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Soggetta alle licenze creative commons (http://creativecommons.org/choose/).
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Preface

In 1944, Markov introduced four special families of subsets of a group G:

Definition P.1. ([41]) A subset X of a group G is called:

(a) elementary algebraic if there exist an integer n > 0, elements g1, . . . , gn ∈ G
and ε1, . . . , εn ∈ {−1, 1}, such that

X = {x ∈ G : g1x
ε1g2x

ε2 · · · gnxεn = eG};

(b) additively algebraic if X is a finite union of elementary algebraic subsets of
G;

(c) algebraic if X is an intersection of additively algebraic subsets of G;

(d) unconditionally closed if X is closed in every Hausdorff group topology on G.

Definition P.2. If G is a group, take x as a symbol for a variable, and denote
G[x] = G ∗ 〈x〉 the free product of G and the infinite cyclic group 〈x〉 generated by
x. We call G[x] the group of words with coefficients in G, or the group of words in
G, and its elements w(x), or simply w, words in G.

An elementary algebraic subset X of G as in Definition P.1 (a) will be denoted
by EG

w (or simply, Ew), where w is an abbreviation for the defining word

w(x) = g1x
ε1g2x

ε2 · · · gnxεn (1)

considered as an element of the free product G[x] = G∗ 〈x〉. We often consider w as
a function from G to G, and in this sense one can consider the elementary algebraic
subset Ew as the solution-set of the equation w(x) = eG in G.

Let EG denote the family of elementary algebraic subsets of a group G. Ob-
viously, every singleton is an elementary algebraic subset, so every finite subset
is additively algebraic (for other examples see below, and Example 2.43). Then
the family of algebraic subsets is closed under finite unions and arbitrary inter-
sections, and contains G and all finite subsets of G. So it can be taken as the
family of closed sets of a unique T1 topology ZG on G, called the Zariski topology
([19, 20, 21, 24, 25, 4, 26]).

Markov did not explicitly introduce this topology, although it was implicitly
present in [41, 42, 43] (through the algebraic closure of a subset X, i.e., the smallest
algebraic subset of the group G that contains X). It was explicitly introduced only
in 1977 by Bryant [11] under the name verbal topology. Here we keep the name
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Zariski topology and the notation ZG for this topology following this use since 2003
when the first drafts of [21, 22] were ready (their main results were reported later
in [18, 19, 20]).

Here comes the first supply of less trivial elementary algebraic subsets. Let
G be a group and g ∈ G. We shall see in Example 2.43, item 1, that the one-
element centralizer CG(g) is an elementary algebraic subset, and so the centralizer
CG(S) =

⋂
g∈S CG(g) of any subset S of G is an algebraic subset. In particular, the

center Z(G) is an algebraic subset.
In some cases these are essentially all the elementary algebraic subsets (see §7

about free groups).
A case when the Zariski topology has a very transparent description is that of

abelian groups. If G is an abelian group, then EG = {g + G[n] | g ∈ G, n ∈ N}, so
the family of algebraic subsets of G is E∪G. In other words, E∪G is the family of all
ZG-closed subsets of an abelian group G.

More recently, in a series of papers starting in 1999 with [8], Baumslag, Myas-
nikov and Remeslennikov developed the study of algebraic geometry over an abstract
group G: in analogy to the well-known Zariski topology from algebraic geometry, the
authors consider finite powers Gn of a group G, and introduce the Zariski topology
on Gn using solution sets of n-variable equations. In the case n = 1, this topology
is ZG.

In linear groups the term Zariski topology is used for a different standardly defined
topology. Namely, for a field K consider the topology AKn of the affine space Kn

having as a subbase of the closed sets the family of zero-sets of n-variable polynomials
over K. The full linear group GLn(K) (as well as its subgroups) carry the topology
induced by AKn2 (via the embedding in Kn2

). Usually this topology of the linear
groups is called Zariski topology. In order to avoid confusion, we use the term affine
topology, when we refer to this topology for a linear group G and denote it by AG.
In general, ZG ⊆ AG for a linear group G (Example 10.2 (a)), and they need not
coincide (Corollaries 8.23 and 9.25).

The cardinality

bd(G) = min{|S| : S ⊆ EG,
⋃

S = G \ {eG}}

is called the bound of G in[12]; G is called κ-bound for a (possibly finite) cardinal κ
if bd(G) ≤ κ (see [34, Definition 1]). Clearly, bd(G) ≤ |G|; while bd(G) <∞ if and
only if ZG is discrete. This definition was inspired by Podewski [52], where κ-bound
groups are called κ-gebunden (see also [33]), and groups G that are not κ-bound for
every κ < |G| are called ungebunden. In other words, ungebunden groups are those
G such that bd(G) = |G|.

To connect the bound to the Zariski topology we need to recall some notions from
topology. If (X, T ) is a topological space and κ is an infinite cardinal, a union of
≤ κ-many closed subsets is called an Fκ-set. The topology T is called a Pκ-topology,
if every Fκ-set is closed. Every topology T on X admits a coarsest Pκ-topology PκT
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The Markov topologies on a group and Markov’s problems vii

containing T , called the Pκ-modification of T (namely the topology having as a base
of its closed sets all Fκ-sets of (X, T )).

Let G be a group and let δG denote the discrete topology of G. For an infinite
cardinal κ, the Pκ-modification PκZG of the Zariski topology of G will be called
κ-Zariski topology of G. Clearly, PκZG is discrete for all κ ≥ |G|, but PκZG may be
non-discrete for some infinite κ < |G|. We call the chain of topologies

ZG ≤ PωZG ≤ . . . ≤ PκZG ≤ . . . ≤ P|G|ZG = δG

the Zariski rod of G. If ZG is not discrete, then bd(G) is infinite and the least
cardinal κ with PκZG = δG coincides with bd(G). This allows us to consider bd(G)
also as a measure of the failure of ZG to be discrete.

P.1 The Markov topologies on a group and Markov’s

problems

As noticed in [20], the family of unconditionally closed subsets of G coincides with
the family of closed subsets of a T1 topology MG on G, called the Markov topology
of G. It coincides with the infimum (taken in the lattice of all topologies on G) of
all Hausdorff group topologies on G. As every elementary algebraic subset is closed
in every Hausdorff group topology, one has that ZG ⊆MG.

A Hausdorff topological group is said to be precompact, if G is topologically
isomorphic to a subgroup of a compact Hausdorff topological group. In analogy
with MG, let PG be the infimum of all precompact Hausdorff group topologies on
G. If G admits no such topologies, then PG = δG is discrete. Call PG the precompact
Markov topology of G [21]. Clearly, MG ⊆ PG, so that in general

ZG ⊆MG ⊆ PG.

We refer to these three topologies on a group as the Markov topologies.
If G is abelian, then ZG = MG = PG is a Noetherian topology (see Theorem

4.10), although ZG = MG 6= PG may occur in some nilpotent groups of class 2
(see Proposition 11.39). In this work we also provide a large series of examples of
solvable groups G with discrete PG.

Note that (G,ZG), (G,MG) and (G,PG) are quasi-topological groups in the
sense of [2], i.e., the inversion and shifts are continuous (see also Corollary 4.4).
Nevertheless, these groups are almost never topological (for example, if a group is
abelian, this holds only if it is also finite). One of the aims of the paper is to provide
a series of example of infinite groups G such that (G,ZG), (G,MG) and (G,PG) are
(necessarily Hausdorff) topological groups.

Markov posed the following problem (without the explicit use of topologies):

Markov’s First Problem: Does ZG = MG hold true for an arbitrary group G?
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He proved that these two topologies coincide in the countable case [41], and
attributed the equality ZG = MG for abelian groups to Perel’man. However, a proof
of this fact never appeared in print until the independently obtained [20], [60], where
the authors prove that ZG = MG for groups G = A×

⊕
i∈I Hi, where A is an abelian

group, and each Hi is a countable group (see Theorem 4.11).
If the group G is infinite, the topology MG is discrete if and only if G is non-

topologizable, i.e., it does not admit a non-discrete Hausdorff group topology (see
Definition 11.13). In 1945, Markov [42, Problem 4] asked:

Markov’s Second Problem: Does there exist an infinite non-topologizable group?

This problem remained unsolved for many years, until Shelah [57] constructed
under CH a non-topologizable group of size ω1. Actually, Hesse [33] eliminated CH
from Shelah’s construction, thus presenting the first example of a non-topologizable
group in ZFC of size ω1. Finally, in 1980, Ol′shanskij [49] built up a countable
non-topologizable group in ZFC (for more details see §11.2).

An important connection between this problem of Markov and the bound was
found by Podewski [52]. He proved that a group G with bd(G) = |G| is always

topologizable. (More precisely, it admits the maximum number 22|G| of Hausdorff
group topologies, see Theorem 11.27.) Hesse [33] showed that this condition is not
necessary: for any uncountable cardinal λ he found a topologizable group G of size
λ with bd(G) = ω (so bd(G) < |G|).

Markov was interested also to describe the groups admitting a connected Haus-
dorff group topology. If τ is such a topology on a group G, then every proper
τ -closed subgroup H of G has index at least c. (Indeed, if τ is a connected Haus-
dorff group topology on G, then the non-trivial completely regular quotient space
G/H is connected, hence |G/H| = [G : H] ≥ c.) In particular, all proper MG-closed
subgroups of G must have index at least c. This is why Markov asked:

Markov’s Third Problem: If every proper MG-closed subgroup of a group G has
index ≥ c, does G admit a connected Hausdorff group topology?

Pestov [51] answered negatively the third Markov’s problem by a rather com-
plex counter-example. Later, Remus [55] noticed that a quite easy example can
be obtained using the symmetric groups G = S(X). Indeed, MG = τp(G) is the
point-wise convergence topology on G by Theorem 12.8, so every Hausdorff group
topology on G is totally disconnected (as MG is totally disconnected and this prop-
erty is preserved by taking finer topologies). Hence one must only ensure to have all
proper MG-closed subgroups of index at least c. This is possible choosing X with
|X| ≥ c, so obtaining a counter-example to Markov’s third problem (see Theorem
12.9 and Corollary 12.10 for details).
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Introduction

If P is a property of a topological space, we define a group G to be Z-P if the space
(G,ZG) satisfies P . Similarly, we introduce the notion of a M-P (respectively, P-
P) group, provided that (G,MG) (respectively, (G,PG)) satisfies P . In particular,
we will consider the following properties as property P : being cofinite (topological
space), Noetherian, compact, Hausdorff, discrete, irreducible, connected.

One of the aims of this work is to deduce topological properties of the space
(G,ZG) from the algebraic properties of G, or vice versa. Another purpose is to study
the behaviour of the Markov topologies under the standard passages to subgroups,
quotients, products (direct or semi-direct). Also, we consider some easier to deal
with topologies (as the Tăımanov topology recalled in Definition 1.13, the monomial
topology, or the other partial Zariski topologies introduced in §§4.2-4.3) that nicely
approssimate the Zariski topology and often coincide with it.

The last main issue of this thesis is to compare the properties of the Zariski
topology in the non-abelian case to those in the abelian one. We do this mainly
with nilpotent groups.

In §I.1, we fix the basic notation, while §1 is devoted to the the necessary pre-
liminaries. In particular, in §1.1 we recall some algebraic definitions from group
theory, in §1.2 we cover the set-theoretical topological background, and in §1.3 we
give some general results on quasi-topological groups (see Definition 1.5) that are
well-known to hold for topological groups. In the final §1.3.1 we recall the definition
of the Tăımanov topology TG on a group G, we give a few of its properties, and we
introduce its T1 refinement T ′G = TG ∨ cofG, as in general TG is not T1.

In §2 we begin to study one of the main tools of this work: the group G[x] of
words over a group G. First, §2.1 is dedicated to G[x], defined through a universal
property in §2.1.1. Then, in §2.1.2 we focus on its elements, the words w over G,
and we introduce various notions related to a word. For example, if w is as in (1),
we define the content ε(w) ∈ Z of w, as ε(w) =

∑n
j=1 εj (Definition 2.6), and we say

that w is a singular word if ε(w) = 0 (Definition 2.11).
In §2.2 we introduce the notion of verbal function of G, namely the evaluation

function fw : G→ G, determined by a word w ∈ G[x], mapping g 7→ w(g) (Definition
2.14). We dedicate the introductory §2.2.1 to definitions and to show that many
natural functions G→ G are verbal (Example 2.15).

Then, in §2.2.2 we define the universal words of G, namely words w ∈ G[x]
such that fw ≡ eG (Definition 2.17). The component-wise operation defines a group
structure on the set F (G) of verbal functions, so that F (G) is a quotient of G[x] by
the normal subgroup UG of G[x] consisting of the universal words of G, and defined
in (2.5). We define also the subgroup U singG of singular universal words, and through
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x Introduction

this we introduce the invariant u(G) of G in Definition 2.19, called the universal
exponent of G. Then u(G) ∈ N is the minimum natural such that every universal
word of G has content multiple of u(G). For example, it is immediate from the
definition that if exp(G) > 0, then u(G) | exp(G) (Lemma 2.20).

Using u(G) we define for every n ∈ N the classWn of groups G such that n | u(G)
(Definition 2.21), and we study the first properties of the invariant u(·) and of the
classes Wn (see Lemmata 2.23 and 2.24).

In §2.2.3 we talk about monomials over G, i.e. words of the form w = gxn ∈ G[x],
and we show in (2.8) how to associate a monomial wab to an arbitrary word w. In
§2.2.4 we prove that u(G) = exp(G) for an abelian group G (Lemma 2.32) and we
see that F (G) is represented by fw for monomials w, when G is abelian (Proposition
2.33). In §2.3 we study further the stability properties of the classes Wn, and we
prove u(S3) = 2 (Example 2.37), and u(G) = 2 for a class of semidirect products
(see Example 2.38).

Finally, in §2.4 we present the elementary algebraic set Ew (already introduced in
Definition P.1 (a)) as the preimage f−1

w ({eG}) of the verbal function fw associated
to w (see Definition 2.39). In §2.4.1 we give some basic properties of the family
EG for an abelian group G. Equation (2.13) classifies the elementary algebraic
subsets of an abelian group G, so that the following (2.14) completely describes EG,
using the already mentioned description of F (G) given in §2.2.4. Consequently,
the non-empty elementary algebraic subsets of an abelian group G are the cosets
of the n-socle subgroups G[n]. Then, in §2.4.2 we provide further natural examples
of (elementary) algebraic subsets (Examples 2.43 and 2.45), and we prove that the
family EG is stable under taking inverse image under verbal functions (Lemma 2.44).

One of the aims of this work is to study the Zariski topology ZG, having as closed
sets the algebraic subsets of G. To this end, we have to first study the family EG
of elementary algebraic subsets Ew = f−1

w ({eG}). Then, it is sufficient to consider
appropriate subsets W ⊆ G[x] such that EG = {Ew | w ∈ W}. The final §2.4.3
treats this argument.

In §3 we deepen the study of elementary algebraic subsets. We give some tech-
nical results which lead us to Theorem 3.4 and Theorem 3.6, describing some cases
when an elementary algebraic subset is a coset of a subgroup.

The class N2 of nilpotent groups of nilpotency class 2 is studied in §3.1. Here
we give some conditions under which an elementary algebraic subset is a coset (or a
union of cosets) of a subgroup, and in Theorem 3.14 we describe F (G) for G ∈ N2.
As an application, Corollaries 3.15 and 3.16 describe more specifically the words
w ∈ G[x] which determine all elementary algebraic subsets of a group G ∈ N2.

We use these results to completely describe EG when G ∈ N2 is either such that
G/Z(G) is torsion-free (Lemma 3.17), or G has prime exponent p > 2 (Lemma 3.18).

Then, in §3.2 we consider groups G ∈ N2 with exp(G) = 2, giving some general
properties in §3.2.1. In particular we obtain Corollary 3.19 which we use in §§3.2.2-
3.2.3 to describe EQ8 and ED8 , and to compute u(Q8) = 4 in Lemma 3.21, and
u(D8) = 4 in Lemma 3.22.
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In §3.3 we introduce and describe the classesW∗n ⊆ Wn, for an integer n ∈ N (see
Definition 3.23), and we study when some groups are contained in some W∗n. Using
the classesW∗n, we define the invariants u◦(G) ∈ N in (3.14), and u*(G) ∈ N in (3.15)
of a group G. We call u*-exponent of G the natural u*(G). Then u◦(G) | u*(G) and
u*(G) | u(G), and for example u◦(G) = u*(G) = 1 for every finite group G (Lemma
3.26), while u◦(G) = u*(G) = exp∗(G) when G is abelian (Corollary 3.28).

In §3.4 we introduce the notion of δ-word in G[x] (Definition 3.29). Lemma 3.30
shows that only center-free groups may admit a δ-word, and in Proposition 3.31 we
construct a δ-word for every free non-abelian group. The close connection of δ-words
to products becomes clear in §6.1.1.

In §4 we begin studying quasi-topological group topologies, and in particular the
topologies ZG, MG, PG. In Lemma 4.1 we classify quasi-topological group topologies
in term of continuity of an appropriate family of verbal functions. Proposition 4.3
gives some properties of F (G), and ZG. In Corollary 4.4 we provide a new argument
using verbal functions to prove the already discussed inclusions ZG ⊆ MG ⊆ PG.
In Proposition 4.6 we prove that, given a normal subgroup N of a group G, it is
ZG-closed if and only if the canonical map π : (G,ZG)→ (G/N,ZG/N) is continuous.
As a corollary, we get that Zn(G) is ZG-closed for every positive integer n.

In §4.1 we recall results from [21] about the properties of ZG for an abelian
group G. Then, we see in Theorem 4.10 that ZG = MG = PG is a Noetherian
topology, whose closed sets are the elements of E∪G. Fact 4.12 (b) and Corollary
4.13 determine the connected component of the identity in (G,ZG). Then, Fact 4.14
classifies abelian Z-irreducible groups, while Proposition 4.15 describes the subclass
of abelian Z-cofinite groups.

In §4.2 we introduce some partial Zariski topologies on G, namely topologies
having some elementary algebraic sets as a subbase for the closed sets. For example,
we introduce the monomial topology Tmon on a group G in Definition 4.22, we note
that Tmon = ZG when G is abelian (Example 4.23), and we prove that Tmon is
the cofinite topology when G is nilpotent, torsion free (Corollary 4.25). Then we
dedicate §4.3 to the centralizer topologies CG and C′G, introduced in Definition 4.20
and Definition 4.26 (see Lemma 4.28 for the first few properties they satisfy). Then
Lemma 4.32 proves that CG = TG for an FC-group G, while ZG = Tmon ∨ CG if
G ∈ N2 and G/Z(G) is torsion-free (Corollary 4.33). We conclude this chapter
proving that if G ∈ N2 is torsion-free, then ZGI = C′GI for every non-empty set I
in Theorem 4.34. The same conclusion holds for groups G ∈ N2 such that G has
prime exponent p > 2 (Theorem 4.35).

We begin §5 noting in (5.1) that MG �H⊇ ZG �H⊇ ZH ⊆ MH hold for every
subgroup H of a group G. Then we recall the definitions of some particular subgroup
embeddings in a group (Definition 5.2), and we show how they are related (see
diagram (5.2) for a quick reference). These definitions were introduced in [20] to
guarantee that also either ZG�H⊆ ZH or MG�H⊆MH hold.

The whole §6 is devoted to the study of the direct products and sums of groups.
We begin giving some general results that lead us to prove that if G =

∏
i∈I Gi is
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a direct product, and w ∈ G[x], then EG
w =

∏
i∈I E

Gi
wi

, for an appropriate family
of words wi ∈ Gi[x], for i ∈ I, uniquely determined by w (see Theorem 6.4). This
yields that the Zariski topology ZG of the direct product is contained in the product
topology

∏
i∈I ZGi .

Then we dedicate §6.1 to finite direct products. Here we mainly discuss when
a pair of groups G1, G2 satisfies the equality ZG1×G2 = ZG1 × ZG2 (such a pair is
called Z-productive in Definition 6.19). We also define the weaker notion of semi
Z-productive pair G1, G2, provided that both G1×{eG2} and {eG1}×G2 are ZG1×G2-
closed subsets of G1 × G2. Obviously, this is a necessary condition to have Z-
productivity, and we ask in Question 6 if it is also sufficient. In §6.1.1 we characterize
the groups that admit a δ-word as those G2 such that G1 × {eG2} ∈ EG1×G2 for
every group G1 (see Corollary 6.24). In §6.1.2 we focus on semi Z-productive pairs.

Corollary 6.30 proves that {eG1} ×G2

ZG1×G2 ⊆ Z(G1)[u(G2)] × G2 for every pair
G1, G2, so that a pair G1, G2 is semi Z-productive whenever

Z(G1)[u(G2)] = {eG1} and Z(G2)[u(G1)] = {eG2}

(see Corollary 6.31). In particular, if both G1, G2 are center-free, then the pair G1,
G2 is semi Z-productive.

On the other hand, we prove in Theorem 6.32 that Z(G1)[u*(G2)] × G2 ⊆
{eG1} ×G2

ZG1×G2 , so that if a pair G1, G2 is semi Z-productive, then

Z(G1)[u*(G2)] = {eG1} and Z(G2)[u*(G1)] = {eG2}

by Corollary 6.33.
Then, Theorem 6.36 gives a characterization of center-free groups in these terms,

proving that G is center-free if and only if G1 × {eG} is a Zariski closed subset of
G1 ×G for every group G1.

In §6.1.3 we consider only abelian pairs of groups, and we prove in Theorem
6.38 that for these pairs the semi Z-productivity is equivalent to the Z-productivity,
positively answering Question 6. This theorem also describes the structure of such
pairs of groups.

The following §6.2 is focused on direct sums. In Proposition 6.40 we describe
the elementary algebraic subsets of such groups (see equation (6.6)), and then we
prove in Corollary 6.41 that the Zariski topology ZS of a direct sum S =

⊕
i∈I Gi is

coarser than the sum topology (
∏

i∈I ZGi) �S induced by the product topology.
We study the centralizer topologies CG and C′G on products in §6.3, where we

prove the equality ZG = C′G for a class of groups G ∈ N2 in Theorem 6.48 (see also
Theorem 6.49 for a more topological description of ZG).

In §6.4 we consider direct products of finite groups, we give some general results
(see for example Remark 6.54), and then we determine the Zariski topology of direct
products and sums of finite, center-free groups in Theorem 6.55, proving for example

CG = C′G = ZG = MG = PG =
∏
i∈I

ZFi
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for such a direct product G =
∏

i∈I Fi.
In §6.5 we prove that an infinite direct product of groups in Wn belongs to W∗n

(Theorem 6.59). As a consequence, Corollary 6.61 shows that

u◦(GI) = u*(GI) = u(GI) = u(G)

for every group G and infinite set I. Then we conclude this part giving some results
on the Zariski closure of direct summands of groups (see Corollaries 6.63 and 6.65
for general results, and Corollaries 6.66 and 6.67 for more concrete cases). The final
§6.6 gives a complete description of the Zariski topology of the group Z2 × SI3 .
§7 provides a description of the Zariski topology of a free non-abelian group F ,

and the main Theorem 7.5 proves that CF = C′F = ZF . The following Corollary 7.7
generalizes this result to prove that CG = ZG =

∏
i∈I ZGi hold whenever {Gi | i ∈ I}

is a family of free non-abelian groups, and G =
∏

i∈I Gi.
§8 is dedicated to Heisenberg groups. We first study groups H = H(n,K) of

some particular n × n upper uni-triangular matrixes over a field K. The group
H is nilpotent of class two, and depending on the characteristic of the field K, H
is torsion-free (when charK = 0), or has exponent 4 (when charK = 2), or has
exponent a prime number p > 2 (when charK = p), according to Lemma 8.2. The
group H has two normal, not super-normal, subgroups defined in (8.2), L and M ,
both isomorphic to the abelian group (Kn+1,+), that are ZH-closed sets by Lemma
8.3.

In Lemma 8.7 we give a first description of the elementary algebraic subsets of
H, which is complete if charK 6= 2, allowing us to conclude ZH = C′H in this case,
by Corollary 8.9. When charK = 2 we also need Lemma 8.11 to describe ZH in
Corollary 8.12.

In §8.3 we turn our attention to the case n = 1, considering from now on the
group H = H(1, K). In Lemma 8.13 (resp., Theorem 8.18) we show that the
family CK ⊆ P(H) defined in (8.8) is a subbase of the ZH-closed sets if charK 6= 2
(resp., if charK = 2). This allows us to completely describe the topological space
(H,ZH), and in particular to prove that dim(H,ZH) = 3 in Corollary 8.22. All three
subgroups L, M , Z(H) are ZH-closed irreducible subsets of H, as well as H itself,
by Proposition 8.21.

Moreover, ML = ZL ( ZH �L( AL = AH �L (and the same holds for M), so that
also ZH ( AH by Lemma 8.3 and Corollary 8.23. It is also proved in Lemma 8.3
that the subgroups L and M are neither Zariski, nor Markov embedded in H (yet
L∩M = Z(H), being super-normal, is Zariski, Markov and Hausdorff embedded in
H).

The final §8.5 is dedicated to generalized Heisenberg groups. We first study
groups HR of 3× 3 upper uni-triangular matrixes over a Unique Factorization Do-
main R, for which we prove that ZHR = C′HR is Noetherian and dim(HR,ZHR) = 3
(Theorem 8.27). Then, for a K-vector space V , we use the canonical scalar product
in V to define the group HV of 3× 3 upper uni-triangular formal matrixes (see the
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definition in §8.5.1). We give some general properties and definitions, and then we
pay attention to the case when K is finite, and dimK V is infinite, that we assume
from now on. If char(K) = p > 2, then ZHV = C′HV = T ′HV , while if char(K) = 2,
then C′HV = T ′HV � ZHV (Theorem 8.29).

Finally, the only Z-irreducible sets of HV are the singletons, so dim(HV ,ZHV ) = 0
and HV has no ZG-atoms (Corollary 8.30).

In §9 the linear group G = GK over a field K is studied. If V is a K-vector space,
then G = K∗ n V is the semidirect product of K∗ with V , where K∗ acts on V via
scalar multiplications. If dimK V = n is finite, then G is a linear group (a subgroup
of upper triangular matrixes in GLn+1(K), see (9.1)). The group G is not nilpotent,
being center-free, but it is solvable of class two, as V = G′ is the commutator
subgroup of G by Lemma 9.1 (d). In particular, V is a normal subgroup of G, it is
a semidirect factor of G, but V is not super-normal in G by Lemma 9.5. Moreover,
V is a centralizer in G, hence an elementary algebraic subset of G, by Lemma 9.1
(a). Furthermore, V is Zariski embedded in G, and ZG �V = ZV = MV ⊆MG �V by
Lemma 9.5 and Corollary 9.18.

The question when the subgroup V is Hausdorff embedded in G is more subtle.
If dimK V is infinite, then V is Hausdorff embedded in G exactly when K = Fp for
some prime p ∈ P, by Corollary 9.10. So for all fields K 6= Fp for every p ∈ P, V is
not Hausdorff embedded in G. If in addition G is also countable (i.e. both K and
dimK V are countable), then V is also Markov embedded. For finite-dimensional V
we impose on the field K a condition (†) (i.e. either charK = 0 or charK = p > 0
and the extension K/Fp is not algebraic), ensuring that the subgroup V is not
Hausdorff embedded in G (Corollary 9.7). We do not know whether this condition
is necessary (see Question 15).
§9.1 is focused on ZG. In particular, Theorem 9.15 describes explicitly a subbase

B of ZG. Using this explicit description of ZG we prove that G is Z-Noetherian
(Proposition 9.21) and that the dimension of the space (G,ZG) is either 1 or 2,
depending on whether K is finite or infinite (Corollary 9.23). If dimK V is finite,
then also the affine topology AG is defined on G, and ZG ( AG by Corollary 9.25.

In §10 we study Z-Noetherian, M-Noetherian and P-Noetherian groups (see
Definition 10.1). We first recall known examples of classes of Z-Noetherian groups,
as for example abelian groups and linear groups (Example 10.2), and free groups by
Theorem 7.5. In §10.1 we prove the important criterion Theorem 10.6 for a group
to be Z-Noetherian. In §10.2 we give Theorem 10.12 that classifies directs products
or sums that are Z-Noetherian, thus extending Bryant’s results reported in Fact
10.3. In §10.3 we study Z-compact and M-compact groups, and in the final §10.4
we resume the permanence properties of the classes Z-Noetherian and Z-compact
groups.

Question 1. [21, Question 12.2] Let G be a group. If ZG is compact, must ZG be
necessarily Noetherian?

We answer negatively this question (see Example 11.7).
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We dedicate §11 to Z-Hausdorff, M-Hausdorff and P-Hausdorff groups, intro-
duced in Definition 11.1.

According to Fact 4.12 (a), the Zariski topology ZG of an infinite abelian group
is never Hausdorff (while it is Noetherian by a theorem of Bryant, see Example 10.2
(c)). This motivated the following question from [21].

Question 2. [21, Question 12.3] Does there exist an infinite group G such that its
Zariski topology ZG is compact Hausdorff?

We answer positively this question by means of series of examples (see again
Example 11.7). This also provides a negative answer to Question 1.

We study finite-center direct products in §11.1. Then in §11.2 we pay attention to
Z-discrete and M-discrete groups, and we recall classic and recent results on these
classes of groups. §11.3 is dedicated to P-Hausdorff groups, and in particular in
§11.3.1 we consider P-discrete groups, i.e. groups that do not admit a precompact
Hausdorff group topology. It is proved in Theorem 11.37 that a solvable divisible
non-abelian group G is P-discrete. In particular, ZG = MG 6= PG may occur for
some linear groups G that are nilpotent of class 2 (see Proposition 11.39). This
partially answers the following question from [21] about the coincidence of the three
topologies ZG,MG,PG on a nilpotent group G.

Question 3. [21, Question 12.1] Which of the equalities ZG = MG = PG is true
for nilpotent non-abelian groups?

In §12 we consider minimal group topologies (see Definition 12.1), we recall
classic examples, and then in §12.1 we specialize our study to the class of alge-
braically minimal groups, introduced in Definition 12.6 as groups G such that MG

is a compact Hausdorff group topology. For example, some permutation groups are
algebraically minimal, see §12.1.1. In the final §12.1.2 we determine when MG = PG

for algebraically minimal groups.

We give three diagrams recalling implications and counter-examples to non-
implications among properties considered in this work in §13, while the final §14
collects some open questions. For better understanding the problems, some other
questions are also spread in the text, next to the results that motivated them.

I.1 Notation

The set of natural numbers, integers, rationals and reals are denoted respectively
by N, Z, Q, R as usual. We denote by N+ the set of positive naturals, and by P the
set of prime numbers.

If n,m ∈ Z, we say that n divides m, and write n | m, if mZ ≤ nZ. For example,
n | 0 for every n ∈ Z, and 0 | m if and only if m = 0.
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If X is an (infinite) set, we denote by S(X) the symmetric group of X, consisting
of the permutations of X, and with Sω(X) its subgroup consisting of the permuta-
tions having finite support. Then the alternating subgroup A(X) is the subgroup
of Sω(X) consisting of even permutations; A(X) has index two in Sω(X), and in
particular is normal. If F ⊆ X, then we will denote the point-wise stabilizer of F
by SF (X) = {φ ∈ S(X) | φ(f) = f for every f ∈ F}.

When X is a finite set with n elements, we will also write Sn for S(X) = Sω(X),
and An for A(X).

The finite cyclic group with n elements is denoted by Zn, while D2n will stand
for the dihedral group of order 2n.

If X is a set, and α is a cardinal, we will let [X]<α = {Y ⊆ X | |Y | < α}. In
particular, we will often consider [X]<ω, the family of finite subsets of X.

For a set X, and a family B ⊆ P(X) of subsets of X, let B∪ denote the family of
finite unions of elements of B, and B∩ the family of finite intersections of elements
of B.
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1
Preliminaries

1.1 Algebraic facts

A group G is called divisible if for every n ∈ N and g ∈ G there exists x ∈ G such
that xn = g.

Given two elements g, h ∈ G, their commutator element is [g, h] = ghg−1h−1 ∈ G.
Note that [g, h] = eG if and only if gh = hg.

If A,B ⊆ G are subsets of G, we denote by [A,B] the subgroup of G generated
by the elements [a, b], for a ∈ A, b ∈ B. Then the commutator subgroup G′ = [G,G],
or derived subgroup, is the subgroup of G generated by all the commutators [g, h] of
elements g, h ∈ G. Then one can iterate this procedure defining G(2) = (G′)′, and in
general G(n+1) = (G(n))′, obtaining a descending chain of characteristic subgroups
G(n). If G(n) = {eG} for some n ∈ N+, then G is called solvable, and its solvability
class , or derived length, is the least n ∈ N+ such that G(n) = G. For example, a
group is solvable of solvability class 1 exactly when G′ = {eG}, i.e. it is abelian.
Note that G is solvable of solvability class 2 exactly when the commutator G(2) is
trivial, i.e. G′ is abelian; such groups are also called meta-abelian.

The commutator G′ also has the following universal property: for every normal
subgroup H of G, the quotient group G/H is abelian if and only if G′ ≤ H.

The center of a group G is the normal subgroup Z(G) = {g ∈ G | gh =
hg ∀h ∈ G}. Let Z1(G) = Z(G). Consider the quotient group G/Z(G), its
center Z

(
G/Z(G)

)
, and its preimage Z2(G) ≤ G under the canonical projection

π : G→ G/Z(G). Proceed by induction to define an ascending chain of characteris-
tic subgroups Zn(G). A group G is called nilpotent if Zn(G) = G for some n ∈ N+,
and its nilpotency class is the least n ∈ N+ such that Zn(G) = G. For an n ∈ N+, we
denote by Nn the class of nilpotent groups of nilpotency class n. Note that G ∈ N1

exactly when Z(G) = G, i.e. it is abelian. On the other hand, G ∈ N2 exactly when
the quotient group G/Z(G) is abelian and non-trivial, i.e. G′ ≤ Z(G) � G. In this
work, we will pay particular attention to groups belonging to N2.

It can be shown that a nilpotent group (of nilpotency class n) is also solvable
(of solvability class at most n). So one can think of both the solvability class and
(especially) the nilpotency class as a measure of the failure of G to be abelian.
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Consider the characteristic subgroup H1(G) of G consisting of elements which
have only finitely many conjugates in G, i.e. H1(G) = {x ∈ G | [G : CG(x)] < ω}.
If G = H1(G), then G is called FC-group (F inite-C onjugates classes). It can be
easily seen that G is an FC-group if and only if [G : CG(F )] < ω for every F ∈
[G]<ω. If G 6= H1(G), consider H1

(
G/H1(G)

)
, and its preimage H2(G) ≤ G under

the canonical projection π : G → G/H1(G). Proceed by induction, to define an
ascending chain of characteristic subgroups Hn(G). Then G is called FC-nilpotent
if Hn(G) = G for some n ∈ N+.

As Zn(G) ≤ Hn(G) for every n ∈ N+, it immediately follows that nilpotent
groups are FC-nilpotent.

If N �G, a subset T ⊆ G is called a transversal for N in G if T intersects every
coset of N at exactly one element.

A torsion group, or periodic group, is a group in which each element has finite
order. All finite groups are torsion.

For an integer n, the n-socle of G is the subset G[n] = {g ∈ G | gn = eG}. If G
is abelian, then G[n] is a subgroup. For example, G[1] = {eG} and G[0] = G. Then
G is said to be almost torsion-free , if G[n] is finite for every n > 0.

The exponent exp(G) of a torsion group G is the least common multiple, if it
exists, of the orders of the elements of G. In this case, the group is called bounded ,
and exp(G) > 0. Otherwise, or if G is not even torsion, it will be called unbounded,
and we conventionally define exp(G) = 0. Any finite group has positive exponent:
it is a divisor of |G|. Let G be an abelian group and m > 1 be an integer. Follow-
ing Givens and Kunen [30], we say that G has essential exponent m (denoted by
exp∗(G) = m), if mG is finite, but dG is infinite for every proper divisor of m.

If p ∈ P is a prime number, an abelian group G is said to be an elementary abelian
p-group if exp(G) = p. Note that, if G is an abelian group such that G[p] is not
trivial, then G[p] is an elementary abelian p-group. There exists a (unique) cardinal
number, denoted by rp(G) and called p-rank of G, such that G[p] ∼= ⊕rp(G)Zp.

For an abelian group G, recall that π(G) = {p ∈ P | rp(G) > 0}, and, if p ∈ P,
then it is defined the subgroup Gp = {g ∈ G | ∃n ∈ N png = 0} =

⋃
n∈NG[pn].

Let G = {Gi | i ∈ I} be a family of groups. Adopting terminology and notation
from abelian group theory, we denote by G =

∏
i∈I Gi the group having the cartesian

product of G as underlying set, with componentwise defined operation, and we call
G direct product of G. For an element g = (gi)i∈I ∈ G, we denote by supp(g) = {i ∈
I | gi 6= eGi} ⊆ I the set of indexes such that the correspondent coordinates of g are
non-trivial.

The subgroup S of G consisting of the elements g such that supp(g) is finite will
be called direct sum of G, and denoted by S =

⊕
i∈I Gi.

Let Q8 = {1,−1, i,−i, j,−j, k,−k} denote the quaternion group with 8 elements,
given by the group presentation

Q8 = 〈−1, i, j, k | (−1)2 = 1, i2 = j2 = k2 = ijk = −1〉
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte.

1.2. Topological preliminaries 3

where 1 is the identity element and −1 commutes with the other elements of the
group. Then

Z(Q8) = Q′8 = {1,−1} = {g2 | g ∈ Q8} = Q8[2],

and in particular Q8 ∈ N2.

The dihedral group D8 is defined by the following presentation, with e denoting
the identity element:

D8 = 〈ρ, σ | ρ4 = σ2 = e, σρσ−1 = ρ−1〉.

Then D8 = {e, ρ, ρ2, ρ3, σ, σρ, σρ2, σρ3}, D8[2] = D8 \ {ρ, ρ3} and

Z(D8) = D′8 = {e, ρ2} = {g2 | g ∈ D8}.

From this, it follows that D8 ∈ N2.

If A and B are subsets of a group G, we denote by A · B = AB = {ab | a ∈
A, b ∈ B} ⊆ G. If n ∈ Z, we sometimes denote by An = {an | a ∈ A} ⊆ G. This
notation may be confused with the cartesian product An =

∏n
i=1A, but will always

be clear by the context. For example, we have noted above that Q2
8 = Z(Q8) and

D2
8 = Z(D8).

1.2 Topological preliminaries

If X is a set, we denote by:

• ιX = {X, ∅} the indiscrete topology on X;

• δX = P(X) the discrete topology on X;

• cofX = {X \ F | F ∈ [X]<ω} ∪ {∅} the cofinite topology on X.

If (X, τ) is a topological space, and Y ⊆ X, we denote by Y
τ

the τ -closure of Y ,
i.e. the smallest τ -closed subset of X that contains Y .

Let us denote by τ c the family of τ -closed subsets. A subfamily B ⊆ τ c is said
to be:

• a base for τ c, or a base for τ -closed sets, if every element of τ c is an intersection
of elements of B;

• a subbase for τ c, or a subbase for τ -closed sets, if B∪ is a base for τ c, i.e. if
every element of τ c is an intersection of a finite union of elements of B.
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4 1. Preliminaries

In both cases, note that τ is the smallest topology such that B ⊆ τ c. Obviously, a
base for τ -closed sets is a subbase for τ -closed sets.

For example, B = {{x} | x ∈ X} is a subbase for cofX-closed sets, while EG is a
subbase for ZG-closed sets.

On the other hand, if X is a set, and B ⊆ P(X), then B can be considered as
the subbase of the closed sets a topology τB, such that B∪ is a base for τB. That is,
the family of intersections of elements of B∪ is the family of the closed sets of the
topology τB.

Let {(Xi, τi) | i ∈ I} be a family of topological spaces, and Bi ⊆ P(Xi) be a
subbase of the closed sets in Xi. Then X =

∏
i∈I Xi can be a equipped with the

product topology τ , denoted by
∏

i∈I τi, having the family {Bi ×
∏

i 6=j∈I Xj | i ∈
I, Bi ∈ Bi} as a subbase for closed sets. Equivalently, τ is the initial topology of
the family of canonical projections πi : X → (Xi, τi), for i ∈ I.

The topology cofX can be generalized as follows: let λ be an infinite cardinal
number. As the family B = [X]<λ ∪ {X} is stable under taking finite unions and
arbitrary intersections, it is the family of closed sets of a topology on X, denoted by
co-λX . Then [X]<λ is a subbase for co-λX-closed sets. For example, taking λ = ω,
we obtain the topology co-ωX = cofX .

A function f : X → Y will be called τ, σ-continuous if f : (X, τ) → (Y, σ) is
continuous. If (Y, σ) = (X, τ), then f will just be called τ -continuous.

Definition 1.1. A topological space X is:

(a) Noetherian, if X satisfies the descending chain condition on closed sets (or
equivalently, if it satisfies the ascending chain condition on open sets);

(b) irreducible, if X = F1∪F2 for closed subsets F1, F2 of X always implies X = F1

or X = F2;

(c) connected, if X = F1∪F2 for closed disjoint subsets F1, F2 of X always implies
X = F1 or X = F2.

Obviously, an irreducible space is connected.
If Y ⊆ X, then Y is an irreducible (resp., connected) subset of X if the subspace

(Y, τ �Y ) is irreducible (resp., connected).
The continuous image of an irreducible (resp., connected) space is still irreducible

(resp., connected).
If x ∈ (X, τ), let {Ci | i ∈ I} ⊆ P(X) be the family of connected subsets

of X containing x. Then the connected component of x in (X, τ) is defined as
c(x,X, τ) =

⋃
i∈I Ci. One can prove that c(x,X, τ) is a closed subset of X and that

the family {c(x,X, τ) | x ∈ X} is a partition of X.
A topological space X is totally disconnected if c(x,X, τ) = {x} for every x ∈ X.
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1.2. Topological preliminaries 5

Remark 1.2. (a) Obviously, a Noetherian space is compact, and a subspace of a
Noetherian space is Noetherian itself. Actually, a space is Noetherian if and
only if all its subspaces are compact. Hence, an infinite Noetherian space is
never Hausdorff.

(b) Given a topological space X and a natural number n, we write dimX ≥ n if
there exists a strictly increasing chain

F0 ⊆ F1 ⊆ . . . ⊆ Fn (1.1)

of non-empty irreducible closed subsets of X. The combinatorial dimension
dimX of a space X is the smallest number n ∈ N satisfying dimX ≤ n, if
such a number exists, or ∞ otherwise. Clearly, every Hausdorff space (as well
as every indiscrete space) has combinatorial dimension 0.

The following useful technique for building Noetherian spaces was proposed by
Bryant [11]:

Proposition 1.3 ([11]). Let X be a set, and X ∈ B ⊆ P(X) be such that:

• B is stable under taking finite intersections;

• B satisfies the descending chain condition.

Let τB be the topology having B as a subbase for τB-closed sets. Then τB is Noethe-
rian, and B∪ is the family of closed sets of τB.

If A is a ring, then charA denotes its characteristic.

Let K be a field, and d be a positive integer. Consider the vector space Kd, and
the ring K[x1, . . . , xd] of polynomials in d variables with coefficients in the field K.
Recall that the family B of zero-sets of those polynomials satisfies B = B∪ and is a
subbase of the closed sets of a Noetherian T1 topology AKd on Kd, which we will
call the affine topology. If X is a subset of Kd, the affine topology of X is defined as
AX = AKd �X . In particular, the linear group GLn(K) and all its subgroups carry
the topology induced by AKn2 (via the embedding in Kn2

). The following result is
folklore.

Fact 1.4. For every field K and for every positive integer d, the affine topology
AKd is Noetherian. In particular, for every linear group G, the affine topology AG
is Noetherian.
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1.3 Quasi-topological groups

Definition 1.5. Let G be a group, and τ a topology on G. The pair (G, τ) is called
quasi-topological group provided that the functions

(G, τ) → (G, τ)
x 7→ x · g ,

(G, τ) → (G, τ)
x 7→ g · x and

(G, τ) → (G, τ)
x 7→ x−1

are continuous.

For example, for every infinite cardinal number λ, the space (G, co-λG) is a T1

quasi-topological group. In particular, (G, cofG) is a T1 Noetherian quasi-topological
group. So if G is infinite, (G, cofG) is not Hausdorff, hence not a topological group.
On the other hand, (G, co-λG) is not Noetherian when G is uncountable and ω <
λ ≤ |G|.

In what follows we give some general results for quasi-topological groups. For a
reference on this topic, see for example [2].

Theorem 1.6. Let (G, τ) be a quasi-topological group.
(a) If S ⊆ G, then the τ -closure of S is

S =
⋂

U∈Vτ (eG)

U · S =
⋂

V ∈Vτ (eG)

S · V.

(b) If H is a subgroup with non-empty interior, then H is open.
(c) A finite-index closed subgroup of G is open.
(d) the τ -closure of a (normal) subgroup is again a (normal) subgroup.

Proof. To prove (a), (b) and (c) one only needs the inversion and shifts to be con-
tinuous, so proceed as in the case of topological groups.

(d) Let H be a subgroup of G, and H be its τ -closure. We have to show that H
is a subgroup, that is: H −1 ⊆ H and H ·H ⊆ H.

The hypothesis that the inversion function is τ -continuous guarantees thatH −1 ⊆
H−1 = H.

In the same way, for every h ∈ H, the (left) traslation in G by h is τ -continuous,
so h ·H ⊆ h ·H = H; as this holds for every h ∈ H, we get H ·H ⊆ H.

Now consider the (right) traslation in G by an element c ∈ H: it’s again contin-
uous, so

H · c ⊆ H · c ⊆ H ·H ⊆ H = H.

Considering the union over all c ∈ H, we finally obtain H ·H ⊆ H.
Composing translations we obtain that also conjugations are τ -continuous; so if

H is a normal subgroup and g ∈ G, then

g ·H · g−1 ⊆ g ·H · g−1 = H.
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Let (G, τ) be a quasi-topological group, and N be a normal subgroup of G.
Consider the quotient group G = G/N and the canonical map π : (G, τ)→ G. The
quotient topology τ of τ on G is final topology of π, namely τ = {A ⊆ G | π−1(A) ∈
τ}. In the notation above, the following results hold.

Proposition 1.7. If (G, τ) is a quasi-topological group, then (G, τ) is a quasi-
topological group, and the map π : (G, τ) → (G, τ) is continuous and open. In
particular, τ = {π(X) ⊆ G | X ∈ τ}.

Proof. Proceed as in the case of topological groups to verify that (G, τ) is a quasi-
topological group.

We prove that π is open. Let A ⊆ G, and note that π(A) ∈ τ if and only if
π−1π(A) ∈ τ . As

π−1π(A) = A ·N =
⋃
n∈N

An,

and (G, τ) is a quasi-topological group, we are done.

Proposition 1.8. If (G, τ) is a quasi-topological group, then the following are equiv-
alent.

(1) N is τ -closed;

(2) {eG} is τ -closed.

(3) τ is a T1 topology;

Proof. (1) implies (2). Let us prove that A = G \ {eG} is τ -open, and note that
this holds if and only if π−1(A) is τ -open. Being N is τ -closed, we have that
π−1(A) = G \N is τ -open.

(2) implies (3) holds as (G, τ) is a quasi-topological group by Proposition 1.7.
(3) implies (1). If τ is a T1 topology, in particular {eG} is τ -closed, so that

N = π−1({eG}) is τ -closed, being π continuous.

For a quasi-topological group (G, τ), we denote by c(G) = c(eG, G, τ) the con-
nected component of the identity element. The next result proves that it is a closed
normal subgroup of G.

Proposition 1.9. If (G, τ) is a quasi-topological group, then the connected com-
ponent of the identity element c(G) = c(eG, G, τ) is a closed normal subgroup of
G.

Proof. The connected component of a point is always a closed subset.
To prove that c(G)·c(G) ⊆ c(G), we show that g ·c(G) ⊆ c(G) for every g ∈ c(G).

So let g ∈ c(G). As both c(G) and g · c(G) are connected subsets of G, containing
g, also their union is connected, and obviously still contains eG. By maximality of
c(G), we get g · c(G) ⊆ c(G).
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Now we prove that c(G)−1 ⊆ c(G). As eG ∈ c(G)−1 ∩ c(G), the same argument
used above gives that c(G)−1 ∪ c(G) is a connected subset, containing c(G), hence
coincide with c(G).

So c(G) is a subgroup of G. To prove that is normal, let x ∈ G. Again, S =
xc(G)x−1 is a connected subset of G, containing eG, hence S ⊆ c(G).

The two following results are proved as in the case of topological groups.

Proposition 1.10. Let (G, τ) be a quasi-topological group, and N be a normal
subgroup of G. If both N with the induced topology, and G/N with the quotient
topology are connected, then also G is connected.

As a consequence, we obtain the following.

Corollary 1.11. If (G, τ) is a quasi-topological group, then the quotient space
G/c(G) is totally disconnected.

1.3.1 Topological groups

Definition 1.12. A topological group (G, τ) is called totally bounded if for every
non-empty open subset A of G there exists F ∈ [G]<ω such that G = F · A.

Note that the above definition is only apparently asymmetric, as one can easily
see that (G, τ) is totally bounded if and only if for every non-empty open subset A
of G there exists F ∈ [G]<ω such that G = A · F .

We conclude this part giving the definition and a few properties of the Tăımanov
topology of a group.

Definition 1.13. The Tăımanov topology TG on a group G is the topology having
the family of the centralizers of the elements of G as a subbase of the filter of the
neighborhoods of eG.

Then TG is a group topology, and for every element g ∈ G the subgroup CG(g)

is a TG-open (hence, closed) subset of G. In particular, {eG}
TG

= Z(G).

Lemma 1.14. If G is a group, then the following hold for TG.

1. TG is Hausdorff if and only if G is center-free.

2. TG is totally bounded if and only if G is an FC-group.

Proof. 1. It immediately follows from the above osservation that {eG}
TG

= Z(G).

2. As the family CG(F ), for F ∈ [G]<ω, is a local subbase of the filter of the
neighborhoods of eG, note that TG is totally bounded if and only if each of
them has finite index in G. And this is the definition of an FC-group.
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In particular, from Lemma 1.14, item 1, it follows that TG is not a T1 topology
in general. For this reason, we introduce here its T1-refinement.

Definition 1.15. The T1 Tăımanov topology is the supremum (in the lattice of all
topologies on G) T ′G = TG ∨ cofG.
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte.

10 1. Preliminaries



Tesi di dottorato di Daniele Toller, discussa presso l’Università degli Studi di Udine.
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2
The group of words, verbal functions

and elementary algebraic subsets

2.1 The group of words G[x]

2.1.1 The categorical aspect of G[x]

In the following fact we briefly recall the categorical definition of the free product
of two groups.

Fact 2.1. Let G,H be groups. Then there exist a unique (up to isomorphism)
group G ∗ H, together with two injective group homomorphism iG : G → G ∗ H,
iH : H → G ∗H satisfying the following universal property:
for every group Γ, for every group homomorphisms fG : G → Γ, fH : H → Γ, there
exists a unique group homomorphism f : G∗H → Γ such that f◦iG = fG, f◦iH = fH .

G � q

iG

##GGGGGGGGG

fG

��

HM m
iH

{{wwwwwwwww

fH

~~

G ∗H
f
���
�
�

Γ

In the notation of Fact 2.1, taking the infinite cyclic group H = 〈x〉, given a
group G we obtain a categorical description of G[x] = G ∗ 〈x〉 (see Definition P.2)
in the following corollary. The injective homomorphism iG : G → G[x], is the map
G 3 g 7→ g ∈ G[x]. Then, G[x] is determined by the universal property stated
below.

Corollary 2.2. Let G be a group. Then G[x] is the unique (up to isomorphism)
group satisfying the following universal property:
for every group Γ, for every group homomorphism φ : G→ Γ, and for every γ ∈ Γ,
there exists a unique group homomorphism φ̃ : G[x]→ Γ such that φ̃ �G= φ, φ̃(x) =
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γ.
G[x] 3 x

φ̃
��

_

��
G

φ //
, �

iG
;;vvvvvvvvvv
Γ 3 γ

In the following example we illustrate a few particular cases when Corollary 2.2
can be applied.

Example 2.3. 1. Consider the identity map idG : G→ G. By Corollary 2.2, for
every g ∈ G there exists a unique map evg : G[x]→ G, with evg �G= idG and
evg(x) = g, that we call evaluation map. Then we define w(g) = evg(w(x)).

G[x] 3 x
evg

��

_

��
G

idG //

;;vvvvvvvvvv
G 3 g

2. A G-endomorphism of G[x] is a group homomorphism f : G[x] → G[x] such
that f �G= idG, i.e. f ◦ iG = iG, and the following diagram commutes:

G[x]

f

��
G

iG
>>|||||||| iG // G[x]

Then f is uniquely determined by the element w = f(x) ∈ G[x], and now
we show that every choice of w ∈ G[x] can be made, thus classifying the
G-endomorphisms of G[x]. To this end, consider the map iG : G → G[x].
By Corollary 2.2, for every w ∈ G[x] there exists a unique G-endomorphism
ξw : G[x]→ G[x], with x 7→ w.

G[x] 3 x
ξw
��

_

��
G

iG//

;;vvvvvvvvvv
G[x] 3 w

Proposition 2.4. Let f : G1 → G2 be a group homomorphism. Then there exists a
unique group homomorphism F : G1[x] → G2[x] such that F �G1= f , F (x) = x. In
particular, if f is surjective (resp., injective), then F is surjective (resp., injective).

Moreover, the following hold:

1. if H ≤ G is a subgroup of G, then H[x] ≤ G[x];
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2.1. The group of words G[x] 13

2. if H � G is a normal subgroup of G, and G = G/H, then G[x] is a quotient
of G[x].

Proof. Composing f : G1 → G2 and the map iG2 : G2 → G2[x], we obtain f̃ =
iG2 ◦ f : G1 → G2[x]. Then apply Corollary 2.2 and use the universal property of

G1[x] to get F : G1[x]→ G2[x] such that F (x) = x and F �G1= f̃ .
If f is surjective, then F is surjective too, as F (G1[x]) contains both x and f(G1).
In Remark 2.16, item 1, we will explicitly describe the map F , so that by (2.3)

it will immediately follows that F is injective when f is injective.

1. In this case, the injection f : H ↪→ G gives the injection F : H[x]→ G[x].

2. The canonical projection f : G→ G gives F : G[x]→ G[x], and F is surjective.

The following corollary immediately follows by Proposition 2.4.

Corollary 2.5. The assignment G 7→ G[x], and the canonical embedding G
iG−→

G[x], define a pointed endofunctor $ : Gr → Gr in the category of groups and
group homomorphism. In other words, for every group homomorphism φ : G → H,
the following diagram commutes:

G

φ

��

iG // G[x]

$(φ)

��
H

iH // H[x].

2.1.2 The concrete form of G[x]

Here we recall the concrete definition of G[x] in terms of products of the form (2.1)
below that will be called words. In particular, if g ∈ G, then w = g ∈ G[x] will
be called constant word, and we define its lenght to be l(w) = 0 ∈ N. In the
general case, for w ∈ G[x] there exist n ∈ N+, elements g1, . . . , gn, gn+1 ∈ G and
ε1, . . . , εn ∈ {−1, 1}, such that

w = g1x
ε1g2x

ε2 · · · gnxεngn+1. (2.1)

If, gi 6= eG whenever εi−1 = −εi for i = 2, . . . , n, we say that w is a reduced word
in the free product G[x] = G ∗ 〈x〉 and we define lenght of w by l(w) = n, where
n ∈ N+ is the least natural such that w is as in (2.1).

Definition 2.6. If w ∈ G[x] is as in (2.1), we define the following notions.

• The constant term of w is ct(w) = w(eG) = g1g2 · · · gngn+1 ∈ G;
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• The content of w is ε(w) =
∑n

j=1 εj ∈ Z, which will also be denoted simply by
ε when no confusion is possible.

If w = g, then we define ε(w) = 0, ct(w) = w(eG) = g. We call singular a word
w such that ε(w) = 0. Note that by definition, all constant words are singular.

Below, we state a few easy equalities that will be used in the sequel (see also
§3.1).

Remark 2.7. 1. If ε2 = −ε1, then g1x
ε1g2x

ε2 = g1(g2g
−1
2 )xε1g2x

−ε1 = g1g2[g−1
2 , xε1 ].

2. If ε2 = ε1, then g1x
ε1g2x

ε2 = g1(g−1
2 g2)xε1g2x

ε1 = g1g
−1
2 (g2x

ε1)2.

3. Note that g1x
ε1g2x

ε2 = g1g2x
ε1 [x−ε1 , g−1

2 ]xε2 .

Both the functions ct : G[x] → G, mapping w 7→ ct(w), and ε : G[x] → Z,
mapping w 7→ ε(w), are surjective group homomorphisms. In particular, ct(G[x]′) ≤
G′ and ε(G[x]′) ≤ Z′ = {0}, so that G[x]′ ≤ ct−1(G′) ∩ ker(ε). In the following
theorem, we prove the reverse inclusion.

Theorem 2.8. For every group G, G[x]′ = ct−1(G′) ∩ ker(ε).

Proof. Let U = ct−1(G′) ∩ ker(ε) = {w ∈ G[x] | ct(w) ∈ G′, ε(w) = 0}. We have
already noted above that G[x]′ ⊆ U , and we prove the other inclusion by induction
on l(w) for a word w ∈ U .

Let w ∈ G[x] and assume w ∈ U . We first consider the case when l(w) = 0,
i.e. w = ct(w) is a constant word, so that w ∈ G′ ≤ G[x]′ as desired. So now let
w ∈ U be as in (2.1), and note that n = l(w) > 0 is even, so that for the base case
we have to consider n = 2, for which w = g1x

εg2x
−ε(g1g2)−1c, with c = ct(w) ∈ G′.

Let g = g1g2, and w0 = [g−1
2 , xε] ∈ G[x]′, so that by Remark 2.7, item 1, we have

w = gw0g
−1c = [g, w0]w0c ∈ G[x]′.

Now assume n > 2. As ε(w) = 0, we have εi+1 = −εi for some 1 ≤ i ≤ n − 1.
Then w = w1w2w3 for the words

w1 = g1x
ε1g2x

ε2 · · · gi−1x
εi−1 ,

w2 = gix
εigi+1x

εi+1(gigi+1)−1,

w3 = (gigi+1)gi+2x
εi+2 · · · gnxεngn+1.

Note that w = [w1, w2]w2w1w3, and that w2 ∈ G[x]′ for the base case, so that we
only have to show that w1w3 ∈ G[x]′. As

ct(w) = ct(w1) ct(w2) ct(w3) = ct(w1)eG ct(w3) = ct(w1w3),

we have ct(w1w3) ∈ G′, and similarly ε(w1w3) = 0. Then w1w3 ∈ G[x]′ by the
inductive hypothesis.
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2.1. The group of words G[x] 15

Definition 2.9. Let w ∈ G[x] be as in (2.1). Then w is called positively homogeneous
(resp., negatively homogeneous) if εi = 1 (resp., εi = −1) for every i = 1, . . . , n. We
call homogeneous a word that is either positively or negatively homogeneous.

Note that w ∈ G[x] is positively homogeneous if and only if w−1 ∈ G[x] is
negatively homogeneous. For example, if n ∈ N+, then the words xn and x−n are
homogeneous. If w is positively (resp., negatively) homogeneous, then ε(w) = l(w)
(resp., ε(w) = − l(w)).

If n ∈ N+, let

Whom,n = {g1xg2x · · · gnxgn+1 | g1, g2, . . . , gn, gn+1 ∈ G} ⊆ G[x] (2.2)

be the family of homogeneous words w ∈ G[x] with ε(w) = n.

Below, we state a few easy general equalities that will be used in the sequel (see
also §3.1).

Remark 2.10. Let w = b1xb2x · · · bsx ∈ G[x] be a positively homogeneous word.
Then w = w for a word w ∈ G[x] such that:

1. if s = ε(w) is even, then w = b′1(b2x)2b′3(b4x)2 · · · b′s−1(bsx)2;

2. if s = ε(w) is odd, then w = b′1(b2x)2b′3(b4x)2 · · · b′s−2(bs−1x)2bsx.

In fact, just define b′2i+1 = b2i+1b
−1
2i+2 for every integer 0 ≤ i ≤ s/2.

Definition 2.11. Let w ∈ G[x]. If w is as in (2.1), then we define the set of
coefficients of w as coeff(w) = {g1, g2, . . . , gn, gn+1} ⊆ G. If w = g is constant, we
let coeff(w) = {g}.

Then we define the following notions.

• Cw = CG(coeff(w)) ≤ G.

• Nw = [coeff(w), G] �G.

The next lemma is straightforward.

Lemma 2.12. For w ∈ G[x], one has Nw ≤ G′ and the following are equivalent:

• Cw = G;

• coeff(w) ⊆ Z(G);

• Nw = {eG}.
See Corollary 2.27 for further properties on the case when the conditions in the

above lemma hold.

Finally, we give the following definition.

Definition 2.13. If w = g1x
ε1g2x

ε2 · · · gnxεngn+1 ∈ G[x] is a word in G, we define
εi(w) =

∑i
j=1 εj for integers i = 1, . . . , n.

If w is a word as in Definition 2.13, then obviously εn(w) = ε(w), as defined in
Definition 2.6.
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16 2. The group of words, verbal functions and elementary algebraic subsets

2.2 Verbal functions

2.2.1 Definition and examples

Definition 2.14. A word w ∈ G[x] determines the associated evaluation function
fGw : G→ G. We will often write fw for fGw . We call verbal function of G a function
G→ G of the form fw, and we will denote by F (G) the set of verbal functions on
G.

If w ∈ G[x] and g ∈ G, sometimes we will also write w(g) for the element fw(g).
So a priori, if f is a verbal function, then f = fw for a word w ∈ G[x] as in (2.1).

Moreover, f ∈ F (G) is called homogeneous (resp., positively, negatively) verbal
function if f = fw for a homogeneous (resp., positively, negatively) word w ∈ G[x].

Note that fw : G → G is the only map such that fw ◦ evg = evg ◦ ξw for every
g ∈ G, i.e. making the following diagram commute:

G[x]
ξw //

evg

��

G[x]

evg

��
G

fw // G.

Obviously, f = fw ∈ F (G) is positively homogeneous if and only if f−1 = fw−1 ∈
F (G) is negatively homogeneous.

Example 2.15. Some very natural functions G → G are verbal. Those one pre-
sented in items 2–5 are also homogeneous:

1. The constant functions.

2. The identity map of G is the function fx : g 7→ g.

3. The inversion function of G is fx−1 : g 7→ g−1.

4. More generally, for every integer n ∈ Z, the word xn ∈ G[x] determines the
verbal function fxn : g 7→ gn.

5. The left translation in G by an element a ∈ G is the function fax : g 7→ ag,
and the right translation is the function fxa : g 7→ ga.

6. For an element a ∈ G, the word w = axa−1 determines the conjugation by a,
as fw : g 7→ aga−1.

7. If ε ∈ {±1}, and a ∈ G, the word w = [a, xε] = axεa−1x−ε ∈ G[x] determines
the verbal function fw : g 7→ [a, gε]. We will call commutator verbal function a
function of this form.
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte.
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Remark 2.16. 1. Let φ : G1 → G2 be a group homomorphism, and

F = $(φ) : G1[x]→ G2[x]

be as in Proposition 2.4. If w ∈ G[x] is as in (2.1), then

F : w 7→ F (w) = φ(g1)xε1φ(g2)xε2 · · ·φ(gn)xεnφ(gn+1). (2.3)

By (2.3), it immediately follows that F is injective when f is injective.

Moreover, one can easily see that φ ◦ fw = fF (w) ◦φ, i.e. the following diagram
commutes:

G1
fw //

φ
��

G1

φ
��

G2

fF (w) // G2

(2.4)

2. In particular, we will often consider the case when φ is the canonical projection
π : G → G/N , if N is a normal subgroup of G. In this case, let G = G/N
be the quotient group, and for an element g ∈ G, denote g = π(g) ∈ G. If
w = g1x

ε1g2x
ε2 · · · gnxεn ∈ G[x], denote also w = g1x

ε1g2x
ε2 · · · gnxεn ∈ G[x].

Then (2.4) (with φ = π) gives π ◦ fw = fw ◦ π.

2.2.2 Universal words

The group operation on G[x] induces a group operation on F (G) as follows. If
w1, w2 ∈ G[x], let w = w1w2 ∈ G[x] be their product, and consider the verbal
functions fw1 , fw2 , fw ∈ F (G). Obviously, fw is the pointwise product fw1 · fw2 of
fw1 and fw2 , namely the map fw : g 7→ fw1(g)fw2(g) = fw(g). With this operation,
(F (G), ·) is a group, with identity element the constant function eF (G) : g 7→ eG for
every g ∈ G. If w−1 is the inverse of w ∈ G[x], then the inverse of fw ∈ F (G) is
fw−1 , and will be denoted (fw)−1.

For S ⊆ G,

(fw)−1(S) = {(fw)−1(s) | s ∈ S} = {fw−1(s) | s ∈ S}

will denote the image of S under (fw)−1 = fw−1 , while f−1
w (S) = {g ∈ G | fw(g) ∈ S}

will denote the preimage of S under fw.

Consider the surjective group homomorphism ΦG : G[x] → F (G), w 7→ fw.
Then F (G) ∼= G[x]/UG, where UG is the kernel

UG = ker(ΦG) = {w ∈ G[x] | ∀g ∈ G fw(g) = eG}. (2.5)

Definition 2.17. If G is a group, and w ∈ G[x], we will say that w is a universal
word for G if w ∈ UG.
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18 2. The group of words, verbal functions and elementary algebraic subsets

Note that a word w ∈ G[x] is universal exactly when Ew = G.

Example 2.18. 1. If w ∈ UG, then obviously ct(w) = fw(eG) = eG.

2. If G has k = exp(G) > 0, then w = xk ∈ G[x] is a non-singular universal word
for G, i.e. fw ≡ eG is the constant function.

The singular universal words will play a prominent role, so we set

U singG = {w ∈ UG : ε(w) = 0}.

Obviously, U singG = UG ∩ ker ε, so U singG is a normal subgroup of G[x] and UG/U singG ,
being isomorphic to a subgroup of the cyclic group G[x]/ ker ε ∼= Z is cyclic as
well. Let u(G) ∈ N be the generator of the cyclic subgroup of Z, corresponding to
UG/U singG under this isomorphism. In other words,

ε(UG) = {ε(w) : w ∈ UG} = u(G)Z.

Definition 2.19. Given a group G, the natural u(G) is called the universal exponent
of G (u-exponent, for short).

As UG/U singG
∼= UG ker ε/ ker ε, one can easily deduce that

G[x]/UG ker ε ∼= ε(G[x])/ε(UG) ∼= Z/ u(G)Z.

Hence, either u(G) = 0, i.e. UG = U singG , or u(G) > 0 and in this case u(G) = [G[x] :
UG ker ε].

Lemma 2.20. If G is a bounded group, then u(G) > 0 and u(G) | exp(G).

Proof. Let exp(G) = n. Then n > 0 and obviously xn ∈ UG, so that n ∈ u(G)Z.

In particolar, note that if G is the trivial group, then exp(G) = 1, so that
u(G) = 1, as in fact x ∈ UG.

We will see in Lemma 2.32 that actually u(G) = exp(G) for an abelian group G.
This equality does not hold in general even for finite groups, see Example 2.37, item
1, where we will consider the case of G = S3, for which u(S3) = 2, while exp(S3) = 6.

Definition 2.21. Define W0 as the class of all groups G having u(G) = 0. For
n > 0 let

Wn = {G : n | u(G)} = {G : n | ε(w) for every w ∈ UG}.

Obviously, every group is in W1. Note that G ∈ W0 if and only if ε(UG) = {0},
i.e. every universal word is singular; equivalently, G has no non-singular universal
words.
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2.2. Verbal functions 19

It immediately follows by the definitions that W0 ⊆ Wn for every n ∈ N, and
that Wm ⊆ Wn whenever n | m. In particular, if n ∈ N+, then

Wn =
⋂
{Wd | 1 ≤ d ≤ n, d | n}.

Note that for example also the following holds:

W1 ⊇ W2 ⊇ . . . ⊇ Wn! ⊇ . . . ⊇ W0.

In the first item of the following lemma we prove that W0 is the intersection of any
infinite family of classes Wn.

Lemma 2.22. (a) Let N ⊆ N be an infinite subset of N. Then

W0 =
⋂
n∈N

Wn.

(b) If n1, . . . , nk ∈ N+, and n is the least common multiple of these numbers,
then

Wn =
⋂
{Wni | 1 ≤ i ≤ k}. (2.6)

Proof. (a). Let G ∈
⋂
n∈NWn, and let w ∈ UG. Then, ε(w) ∈ nZ for every n ∈ N ,

and being N infinite, we get ε(w) = 0.
(b). For every i = 1, . . . , k we have ni | n, so that Wn ⊆ Wni and the inclusion

Wn ⊆
⋂
{Wni | 1 ≤ i ≤ k} is obvious. For the converse, let G ∈

⋂k
i=1Wni , and let

w ∈ UG. Then, ni | ε(w) for every i = 1, . . . , k, so that n | ε(w).

Lemma 2.23. Let u(G) = m. Then the following hold.

1. There exists w0 ∈ UG with ε(w0) = m.

2. G ∈ Wm.

3. On the other hand, if m ∈ N satisfies condition 1 and 2, then m = u(G).

4. If k ∈ N, and G ∈ Wk, then either k = m = 0 or 0 6= k | m (so that
Wm ⊆ Wk). In particular,

Wm =
⋂
{Wk | k ∈ N, G ∈ Wk}. (2.7)

Proof. 1. Just note that m ∈ mZ = ε(UG).

2. Immediately follows by the definition of Wm.

3. If m = 0, then G ∈ W0 implies u(G) = 0.

So let m ∈ N+ be such that G ∈ Wm and there exists w̃ ∈ UG with ε(w̃) = m.
In particular, m = ε(w̃) ∈ ε(UG) = u(G)Z, so that u(G) 6= 0 and u(G) | m. As
G ∈ Wm, we have m | u(G). Being m, u(G) ∈ N+, they coincide.
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20 2. The group of words, verbal functions and elementary algebraic subsets

4. If G ∈ Wk, then ε(UG) = mZ ≤ kZ. From this, it follows the inclusions
Wm ⊆ Wk and Wm ⊆

⋂
k∈N
G∈Wk

Wk. The reverse inclusion of (2.7) follows by

item 2.

By equation (2.7), it follows that Wu(G) is the smallest among the classes Wn

containing G. Equivalently, either u(G) = 0, and G ∈ Wn for every n ∈ N, or
u(G) 6= 0 is the greatest n ∈ N such that G ∈ Wn. In particular, by Lemma 2.22
(a) and Lemma 2.23, item 4, it follows that

u(G) =

{
0 if G ∈ W0,

the least common multiple of {k ∈ N | G ∈ Wk} otherwise.

In the following lemma we will use the notation introduced in Remark 2.16, item
2.

Lemma 2.24. Let φ : G → H be a surjective group homomorphism, and F =
$(φ) : G[x]→ H[x] be as in Proposition 2.4. If w ∈ UG, then F (w) ∈ UH .

In particular, if n ∈ N and H ∈ Wn, then G ∈ Wn.

As a consequence, u(H) | u(G).

Proof. If w = g1x
ε1g2x

ε2 · · · gnxεngn+1, then F (w) = φ(g1)xε1φ(g2)xε2 · · ·φ(gn)xεnφ(gn+1)
by equation (2.3). Now, if h = φ(g) ∈ H, we have F (w)(h) = φ(w(g)) = φ(eG) = eH ,
so that F (w) ∈ UH .

If H ∈ Wn, and w ∈ UG, then ε(w) = ε(F (w)) ∈ nZ. This proves that G ∈ Wn.

Now, from H ∈ Wu(H), we deduce that G ∈ Wu(H) as well. This proves that
u(H) | u(G), according to Lemma 2.23, item 4.

Remark 2.25. Let [G, x] = 〈[g, x] | g ∈ G〉 be the subgroup of G[x] generated by
all commutators [g, x], g ∈ G. It is easy to see that [G, x] is a normal subgroup
of G[x], being the kernel of the natural surjective homomorphism G[x] → G × 〈x〉
mapping w 7→ (ct(w), xε(w)). In particular,

[G, x] = ker(ct) ∩ ker(ε).
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/).
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2.2. Verbal functions 21

Then, we have the following map of relevant subgroups of G[x] considered so far.

G[x]

iiiiiiiiiiiiiiiiiiiii

G[x]/ ker(ε)∼=Z
WWWWWWWWWWWW

WWWWWWWWWWW

ct−1(G′)

UUUUUUUUUUUUUUUUUU ker(ε)

ggggggggggggggggggggggggg

ker(ct)

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[ ct−1(G′) ∩ ker(ε) = G[x]′

UG
UG/UsingG

∼=u(G)Z
UUUUUUUUU

UUUUU

ker(ct) ∩ ker(ε) = [G, x]

ggggggggggggggggggggg

U singG = UG ∩ ker(ε) = UG ∩G[x]′

Using the normal subgroup UG of G[x], we can define a congruence relation ≈ on
G[x] as follows: for a pair of words w1, w2 ∈ G[x], we define w1 ≈ w2 if w1UG = w2UG.
Then

w1 ≈ w2 if and only if ΦG(w1) = ΦG(w2), i.e., fw1 = fw2 .

In particular, a word w is universal when w ≈ eG[x], i.e. fw is the constant function
eG on G. Note that the quotient group is G[x]/≈ = G[x]/UG ∼= F (G).

A second monoid operation in F (G) can be introduced as follows. If w is as in
(2.1), and w1 ∈ G[x], one can consider the word ξw(w1) = g1w

ε1
1 g2w

ε2
1 · · · gnwεn1 gn+1

obtained substituting w1 to x in w and taking products in G[x]. We shall also denote
by w ◦ w1 the word ξw(w1). On the other hand, one can consider the usual compo-
sition of the associated verbal functions fw, fw1 ∈ F (G). Then the composition of
words is compatible with the composition of functions, in the sense that

fw ◦ fw1 = fw◦w1 ∈ F (G).

With this operation, (F (G), ◦) is a monoid, with identity element the identity func-
tion idG = fx of G, mapping idG : g 7→ g for every g ∈ G. Obviously, (F (G), ◦) is a
submonoid of the monoid (GG, ◦) of all self-maps G→ G.

2.2.3 Monomials

Even if a group G has a quite simple structure (for example, is abelian), the group
of words G[x] may be more difficult to study (for example, G[x] is never abelian,
unless G is trivial). As we are more interested in its quotient group of verbal function
F (G), it will be useful to consider some subset W ⊆ G[x] such that G[x] = W · UG,
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22 2. The group of words, verbal functions and elementary algebraic subsets

i.e. ΦG(W ) = {fw | w ∈ W} = F (G), i.e. F (G) = W/≈. In the following §2.2.4
we will present such an appropriate subset W ⊆ G[x] in the case when G is abelian,
while in §3.1 we will consider the case of groups G ∈ N2.

A homogeneous word of the form w = gxm, g ∈ G,m ∈ Z, will be called a mono-
mial. One can associate a monomial to an arbitrary word w = g1x

ε1g2x
ε2 · · · gnxεngn+1 ∈

G[x] as follows, letting

wab = ct(w)xε(w) = g1g2 · · · gngn+1x
ε1+ε2+···+εn ∈ G[x]. (2.8)

The monomials in G[x] do not form a subgroup unless G is trivial. Never-
theless, one can “force” them to form a group, by taking an appropriate quo-
tient of G[x]. Indeed, recall the surjective homomorphism G[x] → G × 〈x〉 map-
ping w 7→ (ct(w), xε(w)) considered in Remark 2.25. Then the group G × 〈x〉
“parametrizes” in the obvious way all monomials of G[x] (although the group oper-
ation is not the one from G[x]).

Note that if w ∈ UG, then wab = xε(w) by Example 2.18, item 1. In particular,
xε(w) ∈ UZ(G). Now we will slightly generalize this result. While w 6= wab as
elements of G[x] (except in trivial cases), the next theorem (see item 2) proves that
fw �Cw= fwab �Cw . In item 3, we will use the notation introduced in Remark 2.16,
item 2.

Theorem 2.26. Let G be a group, and w ∈ G[x].

1. If g ∈ G and z ∈ CG(g) ∩ Cw, then w(zg) = w(gz) = w(g) · zε(w).

2. If z ∈ Cw, then w(z) = ct(w) · zε(w). In particular, fw �Cw= fwab �Cw .

3. Consider the canonical map π : G → G/Nw = G. Then the words w, (w)ab ∈
G[x] satisfy w ≈ (w)ab. In particular, π◦fw = π◦fwab, so that for every g ∈ G

w(g)Nw = wab(g)Nw. (2.9)

Proof. 1. If w = g1x
ε1g2x

ε2 · · · gnxεngn+1 ∈ G[x], then

w(zg) = g1(zg)ε1g2(zg)ε2 · · · gn(zg)εngn+1 =

= g1g
ε1g2g

ε2 · · · gngεngn+1 · zε(w) = w(g) · zε(w).

2. Follows taking g = eG in item 1.

3. Note that coeff(w) ≤ Z(G), so Cw = G, and Corollary 2.27 implies that
w ≈ (w)ab in G[x]. Obviously, (w)ab = wab.

By Remark 2.16, item 2, we have π ◦ fw = fw ◦ π and π ◦ fwab = fwab ◦ π, so
that π ◦ fw = π ◦ fwab .
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The following corollary is a straightforward application of Theorem 2.26, item 2.

Corollary 2.27. If w ∈ G[x] satisfies Cw = G, then w ≈ wab.

The next result is a corollary of Theorem 2.26, item 3.

Corollary 2.28. If w ∈ G[x] is a non-singular universal word for G, then the
quotient group G/Nw is bounded and its exponent divides ε(w).

In particular, G/G′ is bounded and its exponent divides ε(w).

Proof. As Ew = G, it follows from (2.9) that gε(w) ∈ Nw for every g ∈ G, which
gives the conclusion.

The last assertion follows from the fact that G′ contains Nw.

Remark 2.29. Let m ∈ Z, G be a group, N �G, and finally let G = G/N . Then
the following conditions on N are equivalent, and will be denoted as condition (Em).

• Either m = 1 or the quotient group G/N is bounded, and its exponent divides
m− 1;

• (G/N)[m− 1] = G/N ;

• gm−1 ∈ N for every g ∈ G;

• gmN = gN for every g ∈ G;

• xm ≈ x as words in G/N [x].

In this case, if w ∈ G[x] has ε(w) = m, then the words wab = ct(w)xm and
ct(w)x in (G/N)[x] satisfy

wab ≈ ct(w)x.

Corollary 2.30. Let w ∈ G[x] and consider a subgroup N satisfying Nw ≤ N �G
and condition (Eε(w)). Then for every g ∈ G we have

w(g)N = ct(w)gN. (2.10)

Proof. Follows from (2.9) and the fact that gε(w)N = gN for every g ∈ G.

Let us say immediately that we do not know if a non-trivial group G with
u(G) = 1 exist (see Question 4 below). The following theorem gives some nec-
essary conditions on a group G to to have u(G) = 1, i.e. to admit a word w ∈ UG
with ε(w) = 1.

Theorem 2.31. Let G be a group, and w ∈ UG with ε(w) = 1 (so that u(G) = 1).
Then the following hold.

1. Nw = G. In particular, G′ = G.
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2. Cw = {eG}, so that TG = δG. In particular, G is center-free.

3. If N �G, then u(G/N) = 1.

Proof. Note that wab = ct(w)xε(w) = x ∈ G[x].

1. Consider the canonical map π : G→ G/Nw = G, and let w = ϑ(π)(w) ∈ G[x].
Note that (w)ab = ct(w)xε(w) = x ∈ G[x], so that w ≈ x by Theorem 2.26,
item 3.

By Lemma 2.24, w ∈ UG. Then also x ∈ UG, so that G is trivial, and Nw = G.

2. If g ∈ Cw, then w(g) = wab(g) by Theorem 2.26, item 2, so that eG = g.

3. Immediately follows by Lemma 2.24, as u(G/N) | 1.

Question 4. Does there exist a non-trivial group G with u(G) = 1?

In Lemma 2.50 we will prove that only the trivial group admit a w ∈ UG with
ε(w) = 1 and l(w) ≤ 3.

2.2.4 A leading example: the abelian case

A case when F (G) has a very transparent description is that of abelian groups. Let
(G,+, 0G) be an abelian group. While G[x] is not abelian in any case, its quotient
F (G) becomes indeed abelian, and so we will keep additive notation also to denote
words w ∈ G[x]. Remind that we really are interested only in the evaluation function
fw ∈ F (G) associated to w, and to its preimage EG

w = f−1
w ({0G}) = {g ∈ G |

fw(g) = 0G} (see Definition 2.39).
Then, Corollary 2.27 applies to every word w ∈ G[x], giving w ≈ wab = ct(w) +

ε(w)x, and in particular, letting

W = {wab | w ∈ G[x]} = {g + nx | g ∈ G, n ∈ Z} ⊆ G[x],

we have W/≈ = G[x]/≈, so that

F (G) = {fg+nx | g ∈ G, n ∈ Z}.

For these reasons, when G is abelian, we will only consider such words w ∈ W .
These observations are heavily used in computing F (G) for an abelian group G
(hence also EG, see Example 2.4.1).

Now we prove that u(G) = exp(G) for an abelian group G. Compare this result
with Lemma 2.20.

Lemma 2.32. Let G be an abelian group, with exp(G) = n. Then u(G) = n. In
particular, G ∈ Wn.
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Proof. As nx ∈ G[x] obviously is a universal word for G, we have n ∈ ε(UG), so that
u(G) | n.

Now we prove that ε(UG) = u(G)Z ≤ nZ. Let w ∈ UG. Then also wab ∈ UG, and
ε(w) = ε(wab), so we can assume w = g + kx. Then g = 0G by Example 2.18, item
1, so that w = kx. If exp(G) = 0, then k = 0. If exp(G) = n > 0, then either k = 0,
or k 6= 0 and n | k. In any case, k ∈ nZ.

Note that the surjective homomorphism ΨG : G[x] → G × Z, mapping w 7→
(ct(w), ε(w)), has kernel ker(ΨG) = ker(ct)∩ ker(ε) = G[x]′ by Theorem 2.8, so that
G[x]/G[x]′ ∼= G × Z. So, if one considers the quotient G[x]/G[x]′, the canonical
projection G[x]→ G[x]/G[x]′ is exactly w 7→ wab = ct(w) + xε(w). Moreover, being

F (G) ∼= G[x]/UG abelian, we have that UG ≥ G[x]′, and that F (G) ∼= G[x]/G[x]′

G[x]′/UG
is a

quotient of G× Z.
Here we give an explicit description of the group F (G).

Proposition 2.33. If G is an abelian group, then:

F (G) ∼=

{
G× Z if exp(G) = 0,

G× Zn if exp(G) = n > 0.

Proof. Let n = exp(G) ∈ N. Note that Ψ′G : G × Z → F (G), mapping (g, k) →
fg+kx, is a surjective group homomorphism, and that (g, k) ∈ ker(Ψ′G) if and only if
g + kx ∈ UG. Then ker(Ψ′G) = {0G} × nZ by Lemma 2.32.

In §3.1 we use similar reductions for groups G ∈ N2.

2.3 Further properties of the universal exponent

In the following lemma we give an easy generalization of the last part of Lemma
2.32, about the relation between the content of universal words and the exponent of
the center of the group.

Lemma 2.34. Let G be a group, and n ∈ N. If Z(G) ∈ Wn, then G ∈ Wn. In
particular, if exp(Z(G)) = n, then G ∈ Wn.

Proof. Let w ∈ UG. Then wab = xε(w) ∈ Z(G)[x] by Example 2.18, item 1, and so
wab ∈ UZ(G). As Z(G) ∈ Wn, we conclude ε(w) = ε(wab) ∈ nZ as desired.

The last part follows by Lemma 2.32, as Z(G) ∈ Wexp(Z(G)).

As a consequence of the above lemma one obtains the following dichotomy.
If u(Z(G)) = 0 (i.e., Z(G) is unbounded), then u(G) = 0 as well. Otherwise,
u(Z(G)) > 0 and u(Z(G)) | u(G).



Tesi di dottorato di Daniele Toller, discussa presso l’Università degli Studi di Udine.
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Corollary 2.35. Let n ∈ N, and N be a normal subgroup of a group G such that
G/N ∈ Wn. Then G ∈ Wn.

In particular, if [G : N ] = p ∈ P, then G ∈ Wp.

Proof. The first part immediately follows by Lemma 2.24. If [G : N ] = p, then
G/N ∼= Zp is abelian and has exponent p, so that G/N ∈ Wp by Lemma 2.32.

Let {Gi | i ∈ I} be a family of groups. If i0 ∈ I, then obviously
∏

i0 6=i∈I Gi

is a normal subgroup of
∏

i∈I Gi, and Gi0
∼=
(∏

i∈I Gi

)
/
(∏

i0 6=i∈I Gi

)
. Similarly,⊕

i0 6=i∈I Gi is a normal subgroup of
⊕

i∈I Gi, and Gi0
∼=
(⊕

i∈I Gi

)
/
(⊕

i0 6=i∈I Gi

)
.

So we can apply Corollary 2.35 to obtain the following result.

Corollary 2.36. Let n ∈ N, and {Gi | i ∈ I} be a family of groups. Assume that
Gi0 ∈ Wn for some i0 ∈ I. Then the following hold.

1.
∏

i∈I Gi ∈ Wn.

2.
⊕

i∈I Gi ∈ Wn.

In Lemma 6.13 we will generalize Corollary 2.36, item 1, using a different, direct
proof.

The next example uses Corollary 2.35 to show that every non-trivial permutation
group G = Sω(X) is in W2. Then we also prove that u(S3) = 2.

Example 2.37. 1. Let X be a set with |X| > 2, and G = Sω(X). As G′ = A(X)
has index 2 in G, Corollary 2.35 applies, and G ∈ W2. In particular, Sn ∈ W2

for every n > 2.

2. Here we build a universal word w̃ for S3 with ε(w̃) = 2. Note that S3 ∈ W2

by item 1, thus 2 will be the minimum among positive contents of universal
words for S3, so u(S3) = 2 by Lemma 2.23, item 3. Moreover, exp(S3) = 6, so
that u(S3) 6= exp(S3).

Let

w̃ = (12)x(12)x(12)x(12)x(12)x−1(12)x−1 =
(
(12)x

)4(
(12)x−1

)2
.

To prove that Ew̃ = S3, it suffices to check that
(
(12)g

)2
=
(
(12)g−1

)2
for

every g ∈ S3.

• If g ∈ A3, then also g−1 ∈ A3, so both (12)g and (12)g−1 are elements of

S3 \ A3, i.e. 2-cycles (transpositions), so
(
(12)g

)2
=
(
(12)g−1

)2
= id.

• If g ∈ S3 \ A3, then g = g−1 is a 2-cycle, so (12)g = (12)g−1.

In the following example, we produce a family of non-abelian bounded groups K
with u(K) = 2 or u(K) = 4.
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Example 2.38. Let B be an abelian bounded group, with exp(B) = n > 2. Then
the inversion − idB is a non-trivial automorphism of B of order two.

(a) Consider the semidirect product K = B o 〈− idB〉. (For example, if B = Zn
is the cyclic group of order n, then K is the dihedral group D2n of order 2n.)

It can be easily verified that Z(K) = B[2] × 〈idB〉, so that K is center-free
whenever B has no non-trivial 2-torsion elements. Note also that

exp(K) =

{
n if n is even,

2n otherwise.

Observe that for every g ∈ K \B one has g2 = eK and gB = K \B, as B has
index two in K. Then, K ∈ W2 by Corollary 2.35, so that in particular every
universal word for K has even content.

(b) Suppose that exp(B) = n is not divisible by 4, i.e. n is either odd or n = 2k
for an odd integer k. Here we explicitly build a word w̃ ∈ UK with ε(w̃) = 2.
Thus 2 will be the minimum among positive contents of universal words for
K, and so u(K) = 2 by Lemma 2.23, item 3.

Let

n′ =

{
n, if n is odd;

n/2, otherwise,

and observe that n′ is an odd integer. Now fix an element σ ∈ K \B. Finally,
let

w̃ =
(
σx
)n′+1(

σx−1
)n′−1

. (2.11)

To prove that w̃ is universal, consider an element g ∈ K:

– if g ∈ B, then also g−1 ∈ B, and both σg and σg−1 are elements of K \B.
So (σg)n

′+1 = eK = (σg−1)n
′−1 and w̃(g) = eK ;

– if g ∈ K \B, then g = g−1 and σg = σg−1 ∈ B. So w̃(g) = (σg)2n′ = eK ,
as n divides 2n′.

(c) If 4 | n = exp(B), we don’t know if K has any universal word of content 2.
Anyway, in the general case (i.e. for every n > 2) the word

ṽ =
(
σx
)n+2(

σx−1
)n−2 ∈ K[x] (2.12)

has ε(ṽ) = 4, and arguments as those above show that ṽ ∈ UK . In particular, if
K ∈ Wm, then m 6= 0 and m | 4, i.e. m ∈ {1, 2, 4}. We have already established in
item (a) that K ∈ W2, and K ∈ W1 is obvious, so what we really do not know is
whether K ∈ W4. So if 4 | n, then either u(K) = 2 and K /∈ W4, or u(K) = 4 and
K ∈ W4.
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2.4 Elementary algebraic subsets

This subsection is focused on the family EG ⊆ P(G), consisting of preimages
f−1
w ({eG}), rather than on the group G[x], consisting of words w, or its quotient

F (G), consisting of verbal functions fw.

Definition 2.39. If w ∈ G[x], we define an elementary algebraic subset of G to be
the preimage

EG
w = f−1

w ({eG}) = {g ∈ G | fw(g) = eG} ⊆ G.

The above definition is of course equivalent to Definition P.1 (a), and we keep the
definition of (additively) algebraic subsets accordingly. Then the algebraic subsets
form the family of ZG-closed sets, and EG is a subbase for ZG-closed sets; while
the additively algebraic subsets are exactly the members of E∪G, and are a base for
ZG-closed sets.

Example 2.40. Note that if w = g is a constant word, then either Ew = G or
Ew = ∅ (depending on whether g = eG or g 6= eG).

2.4.1 A leading example: the abelian case II

Let G be an abelian group (see §2.2.4). Then the elementary algebraic subset of G
determined by fg+nx is

Eg+nx =

{
∅ if g + nx = 0G has no solution in G,

G[n] + x0 if x0 is a solution of g + nx = 0G.
(2.13)

On the other hand, if n ∈ Z, and g ∈ G, then G[n] + g = Enx−ng. So the
non-empty elementary algebraic subsets of G are exactly the cosets of the torsion
subgroups of G:

EG \ {∅} = {G[n] + g | n ∈ N, g ∈ G}. (2.14)

One can verify that EG is stable under taking finite intersections, and satisfies the
descending chain condition. Then Proposition 1.3 implies that E∪G is the family of
all the ZG-closed subsets of an abelian group G. In other words, every algebraic
subset of G is additively algebraic. See §4.1 for consequences and more results on
the Zariski topology of an abelian group.

Remark 2.41. It follows from Example 2.40 and (2.13) that if G is abelian, and
w ∈ G[x] is singular, then either Ew = G or Ew = ∅.

Now we prove an easy result that we will use later in Corollary 3.28 and Corollary
4.13.

Lemma 2.42. Let G be an abelian group, and assume that G is a finite union of
elementary algebraic subsets determined by non-singular words. Then G is bounded.
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Proof. Let G =
⋃k
i=1G[ni] + gi for elements gi ∈ G and integers ni ∈ N+, as

1 ≤ i ≤ k. If m =
∏k

i=1 ni, then G[ni] ⊆ G[m], so that G =
⋃k
i=1G[m] + gi. Then

[G : G[m]] is finite, and so mG ∼= G/G[m] is finite. As m 6= 0, we deduce that G is
bounded.

2.4.2 Further examples

Here we provide examples in the non-abelian case.

Example 2.43. 1. If g ∈ G, then the centralizer CG(g) coincides with Ew, where
w = gxg−1x−1 ∈ G[x] (see also Example 2.15, item 7). Hence the central-
izer CG(g) is an elementary algebraic subset of G. Therefore, the centralizer
CG(S) =

⋂
g∈S CG(g) of any subset S of G is an algebraic subset. In particular,

the center Z(G) is an algebraic subset.

2. By Example 2.15, item 4, for every n ∈ N the word xn ∈ G[x] determines
the verbal function fxn : g 7→ gn. Hence, the elementary algebraic subset
Ew = G[n] is the n-torsion subset of G. If G is abelian, every G[n] is a
subgroup of G, and these (together with their cosets, of course) are all the
non-empty elementary algebraic subsets of G (see (2.14)).

3. Let n ∈ N. Here we shall provide some easy examples of cases when the
elementary algebraic subset EG

xn = G[n] is not a coset of a subgroup, as indeed
eG ∈ G[n] and its generated subgroup may be the whole group. To this
end, it suffices to consider a simple group G such that {eG} 6= G[n] 6= G, as
then, being the subset G[n] invariant under conjugations, the subgroup N it
generates is normal in G, and we conclude N = G.

Let G be a non-abelian finite simple group. Then |G| is even by Feit-Thompson
theorem, so that {eG} 6= G[2] 6= G.

As another example, let G be a compact, connected, simple Lie group (for
example, the group G = SO3(R) will do). Then G is covered by copies of T
(see for example [1]), so that {eG} 6= G[n] 6= G for every n > 1.

4. By item 2, we have that G[2] = Ex2 . Here we slightly generalize this example
studying Ew for a homogeneous word w = g1xg2x (note that w = x2 when
g1 = g2 = eG).

Then w = a−1(g2x)2, for a = g2g
−1
1 , by Remark 2.7, item 2, so that

Ew = {g ∈ G | (g2g)2 = a} = {g−1
2 h ∈ G | h2 = a} = g−1

2 {g ∈ G | g2 = a}

is a coset of the ‘square roots’ of the element a ∈ G.

Note that if Ew 6= ∅, i.e. if a = b2 for some b ∈ G, then g−1
2

(
CG(b)[2]

)
b ⊆ Ew.
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Lemma 2.44. For every group G, the family EG is stable under taking inverse
image under verbal functions.

Proof. For every pair w,w′ ∈ G[x], consider the verbal function fw and the elemen-
tary algebraic subset Ew′ . Then

f−1
w Ew′ = f−1

w f−1
w′ ({eG}) = (fw′ ◦ fw)−1({eG}) = f−1

w′◦w({eG}) = Ew′◦w, (2.15)

so that f−1
w Ew′ ∈ EG.

As a first application of Lemma 2.44, we see that the translate of an elementary
algebraic subset is still an elementary algebraic subset.

Example 2.45. 1. By Example 2.15 (5), the left translation in G by an element
g ∈ G is the verbal function fgx, and so by (2.15) we have

gEw = f−1
g−1xEw = Ew◦g−1x = Ew(g−1x). (2.16)

Similarly, Ewg = Ew◦xg−1 . Note that ε(w ◦ g−1x) = ε(w) = ε(w ◦ xg−1).

2. If a ∈ G, then CG(a) = Ew, for the word w = axa−1x−1 ∈ G[x] by Example
2.43, item 1. By (2.16), its left coset determined by an element g ∈ G is
gCG(a) = Ew1 for

w1 = w ◦ (g−1x) = a(g−1x)a−1(g−1x)−1 = ag−1xa−1x−1g.

Note also that, for w2 = gw1g
−1 = (gag−1)xa−1x−1, we have Ew2 = Ew1 =

gCG(a).

On the other hand, CG(a)g = gg−1CG(a)g = gCG(g−1ag), so that {gCG(a) | a, g ∈ G}
is the family of all cosets of one-element centralizers in G. It coincides with
{Ew | ∃a, g ∈ G w = (gag−1)xa−1x−1} ⊆ EG.

Remark 2.46. Let us fix a group G. We will now consider the iterated images of
G under $n, for n ∈ N+, and to this end, we need to introduce a countable set of
variables {xn | n ∈ N+}. Then applying $ we obtain the following diagram:

G
$−→ G[x1]

$−→ (G[x1])[x2]
$−→
(
(G[x1])[x2]

)
[x3]

$−→ . . . (2.17)

If n ∈ N+, we let Gn = G[x1, . . . , xn] = $n(G), and it can be proved that if
σ ∈ Sn, then

Gn
∼= G[xσ(1), . . . , xσ(n)] ∼= G ∗ 〈x1〉 ∗ 〈x2〉 ∗ · · · ∗ 〈xn〉.

Every w = w(x1, . . . , xn) ∈ Gn determines the associated evaluation function of
n variables over G, that we denote fw : Gn → G, in analogy with Definition 2.14.

Finally, one can define Ew ⊆ Gn as the preimage Ew = f−1
w ({eG}), and consider

the family {Ew | w ∈ Gn} as a subbase of the closed sets of a topology on Gn.
These observations are the basis of a theory of algebraic geometry over groups,

recently started with [8] and developed in a series of subsequent papers. In this
work, we will concentrate on the case when n = 1, considering only verbal functions
fw : G→ G of one variable, and elementary algebraic subsets Ew ⊆ G.
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2.4.3 Further reductions

As already noted above, to study F (G) it is sufficient to consider a subset W ⊆ G[x]
such that F (G) = ΦG(W ) = W/≈. Since our effort is really devoted to the study of
the Zariski topology ZG on a group G, hence to the family EG, a further reduction
is also possible as follows.

As an example to introduce this reduction, consider the abelian groupG = Z×Z2,
and the verbal functions fw, fw′ ∈ F (G), associated to w = 2x,w′ = 4x ∈ G[x].
Then fw 6= fw′ , and yet Ew = f−1

w ({0G}) = {0Z} × Z2 = f−1
w′ ({0G}) = Ew′ .

Another example of a more general property could be the following: consider a
word w ∈ G[x], and its inverse w−1 ∈ G[x]. Obviously fw 6= fw−1 in general, but for
an element g ∈ G we have fw−1(g) = eG if and only if fw(g) = eG. In particular, the
preimage under fw and fw−1 of {eG} coincide:

Ew−1 = f −1
w−1 ({eG}) = {g ∈ G | fw−1(g) = eG} =

= {g ∈ G | fw(g) = eG} = f−1
w ({eG}) = Ew.

So Ew = Ew−1 in every group G, and in Remark 2.47 below we slightly generalize
this result.

So we will consider another equivalence relation ∼ on G[x] defined as follows: for
a pair of words w1, w2 ∈ G[x], we define w1 ∼ w2 if Ew1 = Ew2 . Obviously, w ≈ w′

implies w ∼ w′.
For example, as noted above w ∼ w−1 for every w ∈ G[x].

Remark 2.47. Let w ∈ G[x], and s ∈ Z. Consider the element ws ∈ G[x], and
note that ε(ws) = sε(w) and ws(g) = (w(g))s for every g ∈ G. Hence, Ews = {g ∈
G | (w(g))s = eG} = f−1

w (G[s]) is the preimage of G[s] under fw.
In particular, if G[s] = {eG}, then Ews = Ew, i.e. w ∼ ws.

Then, in describing EG, we can restrict ourselves to a subset W ⊆ G[x] of
representants with respect to the equivalence ∼, that is such that the quotient set
W/∼ = G[x]/∼. For example, if W ⊆ G[x] satisfies F (G) = {fw | w ∈ W}, that is
G[x]/≈ = W/≈, then G[x]/∼ = W/∼. As we have seen in §2.2.4, in the abelian case
the set W = {gxn ∈ G[x] | n ∈ N, g ∈ G} satisfies G[x]/≈ = W/≈, so that this W
will do.

We shall see in §3.1 the case of groups G ∈ N2.

Remark 2.48. Note that from Theorem 2.26, item 2, it follows that EG
w ∩ Cw =

EG
wab
∩ Cw for every word w ∈ G[x]. In particular, if Cw = G, then EG

w = EG
wab

.

Finally, note that fw(g) = eG if and only if fawa−1(g) = eG holds for every a ∈ G,
so that w ∼ awa−1. Then, in describing EG, there is no harm in assuming that a
word w = g1x

ε1g2x
ε2 · · · gnxεngn+1 ∈ G[x] has gn+1 = eG (or g1 = eG); indeed, from

now on, we will often consider exclusively words w of the form

w = g1x
ε1g2x

ε2 · · · gnxεn ∈ G[x]. (2.18)
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Lemma 2.49. Let v ∈ G[x]. Then v ∼ w for a word w ∈ G[x] as in (2.18), with
ε(w) = |ε(v)| ≥ 0.

Proof. By Remark 2.47, we have that v ∼ v−1, and ε(v−1) = −ε(v), so that we can
assume ε(v) ≥ 0.

Then, by the above discussion, v ∼ w for a word w as in (2.18), and with
ε(w) = ε(v).

Recall (Question 4) that we do not know if a non-trivial group G can have
u(G) = 1, i.e. can admit a w ∈ UG with ε(w) = 1. Now we give some necessary
conditions such a word must satisfy.

Let w ∈ UG, and assume w to be as in (2.18). Note that if w has ε(w) = 1, then
l(w) is odd. If l(w) = 1, then w = gx, and g = ct(w) = w(eG) = eG, so that w = x
and G is trivial. The following lemma proves that l(w) 6= 3.

Lemma 2.50. Let G be a group, and let w ∈ UG with ε(w) = 1 and l(w) ≤ 3. Then
l(w) = 1 and G is trivial.

Proof. Let w = g1x
ε1g2x

ε2g3x
ε3 ∈ UG have ε(w) = 1. Then exactly one among

ε1, ε2, ε3 equals −1, while the others equal 1.

Moreover, for every g ∈ G we have g1g
ε1g2g

ε2 =
(
g3g

ε3
)−1

, so that also the word
g3x

ε3g1x
ε1g2x

ε2 ∈ UG. Similarly, g2x
ε2g3x

ε3g1x
ε1 ∈ UG too. Then we can assume

ε1 = ε3 = 1 and ε2 = −1, so that w = g1xg2x
−1g3x. Now w(eG) = eG gives

g1g2g3 = eG, while w(g2) = eG gives g1g2g3g2 = eG, from which we deduce g2 = eG.
Then w = g1g3x has l(w) = 1 and G is trivial.
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3
General properties of words and

elementary algebraic subsets

We begin this section with an immediate corollary of Theorem 2.26, item 1.

Lemma 3.1. Let G be a group, w ∈ G[x], and let S be a subset of G such that
eG ∈ S ⊆ CG(Ew) ∩ Cw ∩G[ε(w)]. Then S · Ew = Ew.

Proof. By Theorem 2.26, item 1, if z ∈ S and g ∈ Ew, then w(zg) = w(g)zε(w) = eG,
so that also zg ∈ Ew. This proves that S · Ew ⊆ Ew, while Ew ⊆ S · Ew trivially
holds as eG ∈ S.

A relevant corollary of this lemma tells us that some elementary algebraic subsets
are union of cosets of Z(G).

Corollary 3.2. Let G be a group, and let w ∈ G[x]. If Z(G) ⊆ G[ε(w)], then Ew is
a union of cosets of Z(G).

Proof. Apply Lemma 3.1 to S = Z(G) ⊆ CG(Ew) ∩ Cw.

Lemma 3.3. Let w ∈ G[x] be such that eG ∈ Ew (i.e. ct(w) = eG), and let ε = ε(w).
Then the following hold.

(a) If S ⊆ Cw, then S∩Ew = S[ε]. In particular Cw∩Ew = Cw[ε] and Z(G)∩Ew =
Z(G)[ε].

(b) If w is a singular word, then Z(G) ⊆ Cw ⊆ Ew. In particular, Ew is a union
of cosets of Z(G).

(c) If w is a non-singular universal word for G, then Z(G) is bounded and its
exponent divides ε.

Proof. Note that if g ∈ Cw, then w(g) = gε by Theorem 2.26, item 2.
(a). In particular, for an element g ∈ S ⊆ Cw we have that g ∈ Ew if and only

if g ∈ G[ε], which yields S ∩ Ew = S ∩G[ε] = S[ε].
(b). Immediately follows from (a) and Corollary 3.2.
(c). In this case, Ew = G in (a) gives Cw = Cw[ε] and Z(G) = Z(G)[ε].



Tesi di dottorato di Daniele Toller, discussa presso l’Università degli Studi di Udine.
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Note that if G is an abelian group, and w is a non-trivial universal word for
G, then w is also non-singular. Then by Lemma 3.3 (c) it follows that if G is an
abelian group and w is a non-trivial universal word for G, then G is bounded and
exp(G) | ε(w).

Theorem 3.4. Let w ∈ G[x], and consider a subgroup Nw ≤ N �G. Then:
(a)

(Ew)ε(w) ⊆ (f−1
w (N))ε(w) ⊆ ct(w)−1N. (3.1)

(b) If N satisfies condition (Eε(w)), then

Ew ⊆ f−1
w (N) ⊆ ct(w)−1N. (3.2)

Proof. (a). The first inclusion is obvious, as Ew = f−1
w ({eG}). To prove the second

one, we are going to apply Theorem 2.26, item 3.
If f−1

w (N) = ∅, there is nothing to prove, so assume this is not the case, and
let g ∈ f−1

w (N), i.e. w(g) ∈ N . Then ct(w)gε(w) ∈ N by equation (2.9), so that
gε(w) ∈ ct(w)−1N .

(b). As N satisfies condition (Eε(w)), we have gN = gε(w)N for every g ∈ G.
Now (3.1) applies.

The following is a straightforward application of Theorem 3.4 (b).

Example 3.5. Let X be a set, consider the group G = Sω(X), and recall that its
subgroup N = G′ = A(X) has index 2 in G. Hence, N satisfies condition (Em) for
every odd m.

Then, for every word w ∈ G[x] such that ε(w) is odd, we have that Ew ⊆
ct(w)−1N by equation (3.2), asN satisfies condition (Eε(w)). In particular, if w ∈ UG,
then ε(w) must be even, i.e. G ∈ W2. This was also already established in Example
2.37, item 1.

In the following result, we show that under certain conditions an elementary
algebraic subset is a coset of a subgroup. This result should be compared with the
abelian case, where every elementary algebraic subset has this form (see (2.14)). In
§3.1 later, we shall give other results in this sense, for groups G ∈ N2.

Theorem 3.6. Let w ∈ G[x] be such that Ew 6= ∅, and consider a subgroup Nw ≤
N �G satisfying condition (Eε(w)). If moreover N is abelian, and N ≤ Cw, then Ew
is a coset of N [ε(w)].

Proof. Let ε = ε(w), and x0 = ct(w)−1 = (g1 · · · gn)−1. As ∅ 6= Ew ⊆ x0N by
equation (3.2), there exists z0 ∈ N be such that x0z0 ∈ Ew. We aim to prove that
Ew = x0z0 ·N [ε].

In order to establish a connection between x0 and z0, we note that CG(x0) ≥
Cw ≥ N , so that w(x0z0) = w(x0)zε0 by Theorem 2.26, item 1. As w(x0z0) = eG, we
get w(x0) = z−ε0 .
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3.1. Canonical words for groups in N2 35

As Ew ⊆ x0N , so x−1
0 Ew ⊆ N , to prove the required equality Ew = x0z0 ·N [ε] we

prove that x−1
0 Ew = z0 ·N [ε] by checking when z ∈ N belongs to x−1

0 Ew, equivalent
to when belongs to z0 ·N [ε].

Let z ∈ N . Then, another application of Theorem 2.26, item 1, gives w(x0z) =
w(x0)zε = z−ε0 zε = (z−1

0 z)ε, where the last equality holds as N is abelian. In
particular, x0z ∈ Ew if and only if z−1

0 z ∈ N [ε], so z ∈ x−1
0 Ew if and only if

z ∈ z0 ·N [ε]. This gives x−1
0 Ew = z0 ·N [ε].

In Lemma 3.11, we shall consider a more particular case of Theorem 3.6, for
groups G ∈ N2.

Example 3.7. To better understand the proof of Theorem 3.6, we shall see what
happens considering the group G = Q8, its subgroup N = Q′8 = Z(Q8) = {1,−1} ∼=
Z2, and a word w ∈ Q8[x] such that ε(w) is odd and Ew 6= ∅. As the quotient
G/N ∼= Z2 × Z2 has exponent 2, N satisfies condition (Em) for every odd m. In
particular, N satisfies condition (Eε(w)) and all the hypotheses of Theorem 3.6 are
satisfied, so one can conclude that Ew is a coset of N [ε(w)], hence a singleton.

Let us prove it applying Theorem 3.4 (b). Letting x0 = ct(w)−1, by equation
(3.2) we obtain that Ew ⊆ x0 · N = {x0,−x0}. Then, by Theorem 2.26, item 1,
w(−x0) = (−1)ε(w)w(x0) = −1·w(x0), so that Ew is properly contained in {x0,−x0}.

On the other hand, if w ∈ Q8[x] is such that ε(w) is even, then Ew is a union of
cosets of Z(Q8) by Corollary 3.2. By the way, these results for the group G = Q8

will be completely covered by Corollary 3.13.
See also §3.2.2, where we completely describe EQ8 .

3.1 Canonical words for groups in N2

We begin giving a few general properties on the class N2.

Fact 3.8. If G ∈ N2, then [ab, c] = [a, c][b, c] and [a, bc] = [a, b][a, c] for every
a, b, c ∈ G. In particular, [a, c−1] = [a, c]−1 = [a−1, c] for every a, c ∈ G.

As a consequence, the commutator verbal functions are group homorphisms of
G, with range contained in G′ ≤ Z(G).

Then, we obtain the following result using the identities above.

Proposition 3.9. If G ∈ N2, and G = G/Z(G), then there is an injective group
homomorphism G→ Z(G)G. As a consequence:

• exp(G) | exp(Z(G)), so exp(G) | exp
(
Z(G)

)2
. In the particular case when

exp(Z(G)) = p ∈ P, then also exp(G) = p.

• G is torsion-free if and only if Z(G) is torsion-free. In this case, also G is
torsion-free.
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Proof. As G ∈ N2, the map G×G→ Z(G), (a, b) 7→ [a, b] is well-defined, and it is
bilinear by Fact 3.8. As (G×Z(G))∪ (Z(G)×G) is mapped to eG, we obtain a well
defined, still bilinear map ψ : G×G→ Z(G), mapping (g1Z(G), g2Z(G)) 7→ [g1, g2].

In particular, for every g = gZ(G) ∈ G we have a linear map ψg : G → Z(G),
xZ(G) 7→ [g, x]. Note that if g /∈ Z(G), then there exists x ∈ G such that [g, x] 6= eG
(in particular, x /∈ Z(G)), so that ψg is not the trivial homomorphism. Then the

correspondence g 7→ ψg defines an injective homomorphism G→ Z(G)G.
If Z(G) is torsion-free, then G is torsion-free by the first part of the proof, so

that G is torsion-free too. Obviously, if G is torsion-free, then also Z(G) is torsion-
free.

Note that when G ∈ N2 and Z(G) is finite, then G has positive exponent (more

precisely, exp(G) | exp
(
Z(G)

)2
by Proposition 3.9).

Corollary 3.10. If G ∈ N2 and Z(G) is finite, then G is an FC-group.

Proof. To verify that G is an FC-group, let g ∈ G, and we have to check that
[G : CG(g)] is finite.

Let w = [x, g] ∈ G[x]. By Fact 3.8, it follows that the verbal function fw is a
group homomorphism of G, with range contained in G′ ≤ Z(G), hence finite. As
ker(fw) = CG(g), we conclude that [G : CG(g)] is finite as well.

Note that the converse implication in the above corollary does not hold in general,
i.e. there exist FC-groups in N2 that have infinite center. For example, consider
the group G = Z ×D8. Obviously G ∈ N2, has infinite center, and the centralizer
of a generic element (n, g) ∈ G is Z× CD8(g), that has finite index in G, so that G
is FC.

The following result immediately follows by Theorem 3.6, and will be applied to
a class of nilpotent groups G ∈ N2, thus satisfying G′ ≤ Z(G).

Lemma 3.11. Let G ∈ N2 and let w ∈ G[x] with Ew 6= ∅. Let G′ ≤ N ≤ Z(G) be
a subgroup of G satisfying condition (Eε(w)). Then Ew is a coset of N [ε(w)].

Proof. In this case, Nw ≤ G′ ≤ N ≤ Z(G) ≤ Cw, so that Theorem 3.6 applies.

Corollary 3.12. Let G ∈ N2, and let w ∈ G[x] be such that Ew 6= ∅. Assume the
following hypotheses:

• the quotient G/Z(G) is bounded, and let exp(G/Z(G)) = r > 0;

• (ε(w), r) = 1, and G[s] = {eG}, where s ∈ N is such that sε(w) ≡r 1.

Then Ew is a coset of Z(G)[ε(w)].

Proof. Consider ws ∈ G[x], and note that Ew = Ews by Remark 2.47. Then ε(ws) =
sε(w) ≡r 1, so Z(G) satisfies condition (Esε(w)). By Lemma 3.11, applied to the word
ws and to N = Z(G), we get that Ew = Ews is a coset of Z(G)[sε(w)] = Z(G)[ε(w)],
where the last equality holds as G[s] = {eG}.
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The following result describes EG for a particular class of groups G ∈ N2. It
turns out that every non-empty Ew ∈ EG is a union of cosets of subgroups of G, as
in the abelian case (see (2.14)).

Corollary 3.13. Let G ∈ N2. Assume that Z(G) is bounded, with expZ(G) = p ∈
P, and let w ∈ G[x] with Ew 6= ∅.

(i) If (ε(w), p) = 1, then Ew is a singleton.

(ii) Otherwise, Ew is a union of cosets of Z(G).

Proof. First, note that also exp(G) = p by Proposition 3.9, so G itself is bounded,
of exponent either p or p2. In particular, G[s] = {eG} for every integer s coprime
with p.

(i) In this case, note that Z(G)[ε(w)] is the trivial subgroup, and apply Corollary
3.12 with r = p to obtain that Ew is a singleton.

(ii) If (ε(w), p) 6= 1, then Z(G) ⊆ G[p] ⊆ G[ε(w)], and the conclusion directly
follows by Corollary 3.2.

It is possible for an Ew as in Corollary 3.13 (ii) to be an infinite union of cosets
of Z(G). For example, let A be an infinite set, consider the group G = QA

8 , and
note that Z(G) = {±1}A. Fix an index α0 ∈ A and let g = (gα)α∈A, where

gα0 = i ∈ Q8, and gα = 1 ∈ Q8 for α0 6= α ∈ A. Then CG(g) = 〈i〉 ×QA\{α0}
8 = Ew

for w = [g, x] ∈ G[x]. As the index [CG(g) : Z(G)] is infinite, Ew cannot be expressed
as a finite union of cosets of Z(G).

Theorem 6.48 and Theorem 6.49 will describe the Zariski topology of direct
products of groups as in Corollary 3.13.

The following results will be used to compute the elementary algebraic subsets
for groups G ∈ N2.

Theorem 3.14. Let G ∈ N2, T ⊆ G be a transversal of Z(G) in G, and w ∈ G[x].
Then w ≈ w̃, for the word

w̃ = wab[x, a] ∈ G[x], (3.3)

where a can be chosen in T .
As a consequence, the group F (G) is generated by the monomials and the com-

mutator verbal functions.

Proof. We prove the case when l(w) = 3, i.e. w = g1x
ε1g2x

ε2g3x
ε3 , as the proof in

the general case is similar.
First, let w0 = g1x

ε1g2x
ε2 , so that w0 = g1g2x

ε1 [x−ε1 , g−1
2 ]xε2 by Remark 2.7,

item 3. As G ∈ N2, for every g ∈ G we have [g−ε1 , g−1
2 ] = [g, gε12 ] by Fact 3.8, and

this is a central element. In particular, w0 ≈ g1g2x
ε1+ε2 [x, gε12 ], and

w = w0g3x
ε3 ≈ w1[x, gε12 ], (3.4)
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where w1 = g1g2x
ε1+ε2g3x

ε3 . Applying the idea above to w1 we obtain w1 ≈
g1g2g3x

ε1+ε2+ε3 [x, gε1+ε2
3 ], so that (3.4) implies that

w ≈ g1g2g3x
ε1+ε2+ε3 [x, gε12 ][x, gε1+ε2

3 ] ≈ g1g2g3x
ε1+ε2+ε3 [x, gε12 g

ε1+ε2
3 ],

where the last equivalence follows from Fact 3.8. This proves that w ≈ w̃, for a
word w̃ as in (3.3).

Finally, let a = tz, for elements t ∈ T , z ∈ Z(G). Then, for every g ∈ G we have
[g, a] = [g, t], so that [x, a] ≈ [x, t], and w ≈ wab[x, t].

Corollary 3.15. Let G ∈ N2, T ⊆ G be a transversal of Z(G) in G, and w ∈ G[x].
Then w ∼ w̃ for a word

w̃ = g1x
m[x, g2] ∈ G[x], (3.5)

where m = ε(w̃) = |ε(w)|, and g2 ∈ T .

Proof. As w ∼ w−1 by Lemma 2.49, we can assume ε(w) = |ε(w)| ≥ 0. Apply
Theorem 3.14 to get w̃ ∈ G[x] as in (3.3), such that w ∼ w̃. Obviously, wab has the
form g1x

m, and m = ε(w) ≥ 0.

Sometimes, especially when the quotient group G/Z(G) is finitely generated and
the generators are images of some especially simple to deal with elements t1, . . . , tr
of G, then we can replace the single commutator [x, a] in (3.3) by a product of
commutators of the form [x, ti], arising by the replacement of the generic element
a by a product of the generators ti. We formalize this observation in the following
corollary of Theorem 3.14.

Corollary 3.16. Let G ∈ N2, and T ⊆ G be such that the quotient group G/Z(G)
is generated by its image {tZ(G) | t ∈ T}. If w ∈ G[x], then w ≈ w̃ for a word

w̃ = wab[x, t1]m1 [x, t2]m2 · · · [x, tr]mr ∈ G[x], (3.6)

where r ∈ N, ti ∈ T and mi ∈ Z for i = 1, . . . , r.
In particular,

w ∼ gxm[x, t1]m1 [x, t2]m2 · · · [x, tr]mr ∈ G[x], (3.7)

for an element g ∈ G, and m = |ε(w)|.

Proof. By Theorem 3.14, we have w ≈ wab[x, a] for an a ∈ G, and let a =
tm1
1 tm2

2 · · · tmrr z, for z ∈ Z(G), r ∈ N, and ti ∈ T , mi ∈ Z for i = 1, . . . , r.
By Fact 3.8, [g, a] = [g, t1]m1 [g, t2]m2 · · · [g, tr]mr for every g ∈ G, so that [x, a] ≈

[x, t1]m1 [x, t2]m2 · · · [x, tr]mr , which gives (3.6).
For the last part, given w ∈ G[x], apply Corollary 3.15 to get a word w̃ as in

(3.5) such that w ∼ w̃. Applying the first part of the proof, we can assume w̃ to be
as in (3.7).
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Note that if the quotient G/Z(G) is torsion-free, then G[m] ⊆ Z(G) for every
m ∈ N+. In particular,

Z(G)[m] = G[m] ∩ Z(G) = G[m].

Let G ∈ N2 be such that G/Z(G) is torsion-free. We shall see now that if
∅ 6= Ew ∈ EG, then Ew is the translate of either the m-socle Z(G)[m] of Z(G) (if
m = |ε(w)| 6= 0), or of some centralizer CG(a) (if ε(w) = 0).

Lemma 3.17. If G ∈ N2 and G/Z(G) is torsion-free, then every non-empty ele-
mentary algebraic subset of G is a coset of a subgroup of G that is either central or
contains Z(G). More precisely, if w ∈ G[x], and eG ∈ Ew, then either

(a) m = ε(w) 6= 0 and Ew = Z(G)[m] = G[m], or
(b) ε(w) = 0 and Ew is centralizer of a single element, so contains Z(G).

Proof. Let w ∈ G[x] with Ew 6= ∅. If g ∈ Ew, then eG ∈ g−1Ew = Ew′ , with
w′ = w ◦ gx by Example 2.45, item 1. Then ε(w′) = ε(w), and ct(w′) = eG, so that
w′ ∼ xm[x, a], with m ≥ 0, and a ∈ G by Corollary 3.15.

So we assume eG ∈ Ew and w(x) = xm[x, a], with m ≥ 0, and a ∈ G.
If m 6= 0 and g ∈ Ew, then obviously gm ∈ Z(G). Hence our hypothesis implies

g ∈ Z(G), so that eG = w(g) = gm. This proves that Ew ⊆ Z(G)[m]. The other
inclusion immediately follows noting that w(g) = gm for g ∈ Z(G).

If m = 0, then w = [x, a] is a commutator, hence fw is an endomorphism of G
by Fact 3.8. Since obviously Z(G) ≤ CG(a) = ker fw = Ew, we are done.

In the following lemma we consider groups G ∈ N2 of prime exponent p > 2
(note that the groups in N2 are non-abelian, hence cannot have exponent 2). For
such groups, we prove that a dichotomy holds for E ∈ EG, similar to that proved in
Lemma 3.17 for groups G such that G/Z(G) is torsion-free.

Lemma 3.18. Let G ∈ N2 of prime exponent p > 2, and w ∈ G[x] with eG ∈ Ew.
Then the following hold.

(a) Either Ew = {eG}, or Ew is a normal subgroup of G, the centralizer of a
single element.

(b) If Z(G) is finite, and Ew 6= {eG}, then Ew is a normal subgroup of G of
finite index.

Proof. (a). Recall that according to Theorem 3.14 w ∼ w̃, where w̃ = xm[x, g], with
m = |ε(w)|. Since exp(G) = p, we can assume also that 0 ≤ m < p. If m > 0, then
(m, p) = 1, so Ew = {eG} by Corollary 3.13 (i).

Now assume that m = 0, so w = [x, g]. Then the verbal function f = fw : G→
Z(G) ⊆ G is a homomorphism by Fact 3.8. Clearly, Ew = ker f = CG(g) is a normal
subgroup of G.

(b). Immediately follows from item (a) and Corollary 3.10.
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte.

40 3. General properties of words and elementary algebraic subsets

3.2 Some examples on finite groups in N2

In this section we will classify the elementary algebraic subsets of the groups Q8 and
D8, the two non-abelian groups of order eight.

Let us consider first the family EG for abelian groups G with eight elements,
using (2.14).

If G = Z2 × Z2 × Z2, then G[2] = G, so that the only elements of EG are the
singletons, G, and ∅, and |EG| = 10.

If G = Z2 × Z4, then G[4] = G, and G[2] = Z2 × 2Z4 has index 2 in G, so that
it has two cosets. Then the elements of EG are the singletons, G, ∅, and the two
cosets of G[2], hence |EG| = 12.

Finally, if G = Z8, then G[8] = G, G[4] = 2G has index 2, and G[2] = 4G has
index 4. Then the elements of EG are the singletons, G, ∅, the two cosets of G[4],
and the four cosets of G[2], so that |EG| = 16.

Now recall Corollary 3.13, in the special case when p = 2. Let G ∈ N2 be a
group with exp(Z(G)) = 2, and w ∈ G[x] be such that Ew 6= ∅.

If ε(w) is odd, then Ew is a singleton.

If ε(w) is even, then Ew is a union of cosets of Z(G).

Obviously, every singleton belongs to EG, so what really remains to study is
whether all possible unions of cosets of Z(G) are elements of EG. We will prove
that this actually happens when G = Q8 or G = D8, while we will show in Remark
6.17 that this does not happen in general. In particular, |EG| = 24 for those two
groups G. In fact, there are 16 subsets of G that are union of cosets of Z(G) (as
[G : Z(G)] = 4), and the 8 singletons of G.

3.2.1 Some properties of groups G ∈ N2 with exp(Z(G)) = 2

Here we collect a few general properties of groups G ∈ N2 with exp(Z(G)) = 2.
First we study the consequences of Corollary 3.16 for such groups. Recall that in
this case also exp(G/Z(G)) = 2 by Proposition 3.9, so that g2 ∈ Z(G) for every
g ∈ G. In particular, both Z(G) and G/Z(G) are 2-elementary abelian groups.

If moreover G/Z(G) is finite, then G/Z(G) ∼= Zh2 for some h ∈ N+, so that
G/Z(G) has size 2h and is generated by a set of h elements.

Corollary 3.19. Let G ∈ N2 be such that exp(Z(G)) = 2, and |G/Z(G)| is finite.
Let T = {t1, . . . , tk} ⊆ G be such that the quotient group G/Z(G) is generated by its
image {tZ(G) | t ∈ T}.

Finally, let w ∈ G[x] be such that ε(w) is even, and Ew 6= ∅. Then w ∼ w̃, for
the word

w̃ = zx2m0 [x, t1]m1 [x, t2]m2 · · · [x, tk]mk ∈ G[x], (3.8)

satisfying m0,mi ∈ {0, 1} for every i = 1, . . . , k, and z ∈ Z(G).
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Proof. Let |ε(w)| = 2m0 for an m0 ∈ N. By Corollary 3.16, we can assume w̃ to be
as in (3.6), i.e. as follows:

w̃ = gx2m0 [x, ti1 ]m1 [x, ti2 ]m2 · · · [x, tir ]mr .

Then, recall that [g, t] is a central element for every g ∈ G and t ∈ T , so one can
arrange the factors [x, t] with the same coefficient t ∈ T . Moreover, also g2 ∈ Z(G)
for every g ∈ G, so that we can assume m0,mi ∈ {0, 1} for every i = 1, . . . , k, as
exp(Z(G)) = 2.

Finally, if x0 ∈ Ew, then eG = w(x0) = gz0 for a central element z0 depending on
x0 (namely, z0 = x2m0

0 [x0, ti1 ]m1 [x0, ti2 ]m2 · · · [x0, tir ]
mr). So also g = z−1

0 ∈ Z(G).

Lemma 3.20. Let G be a group.
(a) Let S = {eG, s} ⊆ G be a doubleton, and w ∈ G[x] be such that w(g) ∈ S for

every g ∈ G. If w′ = s−1w ∈ G[x], then G \ Ew = Ew′.
(b) In particular, if G ∈ N2, and |Z(G)| = 2, let eG 6= z ∈ Z(G). Then

G \ Ew = Ezw for every w ∈ G[x] as in (3.8).

Proof. (a). Just note that g ∈ G \ Ew if and only if w(g) 6= eG, i.e. w(g) = s. In
other words, w′(g) = eG.

(b). If w ∈ G[x] is as in (3.8), then w(g) ∈ Z(G) for every g ∈ G, so that item
(a) applies.

Now we will apply Corollary 3.19 to groups G ∈ N2 such that |Z(G)| = 2 and
[G : Z(G)] = 4. Obviously, only Q8 and D8 satisfy these restraints, and for both
groups G we have G/Z(G) ∼= Z2 × Z2. In particular, G/Z(G) is generated by two
elements t1Z(G) and t2Z(G), so that if we let

w1 = x2m0 ,

w2 = [t1, x]m1 [t2, x]m2 ,

then a word w ∈ G[x] as in (3.8) can also be written as w = zw1w2.

3.2.2 Description of EQ8
and UQ8

First we consider G = Q8. Here Z(G) = {1,−1}, and note that the subset T =
{i, j} ⊆ G generates G, so the images of its elements in G/Z(G) generate G/Z(G).
Then,

w1 = x2m0 ,

w2 = [i, x]m1 [j, x]m2 .

Recall that G2 ⊆ Z(G) = G[2], so that for every g ∈ G

w1(g) =

{
1 if g ∈ Z(G),

−1m0 if g ∈ G \ Z(G) = iZ(G) ∪ jZ(G) ∪ kZ(G).
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As [a, b] ∈ G′ = Z(G) = {1,−1} for every a, b ∈ G, we have [a, b] = −1 if and
only if a and b do not commute. In particular,

w2(g) =


1 if g ∈ Z(G),

−1m2 if g ∈ 〈i〉 \ Z(G) = {i,−i} = iZ(G),

−1m1 if g ∈ 〈j〉 \ Z(G) = {j,−j} = jZ(G),

−1m1+m2 if g ∈ 〈k〉 \ Z(G) = {k,−k} = kZ(G).

Note that z = w(eG) = ct(w). Then, we can compute w(g) = zw1(g)w2(g),
obtaining

w(g) =


z = ct(w) if g ∈ Z(G),

−1m0+m2z if g ∈ 〈i〉 \ Z(G) = {i,−i} = iZ(G),

−1m0+m1z if g ∈ 〈j〉 \ Z(G) = {j,−j} = jZ(G),

−1m0+m1+m2z if g ∈ 〈k〉 \ Z(G) = {k,−k} = kZ(G).

(3.9)

Recall that Z(G) = G[2] = Ex2 , so that Z(G) ∈ EG. As a consequence, every
coset of Z(G) is an elementary algebraic subset of G.

Let us deduce that Z(G) ∈ EG using (3.9). Then, we will find all w ∈ G[x] as in
(3.8) such that Z(G) = Ew. By (3.9), z = 1 for such words w. We have to determine
m0,m1,m2 ∈ {0, 1} such that

−1m0+m2 6= 1

−1m0+m1 6= 1

−1m0+m1+m2 6= 1,

i.e.


m0 +m2 ∈ 1 + 2Z
m0 +m1 ∈ 1 + 2Z
m0 +m1 +m2 ∈ 1 + 2Z.

The (unique) solution of the above system is m0 = 1, m1 = m2 = 0. As z = 1, we
obtain w = x2 ∈ G[x], according to the fact that Z(G) = G[2] = Ex2 .

By Lemma 3.20, as Z(G) = G[2] = Ex2 , we get G \ Z(G) = E−x2 . A direct
argument is the following: as G2 = {1,−1}, and Z(G) = G[2], we obtain that
G \ Z(G) = {g ∈ G | g2 = −1} = E−x2 .

Then, G \ Z(G) ∈ EG, and as a consequence every translate of G \ Z(G) is an
elementary algebraic subset. In other words, every union of three cosets of Z(G) is
an elementary algebraic subset of G.

We consider now the union of two cosets of Z(G). Let us first consider

I = Z(G) ∪ iZ(G) = 〈i〉.

As CG(i) = CG(I) = I, we have I = Ew for w = [i, x] ∈ G[x], so I ∈ EG. Taking
translations in G, one obtains jI = kI = jZ(G) ∪ kZ(G), so that we also have
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jZ(G) ∪ kZ(G) ∈ EG. It is possible to conclude jI ∈ EG also noting that jI is the
complement of I in G, and then applying Lemma 3.20.

Now we classify also all words w ∈ G[x] as in (3.8) such that I = Ew, i.e. such
that w(g) = 1 if and only if g ∈ Z(G) ∪ iZ(G). By (3.9), z = 1 and we have to find
m0,m1,m2 ∈ {0, 1} such that

−1m0+m2 = 1

−1m0+m1 6= 1

−1m0+m1+m2 6= 1,

i.e.


m0 +m2 ∈ 2Z
m0 +m1 ∈ 1 + 2Z
m0 +m1 +m2 ∈ 1 + 2Z.

The unique solution of this system is m1 = 1, and m0 = m2 = 0. The word w
obtained this way is w = [i, x] ∈ G[x], according to the fact that [i, g] = 1 if and
only if g ∈ 〈i〉.

Similarly, letting J = Z(G) ∪ jZ(G) = 〈j〉, we obtain that J = E[j,x], so that
J ∈ EG. Then also its translate iJ = iZ(G) ∪ kZ(G) ∈ EG. Finally, again the
same argument proves that both Z(G)∪kZ(G) and its translate iZ(G)∪ jZ(G) are
elements of EG.

As ∅ and the whole G are elementary algebraic subsets, we can conclude that
every union of cosets of Z(G) is an elementary algebraic subset of G.

Now we are interested in studying UQ8 and u(Q8).

Lemma 3.21. u(Q8) = 4.

Proof. As exp(Q8) = 4, we have that x4 ∈ UQ8 , so that u(Q8) | 4, and u(Q8) ∈
{1, 2, 4}. By Corollary 3.13, ε(w) is even for every w ∈ UQ8 , so that u(Q8) 6= 1. At
this point, we will only have to exclude u(Q8) = 2.

So assume by contradiction ε(w) = 2 for a w ∈ UQ8 . By Corollary 3.19, we can
assume

w = zx2[i, x]m1 [j, x]m2 ,

for z ∈ Z(Q8), and m1,m2 ∈ {0, 1}. Moreover, note that w has m0 = 1, and
z = w(1) = 1. Then equation (3.9) gives

−11+m2 = 1

−11+m1 = 1

−11+m1+m2 = 1,

i.e.


1 +m2 ∈ 2Z
1 +m1 ∈ 2Z
1 +m1 +m2 ∈ 2Z.

(3.10)

Now system (3.10) implies 3 + 2(m1 +m2) ∈ 2Z, a contradiction.
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3.2.3 Description of ED8
and UD8

Now we consider G = D8. Now Z(G) = {e, ρ2}, and G is generated by T = {ρ, σ} ⊆
G, so that the image of T generates the quotient G/Z(G). Letting

w1 = x2m0 ,

w2 = [ρ, x]m1 [σ, x]m2

(where m0,m1,m2 ∈ {0, 1}), a word w ∈ G[x] as in (3.8) can be written as w =
zw1w2.

Now recall that G2 ⊆ Z(G) and that G[2] = G \ ρZ(G), so that g2 = ρ2 if and
only if g2 6= e, i.e. g ∈ ρZ(G). In particular,

w1(g) =

{
ρ2m0 if g ∈ ρZ(G),

e if g ∈ G \ ρZ(G) = Z(G) ∪ σZ(G) ∪ ρσZ(G).

As [a, b] ∈ G′ = Z(G) = {e, ρ2} for every a, b ∈ G, we have [a, b] = ρ2 if and only
if a and b do not commute. In particular,

w2(g) =


e if g ∈ Z(G),

ρ2m2 if g ∈ ρZ(G),

ρ2m1 if g ∈ σZ(G),

ρ2(m1+m2) if g ∈ ρσZ(G).

Then, we can compute w(g) = zw1(g)w2(g), obtaining

w(g) =


z if g ∈ Z(G),

zρ2(m0+m2) if g ∈ ρZ(G),

zρ2m1 if g ∈ σZ(G),

zρ2(m1+m2) if g ∈ ρσZ(G).

(3.11)

First of all, we show that Z(G) ∈ EG using (3.11). We are looking for a word
w ∈ G[x] such that Z(G) = Ew, i.e. w(g) = 1 if and only if g ∈ Z(G). By (3.11),
z = 1 and we have to find m0,m1,m2 ∈ {0, 1} such that

ρ2(m0+m2) 6= e

ρ2m1 6= e

ρ2(m1+m2) 6= e,

i.e.


m0 +m2 ∈ 1 + 2Z
m1 ∈ 1 + 2Z
m1 +m2 ∈ 1 + 2Z.

(3.12)

The solution of system (3.12) is m0 = m1 = 1, and m2 = 0. In this case, we obtain
w = x2[ρ, x] ∈ G[x], and Z(G) = Ew. As a consequence, every coset of Z(G) is an
elementary algebraic subset of G.
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As Z(G) ∈ EG, by Lemma 3.20 also G \ Z(G) ∈ EG, and so all translates of
G \ Z(G) are elements of EG too. Then every union of three cosets of Z(G) is an
elementary algebraic subset of G.

Another argument to show that the cosets of Z(G) and the unions of three
cosets of Z(G) are elementary algebraic subsets of G is the following. Recall that
G[2] = G \ {ρ, ρ3} = G \ ρZ(G), so that G \ ρZ(G) = Ex2 ∈ EG. Then, ρZ(G) ∈ EG
by Lemma 3.20, and we can conclude taking translations in G.

Now we will prove that every union of two cosets of Z(G) is an elementary
algebraic subset of G. We begin with R = Z(G) ∪ ρZ(G) = 〈ρ〉. As ρ /∈ Z(G),
we have R = CG(ρ), so that we can immediately conclude R = E[ρ,x] ∈ EG, and
σR = σZ(G) ∪ σρZ(G) ∈ EG.

Similarly, if S = Z(G) ∪ σZ(G) = 〈ρ2, σ〉, then S = CG(σ), so that S = E[σ,x] ∈
EG, and ρS = ρZ(G) ∪ ρσZ(G) ∈ EG.

The same argument applies to P = Z(G)∪ρσZ(G) = 〈ρ2, ρσ〉 = CG(ρσ), so that
P ∈ EG, and ρP = ρZ(G) ∪ σZ(G) ∈ EG. Finally, we conclude that every union of
cosets of Z(G) is an elementary algebraic subset of G.

Now we compute u(D8).

Lemma 3.22. u(D8) = 4.

Proof. Note that x4 ∈ UD8 , so that u(D8) | 4. Moreover, u(D8) 6= 1 by Corollary
3.13, so that now it suffices to prove that D8 has no w ∈ UD8 with ε(w) = 2.

By Corollary 3.19, if w ∈ UD8 and ε(w) = 2, then ct(w) = e and we can assume

w = zx2[ρ, x]m1 [σ, x]m2 ,

for m1,m2 ∈ {0, 1}. Moreover, note that such a w has m0 = 1.
As w(g) = 1 for every g ∈ D8, equation (3.11) implies

ρ2(1+m2) = e

ρ2m1 = e

ρ2(m1+m2) = e

i.e.


1 +m2 ∈ 2Z
m1 ∈ 2Z
m1 +m2 ∈ 2Z.

(3.13)

As system (3.13) implies 1 + 2(m1 +m2) ∈ 2Z, we obtain a contradiction.

3.3 The universal exponent of a group

Recall the classes Wn introduced in Definition 2.21. We have already noted that a
group G ∈ Wn if and only if ε(w) ∈ nZ for every w ∈ UG (i.e. Ew = G). Now,
for every n ∈ N we introduce a subclass W∗n ⊆ Wn consisting of groups satisfying a
stronger property.
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Definition 3.23. If n ∈ N is a non-negative integer, we denote by W∗n the class of
groups G satisfying the following property: if G =

⋃k
i=1Ewi , then ε(wi) ∈ nZ for

some i = 1, 2, . . . , k.

Clearly, W∗n ⊆ Wn, and if G ∈ Wn is Z-irreducible, then G ∈ W∗n.

Example 3.24. Let G = Z4×ZN
2 . Then u(G) = exp(G) = 4 by Lemma 2.32, so that

G ∈ W4. Let us see that G /∈ W∗4 . Let c ∈ Z4 be a generator of Z4 = {0, c, 2c, 3c}.
Note that G[2] = {0, 2c} × ZN

2 , so that G = G[2] ∪ (c + G[2]). By (2.13), neither
G[2] nor c+G[2] are of the form Ew for w ∈ G[x] with ε(w) ∈ 4Z.

Note that every group is inW∗1 =W1. Moreover, it immediately follows from the
definitions that W∗0 ⊆

⋂
n∈N+

W∗n. In the following lemma (a counterpart of Lemma
2.22 (a) about the class W0), we see that also the reverse inclusion holds.

Lemma 3.25. Let N ⊆ N be an infinite subset of N. Then

W∗0 =
⋂
n∈N

W∗n.

Proof. Indeed, let G ∈
⋂
n∈NW∗n, and assume that G =

⋃k
i=1 Ewi . Then, for every

n ∈ N there is an in = 1, . . . , k such that ε(win) ∈ nZ. Being N infinite, there is an
i = 1, . . . , k and an infinite M ⊆ N such that ε(wi) ∈ nZ for every n ∈ M . Then
ε(wi) = 0.

As W∗m ⊆ W∗n whenever 0 6= n | m, if n ∈ N+, and d | n, then

W∗n =
⋂
{W∗d | 1 ≤ d ≤ n, d | n}.

In particular,
W∗1 ⊇ W∗2 ⊇ . . . ⊇ W∗n! ⊇ . . . ⊇ W∗0 .

By Lemma 3.25, a group G ∈ W∗0 if and only if G ∈ W∗n fon infinitely many
n ∈ N. Then, for any group G we define u◦(G) ∈ N by

u◦(G) =

{
0 if G ∈ W∗0 ,

max{k ∈ N | G ∈ W∗k} otherwise.
(3.14)

By definition, when u◦(G) 6= 0, it is the greatest n ∈ N such that G ∈ W∗n.

For every group G we introduce also u*(G) ∈ N by

u*(G) =

{
0 if G ∈ W∗0 ,

the least common multiple of {k ∈ N | G ∈ W∗k} otherwise.
(3.15)
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The natural u*(G) is called the u*-exponent of G.
Then, in analogy with (2.7), we have the inclusion

W∗u*(G) ⊆
⋂
{W∗k | k ∈ N, G ∈ Wk}. (3.16)

Obviously, u◦(G) = 0 if and only if u*(G) = 0 if and only if G ∈ W∗k for infinitely
many k ∈ N if and only if G ∈ W∗0 by Lemma 3.25. In this case also u(G) = 0.

Clearly, u*(G) | u(G) when u(G) = 0. Let us see that this remains true also when
u(G) 6= 0. In fact, for every k ∈ N+, if G ∈ W∗k then also G ∈ Wk, as W∗k ⊆ Wk, so
that k | u(G) by Lemma 2.23, item 4. This gives u*(G) | u(G).

In particular, if u(G) 6= 0, letting

S = {k ∈ N | G ∈ Wk},
S∗ = {k ∈ N | G ∈ W∗k},

we have 0 /∈ S ⊇ S∗ and both S and S∗ are finite. Moreover, u(G) ∈ S is both the
maximum and the least common multiple of S, while u◦(G) is the maximum of S∗,
and u*(G) is the least common multiple of S∗.

Moreover, u◦(G) | u*(G) obviously by the definitions, so that

u◦(G) | u*(G), and u*(G) | u(G).

Let us say now that we do not know if the equality u◦(G) = u*(G) hold for every
group G. Of course, this is equivalent to ask whether G ∈ W∗

u*(G)
is true for every

G, i.e. if the equality holds in (3.16).

Question 5. Does there exist a group G such that u◦(G) 6= u*(G)?

Now we prove that if G is a finite group, then u◦(G) = u*(G) = 1.

Lemma 3.26. Let G be a group, and w ∈ G[x] be such that N ⊆ Ew for a subgroup
N ≤ G having finite index. Then u*(G) | ε(w), so that u◦(G) = u*(G) = 1 whenever
ε(w) = 1.

In particular, u◦(G) = u*(G) = 1 for every finite group G.

Proof. Let [G : N ] = k, and let g1, . . . , gk ∈ G be so that G =
⋃k
i=1 giN . Then also

G =
⋃k
i=1 giEw. By Example 2.45, item 1, for every i = 1, . . . , k we have giEw = Ewi

for wi = w ◦ g−1
i x, and ε(wi) = ε(w). If G ∈ W∗n, then n | ε(w), so that u*(G) | ε(w).

When ε(w) = 1 one immediately obtains u◦(G) = u*(G) = 1 by definition.
When G is finite, it suffice to note that Ex ⊇ {eG}.

Now we give a combinatorial lemma about finite coverings of a group with cosets
of subgroups. This result will be used in the following Corollary 3.28.
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Lemma 3.27 ([46, Lemma 4.1]). Let G be a group covered by finitely many cosets of
subgroups, say G =

⋃r
i=1 giHi. Then r ≥ min{[G : Hi] | 1 ≤ i ≤ r}. In particular,

at least one of those subgroups has finite index.

Compare the following result with Lemma 2.32 about the equality exp(G) = u(G)
for an abelian group G.

Corollary 3.28. Let G be an abelian group. Then u◦(G) = u*(G) = exp∗(G).

Proof. We shall first consider the case when exp∗(G) = 0. Then G is unbounded,
so that G ∈ W∗0 by Lemma 2.42, and u◦(G) = u*(G) = 0.

When exp∗(G) = 1, i.e. when G is finite, then u◦(G) = u*(G) = 1 too by Lemma
3.26.

So now assume n = exp∗(G) > 1. As G/G[n] ∼= nG is finite, we have G =⋃r
i=1 gi +G[n] for some elements g1, . . . , gr ∈ G. So if G ∈ W∗k then k | n.

To conclude the proof, we see that also G ∈ W∗n, so that u◦(G) = u*(G) = n. So
let G =

⋃r
i=1 gi + G[ni]. By Lemma 3.27, [G : G[ni]] is finite for some i = 1, . . . , r,

i.e. niG is finite. Then n | ni by definition.

3.4 δ-words

Definition 3.29. If G is a group, and w ∈ G[x] is singular, we will say that w is a
δ-word for G if EG

w = {eG}.

Let us immediately see that a non-trivial abelian group G never has any δ-word.
Indeed, a singular word w ∈ G[x] is a constant word w = g for an element g ∈ G,
so EG

w is either empty, or the whole group G (see also Remark 2.41).

In the following lemma, we give a much more precise result.

Lemma 3.30. If a group G has a δ-word, then its Tăımanov topology TG is discrete.
In particular, G has trivial center.

Proof. Assume w = g1x
ε1g2x

ε2 · · · gnxεn ∈ G[x] to be a δ-word for G. Then in
particular eG ∈ Ew and ε(w) = 0, so that Lemma 3.3 (b) applies, giving Cw = {eG}.
As Cw is a T -neighborhood of eG, we have TG = δG.

It directly follows by Lemma 3.30 that a group G ∈ N2 has no δ-words. Let us
provide a different argument to prove this fact using Theorem 3.14.

If w is a δ-word for such a group G, then wab is trivial, being ε(w) = 0 and
ct(w) = eG, so we can assume w = [x, a] by Theorem 3.14. Then, every central
element of G lies in Ew, which is a contradiction.

In the following proposition we show a δ-word for every free non-abelian group.
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Proposition 3.31. Let F be a free non-abelian group, generated by the elements
{ai | i ∈ I}, and let a, b be two of them. Then

w = [a, x][b, x] = axa−1x−1bxb−1x−1 ∈ F [x]

is a δ-word for F .

Proof. Obviously w is singular, w(eF ) = eF , and we have to prove that fw(g) 6= eG
for every g ∈ F , g 6= eF . To this end, let f1 = fw1 and f2 = fw2 , where

w1 = [a, x]−1 = [x, a] = xax−1a−1,

w2 = [b, x] = bxb−1x−1.

As w = w−1
1 w2, we have that fw = (f1)−1f2, and so fw(g) = eG if and only if

f1(g) = f2(g), for every g ∈ F . So it suffices to prove that f1(g) 6= f2(g) for every
g ∈ F , g 6= eF .

So let eF 6= g ∈ F , and we are going to show that f1(g) 6= f2(g). Note that we
can assume g /∈

⋃
i∈I〈ai〉, so let g = ani ha

m
j be the reduced form of g, for h ∈ F ,

0 6= n ∈ Z and m ∈ Z. In particular, if h = eF , then g = ani a
m
j , with i 6= j. Then

f1(g) = ani ha
m
j · a · (ani hamj )−1 · a−1 = ani ha

m
j · a · a−mj h−1a−ni · a−1,

f2(g) = b · ani hamj · b−1 · (ani hamj )−1 = b · ani hamj · b−1 · a−mj h−1a−ni .

As the only possible cancellations are between underlined elements, we can imme-
diately say that f1(g) begins with ani h . . .; on the other hand, f2(g) either begins
with an+1

i h . . . (if ai = b), or it begins with b · ani h . . . (if ai 6= b). In either case,
f1(g) 6= f2(g).

We shall see in §6.1.1 some important applications of these facts.

Problem 1. Determine which groups admit a δ-word.

Recall that a group G with a δ-word has a discrete Tăımanov topology.
By Proposition 6.12, every product of free non-abelian groups has a δ-word.
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4
Quasi-topological group topologies

We will now characterize which topologies on a group make it a quasi-topological
group, in term of continuity of an appropriate family of verbal functions.

Lemma 4.1. Let G be a group, and τ a topology on G. Then (G, τ) is a quasi-
topological group if and only if fw is τ -continuous for every word w = gxε, with
g ∈ G and ε = ±1.

In particular, if a topology σ on a group G makes continuous every verbal func-
tion, then (G, σ) is a quasi-topological group. If σ is also T1, then ZG ⊆ σ.

Proof. Let ι denote the inversion function of G. If (G, τ) is a quasi-topological
group, then every function fgx, being a left translation, is τ -continuous. Also every
fgx−1 = fgx ◦ ι is τ -continuous.

For the converse, let τ be a topology on G such that fw : (G, τ) → (G, τ) is
continuous for every word w = gxε, with g ∈ G and ε = ±1. Then points 3 and 5
in Example 2.15 show that the inversion and the left translations are τ -continuous.
Finally, the right translation by an element g is fxg = fx−1 ◦ fg−1x−1 .

For the last part, just note that if {eG} is σ-closed and every fw is σ-continuous,
then also every Ew = f−1

w ({eG}) is σ-closed. As EG is a subbase for ZG-closed sets,
we conclude ZG ⊆ σ.

Example 4.2. Let (G, τ) be a T1 quasi-topological group. By Lemma 4.1, every
verbal function in {fgxε | g ∈ G, ε = ±1} is τ -continuous. We shall see that not
every verbal function needs to be τ -continuous. To this end, recall that the space
(G, co-λG) is a T1 quasi-topological group for every infinite cardinal number λ.

So let ω ≤ λ < κ = |G|, and consider τ = co-λG 6= δG.

1. Let G be a group having a non-central element a such that |CG(a)| ≥ λ (for
example, the group G = ⊕κS3 will do). Then let w = [a, x] ∈ G[x], and
consider the commutator verbal function fw ∈ F (G). As f−1

w ({eG}) = CG(a),
we have that fw is not τ -continuous.

2. Let G be a group such that |G[2]| ≥ λ (also in this case the group G =
⊕κS3 considered above will do). Then let w = x2 ∈ G[x], and consider the
homogeneous verbal function fw ∈ F (G). As f−1

w ({eG}) = G[2], we have that
fw is not τ -continuous.
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Proposition 4.3. For every group G, the following hold.

1. Every verbal function is ZG-continuous.

2. The pair (G,ZG) is a quasi-topological group.

3. ZG is the initial topology of the family of all verbal functions {f : G→ (G,ZG) |
f ∈ F (G)}.

Proof. 1. Follows from the fact that EG is a subbase for the ZG-closed subsets of
G, and from Lemma 2.44.

2. Immediately follows by Lemma 4.1 and item 1.

3. Also follows by item 1.

Corollary 4.4. Every group topology on a group G makes continuous every verbal
function of G. In particular MG and PG make continuous every verbal function of
G, so ZG ⊆MG ⊆ PG, and all the three are quasi-topological group topologies.

Proof. As a verbal function is a composition of products and inversions, it is con-
tinuous with respect to every group topology. The same is true for MG and PG,
which are intersections of group topologies, then Lemma 4.1 applies.

Proposition 4.5. Let N be a normal subgroup of a group G, and let G = G/N .
Then the quotient topology ZG makes continuous every verbal function of G.

Proof. Let w = g1x
ε1g2x

ε2 · · · gnxεn ∈ G[x], and we have to prove that

fw : (G,ZG)→ (G,ZG)

is continuous. Let w = g1x
ε1g2x

ε2 · · · gnxεn ∈ G[x]. In the notation of Remark 2.16,
item 2, recall that we have seen there that the following diagram commutes.

(G,ZG)
fw //

π
��

(G,ZG)

π
��

(G,ZG)
fw // (G,ZG).

(4.1)

As a consequence, also fw is continuous, as fw is continuous and ZG is the final
topology of the canonical projection π : (G,ZG)→ G.

Proposition 4.6. Let N be a normal subgroup of a group G, and let G = G/N .
Then the following conditions are equivalent:

(1) N is ZG-closed;
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(2) ZG is a T1 topology;

(3) ZG ⊆ ZG;

(4) the canonical map π : (G,ZG)→ (G,ZG) is continuous.

Proof. (1) ↔ (2) follows by Proposition 1.8.
(2) → (3) follows by Proposition 4.5 and Lemma 4.1.
(3) → (4). In this case, the map id: (G,ZG) → (G,ZG) is continuous, and so

also the composition

(G,ZG)
π−→ (G,ZG)

id−→ (G,ZG)

as desired.
(4) → (1) holds as N = π−1(eG) and {eG} is ZG-closed.

We shall see examples of groups G having ZG-closed subgroup N such that the
inclusion ZG ⊆ ZG in Proposition 4.6, item (3), manifestally fails to be an equality.
See for example Remark 6.50 where we have an infinite quotient G with ZG = cofG,
while ZG is a compact Hausdorff totally disconnected group topology.

Corollary 4.7. For every group G, and every positive integer n, the subgroup Zn(G)
is ZG-closed.

Proof. We have already seen in Example 2.43, item 1, that Z1(G) = Z(G) is ZG-
closed in any group G. Let G = G/Z(G). As Z(G) is ZG-closed, the projection
π : (G,ZG) → (G,ZG) is continuous by Proposition 4.6, so Z2(G) = π−1(Z(G)) is
ZG-closed.

Proceed by induction to get the thesis.

Remark 4.8. Corollary 4.7 can be proved observing that it is possible to define
by induction Z1(G) = Z(G) and, for an integer i ≥ 1, x ∈ Zi+1(G) if and only if
[x, g] = xgx−1g−1 ∈ Zi(G) for every g ∈ G. Equivalently:

Zi+1(G) =
⋂
g∈G

{x ∈ G | [x, g] ∈ Zi(G)} =
⋂
g∈G

[ · , g]−1(Zi(G)).

For every g ∈ G, the commutator verbal function [ · , g] : x 7→ [x, g] is ZG-continuous,
and Zi(G) is ZG-closed by inductive hypothesis, so [ · , g]−1(Zi(G)) is ZG-closed, and
Zi+1(G) is an intersection of ZG-closed subsets.

Definition 4.9. A countably infinite subset A of a group G is called ZG-atom if
ZG �A= cofA.

We shall see in Fact 4.12 that the ZG-atoms determine the Zariski topology on
an abelian group G. This fails to be true in general, as a group G ∈ N2 may have
no ZG-atoms at all (see Corollary 8.30).
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4.1 The Markov topologies of the abelian groups

Theorem 4.10 ([21]). If G is an abelian group, then ZG = MG = PG is a Noethe-
rian topology, whose family of closed sets is E∪G.

A different proof of the fact that ZG = MG for an abelian group G can be found
in [20] or [60], where the authors independently proved the following more general
result.

Theorem 4.11 ([20, 60]). Let A be an abelian group, {Hi | i ∈ I} be a family of
countable groups, and G = A×

⊕
i∈I Hi. Then ZG = MG.

The following properties of the Zariski topology of an abelian group G were
established in [21]:

Fact 4.12 ([21]). Let G be an abelian group.
(a) [21, Theorem 3.5, Corollary 3.6] The space (G,ZG) is Noetherian, so it is

Hausdorff if and only if G is finite.
(b) [21, Theorem 4.6 (ii)] For a bounded abelian group G, the connected compo-

nent c(G,ZG) = G[exp∗(G)] has finite index in G, so (G,ZG) has only finitely many
connected components. In particular, if G is an infinite abelian group, (G,ZG) is
not totally disconnected.

(c) [21] For every infinite set X ⊆ G and each point x ∈ XZG \X one can find
a faithfully indexed subset Y = {yn | n ∈ N} ⊆ X having the cofinite topology such
that the sequence yn converges to x in the Zariski topology ZG.

Then note that the subset Y as in Fact 4.12 (c) is a ZG-atom. An equivalent
reformulation of Fact 4.12 (c) is the following: a subset X ⊆ G is ZG-closed if and
only if either A ⊆ X or A ∩X is finite, for every ZG-atom A.

From Lemma 2.42, it immediately follows the following.

Corollary 4.13 ([21, Theorem 4.6 (ii)]). If G is an unbounded abelian group, then
(G,ZG) is irreducible, and consequently connected.

As Proposition 4.15 shows, the implication from the above corollary cannot
be inverted. It provides a complete description of the abelian groups that are Z-
irreducible. The Z-irreducible subsets of an abelian group are classified in [21].

Fact 4.14 ([21, Corollary 4.7]). An abelian group G is Z-irreducible if and only if
G is either unbounded or bounded with exp(G) = exp∗(G).

The following result from [61] classifies the smaller class of abelian groups that
have a cofinite Zariski topology.

Proposition 4.15 ([61, Theorem 5.1]). An abelian group G is Z-cofinite if and only
if either G is almost torsion-free, or exp(G) = p for some p ∈ P.
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The following result is a corollary of Proposition 4.15.

Proposition 4.16. Let K be a field, λ a cardinal, and m > 0 an integer. Then:

(a) the group (K,+)λ is Z-cofinite;

(b) the group (K∗, ·)m is Z-cofinite.

As a consequence, all their subgroups are Z-cofinite; in particular, the group (
⊕

λK,+)
is Z-cofinite.

Proof. In both cases, we are going to apply Proposition 4.15.
(a) Note that Kλ is either torsion-free, if charK = 0, or exp(Kλ) = p, if charK =

p > 0.
(b) It follows from the elementary properties of fields, that (K∗, ·) is almost

torsion-free. This entails that (K∗, ·)m is almost torsion-free as well, so Proposition
4.15 applies.

Finally, the last assertion follows by equation (5.1), where ZH ⊆ ZG �H is noted
for every subgroup H of an arbitrary group G.

Problem 2. Describe the class of Z-cofinite groups. Does there exist an infinite,
non-abelian, Z-cofinite group?

4.2 Partial Zariski topologies

Given a subset W ⊆ G[x], we consider the family E(W ) = {EG
w | w ∈ W} ⊆ EG of

elementary algebraic subsets of G determined by the words w ∈ W . Then, following
[5] and [6], we consider the topology TW having E(W ) as a subbase for its closed
sets.

Example 4.17. 1. Note that E(G[x]) = EG, so TG[x] = ZG.

2. Taking W = {gx | g ∈ G}, one obtains that E(W ) = {{g} | g ∈ G}, so that
TW = cofG.

Lemma 4.18. Assume that gw ∈ W , for every w ∈ W and every g ∈ G. Then TW

is the initial topology of the family of verbal functions {fw : G→ (G, cofG) | w ∈ W}.

Proof. If τ is such initial topology, then the subsets f−1
w (g) = f−1

g−1w(eG), for w ∈ W
and g ∈ G, form a subbase for τ -closed sets. On the other hand, the elementary
algebraic subsets Ew = f−1

w (eG), for w ∈ W , form a subbase for the family of
TW -closed subsets. By assumption, those families of subsets coincide.

In particular, ZG can be equivalently defined as the initial topology of the family
of all verbal functions {f : G→ (G, cofG) | f ∈ F (G)}.
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Example 4.19. Let a, b ∈ G, and w = axbx−1 = ab[b−1, x] ∈ G[x]. Note that
Ew 6= ∅ if and only if there exists an element g ∈ G such that a = gb−1g−1, i.e. a
and b−1 are conjugated elements in G. In this case, w = (gb−1g−1)xbx−1.

In particular, letting V = {axbx−1 | a, b ∈ G} ⊆ G[x] and

WC = {[g, a][a, x] = (gag−1)xa−1x−1 | a, g ∈ G} ⊆ V, (4.2)

we obtain that E(V )\∅ = E(WC) ⊆ E(V ), so that TV = TWC
. Moreover, by Example

2.45, item 2, we have
E(WC) = {gCG(a) | a, g ∈ G}.

Definition 4.20. Given a group G, the centralizer topology CG is the topology TWC
,

for WC ⊆ G[x] as in (4.2) in Example 4.19.

By definition, the family {gCG(a) | a, g ∈ G} is a subbase for the CG-closed
subsets of G. So note that CG ⊆ TG in general (more on this in §4.3).

Remark 4.21. If S ⊆ G, let

C(S) = {[g, a][a, x] = (gag−1)xa−1x−1 | g ∈ G, a ∈ S} ⊆ G[x],

D(S) = {[xcx−1, b] | b, c ∈ S} ⊆ G[x].

For example, C(G) = WC as in (4.2), so that TC(G) = CG.
In [4], the authors introduced two restricted Zariski topologies Z′G, Z′′G on a group

G, that in our notation are respectively Z′G = TC(G[2])∪D(G[2]), and Z′′G = TC(G[2]).
Obviously, Z′′G ⊆ Z′G ⊆ ZG and Z′′G ⊆ CG hold for every group G.

In the following definition we introduce the partial Zariski topology Tmon deter-
mined by the monomials. Note that by Lemma 2.49 there is no harm in considering
only the monomials with non-negative content. Moreover, by Example 2.40 we can
indeed consider only positive-content monomials.

Definition 4.22. If M = {gxn | g ∈ G, n ∈ N+} ⊆ G[x] is the family of the
monomials with positive content, then we denote Tmon the topology having E(M) as
a subbase of its closed sets, and we call it the monomial topology.

Note that gx ∈M for every g ∈ G, so that Tmon is T1 topology.

Example 4.23. We have seen in §2.2.4 that w ≈ wab for every w ∈ G[x], when G
is abelian. As in studying Ew we can assume ε(w) ≥ 0 by Lemma 2.49, this shows
that Tmon = ZG.

Now we recall a classical result due to Chernikov, that we will use in the subse-
quent corollary.

Fact 4.24. If G is a nilpotent, torsion-free group, then G satisfies the ‘cancellation
law’, i.e. for every n ∈ N+ and x, y ∈ G, if xn = yn then x = y.

Corollary 4.25. If G is a nilpotent, torsion-free group, then Tmon = cofG.

Proof. If w = gxm ∈ G[x] is a monomial with m > 0, it will suffice to prove
that Ew has at most one element. Assume a ∈ Ew, so that am = g−1. Then
Ew = {p ∈ G | pm = am}, so that Ew = {a} by Fact 4.24.
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4.3 Centralizer topologies

In this section, we study two partial Zariski topologies. The first one is the topology
CG introduced in Definition 4.20. As we shall see in Lemma 4.28 (3), the topology
CG is not T1 in general. For this reason, in analogy with Definition 1.15, we also
introduce the following topology.

Definition 4.26. The T1 centralizer topology C′G on a group G is the supremum
(in the lattice of all topologies on G) C′G = CG ∨ cofG.

Remark 4.27. Note that C′G is T1, and that CG ⊆ C′G ⊆ ZG, so that CG = C′G if
and only if CG is T1.

Let W = WC ∪ {gx | g ∈ G}. Then

E(W ) = E(WC) ∪ {{g} | g ∈ G} = {gCG(a) | a, g ∈ G} ∪ {{g} | g ∈ G}

by Example 4.19, and C′G = TW . Obviously, C′G = TW ′ also for W = {axbx−1 |
a, b ∈ G} ∪ {xg | g ∈ G}.

Here follows some easy to establish properties of CG and C′G.

Lemma 4.28. Let G be a group. Then:

1. both the pair (G,CG) and (G,C′G) are quasi-topological groups;

2. the closure {eG}
CG

= Z(G);

3. CG is T1 (so CG = C′G) if and only if Z(G) = {eG}, while CG = ιG is indiscrete
if and only if G = Z(G) is abelian;

4. if H ≤ G, then CH ⊆ CG �H and C′H ⊆ C′G �H .

Proof. (2). As Z(G) =
⋂
g∈GCG(g) is CG-closed, one only has to verify that every

CG-closed subset containing eG must also contain Z(G).
(3). Immediately follows from (2) and (1).
(4). To prove that CH ⊆ CG �H , it suffices to note that for every element h ∈ H

we have that CH(h) = CG(h) ∩H is a CG �H-closed subset of H.
Then,

C′H = CH ∨ cofH ⊆ (CG �H ∨cofG �H) ⊆ (CG ∨ cofG) �H= C′G �H .

Example 4.29. Let F be a free non-abelian group. As F is center-free, then
CF = C′F by Lemma 4.28, item 3. Indeed, we will prove in Theorem 7.5 that
ZF = C′F , so that CF = C′F = ZF .
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Example 4.30. Let us show that the inclusion CH ⊆ CG �H in Lemma 4.28, item 4,
may be proper. To this end, it will suffice to consider a group G having an abelian,
non-central subgroup H, so that

ιH = CH ( CG �H .

Indeed, ιH = CH holds by Lemma 4.28, item 3, as H is abelian, while ∅ 6=
Z(G) ∩H ( H is a CG �H-closed subset of H.

Lemma 4.31. Let G be a group, G = G/Z(G), and τ be the initial topology on G
of the map

π : G→ (G, cofG). (4.3)

Then τ ⊆ CG.
Moreover, CG = τ if and only if for every g ∈ G \Z(G) the index [CG(g) : Z(G)]

is finite.

Proof. As the family of singletons of G is a subbase for cofG-closed sets, and
π−1({gZ(G)}) = gZ(G) is CG-closed for every g ∈ G by Lemma 4.28, item 1 and 2,
we immediately obtain τ ⊆ CG.

For the reverse inclusion, we have that CG ⊆ τ if and only if CG(g) is τ -closed for
every g ∈ G, if and only if CG(g) is τ -closed for every g ∈ G \ Z(G), as CG(g) = G
is certanly τ -closed for a central element g.

Finally note that, if g ∈ G \ Z(G), then G 
 CG(g) is τ -closed exactly when
π(CG(g)) = CG(g)/Z(G) is finite.

Now we prove that CG and TG coincide on an FC-group G.

Lemma 4.32. If G is an FC-group, then CG = TG.
In particular, if G ∈ N2 and Z(G) is finite, then G is an FC-group, so CG = TG.

Proof. The inclusion CG ⊆ TG holds for every group, so we prove the reverse one.
To this end, it suffices to prove that CG(F ) is a CG-neighborhood of eG, for every
F ∈ [G]<ω. So let F ∈ [G]<ω, and note that CG(F ) is a finite-index subgroup as G
is an FC-group. As (G,CG) is a quasi-topological group by Lemma 4.28, item 1, we
can apply Theorem 1.6 (c) to conclude that CG(F ) is CG-open.

If G ∈ N2 and Z(G) is finite, then G is an FC-group by Corollary 3.10.

We conclude this chapter with a couple of results on the centralizer topologies
on groups in N2.

Here follows an immediate corollary of Lemma 3.17.

Corollary 4.33. If G ∈ N2 and G/Z(G) is torsion-free, then ZG = Tmon ∨ CG.

Proof. It suffices to prove ZG ≤ Tmon ∨ CG. To this end, we see that every E ∈ EG
is either Tmon-closed, or CG-closed. By Lemma 3.17, if eG ∈ E ∈ EG then either
E = G[m] = Exm is a Tmon-closed set, or E is the centralizer of a single element,
hence a CG-closed set.
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The following theorem is another application of Lemma 3.17.

Theorem 4.34. If G ∈ N2 is torsion-free, then ZGI = C′GI for every non-empty set
I.

Proof. Recall that also G/Z(G) is torsion-free by Proposition 3.9.
Note that the power GI ∈ N2 has the same properties as G, so we can simply

replace GI by G. Now Lemma 3.17 applies, giving that the translate of every E ∈ EG
is either a singleton, or the centralizer of a single element of G, so that ZG ⊆ C′G.
Hence, the two topologies coincide.

Recall the definition of the T1 Tăımanov topology T ′G = cofG ∨ TG given in
Definition 1.15. In the following result, we use Lemma 3.18 to compare T ′G with the
Zariski topology for a class of groups in N2.

Theorem 4.35. Let G ∈ N2 of prime exponent p > 2. Then ZGI = C′GI ≤ T
′
GI

for
every set I.

If moreover Z(G) is finite, and I is finite, then CGI = TGI , so that ZGI = C′GI =
T ′GI .

Proof. Note that GI ∈ N2 also has exponent p, se we can simply replace GI by G in
the first part of the assertion. The inclusion C′G ≤ ZG is trivial, while the converse
immediately follows from Lemma 3.18, as every elementary algebraic subset is a
singleton or the coset of a centralizer. This proves ZG = C′G. As the inclusion
CG ≤ TG always holds, we also have C′G ≤ T ′G.

When both Z(G) and I are finite, then Z(GI) is also finite, so CGI = TGI by
Lemma 4.32.
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5
Embeddings

Remark 5.1. If H is a subgroup of a group G, then H carries its own Zariski and
Markov topologies ZH and MH , as well as the induced topologies ZG�H and MG�H .
If w ∈ H[x], then one can consider w also in G[x], so that both EH

w and EG
w make

sense, and EH
w = EG

w ∩ H. From this, one can deduce the inclusion ZH ⊆ ZG �H .
This gives the following inclusions between the four mentioned topologies on H:

MG�H ⊇ ZG�H ⊇ ZH ⊆ MH . (5.1)

To describe better the cases when some of the inclusions can be equalities, the
following definition was given in [20].

Definition 5.2 ([20, Definitions 2.1, 3.1]). A subgroup H of a group G is called:

(a) super-normal in G if for every g ∈ G there exist h ∈ H such that gxg−1 =
hxh−1 for every x ∈ H;

(b) Zariski embedded in G, or Z-embedded if the injection (H,ZH) ↪→ (G,ZG) is
continuous;

(c) Markov embedded in G, or M-embedded if the injection (H,MH) ↪→ (G,MG)
is continuous.

(d) Hausdorff embedded in G if every Hausdorff group topology on H can be ex-
tended to a Hausdorff group topology on G.

Remark 5.3. Note that H is Markov embedded in G if and only if MG �H⊆MH .
Similarly, H is Zariski embedded in G if and only if ZG �H⊆ ZH , but in this

case the topologies coincide by (5.1). It is also equivalent to ask EG
w ∩H to be an

algebraic subset of H for every word w ∈ G[x].
Note also that all four properties in Definition 5.2 are transitive with respect to

composition of injections. There are easy examples where those properties fail (see
for Example Remark 12.15).

Below we will discuss how the properties in Definition 5.2 are related. Proposi-
tion 5.10 (a) and (b) give respectively the implications (1) and (3) in the following
diagram, while (2) follows by Lemma 5.9.
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Hausdorff embedded
(3)

//

(5)
/

QQQQQQQQQQQQQQQQ

((QQQQQQQQQQQQQQQQ

Markov embedded

super-normal

(1)
33ggggggggggggggggggggg

(2)

++WWWWWWWWWWWWWWWWWWWWW

Zariski embedded & Markov embedded

(4)/

OO

// Zariski embedded

?(6)

OO

(5.2)

We will provide evidence for the failure of the implications (4) (see Remark 9.20)
and (5) (see Example 5.4 below). This shows, among others, that none of the reverse
implications of (1), (2), (3) and (6) holds true). The missing implication (6) is left
as an open question (see Question 11).

Example 5.4. Let us verify now the non-implication (5) in the above diagram.
This will imply that the reverse implication of (1) and (6) fail as well.

To this end we provide an argument that is essentially [20, Corollary 6.17]. Take
a M-discrete, not Z-discrete group H (for example, one of the groups constructed
by Hesse in Theorem 11.25). By Example 11.17, item 4, embed H in a Z-discrete
group G. Then ZG�H= MG�H= MH is discrete, while ZH is not discrete. Note that
H is trivially Hausdorff embedded, but not Zariski embedded in G.

In the rest of this subsection, we will mainly discuss some results about the
definitions given in Definition 5.2.

Proposition 5.5 ([20, Lemma 3.2]). A subgroup H of a group G is super-normal
if and only if G = HCG(H). In particular, if H is abelian, then H is super-normal
in G if and only if it is central.

Note that every central subgroup is super-normal by Proposition 5.5.

Proposition 5.6. Let G be a group, S be a countable subset of G, and F = {Fn}n∈N
be a countable family in E∪G. Then there exists a countable subgroup H of G con-
taining S and such that Fn ∩H ⊆ H ∈ E∪H for every n ∈ N.

Proof. For every n ∈ N, let Fn =
⋃kn
i=1E

G

w
(n)
i

for words w
(n)
1 , . . . , w

(n)
kn
∈ G[x].

LetH be the (countable) subgroup ofG generated by S and
⋃
n∈N

⋃kn
i=1 coeff(w

(n)
i ).

Then EG

w
(n)
i

∩ H = EH

w
(n)
i

is an elementary algebraic subset of H for every n and i.

So Fn ∩H =
⋃kn
i=1E

H

w
(n)
i

is an additively algebraic subset of H.

Remark 5.7. In the notation of Proposition 5.6, for every subgroup K of G con-
taining H, Fn ∩K ∈ E∪K for every n ∈ N.
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Lemma 5.8. Every word w ∈ G[x] can be written in the form

w = (α1x
ε1α−1

1 )(α2x
ε2α−1

2 ) · · · (αn−1x
εn−1α−1

n−1)αnx
εn , (5.3)

for α1, . . . , αn ∈ G.

Proof. If w = g1x
ε1g2x

ε2 · · · gnxεn , for i = 1, . . . , n let αi = g1g2 · · · gi.

Lemma 5.9. Let H be a super-normal subgroup of a group G. If E ∈ EG, then
E ∩H ∈ EH . In particular, H is Zariski embedded in G.

Proof. Let E = Ew for some w ∈ G[x]. By Lemma 5.8, it is not restrictive to
consider only words w ∈ G[x] as in (5.3), for whom

EG
w ∩H = {x ∈ H | (α1x

ε1α−1
1 )(α2x

ε2α−1
2 ) · · · (αnxεnα−1

n ) = α−1
n }.

As H is super-normal in G, for every i = 1, . . . , n there exists βi ∈ H such that, for
every x ∈ H, αix

εiα−1
i = βix

εiβ−1
i . So

EG
w ∩H = {x ∈ H | (β1x

ε1β−1
1 )(β2x

ε2β−1
2 ) · · · (βnxεnβ−1

n ) = α−1
n }. (5.4)

If αn ∈ G\H, then EG
w ∩H = ∅ and there is nothing to prove. If αn ∈ H, then every

coefficient in the equation (5.4) defining EG
w ∩H is an element of H, so EG

w ∩H is
an elementary algebraic subset of H.

By Proposition 5.5 and Lemma 5.9, every central subgroup is Zariski embedded,
unlike G′ (see Example 11.7 (c)).

The following proposition shows how some of the properties in Definition 5.2 are
related.

Proposition 5.10. (a) ([20, Corollary 2.6]) A super-normal subgroup is Haus-
dorff embedded.

(b) ([20, Lemma 2.7]) A Hausdorff embedded subgroup is also Markov embedded.

The next theorem characterizes normal Hausdorff embedded subgroups of a
group.

Theorem 5.11 ([20, Theorem 3.4]). Let N be a normal subgroup of a group G.
Then N is Hausdorff embedded in G if and only if all the automorphisms of N
induced by conjugation by elements of G are continuous for every Hausdorff group
topology on N .

The following fact from [21] shows that distinguishing between Zariski embedded
and Markov embedded subgroups requires groups or subgroups on which the Zariski
and Markov topologies differ.

Fact 5.12 ([21, Lemma 2.2]). Let H be a subgroup of a group G.
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64 5. Embeddings

(a) If ZH = MH and H is Markov embedded, then H is also Zariski embedded.

(b) If ZG = MG and H is Zariski embedded, then H is also Markov embedded.

In analogy to Definition 5.2, we introduce here the following notion.

Definition 5.13. A subgroup H of a group G is called P-embedded in G if the
injection (H,PH) ↪→ (G,PG) is continuous (i.e., if PG �H⊆ PH).
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6
Direct products and direct sums

If I 6= ∅ is a set, and {Gi | i ∈ I} is a family of groups, throughout this section
we will consider the direct product G =

∏
i∈I Gi, and denote

∏
i∈I ZGi the product

topology on G of the Zariski topologies ZGi on each factor Gi.
We will consider also the direct sum S =

⊕
i∈I Gi, and denote σ =

∏
i∈I ZGi �S=⊕

i∈I ZGi the topology on S induced by
∏

i∈I ZGi . If all the groups Gi coincide, we

will denote G and S respectively GI
i and G

(I)
i .

If J ⊆ I, we will denote
∏

i∈J Gi the subgroup
∏

i∈J Gi×
∏

i∈I\J{eGi}{i} ≤ G, in
order to omit the trivial factors when no confusion is possible.

Lemma 6.1. Let {Gi | i ∈ I} be a family of groups, and G =
∏

i∈I Gi. Then there
exists a canonical map ϑ : G[x]→

∏
i∈I
(
Gi[x]

)
.

Proof. For every i ∈ I, let pi : G → Gi be the i-th canonical projection. Apply
Proposition 2.4 to obtain the homomorphism πi : G[x]→ Gi[x], such that πi �G= pi,
and πi(x) = x. Finally, consider the diagonal map ϑ of the family {πi | i ∈ I}, so
that ϑ : G[x]→

∏
i∈I
(
Gi[x]

)
.

The map ϑ : G[x]→
∏

i∈I
(
Gi[x]

)
has the following explicit form. Let

w = g(1)xε1g(2)xε2 · · · g(n)xεn ∈ G[x],

where g(j) = (g
(j)
i )i∈I ∈ G for elements g

(j)
i = pi(g

(j)) ∈ Gi, for i ∈ I and j = 1, . . . , n.

Denote by wi = g
(1)
i xε1g

(2)
i xε2 · · · g(n)

i xεn ∈ Gi[x] the word in Gi obtained by taking
the i-th coordinate of the coefficients of w. Then wi = πi(w), and ϑ(w) = (wi)i∈I ∈∏

i∈I
(
Gi[x]

)
.

Definition 6.2. In the notation of Lemma 6.1, we will call ϑ(w) = (wi)i∈I the
coordinates of w in

∏
i∈I
(
Gi[x]

)
. Note that ε(w) = ε(wi) for every i ∈ I.

The map ϑ in Lemma 6.1 is not injective, if |I| > 1 and if the groups under con-
sideration are not trivial (we will discuss ker(ϑ) in Example 6.5 below). Nonetheless,
Lemma 6.1 suffices to obtain the following corollary which describes the verbal func-
tions of a direct product.

Corollary 6.3. Let {Gi | i ∈ I} be a family of groups, and G =
∏

i∈I Gi. If
w ∈ G[x] has coordinates ϑ(w) = (wi)i∈I ∈

∏
i∈I
(
Gi[x]

)
, then the verbal function

fw : G→ G is the mapping (gi)i∈I 7→ (fwi(gi))i∈I .
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66 6. Direct products and direct sums

In the following theorem we show that the elementary algebraic subset Ew of a
direct product is the direct product of the elementary algebraic subsets Ewi , where
(wi)i∈I are the coordinates of w in

∏
i∈I
(
Gi[x]

)
.

Theorem 6.4. Let {Gi | i ∈ I} be a family of groups, and G =
∏

i∈I Gi. If
w ∈ G[x], and (wi)i∈I are the coordinates of w in

∏
i∈I
(
Gi[x]

)
, then EG

w has the
form

EG
w =

∏
i∈I

EGi
wi
. (6.1)

In particular, w ∈ UG if and only if wi ∈ UGi for every i ∈ I.
As a consequence, the Zariski topology ZG of the direct product is coarser than

the product topology
∏

i∈I ZGi.

Proof. It suffices to note that g = (gi)i∈I ∈ G satisfies w(g) = eG if and only if
gi ∈ Gi satisfies wi(gi) = eGi for every i ∈ I, by Corollary 6.3. Thus EG

w is as in
(6.1), and EG

w = G if and only if EGi
wi

= Gi for every i ∈ I.
By (6.1), it follows that EG

w is closed in the product topology
∏

i∈I ZGi . Being
EG a subbase for ZG-closed sets, we conclude ZG ⊆

∏
i∈I ZGi .

Example 6.5. Let G1, G2 be non-trivial groups, gi ∈ Gi \ {eGi}, and G = G1×G2.
Consider the word

w = (g−1
1 , eG2)x(eG1 , g2)x−1(g1, eG2)x(eG1 , g

−1
2 )x−1 ∈ G[x].

Then w is non-trivial, as in fact l(w) = 4. As

w1 = π1(w) = g−1
1 xeG1x

−1g1xeG1x
−1 = eG1[x],

w2 = π2(w) = eG2xg2x
−1eG2xg

−1
2 x−1 = eG2[x],

we have w ∈ ker(ϑ), in the notation of Lemma 6.1.
Note that, if w ∈ ker(ϑ), then wi = eGi[x] is the trivial word for every i ∈ I, so

that in particular wi ∈ UGi . Then also w ∈ UG by Theorem 6.4.

Corollary 6.6. Let G1, G2 be non-trivial groups, and G = G1×G2. Then G has a
singular, non-trivial universal word.

Proof. Consider the singular, non-trivial word w ∈ G[x] defined in Example 6.5. Its
coordinates in G1[x] × G2[x] are (w1, w2) = (eG1[x], eG2[x]), so that equation (6.1)
gives EG

w = EG1
eG1[x]

× EG2
eG2[x]

= G1 ×G2.

These two topologies ZG and
∏

i∈I ZGi on a product group G =
∏

i∈I Gi need not
coincide even in very simple cases. For example the Zariski topology of G = Z×Z is
the cofinite topology by Proposition 4.15, so neither Z×{0} nor {0}×Z are Zariski
closed in G, whereas they are certainly closed in the product topology (see §6.1 for
more details).
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Remark 6.7. Let F = {Gi | i ∈ I} be a family of non-trivial groups, and
G =

∏
i∈I Gi. For every i ∈ I, let eGi 6= gi ∈ Gi, and Di = {eGi , gi} ⊆ Gi. Obviously,

ZGi �Di= δDi being ZGi a T1 topology, so that D =
∏

i∈I Di ⊆ G is a (compact)
Hausdorff topological space when equipped with the topology σ =

∏
i∈I δDi . In par-

ticular, being D infinite, the topological space (D, σ) is not Noetherian, by Remark
1.2 (a). As σ = (

∏
i∈I ZGi) �D, also (G,

∏
i∈I ZGi) is not Noetherian again by Remark

1.2 (a).
These easy observations produce plenty of examples showing that ZG needs not

coincide with
∏

i∈I ZGi : for example, it suffices to consider a family F such that ZG
is Noetherian (such families will be classified in Theorem 10.12).

The next definition will be used in the following Lemma 6.9 to give a sufficient
condition on an I-ple (wi)i∈I ∈

∏
i∈I
(
Gi[x]

)
to belong to ϑ

(
(
∏

i∈I Gi)[x]
)
.

Definition 6.8. Let w ∈ G[x]. If l(w) = n ∈ N+ and w = g1x
ε1g2x

ε2 · · · gnxεngn+1

is as in (2.1), we define ~ε(w) = (ε1, ε2, . . . , εn) ∈ {1,−1}n.

Lemma 6.9. Let n ∈ N+, ~ε = (ε1, ε2, . . . , εn) ∈ {1,−1}n, and {Gi | i ∈ I} be
a family of groups. For every i ∈ I, let wi ∈ Gi[x] be such that l(wi) = n and
~ε(wi) = ~ε.

If G =
∏

i∈I Gi, then there exists w ∈ G[x] such that (wi)i∈I are the coordinates
of w in

∏
i∈I
(
Gi[x]

)
.

If in addition every wi ∈ Gi[x] is a δ-word (resp., a universal word) for Gi, then
also w ∈ G[x] is a δ-word (resp., a universal word) for G.

Proof. By assumption, for every i ∈ I, the word wi has the form

wi = g
(1)
i xε1g

(2)
i xε2 · · · g(n)

i xεn ∈ Gi[x].

Defining g(j) = (g
(j)
i )i∈I ∈ G for j = 1, . . . , n, the word w = g(1)xε1g(2)xε2 · · · g(n)xεn ∈

G[x] is such that ϑ(w) = (wi)i∈I , where ϑ : G[x] →
∏

i∈I
(
Gi[x]

)
is the map defined

in Lemma 6.1, i.e. (wi)i∈I are the coordinates of w in
∏

i∈I
(
Gi[x]

)
. By (6.1), w is

a δ-word (resp., a universal word) for G, if every wi ∈ Gi[x] is a δ-word (resp., a
universal word).

Remark 6.10. Let {Bi | i ∈ I} be a family of bounded abelian groups, with
exp(Bi) = ni > 2, and assume the set F = {ni | i ∈ I} to be finite. For every i ∈ I,
let Ki be the group constructed from Bi as in Example 2.38 (a), and fix an element
σi ∈ Ki \Bi. Finally, let H =

∏
i∈I Ki, and Σ = (σi)i∈I ∈ H.

(a) For every i ∈ I, let vi = (σix)ni+2(σix
−1)ni−2 ∈ UKi be as in equation (2.12).

If N =
∏

n∈F n, then also vi = (σix)N+2(σix
−1)N−2 ∈ UKi , for every i ∈ I.

By Lemma 6.9, there is a universal word v ∈ UH such that (vi)i∈I ∈
∏

i∈I(Ki[x])
are the coordinates of v, and ε(v) = ε(vi) = 4.
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Now we explicitly produce such a v ∈ UH , letting

v = (Σx)N+2(Σx−1)N−2. (6.2)

By construction, the coordinates of v ∈ H[x] are (vi)i∈I ∈
∏

i∈I(Ki[x]), so

EH
v =

∏
i∈I

EKi
vi

=
∏
i∈I

Ki = H.

(b) If in addition the groups Ki are as in Example 2.38 (b), then u(Ki) = 2 for
every i ∈ I, and let wi = (σix)n

′
i+1(σix

−1)n
′
i−1 ∈ UKi be as in equation (2.11).

If N =
∏

n∈F n
′, then also wi = (σix)N+1(σix

−1)N−1 ∈ UKi , and

w = (Σx)N+1(Σx−1)N−1 ∈ UH

is a universal word for H, with ε(w) = 2. As H ∈ W2 by Corollary 2.36, item
1, in particular u(H) = 2 by Lemma 2.23, item 3.

Lemma 6.11. Let G be a group, and I be a set. Then G has a δ-word if and only
if GI does.

Proof. Let w ∈ G[x] be a δ-word. Then Lemma 6.9 trivially applies to give that
there exists a word v ∈ GI [x] such that (w)i∈I ∈ G[x]I are the coordinates of v, and
v is a δ-word.

On the other hand, w ∈ GI [x] with coordinates (wi)i∈I is a δ-word if and only if
wi ∈ G[x] is a δ-word for every i ∈ I, again by (6.1).

As a consequence of Proposition 3.31 and Lemma 6.11, we get that every power
of a free non-abelian group has a δ-word. In the following result, we show that every
product of free non-abelian groups has a δ-word.

Proposition 6.12. Let {Gi | i ∈ I} be a family of free non-abelian groups. Then
G =

∏
i∈I Gi has a δ-word.

Proof. For every i ∈ I, let ai, bi ∈ Gi be two of the generators of Gi, and wi =
[ai, x][bi, x] = aixa

−1
i x−1bixb

−1
i x−1 ∈ Gi[x] be the δ-word for Gi constructed in

Proposition 3.31. As l(wi) = 4, and ~ε(wi) = (1,−1, 1,−1) for every i ∈ I, Lemma
6.9 applies and there exists a δ-word w ∈ G[x] such that (wi)i∈I are the coordinates
of w in

∏
i∈I
(
Gi[x]

)
.

In the following lemma, we use Theorem 6.4 to study when a direct product of
groups lies in some Wn.

Lemma 6.13. Let N = {ni | i ∈ I} ⊆ N be a set of naturals, and {Gi | i ∈ I} be a
family of groups. For every i ∈ I, assume that Gi ∈ Wni, and let G =

∏
i∈I Gi.

• If either N is unbounded, or 0 ∈ N , then G ∈ W0.
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• Otherwise, let n be the least common multiple of N . Then G ∈ Wn.

Proof. Let w ∈ UG have coordinates (wi)i∈I ∈
∏

i∈I(Gi[x]). Then wi ∈ UGi for every
i ∈ I by Theorem 6.4, hence ε(wi) ∈ niZ.

As ε(w) = ε(wi) for every i ∈ I, we get ε(w) ∈
⋂
i∈I niZ. Finally, note that if N

is either unbounded, or 0 ∈ N , then
⋂
i∈I niZ = {0}. Otherwise, 0 /∈ N is bounded,

and
⋂
i∈I niZ = nZ.

Recall that every group lies in the classW1. Then note that Corollary 2.36, item
1 is a particular case of Lemma 6.13, when one assumes that, for some index i0 ∈ I,
the group Gi0 ∈ Wn, and Gi ∈ W1 for every i0 6= i ∈ I.

Corollary 6.14. Let {Gi | i ∈ I} be a family of groups, and G =
∏

i∈I Gi. Then
u(Gi) | u(G) for every i ∈ I.

Moreover, if either N = {u(Gi) | i ∈ I} ⊆ N is unbounded, or 0 ∈ N , then
u(G) = 0.

Proof. If either N is unbounded, or 0 ∈ N , then G ∈ W0 by Lemma 6.13, so
u(G) = 0 by Lemma 2.23, item 3.

Otherwise, if n is the least common multiple of N , then G ∈ Wn by Lemma 6.13,
so that n | u(G).

Corollary 6.15. Let G be a group, and I be a set. Then u(GI) = u(G).

Proof. By Lemma 2.23, item 1, there exists w0 ∈ UG with ε(w0) = u(G). Then GI

has a universal word w with ε(w) = u(G) by Lemma 6.9, so that u(GI) | u(G). On
the other hand, u(G) | u(GI) by Corollary 6.14.

We conclude this part with a few results on the Zariski topology of a direct
product.

Lemma 6.16. Let {Gi | i ∈ I} be a family of groups, and Xi ⊆ Gi be a subset for
every i ∈ I. If G =

∏
i∈I Gi, then

∏
i∈I CGi(Xi) is a ZG-closed subgroup of G.

In particular, if Gi0 is center-free for some i0 ∈ I, then
∏

i0 6=i∈I Gi is ZG-closed.

Proof. Follows from the fact that
∏

i∈I CGi(Xi) = CG(
∏

i∈I Xi), then Example 2.43,
item 1, applies.

In the special case when Gi0 is center-free, then

{eGi0} ×
∏

i0 6=i∈I

Gi = CG(Gi0 ×
∏

i0 6=i∈I

{eGi}).
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Remark 6.17. Recall that if G ∈ N2, and expZ(G) = p ∈ P, then the elementary
algebraic subsets with more than one element are union of cosets of Z(G), by Corol-
lary 3.13. Then, we have showed in §3.2 that for G = Q8 and G = D8 all possible
unions of cosets of Z(G) are actually elementary algebraic subsets.

Now, let us note that this does not happen in general, for example for a group
G = G1 × G2. In fact, let w ∈ G[x] have coordinates (w1, w2) ∈ G1[x] × G2[x], so
that EG

w = EG1
w1
× EG2

w2
by equation (6.1). Now assume Ew = T · Z(G) for some

subset T ⊆ G. Then we have EG1
w1
×EG2

w2
= T ·

(
Z(G1)×Z(G2)

)
. If πi : G→ Gi for

i = 1, 2 are respectively the projections on the first and second coordinate, then we
obtain EG1

w1
= π1(T ) · Z(G1) and EG2

w2
= π2(T ) · Z(G2), so that finally

EG
w =

(
π1(T )× π2(T )

)
· Z(G).

In particular, only the unions of cosets taken over rectangular subsets of G are
possible.

6.1 Finite products

We begin giving a sufficient condition for a direct product to belong to W∗n.

Lemma 6.18. Let G1, G2 be groups, with G1 ∈ W∗n. Then G1 ×G2 ∈ W∗n.

Proof. Let G = G1 × G2, and G =
⋃k
i=1E

G
wi

. If (w′i, w
′′
i ) ∈ G1[x] × G2[x] are

the coordinates of wi, then G =
⋃k
i=1E

G1

w′i
× EG2

w′′i
. In particular, G1 =

⋃k
i=1E

G1

w′i
,

so that ε(w′i) ∈ nZ for some i = 1, . . . , k as G1 ∈ W∗n. We conclude recalling
ε(wi) = ε(w′i).

Definition 6.19. Let G1, G2 be groups, and G = G1 × G2. Then the pair G1, G2

will be called:

• Z-productive, if ZG = ZG1 × ZG2 .

• semi Z-productive, if both G1 × {eG2} and {eG1} × G2 are ZG-closed subsets
of G;

• strongly semi Z-productive, if both G1 × {eG2} and {eG1} ×G2 are additively
algebraic subsets of G;

From the definitions, it immediately follows the implications below, for every
pair G1, G2:

Z-productive ⇒ semi Z-productive ⇐ strongly semi Z-productive.

Remark 6.20. 1. As noted above, a strongly semi Z-productive pair is semi Z-
productive. If every ZG1×G2-closed subset is additively algebraic, then these
two conditions are equivalent. According to Theorem 4.10, this happens if G1,
G2 are abelian.
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2. Note that the pair G1, G2 is Z-productive exactly when ZG1×G2 ⊇ ZG1 × ZG2 ,
by Theorem 6.4.

As already noted, if G1, G2 is Z-productive, then it is semi Z-productive. We
are interested in studying when the converse implication holds true, so we explicitly
state the following question.

Question 6. Let G1, G2 be a semi Z-productive pair. Is G1, G2 then Z-productive?

According to Corollary 6.31, to answer negatively this question it suffices to find
a pair of center-free groups G1, G2 that is not Z-productive.

Theorem 6.38 will answer the above question when G1, G2 are abelian, thus
classifying the abelian Z-productive pairs.

6.1.1 Groups with δ-words

Lemma 6.21. Let G1 be a group, G2 be a group having a δ-word, and G = G1×G2.
Then G1 × {eG2} = EG

w , for a singular word w ∈ G[x].

Proof. Let w0 = g1x
ε1g2x

ε2 · · · gnxεn ∈ G2[x] be a δ-word for G2. Define the elements
g̃i = (eG1 , gi) ∈ G, and the word w = g̃1x

ε1 g̃2x
ε2 · · · g̃nxεn ∈ G[x]. Then ε(w) =

ε(w0) = 0, and (w1, w0) ∈ G1[x] × G2[x] are the coordinates of w in G1[x] × G2[x].
Note that w1 = eG1x

ε1eG1x
ε2 · · · eG1x

εn = xε(w0) = x0 is the neutral element of G1[x],
so that EG

w = EG1
w1
× EG2

w0
= G1 × {eG2}.

Example 6.22. Let G1 be a group, F a free non-abelian group, and G = G1 × F .
By Proposition 3.31, F has δ-words, so that G1 × {eF} is an elementary algebraic
subset of G by Lemma 6.21, hence a ZG-closed subset of G.

Theorem 6.23. Let G = G1×G2, for groups G1 ∈ W∗0 and G2. Then the following
conditions are equivalent.

(a) G2 has a δ-word;

(b) G1 × {eG2} = EG
w , for a singular word w ∈ G[x];

(c) G1 × {eG2} ∈ EG;

(d) G1 × {eG2} ∈ E∪G.

Proof. (a) implies (b) follows by Lemma 6.21.

(b) implies (c), and (c) implies (d) are trivial.

(d) implies (a). Assume G1 × {eG2} =
⋃k
i=1E

G
wi

for a positive integer k, and
words wi ∈ G[x] for i = 1, . . . , k such that EG

wi
6= ∅.
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By equation (6.1), every elementary algebraic subset EG
w of G has the form EG

w =
EG1

w′ ×E
G2

w′′ for words w′ ∈ G1[x] and w′′ ∈ G2[x]. So G1×{eG2} =
⋃k
i=1E

G1

w′i
×EG2

w′′i
,

from which we deduce

G1 =
k⋃
i=1

EG1

w′i
, (6.3)

and {eG2} =
k⋃
i=1

EG2

w′′i
, i.e. EG2

w′′i
= {eG2} for every i = 1, . . . , n. (6.4)

As G1 ∈ W0, (6.3) implies that w′i is singular for some i = 1, . . . , k. This implies
that also w′′i is singular. By (6.4), w′′i is a δ-word for G2.

From Lemma 6.21 and Theorem 6.23 it immediately follows the corollary below.
In particular, the equivalence between conditions (b) and (c) in the next corollary
provides a converse to Lemma 6.21.

Corollary 6.24. Let G2 be a group. Then, the following conditions are equivalent.

(a) G2 has a δ-word;

(b) G1 × {eG2} ∈ EG1×G2 for every group G1;

(c) G1 × {eG2} ∈ EG1×G2 for every G1 ∈ W∗0 ;

(d) G1 × {eG2} ∈ EG1×G2 for some G1 ∈ W∗0 .

Corollary 6.25. Let G1, G2 be abelian groups, with G1 unbounded and G2 6= {0}.
Then G1 × {0G2} is not a Zariski closed subset of G = G1 ×G2.

Proof. If G1 is an unbounded abelian group, then trivially G1 ∈ W0 by Lemma 2.32,
and G1 is Z-irreducible by Corollary 4.13, so that G1 ∈ W∗0 .

By Lemma 3.30, the abelian group G2 has no δ-words, so that G1×{0G2} /∈ EG
by Theorem 6.23. Then we conclude by Theorem 4.10.

Remark 6.26. We point out here that the implication in Corollary 6.25 needs not
hold if one of the groups G1, G2 is non-abelian. Indeed, consider an arbitrary group
G1, a free non-abelian group F , and let G = G1 × F . By Example 6.22, we have
that G1 × {eF} is ZG-closed, independently on G1.

6.1.2 Semi Z-productive pairs

Lemma 6.27. Let G1, G2 be groups, Hi ≤ Gi, for i = 1, 2 be subgroups, G = G1×G2

and H = H1 ×H2. Then the following hold.

1. If the pair G1, G2 is semi Z-productive, and H is Zariski embedded in G, then
also the pair H1, H2 is semi Z-productive.
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2. If the pair G1, G2 is Z-productive, and Hi ≤ Gi, for i = 1, 2 are Zariski
embedded, then also the pair H1, H2 is Z-productive.

Proof. 1. By assumption, G1 × {eG2} is a ZG-closed subset of G, so H1 × {eH2}
is a ZG �H-closed subsets of H. As ZG �H= ZH , this proves that H1×{eH2} is
a ZH-closed subset of H. The same argument holds for {eH1} ×H2.

2. As Hi is Zariski embedded in Gi for i = 1, 2, we have that ZG1�H1
× ZG2�H2

=
ZH1 × ZH2 . Then

ZH ⊆ ZG �H= (ZG1 × ZG2) �H= ZG1�H1
× ZG2�H2

= ZH1 × ZH2 ,

where the first equality holds as G1, G2 is Z-productive.

Corollary 6.28. If G1, G2 is a (semi) Z-productive pair, and Hi ≤ Z(Gi), for
i = 1, 2 are subgroups, then also H1, H2 is (semi) Z-productive.

In particular, if G1, G2 is an abelian (semi) Z-productive pair, and Hi ≤ Gi, for
i = 1, 2 are subgroups, then also H1, H2 is (semi) Z-productive.

Proof. As central subgroups are super-normal, hence Zariski embedded, we have
that Hi ≤ Gi, for i = 1, 2 are Zariski embedded subgroups. The same argument
applies to H = H1×H2 ≤ Z(G1)×Z(G2) = Z(G1×G2), giving that H ≤ G1×G2

is Zariski embedded.
Finally, Lemma 6.27 applies.

Lemma 6.29. Let G1, G2 be groups, and let w ∈ UG2 with ε(w) = m. If G = G1 ×
G2, then Z(G1)[m]×G2 is ZG-closed. In particular, {eG1} ×G2

ZG ⊆ Z(G1)[m]×G2.

Proof. As
Z(G1)[m]×G2 =

(
G1[m]×G2

)
∩
(
Z(G1)×G2

)
,

and Z(G1)×G2 is ZG-closed by Lemma 6.16, it only remains to prove that G1[m]×G2

is ZG-closed. To this end, we will build a word w̃ ∈ G[x] such that G1[m]×G2 = EG
w̃ .

Let w = g1x
ε1g2x

ε2 · · · gnxεn . Define the elements g̃i = (eG1 , gi) ∈ G, and the
word w̃ = g̃1x

ε1 g̃2x
ε2 · · · g̃nxεn ∈ G[x]. Then the coordinates of w̃ in G1[x]×G2[x] are

(w1, w) ∈ G1[x] × G2[x], where w1 = eG1x
ε1eG1x

ε2 · · · eG1x
εn = xε(w) = xm ∈ G1[x],

so that EG
w̃ = EG1

w1
× EG2

w = G1[m]×G2.

As every group G2 has a universal word with content u(G2), from Lemma 6.29
it immediately follows the corollary below taking m = u(G2). Moreover, being
ε(UG2) = u(G2)Z, note that Z(G1)[u(G2)] × G2 is the smallest subgroup of G con-

taining {eG1} ×G2

ZG
of the form Z(G1)[m]×G2, for m ∈ ε(UG2).

Corollary 6.30. Let G1, G2 be groups and G = G1×G2. Then Z(G1)[u(G2)]×G2

is ZG-closed, so

{eG1} ×G2

ZG ⊆ Z(G1)[u(G2)]×G2.
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This corollary gives a nice sufficient condition for semi Z-productivity of a pair
of groups:

Corollary 6.31. If G1, G2 is a pair of groups with

Z(G1)[u(G2)] = {eG1} and Z(G2)[u(G1)] = {eG2},

then the pair G1, G2 is semi Z-productive. In particular, every pair of center-free
groups is semi Z-productive.

Note that the last assertion of Corollary 6.31 follows also by Lemma 6.16.

Theorem 6.32. Let G1 be a group, n ∈ N and G2 ∈ W∗n. Consider the group

G = G1 ×G2. Then Z(G1)[n]×G2 ⊆ {eG1} ×G2

ZG
.

In particular, for every group G2

Z(G1)[u*(G2)]×G2 ⊆ {eG1} ×G2

ZG
.

Proof. We will prove that every ZG-closed subset C of G containing {eG1}×G2 must
also contain Z(G1)[n]×G2.

Let {eG1} × G2 ⊆ C 6= G be a basic ZG-closed subset, i.e. C is an additively
algebraic subset of G. So let w1, . . . , wk ∈ G[x] be such that C =

⋃k
ν=1E

G
wν ⊇

{eG1} ×G2.
For ν = 1, . . . , k let (w′ν , w

′′
ν) ∈ G1[x] × G2[x] be the coordinates of wν . So

EG
wν = EG1

w′ν
× EG2

w′′ν
, and from {eG1} × G2 ⊆ C we obtain G2 =

⋃k
ν=1E

G2

w′′ν
. As

G2 ∈ W∗n, ε(w′′ν) ∈ nZ for some ν = 1, . . . , k. As ε(w′′ν) = ε(wν) = ε(w′ν), we
conclude ε(w′ν) ∈ nZ, so apply Lemma 3.3 (a) to get Z(G1)[ε(w′ν)] = Z(G1) ∩ EG1

w′ν
.

In particular,
Z(G1)[n] ⊆ Z(G1)[ε(w′ν)] ⊆ EG1

w′ν
,

so that
Z(G1)[n]×G2 ⊆ EG1

w′ν
× EG2

w′′ν
= EG

wν ⊆ C.

As Z(G1)[n] × G2 ⊆ C holds for any ZG-basic closed set C containing {eG1} × G2,

we conclude that Z(G1)[n]×G2 ⊆ {eG1} ×G2

ZG
.

If u*(G2) = 0, then G2 ∈ W ∗
0 , and taking n = 0 = u*(G2) we obtain

Z(G1)×G2 = Z(G1)[0]×G2 ⊆ {eG1} ×G2

ZG
.

If u*(G2) 6= 0, then u*(G2) is the least common multiple of the set S = {n ∈ N |
G2 ∈ W∗n}, so that

〈Z(G1)[n]×G2 | n ∈ S〉 = Z(G1)[u*(G2)]×G2.

Being {eG1} ×G2

ZG
a subgroup of G by Theorem 1.6 (d), we conclude

Z(G1)[u*(G2)]×G2 ⊆ {eG1} ×G2

ZG
.
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By Theorem 6.32, the direct summand G2 = {eG1}×G2 of the group G = G1×G2

is not ZG-closed when Z(G1)[u*(G2)] 6= {eG1}. Note that this happens exactly when
Z(G1)[n] 6= {eG1} and G2 ∈ W∗n, for some n ∈ N.

We do not know whether G2 need to be MG-closed, so we ask the following
question.

Question 7. Do there exist two groups G1, G2 such that Z(G1)[u*(G2)] 6= {eG1},
and G2 is MG1×G2-closed?

A positive answer to Question 7 would mean that G2 is MG-closed. Since G2 is
not ZG-closed by Theorem 6.32, this will provide a large class of examples of groups
G satisfying ZG 6= MG.

From Theorem 6.32, one can deduce a necessary condition for semi Z-productivity
of a pair of groups:

Corollary 6.33. If a pair G1, G2 is semi Z-productive, then

Z(G1)[u*(G2)] = {eG1} and Z(G2)[u*(G1)] = {eG2}.

Note that if G2 ∈ W∗u(G2), then u(G2) | u*(G2), so that u(G2) = u*(G2). As a

consequence, Z(G1)[u*(G2)] = Z(G1)[u(G2)] for every group G1. Then, by Corollary
6.30 and Theorem 6.32, it follows:

Corollary 6.34. Let G1, G2 be groups, and G = G1 ×G2. Then

Z(G1)[u*(G2)]×G2 ⊆ {eG1} ×G2

ZG ⊆ Z(G1)[u(G2)]×G2.

In particular, if Z(G1)[u*(G2)] = Z(G1)[u(G2)], then

{eG1} ×G2

ZG
= Z(G1)[u(G2)]×G2.

Corollary 6.35. Let H be an abelian unbounded group. For every group G, {eG} ×H
ZG×H

=
Z(G)×H.

Proof. As u(H) = 0 by Lemma 2.32, and H is Z-irreducible by Corollary 4.13, we
have H ∈ W∗0 , so that also u*(H) = 0. So we can apply Corollary 6.34 to get

{eG} ×H
ZG×H

= Z(G)[0]×H = Z(G)×H.

By Corollary 6.24, a group G2 has a δ-word if and only if G1 × {eG2} ∈ EG1×G2

for every group G1. In particular, G1 × {eG2} is a Zariski closed subset of G1 ×G2

for every group G1. The next theorem characterizes the groups G2 with the latter
(weaker) property.
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte.

76 6. Direct products and direct sums

Theorem 6.36. For a group G the following are equivalent:
(a) G is center-free;
(b) G1 × {eG} is a Zariski closed subset of G1 ×G for every group G1.

Proof. (b) → (a). Corollary 6.35, applied with H = G1 = Z, implies Z(G) = {eG}.
(a) → (b). Since G is a center-free group, Lemma 6.16 applies to conclude that

G satisfies (b).

6.1.3 Abelian Z-productive pairs

Lemma 6.37. Let G1, G2 be bounded abelian groups having coprime exponents.
Then G1, G2 is Z-productive.

Proof. Let G = G1 ×G2, and exp(Gi) = mi for i = 1, 2. By (2.14), the ZG1- (resp.,
ZG2)-closed subsets are generated by the cosets of the n-torsion subgroups G1[n]
(resp., G2[n]), for n ∈ N. So it will suffice to show that, for every n ∈ N, the
subgroups G1[n] × G2 and G1 × G2[n] are ZG-closed subsets. Indeed G1[n] × G2 is
an elementary algebraic subset of G, as

G1[n]×G2 = G1[n]×G2[nm2] = G1[nm2]×G2[nm2] = G[nm2],

where the first equality holds asm2 = exp(G2), and the second one as (exp(G1),m2) =
1.

Similarly, G1 ×G2[n] = G1[nm1]×G2[nm1] = G[nm1].

In the following theorem, we answer positively Question 6 for abelian Z-productive
pairs, and we describe the structure of abelian groups G1, G2 such that the pair
G1, G2 is Z-productive. Moreover, the implication (b) → (c) is a ‘symmetric’ form
of Corollary 6.25, giving a much more precise conclusion.

Theorem 6.38. Let G1, G2 be abelian groups, and G = G1×G2. Then the following
conditions are equivalent:

(a) the pair G1, G2 is Z-productive;

(b) the pair G1, G2 is semi Z-productive;

(c) G1 and G2 are bounded, G1 = F1⊕G∗1, and G2 = F2⊕G∗2, for finite subgroups
Fi ≤ Gi for i = 1, 2, and subgroups G∗i ≤ Gi for i = 1, 2 such that (exp(G∗1 ⊕
G∗2), |F1|) = 1, (exp(G∗1 ⊕G∗2), |F2|) = 1, (exp(G∗1), exp(G∗2)) = 1.

Proof. (a) → (b) follows by the definitions.
(b) → (c). As both G1 × {0G2} and {0G1} × G2 are ZG-closed subsets of G,

then both G1 and G2 are bounded by Corollary 6.25. Let Gi =
⊕

p∈π(Gi)
Gi,p, where

π(Gi) is finite, for i = 1, 2.
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Let π = π(G1) ∩ π(G2). If π = ∅, let F1 and F2 be the trivial subgroups of G1

and G2 respectively. Otherwise, let

F1 =
⊕
p∈π

G1,p and F2 =
⊕
p∈π

G2,p.

Let also be
G∗1 =

⊕
p∈π(G1)\π(G2)

G1,p and G∗2 =
⊕

p∈π(G2)\π(G1)

G2,p,

so that
G1 = F1 ⊕G∗1 and G2 = F2 ⊕G∗2.

It only remains to prove that both F1, F2 are finite groups, that is: if p ∈ π, then
both G1,p and G2,p are finite. So let p ∈ π and by contradiction assume G1,p to be
infinite. Then also rp(G1) is infinite, and let H1 = G1[p]. Fix an element x ∈ G2

of order p, and let H2 = 〈x〉 ≤ G2. Finally, let H = H1 × H2, and note that
exp(H) = p, so that ZH = cofH by Proposition 4.15. Being H0 = H1 × {0G2} an
infinite proper subgroup of H, it is not ZH-closed. This contradicts Corollary 6.28.

(c) → (a). Assume G1 = F1 ⊕G∗1 and G2 = F2 ⊕G∗2, with F1, F2 finite, G∗1, G∗2
bounded, with coprime exponents as in the statement of (c). Then ZGi = ZFi ×ZG∗i
for i = 1, 2 by Lemma 6.37, so that

ZG1 × ZG2 = ZF1 × ZG∗1 × ZF2 × ZG∗2 .

Finally, let F = F1 × F2 and note that ZF = ZF1 × ZF2 is the discrete topology on
the finite group F . So

ZG1×G2 = ZF1⊕G∗1×F2⊕G∗2 = ZF×G∗1×G∗2
(∗)
= ZF × ZG∗1 × ZG∗2 = ZF1 × ZF2 × ZG∗1 × ZG∗2 ,

where the starred equality follows again from Lemma 6.37, as the three groups F ,
G∗1 and G∗2 are all bounded with mutually coprime exponents. This concludes the
proof.

The following immediate consequence of Corollary 6.28 and Corollary 6.35 could
also be used to give a different proof of the implication (b) → (c) of Theorem 6.38.

Corollary 6.39. Let G1, G2 be an abelian semi Z-productive pair. Then neither
G1, nor G2, can contain as a subgroup any of the following groups: the group of
integers Z; the p-Prüfer group Zp∞;

⊕∞
n=1 Zpn for a prime number p ∈ P;

⊕∞
n=1 Zpn

for infinitely many different prime numbers pn ∈ P, as n ∈ N.

Proof. By contradiction, let H be one of those groups, and assume H ≤ G2.
By Corollary 6.28, the pair G1, H is semi Z-productive, so {eG1} ×H is ZG1×H-

closed. On the other hand, H is abelian unbounded, so {eG1} ×H
ZG1×H = Z(G1)×

H = G1 ×H by Corollary 6.35.

It follows from Theorem 6.38 that for every non trivial abelian group G there
exists a bounded abelian group H such that G, H is not a Z-productive pair.
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/).
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6.2 Direct Sums

Let {Gi | i ∈ I} be a family of groups, G =
∏

i∈I Gi, and S =
⊕

i∈I Gi. We begin
this subsection with a description of the elementary algebraic subsets of S. First,
given a family of subsets Xi ⊆ Gi for every i ∈ I, we define⊕

i∈I

Xi =
(∏
i∈I

Xi

)
∩ S.

Obviously, if I = I1 ∪ I2 is a partition of I, then G = GI1 × GI2 , where GIk =∏
i∈Ik Gi for k = 1, 2. As S[x] ≤ G[x] by Proposition 2.4, item 1, if w ∈ S[x] we

can consider in particular the coordinates of w ∈ G[x] in GI1 [x]×GI2 [x] and denote
them (wI1 , wI2) ∈ GI1 [x]×GI2 [x].

Proposition 6.40. Let w ∈ S[x]. Then there exists F ∈ [I]<ω such that, letting
GF =

∏
i∈F Gi, the coordinates of w in

∏
i∈I(Gi[x]) split as follows:(

wF , (x
ε(w))i∈I\F

)
∈ GF [x]×

∏
i∈I\F

(
Gi[x]

)
. (6.5)

In particular, ES
w has the following form:

ES
w = EGF

wF
×
⊕
i∈I\F

Gi[ε(w)] =
⊕
i∈F

EGi
wi
×
⊕
i∈I\F

Gi[ε(w)]. (6.6)

Proof. We define F =
⋃
g∈coeff(w) supp(g) ⊆ I, and we note that F is finite. Letting

GI\F =
∏

i∈I\F Gi, then G = GF ×GI\F .

We first consider the projections πF : G[x] → GF [x] and πI\F : G[x] → GI\F [x],
so that (wF , wI\F ) are the coordinates of w in GF [x]×GI\F [x].

Then, let (wi)i∈I\F ∈
∏

i∈I\F
(
Gi[x]

)
be the coordinates of wI\F ∈ GI\F [x], and

note that wi = xε(w) ∈ Gi[x] for i ∈ I \ F . Then the coordinates of w split as in
(6.5) and ES

w is as in (6.6).

Now we give a corollary of Theorem 6.4. Note that this corollary could also be
proved using Proposition 6.40.

Corollary 6.41. Let {Gi | i ∈ I} be a family of groups, and S =
⊕

i∈I Gi. Then
the Zariski topology ZS of the direct sum is coarser than σ.

Proof. Easily follows from Theorem 6.4, as ZS ⊆ ZG �S⊆ σ = (
∏

i∈I ZGi) �S.

In the following lemma, we give a direct proof of Corollary 2.36, item 2, using
Proposition 6.40. Compare this result also with Lemma 6.13.

Lemma 6.42. Let n ∈ N, and {Gi | i ∈ I} be a family of groups. If Gi0 ∈ Wn for
some i0 ∈ I, then S =

⊕
i∈I Gi ∈ Wn.
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/).
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Proof. Let w ∈ US, and consider its coordinates (wi)i∈I ∈
∏

i∈I(Gi[x]). Then wi0 ∈
UGi0 by Proposition 6.40, hence ε(wi0) ∈ nZ. As ε(w) = ε(wi0), we conclude S ∈
Wn.

Proposition 6.43. A direct sum
⊕

i∈I Gi is a super-normal subgroup of a direct
product

∏
i∈I Gi if and only if all but finitely many of the groups Gi are abelian.

Proof. Let S =
⊕

i∈I Gi and G =
∏

i∈I Gi. Then, CG(S) = Z(G) =
∏

i∈I Z(Gi) and
so

S · CG(S) =
⊕
i∈I

Gi ·
∏
i∈I

Z(Gi).

Then, S ·CG(S) = G if and only if Gi = Z(Gi) for all but finitely many i, i.e. if and
only if all but finitely many Gi’s are abelian. Now Proposition 5.5 applies.

Compare the following lemma about direct sum of centralizers with Lemma 6.16
about direct products of centralizers.

Lemma 6.44. Let {Gi | i ∈ I} be a family of groups, and let Xi ⊆ Gi be a subset
for every i ∈ I. If S =

⊕
i∈I Gi, then

⊕
i∈I CGi(Xi) is a ZS-closed subgroup of S.

Proof. Follows from the fact that
⊕

i∈I CGi(Xi) = CS(
⊕

i∈I Xi), then Example 2.43,
item 1, applies.

6.3 Centralizer topologies on products

Lemma 6.45. Let {Gi | i ∈ I} be a family of groups, G =
∏

i∈I Gi and S =
⊕

i∈I Gi.
Then:

1. CG =
∏

i∈I CGi.

2. CS = CG �S=
⊕

i∈I CGi.

3. C′G ⊆
∏

i∈I C′Gi.

Proof. As all the topologies listed above are stable under taking translations, when
compairing them (actually, their closed subsets) we will only consider subsets con-
taining the identity element.

1. Let ρ =
∏

i∈I CGi denote the product topology, and b = (bi)i∈I ∈ G. As
CG(b) =

∏
i∈I CGi(bi) is ρ-closed, we conclude that CG ⊆ ρ.

On the other hand, the translates of subsets X of the form X = CGi(bi) ×∏
i 6=j∈I Gj, for i ∈ I, and bi ∈ Gi are a subbase for the ρ-closed subsets. Letting

bj = eGj for i 6= j ∈ I, and denoting b = (bi)i∈I ∈ G, we get that X = CG(b) is a
CG-closed subset of G, so that ρ ⊆ CG.

2. Let σ =
⊕

i∈I CGi =
∏

i∈I CGi �S. By Lemma 4.28, item (4), CS ⊆ CG �S, so
that CS ⊆ σ by item 1.
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80 6. Direct products and direct sums

Now we shall prove the reverse inclusion σ ⊆ CS. To this end, it will suffice to
show that for every g = (gi)i∈I ∈ G, the subset CG(g) ∩ S is CS-closed. In fact, we
will prove that CG(g) ∩ S =

⋂
i∈I CS(s(i)), for suitable elements s(i) ∈ S for every

i ∈ I. As CG(g) =
∏

i∈I CGi(gi), we have that CG(g) ∩ S =
⊕

i∈I CGi(gi). So, for

every i ∈ I, we define the element s(i) = (s
(i)
j )j∈I ∈ S as follows: s

(i)
i = gi, and

s
(i)
j = eGj whenever i 6= j ∈ I. Then

⋂
i∈I CS(s(i)) = CG(g) ∩ S as desired.

3. Let τ =
∏

i∈I C′Gi be the product topology. Then τ is T1, that is cofG ⊆ τ .
Moreover, obviously

∏
i∈I CGi ⊆ τ , so that CG ⊆ τ by item 1. Then C′G = CG ∨

cofG ⊆ τ .

Let {Gi | i ∈ I} be a family of groups, and G =
∏

i∈I Gi. Then∏
i∈I

CGi = CG ⊆ C′G ⊆ ZG ⊆
∏
i∈I

ZGi (6.7)∏
i∈I

CGi = CG ⊆ C′G ⊆
∏
i∈I

C′Gi ⊆
∏
i∈I

ZGi . (6.8)

From (6.7), it immediately follows the following result.

Lemma 6.46. Let {Gi | i ∈ I} be a family of groups, and G =
∏

i∈I Gi. If CGi = ZGi
for every i ∈ I, then CG = ZG =

∏
i∈I ZGi.

Note that, if Gi is a center-free group, then the hypothesis ZGi = CGi , as in
Lemma 6.46, is equivalent to ZGi = C′Gi .

We shall see in the following example that every inclusion in (6.7) can be proper,
as well as the inclusion in Lemma 6.45 (3), even if ZGi = C′Gi for every i ∈ I. In
particular, the conclusion of Lemma 6.46 needs not hold relaxing its hypotheses to
ZGi = C′Gi for every i ∈ I.

Example 6.47. Consider an infinite family {Gi | i ∈ I} of finite groups. Then
ZGi = C′Gi is the discrete topology on Gi for every i ∈ I, so that

∏
i∈I ZGi =

∏
i∈I C′Gi

is a compact Hausdorff topology.

If we take every group Gi also abelian, then G is abelian too, so that CG = ιG
is the indiscrete topology, and C′G is the cofinite topology. Moreover, according
to Fact 4.12 (a), ZG is Noetherian on G infinite abelian, hence not Hausdorff, so
ZG (

∏
i∈I ZGi .

Finally, if we want ZG to differ also from C′G, we should manage to have ZG not
cofinite, and this can be achieved taking for example Gi = Z4 for every i ∈ I (see
Proposition 4.15). Then, for an infinite set I and the group G = ZI4, the following
hold

CG = ιG ( C′G = cofG ( ZG (
∏
i∈I

ZGi =
∏
i∈I

C′Gi .
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We shall see in §6.6 a more curious example. There, we will consider the group
G = Z2 × SI3 , and prove that

CG ( ZG ( ZZ2 ×
∏
i∈I

ZGi .

This example will show that the conclusion of Lemma 6.46 may fail even if just only
one of the groups in the family under consideration (in this case, Z2) does not satisfy
the condition ZGi = C′Gi .

In the following results, we describe the Zariski topology on a class of products
in N2. Recall that exp(G/Z(G)) | exp(Z(G)) for a group G ∈ N2 by Proposition
3.9.

Theorem 6.48. Let p be a prime number, and {Gi | i ∈ I} ⊆ N2 be a family of
groups such that exp(Z(Gi)) = p, and Gi/Z(Gi) is finite, for every i ∈ I.

If G =
∏

i∈I Gi, then ZG = C′G.

Proof. We have to prove that ZG ⊆ C′G = cofG∨CG. Let w ∈ G[x], and assume that
EG
w 6= ∅. It will suffice to show that either EG

w is a singleton, or EG
w is CG-closed.

If (wi)i∈I ∈
∏

i∈I(Gi[x]) are the coordinates of w in
∏

i∈I(Gi[x]), recall that
EG
w =

∏
i∈I E

Gi
wi

by (6.1) in Theorem 6.4, and that ε(w) = ε(wi) for every i ∈ I.
If (ε(w), p) = 1, then for every i ∈ I also (ε(wi), p) = 1, so that each EGi

wi
is a

singleton by Corollary 3.13 (i), and EG
w is a singleton.

Otherwise, for every i ∈ I, EGi
wi

is a finite union of cosets of Z(Gi) by Corollary
3.13 (ii). In particular, EG

wi
is CGi-closed, so that EG

w =
∏

i∈I E
Gi
wi

is
∏

i∈I CGi-closed.
As
∏

i∈I CGi = CG by Lemma 6.45 (1), we have that EG
w is CG-closed as desired.

In the notation of Theorem 6.48, for every i ∈ I consider the quotient group
Gi = Gi/Z(Gi). Let G = G/Z(G) ∼=

∏
i∈I Gi, and equip it with the product

topology τ =
∏

i∈I δGi of the discrete topologies on each (finite) factor group Gi.

Note that τ is a compact Hausdorff totally disconnected group topology on G. The
following theorem provides a more topological description of ZG.

Theorem 6.49. Let G be a group as in Theorem 6.48, and let π−1τ denote the
initial topology of the canonical projection

π : G→ (G/Z(G), τ). (6.9)

Then CG = π−1τ , so that ZG = cofG ∨ π−1τ . In particular, the connected
component c(G,ZG) = Z(G) is Z-irreducible.

Proof. Note that, for every i ∈ I, the group homomorphisms in the following dia-
gram make it commutative:

G
π //

πi

��

(
∏

i∈I Gi, τ) ∼= G

pi
��

(Gi,CGi)
πGi // (Gi, δGi).

(6.10)
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte.

82 6. Direct products and direct sums

Then note that:

1. Let i ∈ I. By Lemma 4.31, CGi is the initial topology on Gi of the map
πGi : Gi → (Gi, δGi), so that the subsets π−1

Gi
({x}), for x ∈ Gi, form a subbase

for CGi-closed sets.

2. By Lemma 6.45 (1), CG =
∏

i∈I CGi , i.e. CG is the initial topology on G of the
maps {πi : G → (Gi,CGi) | i ∈ I}. Then, by the previous point, the subsets
π−1
i π−1

Gi
({x}), for i ∈ I and x ∈ Gi, form a subbase for CG-closed sets.

3. As τ =
∏

i∈I δGi is the initial topology on G of the maps {pi : G→ (Gi, δGi) |
i ∈ I}, the subsets p−1

i ({x}), for x ∈ Gi, form a subbase for τ -closed sets.

4. By the previous point, and the definition of π−1τ , the subsets π−1p−1
i ({x}),

for x ∈ Gi, form a subbase for π−1τ -closed sets.

As (6.10) is commutative, item 2 and 4 imply that the families of CG-closed
sets and π−1τ -closed sets have the same subbase, so that CG = π−1τ . Then apply
Theorem 6.48 to conclude ZG = cofG ∨ π−1τ .

To prove the last assertion, note that Z(G) =
∏

i∈I Z(Gi) has exponent p, so
that is Z-cofinite by Proposition 4.15, hence Z-irreducible. As ZZ(G) = ZG �Z(G), we
have in particular that (Z(G),ZG �Z(G)) is connected, so that Z(G) ⊆ c(G,ZG).

From the equality ZG = cofG∨π−1τ already proved, it follows that π : (G,ZG)→
(G/Z(G), τ) is continuous, so that also X = π(c(G,ZG)) = c(G,ZG)/Z(G) is τ -
connected. But τ is totally disconnected, hence |X| = 1 and c(G,ZG) = Z(G).

Remark 6.50. Let G be as in Theorem 6.48. By Theorem 6.49, c(G,ZG) = Z(G),
so that the quotient space (G,ZG) is totally disconnected by Corollary 1.11. Indeed,
it can be easily verified that ZG = τ , so that ZG is a compact Hausdorff totally
disconnected group topology.

On the other hand, G ∼=
∏

i∈I Gi, and exp(Z(Gi)) = p for every i ∈ I, so that

also exp(G) = p by Proposition 3.9. In particular, G is Z-cofinite by Proposition
4.15, so that (G,ZG) is irreducible, hence connected.

Then obviously ZG ( ZG, and this example shows that the quotient group G =
G/c(G,ZG), with its own Zariski topology, need not be totally disconnected.

Remark 6.51. Let G be a group. If C = c(G,ZG), then (C,ZG �C) is connected by
definition, and ZC ⊆ ZG �C implies that also (C,ZC) is connected.

This easy osservation shows that only Z-connected groups can be realized as
c(G,ZG) for some group G.

6.4 The Zariski topology of direct products of fi-

nite groups

From now on in this section, {Fi | i ∈ I} will be a non-empty family of finite groups.
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Let G =
∏

i∈I Fi. For every i ∈ I, the Zariski topology ZFi is the discrete one,
and trivially a compact Hausdorff group topology on Fi. We shall be interested in
the cases when G is M-Hausdorff, or even Z-Hausdorff, so by Proposition 6.52 we
must necessarily have Z(G) =

∏
i∈I Z(Fi) finite, i.e. all but a finite number of the

groups Fi must be center-free. So it is not restrictive to consider the case when all
but one of the groups Fi are center-free. This is why we impose in Theorem 6.55 all
groups Fi to be center-free. The general case will be discussed in §11.1.

Proposition 6.52. Let {Fi | i ∈ I} be a non-empty family of finite groups, G =∏
i∈I Fi, and S =

⊕
i∈I Fi. If either G or S is an M-Hausdorff group, then all but

finitely many of the groups Fi are center-free.

Proof. Will easily follow from Corollary 11.4, giving that (respectively) either Z(G) =∏
i∈I Z(Fi) or Z(S) =

⊕
i∈I Z(Fi) is finite. In both cases, obviously all but finitely

many of the groups Fi must be center-free.

Lemma 6.53. If {Fi | i ∈ I} is a non-empty family of finite groups, and G =∏
i∈I Fi, then the product topology

∏
i∈I ZFi is a compact Hausdorff group topology

on G, so

CG ⊆ ZG ⊆MG ⊆ PG ⊆
∏
i∈I

ZFi . (6.11)

Proof. Being
∏

i∈I ZFi a compact (hence, precompact) Hausdorff group topology on
G, we have PG ⊆

∏
i∈I ZFi . The others inclusions follow from the definitions.

Observe that Theorem 6.4 applied to a family {Fi | i ∈ I} of (not necessarily
finite) groups gives only the result ZG ⊆

∏
i∈I ZFi , weaker than (6.11).

Remark 6.54. Let {Fi | i ∈ I} be a non-empty family of finite groups, G =
∏

i∈I Fi,
and H ≤ G. As CH ⊆ ZH ⊆ ZG �H , from equation (6.11) it follows that

CH ⊆ ZH ⊆ ZG �H⊆MG �H⊆ PG �H⊆
(∏
i∈I

ZFi
)

�H . (6.12)

Moreover,
(∏

i∈I ZFi
)

�H is a precompact Hausdorff group topology on H by Lemma
6.53, so PH ⊆

(∏
i∈I ZFi

)
�H and

CH ⊆ ZH ⊆MH ⊆ PH ⊆
(∏
i∈I

ZFi
)

�H . (6.13)

The following theorem determines the Markov topologies on directs products
and sums of finite center-free groups.

Theorem 6.55. Let {Fi | i ∈ I} be a non-empty family of finite center-free groups,
G =

∏
i∈I Fi, and S =

⊕
i∈I Fi. Then:

(a) CG = ZG = MG = PG =
∏

i∈I ZFi.
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(b) CS = ZS = MS = PS =
(∏

i∈I ZFi
)

�S= ZG �S= MG �S= PG �S.

Proof. (a). By Lemma 4.28, item 3, the topology CFi is T1 for every i ∈ I, so that
CFi = ZFi = δFi . Then

∏
i∈I CFi =

∏
i∈I ZFi , so that CG =

∏
i∈I ZFi by Lemma 6.45,

item 1. The remaining equalities follow by (6.11) in Lemma 6.53.
(b). We have that CS = CG �S by Lemma 6.45, item 2, and that CG �S=(∏
i∈I ZFi

)
�S by the previous point, so that CS =

(∏
i∈I ZFi

)
�S. The remaining

equalities follow by (6.13) in Remark 6.54 and item (a).

In the following theorem, we point out how the Zariski topology behaves com-
pletely differently on abelian and meta-abelian groups, even if we restrict ourselves
to the class of almost torsion-free groups. Compare the theorem below with Propo-
sition 4.15, where we see that ZG is cofinite when G is abelian and almost torsion
free.

Theorem 6.56. There exists a center-free, meta-abelian, almost torsion free group
G such that ZG is a compact Hausdorff group topology.

Proof. We will consider an infinite (say, countable) family of finite center-free groups
{Fn | n ∈ N} in such a way that G =

∏
n∈N Fn is meta-abelian and almost torsion

free. Then, ZG is a compact Hausdorff group topology by Theorem 6.55 (a).
To this end, we need a sequence of distinct primes (pn)n∈N such that p2n|p2n+1−1

for every n ∈ N. To find such a sequence one can argue by induction as follows.
Let p0 = 2 and p1 = 3. Assume that n ≥ 1 and p2k−2, p2k−1 are already defined
satisfying p2k−2|p2k−1 − 1 for all k ≤ n.

Pick p2n > p2n−1. Now observe that by Dirichlet’s theorem the arithmetic pro-
gression {mp2n + 1 : m ∈ N} contains infinitely many primes. Choose the prime
p2n+1 from that progression, such that p2n+1 > pi for every i < 2n+ 1.

The next step is to define Fn = Zp2n+1 o Zp2n , the semidirect product of Zp2n

and Zp2n+1 defined by the embedding of Zp2n in Zp2n+1−1
∼= Aut(Zp2n+1). Then Zp2n

acts on Zp2n+1 without non-trivial fixed points, so Fn is center-free. Obviously, Fn
is meta-abelian, so that G =

∏
n∈N Fn is meta-abelian too.

Finally, we verify that G is almost torsion free. Let k > 1 be an integer, and let
pN > k for an integer N . Then G[k] ⊆

∏
n≤N Fn, and so it is finite.

6.5 The universal exponent of infinite products

Now we prove a combinatorial lemma about coverings of a direct product, which are
made of rectangular sets.

Lemma 6.57. Let {Xi : i ∈ I} be a non-empty family of non-empty sets and
X =

∏
i∈I Xi. Let k > 0 be an integer with k ≤ |I|. For every ν = 1, . . . , k and

i ∈ I, let Y
(ν)
i ⊆ Xi and Y (ν) =

∏
i∈I Y

(ν)
i be such that X =

⋃k
i=1 Y

(ν), and the union

is not redundant. Then |{i ∈ I | Y (ν)
i 6= Xi}| < k for every ν = 1, . . . , k.
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Proof. For example, let I1 = {i ∈ I | Y (1)
i 6= Xi}, and by contradiction assume that

|I1| ≥ k.
As Y (1) *

⋃k
ν=2 Y

(ν), there exists some y = (yi)i∈I ∈ Y (1) \
⋃k
ν=2 Y

(ν), so that

for every ν = 2, . . . , k there is iν ∈ I such that yiν /∈ Y
(ν)
iν

. Note that the subset
J = {iν | ν = 2, . . . , k} ⊆ I has at most k − 1 elements, so that I1 \ J 6= ∅.

Then we define an element x = (xi)i∈I ∈ X as follows: if i ∈ I1 \ J , then

Xi \ Y (1)
i 6= ∅, and take xi as any of its elements; if i ∈ J , choose xi = yi. Then

x /∈
⋃k
ν=2 Y

(ν).
By construction, x is not in any of Y (1), Y (2), . . . , Y (k), a contradiction.

Corollary 6.58. Let {Gi : i ∈ I} be a non-empty family of groups and G =
∏

i∈I Gi.
Let k > 0 be an integer with k ≤ |I|. For every ν = 1, . . . , k, let w(ν) ∈ G[x] with

coordinates (w
(ν)
i )i∈I ∈

∏
i∈I
(
Gi[x]

)
be such that G =

⋃k
ν=1 E

G
w(ν), and the union is

not redundant.
Then |{i ∈ I | w(ν)

i /∈ UGi}| < k for every ν = 1, . . . , k.

Proof. If ν ∈ {1, . . . , k}, then EG
w(ν) =

∏
i∈I E

Gi

w
(ν)
i

. If Iν = {i ∈ I | w(ν)
i /∈ UGi} ⊆ I,

then |Iν | < k by Lemma 6.57, so there is i ∈ I \ Iν . Obviously, w
(ν)
i ∈ UGi for all

i ∈ I \ Iν .

In the next theorem we prove that an infinite direct product of groups belonging
to Wn is in W∗n.

Theorem 6.59. Let I be an infinite set, n ∈ N and {Ki : i ∈ I} ⊆ Wn a family of
groups. Let H =

∏
i∈I Ki, and w1, . . . , wk ∈ H[x] be such that H =

⋃k
ν=1E

H
wν and

this union is not redundant. Then ε(wν) ∈ nZ for every ν = 1, . . . , k.
In particular, H ∈ W ∗

n .

Proof. For ν = 1, . . . , k let (wν,i)i∈I ∈
∏

i∈I
(
Ki[x]

)
be the coordinates of wν .

Since I is infinite, we can apply Corollary 6.58, to get for every ν = 1, . . . , k an
index iν ∈ I such that wν,iν ∈ UKiν , so that ε(wν,iν ) ∈ nZ, since Kiν ∈ Wn. As
ε(wν) = ε(wν,iν ) ∈ nZ, we are done.

Note that the hypothesis of Theorem 6.59 on the family {Ki : i ∈ I} to be
contained in Wn could be weakened asking that Ki ∈ Wn for infinitely many i ∈ I.
By the way, we will immediately obtain this stronger result in the following corollary
applying Lemma 6.18.

Corollary 6.60. Let I be an infinite set, n ∈ N and {Ki : i ∈ I} be a family of
groups such that Ki ∈ Wn for infinitely many i ∈ I. Then

∏
i∈I Ki ∈ W ∗

n .

Proof. Let J = {i ∈ I | Ki ∈ Wn} ⊆ I. By assumption, J is infinite, so that∏
i∈J Ki ∈ W ∗

n by Theorem 6.59. Then
∏

i∈I Ki ∈ W ∗
n by Lemma 6.18.

As an application of Theorem 6.59, in the following result we compute the u-
exponent and the u*-exponent of the infinite power of a group.
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Corollary 6.61. Let G be a group, and I be an infinite set. Then u◦(GI) =
u*(GI) = u(GI) = u(G).

Proof. Let u(G) = n. As G ∈ Wn by Lemma 2.23, item 2, we have that GI ∈ W∗n
by Theorem 6.59, so that n | u*(GI). As u(GI) = n by Corollary 6.15, we conclude
also u*(GI) = n.

Let w ∈ UGI with ε(w) = n. If GI ∈ W∗k for some k ∈ N, then GI = Ew implies
k | n. So u◦(GI) = n.

Note that the assumption on I to be infinite in Corollary 6.61 cannot be dropped,
as in this case u*(GI) = u(GI) need not hold. In fact, let G be a finite group with
u(G) 6= 1 (for example, consider G = S3, that has u(S3) = 2 by Example 2.37, item
2). If I is also finite, then GI is finite too, so that u◦(GI) = u*(GI) = 1 by Lemma
3.26, while u(GI) = u(G) 6= 1 by Corollary 6.15.

Example 6.62. Recall that the group G = Z4×ZN
2 considered in Example 3.24 has

u(G) = exp(G) = 4. By Corollary 3.28, we also have u◦(G) = u*(G) = exp∗(G) = 2.
Now consider GN ∼= ZN

4 × ZN
2 . Then exp(GN) = exp∗(GN) = 4 implies u◦(GN) =

u*(GN) = u(GN) = 4, according to Corollary 6.61.

Corollary 6.63. Let G0 be a group, I an infinite set, n ∈ N and {Ki : i ∈ I} ⊆ Wn

be a family of groups. Consider the group H =
∏

i∈I Ki and assume w ∈ UH has

ε(w) = m. If G = G0 ×H, then Z(G0)[n]×H ⊆ H
ZG ⊆ Z(G0)[m]×H.

In particular,

Z(G0)[n]×H ⊆ H
ZG ⊆ Z(G0)[u(H)]×H,

and H is not ZG-closed if Z(G0)[n] 6= {eG0}.

Proof. We have H ∈ W∗n by Theorem 6.59, then Theorem 6.32 applies to give

Z(G0)[n]×H ⊆ H
ZG

. The other inclusion H
ZG ⊆ Z(G0)[m]×H follows by Lemma

6.29, while Corollary 6.30 implies H
ZG ⊆ Z(G0)[u(H)]×H.

See also Corollary 6.65, where we describe the case when H is ZG-dense.

Remark 6.64. Observe that for every group G and for every n ∈ N one has the
following inclusions between (normal) subgroups of G:

Z(G)[n] ≤ Z(G) ≤ G.

• If n 6= 0, then Z(G)[n] = G if and only if G is a bounded abelian group, and
exp(G) | n.

• If n = 0, then Z(G)[0] = Z(G) = G if and only if G is an abelian group.

Corollary 6.65. Let n ∈ N, G0 be a group such that Z(G0)[n] = G0, and let
{Ki : i ∈ I}, G, and H be as in Corollary 6.63. Then H is ZG-dense in G.
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In the following corollary we concentrate on the case n = 2.
Next we will consider a family of groups {Ki | i ∈ I} ⊆ W2 introduced in

Example 2.38, where we built a universal word of content 2 for each of them.

Corollary 6.66. Let G0 be a group, I an infinite set, and {Ki | i ∈ I} be a
family of groups as in Remark 6.10. Let H =

∏
i∈I Ki and G = G0 × H. Then

Z(G0)[2]×H ⊆ H
ZG ⊆ Z(G0)[4]×H.

If in addition the groups {Ki | i ∈ I} are as in Remark 6.10 (b), then H
ZG

=
Z(G0)[2]×H, so that H is ZG-dense if and only if exp(G0) = 2.

Proof. We have that {Ki | i ∈ I} ⊆ W2 by Example 2.38 (a).
Note that H has a universal word with content 4 by Remark 6.10 (a). Moreover,

in the hypothesis that the groups {Ki | i ∈ I} are as in Remark 6.10 (b), then H
has a universal word with content 2 by Remark 6.10 (b).

In both cases, apply Corollary 6.63.

Finally, when H
ZG

= Z(G0)[2] × H, obviously H is ZG-dense if and only if
G0 = Z(G0)[2], and this happens exactly when G0 is an abelian group, of exponent
2, by Remark 6.64.

Corollary 6.67. Let G1, G2 be groups, I an infinite set, H = GI
2 and consider the

group G = G1 ×H. Then

H
ZG

= Z(G1)[u(G2)]×H.

(a) If G2 is either S3, or a group H0 as in Remark 6.10 (b), then H
ZG

=
Z(G1)[2]×H.

(b) If G2 is either Q8 or D8, then H
ZG

= Z(G1)[4]×H.

(c) If G2 is an abelian group, with exp(G2) = n, then H
ZG

= Z(G1)[n]×H.

Proof. As u*(H) = u(H) = u(G2) by Corollary 6.61, we have Z(G1)[u*(H)] =
Z(G1)[u(H)], and Corollary 6.34 applies.

(a) Use the fact that u(S3) = 2 by Example 2.37, item 2, and u(H0) = 2 by
Remark 6.10 (b).

(b) Use u(Q8) = 4 by Lemma 3.21 and u(D8) = 4 by Lemma 3.22.
(c) Use the equality u(G2) = n proved in Lemma 2.32.

Example 6.68. Let I be an infinite set, and consider the groups Z2 = {1, c} in
multiplicative notation, H = SI3 and G = Z2 × H. Then Corollary 6.67 (a) and

Remark 6.64 imply H
ZG

= Z2 × H, i.e. H is ZG-dense, and in particular it is
not ZG-closed. But it is super-normal, so Zariski embedded: ZG �H= ZH , and
ZH =

∏
i∈I ZS3 is the product topology of the discrete topologies ZS3 by Theorem

6.55 (a).
We will explicitly compute ZG in the following §6.6.
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6.6 On the Zariski topology of the group Z2 × SI3
In this subsection, we will describe the Zariski topology of the group G = Z2 × SI3 .
Let us consider the cyclic group Z2 in multiplicative notation, with neutral element
1, so that Z2 = ({1, c}, ·).

First, note that CZ2 = ιZ2 and CS3 = δS3 by Lemma 4.28, item 3, so that Lemma
6.45, item 1, implies that CSI3 =

∏
i∈I CS3 =

∏
i∈I δS3 and

CG = CZ2 × CSI3 = ιZ2 ×
∏
i∈I

δS3 . (6.14)

Obviously Z(G) = Z2, and let G = G/Z(G) ∼= SI3 . By Theorem 6.55 (a), it
follows that CG = ZG =

∏
i∈I δS3 . Note that the quotient map π : (G,ZG)→ (G,ZG)

is continuous by Proposition 4.6, so π−1ZG ⊆ ZG. Moreover, as the family of all

cosets of the subgroups Z2 × SI\{i}3 , for i ∈ I, is a subbase for π−1ZG-closed sets, by
(6.14) we obtain that CG = π−1ZG.

However, CG is not T1 by Lemma 4.28, item 3, so CG ( ZG. To be more precise,
let us see that the commutator subgroup G′ of G is ZG-closed, but not CG-closed.
Indeed, G′ = AI3 = G[3] = Ex3 , hence it is an elementary algebraic subset of G,
while it is not CG-closed, since G′ ∩ Z2 = {eG} is not CG-closed, as CG is not T1.

We shall see in Theorem 6.69 that the topology ZG is the coarser topology con-
taining CG, and having the cosets of G′ as closed sets, i.e. the cosets of centralizers
and the cosets of G′ form a subbase for ZG-closed sets.

Let V = {(gx)3 | g ∈ G} ⊆ Whom,3 ⊆ G[x], and note that every word w ∈ V is
homogeneous. Then the family of the cosets of G′ in G is

{gG′ | g ∈ G} = {gEx3 | g ∈ G} = {E(g−1x)3 | g ∈ G} = E(V ).

If we let also W = WC∪V ⊆ G[x], then Theorem 6.69 below will prove that E(W ) is
a subbase for ZG-closed sets, i.e. TW = ZG. As a consequence, the Zariski topology
ZG is determined by the homogeneous words in V , and by the commutator words
of G[x].

By Lemma 6.1, if w ∈ G[x] then its coordinates in Z2[x]× S3[x]I are(
w0, (wi)i∈I

)
∈ Z2[x]× S3[x]I

for some words w0 ∈ Z2[x] and wi ∈ S3[x] for every i ∈ I. Moreover, ε(w) = ε(w0) =
ε(wi) for every i ∈ I, and by (6.1) we have

EG
w = EZ2

w0
×
∏
i∈I

E S3
wi
.

Theorem 6.69. Every elementary algebraic subset of G is TW -closed. In particular,
ZG = TW .
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Proof. As TW ⊆ ZG, the second part of the statement will immediately follows from
the first one, as EG is a subbase for ZG-closed sets.

Let EG
w be a non-empty elementary algebraic subset of G.

• If ε(w) = ε(w0) is even, then EZ2
w0

= Z2 and EG
w has the form EG

w = Z2 ×∏
i∈I E

S3
wi

, so it is CG-closed by (6.14).

• If ε(w) = ε(w0) is odd, then EZ2
w0

is a singleton and let EZ2
w0

= {p}.
Let J = {i ∈ I | ct(wi) ∈ A3} ⊆ I. For every i ∈ I, as ε(wi) = ε(w) is odd
too, Example 3.5 implies that ES3

wi
⊆ ct(wi)A3, i.e. either ES3

wi
⊆ A3 (if i ∈ J),

or ES3
wi
⊆ S3 \ A3 (if i /∈ J). Now fix an element g ∈ EG

w , so that

EG
w ⊆ {p} ×

∏
i∈J

A3 ×
∏
i∈I\J

S3 \ A3 = gG′3.

Note that F = Z2 · EG
w = Z2 ×

∏
i∈I E

S3
wi

is CG-closed by (6.14), and so EG
w =

gG′3 ∩ F is TW -closed.

By Remark 5.1, the inequality ZS ⊆ ZG �S holds true for the subgroup S =
Z2 × S(I)

3 . The following lemma proves the reverse one.

Corollary 6.70. S is a Zariski embedded subgroup of G.

Proof. As we have to prove that ZG �S⊆ ZS, by Theorem 6.69 it will suffice to show
that S ∩ G′ and the subsets S ∩ CG(g), as g ∈ G, are ZS-closed subsets of S. To
this end, first note that S ∩G′ = S ∩G[3] = S[3] = ES

x3 is an elementary algebraic
subset of S. While, if g = (g0, (gi)i∈I), then

S ∩ CG(g) = S ∩
(
Z2 ×

∏
i∈I

CS3(gi)
)

= Z2 ⊕
⊕
i∈I

CS3(gi)

is ZS-closed by Lemma 6.44.
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/).
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7
The Zariski topology of free

non-abelian groups

Let F be a free non-abelian group. In this chapter we will see that the algebraic
subsets of F are finite unions of singletons or subsets fCF (g), for elements f, g ∈ F .

The first step consists in recalling some algebraic properties.

Lemma 7.1. Let F be a free non-abelian group, and x, y ∈ F be commuting ele-
ments. Then 〈x, y〉 is cyclic, i.e. x, y are powers of some element z ∈ F .

Proof. By hypothesis, 〈x,w〉 ≤ F is an abelian subgroup of F , and it is free by the
Nielsen−Schreier theorem, so it is cyclic.

Note that if G is a group, and x ∈ G, then 〈x〉 ≤ CG(x). Moreover, let us
see that a one-element centralizer subgroup cannot be properly contained in a cyclic
subgroup. Indeed, if CG(x) ≤ 〈y〉 for some element y ∈ G, then 〈x〉 ≤ CG(x) ≤ 〈y〉 ≤
CG(y). Moreover, 〈x〉 ≤ 〈y〉 implies CG(y) ≤ CG(x), so that CG(x) = 〈y〉 = CG(y).

The following lemma proves that in a free non-abelian group the centralizer of
non-trivial elements are the maximal cyclic subgroups.

Lemma 7.2. (i) If 〈x〉 is maximal among cyclic subgroups, then 〈x〉 = CF (x).

(ii) CF (x) is cyclic, and maximal among cyclic subgroups.

In other words, 〈x〉 = CF (x) if and only if 〈x〉 is maximal among cyclic subgroups.

Proof. (i) Assume 〈x〉 to be maximal among cyclic subgroups, and let y ∈ CF (x).
Then 〈x, y〉 ≤ F is cyclic by Lemma 7.1, so it coincides with 〈x〉 and y ∈ 〈x〉.

(ii) Consider 〈x〉 ≤ CF (x). We shall find an element x0 ∈ CF (x) such that
CF (x) = CF (x0) = 〈x0〉 is maximal.

In F , every cyclic subgroup is contained in a maximal cyclic subgroup, and let
〈x0〉 be the maximal cyclic subgroup containing 〈x〉. Then 〈x〉 ≤ 〈x0〉 ≤ CF (x0) ≤
CF (x). Note that 〈x0〉 = CF (x0) by the previous point. Now y ∈ CF (x) implies
〈x, y〉 ≤ F to be cyclic again by Lemma 7.1, so that it coincides with 〈x0〉; this
finally proves that CF (x) = CF (x0) = 〈x0〉.
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By Lemma 7.2, when considering a centralizer subgroup CF (x) in a free non-
abelian group F , one can assume CF (x) = 〈x〉, i.e. 〈x〉 to be maximal among cyclic
subgroups, i.e. x not to be a proper power of any other element in F .

Let B = {{f}, fCF (g) | f, g ∈ F} ⊆ EF , and note that B is a subbase for C′F -
closed subsets.

Corollary 7.3. The family B is stable under finite intersections, satisfies the de-
scending chain condition, and F ∈ B.

In particular, C′F is a Noetherian topology on F , and B∪ is the family of its closed
subsets.

Proof. The first assertion will immediately follow from the following: if x, y ∈ F \
{eF}, and CF (x) ∩ CF (y) 6= {eF}, then CF (x) = CF (y). So let us prove this. By
Lemma 7.2 (ii), both CF (x) and CF (y) are cyclic and maximal, and we can assume
CF (x) = 〈x〉 and CF (y) = 〈y〉. Then CF (x) ∩ CF (y) = 〈x〉 ∩ 〈y〉 = 〈z〉, with
xn = z = ym for some integers n,m ∈ Z. Then y ∈ CF (xn) = 〈x〉, giving 〈y〉 ≤ 〈x〉.
By maximality, 〈y〉 = 〈x〉 as desired.

Then Proposition 1.3 applies.

Proposition 7.4 ([13, Theorem 5.3]). Arbitrary intersections of proper elementary
algebraic subsets of F are elements of B∪.

In the original statement of Proposition 7.4, the authors used the family

{{f}, fCF (g)h | f, g, h ∈ F}

instead of B. Recall that fCF (g)h = fhCF (h−1gh), so that really the two families
coincide.

Theorem 7.5. If F is a free non-abelian group, then

CF = C′F = ZF .

In particular, ZF is Noetherian, the family of algebraic subsets of F coincides
with B∪, and every algebraic subset is additively algebraic.

Proof. It trivially follows by Proposition 7.4 that EF ⊆ B∪, so that ZF = C′F is
Noetherian by Corollary 7.3. As F is center-free, we have also CF = C′F .

Corollary 7.6. The family of ZF -closed irreducible sets is B. In particular, F is
Z-irreducible, and dim(F,ZF ) = 2.

Proof. According to Theorem 7.5, if g 6= eF , then CF (g) is Z-irreducible by Lemma
7.2 (ii). The whole F = CF (eF ) is Z-irreducible as the proper centralizers have
infinite index in F , and so the first part of the statement immediately follows by
Theorem 7.5. Then, for example consider a chain of the form

{eF} ( CF (g) ( F,

where g ∈ F \ {eF}.
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Corollary 7.7. If {Gi | i ∈ I} is a family of free non-abelian groups, and G =∏
i∈I Gi, then CG = ZG =

∏
i∈I ZGi.

Proof. Immediately follows from Lemma 6.46 and Theorem 7.5.
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8
The Zariski topology of the

Heisenberg group

If n is a positive integer, and K is an infinite field, the n-th Heisenberg group with
coefficients in K is the following matrix group:

H(n,K) =




1 x1 · · · xn y

1 0 z1

0
. . .

...
0 1 zn

0 0 1

 ∈ GLn+2(K) | x1, . . . , xn, z1, . . . , zn, y ∈ K


which we will simply denoteH when confusion is not possible. Let ~x = (x1, . . . , xn) ∈
Kn and ~z = (z1, . . . , zn) ∈ Kn. Introducing the canonical scalar product over Kn,
~x · ~z =

∑n
i=1 xizi, the group H can be written as the ‘formal matrix’ group

H = H(n,K) =

1 Kn K
In Kn

1

 =


1 ~x y

In ~z
1

 | ~x, ~z ∈ Kn, y ∈ K

 .

The product in H is the following:1 ~x1 y1

In ~z1

1

1 ~x2 y2

In ~z2

1

 =

1 ~x1 + ~x2 y1 + y2 + ~x1 · ~z2

In ~z1 + ~z2

1

 ,

while the commutator of two elements in H is given by1 ~x1 y1

In ~z1

1

 ,

1 ~x2 y2

In ~z2

1

 =

1 ~0 ~x1 · ~z2 − ~x2 · ~z1

In ~0
1

 . (8.1)

From the above formulas, one can easily see that Z(H) = H ′ =

1 ~0 K

In ~0
1

 ∼= K,

so that H/Z(H) ∼= (Kn,+)× (Kn,+) is abelian, and H ∈ N2.

The proof of the following result is straightforward.
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96 8. The Zariski topology of the Heisenberg group

Fact 8.1. If s ∈ N, and h =

1 ~x y
In ~z

1

 ∈ H, then hs =

1 s~x sy + s(s−1)
2

~x · ~z
In s~z

1

.

In the following lemma, we shall apply Fact 8.1.

Lemma 8.2. Depending on the characteristic of the field K, the group H has the
following properties:

• If charK = 0, then H is torsion-free.

• If charK = 2, then exp(H) = 4.

• If charK = p > 2, then exp(H) = p.

Proof. It is obvious that H is torsion-free if charK = 0.
If charK = p > 2, then p−1

2
∈ N, so that exp(H) = p, as1 ~x y

In ~z
1

p

=

1 p~x py + p(p−1)
2

~x · ~z
In p~z

1

 =

1 ~0 0

In ~0
1

 .

If charK = 2, note that exp(H) 6= 2, as H is non-abelian; moreover,

H[2] =


1 ~x y

In ~z
1

 | y ∈ K, ~x · ~z = 0K

 6= H.

But in this case1 ~x y
In ~z

1

2

=

1 2~x 2y + ~x · ~z
In 2~z

1

 =

1 ~0 ~x · ~z
In ~0

1

 ∈ Z(H).

As Z(H) ∼= K, exp(Z(H)) = 2, and exp(H) = 4.

We distinguish the following subgroups of H:

L =

1 0 K
In Kn

1

 and M =

1 Kn K
In 0

1

 , (8.2)

and observe that Z(H) = L ∩M .
If charK = 2, then L ∪M ⊆ H[2], and if moreover n = 1, then H[2] = L ∪M .
Finally, note that H is isomorphic to the semidirect products (Kn,+)nM and

(Kn,+)n L, but this will not be used in the sequel.
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Lemma 8.3. L and M are both ZH-closed subsets, that are neither Zariski embedded
in H, nor Markov embedded.

In particular, ML = ZL ( ZH �L⊆MH �L and MM = ZM ( ZH �M⊆MH �M .

Proof. It is easy to verify that L is the centralizer in H of its non-central elements,
so L is a ZH-closed subset of H. As L is isomorphic to the group (Kn+1,+), ZL is the
cofinite topology by Proposition 4.16 (a). Being Z(H) an infinite ZH-closed subset
properly contained in L, thus an infinite proper ZH �L-closed subset, ZH induces on
L a topology strictly finer than ZL, i.e. L is not Zariski embedded in H. Moreover,
ML = ZL for the abelian group L by Theorem 4.11, and L is not Markov embedded
in H by Fact 5.12 (a). Finally, ZH �L⊆MH �L by Remark 5.1.

In the same way one proves that M has the same properties as L.

Remark 8.4. Let us underline another difference between the Heisenberg groups
and the abelian groups, beyond those noted in Remark 11.42. We already noticed
that ZH is not the cofinite topology, as for example Z(H), L and M are infinite
proper ZH-closed subsets. Compare Lemma 8.2 and Proposition 4.15: every abelian
group which is either almost torsion-free or of prime exponent is Z-cofinite. On the
other hand, when charK varies in N \ {2}, H is either torsion-free or of exponent
p > 2, but H is not Z-cofinite.

In the following lemma we describe the cosets of one-element centralizer in H.

Lemma 8.5. Let h =

1 ~a b
In ~c

1

 ∈ H, and g =

1 ~α β
In ~γ

1

 ∈ H. Then the

following hold.

1. CH(h) =


1 ~x K

In ~z
1

 ∈ H | ~c · ~x− ~a · ~z = 0

 is a normal subgroup of H.

2. gCH(h) =


1 ~x K

In ~z
1

 ∈ H | ~c · ~x− ~a · ~z = ~c · ~α− ~a · ~γ

.

3. In particular, the cosets of CH(h) are the subsets
1 ~x K

In ~z
1

 ∈ H | ~c · ~x− ~a · ~z = λ

 , for λ ∈ K.

Proof. The description of CH(h) and gCH(h) immediately follows from the formula
given in (8.1) of the commutator of two elements in H. Then, CH(h) is a normal
subgroup of H as it contains H ′.
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98 8. The Zariski topology of the Heisenberg group

Note that the family {gCH(h) | g, h ∈ H} of cosets of one-element centralizers in
H consists of the solution-sets of polynomial equations of degree 1 in the variables
~x, ~z.

Lemma 8.6. Let n = 1. Then the following holds for H = H(1, K).

1. L = CH(l), for every l ∈ L\Z(H), and M = CH(m), for every m ∈M \Z(H).

2. For every h ∈ H \Z(H), the subgroup CH(h) is normal, but not super-normal
in H.

3. Let h1, h2 ∈ H \ Z(H). If CH(h1) 6= CH(h2), then CH(h1) ∩ CH(h2) = Z(H).

Proof. 1. Immediately follows by Lemma 8.5, item 1.

2. By Lemma 8.5, item 1, it only remains to note that CH(h) is an abelian, non
central subgroup, so that Proposition 5.5 applies.

3. For i = 1, 2, let hi =

1 ai bi
1 ci

1

 ∈ H, so that

CH(hi) =


1 x K

1 z
1

 ∈ H | ci · x− ai · z = 0


by Lemma 8.5, item 1.

Then

CH(h1) ∩ CH(h2) =


1 x K

1 z
1

 ∈ H | ci · x− ai · z = 0, i = 1, 2

 ,

i.e. it is the solution-set in H of the system{
c1 · x− a1 · z = 0

c2 · x− a2 · z = 0.

By hypotheses, it follows that the two equations are non-trivial and that they
are independent over K, so that the system has a unique solution x = 0 = z.

In the following lemma, we begin the description of EH and ZH .

Lemma 8.7. Let w ∈ H[x] be such that Ew 6= ∅, and let ε = ε(w).

1. If ε · 1K 6= 0K, then Ew is a singleton.
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2. If ε · 1K = 0K and ε2−ε
2
· 1K = 0K, then Ew is a coset of CH(h), for some

h ∈ H.

3. If ε · 1K = 0K and ε2−ε
2
· 1K 6= 0K, then charK = 2, and 2 | ε but 4 - ε.

Moreover, there exist ~A, ~C ∈ Kn, and B ∈ K, such that

Ew =


1 ~x K

In ~z
1

 ∈ H | ( ~A+ ~x) · ~z = B + ~C · ~x

 . (8.3)

Proof. According to Corollary 3.15, we can assume w = αxε[β, x] ∈ H[x], where

α =

1 ~a −B
In ~c

1

 ∈ H, and β =

1 ~A B0

In ~C
1

 ∈ H,
for ~a, ~A,~c, ~C ∈ Kn and B,B0 ∈ K.

In the sequel, if s ∈ Z and λ ∈ K, the multiple sλ in the additive group (K,+)
coincides with the product (s1K)λ in K.

If X =

1 ~x y
In ~z

1

 ∈ H, and D = ε2−ε
2

, then

[β,X] =

1 ~0 ~A · ~z − ~C · ~x
In ~0

1

 , and Xε =

1 ε~x εy +D~x · ~z
In ε~z

1

 ,

so that

w(X) =

1 ~a+ ε~x εy + ( ~A+D~x) · ~z − ~C · ~x−B + ε~a · ~z
In ~c+ ε~z

1

 .

Then Ew is the solution-set in H of the equation w(X) = eH , i.e. of the system
~a+ ε~x = ~0

~c+ ε~z = ~0

εy + ( ~A+D~x) · ~z − ~C · ~x−B − ε~a · ~z = 0.

(8.4)

If ε · 1K 6= 0K , then system (8.4) has a unique solution, and Ew is a singleton.
So, from now on, we will assume ε · 1K = 0K , so that also ~a = ~c = ~0 (as we are

assuming Ew 6= ∅). In this case, system (8.4) is equivalent to the equation

( ~A+D~x) · ~z = B + ~C · ~x. (8.5)
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100 8. The Zariski topology of the Heisenberg group

Claim 8.8. D · 1K = 0K whenever ε · 1K = 0K and charK 6= 2.

Proof. If charK 6= 2, then D · 1K = 0K if and only if (ε2 − ε) · 1K = 0K , and
the latter holds by our assumption ε · 1K = 0K . Note that if charK = 2, then
D · 1K ∈ {0K , 1K}, and both values can be assumed.

By Claim 8.8, if ε2−ε
2
· 1K = 0K , then equation (8.5) becomes ~A · ~z = B + ~C · ~x,

so that

Ew =


1 ~x K

In ~z
1

 ∈ H | ~C · ~x− ~A · ~z = −B

 .

By Lemma 8.5, item 2, Ew is a coset of CH(h), for example for the element h =1 ~A 0

In ~C
1

.

Finally, assume ε·1K = 0K and ε2−ε
2
·1K 6= 0K . Then D·1K = 1K , and charK = 2

by Claim 8.8, so that Ew is as in (8.3).

8.1 Case charK 6= 2

If charK 6= 2, Lemma 8.7 is sufficient to describe ZH as a partial Zariski topology
as follows.

Corollary 8.9. If charK 6= 2, then ZH = C′H .

Proof. Immediately follows by Lemma 8.7, as every non-empty elementary algebraic
subset of H is either a singleton, or a coset of some one-element centralizer.

Compare the following immediate corollary of Theorem 4.34 and Theorem 4.35
with Corollary 8.9.

Corollary 8.10. If K is an infinite field with char(K) 6= 2, and n ∈ N+, then
G = H(n,K) satisfies ZGI = C′GI for every non-empty set I.

Proof. If char(K) = 0, then G ∈ N2 is torsion-free, so that Theorem 4.34 applies.
If char(K) = p > 2, then GI ∈ N2 and GI has exponent p by Lemma 8.2. Now

Theorem 4.35 applies.

8.2 Case charK = 2

If charK = 2, the following result will provide a description of ZH as a partial Zariski
topology, which will follow in the subsequent Corollary 8.12. Recall the definition
of Whom,2 ⊆ H[x] given in (2.2).
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Lemma 8.11. If charK = 2, let w ∈ H[x] be such that Ew 6= ∅, and let ε = ε(w).
If ε · 1K = 0K and ε2−ε

2
· 1K 6= 0K, then w ∼ w0 for a word w0 ∈ Whom,2.

Proof. By Lemma 8.7, item 3, Ew is as in (8.3). Then, defining

α =

1 ~0 −B
In ~0

1

 ∈ H and β =

1 ~A B

In ~C
1

 ∈ H, (8.6)

Lemma 8.7, item 3, applied to the word w0 = αx2[β, x] ∈ H[x] gives Ew0 = Ew.
Finally, as H ′ ⊆ Z(H) we have w0 ≈ α[β, x]x2 = αβxβ−1x ∈ Whom,2 ⊆ H[x].

Corollary 8.12. If charK = 2, then ZH = C′H ∨ TWhom,2
.

Proof. Let w ∈ H[x] be such that Ew 6= ∅. Then one of the following holds:

1. if ε · 1K 6= 0K , then Ew is a singleton by Lemma 8.7, item 1;

2. if ε ·1K = 0K and ε2−ε
2
·1K = 0K , then Ew is a coset of CH(h), for some h ∈ H,

by Lemma 8.7, item 2;

3. if ε · 1K = 0K and ε2−ε
2
· 1K 6= 0K , then Ew ∈ E(Whom,2) by Lemma 8.11.

This proves ZH ⊆ C′H∨TWhom,2
. Since the other inclusion is obvious, we are done.

8.3 The group H(1, K)

From now on, we will always assume n = 1, so H = H(1, K) =

1 K K
1 K

1

.

Let us define the two subfamilies CK,singl ⊆ EH , consisting of the singletons of
H, and CK,centr ⊆ EH , consisting of cosets of one-element centralizers. Note that
CK,singl is a subbase for cofH-closed sets, CK,centr is a subbase for CH-closed sets, and
that CK,singl ∪ CK,centr is a subbase for C′H-closed sets.

Consider the field K(X) of rational functions over K, and a non-constant R ∈
K(X) of the form

R =
B + CX

A+X

where A,B,C ∈ K. Note that R is non-constant if and only if B 6= AC, and for such
a rational function R, consider the evaluation function domR = K \ {−A} → K,
p 7→ R(p), associated to R. We define the following subset AR ⊆ H

AR =


1 x K

1 R(x)
1

 ∈ H | x ∈ domR

 . (8.7)
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/).
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102 8. The Zariski topology of the Heisenberg group

Note that we will not consider constant rational functions because in this case,
letting R = C ∈ K ⊆ K(X), the subset AR would become

AR =


1 x K

1 C
1

 ∈ H | x ∈ domR = K

 =

1 K K
1 C

1

 =

1 0 0
1 C

1

M.

By Lemma 8.6, item 1, AR would be a coset of a one-element centralizer (namely,
some m ∈M \ Z(H)), and we will consider separately this kind of subsets.

Let us define the family CK,graph ⊆ P(H), consisting of subsets AR as in (8.7),
for a non-constant R = B+CX

A+X
∈ K(X). Finally, we define the following family

CK ⊆ P(H), whose definition depends on whether charK = 2 or charK 6= 2:

CK =

{
CK,singl ∪ CK,centr if charK 6= 2,

CK,singl ∪ CK,centr ∪ CK,graph if charK = 2.
(8.8)

8.3.1 Case charK 6= 2

As a consequence of Corollary 8.9, we obtain that when charK 6= 2 the family

CK = CK,singl ∪ CK,centr ⊆ EH

is a subbase for ZH-closed sets.
In the following result, we describe the intersections of elements of CK .

Lemma 8.13. If charK 6= 2 and n = 1, then C∩K = CK ∪ {∅} ∪ {hZ(H) | h ∈ H}.
Moreover, both CK and C∩K are subbases for ZH-closed sets and satisfy the descending
chain condition.

Proof. As n = 1, the description of C∩K follows by Lemma 8.6, item 3. Then, one
immediately sees that both CK and C∩K satisfy the descending chain condition.

8.3.2 Case charK = 2

In this case,
CK = CK,singl ∪ CK,centr ∪ CK,graph.

We will prove below in Theorem 8.18 that CK is a subbase of the ZH-closed
subsets (recall we are assuming charK = 2 and n = 1).

Since n = 1, the elementary algebraic subsets Ew, for words w ∈ Whom,2 ⊆ H[x],
have a very transparent description. In Lemma 8.14 below, we present such a
description.

Lemma 8.14. Let charK = 2 and n = 1. If w ∈ Whom,2 ⊆ H[x], then either
Ew = AR is as in (8.7), or Ew the union of a coset of L and a coset of M . In
particular, Ew ∈ C∪K, so that EH ⊆ C∪K.
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Proof. According to Theorem 3.14 (and its proof), if w = g1xg2x ∈ Whom,2, then
w ≈ g1g2x

2[g−1
2 , x].

By Lemma 8.7, item 3,

Ew =


1 x K

1 z
1

 ∈ H | (A+ x)z = B + Cx


for some A,B,C ∈ K.

If B 6= CA, then R = B+CX
A+X

is non-constant, the system

{
A+ x = 0

B + Cx = 0
has no

solution, and Ew = AR. Otherwise, B = CA, and the condition (A+x)z = C(A+x)
defining Ew is equivalent to the disjunction x = −A ∨ z = C, so that

Ew =

1 −A K
1 K

1

 ∪
1 K K

1 C
1

 =

1 −A 0
1 0

1

L ∪

1 0 0
1 C

1

M.

This proves that E(Whom,2) ⊆ C∪K . By Lemmata 8.7 and 8.11, EH \ E(Whom,2) ⊆
CK,singl ∪ CK,centr. Hence, EH ⊆ C∪K .

Remark 8.15. In the notation of Lemma 8.14, note that Ew = AR when B 6= AC.

Lemma 8.16. If charK = 2 and n = 1, then CK,graph ⊆ E(Whom,2). In particular,
CK ⊆ EH .

Proof. Let R = B+CX
A+X

∈ K(X) be not constant. We are going to define a word
v = αβxβ−1x ∈ Whom,2 such that AR = Ev. Note that v ≈ w = αx2[β, x], so we
prove AR = Ew.

For such a word w, we have ε = 2 and ε2−ε
2

= 1, so that defining α, β ∈ H as in
(8.6), we have that Ew is as in (8.3) by Lemma 8.7, item 3, so

Ew =


1 x K

1 z
1

 ∈ H | (A+ x)z = B + Cx

 .

Being R not constant, we have B 6= CA, so Remark 8.15 implies

Ew =


1 x K

1 R(x)
1

 ∈ H | x ∈ domR

 = AR.

From this, it follows that CK ⊆ EH , as the inclusion CK,singl ∪ CK,centr ⊆ EH is
obvious.
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Remark 8.17. Note that in non-trivial cases, i.e. when an elementary algebraic
subset is not the whole H, nor a singleton, we can always assume l(w) = 2. In other
words, the proper elementary algebraic subsets of H, with more than one element,
are all given by words of the form w = h1X

ε1h2X
ε2 , with ε1, ε2 = ±1.

Theorem 8.18. The family CK is a subbase of the ZH-closed sets.

Proof. It follows from Lemmata 8.14 and 8.16 that C∪K = E∪H . As EH is a subbase
of the ZH-closed sets by definition, we are done.

Remark 8.19. In [24], we have defined a family C∗ ⊆ P(H) in both cases when
charK 6= 2 and charK = 2. In the latter case, that we are considering now, C∗ is
the union of the following families:

• CK,singl ∪ {H}, consisting of the singletons of H, and the whole H;

• CK,cos, consisting of cosets of L;

• C∗K,graph, consisting of subsets AR∗ as in (8.7), for a rational function R∗ =
β+γX
α+δX

∈ K(X).

Let us prove that CK = C∗. We first show that CK ⊆ C∗, and to this end it is

sufficient to prove that CK,centr\CK,cos ⊆ C∗K,graph. So let h =

1 a b
1 c

1

 ∈ H\L, i.e.

a 6= 0. Then the cosets of CH(h) are the subsets


1 x K

1 z
1

 ∈ H | cx− az = λ

,

for λ ∈ K, by Lemma 8.5, item 3. Letting R∗ = −λ+cx
a

, one sees that this subsets
have the form AR∗ , hence are elements of C∗K,graph.

Now we prove that C∗ ⊆ CK , showing that C∗K,graph ⊆ CK,graph ∪ CK,centr. So

let AR∗ ∈ C∗K,graph, for R∗ = β+γX
α+δX

∈ K(X). If δ 6= 0, we can assume δ = 1,
so that either R∗ is not constant, and AR∗ ∈ CK,graph, or R∗ is constant, and
AR∗ is a coset of M , hence AR∗ ∈ CK,centr by Lemma 8.6, item 1. Finally, if
δ = 0 we can assume α = 1, so that R∗ = β + γX is a polynomial and AR∗ =
1 x K

1 z
1

 ∈ H | x ∈ K, z = β + γx

 is an element of CK,centr by Lemma 8.5,

item 3.

In the following result, we describe the intersections of elements of CK .

Lemma 8.20. If charK = 2 and n = 1, then C∩K = CK∪{F ·Z(H) | F ∈ [H]<3}. In
other words, C∩K = CK ∪{∅}∪ {hZ(H) | h ∈ H}∪ {h1Z(H)∪h2Z(H) | h1, h2 ∈ H}.

Moreover, both CK and C∩K satisfy the descending chain condition.
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Proof. By Remark 8.19, C∩K = (C∗)∩, so to classify the elements of C∩K the only
non-trivial cases to consider are the intersections between a coset of L and a subset
AR∗ , or the intersections between different subsets of the form AR∗ .

In the first case, the intersection is1 x0 K
1 K

1

 ∩

1 x K

1 R∗(x)
1

 ∈ H | x ∈ domR∗

 ,

non-empty exactly when x0 ∈ domR∗, and in this case is1 x0 K
1 R∗(x0)

1

 =

1 x0 0
1 R∗(x0)

1

1 0 K
1 0

1

 =

1 x0 0
1 R∗(x0)

1

Z(H),

a coset of Z(H), that is not an element of CK . In particular, a coset of L cannot
contain a subset AR∗ , and viceversa.

The second case to consider is the intersection of two different subsets AR∗1 , AR∗2 :
1 x K

1 R∗1(x)
1

 ∈ H | x ∈ domR∗1

 ∩

1 x K

1 R∗2(x)
1

 ∈ H | x ∈ domR∗2

 .

If non-empty, one of its elements is a matrix

1 x0 y0

1 z0

1

, with x0 ∈ domR∗1 ∩

domR∗2, R∗1(x0) = z0 = R∗2(x0), and y0 ∈ K arbitrarily chosen. As R∗1 6= R∗2, x0

is a solution of the non-trivial rational equation R∗1(x) = R∗2(x), which can have
either 0, or 1, or 2 solutions, depending on the coefficients of R∗1, R

∗
2. So in this case

AR∗1 ∩ AR∗2 is the union of at most two cosets of Z(H); as a consequence, a subset
AR∗1 cannot contain another subset AR∗2 .

Note that Z(H) ⊆ A∗R if and only if R∗(0) = 0, i.e. R∗ has the form R∗ = γX
α+δX

.
We have just seen that CK trivially satisfies the descending chain condition, and

one immediately verifies that C∩K satisfies it too.

8.4 The dimension of H(1, K)

In what follows, we consider H = H(1, K), and we compute the combinatorial
dimension of the space (H,ZH). First, we recall that the family C∩K , whose definition
depends on whether charK 6= 2 or charK = 2, has been described in Lemma 8.13
(if charK 6= 2) and Lemma 8.20 (if charK = 2). We resume here this description.

C∩K =

{
CK ∪ {F · Z(H) | F ∈ [H]<2} if charK 6= 2,

CK ∪ {F · Z(H) | F ∈ [H]<3} if charK = 2.
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Moreover, C∩K contains CK , so it is a subbase of the ZH-closed sets, and C∩K is also
obviously stable under taking finite intersections. So, thanks to Proposition 1.3, we
obtain the following result.

Proposition 8.21. H = H(1, K) is a Z-Noetherian group and (C∩K)∪ is the family of
ZH-closed sets. Moreover, the family of ZH-closed irreducible sets is CK ∪ {hZ(H) |
h ∈ H}, so that in particular H is Z-irreducible, hence connected.

Corollary 8.22. The topological space (H,ZH) has combinatorial dimension three.

Proof. It suffices to show a chain of four closed irreducible subsets, for example of
the following form:

{eH} ( Z(H) ( CH(h) ( H,

where h ∈ H.

If charK = 2, one can also consider a chain of the following form:

{eH} ( Z(H) ( AR ( H,

where R = CX
A+X

.

Now we can describe the topology ZH �L. Its closed sets are the finite unions of
the elements of the family {C ∩L | C ∈ C∩K}, which consists of the following subsets
of L:

• singletons of L, the whole L;

• cosets of Z(H) contained in L, hence of kind

1 0 K
1 z0

1

.

Identifying L with the group K2, via the isomorphism

K2 → L

(y, z) 7→

1 0 y
1 z

1

 ,

one can see that the ZH �L-closed are the unions of a finite subset of K2 and a set
K × F , for a finite subset F of K.

Corollary 8.23. The subgroup L ≤ H = H(1, K) satisfies ZL ( ZH �L( AL. In
particular, the Zariski topology ZH and the affine topology AH are different.
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Proof. We have already proved in Lemma 8.3 that ZL ( ZH �L. To prove the second
inclusion to be proper, observe that the subset

{(y, z) ∈ K2 | z = y} = {(y, y) ∈ K2 | y ∈ K}

is AK2-closed, so 
1 0 y

1 y
1

 ∈ H | y ∈ K


is AL-closed; but it is not ZH �L-closed.
Now recall that AL = AH �L by definition; as ZH �L( AH �L, we conclude

ZH ( AH .

8.5 Generalized Heisenberg groups

In this section, we generalize the definition of Heisenberg group given at the begin-
ning of this chapter, and we give some results for these groups.

If R is a unitary ring, then the Heisenberg group HR = H(1, R) =

1 R R
1 R

1


is the group of 3× 3 upper unitriangular matrixes with coefficients in R.

It can be easily seen that the commutator of two elements in HR is1 x1 y1

1 z1

1

 ,

1 x2 y2

1 z2

1

 =

1 0 x1z2 − x2z1

1 0
1

 , (8.9)

so that

CHR(

1 x1 y1

1 z1

1

) =


1 x y

1 z
1

 | x1z − xz1 = 0

 . (8.10)

In particular, Z(HR) =

1 0 R
1 0

1

, and the quotient group is HR/Z(HR) ∼=

(R,+)× (R,+).
Note that by (8.10) it follows that

L =

1 0 R
1 R

1

 = CHV (

1 0 0
1 1

1

), while M =

1 R R
1 0

1

 = CHV (

1 1 0
1 0

1

).

Corollary 8.24. If R is a unitary ring such that the additive group (R,+) is torsion-
free, then the Heisenberg group G = HR = H(1, R) satisfies ZGI = C′GI for every
non-empty set I.
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Proof. It suffices to note that G ∈ N2 is torsion-free, then Theorem 4.34 applies.

From now on, we assume R to be a Unique Factorization Domain. We are
interested in studying the family of ZHR-closed irreducible sets, in order to compute
dim(HR,ZHR). By Corollary 8.24, it is sufficient to study the family of C′HR-closed
sets. To this end, in the following lemma we describe all one-element centralizers in
HR, when R is a Unique Factorization Domain.

Lemma 8.25. Let R be a Unique Factorization Domain, and γ =

1 a b
1 c

1

 ∈
HR \ Z(HR).

• If a = 0, then CHR(γ) = L.

• If c = 0, then CHR(γ) = M .

• If a 6= 0 6= c, and d is the greatest common divisor of a and c, let a = a′d,
c = c′d. Then

CHV (γ) =


1 a′t y

1 c′t
1

 | y, t ∈ R
 . (8.11)

Proof. If a = 0, then c 6= 0, and CHR(γ) = L by (8.10) and the fact that R is a
domain. Similarly, c = 0 implies a 6= 0, and CHR(γ) = M .

Finally, assume a 6= 0 6= c. Then

1 x y
1 z

1

 ∈ CHV (γ) if and only if az−cx = 0

by (8.10). This equation is equivalent to a′z = c′x. Then a′ | x, as a′ and c′ are
coprime, so that x = a′t for some t ∈ R. Finally, a′z = c′a′t implies z = c′t.

Note that a′, c′ in (8.11) are non-zero coprime elements in R.

The following result determines the intersections of one-element centralizers in
HR.

Lemma 8.26. Let R be a Unique Factorization Domain. Let γ1, γ2 ∈ HR \ Z(HR)
be such that CHR(γ1) 6= CHR(γ2). Then CHR(γ1) ∩ CHR(γ2) = Z(HR).

Proof. Obviously, it suffices to consider centralizers of element γ as in (8.11), with

a 6= 0 6= c. So, for i = 1, 2 let Ci = CHV (γi) =


1 ait y

1 cit
1

 | y, t ∈ R
, with

a1, a2, c1, c2 ∈ R \ {0}, a1, c1 coprime and a2, c2 coprime.



Tesi di dottorato di Daniele Toller, discussa presso l’Università degli Studi di Udine.
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So we assume C1 ∩ C2 ) Z(HV ), and we are going to prove C1 = C2. If1 x y
1 z

1

 ∈ C1 ∩ C2 \ Z(HV ), then x = a1t = a2s and z = c1t = c2s for some

t, s ∈ R \ {0}.
Then a1c2ts = a2c1ts, so that a1c2 = a2c1. Then a1, a2 are associate elements in

R, so a2 = a1u for an invertible element u ∈ R. This also yields c2 = c1u, so that

C2 =


1 a1ut y

1 c1ut
1

 | y, t ∈ R
 =


1 a1t y

1 c1t
1

 | y, t ∈ R
 = C1.

In the following theorem we use Corollary 8.24 and the above results to prove
that dim(HR,ZHR) = 3.

Theorem 8.27. Let R be a Unique Factorization Domain, and

B = {gCHR(h) | g, h ∈ HR} ∪ {g | g ∈ HR}.

Then ZHR = C′HR is a Noetherian topology, B∩ is its family of closed irreducible
sets, and (B∩)∪ is its family of closed sets.

In particular, dim(HR,ZHR) = 3.

Proof. Note that B∩ = B ∪ {gZ(HR)} by Lemma 8.26, while Corollary 8.24 implies
that ZHR = C′HR , so that B∩ is a subbase for ZHR-closed sets.

As HR ∈ B∩ and B∩ obviously satisfies the descending chain condition, Propo-
sition 1.3 implies that ZHR is Noetherian, and that (B∩)∪ is its family of closed
sets.

Obviously, B∩ consists of closed irreducible sets, and if h ∈ HR is a non-central
element, then a chain of the form

{eHR} ( Z(HR) ( CHR(h) ( HR

shows that dim(HR,ZHR) = 3.

8.5.1 The group HV

If n > 0 is a positive cardinal and K is a field, we denote by V the vector space
of dimension n over K. Fix a base B = {~ei : i < n} of V , so that every ~x ∈ V
can be uniquely identified with a finite set of non-zero coordinates (xi)i<n (so that
~x =

∑
i xi~ei). If ~z = (zi)i<n ∈ V is another element of V , the canonical scalar

product in V over K is defined by ~x · ~z =
∑

i<n xizi (note that this sum is defined
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also when K is infinite). This gives a bilinear form V × V → K that we use now in
order to define the Heisenberg group HV as the following matrix group:

HV =

1 V K
1 V

1

 =


1 ~x y

1 ~z
1

 | ~x, ~z ∈ V, y ∈ K
 .

The product in HV is defined as follows:1 ~x1 y1

1 ~z1

1

1 ~x2 y2

1 ~z2

1

 =

1 ~x1 + ~x2 y1 + y2 + ~x1 · ~z2

1 ~z1 + ~z2

1

 ,

while the commutator of two elements in HV is given by1 ~x1 y1

1 ~z1

1

 ,

1 ~x2 y2

1 ~z2

1

 =

1 ~0 ~x1 · ~z2 − ~x2 · ~z1

1 ~0
1

 . (8.12)

From the above formulas, one can easily see that Z(HV ) = H ′V =

1 ~0 K

1 ~0
1

 ∼= K,

so that HV /Z(HV ) ∼= (V,+)× (V,+) is abelian, and HV ∈ N2.
The space V carries a linear topology λ defined by means of the base B as follows.

For a finite subset J of B let VJ be the subspace of V generated by B \ J , so that
V = VJ ⊕KJ , where KJ is the K-linear span of J . Then {VJ : J ∈ [B]<ω} forms a
base of neighborhoods of 0V of a Hausdorff group topology λ on (V,+).

As V ∼= K(B) ≤ KB, note that λ = T �V , where T = δBK is the product topology
of the discrete topologies δK on each summand K. So λ is non-discrete if and only
if n = |B| is infinite, and it is metrizable if and only if n is countable. Moreover, it
is precompact if and only if K is finite.

For ~x ∈ V there exists a finite J ⊆ B, such that x belongs to the linear span of J .
We refer to the minimal J with this property as support of ~x and write J = supp(~x).
For a subset X of V let X⊥ = {~y ∈ V | ~x · ~y = ~0 for every x ∈ X}. If X = {~x}, we
write simply ~x⊥. Obviously, VJ ⊆ ~x⊥ where J = supp(~x).

Consider the product topology τ = λ × ιK × λ on HV obtained considering
the topology λ on both factors V , and the indiscrete topology ιK on the factor K.
Obviously, τ is a (non-Hausdorff) group topology on HV , and the family {OJ | J ∈
[B]<ω} is a base of the neighborhood at eHV for τ , where

OJ =

1 VJ K
1 VJ

1


for a finite J ⊆ B.
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Proposition 8.28. The topologies THV and τ on HV coincide.

Proof. Let α =

1 ~a b
1 ~c

1

, where ~a,~c ∈ V , b ∈ K, and let J = supp(~a) ∪ supp(~c).

By (8.12),

CHV (α) =


1 ~x K

1 ~z
1

 | ~a · ~z − ~c · ~x = 0

 ⊇ OJ ,

so THV ⊆ τ .
To prove the converse inclusion, it suffices to show that OJ is the centralizer of

a finite subset of HV .
Let

O′J =

1 V K
1 VJ

1

 and O′′J =

1 VJ K
1 V

1

 ,

so that OJ = O′J ∩O′′J , and we show for example that O′J is the centralizer of a finite

subset of HV . This follows from the fact that CHV (

1 ~a b

1 ~0
1

) =

1 V K
1 ~a⊥

1


and O′J =

⋂
1 V K

1 v⊥

1

 | v ∈ J
.

From now on we assume that K is finite. Then the group HV is infinite precisely
when n is infinite and we are going to put it as a blanket condition in the sequel.

In this case, HV is an FC-group and CHV = THV by Lemma 4.32, so that

CHV = THV = τ (8.13)

by Proposition 8.28.
If char(K) = p > 2, it can be easily proved that exp(HV ) = p, so that ZHV =

C′HV = T ′HV by Theorem 4.35.

On the other hand, if char(K) = 2, then exp(HV ) = 4 and

HV [2] =


1 ~x K

1 ~z
1

 | ~x · ~z = 0

 ( HV .

Note that HV [2] is not a subgroup of HV , as it contains the subset1 V K

1 ~0
1

 ∪
1 ~0 K

1 V
1


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Soggetta alle licenze creative commons (http://creativecommons.org/choose/).
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112 8. The Zariski topology of the Heisenberg group

that generates the whole HV .
If char(K) = 2, we still have C′HV = T ′HV , as CHV = THV , but now we see that

ZHV 6= C′HV .

Theorem 8.29. If char(K) = 2, then exp(HV ) = 4 and CHV = THV . Moreover,
subset HV [2] is ZHV -clopen, but not C′HV -closed, hence the group HV has C′HV =
T ′HV � ZHV .

Proof. We first prove that HV [2] is a ZHV -clopen subset. Obviously, HV [2] is a ZHV -
closed subset, as HV [2] = Ex2 ∈ EHV . So now we prove that also its complement
C = HV \HV [2] is ZHV -closed. To this end, note that H2

V ⊆ Z(HV ), so that

C =
⋃

z∈Z(HV )\{eHV }

{h ∈ HV | h2 = z}.

In particular, C is covered by finitely many elementary algebraic subsets Ezx2 , for
z ∈ Z(HV ) \ {eHV }, so that C is ZHV -closed (indeed, C is additively algebraic).

Now we prove that HV [2] is not C′HV -closed. For simplicity, fix first n = ω and
let {~en | n ∈ N+} be the canonical base of V .

For every integer m ∈ N+ we define the element

αm =

1 ~em 0
1 ~em

1

 .

Note that for every finite J ⊆ B we have αm ∈ OJ definitively, i.e. the sequence
(αm)m∈N+ converges to eHV in the topology τ = CHV .

Moreover, if C ⊆ HV [2] is a cofinite subset, then also αm ∈ OJ∩C definitively, i.e.
the sequence (αm)m∈N+ converges to eHV also in the topology C′HV = CHV ∨ cofHV .

Now let

β =

1 ~e1 0
1 ~e1

1

 , and βm = αmβ =

1 ~e1 + ~em 0
1 ~e1 + ~em

1


for m ∈ N+.

By Lemma 4.28, item 1, (βm)m∈N+ converges to β in the topology C′HV .
As βm ∈ HV [2] for every m, while β /∈ HV [2], we conclude that HV [2] is not

C′HV -closed.
If d is uncountable, one simply defines a net, in place of a sequence.

Corollary 8.30. If K is a finite field and n is an infinite cardinal, then the only
Z-irreducible sets of HV are the singletons. Consequently dim(HV ,ZHV ) = 0 and
HV has no ZG-atoms.
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Proof. Let HV = HV /Z(HV ), and consider the canonical projection π : HV → HV .
Equip the domain with the topologies ZHV and τ , and consider their quotient topolo-
gies, respectively ZHV and τ . As HV

∼= (V,+) × (V,+), we identify them, so that
τ = λ× λ is a Hausdorff (group) topology.

By (8.13), it follows that ZHV ⊇ τ , so that ZHV ⊇ τ and in particular ZHV is a
Hausdorff topology.

As π : (HV ,ZHV ) → (HV ,ZHV ) is continuous, it maps ZHV -irreducible sets in
ZHV -irreducible sets, i.e. singletons. In other words, a ZHV -irreducible set is con-
tained in a coset of Z(HV ), hence is a singleton, being Z(HV ) ∼= K finite.

Compare the above result with Fact 4.12 (c). While in the abelian case the
ZG-atoms essentially determine the Zariski topology via the closure of subsets of G,
the group HV ∈ N2 has no ZG-atoms at all.

Remark 8.31. In the notation of the above corollary, we have proved that the
quotient topology ZHV on HV is Hausdorff, so that it is much finer than ZHV , being
ZHV = cofHV by Proposition 4.16.
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9
The group K∗ n V

Let K be a field, V be a K-linear space, and consider the action of the group (K∗, ·)
on the additive group (V,+) defined by scalar multiplication. Denote by G the
semidirect product GK = K∗ n V .

The case when K = F2 is trivial since then G ∼= V is an abelian group of
exponent 2. Therefore, in the sequel we assume K 6= F2. Moreover, if K is finite,
we assume V (i.e. dimK V ) to be infinite, otherwise G would be finite itself.

Observe that when dimK V = n is finite, G can be realized in a natural way as
a subgroup G of the linear group GLn+1(K):

G =



a b1 · · · bn
0 1 0
...

. . .

0 0 1

 ∈ GLn+1(K) | a ∈ K∗, b1, . . . , bn ∈ K

 (9.1)

that can be written as the matrix group

(
K∗ Kn

~0t In

)
. The isomorphism is

K∗ nKn →
(
K∗ Kn

~0t In

)

(a, b1, . . . , bn) 7→


a b1 · · · bn
0 1 0
...

. . .

0 0 1

 .

For this reason, for a generic K-vector space V , from now on we will use the
notation

G =

(
K∗ V
0 1

)
.

Denote by NK =

(
1 V
0 1

)
the normal subgroup of G corresponding to V , and by

DK =

(
K∗ ~0
0 1

)
the subgroup of G corresponding to K∗. From now on, we simply
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116 9. The group K∗ n V

denote them by N and D, respectively, when the field K is clear from the context.
By the structure of the semidirect product G = D n N , one has N ∩ D = {eG},
G = DN , and the action of D on N is the conjugation in G. The action of K∗ on
V is fixed-point-free; hence, in terms of the group G, one has [n, d] 6= eG whenever
n ∈ N and d ∈ D are non-trivial elements. In particular, G is center-free.

Lemma 9.1. (a) For every n ∈ N , if n 6= eG then N = CG(n). In particular, N
is an elementary algebraic subset of G.

(b) If g =

(
a ~b
0 1

)
∈ G \N (i.e. a 6= 1K), then CG(g) =

{(
x x−1

a−1
~b

0 1

)
| x ∈ K∗

}
.

(c) For every d ∈ D, if d 6= eG then D = CG(d). In particular, D is an elementary
algebraic subset of G.

(d) G is not nilpotent, but it is solvable of class 2.

Proof. (a) – (c) are obvious, while (d) easily follows from the fact that Z(G) = {eG},
and that G′ = N is abelian.

In the sequel, for a ∈ K∗ we denote by fa the group automorphism fa : (V,+)→
(V,+) defined by fa(x) = ax.

Proposition 9.2. Let K be a field containing a subring A such that:

(a) A is a Unique Factorization Domain;

(b) there exist two non-associated prime elements r, s in A.

Then there exist a Hausdorff group topology τ on (K,+), and an element a ∈ K∗
such that the automorphism fa is not τ -continuous.

Proof. For every integer m ≥ 0, let Um = rmA be the principal ideal generated by
rm in A. Then the family {Um | m ∈ N} is a local base at 0K of the r-adic group
topology τ on (K,+). By (a),

⋂
m∈N Um = {0K}, so τ is also Hausdorff.

Then let us show that the group automorphism fs−1 on (K,+) is not τ -continuous.
Indeed, A = U0 is a τ -open neighborhood of 0K , but sA = f −1

s−1 (A) is not, as it can-
not contain any τ -neighborhood Um by (b).

In the next corollary, we give a sufficient condition that implies the hypotheses
of Proposition 9.2.

Corollary 9.3. Let K be a field such that the following condition holds:

either charK = 0 or charK = p > 0 and the extension K/Fp is not algebraic. (†)

Then there exist a Hausdorff group topology τ on (K,+), and an element a ∈ K∗
such that the automorphism fa is not τ -continuous.
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Proof. If charK = 0, then K contains Z, and we can take two different primes in
A = Z.

If charK = p and the extension K/Fp is not algebraic, fix an element t ∈ K, t
transcendent over Fp. Then K contains A = Fp[t], that is a Unique Factorization
Domain, and the elements t and t− 1 are non-associated primes in A.

In both cases, the hypotheses of Proposition 9.2 are satisfied.

Remark 9.4. Observe that the ring A as in Proposition 9.2 is not a field. When
the field K is an algebraic extension of Fp, then every subring of K is a field so the
argument in the proof of Proposition 9.2 cannot be applied. Nevertheless, we are
not aware whether the conclusion of this proposition remains true in the general
case. See Question 14.

Lemma 9.5. N is not a super-normal subgroup of G, the topology ZN = MN is
cofinite, and is coarser than MG �N .

Proof. N is a non-central abelian subgroup of G, so it is not super-normal by Propo-
sition 5.5.

As N ∼= V ∼=
⊕

λK, for λ = dimK V , we have that ZN is the cofinite topology
of N by Proposition 4.16, and it coincides with MN by Theorem 4.11. So ZN =
MN ⊆MG �N .

Note that Lemma 9.5 gives MN ⊆MG �N , but we do not know in general if the
reverse inclusion holds, i.e. if N is Markov embedded in G (see Question 16).

The following result is a corollary of Theorem 5.11.

Proposition 9.6. The subgroup N ∼= V is Hausdorff embedded in G if and only
if for every Hausdorff group topology τ on V , and for every a ∈ K∗, the group
automorphism fa of V is τ -continuous.

Proof. In view of Theorem 5.11, it will suffice to recall the definition of G ∼= K∗nV ,
as the conjugation of N by elements of D ∼= K∗ in G = DN is the action of K∗ on
V of scalar multiplication.

Corollary 9.7. If condition (†) holds, then N is not Hausdorff embedded in G.

Proof. In order to apply Proposition 9.6, it suffices to find an element a of K∗ and
a Hausdorff group topology τ on V such that the group automorphism fa of V is
not τ -continuous. Consider a ∈ K∗ and τ on K as in Corollary 9.3.

If V ∼= K (i.e. dimK V = 1), we are done. Otherwise, if dimK V = λ, consider
the product topology τλ on Kλ and the induced topology τ ′ on V ∼=

⊕
λK. Then

the group automorphism fa of V is not τ ′-continuous.

Note that (†) holds, if the field K is uncountable.

Corollary 9.8. If K is uncountable, then N is not Hausdorff embedded in G.
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118 9. The group K∗ n V

Next we see that when K is finite, we can completely determine when N is
Hausdorff embedded in G (see Corollary 9.11). Since this imposes V to be infinite
(in order to have the group G infinite) we first pay a special attention to this case:

Lemma 9.9. Let K be a field with charK = p > 0, and let V be a K-vector space
with dimK V infinite. Then the following are equivalent:

(a) K 6= Fp;

(b) there exists a Hausdorff group topology τ on (V,+), and a ∈ K∗ such that the
group automorphism fa of V is not τ -continuous;

(c) N is not Hausdorff embedded in G.

In particular, N is Hausdorff embedded in G if and only if K = Fp.

Proof. (a) → (b). Consider the topology on the subgroup U0 :=
⊕

λ Fp induced by
the product topology of Fλp , and extend it to a group topology τ on V ∼=

⊕
λK

taking U0 to be τ -open. Pick arbitrarily an element a ∈ K \ Fp. Then continuity of
x 7→ ax would provide a τ -open neighborhood U of 0V such that aU ⊆ U0. Taking a
non-zero element u ∈ U and a non-zero coordinate ui ∈ Fp of u, we obtain aui ∈ Fp.
Hence, a ∈ Fp, a contradiction.

(b) → (a). It suffices to prove that the element a ∈ K∗ provided by out hypoth-
esis does not belong to Fp. Indeed, the multiplication by any b ∈ Fp is continuous
with respect to every Hausdorff group topology on (V,+), since bx, for x ∈ V , is a
multiple of x in the additive group (V,+).

By Proposition 9.6, (b) ↔ (c).

The last assertion is simply (a) ↔ (c) in counter-positive form.

Corollary 9.10. Let dimK V be infinite. Then N is Hausdorff embedded in G if
and only if K = Fp for some prime p.

Proof. Assume that N is Hausdorff embedded in G. Then condition (†) fails by
Corollary 9.7, so charK = p > 0 (and K is an algebraic extension of Fp). By
Lemma 9.9, we obtain K = Fp.

If K = Fp, then N is Hausdorff embedded in G by Lemma 9.9.

Corollary 9.11. Let K be finite. Then N is Hausdorff embedded in G if and only
if K = Fp, where p = charK.

So what really remains open here is only the cases when dimK V < ∞, and
charK = p > 0, with (†) failing, i.e. the extension K/Fp is infinite and algebraic
(see Question 15).
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9.1. The Zariski topology on K∗ n V 119

9.1 The Zariski topology on K∗ n V

In this section we study the Zariski topology ZG and the affine topology AG on
G = K∗ n V .

Let K(T ) be the field of rational functions over K. For r ∈ K(T ) with finite
set Z of roots in K of its denominator, let dom r denote the domain K \ Z of the
rational evaluation function K \ Z → K, x 7→ r(x), associated to r.

Let dimK V = λ. Then the groups (V,+) and (
⊕

λK,+) are isomorphic, so we
will identify them in the sequel. For a finite subset I ⊆ λ we identify VI :=

⊕
I K

with a subspace of V and the semidirect product WI = K∗ n VI with a subgroup
of G in the obvious way. For finite subsets I, J ⊆ λ one has WIWJ = WI∪J and G
is the directed limit of these subgroups. So every coset of each WI is contained in
some bigger WJ . In the sequel we describe a subbase of ZG. It will contain G and
cosets of NK , all remaining members will be contained in some of the subgroups WI .

A finite subset {Rj : j ∈ I} of K(T )\{0} will be denoted by ~R and considered as
an element of the direct sum

⊕
λK(T ) (considered as a K(T )-linear space). Then

dom ~R =
⋂
i domRλi is a cofinite set in K, and ~R determines the evaluation function

dom ~R → V =
⊕

λK, whose range is contained in VI . For such a function ~R let

supp(~R) = {j ∈ λ : Rj 6= 0} and

F~R =

{(
x ~R(x)
0 1

)
∈ G | x ∈ K∗ ∩ dom ~R = dom ~R \ {0K}

}
.

Clearly, F~R is contained in the subgroup Wsupp(~R).

One can identify the subset F~R of WI ⊆ K∗ ×
⊕

λK with the ‘graph’ of the

rational evaluation function ~R : K∗∩dom ~R→ VI , and in order to keep this intuitive
idea about F~R we often call it just graph in the sequel. A leading example for such

a graph is the centralizer CG(g) of g =
(
a ~b
0 1

)
∈ G\N , as CG(g) = F~R, for ~R = x−1

a−1
~b,

by Lemma 9.1 (b).

Let B = BK be the family consisting of the following subsets of G:

• singletons of G, and the whole G;

• cosets of the normal subgroup N =

(
1 V
0 1

)
of G;

• graphs F~R, with ~R ∈
⊕

λK(T ).

The next lemma shows that EG ⊆ B∪.

Lemma 9.12. The elementary algebraic subsets of G are finite unions of elements
of B.
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120 9. The group K∗ n V

Proof. Let Ew 6= ∅ be an elementary algebraic subset of G, where

w = (α1X
ε1α−1

1 )(α2X
ε2α−1

2 ) · · · (αk−1X
εk−1α−1

k−1)αkX
εk ,

with ε1, . . . , εk = ±1 (see Lemma 5.8). Ew is the solution set in G of the equation

(α1X
ε1α−1

1 )(α2X
ε2α−1

2 ) · · · (αkXεkα−1
k ) = α−1

k . (9.2)

For i = 1, . . . , k, let αi =

(
ai ~bi
0 1

)
∈ G, where ai ∈ K∗ and ~bi ∈ V , and define

δi =

{
0 if εi = 1,

−1 if εi = −1.
(9.3)

Write X =

(
x ~y
0 1

)
for the variable in G, so that X−1 =

(
x−1 −x−1~y
0 1

)
, and

Xεi =

(
xεi εix

δi~y
0 1

)
for εi = ±1.

Recall Definition 2.13 of εi = εi(w), let ε0 = 0 for convenience, and define

Φ =
k∑
i=1

εiaiT
εi−1+δi and ~Ψ = −~b1 − a−1

k
~bk −

k−1∑
i=1

(~bi+1 −~bi)T εi +~bkT
ε. (9.4)

Observe that Φ is a rational function (more precisely, Φ ∈ K[T ] + K[T−1]), so

can be evaluated at any x ∈ K∗; the same holds for ~Ψ ∈
⊕

λK(T ). (In fact,
~Ψ ∈

⊕
λK[T ] +

⊕
λK[T−1] ⊆

⊕
λK(T )).

One can prove by induction that the left-hand side in (9.2) is(
xε ~b1 +

∑k−1
i=1 (~bi+1 −~bi)xεi −~bkxε +

∑k
i=1 εiaix

εi−1+δi~y
0 1

)
=

=

(
xε −a−1

k
~bk − ~Ψ(x) + Φ(x)~y

0 1

)
, (9.5)

so that equation (9.2) gives

xε = a−1
k and − a−1

k
~bk − ~Ψ(x) + Φ(x)~y = −a−1

k
~bk. (9.6)

The second equation in (9.6) is Φ(x)~y = ~Ψ(x). Denoting by S the solution set in
K∗ of the first equation of (9.6), the elementary algebraic subset Ew of G is of the
following form:

Ew =

{(
x ~y
0 1

)
∈ G | x ∈ S, Φ(x)~y = ~Ψ(x)

}
.
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Since S = {x ∈ K∗ : xε = a−1
k } 6= ∅ (as Ew 6= ∅), either ε = 0 (and necessarily

ak = 1K) and S = K∗, or ε 6= 0 and S = {x1, . . . , xm} is finite.

Case 1. If ε 6= 0, then S is finite. So (9.6) is equivalent to the disjunction

Φ(x1)~y = ~Ψ(x1) ∨ Φ(x2)~y = ~Ψ(x2) ∨ . . . ∨ Φ(xm)~y = ~Ψ(xm).

Let Aj =

{(
xj ~y
0 1

)
∈ G | Φ(xj)~y = ~Ψ(xj)

}
for j = 1, 2, . . . ,m. Then Ew =⋃

j=1,...,mAj. Since Φ(xj) = 0 and ~Ψ(xj) 6= ~0 for some j entails Aj = ∅, we are

not interested in those j = 1, 2, . . . ,m. So we assume in the sequel that ~Ψ(xj) = ~0
whenever Φ(xj) = 0. Hence, for every fixed xj, we distinguish two cases depending
on whether Φ(xj) = 0:

Aj =



{(
xj

~Ψ(xj)

Φ(xj)

0 1

)}
if Φ(xj) 6= 0,(

xj V

0 1

)
if Φ(xj) = 0, ~Ψ(xj) = ~0.

Thus, each Aj is either a singleton, or Aj =

(
xj V
0 1

)
=

(
xj ~0
0 1

)(
1 V
0 1

)
is a coset

of N . Therefore, Ew is a finite union of elements of B.

Case 2. If ε = 0, i.e. w is singular, then S = K∗, so

Ew =

{(
x ~y
0 1

)
∈ G | x ∈ K∗,Φ(x)~y = ~Ψ(x)

}
.

Note that Ew = G ∈ B, if Φ = 0 ∈ K(T ) and ~Ψ = ~0 ∈
⊕

λK(T ), so assume this is
not the case in the sequel.

Let Z = {x ∈ K∗ | Φ(x) = 0, ~Ψ(x) = ~0} be the finite set of common zeroes of Φ

and ~Ψ. We distinguish again two cases depending on Φ(x) = 0 by letting

E(1)
w =

{(
x ~y
0 1

)
∈ G | x ∈ K∗,Φ(x) 6= 0,Φ(x)~y = ~Ψ(x)

}
and

E(2)
w =

{(
x ~y
0 1

)
∈ G | ~y ∈ V, x ∈ Z

}
=
⋃
x∈Z

(
x ~0
0 1

)
N,

so that Ew = E
(1)
w ∪ E(2)

w . As Z is finite, E
(2)
w is a finite union of elements of B, so

we only pay attention to E
(1)
w .

Case 2.1 If Φ = 0 ∈ K(T ) and ~Ψ 6= ~0 ∈
⊕

λK(T ), then E
(1)
w = ∅.

Case 2.2 If Φ 6= 0 ∈ K(T ), let ~R =
~Ψ
Φ

to obtain E
(1)
w = F~R ∈ B.
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Remark 9.13. Note that Ew = E
(1)
w = F~R = F ~Ψ

Φ

in Case 2.2 of Lemma 9.12, if

Φ 6= 0 ∈ K(T ), and Z = ∅.

In the following lemma, we show that B ⊆ EG, so that B∪ ⊆ E∪G.

Lemma 9.14. The elements of B are elementary algebraic subsets of G.

Proof. Singletons and the whole G are elementary algebraic subsets of G. On the
other hand, N is an elementary algebraic subset by Lemma 9.1 (a), and so all its
cosets are elementary algebraic subsets too.

We shall see that for every ~R ∈
⊕

λK(T ), the subset F~R is elementary algebraic,

i.e. F~R = Ew for some word w. Note that ~R = ~0 yields F~R = D, which is an

elementary algebraic subset by Lemma 9.1 (c). So let ~R =
~P
Q

for

Q = µ0 + µ1T + · · ·+ µsT
s, ~P = ~λ0 + ~λ1T + · · ·+ ~λrT

r. (9.7)

We assume that the set of common zeroes of Q and ~P is empty, ~λr 6= ~0, µs 6= 0.
We can also assume µ0 6= −1 (the reason of this request will be clear in the sequel),

otherwise multiplying the numerator and the denominator of ~R by an element a ∈ K,
a 6= 0, 1 (this is possible since K 6= F2).

As noticed in Remark 9.13, if w is a singular word, ak = 1K , Φ 6= 0 and ~Ψ(x),Φ(x)
have no common zeroes, then

Ew = {X ∈ G | α1X
ε1α−1

1 · · ·αkXεkα−1
k = α−1

k } =

=

{(
x

~Ψ(x)
Φ(x)

0 1

)
∈ G | x ∈ dom

~Ψ

Φ

}
. (9.8)

On the other hand, F~R = F ~P
Q

=

{(
x

~P (x)
Q(x)

0 1

)
| x ∈ dom

~P
Q

}
.

So we will look for k ∈ N; ε1, . . . , εk = ±1 such that
∑k

i=1 εi = 0; a1, . . . , ak−1 ∈
K∗, (as already mentioned, we take ak = 1K); ~b1, . . . ,~bk ∈

⊕
λK such that the

corresponding Φ and ~Ψ defined by relations (9.4) satisfy

Φ = Q and ~Ψ = ~P .

This will suffice, as Φ and ~Ψ will have no common zeroes and Ew = F ~Ψ
Φ

= F ~P
Q

= F~R.

Set

k = 2(r + s+ 1), ε1 = · · · = εr+s+1 = 1, and εr+s+2 = · · · = εk = −1. (9.9)

In this way,
∑k

i=1 εi = 0, so the word w will be singular. By the definition in (9.3)
we obtain

δ1 = · · · = δr+s+1 = 0 and δr+s+2 = · · · = δk = −1 (9.10)
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and so, for i = 1, . . . , k we have

ε0 + · · ·+ εi−1 + δi =

{
i− 1 if i ≤ r + s+ 1,

k − i otherwise.

From (9.4) and the above relations,

Φ =
k∑
i=1

εiaiT
ε0+···+εi−1+δi =

r+s+1∑
i=1

aiT
i−1 −

k∑
i=r+s+2

aiT
k−i =

r+s∑
j=0

(aj+1 − ak−j)T j =

= (a1 − ak) + (a2 − ak−1)T + · · ·+ (as+1 − ak−s)T s+
+ (as+2 − ak−s−1)T s+1 + · · ·+ (ar+s+1 − ar+s+2)T r+s.

Recall that ak = 1, so to have Φ = Q we need a1, . . . , ak−1 ∈ K∗ such that

a1 − 1 = µ0, a2 − ak−1 = µ1, . . . , as+1 − ak−s = µs (9.11)

and

as+2 − ak−s−1 = 0, as+3 − ak−s−2 = 0, . . . , ar+s+1 − ar+s+2 = 0. (9.12)

Observe that any ai appears in exactly one of the equations (9.11) and (9.12),
so we can first solve system (9.12) taking for example

as+2 = · · · = ar+s+1 = ar+s+2 = · · · = ak−s−1 = 1.

Then a1 = µ0 + 1 6= 0 by the initial choice of µ0 6= −1. The remaining equations
of (9.11) are of the form a − a′ = µ, to be solved in a, a′ ∈ K∗, with some specific
µ ∈ K, so they are solvable, as K 6= F2 has at least three elements. So we have
presented Q in the form Q = Φ.

From (9.9) and (9.10) one can also see that for i = 1, . . . , k

ε1 + · · ·+ εi =

{
i if i ≤ r + s+ 1,

k − i otherwise,

so, by definition (9.4) of ~Ψ, with ak = 1 and
∑k

i=1 εi = 0, we obtain

~Ψ = −~b1 − a−1
k
~bk +

k−1∑
i=1

(~bi −~bi+1)T ε1+···+εi +~bkT
ε1+···+εk =

= −~b1 +
k−1∑
i=1

(~bi −~bi+1)T ε1+···+εi = −~b1 +
r+s+1∑
i=1

(~bi −~bi+1)T i +
k−1∑

i=r+s+2

(~bi −~bi+1)T k−i =

=
(
−~b1 + (~b1 −~b2)T + (~b2 −~b3)T 2 + · · ·+ (~br+s+1 −~br+s+2)T r+s+1

)
+(

+(~br+s+2 −~br+s+3)T r+s + (~br+s+3 −~br+s+4)T r+s−1 + · · ·+ (~bk−1 −~bk)T
)
.

(9.13)
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To have ~Ψ = ~P , it suffices now to equalize the coefficients of ~Ψ in the last term of
(9.13) to the corresponding ones of ~P in (9.7); that is, we need ~bi ∈ V such that

−~b1 = ~λ0, ~b1 −~b2 = ~λ1, ~b2 −~b3 = ~λ2, . . . , ~br −~br+1 = ~λr,

~br+1 −~br+2 = ~0, . . . ,~bk−1 −~bk = ~0.

A solution of this system can be found easily.

Theorem 9.15. The family B is a subbase of the ZG-closed sets.

Proof. Observe that from Lemmata 9.12 and 9.14 it follows that B∪ = E∪G. As EG
is a subbase of the ZG-closed sets by definition, the theorem holds.

Remark 9.16. If dimK V = n is finite, then G ≤ GLn+1(K) is a linear group, so G
is Z-Noetherian by Example 10.2 (a). On the other hand, if K is finite, then G is
an abelian-by-finite group, so again G is Z-Noetherian, by Example 10.2 (c).

In the sequel (see Proposition 9.21), we will directly prove this result in the
general case. Moreover, B∪ will be proved to be the family of the algebraic subsets
of G.

Lemma 9.17. The intersection of two distinct elements of B different from G is
finite. In particular, if B1 and B2 are two distinct elements of B, and B1 ⊆ B2,
then either B1 is finite or B2 = G.

Proof. Obviously we only have to consider intersections between graphs, and be-
tween a graph and a coset of N .

The intersection of two distinct graphs F~R1
and F~R2

is{(
x ~R1(x)
0 1

)
| x ∈ dom ~R1

}
∩
{(

x ~R2(x)
0 1

)
| x ∈ dom ~R2

}
.

An element of this set is a matrix g0 =

(
x0 ~y0

0 1

)
, where x0 is a solution of the

rational equation ~R1(x) = ~R2(x), which has finitely many solutions as desired.

The intersection of a graph F~R and a coset g0N for g0 =

(
x0 ~y0

0 1

)
, is

{(
x ~R(x)
0 1

)
| x ∈ dom ~R

}
∩
(
x0 V
0 1

)
.

This intersection is non-empty precisely when x0 ∈ dom ~R, and namely consists of

the single element g =

(
x0

~R(x0)
0 1

)
.

Corollary 9.18. N is a ZG-closed, Zariski embedded subgroup of G.
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Proof. We have to prove that ZG �N= ZN . By Theorem 9.15, it follows that F =
{B ∩ N | B ∈ B} is a subbase of the ZG �N -closed sets. Now observe that N itself
is an element of B, so F consists of N and finite subsets of N , by Lemma 9.17;
consequently, ZG �N is the cofinite topology on N . On the other hand, we have
already proved in Lemma 9.5 that ZN is the cofinite topology of N .

Remark 9.19. (a) N is a ZG-closed, Zariski embedded normal subgroup of G by
Corollary 9.18, but N is not super-normal in G by Lemma 9.5.

(b) If K satisfies condition (†), then N is not Hausdorff embedded in G by Corol-
lary 9.7.

(c) If G is countable, i.e. if both K and the dimension dimK V are finite or
countable, then ZG = MG by Theorem 4.11. In particular, for every subgroup
the conditions of being Markov embedded and Zariski embedded coincide, and
N is Markov embedded in G.

Remark 9.20. Let dimK V be countable, and let K be countable too, and satisfying
condition (†) (for example, K = Q can be considered). Then GK is countable, so NK

is Zariski and Markov embedded, but not Hausdorff embedded in GK , by Remark
9.19 (b) and (c). So

Zariski embedded & Markov embedded 9 Hausdorff embedded,

and in particular, Zariski embedded & Markov embedded do not imply super-normal.
Moreover, NK is a ZGK -closed, MGK -closed normal subgroup.

Let B1 = B ∪ [G]<∞ be the family obtained adding all finite subsets of G to B,
thus consisting of the following subsets of G:

• G and all finite subsets of G;

• cosets of N ;

• sets F~R, with ~R ∈
⊕

λK(T ).

Obviously, B∪1 = B∪, so B1 is a subbase of the ZG-closed sets too. Lemma
9.17 implies that B1 is stable under finite intersections and satisfies the descending
chain condition; by Proposition 1.3, B∪1 is the family of closed sets of the topology
generated by the closed sets in B1, and this topology is Noetherian. Thus, we have
proved the following:

Proposition 9.21. G is a Z-Noetherian group, and B∪ is the family of the algebraic
subsets of G. In particular, every algebraic subset of G is a finite union of elementary
algebraic subsets of G.
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Now we focus on ZG-closed irreducible subsets of G. To this end, we distinguish
the cases when K is infinite or finite. Recall that if K is finite, we assume dimK V
to be infinite.

Lemma 9.22. If K is infinite, then B is the family of closed irreducible subsets of
ZG. In particular G is Z-irreducible, hence connected.

If K is finite and dimK V is infinite, the closed irreducible subsets of ZG are the
singletons and the cosets of N . In particular, c(G,ZG) = N is Z-irreducible.

Proof. Singletons are always irreducible.
If K is finite, then the graphs F~R are finite too, so graphs with more than one

element are reducible, while N and its cosets are irreducible as they cannot be
expressed as a proper union of elements of B. Moreover, N has finite index in G,
so the finite union of cosets of N covers G, and G is reducible, as actually G is not
even connected. Then N ⊆ c(G,ZG) ( G, and being c(G,ZG) ∈ B∪ we immediately
conclude c(G,ZG) = N .

If K is infinite, we have to show that G is irreducible. Assume for a contradiction
that G is a finite union of proper ZG-closed subsets. It is not restrictive to assume
that they are members of B:

G = g1N ∪ . . . ∪ ghN ∪ F~R1
∪ . . . ∪ F~Rk . (9.14)

In this case, N is infinite and has infinite index in G, so there exists a coset g0N
distinct from the cosets g1N, . . . , ghN . By Lemma 9.17, g0N has finite intersection
with every F~R1

, . . . , F~Rk , thus it should be finite itself, a contradiction.
The same argument shows that the cosets of N and the graphs F~R are irreducible:

they are infinite subsets that have finite intersection with every other element of
B \ {G}.

Corollary 9.23. If K is finite and dimK V is infinite, the topological space (G,ZG)
has combinatorial dimension 1. Otherwise, it has dimension 2.

Proof. If K is finite, a strictly increasing chain of irreducible closed sets, of length
two, is

{eG} ( N.

If K is infinite, a strictly increasing chain of irreducible closed sets, of length
three, can be of one of the following two forms:

{eG} ( N ( G

{g} ( F~R ( G.

Corollary 9.24. Let dimK V be finite, and S be a proper closed subset of the topo-
logical space (G,ZG). Then:
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• dimS = 0 if and only if S is finite;

• dimS = 1 if and only if S is infinite.

Proof. By Proposition 9.21, S is a finite union of elements of B.
If S is finite, it obviously has dimension zero. Otherwise, S is the union of

finitely many cosets of N , finitely many graphs, and a finite subset of G, and so has
dimension one.

We already observed in §9 that if dimK V = n is finite, then G is the matrix

group

(
K∗ Kn

~0t In

)
, a subgroup of GLn+1(K), which can be considered as a subset

of K(n+1)2
. In particular, we can consider the affine topology AG of the group G.

Corollary 9.25. If dimK V is finite, then the Zariski topology ZG is properly con-
tained in the affine topology AG.

Proof. By Example 10.2 (a), the inclusion ZG ⊆ AG holds for any linear group G.
If dimK V = n > 1, then the affine topology AN = AG �N on the group N ∼= Kn

is strictly finer than the cofinite topology. On the other hand, ZG �N= ZN is
the cofinite topology on N by Corollary 9.18. Thus ZN ( AN , and in particular
ZG ( AG.

If dimK V = 1, then G =

(
K∗ K
0 1

)
. We show a subset S of G that is AG-closed,

but not ZG-closed. Let

S =

{(
x y
0 1

)
∈ G | x = y2

}
=

{(
y2 y
0 1

)
| y ∈ K∗

}
.

Then S is AG-closed, as it is the zero-set of the polynomial P (x, y) = y2− x. Yet S
is not ZG-closed: otherwise, it would be a finite union of elements of B \ {G}. Let
us see that this is not possible, as in fact S has finite intersection with any member

of B \ {G}. For every g0 =

(
x0 y0

0 1

)
∈ G,

S ∩ g0N =

{(
y2 y
0 1

)
| y ∈ K∗

}
∩
(
x0 K
0 1

)
has at most two elements: if x0 is not a square in K, it is empty; if x0 is a square

in K, say x0 = x2
1, then S ∩ g0N =

{(
x0 x1

0 1

)
,

(
x0 −x1

0 1

)}
.

If R ∈ K(T ) is a rational function, then

S ∩ FR =

{(
y2 y
0 1

)
| y ∈ K∗

}
∩
{(

x R(x)
0 1

)
∈ G | x ∈ domR

}
.
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/).
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An element of this intersection is a matrix

(
a2 a
0 1

)
such that a = R(a2), that is: a

is a solution of the non-trivial rational equation x − R(x2) = 0, which admits only
finitely many solutions.



Tesi di dottorato di Daniele Toller, discussa presso l’Università degli Studi di Udine.
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10
Z-Noetherian and M-Noetherian

groups

Definition 10.1. A group G is called Z-Noetherian (resp., Z-cofinite), if ZG is
Noetherian (resp., cofinite). Similarly, we will call M-Noetherian (resp., P-Noetherian)
a group G such that MG (resp., PG) is Noetherian.

Obviously, every finite group is Z-cofinite. The cofinite topology on a set is always
Noetherian, and so Z-cofinite groups are Z-Noetherian. Bryant [11] studied first the
class of Z-Noetherian groups, under the name ‘groups which satisfy min-closed ’ (i.e.
the minimal condition on Zariski closed sets).

Using Proposition 1.3, Bryant proved that the classes of groups in Example 10.2
below are Z-Noetherian.

Here we recall the definitions of some properties: a group G is abelian-by-finite
(or virtually abelian) if it has an abelian subgroup of finite index. Similarly, it is
called abelian-by-nilpotent-by-finite group (or virtually abelian-by-nilpotent) if it
has an abelian-by-nilpotent subgroup of finite index, while G is abelian-by-nilpotent
if it has a normal abelian subgroup such that the quotient group is nilpotent.

Example 10.2. (a) ([11, Theorem 3.5]) If G is a linear group, then ZG ⊆ AG. In
particular, G is Z-Noetherian by Fact 1.4.

(b) ([11, Corollary 3.7]) Every finitely generated, abelian-by-nilpotent-by-finite
group is Z-Noetherian.

(c) ([11, Theorem 3.8]) Every abelian-by-finite group is Z-Noetherian.

Recall that also free non-abelian groups are Z-Noetherian by Theorem 7.5.
We will see in Example 10.13 that a group G ∈ N2 need not be Z-Noetherian

(compare this with Example 10.2 (b) and (c)).
Bryant then proved that the class of Z-Noetherian groups is stable under taking

subgroups, and under taking finite products:

Fact 10.3. (a) ([11, Lemma 3.3]) Every subgroup of a Z-Noetherian group is Z-
Noetherian.
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130 10. Z-Noetherian and M-Noetherian groups

(b) ([11, Lemma 3.4]) The finite product of Z-Noetherian groups is a Z-Noetherian
group.

Compare the previous result with Lemma 10.11.
Example 10.13 will show that Fact 10.3 (b) cannot be extended to infinite prod-

ucts.
According to Bryant’s theorem (see Example 10.2 (c)), ZG is Noetherian for

every abelian group G. This fails to be true in general, e.g., that there exist infinite
(necessarily non-abelian) groups G with ZG discrete (see §11.2). Nevertheless, there
is a huge gap between Noetherian and discrete topologies. In fact, Noetherian is
a much stronger property than compactness (see Remark 1.2 (a)). This justified
Question 1.

10.1 General properties of Z-Noetherian groups

In general, the quotient of a Z-Noetherian group need not be Z-Noetherian (see
Example 10.10). Nevertheless one can prove:

Proposition 10.4. If N is a ZG-closed normal subgroup of a Z-Noetherian (resp.
Z-compact) group G, then also the quotient group G/N is Z-Noetherian (resp. Z-
compact).

Proof. Let us denote by G the quotient group G/N , and by ZG the quotient topology
of ZG on G. Due to Proposition 4.6, the projection

π : (G,ZG)→ (G,ZG)

is continuous, so that (G,ZG) is Noetherian (resp. compact), as continuous image
of a Noetherian (resp. compact) space.

Now we prove that a group is Z-Noetherian if all its countable subgroups are
Z-Noetherian.

Proposition 10.5. If G is not Z-Noetherian, then it has a countable subgroup that
is not Z-Noetherian.

Proof. Let
C1 ) C2 ) . . . ) Cn ) . . .

be an infinite descending chain of algebraic subsets of G. Every Cn has the form
Cn =

⋂
in∈In B

(in)
n , where In is a set, and each B

(in)
n is an additively algebraic subset

of G. So the chain has the form⋂
i1∈I1

B
(i1)
1 ) . . . )

⋂
in∈In

B(in)
n )

⋂
in+1∈In+1

B
(in+1)
n+1 ) . . . (10.1)
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For every n ≥ 1, fix an element xn witnessing the n-th strict inclusion in (10.1):

xn ∈ B(in)
n for every in ∈ In (so in particular xn ∈ B(ik)

k for every ik ∈ Ik and for

every k ≤ n), but there exists ĩn+1 ∈ In+1 such that xn /∈ B (̃in+1)
n+1 .

Take any i1 ∈ I1, and let B1 = B
(i1)
1 ; then let Bn = B

(̃in)
n for every n ≥ 2. In this

way we obtain a new chain

B1 ) B1 ∩B2 ) . . . ) B1 ∩B2 ∩ . . . ∩Bn ) . . . (10.2)

where elements xn are again witnessing the strict inclusions:

xn ∈
(
B1 ∩B2 ∩ . . . ∩Bn

)
\
(
B1 ∩B2 ∩ . . . ∩Bn ∩Bn+1

)
.

Apply Proposition 5.6 to the set S = {xn}∞n=1 and the family {Bn | n ∈ N}
to find a countable subgroup H containing S and such that B′n = Bn ∩ H is an
additively algebraic subset of H.

Now the chain

B′1 ) B′1 ∩B′2 ) . . . ) B′1 ∩B′2 ∩ . . . ∩B′n ) . . . (10.3)

of ZH-closed subsets of H shows that ZH is not a Noetherian topology on H.

Fact 10.3 (a) and Proposition 10.5 give the following theorem, characterizing the
Z-Noetherian groups.

Theorem 10.6. A group G is Z-Noetherian if and only if every countable subgroup
of G is Z-Noetherian.

As a corollary of Theorem 10.6, one obtains the following result.

Corollary 10.7. Every free non-abelian group is Z-Noetherian.

Proof. Let F be a free non-abelian group, and in view of Theorem 10.6, fix a count-
able subgroup H of F . Then H is free by Nielson-Schreier Theorem. Now we use a
result from [3]: every free non-abelian group H of rank at most c is isomorphic to
a subgroup of SO3(R). Being a linear group, SO3(R) is Z-Noetherian by Example
10.2 (a), so H is Z-Noetherian too by Fact 10.3 (a). Now Theorem 10.6 applies.

Obviously, Corollary 10.7 is completely covered by Theorem 7.5, that also de-
scribes the Zariski topology of a free non-abelian group. See §7 for more details.

In the following lemma, we consider the group S(X) of the permutations of an
infinite set X. For a subset F of X, denote SF (X) the subgroup of S(X) consisting
of the permutations leaving F pointwise fixed.

Lemma 10.8. If F has at least three elements, then SF (X) is ZS(X)-closed.
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Proof. Let G = S(X), and let S(F ) be the subgroup of all permutations of F in G.
Since the center of S(F ) is trivial, the stabilizer SF (X) is precisely the centralizer
CG(S(F )), so it is ZG-closed by Example 2.43, item 1.

Example 10.9. Let X be an infinite set, F1 be a subset of X with at least three
elements, and let F1 ( F2 ( F3 ( . . . ( X be an infinite chain of subsets of X. Then
one has the following stictly descending infinite chain of sugroups of G = S(X):

S(X) ) SF1(X) ) SF2(X) ) SF3(X) ) . . .

By Lemma 10.8, each subgroup SFi(X) is a ZG-closed subset of G, so G is not a
Z-Noetherian group.

In Remark 12.13 we give another argument to show this fact, based on a strong
recent result.

The next example shows that the quotient of a Z-Noetherian group need not be
Z-Noetherian, as in fact every group is a quotient of a Z-Noetherian group.

Example 10.10. It is known that every group G is the quotient of a free non-
abelian group F , which is Z-Noetherian by Corollary 10.7. Taking an infinite set X,
a free non-abelian group F and a normal subgroup N of F such that F/N = S(X),
one has that the quotient group F/N is not Z-Noetherian, as seen in Example 10.9.

10.2 When directs products or sums are Z-Noetherian

We resume here an immediate corollary of Fact 10.3.

Lemma 10.11. Let G = G1 × . . . × Gn. Then G is Z-Noetherian if and only if
every Gi is Z-Noetherian.

Proof. The ‘if’ part is Fact 10.3 (b), while the ‘only if’ part is a corollary of Fact
10.3 (a).

In the following theorem we describe when an arbitrary direct product or sum
is a Z-Noetherian group.

Theorem 10.12. Let {Gi | i ∈ I} be a non-empty family of groups, G =
∏

i∈I Gi

and S =
⊕

i∈I Gi. Then the following conditions are equivalent.

(i) every Gi is Z-Noetherian and all but finitely many of the groups Gi are abelian.

(ii) G is Z-Noetherian.

(iii) S is Z-Noetherian.
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Proof. If I is finite, G and S coincide and Lemma 10.11 applies, so we will assume
I to be infinite.

(i) → (ii). Assume (i), and let J be the finite subset of I such that Gi is abelian
for every i ∈ I \ J . Then GI\J =

∏
i∈I\J Gi is abelian, so Z-Noetherian by Example

10.2 (c), and G =
∏

i∈J Gi × GI\J is Z-Noetherian too by Fact 10.3 (b), being a
finite product of Z-Noetherian groups.

(ii) → (iii). Immediately follows by Fact 10.3 (a).
(iii) → (i). Assume S to be Z-Noetherian, so that for every i ∈ I the group Gi

is Z-Noetherian too, again by Fact 10.3 (a).
By contradiction, suppose now that J = {i ∈ I | Gi is not abelian} is infinite.

Without loss of generality, we can assume that J contains N, so that for every n ∈ N
we have a non-abelian group Gn, and let H =

⊕
n∈NGn ≤ S. We shall see that

H is not Z-Noetherian, contradicting Fact 10.3 (a). In fact, Gn ) Z(Gn) for every
n ∈ N, so that

H ) Z(G0)⊕
⊕
n>0

Gn ) Z(G0)⊕ Z(G1)⊕
⊕
n>1

Gn )

) Z(G0)⊕ Z(G1)⊕ Z(G2)⊕
⊕
n>2

Gn ) . . .

Now observe that every subset in the above descending chain is the direct sum of
centralizers in H, thus it is ZH-closed by Lemma 6.44.

Example 10.13. Consider a (non-abelian) group G ∈ N2 (for example G = Q8 will
do). Let I be an infinite set, and note that the group P = GI ∈ N2. By Theorem
10.12, P is not Z-Noetherian.

As ZG ⊆MG holds for every groupG, a M-Noetherian group is also Z-Noetherian.
The following corollary proves the converse for direct products and direct sums of
countable groups.

Corollary 10.14. Let {Gi | i ∈ I} be a non-empty family of countable groups,
G =

∏
i∈I Gi and S =

⊕
i∈I Gi. Then the following conditions are equivalent.

(i) every Gi is Z-Noetherian and all but finitely many of the groups Gi are abelian;

(iM) every Gi is M-Noetherian and all but finitely many of the groups Gi are abelian;

(ii) G is Z-Noetherian;

(iiM) G is M-Noetherian;

(iii) S is Z-Noetherian;

(iiiM) S is M-Noetherian.

In this case, ZG = MG.
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Proof. By Theorem 4.11, ZS = MS and ZGi = MGi for every i ∈ I, so (i) is
equivalent to (iM) and (iii) is equivalent to (iiiM).

Moreover, (i), (ii) and (iii) are all equivalent by Theorem 10.12.
Since obviously (iiM) implies (ii), it only remains to prove that (iiM) follows

from (i) and (ii).
Observe that if all but finitely many of the groups Gi are abelian, and all of them

are countable, then G is the product of an abelian group and a countable group, so
Theorem 4.11 applies again and ZG = MG.

10.3 Z-compact and M-compact Groups

This subsection will be devoted to groups G such that ZG is compact or MG is com-
pact, that will be called respectively Z-compact and M-compact groups. Obviously,
M-compact groups are Z-compact.

We begin with a corollary of Theorem 6.4.

Lemma 10.15. Direct products of Z-compact groups are Z-compact.

Proof. Let {Gi | i ∈ I} be a family of Z-compact groups. Then the product topology∏
i∈I ZGi is compact by Tychonov theorem, so that ZG is compact too by Theorem

6.4.

Remark 10.16. Theorem 10.12 shows that an infinite product or sum of Z-Noetherian
groups need not be Z-Noetherian. On the other hand, direct products of Z-compact
groups are Z-compact groups by Lemma 10.15. We shall see in Example 11.7 (b)
that direct sums of Z-Noetherian groups need not be even Z-compact.

Lemma 10.17. Let G be a Z-compact group, and let H be a ZG-closed subgroup of
G. Then H is Z-compact.

Proof. Consider the topological space (G,ZG). As it is compact, and H is a closed
subset, also (H,ZG �H) is a compact space. Then (H,ZH) is compact too, as ZH ⊆
ZG �H by (5.1).

Corollary 10.18. Let N1 and N2 be groups such that G = N1 × N2 is Z-compact
and N1 is center-free. Then N2 is Z-compact.

Proof. By Lemma 6.16, N2
∼= {eN1}×N2 is a ZG-closed subgroup of G, then Lemma

10.17 applies.

Remark 10.19. Let H = SN
3 , and G = Z2×H. Both the group G and its subgroup

H are Z-compact by Lemma 10.15. On the other hand, H is not ZG-closed by
Example 6.68.

1. So the condition on H to be ZG-closed in Lemma 10.17 is not necessary.
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2. This example also shows that the condition on N1 to be center-free in Corollary
10.18 is not necessary.

Remark 10.19, items 1-2 motivate respectively the first and the second part of the
following question. For partial answers, see respectively Lemma 10.17 and Corollary
10.18.

Question 8. If G = N1 × N2 is Z-compact, must N2 be Z-compact? What if in
addition N1 is center-free?

10.4 Permanence properties of the classes N and C

Let
N = {G : ZG is Noetherian} ⊆ C = {G : ZG is compact}.

The class N is stable under taking subgroups and finite products by Fact 10.3 (a)
and (b), and under taking quotients with respect to Zariski closed normal subgroups
(see Proposition 10.4). Moreover, an infinite direct product belongs to N if and only
if all components belong to N and all but finitely many of them are abelian; these
two conditions are also equivalent to the fact that an infinite direct sum belongs to
N (Theorem 10.12).

While N contains all abelian groups, it does not contain all nilpotent groups of
nilpotency class 2 (see Example 10.13). In particular, it is not stable under taking
central extensions.

On the other hand, C is stable under taking arbitrary products (Lemma 10.15),
Zariski closed subgroups (Lemma 10.17) and quotients with respect to Zariski closed
normal subgroups (Proposition 10.4). Finally, the class C is not stable under taking
central extensions (as Z(G) ∈ N ⊆ C for every group G).
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/).
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11
Z-Hausdorff, M-Hausdorff and

P-Hausdorff Groups

The following definition is analogous to Definition 10.1.

Definition 11.1. A group G such that ZG (resp., MG, PG) is Hausdorff is called
Z-Hausdorff (resp., M-Hausdorff, P-Hausdorff).

As translations are ZG-continuous, a group G is Z-Hausdorff if and only if for
every g ∈ G, g 6= eG, there exist ZG-closed sets C,D such that g /∈ C, eG /∈ D
and G = C ∪D. It is not restrictive to consider only ZG-basic closed sets, so G is
Z-Hausdorff if and only if for any g ∈ G, g 6= eG, there exist words w1, . . . , wn, and
an integer 1 ≤ k ≤ n such that

G =
n⋃
i=1

Ewi , eG /∈
k⋃
i=1

Ewi , g /∈
n⋃

i=k+1

Ewi .

As ZG ⊆ MG for every group G, it is obvious that Z-Hausdorff groups are M-
Hausdorff, and M-Hausdorff groups are P-Hausdorff. We do not know if also the
converse holds true:

Question 9. Is a M-Hausdorff group necessarily Z-Hausdorff?

Obviously, M-Hausdorff implies P-Hausdorff, but the converse does not hold.
We shall see in Remark 11.40 an example showing that P-Hausdorff9M-Hausdorff.

A subgroup H of a Z-Hausdorff group G need not to be Z-Hausdorff, as in
general only the inclusion ZH ⊆ ZG �H holds true. Similarly, the subgroups of a
M-Hausdorff group G need not to be M-Hausdorff. We will present in Example
11.7 (c) a group G such that ZG = MG is a Hausdorff group topology, while the
commutator subgroup G′ is an infinite Z-Noetherian group, hence not Z-Hausdorff.
Nevertheless, the following results hold.

Proposition 11.2. • Markov embedded subgroups of a M-Hausdorff group are
M-Hausdorff groups.

• Zariski embedded subgroups of a Z-Hausdorff group are Z-Hausdorff groups.
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Proof. If H is a Markov embedded subgroup of a M-Hausdorff group G, then
MG �H⊆ MH . Being MG �H a Hausdorff topology on H, MH is Hausdorff too.
The case of the Zariski topology is similar.

Corollary 11.3. Every Zariski embedded abelian subgroup of a Z-Hausdorff group
is finite, and every Markov embedded abelian subgroup of a M-Hausdorff group is
finite.

Proof. A Zariski embedded abelian subgroup of a Z-Hausdorff group would be Z-
Hausdorff by Proposition 11.2, and Z-Noetherian by Example 10.2 (c), thus finite
by Remark 1.2 (a).

If G is a M-Hausdorff group, then a Markov embedded subgroup of G would be
M-Hausdorff itself by Proposition 11.2, and Z-Hausdorff too by Theorem 4.10. And
Z-Hausdorff abelian groups are finite.

Corollary 11.4. If G is a M-Hausdorff group, then Z(G) is finite.

Proof. In view of Corollary 11.3, it will suffice to show that Z(G) is Markov embed-
ded in G. This follows from the fact that Z(G) is super-normal in G by Proposition
5.5, so Markov embedded by Proposition 5.10 (a) and (b).

Lemma 11.5. Let {Fi | i ∈ I} be a non-empty family of finite groups, and G =∏
i∈I Fi. Then:

(a) G is Z-Hausdorff if and only if ZG =
∏

i∈I ZFi. In this case, ZG = MG =
PG =

∏
i∈I ZFi and all but finitely many Fi are center-free.

(b) G is M-Hausdorff if and only if MG =
∏

i∈I ZFi. In this case, ZG ⊆MG =
PG =

∏
i∈I ZFi and all but finitely many Fi are center-free.

(c) G is P-Hausdorff if and only if PG =
∏

i∈I ZFi. In this case, ZG ⊆ MG ⊆
PG =

∏
i∈I ZFi.

Proof. Recall that
∏

i∈I ZFi is a compact Hausdorff group topology on G by Lemma
6.53, and that ZG ⊆MG ⊆ PG ⊆

∏
i∈I ZFi by (6.11).

(a). If ZG is Hausdorff, then by (6.11) the map idG : (G,
∏

i∈I ZFi) → (G,ZG)
is continuous from a compact space to a Hausdorff one, hence is open and ZG =∏

i∈I ZFi . In particular, G is also M-Hausdorff, so that Z(G) =
∏

i∈I Z(Fi) is finite
by Corollary 11.4.

The proof of (b) and (c) is analogous.

Corollary 11.6. Let {Fi | i ∈ I} be a non-empty family of finite center-free groups,
G =

∏
i∈I Fi, and S =

⊕
i∈I Fi.

Then, both MG and MS are Hausdorff group topologies, so they are the min-
imum of the poset of all Hausdorff group topologies on G, and on S respectively.
Moreover, they have a local base of clopen subgroups of finite index, so they are
zero-dimensional.

Proof. Immediately follows from Theorem 6.55.
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Example 11.7. Let I be an infinite set, and consider the group G = SI3 . By
Theorem 6.55 (a), ZG =

∏
i∈I ZS3 is a compact Hausdorff topology on G, so it is not

Z-Noetherian.

(a) For example, if I = N, one has the following stictly descending infinite chain

G = SN
3 ) {id} × S

N\{0}
3 ) {id} × {id} × SN\{0,1}

3 )

) {id} × {id} × {id} × SN\{0,1,2}
3 ) . . .

As the elements of this chain are direct products of centralizers, they are ZG-
closed sets by Lemma 6.16.

(b) Consider now the subgroup S = S
(I)
3 of G, and observe that S is not a ZG-

closed subset of G. Moreover, ZS = ZG �S by Theorem 6.55 (b), so ZS is a
non-compact, precompact Hausdorff topology on S.

In particular, direct sums of finite (hence Z-Noetherian) groups need not be
Z-compact.

(c) Finally, consider the commutator subgroup of G, H = SI3
′ = S ′3

I = AI3
∼=

Z/3ZI . It is an infinite abelian group, so H is Z-Noetherian by Example
10.2 (c), hence not Z-Hausdorff. In particular, ZH 6= ZG �H and H is not a
Zariski embedded subgroup of G. Nor H is Markov embedded: in fact we have
MG = ZG by Theorem 6.55, and MH = ZH by Theorem 4.11, so

MH = ZH ( ZG �H= MG �H .

Note also that H ∈ EG, as H = AN
3 = S3[3]N = SN

3 [3] = {g ∈ G | g3 = eG}.
In particular, G′ need not be Zariski embedded, nor Markov embedded, in G
even if it is an elementary algebraic subset of G.

Remark 11.8. In analogy with the definitions given in §10.4, let us introduce also
the class H = {G : ZG is Hausdorff}.

Note that N∩H is the class of finite groups. The group G considered in Example
11.7 satisfies G ∈ C ∩ H and G′ ∈ N \ H.

11.1 Finite-center direct products

Recall that in §6.4 we studied the Zariski topology of groups G of the form G =∏
i∈I Fi, where every Fi was finite and center-free.
We consider now a slightly more general case. Let {Fi | i ∈ I} be a family of finite

groups, and all but finitely many of the groups Fi are center-free. CallG0 the product
of those groups with non-trivial center, so that we can write G = G0×

∏
i∈I Fi, with

G0 finite, and Fi finite and center-free for every i ∈ I.
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Let H =
∏

i Fi: by Theorem 6.55 (a) we have ZH =
∏

i∈I ZFi . Obviously,
H ∼= G/G0, so we identify these two groups. Being H center-free, note that G0 is a
ZG-closed subgroup of G by Lemma 6.16. So the canonical projection

π : (G,ZG)→ (H,ZH) (11.1)

is continuous by Proposition 4.6, and as a consequence ZG ⊇ ιG0×ZH . In particular,
for every i ∈ I, the subgroups Hi = G0×{eFi}×

∏
j∈I\{i} Fj are ZG-clopen, so MG-

clopen and PG-clopen.
Being ZG a T1 topology, we have ZG ) ιG0 × ZH . Finally, Lemma 6.53 gives the

other non-trivial inclusion in the following chain

ιG0 × ZH ( ZG ⊆MG ⊆ PG ⊆ ZG0 × ZH . (11.2)

Proposition 11.9. Let {Fi | i ∈ I} be a non-empty family of finite center-free
groups, and G0 be a finite group. Then the following are equivalent, for the group
G = G0 ×

∏
i∈I Fi.

1. G is Z-Hausdorff;

2. ZG = ZG0 ×
∏

i∈I ZFi;

3. the subgroup H =
∏

i∈I Fi is ZG-closed.

In this case, ZG = MG = PG = ZG0 ×
∏

i∈I ZFi.

Proof. The last part of the statement will immediately follow by (11.2) and item 3.
The equivalence between condition 1 and 2 follows by Lemma 11.5, while the

implication 2→ 3 is trivial.
So it only remains to prove that 3 implies 2. Consider the subbase for

(
ZG0 ×∏

i∈I ZFi
)
-closed consisting of cosets of H, and of Hi, for i ∈ I. We have already

noted that Hi is ZG-closed for every i ∈ I, by the inclusion ιG0×ZH ⊆ ZG established
in (11.2). So H and its cosets are the only remaining

(
ZG0 ×

∏
i∈I ZFi

)
-closed of

subbase to check to be ZG-closed.

Example 11.10. Let F be either S3, or a group H0 as in Remark 6.10 (b) (in the
latter case, assume it to be finite and center-free). Let I be an infinite set, and
consider the group H = F I . Finally, let G0 be a finite group such that Z(G0)[2] =
{eG0}, and let G = G0 × H. Then H is ZG-closed by Corollary 6.67 (a), so that
ZG = MG = PG = ZG0 ×

∏
i∈I ZF by Proposition 11.9. For example, one can

consider G0 = Zm for every odd integer m ≥ 3.

Let S0 =
⊕

i∈I Fi. In the following result, we consider the direct sum S =
G0 × S0 ≤ G.
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Proposition 11.11. Let {Fi | i ∈ I} be a non-empty family of finite center-free
groups, and G0 be a finite group. Then the following are equivalent, for the group
S = G0 ×

⊕
i∈I Fi.

1. ZS =
(
ZG0 ×

∏
i∈I ZFi

)
�S;

2. the subgroup S0 = {eG0} ×
⊕

i∈I Fi is ZS-closed.

In this case, ZS = MS = PS =
(
ZG0 ×

∏
i∈I ZFi

)
�S= ZG �S= MG �S= PG �S.

Proof. Note that Remark 6.54 applies to S, so that (6.12) and (6.13) hold for H = S,
and the last part of the statement immediately follows by condition 1.

The proof will be very similar to that of Proposition 11.9. For every i ∈ I,
consider the subgroups Si = G0 × {eFi} ×

⊕
j∈I\{i} Fj.

1→ 2 is trivial.
2 → 1. We only have to prove the inclusion

(
ZG0 ×

∏
i∈I ZFi

)
�S⊆ ZS. To

this end, consider the subbase for
(
ZG0 ×

∏
i∈I ZFi

)
�S-closed consisting of cosets

of S0, and of Si, for i ∈ I. By Lemma 6.44, every Si is ZS-closed. So S0 and its
cosets are the only remaining

(
ZG0 ×

∏
i∈I ZFi

)
�S-closed of subbase to check to be

ZS-closed.

Theorem 11.12. Let m > 0 be an integer, and G0 be a finite group with (|G0|,m) =
1. If for every i ∈ I, Fi is a finite, center-free, bounded group, with exp(Fi) | m,
then the following hold.

1. H = {eG0} ×
∏

i∈I Fi is ZG-closed, so ZG = MG = PG = ZG0 ×
∏

i∈I ZFi.

2. S0 = {eG0} ×
⊕

i∈I Fi is ZS-closed, so

ZS = MS = PS =
(
ZG0 ×

∏
i∈I

ZFi
)

�S= ZG �S= MG �S= PG �S .

Proof. 1. Follows from the fact that G[m] = G0[m] ×
∏

i∈I Fi[m] = {eG0} ×∏
i∈I Fi = H is an elementary algebraic subset of G, then Proposition 11.9

applies.

2. As in item 1, observe that S[m] = G[m] ∩ S = S0 is an elementary algebraic
subset of S, then apply Proposition 11.11.

11.2 Z-discrete and M-discrete groups

Definition 11.13. Recall that a group G is called topologizable if it admits a
non-discrete Hausdorff group topology (so G is non-topologizable if the only Haus-
dorff group topology of G is the discrete one). As the Markov topology of a non-
topologizable group G is the discrete topology, such a group G will also be called
M-discrete. Similarly, a group G such that ZG (resp., PG) is discrete will be called
Z-discrete (resp., Z-discrete).
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11.2.1 Z-discrete groups

We start with a discussion on the Z-discrete groups, i.e. groups G with finite bd(G).
Obviously, an infinite Z-discrete group is also M-discrete, so provides a solution
of Markov’s second problem. Since the popularity of this problem has been much
wider than that of the first one, and since ZG = MG for a countable group G, this
explains the major interest in Z-discrete groups.

Lemma 11.14. A group G is Z-discrete if and only if there exists F ∈ [G]<ω such
that H is Z-discrete for every F ⊆ H ≤ G.

Proof. One can easily check that G is Z-discrete if and only if G \ {eG} is additively
algebraic, i.e. there exist n ∈ N+ and w1, . . . , wn ∈ G[x] such that EG

w1
∪ . . .∪EG

wn =
G \ {eG}. (Recall that the least n with this property is bd(G).)

Let F =
⋃n
i=1 coeff(wi), and F ⊆ H ≤ G. Then for every i = 1, . . . , n obviously

wi ∈ H[x], so that EG
wi
∩ H = EH

wi
. From this, it follows that EH

w1
∪ . . . ∪ EH

wn =
H \ {eG}, i.e. H is Z-discrete.

The same idea will actually prove the following more general result.

Proposition 11.15. Let G be a group, and κ be a cardinal number. Then PκZG = δG
if and only if there exists F ∈ [G]≤κ such that PκZH = δH for every F ⊆ H ≤ G.

The problem to construct a countable Z-discrete (hence, non-topologizable) group
is equivalent to Markov’s second problem for countable groups. It was resolved by
Ol′shanskij [49] (see also [50, Theorem 31.5]).

Example 11.16 ([49]). Ol′shanskij produced a countable Z-discrete group using an
appropriate quotient G of the (countable) Adian group A(n,m). More precisely, he
establised that actually bd(G) ≤ 2m holds true.

If a group G is Z-discrete, then ZG = MG = PG holds because all three topologies
become discrete. Such groups are extremely hard to come by, but a variety of
examples were constructed since the pioneer work of Ol′shanskij, using his techniques
developed in [50] or modifying his example reported above.

Example 11.17. 1. Morris and Obraztsov [45, Theorem L] built, for any suffi-
ciently large p ∈ P, a continuum of pairwise non-isomorphic infinite Z-discrete
groups of exponent p2, all of whose proper subgroups are cyclic. Every one
of these groups is a central extension of a Tarski monster of exponent p by a
central subgroup of order p.

2. Klyachko and Trofimov [37] constructed a finitely generated torsion-free group
G such that there exist a word w ∈ G[x] with Ew = G \ {eG}, i.e. bd(G) = 1.
In particular, G is Z-discrete.
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3. Trofimov [63] constructed an infinite, finitely generated, center-free group G
such that every automorphism of G is inner and bd(G) = 1. In particular,
G ∼= AutG and G is Z-discrete.

4. Trofimov [62] proved that every group admits an embedding into a Z-discrete
group.

As already noted above, the infinite groups G built in items 2 and 3 have bd(G) =
1. The groups with finite bound seem to be of interest also in the finite case (see [34]
for the description of all finite 2-bound groups, where an unpublished manuscript of
G. Cherlin is quoted, describing the finite 1-bound groups).

The next theorem gives an “external” characterization of Z-discrete groups in
terms of Zariski embeddings.

Theorem 11.18 ([20, Theorem 6.14]). For a group H the following conditions are
equivalent:

(i) H is simultaneously Hausdorff embedded, Markov embedded and Zariski em-
bedded in every group G that contains H as a subgroup,

(ii) H is Zariski embedded in every group G that contains H as a subgroup,

(iii) H is Z-discrete.

Example 11.19. This theorem gives easy examples of non-Zariski-embedded sub-
groups. For example, the infinite abelian group H = Z is not Z-discrete, hence there
exists a group G containing H as a subgroup such that H is not Zariski embedded
in G.

11.2.2 M-discrete groups

Let us recall that a group G with |G| = ω1 is called a Kurosh group, if all proper
subgroups of G are countable. Let us introduce the following stronger notion:

Definition 11.20 ([25, Definition 4.3]). Let m ∈ N. An uncountable group G is
said to be a m-Kurosh group, if Am = G for every subset A of G with |A| = |G| and
A−1 = A.

Clearly every m-Kurosh group of size ω1 is a Kurosh group.

For an uncountable group G consider the following condition:

(S) for every subgroup H of G with |H| < |G| there exists F ∈ [G]<ω such that⋂
x∈F x

−1Hx is finite.
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Clearly, a group G satisfying (S) cannot have countably infinite normal subgroups
(actually, (S) implies a stronger property — the core HG =

⋂
x∈G x

−1Hx of any
subgroup H of G with |H| < |G| is finite and HG =

⋂
x∈F x

−1Hx for some F ∈
[G]<ω).

The utility of these notions becomes clear in the following original sufficient
condition ensuring M-discreteness elaborated by Shelah [57].

Proposition 11.21. If m ∈ N, then every m-Kurosh group G satisfying (S) is
M-discrete.

Proof. Let T be a Hausdorff group topology on G. There exists a T -neighbourhood
V of eG with V 6= G. Choose a T -neighbourhood W of eG with Wm ⊆ V . Then
V 6= G and our hypothesis on G to be m-Kurosh yield |W | < |G|. If H = 〈W 〉, then
|H| = |W | · ω < |G|. According to (S), the intersection O =

⋂
x∈F x

−1Hx is finite
for some F ∈ [G]<ω. Since each x−1Hx is a T -neighbourhood of eG, this proves that
eG ∈ O ∈ T . As T is Hausdorff and O is finite, it follows that {eG} is T -open, and
therefore T is discrete.

Remark 11.22. The above criterion was used by Shelah [57] to produce the first
consistent example of a non-topologizable group. He worked under the assumption
of CH and produced a 10000-Kurosh group G of size ω1 satisfying (S) with |F | = 2
for every subgroup H of G with |H| < |G| (actually, he managed to have each of
these subgroups H malnormal in G, i.e. H ∩ x−1Hx = eG for every x ∈ G \H).

Here comes the counterpart of Theorem 11.18 providing an “external” charac-
terization of discreteness of MH in terms of Markov and Hausdorff embeddings.

Theorem 11.23 ([20, Theorem 6.9]). For a group H the following conditions are
equivalent:

(i) H is Hausdorff embedded in every group G that contains H as a subgroup,

(ii) H is Markov embedded in every group G that contains H as a subgroup,

(iii) H is M-discrete.

Following Lukàcs [39], call a group G hereditarily M-discrete, if for every sub-
groupH ofG all quotients ofH are M-discrete (the term hereditarily non-topologizable
group is used in [39]). This is the largest class of M-discrete groups closed with re-
spect to taking subgroups and quotients. The origin of this class comes from the
categorically compact groups introduced in [27]. A topological group (G, τ) is called
categorically compact if, for every topological group H, the projection G×H → H
sends closed subgroups of G×H onto closed subgroups of H. By Kuratowski’s closed
projection theorem, every compact group is categorically compact. This implication
is invertible for solvable groups and for connected locally compact groups [27].
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It is proved in [27, Corollary 5.4] that if a group G is hereditarily M-discrete,
then (G, δG) is categorically compact; the converse holds for countable groups [27,
Theorem 5.5].

Very recently, Klyachko, Ol′shanskij and Osin produced in [36] the first examples
of infinite hereditarily M-discrete groups using Ol′shanskij’s techniques [50]. More
precisely, they gave the following result.

Theorem 11.24 ([36, Theorem 1.2]). There exist hereditarily M-discrete groups G,
H, I, and J such that:

(a) G is infinite, finitely generated, and of bounded exponent;

(b) H is finitely generated and of unbounded exponent;

(c) I is countable, but not finitely generated;

(d) J is uncountable.

They managed to produce examples with those properties to answer [27, Ques-
tion 1.2 and Question 5.2] (later reported also in [19, Question 929]) in the negative.

11.2.3 M-discrete groups that are not Z-discrete

Here we discuss the first of Markov’s problems, namely when ZG = MG occurs for
a group G.

Although Hesse gave a strong and very impressive negative solution of Markov’s
first problem by 1979, it is fair to say that his solution remained completely unknown
to the large audience for long time. Indeed, in 1992, this problem is qualified as “still
open” in the survey [15]. Similarly, the quite recent survey [38] does not mention
Hesse’s solution and quotes the recent consistent counterexample announced in [58],
where an appropriate modification of Shelah’s construction [57] under CH is shown
to produce an example of a group G such that ZG 6= MG. A possible explanation
can be the somewhat surprising fact that Hesse (maybe unaware of that problem)
never claimes a solution, and he never published the solution obtained in his PhD
thesis [33].

Here comes Hesse’s powerful theorem:

Theorem 11.25 ([33]). Let λ, κ be infinite cardinal numbers with cf(λ) > κ =
cf(κ). Then there exists a group G such that :

(a) |G| = λ;

(b) every Hausdorff semigroup topology on G is discrete (in particular, MG =
PG = δG);

(c) bd(G) > κ.
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/).
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Since bd(G) > κ means that PκZG (hence ZG too) is non-discrete, while MG is
discrete by item (b), one can deduce from the above theorem that there is a large
gap between MG and ZG. For the sake of convenience we formulate the following
corollary giving an explicit negative solution to Markov’s first problem.

Corollary 11.26. For every cardinal λ of uncountable cofinality there exists a group
G of size λ such that MG is discrete while ZG is not discrete. In particular, ZG 6=
MG = PG = δG.

In particular, there exist groups G such that ZG 6= MG = PG = δG of size ω1

and c.

11.2.4 Highly topologizable groups

We conclude with a couple of results on highly topologizable groups. Call a group
G highly topologizable if it admits the maximum number 22|G| of Hausdorff group
topologies.

First, we state some Podewski’s results about the highly topologizability of unge-
bunden groups, i.e. groups G with bd(G) = |G|. We remark that his 1977 work [52]
was already ready as a preprint in 1972.

Theorem 11.27 ([52]). Let G be a group such that bd(G) = |G|. Then G is highly
topologizable.

It turns out that Theorem 11.27 is reversible for countable groups:

Corollary 11.28 ([52]). For a countable group G, the following conditions are equiv-
alent:

• G is not M-discrete (i.e. it is topologizable);

• bd(G) = |G|;

• G is highly topologizable.

So, for a countable group, it is equivalent to be topologizable, and to be highly
topologizable.

Podewski also proved that his Theorem 11.27 applies to abelian groups.

Theorem 11.29 ([52]). If G is an abelian group, then bd(G) = |G|. In particular,
G is highly topologizable.

In 1974, Kiltinen directly proved in [35] that infinite abelian groups are highly
topologizable; later, Berhanu, Comfort and Reid in [10] strenghtened his result

proving that in fact infinite abelian group admit 22|G| precompact Hausdorff group
topologies.
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Now we will consider free groups. Remus first proved in [53] that free groups are
highly topologizable, then he himself proved in [54] that every free group G admits

22|G| precompact Hausdorff group topologies.

A long series of countable topologizable groups can be found in the following
results by Hesse, taken from [32], where the property bd(G) = |G| was established
for the group G. That entails, according to Corollary 11.28, that G is highly topol-
ogizable.

Theorem 11.30 ([32]). If a countable group G has one of the following properties,
then G is topologizable:

1. G has an infinite normal subgroup N that is an FC-group;

2. G contains an infinite solvable normal subgroup;

3. G is locally nilpotent.

Obviously, item 2 implies that every countable solvable group admits a nondis-
crete Hausdorff group topology. This partially answers positively a question due to
Sharma [56] about the topologizability of infinite solvable groups.

Recall that a group is locally finite if every finitely generated subgroup is finite.
Then Belyaev [9] proved the following.

Theorem 11.31 ([9]). Every countably infinite locally finite group is topologizable.

In particular, a countably infinite locally finite group is highly topologizable by
Theorem 11.30.

11.3 P-Hausdorff groups

Definition 11.32 ([16]). A compact Hausdorff topological group is a van der Waer-
den group if every homomorphism to a compact Hausdorff group is continuous.

Theorem 11.33 ([65]). Every compact, connected, semi-simple Lie group is a van
der Waerden group.

For example, Theorem 11.33 applies to the group SO3(R).

Theorem 11.34 ([14]). For a compact Hausdorff group (G, τ), the following are
equivalent.

(a) (G, τ) is van der Waerden;

(b) τ is the only (hence, the finest) precompact group topology on G;
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(c) PG is Hausdorff;

(d) PG = τ .

By Theorem 11.34, the class of van der Waerden groups is the class of compact
P-Hausdorff groups.

11.3.1 P-discrete groups

Example 11.35. We collect here some examples of P-discrete groups that are not
M-discrete, so that MG 6= PG.

1. A classical example of a P-discrete group is the group SL(2,C) (see [48]).
Since SL(2,C) is topologizable (by its usual topology induced by C4), it is not
M-discrete.

2. We shall see in Remark 12.18, item 3, that ZG = MG 6= PG = δG holds for
every group G with Sω(X) ≤ G ≤ S(X), where X is an infinite set.

Definition 11.36 ([47]). A group G is called:

(a) maximally almost periodic, if the homomorphisms from G to compact groups
K separate the points of G (i.e., G admits precompact Hausdorff group topolo-
gies);

(b) minimally almost periodic, if every homomorphism to a compact group K is
trivial.

So a group is P-discrete exactly when it is not maximally almost periodic. In
particular, examples of P-discrete groups are provided by all minimally almost pe-
riodic groups. Note that G′ = G for a minimally almost periodic group.

In the following theorem, we prove that a solvable divisible non-abelian group ad-
mits no precompact group topology, although such a group is not minimally almost
periodic.

Theorem 11.37. Every solvable divisible non-abelian group is P-discrete.

Proof. Assume that G is a solvable divisible precompact group. We aim to prove
that G is abelian.

Let us prove first that its compact completion K is a connected group. Since
the connected component of K is the intersection of all open subgroups of K, it will
suffice to show that K has no proper open subgroups. Indeed, let N be an open
subgroup of K, so that the intersection G∩N is an open subgroup of G. Since open
subgroups in a precompact group have finite index, n = [G : (G∩N)] is finite. Then
xn ∈ G∩N for every x ∈ G. Since G is divisible, for every g ∈ G there exists x ∈ G
such that g = xn. Hence, G ⊆ G ∩ N , so that N contains the dense subgroup G.
Since N is also closed in K, we deduce that N = K.
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The next step is to verify that K is also solvable (of the same class as G). Indeed,
by the density of G in K and the continuity of the commutator operation, one can
easily deduce that G′ is dense in K ′. Similarly, the n-th commutator subgroup G(n)

is dense in K(n). Therefore, K(n) is trivial whenever G(n) is trivial.
Now we prove that the compact connected solvable group K is abelian. As a

consequence, G is abelian too. Arguing for a contradiction, assume that K 6= Z(K)
is not abelian. By a theorem of Varopoulos [64], the non-trivial quotient K/Z(K)
is center-free and isomorphic to a direct product of simple connected compact Lie
groups; in particular, K/Z(K) cannot be solvable. This contradicts the fact that
the quotient of a solvable group is solvable.

In the next corollary we see that the converse of Theorem 11.37 holds for count-
able groups, thus characterizing the solvable divisible countable P-discrete groups.

Corollary 11.38. For a solvable divisible countable group G, the following condi-
tions are equivalent:

(a) G is abelian;

(b) MG = PG;

(c) PG 6= δG;

(d) PG is Noetherian.

In this case, also ZG = MG is Noetherian.

Proof. (a) implies (b) and (d) by Theorem 4.10.
(b) implies (c) by Theorem 11.30, item 2, as MG 6= δG.
(c) implies (a) by Theorem 11.37.
(d) trivially implies (a) as G is infinite.
Finally, the last assertion follows by Theorem 4.10. We will see in Remark 11.40

that the property of having ZG = MG Noetherian is strictly weaker than the others,
even for groups G ∈ N2 (that in particular are solvable).

Recall the Heisenberg group H = H(n,K) of n×n unitriangular upper matrixes
over the field K studied in §8.

Proposition 11.39. For every field K with charK = 0, the group H = H(n,K)
is P-discrete, so MH 6= PH = δH . In particular, if charK = 0 and K is also
countable, then ZH = MH is Noetherian, so does not coincide with PH = δH .

Proof. Since H ∈ N2, it is a solvable non-abelian group and we are going to apply
Theorem 11.37. To this end, we need to check that H is divisible. Since Z(H) ∼=
(K,+) is divisible, it suffices to check that H/Z(H) is divisible. This follows from
H/Z(H) ∼= (Kn,+)× (Kn,+).
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It remains to see that H is not M-discrete. To this end one may take any non-
discrete ring topology on K (every infinite commutative ring has such topologies
according to a theorem of Arnautov) and consider the product topology on H. This
will be a non-discrete Hausdorff group topology on H.

If K is also countable, then H is Z-Noetherian by Example 10.2 (a), and ZH =
MH by Theorem 4.11.

Remark 11.40. Now we shall see that the condition of having ZH = MH Noetherian
for a group H does not imply none of the properties (a)–(d) of Corollary 11.38, ever
for countable divisible groups H ∈ N2.

To this end, consider the group H = H(n,K), for a countable field K with
charK = 0, and apply Proposition 11.39.

In particular, such groups are P-discrete, hence P-Hausdorff, and M-Noetherian,
hence not M-Hausdorff.

Remark 11.41. Note that when charK = 0, a subgroup S of H is P-embedded
in H if and only it is P-discrete by Proposition 11.39. In particular, no abelian
subgroup of H is P-embedded in H. For example, Z(H), L, M are not P-embedded
in H.

Motivated by the equality ZG = MG = PG in the abelian case, the question
which of these equalities remain true for nilpotent groups was raised in [21, Question
12.1]. Proposition 11.39 and the above example provide a partial answer to this
question for a large variety of groups G ∈ N2 (see Question 13).

Remark 11.42. In Proposition 11.39 we proved that, given a field K of character-
istic 0, the Heisenberg group H = H(n,K) is P-discrete. In other words, it does
not admit precompact Hausdorff group topologies. However, replacing the field K
by Z one obtains a group HZ that admits a plenty of precompact group topologies,
so that now PHZ is not only non-discrete, it is even non-Hausdorff.

If one replaces “precompact” by locally precompact (this means a group that has
a locally compact completion), things may change substantially. Indeed, the group
HQ admits plenty of non-discrete locally precompact group topologies (they can be
obtained by embedding into the locally compact groups built in [44] via “generalized
Heisenberg group” constructions).

Recall also the definition of the group GK = K∗ n V , given a field K and a
K-vector space V . See also §§9, 9.1.

Corollary 11.43. Let K be an algebraically closed field of characteristic 0. Then
the group GK is P-discrete.

Proof. One only has to notice that the solvable group GK is also divisible under the
assumptions, in order to apply Theorem 11.37.

Remark 11.44. Under the hypotheses of Corollary 11.43 on a field K, the subgroup
N = NK is not P-embedded in G = GK , as PN = MN = ZN = cofN by Proposition
4.16.
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12
Minimal group topologies

Definition 12.1. A Hausdorff topological group (G, τ) is called minimal if τ is a
minimal element in the poset of all Hausdorff group topologies on G.

In other words, (G, τ) is minimal whenever the following condition holds: if σ is
a Hausdorff group topology on G, such that σ ⊆ τ , then σ = τ .

Proposition 12.2. Every compact Hausdorff group topology is minimal.

Example 12.3. • For every prime number p, the p-adic topology on Z is min-
imal.

• Q does not admit minimal group topologies.

Minimal group topologies have been widely studied in literature, see for example
[23].

A subgroup H of a topological group G is essential (in G) if H ∩N 6= {eG} for
every closed normal subgroup N 6= {eG} of G.

Theorem 12.4 ([7]). Let H be a dense subgroup of a topological group G. Then H
is minimal if and only if G is minimal and H is essential in G.

As an easy consequence of Theorem 12.4, we get the following result for direct
products and sums of finite groups.

Corollary 12.5. Let {Gi | i ∈ I} be a non-empty family of groups, G =
∏

i∈I Gi

and S =
⊕

i∈I Gi. Consider the product topology τ =
∏

i∈I δGi on G and the induced
topology σ = τ �S on S. Then:

1. (G, τ) is minimal.

2. If Gi is center-free for every i ∈ I, then (S, σ) is minimal.

Proof. 1. The topology τ is minimal, being compact Hausdorff, by Proposition
12.2.

2. Note that S is dense and essential in G. By the previous point, we can apply
Theorem 12.4.
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12.1 Algebraically minimal groups

Definition 12.6. We will call algebraically minimal an infinite group G such that
MG is a (necessarily Hausdorff) group topology.

Note that a group is algebraically minimal exactly when the poset of Hausdorff
group topologies on G has a minimum element (i.e. MG). In this case, (G,MG) is
obviously minimal.

Groups G such that MG is a group topology (so Hausdorff) are quite hard to
come by. The M-discrete groups trivially satisfy this condition, and here we resume
some classes of algebraically minimal groups.

Example 12.7. The following classes of groups are algebraically minimal:

• direct products and direct sums of finite, center-free groups, by Theorem 6.55;

• permutation groups (see Theorem 12.12);

• M-discrete groups.

Note that Corollary 11.4 implies that an algebraically minimal group has finite
center.

12.1.1 Permutation groups

In what follows, X is an infinite set. For a subgroup G ≤ S(X) of the permutation
group of X, let τp(G) denote the point-wise convergence topology of G. The following
classic result was proved by Gaughan in 1967.

Theorem 12.8 ([29]). Let G = S(X). Then τp(G) is contained in every Hausdorff
group topology on G.

In particular, from Theorem 12.8 it follows that MS(X) = τp(S(X)) is itself a
Hausdorff group topology, hence S(X) is algebraically minimal.

Let us see that from Theorem 12.8 it immediately follows Remus’ answer to
Markov’s Third Problem about the connected topologization of groups (however,
already solved by Pestov in [51]).

Theorem 12.9 ([55]). If X is an infinite set, then MS(X) is totally disconnected,
so every Hausdorff group topology on S(X) is totally disconnected.

Proof. By Theorem 12.8, the family SF (X), for F ∈ [X]<ω, is a local base for MS(X).
As every SF (X) is a clopen subset of X, the topology MS(X) is totally disconnected.

Then every Hausdorff group topology on S(X) is totally disconnected, being
finer than MS(X).
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Corollary 12.10 ([55]). The group S(X) does not admit any connected Hausdorff
group topology, and if |X| ≥ c then every subgroup MS(X)-closed has index at least
c.

Proof. Let G = S(X). Since MG = τp(G) by Theorem 12.8, every proper MG-closed
subgroup is the intersection of proper MG-open subgroups.

So it suffices to ensure that every proper MG-open subgroup has index at least
c. Since every such subgroup is contained in a one-point stabilizer S{x}(X), for a
x ∈ X (these are maximal subgroups), it suffices to note that S{x}(X) has index
|X|.

Ten years after Gaughan’s Theorem 12.8, Dierolf and Schwanengel (unaware of
his result) proved the following:

Theorem 12.11 ([17]). Let Sω(X) ≤ G ≤ S(X). Then τp(G) is a minimal Haus-
dorff group topology.

Note that for every group G, with Sω(X) ≤ G ≤ S(X), one has ZG ⊆ MG ⊆
τp(G). Although Theorem 12.11 provides new results for groups Sω(X) ≤ G �
S(X), Theorem 12.8 gives a much stronger result for the whole group S(X). That
is why Dikranjan conjectured the following.

Conjecture 1 ([40]). Let Sω(X) ≤ G ≤ S(X). Then MG = τp(G), so G is
algebraically minimal.

The following question was raised by Dikranjan and Shakhmatov (see Theorem
12.8).

Question 10 ([19]). Does MS(X) coincide with ZS(X)?

It has recently turned out that Dikranjan’s conjecture is true, and Dikranjan-
Shakhmatov’s question has a positive answer. Recently, it was proved in [4] that
ZG = MG is the pointwise convergence topology for all subgroups G of infinite
permutation groups S(X), that contain the subgroup Sω(X) of all permutations of
finite support.

Theorem 12.12 ([4]). If Sω(X) ≤ G ≤ S(X), then Z′′G ( Z′G = ZG = MG = τp(G).
In particular, G is algebraically minimal.

Remark 12.13. In particular, every group G as in Theorem 12.12 is infinite and
Z-Hausdorff, hence not Z-Noetherian. Compare this result with Example 10.9.

As a corollary of Theorem 12.12, the same authors have obtained the following
answer to another question posed by Dikranjan-Shakhmatov.

Corollary 12.14 ([4]). The class of groups G satisfying ZG = MG is not closed
under taking subgroups.
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Proof. Let H be a group such that ZH 6= MH , embed it in G = S(H), and apply
Theorem 12.12 to conclude that ZG = MG.

Remark 12.15. With the same idea of Corollary 12.14, one can produce plenty
of examples of subgroups that behave badly with respect to Zariski, Markov and
Hausdorff embeddings. For example, consider the group H = Z. Then ZH = MH

by Theorem 4.11, and this topology is cofinite by Proposition 4.15. On the other
hand, embedding H in G = S(H), one has that ZG �H= MG �H is a Hausdorff group
topology, so that H is neither Zariski, nor Markov, embedded in G. By Proposition
5.10, H is neither Hausdorff embedded, nor super-normal in G.

12.1.2 When MG = PG for algebraically minimal groups

Theorem 12.16. Let G be an algebraically minimal group. Then the following
conditions are equivalent.

1. MG is precompact,

2. PG is precompact,

3. G is not P-discrete.

In this case, MG = PG.

Proof. (1) implies (2). If MG is precompact, then MG = PG, as PG is the intersec-
tion of all precompact Hausdorff group topologies. In particular, PG is precompact
too.

(2) implies (3) is obvious, being G infinite.
(3) implies (1) follows from the fact that MG is Hausdorff and MG ⊆ PG.
We have also already seen that MG = PG follows by item 1.

The next result is essentially a reformulation of Theorem 12.16, in which we
explicitly state a dichotomy for PG, whenever G is an algebraically minimal group.

Remark 12.17. Let G be an algebraically minimal group.

(a) If MG is precompact, then MG = PG.

(b) If MG is non-precompact, then G is P-discrete.

Remark 12.18. 1. The condition MG = PG is weaker than the others in The-
orem 12.16: the group G built by Ol′shanskij in Example 11.16 satisfies
ZG = MG = PG = δG.

2. It becomes obviously equivalent to the others if the group is topologizable, i.e.
not M-discrete.
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3. By Theorem 12.12, for every G such that Sω(X) ≤ G ≤ S(X), MG is a non-
precompact Hausdorff group topology, so G is P-discrete. Then, ZG = MG 6=
PG = δG for such groups (and in particular for G = S(X)).

Recall that for a solvable divisible countable group G, the conditions of having
MG = PG and of being P-discrete are equivalent by Corollary 11.38. On the other
hand, for an algebraically minimal group G those two conditions are alternative by
Remark 12.17. In particular, the following result follows.

Corollary 12.19. If G is a solvable divisible countable group, then it is not alge-
braically minimal.

Proof. Let G be such a group, and assume G to be algebraically minimal. Then
Corollary 11.38 and Remark 12.17 give a contradiction.
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13
Diagrams and (non-)implications

In what follows, we consider how some properties are related for infinite groups G.

All the implications in the following diagram are straightforward, and follow
from the definitions. We comment the two non-implications below.

a-min

(1)/

��

// not M-Noetherian

��

Z-discrete //M-discrete

66nnnnnnnnnnnn

''PPPPPPPPPPPP

P-discrete

(2)
/xxxxxxxxxx

;;xxxxxxxxxxx

// not P-Noetherian

(13.1)

(1). Consider the direct product G =
∏

i∈I Fi of finite center-free groups. By
Theorem 6.55 (a), MG = PG is a compact Hausdorff group topology, hence non-
discrete.

(2). Consider the group H = H(1,Q), for which ZH = MH . By Proposition
8.21, H is Z-Noetherian, so M-Noetherian. Moreover, ZH = MH 6= PH = δH by
Proposition 11.39.

As ZG ⊆MG, if ZG = δG, then ZG = MG = δG trivially is a group topology. In
the same way, as MG ⊆ PG, if MG = δG, then MG = PG = δG is a group topology.
If PG = δG, then it is a Hausdorff group topology, hence non-Noetherian. This
proves the vertical arrows and the horizontal arrows in the first row.
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Z-discrete

��

//M-discrete

$$JJJJJJJJJJJJJJJ
//

��

/tttttttt

(b)

zzttttttt

P-discrete

��

ZG = MG

/
(c)

++

/
(d)

..
MG = PG

/
(c)

  

ZG group topology
(a)

//

(a)

::ttttttttttttttt
MG group topology

(e) MG not precomp.

HH

(e)
//

(e) MG precomp.tttttt

::tttttt

PG group topology

��
not P-Noetherian

(a). As ZG ⊆MG, if ZG is a group topology, then it is Hausdorff (as ZG always
is T1) and ZG = MG by definition of MG.

(b). Recall Hesse’e Examples.

(c). Recall that ZG = MG = PG is Noetherian for every abelian group G, by
Theorem 4.10.

(d). See the counter-example produced to show the non-implication (2) in dia-
gram (13.1).

(e). If MG is a group topology, then Remark 12.17 applies, giving that either
MG is precompact and MG = PG, or MG is non-precompact and PG = δG. In both
cases, PG is a group topology.

The horizontal arrows in the first and second row of the following diagram have
already been discussed in the diagram above, as well as the vertical arrows in the
first column.

The non-implications (1) and (2) were already in diagram (13.1), and they have
already been discussed there.

All the other implications are straightforward, and follow from the inclusions
ZG ⊆ MG ⊆ PG and the definitions of discrete, Hausdorff, Noetherian, group,
topology.
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Z-discrete //

��

M-discrete //

��

P-discrete oo //

��

(2)
/}}}}}}}}}}}}}}}

~~}}}}}}}}}}}}}}}}

not P-precompact

ZG group topology //

��

MG group topology //

��

(1)
/iiiiiiii

44iiiiiiii

PG group topology

��
Z-Hausdorff //

��

M-Hausdorff //

��

P-Hausdorff

��
not Z-Noetherian // not M-Noetherian // not P-Noetherian
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14
Open questions

Question 11 ([20, 25]). Let H be a (normal) subgroup of a group G. If H is Zariski
embedded in G, must it also be Markov embedded in G?

Obviously, Question 11 has a positive answer if ZG = MG, by Fact 5.12 (b).

Recall that if K is a field with charK = 0, the nilpotent group H(n,K) is P-
discrete by Proposition 11.39, but not Z-discrete (being Z-Noetherian by Example
10.2 (a)).

Question 12 ([21, 25]). If G is a nilpotent group, does ZG = MG necessarily hold?

Question 13 ([24, Question 7.4]). Does there exist a group G such that ZG 6= MG 6=
PG? Can it be chosen solvable?

For the following question, see Proposition 9.2 and Corollary 9.3.

Question 14 ([24, Question 7.5]). Let K be a field. Does the conclusion of Proposi-
tion 9.2 holds, also in the general case (i.e., if charK = p > 0 and K is an algebraic
extension of Fp)?

Corollary 9.7 leaves open the following:

Question 15 ([25, Question 8.11]). If (†) fails (i.e. charK = p and K is an
algebraic extension of Fp), is NK Hausdorff embedded in GK?

Of course, here dimK V <∞ and K is infinite (as the case of infinite dimK V is
covered by Corollary 9.10).

Recall that if GK is countable, then NK is Markov embedded in GK by Remark
9.19 (c). On the other hand, if K is uncountable, then (†) obviously holds, so NK

is not Hausdorff embedded in GK by Corollary 9.8. But one can still ask:

Question 16 ([24, Question 7.7]). If GK is not countable, is NK Markov embedded
in GK?
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A positive answer to Question 16 would give that NK is both Zariski and Markov
embedded, but not Hausdorff embedded in GK , as for the countable case.

A negative one would give that NK is Zariski embedded, but not Markov em-
bedded in GK . In particular, the Zariski and Markov topologies of GK would differ
(on NK) by Fact 5.12 (b).

We have no example of a Z-Noetherian group that is not M-Noetherian. This is
why we ask the following question.

Question 17. Is a Z-Noetherian group necessarily M-Noetherian?

Obviously, a negative answer to Question 17 requires a Z-Noetherian group G
such that ZG 6= MG. We do not even know if such groups exist, so we ask also the
following question.

Question 18. Does the equality ZG = MG hold true for a Z-Noetherian group G?
What about an M-Noetherian group G?

In particular, a positive answer to the first part of Question 18 will provide a
positive answer to Question 17.

We do not know if Z-compactness implies M-compactness, so we ask the following
(see also Question 17):

Question 19. Is every Z-compact group also a M-compact group?

Finally, compare the question below with Question 18.

Question 20. Does the equality MG = ZG hold true for a Z-compact group G?
What about an M-compact group G?

Question 21. If MG is a Hausdorff topology on a group G, is it necessarily a group
topology?

Next we report some still open questions and unsolved problems from [20] and
[25].

Problem 3 ([20, 25]). Describe the class of groups G such that G is Markov (respec-
tively, Hausdorff) embedded in every group that contains G as a normal subgroup.

Question 22 ([25]). Let G be an infinite group. Is ZG (resp. MG, PG) a group
topology, if it is Hausdorff?

We conclude this final chapter with a conjecture on groups in N2. Recall that
when G is abelian, then ZG is Hausdorff if and only if G is finite.

Conjecture 2. If G ∈ N2 is infinite, then G is not Z-Hausdorff.



Tesi di dottorato di Daniele Toller, discussa presso l’Università degli Studi di Udine.
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Whom,n, 15
Z(G), Zn(G), 1
[X]<α, xvi
EG, 28
N+, N, Z, Q, R, P, xv
Zn, xvi
ZG-atom, 53
≈ on G[x], 21
charA, 5
coeff(w), 15
ct, 14
ct(w), 13
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τp(G), 152
u◦(G), 46
u(G), 18
u*(G), 47
UG, 17
U singG , 18
$, 13
~ε(w), 67
F (G), 16
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co-λX , 4
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p-rank of G, 2
rp(G), 2
wab, 22

base for closed sets, 3
bound of a group, vi
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commutator subgroup, 1
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(Em), 23
(†), 116
(S), 143

connected component
quasi-topological group, 7
topological space, 4
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elementary algebraic subset, 28
exponent, 2

u*-, 47
universal, u-, 18

FC-group, 2
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commutator verbal, 16
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group
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M-Hausdorff, 137
M-Noetherian, 129
M-discrete, 141
M-compact, 134
P-Hausdorff, 137
P-discrete, 141

Z-compact, 134
Z-Hausdorff, 137
Z-Noetherian, 129
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Z-discrete, 141
m-Kurosh, 143
algebraically minimal, 152
almost torsion-free, 2
alternating, xvi
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categorically compact, 144
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hereditarily M-discrete, 144
Kurosh, 143
locally finite, 147
meta-abelian, 1
nilpotent, 1
periodic, 2
quasi-topological, 6
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solvable, 1
symmetric, xvi
topologizable, 141
torsion, 2
ungebunden, vi

highly topologizable, 146

lenght of a word, 13

monomial, 22

nilpotency class, 1

point-wise stabilizer, xvi

solvability class, 1
subbase for closed sets, 3
subgroup

M-embedded, 61
P-embedded, 64
Z-embedded, 61
essential, 151
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subset
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elementary, v

topological group
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precompact, vii
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connected, 4
irreducible, 4
Noetherian, 4
totally disconnected, 4
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T1 Tăımanov, 9
T1 centralizer, 57
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centralizer, 56
cofinite, 3
discrete, 3
indiscrete, 3
monomial, 56
point-wise convergence, 152
product, 4
Tăımanov, 8

transversal of a subgroup, 2

word
δ, 48
coordinates of a, 65
homogeneous, 15
singular, 14
universal, 17
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