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Aim of the study 

The general aim of this PhD project was the development of a bi-layer food packaging film 

through the use of materials coming from renewable resources. The use of bio-materials can be 

explained because the growing reliance on oil-based polymers had raised several environmental 

and human health issues due to their persistence in the environment. PLA was chosen since it is 

a thermoplastic material with good processability and can be processed in machines used for 

conventional plastic. However, it is brittle and has moderate barrier properties to water vapour 

and oxygen along with low temperature of degradation. For this reasons in this project the main 

purpose was to improve the properties of PLA firstly through the incorporation of nanoclay and 

then through the application of a suitable coating in order to produce bi-layer films, entirily 

produced from renowable resources. 

This thesis consists of three main parts where the specific aims are: 

 

 Part I: production of nanostructured PLA-based films. In section A, films were 

produced by extrusion. The aim was to investigate the combined effects of the addition 

of four types of OMMT possessing different chemical structures in two PLA matrices 

consisting of distinct contents of L-isomer, on the physico-chemical properties of the 

resulting films. In section B, three nanoclays used in the previous section were 

incorporated in a PLA matrix through sthe use of solvent casting technique. Films 

obtained in section A are more promising because obtained by extrusion, a technique 

conventionally used for the processing of plastic. Therefore, they were characterized in 

a deeper way. 

 Part II: the aim of this part was the realization of a suitable coating for PLA in order to 

improve the barrier properties. High-pressure was applied on film-forming solutions in 

combination with mild heat treatment and holding time to evaluate if an effect on the 

barrier to oxygen could be observed. 

 Part III: production of a bi-layer by using the films with the best performance as 

barrier to oxygen from Parts I and II. 
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Abstract 

Bio-based nanocomposite films were produced by adding different types of OMMTs in a PLA 

polymer matrix and compared with the unfilled materials. For the production of the films, two 

techniques were used, extrusion and solvent casting.  

In particular, with the extrusion process, the nanocomposite films were produced by blending 

two semicrystalline PLA matrices with four types of OMMTs. In order to study their effect on 

optical, structural, thermal, mechanical and surface properties, they were added at a fixed 

nominal concentration of 5 % w/w and compared with pure PLA films. The XRD 

measurements showed that the incorporation of small amounts of nanoclays resulted in a 

formation of nanocomposites with the intercalation of PLA chains between the platelets of the 

nanoclay. An increase in UV barrier properties was observed in nanocomposites, with Closite® 

C20A showing the best performance. The content of L-isomer in PLA significantly affected the 

thermal properties of the films, with a decrease in Tm of about 14˚C and increase in Tc of about 

20˚C when the matrix, possessing a higher D-isomer content, was used. FTIR results showed an 

interaction between the nanoclays and the two different PLA matrices, due to the appearance of 

new peaks in nanocomposites films at around 520 and 627 cm
-1

. Mechanical properties were 

differently affected by the addition of nanoclays, thereby seeming to be influenced by the 

polymer optical purity. In general, the PLA nanocomposites showed a decrease in Young 

modulus and an increase of elongation at break point. An increase on the water contact angle 

was observed in PLA nanocomposites in function of the hydrophobicity of the different type of 

nanofillers.  

Nanocomposite films, obtained by solvent casting by addition of the same amount of three 

different OMMTs in a PLA matrix, showed an intercalated structure, in which the interlayer 

distance between the clay platelets increased. However, the pristine structure of the nanoclay 

was preserved. As expected, the barrier properties of the films were inferior compared to the 

same materials obtained through extrusion. 

A Box-Behnken design was developed to determine the optimum combination of three factors, 

that is pressure (0 – 600 MPa), temperature (20 – 60 ˚C) and time (5 – 30 min), in PSG 

solutions, in order to evaluate the effects on oxygen transmission rate of the resulting food 

packaging films. The obtained experimental data were fitted to a second-order polynomial 

equation, according to the model used in this study. Results showed that the variable response 

was significantly affected by the three effects. In particular, temperature and time were the main 

factors that principally affected the OTR. While pressure was not significant, the interaction 
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between pressure and time affected significantly the variable response. The fitted surface plot 

showed that the treatments applied on the film-forming solutions were able to decrease the 

oxygen transmission rate of the resulting films. The lowest values were obtained with the high 

level of pressure (600 MPa) and time (30 min) and low level of temperature (20 ˚C). 

Bi-layers with improved barrier properties, obtained using nanocomposite PLA films as base 

layer and PSG as coating, were subsequently produced and characterized. A significant 

decrease in the oxygen transmission rate was observed in the bilayer when compared to the base 

layer, indicating that an appropriate combination of these materials could be used for potential 

applications in the food packaging sector. 
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1. General introduction 

1.1. Definition and functions of packaging 

According to Coles (2003), packaging can be defined as “a means of safely and cost effectively 

delivering products to the consumer in accordance with the marketing strategy of the 

organization”. With this statement, the author wanted to highlight the strategic importance of 

packaging in the exercise of the marketing function. 

Packaging can be in general defined as follows: 

 

 A means of ensuring safe delivery to the ultimate consumer in sound condition at 

optimum cost; 

 a coordinated system of preparing goods for transport, distribution, storage, retailing 

and end-use; 

 a techno-commercial function aimed at optimising the costs of delivery while 

maximising sales. 

 

The basic functions of packaging can be stated as follows: 

 

 containment: related to the product’s physical form and nature; 

 protection: prevention of mechanical damage; 

 preservation: prevention or inhibition of microbiological spoilage along with chemical 

and biochemical changes; 

 information about the product: legal requirements, product ingredients, use, etc.; 

 convenience: for the pack handlers and users throughout the packaging chain; 

 presentation: material type, shape, size, colour, merchandising display units, etc.; 

 brand communication: e.g. use of typography, symbols, illustrations, advertising and 

colour, thereby creating visual impact; 

 promotion (selling):free extra product, new product, money off etc; 

 economy: efficiency in distribution, production and storage; 

 environmental responsibility: in manufacture, use, reuse, or recycling and final 

disposal. 

 

According to Weber et al (2000) food packages fall into three different categories: 
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1. Primary packaging: packaging materials which are in direct contact with foods. Their 

function is to contain, protect and facilitate distribution and storage of foods. The 

properties of the primary packaging should be tailored in function of the requirements 

set by the packaged foods. 

2. Secondary packaging: it is often used for physical protection of the food product. In 

particular, it protects the primary packages from mechanical damage during storage 

and distribution. It can also provide information for distributors and retailers on lot 

number and production dates. 

3. Tertiary packaging: it incorporates the secondary packaging and its aim is to facilitate 

storage and handling. It also protects the packaged product against mechanical damage 

and weather conditions. Example of tertiary packaging are boxes, pallets and stretch 

foils.  

 

1.2. Food contact materials legislation 

The contamination of foods caused by chemical contamination has been the driving force in the 

industrialized countries for the regulation of food sector. Migration is the term used to describe 

undesiderable mass transfer occurring between packaging materials and food products coming 

into contact with them. The safety of these materials is evaluated by assessing the identity, the 

toxicological properties and the amount of compounds migrating from the packaging into food 

during conditions of intended use (Weber et al, 2000). The safety of food packaging materials is 

therefore generally based on the lack of potential toxic substances and the absence of migration 

from substances, the latter evaluated through migration testing. 

Legislation adopted on materials intended to come into contact with foodstuffs has been 

adjusted over time in order to fulfill to the need to remove trade barriers through a 

harmonization of laws in the European Community (EC). However, this process of 

harmonization has not completed yet. In fact, for food contact materials, at the EU level 

harmonized Community legislation adopted by EU and nonharmonized national legislations 

exist in parallel (Schäfer, 2010). 

The European Union legislation has five main instruments, such as Regulations, Directives, 

Decisions, Recommendations and Opinions. Almost all legislation relating to migration has 

been issued in the form of Directives, which are enacted by the national parliament, pratically 

unchanged. However, significant changes are often necessary to fit the style of national 

legislation and procedures.  
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Within the European Union, food contact materials are regulated by the so-called Framework 

Regulation (EC) No. 1935/2004 of 27 October 2004, which sets out basic rules for all materials 

in contact with food, thus removing differences which existed at the time between national 

legislations. Attached to the framework Regulation, the Good Manufacturing Practice 

Regulation (EC) No. 2023/2006 of 22 December 2006 set down the requirements/principles of 

good manufacturing practices for all food contact materials and articles. The Framework 

Regulation also allows the development of implementing measures for specific materials. 

Regulation (EU) No. 10/2011 of 14 January 2011 on plastic materials and articles intended to 

come into contact with food is such an implementing measure (so-called “PIM” or Plastics 

Implementation Measure) addressing plastics specifically. Regulation (EC) No. 10/2011 has 

been amended and corrected by the Regulation (EU) No. 1282/2011 of 28 November 2011.  

According to Rijik and Veraart (2007), food packaging materials have to comply with the 

following rules:  

 

 shall not endanger human health; 

 shall not change the composition of the food in an unacceptable way;. 

 shall not change taste, odor, or texture of the food; 

 shall be manufactured according to good manufacturing practice (GMP)  

Moreover, the consumers, food packer, or converter should be informed on:  

 the suitability of the product for food contact through the use of the symbol or 

the words “for food contact”; 

 the person responsible for manufacturing or placing on the market of the product; 

 instructions for the safe use of the product; 

 means of identification of the product for traceability. 

 

Regulation (EC) No. 450/2009, which is specific to active and intelligent packaging, sets down 

additional requirements to ensure their safe use and introduces an authorization scheme for 

substances used for active and intelligent function in food contact materials (Galić et al., 2011). 

The reference document for the italian legislation is constituted by the Decree Law of 21
st
 

March 1973 (D.M. 21/03/1973) and subsequent modifications, containing general and specific 

regulations (Milana, 2010). However, today is not in force for plastic packages. 

Regulation (EC) No. 10/2011 includes definitions and migration limits with the aim to reduce 

the use of residues associated with specific substances. A migration limit is defined in terms of 
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weight released per unit area, e.g. 10 mg dm
-2

, or where this is not feasible, e.g., for caps, 

gaskets or where the volume of the container is from 0.5 to 10 L, the migration limit into the 

packaged food is 60 mg kg
-1

.  

This Regulation re-sets rules for migration testing using specific food simulants: 

 simulant A: 10% v/v ethanol for hydrophylic products with alcoholic content ≤ 10%; 

 simulant B: 3% w/v acetic acid for acidics foods (pH < 4.5); 

 simulant C: 20% v/v ethanol for hydrophylic products with alcoholic content ≤ 20%; 

 simulant D1: 50% v/v ethanol for food products such as milk, yogurt, cream; 

 simulant D2: rectified olive oil for fatty/oily foods; 

 simulant E: 2,6 difenil-p-fenilene polyoxide (particle size 60-80 mesh; porous size 200 

nm) for dry food products. 

 

1.2.1. Nanomaterials 

Nanotechnology involves the manipulation of matter at a very small scale, generally between 1 

and 100 nanometers (Cushen at al., 2012). A nanoparticle is defined as a discrete entity that has 

three dimensions of the order of 100 nm or less (Som et al, 2010). According to the EC 

Cosmetics Regulation (EC) No. 1223/2009, a nanomaterial is defined as an “insoluble or bio-

persistent and intentionally manufactured material with one or more external dimensions, or an 

internal structure, on the scale form 1 to 100 nanometers”. Nanotechnology are set to have a 

deept impact on the all stages of the food industry production (Silva et al, 2011). In particular, 

the area of food packaging has been involved in a great innovation through the use of various 

nanoscale fillers for the improvement of gas barrier properties of packaging materials. 

Moreover, the incorporation of a nanofiller in a polymer matrix is able also to provide 

reinforcement to the matrix and improve flexibility, temperature control and moisture stability 

of food contact materials (FCMs). Nevertheless, it is very important to note that the application 

of nanomaterials may be represent risks to the consumer due to the migration of particulate 

nanomaterials form FCMs into foods. The consequences of such kind of exposure have not 

fully determinated yet, thereby raising questions on the safety of foodstuffs which have been in 

contact with nanopackaging. Ingestion of this kind of food can be originated by the weakness in 

packaging performance and subsequent migration of nanoscale particulates from the packaging 

materials into the food. However, it is not known up-to-date if the consumption of food 

contaminated with nanomaterials may represent health risks.  
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Toxicology research and risk assessment in nanotechnologies are pratically non-exixtent 

especially in the food sector (Tiede et al., 2008) and only few can be considered valuable in 

terms of their use in assessing toxicity (Card and Magnuson, 2010).  

Some nanoparticles have been found to exhibit negative effects on tissues such as inflammation, 

oxidative stress and signs of early tumour formation (Carlson et al., 2008). For the 

consideration of the toxicity of nanoscale particles there are few aspects among all that need to 

be considered and compared to those of the substance in a non-nano form: size, shape, 

solubility and reactivity. The fact that some materials exhibit toxicity at the nanoscale and not at 

the macroscale can be confirmed by Cui et al. (2005). These authors showed that single-walled 

carbon nanotubes inhibited human embryo kidney cell proliferation and negatively impacted on 

cell growth and cell turnover, thus discouraged from being used in th efood industry. Moreover, 

since toxicological properties seem to vary among particulate nanomaterials, a risk assessment 

must be done on a case by case basis (Munro, et al., 2009).  

Regarding the applications of nanomaterials in the food packaging area in ralation to the risks 

that this technology poses, tests on chemical migration from food packaging into food are 

useful reference since they are reproducible, reliable, and overall well established. They are 

relatable to the nanomaterial migration test and can be form the basis of a preliminary risk 

assessment.  

The regulation of nanotechnologies is within the scope of both so-called horizontal and vertical 

legislation. The horizontal legislation is broad and included characteristics of nanotechnologies 

even if it does not specifically aim to do so. The most important european horizontal legislation 

are: 

 

 Directive 2001/95/EC: this is on general product safety. It provides a definition of a 

safe product and places the responsibility of ensuring that products are safe on the 

producers. The concept of safety refers to human health but not to the environment. 

 REACH (Registration, Evaluation, Authorisation and Restriction of Chemical 

substances) Regulation (EC) No. 1907/2006: the scope of REACH is to enhance the 

protection of human health and the environment. This has to be done through a better 

and earlier identification of the intrinsic properties of chemical substances, ensuring 

that chemicals are safe on producers. The REACH Regulation places greater 

responsibility on industry to manage the risks from chemicals and to provide safety 

information on the substances. Manufacturers and importers must provide to 

consumers safety information by a new labelling style on the product and safety data 
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sheets when requested. The information needs to be registered in a central database run 

by the European Chemicals Agency (ECHA). The Agency purpose is to “act as the 

central point in the REACH system: it manages the databases necessary to operate the 

system, co-ordinates the in-depth evaluation of suspicious chemicals and is building up 

a public database in which consumers and professionals can find hazard information”.  

 Regulation (EC) No. 1272/2008: it regulates the classification, labelling and packaging 

substances and mixtures. In particular, a substance produced at the nanoscale could 

provide a change in the properties and therefore a change in its classification. 

However, this information has to be reported to the ECHA. 

 

The main european vertical legislations issued in the area of nanomaterials are the following: 

 Regulation (EC) No. 10/2011: it regulates the nanoform substances, which can be used 

if explicity authorized as in the specifications in Annex I of the Regulation. 

 Regulation (EC) No. 1333/2008: according to Eisenberger et al (2010), this was the 

first legislation to explicity mention nanotechnologies, specifically in article 12, stating 

that in case of change in the starting material used or in the production method of an 

addictive, it must undergo a new authorization process and safety evaluation. This is 

the case of changes in particle size of a substance.  

 Regulation (EC) No. 1935/2004: it regulates food packaging including new types of 

materials which actively maintain or improve the condition of the food which is widely 

viewed as a promising use of nanomaterials. 

 

A recent Scientific Opinion released by the Scientific Commetee has set down the guidelines 

for the risk evaluation related to the application of nanoscienze and nanotechnology in the food 

chain (EFSA, 2011). This document states that the risk evaluation is strictly connected to the 

physico-chemical characterization of nanomaterials and to the knowledge of the interactions 

with body tissues. The evaluation of the risk has also to begin to outline possible scenarios of 

exposure, which allow to determine the more appropriate approach to the toxicologic study of 

nanomaterials on the basis of the six cases defined in the document. 

 

1.2.2. Public perception on namomaterials 

http://ec.europa.eu/echa/
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The public perception is an important factor in establishing the commercial success of 

nanotechnology in the food and beverage area, since comsumers are very sensitive to this topic. 

According to Siegrist et al. (2007), a group of 153 consumers were hesitant to buy 

nanothechnology-related foods or food packaging improved with nanotechnology. A difference 

in the perception of product manufactured with the use of nanotechnology between United 

States and Europe was observed (Cobb and Macoubrie, 2004; Gaskell et al., 2005). While in the 

United States the perceptions of nanothechology were generally optimistic, in Europe they were 

more pessimistic. 

 

1.3. Bioplastics 

According to European Biolastics (2011), bioplastics are plastic materials that comply with one 

or both the following requirements: 

 

 to be manufactured from renewable resources, thus reducing the oil consumption and 

greenhouse gases production; 

 to be biodegradable or compostable, providing at the end of the life cycle of the 

materials an alternative option to the disposal in landfills. 

 

Even whether an agreement on the requirements that allow a clear definition of the bio-

derivation of a material does not exist yet, the attribute of compostability can be assigned to 

plastics employed for food packaging only after the evaluation of compliance to the european 

standard EN 13432. 

 

1.3.1. Bio-based food materials 

On the basis on the definition reported by European Bioplastics, the term bioplastics can refer 

either to polymers oil-based possessing the properties to be compostable, or to polymers 

obtained form renewable resources. The latters are in general materials fully biodegradable, 

with the exception of polymers manufactured through deep chemical modifications (Guilbert 

and Gontard, 2005; Siracusa et al., 2008). 

In food packaging, films obtained from renewable raw materials are considered potentially able 

to replace those obtained from conventional oil-based, as a consequence of a growing tendency 

of markets to more eco-friendly materials (Han et al, 2005). According to the definition 
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reported in Weber et al. (2000), biobased polymers used in the production of food packaging 

are materials derived from renewable resources, suitable for food contact applications. They can 

be divided into three categories based on their origin and production as shown in Fig. 1 

(Petersen et al. 1999; Guilbert and Gontard, 2005; Mensitieri et al., 2011): 

 

1. Category 1: Polymers directly extracted/removed from biomass. Examples are 

polysaccharides such as starch and cellulose and proteins like casein and gluten. 

 

2. Category 2: Polymers produced by classical chemical synthesis using renewable bio-

based monomers. A good example is polylactic acid, a bio-polyester polymerised from 

lactic acid monomers. The monomers themselves may be produced via fermentation of 

carbohydrate feedstock. 

 

3. Category 3: Polymers produced by microorganisms or genetically modified bacteria. 

To date, this group of bio-based polymers consists mainly of the 

polyhydroxyalkonoates, but developments with bacterial cellulose are in progress. 

 

Materials that belong to one of the above categories are currently being used for food packaging 

purposes and are considered to possess a great potentiality in this area.  

 

 

Figure 1. Schematic presentation of bio-based polymers in function of their origin and method of 

production (Weber et al., 2000). 
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According to Sinha Ray and Bousmina (2005), packaging materials produced from fossil fuels 

are undegradable wastes. This means that, amounting to 40% of packaging refuse, they are 

pratically eternal, raising the issue of a global environmental problem. In fact, there are two 

approaches for keeping the environment free oil-based plastic wastes: the storage of wastes at 

landfill sites and the utilization processes sucha as incineration an recycling. Nevertheless, the 

first approach can’t be a solution, since the burial of plastic wastes in landfill is a time bomb 

where today’s problems are only postponed to future generations. Regarding the second 

approach, incineration of the plastic wastes produces a large number of carbon dioxide and 

sometimes toxic gases, thus being responsible for the creation of global warming and global 

pollution. Recycling can only be somehow a solution of the problem, but it requires great 

expenditure of labor and energy because all the steps involved in the process of recycling 

(removal of plastic wates, separation, washing, drying, grinding and reprocessing) make the 

final packaging more expensive with a lower quality if compared with the non-recycled 

materials. As a consequence, green prolymeric materials that would not involve the use of toxic  

substances and can be biodegradable need to be urgently developed. 

Although the global interest to environmental issues, packaging is yet dominated by oil-based 

polymers such as polyethylene and polystyrene. This means that some drawbacks related to the 

use of biobased materials still exist (Petersen et al., 1999). An exception is represented by 

cellulose, which is used in the form of paper and cardboard/carton as an exterior packaging 

layer. (Petersen et al., 1999; Rhim at al., 2006). The drawbacks derived from the use of bio-

polymers deal basically with three main factors: performance, processability and costs. Unlike 

materials extracted from the biomass (category 1) which are characterized by drawbacks related 

to performance and production process, bio-polymers obtained from categories 2 and 3 possess 

good performance and are easily proccessable into films by using conventional plastics 

techniques (Petersen et al., 1999). 

In order to improve the physico-chemical properties of the polymers obtained from renewable 

resources and to meet specific structural requirements, several chemical compounds and 

additives such as stabilizers, plasticizers, antioxidants and fillers are added in the formulation of 

these materials (Siracusa et al., 2008; Mensitieri et al., 2011). Moreover, blendings, composites 

and laminates obtained with bio-based polymers and petrol-based polymers have been 

developed to expand the area of application (Nampoothiri et al., 2010; Mensitieri et al., 2011). 

One of the challenges that the food packaging industry has to face in the production of primary 

packaging with the biobased polymers materials is to match the durability of the packaging with 

product shelf-life. The biobased packaging materials need to remain stable during all along their 
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commercial life (until disposal), maintaining their physico-chemical properties. For this reason, 

it is necessary to avoid environmental conditions during storage of the food product which are 

susceptible to lead to the biodegradation of the material (Petersen et al., 1999). In general, bio-

based polymers possess inferior barrier properties, in particular to water vapour, when 

compared to conventional materials. This drawback can be solved in different ways. A more 

immediate option is to package foods which are compatible with the packaging materials and 

their properties. An example is given by high-moisture foodstuffs such as fresh vegetables with 

short shelf-life. An alternative is represented by the possibility to manufacture multilayer 

packaging through lamination with conventional polymer, or the combination with an exterior 

packaging layer which is able to overcome the drawbacks of bio-based packaging. A further 

option is to study and develop bio-based polymers chemically modified, co-polymers and 

composite materials, possessing new properties to comply with the requirements for the 

packaged food (Petersen et al., 1999). Barrier properties of films obtained with bio-based 

polymers can be improved through the addition of wax, fatty acids and lipids (Han et al., 2005). 

The business of bio-based plastic materials is facing a period of strong growing due to some 

driving factors such as an increasing cost of oil, favourable legislation and the image linked to 

the environmental sustainability. PLA is in a unique position in the field of bio-based product, 

due to its qualities related to processability,  appearance,  and  properties  such  as   mechanical   

strength and barrier (Södergård and Stolt, 2010). 
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I.1. Introduction 

PLA is a compostable polymer derived from renewable sources, in particular from starch and 

sugar. PLA is an aliphatic polyester produced by condensation polymerization directly from 

lactic acid, or through conversion of lactide, the cyclic dimer of lactic acid (Garlotta, 2001; 

Groot et al., 2010).  

It is a thermoplastic polymer with high strength and high modulus, possessing rigidity and 

clarity similar to PET (Gupta and Kumar, 2007; Groot et al., 2010). During the last decade, it 

has been used primarily for medical applications such as: implant devices, tissue scaffolds and 

internal sutures, due to its high cost, low availability and limited molecular weight (Datta and 

Henry, 2006). Recently, production costs have been lowered through the introduction of new 

technologies, such as: the ROP process and large-scale production. Thus, the use of PLA has 

been extended to other areas, such as: packaging, textiles and composite materials (Drumright 

et al., 2000; Garlotta, 2001; Groot et al., 2010). PLA is classified as GRAS (Generally 

Recognized As Safe) in the USA by the FDA (Food and Drug Administration) and approved for 

use in all the applications related to food and beverage packaging (Conn et al., 1995, FDA, 

2002, Datta and Henry, 2006). While the main advantages of PLA consist of being a 

thermoplastic material with good processability and processed in machines used for 

conventional plastic, its drawbacks such as brittleness, moderate barrier properties to water 

vapour and oxygen and low temperature degradation (200°C) limit its use to films, 

thermoformed and blow molded containers, food service ware and short shelf-life bottles (Gross 

and Kalra, 2002). It is therefore suitable for use with fresh products and foodstuffs not requiring 

a packaging with low oxygen permeability performance (Jamshidian et al., 2010).  

Lactic acid (2-hydroxy propionic acid) is the simplest hydroxyl acid with an asymmetric carbon 

atom and exists in two optically active configurations, the L(+) and  (   ) enantiomers (Garlotta, 

2001; Gupta and Kumar, 2007). The two enantiomers are shown in Fig. I.1. 

Lactic acid can be produced by chemical synthesis or fermentation. The latter route is 

undertaken by all the major manufacturers of lactic acid (Datta and Henry, 2006; Nampoothiri 

et al., 2010). The interest in the fermentative production of lactic acid is due to the prospects of 

environmental friendliness and of using renewable resourses instead of petrochemical. 
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Figure I.1.  he two enantiomeric  orms o  lactic acid       and           2-hydroxypropionic acid. 

 

High product specificity, low cost of substrates, low production temperatures and low energy 

consumption are yet another advantages in pursuing lactic acid fermentation (John et al., 2007). 

According to Vink et al. (2003), fermentation-derived lactic acid typically consists of 99.5% of 

the L-isomer and 0.5% of the D-isomer. The fermentative process is carried out through the use 

of homolactic organisms such as various optimized or modified strains of the genus 

Lactobacilli, which exclusively produce lactic acid (Hatmann, 1998). Among the 

microorganisms used, L. amylophilus, L. bavaricus, L.casei, L. maltaromicus and L. salivarius 

predominantly yield the L(+)- isomer. Strains such as L. delbrueckii, L. jensenii and L. 

acidophilus yeld the D-isomer or mixtures of both (Hartmann, 1998; Nampoothiri et al., 2010). 

All these strains can yield high carbon conversions from feed stocks at standard fermentation 

conditions (Kharas et al., 1994). 

The different types of carbohydrates that can be utilized in the fermentation depend on the 

particular strain of Lactobacillus. In particular, substrates are generally constituted by simple 

sugars such as glucose, maltose and dextrose (obtained from corn or potato starch), sucrose 

from cane or beet sugar, lactose from cheese whey (Garlotta, 2001). The selection of a specific 

source is related to the cost, availability and purity (Datta and Henry, 2006) However, along 

with the carbohydrates, microorganisms need proteins, amino acids, complex nutrients (B-

vitamins) and nucleotides, which can be supplied by corn steep liquor, yeast extract, cottonseed 

flour, soy flour (Garlotta, 2001). Several agro-food industry products and residues are more 

economic alternative substrates compared to refined sugars for lactic acid production. Inert agro 

residual substrates like sugarcane bagasse are also reported (John et al., 2007). Among 

agricultural sources, starch, lignocellulose/hemicellulose hydrolyzates, cotton seed hulls, 

Jerusalem artichokes, corn cob, corn stalks, beet molasses, wheat bran, rye flour, sweet 

sorghum, sugarcane press mud, cassava, barley starch, cellulose, carrot processing waste, 

molasses spent wash, corn fiber hydrolyzates are all byproducts that can be used as potential 

substrates (Nampoothiri et al., 2010). 
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The purification process of lactic acid obtained through fermentation is very important for the 

production of PLA. Crude lactic acid is characterized by the presence of impurities which 

decrease the quality of the polymer obtained (Gupta and Kumar, 2007). Acids, alcohols, esters 

are examples of such impurities (Groot et al., 2010). 

The PLA properties such as crystallization, processability and thermal degradation are in 

function of the polymeric chain structure and composition. In particular, it depends on D- and 

L- lactic acid enantiomers ratio. PLA stereochemical structure can be modified through 

copolymerization of mixtures of L-lactide, meso-lactide and D-lactide (Fig. I.2), resulting in a 

high-molecular weight semi-crystalline or amorphous polymer, characterized by a melting point 

ranging from 130 to 185˚C (Hartmann, 1998; Garlotta, 2001). 

 

 

Figure I.2. The three diastereomeric structures of lactide (3,6-dimethyl- 1,4-dioxane -2,5-dione). Adapted 

from Garlotta 2001. 

 

Unlike isotactic PLLA homopolymer (constituted by L-lactide only), which is a semicrystalline 

material with the highest melting point, PLA copolymers possessing higher D-isomer content 

exhibit lower melting points and much slower crystallization behaviour. With a D-content 

higher than 12-15%, PLA becomes amorphous (Grijpma and Pennings, 1994; Kolstad, 1996; 

Sinclair and Lipinsky, 1996). PLA undergoes thermal degradation at temperatures above 200˚C, 

due to hydrolysis, lactide reformation, oxidative main chain scission, and inter-or 

intramolecular transesterification reactions. For this reasons, PLA homopolymers have a very 

narrow processing windows. The most largely used method for the enhancement of PLA 

processability is based on melting point depression through a random incorporation of small 

amounts of lactide enantiomers of opposite configuration into the polymer. Nevertheless, the 

melting point depression leads to a decrease in crystallinity and crystallization rates (Spinu et al, 

1996). 
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According to Nampoothiri et al. (2010), Nature Works LLC (Minnetonka, Minnesota, USA) is 

currently the leader in lactic polymer technology and markets. Over the last ten years, this 

company has done a remarkable work in developing lactic acid based products such as 

polylactide-based resins, used in the packaging field, and polylactide-based fibers, used in 

textiles and fiber applications. 

 

I.1.1. Synthesis of PLA 

The synthesis of lactic acid into high-molecular-weight PLA can follow different routes of 

polymerization (Fig. I.3). The techniques used include: 

 

1. Direct condensation polymerization; 

2. azeotropic dehydrative condensation; 

3. polymerization through lactide formation.  

 

Generally, lactide ring-opening polymerization is the most utilized production process. 

  

 

Figure I.3. Synthesis of PLA from D- And L- lactic acids. Adapted from Auras et al. (2004). 

 

I.1.1.1. Direct condensation polymerization 
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PLA can be formed by lactic acid through a reaction of the hydroxyl and carboxylic acid groups 

of lactic acid. The removal of water produced during this condensation process allows the 

reaction to proceed towards the product (Södegärd and Stolt, 2010). 

The removal of water becomes more difficult with the advancement of the reaction. This can be 

explained by the increase in viscosity due to the higher molecular weight. However, the water 

removal can be improved by applying vacuum (Gupta and Kumar, 2007).  

The synthesis of PLA from lactic acid by direct condensation polymerization can be divided 

into three principal stages: 

a) Removal of the free water content with a system possessing good heat transfer. This 

process can be carried out in commonly available evaporators, such as falling film 

evaporators. Flash evaporation is another technique used for the removal of water. 

b) Olygomer polycondensation: production of low molecular weight PLA or olygo(lactic 

acid) by polycondensation through the use of catalysts such as strong acids and 

organometallic compounds.  

c) Melt polycondensation and production of PLA possessing high molecular weight. An 

efficient method to improve the polycondensation reactions is through the use of an 

apparatus with a good renewal of phase boundary layers that provides a 

homogenization of the reaction mixture and carries out the reaction under vacuum 

conditions in an inert atmosphere. 

Along with the removal of water, other factors that prevent the production from reaching high-

molecular-weight PLA include either the presence of impurities in the reaction mixture, which 

behave as chain terminators like carboxyilic acids and hydroxylic alcohols, or intramolecular 

transesterification side-reactions (back-biting), which lead to cyclic structures such as lactide 

(Garlotta, 2001; Södegärd and Stolt, 2010). The polymer obtained through direct 

polycondensation is characterized by a low molecular weight and poor mechanical properties 

that make it unsuitable for many applications (Garlotta, 2001; Gupta e Kumar, 2007; Södegärd 

and Stolt, 2010). 

 

I.1.1.2. Azeotropic dehydrative condensation 

The azeotropic dehydrative condensation is a method to obtain high-molecular-weight polymers 

without the use of chain extenders or adjuvents can be obtained. This method is basically based 
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on the removal of the majority of the condesation water through a reduced pressure distillation 

of lactic acid for 2 to 3 hours at 130˚C, a subsequent addition of catalyst and diphenyl ether, and 

an isolation of the polymer formed as it is or dissolved and precipitated for further purification 

(Garlotta, 2001; Ajioka et al., 1995a; Ajioka et al., 1995b). The main drawbacks of this method 

are represented by the use of solvents and residual catalysts. In particular, the low boiling point 

of the solvent sets a limit on the polycondensation temperature that can be used (Södegärd and 

Stolt, 2010). Moreover, residual catalysts can determine many problems during further 

processing, among which unwanted degradation and uncontrolled or unreprodudible hydrolysis 

rates (Garlotta 2001). 

 

I.1.1.3. ROP 

The most widespread route to obtain high-molecular-weight PLA is through the ROP of lactide. 

The intermediate lactide is formed in the first step when the condensation product water is 

removed by evaporation during oligomerization (Nampoothiri et al., 2010). This method allows 

to obtain polymers possessing the required properties by means of a high control of the product 

stereopurity (Gupta and Kumar, 2007). According to Södegärd and Stolt (2010), the process 

consists of three steps: 

a) polycondensation; 

b) lactide manufacturing; 

c) ROP 

Polycondensation is targeted to obtain low-molecular-weight polymers which constitute the 

substrate for the lactide production. This can occur either in presence or in absence of a catalyst.  

In the second step, olygomers are depolymerized under reduced pressure at high temperature 

(130-230˚C) through a “back-biting” reaction in presence of specific catalysts, leading to a 

formation of three stereoforms of lactide: L-lactide, D-lactide and meso-lactide (Nampoothiri, 

2010). However, the crude lactide in most cases contains different impurities that make the 

monomer mixture unsuitable for direct ROP. Consequently, the lactide needs to be purified. 

There are three main purification approaches known: 

 Solvent-assisted purification: the most used method for the purification of the lactide is 

by crystallization from ethyl acetate or from toluene and subsequent drying of the 

lactide under vacuum (Stolt and Södergård, 1999; Leenslag and Pennings, 1987). 
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 Melt crystallization: the separation of the different lactides from each other and the 

impurities is carried out considering the differences in the melting points of D- or L-

lactide and meso-lactide. 

 Separation in the gas phase: it is based on the different boiling point of the different 

lactic acid species. Water and lactic acid are the more volatile compounds, the lactide 

is the less volatile and lactic acid olygomers are often in the liquid phase. A final step 

consists in the production of pure lactide by purifying meso-lactide from L-lactide 

and/or D-lactide by distillation.  

In the third step (ROP) high-molecular weight PLA are obtained by catalytic ring-opening 

polymerization. The most commonly catalyst used is stannous octoate. However, for laboratory 

demonstrations, tin (II) chloride is often employed. The ROP involving L-lactide is generally 

the preferred route to obtain high-molecular-weight PLA due to the possibility to control the 

reaction. The most simple and reproducible method used for the polymerization of the lactide is 

melt polymerization in a rection vessel provided with an agitator. 

At the end of the ROP process, PLA undergoes post-polymerization treatments to improve the 

processing and processability of the polymer. Södegärd and Stolt (2010) have reported different 

techniques that can be used for this purpose. In particular, catalyst deactivation with 

phosphorous containing compounds, antioxidants, acrylic acid derivatives, and organic 

peroxides is one important feature that has been applied to PLA. Moreover, PLA has to be dried 

before processing to minimize the thermo-htdrolysis and molecular weight reduction during the 

melt processing due to water residues. Suggested drying conditions are 60˚C under vacuum and 

the use of hot dry air (Södegärd and Stolt, 2010).  

 

I.1.2. Physical and chemistry properties of PLA 

I.1.2.1. Structure 

Most of the physical properties of PLA are affected by the amount and distribution of the lactic 

acids sterocenters in the polymer chain, which reflect its history including the stereochemistry 

of the feed composition (D-lactide, L-lactide, meso-lactide, racemic DL-lactide) and the kinetic 

of polymerization (Gonçalves et al., 2010). The chiral properties of lactic acid produce different 

forms of PLA, such as PLLA (poly-L-lactide), PDLA (poly-D-lactide), PDLLA (poly-D/L-

lactide) (Gupta and Kumar, 2007). Both stereoisomers of lactic acid are present in nature, with 

the L- isomer being the main fraction constituting the PLA obtained from biological sources. In 
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particular, the fact that the lactic acid is produced in the human body mostly under L-

enantiomeric form, along with the strong interest of the biomedical applications for this 

polymer, have led both research and production to focus on L- and DL-lactide polymers 

(Lehninger, 1977; Lunt, 1988; Maharana et al., 2009). The D-isomer is only used in particular 

medicinal chemicals applications. Oil-based production provides today a 50/50 mixture of the 

L- and D- forms.  

PLLA and PDLA are crystalline polymers because of the enantiomeric purity of the pristine 

monomers and the stereoregularity of the polymer chain. On the contrary, PDLLA is 

completely amorphous due to its irregular structure made of equimolar random copolymer of L-

and D-lactic acid (Fambri and Migliaresi, 2010). 

The stereochemical configuration of PLLA (or PDLA) and PDLLA are isotactic and atactic 

respectively. Syndiotactic PLA can be considered as an alternating DL-lactic acid copolymer 

and can be polymerized from a streroselective polymerization of meso-lactide. 

 

I.1.2.2. Optical properties 

The absorption and transmission of UV-Vis radiation by polymers is very important in the food 

packaging industry where the packaged goods are sensitive to light.  

Lipids, aromas, vitamins and pigments are components which may undergo degradation 

reactions when exposed to light irradiation. Factors that deeply influence the food quality are 

the spectrum and the intensity of the light source, the conditions of light exposure and the 

degree of light transmittance of the packaging materials (Gonçalves et al, 2010). The 

transmission of visible light (400-700 nm) and of ultraviolet radiation (100-400 nm) are key 

parameters in designing the appropriate packaging in order to preserve and protect food until 

they reach the consumers. The photochemical degradation of plastic materials is generally due 

to the UV-B radiation (315-280 nm), because its energy content is able to break certain 

chemical bonds (Auras et al., 2004b). From the comparison with the oil-based conventional 

polymers, PLA is characterized by a significant increase of transmittance at 225 nm, reaching 

95% at 300 nm. However, no transmission of UV radiation has been observed in the 

wavelength region between 190 -220 nm. Polymers such as PET, polystyrene and cellophane 

transmit less radiation in the UV range where most food are sensitive, with PET and LDPE (low 

density polyethylene) showing the best and worst performance in terms of barrier to UV light 

respectively (Fig. I.4).  
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Figure I.4. Transmission versus wavelength for PLA possessing 98% L-lactide, PS, LDPE, PET and 

cellophane films. Adapted from Auras et al., 2004b. 

 

Holm et al (2006) compared the transmittance of two different thermoformed materials (PLA 

and PET/PE with a thickness of 500 and 102 μm respectively) for cheese packaging. They 

found that the transmittance for both testing materials was around 90% in the range of visible 

light. Nevertheless, while the control PET/PE showed a cut-off in the UV region at 320 nm, 

PLA was characterized by a lower protection (cut off at 250 – 300 nm). In their study, Rhim et 

al (2006) compared PLLA films manufactured through thermocompression and solvent casting 

(the latter obtained using chloroform as a solvent) and found percentages of transmittance at 

660 nm greater that 90%. In a further study, Rhim et al. (2009) reported values of transmittance 

at 660 nm slightly higher than 80% in PLLA films obtained by solvent casting and subsequently 

desolvation under vacuum conditions at 60˚C. 

The specific optical rotation [α] of PLLA and P LA was measured in chloroform at a 

concentration of 1 g/dL at 25˚C through a polarimeter and wavelength of 589 nm. The values of 

α ranged from +150˚ to +156˚ for the  -isomer and from -150˚ to -160˚ for the L-isomer form. 

(Perego et al., 1996; Tsuji e Ikada, 1996; Garlotta, 2001). 

 

I.1.2.3. Crystallization and thermal properties 

Crystallization, crystallinity degree, and thermal properties of PLLA depend on a number of 

factors such as polymer molecular weight, polymerization conditions, thermal history and 

purity (Fambri e Migliaresi, 2010).  

Unlike PDLLA, three main thermal events can be observed in a typical thermogram of PLLA 

obtained by Differential Scanning Calorimetry (DSC) analysis from the heating scans (Fig. I.5): 
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glass transition (Tg), cold crystallization (Tcc) and melting (Tm). PLA exhibits values of Tg from 

50 to 70˚C depending on the optical purity of the monomer, the production process and the 

polymer thermal history (Perego et al., 1996; Auras et al., 2004; Kubies et al., 2006; Pluta, 

2006; Tsuji et al., 2006; Krishnamachari et al., 2009; Papageorgiou et al., 2010; Picard et al., 

2011). 

 

Figure I.5. DSC thermograms of amorphous PLLA and PDLA (heating rate 10˚C/min). 

 

Higher temperatures are generally reported in literature for the purest polymers. A variation of 

specific heat (ΔCp) of 0.50 J/(g K) was also reported as Tg was achieved (Fambri and 

Migliaresi, 2010). Moreover, Papageorgiou et al., (2010) observed a correlation between the 

heating rate of DSC scans and the measured values of Tg, which tended to increase with the 

increase of the scan rate. 

The crystallization behaviour of PLA has been studied by many researchers over the last years 

(Garlotta, 2001; Sarasua et al., 2005; Kister et al., 1995; Kawashima et al., 2002; Hartmann, 

1999; Kister et al., 1998; Kishore et al., 1988; Kishore et al, 1984). They showed that 

crystallization was strictly related to stereochemistry and thermal history of PLA, which were 

important factors for the production of either amorphous or semicrystalline PLA. The 

temperature of crystallization was found to range from 100 to 140˚C (Sinha Ray et al., 2003b; 

Sarasua et al., 2005; Pluta, 2006; Rhim et al., 2006; Tsuji et al., 2006; Picard et al., 2011). 

However, crystallization of PLA can be induced by thermal treatments such as annealing at 

temperatures between 75˚C and Tm through a cold-crystallization process, with kinetics 

depending on comonomers ratio and the presence of nucleation agents (Bigg, 1996). This 
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process leads to the formation of semi-crystalline organized structures called spherulites (Fig. 

I.6).  

 

 

Figure I.6. PLA spherulites obtained by melt-quenching at 100˚C (a) and 120˚C (b). Adapted 

from Papageorgiou et al. (2010). 

 

The increase of the polymer crystallinity can be also obtained through either a slow cooling of 

the polymer from the melt (melt-crystallization) or mechanical treatments of orientation (Lim et 

al., 2008). Like PET, PLA is a material that crystallizes slowly (Garlotta, 2001). The quick 

cooling (quenching) of the polymer from the melt carried out at temperatures below Tm 

produces an amorphous structure (Lim et al., 2008). 

The Tm of PLA generally ranges between 160 and 190˚C depending on the optical purity of the 

monomer (Perego et al., 1996; Sinha Ray et al., 2003a,b; Sarasua et al., 2005; Kubies et al., 

2006; Tsuji et al., 2006; Zaidi et al., 2010; Picard et al., 2011). The presence of meso-lactide in 

the PLA structure can depress the Tm by as much as 50˚C, depending on the amount of D-lactide 

incorporated to the polymer (Lim et al., 2008). 

The polymeric chain of PLA possesses a helical shape, with a orthorhombic unit cell. PLLA 

crystals have three different structural conformations that can be originated through different 

process conditions. In particular, melt-crystallization and cold-crystallization phenomenons can 

induce a production of α-form crystals, while the orientation and lamination treatments at high 

temperature lead to a formation of β-form crystallites (Cartier et al., 2000; Fambri e Migliaresi, 

2010). Values of Tm related to α- and β- forms are 185 and 175˚C respectively (Jiang et al., 

2010). Cartier et al. (2000) found a third crystalline form (γ) by means of epitaxial 

crystallization techniques.  

Crystallinity affects the properties of polymers. For instance, a decrease in elongation at break 

and an increase in resistance to traction and modulus of elasticity were observed when PLLA 
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was annealed (Perego et al., 1996). The formation of crystallinity may or may not be favorable 

depending on the end-use requirements of the PLA articles. In particular, high crystallinity is 

desiderable for injection molded articles which require good thermal stability, but it is not for 

injection molded performs intended for further blow molding, since rapid crystallization of the 

polymer would not provide a good stretching of the perform and optical clarity of the resulting 

bottle (Lim et al., 2008). 

An increase in the crystallinity of PLA can be obtained through the incorporation of nucleating 

agent in the polymer during the extrusion process. This is due to a decrease in the surface 

energy barrier for nucleation that favors crystallization at higher temperatures upon cooling. 

According to Kolstad (1996), the addition of talc (6%) to PLLA reduced the crystallization half-

time from 3 min at 110˚C to approximately 25 s. Moreover, Li and Huneault (2007) found that 

by adding 1% (w/w) of talc in 4.5% D-PLA the crystallization half-time was reduced from few 

hours to 8 min. However, the incorporation of montmorillonite (MMT) in the polymer was less 

effective as a nucleating agent.  

 

I.1.2.4. Solubility 

The solubility of PLA polymers depends on molecular weight, degree of crystallinity and purity 

of comonomers (Gupta and Kumar, 2007). In general, polylactides are soluble in chlorinated 

solvents such as chloroform, dichloromethane, 1,1,2-trichloroethane and dichloroacetic acid. 

Ethyl benzene, toluene, acetone and tetrahydrofuran only partly dissolve polylactides when 

cold. However, they can be solved in these solvents when heated to boling temperatures 

(Nampoothiri et al., 2010). PLA cannot be solved in water, alcohols (ethanol, methanol, 

propylene glycol) and non-substututed hydrocarbons (hexane and heptane) (Gupta and Kumar, 

2007).  

 

I.1.2.5. Barrier properties 

Permeability is the transfer of small molecules called permeants or penetrants through a 

membrane Vieth and Eilenberg (1972) Permeation processes take place through a membrane 

that separates two fluid phases (gas, vapor or liquid) containing low molecular weight species 

with differing chemical potential. The molecules at the side of the higher chemical potential 

tend to diffuse through the membrane and equilibrate the chemical potential on both sides. The 
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permeation process in continuous polymeric materials is accomplished by molecular diffusion 

within the polymer matrix (Fig. I.6). 

 

 

Figure I.6. Permeation mechanism of permeants from higher (C1) to lower (C2) through the continuous 

polymeric material of thickness l. Steps: (1) sorption, (2) diffusion, and (3) desorption 

(Almenar and Auras,2010). 

 

Diffusion is controlled by temperature and it can be modeled by the Arrhenius equation. 

According to Almenar and Auras (2010), above the Tg, of a polymer, the molecules (phase I) 

are first sorbed into the polymer and then diffuse across the polymer through random 

movements originated by the Brownian motion of the polymer chains. Below Tg, the permeants 

dwells in a cavity of the polymer before performing a quick jump into an adjacent cavity. The 

molecules primarily diffuse through the free volume of polymer amorphous regions. Free 

volume is an intrinsic property of the polymer matrix, originated by the gaps between entangled 

polymer chains. Generally, sorption increases as the amount of free volumes increase. In 

membranes, the molecules of permeant are desorbed from the membrane to the low chemical 

potential side (phase II). The diffusion of permeants in non-continuous polymeric materials 

occurs through pores. Consequently the solubility–diffusion phenomenon is not the main 

mechanism regulating the transport of molecules. 

The diffusion process for the steady state is described by the general Fick’s first law (Almenar 

and Auras, 2010): 

 

 

where F is the flux of permeant, D is the diffusion coefficient, and  is the gradient operator 

of the chemical potential on the two sides of the membrane. The permeability coefficient (P) 

can be obtained from the general Fick’s first law: 

(Eq. I.1) 
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Where F   is the value of permeant flow at steady state, Δp is the partial pressure gradient across 

the polymer film, and A is the area of the film. High values of permeability are attributed to 

materials possessing poor barrier properties.  

PLA exhibits values of oxygen permeability (PO) ranging from 7 to 24 mL mm m
-2

 d
-1

 atm
-1

, 

depending on the method used for its determination (Siró et al., 2010). These values are 

comparable to those of conventional oil-based food packaging materials. For instance, PLA has 

lower PO than polystyrene and low-density polyethylene, thus providing better barrier 

properties, but it shows a worse performance than PET (Auras et al., 2005; Mensitieri et al., 

2011). 
 

PLA possesses poor barrier properties to water vapor in comparison with the most widespread 

conventional petrochemical materials (PET, LDPE, HDPE and PP), with values of permeability 

(PWV) ranging between 1-2 g m m
-2

 s
-1

 Pa
-1 

(Mensitieri et al., 2011).  

Barrier performance of PLA to water vapor and oxygen in comparison to other bio-based and 

conventional oil-based packaging materials are shown in Fig. I.7. 

 

 

Figure. 1.7. Oxygen (a) and water vapour (b) transmittance of biobased materials compared to oil-based 

packaging materials. Materials marked with * were measured at 23˚ and 50% RH. (Weber 

et al., 2000). 

 

The permeability of PLA is affected by several factors such as stereochemical purity, presence 

of plasticizers, crystallinity, free volume, temperature and water content (Fambri and 

Migliaresi, 2010). Tsuji et al. (2006) studied the correlation between PWV and degree of 

(Eq. I.2) 
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crystallinity (Xc) in annealed PLA. They obserbed a reduction in PWV by 50% when crystallinity 

increased from 0 to 35%. The increase in the water vapor barrier was explained by the 

formation of spherulites, which are characterized by a greater structural order, thus constituting 

an obstacle to the diffusion of the molecules of permeants. Conversely, plasticizers increased 

the permeability of PLA due to the higher mobility of the polymer chains (Rhim et al., 2006; 

Ahmed et al., 2010). 

 

I.1.2.6. Mechanical properties 

PLA is generally characterized by good mechanical properties that can make it a suitable 

material in replacing conventional polymers in many applications. It has an elastic modulus of 

3000-4000 MPa and tensile strength of 50-70 MPa (Perego and Cella, 2010). 

PLLA possessing semi-crystalline structure is generally preferred for applications requiring 

improved mechanical and thermo-mechanical properties. The major limiting factor is 

represented by the poor elongation at break (2-10%). Due to its Tg (60- 70˚C), PLA is brittle at 

room temperature, fracturing through a crazing mechanism. Amorphous PDLLA is typically 

used for biomedical devices (slow drug release) and its mechanical properties are quite different 

from those of PLLA. This different behavior is principally due to the stereoregularity of the 

polymer chains, which are characterized, in the case of PLLA, by the presence of only one type 

of chiral centers. Mechanical properties are also affected by the molecular weight. In particular, 

the increase of molecular weight from 107,000 to 550,000 g/mol results in a 20% increase in 

tensile strength (Engelberg and Kohn, 1991). In general, the variation of mechanical properties 

is less pronounced for high molecular weights. 

Mechanical properties can be improved through different techniques. One of the most used is 

mechanical orientation. This process converts a brittle polymer into a versatile and useful 

material for practical tools such as packaging by undergoing the polymer to tensile strength at 

controlled temperature (Piergiovanni and Limbo, 2010). The best way to obtain an effective 

PLA film with a reduced structural anisotropy and improved mechanical properties in both the 

longitudinal and lateral directions is through a biaxial orientation. The stretching is generally 

carried out at a temperature to be selected in function of the stretching method between Tg and 

Tm of the material (Kumar et al., 2005). Typical values of the most important mechanical 

parameters related to biaxially oriented films of semi-crystalline PLLA are: 100-200 MPa 

(tensile strength), 50-150% (elongation at break), 3300 MPa (elastic modulus) (Yu et al., 2008; 

Kumar et al., 2005).  
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I.1.2.7. Surface properties 

Surface tension characterization is a critical parameter in the field of food packaging materials. 

It allows to understand mechanisms involving solid-liquid interactions such as wetting and 

spreading. The comprehension of the wetting properties of a material is an important tool to 

improve and develop new surfaces and interfaces by means of artificially changing 

compatibility of a material with other phases (Karbowiak et al., 2006). This is particularly 

useful for the optimization of many processes involving an interaction with the surface of the 

packaging material, such as coextrusion and lamination, printing, coating and surface tratments 

and the understanding of phenomena such as permeation and adhesion of microorganisms to the 

packaging (Cava et al., 2007). 

One of the potential ways for the characterization of the surface of solid materials consists in 

the measurement of the contact angle (θ), formed by a liquid drop deposited on a solid surface 

of the testing material (Fig. I.8). The drop can be considered in equilibrium with the three forces 

involved: the solid-liquid interfacial tension γSL, the solid-vapor interfacial tension γSV, and the 

liquid-vapor interfacial tension γLV. The value of the contact angle θ obtained between the solid 

surface and the tangent drawn on the drop surface and originating from the triple-point of 

atmosphere-liquid-solid, indicates how hydrophobic or hydrophilic the surface of the material is 

(Karbowiak et al., 2006). The relationship involving the interfacial tensions of the three phases 

constituting the system is described by the Young’s equation: 

 

γLV  ∙  cos θ = γSV - γSL      (Eq I.3) 

 

where θ , γLV, γSV,  γSL  have been previously described. This equation is fulfilled in the ideal 

conditions of a smooth and rigid solid phase. 

 

 

Figure I.8. Contact angle of a liquid drop on a soli surface and representation of surface tensions at the 

triple point (Karbowiak et al., 2006).  
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Few authors have investigated the surface properties of PLA. They reported values of contact 

angles θ ranging between 69˚ and 96˚ (Cai et al., 2002; Yang et al., 2002; Zhu et al., 2002; 

Paragkumar et al., 2006). Such values were obtained by using water as the liquid drop. 

 

I.1.2.8. Migration 

Food packaging materials may represent a source of contamination due to the potential 

migration of substances from the packaging into the foodstuffs contained in them. In section 1.2 

(General introduction), the European Union and national legislation adopted on materials 

intended to come into contact with foodstuffs has been discussed. In Europe, the Europe Union 

legislation regulates the materials currently in production and/or placed on the market intended 

to come in contact with food and, like conventional oil-base polymers, bio-based materials such 

as PLA must comply with it. In general, legislation on migration regulates the food packaging 

materials with the purpose to decrease the consumer’s exposure to chemicals by assuring the 

safety of these materials when in contact with food.  

The regulation of substances may include lists of polymers, monomers, and additives permitted 

to be used in packaging materials, global and specific migration limits, composition limits, and 

procedures to calculate the estimated daily intakes (EDI) for certain migrants. PLA migrants 

include lactic acid, its linear dimer (lactoil lactic acid) and other oligomers containing up to 13 

carbon atoms (Soto-Valdez, 2010). Lactic acid is considered the main migrant from PLA, since 

the other species are expected to hydrolyze to lactic acid in both acqueous and acidic media 

generally found in food systems or in the human digestive tract (Conn et al, 1995).  

Lactic acid is largely used in food and is considered safe when either used both as an intentional 

food ingredient or when naturally found in food (Datta and Henry, 2006).  

The two L- and D-isomers are metabolized in different manners in mammals. For instance, L-

lactic acid is a common compound of intermediary metabolism in mammals that is formed by 

the utilization of glycogen for energy in muscle. L-lactic acid is then oxidized to pyruvic acid in 

the liver by L-lactic acid dehydrogenase. The other stereoisomer, D-lactic acid, is also absorbed 

from the intestinal tract, but it is poorly metabolized by mammalians due to the lack in the 

enzyme D-lactic acid dehydrogenase in their body. This isomer is not utilized as a source of 

energy, and it can accumulate in cells to produce an organic acidosis. It can penetrate tissues 

such as brain and interfere with its normal metabolic process (Conn et al, 1995). 

PLA is relatively stable in aqueous media at a temperature of 40˚C for 6 months. Above Tg, the 

polymer undergoes degradation and the amount of lactic acid increases, especially for polymers 
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possessing a high content of D-isomer. Lactic acid is characterized by low levels of EDI (0.054 

mg d
-1

) if compared to the average intake of lactic acid from foodstuffs (924 mg/day). For this 

reason, the PLA is considered safe when it is used at temperatures below the Tg (Soto-Valdez, 

2010). New PLA-based materials containing additives, comonomers and fillers must comply 

with current legislation in order to be placed on the market.  

 

I.1.3. Processability and applications 

During the last decade, it has been used primarily for medical applications such as: implant 

devices, tissue scaffolds and internal sutures, due to its high cost, low availability and limited 

molecular weight (Datta and Henry, 2006). Recently, production costs have been lowered 

through the introduction of new technologies, such as: the ring-opening polymerization (ROP) 

process and large-scale production. Thus, the use of PLA has been extended to other areas, such 

as: packaging, textiles and composite materials (Drumright et al., 2000; Garlotta, 2001; Groot et 

al., 2010). Although PLA can be processed on standard converting equipment with minimal 

modifications, its unique material properties must be taken into consideration in order to 

optimize the conversion of PLA to molded parts, films, foams, and fibers. Today, the main 

conversion methods for PLA are based on melt processing. This approach involves heating the 

polymer above its melting point, shaping it to the desired forms, and cooling to stabilize its 

dimensions (Lim et al., 2008). 

Some of the examples of melt processed PLA are injection molded disposable cutlery, 

thermoformed containers and cups, injection stretch blown bottles, extruded cast and oriented 

films, and meltspun fibers for nonwovens, textiles and carpets (Lim et al., 2008). PLA also 

finds applications in other less conventional applications, such as for the housing for laptop 

computers electronics (Lim et al, 2008). With relation to the food packaging field, PLA can be 

used for products that are not to be heated, such as single use disposable drinking cups. PLA 

packages have already been commercialized for eggs, vegetables, fruits, bakery, and blister 

pack products (Obuchi and Ogawa, 2010) as shown in Fig. I.9. Further applications are food 

beverages such as flat water beverages and pasteurized milk (Lim et al., 2008). Packaging bags 

made of PLA tend to produce a cracking noise when handled. Moreover, it can’t be used for 

microwave containers due to the heat deflection temperature, which is 10-15˚C lower than that 

of amorphous PET. 
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Figure I.9. Examples of applications of PLA thermoformed containers (Obuchi and Ogawa, 2010). 

 

I.1.4. Nanofillers in PLA 

Over the years, many studies have been carried out as a means of improving the properties of 

PLA films (Pluta, 2006). For example, orientation has been used to improve the mechanical 

properties of PLA (Auras et al., 2005). Similarly, new formulations and plasticizers, blending 

with other polymers, co-polymerisation, co-extrusion and lamination with more flexible and 

higher barrier polymers, coating, and the formation of new structures with the addition of fillers 

ranging from non-biodegradable to biodegradable materials have all been used to improve the 

properties of PLA-based packaging materials. 

The progress which has developed recently in the field of nanoscience and nanotechnology has 

given an unique opportunity to develop revolutionary materials which overcome the typical 

performance compromises of the conventional materials by benefiting through a sinergism 

occuring between components below certain dimensions (Sinha Ray, 2010). For instance, 

nanoparticles have been shown to improve the properties of polymeric materials through their 

low level addition, from 2 to 8% w/w (Lim et al., 2008), thereby allowing them to function as 

nanofillers. The incorporation in a material of particles that have at least one dimension or 

contain components with at least one dimension in a length of approximately 1-100 nm is able 

to produce a nacomposite possessing physical and chemical properties significantly different 

from those reported by a microcomposite made out of the same substance (Duncan, 2011).  

Nanostructured materials or nanocomposites based on polymers have recently received great 

attentions from both industrial and academic research (Sinha Ray, 2010). Nanocomposites are 

materials where interface interactions between two phases are maximized. They are 

characterized by a homogeneous dispersion of the nanofiller in the polymer matrix as separate 

particles. According to Sinha Ray (2010), there are wide variety of nanoparticles and a way to 
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classify them is based on the number of nanoscale dimensions they possess. Their shape 

include: 

 

 One-dimensional needle- or tube-like structures (inorganic nanotubes, carbon 

nanotubes, sepiolite); 

 Two-dimensional platelet structures (layered silicates); 

 Sphere-like three dimensional structures (silica, zinc oxide). 

 

To date, various types of reinforcements have been used for the manufacturing of PLA 

nanocomposites (Sinha Ray, 2010). Examples are constituted nanoclay, cellulose nanowhiskers, 

ultrafine layered titanate, nanoalumina and carbon nanotubes. Among all the nanomaterials 

considered, layered silicate have been the most studied. Their popularity could be probably 

explained by the easy availability of the starting clay materials, the low cost and effectiveness 

ratio, the high stability and benignity (Gorrasi et al., 2002; Duncan, 2011). Moreover, layered 

silicates have shown to dramatically improve material properties of the nanocomposite 

structures as compared with the pure PLA, such as machanical and flexural properties, barrier 

properties and biodegradetion (Lim et al., 2008). 

 

I.1.4.1. Montmorillonite 

I.1.4.1.1. Structure and properties 

Montmorillonite (MMT) is a phyllosilicate characterized by a crystalline structure constituted 

of stacks of clay platelets (Fig. I.10). Each platelet has an average thickness of about 1 nm and 

contains two external layers of silicon oxide tetrahedra with a central sheet of aluminium or 

magnesium oxide octahedra. The lateral dimensions range from hundreds to thousands 

nanometers. A net negative charge is located on both faces of platelets, so that electrically 

positive cations (Ca
2+

 , Na
+
, etc.) are attracted in the gallery area between them (Duncan, 2011; 

Pavlidou and Papaspyrides, 2008). This structure is able to improve several properties of the 

material in which montmorillonite is incorporated, such as gas barrier, mechanical and thermal 

properties (Burgentzelé et al., 2004). Moreover, these benefits can be obtained with only a small 

percentage of clay load. In fact, a performant concentration of the MMT in a polymer matrix 

has been demonstrated to be around 4-5 % w/w (Lim et al., 2008; Pluta, 2006). 
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MMT in its pristine state is characterized by a hydrophilic nature as a consequence of the 

presence of inorganic cations located in the interlayer gallery. However, alkali counter-ions are 

exchanged with cationic-organic surfactants in order to make MMT more compatible with 

hydrophobic polymers. This allows polymers, within which MMTs are dispersed, to be 

improved in terms of their properties, such as: barrier to permeants and mechanical strengths 

(Pilla, 2011). 

 

I.1.4.1.2. Cloisite® 

Cloisite® (Southern Clay Products Inc., Gonzales, Texas, USA) is a commercially available 

additive for plastics to improve various physical properties of a matrix polymer. This 

denomination corresponds to different types of MMT, which are obtained by modification of 

natural MMT with different ammonium salts (OMMT). These silicates are suitable for the 

realization of nanocomposite plastic materials by using the main thermoplastic polymers. 

Polymers loaded with 3-5% (w/w) of Cloisite® exhibit enhancements in several properties, 

such as heat distortion temperature, mechanical, barrier, recyclability and stability at high 

temperatures. The different types of Cloisite® are characterized by different organic modifiers 

in order to make them suitable to be incorporated in various polymers (Southern Clay, 2011). 

 

I.1.4.2. Characteristics of the nanocomposites 

In the preparation of nanocomposite materials, two factors have to been considered. Firstly, 

phyllosilicates can be dispersed in single layers when incorporated in a polymer matrix. 

Secondly, surface properties of phyllosilicates can be changed through ionic exchange reactions 

with organic and inorganic cations. These two properties are interrelated because the degree of 

dispersion of layered silicate in a polymer matrix is in function of the interlayer cation (Sinha 

Ray and Okamoto, 2003). 

Nanoclays constituted by layered silicates contain electrically positive cations (hydrated Na
+
 

and K
+
) in their pristine structure that make them miscible with hydrophilic polymers. In order 

to be suitable for the realization of nanostructures with PLA, the hydrophilic surfaces of 

silicates must be converted into more hydrophobic organophilic, which are suitable for the 

intercalation of PLA chains between the layers of nanoclays (Sinha Ray, 2010). The 

nanocomposite materials polymer-phyllosilicate exhibit several advantages. For instance, they 
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are characterized by an improved mechanical behaviour, enhanced barrier and thermal 

properties (Burgentzelé et al., 2004). 

 

Figure I.10. Structure of montmorillonite (Duncan, 2011). 

 

The addition of nanoclays in a polymer matrix does not always result in a nanocomposite 

material. In several cases, a phase separation is observed due to the immiscibility between the 

two components, thus generating an agglomeration of the filler with a degrading of the 

mechanical properties of the material. The unseparated MMT layers surrounded by the polymer 
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are often referred as tactoids (Lim et al., 2008). In this case, the resulting materials tend to 

exhibit similar properties as conventional microcomposites. However, the insertion of the 

polymer chains into the galleries of phyllosilicates produces nanocomposite polymers 

possessing two different structures: (Pavlidou and Papaspyrides, 2008): 

 

 Intercalated structure: it is obtained when the polymer chains are inserted between the 

clay platelets, creating an ordered structure in which polymer and inorganic layers are 

alternated. The distance between layers is around 20-30 Å. 

 Exfoliated structure: it is obtained when the polymer chains are individually dispersed 

in the polymer matrix with distances between each other greater than 80-100 Å. 

 

The different structures obtained with the incorporation of layered silicate in a polymer matrix 

are shown in Fig. I.11. 

 

 

Figure I.11. Tactoid, intercalated and exfoliated polymer-clay nanocomposite morphologies. 

 

The exfoliated structure is of particular interest because it minimizes the interactions between 

polymer and clay, leading to the most significant changes in mechanical and physical properties 

(Beyer, 2002). However, it is not easy to achieve complete exfoliation of clays, since the 

majority of the polymer nanocomposites studied were found to possess intercalated or mixed 

intercalated-exfoliated nanostructures (Chin et al., 2001). The achievement of an exfoliated 

structure is largely dependent on the chemical compatibility of the clay and the polymer matrix, 

as well as the process conditions used to disperse the silicate layers of the clay (Lim et al., 
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2008). To date the techniques mainly used for the preparation of polymer-layered silicate 

nanocomposites are the following (Alexandre and Dubois, 2000; Fornes at al., 2001; Beyer, 

2002; Kim et al., 2001a; Denis et al., 2001; Kim et al., 2001b). 

 

 in situ template synthesis: it consists in the synthesis of clay minerals within the 

polymer through the use of an aqueous solution (or gel) containing the polymer and the 

silicate building blocks; 

 intercalation of polymer or prepolymer from solution: the polymer and the  layered 

silicate are mixed together using a solvent in which the polymer is soluble. Firstly, the 

layered silicate is swollen in the solvent, then the polymer is added to the solution and 

intercalates between the clay layers. Finally, the solvent is removed by evaporation 

under vacuum or by precipitation. 

 In situ intercalative polymerization: in the first step, the layered silicate is swollen by a 

liquid monomer or a monomer solution. The monomer is intercalated between the 

galleries of the clay. In the second step, the polymerization reaction can occur between 

the intercalated layers. 

 Melt intercalation: this technique consists in blending the layered silicate with the 

polymer matrix in the molten state.  

The intercalative polymerization and melt intercalation are considered the most interesting 

methods from the industrial point of view. Nevertheless, the former is environmentally 

unfriendly and economically prohibitive due to the use of solvents (Sinha Ray and Bousima, 

2005). 

The effect of the incorporation of layered silicates on the physico-chemical properties of PLA 

has been investigated by a number of studies over the last years (Jiang et al., 2007; Fukushima 

et al., 2009a; Pluta, 2006; Thellen et al., 2005). 

In general, the properties of nanostructured materials seem to be affected by two factors: the 

physical presence of the nanoclay and the effects of the nanoclay on the interfacial regions of 

the polymer. The latter is the property that mostly differentiates the effect of nanoparticles from 

the conventional micro-sized filler, and it’s linked to the high specific surface of the nanoclays. 

However, results obtained from the nanoincorporation are often contradictory and the 

performance of the material depends on the amount of filler added and its characteristics, the 

typology of the resulting structure and the polymer in which nanoclays are incorporated 

(Pavlidou and Papaspyrides, 2008). 
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I.A.1. Materials and methods 

I.A.1.1. Materials  

PLA 4032D and 4042D with 98.5 and 96% L-isomer lactide content, respectively, were used as 

the polyester matrix (NatureWorks® LLC, Blair, NE, USA). Four types of nano-sized 

Cloisite®, C10A, C20A, C30B and C93A (Southern Clay Products Inc., Gonzales, TX, USA), 

were purchased and used as fillers. These organoclays are obtained by modification of natural 

montmorillonite with different ammonium salts of organic modifiers. In particular, C10A, 

C20A, C30B are modified with a quaternary ammonium salt, while C93A with a tertiary 

ammonium salt. The main characteristics of organoclays used are displayed in Table I.A.1 in 

accordance to the data provided by the supplier. 

 

Table I.A.1. Modifier concentration, chemical structure of organic modifier and anion of nanoclays. 

HT is is Hydrogenated Tallow (~65% C18; ~30% C16; ~5% C14). 

I.A.1.2. Preparation of PLA/OMMT nanocomposites 

Films were manufactured using the facilities of the Department of Chemical and Food 

Engineering, University of Salerno, (Fisciano, SA, Italy). PLA and PLA-based nanocomposite 

Clay Type Modifier concentration 

(meq/100g clay) 

Chemical structure of 

organic modifier 

Anion 

C10A           125 

CH3 

 | 

    H3C ─ N+─ CH2─ 

| 

HT 

Chloride 

C20A            95 

CH3 

| 

H3C ─N+─ HT 

| 

HT 

Chloride 

C30B            90 

CH2CH2OH 

| 

         H3C ─ N
+─ T 

| 

CH2CH2OH 

 

Chloride 

C93A            95 

H 

| 

         H3C ─ N+─ HT 

| 

HT 

Bisulfate 
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films were prepared in two steps. Firstly, PLA was blended with a nanoclay (nominal content 

5% w/w) using a co-rotating intermeshing twin-screw extruder (ZK25, Dr Collin, Ebersberg, 

Germany) with a L/D=42 and D=25 mm. Due to their high hygroscopic nature and to prevent 

excessive hydrolysis, PLA and layered silicates were dried at 80°C for 16 hours under vacuum 

before processing. The screw speed was set at 150 rpm. While dried PLA pellets were fed to the 

extruder by the primary feeder in area 1 (T1), nanoclays were added through an inlet located in 

the third (T3). PLA and free-flowing nanoclay powder were fed to the extruder under a nitrogen 

flux to limit moisture absorption, in order to have a better dispersion of OMMTs in the polymer, 

since PLA was already in a melt status at this stage. The profile of temperatures used in the 

different areas of the twin-screw extruder is shown in Fig. I.A.1.  

 

Figure I.A.1. Scheme of the two steps of a) resin pellets production and b) film production related to the 

process extrusion for both unfilled and nanoccomposite materials. 

 

Successively, resin PLA pellets containing OMMT were casted into uniaxially oriented films by 

a single–screw extruder cast film machine (Gimac, Varese, Italy) with a L/D=24, rectangular 

die 0.25x200 mm
2
. The thermal profile of the latter was 200, 195, 190 and 185˚C  at T1, T2, T3 

and Tdie, respectively. The temperature of chill rolls was set at 10˚C. The speeds of screw and 

wind-up rolls were  50 rpm and 2.5 m/min, respectively. The scheme of both first step (with the 
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profile of temperatures used in the different areas of the twin-screw extruder) and the second 

step is shown in Fig. I.A.1.  

Controls (PLA 4032D and 4042D) and nanocomposites were both manufactured using the same 

conditions so that there would be no differences in the thermal history between manufactured 

films. Films produced for  this work are specified in Table I.A.2. 

 

Table I.A.2. Codes of manufactured films. 

Film Code 

PLA 4032D U 

PLA4032D/Cloisite® 10A U/C10A 

PLA4032D/Cloisite® 20A U/C20A 

PLA4032D/Cloisite® 30B U/C30B 

PLA4032D/Cloisite® 93A U/C93A 

PLA4042D Z 

PLA4042D/Cloisite® 10A Z/C10A 

PLA4042D/Cloisite® 20A Z/C20A 

PLA4042D/Cloisite® 30B Z/C30B 

PLA4042D/Cloisite® 93A Z/C93A 

 

I.A.1.3. Characterization  

I.A.1.3.1. Thermal stability 

Thermal stability of the films was assessed using a TGA Q500 (TA Instruments, New Castle, 

Delaware, USA). Samples were analysed from 30-600°C under nitrogen flow with a heating 

rate of 10°C/min and held in isotherm at this temperature for 1 hour. The temperature range of 

interest reported in this work is 300-400°C since no changes were observed beyond this 

interval. The initial mass of the samples tested is in the range of 0.0065 g - 0.014 g. The 

organoglay load was calculated by subtracting the residue corresponding to the unfilled 

polymer. Onset and peak temperatures were calculated on the first derivative. Results are based 

on a mean of three replicates. 

 

I.A.1.3.2. Thermal analysis 

Thermal analysis was carried out on a DSC 200 F3 (Netzsch Group, Selb, Germany). Sample 

(~5 mg) were weighed into an aluminium pan and hermetically sealed. Samples were scanned 
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at 10°C/min in the temperature range of 0 to 200°C. An empty pan was used as reference. In 

order to cancel the effect of the thermal history, the samples were re-scanned after cooling and 

Tg, Tcc and Tm were evaluated from the DSC thermogram obtained from the second scanning. Xc 

of samples was calculated based on the following equation (Fukushima et al, 2009b): 

 

 Xc (%) = 100 x (ΔHm/(146.0 x (1- (%wtclay/100))))                    (Eq. I.A.1) 

 

where ΔHm is the heat of fusion, and 146.0 J/g is the heat of fusion for 100% crystalline PLA 

homopolymer (Tsuji, 2005; Tsuji et al, 1992). Results are based on a mean of three replicates. 

 

I.A.1.3.3. Structural analysis  

Investigation on the structure of nanoclays and nanocomposite films were carried out in a XRD 

instrument (X’Pert Pro, PANalytical, Almelo, Netherlands) using a Cu Kα radiation at a 

wavelength of 0.1541 nm and operating at 40 kV and 35 mA. Scans were performed with a step 

size of 0.0084˚ from 2θ = 1.0 to 10.0°. 

The basal spacing of of the silicate layer was calculated using the following Bragg’s equation: 

 

 nλ = 2d senθ                                       (Eq. I.A.2) 

 

where n is a integer, λ wavelength of the incident beam, d the spacing between layers and θ is 

the measured diffraction angle. 

FTIR analysis of the films was performed on a Varian 660 FTIR spectrometer using ATR 

Golden Gate (Specac). Spectra were taken  with 32 scans at 4 cm
-1

 resolution in a wavenumber 

range from 2000 to 500 cm
-1

. 

The cross-section of films were imaged using a FEI Quanta 650 FEG High Resolution SEM. 

All images of films were taken under similar resolutions. 

Films were prepared for imaging using the Cryo-Rupturing Image Sample Preparation (CRISP) 

method (Flynn et al., 2012), in which a section of the film was submerged in liquid nitrogen and 

then broken to preserve the structural integrity of the fractured edge (which would be damaged 

by cutting the film). All film samples required gold-coating (~30 nm) to provide a conductive 

surface to allow imaging. 

 

I.A.1.3.4. Dynamic frequency sweep test 
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Frequency sweep test was performed in the linear viscoelastic range from 0.1 rad/s to 100 rad/s 

with a ARES rheometer (Rheometric Scientific), using a parallel plate geometry with the 

diameter of 25 mm with a gap of 1 mm at a temperature of 190 ˚C. The complex viscosity was 

reported against the frequency. 

 

I.A.1.3.5. Transmittance and transparency  

Barrier to UV and visible light of films were carried out using a UV-2501PC UV-Vis 

Recording Spectrofotometer (Shimadzu, Kyoto, Japan) at wavelengths ranging from 200 to 750 

nm. The absorbance values at 280, 350, 400, 500, 600 and 700 nm were recorded. The software 

used was UVProbe v2.31 (Shimadzu, Kyoto, Japan). 

Transparency of the films was calculated using the following equation (Han & Floros, 1997): 

 

Transparency = A600/ X                               (Eq. I.A.3) 

 

where A600 and X are the absorbance at 600 nm and the film thickness (mm) respectively. 

Results are based on a mean of three replicates. 

 

I.A.1.3.6. Colour 

Surface colour of the films were measured using a Chromameter CR-300 (Minolta Camera Co., 

Osaka, Japan). The chroma meter was calibrated on the CIE L*, a*, and b* scale before each 

measurement using a white ceramic (L* = 97.15, a* = -5.28, b* = +7.82). L* values represent 

lightness and a* and b* values represent redness and yellowness, respectively. The total colour 

difference (ΔE*) between control PLA films and PLA/OMMT nanocomposite films was 

calculated as follows: 

            

 

ΔE* =  (Δ  )2 + (Δa )2  + (Δ  )2    (Eq. I.A.4) 

 

The classification scale for total colour difference reported by Cruz-Romero et al. (2007) was 

used to classify the films according to the total colour difference. Results are based on a mean 

of ten replicates. 
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I.A.1.3.7. WVTR 

WVTR of films was calculated according to the ASTM E-96 standard method as outlined by 

Wang et al. (2009).  Distilled water (6 ml) was pippeted in each Perspex
TM

 circular test cup and 

a PLA film sample was mounted across the cup opening using vacuum silicone grease. The film 

was secured in place and sealed into test cups with the four screws symmetrically located 

around the cup circumference. A constant air velocity of 152 m/min was maintained over the 

cups to ensure uniform movement of air across the test cells. The weight loss of the test cells 

were monitored over a 24 h period with weight loss recorded every 2 h intervals. WVTR (g/d
-1

 

m
-2

) was determined from the slope obtained by the regression analysis of the data of weight 

loss as a function of time, once the steady state was reached. Results are based on three 

replicates. 

 

I.A.1.3.8. OTR  

The O2 content inside a known test cell volume chamber, flushed previously with nitrogen, was 

monitored non-invasively over a 24 h period with O2 concentration recorded at 2 h intervals 

using an optical measuring system Optech
TM

 Platinum O2 sensor device and disposable O2 

sensor stickers from Mocon (Minneapolis, USA). The optical O2 sensor works on the principle 

of a phosphorescent dye that is incorporated in a polystyrene polymer membrane as adherent 

agent and for environmental protection. The Optech device uses LED technology to take 

measurement in ~10 s. For O2 measurement, the instrument need to be brought in an optical 

contact with the sensor (5-10 mm distance) to produce an O2 reading (% of O2, compensated for 

temperature and pressure variation). Therefore, the sensors were sticked on the top of a hand-

made support placed in the center of a lower part of a Perspex
TM

 cup at a distance of 3 mm from 

the testing film as shown in Fig. I.A.2.  

 

Figure I.A.2. The modified PerspexTM cup used for OTR testings. 
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Nitrogen was blown into the chamber, the films were mounted between the upper lid and rubber 

ring with silicon lubricant and fixed to the lower cup by screws. The O2 concentration in the cup 

can be measured as many times as necessary as no need of gas sampling/extraction is required. 

A Windows®-based software was used for the recording of measured parameters (oxygen 

concentration) and data storage. The cups were stored under controlled temperature and 

humidity as described in section 2.3.1 and a constant air velocity of 152 m/min maintained over 

the cups to ensure uniform air movement across cells. OTR was successively calculated 

considering the oxygen concentration, the volume of the test cup chamber and the area of the 

film exposed for gas permeation using the following equation (Siró et al., 2010):    

   

  

OTR = V * (slope/100) * 24 * (10000/A)           (Eq. I.A.5) 

 

where OTR is expressed as ml m
-2

 day 
-1

, V is the volume of the receiving chamber, and A is the 

area of the film available for gas permeation. The slope is obtained by the regression analysis of 

the data of the increase of oxygen concentration in the receiving chamber as a function of time. 

Results are based on three replicates. 

 

 

I.A.1.3.9. Mechanical properties 

TS, E, YM and PS of films were evaluated according to an ASTM Method D 882-02 on the 

casting machine direction using an Imperial 2500 (Mecmesin, Slinforld, UK). Results are based 

on ten replicates. 

 

I.A.1.3.10. Contact angle  

The hydrophobicity of the surface films was determined by static sessile drop method using a 

contact angle goniometer (Krüss Gmbh, Germany) provided with an image analysis software 

( rop Shape Analysis, Krüss Gmbh, Germany). A 10 μL droplet of distilled water was 

deposited with a precision syringe (needle diameter = 0.5 mm) on the surface of films. The The 

contact angle (θ), monitored at t = 0 s, was estimated from the first stable automatic image of 

the droplet (TRACKER).  Values were successively calculated from the intersection beetween 

the baseline of the drop and the tangent at the drop boundary, the last determined through the 
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use of sessile drop fitting (L-Y) method. The definition of the surface properties of films 

(hydrophobic or hydrophilic) was made considering θ = 65˚ as the discriminating value  

(Karbowiak et al., 2007).  All films were pre-conditioned in a chamber under the same 

environmental conditions to avoid interferences due to competing moisture exchange at the 

surface around the droplet (Marcuzzo et al. 2010). Results are based on thirty replicates. 

 

I.A.1.3.11. Antimicrobial properties 

Antimicrobial activity of PLA and PLA/clay nanocomposite films against Escherichia coli 

(NCIMB 11943), Staphylococcus aureus (NCIMB 13062) and Pseudomonas Fluorescens 

(NCIMB 9046) was carried out using the disk diffusion method. All films were cut into square 

form of 10 x 10mm and sterilised under UV light for 15 mins before use. Sterilised film 

samples were placed on Mueller-Hinton agar (MHA) (Oxoid Ltd., Basingstoke, England) plates 

that had been swabbed on the entire surface of MHA with each bacterial strain containing 

concentrations approximately 10
6
 CFU/ml . The inoculated plates were incubated for 24 hr at 

30C (Ps. Fluorescens) or 37C (E. coli, S. aureus). Sterile films without the presence of 

cloisite were used as a negative control, whereas discs (6 mm) containing 10 μg streptomycin 

(Oxoid) was placed on the seeded plate as a positive control. After incubation, the area of the 

inhibition zone developed around the PLA film squares were measured using an absolute 

electronic calliper (Moore& Wright, UK). The results reported here are the averages of 6 

measurements. 

 

I.A.1.3.12. Statistical analysis 

Full factorial ANOVA was used to assess the effects of L-isomer content and OMMTs as well 

as their interaction. Homogeneity of variance was evaluated using the Levene test, and 

logarithm transformation used when required. Tukey’s HS  test was used to compare treatment 

means when significant differences were found with the ANOVA. The significance level was 

always set to 0.05. All the analyses were carried out using STATISTICA 8.0 for Windows. 

 

I.A.2. Results and Discussion 

I.A.2.1. TGA 
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The effective organoclay load in the PLA 4032D and 4042D series as assessed by TGA is 

shown in Table I.A.3.  

 

Table I.A.3. Nanofiller load, onset and peak temperatures of decomposition on films obtained by TGA*. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Values are mean ± standard deviation. 

 

Unlike unfilled control samples, a black residue was observed on the platinum sample holders 

following the decomposition of nanocomposite materials and may be attributable to the 

presence of clay in the film. The residue measured was higher than the standard deviations 

measured for each sample and this may be due to the presence of inorganic contaminant traces 

or as a consequence of incomplete decomposition.  

According to the TGA results, the effective content of nanoclays in PLA was 3.7% w/w. Only 

Z/C10A and Z/C30B had a slightly lower filler load. This may be related to differences in 

blended interaction between nanoclays and PLA possessing different L-isomer contents. 

The TGA curves, along with first derivatives, are shown in Fig. I.A.3.  

Results showed that the incorporation of OMMTs had a weak effect on the decomposition 

process of both PLA grades under non-oxidative conditions. Generally, small difference in 

values observed in most nanocomposites of the two series compared to the respective controls. 

Films Nanoclay load Onset Peak 

(%w/w) (°C) (°C) 

U 

U/C10A 

U/C20A 

U/C30B 

U/C93A 

Z 

Z/C10A 

Z/C20A 

Z/C30B 

Z/C93A 

- 

3.7±0.3 

3.7±0.5 

3.7±0.3 

3.7±0.5 

- 

3.2±0.3 

3.7±0.2 

3.1±0.2 

3.7±0.2 

311.1±3.0a 

309.1±0.3ab 

307.7±3.1ab 

307.5±0.2ab 

310.5±0.3ab 

306.6±0.9b 

311.2±1.3a 

310.5±0.2ab 

308.7±0.6ab 

311.8±0.6a 

361.1±3.2a 

358.4±1.0a 

356.5±6.6a 

359.5±1.5a 

358.7±0.8a 

360.5±1.2a 

359.6±0.7a 

359.8±0.6a 

360.2±0.2a 

360.1±0.3a 
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In general, a decrease shift of 3-4˚C was reported in the U series onset, while in the Z series it 

was noted that there was a delay of about 2-5˚C (Table I.A.3). 

 

 

Figure I.A.3. TGA curves of (a) PLA 4032D series and (b) first derivative, (c) PLA 4042D series and (d) 

first derivative. 

 

This may suggest a different interaction between the nanoclays in relation to the two grades of 

PLA used in this study as indicated by a leveling-off effect at the onset temperatures of 

degradation. The shift towards lower onset temperatures of the nanocomposites in the U series 

indicated a lowering of their thermal stabilities upon intercalation at higher temperatures 

(Chang et al, 2003). In both series of PLA-based films, those manufactured with C93A had the 

highest onset decomposition temperature among all of the nanocomposites studied. According 

to Cervantes-Uc et al. (2007), this could be due to the presence of the bisulphate anion in the 

nanoclay. In the Z series, the incorporation of OMMTs probably act as a heat barrier during the 

beginning of the decomposition process, thus increasing the thermal stability by slowing down 

the heat flow eminating from an external source (Zhou and Xanthos, 2009). For both PLA 

series, once peak temperatures were reached (Table I.A.3), the heat stored in the proximity or 

between the platelets in the intercalated structure slightly accelerated the decomposition of the 

nanocomposites. In this instance, the effects delayed  oxygen permeation, due to the increased 

barrier properties, originating by the longer diffusion of the permeant through a “tortuous 

pathway” ( ubois and Alexandre, 2000; Gilman, 1999), may not be considered since the 
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analysis was carried out under a nitrogen flow. The percentage of crystallinity (Table I.A.4) 

also seemed to play a role on the thermal stability of the two neat PLA films (Solarski et al., 

2008). In fact, the lower cristallinity of Z resulted in a lower temperature onset of 5.5˚C, 

probably due to a initial increase in  polymer hydrolysation. 

 

I.A.2.2. DSC 

The thermograms for control and nanocomposite film samples are reported in Fig. I.A.4.  

 

 

Figure I.A.4. DSC thermograms of (a) PLA 4032D and (b) PLA 4042D series nanocomposites and 

unfilled PLA. 

 

Three thermal events were observed during analysis: Tg, Tcc and Tm (values reported in Table 

I.A.4). Tg is associated with changes in the amorphous region of PLA and is dependant upon the 

mobility of its chains, Tm is determined by transition of the crystalline regions and Tcc is the 

transition process from amorphous to crystalline states, where the molecules may obtain at a 

certain stage, sufficient freedom of motion in order to arrange themselves into a crystalline form 

in a spontaneous manner. The thermograms revealed the presence of a shoulder in the melting 

peak of PLA 4032D. This behaviour was reported previously in the scientific literature and was 

proposed to explain what was observed in two different ways: the first as a polymorphism or 

different crystal structures existing in the PLA, the second as a melt-recrystallization 

mechanism where small and imperfect crystals change successively into more stable crystals 

(Yasuniwa et al., 2004).  
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In the first case, the structures are represented by the α-form and β-form, where the former is 

the most common polymorph, characterized by a pseudo-othorhombic, pseudo-exagonal or 

orthorhombic that melts at higher temperatures (Yasuniwa et al., 2006; Yasuniwa et al. 2008). 

The latter is considered an imperfect crystal constituted by an othorhombic or trigonal structure, 

melting at a lower temperature in correspondence with the endothermic region (Fukushima et 

al., 2009b). In agreement with these authors, values of ΔHm and ΔHc for films obtained with 

PLA 4032D are comparable and no significant increase of crystallinity could be detected, thus 

suggesting that the shoulder observed in the endothermic area could not be attributed to a melt-

recrystallization process. 

 

Table I.A.4. Thermal properties derived from the 2nd heating scan* 

*Values are mean ± standard deviation. Different superscripts in the same column indicate significant 

difference (P <0.05) between treatments. 

 

According to Di Lorenzo et al. (2011), a disordered modification of the α-form was recently 

proposed which was named α’. This new form is more unstable than the α-form and tends to be 

transformed to α-form upon heating. In their study on  isothermal melt-crystallization 

conditions, Zhang et al. (2008) found that α’-form crystals are present at Tcc below 100˚C, α- 

and α’-forms coexist at temperatures between 100 and 120˚C, while α-form crystals are present 

Films Tg Tm Tc ΔHm ΔHc Xc 

 (°C) (°C) (°C) (J/g) (J/g) (%) 

U 

U/C10A 

U/C20A 

U/C30B 

U/C93A 

Z 

Z/C10A 

Z/C20A 

Z/C30B 

Z/C93A 

60.1±0.1ab 

 59.9±0.1abc 

60.0±0.2ab 

 59.9±0.4abc 

   60.7±0.4a 

 59.2±0.3cde 

 58.7±0.4de 

  59.5±0.2bcd 

58.4±0.5e 

  59.4±0.2bcd 

    169.9±0.2a 

168.7±0.7ab 

168.7±0.5ab 

     168.2±0.5b 

168.7±0.5ab 

155.1±0.5cd 

 155.3±0.1cd 

155.7±0.4c 

 154.7±0.4cd 

154.2±0.5c 

112.0±0.6a 

 110.3±0.6ab 

 108.5±1.4bc 

116.3±0.9d 

107.6±0.3c 

 128.4±0.7ef 

129.7±1.0efg 

130.7±0.3g 

130.5±0.2fg 

128.3±0.4e 

37.4 

38.3 

36.5 

40.2 

33.5 

  3.4 

  3.6 

  8.8 

  8.1 

16.6 

33.4 

34.3 

32.7 

36.4 

 31.1 

  3.1 

  3.3 

  8.3 

  7.8 

16.3 

25.61 

27.21 

25.92 

28.56 

23.83 

  2.69 

  2.53 

  6.27 

  5.71 

        12.00 
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at Tcc above 120˚C. Consequently, the formation of a shoulder, which is a function of the 

process conditions and DSC heating program, can be attributed to the coexistence of α- and α’-

form crystals (Tsai et al., 2010). 

In our study, the shoulder was not detected in PLA 4042D , since only α-form crystals are 

present at crystallization temperatures around 130˚C. 

The addition of OMMTs slightly influenced the thermal events. Tm and Tcc were significantly (P 

< 0.05) affected by the PLA optical purity. In fact, a decrease in melting temperature by about 

14˚C and an increase of cold crystallization by about 20˚C in films containing a higher D-

isomer content were observed. This may probably be due to the perturbation of the PLA 

stereoregularity determined by the D-isomer, which causes a slower crystallization and a 

depression of Tm (Pluta, 2006). This depression may be explained by enthalpy or entropy 

depending on whether the optically impure units are respectively incorporated into, or rejected 

from, the crystal structure. Abe et al. (2005) found that D-isomer units were trapped in 

crystalline regions during the beginning of the crystallization process, but were excluded from 

the crystalline lamellae. The Tg was slightly affected by the addition of nanoclays. However, a 

general decrease in glass transition was observed. An increase in the glass transition was 

observed for the films U/C93A, Z/C20C and Z/C93A.The variation of Tg , due to the 

incorporation of nanoclays, has been explained by either restricted segmental motions at the 

organic-inorganic interface neighborhood of intercalated composition that lead to a slight 

increase of the glass transition (Lim et al., 2008; Pluta et al., 2002; Zhou and Xanthos, 2009),or 

by a plasticizing effect of the PLA matrix by the organic modifier of the organoclay which 

results in a small decrease in Tg (Pluta, 2006). The Tg was significantly affected by the 

difference in L-isomer content. However, the interaction between the polymer matrices and 

nanoclays was not significant and did not affect Tg.  

The cristallinity was seen to slightly increase in the majority of nanocomposites. This can be 

explained by the effect of the nanoclays to acts as heterophase nucleating agents (Sanchez-

Garcia and Lagaron, 2010). The lower content in nanoclay observed for Z/C10A and Z/C30B 

through TGA analysis resulted in a lower crystallinity percentage due to the reduced nucleating 

effect.   

 

I.A.2.3.XRD 

XRD measurements were carried out on nanoclays (powder) and nanocomposite films (Fig. 

I.A.5). The patterns of silicate powders, namely C10A, C20A, C30B and C93A, were 
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characterized by diffraction peaks at 2θ = 4.83, 2θ = 3.61, 2θ = 4.94 and 2θ = 3.49, respectively, 

which correspond to a d-spacing (d001) of 1.83 nm, 2.45 nm, 1.79 nm and 2.53 nm. 

The addition of OMMTs to PLA matrices produced x-ray diffraction peaks in composites where 

the diffraction maximum was shifted to a lower 2θ angle when compared with OMMT powder. 

This suggests an interaction between polymer chains and nanoclays with a formation of 

nanocomposites characterized by intercalated structures and a partial preservation of OMMTs 

layered configuration (Rhim et al., 2009). 

 

 

Figure I.A.5. XRD patterns of (a) nanoclays, (b) PLA 4032D and (c) PLA 4042D series nanocomposites. 
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PLA chains were inserted within the galleries of OMMTs, thereby increasing the basal spacing 

between layers (d001) as shown in Table I.A.5. C30B had the greatest shift to lower 2θ angles of 

the diffraction maximum and the lowest intensity of peaks in the nanocomposites, which 

suggests a partial exfoliation of the clay (Zaidi et al., 2010). It was observed that L-isomer 

content had a slight effect on the nanocomposite structures, shifting the diffraction maximum of 

nanocomposites obtained, with the matrix containing the lower L-isomer, to lower 2θ angles 

However, further studies are necessary in order to validate this finding. 

 

Table I.A.5. Effect of the addition of OMMTs and polymer purity on the basal spacing in nanocomposite 

films. 

 

 

I.A.2.4.FTIR 

In order to characterize the films produced, FTIR spectra, conducted within the relevant 

wavelenght fingerprint region, can be used by observing peaks corresponding to different 

vibrations associated with the functional groups involved. These vibrations are defined as 

stretching or bending vibrations which are dependent upon  variations in bond length or angle, 

respectively. 

Spectra for films obtained for PLA 4032D and PLA 4042D are shown in Fig. I.A.6. IR banding 

detected at about 1747 cm
-1

 could be attributed to C=O stretching, while the three bands visible 

in the range 1300-1500 cm
-1

 may be assigned to symetric and asymmetric deformational 

vibrations of C-H present in CH3 of PLA (Pamula et al., 2001). 

The peak at 1181 cm
-1

 can be attributed to C-O-C stretching of PLA (Rimoli et al, 1999; Zhang 

et al, 2005). The cooling process involved in the manufacturing of the films seems to be fast 

enough to prevent a rearrangement of chain polymer into a crystalline structure. This can 
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explain the shoulders shown at wavenumbers in the range 1200-1210 cm
-1

 (Carrasco et al., 

2010). The appearance of peaks at 1128, 1080 and 1043 cm
-1

 may correspond to C-O stretching 

vibrations (Pamula et al., 2001). 

Finally, IR bands detected at 868 cm
-1

 and 755 cm
-1

 can be assigned, respectively, to the 

amorphous and crystalline phases of PLA (Gonçalves et al., 2010). 

It is interesting to note that the appearance of two new peaks in the nanocomposite films were 

observed at around 520 and 627 cm
-1

. These peaks may be attributed to the stretching of Al-O 

and bending of SI-O groups relating to the organoclays present in the films (Frankowski et al, 

2007). The presence of Al-O and Si-O groups in nanocomposites confirm that nanoclays are not 

fully exfoliated in the matrix. Moreover, the width of Si-O peak can explain the degree of 

exfoliation of OMMTs. In fact, it is broad in case of their agglomeration, and become narrower 

as the degree of exfoliation increases. The width of the peak shown in Fig. I.A.6 around 520 

cm
-1

 may also explain the intercalated structure originated by the incorporation of the nanoclay 

in the two different PLA matrices. 

 

 

Figure I.A.6. FTIR spectra of films manufactured with PLA 4032D (a) and PLA 4042D (b). The zoomed 

region of interest (500-650 nm) is shown alongside the spectra with peaks indicated by the 

two arrows. 
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I.A.2.5. SEM 

The morphology of the cross-section of the selected PLA films is shown in Fig. I.A.7. 

Nanostructured films U/C20A, U/C30B, U/C93A were chosen for their performance and 

compared with the control U. In particular, U/C20A and U/C30B showed the best results in the 

improvement of WVTR and OTR respectively, while 4032D/C93A performed a remarkable 

increase in E (Table I.A.7).  

 

 

Figure I.A.7. SEM cross-sectional images of a) control U and b) U/C20A, c) U/C30B and d) U/C93A 

nanocomposites. 

 

While no layers can be observed on the control (Fig. I.A.7a), the SEM image show a clearly 

visible separation in layers for the nanocomposite films U/C20A and 4032D/C30B (Fig. I.A.7b 

and c). These films reveal a stratified structure constituted by several parallel layers oriented 

along the tensile direction, due to the separations determined by the incorporation of the 

nanoclays in the polymer. Based on the barrier properties results, this stratified structure seems 

to have affected significantly the permeation of molecules through the polymer matrix, 
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increasing the time of diffusion and thus decreasing their transmission rate. A similar separation 

in layers was already observed in nanocomposite films obtained by the incoporation of layered 

phyllosilicates into the matrix (Aulin et al., 2012). In agreement with Kumar et al. (2010), 

nanoclay C30B apparently dispersed more evenly than C20A, the latter showing the formation 

of small aggregates. Conversely, U/C93 image shows that the addition of the nanoclay 

produced an organization of the structure with not clear separation of layers (Fig. I.A.7d). While 

this structure apparently provided little improvement on the barrier properties, however, this 

structure affected significantly (P < 0.05) the E values, producing an increase of this mechanical 

property.  

 

I.A.2.6. Dynamic frequency sweep test 

The complex viscosity (η ) was affected by the addition of nanoclays in both polymer matrices 

in function of frequency (ω), while it was not affected by the small difference in PLA L-isomer 

content. Therefore, nanocomposites containing the same nanoclay had a very similar behaviour 

independently from the polymer matrix used. The interaction between polymer and nanoclays 

led to an increase of the complex viscosity at low frequencies. The increase was in function of 

the OMMT-type, with nanocomposites containing C20A showing the highest values of complex 

viscosity and thus indicating the finest clay dispersion (Najafi et al., 2012). The higher the 

organoclay dispersion in the PLA matrix the larger the interface area between the components 

(Pluta, 2006). Fig. I.A.8 showed the rheological behaviour of the most relevant nanocomposites.  

 

I.A.2.7. Appearance of films 

Control PLA and nanocomposite films were flexible and free-standing, characterized by regular 

parallel lines visible along the machine direction of the films due to the use of the casting 

apparatus. Control films were smooth, transparent and colourless (Fig. I.A.9). Among the 

nanocomposite films, PLA nanocomposites obtained by blending of C93A using the two 

different grades of PLA were slightly opaque, smooth and characterized by an off-white 

appearance. All other nanocomposite PLA films were characterized by higher transparency. As 

shown in Table I.A.6, an increase of thickness was observed for nanocomposite films compared 

to their respective controls. This result was attributed to the addition of solid matter in the 

matrix and in line with previously reported observations (Rhim et al., 2009). 
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Figure I.A.8. Frequency sweep test of selected materials: (a) U/C30B compared to U and (b) U/C20A 

compared to U. 

 

 

Figure I.A.9. Images of the films. 

 

I.A.2.8 Transmittance and transparency 

Results showed a general decrease in transmittance for nanocomposites at the wavelengths 

considered (Table I.A.6).  
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This seems to be related to the degree of dispersion in the polymer matrix. Interestingly, 

platelets of layered silicates were 1 nm thick and did not appear to affect the optically clarity of 

films in visible light for nanocomposites containing 4 % w/w OMMT (Sinha Ray et al., 2003; 

Zeng et al., 2005). It could also be explained by a presence of intercalated structures with a 

preserved pristine layered organization that hinders the passage of light, thereby causing an 

increased scattering of the light.  

 

Table I.A.6. Thickness, transmittance, transparency and total colour difference values for controls and 

nanostructured films* 

 

*Values of thickness, transmittance and transparency are mean ± standard deviation. Total colour 

values are mean ± standard error. Different superscripts in the same column indicate significant 

difference (P <0.05) between treatments. 

 

Transparency was significantly affected (P < 0.05) either by the addition of nanoclays or by 

PLA purity, but no significant interaction between PLA-OMMT was observed. Interestingly, 

nanocomposites obtained with PLA 4032D, which possesses the higher stereopurity and higher 

crystallinity, showed a lower decrease in transparency compared to those obtained with PLA 

4042D. Nanocomposites showed a significant decrease in transparency compared to controls 

(Table I.A.6). While films obtained with C10A, C20A and C30B have comparable values in 

relation to the experimental error, the addition of C93A in the matrix led to the worst 

performance with a significant greater decrease in transparency (P < 0.05), which is in 
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agreement with what has been reported in the appearance characterization section. Considering 

that the only difference between C20A and C93A lies in a methyl group chlorine anion in C20A 

and a hydrogen atom and bisulphate anion in C93A, it is believed that the different behaviours 

of films manufactured with C93A may be due to the bisulphate anion that characterizes this 

nanoclay. According to Gonçalves et al. (2010), the light yellow colour of PLA products may 

represent a drawback for food packaging applications, since a change of the degree of 

yellowness could affect the transparency. As displayed in Fig. I.A.10, nanocomposites 

(especially films containing C20A and C30B) showed an increase of b* values which 

correspond to an increase in yellowness (Cruz-Romero et al, 2007) and thus leading to a slight 

decrease in transparency. C20A showed the best results in terms of barrier properties to UV 

radiation while retaining transparency to a significant extent. Its addition in the polymer matrix 

lead to a decrease in transmittance up to 55% at λ = 280 nm. This may be related to its best 

dispersion in PLA as discussed in section 3.4. 

According to Sanchez-Garcia and Lagaron (2010), in packaging applications for certain types 

of foodstuffs, this behaviour would be of interest as a significant reduction in UV contact with 

the food, through the packaging, would be expected to reduce negative photo-oxidation 

reactions of food pigments and polyunsaturated fats 

 

I.A.2.9. Colour 

The effects of different types of OMMT and PLA L-isomer on CIE L*, a* and b* values are 

shown in Fig. I.A.10.  

The addition of nanoclays in both polymer matrices resulted in a slight decrease in L* values 

and a* values, and in an increase in b* values for films. In general, PLA nanocomposites were 

darker, greener and yellower compared to control PLA, and these changes were dependent on 

the nanoclay-type added. The greater yellowness values observed concurred with visual 

observations. ΔE* values (Table I.A.6) showed that OMMTs affected total colour differences 

but, according to the classification scale, the addition of organoclays in the two PLA matrices 

produced at most only a small colour difference. Similar changes in film colour L*, a* and b* 

parameters were reported by Ataeefard and Moradian (2011). These authors obtained films by 

mixing polypropylene with Cloisite® 15A and proposed that the variation in colour parameters 

observed for nanocomposites was dependent upon the presence of nanoclays at the polymer 

surface which increased film surface roughness which affected measurement. Rhim et al. (2011) 

also reported a decrease in L* values and an increase in b* values and ΔE* in films produced by 
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blending agar with Cloisite® Na
+
, 20A and 30B. The authors suggested that the differences in 

colour may be attributed to the degree of dispersion of the nanoclays in the polymer matrix 

which was in function of their surface hydrophobicity. Since the films were prepared under 

hydrophilic conditions, Rhim et al. (2011) concluded that the higher values for ΔE* found in the 

agar/Cloisite® 20A nanocomposite films were due to incomplete dispersion of this OMMT.  

The hydrophobicity of the silicates used in this work decreased  in the following order: C20 > 

C93A > C10A > C30B. 

 

Figure I.A.10. Effect of PLA L-isomer content and OMMT type on Hunter L- (a), a- (b) and b- (c) values 

of films 4032  series  ■  and 4042  series  □ . 
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Results generated in this study indicated that the degree of hydrophobicity associated with these 

silicates did not appear to be a factor in affecting film colour. Rather, it is believed that the 

difference in film colour observed in this work may be due to a variation in the surface 

properties of films determined by the addition of nanoclays as a function of the resin system 

used and  chemical treatments of the clay.  

Statistical analysis showed that while no significant difference in total colour was observed 

between the controls, a significant interaction (P < 0.05) between L-isomer content and  

nanoclays occurred. However, the classification scale based on ΔE* indicates that films 

possessed  very small, or no differences at all, in total colour. 

 

I.A.2.10 Barrier properties 

The addition of commercially available OMMT affected the OTR and WVTR of films; the 

OTR and WVTR decreased significantly (P < 0.05) (Figs. I.A.11 and I.A.12).  

 

 

 

Figure I.A.11. Effect of PLA L-isomer content and the addition of OMMT type on OTR of control and    

nanocomposite (NC) films.  

 



Part I - Section A 

 
 

60 

 

Figure I.A.12. Effect of PLA L-isomer content and the addition of OMMT type on WVTR of control and  

nanocomposite (NC) films.  

 

The statistical analysis showed also a significant (P < 0.05) interaction between PLA and 

nanoclays. The best OTR performance was obtained when C30B was incorporated in PLA 

4032D, leading to an improvement up to 50% when compared to the respective control. 

Considering the intercalated structure of the nanoclays occurring in the nanocomposites through 

the insertion of polymer chains between the clay platelets as previously observed, the improved 

barrier properties may be generally explained by the theory developed by Nielsen (1967), based 

on the tortuous pathway that a permeant has to do in order to diffuse across the polymer. The 

tortuosity is produced by the dispersion in the matrix of the layered silicates platelets, the latter 

consisting in a thickness of 1 nm and lateral dimensions as large as 10 μm. As a consequence, 

the longer diffusion pathway increases the time of diffusion, thus leading to a decrease of the 

permeability (Duncan, 2011; de Azeredo, 2009). According to Duncan (2011), barrier 

properties are not only influenced by tortuosity, but also by changes occurring to the polymer 

matrix at the interfacial regions. In case of favourable interactions between polymer and 

nanofiller, polymer strands close to each nanoparticle can be partially immobilized, thus 

working against the diffusion of permeants. For example, the Beall (2000) model focused in 

particular on the polymer–clay interface as an additional factor affecting permeability. It states 

that the polymer region around the clay that mainly affects diffusion is the constrained region, 

characterized by a lower free volume and therefore by a lower diffusion coefficient. 

Conversely, WVTR results showed that the lowest value was obtained when C20A was 
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incorporated in PLA 4032D with an improvement up to 53%. However, no significant 

differences were observed when C30B and C93A were also incorporated in PLA 4032D. This 

may be explained not only by how favourable the interaction between clay and polymer is, but 

also by the effect of the degree of hydrophobicity of the organically modified nanoclay (C20 > 

C93A > C10A > C30B) that seemed to have affected the diffusion of water molecules through 

the polymer matrices (Rhim et al., 2009). The results also showed that barrier properties were 

also significantly affected (P < 0.05) by PLA L-isomer content. The L/D ratio of isomer content 

is known to have an important effect in barrier properties, even whether findings in literature 

are inconsistent about the effect of PLA stereochemical purity on permeation of gases (Almenar 

and Auras, 2010). Our results obtained in this study indicated that a better performance could be 

generally achieved when the polymer possessing the higher L-isomer content was used. This 

may be due by the higher percentage of cristallinity observed in the PLA 4032D matrix, given 

that cystallinity has an important impact on permeation as suggested by Lehermeier et al. 

(2001).  

 

I.A.2.11. Mechanical properties 

The analysis of variance showed that the incorporation of the different nanoclays in the polymer 

affected the mechanical properties of manufactured films depending on the type of OMMT used 

(Table I.A.7). The interaction between PLA and nanoclay type was significant (P < 0.05). The 

TS of PLA nanocomposites obtained in this study were comparable to those of conventional oil-

based films such as high density polyethylene (HDPE), polypropylene (PP) and polystyrene 

(PS), possessing TS range values of 22-31, 31-38 and 45-83 MPa, respectively (Hernandez et 

al., 2000). Tensile properties of nanocomposite films were generally characterized by a 

decrease of TS (max 30.6 %) and YM (max 21.8 %) and an increase of E (max 157.8 %) 

compared to their respective controls. These values were in agreement with values reported by 

Martin and Avérous (2001). In general, the addition of organically modified layered silicate in a 

polymer matrix resulted in a significant improvement of YM and an increase of the TS. 

Moreover, the relationship between TS, filler/matrix adhesion and dispersion are more complex 

than for modulus so that few authors made no attempt to explain the results with quantitative 

models (Stretz et al., 2005; Zhaidi et al., 2009). This behaviour was explained by a high 

interfacial interaction and the formation of ionic bonds between the nanoclays and the host 

polymer whether a uniform dispersion occurs (Alexandre and Dubois, 2000; Pandey et al., 

2005; Pavlidou and Papaspyrides, 2008; Sinha Ray and Bousmina, 2005). 
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Table I.A.7. Effect of the addition of OMMTs and polymer purity on the mechanical properties of PLA 

controls and nanocomposite films* 

 

*Values are mean ± standard deviation.  

 

The results obtained in our study suggested that the nanoclays may not be well incorporated and 

agglomeration through the polymer matrix could have occurred as previously reported by other 

authors (Rhim et al., 2009; Silverajah et al, 2012). Moreover, according to the observed 

reduction in stiffness and increase in elongation of the nanocomposite materials, the 

organomodified layered silicates added in the PLA matrices seemed to have a plasticizer-like 

effect on mechanical properties as previously reported by other authors on behaviour of 

plasticizers (Cuq et al., 1997; Gontard et al., 1993; McHugh and Krochta, 1994; Martin and 

Avérous, 2001). In the PLA 4032D series, the incorporation of C30B produced the lowest 

decrease in YM and TS. This behaviour may be attributed to the stronger interactions between 

polymer and C30B nanoclay compared to the other nanoclays used. This consideration is based 

on the fact that the higher polar behaviour characterizing the nanoclay C30B by the presence of 

hydroxyl ethyl groups (—CH2—CH2OH) appear to favour the formation of a greater number of 

hydrogen bonds with the polar groups present in the PLA chains. A great increase in elongation 

was observed when C93A was incorporated into the PLA 4032D matrix. Thellen et al. (2005) 
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reported greater elongations for nanocomposite films compared to plasticized control films. The 

different structures generated in function of the clay type addition as shown in the SEM cross-

section of the films (Fig. 4) played a role in the tensile properties of nanocomposites, since 

stratified layers as seen for C30B and C20A probably provided better toughening effects 

compared to the structure originated by the incorporation of C93A. A different behaviour was 

observed in PLA 4042D series, particularly with the addition of nanoclays C20A and C93A, 

with the former providing the highest increase in YM (14.5 %) and the latter the less reduction 

in TS (4.1 %). It seemed that a higher D-isomer content in the matrix could have affected the 

interactions between nanofiller and host polymer, probably due to the different PLA sterical 

configuration that may favour the interaction with the organically modified nanoclay that 

possess longer carbon chains. In the PLA 4032D series, the addition of organoclays decreased 

significantly (P < 0.05) the normalized PS of films and the decrease in the PS was related to the 

clay-type. In this matrix, the incorporation of C20A produced the lower reduction in the PS. 

Nevertheless, a significant (P < 0.05) increase in the PS was observed when C20A and C93A 

were incorporated in the PLA 4042D matrix, confirming the increased toughness of the material 

observed due to the increased value of the YM. Therefore, it can be concluded that the PLA 

stereopurity affected significantly (P < 0.05) the mechanical properties. This findings are in 

agreement with Perego and Cella (2010), who found that a small increase in D-isomer content 

slightly decreased the YM and TS and produced an increased E. It was reported that the 

introduction of a small amount of amorphous impurity resulted in a lower crystallite dimensions 

(Auras et al., 2003). Results showed a contrasting behaviour in the nanocomposite films, which 

was dependant on the nanoclay type incorporated and the different interactions between 

polymer and nanofiller. The greatest significant decrease in TS, YM, E and PS was observed 

when C30B was added in PLA 4042D matrix (17.0, 20.7, 5.3 and 7.1 %, respectively). 

However, the addition of C93A in the same matrix increased significantly (P < 0.05) the YM to 

22.2 %. 

 

I.A.2.11. Contact angle 

Contact angle values of each film are shown in Fig. I.A.13. The results in the contact angle of 

the PLA controls indicated that the surface is characterized by slight hydrophobicity. It has been 

reported that the water contact angle values for poly(D,L-lactide) without surface modification 

ranged from 69˚ to 96˚ (Cai et al.,2002; Yang et al., 2002; Zhu et al., 2002; Paragkumar et al., 

2006). The different types of organoclays (Cloisite
®
) added into the two PLA polymer grades 
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produced a small significant increase of the hydrophobicity and it was correlated to the nature 

of the nanoclay incorporated, therefore, correlated to the hydrophobicity degree characteristic of 

the organic modifiers as reported in section 3.1. Consequently, the highest and lowest contact 

angle (θ  values were obtained when nanoclays C20A and C30B were added in the two PLA 

matrices, respectively. The results indicated that a higher D-isomer content in the PLA polymer 

produced a slight but not statistically significant decrease in θ values.  

 

 

Fig. I.A.13. Effects of PLA L-isomer content and the addition of OMMT type on the contact angle values 

of control and nanocomposite (NC) films. Selected images of the water drop are shown for 

films a) U, b) U/C20A, c) U/C30B and d) U/C93A. 

 

I.A.2.12. Antimicrobial properties 

The qualitative results obtained through the agar disk diffusion methodology in order to 

evaluate the potential antimicrobial activity of nanostructured films in comparison with the 

unfilled films are shown in Fig. I.A.14. 

The images showed that all the nanocomposite films as well as  the unfilled PLA had no 

antimicrobial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas 

Fluorescens, since there was no inhibition zone around the testing films. On the contrary, a 



Part I - Section A 

 
 

65 

clear radial inhibition halo was observed around the streptomycin-impregnated disks for all the 

bacteria tested. These findings are consistent with other studies (Rhim et at., 2009; Shameli at 

al. 2010). Rhim et al. prepared nanostrucuted PLA films using a casting method and chloroform 

as solvent. They mixed the PLA polymer matrix with three different types of Cloisite®, 

obtaining nanocomposite films with intercalated structures when PLA was incorporated by 

organically modified clays Cloisite® 20A and Cloisite® 30B. Even if they previously reported 

a strong antimicrobial activity of organically modified powders, especially Cloisite® 30B, for 

both Gram-positive and Gram-negative bacteria with small amount of clay, in this study no 

antimicrobial action was provided against Escherichia coli and Staphylococcus aureus by 

nanostructured materials. 

 

Figure I.A.14. Evaluation of the antimicrobial activity of nanocomposite and unfilled PLA by comparison 

of inhibition halo for PLA 4032D and 4042D series again8889st Escherichia coli (a and 

b), Staphylococcus aureus (c and d) and Pseudomonas Fluorescens (e and g). 
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I.A.3. Conclusions 

The incorporation of nanoclays in two PLA matrices consisting of a different L-isomer content 

resulted in the formation of nanocomposites characterized by intercalated structures and a 

partial preservation of OMMTs layered configuration independently from the organic modifier 

and the PLA matrix used, as shown by the XRD patterns. The thermal analysis indicated that 

the addition of nanoclays slightly affected the thermal properties of the films. The dynamic 

frequency sweep test showed that C20 had the best dispersion among the nanoclays used. The 

organoclays had an effect on the trasparency and the colour of films, by decreasing the former 

and ascribing the nanocomposites to a darker, greener and yellower appearance as a function of 

the Cloisite® used. C20A films also showed the best results in terms of UV barrier properties. 

The nanoclay type and the L-isomer content affected the OTR and WVTR. The incorporation of 

C30B improved the OTR by 50% and C20A improved the WVTR by 53%. However, this 

improvement does not seem enough to compete with conventional oil-based packaging such as 

polyethylene (high barrier to water vapour) and EVOH (High barrier to oxygen). The 

organically modified nanoclay used as filler also affected the mechanical properties of the 

nanocomposite films compared to PLA control samples, reducing the TS and slighlty increasing 

the E, with the nanocomposite U/C93A showing the greatest E. Nanocomposite films obtained 

with the PLA matrix possessing the L-isomer content showed greater E, probably due to the 

lower crystallinity as observed in thermal analysis. The surface properties of nanocomposites 

were influenced by the degree of hydrophobicity of the organic modifier. No antimicrobial 

activity was observed in the nanocomposites against Escherichia coli, Staphylococcus aureus 

and Pseudomonas Fluorescens. In summary, the nanocomposites were shown to have improved 

functional properties and consequently, may be employed by the food manufacturing and 

agricultural sector. 

In conclusion, a high barrier coating is needed to challenge the barrier properties of 

conventional oil-based materials.  
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I.B.1. Materials and methods 

I.B.1.1. Materials 

PLA 4032D pellets with 98.5 % L-isomer lactide content were used as the polyester matrix 

(NatureWorks® LLC, Blair, NE, USA). Three types of nano-sized Cloisite®, C20A, C30B and 

C93A (Southern Clay Products Inc., Gonzales, TX, USA), were purchased and used as fillers. 

The characteristics of the organoclays used are reported in Table 2.1 of Part I - Section A. DCM 

(ACS for Analysis, ≥ 99.5%, Carlo Erba Reagenti, Milano, Italy) was used as solvent for both 

nanoclays and PLA.  

 

I.B.1.2. Preparation of PLA/OMMT nanocomposites 

Before processing, both PLA pellets and nanoclays were dryed overnight in a vacuum dryer at 

75˚C and subsequently placed in desiccators for 1 h, due to their hygroscopic nature. PLA and 

PLA-based nanocomposite films were then prepared using the solvent casting method as 

follows: 

 

 PLA: 5.00 g of PLA pellets were dissolved in 100 mL of DCM and stirred under a 

fume hood at room temperature at 300 rpm. During this step, the sample has been 

covered in order to slow down the solvent evaporation. Successively, it was placed in a 

ice batch to avoid the overheating of the solution and sonicated (UP200S Ultrasonic 

processor, sonotrode Micro tip S2, Hielscher, Berlin, Germany) for 3 min (setting 

paremeters: Cycle =1; Amplitude =100%). Temperature was then set  at 9±1˚C. 

 

 PLA/OMMT: 4.80 g of PLA pellets were dissolved in 60 mL of DCM stirred at the 

same conditions of pure PLA. In a different beacker, 0.20 g of Cloisite® were 

dissolved in 40 mL of DCM in the same stirring consitions to allow the nanoclay to be 

swollen. Both samples were covered to slow down the solvent evaporation. The two 

solutions were sonicated separately as for pure PLA. The nanoclay solution was 

successively mixed with the PLA solution and sonicated again. Temperature was then 

set at 9±1˚C. 
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The dissolved solutions were poured onto a leveled teflon sheet (Tardivello srl, Udine, Italy) 

and spread evenly with Bird-type film applicator (cut depth 1.25 mm). The solvent was allowed 

to evaporate at room temperature for 24 h. Films were covered during this step to slow down 

the evaporation of DCM and to obtain a more homogeneous surface. The resultant films were 

successively peeled off from the teflon surface and vacuum dried at 50˚C for 5 h in order to 

remove the remaining DCM and prevent the solvent from acting as a plasticizers (Rhim et al., 

2006). Films were prepared according to the procedure shown in Fig. I.B.1. 

 

 

 

 

Figure I.B.1. Scheme of the main steps for the preparation of (a) films obtained by pure PLA and b) 

nanostructured films obtained by the addition of nanoclays in PLA matrix. 

 

I.B.1.3. Characterization  
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Film thickness was measured using a micrometer 345F Digital Thickness Gauge (Elcometer, 

Manchester, UK) which was previously calibrated with 23.8 μm and 51.5 μm standards. 

Before measurement, films were preconditioned for at least 48 hours in an environmental 

chamber set at 23˚C and 53 % R.H. 

 

I.B.1.3.1. Structural analysis  

Investigation on the structure of nanoclays and nanocomposite films were carried out in a XRD 

instrument (X’Pert Pro, PANalytical, Almelo, Netherlands) as detailed in the section I.A.1.3.3. 

 

I.B.1.3.2. WVTR 

WVTR of films was calculated using a gravimetric method according to the ASTM E-96 

standard method.  Circular-shaped film samples (7 x 7 cm) were mounted across the test cup 

(Payne Permeability Cup 1003, Sheen Instruments, Redhill, UK) opening. Distilled water was 

pipetted in cups (100 % R.H.) and the cups were sealed using vacuum silicone grease. The cups 

were successively placed in a equilibrating chamber set at 23˚C and 22 % R.H., the latter 

obtained thorough a saturated solution of potassium acetate. The weight of test cells were 

monitored every 2 h intervals over a 24 h period of time. WVTR was determined from the slope 

(R
2
 > 0.99) obtained by the regression analysis of the data of weight loss as a function of time, 

once the steady state was reached. Results are based on three replicates. 

 

I.B.1.3.3. Contact angle 

Contact angle measurements were carried out using a sessile drop method on a goniometer 

EasyDrop (Krüss Gmbh, Hamburg, Germany). The images acquired were elaborated with the 

image analysis software Drop Shape Analysis (Krüss Gmbh, Hamburg, Germany). 

A 10 μL droplet of distilled water was deposited with a precision syringe (needle diameter = 0.5 

mm) on the surface of films. Three solvents with different surface tensions were used (Table 

I.B.1.). 
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Table I.B.1. Surface tensions of the solvent used. 

Solvent Surface tension 

(mN m-1) 

Dispersed component 

(mN m-1) 

Polar component 

(mN m-1) 

Water 72.8 21.8 51.0 

Diiodomethane 50.8 49.5 1.3 

1- Bromonaphtalene 44.6 44.6 - 

 

The analysis was carried out on both sides of films, in order to evaluate the effect of the 

different exposure during the solvent evaporation step. The two surfaces were identified as:  

 

  A = surface exposed to the air, 

 B = surface in contact with the teflon support. 

The contact angle was monitored as follows: 

 

 Contact angle at time zero (t0): measurements were carried out on the first image 

acquired after the deposition of the drop. In this case, results obtained from each side 

are based on the mean of tirty replicates.  

 

 Contact angle over time: measurements were carried out on images acquired every 5 s, 

for a overall time of 60 s from the initial deposition of the drop. For both surfaces, 

results are based on a men of three repicates. 

 

I.B.I.3.4. Surface energy determination 

The surface energy (SE) of films was calculated on both sides based on the contact angles 

obtained at t0. Values were obtained using the following methods: 

 

 State equation (EOS), 

 Extended Fowkes, 

 Wu 

 

I.B.1.3.5. Statistical analysis 
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One-way analysis of variance (ANOVA) was used to assess the effect of the addition of  

OMMTs in the PLA polymer matrix. Tukey’s HS  test was used to compare treatment means 

when significant differences were found with the ANOVA. The significance level was always 

set to 0.05. All the analyses were carried out using the software R v2.13.1 (R Foundation dor 

Statistical Computing, Wien, Austria) with the graphical interface R Commander. 

 

I.B.2. Results and Discussion 

I.B.2.1. Solvent evaporation 

The control of the solvent evaporation was a key factor in obtaining films possessing good 

optical properties and homogeneous surface. In fact, too high evaporation rates due to the low 

boiling point of DCM (around 40˚C at 1 atm) affected negatively the appearance of films, 

leading to the formation of rougher surfaces. As a consequence, it was necessary to control the 

evaporation rate through the realization of a saturated chamber by covering the films during the 

evaporation, thus allowing to reduce its rate. 

 

I.B.2.2. XRD 

XRD measurements carried out on films prepared with unfilled PLA and through addition of 

nanoclays are shown in Fig. I.B.2.  

 

 

Figure I.B.2. XRD patterns of nanclays, unfilled PLA and nanocomposites. 
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As reported in the section I.A.2.3, the pattern of each silicate powder was characterized by a 

diffraction peak corresponding to a specific 2θ in function of the nature of the nanoclay (Table 

I.B.2). 

 

Table I.B.2. Effect of the addition of OMMTs on the basal spacing in nanocomposite films. 

OMMT type OMMT powder 

    2θ (˚)              d001 (nm) 

Film 

    2θ (˚)                 d001 (nm) 

C20A 3.61 2.45 2.78 3.17 

C30B 4.95 1.79 2.73 3.24 

C93A 3.49 2.53 3.24 2.73 

 

The addition of OMMTs into the PLA matrix also produced patterns characterized by the 

presence of diffraction peaks. The comparison between those of unfilled PLA, pure nanoclays 

and films suggested that the structure derived by the interation between layered silicates and 

PLA. In particular, a shift to a lower 2θ angle of the diffraction peak of the different types of 

Cloisite® was observed in all the composite materials, thus corresponding to an increase of the 

basal spacing between layers. The d001 values obtained from the three different formulations 

(PLA/C20A, PLA/C30B and PLA/C93A) were 3.2, 3.2 and 2.9 nm respectively. These values 

were consistent with the results obtained by Pavlidou and Papaspyrides (2008) and they were 

compatible with the formation of nanocomposite materials possessing an intercalated structure. 

The increase of the interlayer distance was explained by the insertion of PLA chains between 

the platelets of the clays, with a partial preservation of the regular structure of the nanoclays. 

The greater basal spacing showed by the films PLA/C20A and PLA/C30B suggested a slight 

better intercalation in comparison with PLA/C93A. The pure PLA showed no diffraction peaks. 

As it can be observed in the present study, the d001 values reported in nanocomposite films 

obtained by extrusion and solvent casting, using DCM as a solvent, were very similar under the 

manufacturing conditions used. 

In literature, Ogata et al. (1997) observed the formation of a tactoid structure in films obtained 

by addition of nanoclays in PLA through the use of a solvent casting technique. Rhim et al. 

(2009) obtained nanocomposite films with intercalated structures by incorporating C20A and 

C30B in PLA. Unlike the present study, their experimental plan consisted in the realization of 

films using a different solvent and the use of two cycles of sonication, taking 30 min to 

complete the process. Krikorian and Pochan (2003) observed an exfoliated structure in 
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PLA/C30B nanocomposite films prepared by solvent casting (DCM). However, they used 

greater amounts of solvent in relation to the polymer and two cycles of sonication (60 min). 

These findings explained the strong relationship between the process setting conditions and the 

resulting structure obtained. Moreover, several authors produced PLA/OMMT nanocomposite 

materials using the melt processing technique, reporting either intercalate or exfoliated 

structures, in function of the nature of the organic modifier used, the process conditions and the 

nanoclay amount (Kubies et al., 2006; Pluta et al., 2006; Zhou and Xanthos, 2008; 

Krishnamachari et al., 2009; Nieddu et al., 2009). This means that it is fundamental to optimize 

all the process conditions, in order to tailor materials possessing specific requirements in 

function of the system used, independently from the technique used for the preparation of 

nanocomposite materials.  

 

I.B.2.3. WVTR 

Results of the WVTR of nanocomposite materials compared to the unfilled PLA are shown in 

Table I.B.3. 

Table I.B.3. WVTR values measured for unfilled and nanostructured PLA films. 

Film            WVTR 

              (g m-2 d-1) 

              ΔWVTR 

                 (%) 

PLA  134±13.0a    - 

PLA/C20A    90±16.4b  -33 

PLA/C30B    93±13.1b  -31 

PLA/C93A   111±5.7c  -17 

 

The value obtained by the pure PLA film was comparable with that reported by Rhim et al. 

(2009) and much lower if compared to that observed by Rhim et al (2006). In particular, the 

latter was obtained by measuring films characterized by a certain content of residual solvent 

(chloroform), thus acting as a plasticizer and decreasing the barrier properties against water 

vapour molecules. This means that the technique used in the present study to remove the solvent 

from the films was effective, even if the treatment time was shorter in comparison with other 

operative methods reported in literature (Krikorian and Pochan, 2003; Rhim et al., 2009). 

The nanostructuration of PLA with different types of nanoclays resulted in an enhancement of 

the barrier properties of films. In particular, the addition of Cloisite® 20A in the PLA polymer 

matrix determined a reduction of 33% in comparison with the unfilled polymer. This can be 
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explained mainly by the physical barrier caused by the organoclays dispersed in the matrix 

interfering with the diffusion pathway of permeants. The water vapour molecules were forced to 

navigate around impenetrable particles/platelets thus increasing the mean gas diffusion lenght 

(Duncan et al., 2011). The effectiveness of the nanostructuration in increasing the barrier to the 

water vapour molecules depended on the characteristic of the organic modifier used in the 

Cloisite®. Kumar et al (2010) stated that the permeability depended on the degree of 

hydrophobicity of the organic cation adsorbed on the surface of the nanoclay. However, since 

the organic modifiers of the different OMMTs used possessed a degree of hydrophobilicy that 

follows the order C20 > C93A > C30B (Lim et al., 2009), this consideration can not be applied 

in the present study. In fact, the WVTR results were only partially consistent with the degree of 

hydrophobilicty of the nanoclays used, with the film PLA/C20A providing the best 

performance. This in full agreement with the discussion in section I.A.2.10. The interactions 

between nanoclays and polymer and the lamellar morphology of the Closite® are the main 

factor affecting the permeability of the nanocomposite films. The results showed higher values 

of WVTR than the same materials obtained thorugh extrusion process. This is in agreement 

with Rhim et al. (2006), who found a similar behaviour on pure PLA films prepared with 

thermocompression and solvent casting (chloroform). They explained the lower barrier 

observed in films obtained with solvent casting with the incomplete evaporation of the solvent, 

causing a plasticizing effect and thus increasing the permeability to water vapour molecules. 

 

I.B.2.4. Contact angle 

I.B.2.4.1. Contact angle at t0 

Results obtained by the contact angle measurements at t0 in function of film characteristics and 

solvent used are reported in Fig.I.B.3. The values of θ ranged from 72.5˚ to 80.3˚, thus showing 

that both pure and nanostructured PLA possessed tendentially hydrophobic surface properties. 

As described in section I.A.1.3.10 according to Vogler at al. (1998) the discrimination between 

hydrophilic and hydrophobic behaviour is provided by the value of θ = 65˚. 

The addition of nanoclays produced a slight increase in contact angle, which was in function of 

the degree of hydrophobicity of their organic modifier. As a consequence, the most 

hydrophobic nanocoposite film was PLA/C20A. The same behaviour was observed for the 

nanostructured films obtained by melt extrusion (I.A.2.11). The comparison between contact 

angle and WVTR results suggests a lack of correlation between the surface properties of films 
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and their barrier properties to water. This confims the considerations made in section I.A.2.10, 

where the hydrophobicity of the organic modifiers only partially affected the WVTR. 

 

 

Figure I.B.3. Average values of θ at t0 of control PLA and nanocomposites obtained for the three solvents 

using the static sessile drop method. (A) and (B) are referred to the surface exposed to air 

and teflon respectively during the preparation of the films. 

 

Values of θ obtained by films in function of the solvents used showed a different affinity 

between film and solvent. The contact angle decreased with the increase of the solvent 

hydrophobicity, indicating that the affinity between film and solvent followed the order: water < 

didiodomethane < 1-bromonaphthalene. The greater affinity for the most hydrophobic solvent 

confirmed the tendentially hydrophobic nature of all the PLA films, in particular in relation to 

the nanocomposite films. This non-polar liquid can wet the surface of PLA films, because PLA 

chains possess hydrophobic groups sush as CH3. The images acquired for the determination of 

the contact angle values of the pure PLA are shown in Fig. I.B.4. Among the three solvents, the 

drop of water tends to minimize the surface in contact with the film, due to the lower affinity 

between the two phases. 
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Figure I.B.4. Images o  the drop pro ile deposited on  ilm made o  pure P A  or the measurement o  θ at 

t0. Letters and numbers are referred to the type of surface (A: air, T: teflon) and solvent (1: 

water, 2: diiodomethane, 3: 1-bromonaphthalene) respectively. 

 

The comparison between the values of θ at t0 of the two sides of the film did not show a 

significant effect in relation with the different exposure (air and teflon). However, higher θ 

values were observed in tests carried out with water and 1-bromonaphthalene for the surface in 

contact with teflon. This slight variation may be attributed to two factors as reported in 

literature. The first was the potential difference in the conformation of polymer chains on the 

surface of films due to the different exposure of the two sides during the solvent evaporation 

(Paragkumar et al., 2006). The second factor is the potential difference in the surface 

topography of the film due to the roughness of the support. Erbil et al (2003) reported an 

increase of θ values using water as solvent with the increase of the surface roughness of the 

testing materials. However, this possible explanation may be further investigated.  

 

I.B.2.4.2. Contact angle over time 

The observation of θ in the liquid and solid phases allows to understand either the potential 

interactions between them or the modifications occurring in the system. In fact, phenomena 

such as evaporation, absorption and swelling are influenced by the solvent and the testing film 

(Karbowiak et al., 2006).   

An ehample of the values of θ over time obtained for the 4032D films with the three solvents 

are shown in Fig. I.B.5. 

The trend of θ over time was similar for all the films tested. However, while no significant 

variations were observed for θ measured using water and diiodomethane showing no 

interactions between the solvent and the testing film (the slight decrease in θ over time related 
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to water and didiodomethane can be attributed to the evaporation of the solvent itself), a 

different behaviour was reported for the θ measured with 1-bromonaphthalene. 

 

Figure I.B.5. Values of contact angle in function of time for a) control, b) PLA 4032D/C20A, c) PLA 

4032D/C30B and d) PLA 4032D/C93A. (A) and (T) are related to the surface exposed to air 

and teflon respectively. 

 

In fact, a significant decrease in θ was observed from 0 to 5 s, in particular for the surface in 

contact with air. However, no variations due to absorption, swelling of the film or solvent 

evaporation can be observed. In Fig. I.B.6. the images of the drop formed by 1-

bromonaphthalene monitored over time in control PLA and nanocomposite PLA/C20A are 

displayed. 

The different behaviour of the contact angle observed using 1-bromonaphthalene can be 

explained by a greater affinity between this solvent and the materials tested. In fact, a 

progessive increase of the contact surface solid/liquid determined by the deposition of the drop 

on the film surface was observed over 60 s. Such affinity is due to the contribution of the polar 

and dispersive components of the surface tension related to 1-bromonaphthalene (Table I.B.1).  

 

I.B.2.4.3. Surface energy 

Values of SE
TOT

, SE
D
 and SE

P
, calculated according to the average contact angle at t0, are 

reported in Table I.B.4. using three different methods. Since the values of θ measured on the 
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two sides of films at t0 didn’t show significant differences, the calculation of the surface energy 

was carried out without considering any distinction between the two different surfaces.  

 

 

Figure I.B.6. Images of the 1-bromonaphthalene drop profile over time of nanocomposite PLA/C20A and 

control film. Letter refer to the different exposure of the film (A: air; T: teflon) during the 

preparation.  

 

The SE
TOT

 reported for all the films was slight different depending on the method used. 

However, the comparison among the films showed that the addition of nanoclays produced a 

small variation in the SE
TOT

 of nanocomposites, which was in function of the different values of 

θ previously obtained at t0 (Fig. I.B.3). The difference betweeen the values of surface energy in 

the films is probably due to differences in terms of conformation and surface molecular 

orientation (Fahs et al, 2010). Higher values of SE
TOT

 were observed with the decrease of the 

contact angle, that is with the increase of the hydrophilicity of the film surface. In particular, the 

lowest values were observed for PLA/C20A, while the highest were provided by PLA/C30B.  

Among the three methods used for the determination of SE
TOT

, Extendes Fowkes and Wu 

allowed to calculate SE
D
 and SE

P 
of the materials surface energy. Independently from the 

method used, values related to SE
D
 and SE

P 
were characterized by the same behaviour. In the 

nanocomposites, SE
P 

and SE
D
 decreased and increased respectively with an increase of the 

organic modifier hydrophobicity. The addition of the most hydrophobic nanoclay (Cloisite® 

20A) produced the greatest decrease in SE
P
l, due to the hydrophobic groups of the nanoclay 

organic modifier. Conversely, in the nanocomposite obtained with the less hydrophobic 
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nanoclay (PLA/C30B), an increase of SE
D
 and SE

P
 was observed. The higher values of SE

P
 can 

be explained by the –OH groups constituting the organic modifier of Cloisite® 30B. 

To date no studies on the characterization of the surface energy on nanocomposite materials 

obtained by the incorporation of layered silicates in a PLA polymer matrix were found in 

literature. However, the values of SE
TOT

, SE
D
 and SE

P
 observed in the present study are very 

close to those reported by Meiron and Saguy (2007) obtained on plastic films made of LLDPE 

and PET. Morover, the surface energy values of pure PLA are very similar (41.65 N/m, 

obtained by averaging the values from the three methods) with those reported by Auras (2004) 

for 98% L-lactide (42 N/m). 

According to Karbowiak et al (2006) the study of the surface properties thorough contact angle 

analysis and surface energy are critical in the food packaging industry, especially for processes 

which use the interaction between two phases, such as coating operations, spreding of inks 

(determination of the printing quality of inks) and adhesives on various substrates. 

 

 
Table I.B.4. Energy surface values of unfilled and nanocomposite PLA films calculated with three 

different methods (Equation of State, Extended Fowkes and Wu). SETOT , SED and SEP are 

the total energy surface,  dispersive component and polar component respectively. 

Method Film SETOT 

(mN m-1) 

SED 

(mN m-1) 

SEP 

(mN m-1) 

Equation of State (EOS) PLA 37.22±2.64 - - 

Equation of State (EOS) PLA/C20A 36.44±0.74 - - 

Equation of State (EOS) PLA/C30B 39.47±0.60 - - 

Equation of State (EOS) PLA/C93A 38.37±1.08 - - 

Extended Fowkes PLA 40.68±2.53 34.58±0.92 6.11±1.60 

Extended Fowkes PLA/C20A 39.47±2.53 34.76±1.05 4.71±1.49 

Extended Fowkes PLA/C30B 44.11±2.36 37.50±0.73 6.61±1.63 

Extended Fowkes PLA/C93A 42.22±2.46 37.18±0.81 5.04±1.65 

Wu PLA 47.06±2.60 35.95±0.81 11.11±1.79 

Wu PLA/C20A 45.45±2.59 36.01±0.92 9.44±1.68 

Wu PLA/C30B 50.47±2.40 38.67±0.65 11.80±1.75 

Wu PLA/C93A 48.31±2.63 38.25±0.71 10.07±1.91 

 

I.B.3. Conclusions 
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Unfilled and nanocomposite PLA-based films were prepared thorugh a solvent-casting 

technique using dichloromethane as solvent. 

The addition of organomodified montmorillonite in a PLA polymer matrix affected the 

structural, barrier and surface properties of the resulting nanocomposite films. The results 

obtained in the present study suggested that: 

 

 as observed from the XRD patterns, the procedure used for the preparation of films 

allowed to obtain nanocomposites with an intercalated structure, independently from 

the nanoclay type used; 

 

 nanocomposite films were characterized by an improvement of the WVTR barrier 

properties. This enhancement is due to the “tortuous” pathway that increased the mean 

gas diffusion length, which is influenced by the quality of the dispersion of the 

nanoclays and the interfacial interactions polymer/nanoclay. However, the degree of 

hydrophobicity of the organic modifier seemed to have only a partial effect on the 

diffusion of water vapour molecules across the film; 

 

 the different nature of the nanoclays affected the surface properties of the films in 

function of degree of hydrophobicity of the organic modifier.  

 

Based on the method of film preparation used and the analysis carried out, it was observed that 

Cloisite® 20A was the nanofiller which mostly affected the properties of nanofillers, in 

particular the barrier to water vapour molecules. Cloisite® 93A was the less effective in 

enhancing the PLA properties, probably due to a poor interaction with this polymer. 

The comparison between the two techniques used in Part I (extrusion and solvent casting) 

showed that both of them can be used to produce nancocomposite films. In particular,  

intercalation of PLA chains between the galleries of the nanoclays were observed for all films 

produced. While the surface properties of nanocomposites were found to be related more to the 

degree of hydrophobicity of the nanoclays than the process used for the production of the films,  

WVTR showed lower values in the samples obtained through extrusion. This suggests that the 

solvent used can persist as a residue in the film, thus acting as a plasticizer and raising also 

issues on safety. Moreover, extrusion is the proccess mostly used for the production of 

conventional plastic. As a consequence, it seems more feasible that films obtained in this study 

through this technique, would be reproduced commercially. 
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II.1. Introduction 

Gelatin-based films have been largely investigated due to the easy availability, biodegradability, 

relatively low cost and excellent film forming properties of this material. (Eastoe and Leach, 

1997; Arvanitoyannis et al., 1997a; Arvanitoyannis et al., 1997b; Cao et al., 2007; Núñez-Flores 

et al., 2012; Rivero et al., 2009; Wang et al., 2009). The large use of gelatin in the world is also 

proved by the recent increase in its global demand, reaching an annual output of nearly 326,000 

tons (See et al., 2010).  

Gelatin is obtained from renewable resources and thus possesses the advantages described in 

section 1.3.1. Gelatin has broad applications in the food, pharmaceutical, cosmetic and 

packaging industries. It is able to produce clear, flexible and strong films through the use of a 

casting process, after dissolution in water and in presence of suitable plasticizers (Gennadios et 

al, 1994). As food packaging, gelatin films are mainly deposited as coatings to extend the shelf-

life of perishable foods, especially protecting them from oxygen, light, and moisture exchange 

(Farris et al., 2009). In fact, gelatin is known to produce films with excellent gas barrier 

properties (Giménez at al., 2009). Permeability to gas is very important for food packaging 

films. In particular, oxygen is responsible for many deteriorative processes occurring in 

packaged foods that lead to undesiderable modifications of organoleptic and nutritional 

characteristics. For instance, changes in colour, degradation of vitamin C and development of 

rancid flavours originated from oxidative reactions involving lipid oxidation, along with the 

growth of aerobic micro-organisms that promotes several enzyme catalyzed reactions, are all 

responsible for the reduction of shelf-life in foodstuffs.  

However, films of proteins are highly sensitive to moisture and exhibit poor water vapour 

barriers (Guilbert et al., 1996 ; Wang et al., 2007).   

 

II.1.1. Structure of collagen and gelatin 

Collagen consists of three polypeptide strands supercoiled into right-handed triple helix by 

hydrogen bonds, forming units (tropocollagen) of around 300 nm long and 1.5 nm in diameter 

(Farris, 2009). According to Tanzer (1973), these units are able to pack together side-by-side, 

through aldol crosslinks between the amino acid constituting the polypeptide chains, and 

resulting in a stabilized structure as shown in Fig. II.1.   
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Figure II.1. Sequential steps in association of peptide chains to form collagen (Farris et al, 2009). 

 

The three peptide chains constituting the triple helix can be identical or differerent, thus 

generating different types of collagen in function of their structure as shown in Table II.1 

(Belitz et al., 2009). 

 

Table II.1. Different types of collagen. 

 



Part II 

 
 

85 

The collagen triple helix organization can be dissociated thermally or chemically by partial 

hydrolysis and forming gelatin. Gelatin is produced in the world mainly from pigskin (46%), 

bovine hide (29.4%) and bones (23.1%) (Gómez-Guillén et al., 2009). According to 

Arvanitoyannis (2002) the production of gelatin for commercial purposes is generally carried 

out through two different processes : 

1) Gelatin produced by acid process (Type A gelatin) involves the soaking of skin or bone in a 

dilute acid followed by extraction at acid pH.  

2) Collagen in hide or demineralized bone is partly depolymerized by breaking down the 

covalent cross-links and the resulting collagenous material is solubilized at near neutral pH at 

temperatures of 60-90˚C (Type B gelatin). 

Gelatin is characterized by a unique sequence of amino acids, with a high level of glycine, 

proline and hydroxyproline (Table II.2.). In particular, PSG possesses a content of proline and 

hydroxyproline of around 30%, which is considerably higher if compared with that provided by 

fish gelatins (Karim & Bhat, 2009). The amount of proline and hydroxyproline is important in 

consideration of their effects on gelling properties of the different sources of gelatin (Gómez-

Guillén et al., 2011). In particular, these amino acids are key factors in thermal stability, due to 

steric restrictions imposed by their pyrrolidine rings and the hydrogen bonds formed between 

these and other amino acids residues (Sikorski et al., 1984; Te Nijenhuis, 1997).  

 

 Table II.2. Amino acid composition of collagen and gelatin reported as Residues per 100    total residues 

(Arvanitoyannis, 2002). 

 



Part II 

 
 

86 

II.1.2. Functional properties of collagen and gelatin  

Due to their nature, collagen and gelatin possess hydration properties auch as swelling and 

solubility. However, the most important characteristics of collagen and gelatin can be divided 

into two different groups (Gómez-Guillén et al., 2011). 

1) Gelling behaviour (gel formation, texturizing, thickening and water binding capacity; 

2) Surface behaviour (emulsion, foam formation, adhesion, cohesion, film formic capacity, etc);  

 

II.1.2.1. Gelling behaviour of gelatin 

The factors that mostly affect the gelling behaviour of a system depend on its temperature along 

with the structure and the molecular weight of the materials constituting it. Collagen and gelatin 

have different gelation mechanism. In the case of gelatin for example, the gelation process is 

associated to a decrease in temperature of the solutions below 30˚C, which determines the 

reverse coil-to-helix transition (Gómez-Guillén et al., 2011). The helices produced are similar to 

the collagen triple-helix without reaching an equilibrium. The gelation process for gelatin is 

thermo-reversible, where gelatin gels melt as a consequence of an appropriate increase in 

temperature. 

The dissolution of gelatin in acqueous solutions determines a cross-linking phenomena between 

the chains, which results in a formation of matrices able to swell and constituting gelatin 

hydrogels. The ability to form hydrogels with the absorption of a great amount of water, along 

with the bio-source origin, make the gelatin an interesting material to be used in the field of 

food packaging. According to Farris et al. (2009), the properties of gelatin hydrogels are related 

to the pH of the system which influence the degree of electrostatic associations and ionic 

interactions in the gelling systems.  

The incorporation of gas such as air in the matrix may lead to a weakening of the structure of 

gelatin gels, thus worsening the mechanical properties and also providing an opaque white 

appearance (Zúñiga and Aguilera, 2009). 

 

II.1.2.2. Surface properties 

The surface properties of gelatin are related to the presence of charged groups in the protein 

side chains. Gelatins with a relatively high isolectric point (pI ≥ 7.0) are suitable for creating 

oil-in-water emulsions with a postive charge over a wider range of pH values than is possible 
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with conventional protein emulsifiers (Dickinson and Lopez, 2001). The emulsion ability of 

gelatin derived from fish is generally lower than that obtained from mammalians. Another 

factor to be considered in selecting an appropriate type of gelatin for emulsion purposes is the 

gel firmness. The higher the gel firmness, the firmer the gel-like protective sheath is around the 

oil droplets (Schrieber and Gareis, 2007). For instance, tuna fish gelatin possesses a lower 

emulsion activity index compared to pig skin gelatin at the same protein concentration (Aewsiri 

et al, 2008). 

In general, gelatin has suitable foaming properties because it is able to decrease the surface 

tension at the liquid/air interface, since it increases the viscosity of the acqueous phase 

(Schrieber and Gareis, 2007). A greater viscosity is also related to a better foam stability 

(Jongjareonrak et al., 2010). 

 

II.1.2.3. Film forming properties 

Over the last years, gelatin has been widely studied due to its film forming ability and the 

properties to preserve food by acting as a barrier to oxygen  and light (Arvanitoyannis, 2002).  

According to Gómez-Guillén et al. (2009), the physical and structural properties of gelatin are 

influenced by the molecular weight distribution and amino acid composition. These 

characteristics are also determinant in the mechanical and barrier properties of the resulting 

films. For example, films obtained from tuna gelatin showed poorer mechanical properties than 

those produced from bovine hide gelatin. In particular, the breaking deformation values were 

found to be 10 times higher (Gómez-Estaca et al., 2009). This is probably due to a lower 

amount of amino acids such as proline and hydroxyproline. In fact, the pyrrolidine rings of 

these amino acids could affect the deformability of gelatin films due to the conformational 

constraints imposed. 

Films produced from low-molecular weight gelatin are characterized by a higher 

plasticizer/biopolymer molar ratio, that makes them more plasticized (Thomazine et al., 2005). 

Moreover, a predominance of low-molecular weight fragments in a gelatin-based preparation 

determines weaker and more deformable films. This can be explained by protein heat 

degradation during the water extraction step (Muyonga et al., 2004a) or the evaporation step 

(Cavalho et al., 2008). 

According to Muyonga et al. (2004b) and Zhang et al. (2007), the water vapour barrier and 

mechanical properties of films made from warm-water fish species (Nile perch or channel 

catfish) are comparable to those of films obtained from mammalian gelatin. They present also 
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lower barrier properties than films obtained from cold-water fish gelatin (Avena-Bustillos et al., 

2006). This can be explained by the difference in the amino acids composition that 

characterizes gelatins. In fact, cold-water fish gelatins possess higher amounts of hydrophobic 

amino acids and lower level of hydroxyproline. Nur Hunani et al. (2012) investigated the 

properties of different types of gelatin films from solution. The types of gelatin used derived 

from beef, pork and fish skin sources. The authors assessed the different composition of the 

gelatin sources through the use of FTIR spectroscopy and found that the different gelatin 

sources showed some changes in the wavenumber of the peaks related to amide-A, amide I and 

glycerol, suggesting that the film forming ability can be influenced not only by amino acid 

composition, distribution and polarity, but also by ionic cross-links between amino and 

carboxyl groups, hydrogen bonding and intramolecular and intermolecular disulfide bonds. The 

highest gas and water vapour barrier properties were provided by fish gelatin films, while films 

made of pork gelatin skin showed the highest tensile strength. They concluded that gelatin, 

irrespective of source and/or concentration used, demostrated itself to be an effective film-

forming material which can be used for commercial usage. However, gelatin is a hygroscopic 

material and this may represent a problem when in contact with the surface of food 

characterized by high moisture content. In this case, gelatin films tend to swell or dissolve, thus 

decreasing the barrier properties. As a consequence, new approaches to manufacturing gelatin-

based films will need to be investigated in order to improve the barrier properties of the 

resulting films. 

At low to intermediate relative humidity, protein films possess oxygen barrier properties which 

are higher than those of the polyethylenes and approaching those of the best oxygen barriers 

such as ethylene-vinyl alcohol copolymer (EVOH) (Krochta, 2002). This means that protein 

films would appear suitable for coatings and pouches for oxygen-sensitive products.  

 

II.1.2.4. Production of gelatin-based films  

Biodegradable films obtained from natural biopolymers such as starch, gelatin, whey protein 

and fish proteins are thin, transparent and flexible (Bergo and Sobral, 2007). Such films are 

generally obtained through three steps: solubilization, heating and dehydration of a filmogenic 

solution, which is the denaturation of the triple-helix present in the collagen. 

In order to form a film or coating, the protein is first dissolved in the solvent (water or acqueous 

ethanol). Most film-forming proteins are soluble in water, with the exception of corn zein, 

wheat gluten, sorghum kafirin and keratin (Krochta, 2002). Successively, heating is necessary 
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because the bonds are denaturated by the additional heat which changes the three-dimensional 

structure of protein, exposing sulfydryl groups and hydrophobic side chains. A futher pH 

adjustment can be done to enhance film formation. 

The film properties of the raw material need to be altered by the introduction of chemical cross-

links. This can be carried out by using in formulation plasticizers such as glycerol and/or 

sorbitol which decrease the brittleness of the resulting films. Successively, a degassing step is 

introduced to eliminate bubble formation in the final film and coating. 

Finally, for films obtained through the use of a solvent casting method, the protein films are 

formed by applying the prepared formulation to the desired casting or product surface and 

allowing the solvent to evaporate. In this case, the formulation needs to be spread evenly on the 

surface from where films are pealed off after drying. 

 

II.1.3. HPP 

HP treatments have been increasingly used for the preservation and processing of food over the 

last years. This alternative technology is used to preserve a variety of food materials with 

reduced thermal impact. The technology has been found to inactivate spoilage and pathogenic 

bacteria at room or modest temperatures, increasing shelf-life, by denaturing proteins, 

solidifying lipids and breaking bio-membranes. In particular, it induces a change in the molar 

volume of proteins that affects their conformation by acting on intra- and inter-molecular bonds 

(Heremans, 1995). This process depends on the pressure applied as well as on other parameters 

such as: temperature, holding time and molecular size of the protein (Nguyen and 

Balasubramaniam, 2011). HP treatments applied on different gelatins gels showed also an effect 

on the gel strength properties depending on the nature of the collagen used and, in cartain cases, 

a stabilization of gels formed from gelatin through the formation of new H-bonds was observed 

(Montero et al., 2002). Research on the application of HP in the food packaging area is in 

general related to the compatibility of this technology with existing ready-to-use packaging 

materials, but it is hardly seen as a method to improve the characteristics of films during the 

film-realization steps. In fact, effects of HP treatment on synthetic packaging film properties 

such as seal integrity, mechanical properties plus oxygen and water permeability, and its impact 

on migration of volatile compounds from packaging materials to foodstuffs have been recently 

reported (Bull et al., 2010;  obiáš et al., 2004; Eisenbrand, 2005; Galatto, 2008; Rivas-Cañedo 

et al., 2009). Results obtained from these studies showed that HP treatments up to 600MPa 

affected the functional properties of tested films in function of temperature and time, 
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determining in the majority of samples an increase in the permeance to oxygen and water 

vapour and a loss of sealability along with a significant change in the migration of compounds 

from plastic materials. To our knowledge, there are only a few studies that have assessed the 

effects of HP treatment on the resulting food packaging films, with particular reference to bio-

sourced solutions or gelled systems (Bi et al., 2004; Montero et al., 2002). 

 

II.1.3.1. Engineering concepts of HPP 

The principles that govern HPP assume that a sample, which experience HP in a vessel, follows 

the isostatic rule regardless the size or shape of the food (Norton and Sun, 2008). The isostatic 

principle states that pressure is istantaneously and uniforly transmitted throughout a sample 

whether the sample is in direct contact with the pressure medium or hermetically sealed in a 

flexible package. As a consequence, the time necessary for HPP should be independent of the 

sample size, which is in contrast to thermal processing (Rastogi et al., 2007).  

The application of HP affects food chemistry and microbiology by following the Le Chatelier’s 

principle. The principle states that a system responds in a way that tend to minimize disturbance 

when its equilibrium is disturbed (Puling, 1964). This means that phenomena such as phase 

transition, chemical reactivity and chemical reaction that are associated with a decrease in 

volume are promoted by the application of HP.  

The thermal-hydraulic processes occurring during the application of HP during either fluid or 

solid sytems can be highly influential on the efficiency and effectiveness of the process 

(Hartmann, 2002; Rademacher et al, 2002). 

During the phases of compression/decompression related to HPP, the internal energy of the HP 

system undergoes some changes, where heat transfer between the internal system and its 

boundaries occurs. The uniformity of processing by preserving the high temperature level 

within the package throughout the pressurisation phase can be improved through the use of low 

thermal conductive material.  

 

II.1.3.2. HPP equipment 

 A typical HP apparatus consists of a pressure vessel and a pressure-generating device, where a 

packaged substance is loaded into the vessel and the top is closed (Doona and Feeherry, 2007). 

Generally, water is the pressure medium which is pumped from the bottom onto the vessel and, 

when the desired pressure is reached, the pumping is stopped, the valves are closed and the 
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pressure is mainteined without further need for energy input. HP needs to be applied on all 

regions of the package in an isostatic manner, so that the treatment can be uniform. The 

pressure in an isostatic process is transmitted in an uniform way throughout the pressure 

medium and the substance contained in the package (Fig. II.2.). The application of HPP 

treatments generates an increase of the temperature of the packaged sample through a process 

known as adiabatic heating (Norton and Sun, 2008 ).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.2. Example of uniform hydrostatic pressure application on packaged food. 

 

In case that such sample is food, shelf-stable pressure-treated food needs an application of HPP 

in conjunction with heat in order to kill resistant spores. HPP is generally a batch process where 

the capacities of the pressure vessels used for commercial food production consist of 35-350 L. 

When liquids such as fruit juices are treated, the vessel is filled with the liquid, the latter acting 

as the pressure transmission fluid. After the treatment, the liquid can be transferred to an aseptic 

filling line. A series of these vessels can work in a staggered sequence for an overall semi-

continuous system. Many HP system developers couple a number of pressure systems so that 

most of the energy stored in a pressurized vessel can be successively used to pressurized a 

second vessel, thus saving energy and process time (Van den Berg et al., 2001). 

Since foods decrease in volume when a pressure is applied, HPP requires airtight packages that 

can withstand a change in volume due to the compressibility of the product (Hugas et al., 2002). 

For this reason, the packaging used for HPP has to be characterized by a certain degree of 

flexibility, since it must resist up to a 15% reduction in volume and return to its original volume 
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without loss of seal integrity or barrier properties. Moreover, vacuum-packed products are 

ideally suited for HPP (Norton and Sun, 2008). 

 

II.2. Experimental 

II.2.1. Materials 

PSG Bloom 180 (average molecular weight 1 x 10
5
 Da) was used as the film matrix (Healan 

Ingredientes Ltd, York, UK). Glycerol (Cahill May Roberts Ltd, Dublin, Ireland) was used as 

plasticizer. A 0.1 M NaOH solution made up from NaOH pellets (Lab Pak Ltd., Filongley, UK) 

was used for the correction of the pH.  

 

II.2.2. Preparation of films 

The scheme of the preparation of films is shown in Fig. II.3. 

 

Figure II.3. Steps of preparation of films. 

 

 Dry PSG was dissolved in distilled water (10% w/w) by heating at 90°C in a water bath 

(SW23, Julabo USA INC., Allentown, PA, USA) for 30 min. Successively, the solution was 

cooled to 30°C and the pH adjusted to 8.0. After pH adjustment, glycerol was added under 

constant stirring at a concentration of 33% w/w dry matter. The solution was transferred into 
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vacuum pack pouches, cooled in ice bath and vacuum packed. In accordance with the design of 

experiment detailed in section 2.5, samples were then treated at different combination of 

pressures, temperatures and holding time in a Stansted Fluid Power Iso-Lab 900 Power HP 

Food Processor (Stansted Fluid Power Ltd., Stansted, UK) and casted onto levelled acetate 

sheets using a Micron II film applicator (Gardco, FL, USA) after temperature regulation (40˚C). 

 

II.2.3. Film thickness and conditioning 

Film thickness was measured using a digital micrometer (Käfer Digital Thickness gauge, Käfer 

Messuhrenfabrik GmbH & Co., Villingen-Schwenningen, Germany) with an accuracy of 0.001 

mm. Before measurement, films were preconditioned for at least 48 hours in an environmental 

chamber set at 23°C and 50% relative humidity. 

 

II.2.4. OTR  

The OTR determination was carried out as described in section I.A.1.3.8.  

 

II.2.5. DoE and statistical analysis  

The experiments were carried out according to a Box-Behnken design (BBD) . This statistical 

experimental design is an independent, rotable quadratic design where variable combinations 

are at the midpoints of the edges of the variable space and at the center (Prakash Maran et al., 

2013). In the present study, the effects of independent variables such as pressure (0, 300 and 

600 MPa), temperature (20, 40 and 60°C), and holding time (5, 17.5 and 30 min) on the 

response (OTR) were investigated. The experimental design consisted of 15 runs with three 

center points for the estimation of the pure error and was replicated three time (three blocks) 

(Table 1).   

A second-order response surface was fitted to the experimental data. Optimal factor settings 

where then derived from the fitted surface. 

All the analyses were done using Statistica 64 version 10 (StatSoft Inc, Tulsa, OK, USA). . 
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II.3. Results and discussion 

The thickness of the films was shown in Fig. II.3. The data generated by the software for the 

optmimization process and the OTR response values related to each run are reported in Table 

II.3.  

Table II.3. The Box-Behnken design for the optimization of OTR and experimental results (mean over the 

three blocks).  

Runs 

 
Pressure 

(MPa) 

Temperature 

(˚C) 

Time 

(min) 

Pressure 

P code 

Temperature 

P code 

Time 

P code 

OTR  

(mL d-1 m-2) 

 1     0 20 17.50      -1         -1 0 2.90 

 2 300 40 17.50 0 0 0 3.60 

 3 600 40 30.00 1 0 1 2.65 

 4 300 60   5.00 0 1      -1 2.43 

 5 600 40   5.00 1 0      -1 3.05 

 6 300 60 30.00 0 1 1 3.76 

 7 300 40 17.50 0 0 0 3.64 

 8 600 60 17.50 1 1 0 3.91 

 9     0 40   5.00      -1 0      -1 2.74 

10     0 40 30.00      -1 0 1 3.75 

11 300 20   5.00 0          -1      -1 2.44 

12 600 20 17.50 1 -1 0 2.63 

13     0 60 17.50      -1 1 0 3.57 

14 300 20 30.00 0          -1 1 2.57 

15 300 40 17.50 0 0 0 3.14 

 

 

The ANOVA table for the model is reported in Table II.4. 
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Table II.4. ANOVA for the quadratic surface response. The R-squared value was 0.8059. 

1
Sum of Squares 

2
Mean Square 

3
A=pressure; B=temperature; C=time; L=linear; Q=quadratic 

 

The R-squared value was 0.8059, indicating a good fit of the model. Temperature and Time had 

significant linear and quadratic effects, while pressure played a significant role interacting with 

time. Also the interaction between Temperature and Time was significant. 

The fitted equation of the second-order response surface was: 

 

OTR (mL m
-2

 d
-1

) =   1.32 + 0.00021 * Pressure + 0.036 * Temperature + 0.098 * Time + 2.1E-

7 * Pressure
2
 + 0.000025 * Pressure * Temperature - 0.000094 * 

Pressure * Time - 0.00057 * Temperature
2
 + 0.0012 * Temperature 

* Time - 0.0028 * Time
2
 

(Eq. II.2) 

 

where the values of the variables are specified in their original units. The model revealed that 

the quadratic Time and Temperature along with the interaction between Pressure and Time had 

a negative effect on the response variable. 

Factor3 SS1 DF MS2 F-Ratio P-Value 

A (L) 0.1908 1 0.1908 2.357 0.1343 

A (Q) 0.0040 1 0.0040 0.0495 0.8252 

B (L) 3.6504 1 3.6504 45.0903 0.0000 

B (Q) 0.5740 1 0.5740 7.0901 0.0119 

C (L) 1.6224 1 1.6224 20.0401 0.0001 

C (Q) 2.0893 1 2.0893 25.8080 0.0000 

A (L)  ∙ B (Q) 0.2730 1 0.2730 3.3722 0.0753 

A (L)  ∙ C (L) 1.4770 1 1.4770 18.2442 0.0002 

B (L) ∙  C (L) 1.0860 1 1.0860 13.4146 0.0009 

Blocks 0.2309 2 0.1154 1.4258 0.2547 

Error 2.6716 33 0.0810   

Total 13.7611 44    
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The standardized effect of the three factors and their interactions on the optimization of OTR 

are shown in the Pareto chart of standardized effects (Fig. II.4).  

This chart is characterized by bars related to each effect and possessing a different length in 

function of the decreasing order of significance. Each bar corresponds to a t-value, which is 

obtained by the  absolute value of the estimated effects divided by the standard error (Zhu et al, 

2012). The critical t-value which determines which effects are statistically significant, is 

represented by the vertical line. The effects characterized by a bar smaller than the critical t-

value are not statistically significant and thus do not have a significant influence on the 

response variable. Bars beyond the vertical line are statistically significant at the selected 

significance level, which is set by defalut at 5%. In this case, OTR was affected by six 

significant main effects: Temperature (L and Q), Time (L and Q) and by the interactions 

Pressure (L)/Time (L) and Temperature (L)/Time (L). In particular, Temperature (L) was the 

effect with the major influence on OTR. Conversely, while pressure (L and Q) alone did not 

affect the response variable, its interaction with time affected significantly OTR.  

 

 

Figure. II.4. Pareto chart of standardized effects on OTR. The vertical line is the critical value from the t 

distribution (5% significance level) The standardized effect of each term is reported 

alongside each bar. 

 

 

Pareto Chart of Standardized Effects; Variable: OTR
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The influence of the main effects and their interections on OTR are displayed in the plots of 

Fig. II.5.  

 

 
Figure. II.5. Main effect plot (a) and interaction plot of the effects (b). The plots show average values of    

OTR  corresponding to the different levels of the three factors (-=low, += high). 

 

The patterns shown in Fig. II.5a, represented the estimated variation in the response variable 

when each factor increases from its low level to its high level, maintaining the other effects 

constant. As it can be observed, temperature and time had the greatest impact on the 

modification of response, since a slight variation in these effects corresponded to a significant 

change in OTR. In particular, it is worth to mention the influence of Time, determining for low 

levels an increase and for high levels a decrease in OTR. 

The intection plot (Fig. II.5b) indicates the interactions between the effects, with Pressure/Time 

and Temperature/Time being the significant interactions (P < 0.05) observed. In accordance 

with Hinkelmann and Kempthorne (2008), an antidirectional interaction between pressure and 

time was observed. Results indicate that at short time an increase of Pressure causes an increase 

in OTR, while the opposite happens for longer times. 

 This is an important finding, because it implies that the application of high pressure levels for a 

long time on the gelled solution can result in a film with improved barrier properties and thus an 

enhanced performance.  

The optimal combination of the levels of the three factor is reported in Table II.5. 
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Table II.5. Optimum values obtained by the combination of the effects pressure, temperature and time. 

 

 

 

 

 

 

 

 

The minimum predicted value was 1.83 mL m
-2

 d
-1

 and, according to the model, the best 

combination of the three factors involved the use of high level of HP (600 MPa)  for 30 min, by 

holding the temperature at its low.  

The response fitted surfaces are graphically represented in two dimensional contour plots (Fig. 

II.6), depicting the variation in the parameter modeled as the two effects move along the levels, 

holding constant the third factor at the optimum point predicted. In particular, in the diagram 

II.6a Time is kept constant (30 min) and variation of OTR is represented with respect to 

Temperature and Pressure. The plot clearly shows the absence of interaction between the two 

factors, because the isocurves are approximately parallel. The minimum is located in the lower 

right corner, characterized by high Pressure and low Temperature values. According to Fig. 

II.6b, even lower OTR values could be obtained by increasing the pressure above 600 MPa. 

However, this part of the plot was outside the ranges of the effects studied and the applicability 

of the extimated model in this area need to be investigated. In line of principle, an increase of 

Pressure and Time and a reduction of Temperature could further reduce the value of OTR. This 

means that the OTR minimum predicted value is a global minimum, but not a critical point. 

In theory, the decrease in OTR observed when HP is applied on PSG-based solutions for long 

time at room temperature may be explained by a denser polymeric matrix that affects the OTR 

by hindering the diffusion of oxygen molecules. In literature, according to Kulisiewicz et al. 

(2007), the application of HP stabilizes the helix junctions of the gelatin by promoting the 

formation of hydrogen bonds. In fact, it is well known that HP treatments can promote their 

formation due to their negative activation volume (Heremans & Smeller, 1998). Moreover, gels 

cured under elevated pressure possess more triple helix junction zones per molecular chain 

compared to the gels cured at normal conditions. 

Effect Pressure 

(MPa) 

Temperature 

(˚C) 

Time 

(min) 

Low 0.00 20.00 5.00 

High 600.00 60.00 30.00 

Optimum 600.00 20.00 30.00 
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Figure II.6. Minimization of the response variable through the best combination of the effects. The fitted 

surface response diagrams show the variation in OTR as the two effects move along the 

levels, holding constant the third factor at the optimum point. Pressure/Temperature at time 

= 30 min (a), Pressure/Time at temperature = 20 ˚C (b) are displayed. 

 

Longer time of HP treatment may favour this rection as deduced from the results obtained in 

this study, in which the longer the application of HP the lower the OTR values. According to 

Ku Kulisiewicz et al. (2009), it can be hypothesised that the triple helices formed under high 

pressure treatment possess a lower average length. However, a further investigation needs to be 

done on the physico-chemical characterizations of the PSG-based films produced in the current 

study. Nevertheless, further investigations are necessary to explain the decrease of the OTR by 

applying HP to the PSG solution. 
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II.4. Conclusions 

The Box-Behnken design was successfully used in this study for the optimization of the 

response variable in function of pressure, temperature and time, with a coefficient of 

determination values (R-squared) of 80.59%. The results revealed that OTR was significantly 

affected from a statistically point of view by the three considered factors. Time and 

Temperature effects are relevant and sinergic, while Pressure plays a role only in raltion to 

Time: the application of high pressures for a long time seems to enhance in film-forming 

solutions, is a significant effect able to decrease the permeability of the resulting films and may 

be useful for the industrial commercial production of bio-sourced food packaging films such as 

edible films.  

Further investigations are needed in order to find the optimal combination of the three factors, 

given that the study was not able to identify a critical point and only indicates that the minimum 

value of OTR is obtained on the boundary of the experimental space.  

The good barrier properties to oxygen make PSG suitable to be used as a coating in a multi-

layer structure. A possible combination with another material from renewable resources, 

possessing good sealing properties such as PLA, may be investigated in order to produce a 

multi-layer flexible film with improved barrier to oxygen performance.  
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PART III 

REALIZATION OF BI-LAYER FILMS  

WITH IMPROVED BARRIER PROPERTIES 
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III.1. Introduction 

The use of polymer-based structures for food packaging applications have been increasing over 

the last decades. Among the factors that contributed to the diffusion of these materials, the 

commercial appeal has been playing an important role, due to their ability to offer a wide range 

of tailor-made properties (Pilla, 2011). Moreover, polymer-based materials are low cost, 

production-friendly and can be converted into the required shape and size.  

Several foodstuffs require appropriate atmospheric conditions to preserve their quality during 

storage. To date, there is an increasing number of foods which are being packed in protective 

atmosphere by using a selected mixture of gases, in order to ensure an optimum quality along 

with the consumer safety. For this reasons, food packages need to be selected for their barrier 

properties in fuction of the food application and the gas composition inside the package (Weber 

et al., 2000). The gas mixture used for MAP (Modified Atmosphere Packaging) are based 

mainly on a combination of oxygen, carbon dioxide and nitrogen (Pilla, 2011 p.133).  

The conventional approach to manufacture food packaging flexible films in MAP application 

possessing high-barrier properties is through the realization of multi-layered films, based on    a 

combination of different suitable materials to meet specific industry requirements. For oil-based 

polymers for instance, a often used multi-layer film in food packaging applications consists of 

external layers of materials with high water vapour barrier such as LDPE (low density 

polyethylene), combined with an inner layer with high gas barrier properties such as EVOH 

(Ethylene Vinyl Alcohol) (Weber et al, 2000). 

A similar approach can be also used for bio-based materials to design materials with the 

required properties, since a number of biomaterials possessing appropriate oxygen and water 

vapour barrier are already available. However, while the oxygen permeability of biobased 

materials is quite similar to the large range of oil-based materials (Pilla, 2011), a major 

challenge is represented by barrier to water vapour (Weber at al, 2000). This can be explained 

by the hydrophilic nature of the majority of the bio-based polymers, which make them very 

sensitive to the moisture. For this reason, only very few bio-based materials can be used when a 

high water vapour material is required.  

The ability of a packaging to maintain a specific gas composition is also given by the sealing 

properties of the materials used. The time of sealing depends on the characteristics of the 

flexible material and are strictly related to the sealing technique used (Piergiovanni and Limbo, 

2010). The sealing techniques are classified into heat sealing and cold sealing.  Heat sealing is a 

process characterized by the application of heat and pressure in order to melt two layers of heat 
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sealants and press together for a proper period of time to form a heat seal. Cold sealing is the 

seal betwen plastic interfaces attained without heat application (Lee et al, 2008). It is used when 

heat sealing is impossible or damages the packaging material and/or the food product. 

The design of a multi-layer food packaging involves also the knowledge of the surface tension 

of the different polymers constituting the film. The characterization of the surface properties 

and in particular the surface tension components of the solids, are a very important factors in 

understanding the compatibilibility between materials, as adhesion between two polymers is 

related to interfacial energy (Hollander, 1995). 

 

III.1.1 Industrial production technology of multi-layer materials  

The industrial production of multi-layer food packaging flexible films involves the use of the 

following technology (Lee et al, 2008): 

 Coextrusion: this technology is used for the realization of multi-layer structures for 

application where there is a favorable benefit/cost ratio and it is limited to combining 

polymers only. It involves the use of two or more extruders, in which the multi-layer 

structure is obtained through the merge and welding together in a feed block of the 

extrudates originated by the different extruders (Fig. III.1). Generally, the adhesion 

between different polymer layers can be improved by using a thin layer of adhesive 

resin such as maleic anhydride modified PE (polyethylene), PP (polypropylene), and 

EVA (ethylene vinyl acetate).  

 

Figure III.1. Image of the coextrusion process (Lee at al., 2008). 
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 Extrusion coating: this technique involves the extrusion of a thin layer of molten 

plastic onto a large variety of substrates such as plastics, paper and metal foil. Firstly, 

the extrudate is drawn to the desired thickness in the melt state and coated ón the 

substrate. Successively, the polymer is then cooled on a set of chill rolls (Fig. III.2). 

 

  Figure III.2. Extrusion coating process. 

In this technique, a good adhesion between the coating polymer and the substrate is 

required. Applications of such technology are coated paper cartion for milk and juices, 

coated aluminium foil and plastic structures which cannot be coextruded.   

 Extrusion lamination: it involves the combination of two different substrates with a 

molten polymer, in which a large variety of materials possessing different thicknesses 

can be processed (Fig. III.3). 
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Figure III.3. Extrusion lamination. 

Extrusion lamination is used for the processing of paper board, aluminium foil, OPP 

film, oriented PET film and metallized film. It is common in food packaging 

applications that require high barrier to moisture and gas, alomg with excellent print 

quality. 

 Adhesive lamination: this process is similar to the extrusion lamination. However, 

unlike the latter technique where polymer melts are used, liquid adhesives are involved 

in the adhesive lamination. Liquid adhesives are coated onto a substrate, dried with 

heat and airflow, and successively laminated onto a second substrate through a heated 

compression nip (dry bond lamination) (Fig. III.4). 
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Figure III.4. Adhesive lamination: dry lamination process. 

 

Adhesive lamination is useful for the realization of most flexible substrates. 

Wet bond lamination differs from the dry bond lamination in the adhesive which is still 

wet. This occurs because webs are joined before the drying step.  

 Vacuum metallization: a plastic substrate is coated with a very thin layer of metal 

(generally aluminium with a thickness ranging from 8 to 50 nm) under high vacuum 

conditions. This process is shown in (Fig. III.5). 

 
Figure III.5. Vacuum metallization process. 
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 Metallized plastic films are characterized by very a high barrier to gas, water vapour 

 and light and are able to resist to flexing stress, thus preserving the barrier properties   

performance. The majority of metallized plastic films are based on PET (polyethylene   

terephthalate), PP and nylon. 

Films manufactured using the techniques previously discussed rarely comply with the 

requirements needed for a food packaging material.  

For this reason, their surface is often modified in order to improve the aesthetics and 

functionality of such films. In particular, surface modifications are able to enhance either the 

adhesion between the plastic materials of different layers, or the adhesion of inks on the 

substrates, coatings and adhesives used for the realization of multi-layer structures. 

Among the most used techniques for the modification of the surface, the following can be 

mentioned (Piergiovanni and Limbo, 2010):  

 Corona discharge: a partial degradation of the film is obtained through the 

decomposition of the ozone produced by the electrical discharges that ionize the air. 

This phenomenon is induced by the high difference of potential (3000 – 9000 V) 

applied between the electrode and the film. 

 Flame treatment: The surface of the packaging material is modifiede through a brief 

exposure to a burner which flames onto the web guided by a cooling roll.   

 Plasma treatment: in this case, not air but selected gases are ionized with 

electromagnetic waves to generate a plasma. This technique allow to modify the film 

surface under more controlled conditions. 

  Chemical treatment (priming): A very thin polymeric coating possessing polar 

properties is applied in order to imporve the adhesion. 

 

Some examples of multi-layer structures are constituted by: 

 PVDC (polyvinylidene chloride)/adhesive/nylon 

 PP/adhesive/EVOH/adhesive/PP 

 PP/adhesive/EVOH/adhesive/regrind PP/PP 

 PA (polyamide)/adhesive/LDPE 



Part III 

 
 

108 

 PET/adhesive/PP 

 PP/adhesive/EVOH/adhesive/HDPE (high dendity polyethylene) 

 

III.1.2. Production techniques of bi-layer materials for research purposes 

Foulk and Bunn (2001) studied the physical and barrier properties of bi-layer protein films. 

They produced bi-layer protein films by three different preparation methods and compared the 

barrier and physical properties of such films to single layer films of the same base materials. 

According to this study, bi-layer films were obtained by the following techniques: 

 liquid spread on dry film: this method involved the formation of one protein film and, 

once dried, another layer was formed by pouring, spraying, or rolling, directly on top 

of the previously dried layer. The combined film was then allowed to dry. The pouring 

of the second layer was carried out according to Brandenburg et al. (1993) or Park et 

al. (1994). An electric paint sprayer moving at a constant speed while dispersing 

uniform amounts of solution was used for spraying a second layer onto the first one. 

The spraying technique allowed to form a very thin second layer, which would dry 

very quickly. However, it could not be used with viscous solution. Rolling was another 

option used for the realization of a second layer. Since it produced   undesiderable air 

bubbles in certain materials, this technique needed to be used with care.       

 heat pressing dry films: this technique involved the formation of two monolayer  films 

 individually and successively laminating these together using a solvent between them 

 while applying a uniform pressure with the use of compression rolls. Films were 

coated on the side opposite to the surface in contact with the support (drying glass) 

during the single film formation. 

 solvent laminating dry fims: it involved forming two monolayer films individually 

laminating them together using heat and pressure from a set of heated rolls. Films were 

coated as in the heat pressing dry films method, except no solvent was used. 

However, these three methods used for film formation did not always produce films. Therefore, 

an appropriate technique has to be chosen in function of the materials used for the constitution 

of  the bi-layer structure. 
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III.2. Materials and methods 

III.2.1. Materials 

The material used as a base layer was PLA U/C30B. This film showed the best barrier to 

oxygen as shown in Figs. I.A.11 and I.A.12. 

The PSG-based material used as coating was prepared according to the regression equation (Eq. 

II.2). The factors were combined in order to obtain optimum values of films, possessing the 

lowest OTR (Table II.3).  

 

III.2.2. Bi-layer film preparation 

Two bi-layer films were prepared using film U/C30B as base material and using PSG-based 

materials as coatings (Fig. III.6). 

 

Figure III.6.  Preparation of the bi-layer  using PSG-based material in accordance to the regression 

equation to minimize the OTR (Bilayer HP), and the bilayer control produced without high 

pressure (Bilayer C). 

 

 Bi-layer HP 

Dry PSG was dissolved in distilled water (10% w/w) by heating at 90°C in a water 

bath (SW23, Julabo USA INC., Allentown, PA, USA) for 30 min. Successively, the 

solution was cooled to 30°C and the pH adjusted to 8.0. After pH adjustment, glycerol 

was added under constant stirring at a concentration of 33% w/w dry matter. The 
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solution was transferred into vacuum pack pouches, cooled in ice bath and vacuum 

packed and treated at the optimum combination of pressure (600 MPa), temperature 

(20 min) and holding time (30 min) in a Stansted Fluid Power Iso-Lab 900 Power HP 

Food Processor (Stansted Fluid Power Ltd., Stansted, UK). Successively, the solution 

was applied with a paint brush onto nanocomposite U/C30B film after temperature 

regulation (40˚C) and dried for 48 h in ambient conditions. 

 

 Bi-layer C 

The control bilayer was produced following the steps as for bilayer HP but not treated 

with high pressure. Once the solution was transferred into vacuum pack pouches, 

cooled in ice bath and vacuum packed, the temperature was regulated (40˚C). 

Successively, it was applied with a paint brush onto nanocomposite U/C30B film and 

dried for 48 h in ambient conditions. 

 

The technique used for the application of the coating (paint brush) was selected between the 

rolling and spraying, after pre-tests on the efficacy of the method used were carried out. The 

rolling of a coating onto the base layer was not successful due to the formation of many air 

bubbles which could affect the bi-layer performance. The spraying and the spreading with a 

Bird-type applicator of the PSG-based solution was not feasible due to the dishomogeinity  of 

the solution which affected the efficacy of this technique. These drawbacks were already 

observed by Foulk and Bunn (2001) and reported in section III.1.2.  

 

III.2.3. Efficacy evaluation of the coating technique  

The efficacy of the coating application was previously visually evaluated by adding few drops 

of a Comassie Blue solution (1g/L) (R-250, BDH Biochemical Ltd, UK). The Commasie Blue 

solution was added under constant stirring before the application of the coating at 40˚C.  

The coating solution was dried for 48 h in ambient conditions and successively the homogeneity 

of distribution and the potential presence of air bubbles evaluated. 

 

III.2.4. Film thickness and conditioning 

Film thickness was measured using a digital micrometer (Käfer Digital Thickness gauge, Käfer 

Messuhrenfabrik GmbH & Co., Villingen-Schwenningen, Germany) with an accuracy of 0.001 
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mm. Before measurement, films were preconditioned for at least 48 hours in an environmental 

chamber set at 23°C and 50% relative humidity. 

 

III.2.5. Barrier properties 

OTR was measured as previously described in section I.A.1.3.8. The O2 content inside a known 

test cell volume chamber, flushed previously with nitrogen, was monitored non-invasively over 

a 24 h period with O2 concentration recorded at 2 h intervals using an optical measuring system 

Optech
TM

 Platinum O2 sensor device and disposable O2 sensor stickers from Mocon 

(Minneapolis, USA). The cups were stored under controlled temperature and humidity as 

described in section 2.3 and a constant air velocity of 152 m/min maintained over the cups to 

ensure uniform air movement across cells. OTR was successively calculated considering the 

oxygen concentration, the volume of the test up chamber and the area of the film exposed for 

gas permeation using the equation (Eq. I.A.5). 

WVTR of films was calculated according to the ASTM E-96 standard method as outlined by 

Wang et al. (2009) and described in section I.A.3.7.  Distilled water (6 ml) was pippeted in each 

Perspex
TM

 circular test cup and each bilayer sample was mounted across the cup opening using 

vacuum silicone grease, with nanocomposite PLA side placed downwards to avoid the PSG-

based coating to be damaged due to its high sensitivity to water. The film was secured in place 

and sealed into test cups with the four screws symmetrically located around the cup 

circumference. A constant air velocity of 152 m/min was maintained over the cups to ensure 

uniform movement of air across the WVP test cells. The weight loss of the test cells were 

monitored over a 24 h period with weight loss recorded every 2 h intervals. WVTR was 

determined from the slope obtained by the regression analysis of the data of weight loss as a 

function of time, once the steady state was reached. Both OTR and WVTR results were based 

on three replicates. 

 

III.3. Results and discussion 

III.3.1. Efficacy evaluation of the coating technique 

The efficacy of the selected coating techniques is shown in Fig. III.7.  
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Figure III.7. Efficacy of the different techniques of the coating application used: paint brush (a) and 

spraying (b). 

 

 

As it can be observed from the images, PSG-based gelatin solution was not evenly spread onto 

the surface of PLA U/C30B (Fig. III.9.b). This is explained by the waved surface that 

characterizes the base layer, thus forming aggregates of the coating solution in correspondance 

of  valleys. The same behaviour was observed with the spreading of the solution through the use 

of a Bird-type applicator. On the contrary, when the coating solution was paint brushed onto the 

PLA-based surface, a more homogeneous spreading was observed, which was able to cover 

evenly the surface of the base layer. According to this visual evaluation, paint brushing the 

coating onto the surface pf the PLA-based surface was the best technique to form a bi-layer 

with improved barrier properties.  

 

III.3.2. Appearance 

The application of a PSG-based coating onto a base layer constituted by PLA containing a small 

amount of Cloisite® 30B, produced bio-based flexible free-standing films (Fig. III.8).  The 

PLA-based layer was characterized by an off-white appearance, while the PSG-based coating 

by a yellowish an smooth surface. 

The thickness measured for the bi-layer HP and bi-layer C was 117±5.4 and 117±7.9 

respectively. The thickness of the PLA layer was 62.4±1.0 as reported in Fig. I.A.6. 
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Figure III.8. Images of bi-layer C (a) and bi-layer HP(b). 

 

III.3.3. OTR 

The difference in the treatment of the PSG-based coating applied onto the surface of the base 

layer affected the OTR of the bi-layers (Fig. III.9). 

 

Figure III.9. Effect of the different coating on the OTR of bilayers C and HP. 

 

The low values in OTR obtained for both bi-layers confirmed that the coating was evenly 

spread. The bi-layer HP showed OTR values slightly lower than bi-layer C (-9.59 %), indicating 
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that processing the PSG-based solution according to the optimum settings had an effect also 

when it was applied onto the surface of a different material such as PLA. This behaviour was 

also observed in the study carrried out by Hong and Krochta (2006). However, they did not 

discuss the ralation between the adhesion on different materials and the variation in oxygen-

barrier properties. Benmalek and Dunlop (1995) observed in their study that that barrier 

properties were related to the coating thickness, the roughness of the surface, and the 

contibution of polar and hydrogen bond to adhesion.  

The values in permeability obtained for the bi-layers (19 and 21 ml μm/m
-2

*d
-1

*kPa
-1

) for bi-

layer HP and C respectively) are similar to those (12-40 ml μm/m
-2

*d
-1

*kPa
-1

) previously 

reported for pig skin gelatin (Wang et al, 2009), whey protein films (Maté and Krochta, 1996; 

Sothornvit and Krochta, 2000) and PET films (Salame, 1986). According to Almenar and Auras 

(2010), PET is a high oxygen barrier polymer. An oxygen-barrier polymer is defined as a 

polymer having an OP values lower than 38.9 ml*μm/ m
-2

*d
-1

*kPa
-1 

at 23˚C (Salame, 1986). 

Hong and Krochta (2005) studied the oxygen permeability of a bilayer constituted by a base 

layer made of PE or PP coated with two types of coating solutions, WPI (whey protein isolate) 

and WPC (whey protein concentrate). However, Corona discharge as a surface pretreatment 

was applied in order to enhance to adhesion to the whey protein coatings, due to the notable 

difference in the degree of hydrophilicity. They found that the coating of PE and PP films 

reduced more then fourfold or one-order the oxygen permeability of the base materials. 

Similarly, the slight difference in the nature of the coating affected the barrier to oxygen. 

The increase on oxygen-barrier properties on the bi-layer HP compared to the base material is 

shown in Table III.1. The decrease in OTR of the bilayer compared to PLA U/C30B was 

significant since it decrease from 43.36 to 3.31 mL/d
-1

*m
-2

. This suggested that the PSG-based 

coating can be considered as a potential material for multi-layer bio-based food packaging 

films, designed to improve the oxygen barrier properties of PLA films.   

 

Table III.1. OTR of the bi-layer HP in relation to the base material and the coating measured separately. 

Film Bi-layer HP PLA U/C30B Optimized PSG 

OTR (mL/(d*m2)) 3.31 43.36 1.83 

 

The relative humidity (RH) affects the oxygen-barrier properties of hydrophilic materials such 

as the pig skin gelatin. In, fact an exponential increase of oxygen permeability in function of the 
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increase of  RH was previously observed for similar materials such as WPI (McHugh and 

Krochta, 1994), casein (Tomasula et al, 2003) and egg white protein (Lim et al, 1998). As a 

consequence, the pig skin gelatin has to be kept at low-intermadiate moisture content to mantain 

the OTR values observed in this study, and thus to have appropriate oxygen-barrier properties 

in food packaging application at high RH (Hong and Krochta, 2006). This purpose can be 

achieved if the inner layer, which is sensitive to moisture, is inserted in layers of materials 

possessing good moisture-barrier properties (Osborn and Jenkins, 1992; Hernandez et al, 2000). 

A practical commercial example is constituted by EVOH, which is generally sandwiched in 

coextrusion or lamination with polymers with low permeability to water vapour. A similar 

approach can be used for pig skin gelatin films. 

 

III.3.4. WVTR 

The WVTR results of the two types of bi-layers are shown in Fig. III.10. 

 

 

Figure III.10. Effect of the different coating on the WVTR of bilayers C and HP. 

 

The WVTR values was very similar for both materials, indicating that the treatment at optimum 

conditions of the coating solution did not affect the barrier to moisture.  

Rhim et al. (2007) studied PLA-coated SPI (soy protein isolate) films in order to evaluate the 

improvements on mechanical and water vapour properties of the resulting films. The coating 
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(PLA) was applied by dipping the base layer (SPI) in the coating solution and subsequntly 

allowed to dry. The resulting films possessed a barrier to water vapour similar to that of PLA 

films, improving the water vapour barrier of the SPI by 20- to 60-fold. The higher the PLA 

concentration, the closer the values to those of PLA. 

The increase in water vapour barrier properties of SPI films coated with PLA was attributed to 

the hydrophobicity of PLA. They concluded that this material may be used for applications in 

packaging for foods with high water activity or to be used under high RH conditions. 

The WVTR results of the bilayer HP, compared to those of the base layer and the PSG treated 

at the optimum conditions is shown in Table III.2. 

 

Table III.1. WVTR of the bi-layer HP in relation to the base material and the coating measured 

separately. 

Film  Bi-layer HP PLA U/C30B Optimized PSG 

WVTR (g/(d*m2))  29.98 30.15 63.47 

 

As it can be observed, the WVTR of the bi-layer HP was very similar to that of the 

nanocomposite used as base material and less than 50% compared to that of the optimized 

gelatin, in agreement with the results of Rim et al. (2007) and confirming the potential 

applications in the food packaging field. 

 

III.4. Conclusions 

The application of a high oxygen barrier coating, made of a renewable resource such as the pig 

skin gelatin, onto the surface of a nacomposite PLA-based film produced a dramatic decrease in 

the oxygen-barrier of the PLA at the conditions used for testing. The final WVTR was very 

similar to that of the base layer, thus increasing by more than 50% the water vapour barrier to 

the PSG-based film. The technique used for the application of such coating affected 

significantly the success of the experimentation. The high-pressure treatment of the coating 

solution before the application affected the oxygen barrier properties, by decreasing the OTR of 

the bilayer by 9.59% compared to the bilayer control. The results obtained in the present study 

suggested that the bi-layer could be used for applications in packaging for foods with high 

water activity or to be used under high RH conditions. 
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IV.1.General conclusions 

 

 

 The incorporation of the nanoclays in the PLA matrix produced an intercalated 

structure in all nanocomposites, independently from the nature of the clay organic 

modifier, the L-isomer content of the polymer and the production technique used 

(extrusion and solvent casting). 

 

 Films obtained by extrusion: the barrier properties were significantly affected by either 

the incorporation of nanoclays or the PLA optical purity. 

 

 

 Films obtained by solvent casting: the barrier properties to water vapour were inferior 

than those of the extruded films, probably due to the residual solvent that remains in 

the samples, thus acting as a plasticizer.  

 

 The high-pressure treatment on gel solution showed increasing oxygen barrier 

properties in function of time in the resulting films.  

 

 

 The realization of a bilayer between PLA and PSG is feasible and has good barrier 

properties at the test conditions used for the measurements. 
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IV.2. Future perspectives 

 

 

 An investigation using TEM (Transmission Electron Microscopy) may be useful in 

understanding the real degree of intercatation of the nanoclays in the PLA matrix and 

their dispersion. 

 

 Further investigations are necessary to explain the decrease of the OTR by applying 

high-pressure to the PSG solution. For instance, the effects on the rheology of the 

solution and the structural, thermal and mechanical properties can be considered in 

future studies. 

 

 Realization of multilayer films structure by co-extrusion, in order to obtain a 

nanocomposite PLA/PSG/nanocomposite PLA structure. 

 

 Application on real foodstuffs stored at room temperature and sensitive to oxygen. The 

results obtained in the present study suggested that the bilayer could be used for 

applications in packaging for foods with high water activity or to be used under high 

RH conditions. 

 

 Further investigations are necessary in order to evaluate the safety of the materials 

used. 
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Glossary  

DCM  Dichloromethane 

DoE  Design of Experiment 

DSC  Differential Scanning Calorimetry 

E  Elongation at break 

FTIR  Fourier Transform Infrared Spectroscopy 

HP  High Pressure 

HPP  High Pressure Processing 

HSD  Honestly Significant Difference 

LLDPE  Linear Low-Density Polyethylene 

OMMT   Organically Modified Montmorillonites 

OTR  Oxygen Transmission Rate 

PET  Polyethylene Terephthalate 

PLA  Poly(lactic acid) 

PS  Puncture Strength 

PSG  Pig Skin Gelatin 

ROP  Ring Opening Polymerization  

SE
D  

Dispersive component 

SE
P  

Polar component 

SE
TOT  

Total Energy Surface 

SEM  Scanning Electron Microscope 

Tcc  Cold crystallization 

Tg  Glass transition 

TGA  Thermogravimetric Analysis 

Tm  Melting 

TS  Tensile Strength 

UV  Ultraviolet 

WVTR  Water Vapour Transmission Rate 

Xc  Degree of crystallization 

XRD  X-ray Diffraction 

YM  Young’s Modulus 

θ  Contact angle 

 



Acknowledgements 

 
 

145 

Acknowledgements 

First and foremost, I would like to thank my tutor, Prof. Alessandro Sensidoni, for the priceless 

opportunity offered me to collaborate with him and his competent team, in particular Dr 

Donatella Peressini and Dr Eva Marcuzzo, along with the freedom given to manage 

independently my research project. Thanks for the support and collaboration. 

I am very grateful to the great “Irish team” led by Dr Joe Kerry, who accepted me in the 

packaging laboratory of UCC, supporting my project and correcting all the papers submitted. I 

have been impressed by his dynamism, competence and the extremely friendly irish character 

which made it an absolute pleasure to work with him. 

 A special thank also goes to Dr Malco Cruz-Romero, who guided me over the PhD research 

with motivation and commitment. He has been very nice to me and I have learned a lot from 

him. I would much like to thank him for his time taken for my research. I can’t foget Mr Eddie 

Beatty, who helped me in almost all tests I carried out in UCC. I loved his everyday good 

humour and positive attitude along with his technical competence and availability. 

I am very grateful to Prof. Loredana Incarnato and Ing. Maria Rosaria Galdi who have accepted 

to manufacture PLA films in the facilities of the University of Fisciano. They contributed a lot 

in leading my research into an industrial approach. 

Thanks also to Alberto Tomasini (Arcadia Spa) for his financial support and interest in the 

research. 

I want to thank my family, in particular my beloved wife Isabelle, without whom I wouldn't 

have been able to begin my PhD at the University of Udine. Isabelle has been very supportive 

and patient with me over these three years, especially during the writing of the thesis, when I 

didn’t have much time left to share with her and my lovely children, Jasmine and Christopher. 

Finally, I would like to thank all the nice people I shared the research office with in the 

Department of Food Science in Udine. 

 

 

 

 

 



Appendix 

 
 

146 

 

 

 

 

APPENDIX 

PAPERS AND CONFERENCES’ ABSTRACTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

 
 

147 

 
Journal of Food Engineering – accepted paper 

 

 

 



Appendix 

 
 

148 

 
MATBIM 2012 

2nd International meeting on Material/Bioproduct Interaction 

22-25 April 2012, Dijon, France 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

 
 

149 

MATBIM 2012 

2nd International meeting on Material/Bioproduct Interaction 

22-25 April 2012, Dijon, France 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Appendix 

 
 

150 

BIOPOLPACK 

2nd Congress on biodegradable polymer packaging 

Milan (Italy), 10-11 May 2012 

 

 

 
 

 

 

 

 

 

 

 

 



Appendix 

 
 

151 

 



Appendix 

 
 

152 

 

 
 

 

 

 

 

 
 

 

 

 

 

 



Appendix 

 
 

153 

 


