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APPROXIMATION OF EIGENVALUES OF EVOLUTION
OPERATORS FOR LINEAR RENEWAL EQUATIONS∗
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Abstract. A numerical method based on pseudospectral collocation is proposed to approximate
the eigenvalues of evolution operators for linear renewal equations, which are retarded functional
equations of Volterra type. Rigorous error and convergence analyses are provided, together with
numerical tests. The outcome is an efficient and reliable tool which can be used, for instance, to
study the local asymptotic stability of equilibria and periodic solutions of nonlinear autonomous
renewal equations. Fundamental applications can be found in population dynamics, where renewal
equations play a central role.

Key words. renewal equations, Volterra integral equations, retarded functional equations, evo-
lution operators, eigenvalue approximation, pseudospectral collocation, stability, equilibria, periodic
solutions

AMS subject classifications. 45C05, 45D05, 47D99, 65L07, 65L15, 65R20

DOI. 10.1137/17M1140534

1. Introduction. Delay equations of renewal or differential type are often used
in different fields of science to model complex phenomena in a more realistic way,
thanks to the presence of delayed terms which relate the current evolution to the past
history. Examples of broad areas where delays arise naturally are control theory in
engineering [37, 39, 53, 59] and population dynamics or epidemics in mathematical
biology [36, 41, 47, 51, 52, 58].

In many applications there is a strong interest in determining the asymptotic sta-
bility of particular invariants of the associated dynamical systems, mainly equilibria
and periodic solutions. Notable instances are network consensus, mechanical vibra-
tions, endemic states, and seasonal fluctuations. The problem is nontrivial since the
introduction of delays notoriously requires an infinite-dimensional state space [24].

A common tool to investigate local stability is the principle of linearized stability
which, generically, links the stability of a solution of a nonlinear system to that of
the null solution of the system linearized around the chosen solution. This linearized
system is autonomous in the case of equilibria and has periodic coefficients in the case
of periodic solutions.

As far as renewal equations (REs) and retarded functional differential equations
(RFDEs) are concerned, the stability of the null solution of a linear autonomous
system is determined by the spectrum of the semigroup of solution operators or,
equivalently, by that of its infinitesimal generator [25, 31, 40].

For RFDEs, as for ordinary differential equations, the Floquet theory relates
the stability of the null solution of a linear periodic system to the characteristic
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multipliers. These are the eigenvalues of the monodromy operator, i.e., the evolution
operator that shifts the state along the solution by one period (see [31, Chapter XIV]
and [40, Chapter 8]). An analogous formal theory lacks for REs. A possible extension
is still an ongoing effort of the authors and colleagues, in view of the application of
sun-star calculus to REs in [25] for equilibria. A preliminary study reveals the above
to be a promising approach, with difficulties restricted to the validation of technical
hypotheses. Thus it is reasonable to assume here the validity of a Floquet theory,
as well as that of a corresponding principle of linearized stability. (More on this is
postponed to section 6.)

Given the infinite-dimensional nature of delay equations, numerical methods to
approximate the spectrum of the operators mentioned above characterize part of the
recent literature. (To start see [14] and the references therein.) They are based on
the reduction to finite dimension, in order to exploit the eigenvalues of the obtained
matrices as approximations to (part of) the exact ones.

About equilibria of RFDEs, see [12] for the discretization of the infinitesimal
generator via pseudospectral collocation and [34] for the discretization of the solution
operator via linear multistep methods. For equilibria of REs and coupled systems of
REs and RFDEs, see instead the more recent collocation techniques of [10, 11].

Concerning periodic solutions of RFDEs, perhaps the most (indirectly) used tech-
nique is that behind DDE-BIFTOOL [1, 57], the widespread bifurcation package
for delay problems (namely, delay differential algebraic equations with constant or
state-dependent discrete delays). There, a discretization of the monodromy opera-
tor is obtained as a byproduct of the piecewise collocation used to compute peri-
odic solutions [33]. Other approaches are the semidiscretization method [43] and the
Chebyshev-based collocations [19, 20, 21], and [44] contains an interesting account
of this piece of literature. The most general collocation approach is perhaps [13],
targeted to the discretization of generic evolution operators, including both solution
operators (for equilibria) and monodromy operators (for periodic solutions, with any
ratio between delay and period, even irrational) and any (finite) combination of dis-
crete and distributed delay terms.

From an overall glimpse of the existing works, it emerges clearly that there are
no currently available methods to approximate the spectrum of evolution operators
of REs. Given their importance in population dynamics [7, 17, 28, 29, 30, 41, 42, 45,
48, 52, 61], this lack of tools deserves consideration, especially when the interest is in
the stability of periodic solutions. Indeed, inspired by the ideas of the pseudospectral
collocation approach for RFDEs of [13], the present work is a first attempt to fill this
gap. With respect to [13], in reformulating the evolution operators we introduce an
essential modification, in order to accommodate for the different kind of equations.
Namely, RFDEs provide the value of the derivative of the unknown function, while
REs provide directly the value of the unknown function. Moreover, the state space is
a space of L1 functions, instead of continuous functions as in the RFDE case; this is a
natural choice for REs [25], since in general the initial functions can be discontinuous
and the solution itself can be discontinuous at the initial time. Finally, provided that
some hypotheses on the integration kernel are satisfied, the right-hand side of REs
exhibits a regularizing effect (in the sense that applying the right-hand side to an L1

function produces a continuous function), which is not present in general in RFDEs.
These differences motivate a complete revisit of [13] rather than a mere adaptation.

A preliminary algorithm implementing the method we propose is adopted for the
first time in the recent work [9] for a special class of REs. There it is just marginally
summarized, as it is only used in the background simply to support the analysis of the



1458 DIMITRI BREDA AND DAVIDE LIESSI

approach for nonlinear problems described in [8]. In this work, instead, the method
is central, and we elaborate a full treatment including a rigorous error analysis and
proof of convergence, as well as numerical tests for experimental confirmation and
relevant codes.

The main practical outcome is the construction of an approximating matrix whose
eigenvalues are demonstrated to converge to the exact ones, possibly with infinite or-
der, under reasonable regularity assumptions on the model coefficients. This infinite
order of convergence, typical of pseudospectral methods [60], represents a key com-
putational feature, especially in case of robust analyses (as for, e.g., stability charts
and bifurcations). Indeed, a good accuracy is ensured in general with low matrix
dimension and, consequently, low computational cost and time.

For completeness, let us notice that the literature on Volterra integral and func-
tional equations abounds in numerical methods for initial and boundary value prob-
lems. The monograph [16] and the references therein may serve as a starting point.
However, all these methods deal with time integration to approximate a solution
rather than with spectral approximation to detect stability.

The paper is structured as follows. In section 2 we define the problem and refor-
mulate the evolution operators, an essential step hereinafter. In section 3 we define
the discretizations of the relevant function spaces and of the generic evolution op-
erator. In section 4 we prove that the discretized evolution operator is well-defined
and that its eigenvalues approximate those of the infinite-dimensional evolution op-
erator. In section 5 we present two numerical tests. Concluding comments follow in
section 6. Eventually, a matrix representation of the discretized evolution operator is
constructed in Appendix A for the sake of implementation, and relevant MATLAB
codes are available from the authors.

2. Formulation of the problem. For d ∈ N and τ ∈ R both positive, consider
the function space X := L1([−τ, 0],Rd) equipped with the usual L1 norm, denoted by
‖·‖X . For s ∈ R and a function x defined on [s− τ,+∞) let

(2.1) xt(θ) := x(t+ θ), t ≥ s, θ ∈ [−τ, 0].

Given a measurable function C : [s,+∞) × [−τ, 0] → Rd×d and ϕ ∈ X , define the
initial value problem for the RE

(2.2) x(t) =

∫ 0

−τ
C(t, θ)xt(θ) dθ, t > s,

by imposing xs = ϕ. As long as t ∈ [0, τ ], this corresponds to the Volterra integral
equation (VIE) of the second kind

x(t) =

∫ t

0

K(t, σ)x(σ) dσ + f(t)

for

(2.3) K(t, σ) := C(s+ t, σ − t)

and f(t) :=
∫ 0

t−τ K(t, σ)ϕ(σ) dσ. With standard regularity assumptions on the kernel

C, the solution exists unique and bounded in L1 (see Theorem 2.2 below). Moreover,
a reasoning on the lines of Bellman’s method of steps [3, 5] allows one to extend well-
posedness to any t > s, by working successively on [τ, 2τ ], [2τ, 3τ ] and so on (see also
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[2, 4] for similar arguments, and [16, section 4.1.2] for VIEs). Denote this solution by
x(t), or x(t; s, ϕ) when emphasis on s and ϕ is required.

Let {T (t, s)}t≥s be the family of linear and bounded evolution operators [23, 31]
associated to (2.2), i.e.,

T (t, s) : X → X, T (t, s)ϕ = xt(·; s, ϕ).

The aim of this work is to approximate the dominant part of the spectrum of the
infinite-dimensional operator T (t, s) for the sake of studying stability. This is pur-
sued by reducing to finite dimension via the pseudospectral collocation described in
section 3 and by using the eigenvalues of the obtained matrix, computed via standard
techniques, as approximations to the exact ones.

Let, e.g., C(t, θ) be Ω-periodic in t. As anticipated in section 1, we assume the
validity of a Floquet theory and of a corresponding principle of linearized stability.
Thus, the eigenvalues of the monodromy operator T (Ω, 0), called characteristic mul-
tipliers, provide information on the stability of the null solution of (2.2). Moreover,
if (2.2) comes from the linearization of a nonlinear RE around a periodic solution,
the multipliers reveal also the local stability of the latter. More precisely, except for
the trivial multiplier 1, which is always present due to linearization but does not af-
fect stability, the original periodic solution is locally asymptotically stable if all the
multipliers are inside the unit circle. Otherwise, a multiplier outside the unit circle is
enough to declare instability.

The same reasoning can be applied equally to T (h, 0), independently of h > 0,
to study the stability of the null solution of (2.2) in the autonomous case, i.e., when
C(t, θ) is independent of t. By linearization, again, this is valid also for equilibria
of nonlinear systems. Here the evolution family reduces to a classic one-parameter
semigroup, whose generator can be discretized as in [10] or [11], as already mentioned,
providing alternatives to the method described in this work.

One can use the discretization we propose in the framework of [15] also to compute
Lyapunov exponents for the generic nonautonomous case. Preliminary results appear
already in [9] and are confirmed by the ones obtained therein for equilibria and periodic
solutions, with reference to negative and zero exponents, respectively. For further
comments on this topic see section 6.

To keep this level of generality, embracing autonomous, periodic, and generic
nonautonomous problems altogether, let h ∈ R be positive and define for brevity

(2.4) T := T (s+ h, s).

From now on this is the generic evolution operator that we aim at discretizing. We
remark that any relation between h and τ , even irrational, is allowed.

The following reformulation of T is inspired by the one used in [13] for RFDEs.
It is convenient for discretizing T and approximating its eigenvalues. With respect
to [13], an essential modification of the operator V below is introduced to take into
account the different way by which the equation describes the solution, i.e., directly
(REs) or through its derivative (RFDEs).

Define the function spaces X+ := L1([0, h],Rd) and X± := L1([−τ, h],Rd),
equipped with the corresponding L1 norms denoted, respectively, by ‖·‖X+ and ‖·‖X± .

Define the operator V : X ×X+ → X± as

(2.5) V (ϕ,w)(t) :=

{
w(t), t ∈ (0, h],

ϕ(t), t ∈ [−τ, 0].
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Let also V − : X → X± and V + : X+ → X± be given, respectively, by V −ϕ :=
V (ϕ, 0X+) and V +w := V (0X , w), where 0Y denotes the null element of a linear space
Y . (Similarly, IY in what follows stands for the identity operator in Y .) Observe that

(2.6) V (ϕ,w) = V −ϕ+ V +w.

Note as much that V (ϕ,w) can have a discontinuity in 0 even when ϕ and w are
continuous but ϕ(0) �= w(0). This is an important difference with respect to [13],
which calls later on for special attention to discontinuities and to the role of 0, both
in the theoretical treatment of the numerical method and in its implementation.

Remark 2.1. The choice of including t = 0 in the past in (2.5), as well as in (2.2), is
common for REs modeling, e.g., structured populations [25, 27]. From the theoretical
point of view, it does not make any difference, since X consists of equivalence classes
of functions coinciding almost everywhere. From the interpretative point of view,
it can be motivated by the consideration that although the actual value ϕ(0) is not
well-defined, being ϕ in L1, it is reasonable to define the solution as coinciding with
the initial function ϕ of the problem on the whole domain of ϕ. Moreover, from the
implementation point of view, numerical tests performed including t = 0 in the past
or in the future show that either choice gives the same results, with the only (obvious)
requirement to be consistent throughout the code.

Now define also the operator Fs : X
± → X+ as

(2.7) Fsu(t) :=

∫ 0

−τ
C(s+ t, θ)u(t+ θ) dθ, t ∈ [0, h].

Eventually, the evolution operator T can be reformulated as

(2.8) Tϕ = V (ϕ,w∗)h,

where w∗ ∈ X+ is the solution of the fixed point equation

(2.9) w = FsV (ϕ,w),

which exists unique and bounded thanks to Theorem 2.2 below (where in (2.10), and
also in what follows, |·| denotes any finite-dimensional norm). Recall that in (2.8) the
subscript h is used according to (2.1), and hence V (ϕ,w∗)h(θ) = V (ϕ,w∗)(h+ θ) for
θ ∈ [−τ, 0].

Theorem 2.2. If the interval [0, τ ] can be partitioned into finitely many subin-
tervals J1, . . . , Jn such that, for any s ∈ R,

(2.10) ess sup
σ∈Ji

∫
Ji

|C(s+ t, σ − t)| dt < 1, i ∈ {1, . . . , n},

then the operator IX+ − FsV
+ is invertible with bounded inverse and (2.9) admits a

unique solution in X+.

Proof. Given f ∈ X+ the equation (IX+ − FsV
+)w = f has a unique solution

w ∈ X+ if and only if the initial value problem⎧⎪⎨
⎪⎩
w(t) =

∫ 0

−τ
C(s+ t, θ)w(t + θ) dθ + f(t), t ∈ [0, h],

w0 = 0 ∈ X,

has a unique solution in X± with the two solutions coinciding on [0, h]. If h ≤ τ ,
this follows directly from standard theory on VIEs; see, e.g., [38, Corollary 9.3.14 and
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Theorem 9.3.6], whose validity is ensured via (2.3) by the hypothesis on C. Otherwise,
the same argument can be repeated on [τ, 2τ ], [2τ, 3τ ], and so on. So IX+ −FsV

+ is
invertible and bounded and the bounded inverse theorem completes the proof.

We conclude this section by comparing the choice of (2.2) as a prototype equa-
tion to that of the general linear nonautonomous RFDE [13, equation (2.1)] (or,
equivalently, [14, equation (2.4)]), i.e., x′(t) = L(t)xt for linear bounded operators
L(t) : X → Rd, t ≥ s. Thanks to the Riesz representation theorem for L1 (see, e.g.,
[56, p. 400]), every linear nonautonomous retarded functional equation of the type
x(t) = L(t)xt can be written in the form (2.2), although not all of them satisfy the as-
sumptions of Theorem 2.2. Think, e.g., of the difference equation x(t) = a(t)x(t− τ),
i.e., C(t, θ) = a(t)δ−τ (θ) for δ−τ the Dirac delta at −τ . Here we exclude these equa-
tions because, first and as already noted, they might not be well-posed. Second, they
do not ensure the regularization of solutions as it happens for the analogous RFDEs,
and this is fundamental for the convergence of the numerical method. Third and last,
they might be of neutral type, a case out of the scope of the present work and about
which we comment further in section 6.

Also with reference to [13, equation (2.4)], in many applications the function
C(t, θ) (is continuous in t and) has a finite number of discontinuities in θ. Hence (2.2)
may often be written in the form

(2.11) x(t) =

p∑
k=1

∫ −τk−1

−τk
Ck(t, θ)x(t + θ) dθ

with τ0 := 0 < τ1 < · · · < τp := τ and Ck(t, θ) continuous in θ. In section 5 we refer
to this choice, which agrees, for instance, with the literature on physiologically and
age-structured populations (where discontinuities are due, e.g., to different behavior
of juveniles and adults) [29, 41, 52].

3. Discretization. In order to approximate the eigenvalues of the infinite-di-
mensional operator T : X → X defined in (2.4), we discretize the function spaces and
the operator itself by revisiting the pseudospectral collocation method used in [13],
with the necessary modifications due to the new definition of V and those anticipated
in section 1.

In what follows let M and N be positive integers, referred to as discretization
indices.

3.1. Partition of time intervals. If h ≥ τ , let ΩM := {θM,0, . . . , θM,M} be a
partition of [−τ, 0] with −τ = θM,M < · · · < θM,0 = 0. If h < τ , instead, let Q be the
minimum positive integer q such that qh ≥ τ . Note that Q > 1. Let θ(q) := −qh for

q ∈ {0, . . . , Q − 1} and θ(Q) := −τ . For q ∈ {1, . . . , Q}, let Ω(q)
M := {θ(q)M,0, . . . , θ

(q)
M,M}

be a partition of [θ(q), θ(q−1)] with

θ(1) = θ
(1)
M,M < · · · < θ

(1)
M,0 = θ(0) = 0,

θ(q) = θ
(q)
M,M < · · · < θ

(q)
M,0 = θ(q−1), q ∈ {2, . . . , Q− 1},

−τ = θ(Q) = θ
(Q)
M,M < · · · < θ

(Q)
M,0 = θ(Q−1).

Define also the partition ΩM := Ω
(1)
M ∪ · · · ∪ Ω

(Q)
M of [−τ, 0]. Note in particular that

for q ∈ {1, . . . , Q− 1}

(3.1) θ
(q)
M,M = −qh = θ

(q+1)
M,0 .
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In principle, one can use more general meshes in [−τ, 0], e.g., not including the
endpoints or using different families of nodes in the piecewise case. The forthcoming
results can be generalized straightforwardly, but we avoid this choice in favor of a
lighter notation and to reduce technicalities.

Finally, let Ω+
N := {tN,1, . . . , tN,N} be a partition of [0, h] with 0 ≤ tN,1 < · · · <

tN,N ≤ h.

3.2. Discretization of function spaces. If h ≥ τ , the discretization of X of
index M is XM := Rd(M+1). An element Φ ∈ XM is written as Φ = (Φ0, . . . ,ΦM ),1

where Φm ∈ Rd for m ∈ {0, . . . ,M}. The restriction operator RM : X̃ → XM is given
by RMϕ := (ϕ(θM,0), . . . , ϕ(θM,M )) for X̃ any subspace of X regular enough to make
pointwise evaluation meaningful. The same holds below and see also the comment
concluding this section. The prolongation operator PM : XM → X is the discrete
Lagrange interpolation operator PMΦ(θ) :=

∑M
m=0 �M,m(θ)Φm, θ ∈ [−τ, 0], where

�M,0, . . . , �M,M are the Lagrange coefficients relevant to the nodes of ΩM . Observe
that

(3.2) RMPM = IXM , PMRM = LM ,

where LM : X̃ → X is the Lagrange interpolation operator that associates to a func-
tion ϕ ∈ X̃ the M -degree Rd-valued polynomial LMϕ such that LMϕ(θM,m) =
ϕ(θM,m) for m ∈ {0, . . . ,M}.

If h < τ , proceed similarly but in a piecewise fashion. The discretization of X of
index M is XM := Rd(QM+1). An element Φ ∈ XM is written as

(3.3) Φ =
(
Φ

(1)
0 , . . . ,Φ

(1)
M−1, . . . ,Φ

(Q)
0 , . . . ,Φ

(Q)
M−1,Φ

(Q)
M

)
,

where Φ
(q)
m ∈ Rd for q ∈ {1, . . . , Q} and m ∈ {0, . . . ,M − 1} and Φ

(Q)
M ∈ Rd. In

view of (3.1), let also Φ
(q)
M := Φ

(q+1)
0 for q ∈ {1, . . . , Q− 1}. The restriction operator

RM : X̃ → XM is given by

RMϕ :=
(
ϕ(θ

(1)
M,0), . . . , ϕ(θ

(1)
M,M−1), . . . , ϕ(θ

(Q)
M,0), . . . , ϕ(θ

(Q)
M,M−1), ϕ(θ

(Q)
M,M )

)
.

The prolongation operator PM : XM → X is the discrete piecewise Lagrange inter-

polation operator PMΦ(θ) :=
∑M

m=0 �
(q)
M,m(θ)Φ

(q)
m , θ ∈ [θ(q), θ(q−1)], q ∈ {1, . . . , Q},

where �
(q)
M,0, . . . , �

(q)
M,M are the Lagrange coefficients relevant to the nodes of Ω

(q)
M for

q ∈ {1, . . . , Q}. Observe that the equalities (3.2) hold again, with LM : X̃ → X
the piecewise Lagrange interpolation operator that associates to a function ϕ ∈ X̃ the
piecewise polynomial LMϕ such that LMϕ�[θ(q),θ(q−1)]

is theM -degree Rd-valued poly-

nomial with values ϕ(θ
(q)
M,m) at the nodes θ

(q)
M,m for q ∈ {1, . . . , Q} and m = 0, . . . ,M .

Notice that to avoid a cumbersome notation the same symbols for XM , RM , PM , and
LM are used.

Finally, the discretization of X+ of index N is X+
N := RdN . An element W ∈ X+

N

is written as W = (W1, . . . ,WN ), where Wn ∈ Rd for n ∈ {1, . . . , N}. The re-
striction operator R+

N : X̃+ → X+
N is given by R+

Nw := (w(tN,1), . . . , w(tN,N )). The
prolongation operator P+

N : X+
N → X+ is the discrete Lagrange interpolation oper-

ator P+
NW (t) :=

∑N
n=1 �

+
N,n(t)Wn, t ∈ [0, h], where �+N,1, . . . , �

+
N,N are the Lagrange

1Throughout the text we use this simpler notation to denote a concatenation of column vectors
in place of the more formal Φ = (ΦT

0 , . . . ,ΦT
M )T .
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coefficients relevant to the nodes of Ω+
N . Observe again that

(3.4) R+
NP+

N = IX+
N
, P+

NR+
N = L+

N ,

where L+
N : X̃+ → X+ is the Lagrange interpolation operator that associates to a func-

tion w ∈ X̃+ the (N − 1)-degree Rd-valued polynomial L+
Nw such that L+

Nw(tN,n) =
w(tN,n) for n ∈ {1, . . . , N}.

When not ambiguous (e.g., when applied to an element) the restrictions to sub-
spaces of the above prolongation, restriction, and Lagrange interpolation operators
are denoted in the same way as the operators themselves.

Observe that since an L1 function is an equivalence class of functions equal almost
everywhere, values in specific points are not well-defined. Thus, it does not seem
reasonable to define the restriction operator on the whole space X (respectively, X+),
motivating the above use of X̃ (respectively, X̃+). Indeed, this is amply justified.
First, it is clear from the following sections that the restriction and interpolation
operators are actually applied only to continuous functions or polynomials (or their
piecewise counterparts if h < τ). Moreover, the interest of the present work is in
the eigenfunctions of the evolution operator (see Theorem 4.10 below), which are
expected to be sufficiently regular. (See the relevant comments in section 6.) As
a last argument, ultimately, the numerical method is applied to finite-dimensional
vectors, which bear no notion of the function from which they are derived.

3.3. Discretization of T . Following (2.8) and (2.9), the discretization of indices
M and N of the evolution operator T in (2.4) is the finite-dimensional operator
TM,N : XM → XM defined as

TM,NΦ := RMV (PMΦ, P+
NW ∗)h,

where W ∗ ∈ X+
N is a solution of the fixed point equation

(3.5) W = R+
NFsV (PMΦ, P+

NW )

for the given Φ ∈ XM . We establish that (3.5) is well-posed in subsection 4.2.
By virtue of (2.6), the operator TM,N can be rewritten as

TM,NΦ = T
(1)
M Φ + T

(2)
M,NW ∗,

with T
(1)
M : XM → XM and T

(2)
M,N : X+

N → XM defined as

T
(1)
M Φ := RM (V −PMΦ)h, T

(2)
M,NW := RM (V +P+

NW )h.

Similarly, the fixed point equation (3.5) can be rewritten as

(IX+
N
− U

(2)
N )W = U

(1)
M,NΦ

with U
(1)
M,N : XM → X+

N and U
(2)
N : X+

N → X+
N defined as

U
(1)
M,NΦ := R+

NFsV
−PMΦ, U

(2)
N W := R+

NFsV
+P+

NW.

Since IX+
N
− U

(2)
N is invertible, the operator TM,N : XM → XM can be eventually

reformulated as

(3.6) TM,N = T
(1)
M + T

(2)
M,N(IX+

N
− U

(2)
N )−1U (1)

M,N .
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This reformulation simplifies the construction of the matrix representation of TM,N

given in Appendix A.

4. Convergence analysis. After introducing some additional spaces and as-
sumptions in subsection 4.1, we first prove that the discretized problem (viz., (3.5))
is well-posed in subsection 4.2. Then, in subsection 4.3, we present the proof of the
convergence of the eigenvalues of the finite-dimensional operator TM,N to those of the
infinite-dimensional operator T .

4.1. Additional spaces and assumptions. Consider the space of continuous
functions X+

C := C([0, h],Rd) ⊂ X+ equipped with the uniform norm, denoted by
‖·‖X+

C
. If h ≥ τ , consider also XC := C([−τ, 0],Rd) ⊂ X equipped with the uniform

norm, denoted by ‖·‖XC . If h < τ , instead, define

XC :=
{
ϕ ∈ X | ϕ�(θ(q+1),θ(q))

∈ C
(
(θ(q+1), θ(q)),Rd

)
, q ∈ {0, . . . , Q− 1}

and the one-sided limits at θ(q) exist finite, q ∈ {0, . . . , Q}
}
⊂ X,

equipped with the same norm ‖·‖XC . With these choices, all these function spaces
are Banach spaces.

Remark 4.1. Observe that XC and X+
C are identified with their projections on

the spaces X and X+, respectively, and hence their elements may be seen as equiv-
alence classes of functions coinciding almost everywhere. In particular, the values of
a function in X or X+ at the endpoints of the domain interval are not relevant to
that function being an element of XC or X+

C , respectively. The same is true for the
endpoints of domain pieces for elements of XC if h < τ .

In the following sections, some hypotheses on the discretization nodes in [0, h] and
on Fs and V are needed beyond the assumption of Theorem 2.2, in order to attain the
regularity required to ensure the convergence of the method. They are all referenced
individually from the following list where needed:

(H1) the meshes {Ω+
N}N>0 are the Chebyshev zeros

tN,n :=
h

2

(
1− cos

(
(2n− 1)π

2N

))
, n ∈ {1, . . . , N};

(H2) the hypothesis of Theorem 2.2 holds;

(H3) the range of FsV
+ : X+ → X+ is contained in X+

C and FsV
+ : X+ → X+

C is
bounded;

(H4) the range of FsV
− : X → X+ is contained in X+

C and FsV
− : X → X+

C is
bounded.

With respect to (2.5) and (2.7), hypotheses (H3) and (H4) are fulfilled if the
following two conditions on the kernel C of (2.2) are satisfied:

(C1) there exists γ > 0 such that |C(t, θ)| ≤ γ for all t ∈ [0, h] and almost all
θ ∈ [−τ, 0];

(C2) t �→ C(t, θ) is continuous for almost all θ ∈ [−τ, 0], uniformly with respect
to θ.

Indeed, let u ∈ X± \ {0}, t ∈ [0, h] and ε > 0. From the continuity of translation

in L1 there exists δ′ > 0 such that for all t′ ∈ [0, h] if |t′− t| < δ′, then
∫ 0

−τ |u(t′+ θ)−
u(t+ θ)| dθ < ε

2γ . From condition (C2) there exists δ′′ > 0 such that for all t′ ∈ [0, h]
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and almost all θ ∈ [−τ, 0] if |t′ − t| < δ′′, then |C(t′, θ) − C(t, θ)| < ε
2‖u‖X±

. Hence,

for all t′ ∈ [0, h] if |t′ − t| < δ := min{δ′, δ′′}, then∣∣∣∣
∫ 0

−τ
C(t′, θ)u(t′ + θ) dθ −

∫ 0

−τ
C(t, θ)u(t+ θ) dθ

∣∣∣∣
≤

∫ 0

−τ
|C(t′, θ)||u(t′ + θ)− u(t+ θ)| dθ +

∫ 0

−τ
|C(t′, θ)− C(t, θ)||u(t+ θ)| dθ

< γ
ε

2γ
+

ε

2‖u‖X±

∫ 0

−τ
|u(t+ θ)| dθ ≤ ε.

Since Fs0X± = 0X+ , this shows that Fs(X
±) ⊂ X+

C , which implies the first part of
hypotheses (H3) and (H4). Boundedness follows immediately. Eventually, observe
that condition (C1) implies also hypothesis (H2). Indeed, the interval [0, τ ] can be
partitioned into finitely many subintervals J1, . . . , Jn, each of length less than 1

γ , such

that, for any s ∈ R and all i ∈ {1, . . . , n},

ess sup
σ∈Ji

∫
Ji

|C(s+ t, σ − t)| dt ≤ γ

∫
Ji

dt < 1.

Anyway, in what follows we base the proofs on hypotheses (H2) to (H4) in the case
one uses operators V and Fs more general than or different from (2.5) and (2.7).

4.2. Well-posedness of the collocation equation. With reference to (3.5),
let ϕ ∈ X and consider the collocation equation

(4.1) W = R+
NFsV (ϕ, P+

NW )

in W ∈ X+
N . The aim of this section is to show that (4.1) has a unique solution and

to study its relation to the unique solution w∗ ∈ X+ of (2.9). Using (2.6), (2.9) and
(4.1) can be rewritten, respectively, as (IX+ −FsV

+)w = FsV
−ϕ and

(4.2)
(
IX+

N
−R+

NFsV
+P+

N

)
W = R+

NFsV
−ϕ.

The following preliminary result concerns the operators

(4.3) IX+ − L+
NFsV

+ : X+ → X+

and

(4.4) IX+
N
−R+

NFsV
+P+

N : X+
N → X+

N .

Proposition 4.2. If the operator (4.3) is invertible, then the operator (4.4) is
invertible. Moreover, given W̄ ∈ X+

N , the unique solution ŵ ∈ X+ of

(4.5) (IX+ − L+
NFsV

+)w = P+
N W̄

and the unique solution Ŵ ∈ X+
N of

(4.6)
(
IX+

N
−R+

NFsV
+P+

N

)
W = W̄

are related by Ŵ = R+
N ŵ and ŵ = P+

N Ŵ .
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Proof. If (4.3) is invertible, then, given W̄ ∈ X+
N , (4.5) has a unique solution,

say, ŵ ∈ X+. Then, by (3.4),

(4.7) ŵ = P+
N

(
R+

NFsV
+ŵ + W̄

)
and

(4.8) R+
N ŵ = R+

NFsV
+ŵ + W̄

hold. Hence, by substituting (4.8) in (4.7),

(4.9) ŵ = P+
NR+

N ŵ

and, by substituting (4.9) in (4.8), R+
N ŵ = R+

NFsV
+P+

NR+
N ŵ + W̄ , i.e., R+

N ŵ is a
solution of (4.6).

Vice versa, if Ŵ ∈ X+
N is a solution of (4.6), then P+

N Ŵ = L+
NFsV

+P+
N Ŵ+P+

N W̄

holds again by (3.4), i.e., P+
N Ŵ is a solution of (4.5). Hence, by uniqueness, ŵ = P+

N Ŵ
holds.

Finally, if Ŵ1, Ŵ2 ∈ X+
N are solutions of (4.6), then P+

N Ŵ1 = ŵ = P+
N Ŵ2 and,

once again by (3.4), Ŵ1 = R+
NP+

N Ŵ1 = R+
NP+

N Ŵ2 = Ŵ2. Therefore Ŵ := R+
N ŵ is

the unique solution of (4.6) and the operator (4.4) is invertible.

As observed above, (4.1) is equivalent to (4.2), and hence, by choosing

(4.10) W̄ = R+
NFsV

−ϕ,

it is equivalent to (4.6). Observe also that thanks to (3.4) the equation

(4.11) w = L+
NFsV (ϕ,w)

can be rewritten as (IX+−L+
NFsV

+)w = L+
NFsV

−ϕ = P+
NR+

NFsV
−ϕ, which is equiv-

alent to (4.5) with the choice (4.10). Thus, by Proposition 4.2, if the operator (4.3)
is invertible, then (4.1) has a unique solution W ∗ ∈ X+

N such that

(4.12) W ∗ = R+
Nw∗N , w∗N = P+

NW ∗,

where w∗N ∈ X+ is the unique solution of (4.11). Note for clarity that (4.10) implies
w∗N = ŵ for ŵ in Proposition 4.2. So, now we show that (4.3) is invertible under due
assumptions.

Proposition 4.3. If hypotheses (H1) to (H3) hold, then there exists a positive
integer N0 such that, for any N ≥ N0, the operator (4.3) is invertible and

∥∥(IX+ − L+
NFsV

+)−1
∥∥
X+←X+ ≤ 2

∥∥(IX+ −FsV
+)−1

∥∥
X+←X+ .

Moreover, for each ϕ ∈ X, (4.11) has a unique solution w∗N ∈ X+ and

‖w∗N − w∗‖X+ ≤ 2
∥∥(IX+ −FsV

+)−1
∥∥
X+←X+

∥∥L+
Nw∗ − w∗

∥∥
X+ ,

where w∗ ∈ X+ is the unique solution of (2.9).

Proof. In this proof, let I := IX+ . By [35, Corollary of Theorem Ia], assuming
hypothesis (H1), if w ∈ X+

C , then ‖(L+
N − I)w‖X+ → 0 for N → ∞. By the Banach–

Steinhaus theorem, the sequence ‖(L+
N − I)�X+

C

‖X+←X+
C
is bounded, and hence

(4.13)
∥∥∥(L+

N − I)�X+
C

∥∥∥
X+←X+

C

−−−−→
N→∞

0.
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Assuming hypothesis (H3), this implies

∥∥(L+
N − I)FsV

+
∥∥
X+←X+ ≤

∥∥∥(L+
N − I)�X+

C

∥∥∥
X+←X+

C

‖FsV
+‖X+

C←X+ −−−−→
N→∞

0.

In particular, there exists a positive integer N0 such that, for each integer N ≥ N0,

∥∥(L+
N − I)FsV

+
∥∥
X+←X+ ≤ 1

2‖(I − FsV +)−1‖X+←X+

,

i.e., ‖(L+
N−I)FsV

+‖X+←X+‖(I−FsV
+)−1‖X+←X+ ≤ 1

2 , which holds since I−FsV
+

is invertible with bounded inverse by virtue of hypothesis (H2) and Theorem 2.2.
Considering the operator I−L+

NFsV
+ as a perturbed version of I−FsV

+ and writing
I −L+

NFsV
+ = I −FsV

+ − (L+
N − I)FsV

+, by the Banach perturbation lemma [46,
Theorem 10.1], there exists a positive integer N0 such that, for each integer N ≥ N0,
the operator I − L+

NFsV
+ is invertible and

∥∥(I − L+
NFsV

+)−1
∥∥
X+←X+ ≤ ‖(I −FsV

+)−1‖X+←X+

1− ‖(I −FsV +)−1((L+
N − I)FsV +)‖X+←X+

≤ 2
∥∥(I −FsV

+)−1
∥∥
X+←X+ .

Hence, with fixed ϕ ∈ X , (4.11) has a unique solution w∗N ∈ X+. For the same
ϕ, let e∗N ∈ X+ such that w∗N = w∗ + e∗N , where w∗ ∈ X+ is the unique solution
of (2.9). Then w∗ + e∗N = L+

NFsV (ϕ,w∗ + e∗N) = L+
NFsV (ϕ,w∗) + L+

NFsV
+e∗N =

L+
Nw∗ + L+

NFsV
+e∗N and (I − L+

NFsV
+)e∗N = (L+

N − I)w∗, completing the proof.

4.3. Convergence of the eigenvalues. The proof that the eigenvalues of TM,N

approximate those of T follows the lines of the proof for RFDEs in [13], modulo the
difference about V mentioned in section 2 and those due to the change of state space.
As a consequence, although the proof of the main step (Proposition 4.7) is simplified,
the outcome is a stronger result than [13, Proposition 4.5]. Indeed, restricting the state
space to a subspace of more regular functions is no longer necessary. This is basically
due to the regularizing nature of the right-hand side of (2.2) under hypothesis (H4),
which is usually satisfied in applications, as remarked at the end of section 2.

Observe that T and TM,N live on different spaces, which cannot be compared
directly because of the different dimensions, viz., infinite vs. finite. In view of this,
we first translate the problem of studying the eigenvalues of TM,N on XM to that of

studying the eigenvalues of finite-rank operators T̂M,N and T̂N on X (Propositions 4.4

and 4.5). Then, in Proposition 4.7, we show that T̂N converges in operator norm to T
and, by applying results from spectral approximation theory [22] (Lemma 4.8), we
obtain the desired convergence of the eigenvalues of TM,N to the eigenvalues of T
(Proposition 4.9 and Theorem 4.10), which represents the main result of the work.

Under some additional hypotheses on the smoothness of the eigenfunctions of T ,
the eigenvalues converge with infinite order. The numerical tests of section 5 show
that in practice the infinite order of convergence can be attained. It is reasonable
to expect that the regularity of the eigenfunctions depends on the regularity of the
model coefficients. A rigorous investigation is ongoing in parallel to the completion
of the Floquet theory and more comments are given in section 6.

Now we introduce the finite-rank operator T̂M,N associated to TM,N and show
the relation between their spectra.
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Proposition 4.4. The finite-dimensional operator TM,N has the same nonzero
eigenvalues, with the same geometric and partial multiplicities, of the operator

T̂M,N := PMTM,NRM �XC
: XC → XC .

Moreover, if Φ ∈ XM is an eigenvector of TM,N associated to a nonzero eigenvalue μ,

then PMΦ ∈ XC is an eigenvector of T̂M,N associated to the same eigenvalue μ.

Proof. Apply [13, Proposition 4.1], since prolongations are polynomials, and hence
continuous.

Define the operator T̂N : X → X as

T̂Nϕ := V (ϕ,w∗N )h,

where w∗N ∈ X+ is the solution of the fixed point equation (4.11), which, under
hypotheses (H1) to (H3), is unique thanks to Propositions 4.2 and 4.3. Observe that
w∗N is a polynomial, and hence, in particular, w∗N ∈ X+

C . Then, for ϕ ∈ XC , by (4.12),

T̂M,Nϕ = PMTM,NRMϕ

= PMRMV (PMRMϕ, P+
NW ∗)h

= LMV (LMϕ,w∗N )h

= LM T̂NLMϕ,

where W ∗ ∈ X+
N and w∗N ∈ X+

C are the solutions, respectively, of (3.5) applied to
Φ = RMϕ and of (4.11) with LMϕ replacing ϕ. These solutions are unique under
hypotheses (H1) to (H3), thanks again to Propositions 4.2 and 4.3.

Now we show the relation between the spectra of T̂M,N and T̂N .

Proposition 4.5. Assume that hypotheses (H1) to (H3) hold and let M ≥ N ≥
N0 with N0 given by Proposition 4.3. Then the operator T̂M,N has the same nonzero
eigenvalues, with the same geometric and partial multiplicities and associated eigen-
vectors, of the operator T̂N .

Proof. Denote by Πr and Π+
r the subspaces of polynomials of degree r of X

and X+, respectively, and observe that Remark 4.1 applies also here. Note that
w∗N ∈ Π+

N−1.
If h ≥ τ , for all ϕ ∈ X , T̂Nϕ = V (ϕ,w∗N )h ∈ ΠN−1. Thus both T̂N and T̂M,N =

LM T̂NLM have range contained in ΠM , being M ≥ N . By [13, Proposition 4.3
and Remark 4.4], T̂N and T̂M,N have the same nonzero eigenvalues, with the same
geometric and partial multiplicities and associated eigenvectors, as their restrictions
to ΠM . Observing that T̂M,N�ΠM

= LM T̂NLM �ΠM
= T̂N�ΠM

, the thesis follows.

Consider now the case h < τ . Denote by Πpw
r the subspace of piecewise poly-

nomials of degree r of X on the intervals [θ(q+1), θ(q)] for q = 0, . . . , Q − 1. For
all ϕ ∈ Πpw

M , T̂Nϕ = V (ϕ,w∗N )h ∈ Πpw
M . Let μ �= 0, ϕ ∈ X , and ϕ̄ ∈ Πpw

M such

that (μIX − T̂N)ϕ = μϕ − V (ϕ,w∗N )h = ϕ̄. This equation can be rewritten as
μϕ(θ) = w∗N (h+θ)+ϕ̄(θ) if θ ∈ (−h, 0] and as μϕ(θ) = ϕ(h+θ)+ϕ̄(θ) if θ ∈ [−τ,−h].
From the first equation, ϕ restricted to [−h, 0] is a polynomial of degree M , being
M ≥ N . From the second equation it is easy to show that ϕ ∈ Πpw

M by induction on the

intervals [θ(q+1), θ(q)] for q = 1, . . . , Q−1. Hence, by [13, Proposition 4.3], T̂N has the
same nonzero eigenvalues, with the same geometric and partial multiplicities and as-
sociated eigenvectors, as its restriction to Πpw

M . The same holds for T̂M,N = LM T̂NLM
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by [13, Proposition 4.3 and Remark 4.4] since its range is contained in Πpw
M . The thesis

follows by observing that T̂M,N�Πpw
M

= LM T̂NLM �Πpw
M

= T̂N�Πpw
M

.

Below we prove the norm convergence of T̂N to T , which is the key step to obtain
the main result of this work. First we need to extend the results of Theorem 2.2 to
X+

C in the following lemma.

Lemma 4.6. If hypotheses (H2) and (H3) hold, then (IX+ −FsV
+)�X+

C

is invert-

ible with bounded inverse.

Proof. Since IX+ −FsV
+ is invertible with bounded inverse by virtue of hypoth-

esis (H2) and Theorem 2.2, given f ∈ X+
C the equation (IX+ − FsV

+)w = f has a
unique solution w ∈ X+, which by hypothesis (H3) is in X+

C . Hence, the operator
(IX+ − FsV

+)�X+
C

is invertible. It is also bounded, since ‖·‖X+ ≤ h‖·‖X+
C
, which

implies ‖FsV
+�X+

C

‖X+
C←X+

C
≤ h‖FsV

+‖X+
C←X+ . The bounded inverse theorem com-

pletes the proof.

Proposition 4.7. If hypotheses (H1) to (H4) hold, then ‖T̂N − T ‖X←X → 0 for
N → ∞.

Proof. Let ϕ ∈ X and let w∗ and w∗N be the solutions of the fixed point equa-
tions (2.9) and (4.11), respectively. Recall that w∗N is a polynomial. Assuming hy-
potheses (H3) and (H4) and recalling that w∗ = FsV

+w∗ + FsV
−ϕ, it is clear that

w∗ ∈ X+
C . Hence it follows that V (ϕ,w∗)h ∈ XC . (Recall Remark 4.1 and that for

h < τ the space XC is piecewise defined; see subsection 4.1.) Then (T̂N − T )ϕ =
V (ϕ,w∗N )h −V (ϕ,w∗)h = V +(w∗N −w∗)h. Assuming also hypotheses (H1) and (H2),
by Proposition 4.3, there exists a positive integer N0 such that, for any N ≥ N0,∥∥∥(T̂N − T )ϕ

∥∥∥
X

=
∥∥V +(w∗N − w∗)h

∥∥
X

≤ ‖w∗N − w∗‖X+

≤ 2
∥∥(IX+ −FsV

+)−1
∥∥
X+←X+

∥∥L+
Nw∗ − w∗

∥∥
X+

≤ 2
∥∥(IX+ −FsV

+)−1
∥∥
X+←X+

∥∥∥(L+
N − IX+)�X+

C

∥∥∥
X+←X+

C

‖w∗‖X+
C

holds by virtue of (4.13). Eventually,

‖w∗‖X+
C
≤

∥∥∥∥((IX+ −FsV
+)�X+

C

)−1∥∥∥∥
X+

C←X+
C

‖FsV
−‖X+

C←X‖ϕ‖X

completes the proof thanks to Lemma 4.6 and hypothesis (H4).

The final convergence results rely on a combination of tools from [22], as summa-
rized in the following lemma.

Lemma 4.8. Let U be a Banach space, A a linear and bounded operator on U , and
{AN}N∈N a sequence of linear and bounded operators on U such that ‖AN−A‖U←U →
0 for N → ∞. If μ ∈ C is an eigenvalue of A with finite algebraic multiplicity ν and
ascent l, and Δ is a neighborhood of μ such that μ is the only eigenvalue of A in Δ,
then there exists a positive integer N̄ such that, for any N ≥ N̄ , AN has in Δ exactly
ν eigenvalues μN,j, j ∈ {1, . . . , ν}, counting their multiplicities. Moreover, by setting
εN := ‖(AN −A)�Eμ‖U←Eμ , where Eμ is the generalized eigenspace of μ equipped with
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the norm ‖·‖U restricted to Eμ, the following holds:

(4.14) max
j∈{1,...,ν}

|μN,j − μ| = O
(
ε
1/l
N

)
.

Proof. By [22, Example 3.8 and Theorem 5.22], the norm convergence of AN to

A implies the strongly stable convergence AN − μIU
ss−→ A − μIU for all μ in the

resolvent set of A and all isolated eigenvalues μ of finite multiplicity of A. The thesis
follows then by [22, Proposition 5.6 and Theorem 6.7].

Proposition 4.9. Assume that hypotheses (H1) to (H4) hold. If μ ∈ C \ {0}
is an eigenvalue of T with finite algebraic multiplicity ν and ascent l, and Δ is a
neighborhood of μ such that μ is the only eigenvalue of T in Δ, then there exists a
positive integer N1 ≥ N0 with N0 given by Proposition 4.3, such that, for any N ≥ N1,
T̂N has in Δ exactly ν eigenvalues μN,j, j ∈ {1, . . . , ν}, counting their multiplicities.
Moreover, if for each ϕ ∈ Eμ, where Eμ is the generalized eigenspace of T associated
to μ, the function w∗ that solves (2.9) is of class Cp with p ≥ 1, then

max
j∈{1,...,ν}

|μN,j − μ| = o
(
N

1−p
l

)
.

Proof. By Proposition 4.7, ‖T̂N − T ‖X←X → 0 for N → ∞. The first part of the
thesis is obtained by applying Lemma 4.8. From the same Lemma 4.8, (4.14) follows
with εN := ‖(T̂N −T )�Eμ‖X←Eμ and Eμ the generalized eigenspace of μ equipped with

the norm of X restricted to Eμ.
Let ϕ1, . . . , ϕν be a basis of Eμ. An element ϕ of Eμ can be written as ϕ =∑ν

j=1 αj(ϕ)ϕj with αj(ϕ) ∈ C for j ∈ {1, . . . , ν}, and hence

∥∥∥(T̂N − T )ϕ
∥∥∥
X

≤ max
j∈{1,...,ν}

|αj(ϕ)|
ν∑

j=1

∥∥∥(T̂N − T )ϕj

∥∥∥
X
.

The function ϕ �→ maxj∈{1,...,ν}|αj(ϕ)| is a norm on Eμ, so it is equivalent to the norm
of X restricted to Eμ. Thus, there exists a positive constant c independent of ϕ such
that maxj∈{1,...,ν}|αj(ϕ)| ≤ c‖ϕ‖X and

εN =
∥∥∥(T̂N − T )�Eμ

∥∥∥
X←Eμ

≤ c

ν∑
j=1

∥∥∥(T̂N − T )ϕj

∥∥∥
X
.

Let j ∈ {1, . . . , ν}. As seen in Proposition 4.7,∥∥∥(T̂N − T )ϕj

∥∥∥
X

≤ 2
∥∥(IX+ −FsV

+)−1
∥∥
X+←X+

∥∥(L+
N − IX+)w∗j

∥∥
X+ ,

where w∗j is the solution of (2.9) associated to ϕj . Now, by well-known results in
interpolation theory (see, e.g., [55, Theorems 1.5 and 4.1]), since w∗j is of class Cp,
the bound

‖(L+
N − IX+)w∗j ‖X+ ≤ h(1 + ΛN )EN−1(w∗j )

≤ h(1 + ΛN )
6p+1ep

1 + p

(
h

2

)p
1

(N − 1)p
ω

(
h

2(N − 1− p)

)

holds, where ΛN is the Lebesgue constant for Ω+
N , EN−1(·) is the best uniform ap-

proximation error, and ω(·) is the modulus of continuity of (w∗j )
(p) on [0, h]. Since
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hypothesis (H1) is assumed, by classic results on interpolation (see, e.g., [55, Theorem
4.5]), ΛN = o(N). Hence, εN = o(N1−p) and the thesis follows immediately.

Theorem 4.10. Assume that hypotheses (H1) to (H4) hold. If μ ∈ C \ {0} is an
eigenvalue of T with finite algebraic multiplicity ν and ascent l, and Δ is a neighbor-
hood of μ such that μ is the only eigenvalue of T in Δ, then there exists a positive
integer N1 ≥ N0 with N0 given by Proposition 4.3, such that, for any N ≥ N1 and any
M ≥ N , TM,N has in Δ exactly ν eigenvalues μM,N,j, j ∈ {1, . . . , ν}, counting their
multiplicities. Moreover, if for each ϕ ∈ Eμ, where Eμ is the generalized eigenspace
of T associated to μ, the function w∗ that solves (2.9) is of class Cp with p ≥ 1, then

max
j∈{1,...,ν}

|μM,N,j − μ| = o
(
N

1−p
l

)
.

Proof. If M ≥ N ≥ N0, by Propositions 4.4 and 4.5 the operators TM,N , T̂M,N ,

and T̂N have the same nonzero eigenvalues, with the same geometric and partial
multiplicities and associated eigenvectors. The thesis follows by Proposition 4.9.

We conclude this section with a couple of comments. First, nodes other than those
required by hypothesis (H1) may be used. Indeed, they are only asked to satisfy the
hypotheses of [35, Corollary of Theorem Ia] and ΛN = o(N). Let us notice that
both are guaranteed by zeros of other families of classic orthogonal polynomials [18].
Anyway, here we assume hypothesis (H1) since these are the nodes we actually use in
implementing the method.

Second, in general, it may not be possible to compute exactly the integral in (2.7).
If this is the case, an approximation F̃s of Fs must be used, leading to a further contri-
bution in the final error. See [14, section 6.3.3] and further comments in Appendix A
as far as implementation is concerned.

5. Numerical tests. REs with known solutions and stability properties are
rather rare. A notable difficulty is the lack of a characteristic equation for nonau-
tonomous equations, which makes it hard to obtain both theoretical and numerical
results to compare with our method. For these reasons, we first compare our method
with that of [10] in the autonomous case, where, instead, a characteristic equation
can be derived. Then we study a nonlinear equation which possesses a branch of
analytically known periodic solutions in a certain range of a varying parameter.

In the following tests we use Chebyshev zeros in [0, h] as Ω+
N , as required by

hypothesis (H1). In [−τ, 0] we use Chebyshev extrema as ΩM if h ≥ τ and as Ω
(q)
M for

q ∈ {1, . . . , Q} if h < τ .
Consider the egg cannibalism model

x(t) = β

∫ −a
−4

x(t + θ) e−x(t+θ) dθ,

where β > 0 and 0 < a < 4, for which some theoretical results are known [10,
section 5.1]. By linearizing it around the nontrivial equilibrium log(β(4 − a)), we
obtain the linear equation

(5.1) x(t) =
1− log(β(4 − a))

4− a

∫ −a
−4

x(t + θ) dθ.

It corresponds to (2.2) by setting C(t, θ) := 1−log(β(4−a))
4−a for θ ∈ [−τ,−a], C(t, θ) := 0

for θ ∈ (−a, 0] and τ := 4. Observe that C(t, θ) is independent of t and piecewise
constant in θ, thus making (5.1) an instance of (2.11) with p = 2, τ1 = a, and τ2 = 4.
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1 10 20 30

10−16

10−8

100

Fig. 1. Numerical test with (5.1), where a = 2 and β = 1
2
exp(1 + 2π

3
√

3
). Left: eigenvalues of

T (4, 0) for M = N = 20 with respect to the unit circle. Right: error with respect to 1 of the absolute
value of the dominant eigenvalues of T (4, 0) in black and error on the 0 real part of the rightmost
characteristic roots obtained with the method of [10] in gray.

By studying the characteristic equation it is known that the equilibrium undergoes a
Hopf bifurcation for a = 2 and β = 1

2 exp(1+
2π
3
√
3
), and hence the operator T (h, 0) has

a complex conjugate pair on the unit circle as its dominant eigenvalues, independently
of h > 0. In this test we choose h = τ (= 4). Figure 1 shows the eigenvalues of T (4, 0)
for M = N = 20 and the errors with respect to 1 of the absolute value of the dominant
eigenvalues as M = N varies from 1 to 30, compared with the errors on the 0 real
part of the characteristic roots obtained with the method of [10]. Observe that the
latter approximates the eigenvalues λ of the infinitesimal generator (characteristic
roots), which are related to the eigenvalues μ of T (characteristic multipliers) by
μ = eλh. Notice that both methods exhibit the proved convergence of infinite order,
with apparently larger error constants for the method of [10].

The second numerical test is based on the nonlinear equation

(5.2) x(t) =
γ

2

∫ −1
−3

x(t+ θ)(1 − x(t+ θ)) dθ,

linearized around the periodic solution

(5.3) x̄(t) =
1

2
+

π

4γ
+

√
1

2
− 1

γ
− π

2γ2

(
1 +

π

4

)
sin

(π
2
t
)
,

which exists for γ ≥ 2 + π
2 and has period 4 [9]. The linearized equation reads

x(t) =
γ

2

∫ −1
−3

(1− 2x̄(t+ θ))x(t + θ) dθ,

which corresponds to (2.2) by setting C(t, θ) := γ
2 (1 − 2x̄(t + θ)) for θ ∈ [−τ,−1],

C(t, θ) := 0 for θ ∈ (−1, 0] and τ := 3. Observe that C(t, θ) is continuous in t
and for each t it may have a single discontinuity in θ, thus adhering to (2.11) with
p = 2, τ1 = 1, and τ2 = 3. Although not much is known theoretically about stability,
the monodromy operator T (4, 0) has always an eigenvalue 1 due to the linearization
around the periodic solution, which allows us to test the accuracy of the approxima-
tion. Figure 2 shows the eigenvalues of T (4, 0) and the errors on the known eigenvalue
1 for γ = 4. By using standard zero-finding routines (e.g., fzero of MATLAB), we
can detect for γ ≈ 4.3247 an eigenvalue crossing the unit circle outward through −1,
which characterizes a period doubling bifurcation. The branch of periodic solutions
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1 10 20 30

10−16

10−8

100

Fig. 2. Numerical test with (5.2), where γ = 4, linearized around (5.3). Left: eigenvalues of
T (4, 0) for M = N = 20 with respect to the unit circle. Right: error on the known eigenvalue 1 of
T (4, 0).

1 10 60

10−16

10−8

100

Fig. 3. Numerical test with (5.2), where γ = 4.4, linearized around a numerically approximated
periodic solution of period Ω ≈ 8.0189. Left: eigenvalues of T (Ω, 0) for M = N = 20 with respect to
the unit circle. Right: error on the known eigenvalue 1 of T (Ω, 0).

arising from the latter is not known analytically. In [9] these periodic solutions are
computed numerically by adapting the method of [32] for RFDEs or of [49] for dif-
ferential algebraic equations with delays. (See relevant comments in section 6.) The
method is then applied to the equation linearized around the numerical solution. Fig-
ure 3 shows the eigenvalues of T (Ω, 0) and the errors on the known eigenvalue 1 for
γ = 4.4, where Ω ≈ 8.0189 is the computed period of the numerically approximated
periodic solution. Notice again that our method works equally well, independently of
the relation between Ω and τ .

It can be seen that to achieve the same accuracy as for the branch of periodic
solutions (5.3), a number of nodes more than double must be used. This fact is
in line with the usual properties of pseudospectral methods, which exhibit slower
convergence as the length of the discretization interval increases (although the infinite
order is preserved). Indeed, by standard results on interpolation, the error depends
both on the length of the interpolation interval and on bounds on the derivatives
of the interpolated function: in this case, after the period doubling bifurcation both
the period of the solution (length of the interpolation interval) and the number of
oscillations (related to the magnitude of the derivatives) are roughly double than
before. Observe, however, that here the error takes also into account the error in the
computation of the reference solution.

6. Future perspectives. In this work we propose a numerical method to ap-
proximate the spectrum of evolution operators for linear REs. This concluding section
contains diverse comments on open problems and possible future research lines, most
of which were briefly touched along the text.
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The numerical experiments suggest that the order of convergence of the approx-
imated eigenvalues to the exact ones is infinite and Theorem 4.10 guarantees that
this is the case if the eigenfunctions of the evolution operator are sufficiently smooth.
Although it is reasonable to expect that any desired regularity of the eigenfunctions
can be achieved by imposing suitable conditions on C(t, θ) (see, e.g., [54] for some
results in this direction for convolution products), this has not been proved yet and
remains an open question that the authors are investigating.

Regarding the application to the asymptotic stability of periodic solutions of
nonlinear autonomous REs, another open problem is the validity of a Floquet theory
for linear periodic REs and of a corresponding principle of linearized stability. In
view of [25], this would be guaranteed by the validity of assumptions (F), (H), and
(Ξ) of [31, section XIV.4]. A preliminary study reveals that assumption (F) should be
guaranteed by suitable regularity assumptions on C(t, θ). On the other hand, some
results on the regularity of Volterra integrals, similar to the ones mentioned above
with respect to the regularity of eigenfunctions, seem to be needed for assumptions (H)
and (Ξ). Investigating these details and thus proving the validity of a Floquet theory
is an ongoing effort by the authors and colleagues.

As mentioned in section 2, the discretization proposed in this work can be used
in principle in the framework of [15] to compute Lyapunov exponents for generic
solutions of nonautonomous REs. Numerical tests on this approach appear in [9]
with promising results. Investigating this natural development is in the future plans
of the authors. Indeed, it goes beyond the scope of the present paper since it requires
one to work in a Hilbert rather than in a Banach setting. Incidentally, notice how this
change would require a restriction of the state space, as opposed to RFDEs in [15].

In the literature of population dynamics, the recent paper [26] deals with a model
based on retarded functional equations containing also point evaluation terms, i.e.,
Volterra integrals with kernel of Dirac type. The presence of these terms may give
rise to neutral dynamics, adding several difficulties both to the theoretical treatment
(they are not covered in general by [25, 31]) and to the proof of convergence of the
numerical method. (The regularization effect on the solutions, essential to the current
proof, is not guaranteed and in general does not take place.) Anyway, investigating
the neutral case remains of interest to the authors.

Finally, in structured population models, REs are often coupled with RFDEs
(see, e.g., [29, 50]). Extending the method to such coupled equations, as in the case
of [10, 11] for equilibria, poses additional and nontrivial difficulties in proving the
convergence of the approximated eigenvalues, with respect to both the RFDE case
of [13] and the RE case of the present work. In fact, due to the coupling, there
is a delicate interplay between the diverse regularization mechanisms, with different
consequences on the two components of the solution. With respect to the regularity
of eigenfunctions and to the validity of a Floquet theory, coupled equations retain the
same difficulties as outlined above for REs and may be addressed by similar solutions,
as it appears reasonable. The extension of the method to coupled equations, including
a rigorous convergence proof and error analysis, together with numerical tests, is
the subject of a distinct paper in preparation by the authors. Nevertheless, in the
nonlinear context and for practical applications, this approach inevitably relies on the
computation of the relevant periodic solutions. In this sense, an extension of [32] is
being developed by the authors and colleagues. The final objective of these research
lines is the study of the dynamics of the realisticDaphniamodel of [29], which brings in
several nontrivial challenges beyond those related to the discretization of the evolution
operators.
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Appendix A. Matrix representation. In this appendix we describe the ex-
plicit construction of a matrix representing the discretization of the evolution operator
(2.4) according to (3.6). The reference is to model (2.11). We start by introducing
some notation for block matrices.

If h ≥ τ , for Φ ∈ XM and m ∈ {0, . . . ,M}, denote (Φdm+1, . . . ,Φd(m+1)), i.e.,
the (m + 1)th d-sized block of components of Φ, as [Φ]m. If h < τ , instead, for
Φ ∈ XM , q ∈ {1, . . . , Q} and m ∈ {0, . . . ,M − 1} and for q = Q and m = M , denote
(Φd((q−1)M+m)+1, . . . ,Φd((q−1)M+m+1)), i.e., the (m+1)th d-sized block of components

of the qth block of Φ, as [Φ]q,m. Finally, for W ∈ X+
N and n ∈ {1, . . . , N}, denote

(Wd(n−1)+1, . . . ,Wdn), i.e., the nth d-sized block of components of W , as [W ]n.
In the following, 0 denotes the scalar zero or a matrix of zeros of the dimensions

implied by the context.

A.1. The matrix T
(1)
M . Let Φ ∈ XM . If h > τ , for m ∈ {0, . . . ,M} [T

(1)
M Φ]m =

(V −PMΦ)h(θM,m) = V −PMΦ(h+θM,m) = 0, and hence T
(1)
M = 0 ∈ Rd(M+1)×d(M+1).

If h = τ , instead, for m ∈ {0, . . . ,M − 1}, [T (1)
M Φ]m = 0 as above. For m = M ,

[T
(1)
M Φ]M = V −PMΦ(h+ θM,M ) = PMΦ(θM,0) = Φ0. Thus

T
(1)
M =

⎛
⎜⎜⎜⎝
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
1 0 · · · 0

⎞
⎟⎟⎟⎠⊗ Id ∈ R

d(M+1)×d(M+1).

Finally, if h < τ , for m ∈ {0, . . . ,M − 1} and q ∈ {1, . . . , Q− 1},
[
T

(1)
M Φ

]
q,m

= V −PMΦ
(
h+ θ

(q)
M,m

)
=

{
0, q = 1,

PMΦ(θ
(q−1)
M,m ) = Φ

(q−1)
m , q ∈ {2, . . . , Q− 1},

while for m ∈ {0, . . . ,M} and q = Q,

[
T

(1)
M Φ

]
Q,m

= PMΦ
(
h+ θ

(Q)
M,m

)
=

M∑
j=0

�
(Q−1)
M,j (h+ θ

(Q)
M,m)Φ

(Q−1)
j .

Observe that if Qh = τ , then [T
(1)
M Φ]Q,m = Φ

(Q−1)
m , since h + θ

(Q)
M,m = θ

(Q−1)
M,m . Then

T
(1)
M ∈ Rd(QM+1)×d(QM+1) is given by

T
(1)
M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1 · · · 0
...

. . .
...

0 · · · 1
. . .

1 · · · 0
...

. . .
...

0 · · · 1

�
(Q−1)
M,0 (h+ θ

(Q)
M,0) · · · �

(Q−1)
M,M−1(h+ θ

(Q)
M,0) �

(Q−1)
M,M (h+ θ

(Q)
M,0) 0 · · · 0

...
. . .

...
...

...
. . .

...

�
(Q−1)
M,0 (h+ θ

(Q)
M,M−1) · · · �

(Q−1)
M,M−1(h+ θ

(Q)
M,M−1) �

(Q−1)
M,M (h+ θ

(Q)
M,M−1) 0 · · · 0

�
(Q−1)
M,0 (h+ θ

(Q)
M,M ) · · · �

(Q−1)
M,M−1(h+ θ

(Q)
M,M ) �

(Q−1)
M,M (h+ θ

(Q)
M,M ) 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗ Id,
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where missing entries are 0. The order of rows and columns corresponds to the
order of components in (3.3). Indeed it can be seen as a block matrix with Q rows
(respectively, columns), where the first Q− 1 consist of blocks of height (respectively,
width) M and the last of blocks of height (respectively, width) M + 1. However,
looking at the actual matrix, a slightly different block structure emerges: still Q − 1
rows of height M and a last row of height M + 1 can be seen, but there appear
Q − 2 columns of width M followed by a column of width M + 1 and a last column
of width M ; the top–left column (of zeros) has height M , the identity blocks are
IM , the block of Lagrange coefficients has dimensions (M + 1) × (M + 1), and the
bottom–right block of zeros has dimensions (M + 1)×M . Note that if Qh = τ , then

�
(Q−1)
M,j (h + θ

(Q)
M,m) = �

(Q−1)
M,j (θ

(Q−1)
M,m ) = δm,j and the block of Lagrange coefficients is

actually IM+1.
Let us notice that in the MATLAB codes the Lagrange coefficients (appearing

here and in what follows) are evaluated by resorting to barycentric interpolation [6].

A.2. The matrix T
(2)
M,N . Let W ∈ X+

N . If h > τ , for m ∈ {0, . . . ,M},
[
T

(2)
M,NW

]
m

= (V +P+
NW )h(θM,m) = P+

NW (h+ θM,m) =

N∑
n=1

�+N,n(h+ θM,m)Wn,

and hence

T
(2)
M,N =

⎛
⎜⎝

�+N,1(h+ θM,0) · · · �+N,N(h+ θM,0)
...

. . .
...

�+N,1(h+ θM,M ) · · · �+N,N(h+ θM,M )

⎞
⎟⎠⊗ Id ∈ R

d(M+1)×dN .

If h = τ , instead, for m ∈ {0, . . . ,M − 1}, as above,
[
T

(2)
M,NW

]
m

=

N∑
n=1

�+N,n(h+ θM,m)Wn,

while for m = M , [T
(2)
M,NW ]M = V +P+

NW (h+ θM,M ) = V +P+
NW (0) = 0. Thus

T
(2)
M,N =

⎛
⎜⎜⎜⎝

�+N,1(h+ θM,0) · · · �+N,N(h+ θM,0)
...

. . .
...

�+N,1(h+ θM,M−1) · · · �+N,N(h+ θM,M−1)
0 · · · 0

⎞
⎟⎟⎟⎠⊗ Id ∈ R

d(M+1)×dN .

Finally, if h < τ , for m ∈ {0, . . . ,M − 1} and q ∈ {1, . . . , Q},
[
T

(2)
M,NW

]
q,m

= V +P+
NW (h+ θ

(q)
M,m) =

{∑N
n=1 �

+
N,n(h+ θ

(q)
M,m)Wn, q = 1,

0, q ∈ {2, . . . , Q},
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and [T
(2)
M,NW ]Q,M = V +P+

NW (h+ θ
(Q)
M,M ) = V +P+

NW (h− τ) = 0. Then

T
(2)
M,N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�+N,1(h+ θ
(1)
M,0) · · · �+N,N(h+ θ

(1)
M,0)

...
. . .

...

�+N,1(h+ θ
(1)
M,M−1) · · · �+N,N(h+ θ

(1)
M,M−1)

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗ Id ∈ R
d(QM+1)×dN .

A.3. The matrix U
(1)
M,N . Let Φ ∈ XM and, for t > 0, define

(A.1) κ(t) := max
k∈{0,...,p}

{τk < t}.

Note that κ is nondecreasing. For n ∈ {1, . . . , N},
[
U

(1)
M,NΦ

]
n
= FsV

−PMΦ(tN,n) =

p∑
k=1

∫ −τk−1

−τk
Ck(s+ tN,n, θ)V

−PMΦ(tN,n + θ) dθ.

If h ≥ τ , define also

N̂ :=

{
0, tN,n > τ for all n ∈ {1, . . . , N},
maxn∈{1,...,N}{tN,n ≤ τ} otherwise.

Hence, for n ∈ {1, . . . , N̂} (if N̂ �= 0),

[U
(1)
M,NΦ]n =

∫ −tN,n

−τκ(tN,n)+1

Cκ(tN,n)+1(s+ tN,n, θ)

M∑
m=0

�M,m(tN,n + θ)Φm dθ

+

p∑
k=κ(tN,n)+2

∫ −τk−1

−τk
Ck(s+ tN,n, θ)

M∑
m=0

�M,m(tN,n + θ)Φm dθ,

(A.2)

and, for n ∈ {N̂ + 1, . . . , N}, [U (1)
M,NΦ]n = 0. Observe that the first integral in (A.2)

may be zero. For m ∈ {0, . . . ,M} and n ∈ {1, . . . , N̂} (if N̂ �= 0), let

R
d×d � Θn,m :=

∫ −tN,n

−τκ(tN,n)+1

Cκ(tN,n)+1(s+ tN,n, θ)�M,m(tN,n + θ) dθ

+

p∑
k=κ(tN,n)+2

∫ −τk−1

−τk
Ck(s+ tN,n, θ)�M,m(tN,n + θ) dθ.

Then

U
(1)
M,N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ1,0 · · · Θ1,M

...
. . .

...
ΘN̂,0 · · · ΘN̂,M

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
dN×d(M+1),

which is the zero matrix if N̂ = 0.
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If h < τ , instead, for n ∈ {1, . . . , N} and q ∈ {0, . . . , Q − 1}, define t
(q)
N,n = qh+

tN,n. Observe that, for q ∈ {1, . . . , Q−1}, [tN,n−τk, tN,n−τk−1]∩(−qh,−(q−1)h] �= ∅
if and only if κ(t

(q−1)
N,n )+ 1 ≤ k ≤ κ(t

(q)
N,n)+ 1 and [tN,n− τk, tN,n− τk−1]∩ [−τ,−(Q−

1)h] �= ∅ if and only if k ≥ κ(t
(Q−1)
N,n )+1. Observe also that κ(t

(q−1)
N,n ) and κ(t

(q)
N,n) may

be equal. For n ∈ {1, . . . , N}, k ∈ {1, . . . , p} and q ∈ {1, . . . , Q− 1}, define

ak,q := max
{
−τk,−t

(q)
N,n

}
, ak,Q := −τk,

bk,q := min
{
−τk−1,−t

(q−1)
N,n

}
, bk,Q := min

{
−τk−1,−t

(Q−1)
N,n

}
,

κn,q := min
{
κ(t

(q)
N,n) + 1, p

}
, κn,Q := p.

Then, for n ∈ {1, . . . , N},
[
U

(1)
M,NΦ

]
n
=

Q∑
q=1

κn,q∑
k=κ(t

(q−1)
N,n )+1

∫ bk,q

ak,q

Ck(s+ tN,n, θ)

M∑
m=0

�
(q)
M,m(tN,n + θ)Φ(q)

m dθ

with the convention that
∑k2

k=k1
ak = 0 if k2 < k1. Observe that some of the integrals

may be zero. For n ∈ {1, . . . , N}, m ∈ {0, . . . ,M}, and q ∈ {1, . . . , Q}, define

R
d×d � Θ(q)

n,m :=

κn,q∑
k=κ(t

(q−1)
N,n )+1

∫ bk,q

ak,q

Ck(s+ tN,n, θ)�
(q)
M,m(tN,n + θ) dθ

and recall that, for q ∈ {1, . . . , Q− 1}, Φ(q)
M = Φ

(q+1)
0 . Then U

(1)
M,N ∈ RdN×d(QM+1) is

given by

U
(1)
M,N =

⎛
⎜⎜⎝

Θ
(1)
1,0 · · · Θ

(1)
1,M−1 Θ

(1)
1,M +Θ

(2)
1,0 Θ

(2)
1,1 · · · Θ

(2)
1,M−1 Θ

(Q−1)
1,M +Θ

(Q)
1,0 Θ

(Q)
1,1 · · · Θ

(Q)
1,M−1 Θ

(Q)
1,M

...
. . .

...
...

...
. . .

... · · · ...
...

. . .
...

...

Θ
(1)
N,0 · · · Θ

(1)
N,M−1 Θ

(1)
N,M +Θ

(2)
N,0 Θ

(2)
N,1 · · · Θ

(2)
N,M−1 Θ

(Q−1)
N,M +Θ

(Q)
N,0 Θ

(Q)
N,1 · · · Θ

(Q)
N,M−1 Θ

(Q)
N,M

⎞
⎟⎟⎠.

Eventually, with reference to the last comment of section 4, the various integrals

appearing in the construction of the elements of U
(1)
M,N should be computed with a

quadrature formula that, in the presence of sufficient regularity of the model coeffi-
cients, preserves the infinite order of convergence of Theorem 4.10. The same remark

holds for the elements of U
(2)
N in Appendix A.4. Specifically, in the MATLAB codes

we resort to Clenshaw–Curtis quadrature [60].

A.4. The matrix U
(2)
N . Let W ∈ X+

N . Define κ(t) as in (A.1) for t > 0. For
n ∈ {1, . . . , N},[
U

(2)
N W

]
n
= FsV

+P+
NW (tN,n)

=

p∑
k=1

∫ −τk−1

−τk
Ck(s+ tN,n, θ)V

+P+
NW (tN,n + θ) dθ

=

κ(tN,n)∑
k=1

∫ −τk−1

−τk
Ck(s+ tN,n, θ)

N∑
i=1

�+N,i(tN,n + θ)Wi dθ

+

∫ −τκ(tN,n)

−min{tN,n,τ}
Cmin{κ(tN,n)+1,p}(s+ tN,n, θ)

N∑
i=1

�+N,i(tN,n + θ)Wi dθ
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with the convention that
∑k2

k=k1
ak = 0 if k2 < k1. Observe that the last integral may

be zero. For n ∈ {1, . . . , N} and i ∈ {1, . . . , N}, let

R
d×d � Γn,i :=

κ(tN,n)∑
k=1

∫ −τk−1

−τk
Ck(s+ tN,n, θ)�

+
N,i(tN,n + θ) dθ

+

∫ −τκ(tN,n)

−min{tN,n,τ}
Cmin{κ(tN,n)+1,p}(s+ tN,n, θ)�

+
N,i(tN,n + θ) dθ.

Then

U
(2)
N =

⎛
⎜⎝
Γ1,1 · · · Γ1,N

...
. . .

...
ΓN,1 · · · ΓN,N

⎞
⎟⎠ ∈ R

dN×dN .
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