The MC method in the terms described above is suited to simulate a free-particle gas,
but in modern MOS transistors quantisation effects (as those discussed in the introduction)
play a significant role and the method must be adapted to take into account these effects.

In this chapter we will describe and analyze the structure, models and algorithms of an
advanced Multi-subband Monte Carlo simulator developed by the nano-electronics research
group at the University of Udine [6].
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Figure 2.1: Sketch of a planar double gate MOSFET as described in the MSMC simulator
of this work.

2.1 Introduction to the MSMC method

The Multi-subband Monte Carlo [6, 7, 8, 9, 10, 11, 12] method for MOSFET devices
extends the Monte Carlo method for a free-electron gas by including quantisation effects
via the solution of the Schrödinger equation in the direction normal to transport. Before
the simulation begins, the device is partitioned in a number of sections along the transport
direction x, as shown in Fig.2.1.

Since this is an iterative method, a suitable initial condition for the potential energy
profile is needed. Section 2.6 describes how these initial conditions are computed. The
simulator proceeds by iterating four steps (see Fig. 2.2. With reference to the planar
MOSFET case of Fig. 2.1, they are:

Schrödinger equation : The Schrödinger equation is solved in each section along the
quantisation direction y to obtain the subband energies Eν,n and the associated
wave-functions ψn,v(y);

Scattering rates computation : Scattering rates are computed in each section using
Eν,n and ψn,v(y) calculated at the previous step;

Monte Carlo transport : Particles motion is simulated using dEν,n/dx as the driving
force in order to obtain the subband particle distributions for each section. The total
charge density is then calculated;

Poisson equation : The new particle distribution is used to solve the 2D Poisson equation
to obtain a new potential energy profile. This new profile is the input of the
Schrödinger equation at the next iteration.

These four steps are carried out in sequence until convergence is reached. The flow-chart
of the simulator is show in Fig.2.2.



2.2. SOLUTION OF THE SCHRÖDINGER EQUATION 17

Schrödinger 
Equation 

(1D)

Scattering 
Rates 

Computation

Monte Carlo

Poisson 
Equation 

(2D)

Initial 
Conditions

EC(x,y)

ψv,n(y), Ev,n

Scattering 
Ratesn(x,y)

φ(x,y), 
EC(x,y)

Figure 2.2: Flow-chart of a Multi-subband Monte Carlo simulator.

2.2 Solution of the Schrödinger equation

Electrons can occupy only states with a well defined energy Eν,n given by

Eν,n = E
′
ν,n + Eν0, (2.1)

where Eν0 is the conduction band minimum for the valley ν and n is the eigenvalue index,
which identifies the so called subband of valley ν. E

′
ν,n and the corresponding envelope

wave function Φν,n are obtained by solving the stationary Schrödinger equation

[Ê
(ν)
cb (−i∇R) + EC(y)]Φν,n(R) = E

′
ν,nΦν,n(R) (2.2)

where EC(y) is the confining potential energy profile. R = (r, ry) = ((rx, rz), ry) and Ê
(ν)
cb

is the operator that accounts for the effects of the crystal potential. Finding the solutions

for this equation can be easy or difficult, depending on the form of the Ê
(ν)
cb (−i∇R) operator.

If we employ the parabolic effective mass approximation, we can rewrite the equation as[
−~2

2

(
1

mx

∂2

∂x2
+

1

my

∂2

∂y2
+

1

mz

∂2

∂z2

)
+ EC(y)

]
Φν,n(R) = E

′
ν,nΦν,n(R). (2.3)

As carriers in a MOSFET are confined in one direction (y) and can move freely in the
other two ones (x and z), the wave functions can be written as

Φν,n(R) = ξν,n(y)
exp(ik · r)√

A
, (2.4)
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where k is the wave vector on the transport plane (k = (kx, kz)) and A is the normalisation
area. By plugging 2.4 into 2.3, the Schrödinger equation can be simplified to

−~2

2my

∂2ξν,n
∂y2

+ EC(y) = εPν,nξν,n. (2.5)

Recalling Eq. 2.1, the total energy is:

EPν,n(k) = Eν0 + εPν,n +
~2

2

(
k2
x

mx
+
k2
z

mz

)
. (2.6)

From here on we will assume that the wave functions along the quantisation direction ξ are
real. The eigenvalues given by Eq. 2.6 are correct only for energies close to the conduction
band valley minimum, which can be well represented by an ellipsoidal constant-energy
surface. For higher energies, a more accurate approximation is obtained by applying a
non-parabolicity correction as described in [13]. Non-parabolicity corrections are especially
relevant for III-V semiconductors. The correction is applied to the eigenvalues εPν,n to

obtain the non parabolic eigenvalues εNPν,n :

εNPν,n = Uν,n +

√
1 + 4αν · (εPν,n − Uν,n)− 1

2αν
(2.7)

where Uν,n is given by

Uν,n =

∫
|ξν,n(y)|2EC(y)dy. (2.8)

The wave-functions are unchanged with respect to the parabolic case. Recalling again Eq.
2.1 the discrete energy levels are:

ENPν,n = εNPν,n + Eν0, (2.9)

and the total energy is:

ENPν,n (k) = Eν0+εNPν,n +

√√√√1 + 4αν

(
~2
2

(
k2x
mx

+ k2z
mz

)
+ εPν,n − Uν,n

)
−

√√√√1 + 4αν

(
εPν,n − Uν,n

)
2αν

(2.10)
where αν is the non-parabolicity coefficient for the valley ν. Figure 2.3 shows an example of
solution of Eq.2.5. The left figure shows the subband energy along the y direction. In the
right figure, the corresponding subband energy levels in each section have been connected
to obtain a complete contiguous profile along the transport direction x.

2.2.1 Crystal orientation

The discussion above holds for [100]/(001) silicon channel devices, where the three axis of
the ellipsoidal constant energy surfaces are aligned with the three main axis of the x, y, z
device coordinate system DCS (which assumes that quantisation effects are considered
along the y direction and the transport plane is the xz plane). The axes of the ellipsoids
are also aligned with the kx, ky, kz directions of the crystal coordinate system CCS. This
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Figure 2.3: (a) Potential energy profile EC(y) used to solve Eq.2.5 in a sample slice (x =
-4.5 nm) and its solutions Eν,0 + εν,n. (b) Profile of the allowed energy levels along the
transport direction x. The device is a 7 nm thick silicon DG-SOI with a channel 14 nm
long and a 0.7 nm thick SiO2 dielectric. VGS = 0.5V, VDS = 0.5V.

alignment disappears for other crystal orientations or other channel materials. To treat
these cases, a new coordinates system is defined with its main axes are always aligned
with the axes of the ellipsoids (ellipsoidal coordinate system, ECS). The main axes of
the ECS are kt1, kt2, kl and mt1,mt2,ml are the three effective masses. A more complete
treatment of these coordinate systems is shown in [14]. In unstrained cubic semiconductors
mt1 = mt2 = mt. The transformation between DCS and ECS is given by:

(kt1, kl, kt2)T = RD→E · (kx, ky, kz)T , (2.11)

where RD→E is a transformation matrix from DCS to ECS. In order to solve the Schrödinger
equation, we must define the matrix:w11 w12 w13

w21 w22 w23

w31 w32 w33

 = RT
D→E ·

1/mt1 0 0
0 1/ml 0
0 0 1/mt2

 ·RD→E · (2.12)

Consistent with [15], the envelope wave-function for a generic orientation is then given by:

Φν,n(R) =
ξν,n(y)√

A
exp[i(kxx+ kzz)]exp

[
−i(w13kx + w33kz)y

w23

]
. (2.13)

Equation 2.5 is replaced with:

−~2w23

2

∂2ξν,n
∂y2

+ EC(y) = εPν,nξν,n (2.14)

where the quantisation mass is now 1/w23. The longitudinal axis of the ellipsoid forms the
angle α with the kx axis of the DCS. Different valleys will form different angles [16].

2.3 Scattering rates

The motion of carriers in devices is subject to numerous collision events. These collisions,
called scatterings, tend to restore the equilibrium conditions inside the device when external
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stimuli are applied. Many are the mechanisms that can cause carrier transitions between
two states and all must be properly modelled. Transitions between subbands of the same
valley are called intra-valley, while transitions between subbands of different valleys are
called inter-valley. Let’s suppose that these mechanisms manifest themselves through a
stationary scattering potential Usc(R) that adds to the potential energy in Eq. 2.3. Usc(R)
is typically a rapidly varying function of R on the scale of the inter-atomic distance. This
potential allows transitions from an initial state (n,k) to a final state (n,k′). Here the
index n is a “global” index, which includes the valley index. The number of transitions
between two states per unit of time for a given scattering mechanism m is called scattering
rate and can be generally computed using the Fermi golden rule [16, p. 2.5.4]:

Smn,n′(k,k′) =
2π

~
|Mn,n′(k,k′)|2δ[En(k)− En′(k′)]. (2.15a)

For harmonic time varying scattering potentials Usc(R, t) at angular frequency ω the Fermi
golden rule reads:

Smn,n′(k,k′) =
2π

~
|M (ab)

n,n′ (k,k
′)|2δ[En(k)− En′(k′) + ~ω]

+
2π

~
|M (em)

n,n′ (k,k′)|2δ[En(k)− En′(k′)− ~ω].

(2.15b)

Note that in the first equation, the Dirac’s delta function imposes that the energy of the
final state must be equal to the energy of the initial state, meaning that the transitions are
elastic and conserve the total energy. The second equation entails an increase (absorption)
or decrease (emission) of a quantum of energy equal to ~ω. These scattering mechanisms
are called inelastic. The M factor appearing in both equations is called matrix element.
The matrix element for an elastic intra-valley transition among states of a 2D electron gas
is given by [16, p. 4.1.2]:

Mn,n′(k,k′) =
(2π)2

A

∫
y
ξν,n′(y)ξν,n(y)U2T (−q, y)dy, (2.16)

where A is the normalisation area, q = (k′ − k) is the wave-vector variation (q = |q|)
and U2T is given by U2T =

∫
A Usc(R) exp(i(k − k′)r)dr. Inter-valley transitions can be

neglected if the spectral components of the scattering potentials are small for wave-vectors
comparable to the extension of the first Brillouin zone. If the matrix element has a very
weak dependence on q then the mechanism is called isotropic.

The MSMC simulator considered in this thesis work supports various scattering mecha-
nisms which can be divided in two broad groups. The first are isotropic phonon scattering
mechanisms while the second includes anisotropic scattering mechanisms (Coulomb scat-
tering, surface roughness scattering, alloy scattering, polar optical phonon scattering and
remote phonon scattering).

As shown later in Section 2.4, the total scattering rate out of a state (n,k) is a very
important quantity for the practical implementation of Monte Carlo simulation algorithm.
This quantity is obtained by summing Eqs. 2.15a or 2.15b over the final states. This sum
is typically converted to an integral over all final states k′. Generally speaking:

(2π)2

A

∑
k′

S(k′) ≈ nsp
∫
k′
S(k′)dk′. (2.17)
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In our case, the spin multiplicity factor nsp is set to 1 because spin is not changed by a
scattering event. Also, the expression above makes the normalisation area A disappear
when computing the matrix elements.

Conceptually, the SC step can be divided in two sub-steps. The first sub-step computes
the matrix elements for all the scattering mechanisms under consideration including the
effects of screening (see below). The second sub-step computes the scattering rates and
integrates them according to Eqs 2.15a, 2.15b and 2.17.

2.3.1 Screening

The free carriers inside a device screen the scattering potential, thus reducing its impact.
A larger concentration of free carriers implies a more effective screening effect. From the
modelling point of view, the screening effect alters the matrix elements computed so far
(which now become the unscreened matrix elements) according to:

M
(unscr)
ν,m,m′ (q) =

∑
w,n,n′

εw,n,n
′

ν,m,m′(q)M
(scr)
w,n,n′(q) (2.18)

where εw,n,n
′

ν,m,m′ is called dielectric function and is given by [16]:

εw,n,n
′

ν,m,m′(q) = δw,νδn,mδn′,m′ − e2

q(εS + εox)
Πw,n,n′(q)Fw,n,n

′

ν,m,m′(q) (2.19)

where εS is the dielectric constant of the semiconductor and εox is the dielectric constant
of the oxide. Π is the polarisation factor and is given by [16]:

Πw,n,n′(q) =
1

A

∑
k

fw,n′(k + q)− fw,n′(k)

Ew,n′(k + q)− Ew,n(k)
(2.20)

where f is the occupation function of the subband. F is the screening form factor given by

Fw,n,n
′

ν,m,m′(q) =

∫
dyξν,m(y)ξν,m′(y)

∫
dy0ξw,n(y0)ξw,n′(y0)φpcN (q, z, z0) (2.21)

where φpcN is given by

φpcN (q, y, y0) =
q(εS + εox)

e
φpc(q, y, y0) (2.22)

and φpc is the potential produced by a point charge. This potential is given by Eq. 2.37 or
2.38 and will be further discussed in section 2.3.3.

The formulation above is known as tensorial screening. When q is small we can then
employ a simpler expression, known as scalar screening. For inter-subband transitions the
scalar formulation implies:

M
(scr)
ν,m,m′(q) ≈Mν,m,m′(q), m 6= m′. (2.23)

For intra-subband transitions we have:

M (scr)
ν,m,m(q) =

Mν,m,m(q)

εD(q)
, (2.24)
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where

εD(q) = 1−
∑
w,n

e2

q(εS + εox)
Πw,n,n(q). (2.25)

Scalar screening can be used for bulk and single-gate SOI devices, but it becomes inaccurate
for double-gate SOI devices [17]. We employ tensorial screening for all the simulations of
this work.

2.3.2 Non-polar Phonon scattering

If the lattice temperature is not too low, the atoms oscillate with respect to their rest
positions. These vibrations perturb the otherwise perfectly periodic crystal potential and
cause scattering events. The energy associated to a vibration mode ν with propagation
wave-vector Q (|Q| = Q) is quantised and is given by E = ~ων,Q(nQ + 0.5). This energy
can be interpreted as the total energy of a group of nQ particles, called phonons, whose
energy is ~ωQ. The number of phonons occupying state (ν,Q) is given by the Bose-Einstein
statistics:

nν,Q =
1

exp
(
~ων,Q
KBT

)
− 1

. (2.26)

There are two kinds of phonon: acoustic and optical. Let’s begin with the acoustic
intra-valley phonons. We have two matrix elements, one for the phonon absorption and
one for the phonon emission [16]:

|M (ab)
n,n′ (k,k

′)|2 = δk′,(k+q)
KBTD

2
ac

2ρAv2
s

Fn,n′ (2.27a)

|M (em)
n,n′ (k,k′)|2 = δk′,(k−q)

KBTD
2
ac

2ρAv2
s

Fn,n′ (2.27b)

where Dac is the effective deformation potential and Fn,n′ is the form factor given by

Fn,n′ =

∫
y
|ξn′(y)ξn(y)|2dy (2.28)

In the expression above the purpose of the Kronecker delta is to select the correct q and
Q values, but otherwise the matrix element does not depend on q. Intra-valley acoustic
phonon scattering is an elastic and isotropic scattering mechanism. Furthermore, the
scattering rates for both absorption and emission processes are the same, so they can be
simply expressed as:

Sn,n′(k,k′) =
2πKBTD

2
ac

ρA~v2
s

Fn,n′δ[En(k)− En′(k′)]. (2.29)

Let’s consider now the intra-valley optical phonons. Their energy is practically constant
(~ων,Q ≈ ~ω0) so we can compute the phonon number nop using Eq. 2.26 and express the
matrix element as:

|M (ab)
n,n′ (k,k

′)|2 = δk′,(k+q)

~D2
op

2ω0ρA
Fn′,nnop (2.30a)

|M (em)
n,n′ (k,k′)|2 = δk′,(k−q)

~D2
op

2ω0ρA
Fn′,n(nop + 1) (2.30b)
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and the scattering rate is:

Sn,n′(k,k′) =
πD2

op

ω0ρ
Fn′,nnopδ[En(k)− En′(k′) + ~ω0]

+
πD2

op

ω0ρ
Fn′,n(nop + 1)δ[En(k)− En′(k′)− ~ω0]

(2.31)

where Dop is the scalar optical deformation potential. Finally, for the inter-valley transitions,
the scattering rate is:

Sw,n
′

ν,n (Eν,n(k)) =
πD2

op

ω0

∑
w 6=ν,n′

µ(p)
w,vF

w,n′
ν,n

×

[
nop(~ωp) + 0.5∓ 0.5

]
gw,n′(Eν,n(k)± ~ωp)

(2.32)

where ~ωp is the phonon energy, Dp is the deformation potential of the p type phonon,

gw,n′(E) is the density of states of a w type valley and µ
(p)
w,v is the multiplicity of the

destination valley. Finally, Fw,n
′

ν,n is defined as:

Fw,n
′

ν,n =

∫
y
|ξw,n′(y)ξν,n(y)|2dy. (2.33)

2.3.3 Coulomb scattering

Coulomb scattering is caused by a perturbation potential produced by Coulomb centres
located in the semiconductor, in the dielectrics and at the interfaces between these materials.
Our simulator supports two models for this kind of scattering: the local model, which is
used when the the gate dielectric can be assumed to be infinitely thick and single material,
and the remote model, which considers a gate stack with a high-k material lying between a
metal gate and an interfacial layer. This is an elastic anisotropic scattering mechanism,
and the transitions between valleys are unlikely, so we will assume that the initial and final
valleys are the same [7].

Let’s consider the local model first [18, 19]. Fig. 2.4(a) shows the gate stack, which
is made by an infinitely thick oxide lying on top of the semiconductor. In the figure,
Nsemi is the number of Coulomb scattering centres per unit of volume located inside the
semiconductor, while Nox/semi is the number of Coulomb scattering centres per unit of
area located at the interface (y = 0) between the oxide and the semiconductor. In order
to compute the matrix element and then the scattering rate, we must first compute the
potential produced by a point charge located at (r0, y0). This potential is given by the
Poisson equation:

∇2
Rψpc(r, y) = −e

ε
δ(r− r0)δ(y − y0). (2.34)

The unknown potential can be expressed as

ψpc(r, y) =

∫
q

Ψpc(q, y) exp(−iq · r)dq, (2.35)
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y=0

Oxide

Semiconductor

Nsemi
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NHK/ITL
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Gate stack

Semiconductor
Nsemi

NITL/semi

(a) (b)

Figure 2.4: Main quantities used to compute the scattering rates for Coulomb scattering.
(a) in the local model Coulomb scattering centres are located either inside the semiconductor
or at the interface between the semiconductor and the dielectric (which is assumed to be
infinitely thick). (b) the remote model allows to consider Coulomb centres located in the
semiconductor, in the high-k layer and optionally in an interface layer. Centres can also be
located at the interface between each region.

where Ψpc(q, y) must take the form

Ψpc(q, y) =
exp(iq · r0)

(2π)2
φpc(q, y, y0). (2.36)

For a bulk device, the function φpc(q, y, y0) is [16]:

φpc(q, y, y0) =
e

2qεS
exp(−q|y − y0|) +

(
εS − εox
εS + εox

)
e

2qεS
exp(−q|y + y0|), (2.37)

where εS is the dielectric constant of the semiconductor and εox is the dielectric constant
of the oxide. For an SOI device with semiconductor thickness TS , φpc(q, y, y0) is [16]:

φpc(q, y, y0) =
e

2qεS

[
exp(−q|y − y0|) + C1 exp(qz)− C2 exp(−qy)

]
, (2.38)

where the two coefficients are:

C1 =
(εS − εox)2 exp(−q|y0|) + (ε2S − ε2ox) exp(−q|TS − y0| − TS)

(εS + εox)2 exp(2qTs)− (εS − εox)2
(2.39a)

C2 =
(εS − εox)(C1 + exp(−q|y0|))

εS + εox
. (2.39b)

Now that we have an expression for φpc(q, y, y0), we can finally write the squared modulus
of the unscreened matrix element for this scattering mechanism:

|Mn,n′(q)|2 =
1

A

[∫ ymax

0
|M (0)

n,n′(q, y0)|2Nsemi(y0)dy0 + |M (0)
n,n′(q, y0)|2Nox/semi

]
(2.40a)

M
(0)
n,n′(q, y0) =

∫
y
ξn′(y)ξn(y)φpc(q, y, y0)dy. (2.40b)
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The equation above holds for a bulk device. For an SOI device the upper limit of the
integral is replaced with TS . The squared modulus of the screened matrix elements is
instead given by:

|Mw,n,n′(q)|2 =
1

A

[∫ ymax

0
|M (0,scr)

w,n,n′ (q, y0)|2Nsemi(y0)dy0 + |M (0,scr)
w,n,n′ (q, y0)|2Nox/semi

]
,

(2.41)

where M
(0,scr)
w,n,n′ (q, y0) can be found either by solving this linear system (for tensorial

screening):

M
(0)
w,n,n′(q, y0) =

∑
w,n,n′

εw,n,n
′

ν,m,m′(q)M
(0,scr)
w,n,n′ (q, y0) (2.42)

or, for scalar screening and intra-subband transitions, simply by:

M
(0,scr)
w,n,n′ (q, y0) =

M
(0)
w,n,n′(q, y0)

εD(q)
. (2.43)

For inter-subband transitions and scalar screening the screened matrix element is the same

as the unscreened one. In all cases M
(0)
w,n,n′(q, y0) is given by Eq. 2.40b

Let’s consider now the remote model [20]. This model allows the simulation of a finite
high-k dielectric with the optional presence of an interfacial layer. Now, the Coulomb
scattering centres can be located inside the high-k dielectric, inside the interfacial layer and
inside the semiconductor. Their concentrations per unit of volume are given respectively
by NKH , NITL and Nsemi (See Fig. 2.4(b)). Coulomb centres can also be located at the
interface between the high-k and the interfacial layer and between the interfacial layer
and the semiconductor. Their concentration per unit of area are given respectively by
NHK/ITL and NITL/semi. This multi-layered stack gives a set of equations for φpc(q, y, y0),
depending on the considered region [16]:

φpc(q, y, y0)HK =
e

2qεHK
exp(−q|y − y0|) +A1 exp(qy) +A2 exp(−qy), (2.44a)

φpc(q, y, y0)ITL =
e

2qεITL
exp(−q|y − y0|) +A3 exp(qy) +A4 exp(−qy), (2.44b)

φpc(q, y, y0)S =
e

2qεS
exp(−q|y − y0|) +A5 exp(−qy). (2.44c)

The coefficient we are most interested in is A5 since Eq. 2.44c allows us to express
the potential inside the semiconductor. All the coefficients can be found by setting five
boundary conditions, namely, null potential at the metal gate and the continuity of the
potential and the displacement field at both interfaces and then by solving the resulting
set of equations. The squared modulus of the matrix elements for the remote model can
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be computed as:

|Mn,n′(q)|2 =
1

A

[∫ −TITL
−THK−TITL

|M (0)
n,n′(q, y0)|2NHK(y0)dy0

+

∫ 0

−TITL
|M (0)

n,n′(q, y0)|2NITL(y0)dy0

+

∫ ymax

0
|M (0)

n,n′(q, y0)|2Nsemi(y0)dy0

+|M (0)
n,n′(q,−TITL)|2NHK/ITL

+|M (0)
n,n′(q, 0)|2NITL/semi

]
(2.45a)

M
(0)
n,n′(q, y0) =

∫
y
ξn′(y)ξn(y)

(
e

2qεS
exp(−q|y − y0|) +A5 exp(−qy)

)
dy. (2.45b)

The effects of screening can be included as per the local model. However, Eq. 2.44c replaces
Eq. 2.37 in Eq. 2.22.

2.3.4 Surface roughness scattering

In a real device the interface between the semiconductor and the dielectric is not perfectly
flat [16, 21]. The position of the interface may vary when moving along the channel. If
we assume that the interface lies at y = 0, then the quantity ∆(r) represents the distance
between the true interface and the ideal interface measured along the y direction (see Fig.
2.5). This non-flatness of the interface is the origin of another scattering mechanism called
surface roughness scattering. This mechanism is anisotropic and elastic. Furthermore,
transitions between different valleys are negligible.

The perturbation produced by this non-ideal interface cannot be simply described by a
scattering potential. We must use a perturbed hamiltonian Ĥp,ry. If Ĥ0,y is the original
unperturbed hamiltonian then the matrix element for this mechanism can be written as
[16]

Mn,n′(q) =

∫
A

{∫
y
ξn′(y)[Ĥp,ry − Ĥ0,y]ξn(y)]dy

}
exp(−iq · r)

A
dr. (2.46)

Since we are employing the parabolic effective mass approximation, the two hamiltonians
can be written as:

Ĥ0,y = −~
2

d

dy

(
1

my(y)

d

dy

)
− eφ(y) + ΦBHv(−y) (2.47a)

Ĥp,ry = −~
2

d

dy

(
1

my(y −∆(r))

d

dy

)
− eφ(y) + ΦBHv(−y + ∆(r)) (2.47b)

where φ(y) is the electrostatic potential, ΦB is the potential energy barrier between the
semiconductor and the dielectric, Hv is the step function and the quantisation mass is
the effective mass of the semiconductor, if y ≥ 0 or the effective mass of the dielectric if
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Figure 2.5: (a) The position of the true interface (solid line) can be different from the
position of the ideal interface (dashed line). This causes a shift of the potential energy
profile along the quantisation direction y (b).
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y < 0. Some manipulations [22] of these equations allow us to write the unscreened matrix
element as:

Mn,n′(q) = ∆(q)

[
~2

2my

dξn
dy

(0)
dξn′

dy
(0)

]
(2.48)

where

∆(q) =
1

A

∫
A

∆(r) exp(−iq · r)dr. (2.49)

The squared modulus of the unscreened matrix element is:

|Mn,n′(q)|2 =

∣∣∣∣∣ ~2

2my

dξn
dy

(0)
dξn′

dy
(0)

∣∣∣∣∣
2
SR(q)

A
(2.50)

where SR is the spectrum of the surface roughness. In literature, two different expressions
have been proposed. The first if the gaussian spectrum and the second is the exponential
spectrum:

SR(q) = π∆2
SRλ

2
SRexp

(
−
q2λ2

SR

4

)
, (2.51a)

SR(q) =
π∆2

SRλ
2
SR[

1 +
q2λ2SR

2

] , (2.51b)

where ∆SR and λSR are the r.m.s. value and the correlation length. The squared modulus
of the screened matrix element for intra-subband transitions is simply:

|M (scr)
w,n,n(q)|2 =

|Mw,n,n(q)|2

ε2D(q)
(2.52)

and |Mw,n,n(q)|2 is computed using Eq. 2.50.
For SOI devices, we have two interfaces to model, the other one located at y = TS . In

this case ∆(r) is replaced by the two ∆F (r) and ∆B(r). The unscreened matrix element is:

Mn,n′(q) = ∆F (q)
~2

2my

dξn
dy

(0)
dξn′

dy
(0)−∆B(q)

~2

2my

dξn
dy

(TS)
dξn′

dy
(TS) (2.53)

where ∆F and ∆B are given by Eq. 2.49. The corresponding squared modulus of the
unscreened matrix element is written as:

|Mn,n′(q)|2 =
SFR (q)

A

∣∣∣∣∣ ~2

2my

dξn
dy

(0)
dξn′

dy
(0)

∣∣∣∣∣
2

+
SBR (q)

A

∣∣∣∣∣ ~2

2my

dξn
dy

(TS)
dξn′

dy
(TS)

∣∣∣∣∣
2

(2.54)

where SFR and SBR are computed for the front and back interfaces respectively. Roughnesses
of the two interfaces are assumed to be uncorrelated. The inclusion of screening effects is
slightly more involved than the bulk case. The squared modulus of the screened matrix
element is obtained by summing the squared moduli of the matrix elements at both
interfaces (again, we assume that the roughnesses of the two interfaces are uncorrelated):

|M (scr)
w,n,n′(q)|2 = |M (F,scr)

w,n,n′ (q)|2 + |M (B,scr)
w,n,n′ (q)|2 (2.55)

The screened matrix element of the single interfaces are obtained by solving Eq. 2.18.
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2.3.5 Alloy scattering

Semiconductors that are alloys made of two different semiconductors (like SiGe and InGaAs)
present an additional scattering mechanism. This kind of scattering is caused by the random
distribution of component atoms among the available lattice sites. The relative amount of
each semiconductor is given by a parameter x called molar fraction, which is a number
between 0 and 1. As an example, if x is 0.53, then in the alloy InxGa1−xAs, 53% is InGas
and 47% is GaAs.

Alloy scattering is an anisotropic elastic scattering mechanism. Transitions between
valleys are negligible. The squared modulus of the unscreened matrix element is simply
given by [23]:

|Mn,n′ |2 =
ΩC

A
∆U2x(1− x)

∫
y
|ξn′(y)|2|ξn(y)|2dy (2.56)

where ΩC is the volume of the unit cell and ∆U is the difference between the electron
affinites of the two semiconductors that make up the alloy. Note that the expression above
does not depend on q. The anisotropy comes into play when considering the effects of
screening [24]:

|M (scr)
ν,n,n′ |2 =

ΩC

A
∆U2x(1− x)

∫
|Mν,n,n′(y)|2dy (2.57)

where M is obtained by solving:

ξw,m(y)ξw,m′(y) =
∑
ν,n,n′

εν,n,n
′

w,m,m′(q)Mν,n,n′(y). (2.58)

2.3.6 Polar Optical Phonons scattering

This kind of scattering dominates the phonon assisted transitions in GaAs and other III-V
materials. It is caused by the polar nature of the bonding between Ga and As atoms. It
is an anisotropic inelastic scattering mechanism. Again, transitions between valleys are
negligible. The scattering potential for this mechanism is given by [2]:

UPOPph (R, t) =
e
√

~ωph
i
√

2
√

ΩQ

√
1

ε∞
− 1

ε0

[
a exp(i(Q ·R− ωpht)) + a† exp(−i(Q ·R− ωpht))

]
(2.59)

where ωph is the phonon energy, ε∞ is the high-frequency dielectric constant, ε0 is the static
dielectric constant, Ω is a normalising volume and Q is the magnitude of the phonon wave-
vector Q. UPOPph (R, t) is real since we can assume that |a|=|a†|=

√
nph + 1. However, when

computing the scattering rates, |a| is set to
√
nph (phonon absorption) and |a†| =

√
nph + 1

(phonon emission). The matrix element can be written as:

Mn,n′(q, qy) =

∫
r
dr

∫
y
dy

e
√
~ωph

i
√

2
√
Q
√
q2 + q2

y

√
1

ε∞
− 1

ε0

×
√
nph +

1

2
± 1

2
exp(∓iqy) exp(∓q · r)

exp(−ik′ · r)√
A

ξn′
exp(−ik · r)√

A
ξn.

(2.60)

where qy is the component in the y direction of the phonon wave-vector Q and the upper
and lower sign are for emission or absorption, respectively. Some manipulations [16] allow
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us to rewrite the matrix element into a form which is easier to evaluate:

|Mn,n′(q)|2 =
e2~ωph

4Aq

(
1

ε∞
− 1

ε0

)(
nph +

1

2
± 1

2

)

×
∫
y
dz

∫
z′
dz′ξn′(y)ξn(y)ξn′(y′)ξn(y′) exp(−q|y − y′|).

(2.61)

The effects of screening is weak and is not considered [2][25].

2.3.7 Remote Phonons scattering

The molecules of high-k dielectrics are strongly polarised and their thermal vibration
generates non-stationary electric fields which affect the semiconductor channel. These
phonons are also called soft because the bonds with oxygen molecules are soft and the
molecules can vibrate strongly. The dipoles that make up the insulator can rotate around
their centroid. If the field is stationary, these dipole align against the field and their filed
counteracts the effects of the external field. If the field oscillates at high frequency, the
dipoles can’t rotate fast enough and their field is negligible. In any case, the semiconductor
will be affected by both the external and the dipole field. For simplicity, let’s consider a
bulk semiconductor with an infinitely thick dielectric on top and one phonon mode ωTO.
If we find the dispersion relationship ωSO as [26]:

ωSO = ωTO

√
εS + ε0
εS + ε∞

(2.62)

the matrix element for phonon emission can be written as [27, 20]:

M
(em)
n,n′ (k,k′) =

√
~ωSO
2qA

1

ε̂
a†SO

∫
ξnξn′ exp(−qy)dyδk′,(k−q). (2.63)

where |a†SO|2 = nSO + 1 and

1

ε̂
=

1

εS + ε∞
− 1

εS + ε0
. (2.64)

εS is the semiconductor permittivity and ε0 and ε∞ are the static and high frequency
permittivities of the dielectric. The absorption matrix element can be written by replacing
a†SO with aSO (|aSO|2 = nSO) and δk′,(k−q) with δk′,(k+q). The effect of screening is weak
and is not take into account [7].

2.3.8 From the matrix elements to the scattering rates integrals

The scattering rates computation step is divided into two sub-steps. During the first we
compute the matrix elements, during the second we use the matrix elements to compute
the scattering rates and we integrate them. From a computational point of view, this poses
a challenge because both k and k′ vectors belong to R2 (which is contiguous) and so is the
vector q, which is used to compute the matrix elements. In order to make the simulation
feasible, during the first sub-step, we sample a set of |q| values and compute the matrix
elements only for these values of |q|. Therefore, in each section and for each mechanism
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Figure 2.6: When using polar coordinates, the vector k forms an angle β with the kx axis.
The vector q represents the difference between k′ and k, difference that consists in an
increment θ of the angle and, possibly, of the magnitude of k′. The coordinate system is
the in-plane ellipse coordinate system EpCS (see [16], chapter 8).

we must compute a matrix element for each possible combination of source valley, source
subband, destination valley, destination subband and discretised |q| value. The maximum
|q| is chosen so that the corresponding contribution to the integral is negligible.

During the second sub-step, the scattering rates are computed and integrated. To
make this sub-step easier, we express the k vector using polar coordinates, so we have
k = (kx, kz) = (k cos(β), k sin(β)). The angle β is the angle between k and the kx axis.
The angle θ is used to represent the difference between k′ and k. Figure 2.6 show the
relationship between k, k′, q, β and θ.

k, β and θ must be discretised in order to perform a numeric integration. Since we
can compute the kinetic energy from k, the discretisation of the magnitude of k is a
discretisation in terms of energy. Therefore k with similar k are represented with an
energy bin Ei. Then, all the vectors that falls into the same energy bin must be further
discretised according to a β-bin βj . Due to symmetry reasons, we can restrict the β angles
to the interval [0, π/2]. The triplet (n, i, j) allows us to identify every possible discretised
initial state. The angle θ is discretised by dividing the interval [0, 2π] into θ-bins θk. The
integration procedure for a mechanism m works as follows:
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FOR n ∈ subbands

FOR i ∈ E-bins

FOR j ∈ β-bins
Sm(n,k) ← 0

FOR n’ ∈ subbands

IF transition from n to n’ is allowed THEN

FOR k ∈ θ-bins
compute the transition rate from (n,k) to (n′,k′)
using the corresponding matrix element

and add it to Sm(n,k)
END FOR

END IF

END FOR

END FOR

END FOR
The k and k′ vector used inside the procedure are computed using the discretised

energy and angle bins:

k =

√
2mxz(βj)[Ei − EPn + αn(Ei − Un)2]

~
(2.65a)

k′ =

√
2mxz(βj + θk)[Ei + δ − EPn′ + αn′(Ei + δ − Un′)2]

~
(2.65b)

where δ accounts for a change in the final energy and the mass mxz(β) for a generic angle
is:

m−1
xz (β) =

[
cos2(β)

mx
+
sin2(β)

mz

]
. (2.66)

The magnitude of the q vector for such k and k′ is:

q =
√
k2 + k′2 − 2kk′ cos(θk). (2.67)

The computation of the transition rate from one state to another may require q values for
which the corresponding matrix element is unknown. In such case, we must interpolate
two known matrix element M(qa) and M(qb), provided that qa ≤ q ≤ qb holds.

2.4 Monte Carlo transport core

The purpose of this step is to build an occupation function fx,ν,n(k) that gives the
occupation probability of a state identified by the section x, valley ν, subband n and
in-plane wave-vector k. This function is built by simulating the motion of a set of particles
through the device. As said before, the particles are moved for a given amount of time
steps. Also, all particles must complete the time step i before time step i+ 1 can begin,
thus making our Monte Carlo an ensemble Monte Carlo [10]. Figure 2.7 gives a quick
glance of how this step works. The method relies on the generation of random numbers rn
which are, unless otherwise stated, uniformly distributed between 0 and 1.
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2.4.1 Duration of the free flight

First, we need to determine the duration of the free flight tFF . In section 2.3 we have
computed the scattering rate from a state n,k to a state n′,k′ due to a mechanism m. The
total scattering rate out of a state n,k is given by:

Stot(n,k) =
∑
m

∑
n′k′

Smn,n′(k,k′). (2.68)

From this we can compute the probability density for the free flight duration to be tFF
[1], that is, the probability to have a scattering event after tFF seconds provided that no
scattering event occurred during the time interval (0, tFF ):

P (tFF ) = Stot(n,k(tFF )) exp(−
∫ tFF

0
Stot(n,k(t′))dt′). (2.69)

This is an integral equation very difficult to solve. A simpler approach involves the addition
of a fake self-scattering mechanism. If Stot in Eq. 2.69 is replaced by its upper bound

Γ = max Stot(n,k) (2.70)

we then have [1]

tFF = − ln r1

Γ
. (2.71)

2.4.2 Simulation of the free flight

Next we compute the free flight and it will change both the position and the momentum of
the particle. Momentum k will change by an amount

∆k = (∆kx,∆kz) =

(
−F cos(α)

~
tFF ,−

F sin(α)

~
tFF

)
, (2.72)

while the position will change by an amount

∆x = ~

[
kxcos(α)

mx
− kzsin(α)

mz

]
np tFF −

1

2

[
F cos2(α)

mx
+
F sin2(α)

mz

]
t2FF , (2.73)

where α is the angle described in section 2.2.1, F is the driving force and np is the
non-parabolicity correction factor given by

np =
1

1 + 2αν
(
Eν,n(k)− Uν,n

) . (2.74)

The driving force applied to a particle belonging to valley ν and subband n is computed as:

F =
dENPν,n
dx

. (2.75)

There are two special cases that must be treated appropriately:

1. if tFF would make the particle move beyond the boundary of a time step, the duration
of the free flight is interrupted at the boundary of the time step and the free flight
will resume during the next time step;

2. if the particle moves beyond the boundary of a section then the free flight is interrupted
at the boundary of the section and a new free flight will be computed using the field
of the next section.
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2.4.3 Determination of the scattering mechanism that interrupted the
free flight

At the end of a free flight, a scattering event occurs. If Stot(k(tFF )) < r2Γ then a self-
scattering event has interrupted the free flight and the state of the particle is left unchanged
and a new free flight must be computed. If Stot(k) � Γ then the self-scattering event
happens very often which results in many short free flights instead of a one long free flight.
This is a downside of the simplification introduced by Eq. 2.70. Otherwise, we must find
which true mechanism interrupted the free flight. The probability for mechanism m to be
responsible for the free flight interruption is given by

Pm(k) =
1

Stot(n,k)

∑
n′,k′

Smn,n′(k,k′). (2.76)

To select a mechanism, first we generate a random number r3, then we find a j such that

j−1∑
m=1

Pm(k) < r3 <

j∑
m=1

Pm(k). (2.77)

2.4.4 Computation of the state after scattering

To determine the state after scattering me must pick a destination valley, a destination
subband and the angle θ which allows us to compute k′ from k. In order to find these
quantities we need to perform again the integration steps described in Sec. 2.3.8 but this
time the procedure is halted when we find a state (n,k′) such that:∑

n,k′

Smn,n′(k,k′) = r4Stot(n,k). (2.78)

If m is an anisotropic scattering mechanism, then the magnitude of k′ is given by [13]:

k′ =

√
2mxz(β + θ)[Eν,n′(k′)− εPν,n′ + αν(Eν,n′(k′)− Uν,n′)2]

~
(2.79)

The β + θ-dependent mass is given by Eq. 2.66 and the total final energy Eν,n′(k′) is
Eν,n′(k′) = Eν,n(k) + δ. The δ accounts for the change in the total energy provoked by
some scattering mechanisms. Remember that not all anisotropic mechanisms are elastic.

If m is a phonon scattering, the angle θ is chosen randomly from [0, 2π] and the
magnitude of k′ is given by:

k′ =

√
2md[Ew,n′(k′)− εPw,n′ + αw(Ew,n′(k′)− Uw,n′)2]

~
, (2.80)

where md =
√
mw
xm

w
z and mw is the effective mass of the destination valley w along the x

or z direction. The components of k′ are stretched according to the effective mass along
the two directions of the transport plane:

k′ = (k′x, k
′
z) = (k′ cos θ

√
mw
x /md, k

′ sin θ
√
mw
z /md) (2.81)
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Figure 2.7: Time evolution of an ensemble Monte Carlo. Between two time steps a particle
may fly freely and scatter many times. Statistics are collected periodically.

The total final energy Ew,n′(k′) is Ew,n′(k′) = Eν,n(k)± ~ω.
We must also take into account the Pauli exclusion principle [28]. A transition to

(n′,k′) is refused if fx,w,n′(k′) > r5 where r5 is a random number uniformly distributed
between 0 and 1. In this case, the state of the particle is not changed. Again, the vector k′

must be discretised, or we cannot build numerically the function f . This time we discrete
the plane (k′x, k

′
z) and assign each k′ to one element of the grid.

2.4.5 Contacts

The last aspect to cover is how to manage device contacts, that is, what to do with particles
that reach the boundaries of the device and how to add new particles. Our simulator
supports mainly two kind of contacts. The first are called looping contacts. Looping
contacts are very simple in nature. They consists of two paired contacts. Whenever
one particle reaches one contact, it is immediately moved to the other contact. These
contacts are used to simulate long channel devices. The other kind of contacts are called
absorbing/injecting contacts and are used for short channel device. Particles that reach the
contacts are removed from the simulation. At the beginning of each time step, both contacts
adds new particles into the simulation. The number of injected particles is W · t · Iinj/w,
where W is the width of the device, t is the absolute time of the simulation (simulation
begins at t = 0s) and w is the statistical weight of a particle. The injection current Iinj is
given by [29]:

Iinj =
∑
ν,n

∫ ∞
0

µν
~2π2

√
2mXMLz[E + ENPν,n − EPν,n + αν(E + ENPν,n − Uν,n)2]

·

(
cos θr sin θs√

mx
+

sin θr cos θs√
mz

)
· 1

1 + exp
(
E+ENPν,n −EF

KBT

)dE, (2.82)

where KB is the Boltzmann constant, T is the lattice temperature, EF is the Fermi level at
the contact, θr = −α, θs = arctan(tan θr ·

√
mz/mx) and α is the angle described in section
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2.2.1. Basically, we use the Fermi-Dirac distribution to fill all the states with positive
group velocity along the x direction and sum their contribution. The two angles θr and
θ1 identify these states. The original expression from [29] has been modified to include
the non-parabolicity corrections from [13]. A more detailed description of the injecting
contacts is given in [30].

2.5 Solution of the 2D Poisson equation

The final step is to solve the Poisson equation:

∇·ε∇φ(k+1) = −e

{
p(k) exp

[
e(φ(k)−φ(k+1)/kT

]
−n(k) exp

[
e(φ(k+1)−φ(k))/kT

]
+ND−NA

}
.

(2.83)
The equation above is the non-linear Poisson equation. The exponential are needed to
“damp” the oscillations of carrier concentrations between two iterations or stability issues
will arise. These issues are due to the fact that the charge depends exponentially on the
potential and the potential variation depends linearly on the charge variation. The index k
refers to the current iteration of the loop in Fig.2.2. The electron concentration n(x, y) is

n(x, y) =
2

A

∑
ν

∑
n

∑
k

fν,n,x(k)|ψν,n,x(y)|2 (2.84)

where f is the occupation function computed during the previous step and A is the area of
the device in the xz plane. The current version of the simulator supports only the transport
of electrons in electron inversion layers, so the the hole transport and concentration p is
computed via drift-diffusion.

Note that Eq. 2.83 is a non-linear Poisson equation. The driving force used during the
Monte Carlo step is computed at the boundaries of each section while the position of a
particle in real space is contiguous and is not bound to a specific mesh node. Therefore
the grid spacing and the duration of particle motion ∆t have a significant impact on the
stability and on the accuracy of the method [4, 5]. By using the non-linear equation, we can
employ a longer ∆t which allows for a better statistics collection and thus the simulation
requires fewer iterations to reach convergence. This has an impact on the performances
because fewer iterations mean fewer scattering rates computations.

Regarding the boundary conditions, Dirichlet conditions are used for the gate contacts
so the potential in this portion of the boundary is given by φ = VFG − ΦFG + χS where
VFG is the potential applied at the top gate, ΦFG is the work-function of the top metal
gate and χS is the electron affinity of the semiconductor. A similar condition is applied at
the bottom gate contact for SOI devices. Neumann conditions are applied everywhere else,
imposing the null derivative of the potential.

Finally, the new potential energy profile is computed from the updated potential as:

E
(k+1)
C (x, y) = −eφ(k+1)(x, y) + χS − χ(x, y). (2.85)

2.6 Determination of the initial conditions

Looking back at the flowchart of the simulator (Fig. 2.2) we can see that there is still one
block to discuss. The simulator requires a first guess of the potential energy profile so that
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the first solution of the Schrödinger equation can be obtained. The quality of this first
guess is very important because a good first guess means that the simulation will converge
with fewer iterations. There are two ways to provide a first guess, depending on the kind
of device to be simulated.

Initial conditions for long channel devices In a long channel device the charge
profile does not change much while moving along the transport direction x, so it is more
efficient to find an initial potential profile and keep it frozen during the simulation. To
obtain such profile, we need a self-consistent solution of the coupled 1D Schrödinger-Poisson
equations. The solution must be self-consistent because, due to the non-local nature of the
Schrödinger equation, we cannot write a local relation between the carrier concentration and
the electrostatic potential, so the two equations must be solved iteratively until convergence
is reached. The Schrödinger equation is solved as described in section 2.2 but again we need
a first guess for the potential energy profile. We set the reference energy level to EF = 0. In
the semiconductor both the electrostatic potential (φ(y)) and the potential energy profile
(EC(y)) are set to 0. In the dielectric, φ is set to Vg + χS − Φ at the gate contact, where
VG is the impressed gate potential, χS is the semiconductor affinity and Φ is the gate
work-function. The potential φ is linear between the gate contact and 0 (the potential in
the semiconductor). In the dielectric EC is computed as EC(y) = −φ(y)− χox + χS where
χox is the dielectric affinity. A similar procedure is needed for the bottom dielectric if the
device is an SOI.

To solve the Poisson equation we need to compute the carrier concentrations. The
electron concentration n(y) is computed from the solutions of the Schrödinger equation
and it is given by:

n(y) =
∑
ν,n

|ξν,n(y)|2
µνmd,νKBT

π~2

[
ln(1 + exp

(
EF − Eν0 − εNPν,n

KBT

)

+2ανKBTF1

(
EF − Eν0 − εNPν,n

KBT
)

)]
.

(2.86)

where µν is the multiplicity of the valley ν, md,ν =
√
mx,νmz,ν and F1 is the Fermi integral

of order 1. Holes are not quantised, so their concentration is simply given by:

p(y) = NV F1/2

(
EV (y)− EF,p

KBT

)
. (2.87)

where NV is the effective valence band density of states and F1/2 is the Fermi integral of
order 1/2. Finally, Poisson equation is solved:

εS
∂2φ(k)

∂y2
= q
{
n(k)exp

[q(φ(k) − φ(k−1))

KBT

]}
− p(k)exp

[q(φ(k−1) − φ(k))

KBT

]
+NA −ND

}
.

(2.88)
The Fermi integral of order 1/2 is defined as:

F1/2(η) =
2√
π

∫ ∞
0

x
1
2

1 + exp(x− η)
dx (2.89)

following the general definition given by [31].
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Initial conditions for short channel devices With devices working close to the
ballistic limit we cannot simply follow the procedure as for the long channel devices. We
need to update the energy potential profile every iteration. To obtain a first guess, we
follow a different procedure. First, me must set the Fermi level EF (x) through the device.
EF (x) is set to 0 in the source and channel regions of the device, while it is set to −VDS
in the drain region. Let’s assume that the source and drain regions are n-doped and the
channel is p-doped. The electron concentration n per unit of volume is given by:

n(x, y) =


ND(x, y), x < 0, 0 ≤ y ≤ TS
NINV /TS , 0 ≤ x ≤ Lch, 0 ≤ y ≤ TS
ND(x, y), x > Lch, 0 ≤ y ≤ TS

(2.90)

where ND is the n-type doping concentration of the source and drain regions, NINV is a
user-supplied estimate of the free carrier density (per unit of area), TS is the thickness of
the semiconductor and Lch is the length of the channel. Here we assume that the interface
between the dielectric and the semiconductor lies at y = 0 and the interface between the
source and the channel region lies at x = 0. If we assume a classic 3D carrier distribution
we can write in the semiconductor the relationship:

n(x, y) = NCF1/2

(
EF (x)− EC(x, y)

KBT

)
, (2.91)

where NC is the effective conduction band density of states, and solve for EC(x, y). The
potential in the semiconductor is then given by:

φ(x, y) = −EC(x, y)/e+ χS − χ(x, y) (2.92)

where χS is the electron affinity of the semiconductor and χ(x, y) is the electron affinity
of the point (x, y). The applied potentials and the potential at the boundary of the
semiconductor are used to compute the potential in the dielectrics via linear interpolation.
Finally, the potential energy profile in the dielectrics is computed by solving 2.92 for EC .
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Chapter 3

Improving the performance of the
Multi-subband Monte Carlo

Monte Carlo (MC) techniques have been for long time regarded as excessively demanding
from a computational point of view and too time consuming for the daily use in the
R&D departments of semiconductor industry. Thanks to continuous increase of computing
resources at decreasing costs, and to improved algorithms for efficient collection of carrier
statistics [1], the use of MC transport simulators is today well accepted for device analysis
and design. In fact, MC is a perfectly integrated section of standard TCAD tools [2].
The Multi-subband Monte Carlo method, while it has already demonstrated its ability to
enable the understanding of complex nanoscale CMOS device physics, it is computationally
heavier than conventional MC models for the 3D carrier gas and it is still mainly an
academic research tool with execution times ranging from hours to tens of hours per bias
point on single core architectures.

In order to bring it to the same level of acceptance that conventional 3D Monte Carlo
has today, a significant reduction of the execution times is mandatory. Code optimisation
is one way to achieve this goal but, as will be shown in the following, its benefits are often
of modest entity and vary greatly from one simulation to another. The limitations of
optimisation are evident when one considers how modern CPUs are evolving nowadays (see
Fig. 3.1). Significant CPU performance improvements do not come from a more efficient
micro-architecture but from the integration of multiple cores on the same die. Having
many cores has a price, however. Top notch CPUs (from Intel [3]) have a maximum TDP
(Thermal Design Power) of 130-150W, and an increase in the number of cores corresponds
to a decrease of the clock frequency of each core. Thus, unless there are very few processes
running on a given CPU, the performances of single-threaded processes are reduced. From
these considerations it is clear that, in order to achieve our goal, a massive exploitation of
available multi-core architectures must be sought by means of code parallelisation.

The first step of any optimisation task is to find the portions of the code where most
time is spent during the program’s execution, the so called hot spots, and estimate their
relative contribution to the duration of the job. This is typically done using a profiler. To
this purpose we used the Intel Vtune Amplifier XE 2015 [5].

The second step typically involves understanding how a change in the input will change
the execution time. Based on the description of the simulator given in chapter 2.1 we can
identify the dependencies of the four major steps:



44CHAPTER 3. IMPROVING THE PERFORMANCE OF THE MULTI-SUBBAND MONTE CARLO

Figure 3.1: CPU evolution trends over the last 35 years [4].

Schrödinger equation (SE) : the equation must be solved for each section, so increasing
the number of sections will increase the duration of this step. Also, for each section,
the equation must be solved for each valley, totalling for sections×valleys eigenvalue
problem solutions. The time spent on the solution of each equation depends on the
number of points of the mesh along the quantisation direction y;

Scattering rates computation (SC) : scattering rates are also computed in each sec-
tion. In each section, for each mechanism, we must find the transition rate between
two states. As explained in Sec. 2.3.8, this requires two steps. During the first
we compute the matrix elements. The number of matrix elements to compute is
sections× valleys× subbands× valleys× subbands× q − bins. The time spent on
computing one matrix element depends on the number of mesh points along the y
direction. Note that some mechanisms forbid inter-valley transitions. During the sec-
ond step we integrate the matrix elements. The duration of this step roughly goes as
sections×valleys×subbands×energy−bins×β−bins×valleys×subbands×θ−bins;

Monte Carlo transport (MC) : the duration of this step depends on the number of
particles to simulate, the number of time steps and the scattering rates. Higher
scattering rates mean shorter free flights and more state after scattering computations;

Poisson equation (PE) : in this step we just solve a 2D differential equation, so the
execution time depends on the number of mesh points.

The amount of operations performed during the first two steps is the same for all iterations,
so the execution time of these steps is roughly the same during each iteration. Step 3 is a
stochastic step; in principle higher scattering rates will cause longer execution times. Step
4 involves iterative steps to solve the non-linear Poisson equation, so its duration should
decrease if the simulation is reaching convergence.
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Gate dielectric 0.7 nm SiO2 
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Figure 3.2: Sketch and summary of the devices used to profile the original code and
measure the improvements obtained with the new code. Crystal orientation is a FinFET-
like (110)/[11̄0].

3.1 Original code analysis

The first step of any optimisation task is to find the regions where most time is spent during
the program’s execution, the so called hot spots, and estimate their relative contribution
to the duration of the job. We have profiled the simulation of three template devices. All
of the three are FinFETs simulated as double gate SOI (we assume that the fin is high
enough to make negligible the effect of the third gate) The first two are taken from [6]
and were already analyzed, from a simulator performance point of view, in [7]. Figure 3.2
shows the sketches and the main features of these devices. Figure 3.3 shows the breakdown
of the simulation time for the three devices using the original version of our simulator. The
execution time is dominated by the MC step, followed by the SC step. Device #2 requires
us to consider the alloy scattering mechanism, which increases the contribution of the SC
step to the total execution time with respect to device #1. For device #3, the contribution
of the SC step is further increased due to the need of computing matrix elements for the
Remote Phonons and Polar Optical Phonons scattering mechanism. Computing the latter
requires a huge amount of time, but for this device we consider only the Γ valley and this
cuts the execution time by 3 (remember that devices #1 and #2 both have 3 ∆ valleys to
consider. Also, since mx = mz and due to symmetry reasons, only one β-bin is needed (see
section 2.3.8) during the matrix elements integration sub-step. Table 3.1 shows the average
time required to complete one iteration for the three devices. It also shows the average
time required to execute the two heavies steps of one iteration. All the optimisation work
is focused on these two steps.
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Device Total time (s) SC time (s) MC time (s)

1 3903.9 737.5 3147.5
2 4212.3 993.4 3185.3
3 7279.4 2273.1 5000.4

Table 3.1: Average time required to complete one iteration for each device.
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Figure 3.3: Relative simulation time breakdown obtained by profiling the original code
while simulating device #1 (a), device #2 (b) and device #3 (c).

3.2 Optimisation

The analysis of the original code identified many sections of the original MSMC code where
improvements were possible. Among these improvements, three are worthy of notice.

3.2.1 Optimisation of the occupation function

In section 2.4.4 we have shown that the final state can be rejected if it is too populated.
This rejection is needed to take properly into account the Pauli’s exclusion principle. The
decision whether to accept or to reject the final state is based on the value of the occupation
function f build during the MC step. Each particle contributes to the occupation function
according to the device section (“x”) where the particle is located, its valley (conduction
band minimum), its subband (eigenvalues of the Schrödinger’s equation) and its wave-vector
in the transport plane (k). This function is continuous in the k space, so this space must
be discretised. Each particle will be assigned to a k space bin and many particles may
share the same space.

Original code In the original code, a five-level tree is used to record the occupation of
the electron states (Fig. 3.4a). Trees are very sparse data structures and the sparseness
enforces improper memory access patterns. These patterns have a profound influence on
the performance of an application. CPUs use the cache memory to reduce the costs of
accessing the main memory, so the data structures must be designed in order to exploit
the time and space locality principles [8].

Linearisation of the f data structure We converted the tree into an array with a
fixed size record-like structure (Fig. 3.4b), thus achieving a more cache-friendly processing.
By construction, each section has the same number of valleys but each valley can have
a different number of subbands. The discretisation of the wave-vector requires the same
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Figure 3.4: Linearisation of the branched structure of the electron states occupation. (a)
represents the original tree-shaped data structure. The square matrices in (b) (one for
each subband) represent the occupation in the (kx, kz) plane.

amount of elements for each subband. If we assume that each valley has a number of
subbands equal to the maximum among all the valleys, each element can be located by
performing very simple math. The same idea applies to other branched structures, such as
the ones containing the scattering rates. There is, however, a price to pay. The linearisation
induces some memory waste (depending on specific simulation parameters), waste partly
balanced by the removal of the internal nodes of the trees, which accounted for about 1%
of the tree memory occupation. At the beginning of each time step, this data structure
must be cleared, so a new occupation function can be computed.

Since particles will cluster around low k values (as shown in Fig. 3.5), it is inefficient
to clear all this data structure so a different approach must be used.

Clearing the data structure: näıve approach The simplest approach is to simply
clear the whole array every time. It is a very cache friendly solution and compilers provide
special and quite efficient functions for zeroing contiguous memory locations. However,
particles tend to cluster around low k values (as shown in Fig. 3.5), so a significant
portion of the array is always untouched. This unnecessary clearing is not only expensive,
but it increases the amount of physical memory required to store the array due to how
the operating system manages the virtual memory. All memory pages allocated with
calloc() will point to a special zeroed memory page. When the program tries to write
an address that point to this special page, the page is duplicated (a mechanism known as
copy-on-write). Clearing unnecessary data can make the program to use more memory
than what is strictly needed.
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Figure 3.5: Occupation values of a sample occupation function f .

A small improvement of this scheme requires to keep two indexes pointing to first
and last changed elements of the array. Only the elements between these two indexes are
cleared, thus reducing the number of elements to be cleared. A further improvement would
require us to store the elements that are likely to be written towards the middle of the
array, but this option was not explored.

Clearing the data structure: chosen approach. The chosen approach uses an
auxiliary array containing the indexes of the changed elements of the data structure. This
method guarantees that only the changed elements will be cleared, albeit it is possible
that an element will be cleared more than once, if more particle share the same state.
The drawback is that the clearing function will jump around the array many times, thus
generating some cache misses. We conclude that the time saving comes from the fact that
now we access only the strictly necessary amount of elements and each element can be
accessed directly instead of following a long chain of pointers. Profiler data showed that
this approach can be up to three time faster than the näıve approach.

3.2.2 Optimizing the determination of the state after scattering

The second optimisation regards both the SC and MC steps (steps 2 and 3 in Fig. 2.2)
when dealing with anisotropic scattering mechanisms. In section 2.3 we have shown how
to compute the transition rate from a state (n,k) to a state (n,k′) due to a mechanism
m. We have also shown in section 2.3.8 how to compute the total transition rate out of a
state (n,k) due to all considered scattering mechanisms. In section 2.4 we have shown,



3.3. PARALLELISATION 49

in particular, how to compute the duration of free flight from the total transition rate
(Eq. 2.71) and how to find the state after scattering. Section 2.3.8 introduced the main
discretisation involved in the computation of the matrix elements and in their integration
to compute the scattering rates. The discretisation of the vector q results in a set of qi
elements arranged to a geometric progression whose i-th element is:

qi = qmin

i∑
j=0

qjr = qmin
1− qi+1

r

1− qr
(3.1)

where qmin is the minimum change of the wave-vector k and qr is the constant ratio of
two consecutive elements of the series. A matrix element is computed only for these qi.

The discretisation of the k vector and of the change angle θ requires us to integrate
matrix elements computed for q vectors that were not generated from Eq. 3.1. Therefore
we need to find and index i such that qi ≤ q ≤ qi+1. The original code performed a binary
search on the set of qi, which is correct for an unknown but ordered set, but this approach
does not exploit the relationship between the elements of the set. A more efficient approach
requires us to solve for i the following inequality:

qmin
1− qir
1− qr

≤ q ≤ qmin
1− qi+1

r

1− qr
. (3.2)

The solution is the only i ∈ N that satisfy:

logqr

(
q

1− qr
qmin

− 1

)
≤ i ≤ logqr

(
q

1− qr
qmin

)
(3.3)

This procedure is performed during the integration of the scattering rates, but also
when computing the state after scattering. In principle, one can store all the partial results
of the integration procedure and reuse them during the MC step, but this has proved to be
too memory consuming and is viable only if one considers only the Γ valley and mx = mz.

3.2.3 Data caches

The last important optimisation regards data caching. Very simply, the new version of the
simulator tries to store and reuse as many partial results as possible in order to avoid to
compute again data that does not change very often. Results of trigonometric functions
and transcendental functions (like exp and log) are prime candidates for this operation.

3.3 Parallelisation

Code parallelisation is an excellent way for improving the performances. Typically, code
parallelisation is achieved by dividing a complex job into smaller pieces and by assigning
each piece to a “worker”, which can be a set of threads running on the local computer, a
set of processes running on one or more networked computers or a combination of the two.
Depending on how the workers communicate, parallel code comes in two flavours:

Shared memory : this kind of parallelism implies that a process divides the work among
a team of threads that share the same memory space. This model is simple to
implement but the scaling is limited by the number of CPU cores available;
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Message passing : in this case, the work is divided among multiple processes, each
running with its own memory space and communicating with other processes via
message exchange. These processes can run on different computers connected to a
network. This kind of parallelism scales better but it is more difficult to implement.

We have chosen the former approach, using OpenMP [9]. Shared memory parallelism
involves new aspects that are totally absent when writing sequential code.

Race conditions When the code is parallelised, each thread will be in charge of per-
forming part of the total work. It is possible that threads will need to communicate with
each other or write a common area of memory. In these cases, the threads must access
shared data according to a controlled and predictable fashion, otherwise inconsistencies
may arise. A race condition is a situation where the results produced by the parallel code
depend on the order by which the threads performed their jobs.

Deadlocks Race conditions can be avoided by protecting the critical memory areas with
mutually exclusive locks. If these locks are not used properly, threads may wait on other
threads forever and the program execution stalls.

False sharing This is a more subtle issue because it affects the performances but not the
results. Data is transferred between system memory and cache memory in blocks of fixed
size. These blocks are called cache lines and they are 64 bytes long on x86-64 compatible
CPUs. In a multi-core environment, it is possible that many CPU cores have the same
line stored in their respective caches. If one core modifies a line it must notify the other
cores that have the same line, otherwise they might use stale data. The details of this
mechanism depends on the cache coherency protocols that is implemented. The MESI
protocol [10] is one of these protocols and probably is the most common. The following
listing shows an example of affected code:

void foo ( double ∗a , double ∗b , i n t n)
{

f o r ( i n t i = 0 ; i < n ; ++i )
{

i f i % nThreads == threadId
a [ i ] = g (b [ i ] ) ;

}
}

nThreads is the number of threads and threadId is the unique thread number. Here,
when thread 0 tries to write a[0], it must invalidate the entire line of cache containing
data from a[0] to a[7] and the CPU cores executing the other threads must update their
cache. This mechanism can cause a significant overhead and loss of performances. There
are two ways to avoid this issue:

Padding The array a is padded by inserting “dummy” elements. This means the size of
a must be multiplied by the size of a cache line divided by the size of one element of a. If
a is an array of double the on an x86-64 CPU the size of a must be multiplied by 8 and
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the elements of a are accessed like a[i*8] instead of a[i]. This approach wastes a lot of
memory and should not be used for big arrays.

Bigger chunks The array is divided into chunks and each thread processes one chunk.
The code above then reads:

void foo ( double ∗a , double ∗b , i n t n)
{

i n t chunkSize = n / nThreads ;
f o r ( i n t i = 0 ; i < nThreads ; ++i )
{

f o r ( i n t j = 0 ; j < chunkSize ; ++j )
{

a [ i ∗ chunkSize + j ] = g (b [ i ∗ chunkSize + j ] ) ;
}

}
}
There may still be some false sharing if chunkSize is not a multiple of the size of cache
line.

If a contains one element for each thread then we have a third option. We can get rid
of the array altogether and turn each element of a into a thread-private variable.

Load balance. As false sharing, this does not affect the results but affects performances.
In a typical parallel program, there are strictly sequential sections interleaved with parallel
section. All the threads of a parallel section must complete their work before the following
sequential section can be executed. If some threads have to do more work, the faster
threads will wait for the slower ones.

3.3.1 Parallel Schrödinger solver and scattering rates computation

As noted before, these two steps work on one section at a time, with no interference between
neighbouring sections. This makes them embarrassingly parallel steps.

3.3.2 Parallel Monte Carlo

Recall that the Monte Carlo step implements an ensemble Monte Carlo procedure: the
motion of a set of particles is simulated for a number (N) of time steps (∆t) [11]. A trivial
parallel implementation will divide the set of particles in subsets and each thread will
process one subset. Although simple, this approach has two issues that must be solved:

• how to divide the ensemble of particles over the various threads? A bad division will
create work imbalance

• how to synchronise the different threads? The threads are almost completely inde-
pendent. As described in section 2.4.4, the final state may be rejected according to
the value of the f function, which depends on the state of all particles and not only
on the particles processed by a single thread. A tighter synchronisation will affect
the performance negatively, while a looser synchronisation may produce inaccurate
results.
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Figure 3.6: Particles are assigned to each thread according to their section and are
distributed among the threads as uniformly as possible

Workload distribution We have to decide how to assign the particles to each thread.
Performance scaling with the number of threads can be impaired if the number of particles
processed by one thread is too different from the number of particles processed by others.
Particles assignment to the threads based on the section where the particle belongs (similar
to what is done in [12, 13]) minimises the amount of data structures accessed by each
thread, but requires a significant overhead to trace the particles exiting the domain of
one thread to enter the domain of another thread. We thus decided to evenly distribute
the particles of each section to all threads (similar to what is done in [14]). This criterion
applies also to the particles injected at the contacts. (see section 2.4.5 and [15] for the
description of how contacts are implemented in our simulator). More precisely, a thread
cannot receive a second particle until all the other threads had received their first particle.
Roughly the same number of particles will leave the domain of one thread and roughly the
same number will enter. This approach keeps the number of particles processed by each
thread almost the same during the simulation and is sketched in Fig. 3.6. Figure 3.7 shows
this technique can keep the number of particles processed by each thread roughly constant.
Finally, Fig. 3.8 compares the time during which a thread was active (dark) with respect
to the time during which a thread was idle (light). Since these lightly coloured are few in
number, the work is well balanced.

Thread synchronisation The next problem to solve is how to synchronise the thread.
Since we are interested in steady-state solutions, we can allow the threads to “drift apart”,
meaning that, at a given time, the motion of particles in a chunk may have been computed
over a longer time with respect to the particles of other chunks. However, when enforcing
the Pauli’s exclusion principle, we need to know the occupation function f to reject
scattering events [16] (see section 2.4.4) and f depends on the state of all the simulated
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Figure 3.7: Number of particles processed by each thread with respect to the iterations.
While the total number of particles will change while the simulation moves on, the number
of particles processed by each thread is roughly constant. Each line represents the number
of particles processed by each thread. The figure was obtained from the simulation of
device #3 of Fig. 3.2. The simulation uses 32 threads.

Figure 3.8: Screenshot of the profiler results showing one execution of the MC step. The
darker regions represents the time during which a thread was busy doing work, while the
lighter regions represents the time during which the thread was idle. Smaller amounts of
the latter regions mean that the threads are well balanced.
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particles, not only those processed by one thread. Also, we would like to have the least
possible amount of synchronisation between threads. This requires two changes in how the
data structure described in Fig 3.4b.

Distributed f function First, each thread maintains a version of f based on the
particles of its chunk. Also, threads do not read the f of another thread while it is being
updated. Again, to avoid the use of synchronisation constructs, each thread keeps two
copies of f according to a technique called “double buffering”. Other threads read from a
front buffer while its owner clears and updates the back buffer at the beginning of each
time step. When the update is completed, the buffers are swapped. This requires more
memory but minimises the access to shared data and avoids synchronisation altogether
when updating f . There is also another option: we keep only one tree but the leaves point
to arrays where each thread stores its own version of f . This allows fewer jumps across
the memory and better cache exploitation when computing the state after scattering, but
the performances are severely decreased due to false sharing when f is updated. The false
sharing results from the fact that data written by different threads are located too close in
memory.

Occupation probability computation Second, the f data structure does not store
the occupation probability. Instead, it store for each state the sum of the weights of the
particles belonging to that state. When computing the state after scattering (see section
2.4.4), the occupation probability is computed by combining the data from all threads:

f(s,ν,n,k) =

∑t
i=0w

i
(s,ν,n,k)

2W (dk)2

(2π)2
· dx · µν

(3.4)

where W is the width of the device, dk is the discretisation width on the k-space, dx is
the width of section s, µν is the multiplicity of the valley ν, t is the number of threads and
wi(s,ν,n,k) is the sum of the weights of the particles belonging to the chunk processed by the

i-th thread and belonging to the state (s, ν, n,k).

Explicit synchronisation Before the statistics collection phase, all threads are synchro-
nised (by using an explicit barrier [9]). This in done in order to avoid mixing together
information from particles processed for a too different amount of times when computing f .
Fig. 3.9 shows that increasing the number of time steps (∆t) between two synchronisation
points affects the efficiency of the parallelisation process, that is however negligible above a
given number of steps. On the other hand, since we are simulating a steady-state process,
the error associated to poor synchronisation is essentially negligible.

Random numbers generator and false sharing Last but not least comes the random
numbers generator (RNG). Section 2.4 shows how important these numbers are. Standard
library functions like rand() use a hidden “state” to generate the next number and this
state is updated after each generation. Usually this state is implemented as a global
variable and access to this variable is protected via futexes [17]. This approach prevents
more than one thread from using the RNG at a given time because many threads must
wait for the lock to become unlocked and this affects the performances. To solve this issue,
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Figure 3.9: Increasing the number of time steps between thread synchronisation and
statistics collection causes a negligible increase of the simulation error (see section 3.4
for the definition of the simulation error) but it improves slightly the speed-up. These
measurements were performed on the simulation of device #2 of Fig.3.2 and the simulation
uses 8 threads.

we use a reentrant [18, sect. 12.3.8] RNG (like rand r()), otherwise some time is spent in
serializing the accesses to the global state of a traditional random number generator. A
reentrant RNG stores its state in a user supplied memory area. In our case, this memory
area is a thread-private variable so we can avoid false sharing issues as described at the
beginning in section 3.3.

3.4 Methodology and Benchmarks

To benchmark the optimised MSMC simulator we measured the execution times of the
four steps in Fig. 2.2 using a profiler [5]. As introduced in section 3.1, we have simulated
the three template MOSFETs described in Fig. 3.2. All benchmarks were performed
on a workstation equipped with four Xeon E5-4650 and 192GiB of DDR3 main memory
(1GiB=230B).

Scattering mechanisms and simulation parameters All devices have been divided
in 100 sections. The mesh has 100 points along the quantisation direction and the
Schrödinger equation is solved on a thinner mesh consisting of 3000 points. The MC step
was configured to simulate about 1 million particles for devices #1 and #2 and about 2
millions for device #3 at each iteration. The motion of the particles is simulated for 2000
time steps of 0.1 fs each. The gate voltage is 0.5V for devices #1 and #2 and 0.8V for
device #3. VDS is 0.5V for devices #1 and #2 and is 0.8V for device #3. We have enabled
the following scattering mechanism:
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• Phonon scattering and surface roughness scattering for all of three devices. Surface
roughness parameters for devices #1 and #2 are taken from [19] and for device #3
from [6];

• Alloy scattering for devices #2 and #3 since the semiconductor is an alloy of two
semiconductors;

• Remote phonon and Polar optical phonons for device #3, since the semiconductor is
a III-V compound and the gate dielectric a is high-k material.

Simulation error For the sake of a fair comparison, we set the appropriate number of
iterations of the loop in Fig. 2.2 to reach a given relative error. The error is computed
according to the procedure described in [1], which is:

1. At the end of each iteration (except the first Ntran ones, to discard the initial transient
phase) we calculate the channel current ID by averaging the current over the sections
in the channel region;

2. then we compute ĪD as the average of ID over all the previous iterations and σĪD
as its unbiased standard deviation. The first Ntran are not considered because the
simulation is still in the transient phase. Ntran = 10 was deemed sufficient to avoid
propagating errors from the initial transient.

3. the simulation is stopped when the coefficient of variation rerr = σĪD/ĪD falls below
a chosen threshold.

Figure 3.10 shows how the error reduces while the simulation progresses. The ITRS
roadmap for device modelling requires an error on the on current not greater than 5% [20].
We have chosen a more stringent error threshold of 1%. Device #1, #2 and #3 need 25,
14 and 11 iterations respectively for the error to drop below the threshold.

Metrics To evaluate the quality of the improved code we must first decide what to
measure and define the appropriate metrics. Every parallel program has some strictly
serial portions. These portions are defined as the code that cannot be parallelised and lies
outside every parallel region and is therefore executed by only one thread. If Ts is the time
spent executing this serial portion and Tp is the time spent executing the parallel portion,
the total execution time can be written as:

T (p) = Ts +
Tp
p
, (3.5)

where p is the chosen number of threads. Obviously, T (1) = Ts + Tp is the execution time
when only one thread is used. If we define the serial portion as s = Ts/T (1), the equation
above can be written as:

T (p) = T (1)s+
T (1)(1− s)

p
. (3.6)

From this equation we can define the speedup SU(p) as:

SU(p) =
T (1)

T (p)
=

1

s+ 1−s
p

(3.7)
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Figure 3.10: Simulation error versus iteration number. The dashed line shows the 1% error
threshold

Equation 3.7 is the well known Amdahl’s Law [21]. This law can be used to estimate
the maximum speedup that can be achieved when the number of threads is increased
while executing a program that consists of both sequential and parallel regions. The law
states that when p tends to infinity, the maximum speedup saturates and is essentially
limited to 1/s. Therefore, the code must be written so that s is as small as possible. It is
obvious that a good estimate of s is required in order to use Eq. 3.7. An overestimated
s produces bizarre results, like a measured speedup greater than what the law predicts.
An underestimated s may make people think that their parallel code is not good. The
profiler can measure Ts and from this we can compute s easily. Eq. 3.7 has one big flaw: it
assumes that there are no overheads and the load is perfectly balanced, that is, during the
time interval Tp there are always p active threads doing useful work. Work imbalance can
cause the number of active threads to drop below p, which can be seen as an increase of s.

By going the other way around, we can invert Eq. 3.7 and find an explicit expression
for s:

s =

1
SU −

1
p

1− 1
p

. (3.8)

where the speedup is the measured one and not the an ideal value. As a direct consequence,
s will depend not only on the strictly serial portion but also on the portion of parallel
code that does not scale ideally because of work imbalance, overheads or hardware issues.
Equation 3.8 is known as Karp-Flatt metric [22].

An irregular increase of s when p is increased indicates a load balance issue. In the
Monte Carlo step the amount of time required to process a chunk of particles is not constant.
In the scattering rates computation step, if the number of sections is not divisible by p,
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Figure 3.11: (a) Drain current versus gate voltage for the three devices. The “improved”
label refers to the optimised and parallel version of the simulator. The currents are extremely
similar, thus proving the correctness of our work. (b) Percentage difference between the
currents computed with the original and the improved version of the simulator. Maximum
difference is about 2.2% and the biggest differences are located in the subthreshold region.

sooner or later some threads will become idle. On the other hand, a smoothly increase of s
with respect to the number of threads indicates overhead issues. This overhead can come
from synchronisation constructs or from thread creation/destroy processes. The latter case
indicates that the granularity of the parallelism is too fine. A third metric that can be
employed is the efficiency e, that can be defined as

e =
T (1)

pT (p)
=
SU(p)

p
. (3.9)

Clearly, the efficiency should be as close as possible to 1. Combining these metrics (serial
portion and efficiency) one can assess the quality of the parallel code. As an example, if e
drops rapidly but s stays constant when p is increased, the parallelism is too limited.

3.5 Results

As a first sanity check, we verified that the same currents were obtained with the original
and the improved codes. The first two devices show a very similar current. We believe that
the alloy scattering is compensating the improvements due to strain. These two devices are
better analysed in [6]. Fig. 3.11a shows the drain currents vs the gate voltage for the three
devices described in Fig. 3.2, while Fig. 3.11b shows the percentage difference between the
results obtained with the two versions of the simulator. The ID computed by the improved
code has a maximum discrepancy of 2.2% with respect to the original code and the largest
differences are in the subthreshold region.

3.5.1 Optimisation results

To assess the impact of the implemented optimisations, we compare the execution time of
the original code with the execution time of the improved single-threaded version. We are
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interested in the average execution time of one iteration. Table 3.2 reports the performance
improvements due to the implemented optimisations.

Regarding the SC step when executing the original code, we can see that this step is
the fastest for device #1, since the only anisotropic scattering mechanism we consider is
the Surface Roughness. For device #2 this step is a bit slower because of the additional
Alloy scattering mechanism. For both devices we consider the same number of valleys
(see Fig. 3.2) and β-bins. The improved version performs a little better when simulating
device #1 due to the optimisation of the matrix element interpolator, but the code that
computes the matrix element is essentially the same. A larger improvement of the SC step
when simulating device #2 is obtained due to some data caches used when computing
the matrix elements for the Alloy scattering mechanism. The simulation of device #3 is
the slowest when using the original code. Beside Surface Roughness and Alloy scattering,
we consider also scattering due to Remote Phonons and Polar Optical Phonons. The
latter is responsible for the significant increase of the computation time of the SC step and
overshadows the fact that we need to compute the transition rate out of only one valley.
The time spent on integrating the matrix elements and computing the scattering rates is
however greatly reduced when comparing with the simulation of the other devices. This is
due to the fact that we have only one source valley and we need only one β-bin because
mx = mz. When analyzing the results obtained with the improved code we can see that
there is a huge improvement of the time required to complete the SC step. This is due to
the data caches used when computing the matrix elements for the scattering due to Polar
Optical Phonons (and, to a lesser extent, due to Alloy scattering). The improvement of the
matrix element integration sub-step is consistent across the simulations of all three devices.

Regarding the MC step, we can see that the management of the data structure describing
the f function requires a significant amount of time when executing the original code.
This amount is similar for the first two devices and is larger for the third device because
we are simulating the motion of more particles. Overall, the MC step lasts longer when
simulating device #2 with respect to device #1 due to additional scattering events caused
by the Alloy scattering mechanism. This increased scattering rate requires us to compute
more states after scattering. A similar increase of the computation time is observed when
simulating device #3. Again this is due to the additional scattering mechanisms considered
for this device. When moving to the improved code we can see that the execution time is
greatly reduced. This is due to the improved code that manages the f function, to the
matrix element interpolator used when computing the state after scattering and to some
caching of the most frequently computed data. All these optimisations do not depend
on any specific property of the devices, so the improvement are roughly the same for all
devices, as expected.

3.5.2 Parallelisation results

Figure 3.12 summarises how the parallel code scales with the number of threads. We can
immediately see that the speedup quickly deviates from the ideal (the ideal speedup is
given by Eq, 3.7) when the number of threads is greater than 8. The underlying hardware
is playing a role here. The system used for the benchmarks has 4 CPUs and each of them
has 8 physical cores. When the simulation uses more than 8 threads, these threads will
require data that are likely contained in the cache memory of the other CPUs. This is
especially true for the MC step due to the rejection of the states after scattering based on
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Table 3.2: Performance improvements due to optimisations alone. MC - f function refers to
the time spent on clearing the data structure for the occupation function f and recomputing
its value (see Sections 2.4.4 and 3.2.1 . MC - Interpolation refers to the time spent on
interpolating the matrix elements when computing the state after scattering (see Section.
2.4.4. SC - Interpolation refers to the time spent on interpolating the matrix elements
when integrating the scattering rates (see Section 2.3.8).

(a) Device 1

Step Original time (s) Improved time(s) Difference (%)

Total 3903.9 1113.6 71.5

MC - Total 3147.5 484.3 84.6
MC - f function 1199.3 80.7 93.3
MC - Interpolation 20.4 6.7 67.2

SC - Total 737.5 615.0 16.6
SC - Interpolation 219.1 172.1 21.5

(b) Device 2

Step Original time (s) Improved time(s) Difference (%)

Total 4212.3 1355.9 67.8

MC - Total 3185.3 537.2 83.1
MC - f function 1254.2 84.8 93.3
MC - Interpolation 38.2 15.9 58.4

SC - Total 993.4 807.0 18.8
SC - Interpolation 364.1 284.4 21.9

(c) Device 3

Step Original time (s) Improved time(s) Difference (%)

Total 7279.4 1274.4 82.5

MC - Total 5000.4 903.8 82.0
MC - f function 1849.4 101.7 94.5
MC - Interpolation 57.3 19.6 65.8

SC - Total 2273.1 367.4 85.6
SC - Interpolation 15.6 7.1 21.9
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the f function (see sections 2.4.4 and 3.3.2.
Fig. 3.13 shows the speedup of the SC and MC steps. The two blocks scale similarly

up to 20 threads, but they diverge if more threads are used. Generally speaking, the SC
step scales slightly better than the MC step when simulating devices #1 and #2. This
is due to the fact that this step does not contain any explicit synchronisation point and
the work done in each section is roughly the same. On the other hand, the parallelism
of the SC step is not fine-grained because while the sections are processed concurrently,
all the work needed to compute the scattering rates in one section is done sequentially.
The obvious consequence is that near the end of the SC step, fewer and fewer threads are
active due to the fact that the number of section still to be treated is smaller than the
number of available worker threads. This effect emerges clearly from the simulation of
device #3 which requires to compute the scattering rates due to Polar Optical Phonons.
The computation of the matrix elements for this mechanism involves the computation of a
time consuming integral (see Eq. 2.61). Preliminary work was done to implement a deeper
level of parallelism via OpenMP tasks, but the proper enforcement of task dependencies has
increased the overhead up to the point where there all benefits of a finer-grained parallelism
are lost. In the end the SC step for device #3 exhibits the worst scaling.

Additional insight can be gained by applying the other metrics defined in section 3.4.
Results of the simulations are shown in Table 3.3. The execution time is the average time
required to complete one iteration.

Figure 3.14 shows the serial fractions of the three devices. Overall the serial fraction
increases slowly but steadily, with the exception of device #3. The behaviour of the total
serial fraction can be better understood by looking at the serial fractions of the SC and
MC steps, which are the most expensive steps of the simulation. The serial fraction of
the SC step increases erratically, which is consistent with the load balance issue described
before. As a practical example, consider a device divided in 100 sections. If the simulation
uses 33 threads then the first 99 sections will be processed concurrently in 3 groups of 33
sections, while the last section will be processed by only one thread. This can be seen as
an increase of the serial fraction.

On the other hand the serial fraction of the MC step increases quite uniformly, consistent
with the effect of synchronisation overhead. Remember that during this step the threads
are synchronised every 100 time steps, just before the statistics are collected. There are
about 20 synchronisations for each execution of the MC step.

Device #3 shows a behaviour that is different with respect to device #1 and #2: the
serial fraction of the SC step is higher than MC’s one. This is due to the fact that for this
device we consider scattering from Polar Optical Phonons and this is the most expensive
scattering mechanism to compute since Eq. 2.61 requires the evaluation of a double integral
on the cross product of the eigenfunctions. The computation of this equation completely
overshadows the time spent on computing the scattering rates for the other mechanisms,
which results in a lower concurrency towards the end of the SC step because fewer threads
are active.
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Figure 3.12: Speedup of the simulator with respect to the number of threads.
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Figure 3.14: Serial fractions of the three benchmarked devices. The serial fraction is
computed by using Eq. 3.8. (a) total serial fractions. (b,c,d) serial fractions of the SC and
MC steps for each device.
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Table 3.3: Execution time of the simulation of the three devices of Fig. 3.2 and performance
metrics with respect to the number of threads. Time is the average time required to complete
one iteration.

(a) Device #1

Threads Time (s) Speedup serial fraction efficiency

1 1194.3 - - -
2 606.3 1.97 0.0154 0.985
4 304.2 3.93 0.0062 0.982
8 162.9 7.33 0.0130 0.916
12 115.1 10.37 0.0143 0.864
16 95.8 12.46 0.0189 0.779
20 81.7 14.61 0.0194 0.731
24 72.9 16.38 0.0202 0.683
28 64.9 18.40 0.0193 0.657
32 63.3 18.87 0.0224 0.590

(b) Device #2

Threads Time (s) Speedup serial fraction efficiency

1 1412.9 - - -
2 718.8 1.966 0.0174 0.983
4 369.3 3.826 0.0152 0.956
8 183.2 7.711 0.0053 0.964
12 132.7 10.646 0.0116 0.887
16 109.8 12.866 0.0162 0.804
20 94.5 14.952 0.0178 0.748
24 82.5 17.117 0.0175 0.713
28 72.4 19.525 0.0161 0.697
32 71.3 19.826 0.0198 0.620

(c) Device #3

Threads Time (s) Speedup serial fraction efficiency

1 1274.4 - - -
2 667.0 1.911 0.0468 0.955
4 356.6 3.574 0.0398 0.893
8 185.5 6.872 0.0235 0.859
12 147.5 8.639 0.0354 0.720
16 107.6 11.847 0.0234 0.740
20 94.9 13.433 0.0257 0.672
24 89.9 14.178 0.0301 0.591
28 73.8 17.264 0.0230 0.617
32 69.6 18.299 0.0243 0.572



Bibliography

[1] C. Jungemann, S. Yamaguchi, and H. Goto. “Convergence estimation for stationary
ensemble Monte Carlo simulations”. In: Proc.SISPAD. Sept. 1997, pp. 209–212.

[2] http://www.synopsys.com/Tools/TCAD/CapsuleModule/news_dec04.pdf page 7.

[3] http://ark.intel.com/.

[4] http://www.lanl.gov/orgs/hpc/salishan/salishan2011/3moore.pdf.

[5] http://software.intel.com/en-us/intel-vtune-amplifier-xe.

[6] D. Lizzit, P. Palestri, D. Esseni, A. Revelant, and L. Selmi. “Analysis of the per-
formance of n-Type FinFETs with strained SiGe Channel”. In: IEEE Trans. on
Electron Devices 60.6 (June 2013), pp. 1884–1891.

[7] P. Osgnach, A. Revelant, D. Lizzit, P. Palestri, D. Esseni, and L. Selmi. “Toward
computationally efficient Multi-Subband Monte Carlo simulations of nanoscale MOS-
FETs”. In: Proc.SISPAD. 2013, pp. 176–179.

[8] Peter J. Denning. “The Locality Principle”. In: Commun. ACM 48.7 (July 2005),
pp. 19–24.

[9] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP: Portable Shared Memory
Parallel Programming. The MIT Press, 2007.

[10] Mark S. Papamarcos and Janak H. Patel. “A Low-overhead Coherence Solution for
Multiprocessors with Private Cache Memories”. In: SIGARCH Comput. Archit. News
12.3 (Jan. 1984), pp. 348–354. issn: 0163-5964. doi: 10.1145/773453.808204. url:
http://doi.acm.org/10.1145/773453.808204.

[11] D. Esseni, P. Palestri, and L. Selmi. Nanoscale MOS Transistors. Cambridge Univer-
sity Press, 2011.

[12] A. Kepkep, U. Ravaioli, and B. Winstead. “Cluster-based parallel 3-D Monte Carlo
device simulation”. In: International Workshop on Computational Electronics. May
2000, pp. 21–22.

[13] Wei Zhang, Gang Du, Qiang Li, Aiqing Zhang, Zeyao Mo, Xiaoyan Liu, and Pingwen
Zhang. “A 3D Parallel Monte Carlo Simulator for Semiconductor Devices”. In:
International Workshop on Computational Electronics. May 2009, pp. 1–4.

[14] A. Hiroki, S. Odanaka, and A. Goda. “Massively Parallel Computation For Monte
Carlo Device Simulation”. In: Proc.Int.Workshop on VLSI Process and Device Mod-
elling. May 1993, pp. 18–19.

http://www.synopsys.com/Tools/TCAD/CapsuleModule/news_dec04.pdf
http://ark.intel.com/
http://www.lanl.gov/orgs/hpc/salishan/salishan2011/3moore.pdf
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://dx.doi.org/10.1145/773453.808204
http://doi.acm.org/10.1145/773453.808204


66 BIBLIOGRAPHY

[15] P. Palestri, L. Lucci, S. Dei Tos, D. Esseni, and L. Selmi. “An improved empiri-
cal approach to introduce quantization effects in the transport direction in multi-
subband Monte Carlo simulations”. In: Semiconductor Science Technology 25.5 (2010),
p. 055011.

[16] P. Lugli and D.K. Ferry. “Degeneracy in the ensemble Monte Carlo method for
high-field transport in semiconductors”. In: IEEE Trans. on Electron Devices 32.11
(Nov. 1985), pp. 2431–2437.

[17] H. Franke and E. Russell. “Fuss, Futexes and Furwocks: Fast Userlevel Locking in
Linux”. In: Ottawa Linux Symposium. June 2002, pp. 479–495.

[18] A. Tanenbaum. Modern Operating Systems 3rd edition. Pearson, 2007. isbn: 978-0-
13-813459-4.

[19] F. Conzatti, N. Serra, D. Esseni, M. De Michielis, A. Paussa, P. Palestri, L. Selmi,
S.M. Thomas, T.E. Whall, D. Leadley, E.H.C. Parker, L. Witters, M.J. Hytch,
E. Snoeck, T.J. Wang, W.-C. Lee, G. Doornbos, G. Vellianitis, M.J.H. van Dal,
and R.J.P. Lander. “Investigation of Strain Engineering in FinFETs Comprising
Experimental Analysis and Numerical Simulations”. In: Electron Devices, IEEE
Transactions on 58.6 (June 2011), pp. 1583–1593.

[20] http://www.itrs.net/Links/2012ITRS/2012Tables/Modeling_2012Tables.

xlsx.

[21] Gene M. Amdahl. “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities”. In: Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference. AFIPS ’67 (Spring). Atlantic City, New Jersey: ACM, 1967,
pp. 483–485.

[22] Alan H. Karp and Horace P. Flatt. “Measuring Parallel Processor Performance”. In:
Commun. ACM 33.5 (May 1990), pp. 539–543. issn: 0001-0782.

http://www.itrs.net/Links/2012ITRS/2012Tables/Modeling_2012Tables.xlsx
http://www.itrs.net/Links/2012ITRS/2012Tables/Modeling_2012Tables.xlsx


Chapter 4

Simulation of III-V devices and
comparison with other models

In this chapter we show the results of the simulation of three devices featuring III-V channel
materials. Our goal is to compare the MSMC simulations with experimental results and
simulators based on the NEGF formalism.

4.1 11.7 nm InGaAs template device

The template device is constructed based on what the ITRS Roadmap [1] foresees for year
2020. The only difference is the body thickness, which was reduced from 7 nm to 6 nm
in order to achieve a better electrostatic integrity. Figure 4.1 sketches the device and its
main parameters. The HfO2 gate dielectric material was used also to cover the source and
drain regions on both sides. We call these regions spacers.

We have simulated the drain current ID by ramping the voltage applied to both gates
from 0.0 V to 0.6 V. These simulations are ballistic and no scattering mechanism is
considered. Also, we did not consider the effect of interface states, that will be discussed
in Chapter 5, in order to estimate the maximum current drive and compare the MSMC
with ballistic NEGF simulations. Results obtained with the MSMC simulator are shown
in Fig. 4.2(a) and have been compared with those obtained by the two other models.
One is a NEGF with an atomistic (tight binding) hamiltonian [2, 3] (courtesy of Prof.
Mathieu Luisier from ETH Zurich), while the other is still a NEGF simulator but it uses
a k · p hamiltonian [4, 5] (courtesy of Prof. Elena Gnani and Dr. Roberto Grassi from
the University of Bologna) and considers only the Γ valley. We can immediately see a
significant difference between the results of the three simulators. For a fair comparison we
chose to match an OFF current of 100 nA/µm for a gate voltage of 0.0 V, as prescribed by
the ITRS roadmap. To match the OFF current, we have changed the work-function of the
two gates in the MSMC simulation until the target IOFF value was obtained. The NEGF
curves were just rigidly shifted to match the same IOFF .

This is not the only choice, though. We can also try to match the current at the
threshold voltage, which is 6.6 µA/µm for a gate voltage of ≈ 0.2 V, if we take the MSMC
simulation as a reference. The threshold voltage is defined as the gate voltage at which
the inversion carrier density in the channel is approximately equal to the channel doping
multiplied by the semiconductor thickness. NEGF curves were again shifted to obtain the
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Figure 4.1: Sketch of the ITRS template device for year 2020 as simulated with the MSMC
simulator. Note that the body thickness is 6 nm instead of the 7 nm of the ITRS roadmap
[1].
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Figure 4.2: Simulated drain current of the device shown in Fig. 4.1. The results obtained
by using the MSMC simulator have been compared with the results obtained with an
atomistic NEGF and a k · p NEGF.(a): the simulations are matched so that the OFF
current is 100 nA/µm. (b): the simulations are matched so that the same current is
obtained at the threshold voltage (0.2 V as for the MSMC simulation).

same current at the threshold voltage. Results are shown in Fig. 4.2(b). Now a better
agreement between the models is obtained above threshold, but there is up to one order of
magnitude of difference in terms of the OFF current. This difference is due to the fact
that the MSMC simulator does not model the source to drain tunnelling. This aspect will
be addressed in the next section.

Fig. 4.3(a) shows the profile of the first subband along the transport direction, for the
three models and for three sample gate voltages. We chose 0.5V, 0.2V and 0.0V, which
correspond to the ON state, threshold state and OFF state, taking the MSMC simulation
as reference. The current at the MSMC threshold voltage was used to establish a mapping
with the NEGF curves. All three models agree very well, indicating that source to drain
tunnelling does not affect significantly the electrostatic. On the other hand, Fig. 4.3(b)
shows the inversion carrier density profile along the transport direction, and here we can
see that the MSMC simulation shows a much lower density at VG = 0.0 V when compared
to the NEGF simulators, which is consistent with the lower OFF current. The difference is
reduced when considering VG = 0.2 V and is negligible at VG = 0.5 V.
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Figure 4.3: Internal quantities for the device shown in Fig. 4.1. (a): Profile of the first
subband along the transport direction. (b): Profile of the inversion carrier density along
the transport direction.
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Figure 4.4: Sketch of the ITRS template device for year 2023 as simulated with the MSMC
simulator.

4.2 8.3 nm InGaAs template device

This second device is also taken from the ITRS roadmap, but now we focus on what is
foreseen for year 2023. Figure 4.4 sketches the device and its main parameters. For this
device we study the effects of different materials for the spacers (the regions above and
below the source and drain regions). We begin with SiO2 spacers. Results are shown in Fig.
4.5(a). Again, we compare the MSMC results with the two NEGF simulators. For this
device the differences between the three models are larger than in the 11.7 nm one. If we
replace the SiO2 spacer (low-k) with HfO2 (high-k) there is a small improvement in the ON
current. A slight further improvement is obtained by a gate underlap of 1.5 nm per side.
As for the previous device, we have matched the current at the threshold voltage, which is
50 µA/µm for a gate voltage of ≈ 0.2 V. Results are shown in Fig. 4.5(b). The models
predicts roughly the same ON current, but differ in the sub-threshold region. Again, this is
due to source/drain tunnelling, which is not considered by the MSMC simulator. Fig. 4.6
shows a result similar to Fig. 4.3. The profile of the first subband (left) is almost identical
in the three simulators and there are big differences in the inversion carrier density. The
k · p NEGF shows a density that is lower than the one obtained with the atomistic NEGF.
This may be due to the fact that the k · p NEGF includes only the Γ valley.
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Figure 4.7: Gaussian smoothing applied to the simulation of the device sketched in Fig.
4.4. A σ value of 6.5 nm provides a good agreement with NEGF simulation. In this figure
the simulation were matched in order to obtain the same current at the threshold voltage
of 0.2 V.

4.3 Mimicking the source to drain tunnelling in the MSMC
simulator

Figures 4.2(b) and 4.5(b) show that the source to drain tunnelling must be included in
order to reproduce the current in the sub-threshold region. The MSMC simulator mimics
this effect by smoothing both the subband profile and the electron concentration along the
transport direction x [6]. The smoothed subbands affects the Monte Carlo transport since
they are used to compute the force that moves the particles, while the smoothed electron
concentration affects the solution of the Poisson equation. The smoothing is implemented
as a convolution with a Gaussian function. In the case of the subbands, the smoothed
subband profile is given by [6]:

εsmthν,n (x) =

∫
εν,n(x′)

1√
2πσ

exp

(
−(x′ − x)2

2σ2

)
dx′ (4.1)

σ, the r.m.s. of the gaussian is the only parameter of the model. The convolution is applied
to both the parabolic eigenvalues εPν,n (solution of Eq. 2.5) and to the U factor defined by

Eq. 2.8) since both are needed to compute the non-parabolic eigenvalues εNPν,n (Eq. 2.7).
Figure 4.7 shows how the application of the Gaussian smoothing model affects the drain
current. A value of 6.5 nm for the σ parameter allows the MSMC to attain good agreement
with the atomistic NEGF simulator.

A σ of 1.1 nm was used in [7] for silicon devices, while for In0.53Ga0.47As a value
between 6 nm and 6.5 nm is needed. This would suggest that σ depends mostly on the
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Figure 4.8: Gaussian smoothing applied to the simulation of the devices sketched in Figs.
4.1 (left) and 4.9 (right). A σ value between 6 and 6.5 nm provides a good agreement with
NEGF simulation. In this figure the simulation were matched in order to obtain the same
current at the threshold voltage of 0.2 V.
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Figure 4.9: Sketch and parameters of the device with LG = 15 nm used to test the σ
dependance on device geometry. There is also a 2 nm gate underlap.

semiconductor material and weakly on the device geometry. To confirm this, we have also
applied the smoothing to the simulation of the devices of Figs. 4.1 and 4.9. Results are
shown in Fig. 4.8. A σ between 6 and 6.5 nm allows to attain a very good agreement with
the atomistic NEGF simulator.

4.4 Realistic InGaAs device with LG = 75 nm

This device is a realistic long channel device, for which experimental data are reported
in [8]. Figure 4.10 sketches the device and its main parameters. In this simulation we
have considered scattering from polar and non polar phonons, remote phonons, surface
roughness, alloy and coulomb centres (only due to doping impurities as interface charges
will be addressed in the next chapter). Parameters for these mechanisms were calibrated in
[9]. Fig. 4.11 show the simulation results compared with the experimental measurements.
The gate work-function has been calibrated in order to attain the same behaviour in
the sub-threshold region when considering measurements at VDS = 0.05V . There is a
divergence in the above-threshold region, which may be due to the lack of series resistances
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Figure 4.11: Simulation results for the device shown in Fig. 4.10.

in our simulator. The simulation for the VDS = 0.5V case was performed using the same
work-function calibrated for the VDS = 0.05V case.
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Chapter 5

Modelling the Effects of Interface
States

The replacement of silicon with III-V compound semiconductors as channel materials
in advanced MOSFETs has been widely investigated over the last years [1, 2]. The
surface trap-state density of III-V compounds is much larger than that of state of the art
silicon/SiO2 interfaces [3, 4], and Hall mobility measurements have shown that the charging
of these states results in a remarkable Fermi level pinning which precludes attaining a free
carrier density larger than NINV ≈ 5 · 1012cm−2 [5, 6]. This large trapped charge affects
the electrostatics but it does not contribute to the drain current. Consequently, one of the
basic assumptions at the foundation of split-CV mobility extraction techniques is violated
[7].

In this chapter, a self-consistent solution of the Schrödinger and Poisson equations in the
presence of interface charge is used to extract the energy profile Dit(E) of interface states.
The extracted charge is then introduced in our Multi-Subband Monte Carlo (MSMC)
simulator (described in chapter 2), both as a source of Coulomb scattering and as a
contribution to device electrostatics, to asses its effect on low field electrical mobility and
on the drive current, ION , of short channel devices.

5.1 Interface traps model

Interface states have been introduced in the equilibrium solution of the coupled Schrödinger
and Poisson equations as a sheet of charge at the interface between the channel and the
gate dielectric. The Schrödinger equation is solved as described in section 2.2 The model
is appropriate for near equilibrium conditions to investigate, for instance, MOSFETs
biased at low VDS as for low-field mobility measurements. The solution of the Schrödinger
equation considers wave-function penetration in the dielectrics, which can be relevant in
III-V materials [8].

The interface charge per unit area Qit = −qNit is computed under the following
assumptions: a) traps below ECn are donor-like, i.e., they contribute with a positive charge
when empty; b) traps above ECn are acceptor-like, i.e., they contribute with a negative
charge when occupied by an electron; c) the occupation probability f(E,EF ) follows the
equilibrium Fermi-Dirac statistics. d) ECn is assumed to be close to the midgap [7]. Figure
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Figure 5.1: (a) Interface charge per unit of area modelled as a Dirac’s delta sheet of charge
lying at the interface between the dielectric and the semiconductor. (b) Interface states
concentration as a function of energy. States below the mid-gap are positively charged
when empty, while the states above the mid-gap are negatively charged when occupied.
The conduction band minima (EC) is taken as the reference value.

5.1 shows a sketch of this model. We further choose to express Dit as:

Dit(E) = Dit(EC) ·
(

10
∑n
i=1 ai(E−EC)i

)
(5.1)

where E is the state energy. Eq 5.1 is polynomial on a semi-logarithmic scale. The choice
of this shape was inspired by the Dit profiles shown in [5]. The Nit is then given by:

Nit = −
∫ ECn

−∞
Dit(E) · [1− f(E,EF )]dE +

∫ ∞
ECn

Dit(E) · f(E,EF )dE (5.2)

where EF is the equilibrium Fermi level and ECn is the energy level that separates donor-
like from acceptor-like traps. The shape of the Dit energy distribution is set by the
coefficients ai. Dit(EC) is the trap concentration at the conduction band edge (EC) of the
semiconductor in units of eV −1cm−2.

A correct choice of the Dit(EC), the polynomial degree, n, and coefficients, ai, is
necessary to reproduce experimental NINV and mobility curves [6, 5]. Figure 5.2 compares
simulated NINV (VGS) curves with experimental data from [6]. Polynomials of different
degree can be used to fit the measurements but, after choosing the appropriate coefficients,
the trap distributions are very similar as can be seen by looking at the Dit energy profiles
in the inset. In the following, we have opted for the lowest polynomial degree n = 2 that
results in a good agreement with the experiments. Also, this choice makes easier the task
of finding the optimal coefficients.

To this end, we note that for the sole purpose of finding the best coefficients in Eq. 5.1,
traps do not necessarily need to enter the coupled Schrödinger-Poisson problem explicitly;
in fact, since wave-function penetration beyond the surface charge layer is modest, self-
consistent calculations with traps can be accurately reproduced if the abscissa of a simulated
NINV (VGS) curve without traps is “stretched” by an amount equal to −Qit(VG)/COX .
Figure 5.3 illustrates the use of this technique. The stretching implies that the same NINV

is found at a higher gate voltage in the case with traps.
To extract the Dit energy spectrum and determine the fitting parameter values we set up

a global optimisation problem whose solution is the set of ai and Dit(EC) coefficients that
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Figure 5.2: Simulated NINV (VGS) for different polynomial degree n in Eq. 5.1. The inset
shows the extracted Dit corresponding to each polynomial function.

yields the best agreement between measured and simulated NINV (VGS) curves. In other
words, we have to find the correction term Qit(VGsim) that minimises the difference between
the experimental and simulated NINV (VGS). In formula, the problem is to minimise:∥∥∥VGexp(NSexp)−

(
VGsim(NSsim)− Qit(VGsim)

COX

)∥∥∥2

2
(5.3)

where VGsim(NSsim) is obtained from simulations without interface traps. Qit(VGsim) is
obtained from Eq. 5.2 by replacing EF with the Fermi level obtained from the simulation
without interface traps. The search for the solution of the minimisation problem (that
is, the sought set of Dit(EC) and a1, . . . , an) must be adequately constrained, otherwise
the result may still fit the experiments but with an unrealistic Dit profile. In particular,
based on results in [5], we expect Dit profiles with exactly one minimum at a specific
energy (e.g. the midgap) and no maximum. It is not always straightforward to satisfy
these requirements, but if the polynomial is a second order one, we just need to enforce a2

to be positive. Note that, since the Dit is fitted on Fermi level pinning experiments, it may
end up being inaccurate in the gap. We will return later on this point.

Note that the stretching technique described so far is used only for the purpose of
finding the optimal coefficients of Eq. 5.1, whereas in the other calculation of this chapter,
the full self-consistent problem is solved.

5.2 Results: Fermi level pinning and Dit profiles

We define the Fermi level pinning as the condition at which an increase of the gate voltage
corresponds to a very small increase of the Fermi level with respect to the minimum of
the conduction band, and we consider MOSFETs at equilibrium (VDS = 0V ), consistently
with the bias used during Hall mobility measurements and NINV (VGS) extraction. Fig. 5.5
reports a few of the NINV (VGS) as measured by different groups [5, 6, 9]. Figure 5.4 shows
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the sketches and data for the devices we have simulate in order to replicate the results
of these measurements. The curves saturate at high gate voltage, indicating Fermi level
pinning. We express Dit as in Eq. 5.1 and determine the coefficients Dit(EC), a1 and a2 by
solving the minimisation problem of Eq. 5.3 obtaining a good match with the experiments.

Each data set saturates at a different free carrier density, therefore in principle each
set has a different Dit profile. Fig. 5.6 reports the Dit(E) over the energy range spanned
by the Fermi level when VGS spans from approximately 0V to the maximum VGS in the
experiments (see Fig. 5.5). Interestingly, the spread between the various Dit profiles is not
too large for the considered In0.53Ga0.47As/Al2O3 devices, demonstrating a comparable
degree of maturity in the fabrication process. However, given the exponential increase of
Dit(E), small horizontal shifts of energy have non-negligible consequences on the simulation
results. As expected, higher NINV saturation values, as observed for instance in strained
samples, correspond to lower trap densities (triangles up in Fig. 5.6). We also see that
the Dit which reproduces the data in [5] are lower than for the other cases; this may be
related to the much thicker oxide used in [5] (16 nm of Al2O3) with respect to the other
works [6, 9].

The Dit profiles diverge significantly from the distributions shown in [5] and [10] when
looking inside the band-gap. In fact, our extraction method based on the free carrier
density above threshold is not so accurate in the gap region because those traps have a
negligible effect on the Fermi level pinning. Therefore, Fig. 5.6 shows the Dit in the energy
range actually covered by the experiments as solid lines, while the dashed lines are just an
extrapolation that follows the functional form given by Eq. 5.1. However, trap density as
low as extracted in Fig. 5.6 is not completely unrealistic. Dit measurements reported in



5.2. RESULTS: FERMI LEVEL PINNING AND DIT PROFILES 81

Al gate

Al2O3
16 nm

In0.53Ga0.47As
NA = 3•1016cm-3

Ta gate
Al2O3
4 nm

In0.53Ga0.47As
NA = 1016cm-3

TaN gate

Al2O3
6 nm

In0.53Ga0.47As
NA = 1017cm-3

(a) (b) (c)

Figure 5.4: Sketches of the devices we have simulated in order to replicate the Fermi level
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[11] show values around 1011eV −1cm−2 for an HfO2/In0.53Ga0.47As interface. It has been
shown that in III-V semiconductors ECn is closer to EC [10] rather than the midgap. Since
the Dit is so low in the gap, the choice of ECn is not so critical and had a negligible effect
on the results.

5.2.1 Capacitance computation

The capacitance is computed during the solution of the coupled Schrödinger equation-
Poisson problem described in section 2.6 according to:

C = −d(QS +Qit)

dVG
(5.4)

where QS = Qn +Qp is the total semiconductor charge. Qn and Qp are respectively the
electrons and holes charges and are computed as:

Qn = −e
∫
n(y)dy (5.5a)

Qp = e

∫
p(y)dy (5.5b)

where the position-dependant electron and hole concentrations are given by Eqs 2.86 and
2.87, respectively.

The traps in the gap have a much larger impact on the depletion region of the CV
curve. This is illustrated in Fig. 5.7 which compares our model with the CV measurements
in [10]. Good agreement is obtained by using the corresponding Dit profiles indicated
by squares in Fig. 5.6. However, if we use a distribution with lower Dit in the gap, for
example the trap profile given by diamonds of Fig. 5.6 on the one hand, the low trap
density in the band-gap prevents us from reproducing the experimental CV in the 0V-1V
region; on the other hand, since the profile indicated by diamonds in Fig. 5.6 has a larger
Dit inside the conduction band than the one indicated by squares, the former gives larger
capacitance closer to Cox in strong inversion (VGS > 1V ). In fact, we are assuming that all
traps respond to the AC probing signal and a large trap density short-circuits the inversion
charge capacitance, making the total capacitance approaching Cox.

5.2.2 Effects of strain

Data in [6] show also the effects of strain on the free carrier density. From k·p calculations
we have found that a tensile biaxial strain of 0.46% shifts down the conduction band by
approximately 33 meV, similar to the 30 meV shift reported in [6]. Figure 5.8(a) shows
the conduction band shift as a E-k plot while Fig. 5.8(b) shows the shift with respect the
y direction.

It is assumed in [6] that the energy position of the Dit profile with respect to the
vacuum level and the profile itself do not change with strain. Here we embrace the same
assumption and furthermore we keep the same Dit used to fit the unstrained NINV results
(diamonds of Fig. 5.6). As can be seen in Fig. 5.9(a) the simulated NINV comes very close
to the measurements but an additional modification of the Dit profile (Fig. 5.9(b)) has
been necessary to better reproduce the experimental NINV (VGS) results.
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Figure 5.10: Simulated NINV compared to interface trap density Nit. Plot (a) is obtained
from the simulation of the device (a) of Fig. 5.4 (unstrained case), while plot (b) is obtained
from the simulation of the device (b) of Fig. 5.4. Both NINV profiles are the same as in
Fig. 5.5.

5.2.3 Trapped charge versus Free charge

Figure 5.10 compares NINV to the (signed) trapped carrier density Nit. Note that Nit

is positive throughout the whole VGS range, indicating that the charge due to occupied
acceptor states is dominating. Figure 5.11 shows the position of the Fermi level and the
first two subbands versus the gate voltage. As VGS increases, the surface potential is
pinned and Nit becomes very large, and eventually overcomes NINV . The most effective
traps in pinning the potential are those with energy below the Fermi level but above the
lowest subband energy E0. These states are occupied but are also expected to respond
very rapidly to the time dependent voltages at the device terminals and thus they may
affect the CV curves even at high-frequency. If this is the case, the validity of techniques
proposed to compensate the effect of interface states on the mobility is challenged [12, 13]
because they assume that interface traps will not respond to high frequency AC probe
signal used for CV measurements.

5.3 Mobility model

To assess the impact of interface states on the mobility and on the drive current of short
channel devices, ION , we used the Multi-Subband Monte Carlo simulator described in
chapter 2.

For mobility simulations, low field conditions are assumed. The potential energy profile
in the quantisation direction does not change much along the transport direction, so
only one section is considered. The potential energy profile is obtained as described in
section 2.6 and is kept frozen through the simulation. The scattering rate parameters
for both mobility and ION simulations are reported in [14] and have been calibrated on

0Nit is a signed quantity as a direct consequence of Eq. 5.2. Positive Nit indicates that there are more
occupied acceptor states than free donor states. A simple multiplication with −e yields the correct Qit.
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Figure 5.11: Fermi level (EF ), first two subband (E0 and E1) referred to the conduction
band edge (EC). Plot (a) is obtained with the Dit profile that fits the NINV (VGS) from [6]
(unstrained case), while plot (b) with the one that fits the NINV (VGS) from [5]. Dashed line
shows the Fermi level with respect to the conduction band edge for a simulation without
traps.

experimental mobility data for In0.53Ga0.47As. Fig. 5.12 compares our mobility simulations
with experimental data from [12] and [13] and shows the great impact that surface roughness
scattering has on the mobility of UTB devices. In the surface roughness scattering model
employed by the MSMC simulator the matrix element is proportional to the wave function
derivative at the oxide interfaces and the wave function is allowed to penetrate inside the
oxides. The simulator uses the non-parabolic Effective Mass Approximation model for the
In0.53Ga0.47As band structure, whose parameters are: mΓ = 0.043m0 and αΓ = 1.36 eV −1

for the unstrained case, mΓ (transport plane) = 0.0421m0, mΓ (quantisation direction)
= 0.0384m0 and αΓ = 1.4 eV −1 for the strained case.

For short device simulations, the effect of interface states poses an additional modelling
challenge. In fact, equilibrium or near-equilibrium conditions were assumed so far, as can
be seen from the use of f in Eq. 5.2. This model must be adapted for an out of equilibrium
condition. For sake of simplicity, we have used the same expression as in the previous
analysis, but replacing the equilibrium Fermi level EF with an ”effective” Fermi level
EFeff . This effective Fermi level is computed by solving Eq. 5.6 for EFeff in each section:

NS(x) =
∑

i∈subband

∫ ∞
Ei

Dos(E) · f(E,EFeff (x))dE (5.6)

which means finding an effective Fermi energy such that the right hand side of Eq. 5.6
yields the same NINV as the one computed by the Monte Carlo transport model. Once
EFeff (x) has been computed, Nit is obtained as:

Nit(x) = −
∫ ECn

−∞
Dit(E) · [1−f(E,EFeff (x))]dE+

∫ ∞
ECn

Dit(E) ·f(E,EFeff (x))dE (5.7)
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Figure 5.14: Sketch of the simulated short channel device. The device is a single gate fully
depleted SOI MOSFET. Channel is p-doped with a doping density of 2 · 1016cm−3. Source
and drain regions are n-doped with a doping density of 3 · 1019cm−3. Interfacial layer is
made of SiOn with εr = 7.0. Figure 5.13 shows the effective Fermi level obtained from the
simulation of this device.

Fig. 5.13 reports an example of effective Fermi level plotted along the channel. As
expected, it changes smoothly from the source to the drain equilibrium Fermi levels. The
difference between EFeff and EC along the channel implies that, under our modeling
assumptions, the concentration of occupied traps is higher near the source side of the
channel. The figure also shows the profile of the lowest subband that is always well below
the Fermi level. This means that most of the traps are exposed to a large concentration
of free electrons with the same energy. Exchanges between traps and free electrons in
this energy range are expected to be very fast and the energy distribution of the trapped
electrons may deviate from an equilibrium distribution and get close to the distribution of
the free electrons in the channel. These exchanges are not modelled in our simulator.

5.4 Results: Mobility

In the following, we study the effects of the interface trapped charge on the Hall mobility,
and on the effective mobility extracted from split-CV measurements. In particular, we
focus on the data in [5] for an In0.53Ga0.47As MOSFET with a 16 nm Al2O3 gate dielectric.
Besides the scattering mechanisms described in [15], we include here Coulomb scattering
with charged centres of opposite signs due to traps in the high-k dielectric and corresponding
to an equivalent interface density of centres Nfix= 9 · 1012 cm−2. In addition we consider
Coulomb scattering with the bias-dependent (see Fig. 5.10) charged interface states −qNit

(see the bias dependence of Nit in Fig. 5.10). The model for Coulomb scattering is strictly
valid only if the density of interface states is not too high, so that each Coulomb center acts
as an independent source of scattering [16]. However, at large density of Coulomb centres,
the single trap scattering potentials overlap, resulting in a less severe mobility degradation
[16] than predicted by the model (see section 2.3.3). Concerning Nfix, this charge is a
fitting parameter to obtain a better agreement with experiments and is not included in
the solution of the Poisson equation based on the assumption that positive and negative
centres in random positions essentially compensate each other. The same problem (i.e.
need to introduce high density of Coulomb centres to match the experimental mobility)
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Figure 5.15: (a): Hall mobility µHall: comparison between the MSMC model and the
experimental data in [5]. (b) Like (a) but for the effective mobility. The slanted triangles
are the experimental mobility modified according to Eq. 5.9.

has been reported in previous simulation studies of MOSFETs featuring high-k dielectrics
[17]. A detailed discussion of its formulation and implications for high-k dielectrics on top
of silicon channels is reported in [18]. We believe that this additional charge is playing the
role of neutral defects in the channel or at the interface that are not included in the model
and requires us to mimic their effect by increasing the ionised impurity scattering.

5.4.1 Hall mobility

The Hall mobility differs from the effective mobility even in the absence of interface states
[7] but the exact calculation of µHall according to its definition [7] requires 3D simulations
in real space whereas our MSMC is 2D in real space [19]. To overcome this difficulty, in
this paper we denote as simulated Hall mobility the mobility computed assuming that
NINV is known. This assumption is not always verified because the NINV obtained from
split-CV measurement may include a contribution from the interface traps. Traps partially
responds to the AC signal and therefore they contributes to the capacitance, but negligibly
to the current. Consistently with the discussion above, in the MSMC simulations of the
Hall mobility we set a lateral field Fx, we compute the average free carrier velocity 〈vx〉
and then derive:

µHall =
〈vx〉
Fx

(5.8)

Comparison between measured and simulated Hall mobility according to this definition
is reported in Fig.5.15a. As anticipated when discussing Fig. 5.10, due to the increased
Nit at large bias, we observe a limited mobility roll-off even without surface roughness
scattering despite the counteracting effect of screening. When surface roughness mechanism
is active instead, the main trends and the value of the experimental mobility are reproduced
with reasonable accuracy.
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5.4.2 Effective mobility

As for the effective mobility, we adopt an empirical correction to mimic the limitations
of the split-CV method in extracting 〈vx〉 from the ratio of the drain current per unit
of width to the gate charge per unit of area. In particular, since for mobility extraction
from split-CV measurements the charge is obtained by integration of the gate differential
capacitance, which includes the contribution of the traps that can respond to the AC signal,
we multiply the MSMC value of 〈vx〉 by the ratio between the free charge and the total
charge NTOT . Thus, we evaluate

µeff =
〈vx〉
Fx
· NINV

NINV +N∗it
= µHall ·

NINV

NINV +N∗it
(5.9)

where N∗it is the trap population that responds to high frequency AC signals in the CV
measurements and 〈vx〉 is the same as in the Hall mobility calculations. Following a similar
reasoning we transform the x-axis of the µ−NINV plot from NINV to NTOT = N∗it+NINV .
N∗it is estimated as the fraction of traps with energy above the lowest subband energy but
different physically reasonable choices yield essentially the same qualitative results (Fig.
5.16) [20]. Figure 5.17 shows the ratio between NINV and the total charge NINV +N∗it as
obtained from our model and as extracted by comparing Hall and CV experiments in [5].
The triangles of Fig. 5.17 were obtained by following a simple procedure: 1) choose an
experimental NINV obtained by split-CV measurements, 2) find the corresponding gate
voltage, 3) find the NINV obtained by hall measurements for that gate voltage, 4) divide
the two NINV . The mutual agreement is more than satisfactory. The comparison between
measured [5] and simulated µeff is then reported in Fig. 5.15b. The mutual agreements is
essentially as good as for the Hall mobility. We notice a small roll-off at high NINV even
when both Coulomb scattering due to trapped charge and surface roughness scattering
are off. This is an artefact due to the charge in the traps that in our model is assumed
to respond to the CV. In the experiments this charge cannot be distinguished from free
charge and this results in an underestimation of the mobility at high NINV .

It is also interesting to note that if the same correction used for the simulated Hall
mobility is applied to the measured Hall mobility (slanted triangles in Fig. 5.15b), the
resulting curve gets very close to the experimental effective mobility. The corresponding
Hall coefficient rH ' 1.05 is close to expectations. The analysis in Fig. 5.15b supports
the view in [5] that the traps in the conduction band respond to the split-CV measures
introducing an error in the experimental extraction of the effective mobility at high NINV .

5.4.3 Interface vs. border traps: effect of trap position

So far, we have assumed that the trapped charge is placed at the interface between the
semiconductor and the dielectric. However, border traps are present in the dielectric and
may contribute to Fermi level pinning as well as respond to fast CV [21, 22]. To check the
impact of the trap position on the model results, we have considered a limiting case where
the sheet of charge is at the position ytrap with respect to the semiconductor/dielectric
interface (set at y = 0). This displacement cannot be too large, otherwise traps do
not respond to the high frequency CV experiments used for mobility measurements; we
therefore tentatively set ytrap = −0.5nm, a reasonable value to represent the combination
of a sheet of charge that is the combination of fast interface and border traps. Traps deeper
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Figure 5.18: (a) If the traps are positioned 0.5 nm away from the interface and inside the
dielectric, the resulting NINV (diamonds) does not match the experiment (circles) anymore
if the original Dit is used (diamonds of Fig. b). A small change of the Dit (triangles-up of
Fig. b) is needed in order to fin the experiment again (triangles-up). (b) Dit profiles used
in Fig. a.

into the dielectric are not considered here because they are not expected to affect the
split-CV used used in mobility measurements, although they are important when trying to
reproduce CV experiments at different frequencies [23].

The effect of a charge displacement by ytrap on the electrostatics is modest. In fact,
traps shift the VGS by qNit(tox − |ytrap|)/εox 1. This shift has an impact only for small
tox. For a 4 nm dielectric as in [6], a modest adjustment of the Dit profile with respect to
the case ytrap = 0nm is sufficient to reproduce the experimental NINV (VGS) (Fig. 5.18).
This results in a slightly larger Nit (about 10%) for given NINV with respect to the case
ytrap = 0nm (Fig 5.19). For a 16 nm dielectric as in [5], we found that the Dit profile and
the resulting NINV (VGS) curve are essentially the same for ytrap = 0nm and ytrap = −0.5
nm (Fig. 5.20).

Although the trap position has a modest influence the electrostatics, it affects the
Coulomb-limited mobility. In Fig. 5.21 we show the mobility without surface roughness
when the trapped charge is located at ytrap = −0.5 nm. The Nit values are the same as in
the case ytrap = 0nm. As one can see (compare filled and slanted squares), the mobility
roll-off at high NINV caused by the trapped charge is slightly smaller when traps are at
-0.5 nm. Results at low NINV are not affected by ytrap, because Nit in this range is small
and Nfix is right at the interface (z = 0 nm) in both cases.

5.5 Impact of traps on the ID of short channel devices

In this Section we investigate the effect of trapped charges on the static drain current
of a short channel device. The carrier distribution in the semiconductor significantly
deviates from the equilibrium Fermi-Dirac distribution and one cannot simply replace the
Fermi-Dirac distribution in Eq. 5.7 with the distribution function computed by the MSMC

1This shift is obtained by applying Gauss’ law
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Figure 5.21: Hall mobility simulations without considering the surface roughness scattering.
If traps are moved 0.5 nm away from the interface and inside the dielectric, the mobility
roll-off caused by Coulomb scattering is reduced.

(see Eq. 3.4) unless elastic trapping-detrapping processes are much more efficient than
capture-emission processes among traps. Traps occupancy out of equilibrium has thus been
modelled as described in Section 5.3; in particular, Nit is given by Eq. 5.7. Note that the
occupation function computed by the MSMC is, generally speaking, different from the f
used in Eq. 5.7. The two occupation functions coincide only at equilibrium. To asses the
impact of interface traps on the ID, we have simulated two devices: the first is sketched
in Fig. 5.14 while the second is device #3 of Fig. 3.2. Having in mind the limits of this
analysis, Fig. 5.22 reports the drain current versus the gate voltage for the first device at
VDS = 0.9V .

First, a trap distribution that pins the Fermi level at a free carrier density of about
6 · 1012 cm−2 is considered. This is the same kind of pinning reported in [6] for the strained
device (squares of Fig. 5.5). Since the device is not exactly the same of Fig. 5.5, the
trap distribution is slightly different from the one used to reproduce the data of [6] and
is shown by circles of Fig. 5.25). To determine the correct Dit we have performed a set
of NINV vs VGS simulations at VDS = 0.0V and modified the Dit until the chosen NINV

pinning was obtained. The NINV was measured at the center of the channel. Results of
this operation for the first device (Fig. 5.14) are shown in Fig. 5.24(a). The interface
states have a marginal effect on the current (compare circles in Fig. 5.22 to the result
without traps). The reason for the small effect is that there are many interface states at
high energy, but the gate voltage is not large enough to populate them. In fact, Fig. 5.13
shows that EFeff − EC in the channel is small and this difference decreases towards the
drain region. Also, the impact of Coulomb scattering with trapped charge is limited since
the “deflection” angles are small and have a small impact on back-scattering [24]. A more
pessimistic trap profile (triangles-up of Fig. 5.25) that pins the Fermi level at a free carrier
density of about 3 · 1012 cm−2 produces a more significant saturation that limits the drain
current to 1.7mA/µm. Since the Dit profiles used in these simulations fall down to very
low values inside the gap (as the ones in Fig. 5.6) the subthreshold slope is not affected by
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Figure 5.22: Drain current versus gate voltage curves for the device in Fig. 5.14 using trap
profiles that produce different amount of Fermi level pinning. VDS = 0.9V .

the traps. To investigate this point, we report in Fig. 5.23 the simulated IV characteristics
of the same device in Fig. 5.14 using the trap distribution given by the squares of Fig. 5.25,
consistent with the values from [10] and [5]. We see that the subthreshold slope is degraded
from 73.3 mV/dec to 90.8 mV/dec as expected. Figure 5.26 shows, for this device, the free
carrier densities along the transport direction x for various gate voltages. Fig. 5.26b shows
a slight decrease of the free carrier density with respect to the simulation without traps
(Fig. 5.26a). A more aggressive trap profile pushes the free carrier density further down
(Fig. 5.26c) causing a larger decrease of the drain current. Finally, trap profile from [10]
(squares of Fig. 5.25) limits the free carrier density even at lower gate voltages, which has
an impact on the sub-threshold slope.

Let’s consider now the second device (device #3 of Fig. 3.2). The drain currents versus
the gate voltage are shown in Fig. 5.27. First, we consider a trap distribution that pins the
Fermi level at a free carrier density of about 1 · 1013 cm−2 (squares of Fig. 5.28). To find
the appropriate Dit we have followed the same procedure performed for the first device and
the results are shown in Fig. 5.24(b). Since this is a DG-SOI, we assume that half of this
carrier concentration is located near each interface. This kind of pinning has a negligible
effect on the drain current (squares of Fig. 5.27). This is confirmed by Fig. 5.29b, which
shows a free carrier density far from the pinned concentration. If we increase the trap
density in order to pin the free carrier density at about 6 · 1012 cm−2 (circles of Fig. 5.28)
we notice a more significant impact on the drain current (circles of Fig. 5.27). Fig. 5.29c
shows that the free carrier density is lower with respect to the previous case. This limiting
effect is even more pronounced (triangles-up of Fig. 5.27) if we set the trap density to pin
the free carrier density at about 3 · 1012 cm−2 (triangles-uo of Fig. 5.28). The effects on
the free carrier concentration is shown in Fig. 5.29d.
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Figure 5.23: Drain current versus gate voltage curves for the device in Fig. 5.14 using the
trap profile from [10] (squares of Fig. 5.25). VDS = 0.9V . Gate workfunctions have been
chosen so that the IOFF is 100 nA/µm for both simulations.
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Figure 5.24: (a) NINV pinning for the device of Fig. 5.14 obtained from simulations at
VDS = 0.0V. The NINV is measured at the center of the channel. (b) Same as (a) but for
device #3 of Fig. 3.2.
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Simulation results are shown in Figs. 5.22 and 5.23.



98 CHAPTER 5. MODELLING THE EFFECTS OF INTERFACE STATES

-40 -20 0 20 40
x [nm]

0

5

10

15

20

25

N
IN

V [1
012

 c
m

-2
]

(a)

VGS = 0.9V

VGS = 0.0V

-40 -20 0 20 40
x [nm]

0

5

10

15

20

25

N
IN

V [1
012

 c
m

-2
]

(b)

VGS = 0.9V

VGS = 0.0V

-40 -20 0 20 40
x [nm]

0

5

10

15

20

25

N
IN

V [1
012

 c
m

-2
]

(c)

VGS = 0.9V

VGS = 0.0V

-40 -20 0 20 40
x [nm]

0

5

10

15

20

25
N

IN
V [1

012
 c

m
-2

]

(d)

VGS = 0.9V

VGS = 0.0V

Figure 5.26: Free carrier densities for the device shown in Fig. 5.14. (a) Simulation without
traps. (b) Simulation with traps that pin the NINV at 6 · 1012 cm−2. (c) Simulation with
traps that pin the NINV at 3 · 1012 cm−2. (d) Simulation using the traps profile shown by
the squares of Fig 5.25.
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Figure 5.27: Drain current versus gate voltage curves for the device #3 in Fig. 3.2 using
trap profiles that produce different amount of Fermi level pinning. VDS = 0.8V .
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Figure 5.28: Traps energy profiles used for the simulation of the device #3 of Fig. 3.2.
Simulation results are shown in Fig. 5.27 and 5.23.
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Figure 5.29: Free carrier densities for the device #3 shown in Fig. 3.2. (a) Simulation
without traps. (b) Simulation with traps that pin the NINV at 1 ·1013 cm−2. (c) Simulation
with traps that pin the NINV at 6 · 1012 cm−2. (d) Simulation with traps that pin the
NINV at 3 · 1012 cm−2.
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Chapter 6

Conclusions

The analysis carried out during my PhD have shown that the Multi-subband Monte Carlo
is a valid TCAD tool for the simulation of III-V devices. Its major drawback is the
computational burden since not optimised implementations can require 90 minutes on
average to complete a single iteration. This means that one must wait around half a day
(or even a whole day) to complete the simulation of one bias point. Biases above the
threshold voltage are faster to simulate [1].

An optimised and parallel implementation can deliver the same results much faster.
If enough hardware resources are available, on can expect to be able to complete one
iteration in one or two minutes and a full simulation can be completed in less than one
hour. The Monte Carlo and scattering rates computation steps (see the flowchart of Fig.
2.2) are the ones that consume most of the simulation time so any further performance
improvement work must still be focused on these two steps. Chapter 3 has shown that the
performance scaling with respect to the number of threads are far from ideal. The MC step
scaling is limited by thread synchronisation enforced during the statistics collection phase.
Minimizing the impact of this synchronisation is challenging because the MC step is not
deterministic. The time required to process one particle depends on how many scattering
events it experiences, which in turn depends on the state of the particle. Another source of
imbalance come from particle absorption/injection at the contacts which cause a variation
of the number of particles processed by each thread. While the impact of the latter issue
can be reduced as described in section 3.3.2, there is no implemented solution for the
former. The scattering rates computation step also shows scaling issues. These issues
depends mostly on the shallow level of parallelism, which operates only at the sections-level.
Towards the end of this step, many threads will become idle. A possible future work
involves the implementation of a deeper level of parallelism.

The Multi-subband Monte Carlo method still operates in the semi-classical modelling
framework, and considers quantisation effects only in the direction normal to the dielec-
tric/semiconductor interface. Chapter 4 has shown that for gate lengths around 10 nm and
below, quantisation effects along the transport direction start to play a role. One of these
effect is the source to drain tunnelling, which increases the OFF current and degrades the
sub-threshold slope. The MSMC simulator implements a simple approach to model this
effect by means of subband profile smoothing via convolution with a Gaussian function [2].
A proper calibration of the parameter of the Gaussian allows the MSMC to attain a good
agreement with the results obtained from simulators based on NEGF formalism. Values of
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the σ parameter around 6.5 nm can be effectively used to replicate the results of NEGF
simulators for various device geometries, suggesting that this parameter depends mainly
on the semiconductor material rather than on the device geometry.

Regarding the interface states, the most delicate part of the models is certainly the Dit

trap distribution profile. This profile can be easily calibrated by matching the inversion
carrier density versus bias voltage obtained from Hall measurements. The profile can be
then used for mobility simulations. The proper replication of the effects of Fermi level
pinning is required when comparing measured and simulated mobilities, otherwise one
may overestimate the impact of the scattering mechanisms on mobility since an artificial
degradation appears. Chapter 5 showed that the implemented model allows to obtain
mobility results fairly close to the experiments. A possible future work involves further
studies about the applicability of this model to the simulation of the current of short
devices. The simulations showed that the interface states have a low impact on the current
of short channel devices because the gate voltage is not high enough to allow the population
of the higher energy states. So far, interface states are populated assuming equilibrium
statistics associated with an effective Fermi level, but further work is required in order to
prove the validity of this assumption.
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