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Preface

A revolution (from the Latin revolutio, “a turn around”) is a fundamental change in
power or organizational structures that takes place in a relatively short period of time.

Wikipedia

World and human beings have witnessed a large number of revolutions. Revolutions are a constant
denominator in improving and enhancing human rights and possibilities. Social revolutions like the
Protestant Revolt (1517) or the French Revolution (1789) have reshaped the social hierarchies and
overthrown political environments though unchangeable. Technology revolutions like the Printing
Revolution (1440) and the Industrial Revolution (18th century) improved lives of thousand of
hundreds of people thanks to the introduction of new techniques and instruments and the possibility
to spread the new Knowledge. Some revolutions allowed people to express more freely than before
(Egyptian revolution), some others utterly changed the way in which people communicate (Web
Revolution).

Revolutions allow to improve and enhance our societies, flattening social differences, reducing
physical distance among people and extending life expectations. Today, 10 years after the official
entrance in the 21th century, we are witnessing another revolution that will reshape our vision of
world, society and life: the Personal Genomics Revolution.

Personal genomics is the branch of Genomics responsible of the sequencing and analysis of
the genome of an individual. Personal genomics is the final goal of a complex process that starts
with the sequencing of an organisms, passes through the assembling and the characterization of
the individual being sequenced, and proceeds with the comparison of different individuals and the
determination of important traits and functions.

Personal Genomics will allow to answer a large number of questions about mankind and about
the entire biosphere. The possibility to routinely sequence one’s genome will allow not only to
design personal drugs, but also to foresee future diseases that may be prevented with target treat-
ments.

The outbreak of Next Generation Sequencing (NGS) Technologies at the beginning of 2005,
allowed to realize in few years half of this revolution. We are now able to sequence and analyse
a genome belonging to a living organism (a virus, a bacteria, a man) in a couple of weeks, if not
days, and at a cost that will be soon affordable for public health systems. However, a second half
of the revolution, maybe the most important one, is still missing: use produced data and extract
from it all valuable information in a efficient way is still a major problem.

New sequencing technology distinguish themselves from old ones for a dramatic increase in
data production. This large amount of data proposed to the Computer Science community new
(and old) computational and algorithmical challenges. Problems believed solved became suddenly
practically difficult (e.g., string alignment problem), other problems close to approximate satisfiable
solutions needed to be re-formulated and re-analysed due to new data (e.g., de novo assembly
problem), moreover new problems appeared has a consequence of the NGS outbreak (e.g., assembly
validation).

In order to fulfil the Personal Genomics goals we need to provide to the research community
instruments (both theoretical and practical). We need to study and fully understand the open
computational problems and to provide practically useful tools to continue the research. New
problems are undermining basics Computer Science concepts: for example non asymptotic optimal
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algorithms performs, in practice, better than optimal ones, moreover proved NP-complete problems
can be practically solved by greedy procedures. Those are only two examples that suggests how
complexity analysis lacks in fully describing algorithms and problem complexity.

The work in this Thesis aims at giving to the genomic community a contribution towards the
fulfilment of the Personal Genomics Revolution. We faced, under different perspectives two of
the most pressing and challenging problems of today’s genomics: string alignment and de novo
assembly.

The Personal Genomic Revolution started in 2005 and proceed at a fast pace. Our duty is to
design tools that in the next years will be used to enhance mankind life. Working in the NGS-
field allows to interact with a global community, whose open problems are rapidly changing and
evolving. The giant leap towards Personal Genomics that happened and is still in progress in these
days will redefine our concept of medicine and of life. The work done in this period, by the global
community and partially by us, will contribute to realize a revolution that will improve humanity.
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Introduction

The first genome has been sequenced in 1975 [158] and from this first success sequencing tech-
nologies have significantly improved, with a strong acceleration in the last few years. Today these
technologies allow us to read (huge amounts of) contiguous DNA stretches (named reads) that are
the key to reconstruct the genome sequence of new species, of an individual within a population,
or to study the expression levels of single cell lines. Even though a number of different applica-
tions exploit sequencing data today, the “highest” sequencing goal is always the reconstruction of
the complete genome sequence. The success in determining the first human genome sequence has
encouraged many groups to tackle the problem of reconstructing the code-book of others species,
including microbial, mammalian, and plant genomes.

The sequencing process has been a slow and relatively expensive procedure until few years ago.
Recently, new sequencing methods, known under the name of Next Generation Sequencing (NGS)
technologies, have emerged. In particular the commercially available NGS technologies include
pyrosequencing (commercialized by 454), sequencing by synthesis (commercialized by Illumina) and
sequencing by ligation (commercialized by ABI). Compared to traditional methods (in particular
Sanger method), these technologies function with significantly lower production costs and much
higher throughput. These advances have significantly reduced the cost of several applications
having sequencing or resequencing as an intermediate step. In particular the possibility to sequence
or resequence several individuals among a population became possible and affordable even by small
research facilities.

Despite the differences among them, NGS technologies differ from old sequencing technologies
for three fundamental peculiarities:

• low cost: the cost of resequecing a human individual dropped from more than 1 million US
dollars to 10.000 US dollars;

• high throughput: data production passed from a couple of mega bases per day to tens of
Giga bases per day;

• short sequences: produced sequences (i.e., reads) are much shorter than previous ones.

The roots of this dissertation are in the recent research revolution that followed the NGS ap-
pearance usually known under the name of NGS-revolution (the main engine of the more general
Personal Genomics revolution). In particular we are interested in the tight link between the NGS-
revolution and Computer Science. From the pioneering genomics projects (i.e., Human Genome
Projects [85, 175]) the role of computer scientists has been of primary importance. In particu-
lar, in the last decade the new discipline of bioinformatics clearly emerged. Bioinformatics is the
application of computer science and information technology to the field of biology and medicine.
Bioinformatics deals with algorithms, databases and information systems, web technologies, arti-
ficial intelligence, information and computation theory, software engineering, data mining, image
processing, modeling and simulation, signal processing, discrete mathematics, control and system
theory, circuit theory, and statistics, for generating new knowledge of biology and medicine, and
improving and discovering new models of computation (e.g., DNA computing, neural computing).

In this thesis, we will focus our attention on genomics and sequence analysis in the NGS context.
Genomics is the discipline in genetics concerning the study of the genomes of organisms. Every
genomic project starts by sequencing an organism. This process produces a large amount of reads
that are subsequently used in the following analysis. When an unknown (i.e., never sequenced
before) genome is sequenced, we are usually interested in reconstructing its DNA sequence. In
this case we speak of de novo assembly project. The process of reconstructing a genome is called
assembling and it is carried out by pipelines dubbed assemblers. If the sequenced individual has
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an already assembled genome, we are usually interested in discovering the differences between the
assembled data and the just sequenced organism. In this case we speak of resequencing project.
The assembled genome is referred to as the reference genome. The first mandatory step in these
projects is to map or to align sequenced reads on the reference genome. This step is accomplished
using tools dubbed aligners.

Throughout this thesis, we will see how often standard complexity analysis fails to faithfully
depict the proposed problems. The alignment problem is a well known and studied problem,
with several optimal solutions. Unexpectedly, more often than not, non asymptotically optimal
algorithms have, in practice, better performances than asymptotically optimal ones. The assembly
problem is even more surprisingly: even if all the formulations proposed so far categorize the
problem as NP-hard, tools able to practically solve the problem are widely accepted and used. As
we will see, this is a consequence of several factors: (i) real architectures are more oriented towards
some solutions than others (i.e., memory locality); (ii) complexity analysis ignores significant
constants which turn out fundamental in practical scenarios (e.g., use 50 GB RAM or 100 GB
RAM means more than just discarding a constant factor of 2); (iii) complexity studies often
introduce over simplifications that alter the problem’s nature; (iv) complexity studies concentrate
on worst case scenarios that, however, can be rare in practice or absent in nature.

All the solutions proposed in this thesis aim at contributing to the progress of the bioinformatics
and genomic fields. Some of the contributions represent brand new ideas that have been bundled
in publicly available tools (this is the case of rNA, GapFiller, and 16merCounter), some other are
the result of combining third party software to produce new tools or pipelines (this is the case of
eRGA), in some other cases already proposed techniques have been critically studied and revised
(this is the case of forensics features analysis).

The NGS revolution technology allowed to sequence at an extremely low cost and at high
coverage an unexpected number of new organisms. This is well represented throughout this thesis
by the numerous datasets that will be used to test and compare already available and new solutions.
Among others, in our work we analysed different Human datasets, numerous grapevine varieties,
several poplar species, data belonging to conifers (i.e., spruce) and a large number of bacterial
genomes. Pushed by the need to evaluate software capabilities, we also produced and employed
in-vitro/simulated datasets.

The NGS-revolution not only confined Sanger based sequencing to the history, but it also
ruled the end of several software solutions believed not replaceable for decades. Next generation
sequencers are able to produce in a couple of weeks the same amount of data produced for the
Human Genome Projects in 10 years. From the beginning it was clear that all available instruments
were not able to cope with this large amount of data. The picture was even—computationally—
worse, due to the fact that NGS sequences were characterized by an intrinsic short length and by
new and almost unknown errors schemas.

The unquestioned aligner before the NGS revolution was BLAST. BLAST was unable to manage
short reads and to align them in an acceptable amount of time. In the new NGS world, hundreds
of millions of reads are produce within days and should be aligned in days if not hours. At the
same time in which NGS vendors were busy in a race to produce more data at a lower cost than
the others, the Computer Science community was busy in a race to produce faster aligners able
to align data at higher throughput and consuming always less resources. Almost all proposed
solutions are based on indexes over the reference used to quickly filter large portions of it and
speed up the search. Beside the theoretical optimal performances of Suffix-Tree like solutions,
all practical algorithms rely on Suffix-Arrays variations and Hash Tables. In particular, solutions
based on Burrows Wheeler transformation and FM indexes (Ferragina and Manzini) have became
a de facto standard in the NGS alignment landscape. It is worth noting that Suffix-Arrays and
Hash Tables behave theoretically worse than Suffix-Trees. However, Suffix-Trees require more (by
a constant) memory’s accesses due to bad memory locality. The constants involved become not
negligible when aligning hundreds of thousands of sequences.

In addition to the technicalities of each solution, all available software must deal with errors,
that are an inherently characteristic of every sequencing technology. Allowing errors in the align-
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ment process is therefore mandatory. Inexact alignment is much slower than the exact one, so
many tools employ heuristics to speed up alignment at the cost of loss of accuracy (i.e., missing
optimal alignments).

One of the main contributions presented in this work is the short string aligner rNA (randomized
Numerical Aligner). rNA is an hash-based aligner specifically designed to align the large amount
of data produced by NGS technologies, with particular attention to Illumina technology. rNA
uses an Hamming-aware mismatch function that allows to identify reference’s positions that are
likely to be occurrences of the searched pattern at a given Hamming distance. The key factor
that distinguishes rNA from the vast majority of others aligners is its capability to align at high
sensitivity without significantly affecting performances. All developed heuristics do not hinder
rNA’s sensitivity and no optimal alignment is missed by this tool.

Discouraged by short reads length, but encouraged by technology improvements, many groups
have started to use NGS data in order to reconstruct new genomes from scratch. De novo assembly
is in general a difficult problem and is made even more challenging by short reads. Assembly
problem has been studied under several prospectives and all formalization attempts demonstrated
that it is an NP-hard problem. However, many assembler have been proposed with particular
success, especially in the Sanger sequencing context. NGS-based assemblers are almost always
based on de Bruijn Graphs, that on one hand made the problem practically tractable, but on
the other hand introduce over simplifications that can hamper the resulting assembly. NGS-
based assemblers results are, until now, not comparable to those achievable with Sanger-based
assemblers. The possibility to trade reads’ length with reads’ coverage (i.e., the amount of data
being assembled) seems, for now, not worth the deal.

Under certain assumptions, de novo assembly can became an easier and more tractable problem.
This is the case, for example, of the assembly of individuals in presence of a reference genome
belonging to a biologically related organism. In this case the reference genome can be used as
a guide to reconstruct the new one, avoiding many common de novo assembly problems. The
assembly problem picture can became tractable also if we concentrate our efforts on a small portion
of the sequence, instead of considering the all picture at once. This is the idea behind several
attempts to sequence and subsequently assemble small DNA’s portions (e.g., fosmid/BAC pools).

In this thesis we will discuss eRGA (enhanced Reference Guided Assembly) a pipeline that aims
at integrating de novo assembly and alignment. In presence of a closely related reference sequence,
one can align the sequenced reads against the available reference and produce a consensus sequence.
The draw back of this technique (usually named Reference Guided Assembly) is the fact that only
similar/conserved regions are reconstructed. De novo assembly, on the other hand, may be unable
to produce an acceptable quality assembly to be used to perform subsequent analysis. eRGA, with
the help of a reference sequence, integrates reference guided and de novo assembly to overcame
the limits of both, while retaining their advantages.

Usually, as a natural consequence of the sequencing process, reads are provided in pairs that are
at a known (estimated) distance. Such distance is usually refereed as the insert size. The assembly
process starts, one way or another, by computing overlaps between pairs of reads and using this
information to build contiguous sequences (contigs). The process of building contigs is error prone
(misassemblies) as a consequence of both sequencing errors and presence of repeated sequences in
the genome. With the goal of partially solving de novo assembly problem we proposed to limit the
problem to the assembly of the missing insert between pairs of reads. GapFiller (GF) is a local
assembler whose aim is “only” to close the gap between paired reads. Contigs produced in this
way are much shorter than those returned by standard de novo assemblers, however GF returns
contigs that are “certified” to be correct as a consequence of the fact that insert has been closed
reaching the mated read at the expected distance.

As a consequence of the NP intractability of the assembly problem, heuristics and greedy
approaches are standard ingredients in almost all assemblers. ARACHNE (Broad Institute MIT)
assembler binaries (one of the assemblers used to assemble the Human genome) had size greater
than 3 GB: the Human genome size! Despite the classical remark that software used to assemble the
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Human genome was at least as complex as the genome itself, it is clear that no one in reality exactly
knows what choices and what heuristics are really applied by an assembler. As a consequence of
this, assembly validation is an important step in every genome project. Moreover, validation steps
must be done as part of all the assembly projects in order to be sure to work with reliable data.
Validation and filtering steps are fundamental to reduce the problem’s complexity: every procedure
able to reduce the dataset complexity, suggest the right tool to use, and/or compare assemblers
performances and assembly’s correctness, is fundamental for the overall quality of the final goal.

To accomplish the (practically) important de novo assembly pre-steps of read filtering and
read evaluation we implemented two useful tools able to carry out these tasks. As far as the read
filtering concerns, we add to rNA a functionality that allows to efficiently filter reads and to discard
those that are likely to contain errors or that are contaminated (i.e., belonging to an organism
different from the one being sequenced). For what concerns read evaluation, we implemented
16merCounter a tool able to quickly count 16-mers (i.e., substrings of length 16) composing the
reads being sequenced and assembled. This tool allows to estimate not only genome composition,
but also to know how complex it is.

Gauging assemblers results or compare the performances of different assemblers is a problem
probably as difficult as the assembly problem itself. In this thesis we proposed a critical assess-
ment of the various techniques used to validate and compare assemblies and assemblers. As an
innovative contribution we will show how a selected number of features can be used to validate and
compare assemblers results and how some standardly accepted features do not faithfully represent
correctness. The selected and studied features can be used to compare and evaluate assemblies
and assemblers using previously proposed solutions. We believe that these specific results can
be of utmost practical importance for the community, as they partially fill the gap of assembly
evaluation: one of the most pressing problems of today’s genomics.

Throughout all the thesis we will analyse problems characterized by a strange trade-off between
theoretical complexity results and practical performances. In particular we will see how theoretical
optimal algorithms and complexity results are, in some way, contradicted by the use of non optimal
algorithm or by greedy techniques that practically solve the problems

Our tour in the NGS bioinformatic world starts with an introduction to basic biological concepts
and to NGS technologies in Chapter 1. The aim of this Chapter is to introduce non biologist readers
to the complex bioinformatics’ world. We will focus our attention not only on basic DNA concepts,
but also on NGS technologies.

Part I is dedicated to the alignment problem in the NGS-era. In Chapter 2 we will analyse
algorithms and data structure proposed so far to efficiently align the huge amount of short sequences
against a reference genome.

Chapter 3, instead, presents one of the main contributions of this thesis: a new public available
aligner for NGS sequences dubbed rNA. The aim of the Chapter is not only to describe the basic
concepts of the software, but also to show the evolution of a tool from a basic idea to a complete
suite in the NGS panta rhei.

Part II is dedicated to the de novo assembly problem. Chapter 4 gives an overview of the
assembly problem and of the available solutions: we will discuss complexity analysis (Section 4.1),
describe available tools to solve the problem (Section 4.2), explain limits of available validation
techniques (Section 4.3), and see results achievable with state of the art instruments and data
(Section 4.4).

Chapter 5 describes two new contributions to solve de novo assembly problem under restricted
hypothesis that naturally simplify the problem. In Section 5.1 we will present eRGA a pipeline
able to combine alignment and de novo assemblly techniques to assemble genomes in presence of an
already available reference sequence. In Section 5.2 we will introduce GapFiller, a local assembler
that aims at producing relative short contigs that are certified to be correct.

In Chapter 6 we will present the contributions to the assembly validation problem. In particular
we will see how the information stored in reads can be improved (Section 6.1.1) and how reads can
be used to infer genome’s properties or to evaluate experiments’ quality (Section 6.1.2). Moreover,
in Section 6.2 we will show how the use of multivariate techniques allows us to better understand
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metrics used in assembly evaluation/validation and how these techniques allows us to improve
available methods.
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1
A “bit”of Biology

Herein we introduce some basic biological information. In particular, after presenting the prin-
cipal genomics concepts (nucleotide, DNA, genome, etc.) we will focus our attention on the se-
quencing process, that is the focal process that allows us to “read” genomes. The process of
reading/sequencing a genome is the first mandatory step to reconstruct, search, and analyse it.

In particular, this first chapter aims at explaining how, in the last three years, a revolution
took place in the sequencing projects: at least three new technologies, sponsored by three large
companies, reshaped our knowledge and capabilities in the genomic field. The Human Genome
Project [85, 175] needed 10 years and more than 10 US Billions dollars to produce all necessary
data. The same amount of data can be produced today in three weeks at a cost of 10.000 US dollars.
Sequencing costs are constantly dropping-down while the sequencing throughput is improving at
a rate of about fivefold per year. At the same time a new generation of sequencing technologies
appeared promising, again, lower costs and higher throughput.

A basic understanding of how sequencing technologies work and how they evolved is mandatory
to understand some of the computational problems that will be discussed in the following chapters.

In Section 1.1 we will introduce some basics DNA concepts, like its double helix structure.
In Section 1.2 we will describe the sequencing process as the general process that allows us to
read a DNA sequence. Moreover we will present some of the most important reasons pushing our
need of sequencing. Finally in Section 1.3 we will focus on the characteristics and peculiarities of
available sequencing technologies. In particular Section 1.3 is divided into three main topics: Old
Sequencing technologies (1.3.1), Next or Second Sequencing Technologies (1.3.2) and finally Third
or Future Sequencing Technologies (1.3.3).
Readers already familiar with the fundamentals of the DNA and with sequencing technologies may
skip this Chapter.

1.1 DNA and the Codebook of Life

DNA, or deoxyribonucleic acid, is the hereditary material in humans and in all other organisms.
Cells belonging to the same individual contain the same DNA sequence. DNA is commonly located
in the cell nucleus (nuclear DNA), however non negligible quantities of DNA can also be found in
the mitochondrion (mitochondrial DNA or mtDNA) and other organelles (e.g., like the chloroplast
in plants). DNA contains (and hides) the code that not only makes life possible, but makes each
individual different from all others. This code can be represented as a long sequence (or chain)
containing a message encoded in a four letter alphabet: Adenine (A), Guanine (G), Cytosine (C),
and Thymine (T). These letters represent four chemical bases classified into two types: Adenine
and Guanine are named purines, while Cytosine and Thymine are called pyrimidines. Each base
is also attached to a sugar molecule and to a phosphate molecule. Base, sugar molecule, and
phosphate together are called a nucleotide.

DNA exists in the famous form of a double-helix structure (see Figure 1.1) as discovered by the
two Nobel Prize scientists Watson and Crick. In living organisms DNA does not usually exists as a
single molecule, but instead as a pair of molecules that are held tightly together in a double-helix
shape. In a double helix the nucleotides direction in one strand is opposite to their direction in
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Figure 1.1: DNA is a double helix formed by base pairs attached to a sugar-phosphate backbone.

the other strand: the strands are antiparallel. The asymmetric ends of DNA strands are called the
five prime (5′) and three prime (3′) ends.

Bases on opposite strands are bonded, but only two types of connections are possible: Adenine
is coupled always to Thymine, while Cytosine is coupled always to Guanine. This situation is
called complementary base pairing, and we will often use the term base pair (bp) to identify one of
the two bases. The information contained on the two strands is the same, with the only difference
that one is the reverse complement copy of the other. In other words, given a sequence belonging
to one of the two strands, we have to revert it and to substitute As with Ts and Cs with Gs to
obtain the sequence on the other strand.

An important property of DNA is its capacity to replicate, or make copies of itself. The bonds
between bases in the two strands can be broken (by a mechanical force or by high temperature for
example) and the two strands can be used to obtain two new copies of the original DNA sequence.

The replication process must be nearly perfect, otherwise errors in this phase can jeopardize
essential living mechanisms of the individual. However, imperfect replications or insertions in
the DNA of foreign genetic materials are essential for the evolution process especially in asexual
organisms.

DNA contains most if not all the information needed to describe each aspect of a living organism,
however some parts of this sequence are more important than others. In particular, genes are among
the most important and studied segments of every genome. Genes contain open reading frames
(i.e., a portion of a DNA molecule that, when translated into amino acids, contains no stop codons)
that can be transcribed and they are normally flanked by regulatory sequences such as promoters
and enhancers, which control the transcription. More in particular, using the definition introduced
in [136], a gene is a discrete genomic region whose transcription is regulated by one or more
promoters and distal regulatory elements and which contains the information for the synthesis of
functional proteins or non-coding RNAs, related by the sharing of a portion of genetic information
at the level of the ultimate products (proteins or RNAs) .

Genes are the basic units of hereditary information in all living organisms. All activities and
behaviours of cells depends on genes. All organisms are characterized by many genes corresponding
to different biological traits. Some of those traits are visible (eye color, height, etc.) some others
are “hidden” like blood group or predisposition to diseases. When a gene is active (or expressed) its
sequence is copied in a process dubbed transcription, producing the so call RNA (Ribonucleic acid).
Transcription is the first of a series of activities characterizing the gene expression mechanism. After
transcription, RNA is further processed to remove intronic regions to produce the so called mature
RNA. Later, mature RNA is exported outside the cell nucleus (at least in eukaryotes) in order to
translate RNA triplets into amino acids that will form the proteins.

It is important to notice that while all cells in an organism share the same DNA sequence,
genes expressed in each cell can be (utterly) different. Moreover, even if two cells can produce the
same protein, the expression level can be different (i.e., one of the two produces a small amount
of the protein in comparison to the other). Gene expression (and levels) depends on cell types,
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developmental stage, response to environmental factors and many others.

1.1.1 Zygosity and Ploidity

The genotype is the genetic makeup of a cell, an organism, or an individual usually with reference to
a specific character under consideration. One’s genotype differs subtly from one’s genomic sequence.
A sequence is an absolute measure of base composition of an individual, or a representative of a
species or group; a genotype typically implies a measurement of how an individual differs or is
specialized within a group of individuals or a species.

DNA is divided into chromosomes. All complex living forms (more complex than bacteria)
have more than one chromosome. Ploidy is the number of sets of chromosomes in a biological cell.
An organism is said haploid if its cells have a single copy for each chromosome, diploid if each
chromosome is present in two copies while polyploid if the number of copies is higher than two.
For example humans, like almost all the animals, are diploid so they have two homologous copies
of each of the 23 chromosomes, one from the mother and one from the father.

In diploid (and more in general in polyploid) organisms, some segments or loci of the same copy
of chromosomes can be identical or different. A locus is the specific location of a gene or DNA
sequence on a chromosome. A variant of the DNA sequence at a given locus is called an allele. If
at a given locus the genotype consists of two identical alleles (i.e., the two chromosome copies are
identical) then the locus is said homozygous. Otherwise, if at a given locus the genotype contains
two different alleles, then the locus is said heterozygous.

1.2 Sequencing the DNA

DNA sequencing is the process that allows us to read continuous stretches of bases from a DNA
sequence. A common denominator between all available technologies is their capability to read
only small sequences compared to the length of the genome being sequenced.

A sequencing process begins by physically breaking the DNA into millions of relatively small
fragments. A single fragment cannot be easily read; for this reason, usually, each fragment is
replicated several times. Replication allows the sequencer to read continuous stretches of DNA
usually dubbed reads. DNA fragments being read can have various sizes, ranging from 30 base
pairs (bp) to 100 Kbp. Almost all commercial available sequencers are able to read both fragments
ends, producing in this way the so called paired reads. More precisely, reads are read in pairs at
a known distance and orientation; the distance between the beginning of the first pair and the
end of the second is usually called insert size. As we will see in Chapter 3 paired reads are of
utmost importance in de novo assembly (i.e., reconstructing the original DNA sequence). It is
worth pointing out that there is a trade off between insert size and cost (time and money): short
inserts are inherently easier and cheaper to produce than long ones.

1.2.1 Why Sequencing?

Sequencing is a difficult, time consuming and expensive procedure, so why are we so interested in
sequencing? Sequencing is only the first step along the path to discover and unveil the book of
life. The number of applications that follow the sequencing process is very long and here we can
only list some of the most important.

Sequencing is essential to comprehensively characterize DNA sequence variation, to detect
methylated regions of the genome, to study trancripts and to identify the degree to which mRNA
tranctipts are being actively translated [175, 42, 5, 179].

De novo sequencing is the process of reconstructing a new genome sequence. The genome of
every organism holds secrets that when unlocked yield a invaluable mechanistic information that
would in some measure illuminate not only our own biology but that of the rest of the world as well.
The complete genome sequence of an organism (often called reference genome sequence) allows us
to study gene expression, genome evolution, cancer mechanisms, and many others aspects.
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Obtaining a reference sequence is only the first step towards hundreds of new possibilities. Se-
quencing is of primary importance when a reference genome is available: in this case sequencing
new individuals will allow us to study genetic diseases and to characterize differences among pop-
ulations. Moreover, having a reference genome for a given species, we can sequence closely related
species in order to study the differences among distant individuals.

The final goal of sequencing, however, still remains, at least for humans, the so called personal
genomics. Variations in the genome are often unique among people. It is estimated that each
human being carries about 200,000 single-base variants with respect to the reference genome. The
possibility to obtain the genome sequence of an individual will possibly give us the opportunity to
create target drugs and/or to prevent diseases.

1.3 Sequencing Technologies

The general technique of breaking DNA into several random fragments and read them after a
replication phase has been introduced by Fred Sanger in 1975 [158] (the chain termination method)
and in parallel by Maxam and Gilbert in 1977 [112] (a chemical sequencing method). Sanger
sequencing ultimately prevailed given it was technically less complex and more amenable to being
scaled up. The sequencing method introduced by Sanger, usually dubbed Sanger Method, has
remained the mainstay of genome sequencing for nearly 30 years.

Recently, Sanger method has been supplanted by several next-generation sequencing technolo-
gies offering dramatic increases in cost-effective sequence throughput, albeit at the expense of read
lengths. Starting from 2005 Illumina Solexa, Roche 454 and ABI Solid have been busy in a race
to produce more and more sequences, at lower cost and in shorter time, consigning (at least ap-
parently) Sanger method to the history. This major breakthrough is globally known under the
name of “Next Generation Sequencing revolution”, while the three new technologies are usually
called Next Generation Sequencing Technologies. However, in the last months, the name Second
Generation Sequencing Technologies is becoming usual, to distinguish the three already mentioned
solutions from new technologies, promising again new data at a lower cost and at higher through-
put. New emerging technology are often categorized as Single Molecule Sequencing Technology for
their capacity to sequence a single molecule without the need of replication steps.

In the following we will describe the basics of major sequencing technologies. All sequencing
technologies (even the “old” Sanger sequencing) rely on complex and advanced chemical reactions
and/or high resolution optical devices, and/or state of the art nano-technology instruments. The
aim of this paragraph is only to sketch the basic principles and to highlight strong and weak points
of each technology.

1.3.1 First (Old) Generation Sequencing Technologies

The landmark publication of the late ‘70 by Sanger’s group [158] and notably the development of
the chain termination method by Sanger and colleagues [159] established the groundwork for the
following decades of sequence-driven research.

The method is based on the DNA polymerase-dependent synthesis of a complementary DNA
strand in the presence of natural 2′-deoxynucleotides (dNTPs) and 2′,3′- dide-oxynucleotides
(ddNTPs) that serve as nonreversible synthesis terminators [158]. In order to obtain several copies
of each fragment being sequenced, an in vivo amplification is performed. Usually this amplification
is done through cloning into bacterial hosts.

Using their method, Sanger and colleagues in 1977 were able to sequence the phiX174 genome of
size 5374 bp [158]. Five years later their method was used to sequence the bacteriophage λ genome
consisting of 48501 bp [159]. The method was mainly manual and required an extensive human
work. In the following years, Sanger method has been systematically improved and automatized
and in 1995 the cost per base dropped to approximately 1 US$ per base pair. However, time and
costs needed to sequence even a small bacterial genome (a couple of Mega base pairs) was still
too high even for large sequencing centers. The real acceleration towards a method able to scale
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on larger genomes was the introduction of the ABI Prism 3700 DNA Analyzer, which allowed the
sequencing of approximatively 900,000 bp/day, making the cost per base falling to 0.1 US$ per
base pair. Between 1998 and 2005 the costs approximatively dropped to 0.001 US$ per bp, given
the possibility to sequence even Giga base pairs long genomes. Reads’ length could reach 700 bp
using the ABI3730 cl instruments, helping both the assembly and the alignment task.

It must be stressed that even with the progresses just mentioned, production-scale genome
sequencing with Sanger technology is only possible at genome centers where there is a large avail-
ability of space, personnel, and equipment. As noticed in [27] to sequence at an high enough
coverage a mammalian genome (e.g., at 4× coverage) one needs a center with approximately 5,000
m2, with 150 ABI3730 xl sequencers, a sample preparation area the size of a basketball court, and
a 180 m2 computing facility. Such a center still has to wait for one year before have all the data.

1.3.2 Second (Next) Generation Sequencing Technologies

The previous picture gives us a rough idea of the problems and of the difficulties of a sequencing
project at the beginning of 2005. In particular cost and time needed to sequence an individual
were a major stumbling block. With the completion of the Human Genome sequence [85, 175] an
obvious question was “What’s next?” There were (and there are) many answers to this question:
we need the genome sequence of new species to better characterize the bio-diversity; we would like
to resequence as many individuals in a population (i.e., Human) as possible to characterize and
understand genome variations and genetic diseases and to develop pharmacogenomic drugs.

All this targets were far from being possible at the beginning of 2005. As noticed by Margulies
in [111] the cost of sequencing a human genome was estimated to lay between 10 US$ and 25 US$
Millions dollars. However the picture changed very fast after 454 sequencing technology appeared
on the market [111]. This new technology represented a giant leap towards personal genomics
thanks to its large throughput. The scenario became even more interesting in the next few months
when other two technologies (Illumina/Solexa and ABI-Solid) appeared promising more data at a
lower cost.

On one hand, Next (Second) Generation Sequencing technologies were characterized by large
throughput and low costs, on the other hand, read’s length posed a major problem. 454 was able to
produce reads 200 bp long, Solid and Illumina were limited to reads shorter than 50bp. Moreover,
new short reads produced with NGS-technologies were affected by error rates higher than Sanger
ones.

Despite these problems, NGS technologies have practically substituted Sanger sequencing. In
the following years a competition started with the goal of producing more and more reads, at a
lower cost and/or at longer lengths. Illuminas latest instrument, HiSeq2000, is able to produce
more than 60 Giga base pairs (Gbp) per day composed of 100 bp long reads. ABI Solid latest
instrument (SOLIDTM System) can produce 300 Gbp in a single run, but it can generate reads
of length at most 75 bp. Roche 454 (Genome Sequencer FLX) has the lowest throughput (1 Gbp
per day) but is able to produce single reads of length 600-700 bp or paired reads of length 250 bp.
Newer technologies like Ion Torrent, Pacific Bioscience and Oxford Nanopore are now emerging on
the market with new instruments promising again new data at a lower cost.

454

One of the main problems and limitations of Sanger sequencing is the in vivo amplification of
DNA fragments, usually achieved by cloning them into bacterial hosts. This process is affected by
host-related biases, is lengthy, and is quite labor intensive. The first next-generation sequencing
technology that appeared on the market in 2005 eliminated this problem thanks to a highly effi-
cient in vitro DNA amplification method known under the name of emulsion PCR [171]. With this
system individual DNA fragments-carrying steptavidin beads are captured into separate emulsion
droplets. These droplets act as individual amplification reactors, producing ∼ 107 clonal copies of
a unique DNA template per bead (for more details refer to [111]). The material is subsequently
transferred into a well of a picotiter. The templates are then analysed using a pyrosiquencing
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reaction. The use of the picotiter plate allows hundreds of thousands of reactions to happen in
parallel, greatly increasing sequencing throughput.
The pyrosequencing technique is a sequencing-by-synthesis approach that measures the release of
inorganic pyrophosphate by chemiluminescence. In other words, every time a nucleotide comple-
mentary to the template strand is added into a well, the nucleotide is incorporated, thus producing
a “light”detected by a CCD camera. The light signal is proportional to the number of bases being
incorporated.
For this reason, the principal error of 454 reads consists of incorrectly estimations of the length of
homo-polymeric sequences stretches (i.e., continuous stretches of a single nucleotide).

Current state of the art 454 platform is able to produce single 600-700 bp long reads or 250 bp
long paired reads. The throughput is approximately of 1 Gbp per day.

Illumina

Solexa company was a pioneer in proposing an utterly new sequencing method [13, 12]. The com-
pany was acquired in 2007 by Illumina Inc that started to commercialize the most widely used
sequencer nowadays: the Ilumina/Solexa Genome Analyser (GA). At that time, the Illumina se-
quencer was characterized by an unbelievable throughput (1 Gbp in 2-3 days) and by a problematic
short read length (35 bp). In three years Illumina was able to raise the throughput up to 100 times
and read length up to 4 times. Recently, the new machine HiSeq2000 is able to produce up to 600
Gbp of data composed by reads of length 100bp in two weeks.

Figure 1.2: Ilumina/Solexa amplification process.

Besides the technical improvements the Illumina/Solexa approach has remained the same. The
method achieves cloning-free DNA amplification by attaching single stranded DNA fragments to
a solid surface (see Figure 1.2), dubbed single-molecule array, and conducting a solid-phase bridge
amplification of single-molecule DNA templates. This process consists in attaching a single DNA
molecule to a solid surface using an adapter. In this way, molecules bend over and hybridize to
complementary adapters (i.e., creating a bridge), forming the template for the synthesis of their
complementary strand. In this way a ultra high sequencing flow-cell with hundreds of millions of
clusters is produced, with each cluster containing thousands of copies of the same template.

Templates are then sequenced in a massively parallel fashion using a DNA sequencing-by-
synthesis approach that employs reversible terminators with removable fluorescent moieties. At
each cycle a base is read by adding the four nucleotides with an attached fluorescent dye to record
the incorporated base. After every cycle the surface must be “cleaned” for the next phase. This
procedure is often referred as wash-and-scan method.
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Illumina method is not affected by the homo-polymeric stretches like 454. However, as a
consequence of the wash-and-scan procedure, reading quality drops faster and Illumina is able to
produce shorter reads compared to 454 ones, making some problems harder to solve (i.e., de novo
assembly). The most frequent error in Illumina reads are substitutions, usually present in read’s
tails as a consequence of the wash-and-scan approach.

Solid

Applied Biosystem has been the unquestioned leader company in the sequencing market for more
than 30 years as they were the producers of almost all the sequencers based on Sanger-sequencing
method. Despite their experience (or maybe due to their experience) they were unable to foresee
Next Generation Sequencing revolution and therefore they were the last company to propose an
NGS instrument.

Figure 1.3: Solid reading schema. In Solid system a given color is compatible with four two-base
combinations.

In ABI-SOLID system, sample fragments are attached into beads and cloned with emulsion
PCR. Amplification products are transferred onto a glass surface where sequencing occurs by
sequential rounds of hybridization and ligation with 16 dinucleotides (all possible combination of
two consecutive nucleotides) combinations labelled by four different fluorescent dyes (see Figure
1.3). Each position is probed twice and the identity of the nucleotide is determined by analysing
the color that results from two successive ligation reactions. However, in order to “translate” the
reads from color space (the output format) to letter space at least the first base must be known (and
in general it is). The advantage of such technique is the fact that sequencing errors and sequence
polymorphisms (i.e., real changes in the DNA being sequenced with respect to the reference) can
be detected.

SOLID instruments are able to produce 300 Gbp of 75 bp long reads in a single run. However,
a strong limitation of SOLID technology is the color space encoding, that obliges development of
ad-hoc software. This fact, coupled with the short read length have limited the spread of this
technology.

1.3.3 Third (Future) Generation Sequencing Technologies

As noticed in [122] the three main sequencer vendors (Roche, Illumina and ABI) are constantly
improving their instruments, and year after year (sometimes month after month) reagents price
and sequencing times are decreasing while throughput and precision are increasing. In less then
three years NGS technologies have reshaped our visions and altered the previsions of the more
optimistic prophets.
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Even though improvements to second-generation sequencers continue to impress, there is a
lot of rumour in the last period about the so called third generation DNA sequencing platforms.
Their distinguishing factor between these new emerging technologies and the second generations
are their capability to use single template molecules, lower cost per base, easy sample preparation
and significantly faster run times analysis. Some of these new emerging technologies are able to (or
at least aim to) produce long reads, with the goal to solve some de novo assembly open problem.

Major Second Generation Sequencing technologies rely on sequencing by synthesis approach
that needs PCR to grow clusters of a given DNA template, a solid surface where to attach templates
that are subsequently read by synthesis in a phased approach that requires synchronization and
many washing steps. Third Generation Sequencing technologies, instead, interrogate a single DNA
molecule: in this way no synchronization is required and issues related to the bias introduced by
PCR amplification and de-phasing are overcome.

This new sequencing technologies promise (in some way “again”) high throughput, fast turn-
around times (sequencing bacterial genomes in minutes, not weeks), long reads’ length to enhance
de novo assembly and structural variations detection (especially in haplotypes), high consensus
accuracy, small amounts of starting material (theoretically a single molecule) and low costs of
sequencing machines and of sequencing process (having in mind the ambitious goal of sequencing
a human genome with less than 1000 US$) [160].

In the following we will describe some of the Third Generation Sequencing Technologies already
or soon available on the market.

IonTorrent

Ion Torrent technology is considered to sit between Second Generation Sequencing Technologies
and Third Generation Sequencing Technologies [160]. Ion Torrent is based on semiconductor-
based high-density array of microwells working as reaction chambers (see Figure 1.4) [155]. This
technology eliminates the need for light, scanning and cameras. These facts not only dramatically
simplify and accelerate the overall sequencing process but they also reduce both the overall footprint
of the instruments and the sequencing costs.

Figure 1.4: The Ion Torrent sequencing platform uses a semiconductor-based high-density array
of microwell reaction chambers positioned above an ion-sensitive layer and an ion-sensor.

However, this technology is still a wash-and-scan system like all the available second generation
sequencing technologies. Despite this, Ion Torrent is able to produce 200 bp reads in less than 2
hours with an instrument of the size of a typical microwave [122].

Recently, Ion Torrent sequencer demonstrated its speed and simplicity during an outbreak
of pathogenic E. coli in Europe (in particular in Germany). In this occasion the Ion Torrent
Instrument was used to sequence the bacteria in few days rather than in weeks [116].

Pacific Bioscience

Pacific Bioscience developed and commercialized a single-molecule real time sequencing approach
able to directly observe a single molecule of DNA polymerase as it synthesizes a strand of DNA,
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directly leveraging the speed and processivity of this enzyme [38].

Figure 1.5: PacBio Single Molecule System. Principle of single-molecule, real-time DNA sequenc-
ing. A single molecule of DNA template-bound Omega29 DNA polymerase is immobilized at the
bottom of a ZMW, which is illuminated from below by laser light.

Direct observation of DNA is greatly difficult as a consequence of the fact that a single DNA
polymerase molecule is of the order of 10 nm in diameter. In order to observe DNA polymerase in
real time (i.e. detecting the incorporation of a single nucleotide taken from a large pool of potential
nucleotides during DNA synthesis) the zero-mode waveguide (ZMW) technology presented in [38]
was used.

Pacific Bioscience reads length can reach 1 Kbp and an instrument run takes 15 minutes. How-
ever the error rate (substitutions, insertions, and deletions events) are quite frequent (around 15%
. In order to prevent that, a feature of Pacific Bioscience instrument is the redundant resequenc-
ing. Redundant resequencing generates multiple independent reads of each template molecule, and
then combine the information in a consensus, reaching in this way an accuracy exceeding 99.9%
[122]. The other acclaimed feature proposed by Pacific Bioscience is the strobe sequencing. The
aim of strobe sequencing is to obtain data that can be used in de novo assembly or in large variant
detection: the Pacific Bioscience read length is essentially limited by the continuous and damaging
illumination required to “read” the DNA. Strobe sequencing addresses this issue by periodically
“turning off” the light (i.e., the laser). While the laser is off, no sequence data is produced, but the
reaction can continue without damaging the DNA. When the light is on again, another continuous
stretch can be read. The amount of DNA that is not read can be inferred knowing the fragment
speed. This procedure can continue until 1 Kbp of data is read but a much longer sequence of
DNA is processed. In this way it is possible to obtain a set of sequences at a know distance and
orientation.

Oxford Nanopore

Oxford Nanopore sequencing technology (together with other nanopore based technologies) relies
on transit of a DNA molecule or its component bases (i.e., nucleotides) through a hole and detecting
the bases by their effect on an electric signal.

In particular, Oxfod Nanopore is commercializing a sequencing system based on three nat-
ural biological molecules [29, 59]. This technology employs an exonuclease/based “sequencing-
by-deconstruction” [122]. The individual nucleotides are cleaved from the DNA strand: as each
cleaved base traverse the nanopore, the current is distributed in a manner characteristic for each
base, thus allowing the instrument to read the bases.

Like all single molecule based sequencers, also the Oxford Nanopore sequencer is characterized
by long read lengths, small instrument size (due to the absence of optical cameras or lasers)
and short sequencing times (due to the absence of PCR or labelled nucleotides). However, as
consequence of the fact that the template molecule is digested during the sequencing (i.e., single
nucleotides are cleaved from the DNA strand), redundant sequencing is not possible.
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Figure 1.6: Oxoford Nanopore system. Using a processive enzyme to cleave individual nucleotides
from a DNA strand and pass them through a protein nanopore.
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The Alignment Problem
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2
Short String Alignment Problem

One of the main applications of string matching is computational biology. A DNA sequence can
be seen as a string over the alphabet Σ = {A,C,G, T}. Given a reference genome sequence, we
are interested in searching (aligning) different sequences (reads) of various lengths. When aligning
such reads against another DNA sequence, we must consider both errors due to the sequencer and
intrinsic errors due to the variability between individuals of the same species. For these reasons,
all the programs aligning reads against a reference sequence must deal (at least) with mismatches.

As a general rule, tools used to align Sanger reads (i.e. among the others BLAST [7]) are not
suitable (i.e. are not efficient enough) to align next generation sequencers output due, essentially,
to the sheer amount of data to handle. Therefore, aiming at keeping the pace with data production,
new algorithms and data structures have been proposed in the last years.

In this chapter we are interested in describing state of the art algorithms and tools able to align
the large amount of reads produced by Second Generation Sequencers. The race among Illumina,
Solid, and ABI to produce always more reads has been coupled by a race among the Computer
Science community to produce software able to analyse NGS data in a feasible amount of time.
For this purpose old algorithms and data structures have been revised, while, more often, new
algorithms and data structures have been designed.

The final picture is composed by a large variety of new and interesting approaches from which
a small number of solutions have emerged. However, the fast pace at which technology is evolving
suggests that all the solutions proposed until now (also the most successful ones) have to evolve and
to adapt themselves. Moreover, the fast evolving environment makes possible that new algorithms
and approaches could emerge as optimal solutions in the future.

A particular interesting observation is that often, theoretically slower algorithms and data
structures are used in place of optimal ones. This scenario is a consequence of several practical
considerations. As an example consider that complexity analysis discard constant factors that are
fundamental in practical scenarios. Moreover, as we will see, some data structures are able to take
advantage of real architectures (e.g. memory locality). The differences between theoretical optimal
results and practical optimal results show how complexity analysis can fail in faithfully describe
algorithm performances especially in real scenarios.

The Chapter is divided in the following parts: in Section 2.1 we will introduce some basics
definitions that we will use throughout this Chapter and also in the next one. Section 2.2 wants to
give an historical perspective of the string alignment problem. In Section 2.3 we will concentrate
our attention on alignment algorithms and data structures for Next Generation Sequencing tech-
nologies, in particular the Section is divided into three main parts: Section 2.3.1 describes hash
based aligners, Section 2.3.2 describes prefix based aligners while Section 2.3.3 describe aligners
designed for distributed environments. Finally, in Section 2.4 we will draw some conclusion.

2.1 Definitions and Preliminaries

In order to ease the reading and comprehensibility of this Chapter (and also of the next one)
we start presenting some preliminary concepts and some definitions that will turn out useful in
what follows.
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14 2. Short String Alignment Problem

We will always work with strings over a finite alphabet Σ with |Σ| = b. In most of the cases we
will work with ΣDNA = {A,C,G, T} (the DNA alphabet), however all definitions and algorithms
presented therein are valid for all finite alphabets such that b ≥ 2.

In the Alignment Problem we are given a pattern P and a string T and we are interested in
finding all positions in T where an occurrence of P is present. The length of P is represented by
m (|P | = m), while the length of T is represented by n (|T | = n). As a matter of fact n ≥ m and
as we will see, usually a more interesting hypothesis is that n >> m. The symbol that occurs at
position i of a string S is identified by S[i], while S[i..j] = Sij are two alternative ways to identify
the subsequence of S that starts in position i and ends in position j.

Definition 1 (Alignment Problem) Given a text T and a pattern P all over the alphabet Σ, a
real number k ∈ R, and a distance function d : Σ∗×Σ∗ → R the Alignment Problem is the problem
of identifying the set of all text positions i such that there exist j such that d(P, T [i, j]) ≤ k.

If k = 0 we have the special case of exact string matching problem, while when k > 0 we have
the more general inexact/approximate string matching problem. In this last case the two most
widely used distance metrics are the Hamming distance [53] and the edit distance (or Levenshtein
distance) [91].

The Hamming distance between two strings R and S such that |R| = |S| is the number of
mismatches between R and S.

Definition 2 (Hamming Distance) Let us define neq(c, d) as a function that returns 1 if c 6= d,
and 0 otherwise. The Hamming distance between R and S with |R| = |S| is:

dH(R,S) =def

n−1∑
i=0

neq(R[i], [i])

The Levenshtein distance between two strings R and S is the minimal number of edit operations
(substitutions, insertions, and deletions) to transform one string into the other. The alignment
between two strings at Levenshtein distance k can be represented as the sequence of edit operations
E = e1, e2, ..., et necessary to transform R into T or vice-versa.

Definition 3 (Levenshtein (Edit) Distance) Given a function w(e) that associate a real num-
ber to every possible edit operation (substitutions, insertions, and deletions), and the sequence E of
edit operations to transform R into S, then the Levenshtain or Edit distance between R and S is:

dL(E) =def

|E|∑
i=0

w(ei)

In many applications one is given a text T and a pattern P and is required to find the best
occurrences of P at distance at most k (usually Hamming or Levenshtain distance). This problem
is defined as the best k-alignment problem.

Definition 4 (Best k-Alignment Problem) Given a text T and a pattern P all over the al-
phabet Σ, a real number k ∈ R, and a distance function d : Σ∗ × Σ∗ → R the Best k-Alignment
Problem is the problem of identifying the set of all text positions i such that there exist a j that
d(P, T [i, j]) ≤ k and such that there are no other indexes i′, j′ in the text such that d(P, T [i′, j′]) <
d(P, T [i, j]).

2.2 String Matching History

String matching can be divided into two main areas: exact string matching and inexact string
matching. When doing approximate string matching the most used distance metrics are the Ham-
ming and the Levenshtain distances.
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The first algorithms to solve the exact string matching problem are due to Knuth, Morris
and Pratt [80], Boyer and Moore [19], running in time O(n + m) (n text and m pattern lengths,
respectively), and Rabin and Karp [75], requiring time O(n+m) on average.

When a large number of patterns must be searched, these solutions do not perform well, as the
text has to be scanned for each pattern. In such cases, it is convenient to build an index over the
text, allowing to search a pattern in time proportional to its length, or over the patterns, in which
case the reference is scanned only once. Usually, when the reference is fixed, or the total pattern
length is larger than the reference, indexing the text is the preferred solution. For a detailed
discussion on when, in biological applications, an index over the text is preferred to one over the
patterns, and vice-versa, refer to [57]. The most popular among such indexes are Suffix-Trees
[184, 10, 173] and Suffix-Arrays [109].

Approximate string matching at distance k under the edit metric is called the k-difference
problem, while under the Hamming metric, it is called the k-mismatch problem. A simple algorithm
for the k-difference problem is based on dynamic programming and it has a running time O(nm).
Several efforts were made to improve this result. Abrahamson [4] shows that string matching with
mismatches can be solved in time O(n

√
m logm). The fastest solutions for the k-mismatch problem

relies heavily on the ability to search the Suffix-Tree of the text and of the pattern. Landau and
Vishkin [83, 84] introduced a method running in timeO(nk) that uses constant time lowest common
ancestor queries on the Suffix-Trees of P and T (which is now known as “kangaroo hopping”). The
algorithm of Galil and Giancarlo [43] attains the same complexity O(nk). A more recent paper
[157] proposed a variation of FAAST [105] that has average running time O(n(logm+ k)/m) that
was proved to be optimal for approximate string matching [28]. The asymptotic running time was
improved in [8] to O(n

√
k log k), by a method based on counting and filtering, the Suffix-Tree with

kangaroo hooping, and fast Fourier transforms, which may ultimately lead to a more sophisticated
implementation.

The first algorithm that solved the k-mismatch problem with the construction of an index is
due to Ukkonen and Jokinen [72]. The first solution with query time depending only on k and m
was proposed by Ukkonen [173] using Suffix-Trees. More recently [63], the k-difference problem
has been solved in time O(|Σ|kmk max(k, log n)) where Σ is the alphabet, using compressed Suffix-
Arrays [51].

2.3 Aligners and Alignment Techniques

The recent spread of Next (Second) Generation Sequencing (NGS) technologies caused the need
to design new tools able to cope with the huge amount of (short) sequences produced. Tools
designed for long Sanger-like sequences were not able to operate on such amounts of data in a
feasible amount of time. Tools able to align reads against a reference sequence are usually dubbed
aligners. Solutions specifically designed for Next Generation Sequencing data are called NGS-
aligners.

Driven by the short read lengths and by specifics technical aspects (Illumina and Solid reads
are not seriously affected by duplication errors) a large amount of NGS-aligners focused on the
best k-mismatch problem (i.e. finding the best occurrence of the pattern, with at most k mis-
matches). As a consequence of the increasing length of the reads and of the necessity to align
reads against biologically distance reference most of the NGS-aligners are now able to deal with
small insertions/deletions events (indels).

The vast majority of aligners build an index over the text. However, some tools are available
that index the reads. According to [93] we can cluster existing alignment algorithms into two main
classes: algorithms based on hash tables and algorithms based on suffix-based data structures.
Moreover, in our discussion we will add a third category, composed by distributed algorithms.

On the one hand, hash-based aligners build a dictionary of the reference and then use this
dictionary to search the query sequences. On the other one, suffix-based methods rely on the
construction of an Prefix/Suffix Trie structure (i.e. an ordered tree data structure) over the
reference. Aligners normally follow a multistep procedure to accurately map sequences. During a
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first filtering phase, heuristics techniques are used to quickly identify a small set of positions in the
reference sequence where a read’s best alignment is most likely to occur. Once this small subset
of locations is computed, more accurate and often slower alignment procedures are used.

Usually a small portion of the read is searched through the data-structure (hash as well as
Prefix/Suffix-Trie) in order to isolate regions candidate to be aligned. Only on these regions a
more accurate alignment is performed. This procedure is usually named seed-and-extend. The
seed (which usually corresponds to the first part of the read) is searched allowing only a few
number of mismatches (some times the seed can be searched in exact way).

One of the first and extremely successful hash based aligner is BLAST [7]. BLAST, basically,
searches in the reference perfect matches of the query of length 11. Once these exact seeds are
identified, the search is refined by a Smith-Waterman-like alignment [168, 48]. Hash-based aligners
for NGS refined and improved this basic seed-and-extend schema. Basic seeding has been sub-
stituted by spaced seeds (SOAP [98], MAQ [95] and ZOOM [102] to mention a few) and q-grams
(SHRiMP [156, 32], and RazerS [183] among the others). Moreover, several improvements over
the standard seed-and-extend schema concern the extend phase: in [156] a vectorized version of
Smith-Waterman algorithm is used to gain speed from the SSE2 CPU instructions implemented
in latest x86 CPUs.

Suffix-based aligners implements one of the many available indexes like Suffix-Trees [10], Suffix-
Arrays [109] and FM-indexes [40]. In the NGS context, FM-indexes are the most widely used thanks
to their principal characteristic: (theoretically optimal) compressibility. Several of the short read
alignment programs (BOWTIE [89], BWA [93], and SOAP2 [99] among the others) are based on
the Barrows-Wheeler transformation [21]. These methods usually use the FM-indexes that allow
the efficient construction of a Suffix-Array with the further advantage that can be compressed.
The FM-index retains the Suffix-Array’s potential for rapid searches with the great advantage that
the index often is smaller than the text. Suffix-based aligners use heuristic similar to the one
implemented in the hash-based: the index is used to search for (almost) exact matches that will
be used as anchor for further extensions.

All the aligners are able to fruitfully exploit multiple cores architectures. However, it is worth to
mention that there is a particular class of aligners that could use many machines in parallel. These
distributed aligners can run over clusters or clouds of computers using frameworks for distributed
computation like MPI [50] and MapReduce [34].

2.3.1 Hash-Based Aligners

Hash-based aligners pre-process the reference text and/or the query reads to obtain a dictionary
that allows to search a read r in (expected) time proportional to O(|r|). Basic hash-based aligners
simply search for exact occurrences of seeds inside the text. As showed in [23] and later in [107],
seeding with non-consecutive matches improves sensitivity. A spaced seed is a seed of length l
where matches are required in only k fixed positions. A spaced seed is usually represented by a
{0, 1}-string typically called template. The total number of 1’s is usually named seed’s weight. For
example, the template ’111010010100110111’ requiring 11 matches at the ’1’ positions is 55% more
sensitive than BLAST when aligning two sequences allowing 70% of similarity, which by default
uses a seed with 11 consecutive matches.

Seeds are usually searched allowing a small number of mismatches. If the read r must be aligned
with at most k mismatches against the reference sequence, then there is at least one (consecutive)

substring of length
⌊
|r|
k+1

⌋
that occurs without errors (this is a simple consequence of the pigeon

hole principle). With this clue in mind one can build an hash table of all l-mers with l =
⌊
|r|
k+1

⌋
and use a seed-and-extend strategy. RMAP [167] uses this simple strategy. The main drawback of
this technique is that, for practical values of |r| and k, the seed length is so small that too many
false positive are produced in the first alignment step causing a long and inefficient extension phase.
As a consequence, the vast majority of seed and spaced-seed approaches allow a small number of
mismatches even in the seed. Moreover, the seed size is usually decided during the pre-processing
stage. Allowing k mismatches in a seed means that

(
2k
k

)
different templates are required (all the
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layouts that allow at most k mismatches). This number is exponential in k an therefore the method
can became quickly inefficient. In [102], the ZOOM aligner uses different spaced seeds at several
designated reads’ positions to find all possible occurrences of a read without losing occurrences. In
particular, ZOOM aligner, given the read length m and the maximum allowed Hamming distance
k, tries to design the minimum number of spaced seeds of weight w to achieve full sensitivity.
Other aligners (like SOAP and MAQ) use as seed the fist l bases of the read (the most reliable
part of Illumina data sequences) allowing a limited number (usually two) of mismatches. In order
to align a 32 bp read, RMAP uses three templates of weight 10, MAQ requires six templates of
weight 26, while ZOOM requires five seeds of length 14.

Seed and spaced-seed techniques do not allow indels within the seed. Seed-based algorithms
usually postpone the indel search to the extension phase, aligning the remaining part of the read
with a Smith-Waterman-like algorithm. SHRiMP [156], its successor [32], and RazerS [183] build an
hash table that embeds the indels thanks to q-grams. The q-gram concept (string of length q) was
introduced in [147]: this method generalizes the basic principle of the seed method applying again
the pigeon hole principle. The key observation is that if a read r of length |r| occurs in the reference
text with at most k differences (both mismatches and indels), then at least (|r|+ 1− (k + 1)q) of
the q-grams in r occur in a window of size at most |r| in the text. The main difference between
seed and q-gram based methods is the fact that the former search one long template while the
latter search for multiple short seeds in a restricted region. Anyway, both strategies are based on
fast look-up tables.

The idea to use multiple seeds, without employing q-grams, is used in SSAHA2 [132]: this
technique is used to speed-up alignments of relatively long reads (e.g. 454 reads) where it is
reasonable to require that two or more seeds fall in a small window of the reference.

2.3.2 Prefix/Suffix-Based Aligners

Algorithms that fall in this category are based on clever representation of a common data structure:
Prefix/Suffix Trie. These representations (Suffix-Trees [184, 174], Directed Acyclic Word Graphs
or DAWG [15], Compressed DAWG [16, 68], Suffix-Arrays [109, 74], enhanced Suffix-Arrays [3]
and, FM-index [40]) have the advantage over hash-based algorithms that during the alignment
phase identical copies of a substring in the reference need to be scanned only once. For example,
in a Suffix-Tree, identical sub-strings collapse on a single path, while in a Suffix-Array they are
stored in contiguous entries.

A Suffix-Trie, or simply a Trie, is a data structure that stores all the suffixes of a string. In
particular a Trie for a text T could be constructed by simply inserting in a empty keyword-tree
[52] all its suffixes. A Trie for a string T of length n over the alphabet Σ is a rooted tree with
branching factor at most |Σ| and with exactly n leaves numbered from 1 to n. In a Suffix-Trie
each internal node represents a unique substring of T . For this reason each edge is labelled with
a non empty character of T . Two edges leaving the same node cannot be labelled with the same
character. For any leaf i, the concatenation of the edge labels on the path from the root to leaf i
exactly spells the suffix of x starting at position i. A problem arises if a suffix j of T occurs also
as a prefix of another suffix i. To avoid such a situation the special character $ 6∈ Σ is usually
added at the end of T . In order to boost the search, Suffix-Tries are equipped with the so called
suffix-links: given a suffix y, each node representing the string ay (with a ∈ Σ) has a suffix-link
that leads to the node representing the suffix y. This way, the time needed to determine if a query
r has an exact occurrence using a Trie is O(|r|). The drawback of a Trie-like data structure is the
fact that a string T needs space equal to O(|T |2) making this data structure useless for the vast
majority of applications in bioinformatics.

A Suffix-Tree is a more space efficient representation of a Trie. In order to preserve space,
unary paths (i.e. stretches of nodes with out-degree one) are compressed into a single node. Only
the first character of the unary path needs to be stored. It can be shown that such a tree has only
O(|T |) internal nodes. McGreight first [113] and Ukkonen [174] later showed that this structure
can be constructed in time O(|T |). Later improvements [121] showed the possibility to represent
a Suffix-Tree in space proportional to |T | log2(|T |) + O(|T |) bits. However, despite this, most
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Figure 2.1: Suffix-based structure for the string “BANANA$”: Figure 2.1(a) shows the Suffix-Trie,
Figure 2.1(b) shows the Suffix-Tree, Figure 2.1(c) shows the DAWG generated through compression
of the Suffix-Trie (compressing in the same way the Suffix-Tree would have generated a CDAWG),
while Figure 2.1(d) shows the Suffix-Array and the BWT transformation.

space-efficient implementations of bioinformatics tools require 12-17 bytes per nucleotide, making
Suffix-Tree impractical for indexing large genomes (e.g. the Human one).

Directed Acyclic Word Graphs (DAWG) and their compressed version (CDAWG) are deter-
ministic automata able to recognize all the substrings of a string T . Similarly to what happens in
Suffix-Trees, a node in a DAWG represents a substring of the text, but in this case each node is
augmented with failure links (i.e. information to deal with the paths that are not present in the
text). Leaves do not need to be distinguishable, therefore less space is necessary retaining, however,
all the Suffix-Tree’s abilities. Also with this reduction, known implementations are, again, not able
to scale on large genomes.

The common disadvantages of previous solutions are the amount of memory required to actually
represent the Trie-like data structures, and the lack of memory locality of graphs in general. Suffix-
Arrays have been proposed with the ambition to solve both problems. A Suffix-Array for a string
T is basically a sorted list of all the suffixes of T . As for Suffix-Trees, also in this case is useful to
append a $ to T . A Suffix-Array can be built in time O(|T |) and can be used to search a pattern
r in time O(|r| log |T |) using a simple dichotomic search. In its basic representation such a data
structures requires 4 bytes per character (i.e. 4 bytes to represent a 32 bit pointer to the text).
This advantage in space is limited by the presence of a log |T | factor in the search time. The
Suffix-Array, however, can be coupled with the two other arrays containing the information about
the longest common prefix (lcp) that is an implicit representation of the suffix-links. In this way a
query time of O(|r|+ log |T |) can be achieved without compromising the space efficiency. In [3] a
clever representation of Suffix-Array and of lcp information is presented that allows a query time
of O(|r|) and uses 6.25 bytes per nucleotide.

It must be noticed that in practical situations the basic Suffix-Array version is faster than the
most advanced Suffix-Tree implementation. This result is contradicted by complexity analysis that
instead suggest that Suffix-Trees attain a speed that is a log n factor faster than Suffix-Arrays. This
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situation is a consequence of two main subtle reasons: first (but less important) the memory locality
of Suffix-Array allows to overcame the complexity gap, second, the log n factor of Suffix-Array is
limited, in practical cases, to a small number (in the human genome case log |Ghuman| =∼ 22).
The classical complexity analysis do not consider constants factors, that in this case are of primary
importance.

Ferragina and Manzini in [40] obtained a major improvement on memory with their FM-index,
a data structure based on Burrows-Wheeler Transform (BWT) [21]. The BWT takes as input a
text T and returns a reversible permutation of the text characters which gives a new string that is
“easy to compress”. In order to build the transformation for a text T a ’$’ is appended at the end
of T (for the same reason already seen with Suffix-Trees and Suffix-Array), then a “conceptual”
matrix M is created, whose rows are the lexicographically ordered cyclic shifts of T$ (see Figure
2.1(d)). The transformed string L returned is the last column ofM. Ferragina and Manzini showed
that there is a strong connection between the Suffix-Array of T and the string L. In particular,
given the Suffix-Array S of T , then L[i] = $ if S[i] = 0, otherwise L[i] = T [S[i] − 1]. Hon in [56]
showed how it is possible to build the BWT of the human genome using no more than 1 GB RAM.

The BWT of T coupled with some other array can be used to efficiently query a pattern P in T
using the backward search algorithm [40] in time O(|P |). The backward search algorithm is based
on the observation that a pattern P that occurs in T induces an interval in the Suffix-Array S.

In order to quickly compute this interval, two functions need to be pre-computed: C(a), re-
turning the number of symbols in T that are lexicographically smaller than a ∈ Σ, and O(a, i),
returning the number of occurrences of a in L[0, i].

R(P ) and R(P ) return the minimum and maximum indexes, respectively, of the Suffix-Array
S storing indexes corresponding to suffixes whose prefix is P . More formally:

• R(P ) = min{k : P is a prefix of T [S[k]..|T | − 1]}

• R(P ) = max{k : P is a prefix of T [S[k]..|T | − 1]}

Given a pattern P , the interval [R(P ), R(P )] is said Suffix-Array interval and it stores all the
occurrences of P into T . This information tells us all the positions at which the pattern occurs
within the text T .

In [40] it is proven that if P occurs in T as a substring then, for each character a,

• R(aP ) = C(a) +O(a,O(R(P )− 1)− 1) + 1

• R(aP ) = C(a) +O(a,O(R(P )))

and that R(aP ) ≤ R(aP ) if and only if aP is a substring of T . In this way, by iteratively computing
R and R from the last character of P to the first, is possible to find all the occurrences of P in T
in time O(|P |).

Ferragina and Manzini showed how it is possible to compress L without significantly increasing
the search time. Without compression an FM-index requires 2 bytes per character, but more
sophisticated implementation require only 0.5 bytes per character, allowing to store the entire
human genome in 2 GB.

All the described data structures are well-suited for exact string matching but do not scale
well when (many) mismatches are allowed.Therefore, in real-life applications, a seed-and-extend
technique is often used. Usually the first l bases of the read are searched throughout the prefix-like
index in order to identify the positions that have to be extended.

FM-index and BW-transformation are the main data structure used by the most successful
NGS-aligners (i.e. the most used tools). Among the most popular algorithms that use these data
structures we should mention BWA [92, 93], BOWTIE [89], and SOAP2 [99].

2.3.3 Distributed Architectures

All “practically-oriented” aligners allow parallel execution to align the huge amount of data pro-
duced by NGS. This feature, coupled with the sophisticated algorithms presented above, makes
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Name Algorithm indels Author Year
AGILE Hash YES Misra S. et al. 2010
BWA-SW FM YES Li H. and Durbin R. 2010
LASTZ Hash YES unp 2010
BFAST SA/Hash YES Homer N. et al. 2009
BOAT Hash reads YES Zhao S. et al. 2009
CLC-bio unknown YES commercial
GASST Hash YES Rizk G. and Lavenier 2010
SSAHA2 Hash YES Ning Z et al. 2001
ZOOM Hash reads YES Lin H. et al 2008
BOWTIE FM-index NO Langmead B. et al. 2009
BRAT Hash NO Harris E. et al. 2010
BWA FM-index YES Li H. and Durbin R. 2009
ELAND Hash NO commercial
Galign Hash YES Shaham S. 2009
GEM FM-index YES unpublished
GenomeMapper Hash YES Schneeberger K. et al. 2009
GSNAP Hash YES Wu T. and Nacu S. 2010
KARMA YES unpublished
MAQ Hash reads NO Li H. et al. 2008
MOM Hash NO Dohm J. et al. 2008
MrFAST Hash YES Alkan C. et al. 2009
MrsFAST Hash YES Hach F. et al. 2010
PASS Hash YES Campagna D. et al. 2009
PatMaN Index reads YES Prüfer K. et al. 2008
PerM Hash NO Chen Y. et al. 2009
RazerS Hash YES Weese D. 2009
RMAP Hash reads NO Smith A. et al. 2008
rNA Hash YES Policriti A. et al. 2008
segemehl SA YES unpublished
SeqMap Hash NO Hui J. and Wong W. 2008
SHRiMP2 Hash YES Matei D. et al. 2011
SOAP Hash NO Li R. et al. 2008
SOAP2 FM-index YES Li R. et al. 2009
CloudBurst Hash/MapReduce YES Schatz M. 2009
CrossBow FM-ind/MapReduce NO Langmead B. et al. 2009
GNUMAP Hash/MPI YES Clement N. 2010
Myrialign GPU based unpublished
mrNA Hash/MPI YES Del Frabbro C. et al. 2011
NovoAlign Hash/MPI YES Krawitz P. et al. 2010
pBWA FM-ind/MPI YES unpublished

Table 2.1: A (surely incomplete) list of available NGS aligners. For each aligner we specified the
type of algorithm employed, the possibility to align with indels, authors and publication year.
In red we listed aligners designed for “long” 454 reads, in green aligners able to align both long
454 reads and short Illumina/Solid reads, in brown and in blue aligners specifically designed for
Illumina reads. Brown and Blue colors distinguish respectively multi-threaded and distributed
solutions.

possible to align reads at a very high rate. Nevertheless, the increasing data production is mov-
ing several groups toward the implementation of distributed aligners (road already successfully
followed by de novo assemblers [166]). Despite being a topic worth mentioning, these solutions
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do not propose new algorithms and data structures but simply aim at increasing the alignment
throughput. Therefore we have decided to give just a brief description of some of the available
solutions.

Two commonly used frameworks for distributed computation are MPI [50] and MapReduce [34].
The former is an API (Application Programming Interface) specification that allows processes to
communicate. The different processes can be on the same machines or on different machines
(usually called nodes) connected through a communication channel (e.g., Ethernet and Infini-
band). MapReduce is a framework that allows and simplifies distribution of independent, and
hence parallelizable, operations. It mainly operates in two steps: during the Map step a master
node partitions the input into smaller subsets and distributes those to worker nodes that, after
processing data, return the results to the master node. In the Reduce step the master collects the
results and combines them (for a review see [162]).

pBWA [135] is a parallel implementation of the popular software BWA [92]. It was developed
by modifying BWA source code with the OpenMPI C library. mrNA (unpublished) is the MPI
version of rNA aligner [144]. mrNA is different from the vast majority of distributed aligners
for the fact that not only the alignment phase is distributed, but also the indexing happens on
different nodes.

Crossbow [88] is Hadopp-based [9] (Hadoop is the open source MapReduce’s implementation)
aligner and SNP-caller. Crossbow [88] uses Bowtie [89] to align reads and SOAPsnp [97] to find
SNPs. Myrna [87] is designed for transcriptome differential expression analysis. Like Crossbow it
uses the Hadoop interface. CloudBurst [161] is a parallel read-mapping algorithm and is able to
obtain the same results of RMAP [167] but, thanks to Hadoop framework, it is able to align large
data sets within a reasonable amount of time.

2.4 Conclusions

In this Chapter we described and analysed algorithms and data structures used to perform string
alignment. In particular our attention has been focused on NGS-aligners and short sequence
alignment. Recent years have seen huge efforts in the production of aligners as Table 2.1 wants
to witness. However, despite the technicalities and the different heuristics proposed tools used a
limited amount of algorithms. In particular, most of available NGS-aligners make extensive use of
heuristics to speed up the search, at the cost of a lower precision. This is a consequence of the need
to align in a short time the large amount of data produced by NGS-machines. Recently, a new
generation of distributed aligners appeared, trying to use the network to overcame speed limits.

It is remarkable the fact that often not theoretically optimal solutions (like Hash Tables and
Suffix-Arrays) perform better, at least in practice, than theoretically guarantee optimal solutions
(like Suffix-Trees). This fact is recurrent in bioinformatics (Chapter 4 will provided another ex-
ample), and it is a consequence of the fact that often complexity analysis do not take into account
constants factors, that, in practice, are of primary importance in real scenarios.
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3
rNA: Birth and Growth of a NGS

Tool

String alignment is an easy (computationally) and well studied problem, however, it is at the
center of increasing interest by the bioinformatics community. The huge amount of data produced
by NGS technologies, and the promises to produce even more data in the next feature, boosted
the need to design and implement tools able to align hundreds of millions of sequences as fast as
possible.

In the NGS context, optimal solutions can became obsolete every time a sequencer is improved,
that means, that every few months the best available software can became unusable. At the present
time many solutions are under development, both based on algorithms/heuristics improvements
and on distributed architectures.

The aim of this chapter is to present and analyse one of the main contribution of this thesis:
rNA. The randomized Numerical Aligner has been designed for the Institute of Applied Genomics
(IGA) in Udine but is now being used and tested by several other research groups around the
globe. rNA is an hash based aligner designed, but not limited, to align Illumina reads.

We will describe rNA showing how this tools is born (the original idea) and how it evolved
until now. Section 3.1 will explain the reasons that guided us to design and to implement a new
aligner despite the many already available solutions (see Table 2.1). In Section 3.2 we will describe
the Rabin and Karp exact matching algorithm and, in Section 3.3, we will subsequently see how
this algorithm can be extended to deal also with mismatches. Section 3.4 will describe how the
extended Rabin and Karp algorithm can be used as a core for a short string aligner. The large
amount of data produced by NGS machines, and the need of fast but reliable analysis suggest us to
implement a distributed version, dubbed mrNA, that will be presented in Section 3.5. Section 3.6
will show how rNA is able to compete with state of the art available solutions: we tested our tool
against other well known and used aligners on simulated datasets (Section 3.6.2), on real datasets
(Section 3.6.3) and in a distributed environment (Section 3.6.4). Finally, Section 3.7 will discuss
the future works and extensions already planned on rNA.

3.1 Why a New (Short) Read Aligner?

Table 2.1 of Chapter 2 shows a long list of aligners probably far from be complete. It must
be stressed that only a limited number of such tools are in practice used by the bioinformatics
community. Many solutions have been designed for a particular purpose often no more useful (i.e.
aligning reads of length 36 bp), many others have been published, but then have not been improved
in order to keep the pace with the sequencers throughput (for example the MAQ aligner). Other
solutions, despite being algorithmically interesting, do not output alignments in a standard format
(like the well known SAM format) and hence are of no practical value.

Among the most popular and most used aligners we can identify BWA [93], BOWTIE [89],
and SOAP2 [99]. These three software are used by a large community around the world, they are
fast, they need a small amount of computational resources, often are coupled or integrated with
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other software able to perform subsequent analysis like SNPs identification (Single Nucleotide
Polymorphisms) and CNV analysis (Copy Number Variation). All these software require the same
input format (fastq format), and (even if with some differences) output the alignments in the same
standard format (SAM/BAM format).

The great number of already available solutions (see Table 2.1) may suggest us a couple of
questions: “Why we need another aligner?” and “Why somebody has to spend time and resources
to design, implement, test and distribute a tool to solve a problem that has already so many
solutions?”

As we will see there are many stimulating reasons to design, implement, test, and distribute a
new short string aligner:

• sequencing technology is improving at a speed higher than the fastest software development
pipeline. In order to release to a wide public (global) a new version of a tool, this must be
analysed and tested, even if a simple modification took place. As a consequence of this, tools
available to download are not the latest available version and therefore a lab may end up in
the annoying situation to wait for the next software release to proceed with analysis.

• In a constantly improving and experimenting environment specific problems can appear and
only ad-hoc solutions can be used to solve them. The chances of successfully modifying a
non-in-house tool are close to zero.

• Even though the most used tools comply with standard input and output formats, often
they do not implement/respect all specifications. This is the case, for example, of the output
format produced by SOAP and BOWTIE that is limited only to the mandatory fields, while
often also non mandatory ones are useful.

• Hands-on-experience allows a group to understand the need of new features or heuristics
that can be useful to the overall community. An in-house aligner gives the opportunity to
implement and test these new ideas.

These motivations, and many others that we will see, guided us towards the implementation
of a new short read aligner called rNA: randomized Numerical Aligner. rNA [144] uses a core
alignment based on an extension of the Rabin and Karp string alignment algorithm [75] that
allows the search of inexact occurrences of a pattern in time proportional to pattern and text
length. rNA is a complete tool [178] (a NGS-aligner) able to read input files in the most widely
used formats and output a complete and valid standard output format (i.e., SAM/BAM).

rNA is used in almost all activities of the Institute of Applied Genomics (IGA) in Udine,
where it has been developed in close interaction with Bioinformatics, Biostaticians and Biologists.
Moreover, the stable rNA version is available for download at http://iga-rna.sourceforge.net/
where, at the present time, it has been downloaded 133 times in 18 different countries.

3.2 Rabin and Karp Algorithm: From Strings To Numbers

Without loss of generality we can consider our alphabet composed by b characters/digits Σ =
{0, 1, . . . , b− 1}, with b > 2. Let X = X[0]X[1] . . . X[n− 1] and Y = Y [0]Y [1] . . . Y [n− 1] be two
strings over the alphabet Σ. The Hamming distance dH(X,Y ) between X and Y is defined as the
number of mismatches between X and Y (see Chapter 2).

Given numbers 0 < m 6 n and 0 6 s 6 n − m, we denote by X(s) the string X(s) =def

X[s]X[s + 1] . . . X[s + m − 1]. We denote the numerical radix-b representation of a string X of
length n by x =def b

n−1X[0] + bn−2X[1] + · · ·+ bX[n− 2] +X[n− 1]. Given a positive integer q,
the number x̂ stands for x mod q, and is called the fingerprint of the string X.

Given a text T and a pattern P both over the alphabet Σ, the exact string matching problem
consists in finding all the position i in T such that P = Ti.

One of the simplest exact string matching algorithms—that also performs well in practice—
is the Rabin and Karp randomized algorithm [75]. For every s ∈ {0 . . . n − m}, the algorithm
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encodes P and any T(s) by the radix-b numbers p and t(s), respectively, and replaces expensive
string comparisons by constant-time suitable numerical comparisons (see Algorithm 1).

Algorithm 1: Rabin and Karp algorithm for exact string matching

Input: T = T [0]T [1] . . . T [n− 1], P = P [0]P [1] . . . P [m− 1], both over the alphabet
Σ = {0, 1, . . . , b− 1} and q a well chosen number

Output: All positions s, where 0 6 s 6 n−m and dH(P, T(s)) = 0.

1 Solutions ← ∅;
2 p̂← t̂← 0;
3 for i← 0 to m− 1 do
4 p̂← (b · p̂+ P [i]) mod q;

5 t̂← (b · t̂+ T [i]) mod q;

6 if (p̂ = t̂) then
7 if dH(P, T(0)) = 0 then
8 Solutions ← Solutions ∪ {0};

9 for s← 1 to n−m do
10 t̂← (b · (t̂− h · T [s− 1]) + T [s+m− 1]) mod q;

11 if (p̂ = t̂) then
12 if dH(P, T(s)) = 0 then
13 Solutions ← Solutions ∪ {s};

14 return Solutions;

As usually m is larger than the length of a processor word, instead of storing p and t(s), one

keeps the values p̂ = p mod q and t̂(s) = t(s) mod q. As an indication that P may occur with shift

s in T , the algorithm now tests whether p̂ = t̂(s) and, if so, it proceeds to a character-by-character
comparison of P and T(s). Randomly choosing q to be a prime number in the interval [2,mn2],

the test p̂ = t̂(s) produces few false positives [75] (i.e., it gives a positive answer in the case when

P 6= T(s)). Moreover, as t̂(s+1) can be computed from t̂(s) in constant time, the overall expected
time complexity is O(n+m).

3.3 Extending Rabin and Karp Algorithm to Mismatches

Rabin and Karp algorithm cannot handle mismatches. A particular biologically interesting problem
is the k-mismatch problem (see Chapter 2). Given a text T of length n and a pattern P of length m
over the same finite alphabet Σ and an integer k we are interested in all the pairs 〈s, dH(P, T(s))〉,
where 0 6 s 6 n−m and dH(P, T(s)) 6 k.

The Rabin and Karp method has been employed in [123] to solve the k-mismatch problem. That

approach is based on generating all the
∑k
i=0

(
m
i

)
(b− 1)i strings obtained from P with at most k

mismatches. This method is limited by the exponential blow-up on m, it would be interesting be
able to avoid this and design a method based on “verification” rather than on “generation”.

The final goal is find a way to retain all the advantageous features of the Rabin and Karp
algorithm (encoding strings by a radix-b number and storing values modulo an appropriate number
q) adding the possibility to deal with mismatches. In particular we need a fast test such that it
outputs true every time dH(P, T(s)) 6 k and that produces few false positives (i.e. it outputs true
but dH(P, T(s)) ≥ k).

One can start by noting that when k = 0, then p̂ = t̂(s) is equivalent to (p̂ − t̂(s)) mod q = 0.
Starting from this observation we can define a set Z(k, q) ⊆ {0, . . . , q − 1}, such that whenever
dH(P, T(s)) 6 k, then (p̂− t̂(s)) mod q ∈ Z(k, q) holds. More formally, the set Z(k, q) is defined as
follows.
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Definition 5 Given m > 0, 0 < k < m and q > 0, define Z(k, q) to be the set

Z(k, q) =def {(x− y) mod q |X,Y ∈ Σm, dH(X,Y ) 6 k}.

We will sometimes refer to the elements of Z(k, q) as witnesses, as they testify that two strings
can be at Hamming distance at most k. The algebraic difference between the numerical represen-
tations of two strings at a given Hamming distance is characterized in Lemma 1.

Lemma 1 Given two strings X and Y of the same length m, for any 0 < k < m we have
dH(X,Y ) = k if and only if

x− y ∈ {(−1)u1t1b
i1 + · · ·+ (−1)uktkb

ik : u1, . . . , uk ∈ {0, 1},
t1, . . . , tk ∈ {1, . . . , b− 1}, i1 > · · · > ik ∈ {0, . . . ,m− 1}}.

Plainly, from Lemma 1, Z(k, q) can be expressed as

Z(k, q) = {0} ∪ {
(
(−1)u1t1b

i1 + · · ·+ (−1)uj tjb
ij
)

mod q : 0 < j 6 k

u1, . . . , uj ∈ {0, 1}, t1, . . . , tj ∈ {1, . . . , b− 1},
i1 > · · · > ij ∈ {0, . . . ,m− 1}}.

An upper bound for the cardinality of Z(k, q) is min{q,∑k
j=0

(
m
j

)
(2(b − 1))j}, as for each

0 6 j 6 k, there are
(
m
j

)
ways to choose j pairwise distinct i1, . . . , ij , and (2(b − 1))j ways to

choose u1, . . . , uj and t1, . . . , tj .
In order for the test (p̂ − t̂(s)) mod q ∈ Z(k, q) to give few false positives, the size of Z(k, q)

must be small, which, working modulo an arbitrary number q, may not be true. The main idea of
our approach is to choose q = bw − 1, where w < m is a natural number large enough, according
to a few complexity considerations.

Notice that, arithmetic modulo numbers of the form 2w − 1 (called Mersenne numbers) is used
in various applications, like digital systems based on residue number system, or cryptography,
therefore, efficient VLSI circuit architectures for addition and multiplication modulo 2w − 1 have
been proposed over the years (see, e.g., the discussion in [192], and the references therein). Notice
also that, in general, the usage of q of the form 2w − 1 is not suggested when exact search is
performed.

The following lemma shows that the choice q = bw − 1 guarantees that Z(k, q) has a small
cardinality.

Lemma 2 Given 1 6 w < m,

Z(k, bw − 1) = {0} ∪
{(

(−1)u1t1b
i1 + · · ·+ (−1)uj tjb

ij
)

mod (bw − 1) :

0 < j 6 k, u1, . . . , uj ∈ {0, 1}, t1, . . . , tj ∈ {1, . . . , b− 1},
i1 > · · · > ij ∈ {0, . . . , w − 1}

}
.

Proof 1 To simplify notation in this proof, we let Z∗(k, bw−1) stand for the set on the right-hand
side of the equality claimed above. Hence, we have to show that Z(k, bw − 1) = Z∗(k, bw − 1).

Since the modulo operation is linear, we have

bs mod (bw − 1) =

= bw(s div w)+s mod w mod (bw − 1)

= ((bw)s div w bs mod w) mod (bw − 1)

=
(
((bw)s div w mod (bw − 1))(bs mod w mod (bw − 1))

)
mod (bw − 1)

=
((

(bw mod (bw − 1))s div w mod (bw − 1)
)
bs mod w

)
mod (bw − 1)

= bs mod w.
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This entails that

Z(k, bw − 1) = {0} ∪
{(

(−1)u1t1b
i1 + · · ·+ (−1)uj tjb

ij
)

mod (bw − 1) :

0 < j 6 k, u1, . . . , uj ∈ {0, 1}, t1, . . . , tj ∈ {1, . . . , b− 1},
i1, . . . , ij ∈ {0, . . . , w − 1}

}
=def R(k).

Clearly, Z∗(k, bw−1) ⊆ R(k) (notice that the difference between Z∗(k, bw−1) and R(k) is that
the indices i1, . . . , ij are not required to be distinct in R(k)). To prove the opposite inclusion, we
will proceed by induction on k < m. When k = 1, the claim is true. Assuming that the claim is
true for k < m− 1, we will show that it also holds for k + 1.

For the sake of clarity, and without loss of generality, we assume onwards that b = 2. For any
x ∈ R(k + 1) \ R(k), where x =

(
(−1)u12i1 + · · · + (−1)uk2ik + (−1)uk+12ik+1

)
mod (2w − 1), we

have to show that x ∈ Z∗(k + 1, 2w − 1). We have that x can be written as((
(−1)u12i1 + · · ·+ (−1)uk2ik

)
mod (2w − 1)+

+(−1)uk+12ik+1 mod (2w − 1)
)

mod (2w − 1).

From the inductive hypothesis, the first of the above two terms belongs to Z∗(k, 2w − 1), and
hence equal to some

(
(−1)v12h1+· · ·+(−1)vj2hj

)
mod (2w−1), where 0 6 j 6 k, v1, . . . , vj ∈ {0, 1},

and h1 > · · · > hj ∈ {0, . . . , w − 1}.
Moreover, (−1)uk+12ik+1 mod (2w − 1) = (−1)uk+12ik+1 mod w mod (2w − 1).

If (ik+1 mod w) /∈ {h1, . . . , hj}, then the claim is true. Otherwise, suppose that ik+1 mod w
equals some hJ , and that x becomes(

(−1)v12h1 + · · ·+ (−1)vJ−12hJ−1 + ((−1)vJ + (−1)uk+1)2hJ

+(−1)vJ+12hJ+1 + · · ·+ (−1)vj2hj
)

mod (2w − 1).

If uk+1 = 1 − vJ , then x ∈ Z∗(k − 1, 2w − 1) ⊂ Z∗(k + 1, 2w − 1) and the claim is true.
Otherwise, assume that uk+1 = vJ = 0 (the case uk+1 = vJ = 1 is entirely analogous). Then, x is(

(−1)v12h1 + · · ·+ (−1)vJ−12hJ−1 + 2hJ+1

+(−1)vJ+12hJ+1 + · · ·+ (−1)vj2hj
)

mod (2w − 1),

which belongs to R(k) = Z∗(k, 2w − 1) ⊂ Z∗(k + 1, 2w − 1), completing thus the proof.

Hence, |Z(k, bw − 1)| is at most
∑k
j=0

(
w
j

)
(2(b− 1))j , as for each 0 6 j 6 k, there are

(
w
j

)
ways

to choose j pairwise distinct i1, . . . , ij , and (2(b− 1))j ways to choose u1, . . . , uj and t1, . . . , tj .
Onwards, we suppose to work modulo q = bw − 1, without explicitly mentioning it. Observe

also that, as a result of Lemma 2, the set Z(k, bw − 1) depends only on b, w and k.

3.3.1 An On-Line Algorithm for String Matching with k Mismatches

The generalized algorithm (shown as Algorithm 2) works in a similar manner as the Rabin and
Karp algorithm [75] (see Algorithm 1). It starts by setting q = bw − 1, s = 0, and by computing
p̂ = p mod q and t̂(0) = t(0) mod q, using Horner’s rule and bringing into play the linearity of the

modulo operation. Then, for each 0 6 s 6 n − m it checks whether (p̂ − t̂(s)) mod q ∈ Z(k, q).
If yes, it performs a character-by-character comparison of P and T(s). When incrementing s,

the value t̂(s) can be computed in constant time, as follows. For all 0 6 s < n − m, we have

t̂(s+1) = b · (t(s) − bm−1T [s]) + T [s + m]. Working modulo q, this equation becomes t̂(s+1) =(
b · (t̂(s) − (bm−1 mod q)T [s]) + T [s+m]

)
mod q. If we let h =def b

m−1 mod q = b(m−1) mod w, we

get t̂(s+1) =
(
b · (t̂(s) − h · T [s]) + T [s+m]

)
mod q.
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Algorithm 2: String matching with k mismatches

Input: T = T [0]T [1] . . . T [n− 1], P = P [0]P [1] . . . P [m− 1], both over the alphabet
Σ = {0, 1, . . . , b− 1}, number of mismatches k (0 6 k < m) and word length w.

Output: All pairs 〈s, dH(P, T(s))〉, where 0 6 s 6 n−m and dH(P, T(s)) 6 k.

1 q ← bw − 1;

2 h← bm−1 mod w;

3 Z ← GenerateZ(k, q);
4 Solutions ← ∅;
5 p̂← t̂← 0;
6 for i← 0 to m− 1 do
7 p̂← (b · p̂+ P [i]) mod q;

8 t̂← (b · t̂+ T [i]) mod q;

9 if (p̂− t̂) mod q ∈ Z then
10 if dH(P, T(0)) 6 k then
11 Solutions ← Solutions ∪ {〈0, dH(P, T(0))〉};

12 for s← 1 to n−m do
13 t̂← (b · (t̂− h · T [s− 1]) + T [s+m− 1]) mod q;

14 if (p̂− t̂) mod q ∈ Z then
15 if dH(P, T(s)) 6 k then
16 Solutions ← Solutions ∪ {〈s, dH(P, T(s))〉};

17 return Solutions;

In Algorithm 2 we assume that procedure GenerateZ(k, q) generates the set Z(k, bw − 1), as
expressed in Lemma 2.

In order to evaluate the expected complexity of the string matching phase of Algorithm 2, we
follow the formalism of [30, Ch. 32.2]. We have to compute the time c(q) the test (p̂− t̂(s)) mod q ∈
Z on lines 9 and 14 takes, and the average number of false positives produced by it. If we denote
by p(q) the probability that at a specific shift 0 6 s 6 n−m this test will produce a false positive,
we can estimate the number of false positives as n · p(q). Considering ν to be the number of
occurrences of P in T with at most k mismatches, the expected complexity is

O
(
n · c(q) + (m · ν +m · n · p(q))

)
.

In many applications ν is small (i.e., O(1)) and if we choose q such that n · p(q) 6 1, then the
expected complexity becomes O(n · c(q) +m). The only values of t(s) for which (p̂− t̂(s)) mod q ∈
Z(k, q), but dH(P, T(s)) > k are of the form p+z+ j ·q, where z ∈ Z(k, q) and 0 6 j 6 bbm/qc. As
we have at most bbm/qc|Z(k, q)| such values, and there are at most bm possible values for t(s), the

probability that at a specific shift s, the test (p̂ − t̂(s)) mod q ∈ Z(k, q) produces a false positive

is p(q) 6 |Z(k,q)|
q , under the assumption that the operation mod(bw − 1) uniformly distributes

numbers in the interval [0 . . . q − 1] (for example when bw − 1 is a prime number).
Therefore, to attain the desired time complexity, one has to choose q = bw − 1 such that b · q

fits into a processor word and such that q > n|Z(k, q)|.
Working on a 32-bit processor, with strings over the alphabet {0, 1, 2, 3}, limits w to 15, there-

fore, if n or k are large enough, a flurry of false positives are due to appear. If we use a 64-bit
architecture, w is limited to 31, and hence the number of false positives drastically decreases. These
numbers are computed in Table 3.1.

We choose to implement the test (p̂− t̂(s)) mod q ∈ Z(k, q) by generating the set Z(k, q) before-
hand, in time O(|Z(k, q)|). The data structure storing it can be an ordered array, with search
complexity c(q) = O(log |Z(k, q)|). A data structure more appropriate for unsuccessful queries, as
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
f. p. on 32 bits 3.73 339 13079 279959 3662224 30549760
f. p. on 64 bits ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 2.4

Table 3.1: False positive with different architectures. The average number of false positives re-
turned by the heuristic test (p̂− t̂s) mod q ∈ Z(k, 4w − 1), when Σ = {0, 1, 2, 3}, n =4G, and w =
15 (32-bit architecture) and w = 31 (64-bit architecture).

we expect most of them to be, is a trie, with worst case search time c(q) = O(w). However, due
to better memory locality, a hash table with collisions resolved by chaining is preferred. Under
the assumption of simple uniform hashing and using O(α) memory, the average search complexity
becomes c(q) = O(1 + |Z(k, q)|/α).

If one agrees to use an additional amount O(q) of memory, then Z(k, q) can be simply stored
as a direct-address table Z[0 . . . q − 1], where Z[z] = 1 iff z ∈ Z(k, q), and thus c(q) = O(1).

The previous considerations allows us to state the following theorem:

Theorem 1 Algorithm 2 solves the k-mismatch problem; if q = bw − 1 > n|Z(k, q)|, and if
c(q) denotes the complexity of testing membership in Z(k, q), its expected search complexity is
O(n · c(q) +m+ |Z(k, q)|).

3.4 A randomized Numerical Aligner: rNA

In Section 3.3 we showed how the Rabin and Karp method can be extended in order to handle
mismatches. Algorithm 2 is able to find all occurrences of a pattern P of length m in a text T
of length n in average time O(m + n). The algorithm can be easily adapted to solve also the
best-k-mismatch problem, the problem of finding all the best occurrences of pattern P in T with
at most k mismatches.

Algorithm 2, however, performs poorly when multiple patterns have to been searched. As a
matter of facts every time a pattern P is processed the text T has to be read. If our pattern is
an Illumina read (100 bp) and our text is the Human reference genome (3.2 Gbp) is clear that
Algorithm 2 cannot scale. Moreover, as k increases the performances of Algorithm 2 decrease.

Algorithm 2 presented in Section 3.3 has been used has the core engine of an NGS-aligner
designed to align the large amount of short sequences produced by Next Generation Sequencers.
We called our aligner rNA (randomized Numerical Aligner). rNA is an hash-based aligner (refer
to Chapter 2 for a detailed discussion) that makes extensive use of the seed-and-extend technique
in order to solve the best-k-mismatch problem. Notably, most used aligners like BWA, BOWTIE
and SOAP make extensive use of heuristics that accelerate the alignment task but reduce the
sensitivity: rNA solves the best-k-mismatch problem in an exact way and its performances are
comparable with those of the most used tools.

3.4.1 An exact string aligner

We will start showing how the standard Rabin and Karp algorithm can be revised and modified
in order to obtain a exact string aligner. We will assume that all the patterns are of the same
length m.

An exact string aligner is given a text T , of length n, and a collection P of patterns, and
is required to find all exact occurrences of P in T , for every P ∈ P. A possible strategy is to
compute before-hand the fingerprints of all the patterns in P and store them in an appropriate
data structure, in which every t̂(s) (0 6 s 6 n−m) is searched for. If a matching fingerprint value
is found, the corresponding pattern is compared with T(s). This approach takes time O(m|P|+n)
if a hash table is used to store the fingerprints of the patterns (as done e.g. in [123]), and time
O(m|P|+ n log |P|), if they are stored as an ordered array.
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Build a data structure on the patterns as several drawbacks: patterns are usually aligned only
once against the reference, that instead is used several times. Moreover it often happens the total
length of the patterns (i.e. the sum of the length of all the patterns) greatly exceeds the text
length.

For this reasons we pre-processed the text, building in time O(n) and space O(n) the following
index, graphically represented in Figure 3.1:

T = {〈t̂(s), s〉 : 0 6 s 6 n−m}.
The shifts s in T which may be exact occurrences of a P ∈ P correspond to those pairs

〈p̂, s〉 ∈ T . The set T can be stored in a way similar to a hash by chaining. We use an array indexed
by numbers from 0 to q − 1, having, for all 0 6 r 6 q − 1, T [r] = {s1, . . . , sl} iff for all 1 6 i 6 l,
t̂(si) = r. Note that when doing exact alignment, q can be chosen to be Θ(n), according to the
complexity analysis of Section 3.3.1. This exact aligner has average time complexity O(n+m|P|).

3.4.2 A k-mismatch string aligner

In order to construct a string aligner that solves the best k-mismatch problem, Algorithm 2 can be
adapted to use the index T over the text, by reverting from ‘verification’ back to ‘generation’. For
every P ∈ P, we are interested in finding all the shifts s in T which may be occurrences of P with
at most k mismatches. They correspond to those pairs 〈t̂(s), s〉 ∈ T such that (p̂ − t̂(s)) mod q ∈
Z(k, q). Using linearity of the modulo operation, we thus iteratively search in T all numbers
(p̂−z) mod q, for every z ∈ Z(k, q). For all shifts s such that 〈(p̂−z) mod q, s〉 ∈ T , we check that
indeed dH(P, T(s)) 6 k. The average complexity of a search for a pattern is thus O(m+ |Z(k, q)|),
amounting to a total complexity of O(n+ (m+ |Z(k, q)|)|P|).

Reads are numbers Problems Numbers and Errors Comparison

i) + ii)

Text T

Ts

ts

ts mod q

{ts� | ts mod q = ts� mod q}

1

A. Policriti Mapping Short Reads as Numbers

Figure 3.1: General Schema of the Hash Table constructed by rNA in order to store all the
fingerprints of the text T .

However, the larger w is, the lower the probability of a false positive is, but the larger |Z(k, q)|
gets, and vice-versa. We can remediate to this problem by a rather standard use (in this field) of
the pigeon hole principle.

Definition 6 Given a string P = P [0]P [1] . . . P [m−1] and a positive integer 1 6 t 6 m, for every
0 6 i < t, we denote by Pbm/tc(i) its substring P [ibm/tc] . . . P [(i+ 1)bm/tc − 1] and call it the ith
block of P .

Note that the t blocks of a string P do not overlap, a crucial property for the following lemma
to hold.

Lemma 3 Let T be a text, P = P [0]P [1] . . . P [m − 1] be a pattern, and t a positive integer,
1 6 t 6 m. If P occurs in T with at most k mismatches, then there is at least one block Pbm/tc(i)
of P that occurs in T with at most bk/tc mismatches.
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Accordingly, instead of searching for an entire pattern P with at most k mismatches, we can
perform t searches for all of the blocks of P , each with at most bk/tc mismatches. Each occurrence
of a block Pbm/tc(i) (0 6 i < t) of P in T , with shift s, is an indication that P may occur in T with
shift s− ibm/tc. As we are interested in finding the best occurrences of P in T , we will keep the
smallest number of mismatches at which an occurrence of P has been found so far in a variable
best k. In this way, each block of the pattern is searched with at most bbest k/tc mismatches. The
pseudo-code of the resulting procedure is given as Algorithm 3.

Algorithm 3: The randomized Numerical Aligner (rNA)

Input: Text T = T [0]T [1] . . . T [n− 1], a collection P of patterns of length m, all over the alphabet
Σ = {0, 1, . . . , b− 1}, number k of mismatches (0 6 k < m), the number t of blocks in which the
patterns get divided (1 6 t 6 k + 1), and word length w.

Output: For all P ∈ P, all pairs 〈s, dH(P, T(s))〉, where 0 6 s 6 n−m, dH(P, T(s)) 6 k and for all
0 6 s′ 6 n−m, it holds that dH(P, T(s)) 6 dH(P, T(s′)).

1 procedure SearchPattern(P )
2 for i← 0 to t− 1 do
3 p̂l(i)← 0;
4 for j ← i · l to (i+ 1) · l − 1 do
5 p̂l(i)← (b · p̂l(i) + P [j]) mod q;

6 Solution ← ∅; best k ← k;
7 exact occurrence← false; j ← 0;
8 while j < |Z(bbest k/tc, q)| do //for every witness Z[j]
9 i← 0;

10 while i 6 t− 1 and (¬exact occurrence) do //for every block i
11 foreach s ∈ indexT [(p̂l(i)−Z[j]) mod q] do //for all shifts

12 if s− i · l > 0 and dH(P, T(s−i·l)) 6 best k then
13 if dH(P, T(s−i·l)) < best k then
14 best k ← dH(P, T(s−i·l));
15 Solution ← ∅;
16 Solution ← Solution ∪ {〈s− i · l, best k〉};

17 if best k = 0 then exact occurrence← true;

18 j ← j + 1;

19 print Solution;

20 q ← bw − 1; l← bm/tc; //compute q and the block length t
21 indexT ←PreProcessText(T, b, l, q);
22 Z ←GenerateZ(k, q);
23 foreach P ∈ P do
24 SearchPattern(P );

Procedure PreProcessText builds the index over the text discussed in Section 3.4.1 by
storing all fingerprints of length l of the text. We assume that procedure GenerateZ(k, q) returns
an array containing the elements of the set Z(k, q), ordered in the following way: for all 0 6 i < k
the elements of Z(i, q) are placed before the elements of Z(i+ 1, q) \ Z(i, q).

The procedure SearchPattern(P ) starts by dividing the pattern in t blocks, each of length
l = bm/tc. For each block Pl(i) (0 6 i < t), its fingerprint p̂l(i) is computed employing Horner’s
rule and the linearity of the modulo operation (lines 2 – 5). The variable best k stores the smallest
distance at which an occurrence of P has been found so far, while exact occurrence indicates
whether an exact occurrence has been found in the text.

For each index j (0 6 j < |Z(bbest k/tc, q)|), we iteratively search in the text every block Pl(i)
(0 6 i < t), with at most bbest k/tc mismatches (line 10). Every such shift s where the block i may
occur is an indication that the pattern may occur at shift s− i · l with at most best k mismatches
(if, of course, s− i · l > 0).

If this is indeed the case (line 12), we have to check whether the current occurrence is at distance
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strictly smaller than best k (line 13). If so, the variable best k is updated with the current distance,
and all the shifts s stored so far in the set Solution are discarded. Anyhow, the current shift s
together with best k are added to Solution. In other words, at every step of the computation,
the set Solution stores occurrences only at distance best k.

Lastly, in line 17 we implement the following optimization: if the pattern occurs in an exact
manner in the text, then the first block does as well. Since this block will indicate all exact
occurrences, searching the remaining blocks of P brings no additional information. Therefore, we
set exact occurrence to true, stopping the search (this is true because best k was changed to 0,
hence the loop in line 8 is no longer executed).

3.4.3 Implementation Details

In Section 3.3 we showed how the Rabin and Karp algorithm for string matching can be extended
to handle mismatches, and subsequently, in Section 3.4 we applied this idea to the implementation
of a string aligner designed for NGS data.

Algorithm 3 is the first and most important step towards the design of a NGS aligner. However,
when designing a complete software a large number of details must be considered: an NGS-aligner
must be able to handle standard input formats (fasta and fastq) and output alignments in a
standard format (SAM). Moreover, several performances issues must be taken into account: the
aligner must efficiently handle texts of large size (human genome length is 3.2 Gbp), and it must
be practically fast. Even more subtle matters must be solved: the aligner must be easy to install
and to use in order to ease the software distribution.

Practical and Biological Problems

We will now list some of the most important practical and biological problems that must be faced
while designing a short read aligner:

1. genome composition: until now we imaged a reference sequence as a single long text. In
real scenarios we must keep in mind that the reference sequence is divided into chromosomes
or into scaffolds, hence the input text consists of a database of genomic sequences G =
{T 1, T 2, . . . , Tu}.

2. Resources requirements: the data structure being constructed must use a limited amount of
resource (i.e. RAM). Therefore the implementation cannot rely on linked list like show in
Figure 3.1.

3. Ambiguous bases: Σ, the finite alphabet, can be fixed to the four letter alphabet ΣDNA =
{A,C,G, T}. In practice both the text (called the reference sequence) and the reads can
contain a certain number of ambiguous characters (caused by gaps in the assembly or by
sequencing errors). Ambiguous bases are identify with the character N . Obviously every
aligner must handle ambiguous bases.

4. Watson and Crick filament: as pointed out in Chapter 1 the DNA is a double-stranded
molecule. Each DNA strand is connected to a complementary strand. Since the sequencers,
in general, cannot indicate the strand from which each sequence has been read, given a read
P , we must align both P and P (where P is the reverse complement of P ). Moreover, reads
are generally provided in pairs, at a known (estimated) distance and orientation.

5. Indels: it is often biologically interesting to align reads allowing not only mismatches, but
also insertions and deletions (indels).

6. Multi-threading: NGS-aligners must allow multi-threading. Multi-threading is the basic
parallel level that each aligner must implement in order to speed up read alignment.
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7. Standard output format: first available NGS-sequencers were characterized by non-standard
outputs format. The necessity to use alignment results for subsequent analysis oblige the
community to find a common output format that all available NGS-aligners are supposed to
implement.

Data Structures

Given the input genome G = {T 1, T 2, . . . , Tu}, rNA builds the string T = T 1$T 2$ · · · $Tu, where
$ is a new character used as delimiter. Once a match is found inside T , its global coordinate is
converted into a local coordinate inside a chromosome/scaffold, thanks to a lookup table.

The main data structure behind rNA is the hash table indexT . indexT is implemented with
two arrays, H and V . The former has length q+ 1 and contains pointers to V , while the latter has
length equal to |T | and contains pointers to the text. In position H[r] we memorize the rank of
the fingerprint r, i.e., the number of fingerprints less than r present in T . From position V [H[i]]
to position V [H[i + 1] − 1] we store the shifts of T having fingerprint r. After having computed
the fingerprint p̂ of a read P , we perform the test in line 13 of Algorithm 3 for all these shifts.

Scanning the text two times, arrays H and V can be computed in-place, without any supple-
mentary memory. Moreover, both them and T need to be in RAM during search phase. Hence,
we need 4 · q + 4 · |T | + |T | bytes, if 4 bytes are used for each pointer, and each character of T is
stored as one byte.

Ambiguous Bases and Read Filtering

The ambiguous bases problem is solved treating all N characters inside the reads as mismatches.
During the fingerprint computation we simply generate a random character for each of them. In
a similar way we treat ambiguous characters in the text: in the construction phase we randomly
choose a non-ambiguous base, while in the alignment phase we treat them as mismatches.

Reads are usually provided in fastq format. A fastq file uses 4 lines per read. The first line is
the header, which begins with the character @ and contains the read name. The second line is the
read itself. The third line is a comment line while the last one is a string of the same length of the
read which stores the quality of the read.

Low quality bases are likely to be reading mistakes and are usually concentrated at the beginning
and at the end of the read (as a consequence of the chemical reactions used to read DNA). We
developed a routine similar to the one implemented by the CLCbio Workbench [1] able to check
the read’s quality. We first trim the low quality bases at the beginning and at the end of the read.
If after this process the remaining read has length and average quality higher than two predefined
thresholds, the read is aligned, otherwise it is discarded.

Reverse Complement, Indels and Paired-end Mapping

In order to take care of the double stranded DNA nature, given the read P we first align P and
soon after P . Algorithm 3 must be slightly modified to compute the fingerprints of P and P .
Heuristics that allow to trim the search space can be used also on the reverse complemented read.
It must be remembered that if P is found to occur with 0 mismatches, also P must be searched
with 0 mismatches in order to find all the possible alignments.

It is of primary importance to align reads allowing indels. This is especially true when aligning
reads belonging to a genome that is closely related to the reference genome. In such a case, we
are particularly interested in discovering the presence of mutations like small insertions and small
deletions (i.e. indels). If a read is not found at the requested Hamming distance, rNA scans again
all the possible occurrences of the pattern in the reference (limiting the search only to the first
seed) using this time a Smith-Waterman-like algorithm to locally align the read. It is clear that
this procedure slows the algorithm.

Most of the sequencers are able to produce reads in pairs, by reading two sequences at a fixed
distance and with a known orientation. Among the many advantages of this additional information,
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let us only mention that it can be used to identify structural variations [90]. When aligning such
a pair, rNA first returns the best occurrences for each read of the pair. If at least one of the two
mates occurs in single copy, rNA sorts all the occurrences (possibly one) of the other read according
to their position. At this point, a dichotomic search is performed to find a possible alignment of
the two reads that satisfies both the distance and the orientation constraints.

Multi-threading and Output

Alignment is a highly parallelizable routine. Presently, rNA can be used on a multi-core machine:
every CPU reads a chunk of n reads and aligns them against the reference. Every time a CPU
finishes the alignment phase, it writes the result in the output file and reads the next chunk of
reads. The chunk dimension is dependent on the specific machines being used.

Output is provided in the widely used SAM format [94], making rNA compatible with a large
number of tools for post-processing alignments.

3.5 The Data Race Problem: mrNA

Recently, in [162], it was noticed that the “sequencing throughput has recently been improving at
a rate of about fivefold per year, whereas computer performance generally follows ’Moore’s Law ’,
doubling only every 18 or 24 months”. We must add that the picture is even worse: Moore’s Law
is no more valid (see [79]) and now computer improvements are lower than in the last decades.
Therefore, data production and software are two competitors in a speed race in which the former
is the predictable winner. Software designers for NGS have to accomplish the difficult mission to
overturn the forecast.

In general there are two ways to handle the previous situation. The first one relies on designing
efficient algorithms that made extensive use of advanced sophisticated heuristics and ad-hoc data
structures. The second approach is to use multiple computers and processors, implementing tools
able to run on multiple CPUs (e.g., multi-threading), either on tightly connected computers (e.g.,
clusters) or on distant and shared machine over the network (e.g., cloud computing).

Even though these two approaches must progress in parallel, the string alignment problem has
known optimal solutions [168], so new and enhanced algorithms can only relatively speed up the
computation. Moreover, due to the technical complexities involved at various stages of their design,
most aligners (e.g. BWA, SOAP2, BOWTIE, and rNA itself) are limited to reference genomes of
length 4 Gbp. While this limitation is in general accepted (human genome has length 3.2 Gbp)
there are some situations in which this may became a significant stumbling block. First, several
projects aiming at sequencing and assembling (i.e., reconstructing) genomes of length greater than
4 Gbp (e.g., the spruce genome project) have been launched. Moreover, in meta-genomic studies
[186] it is important to simultaneously align against a large number of reference genomes (e.g., all
plants genomes) at the same time.

For these reasons (need of speed and necessity to align on a reference larger than 4 Ggb) we
faced the problem of design a distributed aligner. The distributed version of rNA is implemented
through MPI (mrNA) in order to use this instrument over a cluster of tightly connected machines.

mrNA uses the Master/Slave model to construct the distributed rNA-table, while it uses the
Pipeline model (see Figure 3.2) in the alignment phase to avoid Master/Slave communication
bottleneck. Moreover, the pipeline model allows us to store—for each read—the information con-
cerning the current best alignment. As a consequence, if a node finds an occurrence of a read with
k′ < k mismatches, then the following nodes will search only for occurrences with k′ mismatches,
reducing the overall time needed to align a read. It is worth noting that this mechanism is neither
possible with the Master/Slave approach nor with naive grid distribution schemes in which every
node works without receiving the necessary information from other nodes.

mrNA uses a synchronized message passing model to perform communication among nodes:
the sender sends the message through a channel and waits until the message has been completely
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and correctly acquired by the receiver. The receiver, on the other side, waits until the message has
been completely received.

3.5.1 mrNA: rNA-table construction

mrNA needs n processes in order to split the reference into n pieces. Without loss of generality, we
can image each process executed on a different node. The first node, the master, divides the whole
reference into n similar-size chunks. n− 1 chunks are sent by the master to the others n− 1 nodes
(slaves), while one chunk is kept locally. At this point the n nodes can independently compute
and write to the disk n rNA-tables, one for each different reference genome’s chunk. Once a node
finished its job, it communicates the event to the master which has the duty to ensure that all the
processes terminated successfully.

In this way the reference genome T is pre-processed and the n rNA-tables can be used to align
reads using n nodes. When n nodes are used, the amount of memory required per each node is

4 · q + 4 · |T |n + |T |
n = 4 · q + 5 · |T |n , where q is a number of the form 2k − 1.

3.5.2 mrNA: alignment

In the alignment phase n different processes are run in a distributed environment using the Pipeline
model described in Figure 3.2. All the processes align the entire set of reads against a subset of
the reference, moreover the first and the last processes have the task to read the input and write
the output, respectively.

Every process has a unique associated number, taken between 0 and n − 1, dubbed its rank.
We will now describe and analyze the algorithm executed by a generic worker: Algorithm 4. The
algorithm needs five parameters: rank is the process’ rank, n is the total number of processes
allocated for the computation, input file is the file containing the reads, output file is the file
where output is written, and RT is the rNA-table (pre-loaded) that corresponds to the rank node.

Node 1
Input

RT 1

Node 2

RT 2

Node n

RT n

Output

Figure 3.2: Pipeline model used in mrNA. Green vertical arrows represent I/O operation while blue
horizontal arrows represent MPI channel communications. The n rNA-tables (RTs) are loaded on
different nodes before the computation starts. Instead, the input is continuously read, processed,
and sent to the next node. The last node, after the final alignment, writes the results to the output
file.

The algorithm loops “forever” (Line 1), until an end condition is reached. The computation is
divided in three phases. In the first phase the worker needs to acquire the information that will be
computed. The first operation determines if the process is the “reader worker” (rank = 0, Line 2).
If this is the case, the “reader” checks whether there are further reads to process (Line 3). In the
former situation a sequence is read from the input file and stored in a variable r (Line 7), while
in the latter case an “empty” signal is sent to the next node (Line 4) before the computation is
stopped. The r variable is a complex object and stores the sequence being processed (r.sequence),
the best alignment found so far if any (r.alignment), and the number of allowed mismatches (r.k).
When a read is uploaded from the input it has no alignment and the search parameters are the
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default ones (or the ones specified by the user). If the process is not the reader worker (rank > 0,
Line 2), then it is a “generic worker” and it must receive data from the previous node (Line 11). If
the empty read is received (Line 12) then the computation halts (Line 14) after the empty signal
has been forwarded to the next node (Line 13).

In the second phase the worker computes the alignment. The worker uses the rNA algorithm
(see [144]) to compute the best alignment for r.sequence against its reference’s chunk allowing
at most r.k mismatches using the local rNA-table RT . The align function of Line 16 returns the
alignment that has eventually found (t) and the number of mismatches used (∞ if no alignment has
been found). If more than one best alignment is found then the algorithm chooses one randomly. In
Line 17 the algorithm chooses the best alignment between the one stored in t and the one received
by the previous node (r.alignment). If both alignments are best alignments one is randomly
chosen (we guarantee that the read is chosen evenly among all possible alignments). In Line 18
the minimum number of mismatches used to compute the best alignment found so far is saved.

In the third and last phase the worker sends or writes the best alignment of r. If the node is
the “writer worker” (rank = n − 1, Line 19) then the sequence together with its alignment are
written to the output file (Line 20), otherwise (if rank 6= n − 1) the r object is sent to the next
node (Line 22). Then the worker returns in Line 2, ready to process the next read (if any).

Algorithm 4: Generic worker algorithm

Input: rank, n, input file, output file, RT
1 while true do

// First phase: acquire input

2 if rank = 0 then // This is the reader

3 if EOF(input file) then
4 send to node(rank + 1, ε);
5 return ; // End the computation

6 else // more data to read

7 r.sequence← read from(input file);
8 r.alignment← ε;
9 r.k ← default parameters();

10 else // Data received via network

11 r ← receive from node(rank − 1);
12 if r = ε then

// Propagate end message

13 send to node(rank + 1, ε);
14 return ; // Stop the computation

15

// Second phase: process input

16 (t, k′)← align(RT, r.sequence, r.k);
17 r.alignment← choose best(r.alignment, t);
18 r.k ← min(r.k, k′);

// Third phase: send/write r
19 if rank = n− 1 then // This is the writer

20 write to file(output file, r);
21 else // Data must be sent to the next node

22 send to node(rank + 1, r);
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3.6 Results

A mandatory step in order to present a new NGS-aligner is the demonstration that the new
proposed aligner behaves better than other commonly used aligners. The words “behaves better”
can have various meanings: a tool can behaves better than another because it aligns more reads,
or because it correctly aligns more reads, or because it is simply faster, or because it uses less
resources (i.e. RAM).

It is clear that when gauging aligner performances all these parameters must be considered and
the evaluation must be done looking at the advantages and disadvantages of each tool.

For this reason we tested rNA both on simulated data (Simulated Experiments) and on real
data (Real Experiments). The former have been used to gauge sensitivity (ability to align reads)
and correctness (ability to align reads in the right position) at different levels of errors. The latter
has been used to evaluate aligners in a real environment in order to judge speed/resource needed
to align real reads.

3.6.1 A Race Between 5

We compared rNA with four widely used aligners. BWA [93], BOWTIE [89] and SOAP2 [99] are
probably the three most used NGS-aligners in this moment. They are based on FM-index [41]
and they differ from one and another for the heuristics used at several levels of the computation.
In particular, for efficiency reasons, none of the previous solve the best-k-mismatch problem in a
precise way, but they use heuristics that can generate sub-optimal alignments. BFAST [55] is a
slightly different software: like rNA is an hash-based aligner and it is designed to be highly sensitive
but it is particularly slow if compared to previous three.

The aim of this tests is to show how rNA has a sensitivity similar to BFAST but is able to
achieve performances comparable to FM-index based aligners.

As noticed in Chapter 2, the number of available aligners is much larger then the 5 tested here.
It is clear that a complete evaluation of al the available aligners is almost impossible and probably
not even meaningful. As a matter of facts, only a small number of aligners are widely used by
the global community: BWA, BOWTIE and SOAP2 are certainly among the most used aligners.
Moreover aligners have several parameters that need to be ”tuned“ in order to obtain the best
achievable result. This phase can be pretty expensive and imply a lot of manual work.

We distinguish between two alignment methods: mismatch alignment and mismatch/indels
alignment. In the former only mismatches are allowed while, in the latter, also insertions/deletions
events may occur in the alignment. rNA, BFAST, BWA, SOAP2 and BOWTIE allow mismatches,
but only the first four allow also indels. The programs were ran on an 8 core Intel(R) Xeon(R)
CPU E5420@2.50GHz with 32GB RAM machine. We always run the programs with 8 threads
using in this way all the available processors.

Experiments set up

In order to achieve optimal performances with all the tools we tested them with different parameter.
Despite being alignment time an important factor, we always preferred parameters that increase
number of aligned reads at the price of lower performances to parameters that produce better
performances at the price of a lower number of aligned reads.

For the simulated dataset we run programs with the following parameters:

• rNA: we specified the number of allowed mismatches with option
--errors, we disabled the auto-trimming option (usually useful in practical situations) and
we used 8 threads. The option --indel was used when indels were allowed. The result is
stored in SAM format in the specified output file:

rNA --search --reference GENOME.rNA --query1 QUERY \

--errors MIS --no-auto-trim --threads 8 \

--output QUERY.sam [--indels]
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• BFAST: BFAST is divided into three distinct phases. In the first one we aligned the reads
using all the 10 previously generated indexes. In the localalign phase we added the -u

option when performing ungapped alignment. In the third and last phase we specified to
keep all the alignments with the best score (-a 4) and to print the alignments in SAM format
(-O 1):

bfast match -f GENOME -r QUERY -n 8 -A 0 \

-i 1,2,3,4,5,6,7,8,9,10 > QUERY.match

bfast localalign -f GENOME -m QUERY.match -A 0 \

-n 8 [-u] > QUERY.local

bfast postprocess -f GENOME -i QUERY.local -n 8 \

-a 4 -O 1 > QUERY.sam

• BOWTIE: BOWTIE is probably the most cumbersome tool for what concerns options. It
has two mutually exclusive alignments options. Authors suggest to use -n mode. For the sake
of completeness we tried also the -v option observing slightly worse results. We noticed that
-e option is of primary importance in order to align with mismatches. The default value

(-e 70) allows to align only reads with 2 or at most 3 mismatches. By setting it to 180 we
noticed a great improvement in aligning with mismatches. Option -k 2 compels BOWTIE
to print two best alignments when more than one is found. Recall that this is done in order
to compute the alignment statistics. Options --strata --best force the aligner to output
the best possible alignment(s) found.

bowtie -n 2 -e 180 -k 2 --best --strata --sam -p 8 -f \

GENOME QUERY > QUERY.sam

• BWA: BWA alignment phase is divided into two different stages. The -o options was set
to 0 when aligning only with mismatches and to 1 when aligning also with gaps. In this last
case, the number of allowed differences between reads and reference (option -n) was set to
the number of allowed mismatches plus maximum indel length (i.e., when aligning set Aig we
allowed i+ 5 differences):

bwa aln -n ERR -l 25 -t 8 -o [0|1] GENOME QUERY > QUERY.sai

bwa samse GENOME QUERY.sai QUERY > QUERY.sam

• SOAP2: the parameter -v specifies the maximum number of allowed errors. The -r 2

option specifies to return all the best alignments found. When gapped alignments were
necessary we specified the -g option:

soap -a QUERY -D GENOME -o QUERY.soap -l 32 -v ERR -r 2 \

-p 8 [-g 5]

soap2sam.pl QUERY.soap > QUERY.sam

The alignments commands used with the real dataset are slightly different from the ones used
on the simulated dataset. The aim of this experiment was to show how rNA and the other aligners
behave on a real dataset. In particular, we aligned the reads in paired read format. Some aligners
(like BOWTIE) need to know the insert size: the reads used (SRX027713) have a nominal insert
size of 288 bp with standard deviation of 26.6 bp. We decided to allow a larger insert in order to
not discard the alignment of reads too far or too close. Therefore we set the minimum insert size
to 50 and the maximum to 500 when requested.

• rNA: we specified the number of allowed mismatches with --auto-errors default option
that allows at most one mismatch every 15 bases and we used 8 threads. We specified as
input the two files containing the mates. The option --indel was used when indels were
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allowed. We have tested also the use of --no-auto-trim options that disable automatic low
quality extremities trimming (the option is discussed in the results). The result is stored in
SAM format in the specified output file:

rNA --search --reference GENOME.rNA --output QUERY.sam \

--query1 QUERY1 --query2 QUERY2 --auto-errors \

--threads 8 [--no-auto-trim] [--indels]

• BFAST: BFAST is divided into three distinct phases. In the first one we aligned the reads
using all of the 10 previously generated indexes. In the localalign phase we added the -u

option when performing ungapped alignment. In the third and last phase we specified to
choose uniquely the alignment with the best score (-a 3) and to print the alignments in SAM
format (-O 1):

bfast match -f GENOME -r QUERY -n 8 -A 0 \

-i 1,2,3,4,5,6,7,8,9,10 > QUERY.match

bfast localalign -f GENOME -m QUERY.match -A 0 \

-n 8 [-u] > QUERY.local

bfast postprocess -f GENOME -i QUERY.local -n 8 \

-a 3 -O 1 > QUERY.sam

• BOWTIE: BOWTIE requires the minimum and maximum insert size (options -I 50 -X 500).
With options -1 and -2 we specified the first and second mate to be aligned. We require to
output only one alignment (option -k 1). Like in the simulated experiments, also in this case
the -e option is of fundamental importance, therefore we run BOWTIE with option -e set
to 70 (default), 140, and 180 and we reported the best results (option with largest number
of aligned reads) that was

bowtie -1 QUERY1 -2 QUERY2 -n 2 -e 180 -l 50 -X 500 -k 1 \

--sam -p 8 -q GENOME > QUERY.sam

• BWA: BWA alignment phase is divided into two different stages. The -o options was set to
0 when aligning only with mismatches and to 1 when aligning also with gaps. By default,
the number of errors is computed by BWA on the fly.

bwa aln -t 8 -o [0|1] GENOME QUERY1 > QUERY1.sai

bwa aln -t 8 -o [0|1] GENOME QUERY2 > QUERY2.sai

bwa sampe GENOME QUERY1.sai QUERY2.sai \

QUERY1 QUERY2 > QUERY.sam

• SOAP2: the parameter -v specifies the maximum number of allowed errors. When gapped
alignments were necessary we specified the -g option:

soap -a QUERY1 -b QUERY2 -D GENOME -o QUERY.soap \

-2 UNPAIRED.soap -p 8 [-g 5]

soap2sam.pl -p QUERY.soap > QUERY.sam

3.6.2 Precision and Accuracy: Simulated Experiments

In order to perform simulated experiments one needs a reference sequence and a read simulator (i.e.
a tool able extract reads from the reference and introduce errors). We decide to use Chromosome
1 (in the following CHR) from the human genome assembly hg18 as reference. The first human
chromosome has length approximately 250Mbp.

We employed he following procedure to produce the simulated datasets:
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• from the reference sequence CHR we extracted the set CHR composed by 1 million of error
free reads of length 100bp;

• we generated 9 sets named CHR0, CHR1, . . . , CHR8 such that the set CHRi contains the
same reads contained in CHR but with exactly i mismatches in i randomly chosen positions;

• we generated 9 sets named CHR0
g, CHR1

g, . . . , CHR8
g such that the set CHRig contains the

same reads contained in CHR but with exactly i mismatches in i randomly chosen positions
and one contiguous indels (insertion or deletion) of size at most 5 bp in a randomly chosen
position.

In total we produced 18 millions of simulated reads grouped in 18 sets characterized by different
rates of polymorphism and insertion/deletion events.

In order to assess the aligners’ ability to correctly place reads we aligned against the reference
CHR the 9 sets of simulated reads without indels (CHR0, . . . CHR8) using rNA, BFAST, BWA,
BOWTIE, and SOAP2 and with indels (CHR0

g, . . . CHR8
g) using rNA, BFAST, BWA, and SOAP2.

We defined a read correctly placed if it is uniquely aligned and the alignment starting position
is between ±5 bases (the same criteria used in [55]) far from the real read’s position (which is
obviously known). Such experiments are possible only in simulated environments but help in
giving a clear picture of the aligner’s capabilities. When aligning with gaps, we did not check that
if the indel has been correctly reconstructed.

For each tool and for each experiment we reported the total number of aligned reads, the
number of uniquely aligned reads, the number of reads aligned in multiple positions, the number of
correctly placed reads, and the number of wrongly placed reads (i.e., unique aligned reads placed
in the wrong position).

In Table 3.2 and in Figure 3.3 we summarize the results of the simulated experiments on the
first human chromosome (CHR). When only mismatches are present (Table 3.2, Fig. 3.3(a),
and Fig. 3.3(c)) all the tools behave almost in the same way up to three mismatches. After this
threshold the performances of the BW-based aligners constantly decreases. Their capabilities to
align reads slowly decrease as the number of mismatches introduced in the reads increase. rNA
and BFAST have similar performances when considering the total number of aligned reads and
the number of correctly aligned reads. However, in absolute values, rNA has a lower number of
wrongly aligned reads than BFAST.

When reads contained also indels (Table 3.3, Fig. 3.3(b), and Fig. 3.3(d)), we see that SOAP2
is the worst performing tool. BFAST performances remain similar to the mismatch only case. rNA
and BWA behave similarly until 3 mismatches; after this threshold rNA shows a greater ability
in aligning reads. As we will see in Section 3.6.3 the higher BFAST’s sensitivity is reached at the
cost of a lower alignment speed.

3.6.3 Throughput and Alignment: Real Experiment

Benchmarks based on simulated data allows us to show the theoretical performances of the tools,
however, in the NGS context also the practical performances are of primary importance. A tool
able to align with a precision of 99.9% is useless if it needs months to align the data produced in
few days by an NGS sequencer.

We tested rNA and the other tools on the Human genome (version hg18, from UCSC). We
downloaded 166,622,914 reads from the Short Reads Archive SRA (SRX027713). The results are
shown in Tables 3.4 and 3.5. For each aligner we reported the time needed to build the index
(indexing), the time needed to align the reads (align), the RAM peak while aligning, the query
throughput (query/core/sec) and the percentage of aligned reads. BFAST is designed to align reads
with a large number of mismatches and indels. For this reason we filtered the BFAST alignment
results in order to keep only those alignments with at most 7 mismatches, while we did not limit
the number of indels. However we reported into brackets the total percentage of reads aligned by
BFAST.
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rNA
ERR TOT SING MULT COR WR

0 909711 883431 26280 883431 0
1 909710 883195 26515 882816 379
2 909706 882855 26851 882155 700
3 909701 882565 27136 881605 960
4 909709 882161 27548 880951 1210
5 909709 881704 28005 880330 1374
6 909711 881210 28501 879719 1491
7 909704 880742 28962 879028 1714
8 909709 880217 29492 878339 1878

BFAST
ERR TOT SING MULT COR WR

0 899571 876965 22606 876965 0
1 905700 880801 24899 876669 4132
2 906346 880250 26096 876112 4138
3 906626 879782 26844 875783 3999
4 906733 879143 27590 875119 4024
5 906913 878620 28293 874526 4094
6 907070 878094 28976 873801 4293
7 907185 877725 29460 873118 4607
8 907290 877071 30219 872195 4876

BWA
ERR TOT SING MULT COR WR

0 909691 883413 26278 883413 0
1 909691 883178 26513 882799 379
2 909691 882840 26851 882140 700
3 883928 857501 26427 856496 1005
4 828955 803901 25054 802587 1314
5 751488 728268 23220 726741 1527
6 660105 639238 20867 637529 1709
7 564237 546165 18072 544283 1882
8 472346 456657 15689 454761 1896

SOAP2
ERR TOT SING MULT COR WR

0 907804 844859 62945 844858 1
1 907456 848661 58795 847257 1404
2 906467 851826 54641 849590 2236
3 884158 834488 49670 831725 2763
4 837678 794201 43477 791411 2790
5 772732 736068 36664 733480 2588
6 694197 665072 29125 662849 2223
7 609935 590234 19701 588584 1650
8 2224 1299 925 0 1299

BOWTIE
ERR TOT SING MULT COR WR

0 907804 844859 62945 844858 1
1 907456 848661 58795 847257 1404
2 906467 851826 54641 849590 2236
3 884158 834488 49670 831725 2763
4 837678 794201 43477 791411 2790
5 772732 736068 36664 733480 2588
6 694197 665072 29125 662849 2223
7 609935 590234 19701 588584 1650
8 2224 1299 925 0 1299

Table 3.2: rNA evaluation varying number of mismathces. The five tables summarize the results
of aligning 1M simulated reads against the sequence of the first human chromosome. We reported
for each experiment and for each tool the number of aligned reads (TOT), the number of reads
aligned in a single position (SINGLE), the number of reads aligned in multiple positions (MUL),
the number of correctly placed reads (COR), and the number of wrongly aligned reads (WR).

rNA
ERR TOT SINGLE MULT COR WR

0 800147 778080 22067 774679 3401
1 800435 724852 75583 721627 3225
2 799485 722400 77085 719535 2865
3 794611 717183 77428 713712 3471
4 784563 706932 77631 702778 4154
5 735875 659522 76353 654749 4773
6 717270 641058 76212 635569 5489
7 681156 605585 75571 599319 6266
8 637383 562145 75238 555282 6863

BFAST
ERR TOT SINGLE MULT COR WR

0 899571 876965 22606 876965 0
1 906207 881370 24837 875005 6365
2 906557 880957 25600 874329 6628
3 906721 880703 26018 873786 6917
4 906848 880487 26361 873385 7102
5 906865 879938 26927 872363 7575
6 906885 879723 27162 871789 7934
7 906911 879207 27704 870790 8417
8 906974 878939 28035 869729 9210

BWA
ERR TOT SINGLE MULT COR WR

0 804297 780163 24134 778482 1681
1 789431 765568 23863 763366 2202
2 771851 748136 23715 745404 2732
3 743050 719935 23115 716618 3317
4 699824 677587 22237 673724 3863
5 645863 624983 20880 620533 4450
6 584536 564985 19551 559908 5077
7 520081 501927 18154 496368 5559
8 457068 440727 16341 434559 6168

SOAP2
ERR TOT SINGLE MULT COR WR

0 214671 207220 7451 204244 2976
1 198549 192624 5925 192379 245
2 191992 186212 5780 186020 192
3 60935 58759 2176 58542 217
4 29813 28715 1098 28582 133
5 14234 13668 566 13570 98
6 6668 6381 287 6316 65
7 3118 2963 155 2930 33
8 1482 1420 62 1395 25

Table 3.3: rNA evaluation varying number of mismathces and allowing one indel. The four tables
summarize the results of aligning 1M simulated reads against the sequence of the first human
chromosome. We reported for each experiment and for each tool the number of aligned reads
(TOT), the number of reads aligned in a single position (SINGLE), the number of reads aligned
in multiple positions (MUL), the number of correctly placed reads (COR), and the number of
wrongly aligned reads (WR).

We run aligners as showed in Section 3.6.1. rNA was tested in two ways. The standard rNA’s
behaviour is to trim out the low quality bases before align a read. This behaviour is not present
in all the other tools, that do not perform quality trimming. This situation was clearly unfair, so
we run rNA also without this option: the rNA* column in Tables 3.4 and 3.5 refers to rNA ran
with “--no-auto-trim” option. We have decided to use automatic trimming by default because,
in our opinion, the result is more reliable.
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Figure 3.3: rNA evaluation on Human simulated datasets. The topmost plots show the percentage
of aligned reads when varying the number of mismatches present in the reads (Fig. 3.3(a)) and
when reads contain also indels (Fig. 3.3(b)). The other two figures show the percentage of correctly
aligned reads when only mismatches are present (Fig. 3.3(c)) and when also indels are present
(Fig. 3.3(d)).

In the first table we show the results obtained aligning reads without indels. BFAST is able to
align 94% of the reads, but when counting only reads with up to 7 mismatches the total number
of aligned reads is similar to the one of rNA and BWA. BFAST is extremely slower than all the
other tools and it requires an unpractical amount of time to align the entire dataset. BWA and
rNA are aligners able to align the huge amount of reads in acceptable time. On the one hand BWA
uses less memory and requires ∼8 hours to align the enire dataset, on the other hand rNA is able
to align an additional 3% of reads than BWA at the cost of using more memory and more time.
SOAP2 has a throughput comparable to BWA, while BOWTIE is the fastest tool. As it can be
noticed, these two tools align an amount of reads that is significantly (more than 10%) lower than
rNA and BWA. It can appear strange that rNA used without the auto-trimming option (rNA∗

column) align more than rNA with this option on (rNA column). However this is explained by the
fact that rNA with auto trimming option discards (i.e. do not align) all the the reads that have a
low quality or that are shorter than a user predefined threshold (by default 25) after the trimming
phase. The fact that reads have a low quality do not necessary mean that these reads contains a
lot of errors (it is true that they are likely to contain a lot of errors). However, it is of doubtful
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meaning align reads of low quality. Moreover, in subsequent analysis like SNP calling, it is often
required high quality to “call” a SNP.

Similar results are summarized in Table 3.5 where the same dataset has been aligned allowing
also indels. Again, BFAST is the tool able to align more data at the price of an unthinkable amount
of time. rNA is again able to align more reads than BWA.

rNA rNA* BFAST BOWTIE BWA SOAP2
indexing (hh:mm:ss) 00:47:51 49:47:01 02:49:35 01:43:22 01:30:52
alignment (hh:mm:ss) 29:22:01 20:10:35 510:33:32 1:21:02 8:05:30 10:15:7
max used RAM 19.8GB 19.8GB 17.4GB 3.5GB 3.7GB 24.0GB
query/core/sec 197 286 11 4283 714 564
% aligned 77,15% 79.41% 74.12% (94.15%) 67.19% 76,25% 67.74%

Table 3.4: rNA evaluation on a real dataset (166,622,914 Illumina 100 bp reads) allowing mis-
matches only.

rNA rNA* BFAST BOWTIE BWA SOAP2
indexing (hh:mm:ss) 00:47:51 49:47:01 02:49:35 01:43:22 01:30:52
alignment (hh:mm:ss) 108:00:42 314:48:00 822:11:45 n.a. 14:6:15 10:37:28
max used RAM 19.8GB 19.8GB 17.4GB n.a. 3.7GB 24.0GB
query/core/sec 53 18 7 n.a. 410 544
% aligned 78.21% 85.04% 84.24% (94.03%) n.a. 76.91% 68.62%

Table 3.5: rNA evaluation on a real dataset (166,622,914 Illumina 100 bp reads) allowing mis-
matches and indels.

3.6.4 Aligning Over the Network: mrNA Performances

We also extensively evaluated the performances of mrNA, the distributed version of rNA. In order to
test mrNA’s performances we performed two large tests. The first one consisted in aligning a set of
reads against the human genome, while the second consisted in aligning another set of reads against
12 plants genomes merged into a single reference that we call MegaGenome. Results are presented
in figure 3.4. Moreover, we investigated the performances of the distributed implementation by
studying how performances are affected by the variation of the number of nodes and threads per
nodes in mrNA.

We aligned against the Human Genome reference a set of 3,257,108 reads of length 100 bp
belonging to a Korean individual downloaded from the Short Read Archive (SRX011536). Against
the MegaGenome we aligned 33,675,544 sequences of length 100 bp belonging to a grapevine variety
(Sangiovese) produced at IGA laboratory.

In Figure 3.4 we can appreciate the performance of mrNA on the two datasets when varying
the number of nodes and leaving unchanged the number of threads (8 per node) and the number
of allowed mismatches (7 per read). For example, in order to align the reads against the Human
Genome using 4 nodes, the reference has been divided into chunks of ∼ 800 Mbp and each node
searched independently in its chunk using 8 threads.

In Figure 3.4(a) we can appreciate the results on the Human Genome. mrNA performances
increase with the number of nodes. The performances of the algorithm are close to the theoretical
best performance. Aligning the dataset against the human genome with only one node requires 46
minutes, while with 9 nodes it takes only 8 minutes. Similar results can be seen in Figure 3.4(b).
It is worth stressing again the fact that the most popular aligners for short sequences (SOAP2 and
BWA) are not able to align a set of reads against a genome of size greater than 4 Gbp. The aim
of these experiments was to show how mrNA is able to work on reference genomes of every size.
To the best of our knowledge, mrNA is the only available aligner for NGS able to align against
genomes of size larger than 4 Gbp.

In Figure 3.4(c) we reported the results of aligning 166,622,914 reads of length 101 bp down-
loaded from the Short Read Archive (SRX027713) against the Human reference genome varying
the number of cores and the number of threads per core, and allowing again at most 7 mismatches.
We omit from the histogram the time of the experiment with one node and one thread for graphical
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Figure 3.4: mrNA performances. In Figures 3.4(a) and 3.4(b) we summarise the results of running
mrNA on a cluster using up to 9 nodes (X-axis). We run mrNA using one process per node and
8 threads per process. Figure 3.4(a) shows mrNA’s performances on the human genome (hg18).
Figure 3.4(b) shows mrNA’s performances on the MegaGenome of length 6 Gbp (union of 11 plant
genomes). Figure 3.4(c) shows mrNA executions time (Y-axis, hh:mm:ss) varying the number of
nodes (X-axis) and threads per node (Z-axis).
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reasons. The histogram in Figure 3.4(c) allows us to notice how running mrNA on 1 node with 8
threads (i.e. the standard way in which rNA is used) is slower than running it on 8 nodes with one
thread per node. This is a direct consequence of the fact that each hash table contains less values
and therefore there are fewer extension to make (i.e., fewer false positives). Another explanation
of such nice behavior is the effectiveness of the heuristic to communicate the current best solution
between adjacent nodes.

3.7 Future Work and Conclusions

Throughout this Chapter we described rNA a short read aligner. Our aim was not only to explain
the theory and the technicalities behind such a tool, but also to show how an NGS-aligner needs
constant improvements and enhancements. rNA can be improved in several ways. The seed-
and-extend approach can be substituted by a q-gram approach (see Chapter 2 for details). This
enhancement will not cause large changes in rNA core algorithm (extended version of Rabin and
Karp algorithm) but it will reduce the number of false positives and it will allow faster running
times, especially when aligning with indels. Another possible way to boost rNA’s performances is
to make extensive use of the SSE instruction sets provided by state of the art CPUs. Processors
are able to execute in almost constant time some operations that can boost alignment phase, with
and without indels.

As noticed at the beginning of this Chapter, aligners needs to be revised and sometimes,
redesigned, every six month in order to keep the pace with data production. In this Chapter we
deeply analyse the birth, the growth and the evolution of a NGS aligner. In the last section we saw
that rNA is an aligner able to compete with widely used solutions. In particular, with reference to
others tools, rNA offers a greater sensitivity at the cost of a feasible increment in resources (time
and space). The fact that rNA has been downloaded and used by several groups, and the fact that
we constantly receive positives feedbacks from the community is a clear sign that rNA can have a
future.

It is worth noting, at this point, how the most time consuming phase of the rNA-project has
been the tool standardization. In other words the task to create a package easy to use, easy to
install, able to handle standard input and output formats has been the most time consuming phase.
However, the emotions and the feelings that we experienced distributing to the bioinformatics
community a complete tool, used by several groups around the world, are worth the effort.

We already pointed out that compare and evaluate different aligners is not an easy task. First
of all is not possible to compare all available software due to their large number, moreover each
software is highly dependent on the parameters used that must be carefully chosen. We adopt the
strategy to compare rNA against the most widely used aligners (BWA, BOWTIE and SOAP2)
and against an highly sensitive one (BFAST). We showed all parameters used and we explained
all decisions we took. However several other experiments could have been done: for example we
did not test how precision and accuracy vary when aligning paired reads, or how performances
improve or decrease when aligning real quality filtered reads. We believe that in order to allow
a fair comparison among the available aligners a standard repository against which all software
can be tested must be created. Similar repositories are available for de novo assembly tools (i.e.,
assemblathon). Such repositories allow the global community to have a clear idea of performances
achievable with different tools.
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4
De Novo Assembly

De novo whole-genome sequence assembly (WGSA) is the task of reconstructing the genome se-
quence from a large number of short sequences (i.e., reads) with no additional locational informa-
tion or knowledge of the underlying genome’s structure. De novo assembly is, probably, the most
challenging and studied problem of current genomics.

Significant efforts have been done to formalize and study from a theoretical point of view de
novo assembly problem. In [127] Pop and Nagarajan showed that different assembly formulations
are NP-complete but that under certain assumptions the problem becomes easy to solve. The main
message resulting from their analysis is that the reduction of the de novo assembly problem to the
Shortest Common Super-String Problem (SCSP) is definitely not realistic and, probably, not even
useful.

Many tools have been proposed to solve the Assembly Problem. Some of them demonstrated
practically good results in particular in the Sanger sequencing context. However, as noticed in
[134], all assembly tools are based on a small number of algorithms and differ from each other in
the details of how they deal with errors, inconsistencies, and ambiguities.

Most of the published papers describing individual tools include a comparison with other al-
ready published assemblers, usually showing an improvement of their results. These considera-
tions, together with the large number of available solutions and available tools, demonstrate on
one hand how much this area is brisk, and, on the other hand, that there is not a widely accepted
tool/solution. Moreover, there is not a clear way to compare different assemblers and assemblies,
indeed standard statistics like contigs number and average contig length have recently been criti-
cized [130]. Recently, doubts on completeness and correctness of NGS-based have been raised [6].
Assembly validation problem is becoming every day more pressing as a consequence of the large
number of running projects.

The aim of this Chapter is to present and analyse de novo assembly from a theoretical and
practical point of view. Section 4.1 will be focused on the computational methods proposed so
far, with particular attention to their complexity. In Section 4.2 we will show how the supposedly
intractable de novo assembly problem is, in practice, solved by a large number of tools. In Section
4.3 we will explain how the results produced by de novo assembly tools can be analysed and
evaluated. Lastly, in Section 4.4 we will see how in practice assemblers behave on real data.

It is worth stressing the counter-intuitive nature of the de novo assembly problem: even though
Assembly Problem is formulated as an NP-complete problem, tools based on heuristics and greedy
strategies have so far been able to solve the problem in a satisfactory way. This can be either a
consequence of the reductions needed to formalize the problem or of the fact that computational
analysis always work with worst case scenarios that are rare (or not present) in real biological data.

4.1 Computational Problems of De Novo Assembly

In Shotgun Sequencing Method (SSM), fragments (i.e., reads) are randomly sampled and read
throughout the genome, using one of the various methods presented in Chapter 1. The genome
sequence reconstruction is accomplish assembling the fragments according to their overlaps. A
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mandatory condition to compute reliable overlaps, is the fact that every genome’s position must
occur in more than one read. The genome is therefore oversampled. We define the ratio between
the total length of the reads and the (expected) genome length as coverage. More formally, if
R = {r1, r2, . . . , rn} is the set of reads sampled from the genome G of length |G|, then we say that
G has been sequenced with coverage C:

C =

∑n
i=1 |ri|
|G|

We will often use the notation C× to indicate that the genome has been sequenced with coverage
C.

The assembly problem (AP) is the problem to reconstruct the genome G starting from the set
of reads R:

Definition 7 (Assembly Problem (AP)) Given the set R = {r1, r2, . . . , rn} of reads sequenced
from the unknown genome G, reconstruct G.

The basic strategy to solve the Assembly Problem is to compute overlaps between reads and
to use this information to reconstruct the genome sequence, in a way similar to a jigsaw puzzle.
This strategy is based on the assumption that similar sequences (i.e., overlapping reads) are likely
to belong to the same genomic region. Even though this procedure may seem straightforward,
there are several points that make it practically difficult. First, reads may not assemble due to
incomplete coverage of the original sequence (i.e., regions that are biologically difficult to sequence).
Second, all sequencing technologies are affected by sequencing errors (mismatches, insertions, and
deletions) that make the overlap computation much harder. Third, overlaps between reads can
occur by chance and not as a consequence of the fact that reads were sequenced from the same
region. In projects involving hundreds of thousands of reads, spurious overlaps are not negligible.
Fourth, DNA is double-stranded, and a particular fragment may have come either from one strand
or from the other. Finally, the Assembly Problem worst point is the presence of (exact/inexact)
repeats. Genomes sequences contain nearly identical repeated structures whose length can vary a
lot. As shown in Figure 4.1 repeats cause several problems: the Figure shows how overlaps do not
allow us to univocally assemble the original sequence.

Figure 4.1: Repeats and De Novo Assembly. A possible de novo assembly scenario: the repeated
sequence R (red) cause multiple scenarios that cannot be resolved using only overlap information.

It should be mentioned that several sequencing technologies also allow for the production of
paired reads (or mate pairs) where reads are generated in pairs at a known distance (i.e., with
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a known insert size) and orientation between them. It is clear that this information is useful to
resolve situations similar to those represented in Figure 4.1. Moreover, the presence of paired reads
at correct (insert size) distance can be used to assess the correctness of the assembly. However,
NGS technologies are characterized by relative short inserts, that can only partially help to resolve
ambiguities.

The Assembly Problem is solved by software dubbed assemblers. Assemblers explicitly or
implicitly represent reads and overlaps through a graph. The advantage of a graph structure is
the possibility to reduce the assembly problem to other known problems and, therefore, study and
analyse its complexity and eventually understand the limits of current approaches.

Different graph representations lead to different assembly models that are subsequently studied
with the purpose of understanding assembly problem complexity. As a matter of facts, several de
novo assembly formulations have been shown to be NP-hard: three among the most popular ones
are the Shortest Common Superstring Problem (SCSP) [44], the Overlap/String Graph (OLG) [76]
and the de Bruijn Graph (DBG) [127].

Even though most popular formulations have been proved to be NP-hard, a large number of
tools (assemblers) have been successfully used to solve the Assembly Problem. The hardness results
have driven the development of heuristic solutions several of which turned out to be quite successful
[125, 11]. The success of such heuristics approaches suggests that the hardness represents the worst
case scenario that rarely appears in real datasets [127]. However, the appearance and the spread of
NGS technologies have reopened the discussion about Assembly Problem complexity. Particular
attention have been paid to the computational impact of short sequences on the Assembly Problem.

4.1.1 Shortest Common Superstring Problem (SCSP)

One of the earliest approaches modelled the Assembly Problem as the task of finding the Shortest
Common Superstring (SCS) of the reads based on a parsimony assumption. More formally, the
SCS problem is defined in the following way:

Definition 8 (Shortest Common Superstring Problem (SCSP)) Given R = {r1, r2, . . .
rn} a set of sequences (i.e., reads) find the shortest string R such that ∀ri ∈ R ri is a subse-
quence of R.

SCSP is a well known NP-complete problem [44], however it is widely accepted that this
formulation does not correctly represent Assembly Problem as it fails to encode several of the
points discussed at the beginning of Section 4.1. SCSP does not model the double stranded
DNA nature, it does not take into account errors in the reads and, more importantly, it fails in
reconstructing repeats.

The last point is particularly important: there is no biological reason to reconstruct the shortest
common superstring of the sequenced reads. A strategy that follows this schema will lead to many
wrongly reconstructed regions (i.e., mis-assemblies). This is a direct consequence of the fact that
in a shortest superstring repeats are collapsed, while we are interested in reconstructing the original
DNA sequence. However, this NP-hard result has been often used to justify heuristics and greedy
strategies employed to solve the Assembly Problem.

4.1.2 Overlap and String Graphs

Let v and w be two reads over the DNA alphabet ΣDNA, let us indicate with v[i..j] the substring
of v that starts at i and ends in j. x is said to overlap y if there exists a maximal non-empty suffix
of x of length o (x[|x|− o, |x|−1]) that matches a prefix of y of length o (y[0, o−1]). Let us denote
with ov(x, y) = o the overlap length between x and y.

Definition 9 (Overlap Graph) Let R = {r1, r2, . . . rn} be the set of sequenced reads from the
organism G. The Overlap Graph with minimum overlap threshold k is a bidirected, weighted graph
OGk(R) = (V,E) defined as:

• V = {r1, r2, . . . rn}, each read corresponds to a vertex;
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• E = {(ri, rj)|ov(ri, rj) ≥ k, ri, rj ∈ R};

• w(ri, rj) = |rj | − o(ri, rj);

Given a path in an overlap graph, we can associate to such a path a string-path. A string-
path is defined as the concatenation of the strings corresponding to the nodes on the path, where
only one copy of the overlap string is kept. For instance, given the nodes x = AAACCTTT ,
y = CTTTAGAGAG, and z = AGAGTATAG and the path x→ y → z, then the corresponding
string-path is AAACAGAGAGTATAG.

The overlap graph contains all the information about overlaps between reads and can be used
to solve the Assembly Problem. As a matter of facts, the Overlap Graph OGk(R) is never used:
as noticed by Myers in [124] the Overlap Graph can be sensibly reduced by a sequence of graph
transformations aimed at discarding useless and/or redundant nodes and edges. In particular it
is possible to remove contained reads and transitively inferable edges: in the former case, a read
contained in another one does not give any valuable contribution to the assembly process (the
containing read is more informative) and therefore can be discarded; in the latter case we have
that reads y and z overlap x, and z overlaps y. In this situation the overlap of z to x can be
inferred from the others overlaps and can therefore be removed from the graph.

The String Graph SGk(R) is obtained from the overlap graph OGk(R) by removing contained
edges and transitively inferable edges. The String Graph can be computed using the algorithm
proposed by Myers in [124] in polynomial time.

Once the String Graph SGk(R) is available, the idea is to visit it and obtain in such a way a
solution to the Assembly Problem. In [124] and in [127] the Assembly Problem is solved by finding
a generalized Hamiltonian Path (i.e., find a path of minimal length such that every node is visited
at least once) in SGk(R).

Overlap and String Graph formulations better represent Assembly Problem. The double
stranded DNA’s nature is taken into account while computing all the possible overlaps and keeping
track of the orientations thanks to bidirected edges. Also errors in reads can be handled allow-
ing errors (mismatches, insertion, and deletions) in the overlapping computation (at the price of
a highest computing time). Moreover, these frameworks allow to represent the repeated nature
of genomes: for example Myers in [124] proposed to mark edges as required, exact and optional
meaning that they should be visited at least one time, exactly one time or they can either be
visited or not.

Finding a minimum length generalized Hamiltonian Path in a string graph is shown to be
NP-complete by Nagarajan and Pop in [127].

4.1.3 De Bruijn Graphs

Another commonly used graph approach is known under the name of de Bruijn Graph. This
framework was first suggested in Sanger sequencing [66], based on a proposal for assembling using
the old Sequencing By Hybridization technique [137]. However, it has become commonly used
after NGS appearance thanks to the work done by Pavzner et al. [142].

De Bruijn Graphs [33] have been introduced for the first time by the Dutch mathematician
Nicolaas Govert de Bruijn (born 9 July 1918). In graph theory a n-dimensional de Bruijn Graph
of m symbols is a directed graph representing overlaps between sequences of symbols. In general
a de Bruijn graph of degree n over an alphabet of m symbols is formed by mn nodes. The set of
nodes is composed by all the possible strings of length n over the m alphabet symbols (V = Σn),
while an edge connects two nodes x and y if and only if the the n− 1 suffix of x exactly overlaps
the n− 1 prefix of y.

In the context of genome assembly a slightly different (and simplified) version of the de Bruijn
Graph is used:

Definition 10 (De Bruijn Graph) Let R = {r1, r2, . . . rn} be the set of sequenced reads from
the organism G. The de Bruijn Graph of order k is a directed graph BGk(R) = (V,E) defined as:
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• V = {r[j, . . . , j + k − 1] | ∃r ∈ R ∧ |r| ≥ k ∧ j ∈ {0, . . . |ri| − k}}

• E = {(pi, pj) ∈ V × V | pi[1, k − 1] = pj [0, k − 2]}

In the DBG representation a vertex represents a k-mer, while an edge represents a (k + 1)-
mer. All k-mers belong to the sequenced reads in R and, therefore, to the sequenced genome G
(in reality, many reads might contain errors, we will see in Section 4.2 how these situations are
handled). Within this framework, the Assembly Problem can be formulated as the problem of
finding a path that visits all the edges exactly once. This problem is named the Eulerian Path
Problem, a well known problem solvable in polynomial time.

Actually, the formulation just stated hides various problems: first of all a de Bruijn Graph can
have more than one Eulerian Path (see [78]) and it is not clear which is the right one, secondly
repeats still cause mis-assemblies and last but not least, the Eulerian Path generated can contain
subwalks not supported by any read in R.

Many of these problems, in particular the last one, are circumvented with the notion of read-
paths or read-walks: a read r ∈ R corresponds to paths/walks in BGk(R) via the function w(r) =
r[1, k] → r[2, k + 1] → · · · → r[|r| − k + 1, |r|]. With this notion in mind, the Assembly Problem
can be now formulated as the problem of finding a walk (in general dubbed superwalk or superpath
[114, 127]) that uses each of the read-paths at least once. In this way the generated sequence will
contain each read.

Finding a superwalk is an NP-complete problem, this can be demonstrated by reducing SCSP
to it [127].

4.2 De Novo Assembly Strategies

The discussion and the results showed in Section 4.1 depict a dusky picture of de novo assembly.
All proposed formulation are NP-complete. This situation, however, does not create a stumbling
block: a large number of assemblers are available to effectively assemble genomes. Assemblers are
based on a large number of heuristics and greedy strategies and many of these tools have proved
their capabilities in a large number of projects ([175, 111, 60]).

Theoretically, the assembler’s output should consists of a number of sequences equal to the
number of chromosomes of the sequenced organism. As a matter of facts, most of assemblies
consist of a larger number of contiguous sequences dubbed contigs. When possible, contigs are
grouped in scaffolds, that can be represented as ordered lists of contigs in which the distance and
the orientation within different contigs is known.

The large volume of ongoing research in the field of sequence assembly makes it difficult to
keep the pace with all the different available techniques and their implementations (see Table
4.1). A common feature of existing assemblers is that they represent the reads by using (implic-
itly or explicitly) some types of graph data structure. In [119] de novo assemblers are divided
into three main categories based on the core algorithm used: Greedy Graph Approach (Greedy),
Overlap/Layout/Consensus (OLC) and de Bruijn Graph (DBG).

The Greedy assemblers, usually called Seed-and-Extend assemblers, apply one basic operation:
given any read or contig, extend it by adding more reads or contigs [119]. This basic operation is
repeated until no further extension is possible. At each extension step the highest scoring overlap
is used to proceed. Regardless of all heuristics and refined implementations of such a technique,
greedy assemblers fail in reconstructing even short repeats (i.e., repeats longer then read length)
and are not able to manage the large amount of reads to be dealt with while assembling a plant
or a mammalian genome.

The OLC approach has demonstrated its capabilities in the Sanger Sequecing Projects. As-
semblers like ARACHNE [11] and PCAP [61] implement this strategy. OLC assemblers represent
the reads in an overlap/string graphs [124] in which reads are nodes while an overlap between two
read ri and rj of length k is represented by an edge of weight w(ri, rj) = rj − k. As suggested by
their name, OLC assemblers go through three distinct phases: during the Overlap phase an all-
against-all comparison between reads is performed with the purpose of building the Overlap/String



Tesi di dottorato di Francesco Vezzi, discussa presso l’Università degli Studi di Udine
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Name Algorithm Author Year
Arachne WGA OLC Batzoglou, S. et al. 2002 / 2003
Celera WGA Assembler OLC Myers, G. et al. 2004 / 2008
Minimus (AMOS) OLC Sommer, D.D. et al. 2007
Newbler OLC 454/Roche 2009
EDENA OLC Hernandez D., et al. 2008
FM-assebler OLC Durbin R., et al 2010
MIRA, miraEST OLC Chevreux, B. 1998 / 2008
SGA OLC Simpson. J.T. et al. 2010
PE-Assembler OLC Pramila, N.A. et al. 2010
TIGR Greedy TIGR 1995 / 2003
Phusion Greedy Mullikin JC, et al. 2003
Phrap Greedy Green, P. 2002 / 2008
CAP3, PCAP Greedy Huang, X. et al. 1999 / 2005
SHARCGS Prefix-Tree Dohm et al. 2007
SSAKE Prefix-Tree Warren, R. et al. 2007
VCAKE Prefix-Tree Jeck, W. et al. 2007
QSRA Prefix-Tree Douglas W. et al. 2009
Euler DBG Pevzner, P. et al. 2001 / 2006
Euler-SR DBG Chaisson, MJ. et al. 2008
Velvet DBG Zerbino, D. et al. 2007 / 2009
ALLPATHS DBG Butler, J. et al. 2008
Ray DBG Boisvert, S et al. 2010
ABySS DBG Simpson, J. et al. 2008 / 2009
SOAPdenovo DBG Ruiqiang Li, et al. 2009
Meraculous DBG Chapman, J. et al. 2011
SUTTA B&B Narzisi G., et al. 2009/2010
Sequencher - Gene Codes Corporation 2007
SeqMan NGen - DNASTAR 2008
Staden gap4 package - Staden et al. 1991 / 2008
NextGENe - Softgenetics 2008
CLC Genomics Workbench - CLC bio 2008 / 2009
CodonCode Aligner - CodonCode Corporation 2003 / 2009

Table 4.1: The first four categories are divided on the base of the algorithm used (Overlap Layout
Consensus, Greedy, Prefix-Tree, and de Bruijn Graph). Prefix-Tree algorithm are greedy assembler.
SUTTA deserves a category thus is the only assembler employing a Branch-and-Bound approach.
The last category is a non complete list of proprietary solutions.

Graph. As a matter of fact, a full all-against-all comparison is always avoided and fast and efficient
approximated algorithms have been proposed to speed-up this phase. The Overlap/String Graph
is then used to generate a Layout from which, during the Consesus phase, a Multiple Sequence
Alignment (MSA) is performed and the output is generated. Even though tools based on this
approach have demonstrated their capabilities with Sanger Sequencing data, they are not easily
extandable to handle short reads for two main reasons. First, the use of short reads forces the
minimum overlap between reads to be so small that the number of overlaps occurring by chance
becomes too high. Second, as a consequence of the extremely high amount of reads, the Overlap
phase becomes an overwhelming computational bottleneck. However, encouraged by the increasing
read length some OLC based assembler able to scale on NGS-data appeared (SGA [165]).

DBG assemblers are the most successful type of assemblers for short read sequences. A de
Bruijn Graphs is a graph in which the nodes are k-mers and there is an edge connecting two nodes
a and b if and only if the (k-1)-suffix of the k-mer a is identical to the (k − 1)-prefix of the k-mer
b. Given a set of reads, the de Bruijn Graph is constructed by dividing all the reads in all possible
k-mers, associating k-mers to nodes, and then connecting nodes. This construction has the double
advantage that no overlap has to be computed and the amount of memory needed is proportional
to the number of distinct k-mers and not to the number of distinct reads (the number of distinct
k-mers belonging to the reads directly depends on the number of distinct k-mers of the genome
being sequenced).
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4.2.1 Greedy Assemblers: Seed-and-Extend

Greedy assemblers repeatedly pick up a seed (it can be either a read or a previously assembled
contig) and extend it using other reads. This procedure is done through the computation of all,
or almost all, the overlaps between the seed’s tips and all the available reads. The reads used for
the extension are those with the highest alignment score. It is clear that the Seed-and-Extend
assemblers’ key feature is the capability to quickly compute all the alignment scores. Usually
this goal is achieved using hashing schemata or quick look-up tables to obtain at least all the
perfect matches. Most of the solutions described in the following sections are variants of the
general schemata. Often solutions differ from one another only for the implemented heuristic.
The main drawback of Seed-and-Extend-based assemblers is their incapability to distinguish and
correctly assemble repetitive regions. Each seed is independent from the others and therefore no
global information is available. Despite this problem, several seed-and-extend assemblers have
been proposed. A common heuristic is to use such solutions to obtain long reads (i.e., Sanger-like
sequences) and use the sequences produced in this way as input to a Sanger-based assembler.

SSAKE.

SSAKE [182] was the first short-read assembler proposed. It is designed for Illumina reads but,
more recently, it has been adapted to use also long Sanger reads. SSAKE first step is the popula-
tion/creation of an hash table. Such hash table has as keys the input sequences, and as values the
multiplicity of each sequence. At the same time a tree is used to memorize the first eleven bases
of each read. Once all sequences are read and stored, the reads are sorted by decreasing number
of occurrences. This information is used to understand the read coverage and to identify reads
containing low copy sequences that are candidate to contain errors. Each unassembled read is used
to start an assembly. SSAKE uses the prefix tree to progressively compute perfect alignments of
length k.

The extension phase halts when there are no more reads to extend or when a k-mer matches
the 5’ end of more than one sequence read. This is done with the aim of minimizing sequence mis-
assemblies. A more flexible halting strategy consists in stopping the extension when the retrieved
k-mer is smaller than a user-set minimum word length. Recently [181] SSAKE has been extended
to use paired read information, Sanger reads and imperfectly matching reads.

SHARCGS.

SHARCGS [35] is a DNA assembly program designed for de novo assembly of 25−40-length input
fragments and deep sequence coverage. The assembly strategy is similar to the one described for
SSAKE with two more features: a pre- and a post- processing phase.

In the pre-processing phase, SHARCGS discards reads that are likely to contain errors. These
reads are identified by requiring a minimum number of exact matches in other reads and requiring a
minimum quality value, if available. SHARCGS performs three times this filtering phase, requiring
each time a different stringency setting. This strategy allows to generate three different filtered
sets. Then in a SSAKE-like way it assembles every set independently. The post-processing phase
consists in merging the contigs obtained by running the algorithm with weak, medium, and strong
filter parameters settings.

VCAKE.

The aim of VCAKE [70] is to assemble millions of small nucleotide reads even in the presence of
sequencing errors. The main improvement proposed by VCAKE is the ability to deal with imperfect
matches during contig extension. In particular VCAKE uses the same prefix tree implemented by
SSAKE but it allows one mismatch during the extension phase.

VCAKE has been further used in two hybrid pipelines: in [149] VCAKE and Newbler are used
together for assembling a mixture of Illumina and 454 reads, while in [47] VCAKE is combined
with Newbler and Celera Assembler.
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QSRA.

QSRA [20] is built directly upon the SSAKE algorithm. QSRA creates an hash table and a prefix-
trie. Each hash entry stores a pair composed by the actual DNA sequence and the number of
occurrences of the read. The prefix-trie contains the unassembled reads as well as their reverse
complements, all indexed by the first 11 bases. In a SSAKE/VCAKE similar fashion, QSRA starts
the extension phase finding all the reads which exactly match the end of the seed (the “growing”
contig) for at least u bases (where u is a user-defined parameter) using the prefix-trie. If the number
of matches is less than a user-defined threshold, but the quality values are available, QSRA will
extend the growing contig as long as a minimum user-defined q-value score m is met.

SHORTY.

SHORTY [58] is a de novo assembler targeted to the assembling sequences produced by Solid
sequencers. It takes in input deep coverage of solid reads (100×) and a small set of seeds sequences.
These seeds can be obtained from a set of Sanger sequences or even by assembling with another
short-read assembler the short reads.

All the reads are stored in a compact trie that allows quick access and fast searches. After the
trie construction, all the seeds are processed one-by-one. For each seed we extract from the set of
reads those belonging to the seed together with the paired reads that are outside the seed sequence.
From the seed sequence and from the overlap information coming from the reads it is possible to
generate contigs. SHORTY reiterates these steps as long as it is possible to extend the contigs.
At this point all the contigs generated from seed are considered together for further processing to
generate larger contigs. The last step uses again the paired read information to build scaffolds.

4.2.2 Overlap-Layout-Consensus Based Assemblers

Assemblers based on the Overlap-Layout-Consensus (OLC) approach have to compute all the
overlaps among the reads and use this information together with the coverage depth to reconstruct
the original sequence. If available, the assembler can use the paired read information.

OLC assemblers build an overlap graph [124]. The first mandatory step is the computation of
the overlaps between pairs of reads. This step involves an all-against-all pairwise read comparison.
Usually, for efficiency issues, programs pre-compute the k-mer content among all reads and compute
only the overlaps between pairs of reads sharing a predefined number of k-mers. This kind of overlap
computation is particularly sensitive to three parameters: the k-mer size, the minimum overlap
length and the percentage of identity required for an overlap. Larger parameter values are likely
to produce more reliable but shorter contigs and at an higher computational cost. On the other
hand, lower values can greatly reduce the computational needs, but at the price of producing too
many mis-assemblies.

Once the reads’ overlaps are computed, the obtained overlap graph is usually simplified by
identifying problematic sub-graphs in order to reduce the complexity. This simplification step
allows to create an approximate read layout.

Finally, the last step consists in performing Multiple Sequence Alignments (MSA) to obtain
a precise layout and the consensus sequence. Again, this step is approximated by progressive
pairwise alignments between overlapping reads, since no efficient method to compute optimal MSA
is known [180].

OLC assemblers have been the unquestioned assemblers for more than ten years. The advent
of Next Generation Sequencing machines characterized by new error schemata and by ultra-short
reads length seemed to declare the end of an era. Nevertheless, some assemblers based on OLC
have been proposed even to assemble short Illumina reads. Moreover, encouraged by longer reads
length, some valuable assemblers designed for 454 reads have appeared.
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EDENA.

EDENA (Exact de novo Assembler) [54] is an assembler conceived to process the millions of very
short reads produced by the Illumina Genome Analyzer. In order to improve the assembly of very
short sequences it adds exact matching and detection of spurious reads. EDENA utilizes only exact
matches for two main reasons: (i) allowing approximate matches increases the number of spurious
overlaps, and (ii) approximate matching is dramatically slower than exact matching. EDENA starts
by removing from the dataset all redundant reads and all those containing ambiguous characters
and, meanwhile, it creates a prefix tree. After all overlaps of minimal size h are computed, the
overlap graph is constructed. EDENA constructs a suffix-array to compute all overlaps among
reads. All the overlaps are loaded in a bi-directed graph structure, where for each read ri there is a
vertex vi and two vertices vi and vj are connected by a bi-directed edge if ri and rj overlap. Each
edge is labelled with the length of the corresponding overlap. Obviously, as in all OLC assemblers,
the minimum overlap size is a crucial parameter for the assembly success.

The produced graph contains, in general, a large amount of branching paths hindering the
construction of long contigs. EDENA executes a graph-cleaning step by removing transitive edges
(an edge v1 → v3 in presence of a path v1 → v2 → v3 is dubbed transitive and can be removed),
short dead-end paths (a branching path of short length), and bubbles (two paths starting and
ending on the same node and containing similar sequences). Short-dead-ends and bubbles are a
consequence of sequencing errors (reads with errors in the last bases) and of clonal polymorphism
(in particular SNPs), respectively.

Once the cleaning phase is terminated the contigs can be generated exploring the reduced
graph. Edena published version [54] is not able to scale on the large datasets produced by state
of the art sequencers. However, a new version (EDENA V0.3) is under development aiming at
overcoming this obstacle.

SGA.

OLC assemblers do not scale well to large datasets composed by short reads, and hence EDENA
cannot be used in practical scenarios. Others OLC assemblers are suited for 454-based projects
characterized by longer (and more expensive) reads and lower coverages (this second feature is
partially a consequence of the first one).

As a matter of facts, the computation of (almost) all the possible overlaps is carried out by
indexing reads. The large number of reads does not allow the use of standard data structures
like suffix-trees and suffix-arrays. In [165] this problem was overcome by SGA, an OLC-based
assembler suited for Illumina reads that uses the FM-index [40]. In particular, SGA is able to
build the overlap graph in time proportional to O(N), with N the total length of all the reads.

SGA builds the FM-index for the set of reads R using a variant of Ko-Aluru [81] algorithm
for the suffix-array construction. The FM-index of the reversed reads is also computed. At this
point, using the backward search algorithm [40] the overlaps between reads’ tips can be easily and
quickly computed. Moreover, SGA can directly compute only non-transitive edges and therefore
directly compute the simplified and reduced version of the string graph. This last feature allows
to boost SGA’s performances.

Even though the large amount of details and technicalities presented in [165], SGA is the proof
of how advanced data structures and algorithms proposed and adopted for string alignment are of
primary importance in de novo assembly.

Newbler.

Newbler [111] is the proprietary de novo assembler of 454 Life Science Corporation [111]. Newbler
assembles the reads in “flow space”. In this format, a read is represented as a sequence of signals.
The signal’s strength is proportional to the number of direct repeats of that nucleotide at that
position in the read. This choice is done to avoid the introduction of errors with an early base space
conversion. This conversion can be postponed until the computation of the MSA, when multiple
reads can help in identify and solve errors and/or ambiguities.
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58 4. De Novo Assembly

Newbler implements a double OLC strategy and is divided into three modules: Overlapper,
Unitigger and Multialigner.

The Overlapper performs a complete all-against-all fragment comparison so that it identifies all
possible overlaps between fragments. To assess the similarity between reads, it directly compares
the flowgrams of each pair of reads. With the goal of increase efficiency, Overlapper uses a hash-
ing indexing method to quickly identify fragments that might be considered as potential overlap
candidates.

Based on the overlaps computed by the Overlapper module, Unitigger groups the reads into
unitigs. These unitigs are a sort of trusted contigs, uncontested by reads external to the unitig.
Unitigs are constructed from consistent chains of maximal depth overlaps. The unitigs serve as
preliminary, high-confidence, conservative contigs that seed the rest of the assembly pipeline.

Finally, Multialigner takes all the reads composing the unitigs and aligns all the read signals
to obtain the real unitig sequence.

The unitigs generated this way are sent through a contig optimization process composed by
three steps. In the first one, an all-against-all comparison is performed and overlapping unitigs
are joint. After this comparison, performed in nucleotide space, Newbler tries to identify repeat
regions boundaries based on where contig sequences diverge from a common region. Contigs are
broken at those boundaries. In the second optimization step, the contigs produced during the first
step are used for a “restitching” operation: reads spanning two contig ends are used to join these
contigs. The third and final optimization step is a quality-check step performed by aligning all the
reads against the contigs and discarding contigs with low coverage.

As last step, the consensus is recomputed, using the flowspace. This choice allows to gain more
precision and accuracy.

CABOG.

CABOG [118] assembler is a revised version of Celera Assembler [125] designed for 454 reads.
CABOG, like Newbler, parses the native SFF files produced by 454 machines. Like Celera Assem-
bler it is divided into independent modules.

The Overlapped-based trimming phase trims reads and identifies possible spurs and chimers
(reads that join discontinuous genomic loci) by computing local alignments for all pairs of reads.

In the anchors and overlaps phase, CABOG uses exact-match seeds to detect possibly overlap-
ping reads and builds the overlap graph. During this phase reads formed by k-mers occurring in
single copy or with a number of copies larger than a precomputed threshold are not used.

Using the computed alignments, CABOG can build the overlapping graph G. In this phase a
drastic and lossy data reduction is performed. The graph G is reduced to the Best Overlapping
Graph (BOG) by keeping for each node (i.e., each read) only the best edge (i.e., the longest
overlap). Moreover, all cycles are eliminated by deleting a randomly chosen edge. BOG is therefore
acyclic, but paths in BOG can still converge due to overlaps that are not mutually best for both
reads involved.

CABOG sorts reads by score, where the score of a read is defined as the number of other reads
reachable from it in the BOG. Starting from the highest scoring reads, it follows the paths in the
BOG to construct unitigs (trusted contigs). Unitigs spanning intersections in the BOG are broken.
Further unitigs splitting is performed using paired read information.

Once unitigs are computed and simplified, the contig, scaffold, and consensus steps of the Celera
Assembler are performed.

4.2.3 De Bruijn Graph Based Assemblers

De Bruijn graphs (DBGs) owe their success to their embedded capability of representing the myriad
of reads produced by NGS in a reasonable amount of space.

DBG approach is commonly known also under the name of k-mer graph or Eulerian approach
[140]. In a de Bruijn graph, nodes represents k-mers. Two nodes are connected by an oriented edge
if the k-mers they represent overlap for k − 1 characters. The de Bruijn Graph approach starts
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with the counter-intuitive step of reducing short reads in even shorter sequences (i.e., k-mers).
In this way reads are represented by paths in the graph. The main advantage of this technique
is that every k-mer is represented only once despite the number of its occurrences. In an ideal
setting with error-free reads and uniform coverage, the k-mer graph would be a de Bruijn graph
and an assembly would be represented by an Eulerian path, i.e., a path that traverses each edge
exactly once. It is clear that in real-life situations, where the reads contain errors and coverage is
not uniform, the assembly procedure is slightly more complicated.

In this context, the assembly is a byproduct of the graph construction. Although many different
implementations and heuristics have been proposed and implemented, the graph construction relies
on a hash table that tracks all the k-mers represented in the reads. While in theory the memory
used does not depend on the input size but only by the different number of k-mers, in practical
situations (mammalian and plant genome sequencing projects) the amount of memory required is
still the main bottleneck. This problem seems overcame by distributed assemblers that recently
have been proposed [166, 154].

GTA TAT

ACG CGT

GTC TCC CCA CAG

(a) Spurs: if a read contains a single error a branch-
ing path is open

CGT GTC TCA

ACG CAG

CGA GAC ACA

(b) Bulge/Bubble: A Single Nucleotide
Polymorphism causes a branching path that
will soon converge.

ACG CAG

CGT GTC TCA

TCG CAT

(c) Fray rope: a repeat causes two or more
paths to converge in a single node and pro-
ceed together until the end of the repeat.

Figure 4.2: de Bruijn graph Errors. The three main sources of errors in a de Bruijn graph.

Several factors analysed in [119] complicate the application of k-mer ghraphs to sequence as-
sembly. First of all, DNA is double stranded. Different implementations have been proposed to
handle reverse-forward overlaps. A second problem is the identification and reconstruction of com-
plex repeated structures present in real genomes. Repeats longer than k introduce complexity in
the graph and, as a direct consequence, confuse the assembly task. Repeats collapse in a single
path inside the graph, with the consequence that many paths can converge inside a repeat and
then diverge (see Figure 4.2(c)). Assemblers usually use reads to understand what the right path is
(they search for read-coherent paths) and in a similar way they use paired read information. The
last problem is represented by sequencing errors. DBG-based assemblers use several strategies to
deal with errors. Some assemblers pre-process the reads to remove errors by discarding/correcting
reads containing low-quality bases or lowly represented k-mers. Other times they discard paths
in the graph not supported by an high number of reads. Another technique consists in converting
paths into sequences and using sequence alignment to collapse nearly-identical paths.

EULER-SR.

EULER was the first assembler based on de Bruijng Graph approach. The first version of EULER
was suited for Sanger reads [141, 142, 140]. Despite the advantages of the method, it had only a
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ACG CAG

CGT GTC TCA

TCG CAT

ACG CGT GTC TCA CAG

TCG CGT GTC TCA CAT

(a) Repeat resolution via read tracking: following the reads paths small repetitions can be easily resolved

...ACG CAG...

ACG CAG

CGT . . . TCA

TCG CAT

ACG CGT . . . TCA CAG

(b) Repeat resolution via paired reads: longer repeats can be resolved through paired reads

Figure 4.3: De Bruijn Graph: Read Tracking. Two commonly used techniques to resolve repeats
in De-Bruijn Graphs.

marginal success. With the advent of next generation sequencing and the need of processing large
amounts of reads, EULER was adapted first to handle 454 GS20 reads [139] and, soon after, also
the Illumina reads [133, 138]

The first step implemented by EULER is a correction phase. EULER identifies erroneous base
calls looking for low-frequency k-mers. This filter is called Spectral Alignment [142]. A Spectrum
T is a collection of l-tuples. A string s is called a T -string if all its l-tuples belong to T . Given a
collection of strings S = {s1, .., sn} from a sequencing project and an integer l, the spectrum of S
is Sl (the set of all l-tuples from the reads s1..sn and s1,..,sn, where si is the reverse complement
read of si). Given S, ∆ and l, EULER introduces up to ∆ corrections in each read in S to minimize
|Sl|. The idea is that reads that contain errors are composed by low-frequency k-mers. Instead of
simply discarding these reads, EULER tries to correct them.

By reducing the total number of k-mers, the correction lowers the number of nodes in the graph
and hence its complexity. This correction step can mask true polymorphism or delete valid k-mers
belonging to low-coverage areas. OLC assemblers have an analogous base call correction step that
uses overlaps rather than k-mers. EULER spectral alignment is able to cope only with mismatches
and not with insertions or deletions.

EULER builds the k-mer graph or de Bruijn Graph from the set of filtered and corrected reads.
The main drawback of this approach is that, since the basic units on which the graph is defined are
k-mers rather than reads, the information about the original reads may become difficult to retrieve.
EULER overcomes this problem by threading the reads through the graph. This implementation
allows to easily resolve paths in presence of repeats that are spanned by a read as shown in Figure
4.3(a). By tracking reads on the graph, we can resolve repeats of size between k and read length.

In order to resolve repeats longer than the read length, EULER extends the described approach
to paired reads. Paired ends spanning a repeat can be used to find paths containing repeats: as
showed by Figure 4.3(b) a paired read allows to follow a path entering and leaving repeat smaller
than the insert size. In other words, EULER considers a paired read as a read with some missing
characters in the middle. Moreover, EULER can use the insert size information to better distinguish
between paths.

After this threading phase, EULER performs some graph simplification at regions with low
coverage or high coverage. First, EULER removes spurs, i.e., short branching paths that are likely
due to sequencing errors. If the quality information is available EULER uses it to improve the
assembly. Many of the platforms produce reads with low quality values at the 3’ ends. For this
reason, EULER trusts more reads prefixes than reads suffixes.

The k-mer size parameter is a critical parameter when working with de Bruijn graphs. A small



Tesi di dottorato di Francesco Vezzi, discussa presso l’Università degli Studi di Udine
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k reduces the number of nodes and can result in an over-simplification of the graph (consider the
case of k=1). On the other hand, a large k can yield a graph with too many nodes that is likely to
produce a fragmented assembly (consider the case of k equal to the reads length). EULER solves
this problem by constructing two k-mer graphs with different values of k. EULER detects the
edges present in the smaller-k graph but missing in the larger-k graph. The idea is then to use a
large k to resolve the gaps, and later to fill the gaps by using the edges coming from the smaller-k
graph.

VELVET.

VELVET [188, 187] is probably the most cited de novo assembler for short reads. It has been used
in several projects, including the apple scab genome project [148].

The first step of the algorithm consists in the de Bruijn graph construction. VELVET starts by
hashing all the reads according to a user predefined k-mer length. The value of k is bounded from
above by the length of the reads and it must be odd (so that a k-mer cannot be its own reverse
complement). This way VELVET builds a “roadmap”, i.e., the information thanks to which each
read can be rewritten as a set of k-mers combined with overlaps of previously scanned reads. A
second database is created with the opposite information. It records, for each read, which of its
original k-mers are overlapped by subsequent reads. The ordered set of original k-mers of that read
is cut each time an overlap with another read begins or ends. For each uninterrupted sequence of
original k-mers, a node is created. Once the graph is constructed, the reads can be traced through
it by using the roadmap information.

VELVET does not make any read filtering step. However, it performs several graph simplifica-
tion steps aiming at removing from the graph the paths that are likely to have been introduced by
sequencing errors. In particular, VELVET identifies two common graph layouts that are likely to
be a consequence of sequencing errors: tips and bubbles. A tip (sometimes called spur) is a chain
of nodes disconnected on one end (see Fig. 4.2(a)) while bubbles (sometimes called bulges) are
paths starting and ending on the same nodes and containing similar sequences (see Fig. 4.2(b)).
Tips are usually a consequence of reads with errors in the last bases, while bubbles can be caused
either by SNPs or by sequencing errors.

VELVET performs several graph simplification steps to reduce the impact of such structures
and to improve the final result. The first simplification step consists in merging all the chains
(i.e., sequences of nodes with only one ingoing edge and only one outgoing edge). Subsequently,
VELVET identifies tips shorter than 2k and removes them. The removal of these structures has
only a local effect and does not cause disconnection of the graph. “Bubbles” are removed using the
Tour Bus algorithm [188]: VELVET detects bubbles through a Dijkstra-like breadth-first search.

A fourth graph simplification aims at removing erroneous connection in the graph (i.e., edges
that connect sequences belonging to different genomic loci). Erroneous graph connections are not
associated with easily recognizable sub-graphs and therefore are more difficult to detect. VELVET
uses a coverage cutoff to remove connections with a coverage depth under a user defined threshold.
This threshold together with the k-mer length is one of the most important VELVET’s parameters.

VELVET uses paired information to resolve complex and long repeats. In [188], the scaffolding
phase is done through the “Breadcrumb” algorithm. This algorithm was inspired by SHORTY [58].
It localizes on the graph simple paths (contigs) connected by paired reads. Using the long contigs
as anchors, VELVET tries to fill the gap between them with short contigs. More recent versions
of VELVET [187] use a more sophisticated algorithm, called Pebble. Pebble starts by identifying
unique nodes (i.e., contigs) with the only help of the contig coverage values, using a statistic derived
from the A-statistic. Pebble tries to connect the unique nodes identified previously, with the help
of paired-end information. For each unique node, it estimates the distances from that node by
exploiting the given insert length distribution. The complete set of estimated inter-node distances
is called the primary scaffold. At this point, the algorithm tries to close the gap between contigs
by finding a path that is consistent with the layout. In [187] also the “Rock Band” algorithm is
introduced. This module exploits long (i.e., Sanger-like) reads to connect the nodes of the graph
after the error-correction phase. The main idea is that if all the long reads which exit from a node
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go consistently to another unique node and vice-versa, then the two nodes can be safely merged.

ALLPATHS.

ALLPATHS [22, 108, 45] is a whole-genome shotgun assembler that can generate high-quality
assemblies from short reads. Assemblies are presented in a graph form that retains ambiguities,
such as those arising from polymorphisms, thereby providing information that has been absent
from previous genome assemblies.

ALLPATHS uses a read-correcting pre-processor similar to EULER’s spectral alignment. ALL-
PATHS identifies putatively correct (trusted) k-mers in the reads based on quality scores and on
the k-mers frequencies. These trusted k-mers are used to correct the entire set of reads.

A second pre-processing step is implemented by ALLPATHS to create unipaths (i.e., maximal
unbranched sequences in the k-mer graph). Unipaths are constructed by building a compact
searchable data structure by indexing the k-mers so that the computation of all the overlaps is
avoided.

The first graph operation is the spur erosion, named unitig graph shaving. This operation
aims at removing short branching paths that are usually caused by sequencing errors. Once this
operation terminates, a subset of unipaths are elected to be seeds. Seeds are the unipaths around
which ALLPATHS constructs the assembly. A seed is a long unipath characterized by a low copy
number (ideally one). The idea is to extend the seed’s neighbourhood and to join more than one
unipath together with the help of paired read information.

ALLPATHS partitions the graph to resolve genomic repeats by assembling regions that are
locally non-repetitive. Partitions are assembled separately and in parallel. At the end, ALLPATHS
glues the local graphs by iteratively joining sub-graphs that have long end-to-end overlapping
stretches. Allpaths heuristically removes spurs, small disconnected components, and paths not
spanned by paired reads.

The latest available version of ALLPATHS [45] is designed for Illumina reads of length 100. In
particular, ALLPATHS requires two different kinds of paired reads: fragment library and jumping
library. A fragment library is a library with a short insert separation, less than twice the read length,
so that the reads may overlap (e.g., 100 bp Illumina reads taken from 180 bp inserts). A jumping
library has a longer separation, typically in the 3-10 Kbp range. Additionally, ALLPATHS also
supports long jumping libraries. A jumping library is considered to be long if the insert size is larger
than 20 Kbp. These libraries are optional and used only to improve scaffolding in mammalian-
sized genomes. Typically, long jump coverage of less than 1× is sufficient to significantly improve
scaffolding.

The latest available ALLPATHS version [45] is able to accurately assemble the human genome,
and to achieve a result close to Sanger sequencing assembly.

ABySS

ABySS [166] is a de novo sequence assembler designed for short reads. The single-processor version
is useful for assembling genomes up to 40-50 Mb in size. The parallel version is implemented using
MPI communication messages [50] and is capable of assembling larger genomes.

The assembly is performed in two major steps. First, without using the paired-end information,
contigs are extended until either they cannot be unambiguously extended or they come to a blunt
end due to a lack of coverage. In the second step, the paired-end information is used to resolve
ambiguities and to merge contigs. In the third stage, mate-pair information is used to extend
contigs by resolving ambiguities in contig overlaps.

ABySS constructs a de Bruijn graph in a way similar to VELVET and EULER. Like both
algorithms already explained ABySS performs an error correction phase on the graph. In order
to handle read errors, ABySS implements a strategy correspondig to a combination of EDENA,
VELVET and EULER-SR algorithms.

The advantage of ABySS is its capability of assembling large genomes thanks to the MPI
parallel version. The construction of the graph can be performed in a distributed way. Another,
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more recent, assembler able to exploit several nodes in a cluster is RAY [17].

4.2.4 Branch-And-Bound Approach

SUTTA [130] differs from all other assemblers for its assembling strategy: it dispenses with the
idea of limiting the solutions to just the approximated ones due to the NP intractability of AP,
and instead it favors an approach that could potentially lead to an exhaustive (exponential-time)
search of all possible layouts.

In order to limit the possibly exponential search space, SUTTA relies on a constrained search
able to prune implausible layouts. This Branch-and-Bound (B&B) strategy is based on a set of
score functions that combine different structural properties. SUTTA strategy cannot be associated
to none of the previous three strategies, therefore, as SUTTA’s Authors suggested, we inserted it
in the new category of B&B based assemblers.

In the De Bruijn flattened NGS landscape, B&B represents a different prospective to Assembly
Problem. Instead of focus the attention on inherently approximate heuristics this strategy tries to
comprehensively solve the problem.

SUTTA

SUTTA solves Assembly Problem providing a layout consistent with a particular set of properties
(oracles). Oracles must satisfy overlap conditions, mate pair constraint and when available optical
maps constraints. SUTTA assembles each contig independently one after the other (in a way
similar to greedy assemblers) using a Branch-and-Bound schema.

B&B basic idea is to extensively explore the complete solutions space. This possibly exponential
exploration is limited only to optimal solutions that are reached through the use of well chosen
score functions. SUTTA starts by considering one read per time: it builds a double-tree (D-tree)
to compute a set of possible layouts. The D-tree is subsequently use to compute the best layout
and extract the contig. The algorithm ends when all reads have been extended or have been used
to build a contig.

The potentially exponential size of the D-tree is controlled by exploiting certain specific struc-
tures of the assembly problem that permit a quick pruning of many redundant and uninformative
branches of the tree. In particular the pruning is implemented by discarding transitively inferable
paths, paths not supported by paired reads, or paths with extremely low read coverage.

4.3 Assembly Validation

Assembly Validation is the task of evaluating and judging assemblers output. Once the assembled
sequence is available it is extremely interesting to know and to gauge the sequence correctness
and eventually to discover and hopefully correct misassemblies. Moreover, different assemblers use
different heuristics and strategies, therefore it is also interesting evaluate assemblers’ results, to
select and to use only the best ones. In a way similar to the multitude of assemblers, there are
several ways to evaluate assemblers and assemblies.

For more than 20 years, Sanger sequencing has been the unquestioned method of choice in
almost all the large genome projects. Deluged by high coverage data, but hampered by their poor
quality and short length, many new assemblers for short reads have resorted to filtering the reads
into compressed graph structures (usually a de Bruijn graph) and additional heuristics for error
correction and read-culling (e.g., dead-end elimination, p-bubble detection, etc.) in order to handle
such short sequences as best as possible. Several de novo projects have been launched with some
success [96]. It is now commonly accepted that short reads make the assembly problem significantly
harder [127], yielding final genome-assemblies of dubious value. To make matters worse, NGS data
are often characterized by new and hitherto-unknown error structures, which can easily change
within a year.

Assemblers and assemblies validation is becoming everyday more and more pressing. A recent
investigation [164] showed that in the published and revised human genome [85] an average 10%
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of assembled fragments were assigned the wrong orientation and 15% of fragments were placed in
a wrong order. The draft sequence of the Human Genome [85], which was released in 2001, took
several large teams more than five years to finish and validate (but only at a genotypic level).
NGS technologies even worsen the situation, with tens of projects left at draft level. Despite the
time and financial resources involved in the finishing of the Human Genome, it must be stressed
that is was largely a manual process. In contrast, most of the current genome projects lack both
time and money, forcing the developers to simply leave the assembly at a draft level (with many
gaps and unresolved phasings). Alkan in [6] criticised two of the majors NGS achievements: the
assembly of the Han Chinese and Yoruban individuals [100] both sequenced with Illumina reads.
Alkan identified 420.2 Mbp of missing repeat sequences from the Yoruban assembly, and estimated
that in both assemblies almost 16% of the genome was missing.

Even though these clear problems, there is a lack of standard procedures and methods to
validate and evaluate assemblies. Several projects have been initiated to explore the parameter
space of the assembly problem, in particular in the context of short read sequencing [143, 6, 103,
130, 189]. These analyses are urged by projects like assemblathon [37] (now at its second edition):
assemblathon goal is to assess assemblers performances on common data sets. In its first edition
the competition was performed on a simulated dataset, while the second and still running one was
done on three real NGS datasets.

Therefore, it is of primary importance to gauge and to evaluate results achieved with NGS-
based assemblers. These assemblers are evolving at a fast pace together with Second (and Third)
Generation Sequencing Technologies. All ongoing assembly projects are based on NGS-reads,
in particular on Illumina reads as a consequence of the good trade-off between quantity (i.e.,
instrument throughput) and quality (i.e., read length).

4.3.1 Standard Validation Metrics/Features

A commonly accepted way to validate and gauge assemblies is based on a plethora of standard
validation metrics. We can identify four main groups: length-base statistics, long range information
(LRI) based statistics, reference-based statistics, and simulation-based statistics.

Length-based statistics take into account only the size of the assembler output. The first, and
obvious one, is the assembly-length. Generally, the genome length is known, therefore a correct
assembly should have a length similar to the sequenced organisms. In a similar way, the number of
contigs is used to gauge assemblies: closer is the number of contigs or scaffolds to the number of
chromosome more connected the assembly is. Similarly, we can compute the mean contig/scaffold
length: a longer mean contig/scaffold length suggests an high connected assembly. The queen (or
the peasant as we will see in Chapter 5) of length-based metrics is the N50. N50 represents the
size N such that 50% of the genome is contained in contigs of size N or greater1 (see Figure 4.4).
N50, in principle, should give an idea of the connectivity level of the assembly. A large N50 means
that with a small number of large contigs we are able to cover more than half of the genome. This
statistic has been used in almost all the assembly projects as a quality proof, however, a large N50
is not connected to assembly correctness. In a similar way one can define the N10, N20 up to
N90.

The main problem of all length-based statistics is the fact that these statistics are not linked
to assembly correctness and emphasize only length: an assembler that eagerly merges together
contigs can produce assemblies characterized by a large N50 and by few long contigs. However,
these long contigs are of no use if they contain too many misassemblies. Nevertheless, length-based
statistics are the basic, and some times the only, instrument used to judge assemblers performances,
especially when comparing different assemblers [188, 150].

A more reasonable way to assess assembly correctness is to use long range information indepen-
dent from the assembly (i.e., not used in the assembly process). Second Generation Technologies
are able to produce mate pairs, that are pair of reads at a mean distance of 2 − 8 Kbp. Mate

1In literature, some times N50 is used to indicate the largest contig such that the sum of all the contigs larger
than it is at least half of the genome length, while L50 indicates the size of the N50 contig. However, in our
experience the definition provided in the text is the most widely used.
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N50

1

Figure 4.4: N50 represents the size N such that 50% of the genome is contained in contigs of size
N or greater.

pairs are of primary importance to produce scaffolds, however if they are not provided to the
assembler they can be used to gauge the assembly correctness: pairs should map on the assembly
at the estimated distance and with the right orientation (this one depending on the sequencing
technology being used). However, such an approach has several problems: (i) mate pair insert size
variance can be large, making difficult to gauge correctness; (ii) the approach is limited by the
insert size; (iii) mate pairs belonging to repetitive regions can be wrongly aligned leading to bad
validation. Some of these problems, in particular the insert size limitation, can be overcome using
Fosmid ends and BAC ends, however, the monetary cost of long range information data is an order
of magnitude higher than mate pairs. Other two commonly used LRI-methods are physical maps
[49] and optical maps [163]. Both allow to obtain the relative locations of different genes and other
DNA sequences of interest in the genome. With this information in hand one can estimate the
correctness of the assembly.

Everything would be much easier if the genome to be assembled is already available. This
simple though is behind the reference-based statistics. At a first sight it seems contradictory to
sequence and assemble and organism that has been already sequenced and assembled but there
are at least two exceptions: assemblers comparison and closely related organisms. In the former
case, we re-assemble an already available and finished genome in order to assess and evaluate the
performances of different assemblers. The latter case arises when one sequence a new organism
but there is an already assembled genome belonging to a different species that is closely related to
the new one.

In both cases, the already available genome can be used as a reference to evaluate the correctness
of the assembly. Also in this case several metrics can be used: percentage of correctly assembled
contigs (i.e., contigs that correctly align against the reference), number or percentage of errors (i.e.,
wrongly aligned contigs), percentage of reconstructed genes and so on. The main drawback of such
statistics is the fact that in general it is difficult to find a closely related sequence. Moreover, it
is not clear if a tool that returns good results on a certain dataset will give the same results on
an utterly different dataset. Reference-based metrics have been used to describe results on two
human individuals in [100] that have been recently deeply criticized [6].

Simulation-based statistics are used to attain a result close to the reference-based statistics
without the need to resequence and already assembled genome (hence, without the need to spend
money). This is typical of assembler evaluation (e.g., assemblathon 1 ). By mapping back con-
tigs to the reference one can easily estimate the number of mis-assembled contigs and even the
mis-assembly’s type (e.g., duplications, insertions). However, this method is biased by the read
simulator algorithm: suitably chosen (most likely, non-realistic) simulation could produce as opti-
mistic (or pessimistic) results desired.
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4.3.2 Assembly Forensics and Feature Response Curve

Evaluation instruments are of primary importance for de novo assembly in order to critically assess
assembler performances and to gauge results. Although standard metrics are widely used, such
metrics are affected by several problems: some of them stress only length, some other are based on
the non always realistic hypothesis of the availability of a reference genome belonging to a closely
related genome. As noticed in [143, 130] there is particular need of new validation and evaluation
methods able to capture the correctness and quality of an assembly without the need to generate
further expensive data.

Phillippy and colleagues in [143] proposed a more intelligent approach to better inform the
overall assembly quality and correctness based on the notion of layout. Given a set of reads R =
{r1, r2, .., rn} sequenced by an organism G a layout for the reads belonging to R is a permutation
r′1, r

′
2, .., r

′
n such that for each i ∈ {0..n−1} r′i overlaps r′i+1. If reads are provided in pairs, then the

layout can also store the information about paired reads. An assembly can be seen as a layout of
the reads (in a way similar to what explain for the Overlap-Layout-Consensus based assemblers).

Phillippy et al. [143] starting point is the consideration that de novo assembly is based on the
double-barreled shotgun process, therefore the layout of the reads, and implicitly the layout of the
original DNA fragments, must be consistent with the characteristics of the shotgun sequencing
process. In particular the authors noticed that sequences of overlapping reads must agree and that
the distance and the orientation between mated reads must correspond to the expected statistics.
They noticed that mis-assembly events fall into two major categories: repeat collapse/expansion
and sequence rearrangement. In the former case, the assembler fails in estimating the number of
repeats in the genome, while, in the latter case, the assembler shuffles (translocates or inverts) the
order of multiple repeated copies. So far, these features have been based on assembly of a genotypic
sequence, though their extensions to haplotypic sequences can be achieved mutatis mutandis.

Single Nucleotide Polymorphisms (SNPs) are usually good indicators of collapsed or mis-
assembled regions (see Figure 4.5). In fact, since single base read errors occur uniformly randomly,
while SNPs can be identified by their correlated location across multiple reads, a collapse (or an
expansion) can be recognized by the local variations in coverage. A missing repeat causes reads to
stack up in the remaining copies, increasing the read density locally. Conversely, a repeat expansion
causes a reduced read density among the copies (see Figure 4.6 and 4.7 ).

A R1 B R2 C

AGAGCTAGC
AGAGCTAGC
AGATCTCGC
AGATCTCGC

Figure 4.5: SNPs are good indicators of misassemblies: they cause reads to pile-up and are indica-
tive of wrong layouts. Dashed lines represents wrong layouts induced by nearly identical sequences.

Mate pairs highlight incorrect rearrangements: these events are identified by the associated pair
of reads being too close to or too distant from each other, mate pairs orienting in wrong directions
or reads with an absent mate (in the assembly) or a mate in a different (wrong) contig. Obviously,
multiple mate-pair violations are expected to co-occur at a specific location in the assembly in the
presence of an error.

Another important way to assess assembly correctness introduced in [143] relies on k-mers. By
comparing the frequencies of k-mers computed within the set of reads (KR) with those computed
solely on the basis of the consensus sequence (KC), it is also possible to identify regions in the
assembly that manifest an unexpected multiplicity. For each k-mer in the consensus, the ratio
K∗ = KR/KC is computed. K∗ has an expected value close to the average depth coverage.
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Figure 4.6: Assembly Forensics: Collapse/Expansion events. Nearly perfect repeats (R1 and R2)
cause collapse events that can be identified via layout inconsistencies.
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Figure 4.7: Assembly Forensics: Collapse/Expansion events. Nearly perfect repeats (R1 and R2)
cause collapse and misassemblies events that can be identified via layout inconsistencies and wrong
pairs assignments.

Positions in the consensus where K∗ differs from expected values can be hypothesized to have
been mis-assembled. Further information can be extracted from unassembled reads (i.e., leftovers).
Unassembled reads that disagree with the assembly can reveal potential mis-assemblies.

Phillippy and colleagues in [143] proposed a tool dubbed amosvalidate able to collect a set
of features to be assoceted to each contig. In particular they identify 12 features based on read
coverage, k-mer coverage and read layout. The 12 features are used to assess the overall assembly
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quality and correctness. It is suggestive of feature analysis that if a contig is found to contain several
features (of different types), then a likely explanation could be found in the contig’s mis-assemblies.
Despite the indirectness of how features diagnose problems in assemblies, this approach represents
a significant improvement over the simple standard metrics described in Section 4.3.1. However,
the results from feature analysis are strongly dependent on how the features are combined. It is
expected that different features are symptomatic of different assemblers. Yet, it is not immediately
clear how the simple feature counting can be used to compare the performances of two or more
assemblers.

An innovative way to improve the forensic method of Phillippy and colleagues has been proposed
by Narzisi and Mishra in [130] and it known under the name of Feature Response Curve (FRC).
FRC captures the trade-off between quality and contig size more accurately.

The FRC shares many similarities with classical ROC (receiver-operating characteristic) curves,
which are commonly employed to compare the performance of statistical inference procedures.
Analogous to ROC, FRC emphasizes how well an assembler exploits the relation between incor-
rectly assembled contigs (“features”) against genome coverage, when all other parameters (read-
length, sequencing error, depth, etc.) are held constant. The FRC characterizes the sensitivity
(coverage) of the sequence assembler as a function of its discrimination threshold (number of fea-
tures).

After running amosvalidate, each contig is assigned the number of features that correspond to
doubtful sequences in the assembly. For a fixed feature threshold w, the contigs are sorted by size
and, starting from the longest, only those contigs are tallied, if their sum of features is ≤ w. For
this set of contigs, the corresponding approximate genome coverage is computed, leading to a single
point of the Feature-Response Curve (FRC). FRC allows to easily compare different assemblies
by simply plotting their respective curves. FRC can be applied to all the features or to a subset
of them (or even just a single one, if a particular kind of error is of interest). Two examples of
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(a) FRC of Brucella suis genome.
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(b) FRC of E. coli genome.

Figure 4.8: Two examples of Feature Response Curve (FRC): in Figure 4.8(a) we plotted the FRC
for the Brucella Suis assemblies obtained with 5 Sanger-assemblers. In Figure 4.8(b) we plotted
the FRC for the E. coli assemblies obtained with 5 NGS-assemblers.

FRC are provided in Figure 4.8. Figure 4.8(a) shows the 5 curves obtained assembling an 8×
Sanger coverage of the Brucella suis genome with CABOG [118], MINIMUS [169], PCAP [62],
SUTTA [129], TIGR [170]. Steeper a curve is less features are necessary to cover the genome.
In the example of Figure 4.8(a) CABOG and SUTTA produce the best assemblies, while TIGR
performs slightly worse than the others. Similar analysis can be done looking at Figure 4.8(b). In
this case we show the FRC obtained assembling a 130× Illumina coverage of the E. coli genome
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composed by reads of length 36 bp. The five curves depict the results obtained with Velvet [188],
SUTTA [129], Ray [17], ABySS [166], and SOAPdenovo [100].

Forensics features and Feature Response Curve represent a great breakthrough in assembly
validation ad comparison: (i) the framework is not dependent on the availability of reference
sequences or closely related genomes; (ii) analysis can be adapted to every genome and to every
sequence technology; (iii) features are a direct consequence of the sequencing process.

However, there are several points that need to be explored and improved. The features proposed
by Phillippy [143] and later used by Narzisi in [130] are not the only ones that can be extracted.
More features can provide a better picture of the overall assembly quality. Moreover, many features
are intricately correlated, thus amplifying certain errors while subduing others into less prominence.
For example, an area with high k-mer coverage is likely to contain many paired read features. This
example raises the question whether it would be possible to concentrate the analysis to only a
handful of meaningful features or use a linear combination of few such features to create newer
and better set of synthetic and meaningful features. It would be desirable to plot the FRC on a
minimal subset of the most important features or on a small number of synthetic features capable
of capturing the most important information (i.e., variation).

A practically important aspect is the fact that the tool amosvalidate proposed in [143] is
designed for Sanger-like projects (i.e., long reads and relatively low coverages), while the present
trend is towards using NGS data. In addition to the software performances (amosvalidate at the
present moment cannot be used on large NGS projects) there is a more subtle problem duo to the
fact that NGS-assemblers (ABySS [166] and SOAPdenovo [100] among the most popular) do not
provide the layout as output (usually an afg file). A possible workaround is to map the reads back
to the assembly, but this is obviously problematic especially for what concerns reads mapped in
multiple places (i.e., reads mapped on repeats).

4.4 De Novo Assembly in Practice

So far we analysed Assembly Problem under several prospectives. We first focused our attention
on the computational problems related to AP, after we analysed available solutions and finally we
discussed how to evaluate and compare different instruments and results.

Especially in the second part, we focused our attention on NGS-base solutions, in particular
on Illumina-based tools. However, we have not discussed yet the practical achievable results with
these tools. Moreover, it is not clear if NGS-based assemblies are comparable to those obtained
with Sanger data.

In this last Section we will discuss and analyse results obtained with two real data sets. Both
datasets belong to genomes that have already been sequenced and assembled with Sanger based
technology. However, for different reasons, in both cases we are interested in performing de novo
assembly.

The first dataset belongs to a grapevine variety dubbed Sangiovese. The Vitis vinifera se-
quencing project [69] focused on a highly homozygous variety (PN40024) in order to simplify the
assembly process and the subsequent analysis. Grapevine genome has length ∼ 480 Mbp. The
final goal of assembling Sangiovese dataset is to better understand and analyse the differences
between PN40024 and Sangiovese. Sangiovese dataset comprises 6 Illumina lanes generated with
an Illumina Genome Analyser II. The overall dataset forms a 89× coverage composed by paired
reads of length 100 bp. The mean insert size is approximately 250 bp (see Table 4.2 for a complete
description).

The second dataset belongs to a poplar variety dubbed Poli. Poli, like Sangiovese, is an highly
heterozygous organism and belongs to the Populus nigra species. Poplar has been already se-
quenced [172]: the reference sequence has length ∼ 410 Mbp and belongs to Populus trichocarpa
species. In this case de novo assembly is essential in order to study the differences between the
two species. Poli dataset comprises 6 Illumina lanes generated with an Ilumina Genome Analyser
II. The overall dataset forms a 82× coverage composed by paired reads of length 100 bp and 114
bp (only one lane). Three lanes forming a 48× coverage have insert size length of approximatively
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250 bp, while the other three are characterized by an insert size of ∼ 500 bp (see Table 4.2 for a
complete description).

Dataset # lanes Coverage Read Length Insert Size
Sangiovese 6 89× 100 bp 250± 50
Poli 6 82× 100 - 114 bp 250± 50 and 500± 100

Table 4.2: Sangiove’s and Poli’s description of the total coverage, insert size, and read length.

The aim of the evaluation was to study NGS limits especially compared to known Sanger
assembly results. We were particularly interested in understanding how the coverage affects the
assemblers performances. Therefore, for both Sangiove and Poli datasets we produced 9 subsets
representing different random coverages: 10×, 20×, . . . 80× and a final set containing all the reads
(89× for Sangiovese and 82× for Poli).

We choose 3 assemblers to assemble the 18 datasets: our goal was both to understand how
coverage affects de novo assembly and also to estimate the performances of different assemblers. At
the time of the experiments, the only available assemblers able to cope with large genomes and with
large amounts of data were ABySS [166], CLC CELL3.0 [26], and SOAPdenovo [100]. Recently,
other assemblers able to work on this huge datasets have emerged: ALLPATHS [45], RAY [17],
SGA [165], and others. However, algorithms and data structures used by all these assemblers are
almost the same [134]. The main differences among assemblers lay on the implemented heuristics
and on the greedy choices made at several steps of the computation. The consequence of this fact,
as we will see, is that results obtained with different assemblers do not differ too much from each
other.

To evaluate assembler performances we used some of the standard statistics described in Section
4.3. In particular we based our analysis on length-based and reference-based statistics. As far as the
former, we computed total assembly length, mean contig length and N50 contig length. For what
concerns the latter statistic type we used the available reference sequences to compute correctly
reconstructed contigs number, correctly reconstructed contigs length, correctly reconstructed exons
number and correctly reconstructed exons length.

Even though in Section 4.3 we introduced the notion of assembly forensics and Feature Response
Curve (FRC) we do not use them here. The amosvalidate pipeline [143] has been designed for
small Sanger-based assemblies and has been tested only on bacterial genomes. Even if, as showed
by Narzisi and Bud in [130], amosvalidate pipeline can be used also on NGS-based assemblies, it
cannot be applied on datasets composed by hundreds of thousand of reads like the grapevine and
the poplar ones.

Length-based statistics have been computed to have an idea of assembly’s connectivity level.
Although these statistics are of dubious value (as stated in Section 4.3 and as we will extensively
see in Chapter 6) they are useful in this context to compare results obtained with NGS-data and
Sanger-data.

Reference-based statistics, instead, are of primary importance to gauge assemblers ability to
correctly assemble genomes. We concentrate our attention on two different aspects: correctly
assembled contigs and correctly reconstructed exons. Contigs statistics have been computed by
aligning contigs against the reference sequences (PN40024 genome for Sangiovese datasets and
Tricocarpa genome for Poli datasets). We say that a contig is correctly reconstructed if it aligns
against the reference with at least one hit which length is longer than 90% of the contig itself
and with similarity higher than 90%. To compute the number of correctly reconstructed exons we
aligned the coding regions of the two references against the assemblies. We say that an exon is
correctly reconstructed if we are able to find it on the assembly sequence with a single hit of length
99% of its length and with similarity of 96%. We decided to align exons as a proof that NGS-based
assemblers are able to reconstruct at least coding regions: coding regions are the most important
sections of a genome, therefore one can accept an highly fragmented assembly if he knows that
most of the genes are present in it.
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Figure 4.9: Sangiovese assembly comparison: Length-based Metrics.

Figures 4.9 and 4.10 show ABySS, CLC and SOAPdenovo performances on the 9 Sangiovese
coverages. In Figure 4.9(a) we can see how CLC and SOAPdenovo are able to reconstruct the
genome only partially. ABySS shows an utterly different behaviour, constantly improving the
total assembly length as coverage increases. However, it is well known2 that ABySS outputs
nearly identical contigs in presence of heterozygous regions. In other words, if the two alleles have
even a single difference, ABySS outputs both the possibilities, while other assemblers like CLC and
SOAPdenovo choose one of the two (the most representative one) or use an ambiguous character
(IUPAC alphabet). It is important to notice that both solution are acceptable: both approaches
have some weak and some strong points.

Statistics showed in Figures 4.9(b) and 4.9(c) stress that all the three assemblers stop to improve
at a fast pace when coverage reaches 50×. Surprisingly this behaviour suggests us that a coverage
higher than 50× gives us small enhancements. It is worth pointing out the mean contig length
and the N50 contig length obtained with Sanger sequencing [69]: grapevine reference genome has
a mean contig length of 37 Kbp and an N50 of 100 Kbp. With a 8× Sanger coverage and with a
Sanger-based assembler (Arachne [11]) we are able to obtain a mean contig length 20 times longer
and an N50 length 30 times longer.

Reference-based statistics are somewhat discouraging. In Figure 4.10(a) and 4.10(b) we can
see how in general only 80% of the contigs are correctly aligned against the reference sequence and
that these correctly aligned contigs cover less than 50% of the overall genome, at least with CLC
and SOAP. It is worth noting how, with the ABySS exception, contig correctness and coverage
seem not correlated when coverage is higher than 30×. Better news arrive from Figure 4.10(c) and
4.10(d). In this case we can appreciate how all instruments are able to reconstruct large part of
the exonic regions (in particular ABySS and CLC).

In Figures 4.11 and 4.12 we can observe similar results for what concerns the Poli dataset. The
conclusions we can draw are fairly similar to the ones discussed in the Sangiovese case: length-
based statistics are an order of magnitude lower than those achievable with Sanger based project
(Figures 4.11(a), 4.11(b), and 4.11(c)), contigs correctly aligning against the reference sequence
represent a small portion of the entire sequence (Figures 4.12(a) and 4.12(b)) but this portion
contains almost all the exons (Figures 4.12(c) and 4.12(d)).

It is worth noting that the goal of these experiments was not to compare the performances of the
three assemblers, but to understand their capabilities and their limits. The three assemblers, used
on different real datasets, can produce utterly different results. However, the distance between the
results achievable with Sanger-based projects are really far from those achievable with NGS-based
ones.

2ABySS user group and personal communication with ABySS authors
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Figure 4.10: Sangiovese assembly comparison: Reference-based Metric.

In order to close the gap between new NGS-projects and old Sanger-projects both technology
and implementation must improve. On the one hand new technology improvements will provide
longer reads and new data types (e.g., strobe reads) useful to produce more accurate and precise
assemblies. On the other hand, more advanced implementations, able to use reads in a better way
will give us the possibility to take more advantage from high coverages.
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Figure 4.11: Poli assembly comparison: Length-based Metrics.
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Figure 4.12: Poli assembly comparison: Reference-based Metrics.
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4.5 Conclusions

In Section 4.1 we analysed de novo assembly computational problems. Section 4.2 was dedicated
to the solutions proposed so far to solve assembly problem. In Section 4.3 we focused our attention
on validation and evaluation problems. Finally, in Section 4.4 we presented a collection of real
results obtained on two real datasets through three widely used tools.

The final picture is somewhat strange: we conclude that beside assembly problem formulations
are inherently NP-hard, there are several practical solutions based on heuristics and approximations
that we can use to obtain a solution. However, the obtained solutions are difficult to evaluate and
to compare to each other. When a comparison is possible thanks to the presence of a reference
sequence, we discover that results are dramatically distant from the ones achievable with Sanger-
based projects.

Despite we can identify between three and four assembly paradigms, de Bruijn graph approach
is the de facto standard in order to assemble NGS data, especially Illumina. It is clear that there
is systematic failure of all de novo assemblers in correctly reconstruct the original sequence: this
failure can be identify in the difficulties in assembling repeated regions.

However, a ray of hope is still present: as showed in the last Section NGS-assembler are able to
reconstruct the exonic part of the genome, new technologies are approaching on the market with
solutions able to simplify the de novo task. Moreover, assemblers are improving at a fast speed.
In a recent published work [45] the assembler ALLPATHS was able to produce an assembly of a
human genome comparable to the Sanger based data. Not surprisingly, the key feature of this tool
is the use of particular type of reads.
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Puzzle

So far we have analysed and, in some extent, criticized the attempts to study and solve the Assembly
Problem (AP). On the one hand we saw how all the proposed models theoretically jeopardize our
possibility to solve AP due to their computational intractability (i.e., NP-hardness). However,
on the other hand, several tools based on heuristics and greedy strategies have demonstrated, in
practice, that AP can be efficiently solved. Despite such results, several problems are still open.
Moreover, public available NGS-assemblers have performances and results often not acceptable (see
Section 4.4 of Chapter 4).

The aim of this chapter is to propose two new contributions to solve Assembly Problem under
certain restricted hypothesis. In Section 5.1 we will describe eRGA [25, 176] a tool that connects
Alignment Problem (discussed in Chapters 2 and 3) and Assembly Problem. eRGA works under
the hypothesis that a reference sequence belonging to a closely related genome is available. In such
a way, eRGA is able to improve results achievable with standard approaches. In Section 5.2 we will
introduce a tool dubbed GapFiller [126] whose aim is to locally assemble genome regions and to
return as output small fragments (less than 1000bp) that are certified to be correct. GapFiller may
become the first step of a more complex assembly pipeline, or it may be used for target assembly
to reconstruct insertion events among individuals of the same species.

5.1 Integrating Alignment and De Novo Assembly: eRGA

When a completely new organism is to be sequenced, the principal assembly strategy is the cele-
brated Whole-Genome Shotgun Assembly (WGSA). As we saw in Section 4.2 of Chapter 4 there
are several tools (assemblers) able to solve the Assembly Problem. De novo assembly with NGS-
reads turns out to be, in general, very difficult [127] and as we showed in Section 4.4 state of the
art de novo assembly tools are likely to produce a set of highly fragmented contigs.

A possible approach to reconstruct the original sequence of a new organism is Reference Guided
Assembly (RGA). The number of organisms whose genome has been completely sequenced has been
increasing rapidly each year and, for this reason, is becoming viable to sequence an organism and
then align produced reads against a closely related genome. RGA consists in two phases: first all the
reads are aligned against the reference genome, and second a consensus sequence is extrapolated.
Everywhere the coverage drops to zero there are two possible solutions: replace those areas with
the reference sequence or with a sequence of N’s.

This problem was already studied in the Sanger sequencing context. In [145] and [46] two
methods were proposed able to use a reference sequences to assist the assembly of new organisms.
The challenge has become even more interesting after the NGS outbreak and the possibility to
sequence (and resequence) hundreds of new organisms at low cost and at deep coverage. As
showed in Chapter 2 the number of available NGS-aligners is extremely large. Such tools are
essential in order to perform reference guided assembly. The main problem with RGA and NGS is
that—essentially for efficiency reasons—mapping algorithms are highly conservative: it is possible
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76 5. De Novo Assembly: Solving the Puzzle

to align reads only with a low number of errors and, usually, with no more than one gap. In other
words we are able to reconstruct conserved regions, while we cannot reconstruct divergent and
(usually) more interesting areas. While, for example, there are techniques that use paired reads
information to identify insertions [90], there is no clear way to reconstruct them.

An interesting strategy to improve de novo assemblies is known under the name of “assembly
reconciliation”. As different assemblers run over the same data set may produce different results,
the goal of assembly reconciliation is to merge the assemblies produced by different tools. This
is done either to obtain longer contigs as well as to detect possible mis-assemblies. Some form of
assembly reconciliation was applied with success in Sanger based projects like in [2].

eRGA propose an approach similar to assembly reconciliation. In presence of a closely related
sequence one can perform both de novo assembly and reference guided assembly and then merge
the two results to obtain what we call an enhanced reference guided assembly (eRGA).

5.1.1 Integrating Assemblies

In [31] a sequence coming from a related organism was used as reference while in [36] even if
a reference sequence was present, it was well known that the sequenced organism was different
from it. In those situations assembly programs can lead to a fragmented assembly, while reference
guided assembly can easily fail to assemble the most divergent areas. In other words, both reference
guided and de novo assembly methods have some weakness and some strengths. In [131] a tool
(MAIA) has been proposed to integrate multiple de novo assemblies and multiple reference guided
assemblies. This tool uses the output of different assemblers and of different reference guided
assemblies obtained with several reference sequences with the goal of improving the final assembly
result. MAIA constructs an overlap graph from the pairwise alignments of all the contigs. In large
and repetitive genomes, like plants genomes, this step is computationally expensive and could
easily lead to a large number of ambiguous or false overlaps.

In two independent works Casagrande et al. [24] and Zimin et al. [191] suggested two methods
which goal was to merge two draft assemblies. In different ways, they proposed the construction
of a graph which allowed to localize areas that could be merged. Zimin method relied on a global
alignment step, while Casagrande avoided this step by using the layout provided by the assemblers.
Both methods have been developed for Sanger sequencing projects. Once the graph is constructed,
it can be used to merge and extend contigs and to highlight possible errors in the assembly. In
particular, cycles witness a situation in which the two assemblers disagree. In this case Casagrande
et, al. used one of the two assemblies as an anchor to resolve conflicts (Master Assembly).

5.1.2 Reference Guided Assembly Approaches

When a reference sequence A and a set of reads R are given, there are essentially two possible ways
to perform reference assembly. The standard way consists in simply aligning all the reads in R
against the reference A and then obtaining some consensus sequences. In the ongoing we will refer
to this method as standard-RGA (s-RGA), in a similar way we will call the consensus sequence
produced s-A. The other way is to first perform de novo assembly onR and then align the resulting
contigs against the reference A. We will call this second method de novo-RGA (dn-RGA), and the
consensus sequence produced in this way will be called dn-A. Both the output sequences have “N”
everywhere the coverage drops to 0. With the purpose of simplifying the discussion we suppose A
composed by a single sequence (and therefore s-A and dn-A are composed by a single sequence).
It will be clear that this is not a limitation.

In presence of next generation sequencing data, we have to use aligners like SOAP2 [94] and
rNA [177] to obtain s-A. Even aligners like rNA, specifically designed to align highly divergent
reads, are considered “conservative”, especially if compared to BLAST-like aligners (i.e., long reads
aligners). In particular NGS aligners allow a limited (usually one) number of indels. For this reason
the length of s-A is almost the same of A. The sequence dn-A is obtained in three phases, first
reads are assembled using a short read assembler [188, 96], the resulting contigs are then aligned
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against A, and after this phase the consensus is generated. Contigs can be aligned using tools like
BLAST [7] or others that allow us to place reads on a reference with low similarity constraints.

Several tools have been proposed to address this task. OSLay [152] computes a synthetic layout
of the contigs using a reference sequence to anchor de novo sequences; the Mauve aligner [153]
gives as output an ordered version of the de novo contigs; PGA [190] is able to layout the contigs
with more than one reference genome at a time using global searches. All these tools implement
or use a BLAST-like [7] search to align contigs against the reference. This alignment technique
allows us to place reads on a reference with low similarity constraints. In particular, the contigs
can be aligned against the reference sequence allowing partial hits and gaps.

In presence of a closely related genome, one can produce both s-A and dn-A. As we saw, both
assemblies have some good and some bad points. In general, this situation is similar to the already
studied situation of assembly reconciliation [24]. Given the two assemblies s-A and dn-A we will
show that the same ideas can be applied in this different context to obtain an enhanced reference
assembly.

5.1.3 The Merge Graph

In order to formalize the discussion in a simple setting, we will work with two strings, ∆ and Γ
over the alphabet Σ = {a, c, g, t,N}. Given two indexes i and j belonging to a string we define the
interval [i, j] = {i, i+ 1, . . . , j}.

Given a string S (in particular for S ∈ {∆,Γ}) we define the interval set IS containing all the
possible intervals belonging to S as the set:

IS = {[i, j]|i < j ∧ i, j ∈ {0, . . . , |S| − 1}}

With Sij we identify the S’s substring S[i, . . . , j]. If Sij ∈ {a, c, g, t}∗ we will call it a (pure)contig,
while if Sij ∈ {N}∗ it will be named gap. If Sij ∈ {a, c, g, t}∗ is such that i = 0∨S[i− 1] = N and
j = |S| − 1 ∨ S[j + 1] = N , then Sij is a max-contig an we define in an analogous way a max-gap
(in general we will speak of max-area).

Given two strings δ and γ the function D(δ, γ) returns a number between 0 and 1 representing
the percentage of difference between the two strings under the Levenshtain distance. In particular,
if ι represents a global alignment between δ and γ with edit distance d, then the percentage of
difference is the ratio between the edit distance d and the length of ι ( D(δ, γ) = d/|ι|). This
definition can be easily be extended to distance metrics different from the edit distance.

The merge graph G∆,Γ
M = (V,E) is a directed graph such that V ⊂ I∆ × IΓ can be partitioned

into four sets called gap-nodes (Vg, gap against gap), delta-nodes (Vδ, a ∆-contig against a Γ-gap),
gamma-nodes (Vγ , a ∆-gap against a Γ-contig) merge-nodes (Vm, contig against contig). We also
fix two parameters λ and s. The former one guarantees a similarity constraint between regions
belonging to ∆ and Γ. The latter one, instead, introduces a locality constraint between regions of
the two strings connected by the merge graph. More precisely, the set Vg is defined as:

Vg = {〈[i, j], [k, l]〉|(∆ij ∈ {N}∗ ∧ Γkl ∈ {N}∗) ∧ |i− k| ≤ s ∧ |j − l| ≤ s}

The set Vδ is defined as:

Vδ = {〈[i, j], [k, l]〉|(∆ij ∈ {a, c, g, t}∗ ∧ Γkl ∈ {N}∗) ∧ |i− k| ≤ s ∧ |j − l| ≤ s}

a Vγ is defined in an analogous way. The last set, Vm, is defined as:

Vm = {〈[i, j], [k, l]〉|∆ij ∈ {a, c, g, t}∗ ∧ Γkl ∈ {a, c, g, t}∗ ∧ D(∆ij ,Γkl) ≤ λ

∧ |i− k| ≤ s ∧ |j − l| ≤ s}
In other words a gap-node connects two gaps in the sequences, a δ-node or a γ-node connects a
contig with a gap in the other sequence, while a merge node connects contigs that must be similar.
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All the nodes in V must respect the following global property:

∀〈[i, j], [k, l]〉 ∈ V ∧ ∀〈[i′, j′], [k′, l′]〉

∈ V \ 〈[i, j], [k, l]〉 ([i, j] ∩ [i′, j′] = ∅ ∧ [k, l] ∩ [k′, l′] = ∅)
The last property tell us that every interval appearing in a node on a sequence (either ∆ or Γ)
does not overlap with any other interval belonging to the same sequence (∆ or Γ, respectively).

The set of oriented edges E is defined as:

E = {(p, q) ∈ Vy × Vz|y, z ∈ {g, δ, γ,m} ∧ y 6= z ∧ p = 〈[i, j], [k, l]〉

∧ q = 〈[j + 1, u], [l + 1, v]〉 for some i, j, k, l, u, v}
Less formally, the last definition tell us that the intervals stored in two nodes p and q connected

by an edge (p, q), are subsequent and belong to two different sets of nodes.

Definition 11 (Merge Graph G∆,Γ
M = (V,E)) G∆,Γ

M = (V,E), with V and E defined as before,
is a merge graph for the strings ∆ and Γ if its non-oriented version is connected, p = 〈[0, j], [0, l]〉
is the (only) source (first node), q = 〈[i, |∆|], [k, |Γ|]〉 is the (only) sink (last node), and for each
max-contig and max-gap Ssr with S ∈ {∆,Γ}, there exists a path p1, . . . , pl with l ≥ 1 such that
p1 = 〈[s, o], [a, b]〉 , pl = 〈[u, r], [c, d]〉 or p1 = 〈[a, b], [s, o]〉 , pl = 〈[c, d], [u, r]〉 for some a, b, c, d, u, o.

Lemma 4 Given the strings ∆ and Γ, the graph G∆,Γ
M is acyclic.

Proof 2 A path in G∆,Γ
M is a sequence of gap, copy and merge nodes. Every node is composed

by two intervals, and from the definition of edge it follows that a path induce a growing function
between the intervals stored in the path. A cycle must contain an edge connecting a node 〈[i, j], [k, l]〉
to another one 〈(m,n), (u, v)〉 such that m < i and u < i. Therefore such edge cannot exists and

hence G∆,Γ
M must be acyclic.

Merge Graph and Global Alignment

Given the strings ∆ and Γ, there is a deep connection between merge graph G∆,Γ
M and a global

alignment between them. We will show how we can obtain a global alignment from a merge graph
and how a specific global alignment allows us to build a merge graph. In the ongoing we will refer
to such global alignment as Merging Global Alignment (MGA). The merge graph G∆,Γ

M can be
used to extract a family of edit strings. From each node we can produce an edited version of the
two substrings that are represented. From delta and gamma nodes we simply extract the contigs
while from the merge and gap nodes we can produce an edited version of one of the two strings. In
the gap nodes case the edited version will contain only insertions and deletions (see figures 5.1(b)
and 5.1(c)). Once the edit strings are computed the corresponding MGA can be calculated.

The other direction is more complicated. A MGA is a global alignment that respects two kinds
of local properties: locality and similarity. In general a global alignment does not guarantee these
local properties, hence we can easily construct a global alignment that violates a local constraint
(see figure 5.1(d)). As a consequence of the Merge Graph definition, the global alignments we are
seeking must respect the following properties: if ∆ij and Γkl are aligned one against the other,
then |i−k| ≤ s and |j− l| ≤ s (locality); if ∆ij and Γkl are aligned and at least one is a max-contig
or ∆[i− 1] = Γ[l + 1] = N (or ∆[j + 1] = Γ[k − 1] = N) then D(∆ij ,Γkl) ≤ λ (similarity).

If such an alignment exists, calling ∆′ and Γ′ the two strings over the alphabet {a, c, g, t,N,−}
returned by the global alignment between ∆ and Γ, we can build G∆,Γ

M by simply reading from left
to right ∆′ and Γ′. For each position we have to judge if a new node begins or if we can continue
extending the current one.

The determination of this global alignment can be computationally cumbersome. We cannot
simply use an algorithm that calculates an optimal sequence alignment because the algorithm may
make a choice that can create an optimal global alignment that is not necessarily an alignment
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0 11 21 31 41 51 61

∆: NNNNNNNaag gtttaaggtc ctacaNNNNa ctcatcataa aaacccNNNN NNNNNNctct aggtaaaa

Γ: NNNNNNNNNN NNNNggccta cacNNNNNac tcatcatcaa aaacccNNaa aaaaNNNNNN NNNNaaaaa

[0, 6]

[0, 4]

gap

[7, 15]

[5, 13]

copy

[16, 24]

[14, 22]

merge

[25, 28]

[23, 27]

gap

[29, 45]

[28, 45]

merge

[46, 47]

[46, 47]

gap

[48, 53]

[48, 53]

copy

[54, 55]

[54, 56]

gap

[56, 62]

[57, 63]

copy

[63, 67]

[64, 68]

merge

∆′: NNNNNNN AAGGTTTAA GGTCCTACA- NNNN- ACTCATCATAAAAA-CCC NN NNNNNN NN- CTCTAGG TAAAA

Γ′: NNNNN-- NNNNNNNNN GG-CCTACAC NNNNN ACTCATCATCAAAAACCC NN AAAAAA NNN NNNNNNN AAAAA

Λ: MMMMMII MMMMMMMMM MMIMMMMMMD MMMMD MMMMMMMMMSMMMMDMMM MM MMMMMM MMD MMMMMMM SMMMM

∆′: NNNNNNN AAGGTT- TAAGGTCCTACA- NNNN- ACTCATCAT-AAAAACCC NN NNNNNN NN- CTCTAGG TAAAA

Γ′: NNNNNNN NNNNNNN ---GG-CCTACAC NNNNN ACTCATCATCAAAAACCC NN AAAAAA NNN NNNNNNN AAAAA

constrain

violated

1

(a) The strings ∆ and Γ (|∆| = 68, |Γ| = 69)

0 11 21 31 41 51 61

∆: NNNNNNNaag gtttaaggtc ctacaNNNNa ctcatcataa aaacccNNNN NNNNNNctct aggtaaaa

Γ: NNNNNNNNNN NNNNggccta cacNNNNNac tcatcatcaa aaacccNNaa aaaaNNNNNN NNNNaaaaa

[0, 6]

[0, 4]

gap

[7, 15]

[5, 13]

copy

[16, 24]

[14, 22]

merge

[25, 28]

[23, 27]

gap

[29, 45]

[28, 45]

merge

[46, 47]

[46, 47]

gap

[48, 53]

[48, 53]

copy

[54, 55]

[54, 56]

gap

[56, 62]

[57, 63]

copy

[63, 67]

[64, 68]

merge

∆′: NNNNNNN AAGGTTTAA GGTCCTACA- NNNN- ACTCATCATAAAAA-CCC NN NNNNNN NN- CTCTAGG TAAAA

Γ′: NNNNN-- NNNNNNNNN GG-CCTACAC NNNNN ACTCATCATCAAAAACCC NN AAAAAA NNN NNNNNNN AAAAA

Λ: MMMMMII MMMMMMMMM MMIMMMMMMD MMMMD MMMMMMMMMSMMMMDMMM MM MMMMMM MMD MMMMMMM SMMMM

∆′: NNNNNNN AAGGTT- TAAGGTCCTACA- NNNN- ACTCATCAT-AAAAACCC NN NNNNNN NN- CTCTAGG TAAAA

Γ′: NNNNNNN NNNNNNN ---GG-CCTACAC NNNNN ACTCATCATCAAAAACCC NN AAAAAA NNN NNNNNNN AAAAA

constrain

violated

1

(b) A possible G∆,Γ
M for ∆ and Γ with s = 2 and λ = 0.2

0 11 21 31 41 51 61

∆: NNNNNNNaag gtttaaggtc ctacaNNNNa ctcatcataa aaacccNNNN NNNNNNctct aggtaaaa

Γ: NNNNNNNNNN NNNNggccta cacNNNNNac tcatcatcaa aaacccNNaa aaaaNNNNNN NNNNaaaaa

[0, 6]

[0, 4]

gap

[7, 15]

[5, 13]

copy

[16, 24]

[14, 22]

merge

[25, 28]

[23, 27]

gap

[29, 45]

[28, 45]

merge

[46, 47]

[46, 47]

gap

[48, 53]

[48, 53]

copy

[54, 55]

[54, 56]

gap

[56, 62]

[57, 63]

copy

[63, 67]

[64, 68]

merge

∆′: NNNNNNN AAGGTTTAA GGTCCTACA- NNNN- ACTCATCATAAAAA-CCC NN NNNNNN NN- CTCTAGG TAAAA

Γ′: NNNNN-- NNNNNNNNN GG-CCTACAC NNNNN ACTCATCATCAAAAACCC NN AAAAAA NNN NNNNNNN AAAAA

Λ: MMMMMII MMMMMMMMM MMIMMMMMMD MMMMD MMMMMMMMMSMMMMDMMM MM MMMMMM MMD MMMMMMM SMMMM

∆′: NNNNNNN AAGGTT- TAAGGTCCTACA- NNNN- ACTCATCAT-AAAAACCC NN NNNNNN NN- CTCTAGG TAAAA

Γ′: NNNNNNN NNNNNNN ---GG-CCTACAC NNNNN ACTCATCATCAAAAACCC NN AAAAAA NNN NNNNNNN AAAAA

constrain

violated

1

(c) A possible Global Alignment obtained from G∆,Γ
M (Λ edit string to transform Γ into ∆: M means

match, S means substitution, I means insertion while D means deletion)

0 11 21 31 41 51 61

∆: NNNNNNNaag gtttaaggtc ctacaNNNNa ctcatcataa aaacccNNNN NNNNNNctct aggtaaaa

Γ: NNNNNNNNNN NNNNggccta cacNNNNNac tcatcatcaa aaacccNNaa aaaaNNNNNN NNNNaaaaa

[0, 6]

[0, 4]

gap

[7, 15]

[5, 13]

copy

[16, 24]

[14, 22]

merge

[25, 28]

[23, 27]

gap

[29, 45]

[28, 45]

merge

[46, 47]

[46, 47]

gap

[48, 53]

[48, 53]

copy

[54, 55]

[54, 56]

gap

[56, 62]

[57, 63]

copy

[63, 67]

[64, 68]

merge

∆′: NNNNNNN AAGGTTTAA GGTCCTACA- NNNN- ACTCATCATAAAAA-CCC NN NNNNNN NN- CTCTAGG TAAAA

Γ′: NNNNN-- NNNNNNNNN GG-CCTACAC NNNNN ACTCATCATCAAAAACCC NN AAAAAA NNN NNNNNNN AAAAA

Λ: MMMMMII MMMMMMMMM MMIMMMMMMD MMMMD MMMMMMMMMSMMMMDMMM MM MMMMMM MMD MMMMMMM SMMMM

∆′: NNNNNNN AAGGTT- TAAGGTCCTACA- NNNN- ACTCATCAT-AAAAACCC NN NNNNNN NN- CTCTAGG TAAAA

Γ′: NNNNNNN NNNNNNN ---GG-CCTACAC NNNNN ACTCATCATCAAAAACCC NN AAAAAA NNN NNNNNNN AAAAA

constrain

violated

1

(d) A Global Alignment that does not allow the creation of MG

Figure 5.1: An example of G∆,Γ
M construction and of the corresponding MGA extraction.

that respects all the local constraints (see Fig. 5.1(d)). We will now sketch a complete algorithm

that given the strings ∆ and Γ generates all possible Gs-A,dn-A
M .

The algorithm starts by reading the two sequences from left to right. For every contig in ∆ and
Γ we can recursively compute all the possible alignments that satisfy the locality and possibly the
similarity constraints. More in detail consider Figure 5.2. Let us assume that the latest generated
node is 〈[z, i], [m, v]〉. From the merge graph definition we have that at least one between i and v
must be the end of a max-area, in this case i. At this point we have to calculate the nearest (from
i) max area end, n in the case of Figure 5.2. So the node we are going to create is 〈[i, k], [v, n]〉
with n− s < k < n+ s (paying attention to some special case we can reduce the search space). In
order to generate all the possible graphs we have to recursively generate all the nodes. In the case
we are generating a merge node we have also to check if the similarity constraint is respected. The
algorithm terminates because at every step it proceed forward along both strings.

∆
x z i j

Γ
m nv

n− s n + s

1

Figure 5.2: A possible situation during MGA construction.

Minimal Merge Graph

Given two strings ∆ and Γ it is clear that the existence of a G∆,Γ
M depends on two thresholds s and

λ. By setting s to be large enough we can easily compute a merge graph composed only by gap,
delta and gamma nodes. In a similar way, another trivial solutions can be found setting λ equal
to 1. In this case the merge nodes have only to respect the locality constraint.

It is clear that a merge graph of a pair of sequences is interesting when s is a small constant if



Tesi di dottorato di Francesco Vezzi, discussa presso l’Università degli Studi di Udine
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compared to ∆ and Γ lengths and when λ is not close to 1. We will show that these two requests
can help us in designing a practically better algorithm.

5.1.4 The Merge Graph and Reference Guided Assembly

A merge graph is a data structure able to describe a global alignment between two strings with
the further request of local constraints. This data structure can be used to describe the relations
between two strings and to extract a consensus.

A merge graph can be used to obtain an improved assembly by merging the results achieved
with s-RGA and dn-RGA. When working with s-A and dn-A it becomes interesting to use an
useful assembly reconciliation concept [24]: one of the two sequences is elected to be the Master
Assembly (MA), that is the assembly we believe to be correct. Hence, when we find a merge node,
instead of computing a consensus we simply keep the sequence coming from MA. In practice the
MA will almost always be dn-A as it reconstructs the regions present in the sequenced organism
and absent in the reference. If Gs-A,dn-A

M is available it can be used to extract a new assembly. For
each node p =< [i, j], [k, l] > we extract the sequence dn-Akl if p is a gamma or a merge node,
s-Aij if p is a delta-node or the shortest between s-Aij and dn-Akl if p is a gap node. This assembly
method is named e-RGA (enhanced Reference Guided Assembly) and the sequence produced is
dubbed e-A .

An Approximate Construction

The main problem of the brute force algorithm presented in Section 5.1.3 is the fact that for
each max-area we must generate 2s different nodes to test the feasibility of all the possibilities.
Moreover, in the merge node case we must perform a global alignment, hence for each max-contig
Sij the brute force algorithm has a worst case complexity of O(s ∗ (j − i)2). Additionally the
parameters s and λ are unknown and, in general, there is no clear way to know them in advance
or to at least approximate them. This problem is a consequence of the fact that in different nodes
(i.e., in different locations) both the locality and the similarity constraints could be (locally) utterly
different.

When working with s-A and dn-A we have that the merge graph Gs-A,dn-A
M must exist for some

s ∈ {0, .., |dn-A| − |s-A|}. This follows directly from the construction of the two strings.
It is more difficult to limit λ. A practically good approximation is the percentage of difference

allowed in the de novo contig alignment.
The particular context provided by s-A and dn-A allows us to further improve the construction

algorithm concentrating ourselves only on a significant subset of all the global alignments associated
to Gs-A,dn-A

M .

s-A
a b c d e f g h

dn-A
l m n o p q r u

1

Figure 5.3: Example of the window heuristic for e-RGA construction.

We will show that thanks to the some intrinsic properties of s-A and dn-A the brute force
algorithm can be improved avoiding the generation of all the possible global alignments. For each
max-contig in dn-A we can easily identify the regions that will form a merge node once that s is
fixed. Let us consider Figure 5.3. The max-contig dn-Alm will form the merge node < [x, y], [l,m] >
for some x and y between b and c with b = l − s and c = m + s. As a matter of fact s-Axy and
dn-Alm must be very similar: during the construction of the two strings we were able to reconstruct
the same area by placing directly reads and contigs (generated with the same reads) on the same
piece of reference. In order to identify x and y we can proceed in the following way: we split
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dn-Alm into the set {dnl1, dnl2, .., dnlk} of k non overlapping sequences of length d and we locally
align each sequence on a small (s-based) window of s-Ab,c allowing a percentage of difference of at
most λ, with λ the percentage of difference allowed while building dn-A. Thanks to the similarity
between the sequences we will place most of the dnli and we will approximately identify x and
y. By building an index over s-A and assuming λ to be small enough (i.e., the number of errors
allowed while aligning dnli is small) the procedure takes time O(m − l). This procedure can be
extended also to more complex situations (see right part of Figure 5.3) to identify all the merge
nodes.

Once all the merge nodes are computed we can link them with the appropriate alternation of
delta, gamma and gap nodes. With all the merge nodes fixed we can either decide to produce all
the possible graphs like in the brute force algorithm or proceed in a greedy way by minimizing the
total length of e-A.

Clearly this approach cannot be applied to two general strings ∆ and Γ because we have
neither an hypothesis that allows us to limit s and λ nor a high percentage of similarity between
the sequences associated a merge node.

5.1.5 eRGA: Implementation and Results

The pipeline represented in Figure 5.4 has been implemented using several third-part tools and
a set of Perl scripts to parse results and to obtain the consensus sequence e-A. The first step

Reads

>contig 1

acgtccnn...cact

>contig n

cggcnn...cact

>dn-A
aaggtcnnc...

...
...tcttaggng

>s-A
aaggtcnnc...

...
...tcttaggng

Merge

s-A and dn-A

>e-A
aaggtcnnc...

...
...tcttaggng

de-novo

assembly

reference
assembly

reference
assembly

1

Figure 5.4: e-RGA pipeline implementation.

to construct s-A is to employ a short-string aligner to align all the reads against the reference
sequence, and subsequently extract a consensus sequence. In all cases in which a read is found in
multiple occurrences, we randomly choose one of the alignments. We used the short-string aligner
rNA [144] and the pileup command provided by samtools [94] to extract the consensus sequence.

dn-A was obtained by first performing de novo assembly with ABySS [166] and CLC assem-
bler Cell 3.0 [1]. We noticed that, using contigs from both assemblies, the amount of genome
reconstructed in dn-A greatly improves. The delicate phase of mapping contigs against the refer-
ence sequence was accomplished with CLC-Workbench (www.clcbio.com). Although we used these
specific tools, clearly the production of s-A and dn-A can be carried out using different software
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without significant modification of the pipeline. The core of e-RGA is the Gs-A,dn-A
M construction

and e-A generation. These crucial phases are implemented within a Perl script that uses BLAST
[22] to perform the approximate alignment. The program first memorises both s-A and dn-A, and
localises all the max-areas (max-contigs and max-gaps).

The Datasets

We tested e-RGA on several data sets with the goal of demonstrating that it can be successfully
used in different situations. In particular we performed tests on genomes of various sizes to show
how this method can easily scale to large projects.

The first dataset (Chloroplast) consists of an Illumina multiplexed lane used to sequence four
conifer chloroplast genomes with single reads of length 45 base pair (bp). The genome length is
close to 120 Kbp. A reference sequence for spruce chloroplasts is totally missing: as suggested
by Cronn et al. [31] a pine chloroplast (Pinus thunbergii or Black pine) was used as a reference.
The e-RGA pipeline turned out to be useful both for the absence of a reference and for the strong
reads’contamination.

The second dataset (Microbe) is composed by an Illumina lane used to sequence a micro-
bial genome (Methylomirabilis oxyfera) with single reads of length 32 bp. The genome length
is approximately 2.7 Mbp. A reference sequence is present, however reads were sampled from a
meta-population that was expected to be different from the reference genome [36]. This is another
context in which e-RGA can be used.

The third dataset (Sangiovese), comprises 6 Illumina lanes used to re-sequence a grapevine
variety (Sangiovese, Rauscedo clone R24) with 100bp paired-end reads for a 89× total raw cover-
age. For this dataset, we used as reference sequence the genome of the highly homozygous grape
clone, PN40024, used as reference genotype from the French-Italian Consortium for grape genome
characterisation [69].

The fourth, and last dataset (Poplar) comprises 6 Illumina lanes used to sequence a Poplar
individual belonging to the Populus nigra species, with 100bp paired-end reads for an 85× total
raw coverage. In this case, we used as reference sequence the Populus trichocarpa genome [172].

All these datasets represent different situations and different application fields for e-RGA. In
the Chloroplast case the absence of a reference prevents us to use a standard reference guided
approach, while the high contamination content jeopardize the possibility to perform de novo
assembly. In the Microbe dataset, we have a closely related sequence, but it would be interesting
to identify non conserved regions. The last two datasets are challenging for their length and
composition: both grapevine and poplar are characterised by long, repetitive genomes (480 Mbp
and 417 Mbp respectively); moreover, both the sequenced individuals are highly heterozygous.
These three conditions (length, repetitiveness and heterozygosity), together with the presence of
two reference genomes, are ideal for give a chance to e-RGA. It must be noticed that, while in
the Sangiovese dataset we used a reference sequence belonging to the grapevine species, in the
Poplar dataset the reference belongs to a different species. This difference is important in order to
understand the results.

In all the four datasets, before assembling and aligning, all the reads were filtered for quality.
In the Sangiovese and Poplar case we also eliminated all sequences belonging to chloroplasts and
mitochondria. For this purpose we employed rNA filtering option [177] (see Chapter 6).

Results Discussion

In Table 5.1 we report the results for Chloroplast and Microbe datasets. For each experiment we
computed the coverage achieved by placing with the same tool and the same parameters the reads
on A (the sequence used as reference), on s-A, on dn-A and, on e-A. Moreover we reported some
standard assembly statistics like number of contigs (# Contigs), mean contigs’ length, and N50.

As we can see from Table 5.1 all the standard metrics are improved by e-RGA. As the reference
genome was composed by only one sequence, it can look strange that the N50 is not close to the
expected reference length. As a matter of facts, to compute the N50 statistics we break the
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Chloroplast Microbe
Experiment Norway White Black Red
A coverage 40.3× 104.5× 34.7× 18.8× 10.0×
s-A Coverage 46.1× 117.2× 39.5× 20.8× 13.5×
# Contigs 326 307 323 339 7986
Mean contig (bp) 280 289 273 265 221
N50 (bp) 778 883 853 763 583
dn-A Coverage 51.0× 136.0× 45.2× 23.4× 14.7×
# Contigs 106 59 106 159 2630
Mean contig (bp) 871 1715 902 609 254
N50 (bp) 1477 2759 1288 1002 710
e-A Coverage 55.5× 142.8× 48.1× 24.7× 17.7×
# Contigs 129 113 130 156 5600
Mean contig (bp) 794 951 798 699 344
N50 (bp) 2614 3313 2465 1842 1168

Table 5.1: Chloroplasts and Microbe datasets results. For all the techniques used, we show the
coverage obtained mapping reads back to the sequences, the number of contigs, the mean contig
length, and the N50 length computed both on the expected genome length

sequence (A, s-A, dn-A, and e-A) every time a sequence of 5 unknown characters (Ns) occurs.
We can appreciate that the number of aligned reads against e-A (that can be computed from the
coverage) is higher than the number of aligned reads against the other sequences.

Tables 5.2 and 5.3 summarise the results from the Sangiovese and Poplar datasets. As a measure
of the assembly quality and correctness, we report the percentage of aligned reads (the same reads
used to perform reference and de novo assembly), the number of contigs reconstructed, the mean
contig length, the N50g (the length of the longest contig such that the sum of all the contigs
greater than it represents half the expected genome length) and, in brackets, the N50c (the length
of the longest contig such that the sum of all the contigs greater than it represents half the total
contig length), and the percentage of Ns in the sequence. The N50g gives us a normalised value
that describes the connectivity level of the assembly.

As for Chloroplast and Microbe datasets, these statistics have been computed for the reference
sequence A, for the s-RGA output s-A, for the dn-RGA output dn-A, and for the e-RGA output
e-A. For these two particular datasets, we also computed the statistics for the de novo assembly
output dn (in particular CLC Cell 3.0 output) as a practical demonstration that assemblers gave
us a results that must be improved.

In the Sangiovese case (Table 5.2), we can see how the mean length obtained through e-RGA is
longer than the other approaches, and although the dn-A mean length has a close value, we must
consider the fact that these contigs cover only half the genome length as described by the high
percentage of unknown characters. In the Sangiovese dataset, the most impressive results are the
N50g and N50c improvements. Both e-A’s N50g and N50c are better than those of s-A, and they
largely improve the results achievable with de novo assembly alone. This shows that our pipeline
can effectively improve the final assembly result.

Similar results are summarised in Table 5.3 for the Poplar dataset. Owing to the distance
between the sequenced organism (Populus nigra) and the reference genome (Populus trichocarpa),
Poplar results can look less promising than Sangiovese’s ones. However, the number of mapped
reads against e-A is higher than the number of reads mapped against both s-A and dn-A. The
fact that we are able to map a higher number of reads against dn should also be a consequence of
the distance between the reference and the sequenced genome. As far as the standard assembly
statistics are concerned (N50g, N50c and mean contig length), we can again see how the e-A
results are better than those achievable by simply mapping reads or contigs back to the reference.
Despite de novo assembly results look much better than those obtained by other approaches, we



Tesi di dottorato di Francesco Vezzi, discussa presso l’Università degli Studi di Udine
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% Aligned Reads # Contigs Mean Contig N50g (N50c) %Ns
A 80.21% - - - 3.00%
s-A 80.99% 246752 1758 bp 8514 bp (9901 bp) 7.64%
dn 53.10% 289854 1942 bp 1753 bp (3328 bp) 0.70%
dn-A 50.71% 109833 2246 bp 600 bp (3947 bp) 47.70%
e-A 81.77% 198194 2282 bp 12494 bp (14219 bp) 6.40%

Table 5.2: Sangiovese datasets result. For all the techniques used, we show the percentage of
aligned reads, the number of contigs, the mean contig length, the N50 length computed both on
the expected genome length and on the total contig length, and the number of unknown characters
“N”.

must stress the fact that de novo assembly alone gives us a set of 116.683 unordered contigs, with
no information about their position in the final genome. A further measure of the improvements
introduced by the use of e-RGA is the number of successfully aligned paired reads (i.e., paired
reads that align on the sequence at the expected distance and orientation). In both datasets, e-A
is the sequence on which the largest number of constraints is respected.

% Aligned Reads # Contigs Mean Contig N50g (N50c) %Ns
A 55.00% - - - 2.14%
s-A 58.00% 778065 365 bp 525 bp(1105 bp) 25.22%
dn 67.84% 116683 2728 bp 2906 bp (4487 bp) 0.40%
dn-A 37.00% 77370 1335 bp 0 bp (2085 bp) 62.46%
e-A 59.00% 558762 482 bp 957 bp (1959 bp) 18.56%

Table 5.3: Poplar datasets result. For all the techniques used, we show the percentage of aligned
reads, the number of contigs, the mean contig length, the N50 length computed both on the
expected genome length and on the total contig length, and the number of unknown characters
“N”.

5.2 Closing the Gap: GapFiller

A clear, practical, limitation of Next Generation Sequencing (NGS) is the read length. The reduced
read length with respect to Sanger sequencing is problematic for the alignment task (i.e., it is
more difficult to disambiguate reads belonging to repetitive regions) and it is dramatic for de novo
assembly (repeats longer than read length pose serious problems to assemblers). In particular,
as reads’ length decreases, the number of “unsolvable” repeats increases; namely, the repeated
structure complexity of (any region within) a genome depends on the data used to assemble it [127].

Results from old Sanger-sequencing projects tell us that everything become much easier in
presence of long reads. The situation would be ideal if such long reads can be produced at the
same cost of today available NGS sequences. In particular this would give the possibility to
use assemblers like Arachne [11] and PCAP [61] that already proved their capabilities with long
reads (i.e., Sanger reads).

Illumina state of the art sequencer, is by default able to read the tips of DNA fragments of
length ∼ 600 − 1000 bp1. The instrument is able to return only the first and the last 100 bp,
leaving therefore a gap of length approximately 400− 800 bp. With all NGS technologies it is not
unusual to reach extremely high coverages that guarantee that each base of the sequenced genome
is covered by more than one read [86].

The idea behind GapFiller (GF) is to close the gap within given paired reads, using an alignment
algorithm and some techniques to avoid errors. GF can be viewed as a “local” assembler, as its

1There are also several protocols to produced mate-pairs at a longer distance.
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main target is to produce accurate longer sequences, with respect to NGS reads’ length. The goal
is to produce contigs that are certified correct, in order to allow simpler and accurate subsequent
analysis. A second aim is to produce an input for an assembly pipeline, using an opposed strategy
with respect to shotgun approach.

GapFiller reduces the assembly complexity in two different ways: firstly, it concentrates the
assembly effort on a limited area ( ∼ 400 − 800 bp, independently from genome length) thus
avoiding to work with complex and often intractable graph structures; secondly it outputs contigs
that can be treated like long reads that can be used more effectively in a de novo assembly pipeline
to resolve repeats and complex genomic areas.

Our method is based on a seed-and-extend schema aimed closing the gap between the two reads
of a paired read. Similarly to other seed-and-extend based assemblers like SSAKE [182], SHARCGS
[35], and QSRA [20] GapFiller selects one read and tries to extend it using reads that overlap it. The
main drawback of seed-and-extend assemblers is their inherent incapability to assemble complex
(i.e., repeated) genomes. GapFiller does not aim at producing a de novo assembly, but it only
concentrates on closing the gap within paired reads. The advantages of our method lie in the
generation of correctly certified contigs and, as a by-product, in the identification of “difficult”
areas (e.g., repeats, low coverage regions), thus avoiding the production of wrong contigs.

5.2.1 A local Seed-and-Extend Strategy

GapFiller uses a local seed-and-extend (i.e., greedy) strategy to close the gap among the paired
reads. Given the set of sequenced reads R and (r1, r2) a pair of reads belonging to R corresponding
to a paired read, the strategy is to compute all the overlaps between r1 and all the reads memorized
in R. Once overlaps have been computed, one can extract a consensus sequence and reiterate the
procedure on it. The extension ends when the read r2 is found/reached. As a matter of facts, there
are situations in which this procedure can fail: repeats may conduce the extension on a path that
will never reach the mate, errors during the consensus computation may prevent other overlaps to
be found or may induce wrong ones. In these cases, we need to define some strategies able to stop
the extension and eventually discard what have been produced.

GapFiller firstly stores all useful reads in a memory efficient data structure that allows to quickly
compute overlaps between the reads and the contig being constructed. In a second phase reads
are selected and subsequently extended. Such reads will be identified by the name of seed reads.
The extension phase halts when a stop condition is reached. Depending on the stop condition, the
produced contig is labelled as trusted or not trusted (i.e., positive or negative).

Another important point is how to choose the reads to be extend (i.e., seed reads): the strategy
of simply pick up the first not used read and extend it easily fails in reconstructing contigs that are
uniformly distributed on the genome. The problem is that reads belonging to repetitive regions
are more likely to be chosen. Therefore we need a clever strategy to extend reads belonging to
unique regions of the genome.

Another major stumbling block is the overlap computation: the cardinality of R can be in the
order of millions, if not billions in the case of mammalian genomes. A data structure able to store
in a feasible amount of space all the reads and able to quickly compute the overlaps is therefore
mandatory.

Definitions

Let Σ be an alphabet and Σ∗ the set of the words in Σ. For every S ∈ Σ∗ we will denote with
|S| the number of characters of a and with S[p, . . . , p + l − 1] the sub-sequence of S starting in
p ∈ {0, . . . , |S| − 1} and of length l ∈ {0, . . . , |S| − p}. We will refer to S[p, . . . , p+ l − 1] as prefix
if p = 0, suffix if p+ l = |S|, and as the p-th character of S, if l = 0, and we will simply write S[p].

In order to quickly identify overlaps between the reads’ tips and the contig being extended, we
use an approach closely related to the Hamming-aware hash function presented in Chapter 3. As
extensively showed the Karp and Rabin fingerprint based alignment algorithm can be extended
to deal with mismatches, by replacing the simple comparison between fingerprints with a more
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refined test. In particular, they noticed that by choosing q to be a Mersenne number (q = 2w − 1,
for some w ∈ N) it could be checked in linear time whether two strings align against each other at
a small Hamming distance.

Given a string S ∈ Σ∗ and its numerical representation s ∈ N in base |Σ|, the hash function fH
is defined as

fH : Σ∗ → {0, . . . , q − 1} (5.1)

S 7→ fh(S) := s mod q, (5.2)

where q is a prime of the form q = 2w−1, for some w ∈ N. The value fH(S) is called the fingerprint
of the sequence in S ∈ Σ∗ coded with s.

In the context of quickly compute overlaps between a sequence and a large set of reads, the use
of fH significantly reduces the size of the set employed for the search of the overlapping reads. In
practice, all the input reads are indexed by the fingerprint of their L-length prefixes, where L is a
fixed parameter. So, when a sequence S has to be extended, the suffix-prefix overlaps at a given
(limited and constant) Hamming distance with other sequences are quickly computed. Formally,
given a set of reads R ⊂ Σ∗, the maximum allowed Hamming distance k, the set Z(k, q) of the
witnesses (see Chapter 3 for more details), a sequence S, and a parameter l ≥ L, the following set

R(S, l) := {r ∈ R | (fH(r[|r| − l, . . . , |r| − l + L− 1])− (5.3)

fH(S[|S| − L, . . . , |S| − 1])) mod q ∈ Z(k, q)}
contains all the reads whose L-prefix overlaps the L-prefix of the l-suffix of S with Hamming
distance less than k. False positives can be present but, as showed in [144], their amount is
limited. On this ground we have that the search for the overlapping reads can be restricted to
those belonging to R(S, l).

Seed and read selection

It is of utmost importance to use only correct reads during the extension phase in order to avoid the
generation of wrong meta-reads. Several tools are available to perform error correction on Illumina
data using the so-called “read spectrum” (consider QUAKE [77] and Hammer [115] to mention
the most recent ones). Other tools discard reads or try to improve their reliability using quality
information (rNA [178] and QSRA [20]). We decided to opt for a combined strategy: reads are
first trimmed and filtered using their quality information using a specific rNA option (see Chapter
6) and then, using 16merCounter, another tool developed by us (see Chapter 6), we further filtered
reads based on their k-mer spectrum.

As far as 16merCounter is concerned, the idea is to compute the distributions of all k-mers
belonging to the (filtered) reads and, for every read, find the average k-mer frequency. Formally,
the frequency of a given k-mer z in the set R is given by

Fz :=
∑
r∈R

∣∣{p ∈ {0, . . . , |r| − k} : r[p, . . . , p+ k − 1] = z
}∣∣ (5.4)

hence, the average k-mer frequency of a read r ∈ R can be defined as

Fr :=
1

|r| − k + 1

|r|−k∑
p=0

Fr[p,...,p+k−1]. (5.5)

16merCounter computes the 16-mer frequency: we have chosen k = 16 in order to guarantee that a
k-mer can be stored in 32 bits and hence that the computation requires a fixed and feasible amount
of RAM (16 GB). The idea is that, at least with data obtained by oversampling the genome tens
of times, low frequency 16-mers might be a reliable signal of presence of sequencing errors. We ran
16merCounter on our datasets and extracted a threshold value for the 16-mer average frequency
in order to discard error-affected reads. To do that we simply analyzed the histogram containing
the number of 16-mers for every fixed frequency and selected the minimum value among the two
peaks (see Figure 5.5).
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Figure 5.5: Verticillium is a fungi whose genome measures approximately 32 Mbp. In this picture
we plotted the frequency of the 16-mers belonging to a ∼ 245× read coverage composed by Illumina
reads of length 100 bp

Contig extension

In the contig extension phase, reads are selected one after the other and each one of them is used
as seed in order to create a new contig. Once a seed read is selected, the suffix-prefix overlaps
with other reads are computed and, if a sufficiently high level of global similarity is reached, they
are clustered in a consensus sequence, that is subsequently used to perform further extensions.
The procedure continues while some overlapping reads exist and the consensus sequence is highly
representative of the clustered reads. If either one of the previous conditions is not met, the current
sequence is returned in output.

We will denote with R ⊂ Σ∗ the set of the input reads for GapFiller and with r0 ∈ R a seed
read. At step 0 the current sequence is initialized with the seed S0 := r0. Suppose that at the i-th
step of the algorithm the current string is Si. The procedure to build the sequence Si+1 at the
(i+ 1)-th step, starting from Si, is explained in the following. Firstly, the sets R̂(Si, l) ⊆ R(Si, l)
of overlapping reads are selected (see (5.3))

R̂(Si, l) := {r ∈ R(Si, l) : dH(r[0, . . . , l], Si[|Si| − l, . . . , |Si| − 1]) ≤ δ1} (5.6)

for every l = L, . . . , L + ∆, where L,∆, δ1 ∈ N are fixed parameters and dH : Σl × Σl → R+ is
the Hamming distance. In the following we will refer to ∆ as slack and to L as minimum overlap
length. We will also denote with R̂(Si) :=

⋃
l R̂(Si, l) the set of the reads overlapping Si. We

define the starting position of r ∈ R̂(Si, l) with respect to Si as I(r) := |Si|−l. In order to compute
reliable extensions, we require the number of reads to be at least m, a parameter depending on the
coverage. If there exists no l such that the l-suffix of Si is covered by at least m reads of R̂(Si),
then the algoritms stops; otherwise, the starting position of the consensus string c is

I(c) := min
{
|Si|−l :

∑
h≥l
|R̂(Si, h)| ≥ m

}
(5.7)

while its length is given by

|c|:= max
{
|Si| − l + |r| : r ∈ R̂(Si, l) ∧

∑
h≤l∧q≥|r|−l

∣∣{r′ ∈ R̂(Si, h) : |r′| ≥ q + l − h
}∣∣ ≥ m}. (5.8)

The consensus sequence c is then computed by selecting the most represented character at every
position. For every j = 0, . . . , |c| − 1 and for every σ ∈ Σ we define the number of occurrences of
σ in position j (with respect to c) among the overlapping reads as

occ(σ, j; c) :=
∣∣∣{r ∈ R̂(Si, l) : 0 ≤ j + I(c)− |Si|+ l ≤ |r| − 1 ∧ r[j + I(c)− I(r)] = σ

}∣∣∣. (5.9)
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We define the j-th character of the consensus string as the most represented character in position
j

c[j] := arg max
σ∈Σ

occ(σ, j; c) (5.10)

and we denote the representation rate with v(j; c) := maxσ∈Σ occ(σ, j; c). For a fixed threshold
T ∈ [0, 1] a character belonging to the consensus sequence c in position j is said to be a low
represented character if the following holds

v(j, c)∑
σ∈Σ occ(σ, j; c)

< T. (5.11)

An extension is accepted only if∣∣∣{j ∈ {0, . . . , |c|} :
v(j, c)∑

σ∈Σ occ(σ, j; c)
< T

}∣∣∣ ≤ δ2 (5.12)

with δ2 an user defined threshold. If condition (5.12) holds, the new sequence Si+1 := Si[0, . . . , |s|−
I(c)−1].c is built and the algorithm goes to the (i+2)-th step; otherwise, Si is returned and labeled
as non-trusted.

Stop criteria

The algorithm described in the previous section may potentially extend a contig for an arbitrarily
large number of times, without checking any “global” properties of the current sequence. With
our method the extension phase halts for four different reasons:

• the available overlapping reads are less than m;

• the consensus string c contains more than δ2 low represented characters;

• contig length exceeds the maximum length;

• the seed mate is found.

Let Si be the contig obtained at the i-th step, starting from seed read r0. The first criterion applies
when the consensus string c is empty (|c| = ∅) and this happens, in particular, when there are no
more than m− 1 overlapping reads. This kind of scenarios are likely to appear in presence of low
covered regions. In such a case the contig produced is labelled as NO_MORE_EXTENSION.

The second criterion applies when the consensus being constructed is likely to be the con-
sequence of the presence of reads belonging to different genomic locations. More precisely, this
situation is likely to appear when the consensus extension is “trying” to exit from a repeat. In
such a situation the extension is halted and the contig is labeled as REPEAT_FOUND.

The third criterion is satisfied as |Si| > Lmax, where Lmax is fixed at the beginning of the
algorithm and is usually set to the maximum insert size, plus a tolerance value. In such a situation
we could have been able to continue the extension but, however, we would not be able to find the
mate read. This suggests that the contig produced may be wrong or, at least, that it contains a
high number of unreliable bases. When the maximum allowed length is exceeded, the computation
is halted and the contig labeled LENGTH_EXCEED is returned.

The fourth criterion is used to stop the extension as the mate r̃0 of the seed r0 is found. At the
generic i-th step, every p ∈ {0, . . . , |Si| − |r̃0|} is checked to see whether the following condition is
satisfied

dH(Si[p, . . . , p+ |r̃0|], r̃0) ≤M (5.13)

where M is the maximum number of mismatches allowed between r̃o and Si. Inequality (5.13) is
satisfied if and only if the mate is found in Si at position p with no more than M mismatches.
This control is done on-the-fly and hence the positions already checked at the i-th step will not be
checked at the (i+ 1)-th one. The mate-check criterion is used as a guarantee of correctness of the
whole contig. This is in contrast to previous criteria introduced to avoid errors committed during
the extension. In other words, the first and the second criteria are strictly local, as no information
collected in previous steps is used. In this last case the contig returned is labeled as MATE_FOUND.
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Data structures

GapFiller’s core is the module working during the extension phase. In this step pairs of reads (r, r̃)
are chosen and the (current) seed read r is extended in order to reach its mate r̃, that is known to
be at a given (approximate) distance. At this point, we assume that the set R has already been
filtered by discarding reads whose average 16-mers frequency is below the user-defined threshold.

The basic idea is to pre-compute all the information useful to speed up the computation of
overlaps needed to perform the extension phase. Suppose that GapFiller is working at the (i+1)-th
step of an extension, with i ≥ 0, and let Si be the current contig. When constructing the consensus
sequence c (see Figure 5.6) we are always interested in obtaining overlaps between suffixes of Si
and prefixes of reads belonging to R.

slack (∆) minimum
overlap (L)

current contig (Si)

consensus string (c)

overlapping
reads (R̂(Si))

1

Figure 5.6: The suffix-prefix strategy of GF. Reads overlapping for L characters are selected and
the consensus string c is computed; a small number of low represented characters (less than δ2) in
c is a signal that reads come from the same region.

GapFiller overlap computation is based on the rNA alignment algorithm [178]. In particular,
a data structure similar to the one proposed in [144] is built. A simplified schema of GF’s data
structure is presented in Figure 5.7. The basic idea behind GF is the possibility to obtain in a

0

q − 1

HASHcounter

HASHvalues

si
si + 1

k0 r 2|R|

0

x

|R|

Reads

ACC . . . GG

read← x
orien← +;

Figure 5.7: The GapFiller data structure is composed of three array whose lengths depend on the
number q (used to compute the fingerprints) and on the number of reads |R|.

fast and efficient way the set of reads whose prefixes overlap a suffix of the partial contig being
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constructed. Even though rNA solves a more general problem, its strategy can be used in the
GapFiller context. rNA is based on a mismatch-aware hash function that allows to identify portions
of the reference that are likely to contain an occurrence of the searched pattern at a given Hamming
distance. The main advantage of rNA’a hash function is its false positive rate that, in general, is
low if the fingerprint is obtained computing the value modulo q of the numerical representation of
the searched pattern, with q a Mersenne’s number (q = 2w − 1). Therefore we used the rNA hash
function to find reads that are likely to overlap a suffix of Si: those reads are subsequently checked
to see if they really overlap with Si or not.

Obviously, all the data must be stored in the main memory, which requires a careful engineering
of the data structures. Since overlaps between reads and the the current contig can take place on
both strands, reads must be stored together with their reverse complement.

With the goal to save as much memory as possible, reads are stored in an array of integers,
in which a base needs 2 bits instead of 8 (A=00, C=01, G=10, and T=11). The data structure
used to compute overlaps and to construct contigs is built from the reads. Three arrays are used
to represent in a compact way reads stored in R and to compute overlaps among them:

1. HASHcounter: it is an array of pointers to HASHvalues. In position i it stores the first
position in HASHvalues such that a read r or its reverse complement has a prefix whose
fingerprint is i.

2. HASHvalues: each array entry stores the read’s location in the array Reads together with
a boolean value indicating whether the fingerprint has been computed from the original read
or from its reverse complement. For this reason the size of HASHvalues is twice the number
of reads in R;

3. Reads: this array stores the reads and other useful informations like k-mer coverage, paired
read location, and read status (used, not used, etc.).

The overall memory requirement for GF depends on the size of HASHcounter and on the
number of reads. As for rNA, a reasonable value for q is 230 − 1. Such a number guarantees a
reduction of the number of false positives (i.e., reads reported to align with the contig suffix, even
though they do not overlap with it). As far as the number of reads is concerned, we can limit q,
without loss of generality, to 231: with state-of-the-art Illumina technology, such a number of reads
represents approximately a 70× coverage of the human genome. An Illumina read of length 100bp
requires two memory locations in HASHvalues of 4 bytes each (31 bits to access array Reads and
one bit to store the overlap orientation) and one entry in Reads of 9 bytes (7 bytes to store the
read’s numerical representation, one to store the mate position in Reads, and one more byte to
store information about the k-mer coverage and whether the read has been already used or not).
In total the amount of memory required is 4q + 2 ∗ 4|R|+ 9|R| = 4q + 17|R| bytes.

In order to compute the overlaps between the current contig S and the reads, one has to
compute the fingerprints of the substrings S[|S| − L − y, . . . , |S| − y] with y ∈ {0, . . . ,∆ − 1}.
Let us indicate with si the fingerprint computed from S[|S| − L − i, . . . , |S| − i] (see Figure 5.7).
GF uses this number to retrieve reads whose L-length prefix is likely to match a substring of
S close to the sequence’s end. In particular GF accesses all HASHvalues positions between
HASHcounter[si] and HASHcounter[si+ 1] and, subsequently, accesses Reads to identify the set
of candidate overlapping sequences R(S, l) (in Figure 5.7 GF scans all positions between k and r−1
of HASHvalues). Finally, the set R(S, l) is used to compute R̂(S, l), the set of real overlapping
reads. This is done by checking all candidate reads singularly. Due to the fact that only a limited
number of mismatches is allowed in this phase and that the employed hash function guarantees a
low false positive rate, this step is extremely fast.

5.2.2 Results

GapFiller outputs a set of labelled contigs. The label describes the level of reliability of the
sequence, in particular we divide GapFiller’s output in two sets: positive/trusted contigs are those
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labelled MATE_FOUND, while negative/non-trusted contigs are those labelled NO_MORE_EXTENSION,
REPEAT_FOUND, LENGTH_EXCEED. Trusted contigs are those that we consider certified correct and
can therefore be used in subsequent analysis. Non-trusted contigs are defined in this way because
we were not able to find the mate read and hence we have no way to estimate the correctness.

We decided to perform experiments on both simulated and real data. Despite being aware
that simulated experiments results are deeply connected with the capacity of read simulators to
successfully reproduce the error schema, we are also conscious that they are the only way to
precisely estimate the capacity to correctly (even if locally) assemble reads.

We simulated five bacterial genomes, producing several coverages in order to show how Gap-
Filler’s performances scale at different coverages. Moreover, in order to test correctness, we aligned
the output contigs against a precise region of the reference, as seed reads’ coordinates and orienta-
tion are known. The experiments on real datasets were performed on a set of paired-reads extracted
from a homozygous Vitis vinifera variety. In this case we tested correctness performing a local
alignment.

Dataset

The reference genomes used for simulated experiments were downloaded from http://www.ncbi.

nlm.nih.gov; we used SimSeq, the tool used in Assemblathon 1 [37], to generate paired reads
coverages. In particular we performed our experiments on five bacterial genomes (see Table 5.4).
We generated different coverages of 100bp-long paired reads, with insert size 600 ± 150bp, using
error profiles provided by SimSeq for reads 1 and 2, respectively.

Organism Genome length (bp)
Alcanivorax borcumensis 3, 120, 143
Alteromonas macleodii 4, 412, 282
Bacillus amyloliquefaciens 3, 980, 199
Bacillus cereus 5, 699, 545
Bordetella bronchiseptica 5, 339, 179

Table 5.4: GapFiller: Reference genomes for simulated datasets.

The real dataset is constituted by a 30× Illumina coverage of a grapevine variety PN40024. The
peculiarity of this dataset is the fact that reads have been sequenced from the same individual used
in the original Sanger-based assembly project [69], thus providing us an easy to validate scenario.
The original paired reads are 110bp long and the estimated insert size is 400± 100bp.

For each input dataset (real and simulated) we filtered read for quality using rNA --filter

-for-assembly option and we discarded reads with low average 16-mer frequency (see (5.5)) using
16merCounter to compute 16-mers frequency. For instance, the first plot depicted in Figure 5.8 tells
us that a large number of 16-mers occurs less than 10 times, within a paired reads dataset generating
a 30× coverage. All these low-frequency 16-mers, with high probability, are error-affected. Since
reads whose average 16-mers frequency is below 10 must contain at least a low-frequency 16-mer,
we do not consider them. It is not even useful to adopt a higher low-frequency threshold, as
discarding a large amount of (even correct) data may negatively affect GapFiller’s performances.

Design of experiments

We used simulated experiments in order to evaluate GapFiller’s ability to correctly reconstruct
the gap between two paired reads and in order to assess the reliability of the output classification
(NO_MORE_EXTENSION, REPEAT_FOUND, LENGTH_EXCEED, and MATE_FOUND). In particular we used
these easy to create and validate datasets to explore how coverage and ∆ value (see Figure 5.6)
affect GapFiller’s extension phase.

For this purpose, we extensively tested GapFiller’s performances on Alcanivorax borcumensis,
performing experiments on all the coverages between 30× and 130× with jumps of 10, and trying
for every coverage three different ∆ values (20, 30, and 40). Notice that ∆ + 1 is the number
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Figure 5.8: Alcanivorax borkumensis. 16-mers frequency plot on different simulated coverages.

of suffixes of the current contig to be searched for overlapping reads during a single step of the
algorithm. As far as the other four in vitro genomes are concerned, we simulated only the coverages
between 50× and 90× as a consequence of the results obtained on Alcanivorax borcumensis.

As far as the real experiments are concerned, we assembled the 30× coverage with two different
∆ values: 20 and 40.

A fundamental parameter is the minimum overlap size L. We decided to fix it in all the
experiments to be equal to 50. The value of m, the minimum number of reads required in order to
compute the consensus sequence, was automatically set on the basis of the coverage and of the value
of ∆ being used. In particular, given a set of |r|-long paired reads, generating a uniform coverage
C, the expected number of reads starting in a (∆ + 1)-long subsequence of the genome is at most
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d(∆ + 1)C/|r|e. To take into account the fact that C is not perfectly uniform, and that at least
two reads are necessary in order to safely extend a contig, we chose m = max{2, b(∆ + 1)C/4|r|c}.
Such parameter is essential in order to label a contig with NO_MORE_EXTENSIONS.

The maximum allowed number of low-represented characters δ2 has been fixed to 8 in all
performed experiments. When a consensus sequence is found with more than δ2 low-represented
characters the contig is labelled REPEAT_FOUND.

We set the maximum length of a contig to the expected mean insert length plus six times the
expected variance (i.e., 1500bp and 1000bp for simulated and real datasets, respectively). Every
time the contig being constructed exceeds such a measure, it is labelled LENGTH_EXCEED.

We allowed a small amount of mismatches when looking for the presence of the mated read in
the contig being constructed with the parameter M . In all of the performed experiments we set
M to 5. As soon as in the contig being constructed the mate pair is localized, the contig returned
with the label MATE_FOUND.

All the experiments were performed on a machine with 8CPU (2500GHz) and 32GB of RAM.
Our tool requires a small amount of memory and is extremely fast. For example, setting ∆ = 40,
GapFiller requires 34 minutes and 4.5GB of RAM on Alcanivorax borcumensis 50× and 6 hours
and 35 minutes and 5.2GB of RAM on Bacillus cereus 90×. To perform the real experiments on
Vitis vinifera, 29 hours and 31.7GB of RAM were needed.

Statistical analysis

The post-processing phase of GapFiller’s output is aimed at both quantitative and qualitative
analysis. The first is focused on evaluating the amount of trusted contigs our tool is able to
produce, the second on result validation. The main goal is to compare the performances on
different input coverages and ∆ values.

Due to their nature, simulated experiments allowed to precisely estimate correctness by aligning
the contig in the exact place where it is supposed to occur in the reference genome. More precisely,
we used the Smith-Waterman alignment algorithm [168], assigning a score of 1 to a match, −1 to
a mismatch, and −2 to an indel. For instance, let us consider a contig S generated by extending
a seed read r, and suppose that r has been extracted from the genome G at position x, on the
positive strand. To test its correctness, S is aligned against G[x, x + |S| + g − 1], where g is the
maximum number of allowed indels, depending on a user-defined threshold for the alignment score.
We say that S is correctly aligned if and only if the ratio between the best alignment score of S
against G[x, x + |S| + g − 1] and |S| is at least 0.95 (for instance, we allow up to 5 mismatches,
1 indel and 1 mismatch, or 3 indels every 200bp, on average). For this particular choice of the
alignment score, g is fixed to be d3|S|/200e.

Alignments performed in this way allowed us to divide contigs in four subsets: true and false
positives and true and false negatives, depending on the contig classification and correctness (see
Table 5.5). This gave us the possibility to estimate not only the percentage of correctly recon-

correctly aligned not correctly aligned
trusted true positive (TP) false positive (FP)

not trusted false negative (FN) true negative (TN)

Table 5.5: Contig post-processing classification.

structed contigs, but also to evaluate GapFiller’s ability to discern between trusted and not trusted
contigs. Using these definitions it is possible to provide a measure of GapFiller’s capability to cap-
ture correct contigs (sensitivity) and to recognize those containing errors (specificity).

When using a real dataset reads provenance is unknown, so we tested output correctness by
aligning the contigs against the reference genome, using BLAST, and setting the percentage of
identity to be at least 95% in order to accept an alignment. In real cases it is interesting to extract
two pieces of information from alignments: as in the simulated case, we computed the number of
(trusted) contigs that correctly align against the reference; moreover, we analized coverage profile
in order to estimate the percentage of the genome being reconstructed by GapFiller.
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Results Discussion

Experiments performed on Alcanivorax borcumensis showed how GapFiller’s performances im-
prove as the coverage increases (see Figures 5.10, 5.11, and 5.12). We can clearly appreciate how
GapFiller’s sensitivity increases with coverage and reaches a plateau around a 90× (Figure 5.10).
Therefore we deduce that it is not necessary to provide coverages higher than 90-100×, as the
performances of GapFiller tend to stabilize beyond this value. More important is the fact that
specificity is constantly high. This means that almost all contigs declared trusted are actually
correct. We also found that the percentage of uncovered bases is negligible, being less than 0.01%
even with low input coverages (30×, 40×).
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Figure 5.9: Alcanivorax borkumensis: trusted contig coverage as a function of the input coverage.
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Figure 5.10: Alcanivorax borkumensis sensitivity for different input coverages.

As a consequence of the results obtained with Alcanivorax borcumensis we limited the exper-
iments on the other four bacterial genomes to coverages between 50× and 90×. From Figures
5.12–5.16 we can see how higher coverages make the percentage of true positive contigs increase,
and conversely make the number of false negatives decrease. Going in more detail on the results, we
observed that the majority of non-trusted contigs are labelled NO_MORE_EXTENSION, meaning that
GapFiller stops a contig extension depending on some input dataset features (low covered regions
and/or error-affected reads). Another possible scenario is the one in which GapFiller computes a
wrong consensus without recognizing it (depending on δ2 value, see (5.12)).

Figures 5.12–5.16 show that a ∆’s large value allows GapFiller to produce better results, in
terms of true positives and false negatives rate; in other words, (up to a limit) reaching good output
could be possible without providing higher coverages, but increasing the value of ∆.
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Figure 5.11: Alcanivorax borkumensis specificity for different input coverages.

Table 5.6 shows the results obtained on a real 30× Illumina coverage composed of paired reads
of length 110bp of a grapevine variety (PN40024). In such a case the alignments have been done
using BLAST and considering a contig to be correct if and only if it aligns against the reference
genome with a similarity of at least 95% and for at least 90% of its length. From Table 5.6 we

∆ = 20 ∆ = 40
total output coverage 37.58× 41.76×
certified output coverage 17.40× 22.86×
true positives 37.73% 52.60%
false positives 0.12% 0.19%
false negatives 61.16% 46.27%
true negatives 0.99% 0.78%
covered reference (all) 86.11% 82.00%
covered reference (certified) 64.19% 67.10%
sensitivity 38.16% 53.12%
specificity 89.30% 80.69%

Table 5.6: Vitis vinifera (486,198,630bp). Results on a 30× input coverage.

can appreciate how, even with a low coverage, the number of false positives is negligible. Also
the percentage of reference covered by trusted reads is satisfactory: using only a 30× Illumina
coverage we were able to cover more than 60% of the original genome with certified contigs. It
must be stressed that the percentage of covered genome, computed by aligning the output contigs
with BLAST, represents a lower bound for its real value. Also notice that a real coverage is not
uniform, in particular for our dataset 10% of the genome is covered by no more than 5 reads. In
these regions the distance between two reads occurring in the genome is expected to be 20bp, on
average, and hence there is no way for GapFiller to continue an extension, or to begin a new one,
within these areas. For instance, the minimum number of overlapping reads m is set to 2 when
the slack is equal to 20, and to 3 when the slack is equal to 40 (see Design of experiments).
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Figure 5.12: Alcanivorax borkumensis (50× and 90× input coverages). TP, FP, FN, and TN rates
for different values of the slack parameter ∆.
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Figure 5.13: Alteromonas macleodii (50× and 90× input coverages). TP, FP, FN, and TN rates
for different values of the slack parameter ∆.
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Figure 5.14: Bacillus amyloliquefaciens (50× and 90× input coverages). TP, FP, FN, and TN
rates for different values of the slack parameter ∆.
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Figure 5.15: Bacillus cereus (50× and 90× input coverages). TP, FP, FN, and TN rates for
different values of the slack parameter ∆.
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Figure 5.16: Bordetella bronchiseptica (50× and 90× input coverages). TP, FP, FN, and TN rates
for different values of the slack parameter ∆.
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5.3 Conclusions

Even though it is a well known and studied NP-complete problem, de novo assembly is practically
solved by a large number of tools. The outbreak of NGS technologies contributed to make assembly
problem more difficult. As a matter of facts, 5 years after the NGS-revolution, results achievable
with NGS-assemblers and NGS-data are still far away from those achievable with Sanger-assemblers
and Sanger-data. However technology improvements on the one hand, and software enhancements
on the other one, are closing this gap.

In this Chapter we have proposed two strategies to partially solve de novo assembly. In both
cases, we have used additional hypothesis in order to simplify the assembly problem and give a
solution as accurate as possible.

eRGA is a pipeline that allows us to assemble genomes in presence of a related reference genome.
We showed how it can be used in several practical situations, both on small genomes or on large and
complex ones. eRGA’s key feature is its capability to reduce the complexity of assembly problem
using a reference genome as anchor.

GapFiller is a tool moving the first steps in the bioinformatics world. It is designed to locally
assemble the gap between pairs of reads. GapFiller’s strength lies, on the one hand, in the ability
to produce an output that does not need validation, and, on the other hand, in being a local
assembler, making it useful when studying limited regions of a genome. In a de novo assembly
project, GapFiller is supposed to be used in two directions. It can be a preprocessing step, as
the trusted contigs provided can be used as input meta-reads for an assembler for long reads,
or, as an opposite strategy, it can be used to join the contigs produced by a de novo assembler
in a scaffolding-like phase. GapFiller’s applications to structural variations analysis include indels
detection and validation; in particular, it can be used to assemble insertions occurred in a sequenced
organism, with respect to a reference genome. It is of primary importance to notice how, while
there is a large number of tools able to identify structural variations, there is no widely accepted
strategy so far in order to reconstruct structural variations in re-sequencing projects. We believe
that the localized GapFiller strategy can be used in order to “fill this gap” and move several
approaches from identification to reconstruction.
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De Novo Assembly: Validating the

Puzzle

Validation techniques are of primary importance in order to assess data quality and results correct-
ness. In particular in de novo assembly and read alignment data evaluation and results assessment
are fundamental. However, while in sequence alignment the reference can be used to gauge reads’
quality by simply counting the number of successful aligned reads, in de novo assembly this task
is inherently more difficult.

Reads are the first and fundamental brick for all subsequent analysis. Therefore, a bias or some
unexpected error in these foundations can jeopardize all analysis attempts. Therefore techniques
to asses reads quality and to improve reads usage are necessary to improve the final result of every
pipeline, and in particular are mandatory when performing de novo assembly.

Validating de novo assembly results is extremely challenging. As discussed in Chapter 4 Sec-
tion 4.3 there are several (often contradictory) ways to validate and gauge assembly quality and
correctness. Moreover there is a lack of study on how validation metrics are correlated among them
and on how effective they are in gauging assembly correctness and assemblers ability to correctly
reconstruct the genomic sequence. The ability to evaluate assemblers output is mandatory to de-
sign better assemblers: an assembler that optimize a score function based on a number of highly
representative metrics (that can be computed on-the-fly, while creating contigs) allows to produce
an assembly that is for definition optimal in relation to the optimized metrics.

In this Chapter we will focus our attention on how to improve data quality and on how to
validate assemblies in the NGS context. In Section 6.1 we will discuss two techniques able to im-
prove reads usage and gauge reads correctness. The first one (Section 6.1.1) is a filtering pipeline
developed at the Institute of Applied Genomics to filter low quality and contaminated reads with
the aim to improve assembly results. The second approach (Section 6.1.2) is the program 16mer-
Counter able to rapidly and efficiently extract statistics from large reads sets. 16-mers, and k-mers
in general, allow to compute a large number of statistics on the sequenced reads and on the genome
being sequenced. In Section 6.2 we will analyse the so called forensics features and improve FRC
analysis described in Chapter 4 Section 4.3: employing multivariate techniques we will study rela-
tionships among different features and we will see how to select a certain number of representative
features to better describe assemblers performances and, hopefully, to better design future assem-
blers. Moreover we will evaluate the differences between real and simulated datasets with the goal
of estimating the reliability of simulation techniques.

6.1 Read Validation and Read-based Analysis

As described in Chapter 1, all sequencing technologies are affected by sequencing errors that depend
on the particular instrument being used. Moreover, all NGS technologies require a certain amount
of laboratory preparation, during which DNA has to be treated in a certain way (amplified, purified,
etc.). During laboratory preparation steps, some errors may occur: environmental contamination
is always a primary risk, bad reagents or kits can be accidentally used, sequencer itself can be
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affected by technical problems.
When some of these problems take place we want at least to identify and hopefully correct them.

We will now analyse two approaches: the first one aims at identifying and removing contaminated
and low quality reads, the second, instead is able to provide as output some useful statistics which
allow to estimate assembly composition, assembly length and in some cases assembly complexity.

6.1.1 rNA --filter-for-assembly

The Quality Information

Usually sequencing platforms provide every sequenced read paired with quality information. The
typical (but not unique) format is the so called fastq format. A fastq file stores reads in four
lines: the first one is the header line, it begins with ’@’ and contains the read name that uniquely
identifies the read in the file and some other additional information. The second line is the raw
sequence in letters, the part that we usually refer to as read. The third line contains a comment,
it starts with a ’+’ and most of the times it does not contain any valuable information. Lastly,
the fourth line contains the quality information: quality information is stored in a form of a string
that has the same length of the read. The i-th quality string char stores the quality value for the
i-th read char.

Sequencers do not directly output fastq files. Usually a more complex pipeline is set up, in which
the images or the intensity files produced by sequencers are analysed by a base caller [39, 117]. A
base caller analyses sequencer’s images or intensities and “calls” the most plausible base, together
with a confidence score (i.e. quality score). Quality scores are usually dubbed after the first base
caller Phred [39].

A Phred quality value Q is a integer mapping of the probability p that the corresponding base
call is incorrect (i.e. the probability that the letter outputted by sequencer and base caller is
wrong). In particular, given p the quality score Q is defined in the following way:

Q = −10 log10 p

Phred Quality Score Probability of incorrect base call Base call accuracy
10 1 in 10 90 %
20 1 in 100 99 %
30 1 in 1000 99.9 %
40 1 in 10000 99.99 %
50 1 in 100000 99.999 %

Table 6.1: Phred Quality Scores.

Table 6.1 shows how different Phred scores corresponds to different probabilities of incorrect
base calling. In order to store quality in a compressed format, ASCII characters are used: Sanger
format encodes a Phred quality score from 0 to 93 using ASCII 33 to 126, while Illumina encodes
a Phred quality score from 0 to 62 using ASCII 64 to 126.

Read Filtering Pipeline

Quality information allows us to process reads and to discard low quality reads (e.g. reads that have
mean quality length under a given threshold). Moreover, most sequencing technologies, especially
the wash-and-scan ones (i.e. Illumina), are characterized by low quality bases at read’s ends.

Errors at read’s beginning and end are problematic both in alignment and in de novo assembly.
Align reads with low quality bases can prevent the possibility to correctly align sequences. Aligners
like MAQ and BOWTIE use quality information to give different weights to mismatches, however
align parts of a read that have high probability to be wrong is counter-intuitive an reduces aligners
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performances. In de novo assembly, especially with de Bruijn Graphs, low quality bases can cause
many of the problems discussed in Section 4.2 of Chapter 4. Especially at high coverages (higher
than 100×) wrong base calls can be so frequent that the assembler is not able to identify them.

Another common problem is read contamination. Sometimes, during library preparation, some
contamination can occur (i.e. with other samples), while other times the sequenced DNA is inher-
ently contaminated by some pathogen or organelles (e.g., in plants chloroplast and mitochondria
are always sequenced together with genomic DNA). This kind of contamination does not pose
particular problems to alignment, especially in presence of high coverages. However, such a con-
tamination creates problems to de novo assembly for at least two reasons: first contaminants can
have spurious overlaps with genomic DNA thus leading to mis-assemblies, second assemblers often
try to estimate important statistics from reads [166, 100] that, as a matter of facts, are supposed to
belong to only one genome. As an example of how problematic contamination could be, consider
that Alkan in [6] noticed that 15% of the insertions identified in the African Yoruban genome [100]
belonged to contaminants and not to new genomic variations.

For these reasons it is a common practice to perform a read filtering phase prior to every analy-
sis. In particular, this filtering phase is of primary importance in de novo assembly. Therefore, we
will consider the read filtering a de novo assembly (pre-)step. A complete pipeline must implement
the following steps:

• perform read trimming based on quality scores information. In particular remove from reads
low quality tips and eventually discard reads shorter than a predefined threshold;

• align trimmed reads against a supposed contamination database;

• extract from the alignment all reads that do not align and store them in a suitable format
(i.e. fastq format);

This procedure can look straightforward: we only need a software able to perform quality
trimming, an aligner, and another tool able to extract unaligned reads from an alignment (usually
a sam/bam file). However there are several practical points that make things more difficult:

• in de novo assembly projects datasets are composed by hundreds of millions of reads. Reads
themselves pose serious storage problems: a pipeline that in a first phase saves trimmed
reads, then in a second phase stores all alignments and in a third and last phase processes
again alignments more than quadruplicates the used space.

• A pipeline that performs the aforementioned steps is extremely slow especially if one of the
three steps is not parallelized. Moreover, as far as the second step concerns, employing
a standard aligner (see Table Table 2.1 in Chapter 2) is counter-intuitive because we are
interested in saving the negative information (i.e. reads that do not align).

• As a matter of facts, reads are always provided in pairs. The filtering pipeline has to keep
this information at all the stages. Paired reads are usually stored in two files: the ith read
of file one is paired with the ith read of file two.

• A more subtle problem is the fact that sometimes we do not know if the contamination took
place. In other words we are interested in discovering a possible contamination.

In order to prevent these problems, we implemented an integrated solution that performs all
the filtering steps at once allowing to run the overall procedure at high speed and without need to
store intermediate files. The proposed solution is extremely useful when a contamination reference
is already present. However we will see a straightforward way to check for contamination presence
and in case remove it.

Due to the deep connection between this problem and string alignment we integrate the filtering
pipeline inside rNA (refer to [144] and Chapter 3). However the main application of the filtering
pipeline is de novo assembly (rNA must be launched with option --filter-for-assembly).
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102 6. De Novo Assembly: Validating the Puzzle

rNA filtering pipeline needs as input the raw (Illumina) reads in fastq format, the hash table of
the supposed contamination pathogen(s)/organelles and other standard rNA parameters (number
of mismatches, quality threshold). Almost always, reads are provided in pairs, usually divided
in two files with the i-th read of file one paired to the i-th read of file two (this is the standard
Illumina format). rNA filtering pipeline processes one pair of reads per time:

1. both reads are trimmed using an algorithm similar to the one proposed in [1]. First low
quality bases (by default bases with Phred quality value lower than 20) at the beginning and
at the end of reads are removed. After that, the mean quality value of the remaining part of
the read is computed: if the length of the trimmed read and its mean quality value are higher
than two user defined thresholds the read is further processed, otherwise it is discarded (by
default the mean Phred quality is 20, while the minimum read length is 25). Notice that in
a pair one read can have high quality and therefore proceed to step 2, while the other read
can be discarded at this step.

2. Reads not discarded at step 1 are aligned against the contamination database. If one align-
ment is found the pair is declered contaminated. Even if only one read is aligned against the
contaminant both are discarded: paired reads are sequenced from the same fragment and so
must belong to the same DNA sequence.

3. Once step 1 and step 2 are over all the information to print the filtered reads is available:
if both reads successfully passed trimming and contamination check their trimmed version
is saved on two different files (one read per file) preserving the pairing information. If one
read did not pass the quality trimming step while the other passed both the trimming and
the contamination step, then its trimmed version is saved in a third file storing reads that
become single ended. If one of the two reads is discovered to belong to the contamination,
then both reads are discarded.

All the procedure is parallelized, no intermediate files are produced and only the minimal
information (reads) is saved. This procedure is easy to use when the contaminant is known: this
is true in several cases. In plants genomes, for example, chloroplast and mitochondrial DNA are
often known. In other situations, there are known environmental contaminations: for example in
the first assemblathon edition [37] the simulated data contained a given amount of contaminated
reads belonging to E. coli genome. It is still unclear how to proceed if one wants to understand if
a contamination took place or not.

At the Institute of Applied Genomics (IGA) we proposed and successfully used a pipeline based
on the following principle: contamination is almost always a consequence of pathogens or organelles
that are small organisms and therefore are sequenced at an extremely high coverage. Therefore, if
one assembles a small subset of the data produced in a de novo assembly project, it is expected that
the assembler will reconstruct large contaminant’s parts. This allows us to propose the following
de novo contamination pipeline:

1. assemble a small subset of the data being used for de novo assembly (i.e. the first produced
data). This will produce an highly fragmented assembly.

2. BLAST [7] de novo contigs against NCBI database.

3. If the results of step 2 highlight the presence of contaminants, then for each of them obtain
the sequence.

4. Build a contamination database and run the read filtering pipeline.

As an example, consider that this procedure, applied to a small dataset (a 0.5× of the overall
coverage) of assemblathon 1 [37] was able to identify the E. coli contamination.
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6.1.2 Comparing Experiments and Genomes Using k-mers

As extensively explained in Chapter 4, de novo assembly is a difficult task: we showed that the
problem is computationally hard, and that, even if many tools aim at solving it, their results are
far from being satisfactory especially in NGS context.

As explained in Section 1.1.1 of Chapter 1 organisms can be classified on the basis of the number
of copies of chromosomes (haploid, diploid, and polyploid) and on the fact that these copies are
identical (homozygous) or different (heterozygous). Usually all this information is known before
the start of the sequencing process, however, while the number of chromosomes copies is easy
to gauge, the heterozygosity level is more difficult to precisely estimate. As a matter of facts,
higher is the organism heterozygosity more difficult the assembly task is: the heterozygous loci are
responsible for the bubbles structures in de Bruijn Graphs (see Chapter 4). Conservative assemblers
break contig extension in presence of bubbles leading to an highly fragmented assembly, while non
conservative ones try to merge bubbles with the danger of creating misassemblies.

It would be useful to know in advance a more precise estimation of the heterozygosity level. This
estimation can be used, for example, to confirm the estimated levels and to choose an assembler
able to handle specific heterozigosity levels.

In the following we will show how k-mers can be successfully used not only to confirm and
eventually gauge the heterozigosity level, but also to obtain other extremely useful information on
the genome content and on the data quality.

Analysing Genomes with k-mers: Tallymer

As extensively explained in Chapter 4 de Bruijn Graph based assemblers are the most promising
and used assemblers in the NGS-context. They start with the counter-intuitive idea of breaking
short NGS reads in even smaller pieces and combining them in a graph structure. This process
allows to avoid an all-against-all comparison, to save memory, and to simplify data representation.

In general, using k-mers in place of reads is useful in many contexts. In [82] Kurtz and colleagues
present the tool tallymer. Tallymer is based on enhanced suffix arrays [3] and it is a collection
of programs for k-mer counting and indexing of large sequence sets. Tallymer builds a database
of the k-mers belonging to the input sequences. For each different k-mer the information on its
multiplicity is stored. Once the database is constructed, it is possible to query it with k-mers
belonging to the same input set or with others belonging to different sequences. Moreover, several
interesting statistics can be inferred from k-mers themselves.

Tallymer can be used on assembled sequences as well as on sets of reads. In particular the tool
can be used to produce the so called “k-mer frequencies” throughout a genome sequence: given a
genome G, we first build the database of all the k-mers belonging to G, then for each position i in
G we plot the frequency of the k-mer G[i..i+ k − 1]. In this way we are able to classify regions as
unique (frequency close to one) or repetitive (frequency higher than one). Figure 6.1 shows in blue
the k-mer frequencies obtained with tallymer on the grapevine (PN40024) genome, while in green
the prediction obtained with ReAS [101]. We can see how the k-mer prediction coincide with the
more “biological” ReAS prediction.

Another common use of Tallymer is the uniqueness ratio determination. The uniqueness ratio
is the ratio of k-mers occurring exactly once relative to all k-mers in the set. This information is
useful to estimate the minimum perfect overlap between read pairs in de novo assembly: a large
overlap can be too stringent and discard too many overlaps, while a short overlap can hamper
overlap computation as a consequence of spurious overlaps. For a given k-mer, tallymer allows
to compute the uniqueness ratio of the k-mer in the reads. Computing the uniqueness ratio for
several values of k (see Figure 6.2(a)) one can estimate the minimum required overlap. The same
analysis can be done on several assembled genomes in order to gauge the different repeat content
(see Figure 6.2(b))
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Figure 6.1: Visualization of k-mer frequencies in Grapevine (PN40024) genome. k-mer frequencies
are represented in log10 scale

●
●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10 15 20 25 30 35 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

U
ni

qu
en

es
s 

ra
tio

(a) k-mer uniqueness ratio on 1×
coverage

BMC Genomics 2008, 9:517 http://www.biomedcentral.com/1471-2164/9/517

Page 15 of 18
(page number not for citation purposes)

employed to identify local expansions of paralogous
genes commonly found in plant genomes [36].

Comparative genomics
Beyond employing k-mer frequencies to annotate
sequence with copy-number information, we have found
that the frequency information contained therein are
themselves biologically informative, illuminating cross
species differences in repetitive content. For example, Fig-
ure 6 compares whole genome shotgun sets acquired from
three distinct sequencing projects: rice [37], sorghum
[38], and the 0.45 × maize set (JGI) employed throughout
this analysis. Using randomly selected reads to simulate
0.45 × coverage in each species given their predicted
genome sizes [39-41], we computed (multiple) occur-

rence ratios, i.e. percentage values 100· (1, 10) and

100· (11, 100) (Figure 6A) and 100· S, k(1, 10),

100· S, k(11, 100), 100· S, k(101, 1000), 100· S, k(1001,

10000), 100· S, k(10001, ) (Figure 6B), where k = 20

and S is the respective sequence set. Recall that the occur-
rence ratio S, k(q, q') is the ratio of k-mers occurring

between q and q' times in S. The multiple occurrence ratio

(q, q') is similarly defined, but takes the number of

occurrences of a k-mer into account. See section "Meth-
ods" for details.

For example, in the case of maize, there are 1,041,350,089
positions at which a 20 mer occurs. There are 456,445,768
different 20-mers of which 378,556,535 are found only
once, while the most highly represented sequences exists
47,933 times.

The multiple occurrence ratios represented in Figure 6A
show that maize contains the most repetitive sequence,
followed by sorghum, and rice. Nearly 25% of maize 20-
mers occur more than 100 times while only 14% of sor-
ghum and 13% of rice 20-mers exhibit this frequency.
This finding was expected. When only considering the
number of different 20-mers in Figure 6B, we find that a
mere 1% of all 20-mers occurs more than 10 times, i.e.

rS k,
∗

rS k,
∗

rS k,
∗

The k-mer uniqueness ratio for some assembled plant genomes as a function of kFigure 7
The k-mer uniqueness ratio for some assembled plant genomes as a function of k. The uniqueness ratio is the ratio 
of k-mers occurring exactly once relative to all k-mers in the set. It is computed for every k between 10 and 500. Extrapolating 
beyond the tested k-mer interval, it appears as though poplar, rice, and grape approach unity at a much slower rate than arabi-
dopsis.
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Figure 6.2: k-mer uniqueness ratio in Grapevine (PN40024) genome.

Analysing Reads with k-mers: Jellyfish and 16merCounting

Tallymer is well suited to operate on already sequenced genomes. However, analysis similar to the
one just described can be useful also on reads. As a matter of facts, tallymer is not able to scale on
large NGS like datasets. The major problem is the amount of resources needed (time and memory)
to index all reads (hundreds of millions) in a suffix array. In order to overcame these limitations
a new tool dubbed Jellyfish [110] has been proposed by Marcais and colleagues. Jellyfish is based
on a multi-threaded, lock-free hash table optimized for counting k-mers up to 31 bases in length.
Once all the input sequences are read it is possible to compute a set of k-mer statistics (i.e. single
copy k-mers, multiple copy k-mers, etc.) or to query the database. In particular, an interesting
analysis consists in counting for a given k the number of different k-mers that occur with different
multiplicities. In other words count how many different k-mers occur in our data set 1, 2, . . . times.
This information allows to plot an histogram or a line showing the k-mer distribution as a function
of their frequency (e.g., see Figure 6.3).

Jellyfish hash-table has size M = 2l for some user chosen l. The key representing the k-mer
is encoded as an integer in the interval Uk = [0, 4k − 1]. At this point an hash function maps Uk
elements into the interval [0,M − 1]. Jellyfish uses a open addressing hashing schema [30] in order
to handle collisions: if the k-mer x is mapped to a location i ∈ [0..M − 1] already used to count
the occurrences of another k-mer y 6= x then a quadratic reprobing function is used to compute
another, hopefully empty, cell. If during the table population, the hash table is almost full (i.e., if
the load-factor is close to 1) Jellyfish saves the hash-table on disk and initializes a new one. Once
all the data has been processed the hash tables can be merged.
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One of the main Jellyfish‘s advantages is the parallelization level during the hash table popu-
lation. Parallelize the hash table population is a difficult task due to concurrent writings (i.e.
different processes that try to update the same memory location). A lock, such as POSIXs
pthread_mutex, can serialize access to the hash table and permits its use in a multi-threaded
environment. However, if such a lock is used no concurrency is achieved, and therefore there is no
gain in speed in the updates of the hash table. In addition, the overhead of maintaining the lock
is incurred. Jellyfish exploits CAS (Compare and Swap) assembly instruction that is present in all
modern multi-core CPUs. The CAS instruction updates the value at a memory location provided
that the memory location has not been modified by another thread. Technically, a CAS operation
does the following three operations in an atomic fashion with respect to all of the threads: reads
a memory location, compares the read value to the second parameter of the CAS instruction and
if the two are equal, writes the memory location with the third parameter of the CAS instruction
(see Algorithm 5). If two threads attempt to modify the same memory location at the same time,

Algorithm 5: Compare and Swap (CAS) Algorithm.

Input: location, oldvalue, newvalue
Output: oldvalue if writing failed, newvalue otherwise

1 currentvalue← read at location;
2 if currentvalue = oldvalue then
3 set location to newvalue;

4 return currentvalue

the CAS operation can fail. In this case the CAS operation returns the value previously held at
the memory location (i.e. oldvalue). Hence, one can determine if the CAS operation succeeded by
checking that the returned value is equal to the old value. Unlike a lock that serializes the access
to some shared resource, the CAS operation only detects simultaneous access to a shared memory
location.

Thanks to these technicalities, Jellyfish is able to populate the hash at a very fast pace, however
in presence of large datasets it creates several intermediate hash tables (every time the load factor
is higher than a predefine threshold the hash is saved on secondary memory). In order to query
these hash tables or to extract information about the k-mer composition one has to merge them:
this step is inherently sequential and requires a large amount of time.

Draw by the need of a fast tool able to count k-mers and independently to Jellyfish, we developed
a similar tool dubbed 16merCounter able to count the 16-mers from a large amount of data It is
extremely interesting how the 16merCounter solution is similar to Jellyfish, although more simple.
Given a 16-mer, 16merCounter converts it into its 32-bit representation. In other words, 16-mers
are mapped into a number in [0...232−1]. In this way each 16-mer is used to access an array of size
232−1. Every time a 16-mer is read its corresponding memory location is incremented. In order to
obtain parallelization and fast running times, we used the CAS function described in Algorithm 5.
16merCounter does not need to write intermediate files on disk. The memory usage is independent
from the input: 16merCounter uses 16 GB independently from the fact that the input file consists
of a couple of mega bases or hundreds of giga bases. As we will see, in the NGS context it is not
unusual to work with amount of data larger than 100 Gbp.

Comparing 16-mers

Both Jellyfish and 16merCounter allow to efficiently and rapidly count and query the k-mers present
in a set of reads. The idea is to obtain a plot like the one in Figure 6.3 where we plot on the y
axis the total number of 16-mers that occur with a certain frequency or coverage (x axis). This
plot was obtained on a ∼ 245× read coverage of the Verticillium genome (Verticillium dahliae).
These plots are of primary importance to estimate two important informations: genome size and
heterozygosity level.
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As a matter of facts, genome size can be inferred through laboratory experiments [185]. However
there are situations in which, mainly for resource’s shortage, this information is not available (i.e.
assemblathon second edition). Genome length is mandatory to estimate the genome coverage: if
R = {r1, . . . , r2} is the set of sequenced reads from genome G, then the read coverage C is defined
as

C =

∑n
i=1 |ri|
|G|

Knowing read coverage is fundamental to produce enough sequences and to set important param-
eters of de novo assembly tools. Another interesting and highly connected coverage is the k-mer
coverage. The k-mer coverage is the ratio between the number of k-mers stored in the reads and
the total amount of k-mers in the genome. If we suppose R composed by reads of the same length
L, then:

Ck =
|R| ∗ (L− k + 1)

|G| − k + 1
=∼ |R| ∗ (L− k + 1)

|G|
k-mer plots can give us a clear idea of what the k-mer coverage is. In a perfect world, where all reads
are error free and the genome is perfectly homozygous, we expect that all k-mers occur with the
same frequency. However, sequencing errors, not-uniformly sequenced areas, and repeats induce a
normal-like distribution like the one visible in Figure 6.3. The leftmost peak is a consequence of
sequencing errors: k-mers that occur only once are likely to be a consequence of sequencing errors.
The second peak (the peak of the normal distribution) gives us a clear estimation of the k-mer
coverage.
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Figure 6.3: k-mer profile of an ∼ 245× Vericillium read coverage composed by 100 bp long paired
reads. The plot has been computed by 16merCounter.

k-mer coverage is deeply linked to read coverage and can be used to estimate genome size. In
particular, if Ck is the k-mer coverage and L is the read length (i.e. |ri| = L) then the following
holds:

Ck =
C ∗ (L− k + 1)

L

Therefore, knowing Ck allows to compute C = Ck ∗ L/(L − k + 1) and consequently obtain the
genome length.

Let R = {r1, . . . , r2} be the set of sequenced reads. Let C be the unknown read coverage, Ck
the estimated k-mer coverage through a k-mer plot, then the genome size |G| can be computed in
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the following way:

|G| =
∑n
i=1 |ri|
C

=

∑n
i=0 |ri|

Ck ∗ L/(L− k + 1)

As an example, consider Figure 6.3. The red line represents the 16-mer profile of a set of reads
belonging to the Verticillium genome (Verticillium dahliae). We will show that the analysis de-
scribe so far allow us to estimate the genome length. The total length of the sequenced reads is
7.544.197.520 bp and the mean read length is 100 bp. The k-mer coverage inferable from Figure 6.3
is ∼ 207×. Therefore the estimated read coverage is

C =
Ck ∗ L

(L− k + 1)
=

207 ∗ 100

100− 16 + 1
= 243.5×

and consequently the estimated genome length is

|Gverticillium| =
∑n
i=1 |ri|
C

=
7.544.197.520

243.5
= 30.482.871, 4

Verticillium real genome size is 30.299.901 bp, our method induced an overestimation of approxi-
matively 1% (∼ 1.8 Mbp). It is clear that the error is not negligible, but due to the fact that this
estimation comes for free we believe it can be effectively used when the genome size is unknown
(e.g. assemblathon second edition).

k-mer profiles are important in order to estimate heteozigosity levels. Each SNP affects k
different k-mers that overlap the SNP. Let s be the SNP rate throughout the genome G. Usually
s << 1, moreover we can work under the realistic hypothesis that two or more SNPs unlikely occur
within a given k-mer. Then |G| ∗ s ∗ k positions of the genome will affect k-mer variance due to
heterozygosity. These particular sequences are expected to occur with average depth Ck/2 instead
of Ck. Therefore, if the sequenced genome is affected by heterozygosity and the coverage is high
enough we expected to see a second peak in the k-mer profile at half the k-mer coverage.

This situation is clear in Figure 6.4 where we computed the k-mer plots for three different
values of k (16 with 16merCounter, 20, and 24 with Jellyfish) on a 89× read coverage of Sangiovese
grapevine variety genome (known to be highly heterozygous). We can see how in all cases the
rightmost peak is in the expected position, and at half of the k-mer coverage another peak is
visible. We can appreciate how a larger k allows to better visualize the presence of the second
peak. This fact highlights a lack of 16merCounter algorithms that is limited to 16-mers.

From Figure 6.5 we can see the plots of two different coverages obtained from two different
libraries (i.e two different sets of DNA fragments) of Populus nigra genome. The 73× coverage
was the first one to be produced. Such dataset was filtered for quality and checked for contamina-
tion without demonstrating any particular problem. Also alignment on a closely related genome
(Populus trichocarpa genome) did not suggested any particular bias. Encouraged by these results
we proceed to assemble the dataset, however at this stage we encountered several problems. The
most important one was the fact that only 40% of reads used to assemble the data aligned on
the contigs.

To further explore this situation we plotted the 16-mer coverage and we noticed the unexpected
shape of the plot: Populus nigra genome is expected to be highly heterozygous, but the green line
of Figure 6.5 suggests an absolute absence of heterozigosity. Skeptical about the dataset quality we
produce and sequenced another library with the hope to obtain a not biased dataset. The 16-mer
coverage of the new dataset is represented by the blue line in Figure 6.5. The blue plot has two
peaks at the expected positions and shows an interesting third peak on the right. This third peak
is probably a consequence of a known recent duplication event [172]. The reasons of the failure of
the first library is still unknown, but is most likely the consequence of some bad reagent used at
some step of the library preparation.

The example of Figure 6.5 shows how k-mer plots can be used to estimate the overall data
quality. The fact that the k-mer plot has a totally unexpected shape is an extremely good indicator
that the data is unreliable.
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Figure 6.4: k-mer profile of an 89× Sangiovese coverage composed by 100 bp long paired reads.
We draw the k-mer profile using 16merCounter (red), and Jellyfish with k equal to 20 (green) and
24 (blue).
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Figure 6.5: Both 16-mer profiles have been computed on an high Illumina read coverage of the
Poplar genome (Poli variety belonging to Populus nigra). Data used to plot green and blue curves
belonged to two different libraries (i.e. collection of DNA fragments). The green library was clearly
affected by low complexity problems, while in the second a more careful preparation avoided this
bias.

In Figure 6.6 we can appreciate the 16-mer plot of a 50× coverage of the spruce genome that
is highly repetitive. The plot has been realized with 16merCounter: even if the two peaks are
visible, the short k-mer length causes the slow decreasing shape on the right side. A larger k-mer
(20 or 24) avoids this shape as the fact that 20-mers and 24-mers are more likely to occur in single
copy. However, Jellyfish with k-mer size equal to 24 required one week of computation in order
to compute the profile of a 30× coverage. Most of the computational time spent by Jellyfish has
been used to merge the large number of intermediate hash tables. 16merCounter, despite limited
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to 16-mers, was able to compute the 16-mer distribution in less than 9 hours on the same machine
used by Jellyfish.
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Figure 6.6: Spruce genome has length ∼ 20 Gbp. Therefore a 50× coverage is composed by
1000 Gbp. 16merCounter needed 8 hours and 16 GB RAM. Jellyfish on a reduced dataset of 30×
required the same amount of RAM and required a week of computation (mainly merging tables).

6.2 Assembly Forensics: Gauging the Features

In Section 4.3.2 of Chapter 4 we introduced the forensics analysis proposed by Phillippy and
colleagues in [143]. We saw how using the amosvalidate pipeline we cannot only validate assemblies,
but also gauge assembler performances using the Feature Response Curve (FRC) developed by
Narzisi and Mishra [130].

As explained in Section 4.3.2 de novo assembly is based on the double-barreled shotgun pro-
cess, therefore the layout of reads (i.e. how reads are used in the assembly and how pairs are
ordered) must be consistent with the characteristics of the shotgun sequencing process. In partic-
ular Phillippy and colleagues detected various features that predict or that witness misassemblies
(forensics features). Among the most important ones, they noticed that paired reads found at
unexpected distance or with unexpected orientation are likely to highlight the presence of inser-
tion/deletion and translocation events. In a similar way regions lacking paired reads or regions with
an unexpected read coverage (too high or too low) are indicative of assembly problems. Another
important feature is the k-mer distribution, computed as the ratio between the k-mer coverage
of the reads and the coverage of the assembly along the assembly sequence itself. Phillippy also
noticed that reads not used by assemblers (i.e., leftovers) can be helpful in retrieving errors in the
consensus generation. For a more complete discussion on forensics features and the way in which
they are computed refer to Section 4.3.2 of Chapter 4.

Forensics features allow to count the number of suspicious position in an assembly, however it
is not clear how the simple feature counting can be used to compare different assemblies and/or
different assemblers. Narzisi and Mishra introduce the Feature Response Curve for this purpose.
After running amosvalidate, each contig is assigned the number of features that correspond to
putative misassemblies. For a fixed feature threshold w, the contigs are sorted by length and,
starting from the longest, we consider only those whose total sum of features is ≤ w. For this
set of contigs, the corresponding approximate genome coverage is computed, leading to a single
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point of the Feature-Response Curve (FRC). FRC allows to easily compare different assemblies by
simply plotting their respective FRCs (refer to Section 4.3.2 of Chapter 4 for a detailed discussion).

Despite the advantages of such methods over the plethora of standard validation metrics (Sec-
tion 4.3.1) assembly forensics, and therefore FRC, have some problems that need to be addressed
with a deep analysis. The amosvalidate pipeline computes a total of 12 features (i.e., forensics
features) that are listed below:

1. BREAKPOINT: Points in the assembly where leftover reads partially align;

2. COMPRESSION: Area representing a possible repeat collapse;

3. STRETCH: Area representing a possible repeat expansion;

4. LOW_GOOD_CVG: Area composed of paired reads at the right distance and with the right
orientation but at low coverage;

5. HIGH_NORMAL_CVG: Area composed of normal oriented reads but at high coverage;

6. HIGH_LINKING_CVG: Area composed of reads with associated mates in another scaffold;

7. HIGH_SPANNING_CVG: Area composed of reads with associated mates in another contig;

8. HIGH_OUTIE_CVG: Area composed of incorrectly oriented mates;

9. HIGH_SINGLEMATE_CVG: Area composed of single reads (mate not present anywhere);

10. HIGH_READ_COVERAGE: Region in assembly with unexpectedly high local read coverage;

11. HIGH_SNP: SNP with high coverage;

12. KMER_COV: Problematic k-mer distribution.

The main problem is to understand the relationship among different features and how and if they
correlate. A standard consideration [143] is the fact that positions in the assembly with many
different features are likely to represent misassemblies. However, results from feature analysis are
strongly dependent on how the features are combined, especially when the relationships among
features are ignored. For example, an area with high k-mer coverage is likely to contain many
paired read features. Another important problem of forensics features is their lack in specificity
opposed to their high sensitivity [143].

An interesting point is the possibility to reduce the feature space and concentrate the analysis
to only a handful of meaningful features. Even more interesting, it would be desirable to use a
linear combination of few such features to create newer and better set of synthetic and meaningful
features.

There is a lack in the study of how features are related among each other and how they represent
assembly correctness. As an example consider the N50: despite being one of the most used features
there is no evidence, to the best of our knowledge, that demonstrates the connection between such
a measure and assembly quality.

Therefore we decided to concentrate our efforts on a deep study of available features (in partic-
ular of the forensics features) in order to better understand their capabilities in predicting assembly
correctness. As a side effect of our analysis, we were able to evaluate the limits of simulation based
tests, often used as a proof of assembler’s abilities. One of our main objective was to improve the
Feature Response Curve (FRC). It would be desirable to plot the FRC on a minimal subset of the
most important features or on a small number of synthetic features capable of capturing the most
important information (i.e., variation).

In order to attain our objectives we used unsupervised learning methods to extract and select
a subset of relevant features to understand their inter-relationships. We obtained several de-novo
assemblies (more than 300 assemblies) by assembling different genomes (45 genomes) with a wide
range of assemblers (10 assemblers). For each assembly we extracted the 11 forensics features
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computed by amosvalidate (HIGH_LINKING_CVG and HIGH_SPANNING_CVG have been collapsed into
a single feature) and we used PCA and ICA (Principal/Independent Component Analyses, respec-
tively) to extract and select a set of synthetic features and a set of highly informative features,
respectively. Moreover we explored the relationship among the 11 forensics features and two addi-
tional commonly used metrics: N50 and number of contigs (NUM_CONTIG).

When counting the number of features on a contig we used the following approach: single point
features (SNP or BREACKPOINT) are counted as a single feature, while features that affect a contig’s
subsequences (e.g., KMER_COV) of length l account for dl/we features, with w assuming a predefined
threshold. In all our experiments w was kept fixed at 1 Kbp.

We also studied the relationships among features in the case of long (i.e., Sanger-like) reads
as well as short (i.e., Illumina-like) reads. Moreover, in each case we worked with both real and
simulated datasets in order to quantify the differences between the features obtained from the two
kinds of data.

6.2.1 Multivariate Analysis

In order to explore and analyse relationships among features we made extensive use of multivariate
analysis. One of the main problems of data mining and pattern recognition is model selection that
aims at avoiding overfitting throughout model parsimony, which often involves dimensionality (or
degrees-of-freedom) reduction. The key idea is to reduce the dimensionality of the data set by
sub-selecting only those features, which jointly describe the most important aspects of the data.
Furthermore, dimensionality reduction allows a better understanding of the problem by focusing on
the important components, and in highlighting hidden relationships among the variables. Recently,
research focusing on dimensionality reduction has seen a renewed interest as their importance
in both supervised and unsupervised learning has become obvious. Techniques based on PCA,
ICA, shrinkage, Bayesian variable selection, large margin classifiers, L1 metrics, regularization,
maximum-entropy, minimum description length, Kolmogorov complexity, etc. are all examples of
Occam’s razor, trimming away unnecessary complexity.

In the context of sequence metrics, our interests lie primarily in unsupervised learning ap-
proaches. Two main techniques can be used to reduce the dimensionality of a problem: feature
extraction and feature selection. Feature extraction techniques combine available features into a
new reduced set of synthetic features, representing the most important information. Among the
techniques mostly used involving linear models, the following three dominate: Principal Compo-
nent Analysis (PCA) [73], Independent Component Analysis (ICA) [64], and Multilinear Subspace
Learning (MSL) [106].

Feature selection techniques focus on finding a minimal subset of relevant features containing
the most important information in the dataset. Usually these methods try to select a subset of
features that maximizes correlation or mutual information. Since this problem in general can
be intractable, practical approaches are based on greedy methods that iteratively evaluate and
increment a candidate subset of features [67]. Other common methods are based on Sparse Support
Vector Machines (SSVM) [14], and PCA and ICA techniques, as discussed earlier [18, 146].

We chose to perform PCA in order to extract the most important components capable of suc-
cinctly describing assembly correctness and quality. PCA components emphasize the connections
among features and their correlations. Moreover, the PCA results can be used to understand re-
dundancy in a given set of features. Once PCA has established a high degree of redundancy, we
can use ICA to select the most important features in order to parsimoniously use only those to
compare assembly performances.

PCA: Principal Component Analysis

Principal Component Analysis (PCA) is a popular multivariate statistical technique with many
applications to a large number of disparate scientific disciplines [73]. It finds a set of new variables
(Principal Components) that account for most of the variance in the observed variables. A principal
component is a linear combination of optimally weighted observed variables.
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PCA analyses a matrix (i.e., a table), whose rows correspond to observations and columns to
variables that describe the observations. In our case, the observations are de novo assemblies of
different genomes performed with several assemblers, while columns are the features describing
the quality and correctness of the assemblies. PCA extracts the important information from the
data table and compresses the size of the table by keeping only the important information, thus
simplifying the description of the data set. New variables, each one a linear combination of the
original variables and called principal components (PCs), are computed in order to achieve these
desiderata. The first PC is required to achieve the largest variance reduction (i.e., the component
that “describes” the largest part of the variance of the data set). The second component is
computed under the constraint of being orthogonal to the first component, while accounting for
the largest portion of the remaining variance. The subsequent components are computed with
similar criteria.

PCs are described by eigen-vectors that represent the linear combination over all the original
variables (i.e., features). Eigen-vectors are ordered according to a monotonically decreasing order
of eigen-values. The eigen-vector with the largest eigen-value explains the main source of variance,
with the remaining ones explaining successively smaller sources of variance. PCA on a dataset
described by p variables returns p eigen-vectors (i.e., p PCs). However, we are interested in
keeping only those PCs that capture as much of the important information in the data as possible.
A widely used rule of the thumb is to fix a variance threshold, which determines the eigen-vectors
that can be safely discarded (i.e., retain only those PCs that account for a certain amount of
variance). A practically used heuristic value for variance threshold is often taken to be 80%. A
more robust method is based on random matrix theory (RMT). By fitting the Marčenko-Pastur
distribution [71] to the empirical density distribution of the eigen-values, one can determine the
less informative eigen vectors and discard them.

ICA: Independent Component Analysis

Independent Component Analysis (ICA) is a signal processing technique that was originally devised
to solve the blind source separation problem. ICA represents features as a linear combination of
Independent Components [65]. Independent Components (ICs) have been used to select the most
independent (i.e., the most important) features [104].

ICA differs from other methods as it looks for components that are both statistically inde-
pendent, and yet, non-gaussian (e.g., has non-vanishing high order moments – beyond mean and
variance – such as the fourth-order moment, represented by kurtosis). Given a set of observations
as a vector of random variables X, ICA estimates the Independent Components S by solving the
equation X = AS with A being the so-called mixing matrix. ICs represent linear combinations
of features expressing maximal independence in the data. We followed the method described in
[128] to select the most informative ICs by picking those with highest kurtosis (i.e., the 4th order
cumulant). The underlying intuition is that higher is the kurtosis of an IC more “peaked” is its
distribution, making it deviate further than what could be expected from central limit theorem
(CLT). After selecting the ICs with kurtosis values in the top 80% of the kurtosis distribution, we
singled out from each IC that feature, which contributed the highest in the linear combination.

6.2.2 Experiments Creation

We worked both with real and simulated datasets. We concentrated our attention on small bacterial
and viral genomes for several reasons: first, the sample of assembled bacterial genomes is sizable
enough to satisfy our aims; second, bacterial genomes are not diploid; and last but not least,
the in silico experiments can be conducted with an affordable amount of resources (primarily, the
computation time).

Half of the experiments have been performed on Sanger like data. Although Sanger sequencing
has been replaced by NGS approaches, we consider this experiment of primary importance for
the following statistical analysis, especially, if the features should have a universal interpretation.
Sanger sequencing is a well-known and stable method, used for more than 20 years, and the tools



Tesi di dottorato di Francesco Vezzi, discussa presso l’Università degli Studi di Udine
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used to cope with Sanger data have been tested in a wide variety of situations. Thus, long reads
present a useful benchmark in order to assess results. The utility of the long-read analysis is likely
to become more relevant, as all available NGS technologies have been increasing the read lengths,
steadily approaching Sanger reads in length.

Long Reads

We downloaded from NCBI public ftp, data from 21 completed sequencing projects, consisting of
reads, quality and ancillary data (paired read information, vector trimming, etc.). This dataset is
summarized in Table 6.2.

Genome Length # reads Avg lgth tot length cov
1 Alcanivorax 3789834 39044 1080 42177431 11.13
2 Alteromonas macleodii 4448980 43878 1007 44209050 9.94
3 Bacillus anthracis 5227293 125879 854 107563457 20.58
4 Bacillus cereus 5269030 68503 1071 73375574 13.93
5 Bifidobacterium dentium 2636367 28240 757 21394408 8.12
6 Bordetella bronchiseptica 5339179 55895 946 52909812 9.91
7 Bbradyrhizobium 8264687 89675 1018 91346484 11.05
8 Brucella Suis 3315173 36275 895 32499069 9.8
9 Burkholderia mallei 5742303 101634 1008 102506338 17.85
10 Candidatus korarchaeum 1590757 30168 1048 31625328 19.88
11 Escherichia coli 5572075 58534 1119 65538509 11.76
12 Lactobacillus gasseri 2011295 42477 882 37495317 18.64
13 Mesoplasma florum 793224 86566 788 68278119 86.08
14 Shewanella oneidensis 4969803 69499 752 52307472 10.53
15 Staphylococcus apidermidis 2616530 57997 900 52208201 19.95
16 Staphylococcus aureus 2809421 50035 818 40937267 14.57
17 Thioalkalivibrio 3464554 28458 940 26766873 7.73
18 Vibrio cholerae b33 4154698 30570 1075 32865241 7.91
19 West nile virus 11029 3148 937 2952302 267.69
20 Wolbachia sp 1267782 26816 981 26332465 20.77
21 Yersinia pestis biovar 4681648 73065 989 72291428 15.44

Table 6.2: Summary of the 21 Sanger project downloaded from NCBI.

The organisms’ genome lengths varied from ∼ 11 Kbp (West Nile virus) to ∼ 8 Mbp (bradyrhi-
zobium sp. btai1 ). All the 21 datasets have been assembled using 5 different de novo assemblers for
long reads: CABOG [120], MINIMUS [169], PCAP [62], SUTTA [129], TIGR [170] for a total of
105 assemblies. Only 84 (CABOG 20, MINIMUS 15, PCAP 20, SUTTA 15, TIGR 14) were used
in the subsequent analysis. We discarded 21 assemblies for two reasons: the assembler returned
with error (missing data) and the assembly was clearly of bad quality (data outlier). Confronted
with the first situation, we tried to resolve the problem by further manual interventions, but more
often than not, we failed to understand the source of error, while in few other cases, usually the
problem was due to bad format conversions (e.g., CABOG was the only assembler unable to parse
the ancillary file provided as input for Staphylococcus aureus dataset). In the second situation, we
noticed that on some datasets (for example, Bradyrhizobium sp. btai1 ) some assemblers produced
much worse results than others (TIGR produced 19680 contigs while CABOG 72). Since both
PCA and ICA were adversely affected by the presence of such outliers, which we assumed to be
due to a wrong format conversion step, we disregarded these data points. All the assemblers have
been tested using the default parameters, as provided by the implementers.

Another 20 bacterial organisms were selected to generate 20 simulated coverages (see Table
6.3). We used MetaSim [151] to generate a 12× coverage composed of paired reads of mean
size 800 bp with insert sizes of length 3 Kbp and 10 Kbp (forming respectively a 10× and a
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114 6. De Novo Assembly: Validating the Puzzle

2× coverage) for each genome. These 20 sets have been assembled using CABOG, MINIMUS
and SUTTA with default parameters, while PCAP has been used after relaxing some parameters
(“-d 1000 -l 50 -s 2000”) in order to obtain results comparable to the other three assemblers.
We did not use TIGR assembler in order to avoid its poor assembly results, which could not be
corrected even after changing various parameters. Of the 80 assemblies produced, 4 failed. The 76
remaining assemblies did not create outliers 1.

Long Reads Short Reads
Name Length read lgth cov read lgth cov

1 Alcanivorax borkumensis 3120143 800 12 100 80
2 Alteromonas macleodii 4448980 800 12 100 80
3 Bacillus amyloliquefaciens 3918589 800 12 100 80
4 Bacillus cereus 5269030 800 12 100 80
5 Bordetella bronchiseptica 5339179 800 12 100 80
6 Brucella suis 3315173 800 12 100 80
7 Burkholderia mallei NCTC 5742303 800 12 100 80
8 Campylobacter jejuni 1777831 800 12 100 80
9 Chlamydia trachomatis 1038842 800 12 100 80
10 Chlorobium tepidum 2154946 800 12 100 80
11 Dehalococcoides 1413462 800 12 100 80
12 Geobacter metallireducens 3997420 800 12 100 80
13 Mesoplasma florum 793224 800 12 100 80
14 Shewanella oneidensis 5131416 800 12 100 80
15 Staphylococcus aureus COL 2813862 800 12 100 80
16 Staphylococcus aureus JH1 2906507 800 12 100 80
17 Staphylococcus epidermidis 2643840 800 12 100 80
18 Thioalkalivibrio sulfidophilus 3464554 800 12 100 80
19 Wolbachia 1267782 800 12 100 80
20 Yersinia pestis 4600755 800 12 100 80

Table 6.3: Summary of the 20 Reference Genomes used for simulation purpose.

For each assembly we used 11 forensics features (HIGH_LINKING_CVG and HIGH_SPANNING_CVG

have been collapsed in a single feature) and inserted them in a row in the experiment table, which
has a row for each observation (i.e., assembly) and a column for each feature. For the PCA analysis
we also added two more columns: N50 and number of contigs (NUM_CONTIG).

Short Reads

We also performed a similar set of experiments for short reads. De novo assemblers for short reads
have appeared only very recently and apart from the multifasta file containing all the computed
contigs, no standard output format is provided. A particularly useful format used by all the Sanger
based assemblers (mandatory for amosvalidate) is the afg format. An afg file is a text-based file
that contains all the information related to reads, paired reads and contigs (in particular, the layout
information, i.e., where a read has been used in generating a consensus). This file is fundamental
in order to run amosvalidate and hence, to obtain the forensics features.

Velvet [188], SUTTA [129] and, Ray [17] natively produced such files. In order to produce such
files with other popular assemblers like ABySS [166] and SOAPdenovo [93], we found no solutions
apart from mapping the reads back to the contigs and then use a program provided by the ABySS
suite (abyss2afg) to obtain the afg file. Obviously, layouts created in such a way are unlikely to
coincide with real ones. In particular, reads that fall in repeated regions are likely to be wrongly
assigned, thus producing a “wrong” layout. However, since this was the only available method to

1This can be seen as the first significant difference between analyses involving real and simulated datasets.
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obtain the layout files for ABySS and SOAPdenovo, we used these layouts for our analysis. This
situation stresses the need for a standard assembly output that is able at the same time to retain
all important informations needed for the validation step but also to store all this information in
a compressed way.

Another stumbling block, we faced with short reads dataset, involved a lack of a large enough
number of genomes that have been assembled, i.e., a paucity of a repository of short reads datasets
for genomes. Data loaded on the Short Read Archive is obtained through different pipelines and
different protocols, making it really hard to obtain several assemblies from different assemblers. A
similar problem concerns the read length. Over the last two years Illumina reads have grown in
length from 36 bp to 150 bp, but often assemblers are optimized only for certain ranges of read
lengths. Moreover, almost always raw reads were needed to be trimmed and/or filtered to remove
contamination, which invariably improved the final results.

Notwithstanding all these practical difficulties, we decided to assemble four real datasets: Es-
cherichia coli (SRX000429) composed of paired reads of length 36 bp and insert size of 200 bp,
Chlamydia trachomatis (ERX012723) composed of paired reads of length 54 bp and insert size of
length 250 bp, Staphylococcus aureus ST239 (ERX012594) composed of paired reads of length 75
bp and insert size of 270 bp and, Yersinia pestis KIM D27 (SRX048908) composed of reads of
length 100 bp and insert size of length 300 bp. Datasets are described in Table 6.4.

Name Length # reads Avg lgth cov ins lgth
1 Escherichia coli 4639675 20816447 36 161.52 200
2 Chlamydia trachomatis 1042579 8100845 54 419.58 243
3 Staphylococcus aureus ST239 2906507 5307429 75.73 138.29 268
4 Yersinia pestis KIM 4600755 2311795 100 50.25 300

Table 6.4: Summary of the 4 Illumina projects downloaded from NCBI.

In order to achieve a number of experiments that allowed PCA and ICA to yield statistically
significant results, we assembled for each genome different random coverages ranging between 30×
and 130×. In order to assess parameters, for each genome, for each coverage and for each assembler,
we varied the most important parameters and retained the results with the best trade-offs between
N50 and number of contigs. We performed 105 assemblies and kept 82 of them (20 ABySS, 17
Ray, 20 SOAP, 9 SUTTA and, 16 VELVET) after discarding outliers.

The same 20 genomes used to obtain the simulated datasets for Sanger were also used for
Illumina. For each of the 20 genomes, we used SimSeq, the read generator used for Assemblathon
1 (www.assemblathon.org), to produce an in silico 80× coverage formed by paired reads of length
100 bp and insert size of 600 bp. For these experiments we used ABYSS, RAY, SOAP, and
VELVET. The most important parameter to set in these assemblers was the k-mer size, i.e., the
size of the word used to compute overlaps. We noticed that by fixing this parameter to 55 bp all
the assemblers were able to achieve good and comparable results. We did not use SUTTA because
the publicly available version was mainly designed for ultra-short reads (i.e. reads of length 36-55).

We produced two tables, one for the real data and one for the simulated data. For each assembly
we computed 10 forensics features with amosvalidate (at present, BREAKPOINT feature could not
be computed since only SUTTA and VELVET return the unused reads). In the PCA analysis, we
also added to those features the N50 and the number of contigs.

6.2.3 Results

We used PCA in order to extract the most important Principal Components (PCs) and analyzed
whether and how the features are correlated. In order to choose how many PCs to keep, we
used random matrix theory (RMT) as suggested in [71]. In the following, we describe the results
achieved with PCA on the different datasets. Moreover, we present the results achieved with ICA,
in particular we show how the FRC can be used on a small subset of features to better describe the



Tesi di dottorato di Francesco Vezzi, discussa presso l’Università degli Studi di Udine
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behavior of the different assemblers. To evaluate the results obtained from this analysis, we used
the reference genome in order to compute the number of real misassemblies by aligning the de novo
contigs. We used dnadiff [143] in order to compute misassembly. When parsing dnadiff results,
we ignored small differences like SNPs and short indels, and disregarded breakpoints occurring
within the first 10 bp of a contig. This kind of analysis gave us the possibility to gauge how
FRC represents the relationship between different assemblies/assemblers. In particular we could
evaluate if the restriction to the ICA-feature space can improve our capability to predict the
assembly quality.

PCA was performed on the extended features space (forensics features plus N50 and NUM_CONTIG)
while we restricted the analysis only to the forensics features for ICA. We operated in such way as
to understand how two common metrics used to judge assemblies are related to the other features
and to gauge the excess-dimensionality of the feature space.

Long Reads Results

We performed PCA on the real as well as on the simulated dataset. In Figures 6.7(a) and 6.7(b),
we plotted the first component versus the second in order to have a graphical representation of
how the assemblies are separated by the first two PCs.
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(b) Simulated datasets

Figure 6.7: First PC versus Second PC: Long Reads Datasets. The plots in Figures 6.7(a) and
6.7(b) show the results of plotting the first principal component against the second. The blue dots
represent the assemblies.

In the real dataset, 6 PCs are necessary to represent at least 80% of the total variance, while in
the simulated dataset only 5 PCs are necessary to represent the same amount of variance. A more
careful analysis performed by fitting the Marčenko-Pastur distribution to the empirical density
distribution of the eigen-values (see Figure 6.8), showed how to prune the eigen-vectors with eigen-
values lower than one. This more precise analysis tells us that we need five and four PCs to fully
describe the real and the simulated dataset, respectively. Both these methods also suggest how the
feature space (11 forensics features plus N50 and NUM_CONTIG) is “over-dimensionated” and what
can be eliminated without loss of valuable information. Examining the first eigen-vector (i.e., first
PC) of the real dataset closely, we see that the most important features are LOW_GOOD_CVG and
NUM_CONTIG. The other positive contributing features are connected to the presence of areas with
no uniform coverage. Surprisingly the acclaimed N50 metric not only lacked a large coefficient,
but instead exhibited negative correlations with the others. This result suggests that high N50
values are simply a consequence of mis-assemblies and due to the fact that many assemblers try
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6.2. Assembly Forensics: Gauging the Features 117

Eigenvalues

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

● Q=2.5 var=0.4

(a) Real datasets

Eigenvalues

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

● Q=2.5 var=0.4

(b) Simulated datasets

Figure 6.8: Marčenko-Pastur Distribution: Long Reads Datasets. We found the Marčenko-Pastur
that best fits the eigen-value distribution. All eigen-vectors with eigen-values under the Marčenko-
Pastur function are considered non informative. Figure 6.8(a) shows the results obtained on real
long read, conversely Figure 6.8(b) shows the results obtained on simulated long reads.

aggressively to merge as many sequences as possible. In the second component, the main source
of variation among assemblies with a large number of features is due to mis-assembled repeats
(HIGH_READ_COVERAGE, K_MER_COV, HIGH_OUTIE_CVG, and HIGH_SPANNING_CVG), a low number of
contigs and SNPs. The first three components account for the 55% of the total variation.

Examining the results from the simulated datasets, we noticed that no COMPRESSION feature
has been found in any of the assemblies. The first eigen vector of the simulated dataset is similar
to the ones obtained from real data, indicating a consistency between the two analyses. Again
LOW_GOOD_CVG and NUM_CONTIG are among the most important features and N50 is again negatively
correlated. The second component is similar to the one obtained from real data, as the main source
of variation is again between assemblies characterized by repeats assembled in the wrong copy
number and assemblies with too few contigs and breakpoints. The first three components account
for 70% of the total variance.

A closer examination reveals that real and simulated PCs are somewhat different. Even though
a complete absence of a feature in the simulated dataset (probably a failure of the read simulator
to properly simulate the insert variation), we notice several differences: the first “simulated PC”
gives non-negligible importance to features like STRETCH, HIGH_SNP, and KMER_COV that have much
smaller importance in the first “real PC.” A similar situation holds true also for the second PC.
The third components are utterly different (see Table 6.5), but not unexpected. We are thus led to
conclude that sequence assembly evaluation based on simulated experiments could be misleading,
unless genome sequence simulators are further improved.

The principal component analysis (PCA) convinced us that the feature-space is highly over-
dimensioned. Therefore we tried to select from the feature space the most informative features in
order to estimate the performance of different assemblers on a small feature subspace. This analy-
sis, leading to feature selection, was accomplished using another multivariate technique known as
Independent Component Analysis (ICA). Following the method proposed in [128], we performed
ICA using the fastICA algorithm on the forensics features. We extracted the Independent Compo-
nents (ICs) and selected the most representative feature in each of the ICs with the highest kurtosis
value. From the real dataset, we selected the following 6 features: COMPRESSION, HIGH_OUTIE_CVG,
HIGH_SINGLEMATE_CVG, HIGH_READ_COVERAGE, KMER_COV, and LOW_GOOD_CVG.

In Figure 6.9, we illustrate how the ICA-subspace allows better evaluation of different assem-
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Real Simulated
FEATURES PC1 PC2 PC3 PC1 PC2 PC3
BREAKPOINT 0.29 -0.14 -0.21 0.26 -0.38 -0.04
COMPRESSION 0.32 0.22 0.35 - - -
STRETCH -0.06 0.08 0.27 0.22 0.42 0.12
HIGH NORMAL CVG -0.10 0.40 0.21 0.02 0.2 -0.44
HIGH OUTIE CVG -0.07 0.56 -0.09 0.12 0.46 0.01
HIGH READ COVERAGE 0.36 0.10 -0.13 0.36 0.21 -0.19
HIGH SINGLEMATE CVG -0.01 0.27 -0.53 0.04 -0.07 -0.76
HIGH SNP 0.05 -0.23 -0.13 0.30 0.02 -0.18
HIGH SPANNING CVG 0.28 0.38 0.31 0.41 0.04 0.00
KMER COV -0.03 0.37 -0.48 0.24 0.37 0.16
LOW GOOD CVG 0.50 -0.04 -0.02 0.41 -0.28 0.04
N50 -0.23 0.09 0.20 -0.27 0.01 -0.30
NUM CONTG 0.50 -0.03 -0.02 0.39 -0.31 0.02
cumulative variation 27% 44% 55% 36% 59% 70%

Table 6.5: Most Informative Principal Components For Long Reads. First three PCs for the two
long reads datasets: real long reads, simulated long reads. At the bottom of each component we
reported the cumulative variation represented.
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(b) FRC computed on the ICA features

Figure 6.9: Figure 6.9(a) shows the FRC-curve for the 5 assemblers on Brucella suiss dataset when
using all the feature space. Figure 6.9(b) shows the FRC-curve computed on the ICA-selected
features.

blers. Figure 6.9(a) shows the FRC for the assembly of the Brucella suis dataset. We see how,
rather surprisingly, TIGR now behaves much worse than all other assemblers, while PCAP, MIN-
IMUS, CABOG and SUTTA have comparable performances. It is surprising that TIGR performs
worse than MINIMUS, which does not use the important information, available in paired reads.
Inspecting these two assemblies closely (Table 6.6), we see how MINIMUS produces a highly frag-
mented assembly (206 contigs) in comparison to TIGR (69 contigs). Also the number of detected
mis-assemblies via contig alignment suggests us that MINIMUS produces the worst-scoring assem-
bly in the group. If we plot the FRC after reducing the space to only the ICA-features (Figure
6.9(b)) we obtain a slightly different picture. Looking only at the most informative features we
discovered that CABOG performs better than all the other assemblers, while SUTTA, TIGR and
PCAP are more or less equivalent. This picture is concordant with the results showed in Table
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6.6, from which we clearly see that MINIMUS is the assembler with the poorest performance.

Assembler # Ctg N50 (Kbp) Max (Kbp) Errs # Feat # corr Feat # ICA Feat # corr ICA Feat
cabog 41 265 711 24 375 24 45 18
minimus 205 31 89 44 382 37 208 36
pcap 91 69 194 50 455 57 94 41
sutta 72 93 621 45 261 23 75 22
tigr 69 111 357 31 1281 24 134 20

Table 6.6: Brucella suis assemblies obtained with Long reads have been compared using standard
assembly statistics. We reported the assembler employed, the number of contig returned by the
assembler, the N50 length, the length of the longest contig and the number of mis-assemblies
identified by dnadiff. Moreover we reported the number of features returned by amosvalidate and
the number of such features that overlap with a real mis-assembly. The same data is reported for
the ICA-features.

Last four columns of Table 6.6 show how, in general, by reducing the feature space we are
able to discard a large number of features (in the TIGR case we pass from 1281 to 134 features)
without discarding any significant number of valid features (i.e., features that coincide with real
mis-assemblies). This statistics on true discovery suggest that our method does not suffer from a
lack of desirable sensitivity. It was noticed in [143] that assembly features have, in general, high
sensitivity (higher than 98%) but they lack specificity. We also noticed that the situation remains
true even after dimensionality reduction of the feature space. In general this is a consequence of
how features arise in two scenarios: features that affect large portions of contigs and assembler-
specific features. In the first scenario a feature affects a large portion of a contig when, however,
only a relatively small fragment of such contig is a true mis-assembly. The second scenario is much
more problematic, we noticed that some assemblers have a particular feature that appears almost
in every contig (in the case of Brucella Suis, LOW_GOOD_CVG appears in almost all TIGR contigs).
When this feature is selected by the ICA analysis the specificity is deeply affected (however, the
sensitivity remains high). This situation can be avoided by selecting the most representative
features for each assembler, but a larger dataset of genomes is necessary in order to successfully
apply PCA and ICA.

Short Reads Results

As explained before, the real short read dataset is somewhat different from the simulated ones.
In the real dataset, we used only 4 different genomes, sequenced with Illumina producing reads
of different lengths. In order to obtain a number of assemblies that allowed PCA and ICA we
extracted and assembled with different coverages. We chose to use four different kinds of reads to
obtain a set of PCs as general as possible. However it would be preferable to have a larger and more
representative datasets to obtain more accurate results. On the other hand, the simulated dataset
was obtained by simulating on 20 different organisms at a constant coverage (80×) composed of
paired reads of length 100 bp and insert size of 600 bp. The results obtained using this dataset
gave us a picture of the state-of-the-art assembly capabilities. However, as seen in the analyses of
long reads, PCs obtained through simulated data appear to be far-off from the real ones.

Again, PCA analysis on the real and simulated dataset (Table 6.7 ) suggested the presence of
highly “over-dimensioned” feature space. In order to achieve the 80% of the variance, while we
need only 5 components in the real datasets, just 4 are adequate in the simulated ones. Using
more sophisticated random matrix theory and the Marčenko-Pastur function, we observed that it
is safe to disregard an extra PC with no loss of accuracy in either cases.

As far as the first real PC is concerned, we saw how the LOW_GOOD_CVG and N50 are among
the most important features. Again, as in the long reads datasets, the two features are negatively
correlated. While in the first long read PC most of the features were positively correlated, in the
short read case it was no longer true. We saw that compression and extension events (COMPRESSION,
STRETCH) are correlated to mate-pairs problems (HIGH_OUTIE_CVG) while the number of contigs is
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120 6. De Novo Assembly: Validating the Puzzle

−4 −2 0 2

−
4

−
2

0
2

PCA1

P
C

A
2

CE_COMPRESS
CE_STRETCH

HIGH_NORMAL_CVG

HIGH_OUTIE_CVG
HIGH_READ_COVERAGE

HIGH_SINGLEMATE_CVG

HIGH_SNP

HIGH_SPANNING_CVG

KMER_COV

LOW_GOOD_CVG

N50

NUM_CONTG

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

CE_COMPRESS
CE_STRETCH

HIGH_NORMAL_CVG

HIGH_OUTIE_CVG
HIGH_READ_COVERAGE

HIGH_SINGLEMATE_CVG

HIGH_SNP

HIGH_SPANNING_CVG

KMER_COV

LOW_GOOD_CVG

N50

NUM_CONTG
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Figure 6.10: First PC versus Second PC: Short Reads Datasets. The plots in Figures 6.10(a) and
6.10(b) show the results of plotting the first principal component against the second. The blue
dots represent the assemblies.

Real Simulated
FEATURES PC1 PC2 PC3 PC1 PC2 PC3
BREAKPOINT - - - - - -
COMPRESSION -0.28 -0.15 0.24 0.32 0.20 0.33
STRETCH -0.30 -0.11 0.32 0.2 0.37 0.26
HIGH NORMAL CVG 0.12 0.44 -0.09 0.15 0.13 -0.62
HIGH OUTIE CVG -0.32 -0.33 -0.29 0.19 0.15 -0.536
HIGH READ COVERAGE -0.26 -0.30 -0.41 0.35 0.09 -0.01
HIGH SINGLEMATE CVG 0.23 -0.26 -0.37 -0.11 -0.50 0.15
HIGH SNP -0.19 -0.05 -0.38 0.37 0.00 -0.06
HIGH SPANNING CVG -0.07 -0.38 0.12 0.36 -0.24 -0.16
KMER COV -0.08 -0.22 0.47 0.31 0.28 0.28
LOW GOOD CVG 0.41 -0.32 0.09 0.34 -0.35 0.09
N50 -0.48 0.08 0.10 -0.19 0.25 0.02
NUM CONTG 0.36 -0.41 0.12 0.30 -0.42 0.03
cumulative variation 26% 50% 63% 43% 62% 75%

Table 6.7: Most Informative Principal Components For Short Reads. First three PCs for the two
short reads datasets: real short reads and, simulated short reads. At the bottom of each component
we reported the cumulative variation represented.

positively correlated to areas with low coverage. These effects can be explained in the following
way: areas with compression and extension events are likely to contain a large number of mis-
oriented reads, while the production of an excess of contigs can be a consequence of a failure in
properly estimating the copy number of repeated sequences (thus resulting in a low coverage). The
second PC distinguishes assemblies with high HIGH_NORMAL_CVG. All the other relevant features
are negatively correlated to this one.

As expected, the PCs resulting from the simulated dataset differed to some degree from the
ones obtained from real datasets. Also in this case N50 is negatively correlated and its coefficient
is not among the maximal ones (like in the long read case). The first component is similar to the
first component of the simulated long read dataset. In the second component the main source of
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variation between assemblies could be explained by a low number of contigs and regions covered
only by unpaired reads as well as a large number of compression expansion events and mate pairs
in different contigs.

Using ICA we extracted two feature subsets: one for the real data and the other for the
simulated data. As before, we considered ICs that account for 80% of the kurtosis distribution. The
ICA-space for the real dataset is formed by 6 features: COMPRESSION, LOW_GOOD_CVG, KMER_COV,
HIGH_SPANNING_CVG, HIGH_OUTIE_CVG, and CE_STRETCH.

0 20000 40000 60000

0
20

40
60

80
10

0

feature threshold

%
 c

ov
er

ag
e

abyss
ray
soap
sutta
velvet

(a) FRC computed on all the feature space on a
real dataset
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(b) FRC computed on the ICA features space on
a real dataset

Figure 6.11: Feature Response Curve and ICA features: Real Short Reads. Figure 6.11(a) show
the FRC-curve for the 5 assemblers on E. coli real dataset (read length 36 bp, insert size 200 bp and
coverage 130×) when using all the feature space. Figure 6.11(b) shows the FRC-curve computed
on the ICA-selected features.

In Figure 6.11(a) we drew the FRC for the E. coli dataset composed of paired reads of length 36
bp that form a 130× coverage of the sequenced genome. From this picture we can clearly see how
SUTTA, ABySS and SOAPdenovo outperform RAY and VELVET. This situation is in contrast
with the analysis presented in Table 6.8, where we clearly see that RAY is the assembler generating
very few mis-assemblies along with ABySS, SUTTA and SOAP all behaving similarly. VELVET
has much larger number of mis-assemblies, suggesting that the long contigs that it produces are
often a consequence of incorrect choices. If we reduce to the ICA-subspace (Fig. 6.11(b)) the
picture changes drastically but some problems still remain: Ray, as one would expect, becomes the
best assembler, but it is now surprisingly closely followed by VELVET. Moreover, ABySS becomes
one of the worst assemblers. This situation is probably a consequence of the way in which features
have been computed: ABySS and SOAP provide no facility but to map reads back to the contigs
in order to build a layout 2. This approach clearly skews our empirical analysis. Nonetheless, we
can see how the reduced ICA space is able to highlight the good performances of RAY. The last
four columns of Table 6.8 show that ICA-features significantly reduce the number of features to be
considered (even if this time the reduction is not as impressive as the one obtained with long reads)
without noticeably affecting the number of real features (with the only exception of VELVET).
This picture motivates us again to highlight the need for assemblers to provide read layouts that
could ensure a meaningful evaluation

In the short read case, we explored the ICA-features also for the simulated dataset too. We de-
cided to proceed in these analysis with this dataset in order to avoid the bias produced by the small
dataset of real short reads. However, due to the differences between the real and simulated PCs

2it is not clear if the other de Bruijn based assemblers build a real (Sanger-like) layout or if they make use of
heuristics
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(b) FRC computed on the ICA features space on
a simulated dataset

Figure 6.12: Feature Response Curve and ICA features: Simulated Short Reads. Figure 6.12(a)
show the FRC-curve for 4 assemblers on Brucella suis simulated dataset (read length 100 bp,
insert size 600 bp and coverage 80×) when using all the feature space. Figure 6.12(b) shows the
FRC-curve computed on the ICA-selected features.

Assembler # Ctg N50 Max (Kbp) Errs # Feat # corr Feat # ICA Feat # corr ICA Feat
abyss 113 97 268 11 11804 119 11475 105
ray 194 58 140 17 74565 52 1701 30
soap 125 109 267 62 12254 174 12053 140
sutta 690 11 41 56 7949 140 5528 114
velvet 65 142 428 136 2156 26 131 2

Table 6.8: Assembly Comparison Real Short Reads: E. coli 130×. E. coli assemblies obtained
with short real reads have been compared using standard assembly statistics. We reported the
assembler employed, the number of contig returned by the assembler, the N50 length, the length of
the longest contig and the number of mis-assemblies identified by dnadiff. Moreover we reported
the number of features returned by amosvalidate and the number of such features that overlap
with a real mis-assembly. The same data is reported for the ICA-features.

Assembler # Ctg N50 Max (Kbp) Errs # Feat # corr Feat # ICA Feat # corr ICA Feat
abyss 20 301 850 2 8250 67 8174 63
ray 27 261 459 1 590 5 486 2
soap 30 299 843 15 10142 112 10057 108
velvet 23 663 1010 22 13547 149 11 1

Table 6.9: Assembly Comparison Simulated Short Reads: Brucella suis. Brucella suis assemblies
obtained with short simulated reads have been compared using standard assembly statistics. We
reported the assembler employed, the number of contig returned by the assembler, the N50 length,
the length of the longest contig and the number of mis-assemblies identified by dnadiff. Moreover
we reported the number of features returned by amosvalidate and the number of such features that
overlap with a real mis-assembly. The same data is reported for the ICA-features.

with long reads we consider the following analysis of doubtful value. We again selected 6 features:
namely, HIGH_READ_COVERAGE, HIGH_SNP, HIGH_NORMAL_CVG,HIGH_SPANNING_CVG, KMER_COV, and
STRETCH. Figure 6.12 demonstrates the differences between FRC curve computed on all the feature
space (Fig. 6.12(a)) and on the ICA-space (Fig. 6.12(b)). As before, we observed a similar anoma-
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lous behaviour: VELVET is the worst assembly when all the features are taken into account, while
it is the best assembler when only the ICA-features are counted (Ray, ABySS and SOAPdenovo
do not show any significant variation). These pictures are in contrast with the data summarized
in Table 6.9 where, again, we can see that RAY and ABySS are the assemblers less affected by
mis-assemblies, while VELVET contains as many as 23 mis-assemblies. A closer scrutiny explained
that VELVET has a large number of HIGH_SINGLEMATE_CVG (that are clear witnesses of a mis-
assembled region) that are not taken into account in the ICA-space. This is a clear bias that affects
the ICA analysis but it is difficult to estimate how much this depends on the read simulator or on
the in-vitro generated layout.

6.3 Conclusion

Validation and evaluation of data and results are mandatory steps in de novo assembly. In this
Chapter we presented two methods able to enhance (filtering pipeline) and evaluate (16mer-
Counter) the information available in the reads. In particular we illustrated how quality infor-
mation can be used to improve our datasets and how we can extract from reads themselves useful
information like genome size and heterozygosity levels. In the second part we presented a multivari-
ate study of assembly forensics features. The aim of this study was to understand the relationships
among different features and how they correlate among them. Moreover we were able to gauge
N50 performances in describing assembly quality, reaching the conclusion that such feature badly
describes correctness. As a side effect of our analysis we were able also to highlight the lack of
available read simulator to effectively reproduce real experiments. This result, in particular, casts
a shadow over several assembler evaluation totally based on simulated data (i.e. assemblathon
first edition).

However, a lot of work need do be done to better understand how features can be improved.
Reducing the Feature-space through Independent Component Analysis does not solve the lack of
specificity of forensics features. It is not clear if this is a consequence of the currently designed
features and if new features can circumvent this problem. We identified as a major stumbling block
in obtaining reliable results, the lack of several NGS-based assemblers to produce an assembly-
layout. Moreover, it is not obvious how a subset of informative features can be learned, so that
a global optimization formulation of the sequence assembly problem (in terms of few score and
penalty functions involving these features) would lead to higher fidelity.
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Conclusions

The recent Next Generation Sequencing outbreak reshaped our view and perception of Genomics.
NGS sequencers are able to produce a large amount of data at a constantly dropping cost. While,
on the one hand, this allowed us to sequence and resequence a large amount of new species and of
individuals within a population, on the other hand, new and old problems jeopardize the possibility
to effectively use all the produced information. New sequencing technologies have reduced costs
and increased throughput. However, they have sacrificed read’s length and accuracy by allowing
more single nucleotide (base-calling) and indel (e.g., due to homopolymer) errors.

In this dissertation we focused our attention on two of the most studied and pressing prob-
lems of today’s genomics: short read alignment and de novo assembly. In particular we showed
how, more often than not, standard complexity measures fail in reliably correctly describing tools’
performances and problems’ complexity. In our opinion, a deep understanding of problems’ com-
plexity and, perhaps precedent, an improved characterization of them, is of primary importance
in order to find correct solutions and overcame approximated and heuristic approaches.

The first part of this dissertation was focused on the alignment problem. The main contribution
presented in this part is the short read aligner rNA (randomized Numerical Aligner). rNA is an
hash-based aligner currently used by several research groups in the world. rNA’s unique feature is
its capability to solve the best-k mismatch problem without using heuristics affecting its sensitivity.
We showed how rNA, thanks to a refined Hamming-aware hash function and to a well studied
implementation, is able to correctly align more reads than most of the available aligners, yet
requiring a feasible amount of time and space. Moreover, a distributed implementation of rNA
allows to boost tool’s performances by aligning reads over a cluster of tightly connected machines.

A common feature of all software designed for NGS is the necessity to constantly upgrade them
in order, on the one hand, to deal with the constantly larger amount of data produced and, on
the other hand, to manage new kinds of input data. Even though rNA is a complete and stable
software package we are constantly improving it in a number of ways. Currently we are studying
new solutions (the integration and the use of q-grams being on the top of the list) to further speed
up our algorithm, moreover, we are studying the possibility to adapt rNA to the alignment of
bisulfite treated DNA, for a possible use in the determination of the so-called methilation maps.

Even though string alignment is a well known and studied problem, the NGS revolution obliged
the Computer Science community to redesign algorithms and to propose new tools to solve this
problem. In a (re-)sequencing project, alignment is the basic operation of all downstream analyses
like SNP calling, structural variation identification, and gene annotation, to name only the most
important. All these analyses, and many others, require tools able to align reads in a fast and
correct way. The vast majority of current tools satisfy the first requirement sacrificing the sec-
ond. rNA, instead, is able to achieve high throughput without affecting its capability to correctly
align reads, moreover, in order to meet the always increasing request of high alignment through-
put, we are considering the possibility to integrate compression methods in the rNA algorithm
(e.g. integrating Hamming-aware function and FM-indexes).

The second part of this dissertation was focused on the de novo assembly problem. In this
part we discussed the theoretical and practical problems related to the reconstruction of genomes
with short sequences. In particular we showed the weak points of (current) complexity analyses, of
assembling algorithms/heuristics, and of validation methods. The resulting picture is in some way
dusky: not only often assemblers are based on a small set of algorithmic ideas and differ among
one another only for the collection of implemented heuristics but, moreover, there is no clear and
accepted way to validate the results produced by these tools. This is particularly troublesome if we
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consider that, encouraged by low costs, an increasing number of projects already started aiming
at assembling new organisms using only NGS data.

Despite is commonly accepted that an high coverage is able to overcame problems introduced
by short reads and short inserts, we showed that available assemblers are not able to take advantage
of coverages higher than 50× and, moreover, we showed how an hold and expensive 8× Sanger
coverage allows to achieves better results. This fact raises the question if exchange read length
for coverage is worth the deal. Several published assemblies, and several ongoing projects, are
trying to solve this problem using hybrid datasets (i.e., datasets composed by reads generated
from several different technologies), but there is no general agreement on what technologies use
and in which proportions data should be generated. At the same time, several de novo assembler
are designed to take advantages from this hybrid datasets (e.g., Ray and SUTTA). We think that
this approach, coupled with the advent of single molecule sequencing and with improved validation
method could help to overcome many present problems.

In the meantime, in order to overcame some of the problems of this field, we proposed two
methods (eRGA and GapFiller) aiming at resolving de novo assembly under simplified hypothesis.
eRGA solves the de novo assembly problem in presence of a reference genome belonging to an
organism closely related to the sequenced one. GapFiller, instead, works in a simplified setting
trying “only” to close the gap between two paired reads, thus “locally” assembling a small portion
of the genome. We showed how both methods allow to partially solve de novo assembly problem
and, in different ways, to improve results achievable with standard available assemblers. GapFiller,
in particular, is still in its embryonic stage and has yet to achieve its full potential. We showed
how this tool is able to report as output a set of certified correct contigs, however we still have to
show how those certified contigs can be used to improve assembly of complex genome and/or to
reconstruct structural variations.

As far as the validation problems is concerned, we concentrated our efforts on the study of the
de novo validation techniques used so far. We started from the assumption that no widely accepted
solution exists and that most of the metrics used in the last ten years emphasized only contig size
while poorly capturing an overall “assembly quality”. From this point of view we proposed new
instruments able, on the one hand, to enhance data being provided as input and, on the other hand,
to evaluate de novo assembler’s results. We believe of primary importance the study performed
on the so called forensics features and on their correlation. Such a study not only demonstrated
once and for all the bad performances in predicting assembly quality of the most (ab)used metric
(N50), but it also showed the importance of carefully analyse features in order to design improved
assemblers. We believe that an instrument like the Feature Response Curve (FRC) coupled with a
deep understanding of assembly features could be the key for a more accepted and quality-driven
assemblies/assemblers evaluation. Despite its potentialities, FRC needs several enhancements. In
particular, FRC is now suited only for small (i.e., bacterial) genomes: we are now designing and
implementing a software able to extract a set of features and to plot the resulting FRC on genomes
of larger sizes.

Sanger sequencing analysis (based on a technology that remained substantially unchanged in
the last 10 years) required more than 10 years to became standard and globally accepted. NGS-
revolution has just started: until now the community has been more interested on technology
improvements (read’s length, error per base, etc.) than on standardizing procedures and analyses.
However, having in mind the final goal of Personal Genomics, widely accepted procedures and
tools will soon become a priority. All the contributions presented in this dissertation aim at
achieving such widely accepted standards (e.g., rNA, GapFiller), providing, at least, the elements
to start profitable discussions on how to improve current techniques and how to choose focus points
(e.g., forensics features).
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130 Bibliography

[51] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.

[52] D. Gusfield. Algorithms on strings, trees, and sequences: computer science and computational
biology. Cambridge University Press, 1997. Chapter 3.

[53] R. W. HAMMING. Error detecting and error correcting codes. BELL SYSTEM TECHNI-
CAL JOURNAL, 29(2):147–160, 1950.

[54] D. Hernandez, P. François, L. Farinelli, and et al. De novo bacterial genome sequencing:
millions of very short reads assembled on a desktop computer. Genome, 18:802–809, 2008.

[55] Nils Homer, Barry Merriman, and Stanley F Nelson. Bfast: an alignment tool for large scale
genome resequencing. PloS one, 4(11):e7767, January 2009.

[56] W. K. Hon, T. W. Lam, K. Sadakane, and et al. A space and time efficient algorithm for
constructing compressed suffix arrays. Algorithmica, 48(1):23–36, March 2007.

[57] D. S. Horner, G. Pavesi, T. Castrignano, and et al. Bioinformatics approaches for ge-
nomics and post genomics applications of next-generation sequencing. Brief Bioinform,
pages bbp046+, 2009.

[58] M. S. Hossain, N. Azimi, and S. Skiena. Crystallizing short-read assemblies around seeds.
BMC Bioinformatics, 10 Suppl 1:S16, 2009.

[59] S Howorka, S Cheley, and H Bayley. Sequence-specific detection of individual DNA strands
using engineered nanopores. Nature biotechnology, 19(7):636–9, July 2001.

[60] Sanwen Huang, Ruiqiang Li, Zhonghua Zhang, and et al. The genome of the cucumber,
cucumis sativus l. Nature genetics, 41(12):1275–81, December 2009.

[61] X. Huang, J. Wang, S. Aluru, S. P. Yang, and L. Hillier. Pcap: A whole-genome assembly
program. Genome Res., 13(9):2164–2170, 2003.

[62] Xiaoqiu Huang and Shiaw-Pyng Yang. Generating a genome assembly with pcap. Curr
Protoc Bioinformatics, Chapter 11:Unit11.3, Oct 2005.

[63] T. N. D. Huynh, W.-K. Hon, T.-W. Lam, and W.-K. Sung. Approximate string matching
using compressed suffix arrays. Theor. Comput. Sci., 352(1):240–249, 2006.

[64] A Hyvärinen, J Karhunen, and O Erkki. Independent Component Analysis. John Wiley &
Sons, first edition, 2001.

[65] A. Hyvärinen and Erkki Oja. A fast fixed-point algorithm for independent component anal-
ysis. Neural computation, 9(7):1483–1492, 1997.

[66] R. M. Idury and M. S. Waterman. A new algorithm for dna sequence assembly. J Comput
Biol, 2(2):291–306, 1995.

[67] I.F. Imam and Haleh Vafaie. An empirical comparison between global and greedy-like search
for feature selection. In Proceedings of the Florida AI Research Symposium (FLAIRS-94),
Pensacola Beach, FL, pages 66–70. Citeseer, 1994.

[68] S. Inenaga, H. Hoshino, A. Shinohara, and et al. On-line construction of compact directed
acyclic word graphs. In Discrete Applied Mathematics, volume 146, pages 156–179. Springer,
March 2005.

[69] O. Jaillon, J. M. Aury, B. Noel, A. Policriti, and et al. The grapevine genome sequence
suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449(7161):463–7,
September 2007.



Tesi di dottorato di Francesco Vezzi, discussa presso l’Università degli Studi di Udine
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