

UNIVERSITÀ DEGLI STUDI DI UDINE

DIPARTIMENTO DI MATEMATICA E INFORMATICA

DOTTORATO DI RICERCA IN INFORMATICA

PH.D. THESIS

Exploiting the Structure of Distributed
Constraint Optimization Problems

CANDIDATE:

Ferdinando Fioretto

SUPERVISORS:

Prof. Agostino Dovier
Prof. Enrico Pontelli

Academic Year 2015–2016

Author’s e-mail: ffiorett@cs.nmsu.edu

Author’s address:

Dipartimento di Matematica e Informatica
Università degli Studi di Udine
Via delle Scienze, 206
33100 Udine
Italia

Department of Computer Science
New Mexico State University
Box 30001, MSC CS
Las Cruces, NM, 88003 - U.S.A.

Abstract

Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent multi-
agent architectures to govern the agents’ autonomous behavior in a Multi-Agent System (MAS), where
several agents coordinate with each other to optimize a global cost function. They represent a powerful
approach to the description and resolution of many practical problems, and serve several applications
such as distributed scheduling, coordination of unmanned air vehicles, smart grid electric networks, and
sensor networks. Typical real world applications are characterized by complex dynamics and interactions
among a large number of entities, which translate into hard combinatorial problems, posing significant
challenges from a computational point of view.

The adoption of DCOPs on large instances of problems faces two main limitations: (1) Modeling
limitations, as current resolution methods detach the model from the resolution process, imposing limiting
assumptions on the capabilities of an agent (e.g., that it controls a single variable of the problem, and that
it operates solely on the resolution of a global problem, ignoring the presence of private objectives); and
(2) Solving capabilities, as the inability of current approaches to capitalize on the presence of structural
information which may allow incoherent/unnecessary data to reticulate among the agents as well as to
exploit latent structure of the agent’s local problems, and/or of the problem of interest.

The objective of the proposed dissertation is to address such limitations, studying how to adapt and
integrate insights gained from centralized solving techniques, and from General Purpose Graphic Pro-
cessing Units (GPGPUs) parallel architectures, in order to design practical algorithms to efficiently solve
large, complex, DCOPs, enabling their use for the resolution of real-world problems. To do so, we hy-
pothesize that one can exploit the latent structure of DCOPs in both problem modeling and problem
resolution phases.

Acknowledgments

I am indebted to my advisors Enrico Pontelli and Agostino Dovier for their guidance and encouragement
in my research and beyond, and for making this dissertation possible.

Contents

1 Introduction 1

1.1 Research Objective . 1

1.2 Contributions . 2

1.2.1 Exploiting Structure from Problem Modeling 2

1.2.2 Exploiting Structure during Problem Solving 3

1.2.3 Exploiting the use of GPGPUs . 4

1.3 Dissertation Organization . 5

2 Background 7

2.1 Overview of Distributed Constraint Optimization . 7

2.1.1 Constraint Programming . 7

2.1.2 Distributed Constraint Optimization Problems 10

2.1.3 Representation and Coordination . 11

2.1.4 DCOP Algorithms . 13

2.1.5 Relevant Uses . 17

2.2 Overview of DCOP Extensions . 18

2.2.1 Asymmetric DCOPs . 20

2.2.2 Multi-Objective DCOPs . 21

2.2.3 Probabilistic DCOPs . 21

2.2.4 Dynamic DCOPs . 23

2.3 Overview of General Purpose Graphical Processing Units 24

2.3.1 Hardware Architecture . 24

2.3.2 Logical Architecture . 24

2.3.3 Hierarchical Memory Organization . 26

3 Exploiting the Structure of DCOPs from Problem Modeling 29

3.1 Motivations . 29

3.2 MVA Decomposition . 31

3.2.1 Notation and Definitions . 31

3.2.2 Description of the MVA Decomposition . 32

ii Contents

3.2.3 Local Optimization . 34

3.3 Theoretical Results . 36

3.4 Related Work . 38

3.5 Experimental Evaluation . 38

3.6 Summary . 41

4 Exploiting the Structure of DCOPs during Problem Solving 49

4.1 Motivations . 49

4.1.1 Hard Constraints . 50

4.1.2 Large, Complex Problems . 50

4.2 Branch Consistency to Exploit Hard Constraints . 50

4.2.1 Notation and Definitions . 51

4.2.2 BrC-DPOP . 53

4.2.3 Theoretical Analysis . 58

4.2.4 Related Work . 60

4.2.5 Experimental Evaluation . 61

4.3 Distributed Large Neighborhood Search . 64

4.3.1 Notation and Definitions . 65

4.3.2 DLNS Framework and Repair Algorithms . 65

4.3.3 Theoretical Analysis . 73

4.3.4 Related Work . 76

4.3.5 Experimental Evaluation . 76

4.4 Summary . 80

5 Exploiting the use of Accelerated Hardware in DCOP resolution 83

5.1 Motivations . 84

5.1.1 DP-based Algorithms . 84

5.1.2 Exploiting MVA Hierarchical Parallelism . 84

5.2 Accelerating DPOP and BE resolution on GPGPUs . 85

5.2.1 Notation and Definitions . 85

5.2.2 GPU-DBE . 87

5.2.3 Theoretical Analysis . 93

5.2.4 Related Work . 93

5.2.5 Experimental Evaluation . 94

5.3 Accelerating MVA-based algorithm on GPGPUs . 96

5.3.1 Notation and Definitions . 97

Contents iii

5.3.2 Distributed Markov Chain Monte Carlo Sampling MVA Framework 100

5.3.3 Theoretical Analysis . 105

5.3.4 Related Work . 107

5.3.5 Experimental Evaluation . 107

5.4 Summary . 109

6 Conclusions 111

6.1 Exploiting the Structure of DCOPs from Problem Modeling 111

6.2 Exploiting the Structure of DCOPs during Problem Solving 112

6.3 Exploiting the use of Accelerated Hardware in DCOP resolution 113

Bibliography 115

A List of Key Symbols 125

iv Contents

List of Figures

2.1 DCOP representations: An example constraint graph of a DCOP (a), one of its possible
pseduo-trees (b), and its factor graph (c). 12

2.2 Classical DCOP Algorithm Taxonomy. 14

2.3 DCOPs within a MAS perspective. 19

2.4 Fermi Hardware Architecture (left) and CUDA Logical Architecture (right) 25

3.1 Example DCOP. 30

3.2 Partial Trace of AFB after Decomposition. 31

3.3 MVA Execution Flow Chart. 32

3.4 MVA TABLES. 34

3.5 Complete trace of MVA-AFB. 35

3.6 MVA on Random Graphs Experiments at varying of the number of agents A. 42

3.7 MVA on Random Graphs Experiments at varying of the number of local variables Li. . . 43

3.8 MVA on Random Graphs Experiments at varying of the ratio |Bi|/|Li|. 44

3.9 MVA on Random Graphs Experiments at varying of the global constraint graph density pg1. 45

3.10 MVA on Random Graphs Experiments at varying of the local constraint graph density pl1. 46

3.11 MVA on Random Graphs Experiments at varying of the constraint tightness p2. 47

4.1 Example DCOP . 51

4.2 BrC-DPOP Example Trace . 54

4.3 Runtimes and Message Sizes at varying of the constraint graph density p1. 62

4.4 Runtimes and Message Sizes at varying of the constraint tightness p2. 62

4.5 Runtimes and Message Sizes at varying of the number of agents A. 63

4.6 Example DCOP . 65

4.7 DBR Flow chart. The Solving phase illustrates the T-DBR algorithm’s solving phase. . . 68

4.8 D-LNS with T-DBR example trace. 72

4.9 Normalized solution quality for the upper bounds and lower bounds, on regular grids at
varying of the maximum time allotted to the algorithms. 77

4.10 Normalized solution quality for the upper bounds and lower bounds, on random graphs
at varying of the maximum time allotted to the algorithms. 78

4.11 Normalized solution quality for the upper bounds and lower bounds, on scale-free net-
works at varying of the maximum time allotted to the algorithms. 79

vi List of Figures

4.12 Normalized solution quality for the upper bounds and lower bounds, on regular grids at
varying of the maximum network load allotted to the algorithms. 79

4.13 Normalized solution quality for the upper bounds and lower bounds, on random graphs
at varying of the maximum network load allotted to the algorithms. 80

4.14 Normalized solution quality for the upper bounds and lower bounds, on scale-free net-
works at varying of the maximum network load allotted to the algorithms. 81

5.1 Example (D)COP (a-c) and UTIL phase computations in DPOP (d). 85

5.2 Concurrent computation between host and device. 91

5.3 GPU kernel parallel computations. 92

5.4 Runtimes for COPs (top) and DCOPs (bottom) at varying number of variables/agents. . . 95

5.5 Runtimes for COPs (top) and DCOPs (bottom) at varying number of variables/agents. . . 96

5.6 Parallelization Illustration . 103

5.7 Experimental Results: Meeting Scheduling Problems 108

List of Tables

2.1 DCOP classification elements. 18

2.2 DCOPs Models. 20

3.1 Radar Coordination Instances. 41

4.1 Percentage of Satisfiable Instances Solved . 64

4.2 Experimental results on random networks. 79

4.3 Experimental results on meeting scheduling. 80

5.1 Experimental Results: Smart Grid Networks . 109

A.1 Commonly Used Symbols and Notations . 125

viii List of Tables

1
Introduction

The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an
increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous
agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint
Optimization Problems (DCOPs) [81, 96, 124] are problems where several agents coordinate with each
other to optimize a global cost function, and have emerged as one of the prominent agent architectures to
govern the cooperative agents’ autonomous behavior. DCOPs are characterized by four components: (1)
agents, (2) variables, (3) domains, and (4) constraints. An agent can be defined as an entity (or computer
program) that behaves autonomously within an arbitrary system in the pursuit of some goals. Each DCOP
agent controls a set of variables, which model the entities of the problem. Each variable can take values
from a finite set of elements, which defines its domain. In a DCOP, each variable is controlled by an agent,
and thus the decision of the value assignment for a variable is made exclusively by the agent controlling
it. In a DCOP, relations are expressed among subsets of the problem variables, and specify the utilities
gained by the agents when they coordinate the assignments for such variables. Thus, DCOP agents need to
coordinate their value assignments, in a decentralized manner, to optimize their objective functions. The
common mean to execute such distributed coordination process is via agents’ communication, conducted
through the exchange of messages. DCOPs focus on attaining a global optimum given the interaction
graph of a collection of agents. This approach is flexible and can effectively model a wide range of
practical problems, such as scheduling problems [73, 132], resource allocation [31, 131], and power
network management problems [62].

The focus of the work presented in this dissertation is the investigation of solution approaches to
efficiently solve DCOPs. To this end, we focus on exploiting latent structure, exposed by the constraints
found within general distributed optimization problems, or exposed by the specific application of interest,
and on exploiting the use of General Purpose Graphic Processing Units (GPGPUs) to enhance DCOP
algorithms solving efficiency.

1.1 Research Objective

In recent years, it has been observed a transition within the Distributed Constraint Optimization com-
munity, from theory and algorithm’s development to practical applications of DCOP algorithms. Typical
real world applications are characterized by complex dynamics and interactions among a large number of

2 1. Introduction

entities, which translate into hard combinatorial problems, posing significant challenges from a computa-
tional point of view. In this dissertation we identified two limitations faced by the adoption of DCOP on
large problems: (1) Modeling limitations, as current resolution methods detach the model from the reso-
lution process, imposing limiting assumptions on the capabilities of an agent (e.g., that it controls a single
variable of the problem); and (2) Solving capabilities, as the inability of current approaches to capital-
ize on the presence of structural information which may allow incoherent/unnecessary data to reticulate
among the agents as well as to exploit structure of the agent’s local problems.

The research objective of the proposed dissertation is to address such limitations. To do so, we
hypothesize that:

1. One can exploit the information encoded in the DCOP model through the use of centralized solu-
tions.

2. One can adapt centralized reasoning techniques to exploit the structure of DCOPs during problem
solving.

3. One can exploit highly parallel computational models to enhance current DCOP solution tech-
niques.

Thus, our focus is to study how to adapt and integrate insights gained from centralized solving techniques
and from General Purpose Graphic Processing Units (GPGPUs) parallel architectures in order to enhance
DCOP performance and scalability, enabling their use for the resolution of real-world complex problems.

The study described in this dissertation benefits both the theory and the practice of Multi-Agent Sys-
tems and High Performance Computing, and helps application domains such as distributed scheduling
and allocation, smart grid electricity networks, logistics and sensor networks, where researcher often en-
counter the need of distributed or parallel solutions to handle large-scale complex optimization problems.

1.2 Contributions

We describe below the main contributions of this dissertation.

1.2.1 Exploiting Structure from Problem Modeling

Modeling many real-world problems as DCOPs often requires each agent to control a large number of
variables. However, most DCOP resolution approaches assume that each agent controls exclusively a sin-
gle variable of the problem. As such, researchers have proposed a number of pre-processing techniques
to reformulate DCOPs with multi-variable agents into DCOPs with single-variable agents [125]. Unfor-
tunately, these techniques do not scale with the size of the problem due to their inefficient communication
requirements. Therefore, we proposed a DCOP Multiple-Variable Agents (MVA) problem decomposition
[37] that defines a clear separation between the distributed DCOP resolution and the centralized agent
sub-problem resolution. This separation exploits co-locality of agent’s variables, allowing the adoption
of efficient centralized techniques to solve agent sub-problems, while preserving agent’s privacy. Agents
coordination is achieved employing a global DCOP algorithm [36, 37]. Using the MVA problem de-
composition, allows us to significantly reduce the time of the DCOP resolution process. In addition,

1.2. Contributions 3

the knowledge acquired from the DCOP model allows us to further reduce the algorithms communica-
tion requirements, when compared to existing pre-processing techniques—which ignore the structural
information dictated by the model.

These results validate our hypothesis that one can exploit the information encoded in the DCOP model
through the use of centralized solutions.

1.2.2 Exploiting Structure during Problem Solving

A number of multi-agent systems require agents to run on battery-powered devices and communicate over
wireless networks. This imposes constraints on the number and size of individual messages exchanged
among agents. Inference-based DCOP algorithms, can be effective in solving such problems. They use
techniques from dynamic programming to propagate aggregate information among agents, and while their
requirements on the number of messages is linear in the number of agents, their messages have a size that
is exponential in the size of the treewidth, which can be up to the number of agents −1. Several works
from the DCOP community recognize the use of hard constraints to reduce the size of the search space
and/or reduce the message size. However, they are limited in exploiting relational information expressed
in form of tables and/or associated to the form of domain consistency. In response of such limitation we
introduce a type of consistency, called Branch Consistency [35], that applies to paths in pseudo-trees. The
effect of enforcing Branch Consistency is the ability to actively exploit hard constraints (either explicitly
provided in the problem specification or implicitly described in constraints cost tables) to prune the search
space and to reduce the size of the messages exchanged among agents. Such form of consistency enforces
a more effective pruning than those based on domain-consistency, guaranteeing optimality, and leading
enhanced efficiency and scalability.

However, solving DCOPs optimally is NP-hard, therefore for large problems, incomplete DCOP al-
gorithms are desirable. Several incomplete approaches have been proposed in the literature, yet, current
incomplete DCOP algorithms have combinations of the following limitations:

i. They find local minima without quality guarantees;

ii. They provide loose quality assessment, such us those in the class of k-optimality [91];

iii. They do not exploit problem structures, such as those induced by the problem domain, or by hard
constraints [84].

Therefore, building on strategies from the centralized constraint reasoning community, we introduce the
Distributed Large Neighborhood Search (D- LNS) framework [32]. D-LNS solves DCOPs by building on
the strengths of centralized Large Neighboring Search strategy (LNS) [55], a centralized meta-heuristic
that iteratively explores complex neighborhoods of the search space to find better candidate solutions.
D-LNS is a local search framework for DCOPs, which has several qualities:

• It provides quality guarantees by refining both upper and lower bounds of the solution found during
the iterative process;

• It is anytime (i.e., it is able to return a valid solution to the problem even if it is interrupted at any
time before it ends); and

4 1. Introduction

• It inherently uses insights from the CP techniques to take advantage on the presence of hard con-
straints.

In addition we introduce two novel distributed search algorithms, built within the D-LNS framework,
characterized by the ability to exploit problem structure, low network usage, and low computational
complexity per agent. Compared to other incomplete algorithms, our D-LNS converges faster to better
solutions, provides tighter solution quality bounds, is more scalable, and it can exploit explicitly domain
dependent knowledge, to further enhance runtime and solution quality of the problem being solved.

These results validate our hypothesis that centralized reasoning can be adapted to exploit the structure
of DCOPs during problem solving.

1.2.3 Exploiting the use of GPGPUs

Typical Distributed Constraint Optimization problems are characterized by complex dynamics and in-
teractions among a large number of agents, which translate into hard combinatorial problems, posing
significant challenges from a computational point of view. To deal with such computational burden, in
addition to the techniques discussed above, we exploit a novel class of massively parallel platforms that
are based on the Single Instruction Multiple Thread (SIMT) paradigm, and widely used in modern GPG-
PUs. GPGPUs are multiprocessor devices, offering hundreds of computing cores and a rich memory
hierarchy supporting general purpose (i.e., non-graphical) processing. The wide availability of GPGPUs,
and their contained costs, stimulated interest across several research communities.

The structure exploited by Dynamic Programming (DP)-based approaches in constructing solutions
makes it suitable to exploit the SIMT paradigm. Thus, we propose a DP-based algorithm that exploits
parallel computation using GPGPUs to solve DCOPs [34]. Our proposal employs GPGPU hardware
to speed up the inference process of DP-based methods. Our results show significant improvements in
performance and scalability over other state-of-the-art DP-based solutions.

The explicit separation between the DCOP resolution process and the centralized agent problem,
enabled by our MVA DCOP decomposition, capacitate agents to solve their local problem through a
variety of techniques. Motivated by the high complexity of the agent local problem, we propose the use
of hierarchical parallel models, where each agent can:

i. Solve its local problem independently from those of other agents, and

ii. Parallelize the computations within its own local problem.

Such model builds on top of algorithm-specific characteristics, and may substantially reduces the run-
time for several DCOP algorithms classes. Thus, we suggest to solve independent local problems, in
parallel, harnessing the multitude of computational units offered by GPGPUs, which leads to significant
improvements in the runtime of the algorithm resolution [33, 37] .

These results validate our hypothesis that one can exploit highly parallel computational models to
enhance current DCOP solution techniques.

1.3. Dissertation Organization 5

1.3 Dissertation Organization

This dissertation is organized as follows: The next chapter (Chapter 2) provides an overview of the dis-
tributed constraint optimization model and algorithms, and of GPGPUs. Therein, we review the notions
of centralized constraint optimization problems and constraint solving, and discuss some general tech-
niques that are typically adopted to solve constraint problems (e.g., constraint propagation and search).
We hence discuss the distributed constraint optimization model, the typical representation and coordi-
nation schema adopted during the resolution process and we review a number of complete and incom-
plete DCOP algorithms. We further discuss the DCOP model extensions able to deal with dynamic and
uncertain events. Finally, we provide an overview of the graphical processing units, and review the de-
tails of such architecture and of its different memory levels. Chapter 3 introduces a Multiple Variable
Agents (MVA) decomposition technique for DCOPs to exploit the information encoded in the DCOP
model through the use of centralized solutions. Chapter 4 introduces Branch Consistency (BrC), and
Distributed Large Neighboring Search (D-LNS), two DCOP solving strategies which adapt centralized
reasoning techniques to enhance the efficiency of DCOP resolution by exploiting the structure of DCOPs
in orthogonal ways. Chapter 5 proposes the design and implementation of inference-based and sampling-
based algorithms which exploits modern massively parallel architectures, such as those found in modern
General Purpose Graphical Processing Units (GPGPUs), to speed up the resolution of DCOPs. Finally,
we conclude the dissertation in Chapter 6, which summarizes the main results presented in the previous
chapters and identifies possible directions for future work.

To facilitate the reading of this dissertation, we have provided in the Appendix A a summary of the
most commonly used notations.

6 1. Introduction

2
Background

This chapter aims at providing an overview of Distributed Constraint Optimization (section 2.1), ad-
dressing the resolution methods that are central for the development of this dissertation. In section 2.2,
we propose a classification of DCOP models from a Multi-Agent Systems perspective, providing an
overview of some recent DCOP extensions, which enrich the original DCOP model expressiveness and
applicability. Finally, we provide some background on General Purpose Graphical Processing Units, in
section 2.3, which are used within several approaches developed throughout this work, to speed up the
resolution approach of various DCOP algorithms.

2.1 Overview of Distributed Constraint Optimization

In this section, we provide an overview of Constraint Programming, which forms the foundation of Dis-
tributed Constraint Optimization. We thus describe Distributed Constraint Optimization Problems their
representation and coordination models, resolution approaches, and relevant uses.

2.1.1 Constraint Programming

Constraint Programming (CP) is a declarative programming methodology. Over the years, CP has be-
come a paradigm of choice to address hard search problems, drawing and integrating insights from diverse
domains, including Artificial Intelligence and Operations Research [107]. The basic idea in this program-
ming paradigm relies on the use of relations that should hold among entities of the problem—this notion
is referred to as Constraint Satisfaction Problem (CSP).

Constraint Satisfaction and Optimization

A CSP is a triple P = 〈X,D,C〉, where:

• X={x1, . . . , xn} is a finite set of variables.
• D = {D1, . . . , Dn} is a set of finite domains for the variables in X, with Di being the set of possible

values for the variable xi.
• C is a finite set of constraints over subsets of X, where a constraint ci defined on the m variables
xi1 , . . . , xim , is a relation ci ⊆ "mj=1Dij . The set of variables xi = {xi1 , . . . , xim} is referred to as

8 2. Background

the scope of ci. If m = 1, ci is called unary constraint; if m = 2, it is called binary constraint. For all
other m > 2, the constraint is referred to as global constraint.

A solution is a value assignment for a subset of variables from X that is consistent with their respective
domains; i.e., it is a partial function θ : X → ⋃n

i=1Di such that, for each xj ∈ X, if θ(xj) is defined,
then θ(xj) ∈ Dj . A solution is complete if it assigns a value to each variable in X. We will use
the notation σ to denote a complete solution, and, for a set of variables V = {xi1 , . . . , xih} ⊆ X,
σV = 〈σ(xi1), . . . , σ(xih)〉, where i1 < · · · < ih, denoting the projection of the values in σ associated to
the variables in V. The goal in a CSP is to find a complete solution σ such that for each ci ∈ C, σxi ∈ ci,
that is, one that satisfies all the problem constraints.

A CSP may be associated to an optimization function g. Informally, the goal of solving such CSPs
does not simply rely on finding some solution, but on finding an optimal one, according to some opti-
mization criteria g. We refer to such extended CSPs, to as Constraint Optimization Problems (COPs). A
COP is a pair (P, g), where P = (X,D,C) is a CSP, and g : "ni=1Di → R is an optimization function.
Solving a COP (P, g) means finding a solution s to P such that g(s) is maximal (or minimal, depending
on the optimization criteria) among all solutions of P .

As an example consider the classical knapsack problem, where we are given a set of items, each with
a weight and a value. The goal is that of determining the quantity of each item to include in a collection
so that the total weight does not exceed a given limit and the total value is as large as possible [57]. Given
a set of n items numbered from 1 up to n, each with a weight wi and a value vi, along with a maximum
weight capacity W , the problem can be expressed as follows:

maximize:
n∑

i=1

vixi

subject to:
n∑

i=1

wixi ≤W, and xi ∈ {0, Ni}.

where xi represents the number of instances of item i to include in the knapsack, and Ni is the maximum
number of of copies of xi that can be considered in the final collection.

Constraint Propagation

Conventional methods adopted to solve a constrained problem rely on a form of constraint reasoning
to transform the original CSP in a new simpler, yet equivalent one—that is, one that preserves all the
solutions. The idea of simplicity of a CSP typically refers to narrow variables’ domains. Constraint
propagation is a technique used to achieve this goal. It embeds any form of reasoning to explicitly
preclude the use of those variables’ values that would prevent a constraint to be satisfied. This process is
performed by repeatedly narrowing domains, and/or constraints, while maintaining the CSP equivalence.
To do so, the process of propagation needs to guarantee some form of local consistency, which ensures
that some subset of variables satisfies the notion of the constraints in which they are involved.

We now review some popular form of consistency: node consistency, arc consistency and path con-
sistency.

Node consistency is the simplest notion of local consistency. A CSP (X,D,C) is said to be node
consistent if for every variable xi ∈ X , Di is consistent with every unary constraint ci on xi, i.e.,

2.1. Overview of Distributed Constraint Optimization 9

∀a ∈ Di, a ∈ ci; Node consistency can be achieved in O(nd) time [71], where d = maxi |Di| is the
maximum size among all variables’ domains, by removing the inconsistent values from the domain of
each variables with unary constraints.

Arc consistency applies to binary constraints. A binary constraint cij on variables xi and xj is arc
consistent if and only if for every value a ∈ Di there exists a value b ∈ Dj such that (a, b) ∈ cij , and
for every value b ∈ Dj there is a value a ∈ Di such that (a, b) ∈ cij . Similarly to node consistency,
a CSP is arc consistent if all its binary constraints are arc consistent. Typical algorithms to achieve arc
consistency rely on iterative processes handling one constraint at a time, and removing inconsistent values
of the variables involved in the scope of the constraint [70, 6]. Such process repeats until a fixed point is
reached, that is, when either no further pruning is possible or when some domain results empty.

Path consistency considers pairs of variables, in contrast to arc consistency which considers single
variables. A pair of values (r, c) ∈ Di×Dj of two variables xi, xj is path consistent if and only if for any
sequence of variables (xi = xk1 , . . . , xkm = xj), such that ckpkq ∈ C, where p ≤ q ≤ p+1, there exists a
tuple of values (r = vk1 , . . . , vkm = c) such that vkq ∈ Dkq and (vkp , vkq) ∈ ckpkq , for each 1 ≤ q ≤ m
and p ≤ q ≤ p+1. A CSP is path consistent if and only if for any pair of variables (xi, xj), with i ≤ j, any
locally consistent pair of values on (xi, xj) is path consistent. Differently from node and arc consistency,
where the form of constraint propagation enforcing them works by removing inconsistent values from the
variables domains, propagation in path consistency works by removing inconsistent assignments from a
constraint [82].

The interested reader can refer to [7, 2] and references therein, for an in-depth analysis on local
consistencies and constraint propagation.

Search

The common resolution process of a CSPs/COPs is typically expressed by a search process, where the
values for the variables of the problem are generated in some (possibly) systematic order. We now briefly
review major complete and incomplete approaches.

Complete Search: The resolution process of CSP/COP can be typically described by the iteration of two
phases: constraint propagation, and labeling. The former, as described above, aims at reducing the do-
main of the variables not yet assigned, while the latter enforces a value choice for some variable of the
problem. Thus, solving a CSP/COP can be expressed as the process of exploring a search tree (referred to
as prop-labeling tree) where constraint propagation phases are interleaved with non-deterministic branch-
ing phases used to explore different value assignments to variables [2]. Each node of the prop-labeling
tree represents a possible value assignment for a variable, the arcs connecting nodes express the effect of
propagating constraints, and a solution is described by a complete path from the root node to a leaf node.

Such type of search space exploration is typically referred to backtracking search [85]. In backtrack-
ing search, a solution is constructed by extending a partial assignments to the problem’s variables, and
a backtrack to previous assignments is enforced as soon as the current assignment causes the violation
of some constraint, or when no more values assignments can be attempted for a given variable. Several
heuristics can be chosen to select the next node to expand (i.e., the next variable to label), or the next
value to assign to a given variable. We refer the interested readers to [7, 2] and references therein for a
detailed description on search strategies adopted in the resolution of a CSP/COP.

Local Search: By systematically exploring each path of the search tree, complete search strategies gen-

10 2. Background

erate all possible solutions of a given problem. Since solving optimally a CSP/COP is NP-Complete [26]
incomplete solution approaches are often necessary to solve large interesting problems. Local search
(LS) methods [1, 92, 80] attempt to improve a current solution by iteratively generating new candidate
solutions. They rely on the intuition that it is possible to navigate different regions of the search space by
modifying some ”subsequences” (i.e., assignments for a subset of the problem variables) of the current
solution, and possibly generating new better candidate solutions. The set of subsequences that can be
modified is referred to as neighborhood.

We now review a widely adopted local search technique to tackle large constraint optimization prob-
lems: the Large Neighborhood Search (LNS) [109, 55]. In LNS an initial solution is iteratively improved
by repeatedly destroying it and repairing it. Destroying a solution means selecting a subset of variables
whose current values will be discarded. The set of such variables is referred to as large neighborhood
(LN). Repairing a solution means finding a new value assignment for the destroyed variables, given that
the other non-destroyed variables maintain their values from the previous iteration. The peculiarity of
LNS, compared to other local search techniques, is the (larger) size of the neighborhood to explore at
each step. This method relies on the intuition that searching over a larger neighborhood allows the pro-
cess to escape local optima and find better candidate solutions.

2.1.2 Distributed Constraint Optimization Problems

When the elements of a COP are distributed among a set of autonomous agents, we refer to it as Dis-
tributed Constraint Optimization Problem (DCOP).

Formally, a DCOP is described by a tuple P = (A,X,D,F, α), where X and D are the set of
variables and their domains defined as in classical COPs, F={f1, . . . , fk} is a finite set of function, with
fi : "xj∈xi Dj → R+ ∪ {⊥}, where ⊥ is a special element used to denote that a given combination of
values for the variables in xi is not allowed1, A={a1, . . . , ap} is a finite set of autonomous agents, and
α : X → A is a surjective function, from variables to agents, which assigns the control of each variable
x ∈ X to an agent α(x).

Each function fi represents a factor in a global objective function, g(X) =
∑k
i=1 fi(x

i). In the
DCOP literature, the weighted constraints fi are also called constraints, cost functions, utility functions,
or reward functions. With a slight abuse of notation, we will denote with α(fi) the set of agents whose
variables are involved in the scope of fi, i.e., α(fi) = {α(x) | x ∈ xi}. When clear from the context, we
will write fxi to refer to the function fi ∈ F whose scope is xi. For instance, we will denote with f12 the
binary function involving variables x1 and x2.

The goal in a DCOP is to find a complete solution that maximizes the total problem reward expressed
by its reward functions:

σ∗ = argmax
σ∈Σ

g(σ) = argmax
σ∈Σ

∑

fi∈F

fi(σxi), (2.1)

where Σ is the state space, defined as the set of all possible complete solutions. Analogously, for min-
imization problems, the argmax of the above expression is substituted with the argmin. Typically, the
objective functions values of a maximization problem are referred to as utilities, while in a minimization
problem they are referred to as costs.

1We assume sets of variables to be sorted according to a fixed order of X.

2.1. Overview of Distributed Constraint Optimization 11

Let us also introduce the following notations. Given an agent ai, we denote withNai ={a′i ∈ A|ai 6=
a′i, ∃fj ∈ F, xr, xs ∈ xj . α(xr)=ai ∧ α(xs)=a′i} the set of its neighboring agents. A constraint fi is
said to be hard if ∀σ ∈ Σ we have that fi(σxi) ⊆ {0,⊥}. Otherwise, the constraint is said to be soft.

We refer to a DCOP algorithm as a distributed algorithm for the resolution of a DCOP.

2.1.3 Representation and Coordination

Representation in DCOPs plays a fundamental role, both from an agent coordination perspective and
from an algorithmic perspective. We discuss here the most predominant representations adopted in var-
ious DCOP algorithms. Let us start by describing some widely adopted assumptions regarding agent
knowledge and coordination, which will apply throughout this document, unless otherwise stated:

1. A variable and its domain are known exclusively to the agent controlling it and its neighboring
agents.

2. Each agent knows the reward values of the constraints involving at least one of its local variables.
No other agent has knowledge about such constraints.

3. Each agent knows exclusively (and it may communicate with) its own neighboring agents.

Constraint Graph Given a DCOP P ,GP = (X, EC) is the constraint graph of P , where an undirected
edge {x, y} ∈ EC exists if and only if there exists fj ∈ F such that {x, y} ⊆ xj . A constraint graph is
a standard way to visualize a DCOP. It underlines the agents’ locality of interactions and therefore it is
commonly adopted by DCOP resolution algorithms.

Given an ordering o on X, we say that a variable xi has a higher priority with respect to a variable
xj if xi appears before xj in o. Given a constraint graph GP and an ordering o on its nodes, the induced
graph G∗P on o, is the graph obtained by connecting nodes, processed in increasing order of priority, to
all their higher-priority neighbors. For a given node, the number of higher-priority neighbors is referred
to as its width. The induced width w∗o of GP is the maximum width over all the nodes of G∗P on ordering
o.

Figure 2.1(a) shows an example constraint graph of a DCOP with four agents a1 through a4, each
controlling one variable with domain {0,1}. There are two constraint: a ternary constraint, f123 with
scope x123 = {x1, x2, x3} and represented by a clique among x1, x2 and x3, and a binary constraint f24

with scope x24 = {x2, x4}.

Pseudo-Tree A number of DCOP algorithms require a partial ordering among the agents. In particular,
when such order is derived from a depth-first search exploration, the resulting structure is known as (DFS)
pseudo-tree. A pseudo-tree arrangement for a DCOP P is a subgraph TP =〈X, ET 〉 of GP such that TP
is a spanning tree of GP—i.e., a connected subgraph of GP containing all the nodes and being a rooted
tree—with the following additional condition: for each x, y ∈ X, if {x, y} ⊆ xi for some fi ∈ F, then
x, y appear in the same branch of TP (i.e., x is an ancestor of y in TP or vice versa). Edges of GP that
are in (respectively out of) ET are called tree edges (respectively backedges). The tree edges connect
parent-child nodes, while backedges connect a node with its pseudo-parents and its pseudo-children. We
use Cai , PCai , Pai , PPai , to denote the set of children, pseudo-children, parent and pseudo-parents of
the agent ai.

12 2. Background

a4

a2

a1

a3

x1

x2 x3

x4

x1

x2

x3x4

a3

a2

a4

a1

x1

x2

x4f24

x3f123

a4

a3a2

a1

(a) Constraint Graph (b) A Pseudo-tree (c) Factor Graph

Figure 2.1: DCOP representations: An example constraint graph of a DCOP (a), one of its possible
pseduo-trees (b), and its factor graph (c).

Both constraint graph and pseudo-tree representations cannot deal explicitly with n-ary constraints
(functions whose scope has more than two variables). A typical artifact to deal with n-ary constraints in a
pseudo-tree representation is to introduce a virtual variable which monitors the value assignments for all
the variables in the scope of the constraint, and generates the reward values [10]—the role of the virtual
variables can be delegated to one of the variables participating in the constraint [93, 76].

Figure 2.1(b) shows one possible pseudo-tree of the example DCOP in Figure 2.1(a), where Ca1
=

{x2}, PCa1
= {x3}, Pa4

= {x2}, and PPa3
= {x1}. The solid lines are tree edges and dotted lines are

backedges.

Factor Graph Another way to represent DCOPs is through a factor graph [61]. A factor graph is a
bipartite graph used to represent the factorization of a function. In particular, given the global objective
function g, the corresponding factor graph FP = 〈X,F, EF 〉 is composed of variable nodes xi ∈ X,
factor nodes fj ∈ F and edges EF such that there is an undirected edge between factor node fj and
variable node xi if xi ∈ xj .

Factor graphs can handle n-ary constraints explicitly. To do so, they use a similar method as that
adopted within pseudo-trees with n-ary constraints: they delegate the control of a factor node to one of
the agents controlling a variable in the scope of the constraint. From an algorithmic perspective, the algo-
rithms designed over factor graphs can directly handle n-ary constraints, while algorithms designed over
pseudo-trees require changes in the algorithm design so to delegate the control of the n-ary constraints to
some particular entity.

Figure 2.1(c) shows the factor graph of the example DCOP in Figure 2.1(a), where each agent ai
controls its variable xi and, in addition, a3 controls the constraint f123 and a4 controls f24.

To facilitate the reading of this dissertation, we have provided in Table A.1, a summary of the most
commonly used notations.

2.1. Overview of Distributed Constraint Optimization 13

2.1.4 DCOP Algorithms

DCOP algorithms can be classified as being either complete or incomplete, based on whether they can
guarantee the optimal solution or they trade optimality for smaller use of resources, producing approx-
imated solutions. In addition, each of these classes can be categorized into several groups, such as: (1)
partially or fully decentralized, depending on the degree of locality exploited by the algorithms; and (2)
synchronous or asynchronous, based on the way local information is updated. Finally, the resolution
process adopted by each algorithm can be classified in three categories [120]:

• Search-based methods, which are based on the use of search techniques to explore the space of pos-
sible solutions. These techniques are often derived from corresponding search techniques developed
for centralized AI search problems, such as best-first search and depth-first search.

• Inference-based methods, which are inspired from dynamic programming and belief propagation
techniques. These techniques allow agents to exploit the structure of the constraint graph to aggre-
gate rewards from their neighbors, effectively reducing the problem size at each step of the algorithm.

• Sampling-based methods, which are incomplete approaches that sample the search space to approx-
imate a function (usually a probability distribution) as a product of statistical inference.

Figure 2.2 illustrates a taxonomy of classical DCOP algorithms. In the following subsections, we
describe the criteria adopted to evaluate the DCOP algorithms performance, and describe some repre-
sentative complete and incomplete algorithms of each of the classes introduced above. For a detailed
description of the DCOP algorithms we refer the interested readers to the original articles that introduce
each algorithm.

Evaluation Criteria

In centralized optimization the performance of an algorithm is typically evaluated measuring the quality
of the solution returned by the algorithm and its runtime. In addition to the solution quality, due to the
distributed nature of the DCOPs, DCOP algorithms are generally examined employing two evaluation
criteria: execution time, and network performance.

In the literature the distributed execution of the DCOP algorithms is often simulated on a single
machine, thus a simulated execution time metric is often adopted. There are two widely adopted simulated
execution time metrics: the simulated runtime [111], and the non-concurrent constraint checks (NCCCs)
[66], and are defined as follows:

• Simulated runtime measures both processing and communication time of the DCOP algorithm.
Every agent ai maintains an internal clock ti, which is initialized to 0. When an agent performs
some operation it measures the runtime elapsed and adds it to ti. When an agent ai sends a message
to some agent aj it also forwards its current timer ti. When ai receives a message from aj it updates
its current timer ti = max{ti, tj+D}, whereD is a delay time used to simulate the communication
time. The simulated runtime of the algorithm is the largest timer held by any agent in A.

• NCCCs are a weighted sum of processing and communication time. Similarly as for the simulated
time metric, each agent ai maintains an NCCCs counter ci, which is initialized to 0. Every time
ai performs a constraint check (i.e., an evaluation for a partial assignment) it increments its current
counter ci by 1. Hence, it assigns ci = max{ci, cj + D} when it receives a message from agent

14 2. Background

Complete

Fully
Decentralized

Partially
Decentralized

Search Inference

Synchronous Asynchronous

Search Inference Search

Incomplete

Fully
Decentralized

Synchronous Asynchronous

Search

OPTApo PC-DPOP SyncBB DPOP and
variants

AFB; ADOPT
and variants

Region Optimal
DSA; MGM

D-Gibbs

Sampling Inference

Max-Sum and
variants

Synchronous

Figure 2.2: Classical DCOP Algorithm Taxonomy.

aj to account for the time it takes to receive the message from aj and for the transmission time of
the message (D). The number of NCCCs of the algorithm is the largest counter value held by any
agent.

In terms of network performance, DCOP algorithms are often evaluated by measuring the network
load and the message size metrics, which are defined as follows:

• The network load refers to the total number of messages exchanged by the agents during the exe-
cution of the algorithm.

• The message size refers to the maximal size (typically is expressed in bytes) of the messages ex-
changed among the agents during the execution of the algorithm.

Complete Algorithms

SynchBB [56]. Synchronous Branch-and-Bound (SynchBB) is a complete, synchronous, search-based
algorithm that can be considered as a distributed version of a branch-and-bound algorithm. It uses a
complete ordering of the agents in order to extend a Current Partial Assignment (CPA) via a synchronous
communication process. The CPA holds the assignments of all the variables controlled by all the visited
agents, and, in addition, functions as a mechanism to propagate bound information. The algorithm prunes
those parts of the search space whose solution quality is sub-optimal, by exploiting the bounds that are
updated at each step of the algorithm. SynchBB agents space requirement and maximum size of message
are in O(n), while they require, in the worst case, to perform O(dm) number of operations. The network
load is also in O(dm).

AFB [39]. Asynchronous Forward Bounding (AFB) is a complete, asynchronous, search-based algo-
rithm that can be considered as the asynchronous version of SynchBB. In this algorithm, agents commu-
nicate their reward estimates, which in turn are used to compute bounds and prune the search space. In
AFB, agents extend a CPA sequentially, provided that the lower bound on its reward does not exceed the
global bound, that is, the reward of the best solution found so far. Each agent performing an assignment

2.1. Overview of Distributed Constraint Optimization 15

(the “assigning” agent) triggers asynchronous checks of bounds, by sending forward messages (referred
to as FB CPA) containing copies of the CPA to neighboring agents in the constraint graph that have not
yet assigned their variables. The unassigned agents that receive a CPA, estimate the lower bound of the
CPA, given their local view of the constraint graph. The cost estimates are returned back to the agent
that originated the forward message, in FB ESTIMATE messages. This assigning agent will receive these
estimates asynchronously and aggregate them into an updated lower bound, which is used to prune the
search space. If the updated lower bound exceeds the current upper bound, the agent initiates a back-
tracking phase. This process continues until the agent with lowest priority finds a complete solution,
which is sent to all the agents. When the agent of highest priority exhausts all its value assignments, it
broadcasts a termination message, assuming value from the best complete solution. As in SynchBB, the
worst case complexity for network load and agent’s operations is O(dm), while the size of messages and
each agent’s space requirement are in O(n).

ADOPT [81]. Asynchronous Distributed OPTimization (ADOPT) is a complete, asynchronous, search-
based algorithm that makes use of a DFS pseudo-tree ordering of the agents. The algorithm relies on
maintaining, in each agent, lower and upper bounds on the solution reward for the subtree rooted at its
node(s) in the DFS tree. Agents explore partial solutions in best-first order, that is, in increasing lower
bound order. Agents use COST messages (propagated upwards in the DFS pseudotree) and THRESH-
OLD and VALUE messages (propagated downwards in the tree) to iteratively tighten the lower and up-
per bounds, until the lower bound of the minimum cost solution is equal to its upper bound. ADOPT
agents store lower bounds as thresholds, which can be used to prune partial solutions that are provably
sub-optimal. ADOPT agents need to maintain a context which stores the assignments of higher priority
neighbors, and a lower bound and an upper bound for each domain value and child; thus, the space re-
quirement for each agent is in O(d(l + 1)), where l = maxai∈A |Nai |. Its worst case network load and
agent complexity is O(dm), while its maximum message size is in O(h). ADOPT has been extended in
several ways. In particular, BnB-ADOPT [121, 50] uses a branch-and-bound method to reduce the amount
of computation performed during search, and ADOPT(k) combines both ADOPT and BnB-ADOPT into
an integrated algorithm [51]. There are also extensions that trade solution optimality for smaller run-
times [122], extensions that use more memory for smaller runtimes [123], and extensions that maintain
soft arc-consistency [9, 8, 49, 47].

DPOP [96]. Distributed Pseudo-tree Optimization Procedure (DPOP) is a complete, synchronous,
inference-based algorithm that makes use of a DFS pseudo-tree ordering of the agents. It involves three
phases:

• Pseudo-tree construction phase: In the first phase, the agents order themselves into a DFS pseudo-
tree.

• Utility propagation phase: In the second phase, each agent, starting from the leaves of the pseudo-
tree, aggregates the rewards in its subtree for each value combination of variables in its separator.2

The aggregated rewards are encoded in a UTIL message, which is propagated from children to their
parents, up to the root.

• Value propagation phase: In the third phase, each agent, starting from the root of the pseudo-tree,
selects the optimal values for its variables. The optimal values are calculated based on the UTIL
messages received from the agent’s children and the VALUE message received from its parent. The

2The separator of ai contains all ancestors of ai in the pseudo-tree (through tree edges or back edges) that are connected to ai
or one of its descendants.

16 2. Background

VALUE messages contain the optimal values of the agents and are propagated from parents to their
children, down to the leaves of the pseudo-tree.

Thus, DPOP generates a number of messages that is in O(m). However, the size of the messages and
the agent’s space requirement are exponential in the induced width of the pseudo-tree: O(dw

∗
). Finally,

the number of operations performed by DCOP agents is in the order complexity of O(dw
∗+z), with

z = maxai∈A |Li|. DPOP has also been extended in several ways to enhance its performance and
capabilities. O-DPOP and MB-DPOP trade runtimes for smaller memory requirements [97, 99], A-DPOP
trades solution optimality for smaller runtimes [95], SS-DPOP trades runtime for increased privacy [42],
PC-DPOP trades privacy for smaller runtimes [100], H-DPOP propagates hard constraints for smaller
runtimes [63], BrC-DPOP enforces branch consistency for smaller runtimes [35], and ASP-DPOP is a
declarative version of DPOP that uses Answer Set Programming [67].

OptAPO [74]. Optimal Asynchronous Partial Overlay (OptAPO) is a complete, synchronous, search-
based algorithm. It trades agent privacy for smaller runtimes through partial centralization. It employs
a cooperative mediation schema, where agents can act as mediators and propose value assignments to
other agents. In particular, agents check if there is a conflict with some neighboring agent. If a con-
flict is found, the agent with the highest priority acts as a mediator. During mediation, OptAPO solves
subproblems using a centralized branch-and-bound-based search, and when solutions of overlapping sub-
problems still have conflicting assignments, the solving agents increase the centralization to resolve them.
By sharing their knowledge with centralized entities, agents can improve their local decisions, reducing
the communication costs. For instance, the algorithm has been shown to be superior to ADOPT on sim-
ple combinatorial problems. However, it is possible that several mediators solve overlapping problems,
duplicating efforts [100], which can be a bottleneck especially for dense problems. The worst case agent
complexity is in O(dn), as an agent might solve the entire problem. The agent space requirement is in
O(nd), as a mediator agent needs to maintain the domains of all the variables involved in the mediation
section, while the message size is in the order of O(d). The network load decreases with the amount of
partial centralization required, however, its worst case order complexity is exponential in the number of
agents O(dm). The original version of OptAPO has been shown to be incomplete [45], but a complete
variant has been proposed [45].

Incomplete Algorithms

Max-Sum [31]. Max-Sum is an incomplete, asynchronous, inference-based algorithm based on belief
propagation. It operates on factor graphs by performing a marginalization process of the reward functions,
and optimizing the rewards for each given variable. This process is performed by recursively propagating
messages between variable nodes and functions nodes. The value assignments take into account their
impact on the marginalized reward function. Max-Sum is guaranteed to converge to an optimal solution
in acyclic graphs, but convergence is not guaranteed in cyclic graphs. Nevertheless, it has been shown
to often converge in practice. Max-Sum has also been extended in several ways to improve it. Bounded
Max-Sum is able to bound the quality of the solutions found by removing a subset of edges from a cyclic
DCOP graph to make it acyclic, and by running Max-Sum to solve the acyclic problem [104], Improved
Bounded Max-Sum improves on the error bounds [105], and Max-Sum AD guarantees convergence in
acyclic graphs through a two-phase value propagation phase [133]. Max-Sum and its extensions have
been successfully employed to solve a number of large scale, complex MAS applications ([104, 79]).

2.1. Overview of Distributed Constraint Optimization 17

Region Optimal [91]. Region-optimal algorithms are incomplete, synchronous, search-based algo-
rithms that allow users to specify regions of the constraint graph (e.g., regions with a maximum size
of k agents [91], t hops from each agent [58], or a combination of both size and hops [117]) and solve
the subproblem within each region optimally. The concept of k-optimality is defined with respect to the
number of agents whose assignments conflict, whose set is denoted by c(σ, σ′), for two assignments σ
and σ′. The deviating cost of σ with respect to σ′, denoted by ∆(σ, σ′), is defined as the difference of the
aggregated reward associated to the assignment σ (F (σ)) minus the reward associated to σ′ (F (σ′)). An
assignment σ is k-optimal if ∀σ′ ∈ Σ, such that |c(σ, σ′)| ≤ k, we have that ∆(σ, σ′) ≥ 0. In contrast,
the concept of t-distance emphasizes the number of hops from a central agent a of the region Ωt(a), that
is the set of agents which are separated from a by at most t hops. An assignment σ is t-distance optimal
if, ∀σ′ ∈ Σ, F (σ) ≥ F (σ′) with c(σ, σ′) ⊆ Ωt(a), for any a ∈ A. The Distributed Asynchronous
Local Optimization (DALO) simulator provides a mechanism to coordinate the decision of local groups
of agents based on the concepts of k-optimality and t-distance [58]. The quality of the solutions found is
bounded by a function of k or t [117].

MGM [72]. The Maximum Gain Message (MGM) is an incomplete, synchronous, search-based algo-
rithm that performs a distributed local search. Each agent starts by assigning a random value to each of
its variables. Then, it sends this information to all its neighbors. Upon receiving the values of its neigh-
bors, it calculates the maximum gain in reward if it changes its value and sends this information to all its
neighbors as well. Upon receiving the gains of its neighbors, it changes its value if its gain is the largest
among its neighbors. This process repeats until a termination condition is met.

DSA [126]. The Distributed Stochastic Algorithm (DSA) is an incomplete, synchronous, search-based
algorithm that is similar to MGM, except that each agent does not send its gains to its neighbors and it
does not change its value to the value with the maximum gain. Instead, it decides stochastically if it takes
on the value with the maximum gain or other values with smaller gains. This stochasticity allows DSA to
escape from local minima. Similarly to MGM, it repeats until a termination condition is met.

D-Gibbs [84]. The Distributed Gibbs (D-Gibbs) algorithm is an incomplete, synchronous, sampling-
based algorithm that extends the Gibbs sampling process [38] by tailoring it to solve DCOPs in a decen-
tralized manner. The Gibbs sampling process is a centralized Markov chain Monte Carlo algorithm that
can be used to approximate joint probability distributions. It generates a Markov chain of samples, each
of which is correlated with previous samples. It does so by iteratively sampling one variable from the
conditional probability distribution, assuming that all the other variables take their previously sampled
values. This process continues for a fixed number of iterations, or until convergence, that is, the joint
probability distribution approximated by the samples do not change. Once the joint probability distribu-
tion is found, one can identify a complete solution with the maximum likelihood. By mapping DCOPs to
maximum a-posteriori estimation problems, probabilistic inference algorithms like Gibbs sampling can
be used to solve DCOPs.

2.1.5 Relevant Uses

The classical DCOP model is capable of representing a wide range of MAS applications, especially those
where agents in a team need to work cooperatively to achieve a single goal in a static, deterministic, and
fully observable environment. Exploring the domain structural properties, as well as understanding the

18 2. Background

requirements of the problem designer, is crucial to design and apply effective DCOP algorithms. When
an optimal solution is required, then a complete algorithm can be used to solve the problem. However, if
particular assumptions can be made on the problem structure, more efficient solutions can be adopted. For
instance, if the constraint graph of the DCOP is always a tree (i.e., it has no cycles) then an incomplete
inference-based algorithm, like Max-Sum, is sufficient to guarantee the optimality of the solution found.

Complete algorithms are often unsuitable for tackling large-scale problems, due to their exponential
requirements in time or memory. In contrast, incomplete algorithms are more appropriate to rapidly find
solutions, at the cost of sacrificing optimality. The communication requirements also need to be taken
into account. For example, when communication is unreliable, it is not recommended to employ search-
based solutions, such as ADOPT or AFB, where communication requirements are exponential in the size
of the problem. In contrast, inference-based algorithms are more reliable in the presence of uncertain
communication networks as they, in general, require only a linear number of messages to complete their
computations.

A popular application that is often referenced in the classical DCOP literature is the Distributed Multi-
Event Scheduling (also known as Meeting Scheduling) [73]. It captures generic scheduling problems
where one wishes to schedule a set of events within a time range. Each event is defined by (i) the time
required to complete the event, (ii) the resources required to complete the event, and (iii) the cost of using
such resources at a given time. A scheduling conflict occurs if two events with at least one common
resource are scheduled in overlapping time slots. The goal is to maximize the overall reward, defined as
the net gain between the opportunity benefit and opportunity cost of scheduling various events.

2.2 Overview of DCOP Extensions

The DCOP model has undergone a process of continuous evolution to capture diverse characteristics
of agents behavior and the environment in which they operate. We propose a classification of DCOP
models from a Multi-Agent Systems perspective, that accounts for the different assumptions made about
the behavior of agents and their interactions with the environment. The classification is based on the
following elements (summarized in Table 2.1):

ELEMENT CHARACTERIZATION

AGENT(S)
BEHAVIOR Deterministic Stochastic
KNOWLEDGE Total Partial
TEAMWORK Cooperative Competitive

ENVIRONMENT
BEHAVIOR Deterministic Stochastic
EVOLUTION Static Dynamic

Table 2.1: DCOP classification elements.

• Agent Behavior: This parameter captures the stochastic nature of the effects of an action being exe-
cuted. In particular, we distinguish between deterministic and stochastic effects.
• Agent Knowledge: This parameter captures the knowledge of an agent about its own state and the

environment—distinguishing between total and partial knowledge.

2.2. Overview of DCOP Extensions 19

Game Theory

Decision
Theory

Constraint
Programming

classical-DCOP

Asymmetric-DCOP

MultiObjective-DCOP
Auction Negotiation

MMDP
Dec-MDP

Dec-POMDP

Dynamic-DCOP Probabilistic-DCOP

Dynamic
Asymmetric-DCOP

Dynamic
MultiObjective-DCOP

Figure 2.3: DCOPs within a MAS perspective.

• Agent Teamwork: This parameter characterizes the approach undertaken by (teams of) agents to solve
a distributed problem. It can be either a cooperative resolution approach or a competitive resolution
approach. In the former class, all agents cooperate to achieve a common goal (i.e., optimize a utility
function). In the latter class, each agent (or team of agents) seeks to achieve its own individual goal.
• Environment Behavior: This parameter captures the exogenous properties of the environment. For

example, it is possible to distinguish between deterministic and stochastic responses of the environment
to the execution of an action.
• Environment Evolution: This parameter captures whether the DCOP is static (i.e., it does not change

over time) or dynamic (i.e., it changes over time).

Figure 2.3 illustrates a categorization of the DCOP models proposed to date from a MAS perspective.
In particular, we focus on the DCOP models proposed at the junction of Constraint Programming (CP),
Game Theory (GT), and Decision Theory (DT). The classical DCOP model is directly inherited from CP
and characterized by a static model, a deterministic environment and agent behavior, total agent knowl-
edge, and with cooperative agents. Concepts from auctions and negotiations, traditionally explored in
GT, have influenced the DCOP framework, leading to Asymmetric DCOPs, which has asymmetric agent
payoffs, and Multi-Objective DCOPs. The DCOP framework has borrowed fundamental DT concepts
related to modeling uncertain and dynamic environments, resulting in models like Probabilistic DCOPs
and Dynamic DCOPs. Researchers from the DCOP community have also designed solutions that inherit
from all of the three communities.

In the next subsections, we will describe the different DCOP frameworks which extend the classical
DCOP model. We focus on a categorization based on three dimensions: Agent knowledge, environ-
ment behavior, and environment evolution. We assume a deterministic agent behavior, fully cooperative
agent teamwork, and total agent knowledge (unless otherwise specified), as they are, by far, common
assumptions adopted by the DCOP community. The DCOP models associated to such categorization are
summarized in Table 2.2. The bottom-right entry of the table is left empty, indicating a promising model
with dynamic and uncertain environments that, to the best of our knowledge, has not been explored yet.

20 2. Background

E
nv

ir
on

m
en

t
E

vo
lu

tio
n

Environment Behavior

DETERMINISTIC STOCHASTIC

STATIC classical-DCOP probabilistic-DCOP

DYNAMIC dynamic-DCOP —

Table 2.2: DCOPs Models.

There has been only a modest amount of effort in modeling the different aspects of teamwork within the
DCOP community.

2.2.1 Asymmetric DCOPs

Asymmetric DCOPs [44] are used to model multi-agent problems where two variables in the scope of the
same reward function can receive different rewards from each other. Such a problem cannot be naturally
represented by classical DCOPs, which require that all variables in the scope of the same reward function
receive the same rewards as each other.

Definition An Asymmetric DCOP is defined by a tuple 〈A,X,D,F, α〉, where A,X,D and α are
defined as in section 2.1.2, and each fi ∈ F is defined as: fi : "xj∈xi Dj × α(fi) → (R+ ∪ {⊥}). In
other words, an Asymmetric DCOP is a DCOP where the reward that an agent obtains from a reward
function may differ from the reward another agent obtains from the same reward function.

As rewards for participating agents may differ from each other, the goal in Asymmetric DCOPs is
also different than the goal in classical DCOPs. Given a reward function fj ∈ F and complete solution
σ, let fj(σ, ai) denote the reward obtained by agent ai from reward function fj with solution σ. Then,
the goal in Asymmetric DCOPs is to find the complete solution σ∗:

σ∗ = argmax
σ∈Σ

∑

fj∈F

∑

ai∈α(fj)

fj(σxj , ai) (2.2)

Relation to Classical DCOPs One way to solve MAS problems with asymmetric rewards via classical
DCOPs is through the Private Event As Variables (PEAV) model [72]. It can capture asymmetric rewards
by introducing, for each agent, as many “mirror” variables as the number of variables held by neighboring
agents. The consistency with the neighbors’ state variables is imposed by a set of equality constraints.
However such formalism suffers from scalability problems, as it may result in a significant increase in the
number of variables in a DCOP. In addition, Grinshpoun et al. showed that most of the existing incom-
plete classical DCOP algorithms cannot be used to effectively solve Asymmetric DCOPs, even when the
problems are reformulated through the PEAV model [44]. They show that such algorithms are unable to
distinguish between different solutions that satisfies all hard constraints, resulting in a convergence to one
of those solutions and the inability to escape that local optimum. Therefore, it is important to generate
ad-hoc algorithms to solve Asymmetric DCOPs.

2.2. Overview of DCOP Extensions 21

2.2.2 Multi-Objective DCOPs

Multi-objective optimization (MOO) [78, 75] aims at solving problems involving more than one objective
function to be optimized simultaneously. In a MOO problem, optimal decisions need to accommodate
conflicting objectives. Examples of MOO problems include optimization of electrical power generation
in a power grid while minimizing emission of pollutants and minimization of the costs of buying a vehicle
while maximizing comfort. Multi-objective DCOPs extend MOO problems and DCOPs.

A Multi-objective DCOP (MO-DCOP) is defined by a tuple 〈A,X,D, ~F, α〉, where A,X,D, and α
are defined as in section 2.1.2, and ~F = [F1, . . . , Fh]T is a vector of multi-objective functions, where
each Fi is a set of optimization functions fj defined as in section 2.1.2. For a solution σ of a MO-DCOP,
let the reward for σ according to the ith multi-objective optimization function set Fi (1 ≤ i ≤ h) be

Fi(σ) =
∑

fj∈Fi
fj(σxj) (2.3)

The goal of a MO-DCOP is to find an assignment σ∗, such that:

σ∗ = argmax
σ∈Σ

~F(σ) = argmax
σ∈Σ

[F1(σ), . . . , Fh(σ)]T (2.4)

where ~F(σ) is a reward vector for the MO-DCOP. A solution to a MO-DCOP involves the optimization
of a set of partially-ordered assignments. Note that we consider, in the above definition, point-wise
comparison of vectors—i.e., ~F(σ) ≥ ~F(σ′) if Fi(σ) ≥ Fi(σ

′) for all 1 ≤ i ≤ h. Typically, there is no
single global solution where all the objectives are optimized at the same time. Thus, solutions of a MO-
DCOP are characterized by the concept of Pareto optimality, which can be defined through the concept
of dominance:

Definition 1 (Dominance). A complete solution σ ∈ Σ is dominated by a complete solution σ∗ ∈ Σ iff
~F(σ∗) ≥ ~F(σ) and Fi(σ∗) > Fi(σ) for at least one Fi.

Definition 2 (Pareto Optimality). A complete solution σ∗ ∈ Σ is Pareto optimal iff it is not dominated by
any other complete solution.

Therefore, a solution is Pareto optimal iff there is no other solution that improves at least one objective
function without deteriorating the reward of another function. Another important concept is the Pareto
front:

Definition 3 (Pareto Front). The Pareto front is the set of all reward vectors of all Pareto optimal solu-
tions.

Solving an MO-DCOP is equivalent to finding the Pareto front. Even for tree-structured MO-DCOPs, the
size of the Pareto front may be exponential in the number of variables.3 Thus, multi-objective algorithms
often provide solutions that may not be Pareto optimal but may satisfy other criteria that are significant
for practical applications.

2.2.3 Probabilistic DCOPs

So far, we have discussed DCOP models that caputre MAS problems in environments that are static and
deterministic. However, many real-world applications are characterized by environments with stochastic

3In the worst case, every possible solution can be a Pareto optimal solution.

22 2. Background

behavior. In other words, there are exogenous events that can influence the outcome of agent actions. For
example, weather conditions or the state of a malfunctioning device can affect the reward of agent actions.
To cope with such scenarios, researchers have introduced Probabilistic DCOP (P-DCOP) models, where
the uncertainty in the state of the environment is modeled through stochasticity in the reward functions.
With respect to our categorization, in the P-DCOP model the agents are completely cooperative and they
have deterministic behavior. Additionally, the environment is static and stochastic. While a large body
of research has focused on problems where agents have total knowledge, we will discuss a subclass of P-
DCOPs where the agents’ knowledge of the environment is limited, and agents must balance exploration
of the unknown environment and the exploitation of the known rewards.

A common strategy to model uncertainty is to augment the outcome of the reward functions with
a stochastic character [4, 110, 83]. Another method is to introduce additional random variables to the
reward functions, which simulate exogenous uncontrollable traits [68, 69, 119]. To cope with such a
variety, we introduce the Probabilistic DCOP (P-DCOP) model, which generalizes the proposed models
of uncertainty. A P-DCOP is defined by a tuple 〈A,X,D,F, α, I,Ω,P,U , E〉, where A and D are
defined as in section 2.1.2. In addition,

• X is a mixed set of decision variables and random variables.

• I = {r1, . . . , rq} ⊆ X is a set of random variables modeling uncontrollable stochastic events, such
as weather or a malfunctioning device.

• F is the set of reward functions, each defined over a mixed set of decision variables and random
variables, and such that each value combination of the decision variables on the reward function,
results in a probability distribution. As a result, the local value assignment σxi\I , given an outcome
for the random variables involved in fi, is itself a random variable.

• α : X \ I → A is a mapping from decision variables to agents. Notice that random variables are
not controlled by any agent, as their outcomes do not depend on the agents’ actions.

• Ω = {Ω1, . . . ,Ωq} is the (possibly discrete) set of events for the random variables (e.g., different
weather conditions or stress levels a device is subjected to) such that each random variable ri ∈ I
takes values in Ωi. In other words, Ωi is the domain of random variable ri.

• P = {p1, . . . , pq} is a set of probability distributions for the random variables, such that pi : Ωi →
[0, 1] ⊆ R, assigns a probability value to an event for ri, and

∫
ω∈Ωi

pi(ω) dω = 1, for each random
variable ri ∈ I.

• U is a utility function from random variables to random variables, that ranks different outcomes
based on the decision maker preferences. This function is needed when the reward functions have
uncertain outcomes, and thus these distribution are not readily comparable.

• E is an evaluator function from random variables to real values, that, given an assignment of values
to the decision variables, summarizes the distribution of the aggregated reward functions.

The goal in a P-DCOP is to find a complete solution σ∗, that is, an assignment of values to all the decision
variables, such that:

σ∗ = argmax
σ∈Σ

E

U

∑

fi∈F

fi(σxi\I)

 (2.5)

In other words, agents attempt to maximize the utility of the cumulative reward functions of the P-DCOP,
with respect to the evaluator function E .

2.2. Overview of DCOP Extensions 23

The probability distribution over the domain of random variables ri ∈ I is called a belief. An assign-
ments of all random variables in I describes a (possible) scenario governed by the environment. As the
random variables are not under the control of the agents, they act independently of the decision variables.
Specifically, their beliefs are drawn from probability distributions. Furthermore, they are assumed to be
independent of each other and, thus, they model independent sources of exogenous uncertainty.

The utility function U enables us to compare the uncertain reward outcomes of the reward functions.
In general, the utility function is non-decreasing, that is, the higher the reward, the higher the utility.
However, the utility function should be defined for the specific application of interest. For example,
in farming, the utility increases with the amount of produce harvested. However, farmers may prefer
a smaller but highly certain amount of produce harvested over a larger but highly uncertain and, thus,
risky outcome. The evaluation function E is used to summarize in one criterion the rewards of a given
assignment that depends on the random variables. A possible evaluation function is the expectation
function: E [·] = E[·].

2.2.4 Dynamic DCOPs

Within a real-world MAS application, agents often act in dynamic environments that evolve over time.
For instance, in a disaster management search and rescue scenario, new information (e.g., the number of
victims in particular locations, or priorities on the buildings to evacuate) typically becomes available in
an incremental manner. Thus, the information flow modifies the environment over time. To cope with
such requirement, researchers have introduced the Dynamic DCOP (D-DCOP) model, where reward
functions can change during the problem solving process, agents may fail, and new agents may be added
to the DCOP being solved. With respect to our categorization, in the D-DCOP model, the agents are
completely cooperative and they have deterministic behavior and total knowledge. On the other hand, the
environment is dynamic and deterministic.

Definition The Dynamic DCOP (D-DCOP) model is defined as a sequence of classical DCOPs: D1, . . . ,

DT , where each Dt = 〈At,Xt,Dt,Ft, αt〉 is a DCOP, representing the DCOP at time step t, for
1 ≤ t ≤ T . The goal in a D-DCOP is to solve optimally the DCOP at each time step. We assume
that the agents have total knowledge about their current environment (i.e., the current DCOP), but they
are unaware of changes to the problem in future time steps.

In a dynamic system, agents are required to adapt as fast as possible to environmental changes. Stabil-
ity [28, 115] is a core algorithmic concept, where an algorithm seeks to minimize the number of steps that
it requires to converge to a solution each time the problem changes. In such a context, these converged
solutions are also called stable solutions. Self-stabilization is a related concept derived from the the area
of fault-tolerance:

Definition 4 (Self-stabilization). A system is self-stabilizing if and only if the following two properties
hold:

• Convergence: The system reaches a stable solution in a finite number of steps, starting from any
given state.
• Closure: The system remains in a stable solution, provided that no changes in the environment

happens.

24 2. Background

An extension of the concept of self-stabilization is that of super-stabilization [29], which focuses on
stabilization after topological changes. In the context of D-DCOPs, differently from self-stabilizing algo-
rithms, where convergence after a single change in the constraint graph can be as slow as the convergence
from an arbitrary starting state, super-stabilizing algorithms take special care of the time required to adapt
to a single change in the constraint graph.

2.3 Overview of General Purpose Graphical Processing Units

Since in this dissertation we investigate the use of graphic cards to speed up the resolution approach of
several classes of DCOP algorithm, we provide next an overview of such devices.

Modern General Purpose Graphics Processing Units (GPGPUs) are true multiprocessor devices, of-
fering hundreds of computing cores and a rich memory hierarchy to support graphical processing (e.g.,
DirectX and OpenGL APIs). NVIDIA’s Compute Unified Device Architecture (CUDA) [108] aims at
enabling the use of the multiple cores of a graphic card to accelerate general (non-graphical) applica-
tions by providing programming models and APIs that enable the full programmability of the GPGPU.
This movement allowed programmers to gain access to the parallel processing capabilities of a GPGPU
without the restrictions of graphical APIs. In this dissertation, we will consider the CUDA programming
model proposed by NVIDIA. The underlying conceptual model of parallelism supported by CUDA is
Single-Instruction Multiple-Threads (SIMT), where the same instruction is executed by different threads
that run on identical cores, while data and operands may differ from thread to thread. The computational
model supported by CUDA is Single-Instruction Multiple-Data (SIMD), where multiple threads perform
the same operation on multiple data points simultaneously. CUDA’s architectural model is represented in
Figure 2.4.

2.3.1 Hardware Architecture

A GPGPU is a massive parallel architecture with thousands of computing cores. Different GPGPUs
are distinguished by the number of cores, their organization, and the amount of memory available. A
GPGPU is constituted by a series of Streaming MultiProcessors (SMs), whose number depends on the
specific characteristics of each class of GPGPU. For example, the Fermi architecture provides 16 SMs, as
illustrated in Figure 2.4 (left). Each SM contains from 8 to 32 computing cores, each of which incorporate
an ALU and a floating-point processing unit. Each GPGPU provides access to both on-chip memory and
off-chip memory, used in different contexts which we will introduce below.

2.3.2 Logical Architecture

Figure 2.4 (right) shows a typical CUDA logical architecture. A CUDA program is a C/C++ program
that includes parts meant for execution on the CPU (referred to as the host) and parts meant for parallel
execution on the GPGPU (referred as the device). A parallel computation is described by a collection of
kernels, where each kernel is a function to be executed by several threads. To facilitate the mapping of the
threads to the data structures being processed: threads are organized in a 3-dimensional structure (called
block), and blocks themselves are organized in 2-dimensional tables (called grids). When mapping a
kernel to a specific GPGPU, CUDA schedules blocks (coarse-grain parallelism) on the SMs for execution.

2.3. Overview of General Purpose Graphical Processing Units 25

HOST
GLOBAL MEMORY

CONSTANT MEMORY

Shared
memory

Thread Thread

regs regs

Block

Shared
memory

Thread Thread

regs regs

Block

GRID
S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

L2 Cache

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

DR
AM

DR
AM

Ho
st

 In
te

rfa
ce

DR
AM

DR
AM

DR
AM

DR
AM

In
st

ru
ct

io
n

Ca
ch

e

W
AR

P
sc

he
du

le
r

W
AR

P
sc

he
du

le
r

Re
gi

st
er

s
(3

2K
)

core core core core core core core core

core core core core core core core core

core core core core core core core core

core core core core core core core core

Sh
ar

ed
 M

em
or

y
L1

 C
ac

he
 (6

4K
B)

SFU SFU SFU SFU

HOST
GLOBAL MEMORY

CONSTANT MEMORY

Shared
memory

Thread Thread

regs regs

Block

Shared
memory

Thread Thread

regs regs

Block

GRID
S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

L2 Cache

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

DR
AM

DR
AM

Ho
st

 In
te

rfa
ce

DR
AM

DR
AM

DR
AM

DR
AM

In
st

ru
ct

io
n

Ca
ch

e

W
AR

P
sc

he
du

le
r

W
AR

P
sc

he
du

le
r

Re
gi

st
er

s
(3

2K
)

core core core core core core core core

core core core core core core core core

core core core core core core core core

core core core core core core core core

Sh
ar

ed
 M

em
or

y
L1

 C
ac

he
 (6

4K
B)

SFU SFU SFU SFU

Figure 2.4: Fermi Hardware Architecture (left) and CUDA Logical Architecture (right)

Each SM schedules the threads in a block (fine-grain parallelism) on its computing cores in chunks of
threads called warps (typically composed of 32 threads), which is the smallest work unit on the device.
CUDA kernels may involve thousands of blocks and threads, thus this organization allows group of
threads in a block to use the computing resources, while other threads of the same block might be waiting
for information (e.g., completing a slow memory request).

The kernel, invoked by the host, is executed by the device and it is written in standard C/C++ code.
The number of running blocks (gridDim), the number of threads of each block (blockDim), and the
amount of shared memory in bytes (nbytes) is specified by the kernel call that is invoked on the host
code with the following syntax:

Kernel <<< gridDim, blockDim, nbytes >>> (arg1, . . . , argn);

In order to perform a computation on the GPGPU, it is possible to move the data from the host memory
to the device memory and vice versa. By using the specific identifier of each block (blockIdx, which
provides the x, y coordinates of the block in the grid), its dimension (blockDim) and the identifier of each
thread (threadIdx, which provides the x, y, z coordinates for the thread within the block), it is possible to
differentiate both the data read by each thread and code to be executed. These variables are always acces-
sible within kernel functions. The organization of the data in data structures and data access patterns play
a fundamental role to the efficiency of the GPGPU computation. In particular, since the computational
model is (SIMD), it is important that each thread in a warp executes the same branch of execution. When
this condition is not satisfied (e.g., two threads execute different branches of a conditional construct) the
degree of concurrency typically decreases, as the execution of threads performing separate control flows
can be serialized. This is referred to as branch divergence, a phenomenon which has been intensely
analyzed within the High Performance Computing (HPC) community [52, 18, 27].

26 2. Background

2.3.3 Hierarchical Memory Organization

GPGPU and CPU devices are, in general, separate hardware units with physically distinct memories
connected by a system bus. Thus, in order for the device to execute some computation invoked by the
host and to return the results back to the caller, a data flow need to be enforced from the host memory to
the device memory and vice versa.

The device memory architecture is quite different from that of the host, in that it is organized in
several levels differing to each other for both physical and logical characteristics, such as location on the
chip, access times, scope and lifetime of the data. In greater details, the device memory is organized into
four different memory levels: (1) registers, (2) shared memory, (3) local memory, (4) global memory,
(5) constant memory, and (6) texture memory. The only two types of memory that actually reside on the
GPGPU chip are registers and shared memory. Local, global, constant, and texture memory all reside off
chip, with the difference that constant and texture memory are cached, while local and global memories
are not.

The data stored in the registers and in the local memory has a thread lifetime and visibility, while
shared memory data is visible to all threads within a block, and has thus the same lifetime of a block.
This is invaluable because this type of memory enables threads to communicate and share data between
one another. The data stored in the global memory has global visibility and lifetime, thus it is visible to all
threads within the application (including the host), and lasts for the duration of the host allocation. Local
memory is not a physical type of memory, but an abstraction of global memory. Its scope is local to the
thread, but residing off-chip makes it expensive to access to it. Such memory is used to hold automatic
variables. The compiler makes use of local memory when it determines that there is not enough register
space to hold the variable. Constant memory is a read-only memory and can be used rather than global
memory to reduce the required memory bandwidth, however, this performance gain can only be realized
when a warp of threads read the same location.Similar to constant memory, texture memory is another
variety of read-only memory on the device. When all reads in a warp are physically adjacent, using
texture memory can reduce memory traffic and increase performance compared to global memory.

Apart from lifetime and visibility, different memories have also different dimension, bandwidth, and
access times. A typical register access consumes zero clock cycles per instruction. However, delays can
occur due to read after write dependencies and bank conflicts (up to 24 clock cycles of latency). The
total amount of shared memory is 48KB, and 16KB are used for L1 cache. This size can be set to 16KB,
32KB or 48KB, with the remaining amount automatically used for L1 cache. Since shared memory
can be accessed by all threads, potential bottlenecks may arise when many threads attempt to access
it at the same time. To alleviate such issue, the shared memory is divided into 32 logical banks, with
successive sections of memory mapped to successive banks. There are 32 threads in a warp and exactly
32 shared memory banks. Since each bank serves exactly one request per cycle, multiple simultaneous
accesses to the same bank will result in bank conflicts. When there are no bank conflicts, shared memory
performance is comparable to register memory. The constant memory is limited to 64KB and, texture and
global memories are the slowest and largest memories accessible by the device, with access times ranging
from 300 to 600 clock cycles. Constant and texture memory are beneficial for only very specific types
of applications, where for instance data is organized in 2- or 3- dimensional arrays. Even if not cached,
global accesses covering a contiguous 64 bytes data are fetched at once.

While it is relatively simple to develop correct CUDA programs (e.g., by incrementally modifying
an existing sequential program), it is nevertheless challenging to design an efficient solution. Several

2.3. Overview of General Purpose Graphical Processing Units 27

factors are critical in gaining performance. The SIMT model requires active threads in a warp to be
executing the same instruction – thus, diverging flow paths among threads may reduce the amount of
actual concurrency. Memory levels have significantly different sizes and access times, different cache
behaviors are applied to different memory levels, and various optimization techniques are used (e.g.,
accesses to consecutive global memory locations by contiguous threads can be coalesced into a single
memory transaction). Thus, optimization of CUDA programs require a thorough understanding of the
hardware characteristics of the GPGPU being used.

28 2. Background

3
Exploiting the Structure of DCOPs

from Problem Modeling

This chapter introduces a novel Multi-Variable Agent (MVA) DCOP decomposition technique which ex-
ploits co-locality of each agent’s variables, allowing us to adopt efficient centralized techniques within
each DCOP agent. Additionally, it reduces the amount of communication required in several classes of
DCOP algorithms, and as we will show in section 5.3 it enables the use of hierarchical parallel models,
such as those based on GPGPUs. Our experimental results, on both random graph and structured net-
works, show that this MVA decomposition outperforms non-decomposed DCOP algorithms, in terms of
network load and scalability. Therefore, these results validate the hypothesis that one could exploit latent
structure of DCOPs, embedded into their model, to speed up their resolution.

This chapter is organized as follows: We first discuss the motivation for our work in section 3.1.
In section 3.2, we introduce our MVA decomposition, providing a description of how several classes of
DCOP algorithms are automatically handled by such technique. We thus, discuss the theoretical prop-
erties, related to correctness, completeness, and agent and space complexity, associated with the use of
this DCOP decomposition, in section 3.3, and present the experimental results in section 3.5. Finally we
provide a discussion on the ability of our MVA decomposition technique to enable the use of hierarchical
parallel models as byproduct, and conclude the chapter in section 3.6.

3.1 Motivations

The common resolution approach to DCOP solving is based on the assumption that each agent controls
exclusively a single variable of the problem. However, modeling many real-world problems as DCOPs
often require each agent to control a large number of variables. For instance, in a typical meeting schedul-
ing problem, agents representing different organizations should handle multiple meetings. Figure 3.1(a)
illustrates a scenario where agents control multiple variables, showing the constraint graph of a simple
DCOP with 2 agents a0 and a1, where each variable can be assigned the values 0 or 1. Figure 3.1(c)
shows the objective functions of the problem.

To cope with such restrictions, reformulation techniques are commonly adopted to transform a general
DCOP into one where each agent controls exclusively one variable. There are two commonly used refor-

30 3. Exploiting the Structure of DCOPs from Problem Modeling

a0

x0x1

x3x4a1

x2
a0

x1x0 x3 x4

a1

x2

for i < j

xi xj Costs

0 0 7
0 1 10
1 0 2
1 1 3

(a) Constraint Graph (b) Linear Ordering (c) Cost Functions

Figure 3.1: Example DCOP.

mulation techniques [14, 125]: (i) Compilation, where each agent creates a new pseudo-variable, whose
domain is the Cartesian product of the domains of all variables of the agent; and (ii) Decomposition,
where each agent creates a pseudo-agent for each of its variables. While both techniques are relatively
simple, they can be inefficient, as they ignore the structure present in the problem model. In compilation,
the memory requirements for each agent grow exponentially with the number of variables that it controls.
In decomposition, the DCOP algorithms will treat two pseudo-agents as independent entities, resulting in
unnecessary computation and communication costs.

Figure 3.2 shows a snippet of the messages sent by the AFB (introduced in section 2.1.4) agents in our
example DCOP of Figure 3.1 after a decomposition reformulation, where agent aji is the pseudo-agent
that controls variable xj of agent ai. We assume that the pseudo-agents are ordered as in Figure 3.1(b).
AFB requires 98 messages between pseudo-agents controlled by different agents (i.e., actual agent-to-
agent messages) and 60 messages between pseudo-agents controlled by the same agent (i.e., internal
agent messages). Using such reformulation, each pseudo-agent has to obey the assumptions made in
section 2.1.3, which apply to the agents’ coordination process, even when the pseudo-agents associate
to variables controlled by the same agent. This process thus, under-exploits the information regarding
the global state of the variables controlled by an agent, both within the internal communication, and in
the agent-to-agent knowledge propagation as the latter relates on the agents internal state. For instance,
when using such decomposition technique, bound propagation in search-based algorithms cannot exploit
co-locality of the variables within an agent; this results in decoupling the variable’s domain information
which may in turn result in propagating weak bounds.

Therefore, we hypothesize that by exploiting the information encoded in the distributed constraint
optimization model DCOP algorithms can reduce the time of the resolution process, as well ensure a
more efficient network load.

To validate this hypothesis we propose a DCOP Multiple-Variable Agents (MVA) problem decompo-
sition that defines a clear separation between the distributed DCOP resolution and the centralized agent
sub-problem resolution. This separation exploits co-locality of agent’s variables, allowing the adoption of
efficient centralized techniques to solve agent sub-problems. The distributed agents coordination problem
is solved independently by the resolution of the agent sub-problems, and achieved by employing a global
DCOP algorithm. Importantly, the proposed decomposition does not lead to any additional privacy loss.
Furthermore, we show that the MVA framework naturally enables the use of different centralized and

3.2. MVA Decomposition 31

Sender Message Type Receiver Message Content

a0
0 [CPA MSG] a1

0 [0 - - - -] (0)

a0
0 [FB CPA] a1

0, a
2
0, a

3
1, a

4
1 [0 - - - -] (0)

a1
0 [FB ESTIMATE] a0

0 (7)

a1
0 [CPA MSG] a2

0 [0 0 - - -] (7)

a0
0 [FB CPA] a2

0, a
3
1, a

4
1 [0 0 - - -] (7)

a2
0 [FB ESTIMATE] a0

0 (9)

a2
0 [FB ESTIMATE] a1

0 (14)

a2
0 [CPA MSG] a3

1 [0 0 0 - -] (21)

a2
0 [FB CPA] a3

1, a
4
1 [0 0 0 - -] (21)

a3
1 [FB ESTIMATE] a0

0, a
1
0, a

2
0 (7)

a3
1 [CPA MSG] a4

1 [0 0 0 0 -] (28)

a3
1 [FB CPA] a4

1 [0 0 0 0 -] (28)

a3
1 [FB ESTIMATE] a0

0, a
1
0, a

2
0 (2)

a4
1 [NEW SOLUTION] a0

0, a
1
0, a

2
0, a

3
1 [0 0 0 0 0] (35)

.

Figure 3.2: Partial Trace of AFB after Decomposition.

distributed solvers in a hierarchical and parallel way [36, 37].

To illustrate the generality of the proposed framework we explore the use of two centralized solvers,
Depth-First Branch and Bound (DFBnB) [11, 89] and Gibbs Sampling [38], to solve the agents’ local
subproblems. For the global coordination, we consider three representative DCOP algorithms: Asyn-
chronous Forward Bounding (AFB) [39], as an example of a search algorithm, Distributed Pseudo-tree
Optimization Procedure (DPOP) [96], as an example of an inference algorithm, and Distributed Gibbs
(D-Gibbs) [84], as an example of a sampling algorithm.

3.2 MVA Decomposition

We now introduce our Multiple Variable Agent (MVA) decomposition for DCOPs. We first introduce
some concepts employed by our decomposition, and hence describe the MVA framework.

3.2.1 Notation and Definitions

Given a DCOP P = (A,X,D,F, α), defined as in section 2.1.2, we introduce the following concepts.

Definition 5 (Local Variables). For each agent ai∈A, Li={xj ∈ X |α(xj)=ai} is the set of variables
under the control of agent ai, referred to as its local variables.

Definition 6 (Boundary Variables). For each agent ai∈A, Bi={xj ∈Li | ∃xk∈X∧∃fs∈F : α(xk) 6=
ai ∧ {xj , xk}⊆xs} is the set of its boundary variables.

In other words, a variable of an agent ai is said boundary if it appears in the scope of an objective
function which involves variables controlled by different agents. Note that, the actions to determine the

32 3. Exploiting the Structure of DCOPs from Problem Modeling

Wait
New

Messages

Yes

No

Check

YesNo

Local Optimization

Global
Optimization

k = k+1

msgaj

�(xi, k) 2 msgaj

for some xk 2 Bi

(8xi 2 Bi) xi = �(xi, k)

(8xi 2 Bi)

xi = �(xi, k)

minimize
X

fj2Faj

fj(xj)

subject to:
xi = �(xi, k), 8xi 2 Bi

1

msgaj

msgai

�(xi, k) 2 msgaj

for some xk 2 Bi

(8xi 2 Bi) xi = �(xi, k)

(8xi 2 Bi)

xi = �(xi, k)

minimize
X

fj2Faj

fj(xj)

subject to:
xi = �(xi, k), 8xi 2 Bi

1

msgaj

�(xi, k) 2 msgaj

for some xk 2 Bi

(8xi 2 Bi) xi = �(xi, k)

(8xi 2 Bi)

xi = �(xi, k)

minimize
X

fj2Faj

fj(xj)

subject to:
xi = �(xi, k), 8xi 2 Bi

1

msgaj

�(xi, k) 2 msgaj

for some xk 2 Bi

(8xi 2 Bi) xi = �(xi, k)

(8xi 2 Bi)

xi = �(xi, k)

minimize
X

fj2Faj

fj(xj)

subject to:
xi = �(xi, k), 8xi 2 Bi

1

msgaj

�(xi, k) 2 msgaj

for some xk 2 Bi

(8xi 2 Bi) xi = �(xi, k)

(8xi 2 Bi)

xi = �(xi, k)

minimize
X

fj2Faj

fj(xj)

subject to:
xi = �(xi, k), 8xi 2 Bi

1

msgaj

�(xi, k) 2 msgaj

for some xk 2 Bi

(8xi 2 Bi) xi = �(xi, k)

(8xi 2 Bi)

xi = �(xi, k)

minimize
X

fj2Faj

fj(xj)

subject to:
xi = �(xi, k), 8xi 2 Bi

1

msgaj

�(xi, k) 2 msgaj

for some xk 2 Bi

(8xi 2 Bi) xi = �(xi, k)

(8xi 2 Bi)

xi = �(xi, k)

minimize
X

fj2Faj

fj(xj)

subject to:
xi = �(xi, k), 8xi 2 Bi

1

msgaj

msgai

�(xi, k) 2 msgaj

for some xk 2 Bi

(8xi 2 Bi) xi = �(xi, k)

(8xi 2 Bi)

xi = �(xi, k)

minimize
X

fj2Faj

fj(xj)

subject to:
xi = �(xi, k), 8xi 2 Bi

1

msgaj

msgai

�(xi, k) 2 msgaj

for some xk 2 Bi

(8xi 2 Bi) xi = �(xi, k)

(8xi 2 Bi)

xi = �(xi, k)

minimize
X

fj2Faj

fj(xj)

subject to:
xi = �(xi, k), 8xi 2 Bi

1

i

1

2
3

4

Figure 3.3: MVA Execution Flow Chart.

values of such variables are not dictated solely by the agent’s decisions, but they require some coordina-
tion among different agents.

Definition 7 (Local Constraint Graph). For each agent ai∈A, its local constraint graph Gi=(Li, EFai
)

is a subgraph of the constraint graph GP , where Fai ={fj ∈F | xj⊆Li}.

In other words, the local constraint graph of an agent ai is the subgraph of GP that includes the
local variables of agent ai and the constraints whose scopes include exclusively such local variables. In
Figure 3.1(a), L0 ={x0, x1, x2}, L1 ={x3, x4}, B0 ={x0}, B1 ={x3}.

We use σ(xi, k)∈Di to denote the kth value assignment to variable xi.

Next, we describe how the MVA decomposition is applied to solve a general DCOP, exploiting the
combination of decentralized DCOP algorithms, off-the-shelf centralized solvers, and their GPGPU par-
allel versions.

3.2.2 Description of the MVA Decomposition

In the MVA decomposition, a DCOP problem P is decomposed into |A| subproblems Pi=(Li, Bi,Fai),
where Pi is associated to agent ai ∈ A. In addition to the decomposed problem Pi, each agent receives:

• The global DCOP algorithm PG, which is common to all agents in the problem and defines the
agent’s coordination protocol and the behavior associated to the receipt of a message;

• The local algorithm PL, which can differ between agents and is used to solve the agent’s subprob-
lem.

Figure 3.3 shows a flow chart illustrating the four conceptual phases in the execution of the MVA
framework for each agent ai:

• Phase 1—Wait: The agent waits for a message to arrive. If the received message results in a new
value assignment σ(xr, k) for a boundary variable xr ofBi, then the agent will proceed to Phase 2.
If not, it will proceed to Phase 4.

3.2. MVA Decomposition 33

• Phase 2—Check: The agent checks if it has performed a complete new assignment for all its
boundary variables, indexed with k ∈ N, which establishes an enumeration of the boundary vari-
ables’ assignments. If it has, then the agent will proceed to Phase 3, otherwise it will return to
Phase 1.

• Phase 3—Local Optimization: When a complete assignment is given, the agent passes the control
to a local solver, which solves the following problem:

Minimize :
∑

fj∈Fai

fj(x
j) (3.1)

Subject to : xr = σ(xr, k) ∀xr ∈ Bi (3.2)

Solving this problem results in finding the best assignment for the agent’s local variables given the
particular assignment for its boundary variables. Notice that the local solver PL is independent
from the DCOP structure and it can be customized based on the agent’s local requirements. Thus,
agents can exploit a number of techniques for their local problem resolution. There exists a large
number of off-the-shelf solvers developed through decades of research in various fields that can
solve Constraint Optimization Problems. For example, such problems can often be formulated as
linear programs and solved using solvers that have been honed by the operations research commu-
nity [22, 23]; one can use constraint programming techniques, such as consistency maintenance
procedures [26]; or they can be reformulated as optimization problems on graphical models [118]
and solved using machine learning techniques [64, 40]. One can even exploit novel hardware plat-
forms, such as GPGPUs, to parallelize such solvers [108, 17, 16].

Once the agent solves its subproblem, it proceeds to Phase 4.

• Phase 4—Global Optimization: The agent processes the new assignment as established by the
DCOP algorithm PG, executes the necessary communications, and returns to Phase 1. The agents
can execute these phases independently of one another because they exploit the co-locality of their
local variables without any additional privacy loss, which is a fundamental aspect in DCOPs [43].

In addition, the local optimization process can operate on m ≥ 1 combinations of value assignments
of the boundary variables, before passing control to the next phase. This is the case when the agent
explores m different assignments for its boundary variables in Phases 2 and 3. These operations are
performed by storing the best local solution and their corresponding costs in a cost table of size m, which
we call MVA TABLE. Thus it can be seen as a cache memory. The minimum value of m depends on the
choice of the global DCOP algorithm PG. For example, for common search-based algorithms such as
AFB, it is 1, while for common inference-based algorithms such as DPOP, it is exponential in size of the
separator set.

Figures 3.4(b) and 3.4(c) show the MVA TABLES of the two agents in our example DCOP withm=2,
and Figure 3.4(a) reports the constraint table for their boundary variables. Using the MVA decomposition,
each agent computes only the necessary rows of the table on demand. Figure 3.5 shows the messages sent
by agents in our example DCOP with the MVA framework. In total, AFB requires only 13 messages
(compared to 98 messages with the decomposition reformulation) between agents. Additionally, since
the local subproblem of each agent is solved using a local search engine, the agents do not need to send
any internal agent messages (compared to 60 messages with the decomposition reformulation).

34 3. Exploiting the Structure of DCOPs from Problem Modeling

x0 x3 Costs

0 0 7
0 1 10
1 0 2
1 1 3

(a) Constraint Table of
Boundary Variables

x0 Best Local Solutions Costs

0 [x1 = 1, x2 = 0] 19
1 [x1 = 1, x2 = 1] 7

(b) a0’s MVA TABLE

x3 Best Local Solutions Costs

0 [x4 = 0] 7
1 [x4 = 0] 2

(c) a1’s MVA TABLE

Figure 3.4: MVA TABLES.

3.2.3 Local Optimization

We use Depth First Search Branch and Bound (DFBnB) and Gibbs as representative complete and incom-
plete algorithms for the local optimization process within each agent. DFBnB is correct and complete,
thus, it does not affect correctness and completeness of the global complete DCOP algorithms used dur-
ing agents coordination (see Theorem 1). In addition, it allows us to exploit the problem structure by
bound propagation. Gibbs provides quality guarantees and can be used in combination with D-Gibbs to
provide good approximated solutions (see Theorem 4).

Without loss of generality, in the following description, we assume that all variables xi ∈ Li have the
same domains, denoted to as Di.

Depth First Search Branch and Bound

Depth First Search Branch and Bound (DFBnB) [11, 89] is a classic complete search algorithm that
explores the variables’ values in a depth-first order. DFBnB uses an upper bound α on the optimal final
cost, whose initial value can be infinity. Starting at the root node (which corresponds to the first variable
in the problem, according to a given ordering), DFBnB selects a value for the next variable in the order
to examine next. When all the variables are assigned, meaning that DFBnB is exploring a leaf node, the
algorithm revises the upper bound if the cost of the current solution is less than the current upper bound
α. When DFBnB is exploring an internal node n, it compares the cost of the current partial solution with
the current upper bound α. If such cost is greater than or equal to α, then any possible solution with the
same partial assignments from the root node up to node n can be pruned. The reason is because node
costs are non-decreasing along a path from the root, so that no descendent of a node n will have a cost
smaller than n’s cost. Otherwise, n is expanded, generating all its child nodes. The process continues
until no more nodes can be expanded.

3.2. MVA Decomposition 35

Sender Message Type Receiver Message Content

a0 [CPA MSG] a1 [0 1 0 - -] (19)

a0 [FB CPA] a1 [0 1 0 - -] (19)

a1 [FB ESTIMATE] a0 (9)

a1 [NEW SOLUTION] a0 [0 1 0 0 0] (33)

a1 [NEW SOLUTION] a0 [0 1 0 1 0] (31)

a1 [CPA MSG] a0 [0 1 0 - -]

a0 [CPA MSG] a1 [1 1 0 - -] (7)

a0 [FB CPA] a1 [1 1 0 - -] (7)

a1 [FB ESTIMATE] a0 (4)

a1 [NEW SOLUTION] a0 [1 1 0 0 0] (16)

a1 [NEW SOLUTION] a0 [1 1 0 1 0] (12)

a1 [CPA MSG] a0 [1 1 0 - -]

a0 [TERMINATE] a1

Figure 3.5: Complete trace of MVA-AFB.

Gibbs Sampling

The Gibbs sampling algorithm [38] is a Markov chain Monte Carlo algorithm that can be used to approx-
imate joint probability distributions. It generates a Markov chain of samples, each of which is correlated
with previous samples. Suppose we have a joint probability distribution P (z1, z2, . . . , zn) over n vari-
ables, which we would like to approximate. Algorithm 1 shows the pseudocode of the Gibbs algorithm,
where each variable zti represents the t-th sample of variable zi. The algorithm first initializes z0

i to any
arbitrary value of variable zi (lines 1-3). Then, it iteratively samples zti from the conditional probability
distribution assuming that all the other n − 1 variables take on their previously sampled values, respec-
tively (lines 4-8). This process continues for a fixed number of iterations or until convergence, that is, the
joint probability distribution approximated by the samples do not change. It is also common practice to
ignore a number of samples at the beginning as it may not accurately represent the desired distribution.
Once the joint probability distribution is found, one can easily identify that a complete solution with the
maximum likelihood.

Algorithm 1: GIBBS(z1, . . . , zn)

1 for i = 1 to n do
2 z0

i ← INITIALIZE(zi)

3 for t = 1 to T do
4 for i = 1 to n do
5 zti ← SAMPLE(P (zi | zt1, . . . , zti−1, z

t−1
i+1 , . . . , z

t−1
n))

While the Gibbs algorithm is designed to solve the (maximum a posteriori) MAP estimation problem,
it can also be used to solve DCOPs in a centralized manner by mapping MAP estimation problems to
DCOPs [84]. If the probabilities in the MAP estimation problem is defined according to the DCOP utility

36 3. Exploiting the Structure of DCOPs from Problem Modeling

functions as shown below

P (x1, . . . , xn) =
1

Z

∏

fi∈F

exp[fi(xk | xk ∈ Si)] (3.3)

=
1

Z
exp

[∑

fi∈F

fi(xk | xk ∈ Si)
]

(3.4)

then a solution to the MAP estimation problem is also a solution to the DCOP.

3.3 Theoretical Results

In this section, we prove the correctness and completeness of the MVA framework when both the global
DCOP algorithm PG and the local algorithm PL are correct and complete. We provide bounds for the
additional space requirement and for the network load of the MVA framework with respect to the global
DCOP algorithm adopted. Finally, we prove the equivalence of the MVA decomposed D-Gibbs sampling
process and the (non MVA-decomposed) D-Gibbs algorithm.

Theorem 1. The MVA framework with PG and PL is correct and complete if and only if PG and PL are
both correct and complete.

Proof. Let Ω∗ be the set of complete optimal solutions of a DCOP instance P , and let us denote with Ω∗|S
as the set of all assignments for the variables in S that can be extended to a complete optimal solution for
P . Given a solution x for the problem P, let us also denote to x|S as for the projection of values of x to
the variables of the set S.

Soundness: Let us prove the forward direction for soundness. Assume that the combination PG
and PL with the MVA framework is correct and that it finds an optimal complete solution x∗ ∈ Ω∗.
Now assume that PG is not correct. Then, an agent ai might not explore the combination of values
〈vi1, . . . , vibi〉 ∈ x∗ for its boundary variables xij ∈ Bi (j = 1, . . . , bi), which contradicts the assumption
that the MVA framework finds the optimal complete solution V∗. Therefore, PG is correct. The argument
for PL is similar to that of PG. Assume that PL is not correct. Therefore, an agent ai might not explore
the combination of values 〈vibi+1, . . . , v

i
li
〉 for its non-boundary local variables xij ∈ Li \ Bi, (j =

bi + 1, . . . , li), which contradicts the assumption that the MVA framework finds the optimal complete
solution x∗. Therefore, PL is correct.

We now prove the backward direction for soundness. Assume that PG and PL are correct. Now as-
sume that their combination within the MVA framework results in finding a solution x 6∈ Ω∗. If
x|∪ai∈ABi ∈ Ω∗|∪ai∈ABi

, then for some agent ai the combination of values x|Li\Bi for its non-boundary
local variables is such that x|Li\Bi 6∈ Ω∗|Li\Bi . This contradicts the assumption on the correctness of PL.
If x ∈ Ω∗|∪ai∈ALi\Bi

, then for some agent the combination of values x|∪ai∈ABi for the problem boundary
variables is such that x|∪ai∈ABi 6∈ Ω∗|∪ai∈ABi

. This contradicts the assumption on the correctness of PG.

Completness: Let us prove the forward direction for completness. Assume that the combination PG
and PL with the MVA framework is complete and that it finds all optimal complete solutions x∗ ∈ Ω∗.
Now assume that PG is not complete. Then, an agent ai might not explore the combination of values
〈vi1, . . . , vibi〉 ∈ x∗ for its boundary variables xij ∈ Bi (j = 1, . . . , bi), which contradicts the assumption
that the MVA framework is complete. Therefore, PG is complete. The argument for PL is similar to that

3.3. Theoretical Results 37

of PG. Assume that PL is not complete. Therefore, an agent ai might not explore the combination of
values 〈vibi+1, . . . , v

i
li
〉 for its non-boundary local variables xij ∈ Li \ Bi, (j = bi + 1, . . . , li), which

contradicts the assumption that the MVA framework is complete. Therefore, PL is complete.

We now prove the backward direction for completness. Assume that PG and PL are complete. Now
assume that there is a solution x ∈ Ω∗ that is not explored by the MVA framework. If x|∪ai∈ABi ∈
Ω∗|∪ai∈ABi

, then for some agent ai the combination of values x|Li\Bi for its non-boundary local vari-
ables is such that x|Li\Bi 6∈ Ω∗|Li\Bi . This contradicts the assumption on the completeness of PL. If
x ∈ Ω∗|∪ai∈ALi\Bi

, then for some agent the combination of values x|∪ai∈ABi for the problem boundary
variables is such that x|∪ai∈ABi 6∈ Ω∗|∪ai∈ABi

. This contradicts the assumption on the completeness of
PG.

Theorem 2. The additional space requirement for the MVA framework is O(M · l), where M is the max-
imal number of rows of MVA TABLE needed on demand by each agent ai and l = maxi∈{j | aj∈A} |Li|.

Proof. At each PL invocation, for each row of MVA TABLE needed on demand, each agent ai maintains
its value assignments for the boundary variables in O(|Bi|) space and stores the local search results in
O(|Li \Bi|) space. Therefore, the total space needed is

mi · (O(|Bi|+ |Li \Bi|) = mi ·O(|Li|)
= O(M · l)

Theorem 3. The message requirement for the MVA framework is of the same order-complexity of that of
PG.

Proof. As MVA emulates the message exchanging protocol adopted by PG, its message requirements follows the
same order-complexity, with respect to the number of agents of the DCOP.

Note that this message complexity is for the worst case where all local variables are boundary variables. In
problems with non-boundary local variables, the network load of search algorithms is often significantly
smaller with the MVA decomposition (= O(d|A|)) than with the Decomposition technique (= O(d|X|)).
See our example in Figures 3.2 and 3.5.

Theorem 4. The sampling processes of both MVA-DG (= the MVA framework with D-Gibbs as PG and
Gibbs as PL) and D-Gibbs converge to the same solution.

Proof. To show that both algorithms converge to the same solution, we need to show that the transition
matrices TM and TD, which describes the transition rules from state to state for MVA-DG and D-Gibbs,
respectively, are equivalent. Assume that TM 6= TD and consider the transition from a given state zt to
a state zt+1. In both algorithms, this transition depends on the sampling process for a variable xi ∈ X.
We have the following two cases:
Case 1: xi ∈ Bi for some agent ai ∈ A. Since MVA-DG uses D-Gibbs as PG, then both MVA-DG
and D-Gibbs perform the same process to sample values for variable xi. Thus, it trivially follows that
TM = TD.

38 3. Exploiting the Structure of DCOPs from Problem Modeling

Case 2: xi ∈ Li \ Bi for some agent ai ∈ A. By assumption, the new state ẑt+1, produced by applying
transition matrix TM to zt, is such that ẑt+1 6= zt+1. Note that during the Gibbs sampling process
described by PL, the value for the variable xi is sampled according to the following:

PMVA-DG[d] = P (xi = d | xl ∈ Li \ {xi})

while in D-Gibbs, it is sampled according to the following:

PGibbs[d] = P (xi = d | xl ∈ X \ {xi})

Since xi shares constraints exclusively with other variables in Li, PMVA-DG[d] = PGibbs[d]. Thus, ẑt+1 =

zt+1, which contradicts the hypothesis that TM 6= TD.

Corollary 1. The MVA framework with D-Gibbs as the global DCOP algorithm and Gibbs as the local
search algorithm maintains the quality guarantees of both algorithms, that is, after N = 1

α·ε number of
samples, the probability that the best solution found thus far xN is in the top α-percentile is at least 1− ε.
In other words,

PGibbs

(
xN ∈ Sα | N =

1

α · ε

)
≥ 1− ε

Additionally, the quality of the solution found approaches optimal as the number of samples N approaches
infinity. In other words,

lim
ε→0

PGibbs

(
xN ∈ Sα | N =

1

α · ε

)
= 1

Corollary 1 is a direct consequence of Theorem 2 and Corollary 1 introduced by Nguyen, Yeoh, and
Lau [84].

3.4 Related Work

To the best of our knowledge, the only algorithm able to deal with agent subproblems without the use of
decomposition techniques is AdoptMVA [24], an extension of ADOPT [81]. The MVA decomposition
presented here allows the integration of any global DCOP coordination algorithm and any local optimiza-
tion procedure. As such, it subsumes AdoptMVA. Another line of work that solves subproblems in a
centralized manner can be found in the work on Partially Centralized (PC) DCOP algorithms [100, 116].
The main difference with our approach is that the subproblems defined by the MVA decomposition are
confined within the agents local variables, and therefore are privacy-preserving. In contrast, subprob-
lems solved by PC algorithms are defined over variables that can be owned by different agents, which is
undesirable in several application domains.

3.5 Experimental Evaluation

We evaluate our MVA decomposition with three global DCOP algorithms (AFB, DPOP, and D-Gibbs)
and two local centralized solvers (DFBnB and Gibbs).In addition to the lazy version (MVA-lazy) described

3.5. Experimental Evaluation 39

in this paper, where agents solve their local subproblems on demand during the resolution process, we
also implemented an eager version (MVA-eager), where agents populate their complete MVA table in a
pre-processing step. We compare them against the Compilation and the Decomposition pre-processing
techniques on random graph and radar coordination instances. In our version of Compilation, agents
retain exclusively the solutions of the local problem, whose search space is explored via DFBnB. All
experiments are performed on an Intel i7 Quadcore 3.4GHz machine with 16GB of RAM. We report
runtime measured using the simulated time [111] metric as well as the number of external agent-to-
agent messages and internal agent messages. We impose a timeout of 600sec of simulated time and
a memory limit of 2GB. Results report the average over 50 runs, and are statistically significant with
p-values < 0.001.1

Random Graph Instances

We create an n-node network, whose local constraint graphs density pl1 produces b|Li|(|Li|−1)pl1c edges
among the local variables of each agent ai, and whose (global) density pg1 produces bb(b − 1)pg1c edges
among boundary non-local variables, where b is the total number of boundary variables of the problem.

Figures 3.6 – 3.11 show the results on these random graphs, where AFB and DPOP use DFBnB
as local solver, while D-Gibbs uses Gibbs. Dark (light) bars indicate the number of external (internal)
agent-to-agent messages, and lines indicate runtime, all in logarithmic scale (the smaller, the better). We
conducted six experiments, in each of which we set as default parameters for the number of agents |A|,
the number of local variables per agent |Li|, domain size of each variable |Di|, the densities pl1, pg1 and
constraint tightness p2 are respectively, 4, 6, 4, 0.6, 0.4, 0.4. For the first experiment, we vary the number
of agents |A| (Figure 3.6). For the second experiment, we vary the number of local variables per agent |Li|
(Figure 3.7). For the third experiment, vary the ratio |Bi|/|Li| (Figure 3.8). In this experiment, we build
a subgraph for each agent with pl1 = 0.6 and create as many inter-agent constraints as necessary to reach
the desired ratio. For the forth experiment, we vary the constraint density of the global constraint graph
pg1 (Figure 3.9). For the fifth experiment, we vary the constraint density of the local constraint graphs pl1
(Figure 3.10). Finally, for the sixth experiment, we vary the constraint tightness p2 (Figure 3.11). In all
the experiments, starting from the highest function arity, we transform each clique involving k variables
to a k-ary function with costs randomly chosen from [1, 1000]. We make the following observations:

• Unlike Decomposition, MVA and Compilation do not need internal agent communication since
agent subproblems are solved locally within each agent.

• The number of external messages required by each framework is similar for DPOP and D-Gibbs.
The reason is that both DPOP and D-Gibbs external messages number is linear in the number of
agents, and in the number of samples as well for D-Gibbs. Both of these factors are independent of
the number of local variables.

• AFB on MVA requires up to one order of magnitude fewer external messages compared to Com-
pilation, and several orders of magnitude fewer compared to Decomposition. The reason is that
AFB agents broadcasts messages to request for cost estimates and announce complete solutions.
These broadcasts occur more regularly with Decomposition and Compilation than with the MVA
decomposition.

• The number of messages and runtimes of both MVA versions are similar to each other, indicating

1t-test performed with null hypothesis: MVA-lazy-decomposed algorithms are faster than non-MVA-decomposed ones.

40 3. Exploiting the Structure of DCOPs from Problem Modeling

that agents in both versions ultimately construct the entire MVA table.

• At increasing of the number of local variables, the solving time for both decomposition and com-
pilation techniques increases exponentially, for both AFB and DPOP. In D-Gibbs, the compilation
technique ran out of memory even for all instances with more than 4 local variables per agent. In the
MVA framework the solving time increases roughly linearly with respect to the number of variables
of the problem. This observation holds for each global algorithm tested.

• The runtimes of the algorithms on MVA tend to their runtimes with Decomposition as the ratio of
boundary variables increases. When all variables are boundary variables (|Bi|/|Li|=1), AFB and D-
Gibbs are faster on MVA than with Decomposition, as the agents can solve their local subproblems
quicker with centralized algorithms; DPOP is slower on MVA due to overhead.

• The runtime of all algorithms on all decomposition techniques increases at the increasing of the local
constraint graph pl1 values, and at the increasing of the global constraint graph pg1 values. DPOP on
the Compilation decomposition fails to solve instances with pg1 greater than 0.5 due to memory
limitations.

• At increasing of the constraint tightness p2 (bigger values correspond to more permissive constraints)
MVA-eager becomes gradually faster than MVA-lazy on AFB, due to the overhead of the latter of
building the MVA-tables, which eventually will be completely explored by both decompositions.
For the other algorithms, the trends for the two MVA decompositions are similar.

• In general, all the algorithms are fastest on the MVA framework followed by with the Decomposition
and Compilation techniques.

In all our experiments we, in addition to the above results, we also measured the number of concurrent
constraint checks. Their value correlate to that of the simulated runtime with average value of 0.958 2.

Radar Coordination Instances

This problem models a set of radars, which collect real-time data on the location and importance of
atmospheric phenomena, and a set of controllers, which can operate on a subset of the radars [59]. Each
phenomenon is characterized by size and weight (i.e., importance). Radars have limited sensing ranges,
which determine their scanning regions. The goal is to find a radar configuration that maximizes the
utility associated with the scanned phenomena. Controllers are modeled as agents whose variables they
control are radars. The domain of each variable represents the scanning regions of a radar. The utilities
(which, in our case, are modeled as costs, taking negative values) are functions involving all radars that
may detect a given phenomenon.

In our experiments, radars are equally spaced onto a grid, and each controller coordinates 16 radars
(arranged in a 4×4 grid). Radars have four possible scanning directions, and phenomena are randomly
generated across the grid until the underling constraint graph results connected. Table 3.1 tabulates the
results. The first two rows report the grid configurations and the number of agents. We omit the results
for Compilation because it failed to solve any of the instances. We also omit results for D-Gibbs as it
cannot handle hard constraints. Similarly to the random graph instances, the MVA-based algorithms are
faster than Decomposition. Unlike random graph instances, AFB with MVA-lazy is up to one order of
magnitude faster than MVA-eager. AFB can successfully prune portions of the search space using the
hard constraints. As a result, AFB agents with MVA-lazy, in contrast to MVA-eager, do not need to

2Data obtained averaging the experiments at varying the number of agents, using Spearman correlation.

3.6. Summary 41

configuration 8x4 8x8 12x8 16x8 20x8
agents 2 4 6 8 10

MVA-lazy 11 213 3186 33212 42090
MVA-eager 732 10391 27549 77489 82637

Decomposition 213 108818 178431 timeout timeout
AFB-DFBnB simulated time (ms)

MVA-lazy 844 30312 225761 478955 timeout
MVA-eager 823 30396 225538 477697 timeout

Decomposition 61978 timeout timeout timeout timeout
DPOP-DFBnB simulated time (ms)

Table 3.1: Radar Coordination Instances.

construct the entire MVA table. DPOP with both MVA-lazy and MVA-eager have similar runtimes, as
DPOP does not perform any pruning being based on dynamic programming.

3.6 Summary

This chapter introduced the MVA decomposition for DCOPs with multi-variable agents. This decompo-
sition defines a clear separation between the distributed agent coordination and the centralized agent sub-
problem resolution, while preserving agent privacy. This separation allows the use of efficient centralized
solvers to solve agent subproblems as well as the use, for different agents, of potentially different solvers
designed to exploit domain-specific properties. Experimental results show that the use of MVA speeds
up several DCOP algorithms, by up to several orders of magnitude, and reduces their communication re-
quirements with respect to existing techniques. These results experimentally validate the hypothesis that
exploiting latent structure embedded into the general DCOP model, can speed up the resolution process.

An interesting property of our MVA decomposition is that it naturally enables the DCOP resolution
process to the use of hierarchical parallel solutions. Such property is motivated by the observation that the
search for the best local solution for each row of the MVA TABLE is independent of the search for another
row and, as such, they can be performed in parallel. Such hierarchical parallel model could to further
speed up the local optimization process, thus reducing the overall DCOP solving time. This observation
finds a natural fit for SIMT processing. We have exploited this property of the MVA decomposition to
speed up the resolution approach of a particular class of sampling algorithms, which we will detail in
section 5.3.

42 3. Exploiting the Structure of DCOPs from Problem Modeling

Compilation Decomposition MVA-lazyMVA-eager

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

2 4 6 8 10 12 14 16 18 20
1

10

102

103

104

105

106

107

108

1

10

102

103

104

105

TO
N

um
be

r
of

 M
es

sa
ge

s

S
im

ul
at

ed
 T

im
e

(m
s)

Agents

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20
1

10

102

103

104

105

106

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

Agents

●

●
●

●

●
●

●
●

●
● ● ● ● ●

●
●

●
●

●
● ● ● ● ●

●
●

● ●
●

● ● ● ● ●

2 4 6 8 10 12 14 16 18 20
1

10

102

103

104

105

106

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

Agents

Figure 3.6: Random Graph instances for AFB-DFBnB (top), DPOP-DFBnB (center), and D-Gibbs-Gibbs
(bottom), at varying of the number of agents A. Dark (light) bars indicate the number of external (inter-
nal) agent-to-agent messages, and lines indicate runtime, all in logarithmic scale (the smaller, the better).

3.6. Summary 43

Compilation Decomposition MVA-lazyMVA-eager

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20
1

10

102

103

104

105

106

107

108

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

Local Variables

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14 16 18 20
1

10

102

103

104

105

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

Local Variables

●

●

●

●
●

●
●

● ● ●
●

● ●

●
●

● ● ● ● ●
●

●
●

●
●

● ● ●
● ●

●
●

●

2 4 6 8 10 12 14 16 18 20
1

10

102

103

104

105

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

Local Variables

Figure 3.7: Random Graph instances for AFB-DFBnB (top), DPOP-DFBnB (center), and D-Gibbs-Gibbs
(bottom), at varying of the number of local variables Li. Dark (light) bars indicate the number of external
(internal) agent-to-agent messages, and lines indicate runtime, all in logarithmic scale (the smaller, the
better).

44 3. Exploiting the Structure of DCOPs from Problem Modeling

Compilation Decomposition MVA-lazyMVA-eager

●
● ● ●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

0.2 0.4 0.6 0.8 1
1

10

102

103

104

105

106

107

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

Ratio : Bi Li

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1
1

10

102

103

104

105

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

Ratio : Bi Li

●

●
● ●

●
● ● ● ●

●
● ● ● ●

●
● ● ●

●

0.2 0.4 0.6 0.8 1
1

10

102

103

104

105

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

Ratio : Bi Li

Figure 3.8: Random Graph instances for AFB-DFBnB (top), DPOP-DFBnB (center), and D-Gibbs-Gibbs
(bottom), at varying of the ratio |Bi|/|Li|. Dark (light) bars indicate the number of external (internal)
agent-to-agent messages, and lines indicate runtime, all in logarithmic scale (the smaller, the better).

3.6. Summary 45

Compilation Decomposition MVA-lazyMVA-eager

● ●

● ●
● ● ●

● ●
● ●

●
● ●

●
●

● ● ● ● ●
● ● ● ●

● ● ●

0.4 0.5 0.6 0.7 0.8 0.9 1
1

10

102

103

104

105

106

107

1

10

102

103

104

105

TO
N

um
be

r
of

 M
es

sa
ge

s

S
im

ul
at

ed
 T

im
e

(m
s)

p1 global

● ●

● ●
●

●
●

● ●

● ● ● ● ●

● ●

● ● ● ● ●

● ●

0.4 0.5 0.6 0.7 0.8 0.9 1
1

10

102

103

104

105

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

p1 global

● ●
● ● ● ● ●

● ●
●

● ● ● ●

● ● ●
● ● ● ●● ● ●

● ● ● ●

0.4 0.5 0.6 0.7 0.8 0.9 1
1

10

102

103

104

105

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

p1 global

Figure 3.9: Random Graph instances for AFB-DFBnB (top), DPOP-DFBnB (center), and D-Gibbs-Gibbs
(bottom), at varying of the global constraint graph density pg1. Dark (light) bars indicate the number
of external (internal) agent-to-agent messages, and lines indicate runtime, all in logarithmic scale (the
smaller, the better).

46 3. Exploiting the Structure of DCOPs from Problem Modeling

Compilation Decomposition MVA-lazyMVA-eager

●

●
● ● ●

● ●
● ●

● ●
●

●

●

● ●
● ● ● ●

●

●
● ●

● ●
●

●

0.4 0.5 0.6 0.7 0.8 0.9 1
1

10

102

103

104

105

106

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

p1 local

● ● ● ● ●
●

●

● ● ● ● ●
●

●

● ●
●

● ●
● ●

●
● ●

● ● ● ●

0.4 0.5 0.6 0.7 0.8 0.9 1
1

10

102

103

104

105

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

p1 local

● ● ● ● ● ● ●

● ●
● ● ● ● ●

● ● ● ● ● ● ●● ● ● ● ● ● ●

0.4 0.5 0.6 0.7 0.8 0.9 1
1

10

102

103

104

105

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

p1 local

Figure 3.10: Random Graph instances for AFB-DFBnB (top), DPOP-DFBnB (center), and D-Gibbs-
Gibbs (bottom), at varying of the local constraint graph density pl1. Dark (light) bars indicate the number
of external (internal) agent-to-agent messages, and lines indicate runtime, all in logarithmic scale (the
smaller, the better).

3.6. Summary 47

Compilation Decomposition MVA-lazyMVA-eager

●

●
●

● ●
●

●

●

●
● ●

●
●

●

● ●
● ● ●

● ●
● ● ● ● ● ● ●

0.4 0.5 0.6 0.7 0.8 0.9 1
1

10

102

103

104

105

106

107

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

p2

●

●
●

●
●

●
●

● ● ● ● ● ● ●
●

● ● ● ●
● ●● ● ● ● ● ● ●

0.4 0.5 0.6 0.7 0.8 0.9 1
1

10

102

103

104

105

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

p2

●
●

●
● ●

●
●

● ● ●
● ● ●

●●
●

●
● ●

●
●

●
●

●
● ● ●

●

0.4 0.5 0.6 0.7 0.8 0.9 1
1

10

102

103

104

105

1

10

102

103

104

105

TO

N
um

be
r

of
 M

es
sa

ge
s

S
im

ul
at

ed
 T

im
e

(m
s)

p2

Figure 3.11: Random Graph instances for AFB-DFBnB (top), DPOP-DFBnB (center), and D-Gibbs-
Gibbs (bottom), at varying of the constraint tightness p2. Dark (light) bars indicate the number of external
(internal) agent-to-agent messages, and lines indicate runtime, all in logarithmic scale (the smaller, the
better).

48 3. Exploiting the Structure of DCOPs from Problem Modeling

4
Exploiting the Structure of DCOPs

during Problem Solving

This chapter introduces Branch Consistency (BrC), and Distributed Large Neighboring Search (D-LNS),
two DCOP solving strategies which adapt centralized reasoning techniques to speed up the DCOP res-
olution by exploiting the structure of DCOPs in orthogonal ways. The first, is a type of consistency
that applies to paths in pseudo-trees, and it is aimed to prune the search space and to reduce the size
of the messages exchanged among agents by actively exploiting the hard constraints of the problem.
The second, is a local search framework for DCOPs which builds on the strengths of centralized Large
Neighboring Search (LNS) [55], a centralized meta-heuristic that iteratively explores complex neighbor-
hoods of the search space to find better candidate solutions. D-LNS can exploit problem structure from
domain-dependent knowledge, and it inherently uses insights from the CP techniques to take advantage
on the presence of hard constraints, to further enhance runtime and solution quality of the problem be-
ing solved. Our experimental results show that BrC enforces a more effective pruning than those based
on domain-consistency, guaranteeing optimality, and leading enhanced efficiency and scalability. Fur-
thermore, D-LNS based algorithms converge faster to better solutions, compared to other incomplete
algorithms, and provide tighter solution quality bounds. Therefore, these results validate the hypothesis
that centralized reasoning can be adapted to exploit the structure of DCOPs during problem solving to
enhance the DCOP solving efficiency.

This chapter is structured as follows: We first describe the motivations for our two solving strategies
in section 4.1, we thus detail the description of BrC in section 4.2, and therein introduce BrC-DPOP, an
algorithm that exploits BrC to reduce the size of the messages exchanged by the agents during problem
solving. section 4.3 introduces the D-LNS framework as well as two D-LNS based algorithms charac-
terized by the ability to exploit domain dependent structure, low network usage, and low computational
complexity per agent. In each of the latter two sections we report the description of the algorithms, a
theoretical analysis on the relevant properties exposed by the two solving strategies, and the experimental
results. Finally, we conclude with our summary, presented in section 4.4.

4.1 Motivations

50 4. Exploiting the Structure of DCOPs during Problem Solving

4.1.1 Hard Constraints

Many real-world distributed constraint optimization models require the use of hard constraints to avoid
considering infeasible solutions (see, e.g., http://www.csplib.org for an extensive list of problem
domains). Several works from the DCOP community have recognized the importance of hard constraints
to reduce the size of the search space and/or reduce the message size exchanged by the agents [50,
63]. However, they are limited in exploiting relational information expressed in form of tables and/or
associated to the form of domain consistency, which may result in arbitrarily poor pruning. Thus, we
hypothesize that by using insights from the centralized constraint reasoning community, DCOP agents can
actively exploit hard constraints in a distributed fashion to enforce a more effective pruning, increasing the
efficiency of the network load and reducing the time of the resolution process. To verify such hypothesis
we propose a novel type of consistency, called Branch Consistency (BrC), that applies to paths in pseudo-
trees [35]. Such form of consistency enforces a more effective pruning than those based on domain-
consistency, guaranteeing optimality, and leading enhanced efficiency and scalability. We have applied
such form of consistency to reduce the space explored by DPOP agents, and consequentially reduce
the size of the messages exchanged, resulting in a new algorithm, called BrC-DPOP and introduced in
section 4.2. Importantly, BrC-DPOP agents can effectively exploit the information encoded in the hard
constraints of the problem, reducing their message size, and without incurring in any additional privacy
loss.

4.1.2 Large, Complex Problems

In many cases, the coordination protocols required for the complete resolution of DCOPs demand a
vast amount of resources and/or communication, making them infeasible to solve real-world complex
problems. Since finding optimal DCOP solutions is NP-hard, incomplete algorithms are often necessary
to solve large interesting problems. Desirable properties of good incomplete DCOP algorithms include, (i)
to quickly converge to good local minima; (ii) to be anytime; and (iii) to provide guarantees on solutions
quality. Being in a distributed setting, they are also required to exhibit low resources usage (i.e., network
load and bandwidth). We hypothesize that such properties can be obtained by capitalizing on the strengths
of a local search strategy widely adopted within the centralized constraint reasoning community: the
Large Neighboring Search (LNS) [55]. To validate such hypothesis we propose the Distributed Large
Neighboring Search (D-LNS) framework [32], which solves DCOPs by building on the strengths of
centralized LNS. The resulting framework has several qualities: It provides quality guarantees by refining
both upper and lower bounds of the solution found during the iterative process; It is anytime; and it
inherently uses insights from the CP techniques to take advantage on the presence of hard constraints. To
illustrate the generality of the proposed framework we introduce two novel distributed search algorithms
in section 4.3, built within D-LNS, characterized by the ability to exploit problem structure, low network
usage, and low computational complexity per agent.

4.2 Branch Consistency to Exploit Hard Constraints

This section introduces Branch Consistency (BrC), a new form of local consistency that applies to vari-
ables ordered in a pseudo-tree. BrC can be viewed as a weaker version of path consistency [82] tailored
to variables within the same branch of the pseudo-tree, and where each agent can only communicate

http://www.csplib.org

4.2. Branch Consistency to Exploit Hard Constraints 51

a2

a1

a3

a4

a5

x1

x3

x4

x5

=

<

=
soft

x2

>

x1

x3

x4

x5

=

<

=
soft

x2

> x1 x5 Utilities
0 0 20
0 1 8
0 2 10
0 3 3
. . .

3 3 2

(a) Constraint Graph (b) Pseudo-tree (c) Constraint Table

Figure 4.1: Example DCOP

exclusively with neighboring agents, and thus, BrC is suitable to be applied to DCOPs. In addition we
propose a novel variant of DPOP, called Branch-Consistency DPOP (BrC-DPOP), that takes advantage
of the hard constraints present in the problem to prune the search space by enforcing Branch Consistency.
The effect of enforcing this consistency in DPOP is that of generating smaller UTIL tables, and thus to
effectively reduce the size of the messages exchanged among agents, up to several order of magnitude, as
shown in our experimental evaluation in section 4.2.5

Through the section, we will use the example DCOP shown in Figure 4.1, to illustrate the effect of
enforcing BrC in the size of messages exchanged by BrC-DPOP agents. Figure 4.1(a) shows the con-
straint graph of a simple DCOP with five agents, ai, with i = 1, . . . , 5, each owning exactly one variable
xi. The domain of each variable is the set {0, 1, 2, 3}. Figure 4.1(b) shows one possible pseudo-tree for
the problem, where the agent a1 has one pseudo-child, a5 (the dotted line is a backedge). Figure 4.1(c)
describes few value combinations of the utility function associated with the constraint f15.

4.2.1 Notation and Definitions

We now introduce the concept of Branch Consistency and some related notions adopted by our proposed
algorithm. We restrict our attention to unary and binary utility functions and refer to unary constraints
as fii and binary constraints as fij to denote the fact that their scope is {xi} ⊆ X and {xi, xj} ⊆ X,
respectively. We assume at most one constraint between each pair of variables, thus making the order
of variables in the scope of a constraint irrelevant. To simplify notation, we also assume that each agent
controls exactly one variable, and thus, use the terms “variable” and “agent” interchangeably.

Definition 8 (Consistency Graph). The consistency graph of a DCOP P = (A,X,D,F, α) is G̈P =

(V,E) where V = {(i, k) |xi ∈ X, k ∈ Di} and E = {〈(i, r), (j, c)〉 | r ∈ Di, c ∈ Dj , fij ∈ F, (r, c) ∈
fij}.

The consistency graph of a DCOP is useful to visualize the values for pairs of variables which are
consistent given the constraint of the problem.

Example 1. Consider the DCOP of Figure 4.1 with domains for the variables xi, (i= 1, . . . , 5) being

52 4. Exploiting the Structure of DCOPs during Problem Solving

Di = {0, 1}. Then the consistency graph G̈= (V,E) with V = {(i, j)} with i= 1, . . . , 5, and j= {0, 1},
and E={〈(1, 0), (2, 1)〉, 〈(1, 1), (3, 0)〉, 〈(3, 0), (4, 0)〉, 〈(3, 1), (4, 1)〉, 〈(4, 0), (5, 0)〉, 〈(4, 1), (5, 1)〉}

Definition 9 (Linear Ordering). Given a pseudo-tree TP associated with a DCOP P , we define a linear
ordering ≺ on its variables: xi ≺ xj if and only if xj ∈ Pai . Similarly, xi � xj if and only if xj ∈ Cai .
We denote with � (and �) the reflexive closure of ≺ (and �), and with

∗≺ (and
∗�,
∗
�,
∗
�) the transitive

closure of ≺ (and �, �, �).

A linear ordering defines a precedence relation over the variables of a DCOP and it is useful to
determine paths from ancestors variables to successors variables, and vice versa, traversing exclusively
tree edges.

Example 2. Consider the pseudo-tree of the DCOP in Figure 4.1(b). It can be observed that x5 ≺ x4,

x4 ≺ x3, and x5

∗
� x3, however x2 6

∗
� xi, with i = 3, 4, 5.

Definition 10 (Branch Consistency (for pair of values)). A pair of values (r, c)∈ Di×Dj of two variables
xi, xj that share a constraint fij is branch consistent (BrC) if and only if for any sequence of variables
(xi=xk1 , . . . , xkm =xj), such that fkpkq ∈ F, where p ≤ q ≤ p+ 1, and xk1�· · ·�xkm , there exists a
tuple of values (r=vk1 , . . . , vkm = c) such that vkq ∈ Dkq and (vkp , vkq) ∈ fkpkq , for each 1 ≤ q ≤ m

and p ≤ q ≤ p+ 1.

Example 3. Consider the DCOP of Figure 4.1 with domains for the variables x3, x4, and x5 being
D3 = {0, 1}, D4 = {1, 2}, D5 = 0, 1, 2. The pair of values (1, 1) for the variables x3 and x5 is
BrC, while the pair of values (0, 2) is not BrC because neither 〈(3, 0), (4, 1)〉 nor 〈(3, 0), (4, 2)〉 can be
extended to the value of (5, 2) satisfying both f34 and f45.

Definition 11 (Branch Consistency). A DCOP is branch consistent (BrC) if and only if for any pair of
variables (xi, xj) with xi � xj and any (u, v) ∈ fij , (u, v) is branch consistent.

Definition 12 (Value Reachability Matrix). Given a DCOP, the Value Reachability Matrix (VRM) Mij

of two variables xi and xj of X, with xi
∗
�xj , is a binary matrix of sizeDi×Dj , where Mij [r, c]=1 if and

only if there exists at least one sequence of variables (xi=xk1
, . . . , xkm =xj), such that xk1

�· · ·�xkm ,
and a tuple of values (r= vk1

, vk2
, . . . , vkm = c) such that vkp ∈ Dkp and (vkp , vkq) ∈ fkpkq , for each

1 ≤ q ≤ m and p ≤ q ≤ p+ 1.

A VRM Mij between variables xi and xj represents the pair of values that can be extended along the
linear ordered paths between xi and xj .

Example 4. Consider the DCOP of Example 3. The VRM M35 of variables x3 and x5 is:

M35 =

[
0 0 0

0 1 0

]

Proposition 1. For each variable xi, xj , and xk, the regular product of two VRMs Mik and Mkj is a
VRM Mij = Mik ×Mkj , where each entry (r, c) of Mij is given by

Mij [r, c] = min

1,

|Dk|∑

l=1

Mik[r, l] ·Mkj [l, c]

4.2. Branch Consistency to Exploit Hard Constraints 53

The regular product of two VRMs is defined as the regular product of two general matrices, where all
the resulting entries greater or equal than 1 are reduced to 1.

Proposition 2. For each variable xi and xj , the entrywise product of two VRMs Mij and M̂ij is a VRM
M ′ij = Mij ◦ M̂ij , where each entry (r, c) of M ′ij is given by

M ′ik[r, c] = Mij [r, c] · M̂ij [r, c]

The entrywise product of two VRMs is defined as the entrywise product of two general matrices.

Definition 13 (Valid pair). Given a VRM Mij , a pair of values (r,c) is a valid pair if and only if
Mij [r, c] = 1.

Proposition 3. If fij ∈ F, then Mij is branch consistent (BrC) if and only if all its valid pairs are branch
consistent. If fij /∈ F, then Mij is branch consistent if and only if it is a regular product of branch
consistent VRMs.

4.2.2 BrC-DPOP

We now describe BrC-DPOP, an algorithm which builds on DPOP, and that makes use of the concepts
introduced in the previous section to prune unfeasible portions of the search space, exploiting the hard
constraints of the problem.

High-Level Algorithm Description

We first illustrate the high-level structure of BrC-DPOP on the example DCOP shown in Figure 4.1.
BrC-DPOP consists of the following phases:

• Pseudo-tree Generation Phase: Similarly to the Pseudo-tree Generation Phase of DPOP, in this
phase the agents coordinate the construction of a pseudo-tree.

• Path Construction Phase: In this phase, each agent builds the VRMs associated with the constraints
involving its variables along with the structures describing the paths between pseudo-parents and
pseudo-children. Figure 4.2(a) shows the VRMs (in a consistency graph representation); we do not
show the soft constraint between variables x1 and x5 as it allows every value combination of the two
variables.

• Arc Consistency Enforcement Phase: In this phase, the agents enforce arc consistency in a dis-
tributed manner. At the end of this phase, each agent has the updated VRMs shown in Figure 4.2(b).
Arc consistency causes the removal of exactly two values from the domain of each variable of the
DCOP: values 0 and 3 from D1, 0 and 1 from D2, and 2 and 3 from D3, D4, and D5.

• Branch Consistency Enforcement Phase: In this phase, the agents enforce branch consistency in a
distributed manner. In our example, branch consistency needs to be enforced for the pairs of values
of variables x1 and x5 only. The values for all other pairs of variables are already branch consistent.
Agent a1 starts this process by sending a message containing VRM M11 to its child a3 (since a5

is in the subtree rooted at a3). Once agent a3 receives the message, it computes the VRM M31 by
multiplying its VRM M31 with the VRM M11 just received, and sends a message containing this
VRM to its child a4. Agent a4 repeats this process by multiplying its VRM M43 with the VRM

54 4. Exploiting the Structure of DCOPs during Problem Solving

(d)

a1 a3 a3 a4 a4 a5

x5 x4 x1

0 0 1
0 0 2
1 1 2

x4 x1

0 1
0 2
1 2

proj(x5)
UTIL5

(c)

(b)
x1 x2

0 0
1 1
2 2
3 3

< x3 x4

0 0
1 1
2 2
3 3

=x1 x3

0 0
1 1
2 2
3 3

> x4 x5

0 0
1 1
2 2
3

=

3

(a)
x1 x2

0 0
1 1
2 2
3 3

< x3 x4

0 0
1 1
2 2
3 3

= x4 x5

0 0
1 1
2 2
3 3

=x1 x3

0 0
1 1
2 2
3 3

>
M3,1

0 0 0 0
1 0 0 0
1 1 0 0
0 0 0 0

x3
x1

M4,1

0 0 0 0
1 0 0 0
1 1 0 0
0 0 0 0

x4
x1

M5,1

0 0 0 0
1 0 0 0
1 1 0 0
0 0 0 0

x5
x1

M1,1

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

x1
x1

a5

Figure 4.2: BrC-DPOP Example Trace

M31, resulting in VRM M41, which it sends to its child a5. This process repeats until agent a5

computes the VRM M51, after which it knows its set of reachable values in x5 for each value in x1.
Figure 4.2(c) shows the VRMs.

• UTIL and VALUE Propagation Phases: This phase is identical to the corresponding UTIL and
VALUE propagation phases of DPOP, except that each agent constructs a UTIL table that contains
utilities for each combination of unpruned values of variables in its VRMs. In our example, agent
a5 is able to project out its variable x5 and construct its UTIL table, shown in Figure 4.2(d). Note
that the UTIL table consists of only 3 utilities, both before and after projection. In contrast, DPOP’s
UTIL table consists of 43 = 64 utilities before projection and 42 = 16 utilities after projection.

Messages and Data Structures

During the execution of BrC-DPOP, each agent ai maintains the following data structures, where the first
three are used in the arc consistency phase and the last two are used in the branch consistency phase.

• The set of hard constraints Ĥi = {fij ∈ Hi | ai
∗
� aj} to check for consistency.

• The set of VRMs M̂i = {M̂ij | fij ∈ F, aj
∗
� ai}, which includes the VRMs for each parent and

pseudo-parent aj .

• The flag fixedi for each agent ai, which is initialized to true. It indicates weather agent ai has reached
a fixed point in the arc consistency phase.

• The set of VRMs Mi = {Mij | aj ∈ sep(ai)}, which includes the VRMs for each agent aj in the
separator set of the agent ai.

• The set of paths Pathsai = {(as
aj
 ad) | aj ∈ Cai , as

∗
� ai � aj

∗
� ad}, which the agent uses to

send updated VRMs in the branch consistency phase. Each path (as
aj
 ad) indicates that there is

4.2. Branch Consistency to Exploit Hard Constraints 55

Algorithm 2: BRC-DPOP

1 Pseudo-tree-Generation-Phase()
2 Path-Construction-Phase()
3 AC-Propagation-Phase()
4 BrC-Propagation-Phase()
5 UTIL-and-VALUE-Phases()

a branch in the pseudo-tree from as to ad that traverses ai and its child aj . This data is needed by
agent ai to know which child it should send its updated VRM to, if the VRM originated from agent
as. For instance, in our example trace, agent a1 knows to send its VRM to its child a3 and not a2.
To preserve privacy, the information about the destination agent ad can be omitted from each path.
Each agent thus maintains only (as

aj
 ?), which is sufficient to ensure correctness.

In addition to the UTIL and VALUE messages used in the UTIL and VALUE propagation phases,
each agent ai uses the following types of messages, where the first two are used in the arc consistency
phase, while the last two in the branch consistency phase:1

• [AC]↑i (D
′
j ,fixedi), which is sent from an agent ai to an agent aj

∗� ai such that fij ∈ Hi. It contains
a copy of the domain of the variable xj , D′j , updated with the changes caused by the propagation of
the constraints in Ĥi, and a flag, fixedi, which denotes whether changes have occurred in the domain
of some variable in the subtree rooted at ai during the last iteration of the AC↑ messages.

• [AC]↓i (Di), which is sent from an agent ai to the agents aj
∗≺ ai such that fij ∈ Hi. It contains a

copy of the domain of the variable xi, Di, updated with the changes caused by the propagation of
the constraints in Ĥi.

• [PATH]↑i (as), which is sent from an agent ai to its parent Pai to inform it that it is part of a tree path
in the pseudo-tree between agents as and some pseudo-child of as.

• [BrC]↓i (Mis), which is used to determine the branch consistent value pairs of xs and xi.

Algorithm Description

Algorithm 2 shows the pseudo-code of BrC-DPOP. It can be visualized as a process composed of 5
phases:

• Phase 1 - Pseudo-tree Generation Phase: This phase is identical to that of DPOP, where a pseudo-
tree is generated (line 1).

• Phase 2 - Path Construction Phase: The phase is used to construct the direct paths from each agent to
its parent and pseudo-parents. At the start of this phase (line 2), each agent, starting from the leaves of
the pseudo-tree, recursively populates its Pathsai as follows: It saves a path information (ap

NULL
 ?)

for each of its pseudo-parents ap (lines 6-7) and sends a [PATH]↑i (ap) message to its parent. When the
parent ai receives a [PATH]↑c message from each of its child ac, it stores the path information in the
message in its Pathsai data structure (lines 9-11). For each path in Pathsai , if it is not the destination

1We use the superscript ↑ to denote the messages being propagated from the leaves of the pseudo-tree to the root, and ↓ to denote
the ones propagated from the root to the leaves.

56 4. Exploiting the Structure of DCOPs during Problem Solving

Procedure Path-Construction-Phase()

6 foreach ap ∈ PPai do
7 Pathsai ← Pathsai ∪ (ap

NULL
 ?)

8 if Cai 6= ∅ then
9 while not received all [PATH]↑c(·) from each ac ∈ Cai do

10 if receive [PATH]↑c(as) from ac ∈ Cai then
11 Pathsai ← Pathsai ∪ (as

ac ?)

12 foreach as 6= ai such that (as
ac ?) ∈ Pathsai do

13 Send [PATH]↑i (as) to Pai
14 if [PATH]↑i (·) has not been sent to Pai then
15 Send [PATH]↑i (NULL) to Pai

agent, then it sends a [PATH]↑j message that contains that path to its parent (lines 12-13). If it does not
send a [PATH]↑j message to its parent, then it sends an empty [PATH]↑j message (lines 14-15). These path
information will be used in the branch consistency propagation phase later. When the root processes
and stores the path information from each of its children, it ends this phase and starts the next AC
propagation phase.

• Phase 3 - Arc Consistency (AC) Propagation Phase: In this phase, the agents enforce arc consis-
tency in a distributed manner by interleaving the direction of the AC message flows: from the leaves to
the root (lines 18-24) and from the root to the leaves (lines 25-34), until a fixed point is detected at the
root (line 35).

In the first part of this phase (lines 18-24), each agent, starting from the leaves up to the root, recursively
enforces the consistency of its hard constraints in Ĥi (line 22) via the enforceAC procedure, which we
implemented using the AC-2001 algorithm [6]. In this process, the agent also updates the VRMs M̂i

associated with all its constraints fij ∈ Ĥi and its domain Di to prune all unsupported values. If any
of its values are pruned, indicating that it has not reached a fixed point, it sets its fixedi flag to false
(line 23). It then sends an [AC]↑i message to each of its parent and pseudo-parent aj , which contains its
fixedi flag as well as a copy of their domains D′j

2 to notify them about which unsupported values were
pruned (line 24). The domain of each agent is updated before enforcing the arc consistency, as soon as
it receives all the [AC]↑i messages from each of its children and pseudo-children (lines 20-21).

Once the root enforces the consistency of its hard constraints, it checks if it has reached a fixed point
(line 28). If it has not, then it starts the next part of this phase, which is similar to the previous one
except for the direction of the recursion and the AC message flow (lines 29-34). This phase is carried
from the root down to the leaves of the pseudo-tree, and it ends when all the leaves have enforced the
consistency of their hard constraints. Then the procedure repeats the first part where the recursion and
the AC message flow starts from the leaves again and continues up to the root. This process repeats
until a fixed point is reached at the root (line 35), which ends this phase, and starts the next BrC
propagation phase.

2In the pseudo-code, we use the notation M̂ij|j to indicate D′j .

4.2. Branch Consistency to Exploit Hard Constraints 57

Procedure AC-Propagation-Phase()

16 iteration← 0

17 repeat
18 if Cai 6= ∅ then
19 Wait until received [AC]↑c(D

′
i,fixedc) from each ac ∈ Cai ∪ PCai in this iteration

20 foreach [AC]↑c(D
′
i,fixedc) received do

21 Di ← Di ∩D′i
22 〈M̂i, Di〉 ← enforceAC (Ĥi, M̂i, Di)

23 fixedi ← ¬changed(Di) ∧
∧
ac∈Cai

fixedc
24 Send [AC]↑i (M̂ij|j ,fixedi) to each aj ∈ Pai ∪ PPai
25 if Pai 6= NULL then
26 Wait until received [AC]↓p(Dp) from each ap ∈ Pai ∪ PPai in this iteration or received

[BrC]↓p(·) from parent ap
27 if received [BrC]↓p(·) from parent ap then break

28 if ¬fixedi then
29 foreach [AC]↓p(Dp) received do
30 update M̂ip with Dp

31 if Pai 6= NULL then
32 〈M̂i, Di〉 ← enforceAC (Ĥi, M̂i, Di)

33 Send [AC]↓i (Di) to each ac ∈ Cai ∪ PCai
34 iteration← iteration+ 1

35 until Pai = NULL and fixedi;

• Phase 4 - Branch Consistency (BrC) Propagation Phase: In this phase, the agents enforce branch
consistency in a distributed manner, that is, every pair of values of an agent and its pseudo-parents are
mutually reachable throughout every tree path connecting them in the pseudo-tree.

At the start of this phase, each agent, starting from the root down to the leaves, recursively enforces
branch consistency for all tree paths from the root to that agent and sends a [BrC]↓i message to each
of its children. This message includes the VRM for each path through that child. Once an agent ai
receives all the VRM messages from its parent (lines 36-37), for each path that goes through it (line 38),
it creates a new VRM Mis. If it is the start of the path, then it sets its VRM M̂ii (line 39-40), which
is arc consistent, as the new VRM Mis. Otherwise, it performs the regular product of its VRM M̂ip

for the constraint between itself and its parent ap and the VRM received from the parent Mps and sets
it to Mis (line 42). Then, to ensure that the VRM Mis is branch consistent, it performs the entrywise
product with the VRM M̂is of its pseudo-parent as (line 43). If the agent is the destination of the
path, then it will use the resulting VRM in the construction of the UTIL messages in the UTIL phase.
Otherwise, it will send the VRM to its child agent that is in that path in a [BrC]↓i message (lines 44-45).
Finally, it will send an empty [BrC]↓i to all remaining child agents to ensure that the propagation reaches
all the leaves (lines 46-47).

• Phase 5 - DPOP’s UTIL and VALUE Phases: This phase is identical to the corresponding UTIL

58 4. Exploiting the Structure of DCOPs during Problem Solving

Procedure BrC-Propagation-Phase()

36 if Pai 6= NULL then
37 Wait until received a [BrC]↓p(Mps) for each path (as

ac ?) ∈ Pathsai from parent ap

38 foreach (as
ac ?) ∈ Pathsai do

39 if as = ai then
40 Mis ← M̂ii

41 else
42 Mis ← M̂ip ×Mps

43 Mis ← M̂is ◦Mis

44 if ac 6= NULL then
45 Send [BrC]↓i (Mis) to ac

46 foreach ac ∈ Cai that has not been sent a [BrC]↓i message do
47 Send [BrC]↓i (NULL) to ac

and VALUE propagation phases of DPOP, except that each agent constructs a UTIL table that contains
utilities for each combination of unpruned values of variables in its VRMs.

4.2.3 Theoretical Analysis

In this section, we provide a complexity analysis for the network load and the messages size for the
AC and BrC propagation phases. We prove the correctness and completeness of BrC-DPOP, and report
the network load complexity for the UTIL and VALUE phases of BrC-DPOP, as well as its agents’
memory requirement. In the following, we use n, k, and d to denote |X| = |A|, |F|, and maxxi∈X |Di|,
respectively.

Theorem 5. The AC propagation phase requires O(ndk) messages, each of size O(d).

Proof. In the worst case, each AC iteration removes exactly one value from one domain. Thus, there are
only O(nd) iterations, as there are only O(nd) values among all variables. In each iteration, each agent
sends exactly one [AC]↑ message to each parent and pseudo-parent and one [AC]↓ message to each child
and pseudo-child. Thus, there are at most O(k) messages sent in each iteration. Each message contains
at most the full domain of a variable and the fixed flag, which is O(d).

Theorem 6. The BrC propagation phase requires O(k) messages, each of size O(d2).

Proof. In the BrC propagation phase, each agent sends exactly one [BrC]↓ message to each child, and the
phase ends after all the leaves in the pseudo-tree receives a [BrC]↓ message. Each message contains at
most a VRM, which is O(d2).

Lemma 1. The DCOP is arc consistent after the AC propagation phase.

4.2. Branch Consistency to Exploit Hard Constraints 59

Proof. We prove this result by contradiction. Assume that there are ai, aj ∈ A and a ∈ Di such that
∀b ∈ Dj , (a, b) 6∈ fij . Let b1, . . . , bm be all the (pruned) values in Dj supporting a. We have the
following two cases:

• ai ∈ Paj ∪ PPaj . If agent aj pruned all its values br (1 ≤ r ≤ m) from Dj , then the value a
is pruned from the copy of the domain Di held at aj (M̂ji|i will not include the value a) (line 22).
When ai receives an AC↑ message from each ak ∈ Cai ∪ PCai (including aj), it updates its own
domain with the copy received from each agent (lines 20-21) removing a from Di and resulting in a
contradiction.

• ai ∈ Caj ∪ PCaj . Agent aj can prune all its values br (1 ≤ r ≤ m) from Dj in the following
two ways. In case 1, agent ai prunes all the values br from a copy of Dj during its AC consistency
enforcement (line 22), sends up an AC↑ message to aj , and aj prunes all its values br from its
Dj . However, in this case, agent ai would have also pruned value a from its domain, resulting in a
contradiction. In case 2, some other agent ak that shares a constraint fkj with agent aj prunes all the
values br from the copy of Dj during its AC consistency enforcement, sends up an AC↑ message to
aj , and aj prunes all its values br from its Dj . In this case, aj will eventually send an AC↓ message
to ai that contains its updated domain without the values br. Then, agent ai will prune value a from
its domain in its AC consistency enforcement (line 22), resulting in a contradiction.

Lemma 2. The DCOP is branch consistent after the BrC propagation phase.

Proof. We prove by induction on the number of variables in the paths xi=xk1 , . . . , xkm =xj , such that
xk1
� . . .�xkm .

Base Case (m= 2): We know that xj ∈ Cai and there is only one path from xi to xj via the constraint
fij . Additionally, this constraint is arc consistent because the BrC propagation phase runs after the AC
propagation phase. Thus, all the remaining pairs of values in both variables are by definition branch
consistent (Definition 10). The VRM Mji is thus branch consistent.
Induction Assumption: Assume that for any 2 ≤ q ≤ r and paths xi = xk1

, . . . , xkq = xj with
xk1
� . . .�xkq , there is a VRM Mji that is branch consistent.

Induction Case (m=r+ 1): We know that the paths from xi = xk1 to xkr is branch consistent from the
induction assumption. Thus, the VRM Mkrk1 received by xkr+1 is branch consistent. Additionally, all
the constraints between any xkp (1 ≤ p ≤ r) and xkr+1

are arc consistent because the BrC propagation
phase runs after the AC propagation phase. Thus, the VRMs M̂kr+1kp are also branch consistent.
We now show that the algorithm removes values of xkr+1

that are not branch consistent with values of its
ancestors in the following two cases:

• For paths that include the constraint between xr and xr+1, BrC-DPOP takes the regular product
(line 42), which removes all inconsistent values.

• For paths that do not include the constraint between xr and xr+1 and, thus, must include the con-
straint between xk1 and xkr+1 , BrC-DPOP performs the entrywise product (line 43), which removes
all inconsistent values.

Theorem 7. BrC-DPOP is complete and correct.

60 4. Exploiting the Structure of DCOPs during Problem Solving

Proof. The completeness and correctness of BrC-DPOP follows from the correctness and completeness
of DPOP [96] and the correctness and completeness of the AC and BrC propagation phases (Theo-
rems 5, 6, and Lemmas 1, and 2).

Corollary 2. Both the UTIL and the VALUE phases require O(n) number of messages.

Corollary 3. The memory requirement of BrC-DPOP is in the worst case exponential in the induced
width of the problem for each agent.

Both corollaries follow trivially from the network load and memory requirements of DPOP, since no
values are pruned from the AC and BrC propagation phases in the worst case.

4.2.4 Related Work

We characterize the approaches that prune values of variables in DCOPs along two general types. Algo-
rithms in the first category propagates exclusively hard constraints (BrC-DPOP falls into this category).
To the best of our knowledge, the only existing work that falls into this category is H-DPOP [63], which,
like BrC-DPOP, is also an extension of DPOP. The main difference between H-DPOP and BrC-DPOP is
that instead of VRMs, each agent ai in H-DPOP uses constraint decision diagrams (CDDs) to represent
the space of possible value assignments of variables in its separator set sep(ai). A CDD is a rooted di-
rected acyclic graph structured by levels, one for each variable in sep(ai). In each level, a non-terminal
node represents a possible value assignment for the associated variable. Each non-terminal node v has a
list of successors: one for each value u in the next variable for which the pair (u, v) is satisfied by the
constraint between the two variables. As a result of using CDDs, H-DPOP suffers from two limitations:

1. H-DPOP can be slower than DPOP because maintaining and performing join and projection oper-
ations on CDD are computationally expensive. In contrast, maintaining and performing operations
on VRMs can be faster, which we will demonstrate in the experimental results section later.

2. H-DPOP cannot fully exploit information of hard constraints to reduce the size of UTIL messages.

Consider the DCOP instance of Figure 4.2, where the domains for the variables x1, x3, x4, and x5 are
represented by the set {1, . . . , 100}, while the domain for variable x2 is the set {1, 2}. In H-DPOP, a5 is
not aware of the constraints x1 < x2 and x1 < x3—neither x2 nor x3 are in sep(a5), thus no pruning will
be enforced. Its UTIL table will hence contain 1002 = 10, 000 utilities for each combination of values of
x4 and x1. This is the same table that DPOP would construct. In contrast, in BrC-DPOP, the domains of
x1 and x2 will be pruned to {1} and {2}, respectively, and the domains of x3, x4, and x5 to {2, . . . , 100}.
Therefore, the UTIL table that a5 sends to a4 contains 99 × 1 = 99 utilities. Aside from these two
limitations, a more critical limitation of H-DPOP is its assumption that each agent has knowledge of
all the constraints whose scope is a subset of its separator set. This assumption is stronger than the
assumptions made by most DCOP algorithms and might cause privacy concerns in some applications. In
contrast, BrC-DPOP does not make such assumptions.

Algorithms in the second category propagates lower and upper bounds. Researchers have extended
search-based DCOP algorithms (e.g., BnB-ADOPT and its enhanced versions [121, 48, 51]) to maintain
soft-arc consistency in a distributed manner [9, 49, 47]. Such techniques are typically very effective in
search-based algorithms as their runtime depends on the accuracy of its lower and upper bounds.

4.2. Branch Consistency to Exploit Hard Constraints 61

Finally, it is important to note the differences between branch consistency and path consistency [82].
One can view branch consistency as a weaker version of path consistency, where all the variables in a path
must be ordered according to the relation ≺, and only a subset of all possible paths have to be examined
for consistency. Thus, one can view branch consistency as a form of consistency tailored to pseudo-trees,
where each agent can only communicate with neighboring agents. [19] One of the straightforward ways
to enforce path consistency in a DCOP would require that all agents are able to communicate with every
other agent. Unfortunately, this requirement would violate the common assumption that agents can only
communicate with neighboring agents in a DCOP.

4.2.5 Experimental Evaluation

We implemented a variant of BrC-DPOP, called AC-DPOP, that enforces arc consistency only in order
to assess the impact of the branch consistency phase in BrC-DPOP. Moreover, in order to be as com-
prehensive as possible in our evaluations, we also implemented a variant of H-DPOP called PH-DPOP,
which stands for Privacy-based H-DPOP, that restricts the amount of information that each agent can
access to the amount common in most DCOP algorithms including BrC-DPOP. Specifically, agents in
PH-DPOP can only access their own constraints and, unlike H-DPOP, cannot access their neighboring
agents’ constraints.

In our experiments,3 we compare AC-DPOP and BrC-DPOP against DPOP [96], H-DPOP [63], and
PH-DPOP. We use a publicly-available implementation of DPOP available in the FRODO framework [68]
and an implementation of H-DPOP provided by the authors. We ensure that all algorithms use the same
pseudo-tree for fair comparisons. All experiments are performed on an Intel i7 Quadcore 3.4GHz machine
with 16GB of RAM with a 300-second timeout. If an algorithm fails to solve a problem, it is due to
either memory limitations or timeout. We conduct our experiments on random graphs [30], where we
systematically vary the constraint density p1 and constraint tightness p2,4 and distributed Radio Link
Frequency Assignment (RLFA) problems [15], where we vary the number of agents |A| in the problem.
We generated 50 instances for each experimental setting, and we report the average runtime, measured
using the simulated runtime metric [111], and the average total message size, measured in the number of
utility values in the UTIL tables. For the distributed RLFA problems, we also report the percentage of
satisfiable instances solved to show the scalability of the algorithms.

Random Graphs: In our experiments, we set |A| = 10, |X| = 10, |Di| = 8 for all variables. We vary
p1 (while setting p2 = 0.6) and vary the p2 (while setting p1 = 0.6). We did not bound the tree-width,
which is determined based on the underlying graph and randomly generated. We used hard constraints
that are either the “less than” or “different” constraints. We also assign a unary constraint to each variable
that gives it a utility corresponding to each its value assignments.

Figures 4.3, 4.4, and 4.5, show the runtimes and the message size of the algorithms at varying of,
repsectively, the constraint graph density p1, the constraint graph tightness p2, and the number of agents
A. We omit results of an algorithm for a specific parameter if it fails to solve 50% of the satisfiable
instances for that parameter. We make the following observations:

3available at http://www.cs.nmsu.edu/klap/brc-dpop_cp14/
4p1 and p2 are defined as the ratio between the number of binary constraints in the problem and the maximum possible number

of binary constraints in the problem and the ratio between the number of hard constraints and the number of constraints in the
problem, respectively.

http://www.cs.nmsu.edu/klap/brc-dpop_cp14/

62 4. Exploiting the Structure of DCOPs during Problem Solving

● ●BC−DPOP AC−DPOP DPOP H−DPOP PH−DPOP

(a) Random Graphs: Varying p1

S
im

ul
at

ed
 T

im
e

(m
s)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

10

100

103

104

105

●

●

●

●

●

●

●

●

●

●

●

●

(d) Random Graphs: Varying p1
M

es
sa

ge
 S

iz
e

0.3 0.4 0.5 0.6 0.7 0.8 0.9

103

104

105

106

107

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4.3: Runtimes and Message Sizes at varying of the constraint graph density p1.

● ●BC−DPOP AC−DPOP DPOP H−DPOP PH−DPOP

(b) Random Graphs: Varying p2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

100

103

104

105

●
●

● ●

●

●
●

●

● ●
●

●

●

●

● ●

(e) Random Graphs: Varying p2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

104

2.5 ⋅ 104

105

2.5 ⋅ 105

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4.4: Runtimes and Message Sizes at varying of the constraint tightness p2.

• On message sizes, BrC-DPOP uses smaller messages than AC-DPOP because BrC-DPOP prunes
more values due to its BrC propagation enforcement. H-DPOP uses smaller messages than BrC-
DPOP and AC-DPOP because agents in H-DPOP utilize more information about the neighbors’
constraints to prune values. In contrast, agents in BrC-DPOP and AC-DPOP only utilize information
on their own constraints to prune values. BrC-DPOP and AC-DPOP use smaller messages than PH-

4.2. Branch Consistency to Exploit Hard Constraints 63

● ●BC−DPOP AC−DPOP DPOP H−DPOP PH−DPOP

(c) RLFA: Varying Number of Agents

5 10 15 20 25 30 35 40 45 50 55

0.1

1

10

100

103

104

105

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

(f) RLFA: Varying Number of Agents

5 10 15 20 25 30 35 40 45 50 55

10

102

103

104

105

106

107

●

●

●

●

● ●

● ●
● ●

●

●

●

●

●

Figure 4.5: Runtimes and Message Sizes at varying of the number of agents A.

DPOP at large p2 values, highlighting the strength of the AC and BrC propagation phases compared
to the pruning techniques in PH-DPOP. Finally, they all use smaller messages than DPOP because
they all prune values while DPOP does not.

• On runtimes, BrC-DPOP is slightly faster than AC-DPOP because BrC-DPOP prunes more values
than AC-DPOP. Additionally, these results also indicate that the overhead of the BrC propagation
phase is relatively small. BrC-DPOP and AC-DPOP are faster than DPOP because they do not
need to perform operations on the pruned values. This also indicates that the overhead of the AC
propagation phase is small. In our experiments, the number of [AC] messages exchanged during the
AC propagation phase never exceeds 3|F| and is, on average, as small as |F|. DPOP is faster than
H-DPOP and PH-DPOP because they maintain and perform operations on CDDs, which are compu-
tationally very expensive. In contrast, BrC-DPOP maintains and performs operations on matrices,
which are more computationally efficient.

Distributed RLFA Problem: In these problems, we are given a set of links {L1, . . . , Lr}, each consisting
of a transmitter and a receiver. Each link must be assigned a frequency from a given set F . At the
same time the total interference at the receivers must be reduced below an acceptable level using as few
frequencies as possible. In our model, each transmitter corresponds to an agent (and a variable). The
domain of each variable consists of the frequencies that can be assigned to the corresponding transmitter.
The interference between transmitters are modeled as constraints of the form |xi−xj | > s, where xi and
xj are variables and s ≥ 0 is a randomly generated required frequency separation. We also assign a utility
value to each frequency taken by each agent, represented as a unary soft constraint, which represents a
preference for an agent to transmit at a given frequency.

For generating the constraint graphs, we vary |A| and fix the other parameters: |Di| = 6, p2 =

0.55, s ∈ {2, 3}. We also set the maximum number of neighbors for each agent to 3 in order to generate

64 4. Exploiting the Structure of DCOPs during Problem Solving

|A| 5 10 15 20 25 30 35 40 45 50 55

BrC-DPOP 1.00 1.00 1.00 1.00 1.00 0.97 0.52 0.78 0.73 0.70 0.51
AC-DPOP 1.00 1.00 1.00 1.00 1.00 0.39 0.11 0.30 0.15 0.15 0.19
H-DPOP 1.00 1.00 1.00 1.00 0.46 0.12 0.00 0.00 0.00 0.00 0.00

PH-DPOP 1.00 1.00 1.00 1.00 0.21 0.09 0.00 0.00 0.00 0.00 0.00
DPOP 1.00 1.00 1.00 1.00 1.00 0.67 0.23 0.35 0.23 0.29 0.19

Table 4.1: Percentage of Satisfiable Instances Solved

more satisfiable instances. Figure 4.5(c) shows the runtimes and Figure 4.5(f) shows the message sizes.
We omit results of an algorithm for a specific parameter if it fails to solve 50% of the satisfiable instances
for that parameter.

We observe trends that are similar to those in the earlier random graphs except that the message size of
H-DPOP is slightly larger than of those of BrC-DPOP. Therefore, as we have described in section 4.2.4,
it is possible for H-DPOP to prune fewer values despite using more information. Additionally, both
H-DPOP and PH-DPOP can only solve small problems and failed to solve some problems that DPOP
successfully solved. Table 4.1 tabulates the percentage of satisfiable problem instances solved by each
algorithm (the largest percentage in each parameter setting is shown in bold), where it is clear that BrC-
DPOP is more scalable than all its counterparts.

4.3 Distributed Large Neighborhood Search

In this section we describe the Distributed Large Neighborhood Search (D-LNS) framework, which aims
at providing an incomplete solution to solve DCOPs. D-LNS solves DCOPs by building on the strengths
of centralized LNS [109], a centralized meta-heuristic that iteratively explores complex neighborhoods
of the search space to find better candidate solutions. LNS has been shown to be very effective in solving
a number of optimization problems [41, 106]. While typical LNS approaches focus on iteratively refining
lower bounds of a solution, we propose a method that can iteratively refine both lower and upper bounds of
a solution, imposing no restrictions (i.e., linearity or convexity) on the objective function and constraints.
To illustrate the generality of the proposed framework we describe two distributed search algorithms,
DBR-DPOP and T-DBR, built within the D-LNS framework, and characterized by the ability to exploit
problem structure and offer low network usage—T-DBR provides also a low computational complexity
per agent. Our evaluation against representatives of search-based, inference-based, and region-optimal-
based incomplete DCOP algorithms shows that T-DBR converges faster to better solutions, provides
tighter solution quality bounds, and is more scalable.

Through the section, we will use the example DCOP shown in Figure 4.6 to illustrate the execution
of T-DBR on D-LNS, refining both upper and lower bounds of the solution found during the iterative
process. Fig. 4.6(a) shows the graph of a DCOP with agents a1, . . . , a4, each controlling a variable with
domain {0,1}. Fig. 4.6(b) shows a pseudo-tree (solid lines are tree edges, dotted lines are backedges).
Fig. 4.6(c) shows the utilities.

4.3. Distributed Large Neighborhood Search 65

x3

a4

x4

a2

x1

a1

x2

a3
a4

a1

a3

x3

x4

x1

a2

x2

0 0 10
0 1 0
1 0 2
1 1 0

x1 xj util

0 0 0
0 1 6
1 0 0
1 1 10

xj x4

j = 1,2,3
util

j = 2,3

(a) Constraint Graph (b) Pseudo-tree (c) Constraints

Figure 4.6: Example DCOP

4.3.1 Notation and Definitions

Given a DCOP P , in this section, we denote with Gk = 〈Xk, Ek〉, the subgraph of GP used in the
execution of our iterative algorithms, where Xk ⊆ X and Ek ⊆ EC .

Large Neighborhood Search. In (centralized) Large Neighborhood Search (LNS), an initial solution is
iteratively improved by repeatedly destroying it and repairing it. Destroying a solution means selecting
a subset of variables whose current values will be discarded. The set of such variables is referred to as
large neighborhood (LN). Repairing a solution means finding a new value assignment for the destroyed
variables, given that the other non-destroyed variables maintain their values from the previous iteration.

The peculiarity of LNS, compared to other local search techniques, is the (larger) size of the neigh-
borhood to explore at each step. It relies on the intuition that searching over a larger neighborhood allows
the process to escape local minima and find better candidate solutions.

4.3.2 DLNS Framework and Repair Algorithms

In this section, we introduce D-LNS, a general distributed LNS framework to solve DCOPs. Our D-LNS
solutions need to take into account factors that are critical for the performance of distributed systems,
such as network load (i.e., number and size of messages exchanged by agents) and the restriction that each
agent is only aware of its local subproblem (i.e., its neighbors and the constraints whose scope includes
its variables). Such properties make typical centralized LNS techniques unsuitable and infeasible for
DCOPs.

Algorithm 3 shows the general structure of D-LNS, as executed by each agent ai ∈ A. After ini-
tializing its iteration counter k (line 1), its current value assignment x0

i (done by randomly assigning
values to variables or by exploiting domain knowledge when available), and its current lower and up-
per bounds LB0

i and UB0
i of the optimal utility (line 2), the agent, like in LNS, iterates through the

66 4. Exploiting the Structure of DCOPs during Problem Solving

Algorithm 3: D-LNS

1 k ← 0;
2 〈x0

i ,LB0
i ,UB0

i 〉 ← VALUE-INITIALIZATION();
3 while termination condition is not met do
4 k ← k + 1;
5 zki ← DESTROY-ALGORITHM();
6 if zki = ◦ then xki ← NULL;
7 else xki ← xk−1

i 〈xki ,LBki ,UBki 〉 ← REPAIR-ALGORITHM(zki);
8 if not Accept (xki ,x

k−1
i) then xki ← xk−1

i

destroy and repair phases (lines 3-8) until a termination condition occurs (line 3). Possible termina-
tion conditions include reaching a maximum value of k, a timeout limit, or a confidence threshold
on the error of the reported best solution.

Destroy Phase. The result of this phase is the generation of a LN, which we refer to as LNk ⊆X, for
each iteration k. This step is executed in a distributed fashion, having each agent ai calling a DESTROY-
ALGORITHM to determine if its local variable xi should be destroyed (◦) or preserved (?), as indicated
by the flag zki (line 5). We say that destroyed (resp. preserved) variables are (resp. are not) in LNk. In a
typical destroy process, such decisions can be either random or made by exploiting domain knowledge.
For example, in a scheduling problem, one may choose to preserve the start times of each activity and
destroy the other variables. D-LNS allows the agents to use any destroy schema to achieve the desired
outcome. Once the destroyed variables are determined, the agents reset their values and keep the values
of the preserved variables from the previous iteration (line 6).

Repair Phase. The agents start the repair phase, which seeks to find new value assignments for the
destroyed variables, by calling a REPAIR-ALGORITHM (line 7). The goal of this phase is to find an
improved solution by searching over a LN. D-LNS is general in that it does not impose any restriction
on the way agents coordinate to solve this problem. We propose two distributed repair algorithms in the
next section, that provide quality guarantees and online bound refinements. Once the agents find and
evaluate a new solution, they either accept it or reject it (line 8). While most of the current incomplete
DCOP algorithms fail to guarantee the consistency of the solution returned w.r.t. the hard constraints of
the problem [91], D-LNS can accommodate consistency checks during the repair phase.

Distributed Bounded Repair

We now introduce the Distributed Bounded Repair (DBR), a general REPAIR algorithm framework that
iteratively refines the lower and upper bounds of the DCOP solution. Its general structure is illustrated in
the flow chart of Figure 4.7. At each iteration k, each DBR agent checks if its local variable was preserved
or destroyed. In the former case, the agent waits for the conditions to start the Bounding phase, which is
algorithm dependent. In the latter case the agent executes, in order, the following phases:

Relaxation Phase. Given a DCOP P , this phase constructs two relaxations of P , P̌ k and P̂ k, which
are used to compute, respectively, a lower and an upper bound on the optimal utility for P . Let Gk =

〈LNk, Ek〉 be the subgraph of GP in iteration k, where Ek = {(x, y) | (x, y)∈EC ;x, y ∈LNk} is the

4.3. Distributed Large Neighborhood Search 67

subset of edges of EC whose elements involve exclusively nodes in LNk. Both problem relaxations P̌ k

and P̂ k are solved using the same underlying relaxation graph G̃k = 〈LNk, Ẽk〉, computed from Gk,
where Ẽk⊆Ek depends on the algorithm adopted.

In the problem P̌ k, we wish to find a solution x̌k using

x̌k = argmax
x

F̌ k(x) (4.1)

= argmax
x

∑

f∈Ẽk
f(xi,xj) +

∑

f∈F, xf={xi,xj}
xi∈LNk, xj 6∈LNk

f(xi, x̌
k−1
j)

where x̌k−1
j is the value assigned to the preserved variable xj for problem P̌ k−1 in the previous iteration.

The first summation is over all functions listed in Ẽk, while the second is over all functions between
destroyed and preserved variables. Thus, solving P̌ k means optimizing over all the destroyed variables
given that the preserved ones take on their previous value, and ignoring the (possibly empty) set of edges
EC \Ẽk ∪ {(x, y) | (x, y)∈EC ;x∈LNk, y 6∈LNk} that are not part of the relaxed graph. This solution
is used to compute lower bounds during the bounding phase.

In the problem P̂ k, we wish to find a solution x̂k using

x̂k = argmax
x

F̂ k(x) = argmax
x

∑

f∈F

f̂k(xi,xj) (4.2)

where f̂k(xi,xj) is defined as:

f̂k(xi,xj)=

max
di∈Di,dj∈Dj

f(di, dj) if Γkf = ∅

max
{
F̃k

|Ẽk| , max
`∈Γ

k−1
f

f̂ `(x̂`i , x̂
`
j)
}

if f ∈ Ẽk

f̂k−1(x̂k−1
i , x̂k−1

j) otherwise

where F̃ k = maxx

∑
f∈Ẽk f(xi,xj), and Γkf is the set of past iteration indices for which the function f

was an edge in the relaxation graph. Specifically,

Γkf =
{
` | f ∈ Ẽ` ∧ 0 < ` ≤ k

}
(4.3)

Therefore, the utility of F̂ k(x̂k) is composed of three parts.

• The first part involves all functions that have never been part of Ẽk up to the current iteration,

• The second part involves all the functions optimized in the current iteration, and

• The third part involves all the remaining functions.

The utility of each function in the first part is the maximal utility over all possible pairs of value combi-
nations of variables in the scope of that function. The utility of each function in the second part is the
largest utility among the mean utility of the functions optimized in the current iteration (i.e., those in Ẽk),
and the utilities of such function optimized in a past iteration. The utility of each function in the third
part is equal to the utility assigned to such function in the previous iteration. In particular, imposing that
the edges optimized in the current iteration contribute at most equally (i.e., as the mean utility of F̃ k) to

68 4. Exploiting the Structure of DCOPs during Problem Solving

Figure 4.7: DBR Flow chart. The Solving phase illustrates the T-DBR algorithm’s solving phase.

the final utility of P̂ k allows us to not underestimate the solution upper bound within the iterative process
(see Lemma 3). In summary, solving P̂ k means finding the solution x̂k that maximizes F̂ k(x̂k). This
solution is used to compute upper bounds during the bounding phase.

Solving Phase. Next, DBR solves the relaxed DCOPs P̌ k and P̂ k using the equations above. At a
high-level, one can use any complete DCOP algorithm to solve P̌ k and P̂ k. Below, we describe two
inference-based DBR algorithms, defined over different relaxation graphs G̃k. Thus, the output of this
phase are the values for the agent’s local variable, x̌ki , x̂

k
i , associated to eq. (1) and (2).

Bounding Phase. Once the relaxed problems are solved, all DBR agents are ready to start the Bounding
phase. Such phase results in computing the lower and upper bounds based on the solutions x̌k and x̂k. As
we show in Theorems 8 and 9, Fg(x̌

k)≤Fg(x
∗)≤F̂ k(x̂k). Therefore, ρ = mink F̂

k(x̂k)
maxk Fg(x̌k)

is a guaranteed
approximation ratio for P with solution x = arg maxx̌k Fg(x̌

k).

The significance of this Repair framework is that it enables our D-LNS to iteratively refine both lower
and upper bounds of the solution, without imposing any restrictions on the form of the objective function
and of the constraints adopted. Below, we introduce two implementations of the DBR framework, both
summarized in the flow-chart of Figure 4.7, whose solving phase is shown in the dotted area.

4.3. Distributed Large Neighborhood Search 69

DBR-DPOP Algorithm

DBR-DPOP solves the relaxed DCOPs P̌ k and P̂ k over the relaxed graph G̃k = 〈LNk, Ek〉. Thus,
Ẽk =Ek, and solving problem P̌ k means optimizing over all the destroyed variables ignoring no edges
in Ek.

The DBR-DPOP solving phase uses DPOP [96], a complete inference-based algorithm composed of
two phases operating on a DFS pseudo-tree.

• In the utility propagation phase, each agent, starting from the leaves of the pseudo-tree, projects out
its own variable and sends its projected utilities to its parent. These utilities are propagated up the
pseudo-tree induced from G̃k until they reach the root. The hard constraints of the problem can be
naturally handled in this phase, by pruning all inconsistent values before sending a message to its
parent.

• Once the root receives utilities from all its children, it starts the value propagation phase, where it
selects the value that maximizes its utility and sends it to its children, which repeat the same process.
The problem is solved as soon as the values reach the leaves.

Note that the relaxation process may create a forest, in which case one should execute the algorithm
in each tree of the forest. As a technical note, DBR-DPOP solves the two relaxed DCOPs in parallel. In
the utility propagation, each agent computes two sets of utilities, one for each relaxed problem, and sends
them to its parent. In the value propagation phase, each agent selects two values, one for each relaxed
problem, and sends them to its children.

DBR-DPOP has the same worst case order complexity of DPOP, that is, exponential in the induced
width of the relaxed graph G̃k. Thus, we introduce another algorithm characterized by a smaller com-
plexity and low network load.

Tree-based DBR Algorithm

Tree-based DBR (T-DBR) defines the relaxed DCOPs P̌ k and P̂ k using a pseudo-tree structure T k =

〈LNk, ETk〉 that is computed from the subgraph Gk. Thus, Ẽk =ETk , and solving problem P̌ k means
optimizing over all the destroyed variables ignoring backedges. Its general solving schema is similar to
that of DPOP, in that it uses Utility and Value propagation phases; however, the different underlying relax-
ation graph adopted imposes several important differences. Algorithm 2 shows the T-DBR pseudocode.
We use the following notations: P kai , C

k
ai , PP

k
ai denote the parent, the set of children, and pseudo-parents

of the agent ai, at iteration k. The set of these items is referred to as Tk
ai , which is ai’s local view of

the pseudo-tree T k. We use “�” to refer to the items associated with the pseudo-tree T �. χ̌ai and χ̂ai
denote ai’s context (i.e., the values for each xj ∈ Nai) with respect to problems P̌ and P̂ , respectively.
We assume that by the end of the destroy phase (line 6) each agent knows its current context as well as
which of its neighboring agents has been destroyed or preserved. In each iteration k, T-DBR executes the
following phases:

Relaxation Phase. It constructs a pseudo-tree T k (line 9), which ignores, from G�, the destroyed vari-
ables as well as the functions involving these variables in their scopes. The construction prioritizes
tree-edges that have not been chosen in previous pseudo-trees over the others.

Solving Phase. Similarly to DPOP-DBR, T-DBR solving phase is composed of two phases operating on

70 4. Exploiting the Structure of DCOPs during Problem Solving

Algorithm 2: T-DBR(zki)

9 Tk
ai ← RELAXATION(zki)

10 UTIL-PROPAGATION(Tk
ai)

11 〈χ̌kai , χ̂kai〉 ← VALUE-PROPAGATION(Tk
ai)

12 〈LBki ,UBki 〉 ← BOUND-PROPAGATION(χ̌kai , χ̂
k
ai)

13 return 〈x̌ki ,LBki ,UBki 〉

Procedure UTIL-Propagation(Tk
ai)

14 receive UTILac(Ǔac
, Ûac

) from each ac ∈ Ckai
15 forall the values xi,xPkai

do
16 Ǔai(xi,xPkai

)← f(xi,xPkai
) +

∑

ac∈Ckai

Ǔac(xi) +
∑

xj 6∈LNk

f(xi, x̌
k−1
j)

17 Ûai(xi,xPkai
)← f(xi,xPkai

) +
∑

ac∈Ckai

Ûac(xi)

18 forall the values xPkai
do

19 〈Ǔ ′ai(xPkai
), Û ′ai(xPkai

)〉 ← 〈max
xi

Ǔai(xi,xPkai
),max

xi
Ûai(xi,xPkai

)〉

20 send UTILai(Ǔ
′
ai
, Û ′ai

) msg to Pkai

Function VALUE-Propagation(Tk
i)

21 if Pkai = NULL then
22 〈x̌ki , x̂ki 〉 ← 〈argmax

xi

Ǔai(xi), argmax
xi

Ûai(xi)〉

23 send VALUEai (x̌
k
i , x̂

k
i) msg to each aj ∈ Nai

24 forall the aj ∈ Nai do
25 receive VALUEaj (x̌

k
j , x̂

k
j) msg from aj

26 Update xj in 〈χ̌kai , χ̂kai〉 with 〈x̌kj , x̂kj 〉
27 else
28 forall the aj ∈ Nai do
29 receive VALUEaj (x̌

k
j , x̂

k
j) msg from aj

30 Update xj in 〈χ̌kai , χ̂kai〉 with 〈x̌kj , x̂kj 〉
31 if aj = Pkai then
32 〈x̌ki , x̂ki 〉 ← 〈argmax

xi

Ǔai(xi), argmax
xi

Ûai(xi)〉

33 send VALUEai (x̌
k
i , x̂

k
i) msg to each aj ∈ Nai

34 return 〈χ̌kai , χ̂kai〉

the relaxed pseudo-tree T k, and executed synchronously:

• Utility Propagation Phase. After the pseudo-tree T k is constructed (line 10), each leaf agent com-

4.3. Distributed Large Neighborhood Search 71

Procedure BOUND-Propagation(χ̌ki , χ̂
k
i)

35 receive BOUNDSac (LBkc ,UBkc) msg from each ac ∈ C�ai
36 LBki ← f(x̌ki , x̌

k
P�ai

) +
∑

aj∈PP�ai

f(x̌ki , x̌
k
j) +

∑

ac∈C�ai

LBkc

37 UBki ← f̂k(x̂i, x̂P�ai
) +

∑

aj∈PP�ai

f̂k(x̂i, x̂j) +
∑

ac∈C�ai

UBkc

38 send BOUNDSai (LBki ,UBki) msg to P�ai

putes the optimal sum of utilities in its subtree considering exclusively tree edges (i.e., edges in
ETk) and edges with destroyed variables. Each leaf agent computes the utilities Ǔai(xi,xPkai

) and

Ûai(xi,xPkai
) for each pair of values of its variable xi and its parent’s variable xPkai

(lines 15-17),

in preparation for retrieving the solutions of P̌ and P̂ , used during the bounding phase. The agent
projects itself out (lines 18-19) and sends the projected utilities to its parent in a UTIL message
(line 20). Each agent, upon receiving the UTIL message from each child, performs the same opera-
tions. Thus, these utilities will propagate up the pseudo-tree until they reach the root agent.

• Value Propagation Phase. This phase starts after the utility propagation (line 11) by having the root
agent compute its optimal values x̌ki and x̂ki for the relaxed DCOPs P̌ and P̂ , respectively (line 22).
It then sends its values to all its neighbors in a VALUE message (line 23). When its child receives
this message, it also compute its optimal values and sends them to all its neighbors (lines 31-33).
Thus, these values propagate down the pseudo-tree until they reach the leaves, at which point every
agent has chosen its respective values. In this phase, in preparation for the bounding phase, when
each agent receives a VALUE message from its neighbor, it will also update the value of its neighbor
in both its contexts χ̌kai and χ̂kai (lines 24-26 and 29-30).

Bounding Phase. Once the relaxed DCOPs P̌ and P̂ have been solved, the algorithm starts the bound
propagation phase (line 12). This phase starts by having each leaf agent of the pseudo-tree T � compute the
lower and upper bounds LBki and UBki (lines 36-37). These bounds are sent to its parent in T � (line 38).
When its parent receives this message (line 35), it performs the same operations. The lower and upper
bounds of the whole problem are determined when the bounds reach the root agent.

T-DBR Example Trace.

In order to elucidate the behavior of the proposed T-DBR algorithm we illustrate, in Figure 4.8, a running
example of the algorithm during the first two D-LNS iterations. It uses the DCOP of Figure 4.1. The
trees T 1 and T 2 are represented by bold solid lines (functions in ETk); all other functions are represented
by dotted lines. The preserved variables in each iteration are shaded gray, and the functions in which
they participate are represented by bold dotted lines. At each step, the resolution of the relaxed problems
involves the functions represented by bold lines. We recall that while solving P̌ accounts for the function
involving at least a destroyed variable, solving P̂ focuses solely on the functions in ETk (i.e., involving
exclusively destroyed variables). The nodes illustrating destroyed variables are labeled with red values
representing x̌ki ; nodes representing preserved variables are labeled with black values representing x̌k−1

i .
Each edge is labeled with a pair of values representing the utilities f̂k(x̌ki , x̌

k
j) (top) and f(x̌ki , x̌

k
j) (bot-

72 4. Exploiting the Structure of DCOPs during Problem Solving

8
10
_

8
6
_

8
10
_

8
6
_

k=0

10
0
_ 10

0
_

10
0
_

10
0
_ 10

10
_

0

01

0

x3

x4

x1

x2

LB = 10 UB = 50 LB = 32 UB = 46

k=1

10
10
_

10
6
_

10
0
_

0

01

1

x3

x4

x1

x2

k=2

LB = 38 UB = 42

10
6
_

0

00

1

x3

x4

x1

x2

Figure 4.8: D-LNS with T-DBR example trace.

tom) of the corresponding functions. The lower and upper bounds of each iteration are shown below.
When k = 0, each agent randomly assigns a value to its variable, which results in a solution with utility

Fg(x̌
0) = f(x̌0

1, x̌
0
2) + f(x̌0

1, x̌
0
3) + f(x̌0

1, x̌
0
4) + f(x̌0

2, x̌
0
4) + f(x̌0

3, x̌
0
4) = 0 + 10 + 0 + 0 + 0 = 10

to get the lower bound. Moreover, solving P̂ 0 yields a solution x̂0 with utility

F̂ 0(x̂0) = f̂0(x̂0
1, x̂

0
2)+f̂0(x̂0

1, x̂
0
3)+f̂0(x̂0

1, x̂
0
4)+f̂0(x̂0

2, x̂
0
4)+f̂0(x̂0

3, x̂
0
4) = 10+10+10+10+10 = 50,

which is the upper bound.

In the first iteration (k = 1), the destroy phase preserves x2, and thus x̌1
2 = x̌0

2 = 1. The algorithm
then builds the spanning tree with the remaining variables choosing f(x1, x3) and f(x3, x4) as a tree
edges. Solving P̌ 1 yields solution x̌1 with utility

F̌ 1(x̌1) = f(x̌1
1, x̌

1
3) + f(x̌1

3, x̌
1
4) + f(x̌1

1, x̌
1
2) + f(x̌1

2, x̌
1
4) = 10 + 6 + 0 + 10 = 26,

which results in a lower bound

Fg(x̌
1) = F̌ 1(x̌1) + f(x̌1

1, x̌
1
4) = 26 + 6 = 32.

Solving P̂ 1 yields solution x̂1 with utility

F̂ 1(x̂1) = f̂1(x̂1
1, x̂

1
2)+ f̂1(x̂1

1, x̂
1
3)+ f̂1(x̂1

1, x̂
1
4)+ f̂1(x̂1

2, x̂
1
4)+ f̂1(x̂1

3, x̂
1
4) = 10+8+10+10+8 = 46,

which is the current upper bound. Recall that the values for the functions in Ẽk, are computed as F̃
k(x)

|Ẽk| =
16
2 = 8.

Finally, in the second iteration (k = 2), the destroy phase retains x3 assigning it its value in the
previous iteration x̌2

3 = x̌1
3 = 0, and the repair phase builds the new spanning tree with the remaining

variables. Solving P̌ 2 and P̂ 2 yields solutions x̌3 and x̂3, respectively, with utilities

F̌ 2(x̌2) = 10 + 6 + 10 + 6 = 32,

which results in a lower bound
Fg(x̌

2) = 32 + 6 = 38,

and an upper bound
F̂ 2(x̂2) = 8 + 8 + 10 + 8 + 8 = 42.

4.3. Distributed Large Neighborhood Search 73

4.3.3 Theoretical Analysis

In this section, we provide a theoretical discussion on the bounds provided by our D-LNS framework with
the DBR repair algorithm. These results describe how D-LNS with DBR provides quality guarantees.
Additionally, we discuss the complexity analysis for the network load and the messages size of T-DBR,
as well as the agent’s complexity.

Theorem 8. For each LNk,
Fg(x̌

k) ≤ Fg(x
∗).

Proof. The result follows from that x̌k is an optimal solution of the relaxed problem P̌ whose functions
are a subset of F.

Lemma 3. For each k, ∑

f∈Ẽk
f̂(x̂ki , x̂

k
j) ≥

∑

f∈Ẽk
f(x∗i ,x

∗
j),

where x̂ki is the value assignment to variable xi when solving the relaxed DCOP P̂ and x∗i is the value
assignment to variable xi when solving the original DCOP P .

Proof. It follows that:

∑

f∈Ẽk
f̂(x̂ki , x̂

k
j) ≥

∑

f∈Ẽk
max

{
F̃ k

|Ẽk|
, f̂(x̂k−1

i , x̂k−1
j)

}
(by Definition of f̂)

≥
∑

f∈Ẽk

F̃ k

|Ẽk|

≥ F̃ k

=
∑

f∈Ẽk
f(x̂ki , x̂

k
j) (by Definition of F̃ k)

≥
∑

f∈Ẽk
f(x∗i ,x

∗
j).

The last step follows from that, in each iteration k, the functions associated with the tree edges in Ẽk are
solved optimally. Since their cost is maximized it is also greater than the optimal one.

Lemma 4. For each k, ∑

f∈Θk

f̂k(x̂ki , x̂
k
j) ≥

∑

f∈Θk

f(x∗i ,x
∗
j),

where Θk = {f ∈ F | Γkf 6= ∅} is the set of functions that have been chosen as edges of the relaxation
graph in a previous iteration.

74 4. Exploiting the Structure of DCOPs during Problem Solving

Proof. We prove it by induction on the iteration k. For ease of explanation we provide an illustration (on
the bottom right of the page) of the set of relevant edges optimized in successive iterations.

For k = 0, then Θ0 = ∅ and, thus, the statement vacuously holds. Assume the claim holds up to
iteration k − 1. For iteration k it follows that,

∑

f∈Θk

f̂k(x̂ki , x̂
k
j)

=
∑

f∈Θk-1

f̂k(x̂ki , x̂
k
j) +

∑

f∈Θk\Θk-1

f̂k(x̂ki , x̂
k
j)

=
∑

f∈Θk-1\Ẽk
f̂k(x̂ki , x̂

k
j) +

∑

f∈Θk-1∩Ẽk
f̂k(x̂ki , x̂

k
j) +

∑

f∈Θk\Θk-1

f̂k(x̂ki , x̂
k
j)

=
∑

f∈Θk-1\Ẽk
f̂k-1(x̂k-1

i , x̂k-1
j) +

∑

f∈Θk-1∩Ẽk
max

{
f̂k(x̂ki ,x̂

k
j), f̂k-1(x̂k-1

i , x̂
k-1
j)
}

+
∑

f∈Θk\Θk-1

f̂k(x̂ki , x̂
k
j)

(by definition of f̂k)

Since,
∑

f∈Θk-1\Ẽk
f̂k-1(x̂k-1

i , x̂k-1
j) +

∑

f∈Θk-1∩Ẽk
max

{
f̂k(x̂ki ,x̂

k
j), f̂k-1(x̂k-1

i , x̂
k-1
j)
}
≥
∑

f∈Θk-1

f̂k-1(x̂k-1
i , x̂k-1

j);

∑

f∈Θk\Θk-1

f̂k(x̂ki , x̂
k
j) +

∑

f∈Θk-1∩Ẽk
max

{
f̂k(x̂ki ,x̂

k
j), f̂k-1(x̂k-1

i , x̂
k-1
j)
}
≥
∑

f∈Ẽk
f̂k(x̂ki , x̂

k
j).

It follows:
∑

f∈Θk-1\Ẽk
f̂k-1(x̂k-1

i , x̂k-1
j) +

∑

f∈Θk-1∩Ẽk
max

{
f̂k(x̂ki ,x̂

k
j), f̂k-1(x̂k-1

i , x̂
k-1
j)
}

+
∑

f∈Θk\Θk-1

f̂k(x̂ki , x̂
k
j)

≥
∑

f∈Θk-1\Ẽk
f(x∗i ,x

∗
j) +

∑

f∈Θk-1∩Ẽk
max

{
f(x∗i ,x

∗
j), f(x∗i ,x

∗
j))
}

+
∑

f∈Θk\Θk-1

f(x∗i ,x
∗
j)

(by Lemma 3 and induction assumption)

≥
∑

f∈Θk

f(x∗i ,x
∗
j).

Lemma 4 ensures that the utility associated to the func-
tions optimized in the relaxed problems P̂ , up to iteration
k, is an upper bound for the evaluation of the same set of
functions, evaluated under the optimal solution for P . The
above proof relies on the observation that the functions in
Θk includes exclusively those ones associated with the opti-
mization of problems P̂ `, with ` ≤ k, and that the functions
over which the optimization process operates multiple times,
are evaluated with their maximal value observed so far.

4.3. Distributed Large Neighborhood Search 75

Theorem 9. For each LNk, F̂ k(x̂k) ≥ Fg(x
∗).

Proof. By definition of F̂ k(x), it follows that,

F̂ k(x) =
∑
f∈F f̂

k(x̂ki , x̂
k
j)

=
∑

f∈Θk

f̂k(x̂ki , x̂
k
j) +

∑

f 6∈Θk

f̂k(x̂ki , x̂
k
j)

=
∑

f∈Θk

f̂k(x̂ki , x̂
k
j) +

∑

f 6∈Θk

max
di,dj

f(di, dj) (by definition of f̂k)

≥
∑

f∈Θk

f(x∗i , x
∗
j) +

∑

f 6∈Θk

f(x∗i , x
∗
j) (by Lemma 4)

= Fg(x
∗)

which concludes the proof.

Corollary 4. An approximation ratio for the problem is

ρ =
mink F̂

k(x̂k)

maxk Fg(x̌k)
≥ Fg(x

∗)
maxk Fg(x̌k)

Proof. This result follows from maxk Fg(x̌
k) ≤ Fg(x

∗) (Theorem 8) and mink F̂
k(x̂k) ≥ Fg(x

∗)
(Theorem 9).

Theorem 10. In each iteration, T-DBR requires O(|F|) number of messages of size O(d), where d =

max
ai∈A

|Di|.

Proof. The number of messages required at each iteration is bounded by the Value Propagation Phase of
Algorithm 2, where each agent sends a message to each of its neighbors (lines 23 and 33). In contrast all
other phases use up to |A| messages (which are reticulated from the leaves to the root of the pseudo-tree
and vice-versa). The size of the messages is bounded by the Utility Propagation Phase, where each agent
(excluding the root agent) sends a message containing a value for each element of its domain (line 20).
All other messages exchanged contain two values (lines 23, 33, and 38). Thus the maximum size of the
messages exchanged at each iteration is at most d.

Theorem 11. In each iteration, the number of constraint checks of each T-DBR agent is O(d2), where
d= max

ai∈A
|Di|.

Proof. The number of constraint checks, performed by each agent in each iteration, is bounded by the
operations performed during the Util-Propagation Phase. In this phase, each agent (except the root agent)
computes the lower and upper bound utilities for each values of its variable xi and its parent’s variable
xPkai

(lines 16–17).

76 4. Exploiting the Structure of DCOPs during Problem Solving

4.3.4 Related Work

Due to the vast amount of resources and/or communication required to solve DCOP optimally, an in-
creasing amount of effort has been put by researchers to propose several incomplete DCOP solutions.
These can be grouped into three categories: search-based, inference-based, and region-optimal algo-
rithms, based on the processing technique adopted to explore the solution space. Incomplete search-based
algorithms (e.g., DSA [126], MGM [72]) are based on the use of incomplete search techniques to explore
the space of possible solutions. Incomplete inference-based algorithms (e.g., Max-Sum [31]) use solu-
tions inspired from dynamic programming and belief propagation techniques. Region-optimal algorithms
allow us to specify regions with a maximum size of k agents or t hops from each agent, and they optimally
solve the subproblem within each region. Unfortunately, several local search algorithms (e.g., DSA [126],
MGM [72]) and local inference algorithms (e.g., Max-Sum [31]) do not provide guarantees on the quality
of the solutions found. More recent developments, such as region-optimal algorithms [91, 117], Bounded
Max-Sum [104], and DaC algorithms [116, 54] alleviate this limitation. In region-optimal algorithms,
solution quality bounds are provided as a function of k or t. Bounded Max-Sum is an extension of Max-
Sum, which solves optimally an acyclic version of the DCOP graph, bounding its solution quality as a
function of the edges removed from the cyclic graph. DaC-based algorithms use Lagrangian decompo-
sition techniques to solve agent subproblems sub-optimally. Good quality assessments are essential for
sub-optimal solutions.

Aside from these incomplete algorithms, researchers have also developed extensions to complete
algorithms that trade solution quality for faster runtime. For example, complete search algorithms have
mechanisms that allow users to specify absolute or relative error bounds [81, 122]. Researchers have
also worked on non-iterative versions of inference-based incomplete DCOP algorithms, with and without
quality guarantees [104, 86, 95]. Such methods are, however, unable to refine the initial solution returned.
Finally, the algorithm that is the most similar to ours is LS-DPOP [98], which operates on a pseudo-tree
performing a local search. However, unlike D-LNS, LS-DPOP operates only in a single iteration, does
not change its neighborhood, and does not provide quality guarantees.

4.3.5 Experimental Evaluation

We evaluate the D-LNS framework against state-of-the-art incomplete DCOP algorithms, with and with-
out quality guarantees, where we choose representative search-, inference-, and region optimal-based
solution approaches. We select Distributed Stochastic Algorithm (DSA) as a representative of an incom-
plete search-based DCOP algorithm; Max-Sum (MS), and Bounded Max-Sum (BMS), as representative
of inference-based DCOP algorithms, and k- and t-optimal algorithms (KOPT, and TOPT), as representa-
tive of region optimal-based DCOP methods. All algorithms are selected based on their performance and
popularity. We run the algorithms using the following implementations: We use the FRODO framework
[68] to run MS, and DSA,5 we use the authors’ code of BMS [104], and the DALO framework [58] for
KOPT and TOPT. We run all algorithms using their default parameters, thus the number of iterations for
MaxSum, DSA, and K-,T-OPT is set to 500, 200, and 100, respectively. We use DSA-B with p = 0.6.
We systematically evaluate the runtime, solution quality and network load of the algorithms on binary
constraint networks with random, scale-free, and grid topologies, and we evaluate the ability of D-LNS
to exploit domain knowledge over distributed meeting scheduling problems.

5As a technical note, we implement DSA-B which required minimal changes from DSA-C, and readily available on FRODO.

4.3. Distributed Large Neighborhood Search 77

● ●DBR−DPOP T−DBR KOPT−2 KOPT−3 TOPT−1 DSA BMS MS

Time (ms)

N
or

m
al

iz
ed

 S
ol

ut
io

n
Q

ua
lit

y
(U

B
)

10 100 1000 5000 50000

1

0.95

0.9

0.8

0.75

0.5

0.25

0
●

●

●

●
●
●
●
●●
●

●

●●

Time (ms)

N
or

m
al

iz
ed

 S
ol

ut
io

n
Q

ua
lit

y
(L

B
)

10 100 1000 5000 50000

0

0.25

0.5

0.75

0.8

0.9

0.95

1

●
● ●

●

●

●

●

●●● ● ●●

●

●

●

●
●
●
●
●●
●

●

●●●●●
●●●

Figure 4.9: Normalized solution quality for the upper bounds and lower bounds, on regular grids at
varying of the maximum time allotted to the algorithms.

The instances for each topology are generated as follows:

• Random: We create an n-node network, whose density p1 produces bn (n− 1) p1c edges in total.
We do not bound the tree-width, which is based on the underlying graph.

• Scale-free: We create an n-node network based on the Barabasi-Albert model [5]. Starting from a
connected 2-node network, we repeatedly add a new node, randomly connecting it to two existing
nodes. In turn, these two nodes are selected with probabilities that are proportional to the numbers
of their connected edges. The total number of edges is 2 (n− 2) + 1.

• Grid: We create an n-node network arranged in a rectangular grid, where internal nodes are con-
nected to four neighboring nodes and nodes on the edges (resp. corners) are connected to two
(resp. three) neighbors.

We generate 50 instances for each topology, ensuring that the underlying graph is connected. The
utility functions are generated using random integer costs in [0, 100]. We set as default parameters,
|A|=20, |Di|=10 for all variables, and p1 =0.5 for random networks. We use a random destroy strategy
for the D-LNS algorithms. Algorithms runtimes are measured using the simulated runtime metric [111],
and we impose a timeout of 300s. Results are averaged over all instances and are statistically significant6

with p-values < 0.0001. The experiment are performed on an Intel i7 Quadcore 3.3GHz machine with
4GB of RAM.

Figure 4.9, 4.10, and 4.11 illustrates the convergence results (normalized upper and lower bounds) for,
respectively, regular grids , random graphs, and scale-free networks in increasing amounts of maximum
time allowed to the algorithms to complete. Figure 4.12, 4.13, and 4.14 illustrates the convergence results
(normalized upper and lower bounds) for, respectively, regular grids , random graphs, and scale-free
networks in increasing amounts of maximum network load allowed to the algorithms to complete. A
value of 0 (1), means worst (best) lower or upper bound w.r.t. the lower or upper bound reported within

6t-test performed with null hypothesis: DLNS-based algorithms find solution with better bounds than non-DLNS based ones.

78 4. Exploiting the Structure of DCOPs during Problem Solving

● ●DBR−DPOP T−DBR KOPT−2 KOPT−3 TOPT−1 DSA BMS MS

Time (ms)

N
or

m
al

iz
ed

 S
ol

ut
io

n
Q

ua
lit

y
(U

B
)

10 100 1000 5000 50000

1

0.95

0.9

0.8

0.75

0.5

0.25

0
●

●
●

●●●●●●●
● ●●●●

●●●●●●●●
●●●●●

●
●●
●●●●●
●●●

●●●●●●●●●●●●●●
●●

●●●●●●●●●●

●●●●●●●●●●

Time (ms)

N
or

m
al

iz
ed

 S
ol

ut
io

n
Q

ua
lit

y
(L

B
)

10 100 1000 5000 50000

0

0.25

0.5

0.75

0.8

0.9

0.95

1

● ● ●●●●●●●● ●

●●

●

●
●●

●
●

●
●●●●

●●●
● ●●●●

●●●●●●●●
●●●●●

●●●
●●●●●
●●

●
●●●●●●●●●●●●●●

●●
●●●●●●●●●●

●●●●●●●●●●

Figure 4.10: Normalized solution quality for the upper bounds and lower bounds, on random graphs at
varying of the maximum time allotted to the algorithms.

the pool of algorithms examined. All plots are in log-scale. These results show that the D-LNS-based
algorithms not only converge to better solutions, but converge to them faster, and with lower network load
requirements. In addition, they provide tighter upper bounds, and thus find better approximation ratios
compared to the other algorithms. The figures reporting the upper bounds do not illustrate MS and DSA,
as they do not provide bounded solutions. TOPT-1 timed-out for all instances on random and scale-free
networks. D-LNS with DPOP-DBR is slower than D-LNS with T-DBR, and it reaches a timeout for the
scale-free networks. This is due to the fact that the complexity of the former repair phase is exponential in
the induced width of the relaxed constraint graph, and scale-free exhibit higher induced widths than grids
and random network instances. In contrast, D-LNS with T-DBR does not encounter such limitations. The
main reason behind fast convergence to good solutions of the D-LNS algorithms is that, on average, about
half of the agents are destroyed at each iteration, thus reducing the search space significantly.

Table 4.2 reports the solution qualities of the different algorithms on random networks. We report
the approximation ratio ρ and the ratio ε of the best quality found by all algorithms versus its quality.
Best approximation ratios and quality ratios are shown in bold. The results show that D-LNS with DBR-
DPOP finds better approximation ratios ρ than those of the competing algorithms. However, it fails to
solve problems bigger than 20 agents. In contrast, D-LNS with T-DBR can scale to large problems better
than other algorithms. Similarly to the trends observed in the previous experiment, D-LNS with T-DBR
finds better solutions w.r.t. the other algorithms (i.e., better quality ratios ε and better approximation ratios
ρ for |A| > 20).

Distributed Meeting Scheduling. Many real-world problems model require the use of hard constraints,
to avoid considering infeasible solutions (see, e.g., http://www.csplib.org). We also evaluate the
ability of our D-LNS framework to exploit problem structure, exhibited in presence of domain-dependent
knowledge and hard constraints, and test its behavior on distributed meeting scheduling problems. In such
problems, one wishes to schedule a set of events within a time range. We use the time slots as variable
formulation [72], where events are modeled as decision variables. Meeting participants can attend dif-
ferent meetings, and have time preferences that are taken into account in the problem formulation. Each
variable can take on a value from the time slot range in [0, 100], that is sufficiently early to schedule the

http://www.csplib.org

4.3. Distributed Large Neighborhood Search 79

● ●DBR−DPOP T−DBR KOPT−2 KOPT−3 TOPT−1 DSA BMS MS

Time (ms)

N
or

m
al

iz
ed

 S
ol

ut
io

n
Q

ua
lit

y
(U

B
)

10 100 1000 5000 50000

1

0.95

0.9

0.8

0.75

0.5

0.25

0

Time (ms)

N
or

m
al

iz
ed

 S
ol

ut
io

n
Q

ua
lit

y
(L

B
)

10 100 1000 5000 50000

0

0.25

0.5

0.75

0.8

0.9

0.95

1

● ● ●●●●●●●● ● ●●●

●

●

●●●

Figure 4.11: Normalized solution quality for the upper bounds and lower bounds, on scale-free networks
at varying of the maximum time allotted to the algorithms.

● ●DBR−DPOP T−DBR KOPT−2 KOPT−3 TOPT−1 DSA BMS MS

Network Load

N
or

m
al

iz
ed

 S
ol

ut
io

n
Q

ua
lit

y
(U

B
)

10 100 1000 5000 50000

1

0.95

0.9

0.8

0.75

0.5

0.25

0 ●

●

●

●

●●●●●● ● ●●

Network Load

N
or

m
al

iz
ed

 S
ol

ut
io

n
Q

ua
lit

y
(L

B
)

10 100 1000 5000 50000

0

0.25

0.5

0.75

0.8

0.9

0.95

1

● ● ●●●●●●●● ● ●●●●
●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●
●
●
●
●●

●●●

●

●

●

●

●
●
●●

●
●

●
●●●●●●●●●

●●●

Figure 4.12: Normalized solution quality for the upper bounds and lower bounds, on regular grids at
varying of the maximum network load allotted to the algorithms.

|A| DBR-DPOP T-DBR BMS KOPT2 KOPT3 TOPT1 MaxSum DSA
ρ ε ρ ε ρ ε ρ ε ρ ε ρ ε ε ε

10 1.055 0.997 1.149 0.999 1.872 0.824 4.333 0.935 3.500 0.969 6.000 0.989 0.779 0.941
20 1.278 0.977 1.311 0.999 2.302 0.819 7.666 0.923 6.000 0.954 – 0.797 0.971
50 – 1.539 0.995 3.001 0.849 17.66 0.900 13.50 0.907 – 0.832 0.988

100 – 1.669 1.000 2.797 0.871 34.33 0.892 26.00 0.897 – 0.866 0.975
200 – 1.759 1.000 2.878 0.897 67.66 0.898 – – – 0.973

Table 4.2: Experimental results on random networks.

required participant for the required amount of time. The problem requires that no meetings sharing some
participants overlap. We generate the underlying constraint network using the random network model de-

80 4. Exploiting the Structure of DCOPs during Problem Solving

● ●DBR−DPOP T−DBR KOPT−2 KOPT−3 TOPT−1 DSA BMS MS

Network Load

N
or

m
al

iz
ed

 S
ol

ut
io

n
Q

ua
lit

y
(U

B
)

10 100 1000 5000 50000

1

0.95

0.9

0.8

0.75

0.5

0.25

0 ● ● ●●
●●

●
●●
●

●

●●

Network Load

N
or

m
al

iz
ed

 S
ol

ut
io

n
Q

ua
lit

y
(L

B
)

10 100 1000 5000 50000

0

0.25

0.5

0.75

0.8

0.9

0.95

1

● ● ●●●●●●●● ● ●●
●

●

●

●●●

● ● ●●●●
●
●●
●

●

●
●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

Figure 4.13: Normalized solution quality for the upper bounds and lower bounds, on random graphs at
varying of the maximum network load allotted to the algorithms.

Meetings: 20 50 100
% SAT TF (ms) % SAT TF (ms) % SAT TF(ms)

DK destroy 80.05 78 54.11 342 31.20 718
RN destroy 12.45 648 1.00 52207 0.00 –

KOPT3 4.30 110367 0.00 – – –

Table 4.3: Experimental results on meeting scheduling.

scribed earlier. We compare the repair phase T-DBR with both random (RN) destroy and domain-specific
knowledge (DK) destroy methods. The latter destroys the set of variables in overlapping meetings. Table
4.3 reports the percentage of satisfied instances reported (% SAT) and the time needed to find the first
satisfiable solution (TF), averaged over 50 runs. The domain-specific destroy method has a clear advan-
tage over the random one, being able to effectively exploit domain knowledge. All other local search
algorithm failed to report satisfiable solutions for any of the problems—only KOPT3 was able to find
some satisfiable solutions for 20 meetings.

4.4 Summary

This chapter introduced two DCOP solving strategies, Branch Consistency (BrC) and Distributed Large
Neighborhood Search (D-LNS), which adapt centralized reasoning techniques exploiting the structure of
DCOPs during the problem resolution phase, to enhance the DCOP resolution efficiency.

BrC is a type of consistency that applies to paths in pseudo-trees, and it is aimed to prune the search
space and to reduce the size of the messages exchanged among agents by actively exploiting the hard
constraints of the problem. Our experimental results show that when applied to DPOP such form of
consistency enforces a pruning that is more effective than that enforced by Arc Consistency. We experi-
mentally show that the resulting algorithm, called BrC-DPOP, can prune as much as a version of H-DPOP

4.4. Summary 81

● ●DBR−DPOP T−DBR KOPT−2 KOPT−3 TOPT−1 DSA BMS MS

Network Load

N
or

m
al

iz
ed

 S
ol

ut
io

n
Q

ua
lit

y
(U

B
)

10 100 1000 5000 50000

1

0.95

0.9

0.8

0.75

0.5

0.25

0

Network Load

N
or

m
al

iz
ed

 S
ol

ut
io

n
Q

ua
lit

y
(L

B
)

10 100 1000 5000 50000

0

0.25

0.5

0.75

0.8

0.9

0.95

1

● ● ●●●●●●●● ● ●●
●●
●●
●●
●●
●●●
●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●

Figure 4.14: Normalized solution quality for the upper bounds and lower bounds, on scale-free networks
at varying of the maximum network load allotted to the algorithms.

that limits its knowledge to the same amount as BrC-DPOP in a much smaller amount of time. We also
show that it can scale to larger problems than DPOP and H-DPOP. Therefore, these results confirm the
strengths of this approach, leading to enhanced efficiency and scalability.

While BrC has been applied to a complete algorithm, D-LNS is a framework that can be used to find
quality-bounded approximated solutions in DCOPs. Thus, it defines a DCOP incomplete algorithmic
framework. D-LNS is composed of a destroy phase, which selects a large neighborhood to search, and
a repair phase, which performs the search over the selected neighborhood. We introduce two novel
distributed repair phases, DBR-DPOP and T-DBR, built within the D-LNS framework, and characterized
by low network usage; additionally, T-DBR provides a low computational complexity per agent. Our
experimental results show that, using to its ability to exploit large neighbors, the D-LNS algorithms not
only converge to better solutions, compared to incomplete DCOP algorithms that are representative of
search-based, inference-based, and region-optimal-based approaches, but converge to them faster, and
with low network load requirements. The proposed results are significant—the anytime property, the
ability of refining online quality guarantees, and the ability to exploit domain-dependent structure, makes
D-LNS-based algorithms good candidates to solve a wide class of DCOP problems.

These two works, explore two orthogonal mechanisms which adapt centralized reasoning to the
DCOP resolution process, and were applied to produce a complete and an incomplete DCOP solving
approach. Therefore, these results validate the hypothesis that centralized reasoning can be adapted to
exploit the structure of DCOPs during problem solving to enhance the DCOP solving efficiency.

82 4. Exploiting the Structure of DCOPs during Problem Solving

5
Exploiting the use of Accelerated

Hardware in DCOP resolution

Typical Distributed Constraint Optimization problems are characterized by complex dynamics and in-
teractions among a large number of agents, which translate into hard combinatorial problems, posing
significant challenges from a computational point of view. To deal with such computational burden,
and in addition to the techniques discussed in the previous chapters, this chapter studies how to exploit
a novel class of massively parallel platforms that are based on the Single Instruction Multiple Thread
(SIMT) paradigm, and widely used in modern General Purpose Graphic Processing Units (GPGPU)s.
The wide availability of GPGPUs, and their contained costs, stimulated spread interest across several re-
search communities. Thus, in this chapter we propose the design and implementation of inference-based
and sampling-based algorithms which exploits GPGPU parallel architectures to speed up the resolution
of DCOPs.

The structure exploited by Dynamic Programming (DP)-based approaches in constructing solutions
makes it suitable to harness the SIMT paradigm. Thus, we proposed a DP-based algorithm that makes use
of parallel computation using GPGPUs to solve DCOPs [34]. Our results show significant improvements
in performance and scalability over other state-of-the-art DP-based solutions.

The explicit separation between the DCOP resolution process and the centralized agent problem,
enabled by our MVA DCOP decomposition (see Chapter 3), enables agents to solve their local problem
trough a variety of techniques. Motivated by the high complexity of the agent local problem, we proposed
the use of hierarchical parallel models, where each agent can (i) solve its local problem independently
from those of other agents, and (ii) parallelize the computations within its own local problem. Thus, in this
chapter we introduce a framework to solve independent local problems, in parallel, using sampling-based
algorithms, harnessing the multitude of computational units offered by GPGPUs. This approach led to
significant improvements in the runtime of the algorithm resolution. Therefore, these results validate our
hypothesis that one can exploit highly parallel computational models to enhance current DCOP solution
techniques through the design of algorithmic approaches that take advantage of such novel hardware
architectures.

This chapter is structured as follows: The next section introduces the motivations for the adoption
of accelerated hardware to solve DCOPs. In section 5.2 we describe a design and implementation of a
DP-based algorithm that exploits parallel computation using GPGPUs. section 5.3 introduces a GPGPU-

84 5. Exploiting the use of Accelerated Hardware in DCOP resolution

based Monte Carlo Markov Chain (MCMC) framework to solve the agents’ independent subproblems
exposed via the MVA DCOP decomposition. Therein, we detail the GPGPU implementations of Gibbs
and Metropolis-Hasting, two MCMC sampling algorithms. In each of the latter two sections we report
the description of the frameworks, a theoretical analysis on the relevant properties exposed by the two
solving techniques, and the experimental results. Finally, section 5.4 concludes the Chapter.

5.1 Motivations

5.1.1 DP-based Algorithms

The importance of Dynamic Programming (DP)-based approaches arises in several optimization fields
including constraint programming [2, 7]. For example, several propagators adopt DP-based techniques
to establish constraint consistency; for instance,

1. the knapsack constraint propagator proposed by Trick applies DP techniques to establish arc con-
sistency on the constraint [114];

2. the propagator for the regular constraint establishes arc consistency using a specific digraph repre-
sentation of the DFA, which has similarities to dynamic programming [94];

3. the context free grammar constraint makes use of a propagator based on the CYK parser that uses
DP to enforce generalized arc consistency [102].

The importance of DP arises also in several declarative constraint programming languages. For instance,
the language PICAT [129, 127] makes use of table constraints to implement DP-based resolution ap-
proaches [130, 128]

While DP approaches may not always be appropriate to solve (D)COPs, as their time and space re-
quirements may be prohibitive, they may be very effective in problems with particular structures, such
as problems where their underlying constraint graphs have small induced widths or distributed problems
where the number of messages is crucial for performance, despite the size of the messages. The struc-
ture used by DP-based approaches in constructing solutions makes it suitable to exploit a novel class of
massively parallel platforms that are based on the Single Instruction Multiple Thread paradigm—where
multiple threads may concurrently operate on different data, but are all executing the same instruction
at the same time. The SIMT-based paradigm is widely used in modern Graphical Processing Units for
general purpose parallel computing. We have applied such form of parallelism to enhance the resolution
efficiency of DP-based algorithms to solve COPs and DCOPs, resulting in a new framework, called GPU-
DBE and introduced in section 5.2. Crucially, agents within the GPU-DBE framework can effectively
make use of the power harnessed by the GPGPUs, resulting in enhanced running time and scalability.

5.1.2 Exploiting MVA Hierarchical Parallelism

Exploiting the use of MVA-based decompositions for DCOPs, we introduce a general framework, called
Distributed MCMC (DMCMC) which is based on the Distributed Pseudo-tree Optimization Procedure
(DPOP) algorithm [96] to allow each agent to solve its local sub-problem using Markov Chain Monte

5.2. Accelerating DPOP and BE resolution on GPGPUs 85

 x1 x2 Utilities
0 0 max(5+5, 8+8) = 16
0 1 max(5+20, 8+3) = 25
1 0 max(20+5, 3+8) = 25
1 1 max(20+20, 3+3) = 40

 x1 Utilities
0 max(5+16, 8+25) = 33
1 max(20+25, 3+40) = 45

(a) (b) (d)(c)

x3

1
0
0
0

x2 x3

1 0
0 0

 xi xj Utilities
0 0 5
0 1 8
1 0 20
1 1 3

for i < jx1

x2

x3

x1

x2

x3

Figure 5.1: Example (D)COP (a-c) and UTIL phase computations in DPOP (d).

Carlo (MCMC) sampling algorithms. The data independence property exposed by such sampling al-
gorithms, makes this framework suitable to effectively exploit SIMT-based parallelism, and we thus
use GPGPU hardware to parallelize and speed up the sampling process. In section 5.3 we demon-
strate the generality of this framework using two commonly used MCMC algorithms, the Gibbs [38]
and Metropolis-Hastings [53, 77] algorithms. Our experiments show that our framework is able to find
near-optimal solutions up to two orders of magnitude faster than MGM and MGM2 (two local search
DCOP algorithms).

5.2 Accelerating DPOP and BE resolution on GPGPUs

This section proposes a design and implementation of the GPU-based (Distributed) Bucket Elimina-
tion framework (GPU-DBE), a DP-based algorithm that exploits parallel computation using GPGPUs to
solve (D)COPs. Our proposal aims at employing GPGPU hardware to speed up the inference process of
DP-based methods, representing an alternative way to enhance the performance of DP-based constraint
optimization approaches. The underlying structure exploited by DP-based approaches in constructing
solutions allows us to fully utilize the power of the GPGPU hardware, exploring in parallel a large num-
ber of operations performed during the inference steps. Specifically, we focus on the parallelization of
the Bucket Elimination (BE) procedure [25], which is a DP-based algorithm for solving COPs, and of
the DPOP algorithm, which can be seen as a distributed version of BE, where agents exchange newly
introduced utility functions via messages. The effect of exploiting such type of accelerated-solutions pro-
vides significant advantages in terms of runtime and scalability, resulting in speedups up to two orders of
magnitude, with respect to an optimized sequential version of the same solver.

Throughout the section, we will use the example DCOP shown in Figure 5.1, to describe the behavior
of the inference process within BE and DPOP. Figure 5.1(a) shows the constraint graph of a simple COP
with three variables, x1, x2, and x3. The domain of each variable is the set {0, 1}. Figure 5.1(c) describes
the utility functions of the COP.

5.2.1 Notation and Definitions

We recall that θ denote a (D)COP solution, and introduce the following definitions:

86 5. Exploiting the use of Accelerated Hardware in DCOP resolution

Definition 14 (Projection). The projection of a utility function fi on a set of variables V ⊆ xi is a
new utility function fi|V : V → R+ ∪ {−∞}, such that for each possible assignment θ ∈ "xj∈V Dj ,
fi|V(θ) = max

σ∈Σ,σV=θ
fi(σxi).

In other words, fi|V is constructed from the tuples of fi, removing the values of the variable that do
not appear in V and removing duplicate values by keeping the maximum utility of the original tuples in
fi.

Definition 15 (Concatenation). Let us consider two assignments θ′, defined for variables V , and θ′′,
defined for variables W , such that for each x ∈ V ∩W we have that θ′(x) = θ′′(x). Their concatenation
is an assignment θ′ · θ′′ defined for V ∪W , such as for each x ∈ V (respectively x ∈ W) we have that
θ′ · θ′′(x) = θ′(x) (respectively θ′ · θ′′(x) = θ′′(x)).

We define two operations on utility functions:

• The aggregation of two functions fi and fj , is a function fi+fj : xi∪xj → R+∪{−∞}, such that
∀θ′ ∈ "xk∈xi Dk and ∀θ′′ ∈ "xk∈xj Dk, if θ′ · θ′′ is defined, then we have that (fi + fj)(θ

′ · θ′′)=

fi(θ
′) + fj(θ

′′).

• Projecting out a variable xj ∈ xi from a function fi, denoted as π−xj (fi), produces a new function
with scope xi \ {xj}, and defined as the projection of fi on xi \ {xj}, i.e., π−xj (fi)=fi|xir{xj}.

Bucket Elimination (BE)

BE [25, 26] is a dynamic programming based procedure that can be used to solve COPs. Algorithm 2
illustrates its pseudocode. Given a COP (X,D,C) and an ordering o = 〈x1, . . . , xn〉 on the variables
in X, we say that a variable xi has a higher priority with respect to variable xj if xi appears after xj in
o. BE operates from the highest to lowest priority variable. When operating on variable xi, it creates a
bucket Bi, which is the set of all utility functions that involve xi as the highest priority variable in their
scope (line 2). The algorithm then computes a new utility function f̂i by aggregating the functions in
Bi and projecting out xi (line 3). Thus, xi can be removed from the set of variables X to be processed
(line 4) and the new function f̂i replaces in C all the utility functions that appear in Bi (line 5). In our
example, BE operates, in order, on the variables x3, x2, and x1. When x3 is processed, the bucket B3

is {f13, f23}, and the f̂3 utility function is shown in Figure 5.1(d) top. The rightmost column shows the
values for x3 after its projection. BE updates the sets X = {x1, x2} and C = {f12, f̂3}. When x2 is
processed, B2 = {f12, f̂3} and f̂2 is shown in Figure 5.1(d) bottom. Thus, X = {x1} and C = {f̂2}.
Lastly, the algorithm processes x1, sets B1 ={f̂2}, and f̂1 contains one value combination σ∗=〈1, 0, 0〉,
which corresponds to an optimal solution to the problem.

The complexity of the algorithm is bounded by the time needed to process a bucket (line 3), which is
exponential in number of variables in the bucket.

Dynamic Programming Optimization Protocol (DPOP)

DPOP [96] is a dynamic programming based DCOP algorithm, introduced in section 2.1.4. Let us analyze
some details of the algorithm which were not discussed earlier, and that we will use to observe the
similarities between DPOP and BE.

5.2. Accelerating DPOP and BE resolution on GPGPUs 87

Algorithm 2: BE

39 for i← n downto 1 do
40 Bi={fj ∈ C | xi ∈ xj ∧ i = max{k | xk ∈ xj}};
41 f̂i=π−xi

(∑
fj∈Bi fj

)
;

42 X=X \ {xi};
43 C=(C ∪ {f̂i}) \Bi;

In the UTIL propagation, each DPOP-agent, starting from the leaves of the pseudo-tree, computes the
optimal sum of utilities in its subtree for each value combination of variables in its separator. The agent
does so by aggregating the utilities of its functions with the variables in its separator and the utilities
in the UTIL messages received from its child agents, and then projecting out its own variable. In our
example problem, agent a3 computes the optimal utility for each value combination of variables x1 and
x2 (Figure 5.1(d) top), and sends the utilities to its parent agent a2 in a UTIL message. When the root
agent a1 receives the UTIL message from each of its children, it computes the maximum utility of the
entire problem.

Observe that the UTIL propagation phase of DPOP emulates the BE process in a distributed con-
text [13]. In particular, given a pseudo-tree and its preorder listing o, the UTIL message generated by
each DPOP agent ai is equivalent to the aggregated and projected function f̂i in BE when xi is processed
according to the ordering o.

The complexity of DPOP is dominated by the UTIL propagation phase, which is exponential in the
size of the largest separator set sep(ai) for all ai∈A. The other two phases require a polynomial number
of linear size messages, and the complexity of the local operations is at most linear in the size of the
domain.

5.2.2 GPU-DBE

Our GPU-based (Distributed) Bucket Elimination framework, extends BE (respectively DPOP) by ex-
ploiting GPGPU parallelism within the aggregation and projection operations. These operations are re-
sponsible for the creation of the functions f̂i in BE (line 3 of Algorithm 1) and the UTIL tables in DPOP
(UTIL propagation phase), and they dominate the complexity of the algorithms. Thus, we focus on the
details of the design and the implementation relevant to such operations. Due to the equivalence of BE
and DPOP, we will refer to the UTIL tables and to the aggregated and projected functions f̂ of Algorithm
2, as well as variables and agents, interchangeably. Notice that the computation of the utility for each
value combination in a UTIL table is independent of the computation in the other combinations. The
use of a GPGPU architecture allows us to exploit such independence, by concurrently exploring several
combinations of the UTIL table, computed by the aggregation operator, as well as concurrently projecting
out variables.

Algorithm 2 illustrates the pseudocode, where we use the following notations: Line numbers in paren-
thesis denote those instructions required exclusively in the distributed case. Starred line numbers denote
those instructions executed concurrently by both the CPU and the GPGPU. The symbols← and⇔ denote
sequential and parallel (multiple GPU-threads) operations, respectively. If a parallel operation requires

88 5. Exploiting the use of Accelerated Hardware in DCOP resolution

Algorithm 2: GPU-(D)BE

(1) Generate pseudo-tree
2 GPU-INITIALIZE() ;
3 if Cai = ∅ then
4 UTILxi ⇔ PARALLELCALCUTILS() ;

(5) Send UTIL message (xi,UTILxi) to Pai ;

6 else
7 Activate UTILMessageHandler(·) ;

(8) Activate VALUEMessageHandler(·) ;

Procedure UTILMessageHandler(ak,UTILak)

(9) Store UTILak
10 if received UTIL message from each child ac ∈ Cai then
11 UTILai ⇔ PARALLELCALCUTILS() ;
12 if Pai = NULL then
13 d∗i ← CHOOSEBESTVALUE(∅);

(14) foreach ac ∈ Cai do
(15) VALUEai ← (xi, d

∗
i) ;

(16) Send VALUE message (ai,VALUEai) to ac ;

17 else Send UTIL message (ai,UTILai) to Pai

a copy from host (device) to device (host), we write
D←H
⇔ (

H←D
⇔). Host to device (respectively device to

host) memory transfers are performed immediately before (respectively after) the execution of the GPU
kernel. Algorithm 2 shows the pseudocode of GPU-(D)BE for an agent ai. Like DPOP, also GPU-(D)BE
is composed of three phases; the first and third phase are executed exclusively in the distributed version.
The first phase is identical to that of DPOP (line 1). In the second phase:

• Each agent ai calls GPU-INITIALIZE() to set up the GPGPU kernel. For example, it determines the
amount of global memory to be assigned to each UTIL table and initializes the data structures on the
GPGPU device memory (line 2). We will discuss it in details in the next section. The GPGPU kernel
settings are decided according to the shared memory requirements and the number of registers used
by the successive function call, so to maximize the number of blocks that can run in parallel.

• Each agent ai aggregates the utilities for the functions between its variables and its separator, projects
its variable out (line 4), and sends them to its parent (line 5). The MessageHandlers of lines 7 and 8
are activated for each new incoming message. The agent repeats this process each time it receives a
UTIL message from a child (lines 9-16).

By the end of the second phase (line 11), the root agent knows the overall utility for each values of its
variable xi. It chooses the value that results in the maximum utility (line 13). Then, in the distributed
version, it starts the third phase by sending to each child agent ac the value of its variable xi (lines 14-16).
These operations are repeated by every agent receiving a VALUE message (lines 18-22). This last phase

5.2. Accelerating DPOP and BE resolution on GPGPUs 89

Procedure VALUEMessageHandler(ak,VALUEak)

(18) VALUEai ← VALUEak
(19) d∗i ← CHOOSEBESTVALUE(VALUEai) ;
(20) foreach ac ∈ Cai do
(21) VALUEai ← {(xi, d∗i)} ∪ {(xk, d∗k) ∈ VALUEak | xk ∈ sep(ac)} ;
(22) Send VALUE message (ai,VALUEai) to ac ;

is not required in the centralized version, as the value assignment for each variable can be accessed by
the root agent directly.

GPGPU Data Structures

In order to fully utilize on the parallel computational power of GPGPUs, the data structures need to be
designed in such a way to limit the amount of information exchanged between the CPU host and the
GPGPU device, and in order to minimize the accesses to the (slow) device global memory (and ensure
that they are coalesced). To do so, each agent identifies the set of relevant static entities, i.e., information
required during the GPGPU computation, which does not mutate during the resolution process. The
static entities are communicated to the GPGPU once at the beginning of the computation. This allows
each agent running on a GPGPU device to communicate with the CPU host exclusively to exchange the
results of the aggregation and projection processes. The complete set of utility functions, the constraint
graph, and the agents ordering, all fall in such category. Thus, each agent ai stores:

• The set of utility functions involving exclusively xi and a variable in ai’s separator set: Si = {fj ∈
C | xi ∈ xj ∧ sep(ai) ∩ xj 6= ∅}. For a given function fj ∈ Si, its utility values are stored in an
array named gFuncj .

• The domain Di of its variable (for simplicity assumed to be all of equal cardinality).

• The set Cai of ai’s children.

• The separator sets sep(ai), and sep(ac), for each ac ∈ Cai .
The GPU-INITIALIZE() procedure of line 2, invoked after the pseudo-tree construction, stores the

data structures above for each agent on the GPGPU device. As a technical detail, all the data stored
on the GPGPU global memory is organized in mono-dimensional arrays, so as to facilitate coalesced
memory accesses. In particular, the identifier and scope of the functions in Si as well as identifiers and
separator sets of child agents in Cai are stored within a single mono-dimensional array. The utility values
stored in the rows of each function are padded to ensures that a row is aligned to a memory word—thus
minimizing the number of memory accesses.

GPU-INITIALIZE() is also responsible for reserving a portion of the GPGPU global memory to store
the values for the agent’s UTIL table, denoted by gUtilsi, and those of its children, denoted by gChUtilsc,
for each ac ∈ Cai . As a technical note, an agent’s UTIL table is mapped onto the GPGPU device to store
only the utility values, not the associated variables values. Its j-th entry is associated with the j-th
permutation of the variable values in sep(ai), in lexicographic order. This strategy allows us to employ
a simple perfect hashing to efficiently associate row numbers with variables’ values and vice versa. Note
that the agent’s UTIL table size grows exponentially with the size of its separator set; more precisely, after

90 5. Exploiting the use of Accelerated Hardware in DCOP resolution

Procedure ParallelCalcUtils()

23 if project on device then

24 gChUTILac
D←H
⇔ UTILac for all ac ∈ Cai ;

25 R← 0 ; UTILai ← ∅ ;
26 while R < |Di|sep(ai) do
27 if project on device then

28* UTIL′ai
H←D
⇔ GPU-AGGREGATE-PROJECT(R);

29 else

30* UTIL′ai
H←D
⇔ GPU-AGGREGATE(R);

31* UTIL′ai ← AGGREGATECH-PROJECT(ai,UTIL′ai ,UTILac) for all ac ∈ Cai ;

32* UTILai ← UTILai ∪ COMPRESS(UTIL′ai);
33 R← R+ |UTIL′ai | ;
34 return UTILai

projecting out xi, it has |Di|sep(ai) entries. However, the GPGPU global memory is typically limited to
a few GB (e.g., in our experiments it is 2GB). Thus, each agent, after allocating its static entities, checks
if it has enough space to allocate its children’s UTIL tables and a consistent portion (see next subsection
for details) of its own UTIL table. In this case, it sets the project on device flag to true, which signals
that both aggregate and project operations can be done on the GPGPU device.1 Otherwise it sets the flag
to false and bounds the device UTIL size table to the maximum storable space on the device. In this case,
the aggregation operations are performed only partially on the GPGPU device.

Parallel Aggregate and Project Operations

The PARALLELCALCUTILS procedure (executed in lines 4 and 11) is responsible for performing the
aggregation and projection operations, harnessing the parallelism provided by the GPGPU. Due to the
possible large size of the UTIL tables, we need to separate two possible cases and devise specific solutions
accordingly:

(a) When the device global memory is sufficiently large to store all ai’s children UTIL tables as well as
a significant portion of ai’s UTIL table2 (i.e., when project on device = true), both aggregation
and projection of the agent’s UTIL table are performed in parallel on the GPGPU. The procedure first
stores the UTIL tables received from the children of ai into their assigned locations in the GPGPU
global memory (lines 23-24). It then iterates through successive GPGPU kernel calls (line 28) until the
UTILai table is fully computed (lines 26-33). Each iterations computes a certain number of rows of the
UTILai table (R serves as counter).

(b) When the device global memory is insufficiently large to store all ai’s children UTIL tables as well as
a significant portion of ai’s UTIL table (i.e., when project on device = false), the agent alternates

1If the UTIL table of agent ai does not fit in the global memory, we partition such table in smaller chunks, and iteratively execute
the GPGPU kernel until all rows of the table are processed.

2In our experiments, we require that at least 1/10 of the UTIL table can be stored in the GPGPU. We experimentally observed
that a partitioning of the table in at most 10 chunks provides a good time balance between memory transfers and actual computation.

5.2. Accelerating DPOP and BE resolution on GPGPUs 91

the use of the GPGPU and the CPU to compute UTILai . The GPGPU is in charge of aggregating
the functions in Si (line 30), while the CPU aggregates the children UTIL table,3 projecting out xi.
Note that, in this case, the UTILai storage must include all combinations of values for the variables in
sep(xi) ∪ {xi}, thus the projection operation is performed on the CPU host. As in the previous case,
the UTILai is computed incrementally, given the amount of available GPGPU global memory.

Execute K2

Compress U1
Execute K1

Compress U2

Compute U1 Compute U2

…Copy

H D D H D H

Copy Copy

(Init)CPU
(Host)

GPU
(Device) …

Update Global Mem. Update Global Mem.

Figure 5.2: Concurrent computation between host and device.

To fully utilize on the use of the GPGPU, we exploit an additional level of parallelism, achieved by
running GPGPU kernels and CPU computations concurrently; this is possible when the UTILai table is
computed in multiple chunks. Figure 5.2 illustrates the concurrent computations between the CPU and
GPGPU. After transferring the children UTIL tables into the device memory (Init)—in case (a) only—the
execution of kernel K1 produces the update of the first chunk of UTILai , denoted by U1 in Figure 5.2,
which is transferred to the CPU host. The successive parallel operations are performed asynchronously
with respect to the GPGPU, that is, the execution of the j-th CUDA kernel Kj (j > 1), returns the
control immediately to the CPU, which concurrently operates a compression operation on the previously
computed UTIL′ai chunk (line 32), referred to as Uk−1 in Figure 5.2. For case (b), the CPU also exe-
cutes concurrently the AGGREGATECH-PROJECT of line 31. We highlight the concurrent operations by
marking with a ∗ symbol their respective lines in the procedure PARALLELCALCUTILS.

Technical Details: We now describe in more detail how we divide the workload among parallel blocks,
i.e., the mapping between the UTIL table rows and the CUDA blocks. A total of T =64 · k (1 ≤ k ≤ 16)
threads (a block) are associated to the computation of T permutations of values for sep(ai). The value k
depends on the architecture and it is chosen to maximize the number of concurrent threads running at the
same time. In our experiments, we set k= 3. The number of blocks is chosen so that the corresponding
aggregate number of threads does not exceed the total number of UTIL′ai permutations currently stored in
the device. Let h be the number of stream multiprocessors of the GPGPU. Then, the maximum number
of UTIL permutations that can be computed concurrently is M = h · T . In our experiments h= 14, and
thus, M = 2688. Figure 5.6 provides an illustration of the UTIL permutations computed in parallel on
GPGPU. The blocks Bi in each row are executed in parallel on different SMs. Within each block, a total
of (at most) 192 threads operate on as many entries of the UTIL table. Such number is bounded by the
maximum number of warps that can run in parallel, which in turn is dependent on the characteristic of
the hardware and of the kernel (e.g., the number of registers and the amount shared memory required by
the kernel play a key role).

The GPGPU kernel procedure is shown in lines 35-49. We surround line numbers with | · | to denote

3The CPU aggregates only those child UTIL table that could not fit in the GPGPU memory. Those that fit in memory are
integrated through the GPGPU computation as done in the previous point.

92 5. Exploiting the use of Accelerated Hardware in DCOP resolution

GPU Kernel

GPU Global Memory

B0 B1 B13

B14 B15 B29

…
…

SM0 SM1 SM13…
… … …

Th0

Th1

Th192

…

5 Related Work

Probably, i will move this section in the introduction

DP Algorithms: BE, CTE, DPOP, DCTE.
GPU-CP: Federico and Codognet (local search and CP).
GPU-DCOPs: Nando (sampling on GPU, maybe MVA with GPU).
[Solving knapsack problems on GPU]

6 Experimental Results

Unstructured Graphs:

Here the experiments on Random Graphs and Scale Free networks, at varying |X|,
(and p1 for the formers).

Distributed Crane Scheduling Problem:

Here the experiments on Grids Topology, at varying |X| for distributed crane
scheduling problems.

7 Conclusions and Future Work

max
d2Di

X

fj2Bi

fj(�
i
x = r0 ^ xi =d)

max
d2Di

X

fj2Bi

fj(�
i
x = r1 ^ xi =d)

max
d2Di

X

fj2Bi

fj(�
i
x = r192 ^ xi =d)

5 Related Work

Probably, i will move this section in the introduction

DP Algorithms: BE, CTE, DPOP, DCTE.
GPU-CP: Federico and Codognet (local search and CP).
GPU-DCOPs: Nando (sampling on GPU, maybe MVA with GPU).
[Solving knapsack problems on GPU]

6 Experimental Results

Unstructured Graphs:

Here the experiments on Random Graphs and Scale Free networks, at varying |X|,
(and p1 for the formers).

Distributed Crane Scheduling Problem:

Here the experiments on Grids Topology, at varying |X| for distributed crane
scheduling problems.

7 Conclusions and Future Work

max
d2Di

X

fj2Bi

fj(�
i
x = r0 ^ xi =d)

max
d2Di

X

fj2Bi

fj(�
i
x = r1 ^ xi =d)

max
d2Di

X

fj2Bi

fj(�
i
x = r192 ^ xi =d)

5 Related Work

Probably, i will move this section in the introduction

DP Algorithms: BE, CTE, DPOP, DCTE.
GPU-CP: Federico and Codognet (local search and CP).
GPU-DCOPs: Nando (sampling on GPU, maybe MVA with GPU).
[Solving knapsack problems on GPU]

6 Experimental Results

Unstructured Graphs:

Here the experiments on Random Graphs and Scale Free networks, at varying |X|,
(and p1 for the formers).

Distributed Crane Scheduling Problem:

Here the experiments on Grids Topology, at varying |X| for distributed crane
scheduling problems.

7 Conclusions and Future Work

max
d2Di

X

fj2Bi

fj(�
i
x = r0 ^ xi =d)

max
d2Di

X

fj2Bi

fj(�
i
x = r1 ^ xi =d)

max
d2Di

X

fj2Bi

fj(�
i
x = r192 ^ xi =d)

R+0

R+1

R+192

U’i
…

Figure 5.3: GPU kernel parallel computations.

Procedure GPU-Aggregate-Project(R)

|35| rid ← the thread’s entry index of UTIL′i;
|36| did ← the thread’s value index of Di ;
|37| 〈|θ, Si|, Cai , sep(xc)〉 ← ASSIGNSHAREDMEM() for all xc ∈ Cai
|38| θ ← DECODE(R+ rid) ;
|39| util ← −∞ ;
40 foreach did ∈ Di do
|41| utildid ← 0;
|42| foreach fj ∈ Si do
|43| ρj ← ENCODE(θxj | xi = did) ;
|44| utildid ← utildid + gFuncj [ρj] ;

45 foreach ac ∈ Cai do
46 ρc ← ENCODE(θsep(ac) | xi = did) ;
47 utildid ← utildid + gChUtilsc[ρc] ;

|48| util ← max(util , utildid) ;

|49| gUtilsi[rid]← util ;

parts of the procedure executed by case (b). The kernel takes as input the number R of the UTIL table
permutations computed during the previous kernel calls. Each thread identifies its entry index rid within
the table chunk UTIL′ai (line 35). It then assigns the shared memory allocated to local arrays to store
the static entities Si, Cai , and sep(ac), for each ac ∈Cai . In addition it reserves the space θ to store the
assignments corresponding to the UTIL permutation being computed by each thread, which is retrieved
using the thread entry index and the offset R (line 38). DECODE implements a minimal perfect hash
function to convert the entry index of the UTIL table to its associated variables value permutation. Each
thread aggregates the functions in Si (lines 42-44) and the UTIL tables of ai’s children (lines 45-47),
for each element of its domain (lines 40-48). The ENCODE routine converts a given assignments for
the variables in the scope of a function fj (line 43), or in the separator set of child ac (line 46), to the
corresponding array index, sorted in lexicographic order. The value for the variable xi within each input,
is updated at each iteration of the for loop. The projection operation is executed in line 48. Finally, the
thread stores the best utility in the corresponding position of the array gUtilsi

5.2. Accelerating DPOP and BE resolution on GPGPUs 93

The GPU-AGGREGATE procedure (called in line 30), is illustrated in lines 35-49—line numbers
surrounded by | · |. Each thread is in charge of a value combination in sep(ai) ∪ {xi}, thus, the fore-
ach loop of lines 40-48 is operated in parallel by |Di| threads. Lines 45-47 are not executed. The
AGGREGATECH-PROJECT procedure (line 31), which operates on the CPU, is similar to the GPU-
AGGREGATE-PROJECT procedure, except that lines 36-37, and 42-44, are not executed.

The proposed kernel has been the result of several investigations. We experimented with other levels
of parallelism, e.g., by unrolling the for-loops among groups of threads. However, these modifications
create divergent branches, which degrade the parallel performance. We experimentally observed that such
degradation worsen consistently as the size of the domain increases.

5.2.3 Theoretical Analysis

We now report some observation on the complexity, completeness, and correctness of our GPU-DBE,
which directly follow from the complexity, completeness and correctness of BE and DPOP.

Corollary 5. GPU-DBE requires the same number of messages as those required by DPOP, and it re-
quires messages of the same size as those required by DPOP.

Corollary 6. The UTIL messages constructed by each GPU-DBE agent are identical to those constructed
by each corresponding DPOP agent.

The above observations follow from the pseudo-tree construction and VALUE propagation GPU-DBE
phases, which are identical to those of DPOP. Thus, their corresponding messages and message sizes are
identical in both algorithms. Moreover, given a pseudo-tree, each DPOP/GPU-DBE agent computes the
UTIL table containing each combination of values for the variables in its separator set. Thus, the UTIL
messages of GPU-DBE and DPOP are identical.

Corollary 7. The memory requirements of GPU-(D)BE is, in the worst case, exponential in the induced
width of the problem (for each agent).

This observation follows from the equivalence of the UTIL propagation phase of DPOP and BE [13] and
from Corollary 6.

Corollary 8. GPU-(D)BE is complete and correct.

The completeness and correctness of GPU-(D)BE follow from the completeness and correctness of BE
[25] and DPOP [96].

5.2.4 Related Work

The use of GPGPUs to solve difficult combinatorial problems has been explored by several proposals
in different areas of constraint solving and optimization [21]. For instance, Meyer et al. [65] proposed
a multi-GPGPU implementation of the simplex tableau algorithm which relies on a vertical problem
decomposition to reduce communication between GPGPUs. In constraint programming, Arbelaez and
Codognet [3] proposed a GPU-based version of the Adaptive Search that explores several large neigh-
borhoods in parallel, resulting in a speedup factor of 17. Campeotto et al. [16] proposed a GPU-based

94 5. Exploiting the use of Accelerated Hardware in DCOP resolution

framework that exploits both parallel propagation and parallel exploration of several large neighborhoods
using local search techniques, leading to a speedup factor of up to 38. The combination of GPGPUs with
dynamic programming has also been explored to solve different combinatorial optimization problems.
For instance, Boyer et al. [12] proposed the use of GPGPUs to compute the classical DP recursion step
for the knapsack problem, which led to a speedup factor of 26. Pawłowski et al. [90] presented a DP-
based solution for the coalition structure formation problem on GPGPUs, reporting up to two orders of
magnitude of speedup. Differently from other proposals, our approach aims at using GPGPUs to exploit
SIMT-style parallelism from DP-based methods to solve general COPs and DCOPs.

5.2.5 Experimental Evaluation

We compare our centralized and distributed versions of GPU-(D)BE with BE [25] and DPOP [96] on
binary constraint networks with random, scale-free, and regular grid topologies. The instances for each
topology are generated as follows:

• Random: We create an n-node network, whose density p1 produces bn (n− 1) p1c edges in total.
We do not bound the tree-width, which is based on the underlying graph.

• Scale-free: We create an n-node network based on the Barabasi-Albert model [5]: Starting from a
connected 2-node network, we repeatedly add a new node, randomly connecting it to two existing
nodes. In turn, these two nodes are selected with probabilities that are proportional to the numbers
of their connected edges. The total number of edges is 2 (n− 2) + 1.

• Regular grid: We create an n-node network arranged as a rectangular grid, where each internal
node is connected to four neighboring nodes, while nodes on the grid edges (respectively corners)
are connected to two (respectively three) neighboring nodes.

We generate 30 instances for each topology, ensuring that the underlying graph is connected. The utility
functions are generated using random integer costs in [0, 100], and the constraint tightness (i.e., ratio of
entries in the utility table different from −∞) p2 is set to 0.5 for all experiments. We set as default
parameters, |A|= |X|=10, |Di|=5 for all variables, and p1 =0.3 for random networks, and |A|= |X|=
9 for regular grids. Experiments for GPU-DBE are conducted using a multi-agent DCOP simulator,
that simulates the concurrent activities of multiple agents, whose actions are activated upon receipt of a
message. We use the publicly-available implementation of DPOP available in the FRODO framework
v.2.11 [69], and we use the same framework to run the BE algorithm, in a centralized setting.

Since all algorithms are complete, our focus is on runtime. Performance of the centralized algorithms
are evaluated using the algorithm’s wallclock runtime, while distributed algorithms’ performances are
evaluated using the simulated runtime metric [111]. We imposed a timeout of 300s of wallclock (or
simulated) time and a memory limit of 32GB. Results are averaged over all instances and are statisti-
cally significant with p-values < 1.638 e−12.4 These experiment are performed on an AMD Opteron
6276, 2.3GHz, 128GB of RAM, which is equipped with a GPGPU device GeForce GTX TITAN with 14

multiprocessors, 2688 cores, and a clock rate of 837MHz.

4t-test performed with null hypothesis: GPU-based algorithms are faster than non-GPU ones.

5.2. Accelerating DPOP and BE resolution on GPGPUs 95

● ● BE GPU−BE DPOP GPU−DBE

(a) Random Graphs (b) Scale-free Networks (c) Regular Grids

Number of Variables

R
un

tim
e

(s
ec

)

0.01

0.1

1

10

50

5 10 15 20 25

●

●

●

●

●

Number of Variables
R

un
tim

e
(s

ec
)

0.1

1

10

50

10 20 30 40 50

●

●

●

●

●

Number of Variables

R
un

tim
e

(s
ec

)

0.01

0.1

1

10

9 25 36 49 64 81 100

●
●

●

●

●

●

●

●

Number of Agents

S
im

ul
at

ed
 R

un
tim

e
(s

ec
)

0.01

0.1

1

10

50

5 10 15 20 25

●

●

●

●

●

Number of Agents

S
im

ul
at

ed
 R

un
tim

e
(s

ec
)

0.1

1

10

50

10 20 30 40 50

●

●

●

●

●

Number of Agents

S
im

ul
at

ed
 R

un
tim

e
(s

ec
)

0.01

0.1

1

10

9 25 36 49 64 81 100

●

●

●

●

●

●

●

●

Figure 5.4: Runtimes for COPs (top) and DCOPs (bottom) at varying number of variables/agents.

Figure 5.4 illustrates the runtime, in seconds, for random (a), scale-free (b), and regular grid (c)
topologies, varying the number of variables (respectively agents) for the centralized (respectively dis-
tributed) algorithms. The centralized algorithms (BE and GPU-BE) are shown at the top of the figure,
while the distributed algorithms (DPOP and GPU-DBE) are illustrated at the bottom. All plots are in
log-scale. We make the following observations:

• The GPU-based DP-algorithms (for both centralized and distributed cases) are consistently faster
than the non-GPU-based ones. The speedups obtained by GPU-BE vs. BE are, on average, and min-
imum (showed in parenthesis) 69.3 (16.1), 34.9 (9.5), and 125.1 (42.6), for random, scale-free, and
regular grid topologies, respectively. For the distributed algorithms, the speedups obtained by GPU-
DBE vs. DPOP are on average (minimum) 44.7 (14.7), 22.3 (8.2), and 124.2 (38.8), for random,
scale-free, and regular grid topologies, respectively.

• In terms of scalability, the GPU-based algorithms scale better than the non-GPU-based ones. In
addition, their scalability increases with the level of structure exposed by each particular topology.
On random graphs, which have virtually no structure, the GPU-based algorithms reach a timeout for
instances with small number of variables (25 variables—compared to 20 variables for the non-GPU-
based algorithms). On scale-free networks, the GPU-(D)BE algorithms can solve instances up to 50

variables,5 while BE and DPOP reach a timeout for instances greater than 40 variables. On regular
grids, the GPU-based algorithms can solve instances up to 100 variables, while the non-GPU-based
ones, fail to solve any instance with 36 or more variables.
We relate these observations to the size of the separator sets and, thus, the size of the UTIL tables
that are constructed in each problem. In our experiments, we observe that the average sizes of the
separator sets are consistently larger in random graphs, followed by scale-free networks, followed
by regular grids.

• Finally, the trends of the centralized algorithms are similar to those of the distributed algorithms: The

5With 60 variables, we reported 12/30 instances solved for GPU-(D)BE.

96 5. Exploiting the use of Accelerated Hardware in DCOP resolution

(a) Random Graphs (p1) (b) Random Graphs (domains) (c) Regular Grids (domains)

Graph Density (p1)

R
un

tim
e

(s
ec

)

0.01

0.05
0.1

0.5
1

5
10

0.2 0.4 0.6 0.8 1.0

● ● ●

●
●

●
●

●
●

Domains Size

R
un

tim
e

(s
ec

)

0.01

0.05
0.1

0.5
1

5
10

5 20 40 60 80 100

●

●

●

●

●

●
●

Domains Size

R
un

tim
e

(s
ec

)

0.05
0.1

0.5
1

5
10

5 20 40 60 80

●
●

●

●

●

●

Graph Density (p1)

S
im

ul
at

ed
 R

un
tim

e
(s

ec
)

0.01

0.05
0.1

0.5
1

5
10

0.2 0.4 0.6 0.8 1.0

● ● ●

●

●

●

●

●
●

Domains Size

S
im

ul
at

ed
 R

un
tim

e
(s

ec
)

0.01

0.05
0.1

0.5
1

5
10

5 20 40 60 80 100

●

●

●

●

●

●

●

Domains Size

S
im

ul
at

ed
 R

un
tim

e
(s

ec
)

0.05
0.1

0.5
1

5
10

5 20 40 60 80

●

●

●

●

●

●

Figure 5.5: Runtimes for COPs (top) and DCOPs (bottom) at varying number of variables/agents.

simulated runtimes of the DCOP algorithms are consistently smaller than the wallclock runtimes of
the COP ones.

Figure 5.5 illustrates the behavior of the algorithms when varying the graph density p1 for the random
graphs (a), and the domains size for random graphs (b) and regular grids (c). As for the previous experi-
ments, the centralized (respectively distributed) algorithms are shown on the top (respectively bottom) of
the figure. We can observe:

• The trends for the algorithms runtime, when varying both p1 and domains size, are similar to those
observed in the previous experiments.

• GPU-(D)BE achieves better speed-up for smaller p1 (Figure 5.4 (a)). The result is explained by
observing that small p1 values correspond to smaller induced width of the underlying constraint
graph. In turn, for small p1 values, GPU-(D)BE agents construct smaller UTIL tables, which in-
creases the probability of performing the complete inference process on the GPU, through the
GPU-AGGREGATE-PROJECT procedure. This observation is also consistent with what observed
in the previous experiments in terms of scalability.

• GPU-(D)BE achieves greater speedups in presence of large domains. This is due to the fact that large
domains correspond to large UTIL tables, enabling the GPU-based algorithms to exploit a greater
amount of parallelism, provided that the UTIL tables can be stored in the global memory of the
GPGPU.

5.3 Accelerating MVA-based algorithm on GPGPUs

In Chapter 3, we introduced the MVA decomposition for DCOPs with multi-variable agents. Such de-
composition exploits co-locality of each agent’s variables to enable a separation between the agents’ local
subproblems and the DCOP global problem. In addition, the MVA decomposition facilitates the use of
a hierarchical parallel model, as the whole DCOP can be solved asynchronously, and each individual
agent’s subproblem can be solved exploiting parallelism. In this section we explore centralized solving

5.3. Accelerating MVA-based algorithm on GPGPUs 97

sampling-based algorithms, which benefit form the use of GPGPUs, and integrate them within the MVA
DCOP framework.

The use of hierarchical parallel solutions is motivated by the observation that the search for the best
local solution for each row of the MVA TABLE is independent of the search for another row and, as
such, they can be performed in parallel (see section 3.2). This observation finds a natural fit for SIMT
processing and, therefore, in addition to the CPU versions of Gibbs sampling, detailed in section 3.2.3,
we provide its GPGPU counterpart, and propose a new framework which can handle general MCMC
sampling algorithms, accelerated through the use of GPGPUs. The use of GPGPUs allows us to speed up
the local optimization process and, consequently, reduces the overall DCOP solving time.

5.3.1 Notation and Definitions

In this section, we first give some background on Markov Chains and introduce general properties that
need to be satisfied by Markov chains to guarantee convergence to a stationary distribution. We then
define the objective of Markov Chain Monte Carlo (MCMC) algorithms to our purpose. Finally, we
provide a mapping from a Maximum a Posteriori (MAP) estimation problem to a Distributed Constraint
Optimization Problem (DCOP) using general assumptions from a broad class of MCMC algorithms.

Markov Chains

Definition 16 (Markov chain). A Markov chain is a collection of random variables Z = (z0, z1, . . . , zt, . . .),
with zt ∈ D ⊆ R having the property that, given the present, the future is conditionally independent of
the past. Formally,

P (zt+1 = s | z1 = s1, z
2 = s2, . . . , z

t = st) = P (zt+1 = s | zt = st),

if both conditional probabilities are well defined, i.e. if P (z1 = s1, . . . , z
t = st) > 0.

The possible values of si form a countable set S called the state space of the chain.

We now introduce the structural properties that are required for a Markov chain to guarantee conver-
gence to a stationary distribution π.

Let Z = (z0, z1, . . . , zt, . . .), with zt ∈ D ⊆ R be a Markov chain with finite state space S =

{s1, s2, . . . , sL} and a L × L transition matrix T whose entries are all non-negative and such that for
each state si ∈ S,

∑
sj∈S Tij = 1, which defines the probability of transiting from one state to another as

P (zt+1 = sj | zt = si) = Tij .

We denote with Tm the probability of moving from a state z0 to a state zm in m time steps.

Definition 17 (Irreducibility). A Markov chain is said to be irreducible if it is possible to reach any state
to any other using only transitions of positive probability. Formally,

∀si, sj ∈ S,∃m <∞ . P (zt+m = sj | zt = si)

for a given instance t.

98 5. Exploiting the use of Accelerated Hardware in DCOP resolution

Definition 18 (Periodicy). A state si ∈ S has a period k if any return of the chain in it is possible with
multiple of k time steps. The period of a state is defined as

k = gcd{t : P (zt = si | z0 = si) > 0}

where gcd is the greatest common divisor. A state is said to be aperiodic if k = 1, that is, visits of the
Markov chain to such state can occur at irregular times: P (zt = si | z0 = si) > 0. A Markov chain is
said to be aperiodic if every state in S is aperiodic.

Note that for an irreducible Markov chain, if at least one state is aperiodic, then the whole Markov
chain is aperiodic.

Definition 19 (Reaching Time). The reaching time τs of a state s ∈ S is the first (positive) time at which
a chain visits that state. Formally,

τs := min{t ≥ 1 | zt = s}.

Lemma 5. For any states si and sj of an irreducible Markov chain, the expected first return time for a
state sj from a state si occurs in a finite amount of steps, that is

Esj (τsi) <∞.

Lemma 6. Given a Markov chain defined in a finite state space S, with transition matrix P, and for a
given initial state of the chain z0 = s0, if P is irreducible and aperiodic, then

∃t <∞,∀m ≥ t : s0 T
m = π

and π is unique. Moreover, for all s ∈ S, π(s) > 0 and

π(s) =
1

Es(τs)
.

The above lemma expresses that given enough time, the chain converges to a unique stationary distri-
bution π.

Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) sampling algorithms are commonly used to solve the Maximum a
Posteriori (MAP) probability estimation problem—a mode of the posterior distribution—once the prob-
ability distribution has converged to its stationary point. Suppose we have a joint probability distribution
π(z) over n variables, with z=z1, . . . , zn, and zi ∈ R, which we are interested to approximate. Sampling
algorithms are often used to examine posterior distributions as they provide ways of generating samples
with the property that the empirical distribution of the samples approximate the posterior distribution π. It
is not often the case that one can sample directly from the posterior distribution obtaining an independent
and identically distributed (i.i.d.) sample from π. When sampling directly from the posterior distribution
is difficult, due to the high dimensionality or because computing the posterior may be computationally
intense, one can use a proposal distribution q which approximates the posterior π up to some normal-
izing constant, and performs a dependent sample, such as the sample path of a Markov chain. MCMC
algorithms generate a sample path from a Markov chain that has π as its stationary distribution.

5.3. Accelerating MVA-based algorithm on GPGPUs 99

Algorithm 2: METROPOLIS-HASTING(z)

50 z(0) ← INITIALIZE(z)

51 for t = 1 to T do
52 z∗ ← SAMPLE(q(z∗ | z(t−1)))

53 z(t)←
{

z∗ with p=min(1, π̃(z∗)q(z(t−1),z∗)
π̃(z(t−1))q(z∗,z(t−1))

)

z(t−1) with 1−p

54 for i = 1 to n do
55 zti ← SAMPLE(1

Zπ
π̃(zi | zt1, . . . , zti−1, z

t−1
i+1 , . . . , z

t−1
n))

In more details, suppose that it is easy to evaluate π(z) for any given z up to some normalizing
constant Zπ , such that: π(z) = 1

Zπ
π̃(z), where π̃(z) can be easily computed but Zπ may be unknown or

hard to evaluate. In order to draw the samples z to be fed to π̃(·), we use a proposal distribution q(z|z(τ)),
from which we can easily generate samples, each depending on the current state z(τ) of the process. The
latter can be interpreted as saying that when the process is in the state z(τ), we can generate a new state z

from q(z | z(τ)). The proposal distribution is thus used to generate a sequence of samples z(1), z(2), . . .,
which forms a Markov chain.

MCMC Methods

Let us describe two popular MCMC algorithm—Gibbs [38] and Metropolis-Hastings [53, 77].

Algorithm 2 shows the pseudocode of the Metropolis-Hastings algorithm. It first initializes z(0) to any
arbitrary value of the variables z1, . . . , zn (line 1). Then, it iteratively generates a candidate z∗ for z(t)

by sampling from the proposal distribution q(z∗ | z(t−1)) (line 3). The candidate sample is then accepted
with probability p defined in line 4. If the candidate sample is accepted, then z(t) = z∗, otherwise z(t−1)

is left unchanged. This process continues for a fixed number of iterations or until convergence [103] is
achieved.

The Gibbs sampling algorithm is a special case of the Metropolis-Hastings algorithm, where line
3 is replaced by lines 5-6. Additionally, note that Gibbs requires the computation of the normalizing
constant Zπ while Metropolis-Hasting does not, as the calculation of the proposal distribution does not
require that information. This is desirable when the computation of the normalizing constant becomes
prohibitive (e.g., with increasing problem dimensionality).

Maximum A-Posteriori to DCOP Mapping

Recently, Nguyen et al. [84] has shown that DCOPs can be mapped to MAP estimation problems. Thus,
MCMC algorithms can be used to solve DCOPs as well. We now show how to extend this mapping to
the general case of multivariable DCOP functions.

Consider a MAP problem on a Markov Random Field (MRF). An MRF is a set of random variables
having the Markov property—the conditional probability distribution of future states of the process do

100 5. Exploiting the use of Accelerated Hardware in DCOP resolution

not depends on other states other than the current one—and it can be described by an undirected graph
(V,E). Formally an MRF is defined by

• a set of random variables z = {zi | ∀i ∈ V }, where each random variable zi is defined over a finite
domain Di. Each random variable zi is visualized through a node i ∈ V .

• A set of potential functions θ = {θi(zk) |zk ∈ Ci}, where Ci refers to a set of nodes of V denoting
a clique which includes node i.

Let the joint probability distribution π(zk = dk : zk ∈ Ci) be defined as exp[θi(zk | zk = dk ∈ Ci)]. For
ease of presentation we denote as π(zk : zk ∈ Ci) the joint probability of the random variables zk ∈ Ci
and mean π(zk = dk : zk ∈ Ci).

A full-joint distribution of z has the probability:

π(z) =
1

Z

∏

Ci∈C

exp [θi(zk : zk ∈ Ci)] (5.1)

=
1

Z
exp

[∑

Ci∈C

θi(zk : zk ∈ Ci)
]

(5.2)

where C is the set of all cliques in (V,E) and Z is the normalizing constant for the density. The ob-
jective of a MAP estimation problem is to find the mode of π(z), which is equivalent to find a complete
assignment z that maximizes the function:

F (z) =
∑

Ci∈C

θi(zk : zk ∈ Ci)

which is also objective of a DCOP, where each potential function θi correspond to a utility function fi
and the associated clique Ci to the scope of the function fi.

Therefore, if T is an MCMC sampling method that constructs a Markov chain with stationary dis-
tribution π to solve the associated MAP estimation problem, then, we can use the complete solution z

returned to solve the corresponding DCOP.

Notice that sufficient conditions for T to converge to π are irreducibility and aperiodicity. The Gibbs
and Metropolis-Hastings sampling algorithms exhibit extremely weak sufficient conditions to guarantee
convergence [103]. Namely, the Gibbs proposal distribution needs to ensure lower semi-contiguity at 0

and be locally bounded, while for the Metropolis Hasting, it is sufficient that the domain of the definition
of the proposal distribution q coincide with that of π.

5.3.2 Distributed Markov Chain Monte Carlo Sampling MVA Framework

We now describe our Distributed MCMC (DMCMC) framework, which extends centralized MCMC sam-
pling algorithms and DPOP. At a high level, its operations are similar to the operations of DPOP except
that the computation of the utility tables sent by agents during the UTIL phase is done by sampling with
GPGPUs. Notice that the computation of each row in a utility table is independent of the computation in
the other rows. Thus, DMCMC exploits this independence and samples the utility in each row in parallel.

Algorithm 2 shows the pseudocode of DMCMC for an agent ai. It takes as inputs R, the number of
sampling runs to perform from different initial value assignments, and T , the number of sampling trials.

5.3. Accelerating MVA-based algorithm on GPGPUs 101

Algorithm 2: DMCMC(R, T)

56 Generate pseudo-tree

57 GPU-INITIALIZE()
58 〈M1

i , U
1
i 〉, . . . ,〈MR

i , U
R
i 〉←GPU-MCMC-SAMPLE(R, T)

59 UTILai ← GET-BEST-SAMPLE(〈M1
i , U

1
i 〉, . . . , 〈MR

i , U
R
i 〉)

60 if Cai = ∅ then
61 UTILai ← CALCUTILS()

62 Send UTIL message (ai,UTILai) to Pi

63 Activate UTILMessageHandler(·)
64 Activate VALUEMessageHandler(·)

Procedure VALUEMessageHandler(ak,VALUEak)

65 VALUEai ← VALUEak
66 for xji ∈ Li do dj∗i ← CHOOSEBESTVALUE(VALUEai) for ac ∈ Cai do
67 VALUEai ← {(xji , dj∗i) | xji ∈ sep(ac)} ∪ {(xk, d∗k) ∈ VALUEak | xk ∈ sep(ac)}
68 Send VALUE message (ai,VALUEai) to ac

Like DPOP, DMCMC also exhibits three phases. The first phase is identical to that of DPOP (line 56). In
the second phase:

• Each agent ai calls GPU-INITIALIZE() to set up the GPGPU kernel specifics (e.g., number of threads
and amount shared memory to be assigned to each block, and to initialize the data structures on the
GPGPU device memory) (line 57). The GPGPU kernel settings are decided according to the shared
memory requirements and the number of registers used by the successive function call, so to maximize
the number of blocks that can run in parallel.
• Each agent ai, in parallel, calls GPU-MCMC-SAMPLE() which performs the local MCMC sampling

process to compute the best utility and the corresponding solution (value assignments for all non-
boundary local variables xji ∈ Li \ Bi) for each combination of values of the boundary variables
xki ∈ Bi (line 58). This computation process is done via sampling with GPGPUs and the results are

Procedure UTILMessageHandler(ak,UTILak)

69 Store UTILak
70 if received UTIL message from each child ac ∈ Cai then
71 UTILai ← CALCUTILS()

72 if Pai = NULL then
73 for xji ∈ Li do dj∗i ← CHOOSEBESTVALUE(∅) for ac ∈ Cai do
74 VALUEai ← {(xji , dj∗i) | xji ∈ sep(ac)}
75 Send VALUE message (ai,VALUEai) to ac

76 else Send UTIL message (ai,UTILai) to Pai

102 5. Exploiting the use of Accelerated Hardware in DCOP resolution

Function CalcUtils()

77 UTILsep ← utilities for all value combinations of xi ∈ Bi ∪ sep(ai)
78 UTILai ← JOIN(UTILai ,UTILsep,UTILac) for all ac ∈ Cai
79 UTILai ← PROJECT(ai,UTILai)
80 return UTILai

Procedure GPU-MCMC-Sample(R, T)

81 〈z, z∗, [q, Zπ], Gi〉 ← ASSIGNSHAREDMEM()

82 rid ← the thread’s row index of Mi

83 z
|Li|
⇔ Mi[rid]

84 〈z∗, util∗〉 ← 〈z,∑fj∈Gi fj(z|Sj)〉
85 for t = 1 to T do

86 z
k
⇔ SAMPLE(q(z | z(t−1))) w/ prob. min{1, π̃(z)

π̃(z(t−1))
}

87 util←∑
fj∈Gi fj(z|Sj)

88 if util > util∗ then 〈z∗, util∗〉 ← 〈z, util〉
89 〈MR

i [rid], U
R
i [rid]〉 ← 〈z∗, util∗〉

then transferred from the device to the host (line 10). In our example in Figure 3.1, agent a3 computes
that its best utility is 20 if its boundary variable x6 = 0 and 8 if x6 = 1. This utility table is stored in
UTILai . Note that all the agents call this procedure immediately after the pseudo-tree is constructed. In
contrast, agents in DPOP compute the best utility only after receiving UTIL messages from all children
agents.
• Each agent ai computes the utilities for the constraints between its variables and its separator, joins

them with the sampled utilities (line 61), and sends them to its parent (line 62). The agent repeats this
process each time it receives a UTIL message from a child (lines 20-27).

By the end of the second phase (line 23), like in DPOP, the root agent knows the overall utility for
each combination of values of its variables xji ∈ Bi. It chooses its best value combination that results
in the maximum utility (line 73), and starts the third phase by sending to each child agent ac the values
of variables xji ∈ sep(ac) that are in the separator of the child (lines 73-75). The MessageHandlers of
lines 63 and 64 are activated for any new incoming message.

GPGPU Data Structures

In order to fully utilize on the parallel computational power of GPGPUs, the data structures need to
be designed in such a way to limit the amount of information exchanged between the CPU host and the
GPGPU devices. Each DMCMC agent stores all the information it needs in its local variables in the global
memory of the GPGPU devices. This allows each agent running on a GPGPU device to communicate
with the CPU host only once, which is at the end of the sampling process, to transfer the results. Each
agent ai maintains the following information:

• Its local variables Li ⊆ X.

5.3. Accelerating MVA-based algorithm on GPGPUs 103

Threads: One for
each value in Di

Groups of Threads:
One for each row of Ui

Group of Blocks: One
for each sampling run

Block 1 Block 2 Block k

Figure 5.6: Parallelization Illustration

• Its boundary variables Bi ⊆ Li.
• The domains of its local variables, Di (assumed to have all equal size for simplicity).
• The MVA TABLE Mi of size |Di||Bi|×|Li|, where the j-th row is associated with the j-th permutation

of the boundary variable values, in lexicographic order, and the k-th column is associated with the k-th
variable in Li. The MVA TABLE columns associated with the local variables in Li are initialized with
random value assignments in [0, Di − 1]. At the end of the sampling process it contains the converged
domain values of the local variables for each value combination of the boundary variables.
• A vector Ui of size |Di||Bi|, which stores the utilities of the solutions in Mi.
• The local constraint graph Gi, which includes the local variables Li and constraints between local

variables.

The GPU-INITIALIZE() procedure of line 57 stores the data structures above for each agent on its
CUDA device. All the data stored on the GPGPU devices is organized in mono-dimensional arrays, so
as to facilitate coalesced memory accesses. The set of local variables Li are ordered, for convenience, in
lexicographic order and so that the boundary variables Bi are listed first.

Local Sampling Process

The GPU-MCMC-SAMPLE procedure of line 58 is the core of the local sampling algorithm, and can be
performed by any MCMC sampling method. It executes T sampling trials for the subset of non-boundary
local variables Li \ Bi of agent ai. Since the MCMC sampling procedure is stochastic, we can run R
parallel sampling processes with different initial value assignments and take the best utility and corre-
sponding solution across all runs. Each parallel run is executed by a group of CUDA blocks. Independent
operations within each sample are also exploited in parallel using groups of threads within each block. For
example, the proposal distribution adopted by Gibbs is computed using |Di| parallel threads. Figure 5.6
illustrates the different parallelizations performed by the GPU-MCMC-Sample process with Gibbs.

The general GPU-MCMC-Sample procedure is shown in lines 81-89 and we use the symbols← and
k

⇔ to denote sequential (single thread) and parallel (k threads) operations, respectively. We also denote
with n the size of the state z being sampled, with n = |Li| − |Bi|. The function takes in as inputs the

104 5. Exploiting the use of Accelerated Hardware in DCOP resolution

Procedure CUDA Gibbs Proposal Distribution Calculation

90 did ← the thread’s value index of Di

91 for k = |Bi| to |Li| − 1 do

92 q[did]
|Di|
⇔ exp

[∑
fj∈Gi fj(z|Sj)

]

93 Zπ ←
∑|Di|−1
i=0 q[i]

94 q[did]
|Di|
⇔ q[did] · 1

Zπ

95 z← SAMPLE(q(z | z(t−1)))

number of desired sampling trials T and the number of parallel sampling runs R. It first assigns the
shared memory allocated to the arrays z and z∗, which are used to store the current and best sample of
value assignments for all local variables, respectively; the local constraint graph Gi; and, if the MCMC
sampling algorithm requires computing the normalization constant of the proposal distribution explicitly,
the array q and Zπ , which are used to store the probabilities for each value of the non-boundary local
variables and the normalization constant, respectively (line 81).

Each thread identifies its row index rid of the MVA TABLE Mi, initializes its sample with the values
stored in Mi[rid], calculates the utility for that sample, and stores the initial sample and utility as the best
sample and utility found so far (lines 82-84). It then runs T sampling trials, where in each trial, it samples
a new state z from a proposal distribution q(z |z(t−1)) and updates that state according to the accept/reject
probabilities described in the MCMC background (line 86).

The proposal distribution q and the accept/reject probabilities depend on the choice of MCMC algo-
rithm. We now describe them for Metropolis-Hasting and Gibbs.

• Metropolis-Hastings: The proposal distribution that we adopt is a multivariate normal distribution
q ∼ N (µ, Σ), with µ being a n-dimensional vector of mean values, where each component µ(t)

j

has the value of the corresponding component in the previous sample z(t−1)
j and Σ is the covariance

matrix defined with the only non-zero elements being their diagonal ones and set to be all equal to√
Di. We compute the proposal distribution q using n parallel threads. The proposal distribution for

Metropolis-Hastings is symmetric and, thus, the accept/reject probabilities are simplified as shown in
line 86.
• Gibbs: For Gibbs, line 86 needs to be replaced with lines 41-46. Gibbs sequentially iterates through

all the non-boundary local variable xk ∈ Li \Bi and computes in parallel the probability q[did] of each
value did according to the equation:

q(xk=did | xl ∈ Li \ {xk}) =
1

Zπ
exp

∑
fj∈Gi

fj(z|Sj)

where z|Sj is the set of value assignments for the variables in the scope Sj of constraint fj and Zπ is
the normalizing constant. We compute q using |Di| parallel threads.

To ensure that the procedure returns the best sample found, we verify whether there is an improvement
on the best utility (lines 87-88). At the end of the sampling trials, it stores its best sample and utility in
the rid-th row in the MVA TABLE Mi and vector Ui, respectively (line 40).

5.3. Accelerating MVA-based algorithm on GPGPUs 105

5.3.3 Theoretical Analysis

We now introduce theoretical properties to relate the quality of DCOP solutions to MCMC sampling
strategies, provide bounds on convergence rates for DMCMC algorithms based on MCMC sampling,
and provide some complexity analyses of DMCMC requirements. Throughout this section, we assume
that the Markov chain (z0, z1, . . .) under discussion has finite state space S, a transition matrix T that is
irreducible and aperiodic, and has a stationary distribution the posterior π.

Lemma 7. The expected number of samples τz∗ for a MCMC algorithm to get an optimal solution z∗ is

Ez∗(τz∗) =
1

π(z∗)
.

This Lemma is a direct consequence of Lemma 6.

Theorem 12. The expected number of samples to find an optimal solution z∗ with an MCMC sampling
algorithm T is no greater than with a uniform sampling algorithm. In other words,

PT (z∗) ≥ Puni(z
∗)

Theorem 12 is introduced by Nguyen et al. [84] and can be generalized to any MCMC sampling
algorithm that is irreducible and aperiodic as convergence is guaranteed in a finite number of time steps.

Definition 20 (Top αi-Percentile Solutions). For an agent ai the top αi-percentile solutions Sαi is a set
containing solutions for the local variables Li that are no worse than any solution in the supplementary
set Di \ Sαi , and

|Sαi|
|Di| = αi. Given a list of agents a1, . . . , am, the top ᾱ-percentile solutions Sᾱ is

defined as Sᾱ = Sα1 × . . .× Sαm .

Lemma 8. After Ni = 1
αiεi

number of samples with an MCMC sampling algorithm T , the probability
that the best solution found thus far zNi is in the top αi for an agent ai is at least 1− εi:

PT

(
zNi ∈ Sαi |Ni =

1

αi · εi

)
≥ 1− εi.

This Lemma is a direct extension of Theorem Theorem 12, introduced in [84].

Theorem 13. Given m agents a1, . . . , am ∈ A, and a number of samples Ni = 1
αi·εi (i = 1, . . . ,m),

the probability that the best complete solution found thus far zN is in the top ᾱ-percentile is greater than
or equal to

∏m
i=1(1− εi), where N =

∧m
i=1Ni. In other words,

PT (zN ∈ Sᾱ |N) ≥
m∏

i=1

(1− εi).

Proof. Let zN denote the best solution found so far in the process resolution and zNi denote the best
partial assignment over the variables held by agent ai found after Ni samples. Let Si be a random

106 5. Exploiting the use of Accelerated Hardware in DCOP resolution

variable describing whether zNi ∈ Sαi . Thus:

PT(zN ∈ Sᾱ |N) (5.3a)

= PT(zN ∈ Sᾱ |N1, . . . ,Nm) (5.3b)

= PT(zN ∈ Sα1
× . . .× Sαm |N1, . . . ,Nm) (5.3c)

= PT(S1, . . . ,Sm |B1, . . . ,Bm,N1, . . . ,Nm) (5.3d)

where each Bi (i=1, . . . ,m) is a random variable describing a particular value assignment associated to
the boundary variables Bi for the agent ai. They are introduced to relate each of the zNi

to each other,
which are sampled independently.

Since the values sampled in the local variable of ai are dependent only of the values of the boundary
values Bi, it follows that Si is conditionally dependent of Bi but conditionally independent of all other
Bj , with j 6= i:

Si ⊥⊥ Bj |Bi
for all j = 1 . . .m and j 6= i. Noticing that, given random variables a, b, c, whenever a ⊥⊥ b | c we can
write: P (a | b, c) = P (a | c), and that P (a, b | c) = P (a | b, c), it follows that Equation (5.3d) can be
rewritten as:

PT(S1 |B1,N1) · . . . · PT(Sm |Bm,Nm)

= PT(zN1 ∈ Sα1 |B,N) · . . . · PT(zNm ∈ Sαm |B,N) (5.4a)

≥ (1− ε1) · . . . · (1− εm) (5.4b)

=

m∏

i=1

(1− εi). (5.4c)

for any of the assignments of the variables in Bi, as the utility functions involving variables in the bound-
ary of any two agents are solved optimally.

Theorem 14 (Number of Messages). The number of messages required by DMCMC is linear in the size
of the agents.

Proof. There are |A| − 1 UTIL messages (one through each tree-edge) and |A| − 1 VALUE messages.
The DFS construction, like in DPOP, also produces a linear number of messages (usually it requires 2|A|
messages). Thus, the total number of messages required is O(|A|).

Note that, unlike DPOP, which requires O(|X|) messages, no message exchange is required to solve
the constraints defined over the scope of the local variables each agent, which is achieved via local sam-
pling.

Theorem 15 (Space Requirements). The memory requirement of each DMCMC agent is exponential in
the induced width of the problem.

Proof. Each agent ai ∈ A needs to store its own utilities and the corresponding solution (value assign-
ment for all non-boundary local variables xji ∈ Li rBi) for each combination of values of the boundary
variables xki ∈ Bi, thus requiring O(|Di||Bi|) space. Moreover during the UTIL propagation phase, each
agent ai stores the UTIL messages of each of its children ac ∈ Cai , which also sends messages of size

5.3. Accelerating MVA-based algorithm on GPGPUs 107

O(|Di||Bc|). Joint and projection operations can be performed efficiently within O(|Di|NSi−|Bi|) space,
where NSi is the number of variables in the separator set of ai which is involved in a constraint with
some variable in Bi. Thus the memory complexity of each agent is exponential in the induced width—
the maximum number of boundary variables of the parent of an agent involved in a constraint with the
boundary variable of the agent itself.

Exponential size messages do not represent necessary a limitation. One can bound the maximum
message size and serialize big messages by letting the back-edge handlers ask explicitly for solutions
and utilities for a subset of their values sequentially. Moreover, one could reduce the exponential memory
requirement at cost of sacrificing completeness, and propagating solutions for a bounded set of value com-
binations instead of all combination of values of the boundary variables. Researchers have investigated
some of these approaches for reducing the memory requirement of DPOP [95, 99, 100].

5.3.4 Related Work

To the best of our knowledge, there are only two sampling algorithms developed to solve DCOPs, namely
DUCT [88] and Distributed Gibbs [84]. Both algorithms perform repeated sampling trials on the en-
tire space of all variables, where DUCT uses the UCT algorithm [60], which maintains and uses upper
confidence bounds on each value of a variable to determine which value to choose during the sampling
process, while Distributed Gibbs uses the Gibbs sampling procedure.

In contrast, DMCMC partitions the search space into independent subsets (of local variables of an
agent), and performs repeated sampling trials on each of these subsets in parallel. As a result, DMCMC
is able to exploit the parallel processes with the use of GPGPUs.

5.3.5 Experimental Evaluation

We implemented CPU and GPU versions of the DMCMC framework with Gibbs (D-Gibbs) and Metropolis-
Hastings (D-MH) as the MCMC sampling algorithms. The CPU versions sample sequentially, while the
GPU versions sample in parallel with GPGPUs. We compare them against DPOP [96] (an optimal al-
gorithm), MGM and MGM2 [72] (sub-optimal algorithms).6 We use publicly-available implementations
of these algorithms, which are implemented in the FRODO framework [68]. We run our experiments on
a Intel(R) Xeon(R) CPU, 2.4GHz, 32GB of RAM, Linux x86 64, equipped with a Tesla C2075, 14SM,
448-core, 1.15 clock rate, CUDA 2.0. We measure runtime using the simulated time metric [111] and
perform evaluations on meeting scheduling and smart grid network problems.

Meeting Scheduling Problems: In these problems, meetings need to be scheduled between members
of a hierarchical organization, (e.g., employees of a company; students, faculty members, and staff of a
university), taking restrictions in their availability as well as their priorities into account. We used the
Private Events as Variables (PEAV) problem formulation [73], which is commonly used in the literature.
Figure 5.7 show the average (a,c) and the median (b,d) results for 100 runs, together with the standard
deviations (vertical bars) of problem instances with a variable number of agents and fixing each agent’s

6We did not compare against Distributed Gibbs as the authors’ implementation does not handle hard constraints, and we do not
compare against DUCT as no public implementation is available.

108 5. Exploiting the use of Accelerated Hardware in DCOP resolution

10 25 50 100 250 500 1000 2500 5000 10000
0.001

0.01

0.1

1

10

100

1000

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

DPOP
D−Gibbscpu
D−Gibbsgpu
D−MHcpu
D−MHgpu

DPOP
Gibbs_cpu
Gibbs_gpu
D-MH_cpu
D-MH_gpu

Number of samples

S
im

u
la

te
d

 t
im

e
 (
s
e
c
)

0

(a)

Simulated time (sec)

Q
u
a
lit

y
 (
ra

ti
o

)

0.05 0.10 0.20 0.50 1.00 2.00 5.00 10.00 20.00 50.00
0.65

0.70

0.75

0.80

0.85

0.90

0.95
1.00

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

DPOP
D−Gibbs
D−MH

DPOP
D-Gibbs
D-MH

(b)

Number of agents

S
im

u
la

te
d

 t
im

e
 (
s
e
c
)

2 3 4 5 10 20 30 40 50 70 90

0.1

1

10

100

1000

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

DPOP
MGM2
MGM
D−Gibbs
D−MH

DPOP
MGM2
MGM
D-Gibbs
D-MH

(c)

Number of agents

Q
u

a
lit

y
 (
ra

ti
o

)

2 3 4 5 10 20 30 40 50 70 90

0.5

0.6

0.7

0.8

0.9

1.0

●
●

●
●

●
●

● ●
●

●

● ● ● ●

●

DPOP
D−Gibbs
D−MH
MGM2
MGM

DPOP
D-Gibbs
D-MH
MGM2
MGM

(d)

Figure 5.7: Experimental Results: Meeting Scheduling Problems

number of variables to 10, the domain size of its variables to 12, its local constraint graph density to 0.7,
and its number of boundary variables to 1.

We first compare the performance of the CPU and GPU DMCMC algorithms on an instance of the
meeting scheduling problem with 5 agents. Figure 5.7(a) shows the run-times of the CPU (solid line)
and GPU (dotted line) versions of DMCMC together with DPOP (solid horizontal line). The results
shows that there is a clear benefit to parallelizing the sampling operations with GPGPUs, exhibiting more
than one order of magnitude speed up. In the rest of the experiments, we show the GPU version only.
Figure 5.7(b) shows the tradeoff between quality and runtime for the D-Gibbs and D-MH for a range
of initial parameters R = {1, 10, 50, 100} and T = {100, 250, 500, 1000, 5000, 10000}. The prediction
quality increases with increasing R and T . D-Gibbs is slower than D-MH, as it requires computing
normalization constants, which is computationally expensive even when parallelized. However, D-Gibbs
finds better solutions.

Finally, we evaluate the algorithms in 14 benchmarks where we vary the number of agents |A| from
2 to 100. We set S = 100 and R = 10 for D-Gibbs and S = 500 and R = 100 for D-MH. Figures 5.7(c)
and (d) show the runtime and solution qualities, respectively. DPOP ran out of memory for problems
with more than 10 agents. The DMCMC algorithms are up to 2 order of magnitude faster than MGM
and MGM2 and can find better solutions, demonstrating the strength of sampling-based approaches over
incomplete search algorithms. The results are statistically significant with p-values < 1.0−10 for all

5.4. Summary 109

Alg. |A| = 100 |A| = 250 |A| = 500

D-MH 0.025 (0.01%) 0.026 (0.02%) 0.031 (0.00%)
D-Gibbs 1.387 (1.72%) 1.285 (1.72%) 1.318 (1.71%)
DPOP 15.58 (0.00%) 59.06 (0.00%) 70.01 (0.00%)

Table 5.1: Experimental Results: Smart Grid Networks

parameter configurations.

Grid Networks: We generate grid network problems, which consists of buildings that have power gen-
eration and consumption capabilities. Additionally, each building can also send and receive power to and
from neighboring buildings. A cost function is associated to the generation and consumption of power
of each building. The goal is to minimize the total cost subject to flow conservation and capacity con-
straints. This problem is called the Comprehensive Customer-Driven Microgrid Optimization Problem in
the literature [46].

As the problem definition does not define the network topology, we used clustered scale-free graphs [112],
where each cluster has a few high density nodes. We generated problem instances where we vary the
number of agents |A| = {100, 250, 500} and the number of local variables of each agent depends on
the number of neighboring agents. We fix the domain sizes to 11 and the maximum constraint arity to 5.
Table 5.1 reports the simulated run-times (in seconds) and the error in solution quality (in parenthesis).
These results show that the DMCMC algorithms can find close-to-optimal solutions significantly faster
than DPOP. We omit MGM and MGM2 as they always found unsatisfactory solutions due to the large
number of hard constraints in the problem.

5.4 Summary

In this chapter, we presented an investigation on the use of GPGPUs to exploit SIMT-style parallelism
from DP-based methods to solve COPs and DCOPs, and from MCMC sampling algorithms within the
MVA decomposition framework to solve DCOPs. We proposed a procedure, inspired by BE (for COPs)
and DPOP (for DCOPs), that makes use of multiple threads to parallelize the aggregation and projection
phases of the DP-based algorithms. Our experimental results show that the use of GPGPUs may provide
significant advantages in terms of runtime and scalability. Furthermore, motivated by (i) the assump-
tion in most DCOP algorithms that each agents owns exactly one variable; (ii) the recent introduction
of sampling-based DCOP algorithms, which have been shown to outperform existing incomplete DCOP
algorithms; and (iii) the advances in General Purpose Graphical Processing Units (GPGPUs), we intro-
duced the Distributed MCMC framework. Such framework uses the MVA decomposition (see Chapter 3)
to solve the general DCOP, using a DPOP-based algorithm, and decomposes the DCOP into independent
sub-problems that can each be sampled in parallel exploiting GPGPUs. Our experimental results show
that it can find near-optimal solutions up to one order of magnitude faster than MGM and MGM2.

The proposed results are significant—the wide availability of GPGPUs provides access to parallel
computing solutions that can be used to improve efficiency of (D)COP solvers. Furthermore, GPGPUs
are renowned for their complex architectures (multiple memory levels with very different size and speed
characteristics; relatively slow cores), which often create challenges to the effective exploitation of paral-

110 5. Exploiting the use of Accelerated Hardware in DCOP resolution

lelism from irregular applications; the strong experimental results indicate that the proposed algorithms
are well-suited to GPGPU architectures.

Therefore, these results validate the hypothesis that one can exploit highly parallel computational
models to enhance current DCOP solution techniques, which is exciting as GPGPUs provide access to
hundreds of computing cores at a very affordable cost.

6
Conclusions

Distributed Constraint Optimization Problems (DCOPs) have emerged as a popular formalism for dis-
tributed reasoning and coordination in Multi-Agent System where several agents cooperate to optimize a
global cost function. They represent a powerful approach to the description and resolution of many prac-
tical problems, and serve several applications such as distributed scheduling, coordination of unmanned
air vehicles, smart grid electric networks, and sensor networks. Typical real world applications are char-
acterized by complex dynamics and interactions among a large number of entities, which translate into
hard combinatorial problems, posing significant challenges from a computational point of view.

In this dissertation we identified two major challenges in applying DCOPs algorithms to large com-
plex problems: (1) Modeling assumptions: as current resolution methods detach the model from the
resolution process, imposing limiting assumptions on the capabilities of an agent, and (2) Solving ca-
pabilities: as the inability of current approaches to capitalize on the presence of structural information
which may allow incoherent/unnecessary data to reticulate among the agents as well as to exploit latent
structure of the agent’s local problems, and/or of the problem of interest.

This dissertation has focused on addressing such challenges by investigating the hypothesis that one
can exploit the latent structure of DCOPs in both problem modeling and problem resolution phases,
and using GPGPU-level parallelism. We briefly review below each of these contributions, and outline
potential directions for future work.

6.1 Exploiting the Structure of DCOPs from Problem Modeling

We began our path by noticing that most DCOP resolution approaches are designed following the underly-
ing assumption that each agent controls exclusively a single variable of the problem. However, modeling
many real-world complex applications, requires each agent to solve complex problems, and to control
a large number of variables. We reviewed two reformulation techniques that are commonly adopted to
address this modeling assumption, and argued that such techniques could be arbitrarily inefficient, as
they ignore the structure present in the problem model. We thus proposed a Multi-Variable Agent (MVA)
DCOP decomposition technique which exploits co-locality of each agent’s variables, allowing us to adopt
efficient centralized techniques within each DCOP agent. Crucially, such decomposition preserves agent
privacy. The advantages of using the MVA decomposition were demonstrated by our experimental re-
sults, showing remarkable improvements in terms of network load and scalability, outperforming several

112 6. Conclusions

classes of non-decomposed DCOP algorithms.

Potential Directions for Future Work

The MVA decomposition defines a clear separation between the distributed agent coordination and the
centralized agent subproblem resolution. This separation allows the use of efficient centralized solvers
to solve agent subproblems as well as the use of potentially different solvers for different agents, each
designed to exploit domain-specific properties. Thus, in the future we plan to investigate the integration
of several DCOP algorithms with efficient centralized optimization solvers (such as, CPLEX [20], Gurobi
[87]) or Constraint Programming solvers (such as, Gecode [113]), dedicated to the resolution of the agent
subproblems. In addition we plan to investigate the application of propagation schemes (e.g., as in [35])
to further reduce agent-to-agent communication.

We plan to apply the proposed integrated solution to solve smart building scheduling problems within
a micro-grid. In such problems several buildings, each modeled by an agent, need to schedule the execu-
tion of their appliances, and are subjected to a maximal amount of energy that can be used at each time
of the day, as well as exposed to price variations of the energy consumed in different hours of the day.

6.2 Exploiting the Structure of DCOPs during Problem Solving

Next, we investigated solutions to boost DCOP solving capabilities. We identified two orthogonal direc-
tions to exploit the structure of DCOPs during problem solving. The first solution focused on exploiting
the hard constraint of the problem, and we proposed Branch Consistency (BrC), a type of consistency that
applies to paths in pseudo-trees aimed to prune the search space and to reduce the size of the messages
exchanged among agents. We proved that such form of consistency enforces a more effective pruning
than those based on domain consistency, and we applied BrC to reduce the space explored by DPOP
agents, one of the most competitive DCOP algorithms. The resulting algorithm, BrC-DPOP, was shown
to effectively exploit the information encoded in the hard constraints, substantially reducing the network
load and the resolution time compared to other complete algorithms, and without incurring to any addi-
tional privacy loss. The second solution focused on exploiting problem structure from domain-dependent
knowledge and it suitable to tackle large problems which cannot be coped with complete DCOP ap-
proaches. Such solution resulted in the Distributed Large Neighboring Search (D-LNS), a local search
framework for DCOPs which builds on the strengths of centralized Large Neighboring Search, which
iteratively explores complex neighborhoods of the search space to find better candidate solutions. The
resulting framework has several qualities: It provides quality guarantees by refining both upper and lower
bounds of the solution found during the iterative process; It is anytime; and it inherently uses insights
from the CP techniques to take advantage on the presence of hard constraints. Our experimental analysis
showed that D-LNS based algorithms converge faster to better solutions, compared to other incomplete
algorithms, and provide tighter solution quality bounds.

Potential Directions for Future Work

Our plan for future work is to extend BrC-DPOP to handle higher arity constraints. This can be done by
substituting the VRM structures with either consistency graphs or higher dimension VRMs. We suspect

6.3. Exploiting the use of Accelerated Hardware in DCOP resolution 113

that there will be a tradeoff between runtime and memory requirement between the two approaches,
where using higher dimension VRMs is faster but uses more memory. We also plan to extend BrC-DPOP
to memory-bounded versions similar to MB-DPOP [99] in order to scale to even larger problems. Finally,
we plan to explore propagation of soft constraints similar to the versions of BnB-ADOPT with soft AC
enforcement [9, 49, 47].

On the D-LNS side, we plan to investigate other schemes to incorporate into the repair phase of D-
LNS (e.g., propagation techniques [9, 35, 47] to better prune the search space) that actively exploit the
bounds reported during the iterative procedure, as well as the use of General Purpose Graphics Processing
Units to parallelize the search for better speedups [16, 34]) in presence of large agent’s local subprob-
lems. We strongly believe that this framework has the potential to solve very large distributed constraint
optimization problems, with thousands of agents, variables, and constraints, and we plan a systematic
evaluation for the near future.

6.3 Exploiting the use of Accelerated Hardware in DCOP resolu-
tion

Motivated by the large interest in DP-based DCOP algorithms within the AAMAS community (see e.g.,
[99, 101, 63, 79]), we also investigated the use of GPGPU-based solutions to enhance the efficiency of
such approaches. Indeed, the structure exploited by DP-based approaches in constructing solutions makes
it suitable to exploit the SIMT paradigm, which is widely used in modern general purpose graphic pro-
cessing units. Thus, we proposed a DP-based algorithm that exploits parallel computation using GPGPUs
to solve DCOPs. Our proposal employs GPGPU hardware to speed up the inference process of DP-based
methods, representing an alternative way to enhance the performance of DP-based constraint optimiza-
tion approaches. Our results show significant improvements in performance and scalability over other
state-of-the-art DP-based solutions, with speedup up to two order of magnitude.

The explicit separation between the DCOP resolution process and the centralized agent problem,
enabled by our MVA DCOP decomposition, capacitate agents to solve their local problem trough a variety
of techniques. Motivated by the high complexity of the agent local problem, we proposed the use of
hierarchical parallel models, where each agent can (1) solve its local problem independently from those
of other agents, and (2) parallelize the computations within its own local problem. We thus introduced a
framework to solve independent local problems, in parallel, using sampling-based algorithms, harnessing
the multitude of computational units offered by GPGPUs. This approach led to significant improvements
in the runtime of the algorithm resolution.

Potential Directions for Future Work

In the future we plan to extend these GPGPU-based frameworks to reduce their memory requirements, in
a way similar to what proposed in MB-DPOP [99] and PC-DPOP [100].

While envisioning further research in this area, we anticipate several challenges: In terms of im-
plementation, GPGPU programming can be more demanding when compared to a classical sequential
implementation. One of the current limitations for (D)COP-based GPGPU approaches is the absence of
solid abstractions that allow component integration, modularly, without restructuring the whole program.

114 6. Conclusions

Exploiting the integration of CPU and GPGPU computations is a key factor to obtain competitive
solvers performance. Complex and repeated calculations should be delegated to GPGPUs, while simpler
and memory intensive operations should be assigned to CPUs. It is however unclear how to determine
good tradeoffs of such integrations. For instance, repeatedly invoking many memory demanding GPGPU
kernels could be detrimental to the overall performance, due to the high cost of allocating the device mem-
ory (e.g., shared memory). Creating lightweight communication mechanisms between CPU and GPGPU
(for instance, by taking advantage of the asynchronism of CUDA streams) to allow active GPGPU kernels
to be used in multiple instances could be a possible solution to investigate.

Bibliography

[1] Emile Aarts and Jan K. Lenstra, editors. Local Search in Combinatorial Optimization. John Wiley
& Sons, Inc., New York, NY, USA, 1st edition, 1997.

[2] Krzysztof Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[3] Alejandro Arbelaez and Philippe Codognet. A GPU Implementation of Parallel Constraint-based
Local Search. In Proceedings of the Euromicro International Conference on Parallel, Distributed
and network-based Processing (PDP), pages 648–655, 2014.

[4] James Atlas and Keith Decker. Coordination for Uncertain Outcomes using Distributed Neighbor
Exchange. In Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 1047–1054, 2010.

[5] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[6] C. Bessiere and J.C. Regin. Refining the Basic Constraint Propagation Algorithm. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pages 309–315, 2001.

[7] Christian Bessiere. Constraint propagation. Handbook of Constraint Programming, pages 29–83,
2006.

[8] Christian Bessiere, Ismel Brito, Patricia Gutierrez, and Pedro Meseguer. Global Constraints in
Distributed Constraint Satisfaction and Optimization. Computer Journal, 57(6):906–923, 2014.

[9] Christian Bessiere, Patricia Gutierrez, and Pedro Meseguer. Including Soft Global Constraints in
DCOPs. In Proceedings of the International Conference on Principles and Practice of Constraint
Programming (CP), pages 175–190, 2012.

[10] Emma Bowring, Milind Tambe, and Makoto Yokoo. Multiply-constrained distributed constraint
optimization. In Proceedings of the International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), pages 1413–1420. ACM, 2006.

[11] Stephen Boyd and Jacob Mattingley. Branch and Bound Methods. Notes for EE364b, Stanford
University, pages 2006–07, 2007.

[12] Vincent Boyer, Didier El Baz, and Moussa Elkihel. Solving Knapsack Problems on GPU. Com-
puters & Operations Research, 39(1):42–47, 2012.

[13] Ismel Brito and Pedro Meseguer. Improving DPOP with function filtering. In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 141–
158, 2010.

116 Bibliography

[14] David Burke and Kenneth Brown. Efficiently Handling Complex Local Problems in Distributed
Constraint Optimisation. In Proceedings of the European Conference on Artificial Intelligence
(ECAI), pages 701–702, 2006.

[15] Bertrand Cabon, Simon De Givry, Lionel Lobjois, Thomas Schiex, and Joost P. Warners. Radio
Link Frequency Assignment. Constraints, 4(1):79–89, 1999.

[16] Federico Campeotto, Agostino Dovier, Ferdinando Fioretto, and Enrico Pontelli. A GPU Im-
plementation of Large Neighborhood Search for Solving Constraint Optimization Problems. In
Proceedings of the European Conference on Artificial Intelligence (ECAI), pages 189–194, 2014.

[17] Federico Campeotto, Alessandro Dal Palù, Agostino Dovier, Ferdinando Fioretto, and Enrico Pon-
telli. Exploring the Use of GPUs in Constraint Solving. In Proceedings of the Practical Aspects of
Declarative Languages (PADL), pages 152–167, 2014.

[18] Imen Chakroun, Mohand-Said Mezmaz, Nouredine Melab, and Ahcene Bendjoudi. Reducing
Thread Divergence in a GPU-accelerated Branch-and-Bound Algorithm. Concurrency and Com-
putation: Practice and Experience, 25(8):1121–1136, 2013.

[19] Martin Cooper and Thomas Schiex. Arc Consistency for Soft Constraints. Artificial Intelligence,
154(1):199–227, 2004.

[20] ILOG Cplex. 11.0 User’s manual. ILOG SA, Gentilly, France, page 32, 2007.

[21] Alessandro Dal Palu, Agostino Dovier, Andrea Formisano, and Enrico Pontelli. CUD@ SAT: SAT
Solving on GPUs. Journal of Experimental & Theoretical Artificial Intelligence, 27(3):293–316,
2015.

[22] George Dantzig and Mukund Thapa. Linear Programming 1: Introduction. Springer-Verlag, 1997.

[23] George Dantzig and Mukund Thapa. Linear Programming 2: Theory and Extensions. Springer-
Verlag, 2003.

[24] John Davin and Pragnesh Modi. Hierarchical Variable Ordering for Multiagent Agreement Prob-
lems. In Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 1433–1435, 2006.

[25] Rina Dechter. Bucket Elimination: A Unifying Framework for Probabilistic Inference. In Learning
in graphical models, pages 75–104. Springer, 1998.

[26] Rina Dechter, editor. Constraint Processing. Morgan Kaufmann, 2003.

[27] Gregory Frederick Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, Andrew Kerr,
Haicheng Wu, and Sudhakar Yalamanchili. SIMD re-convergence at thread frontiers. In Pro-
ceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture, pages
477–488, New York, NY, 2011. ACM Press.

[28] Edsger W Dijkstra. Self-stabilization in spite of distributed control. Communication of the ACM,
17(11):643–644, 1974.

Bibliography 117

[29] Shlomi Dolev and Ted Herman. Superstabilizing Protocols for Dynamic Distributed Systems. In
Proceedings of the fourteenth annual ACM Symposium on Principles of Distributed Computing,
page 255. ACM, 1995.

[30] P. Erdös and A. Rényi. On Random Graphs I. Publicationes Mathematicae Debrecen, 6:290, 1959.

[31] Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas Jennings. Decentralised Coordi-
nation of Low-Power Embedded Devices Using the Max-Sum Algorithm. In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 639–
646, 2008.

[32] Ferdinando Fioretto, Federico Campeotto, Agostino Dovier, Enrico Pontelli, and William Yeoh.
Large Neighborhood Search with Quality Guarantees for Distributed Constraint Optimization
Problems. In AAMAS, pages 1835–1836, 2015.

[33] Ferdinando Fioretto, Federico Campeotto, Luca Da Rin Fioretto, William Yeoh, and Enrico Pon-
telli. GD-Gibbs: A GPU-based Sampling Algorithm for Solving Distributed Constraint Opti-
mization Problems. In Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1339–1340, 2014.

[34] Ferdinando Fioretto, Tiep Le, Enrico Pontelli, William Yeoh, and Tran Cao Son. Exploiting GPUs
in Solving (Distributed) Constraint Optimization Problems with Dynamic Programming. In Pro-
ceedings of the International Conference on Principles and Practice of Constraint Programming
(CP), pages 121–139, 2015.

[35] Ferdinando Fioretto, Tiep Le, William Yeoh, Enrico Pontelli, and Tran Cao Son. Improving DPOP
with Branch Consistency for Solving Distributed Constraint Optimization Problems. In Proceed-
ings of the International Conference on Principles and Practice of Constraint Programming (CP),
pages 307–323, 2014.

[36] Ferdinando Fioretto, William Yeoh, and Enrico Pontelli. Decomposition Techniques for DCOPs
to Exploit Multi-Variable Agents and Multi-Level Parallelism. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 1823–1824, 2015.

[37] Ferdinando Fioretto, William Yeoh, and Enrico Pontelli. Multi-Variable Agents Decompositions
for DCOPs to Exploit Multi-Level Parallelism. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), page (in press), 2016.

[38] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–
741, 1984.

[39] Amir Gershman, Amnon Meisels, and Roie Zivan. Asynchronous Forward-Bounding for dis-
tributed COPs. Journal of Artificial Intelligence Research, 34:61–88, 2009.

[40] Amir Globerson and Tommi Jaakkola. Fixing Max-Product: Convergent Message Passing Algo-
rithms for MAP LP-Relaxations. In Proceedings of the Advances in Neural Information Processing
Systems (NIPS), pages 553–560, 2007.

118 Bibliography

[41] Daniel Godard, Philippe Laborie, and Wim Nuijten. Randomized Large Neighborhood Search for
Cumulative Scheduling. In Proceedings of the International Conference on Automated Planning
and Scheduling (ICAPS), volume 5, pages 81–89, 2005.

[42] Rachel Greenstadt, Barbara Grosz, and Michael Smith. SSDPOP: Improving the Privacy of DCOP
with Secret Sharing. In Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1098–1100, 2007.

[43] Rachel Greenstadt, Jonathan Pearce, and Milind Tambe. Analysis of Privacy Loss in DCOP Algo-
rithms. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 647–653,
2006.

[44] Tal Grinshpoun, Alon Grubshtein, Roie Zivan, Arnon Netzer, and Amnon Meisels. Asymmetric
Distributed Constraint Optimization Problems. Journal of Artificial Intelligence Research, 47:613–
647, 2013.

[45] Tal Grinshpoun and Amnon Meisels. Completeness and Performance Of The APO Algorithm.
Journal of Artificial Intelligence Research, 33:223–258, 2008.

[46] Saurabh Gupta, Palak Jain, William Yeoh, S Ranade, and Enrico Pontelli. Solving customer-driven
microgrid optimization problems as DCOPs. In International Workshop on Distributed Constraint
Reasoning (DCR), pages 45–59, 2013.

[47] Patricia Gutierrez, Jimmy Lee, Ka Man Lei, Terrence Mak, and Pedro Meseguer. Maintaining Soft
Arc Consistencies in BnB-ADOPT+ during Search. In Proceedings of the International Confer-
ence on Principles and Practice of Constraint Programming (CP), pages 365–380, 2013.

[48] Patricia Gutierrez and Pedro Meseguer. Saving Redundant Messages in BnB-ADOPT. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 1259–1260, 2010.

[49] Patricia Gutierrez and Pedro Meseguer. Improving BnB-ADOPT+-AC. In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 273–
280, 2012.

[50] Patricia Gutierrez and Pedro Meseguer. Removing Redundant Messages in n-ary BnB-ADOPT.
Journal of Artificial Intelligence Research, 45:287–304, 2012.

[51] Patricia Gutierrez, Pedro Meseguer, and William Yeoh. Generalizing ADOPT and BnB-ADOPT.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 554–
559, 2011.

[52] Tianyi David Han and Tarek S. Abdelrahman. Reducing Branch Divergence in GPU Programs.
In Proceedings of the Fourth Workshop on General Purpose Processing on Graphics Processing
Units, pages 3:1–3:8, New York, NY, 2011. ACM Press.

[53] W Keith Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

[54] Daisuke Hatano and Katsutoshi Hirayama. DeQED: An Efficient Divide-and-Coordinate Algo-
rithm for DCOP. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages
566–572, 2013.

Bibliography 119

[55] Pascal Van Hentenryck and Laurent Michel. Constraint-based Local Search. The MIT Press, 2009.

[56] Katsutoshi Hirayama and Makoto Yokoo. Distributed Partial Constraint Satisfaction Problem. In
Proceedings of the International Conference on Principles and Practice of Constraint Program-
ming (CP), pages 222–236, 1997.

[57] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Introduction to NP-Completeness of Knapsack
Problems. In Knapsack Problems, pages 483–493. Springer Berlin Heidelberg, 2004.

[58] Christopher Kiekintveld, Zhengyu Yin, Atul Kumar, and Milind Tambe. Asynchronous Algorithms
for Approximate Distributed Constraint Optimization with Quality Bounds. In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 133–
140, 2010.

[59] Yoonheui Kim and Victor Lesser. Improved Max-Sum Algorithm for DCOP with n-ary Con-
straints. In Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 191–198, 2013.

[60] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Proceedings of the
European Conference on Machine Learning (ECML), pages 282–293, 2006.

[61] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2):498–519, 2001.

[62] Akshat Kumar, Boi Faltings, and Adrian Petcu. Distributed Constraint Optimization with Struc-
tured Resource Constraints. In Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 923–930, 2009.

[63] Akshat Kumar, Adrian Petcu, and Boi Faltings. H-DPOP: Using Hard Constraints for Search Space
Pruning in DCOP. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages
325–330, 2008.

[64] Akshat Kumar and Shlomo Zilberstein. MAP Estimation for Graphical Models by Likelihood
Maximization. In Proceedings of the Advances in Neural Information Processing Systems (NIPS),
pages 1180–1188, 2010.

[65] Mohamed Esseghir Lalami, Didier El Baz, and Vincent Boyer. Multi GPU implementation of the
simplex algorithm. In Proceedings of the International Conference on High Performance Comput-
ing and Communication (HPCC), volume 11, pages 179–186, 2011.

[66] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM, 21(7):558–565, 1978.

[67] Tiep Le, Tran Cao Son, Enrico Pontelli, and William Yeoh. Solving Distributed Constraint Opti-
mization Problems with Logic Programming. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 1174–1181, 2015.

[68] Thomas Léauté and Boi Faltings. E [DPOP]: Distributed Constraint Optimization under Stochastic
Uncertainty using Collaborative Sampling. In International Workshop on Distributed Constraint
Reasoning (DCR), pages 87–101, 2009.

120 Bibliography

[69] Thomas Léauté and Boi Faltings. Distributed Constraint Optimization Under Stochastic Uncer-
tainty. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), volume 11, pages
68–73, 2011.

[70] Alan Mackworth. Consistency in Networks of Relations. Artificial Intelligence, 8(1):99–118,
1977.

[71] Alan K. Mackworth and Eugene C. Freuder. The Complexity of Some Polynomial Network Con-
sistency Algorithms for Constraint Satisfaction Problems. Artificial Intelligence, 25(1):65–74,
January 1985.

[72] Rajiv Maheswaran, Jonathan Pearce, and Milind Tambe. Distributed algorithms for DCOP: A
graphical game-based approach. In Proceedings of the International Conference on Parallel and
Distributed Computing Systems (PDCS), pages 432–439, 2004.

[73] Rajiv Maheswaran, Milind Tambe, Emma Bowring, Jonathan Pearce, and Pradeep Varakantham.
Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Event Scheduling.
In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 310–317, 2004.

[74] Roger Mailler and Victor Lesser. Solving Distributed Constraint Optimization Problems Using
Cooperative Mediation. In Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 438–445, 2004.

[75] R Timothy Marler and Jasbir S Arora. Survey of multi-objective optimization methods for engi-
neering. Structural and Multidisciplinary Optimization, 26(6):369–395, 2004.

[76] Toshihiro Matsui, Hiroshi Matsuo, Marius Silaghi, Katsutoshi Hirayama, and Makoto Yokoo. Re-
source Constrained Distributed Constraint Optimization with Virtual Variables. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), pages 120–125, 2008.

[77] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Ed-
ward Teller. Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21:1087, 1953.

[78] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Berlin Heidelberg,
1999.

[79] Sam Miller, Sarvapali D Ramchurn, and Alex Rogers. Optimal Decentralised Dispatch of Embed-
ded Generation in the Smart Grid. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 281–288, 2012.

[80] Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers & Operations
Research, 24(11):1097–1100, 1997.

[81] Pragnesh Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. ADOPT: Asynchronous dis-
tributed constraint optimization with quality guarantees. Artificial Intelligence, 161(1–2):149–180,
2005.

[82] Roger Mohr and Thomas C. Henderson. Arc and Path Consistency Revisited. Artificial Intelli-
gence, 28(2):225–233, 1986.

Bibliography 121

[83] Duc Thien Nguyen, William Yeoh, and Hoong Chuin Lau. Stochastic Dominance in Stochas-
tic DCOPs for Risk-sensitive Applications. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 257–264, 2012.

[84] Duc Thien Nguyen, William Yeoh, and Hoong Chuin Lau. Distributed Gibbs: A memory-bounded
sampling-based DCOP algorithm. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 167–174, 2013.

[85] Nils J Nilsson. Principles of artificial intelligence. Morgan Kaufmann, 1984.

[86] Tenda Okimoto, Yongjoon Joe, Atsushi Iwasaki, Makoto Yokoo, and Boi Faltings. Pseudo-tree-
based Incomplete Algorithm for Distributed Constraint Optimization with Quality Bounds. In
Proceedings of the International Conference on Principles and Practice of Constraint Program-
ming (CP), pages 660–674, 2011.

[87] Gurobi Optimization. Inc. gurobi optimizer reference manual, 2014.

[88] Brammert Ottens, Christos Dimitrakakis, and Boi Faltings. DUCT: An upper confidence bound
approach to distributed constraint optimization problems. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pages 528–534, 2012.

[89] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998.

[90] Krzysztof Pawłowski, Karol Kurach, Tomasz Michalak, and Talal Rahwan. Coalition structure
generation with the graphic processor unit. Technical Report CS-RR-13-07, Department of Com-
puter Science, University of Oxford, 2104.

[91] Jonathan Pearce and Milind Tambe. Quality Guarantees on k-Optimal Solutions for Distributed
Constraint Optimization Problems. In Proceedings of the International Joint Conference on Arti-
ficial Intelligence (IJCAI), pages 1446–1451, 2007.

[92] Judea Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-
Wesley Pub. Co., Inc., Reading, MA, 1984.

[93] Federico Pecora, P Modi, and Paul Scerri. Reasoning About and Dynamically Posting n-ary Con-
straints in ADOPT. In International Workshop on Distributed Constraint Reasoning (DCR), vol-
ume 7, 2006.

[94] Gilles Pesant. A Regular Language Membership Constraint for Finite Sequences of Variables. In
Proceedings of the International Conference on Principles and Practice of Constraint Program-
ming (CP), pages 482–495, 2004.

[95] Adrian Petcu and Boi Faltings. Approximations in Distributed Optimization. In Proceedings of
the International Conference on Principles and Practice of Constraint Programming (CP), pages
802–806, 2005.

[96] Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint optimization. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 1413–
1420, 2005.

122 Bibliography

[97] Adrian Petcu and Boi Faltings. ODPOP: An Algorithm for Open/Distributed Constraint Optimiza-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 703–708,
2006.

[98] Adrian Petcu and Boi Faltings. A Hybrid of Inference and Local Search for Distributed Combinato-
rial Optimization. In Proceedings of the International Conference on Intelligent Agent Technology
(IAT), pages 342–348, 2007.

[99] Adrian Petcu and Boi Faltings. MB-DPOP: A new memory-bounded algorithm for distributed op-
timization. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 1452–1457, 2007.

[100] Adrian Petcu, Boi Faltings, and Roger Mailler. PC-DPOP: A New Partial Centralization Algorithm
for Distributed Optimization. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 167–172, 2007.

[101] Adrian Petcu, Boi Faltings, and David Parkes. M-DPOP: Faithful Distributed Implementation of
Efficient Social Choice Problems. Journal of Artificial Intelligence Research, 32:705–755, 2008.

[102] Claude-Guy Quimper and Toby Walsh. Global Grammar Constraints. In Proceedings of the Inter-
national Conference on Principles and Practice of Constraint Programming (CP), pages 751–755.
Springer, 2006.

[103] Gareth O Roberts and Adrian FM Smith. Simple conditions for the convergence of the Gibbs sam-
pler and Metropolis-Hastings algorithms. Stochastic Processes and Their Applications, 49(2):207–
216, 1994.

[104] Alex Rogers, Alessandro Farinelli, Ruben Stranders, and Nicholas Jennings. Bounded Approxi-
mate Decentralised Coordination via the Max-Sum Algorithm. Artificial Intelligence, 175(2):730–
759, 2011.

[105] Emma Rollon and Javier Larrosa. Improved Bounded Max-Sum for Distributed Constraint Opti-
mization. In Proceedings of the International Conference on Principles and Practice of Constraint
Programming (CP), pages 624–632, 2012.

[106] Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation Science, 40(4):455–472, 2006.

[107] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming. Elsevier
Science Inc., New York, NY, USA, 2006.

[108] J. Sanders and E. Kandrot. CUDA by Example. An Introduction to General-Purpose GPU Pro-
gramming. Addison Wesley, 2010.

[109] Paul Shaw. Using constraint programming and local search methods to solve vehicle routing prob-
lems. In Proceedings of the International Conference on Principles and Practice of Constraint
Programming (CP), pages 417–431, 1998.

[110] Ruben Stranders, Francesco Maria Delle Fave, Alex Rogers, and Nick Jennings. U-gdl: A de-
centralised algorithm for dcops with uncertainty. Technical report, University of Southampton,
Department of Electronics and Computer Science, 2011.

Bibliography 123

[111] Evan Sultanik, Pragnesh Jay Modi, and William C Regli. On modeling multiagent task schedul-
ing as a distributed constraint optimization problem. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 1531–1536, 2007.

[112] Wai M Tam, Francis CM Lau, and CK Tse. Construction of scale-free networks with adjustable
clustering. In Proceedings of the International Symposium on Nonlinear Theory and its Applica-
tions, pages 257–260, 2008.

[113] Gecode Team. Gecode: Generic constraint development environment, 2008.

[114] Michael A Trick. A dynamic programming approach for consistency and propagation for knapsack
constraints. Annals of Operations Research, 118(1-4):73–84, 2003.

[115] Gérard Verfaillie and Narendra Jussien. Constraint Solving in Uncertain and Dynamic Environ-
ments: A survey. Constraints, 10(3):253–281, 2005.

[116] Meritxell Vinyals, Marc Pujol, Juan A Rodriguez-Aguilar, and Jesus Cerquides. Divide-and-
coordinate: DCOPs by agreement. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 149–156, 2010.

[117] Meritxell Vinyals, Eric Shieh, Jesús Cerquides, Juan Rodriguez-Aguilar, Zhengyu Yin, Milind
Tambe, and Emma Bowring. Quality Guarantees for Region Optimal DCOP algorithms. In Pro-
ceedings of the International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS), pages 133–140, 2011.

[118] Martin Wainwright and Michael Jordan. Graphical Models, Exponential Families, and Variational
Inference. Foundations and Trends in Machine Learning, 1:1–305, 2008.

[119] Yonghong Wang, Katia Sycara, and Paul Scerri. Towards an Understanding of the Value of Cooper-
ation in uncertain world. In Proceedings of the International Joint Conferences on Web Intelligence
and Intelligent Agent Technologies (WI-IAT), volume 2, pages 212–215. IEEE/WIC/ACM, 2011.

[120] William Yeoh. Speeding Up Distributed Constraint Optimization Search Algorithms. PhD thesis,
University of Southern California, Los Angeles (United States), 2010.

[121] William Yeoh, Ariel Felner, and Sven Koenig. BnB-ADOPT: An Asynchronous Branch-and-
Bound DCOP Algorithm. Journal of Artificial Intelligence Research, 38:85–133, 2010.

[122] William Yeoh, Xiaoxun Sun, and Sven Koenig. Trading Off Solution Quality for Faster Com-
putation in DCOP Search Algorithms. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 354–360, 2009.

[123] William Yeoh, Pradeep Varakantham, and Sven Koenig. Caching Schemes for DCOP Search
Algorithms. In Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 609–616, 2009.

[124] William Yeoh and Makoto Yokoo. Distributed problem solving. AI Magazine, 33(3):53–65, 2012.

[125] Makoto Yokoo, editor. Distributed Constraint Satisfaction: Foundation of Cooperation in Multi-
agent Systems. Springer Berlin Heidelberg, 2001.

124 Bibliography

[126] Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenberg. Distributed stochastic search
and distributed breakout: Properties, comparison and applications to constraint optimization prob-
lems in sensor networks. Artificial Intelligence, 161(1–2):55–87, 2005.

[127] Neng-Fa Zhou, Roman Bartak, and Agostino Dovier. Planning as tabled logic programming.
Theory and Practice of Logic Programming, 15(4-5):543–558, 2015.

[128] Neng-Fa Zhou and Agostino Dovier. A tabled Prolog program for solving Sokoban. In Tools
with Artificial Intelligence (ICTAI), 2011 23rd IEEE International Conference on, pages 896–897.
IEEE, 2011.

[129] Neng-Fa Zhou, Håkan Kjellerstrand, and Jonathan Fruhman. Constraint Solving and Planning
with Picat. Springer, 2015.

[130] Neng-Fa Zhou, Håkan Kjellerstrand, and Jonathan Fruhman. From Dynamic Programming to
Planning. In Constraint Solving and Planning with Picat, pages 101–113. Springer, 2015.

[131] Roie Zivan, Robin Glinton, and Katia Sycara. Distributed constraint optimization for large teams of
mobile sensing agents. In Proceedings of the International Joint Conferences on Web Intelligence
and Intelligent Agent Technologies (WI-IAT), pages 347–354. IEEE/WIC/ACM, 2009.

[132] Roie Zivan, Steven Okamoto, and Hilla Peled. Explorative Anytime Local Search for Distributed
Constraint Optimization. Artificial Intelligence, 212:1–26, 2014.

[133] Roie Zivan and Hilla Peled. Max/min-sum distributed constraint optimization through value prop-
agation on an alternating DAG. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 265–272, 2012.

A
List of Key Symbols

To facilitate the reading of this disserrtation, we have provided in Table A.1 a summary of the most
commonly used notations.

List of key symbols

ai Agent π(·) Projection operator
xi Decision variable pi(·) Probability function
ri Random variable Lai ai’s local variables
Di Domain of xi Nai ai’s neighbors
Ωi Event space of ri Cai ai’s children
fi Reward function PCai ai’s pseudo-children
xi Scope of fi Pai ai’s parent
m Number of agents PPai ai’s pseudo-parents
n Number of variables α(fi) agents whose variables are in xi

q Number of random variables EC Set of edges of the constraint graph
k Number of reward functions ET Tree edges of the pseudo-tree
Fg Global objective function EF Set of edges of the factor graph
~F Vector of objective functions w∗ Induced width of the pseudo-tree
Fi Objective function in ~F d Size of the largest domain
~F◦ Utopia point l Size of the largest neighborhood
⊥ Infeasible value z Size of the largest local variable set
σ Complete solution s Maximal sample size
σxi Partial solution of scope xi in σ p Size of the Pareto set
Σ State space b Size of the largest bin

Table A.1: Commonly Used Symbols and Notations

	Introduction
	Research Objective
	Contributions
	Exploiting Structure from Problem Modeling
	Exploiting Structure during Problem Solving
	Exploiting the use of GPGPUs

	Dissertation Organization

	Background
	Overview of Distributed Constraint Optimization
	Constraint Programming
	Distributed Constraint Optimization Problems
	Representation and Coordination
	DCOP Algorithms
	Relevant Uses

	Overview of DCOP Extensions
	Asymmetric DCOPs
	Multi-Objective DCOPs
	Probabilistic DCOPs
	Dynamic DCOPs

	Overview of General Purpose Graphical Processing Units
	Hardware Architecture
	Logical Architecture
	Hierarchical Memory Organization

	Exploiting the Structure of DCOPs from Problem Modeling
	Motivations
	MVA Decomposition
	Notation and Definitions
	Description of the MVA Decomposition
	Local Optimization

	Theoretical Results
	Related Work
	Experimental Evaluation
	Summary

	Exploiting the Structure of DCOPs during Problem Solving
	Motivations
	Hard Constraints
	Large, Complex Problems

	Branch Consistency to Exploit Hard Constraints
	Notation and Definitions
	BrC-DPOP
	Theoretical Analysis
	Related Work
	Experimental Evaluation

	Distributed Large Neighborhood Search
	Notation and Definitions
	DLNS Framework and Repair Algorithms
	Theoretical Analysis
	Related Work
	Experimental Evaluation

	Summary

	Exploiting the use of Accelerated Hardware in DCOP resolution
	Motivations
	DP-based Algorithms
	Exploiting MVA Hierarchical Parallelism

	Accelerating DPOP and BE resolution on GPGPUs
	Notation and Definitions
	GPU-DBE
	Theoretical Analysis
	Related Work
	Experimental Evaluation

	Accelerating MVA-based algorithm on GPGPUs
	Notation and Definitions
	Distributed Markov Chain Monte Carlo Sampling MVA Framework
	Theoretical Analysis
	Related Work
	Experimental Evaluation

	Summary

	Conclusions
	Exploiting the Structure of DCOPs from Problem Modeling
	Exploiting the Structure of DCOPs during Problem Solving
	Exploiting the use of Accelerated Hardware in DCOP resolution

	Bibliography
	List of Key Symbols

