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A B S T R A C T

The main topic of this thesis is the study of the existence of fixed points
for planar maps defined on topological annuli and satisfying the so-
called twist-condition which prescribes that the maps rotate the two
boundaries of their domain in opposite direction.

Beginning with a survey about the Poincaré-Birkhoff theorem, which
is the most important and classical result on fixed points for planar
twist homeomorphism, we present also some more general results for
continuous twist maps, achieved by the use of topological “crossing”
properties of annular domains.

S O M M A R I O

L’argomento principale di questa tesi è lo studio dell’esistenza di punti
fissi per mappe definite su anelli topologici, che soddisfino la condi-
zione di twist alle frontiere; si richiede cioé che le mappe in questione
ruotino le frontiere dell’anello su cui sono definite in direzioni opposte.

Iniziando con un’esposizione del teorema di Poincaré-Birkhoff – che
costituisce il piú importante risultato sui punti fissi degli omeomorfi-
smi twist del piano – vengono successivamente esposti alcuni risultati
riguardanti mappe twist delle quali si assume solamente la continui-
tà; tali risultati sono stati dimostrati usando alcuni lemmi topologici
riguardanti proprietà di “attraversamento” degli anelli.
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1 I N T R O D U C T I O N

Twist maps are a class of continuous applications defined on annular
domains, which have the property of rotating the two boundaries of
the annulus in opposite directions. The investigation of twist maps is
a relevant topic in the study of dynamical systems in two-dimensional
manifolds; indeed they naturally appear in a broad number of situ-
ations (from KAM theory to the study of some geometrical configu-
rations involving the presence of Smale’s horseshoes) and thus they
have been widely considered both from the theoretical point of view
and for their lead role in various applications, ranging from celestial
mechanics to fluid dynamics.

One of the classical and most important examples of a fixed point
theorem concerning twist maps on the annulus is the Poincaré-Birkhoff
twist theorem, also known as Poincaré’s last geometric theorem, whose
100th birthday is celebrated just this year. The theorem asserts the
existence of at least two fixed points for an area-preserving homeo-
morphism ϕ of a closed planar annulus

A[a, b] = {z ∈ R2 : a 6 ||z|| 6 b}

(with 0 < a < b) onto itself which leaves the inner boundary Ai = {z ∈
A[a, b] : ||z|| = a} and the outer boundary Ao = {z ∈ A[a, b] : ||z|| = b}
invariant and rotates Ai and Ao in opposite directions (this is the so-
called twist condition at the boundary).

The Poincaré-Birkhoff fixed point theorem was stated (and proved in
some special cases) by Poincaré in 1912, the year of his death. In 1913

G.D. Birkhoff gave a proof of the existence of one fixed point with an
ingenious application of the index of a vector field along a curve. A
complete description of Birkhoff’s approach, also explaining how to
obtain a second fixed point, was afterwards provided in the expository
article by Brown and Neumann [14]. The history of this theorem and
its generalizations and developments is quite interesting but impossi-
ble to summarize in few lines; therefore the first part of this thesis
(chapter 2) is entirely devoted to the Poincaré-Birkhoff theorem. Start-
ing from the original words by Poincaré, I made the effort of summing
up its one-century-long history, as well as providing a survey of its
most important extensions and proofs; a section of the chapter is de-
voted also to setting out some open problems recently arised. Indeed,
after so many years of studies on this topic, some controversial proofs
of its generalizations have been settled only recently, making this clas-
sical topic still a prolific ground for new discoveries. Finally, in the
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1 Introduction

last section an application to the problem of the existence of periodic
and subharmonic solutions for planar systems of Lotka-Volterra type
is investigated.

In chapter 3 the attention is focused on some topological properties
of planar regions homeomorphic to the annulus, which represent the
domains on which the Poincaré-Birkhoff theorem can be applied. Tak-
ing as a base point some results already obtained in the last ten years
for rectangular regions, the same results are here transferred into the
framework of annular domains. The tools therein developed, which
we refer to as crossing lemmas, are of great use in order to obtain a
fixed point theorem for a class of maps defined on annular regions;
these maps are named bend-twist maps and their most interesting fea-
ture is the fact that their definition requires weaker hypothesis than
the maps which the Poincaré- Birkhoff theorem applies to.

Having the crossing lemmas both for rectangles and for annuli as a
starting point, in the next two chapters we apply them to the proof of
some fixed point results, making a parallelism between the two frame-
works under consideration. In chapter 4 we recall some results about
the existence of fixed points for maps defined on regions homeomor-
phic to the unit square and which are expansive along one direction
(we will say that they satisfies the stretching-along-the-paths property).
As already exposed in [79, 80, 82, 91, 84], this property allows to prove
the existence of fixed points, as well as periodic points and chaotic
dynamics, in a quite easy way, making use only of elementary tools
of planar topology. At the end of the chapter, an application to the
pendulum equation is proposed.

Finally, chapter 5 goes back to the study of twist maps of the annu-
lus. More precisely, it deals with the so-called bend-twist maps, which
are a particular class of twist maps whose radial component changes
its sign on the domain. They were first presented by T. Ding in [26],
who formulated some fixed point results in the analytic setting. In
the present thesis, as well as in the already published work [88], the
topological tools developed in chapter 3 allow us to reformulate Ding’s
results in the more general continuous setting. Indeed we obtain an
interesting fixed point theorem for bend-twist maps, which can be ap-
plied to situations where the non-conservative behaviour of the system
under consideration prevents the possibility of applying the Poincaré-
Birkhoff theorem, as explained by the examples in the final section
5.2.

The natural field on which all the techniques herein exposed find
useful applications is the study of the existence and multiplicity of pe-
riodic solutions for Hamiltonian systems, which represent a classical
area of research already widely investigated. Depending on the situ-
ation arising, when we are studying the dynamics of a second order
ODE (ordinary differential equation), whose Poincaré map enters in
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the setting of twist maps, three different approaches to the problem
can be used, namely the Poincaré-Birkhoff theorem, the linked-twist
maps and the bend-twist maps.

Here we will focus our attention to the case of nonautonomous planar
Hamiltonian systems of the form

ẋ = ∂H
∂y (t, x, y)

ẏ = −∂H∂x (t, x, y) .
(1.1)

Such kind of equations are relevant not only for their intrinsic inter-
est from the point of view of the applications, but also because they
represent a common ground where several different techniques, rang-
ing from nonlinear analysis (for instance, critical point theory) to the
theory of dynamical systems, can compete in order to produce new
results.

Here and in what follows we suppose that H : R×R2 → R is a
continuous function which is T -periodic in its first variable, that is

H(t+ T, x, y) = H(t, x, y) ∀ t, x, y ∈ R

and sufficiently smooth with respect to x and y in order to guarantee
the uniqueness of the solutions for the initial-value problems associ-
ated to system (1.1). Some discontinuities in the t-variable may be al-
lowed, provided that the solutions are considered in the Carathéodory
sense (see [42]). For instance, as an example of (1.1) we can study (in
the phase plane) the periodically perturbed scalar nonlinear second
order ODE

ẍ+ f(x) = p(t), (1.2)

or
ẍ+ p(t)f(x) = 0, (1.3)

with f : R→ R a locally Lipschitz function and p : R→ R a T -periodic
function with p ∈ L1([0, T ]).

A classical approach to the search of periodic solutions of system
(1.1) is the study of the existence and multiplicity of fixed points and
periodic points for its Poincaré map. The Poincaré map associated to
(1.1) is the function which maps a point z0 = (x0, y0) ∈ R2 to the point

Φ(z0) = (x(T ; t0, z0), y(T ; t0, z0)),

where ζ(t; z0) = (x(t; t0, z0), y(t; t0, z0)) is the solution of (1.1) satisfy-
ing the initial condition ζ(t0; z0) = z0 . Usually, the natural choice t0 =
0 is made; in that case we use the simplified notation (x(t; z0), y(t; z0)) =
(x(t; t0, z0), y(t; t0, z0)).

Since we assume the uniqueness of the solutions for the Cauchy
problems associated to (1.1), from the fundamental theory of ordinary
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1 Introduction

differential equations, we know that Φ is a continuous map, defined
on an open subset Ω = domΦ ⊂ R2. Actually Φ is a homeomorphism
of Ω onto Φ(Ω) which is also orientation-preserving and area-preserving
(this latter property follows from Liouville theorem and from the fact
that the right-hand side of equation (1.1) is given by a zero-divergence
vector field).

The Poincaré-Birkhoff fixed point theorem is an important tool to
detect fixed and periodic points for area-preserving homeomorphisms
of the plane. In this kind of applications of the Poincaré-Birkhoff theo-
rem usually one has to deal with annular regions homeomorphic to A
having inner and outer boundaries not necessarily invariant; therefore
we have to use some recent generalizations of the theorem which re-
quire that the inner and outer boundaries are strictly star-shaped with
respect to some point. The key fact, however, is the possibility to de-
fine a suitable lifting of ϕ to a covering space of the annulus using the
standard polar coordinates or some modifications of them, for instance
suitably chosen action-angle variables. A natural choice consists in the
couple in which the time variable and the energy of the orbit play the
role of angle and radius, respectively.

In general, we need to consider annular regions which are not nec-
essarily centered at the origin; to this aim, we introduce the following
notation. Given a point P ∈ R2, we define

A(P) = A[a, b;P] = P+A[a, b]

whose inner and outer boundaries will be named as

Ai(P) = P+Ca and Ao(P) = P+Cb .

A possible way to verify the twist condition for the Poincaré map
of system (1.1) is based on the study of some rotation numbers as-
sociated to its solutions which provide some information about the
displacement of the angular coordinate.

To begin with, we describe an elementary procedure to introduce
some rotation numbers. We fix a point P = (xp, yp) and consider a sys-
tem of polar coordinates around P (typically, we will have P = (0, 0)).
Suppose that for some z0 ∈ R2, the solution ζ(t; z0) = (x(t; z0), y(t; z0))
satisfies

ζ(t; z0) 6= P, ∀ t ∈ [0, τ],

for some τ > 0. Passing to the polar coordinates

x = xp +
√
2ρ cos ϑ, y = yp +

√
2ρ sin ϑ

we obtain

−ϑ̇(t) =
ẋ(t)(y(t) − yp) − ẏ(t)(x(t) − xp)

(x(t) − xp)2 + (y(t) − yp)2
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and thus we can define the number rot(t, z0, P) =

1

2π

∫t
0

(y(s) − yp)
∂H
∂y (s, x(s), y(s)) + (x(s) − xp)

∂H
∂x (s, x(s), y(s))

(x(s) − xp)2 + (y(s) − yp)2
ds

for t ∈ [0, τ] and (x(t), y(t)) = (x(t; z0), y(t; z0)).
The rotation number rot (t, z0, P) counts the number of windings of

the solution around the point P, in the clockwise sense, during the
time interval [0, t]. If the above rotation number is defined for t = mT
(for some integer m > 1) and for all the points of the annulus A(P), the
twist condition of the Poincaré-Birkhoff theorem for the map ϕ = Φm

can be expressed as follows{
rot (mT, z, P) > j for z ∈ Ai(P)
rot (mT, z, P) < j for z ∈ Ao(P) (1.4)

(or viceversa), for some j ∈ Z. The existence of a fixed point for ϕ
(coming from the original version of the theorem or from some of its
variants) provides a point z∗ in the interior of the annulus which is the
initial point of a mT -periodic solution of (1.1) and such that

rot (mT, z∗, P) = j. (1.5)

The additional information expressed by relation (1.5) can be exploited
in order to obtain multiplicity results or some precise information
about the solution. Indeed if there exist two real values c1 < c2 such
that rot(mT, z, P) < c1 on Ai(P) and rot(mT, z, P) > c2 on Ao(P), then
for every integer j ∈ [c1, c2] ∩Z there exist at least two mT -periodic
solutions of (1.1) which perform j turns around the origin during the
time interval [0,mT ]. In connection with this kind of results, dealing
with the existence of infinitely many periodic solutions of the second
order ODE ẍ+ f(t, x) = 0, as well as the existence of subharmonic so-
lutions, we mention the result by Moser and Zehnder in [73, Section
2.10], in which a modification of the Hartmann-Jacobowitz theorem is
proved.

The study of twist maps is not only a crucial step in the applications
of the Poincaré-Birkhoff theorem to planar Hamiltonian systems. In
the past decades a grown interest has been devoted to the study of
the so-called linked twist maps (from now on abbreviated as LTMs). A
typical linked twist map of the plane, as presented by Devaney in [25],
can be described as a composition of the form

Ψ = Ψk2 ◦Ψ`1,

where Ψ1 and Ψ2 are twist maps which act on two different annuli
A(P1) and A(P2), respectively. Usually, one also assume that both Ψ1
and Ψ2 perform rotations of angles which are multiple of 2π on the
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1 Introduction

boundaries of the annuli; in this way, the maps can be extended as
identities outside the annuli. If A(P1) and A(P2) cross each other in
a proper way, then Ψ has a rich dynamics. The correct crossing of the
two annuli A[a1, b1;P1] and A[a2, b2;P2] is usually described by the
relations

max{b2 − a1, b1 − a2} < dist(P1, P2) < a1 + a2

so that linked twist maps can be interpreted as a class of homeomor-
phisms of the two-disk minus three holes [25] (see figure 1).

Figure 1: Example of two standard linked annuli A1 and A2 . For the figure
we have taken Ai = A[ai, bi;Pi] with P1 = (−5, 0), P2 = (5, 0), a1 =
6, b1 = 8, a2 = 6, b2 = 10. The sets Ã1 and Ã2 are the annuli A1
and A2 viewed from the origin (the scale ratio between the two
axes is not respected). Since (0, 0) lies in the intersection of the
bounded components of R2rAi (for i = 1, 2), using the usual polar
coordinates (ϑ, r) with respect to the origin, we can lift both A1
and A2 as 2π-periodic strips bounded between graphs of functions
r = r(ϑ). In this specific case, we have Ãi = {(ϑ, r) : xPi cos ϑ +
(a2i − x

2
Pi

sin2 ϑ)1/2 6 r 6 xPi cos ϑ+ (b2i − x
2
Pi

sin2 ϑ)1/2}, for Pi =
(xPi , 0), i = 1, 2.

Examples of LTMs on some manifolds (like the sphere or the torus)
have been considered as well (see [103, 104] and the references therein).
However, if, instead of annuli of the form A(Pi), we have more general
annular regions on which two twist maps act, the linking condition
can be more general (see figure 2). LTMs in such more general setting
have been recently considered in [65].

A natural way to produce a twist-type Poincaré map associated to
(1.1) occurs when the nonautonomous system can be viewed as a per-
turbation of an autonomous planar system presenting a center-like
structure as {

ẋ = ∂H
∂y (x, y)

ẏ = −∂H∂x (x, y) .
(1.6)
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Figure 2: Example of two linked planar topological annuli A1 and A2.
Among the five rectangular regions resulting from the intersection
of the two annuli, only the four regions in darker color are suitable
for a generalized version of LTMs theory as described in [65]), while
the set painted with zebra stripes does not fit in that framework.

Suppose that there exists a topological annulus A (that is a compact
subset of R2 homeomorphic to a standard annulus A[a, b]) which is
filled by closed (periodic) orbits of system (1.6). Since the trajectories
of (1.6) lie on the level lines of the Hamiltonian, we can parameterize
every orbit Γ in A by means of the value H(Γ) = c. Under mild assump-
tions on H (H of class C1 with ∇H(x, y) 6= 0 for all (x, y) ∈ A, see [49])
it is possible to prove the continuity of the function which maps c into
the period τc of the closed orbit in A at level c. One can also find a
compact interval [a, b] such that the inner and the outer boundaries of
A correspond to the level lines H = a and H = b (we can always enter
in this situation possibly replacing H with −H). In this way, the set A
becomes a standard annulus of the form A = A[a, b], with the level of
the Hamiltonian playing the role of a radial coordinate. Angular-type
coordinates can be introduced using a normalized time along the tra-
jectories, counted from a suitable arc transversal to the annulus (such
arc is obtained as a flow-line of the gradient system ż = ∇H(z)).

If we denote by ΦH the Poincaré map associated to (1.6), for a fixed
time T > 0, we can produce a twist condition on A whenever

τa 6= τb .

Indeed, suppose that τa < τb and fix m > 1 such that the set

Z(m) = ]
mT

τb
,
mT

τa
[ ∩Z

is nonempty. For each j ∈ Z(m) the points of the inner boundary
Ai of A wind more than j times in the time interval [0,mT ]. On the
other hand, the points of the outer boundary Ao have a number of
rotations strictly less than j. This simple observation guarantees that a
twist condition analogous to (1.4) holds for ΦmH relatively to A. This
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1 Introduction

fact will imply a twist condition for Φm if the vector field in (1.1) is
sufficiently close to that of (1.6) on [0,mT ]×A. A recent investigation
in this direction, using the Poincaré-Birkhoff fixed point theorem has
been performed in [33].

A possible way to produce a linked twist map configuration in the
plane is given by a pair of planar autonomous Hamiltonian systems
which periodically switch back and forth from one to the other. More
precisely, fix T1 , T2 > 0 with

T1 + T2 = T

and consider the systems
ẋ = ∂H1

∂y (x, y)

ẏ = −∂H1∂x (x, y)

for t ∈ [0, T1[ (1.7)

and 
ẋ = ∂H2

∂y (x, y)

ẏ = −∂H2∂x (x, y)

for t ∈ [T1, T [ , (1.8)

repeating then such process in a periodic fashion (for an application
to fluid mixing, see [108, Appendix B]). Allowing a discontinuity for
t ≡ 0 and t ≡ T1 (mod T ), the resulting system may be interpreted as a
special case of equation (1.1). We enter in the generalized LTMs frame-
work considered in [65] whenever there exist two annular regions A1
and A2 filled by periodic orbits of systems (1.7) and (1.8), respectively,
and such that A1 and A2 link each other in a suitable sense (see figure
2). Moreover, appropriate twist conditions on each of the two annuli
should be required.

The situations which enter in the setting of bend-twist maps are in-
termediate between the twist maps arising in the applications of the
Poincaré-Birkhoff theorem and the LTMs; the theory of bend-twist
maps is a powerful tool when one has to deal with dissipative systems,
whose Poincaré map is not a homeomorphism. An example in this
direction will be provided in the last section of this work (see section
5.2).
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2 T H E P O I N C A R É - B I R K H O F F T H E O -
R E M : O N E C E N T U R Y O F R E S E A R C H

My interest in the Poincaré-Birkhoff theorem is motivated by the con-
trast between the plainness of its statement and its troubled history,
which seems to be widely open also after one century of research on
it. The Poincaré-Birkhoff theorem, named also twist theorem, is a fixed
point result for area-preserving twist homeomorphisms of an annulus in
the plane R2. It was conjectured by Henri Poincaré (1854-1912) and
appeared for the first time in a paper of his [94] in 1912, only few days
before his death; indeed it is also known as Poincaré’s last geometric
theorem.1

Poincaré had been teaching theoretical astronomy and celestial me-
chanics since 1896; in those years he developed the use of some topo-
logical tools (like Kronecker’s index) for the search of singular points
and limit cycles of differential equations, periodic solutions for the
three-body problem and bifurcation of the equilibrium shapes of a ro-
tating fluid. The idea of the theorem we are talking about was in par-
ticular motivated by his research on the restricted three-body problem;
Poincaré proved the existence of periodic solutions for the three-body
problem, in the case in which the masses of the bodies were small. On
the other hand, he observed that in the case of big masses, the existence
of periodic solutions would have been guaranteed if a particular fixed
point result (theorem 2.2) had been true. In [94], Poincaré described
his fixed point theorem and exposed some of its possible applications;
he also managed to check the validity of his result in many particu-
lar cases, but he could not exhibit a general proof; indeed in the first
lines of the paper he apologized to the readers for publishing so an
incomplete work, saying what follows.

Je n’ai jamais présénte au public un travail aussi inachevé ; je
crois donc nécessaire d’expliquer en quelques mots les raisons
qui m’ont déterminé à le publier, et d’abord celles qui m’avaient
engagé à l’entreprendre.

He was sure that the general version of the theorem was true, but he
had to leave to anyone else the task of proving it, because he knew that
he would not have had enough time to complete his work.

1 An interesting biographic survey about Poincaré’s figure can be found in [69].
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2 The Poincaré-Birkhoff theorem: one century of research

Figure 3: Henri Poincaré (1854-1912)

Ma convinction qu’il est toujours vrai s’affermissait de jour en
jour, mais je restais incapable de l’asseoir sur des fondaments
solides.

He said that the result was so important and rich of interesting conse-
quences and possible applications, that he had decided to publish it,
although with some reluctance.

D’un autre côte, l’importance du sujet est trop grande (et je cher-
cherai plus loin à la faire comprendre) et l’ensemble des resultats
obtenus trop considerable deja, pour que je me resigne à les lais-
ser definitivement infructueux.

Poincaré’s theorem applies to area-preserving homeomorphisms de-
fined on a planar annulus; its main hypothesis is the so-called twist
condition, which prescribes that the inner boundary of the annulus is
moved in the clockwise sense, while the outer one is moved in the
counter-clockwise sense (see figure 4).

Before presenting the statement of the theorem, we are giving the
precise definition of what we mean as a planar annulus, which will be
the main work setting.

Definition 2.1 A set A ⊂ R2 is a (non-degenerate) planar annulus if

A = A[a, b] = {(x, y) ∈ R2 : a2 6 x2 + y2 6 b2}

16



2.1 Coverings and liftings

for some 0 < a < b. Its boundary ∂A consists in two disjoint circles
∂B(0, a) and ∂B(0, b) which are called the inner and the outer bound-
ary and denoted by Ai and Ao respectively, so that

Ai = aS
1 = Ca and Ao = bS1 = Cb .

Poincaré’s fixed point theorem in its original formulation reads as
follows.

Theorem 2.2 Let ϕ : A → A be a homeomorphism of a planar annulus A
onto itself which leaves the boundaries invariant and rotates them in different
directions (say, it is a twist homeomorphism). If ϕ is area-preserving, then ϕ
has at least two fixed points in the interior of A.

O O

Figure 4: A pictorial description of the twist condition

2.1 COVERINGS AND LIFTINGS
In the statement of Poincaré’s theorem we have introduced and used
the concept of twist homeomorphism, using an intuitive definition. We
need now to make clearer and more precise what we mean by a twist
homeomorphism. In order to provide a precise definition of this class
of applications, we observe that a non-degenerate annulus A is always
contained in the holed plane R2r {O} = R2o; hence we can consider its
lifting and move into the setting of the universal covering of R2o. Al-
though these are standard arguments of algebraic topology, for sake of
completeness we are going to present a short survey about the theory
of covering spaces.2

Definition 2.3 Let X̃ and X be two topological spaces. A covering map
is a continuous map π : X̃→ X such that

• π is surjective

• for every x ∈ X there exists an open neighbourhood U of x and
a corresponding family {Uj|j ∈ J} of open neighbourhoods in X̃
such that

2 Definitions and theorems are borrowed from the books [40, 57]
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2 The Poincaré-Birkhoff theorem: one century of research

– π−1(U) =
⋃
j∈JUj

– Uk ∩U` = ∅ if k 6= `
– π|Uj : Uj → U is a homeomorphism for every j ∈ J.

Definition 2.4 Given a topological space X, we say that the pair (X̃, π)
is a covering space of X if

• X̃ is a topological space

• π : X̃→ X is a covering map.

If X̃ is connected, then we say that the covering is connected. If X̃ is
simply connected, then (X̃, π) is the universal covering of X.

One of the most classical examples of covering maps is the projec-
tion in polar coordinates; this is also the covering map we will consider
talking about Poincaré’s theorem. It is well known that we can intro-
duce a system of polar coordinates (ϑ, r) on R2o; if we denote by (x, y)
the standard cartesian coordinates of the plane, the change of variables
is expressed by the relations x = r cos ϑ , y = r sin ϑ, with ϑ ∈ R and
r ∈ R+, which allows to define the projection

π : R×R+ → R2o such that (ϑ, r) 7→ (x, y)

with
π(ϑ, r) = (r cos ϑ, r sin ϑ) .

In this sense, the infinite strip R×R+ is a covering of the holed plane
R2o, via the covering projection π. Moreover, (R×R+, π) is the univer-
sal covering of R2o.

Definition 2.5 Let (X̃, π) be a covering space of X and let A ⊂ X be a
subset of X. A map ϑ : A → X̃ is a local section if it is continuous and
π ◦ ϑ = id|A. If A = X, we say that ϑ is a global section.

Recalling definition 2.3, we know that for every point p ∈ X there
exists a family of neighbourhoods

⋃
Uj ⊃ π−1(p) such that for every

index j ∈ J the map
π|Uj : Uj → U

is a homeomorphism and, therefore, it is invertible; hence we can de-
fine the map

ϑj = (π|Uj)
−1 : U→ Uj ⊂ X̃

and observe that ϑj is a local section defined on U. Therefore, for every
point p ∈ X there exists a neighbourhood U on which it is possible to
define infinite local sections; on the other hand the existence of a global
section is not guaranteed in general.
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Note that, if a global section ϑ exists, the maps π and ϑ are one-
to-one continuous maps and therefore every point p ∈ X has exactly
one inverse image under the covering map π which turns out to be a
homeomorphism between X̃ and X. The number of inverse images of
a point is used to define the degree of the covering.

Definition 2.6 If (X̃, π) is a connected covering of X such that ](π−1(p)) =
n for every p ∈ X, then we say that the covering has degree n.

If the degree is greater than 1, then no global sections exist. Going
back to the example of R2o, the covering space (R×R+, π) has infinite
degree, because for every z = (x, y) ∈ X the set

π−1(z) = {(ϑ, r) : ϑ = arctan
y

x
+ 2kπ, r = ||z||, k ∈ Z}

has cardinality equal to ℵ0. Hence, in this case a global section does
not exist.

The problem of the existence of a section is a particular case of the
problem of the lifting.

Definition 2.7 Let π : X̃ → X be a covering map and let f : Y → X be a
continuous function. A continuous function f̃ : Y → X̃ is a lifting of f if

π ◦ f̃ = f .

If Y is a connected topological space and f̃, f̃ ′ are two liftings of fwhich
coincide on one point y0 ∈ Y, then f̃(y) = f̃ ′(y) for every y ∈ Y.

Given a covering projection π, the existence of the lifting of a map f
is not guaranteed in general.

We are going now to spend some pages on exposing the theorem
about the existence of the lifting. To begin with, we introduce some
notations. Let X be a topological space and let x0 ∈ X. We say that ω
is a loop with endpoint x0 if ω is a continuous map

ω : [0, 1]→ X with ω(0) = ω(1) = x0 .

We denote by ex the loop which is constant in x, that is ex(t) = x for
all t ∈ [0, 1]. Afterwards, we define an equivalence relation on the set
of the loops having the same endpoint. We say that two loops ω1,ω2,
having p as common endpoint, are homotopically equivalent if there
exists a continuous map

F : [0, 1]× [0, 1]→ X

such that
F(t, i) = ωi(t) ∀t ∈ [0, 1] and i = 1, 2
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2 The Poincaré-Birkhoff theorem: one century of research

and
F(0, j) = F(1, j) = x0 ∀j ∈ [0, 1] .

The map F is a homotopy between ω1 and ω2. Using this equivalence
relation, we can introduce the equivalence class of a loop ω, denoted
by [ω] . The space Π(X, x0), named fundamental group of X with basepoint
x0, is the set of the equivalence classes of all the loops having x0 as
endpoint, that is

Π(X, x0) = {[ω] : ω(0) = ω(1) = x0} .

The set Π(X, x0) is a group with respect to the operation “·” defined as

[ω1] · [ω2] = [ω1 ·ω2]

where

ω1 ·ω2(t) =
{
ω1(2t) if 0 6 t 6 1

2 ,

ω2(2t− 1) if 12 < t 6 1 .

Its identity element corresponds to the class of the constant loop 1 =
[ex]. Observe that if a topological space X is simply connected, then
every loop is homotopic to the constant loop ex, therefore its funda-
mental group is trivial, that is

Π(X, xo) = {1} .

Consider now two topological spaces X, Y and let x0, y0 be two
points of their; let f : (X, x0) → (Y, y0) be a continuous function with
f(x0) = y0. Then the map

f∗ : Π(X, x0)→ Π(Y, y0) such that [ω] 7→ [f(ω)]

is well-defined. Moreover, f∗ is a covariant functor. With all these topo-
logical tools, we can now precisely state the problem of the existence
of the lifting. Let (X̃, π) be a covering space of a topological space X, let
x̃0 ∈ X̃, x0 = π(x̃0) and y0 ∈ Y such that f : Y → X is a continuous map
with y0 7→ x0. Then the existence of the lifting f̃ : Y → X̃ corresponds
to the commutivity of the diagram below.

(X̃, x̃0)

(Y, y0) (X, x0)
?

π

�
�
�
�
��

f̃

-f
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This implies that also the following diagram must commute.

Π(X̃, x̃0)

Π(Y, y0) Π(X, x0)
?

π∗

�
�
�
��3f̃∗

-f∗

(2.1)

The commutivity of diagram (2.1) requires that

f∗(Π(Y, y0)) = (π∗ ◦ f̃∗)(Π(Y, y0)) ⊂ π∗(Π(X̃, x̃0)) .

This condition is not only necessary, but also sufficient if Y is connected
and locally arcwise connected (see [57, theorem 21.2]). Hence the the-
orem about the existence of the lifting of a map reads as follows.

Theorem 2.8 Let (X̃, π) be a covering space of a topological space X and let
Y be a connected, locally arcwise connected topological space. Let f : Y → X

be a continuous function such that y0 7→ x0. Then there exists the lifting f̃
of f to X̃ if and only if

f∗(Π(Y, y0)) ⊂ π∗(Π(X̃, x̃0)) , (2.2)

with x̃0 ∈ π−1(x0).

Consider now the case of an annulus A = A[a, b] and let

Ã
def
= R× [a, b]

be its lifting to the covering space (R×R+, π) of R2o; given the infinite
strip Ã, we will denote its boundaries by

Ãi = R× {a} and Ão = R× {b} .

Let ϕ be a homeomorphism

ϕ : A→ R2 \ {O} with ϕ : (x, y) 7→ (ϕ1(x, y), ϕ2(x, y)) .

and consider the map

g : Ã→ R2 \ {O} such that g(ϑ, r) = ϕ(π(ϑ, r)) .

We have to prove that there exists a lifting g̃ of g to R×R+
o in such a

way that the diagram

Ã R×R+
o

A R2 \ {O}

-g̃

@
@
@
@@R

g

?

π

?

π

-ϕ

(2.3)
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commutes, that is g = π ◦ g̃. Since Ã = R× [a, b] is a connected, locally
connected topological space, theorem 2.8 applies; moreover Ã, as well
as R×R+

o are simply connected spaces, then their fundamental groups
are trivial. Hence condition (2.2) is clearly satisfied.

By this argument we have proved that for every homeomorphism
ϕ : A→ A there exists a lifting h : Ã→ Ã. It is now possible to precise
the twist condition for a homeomorphism of an annulus, speaking in
terms of h.

Definition 2.9 Let Ã = R× [a, b] be the lifting of a planar annulus and
let h : Ã→ Ã be a homeomorphism of the form

h(ϑ, r) = (ϑ+ s(ϑ, r), f(ϑ, r))

where f and s are continuous functions, 2π-periodic in the ϑ-variable.
We say that ϕ is a twist homeomorphism if

s(ϑ, a) · s(ϑ, b) < 0 . (2.4)

2.2 STATEMENT OF THE THEOREM AND SOME SPE-
CIAL CASES

At this point of the exposition, we have got all the material needed to
provide a precise statement of the Poincaré-Birkhoff theorem.

Let Ã = R× [a, b] be the lifting of a planar annulus and let h : Ã→ Ã

be a homeomorphism of the form

h(ϑ, r) = (ϑ+ s(ϑ, r), f(ϑ, r))

where f and s are continuous functions, 2π-periodic in the angle, that
is, h = ϕ̃ is the lifting of a homeomorphism ϕ : A→ A. If h

• is area-preserving

• leaves the boundaries invariant, that is f(ϑ, a) = a and f(ϑ, b) = b

• satisfies the twist condition (2.4)

then h has at least two distinct families of fixed points in the interior
of Ã, which means that ϕ has at least two distinct fixed points in A.
Indeed, due to the periodic behaviour of the involved maps, we can
observe that if h has a fixed point (ϑ∗, r∗), then all the points (ϑ∗ +
2kπ, r∗) with k ∈ Z are fixed points too. Then the theorem ensures the
existence of two families of fixed points {(ϑ1 + 2kπ, r1) : k ∈ Z} and
{(ϑ2 + 2kπ, r2) : k ∈ Z} with

r1 6= r2 ∨ ϑ1 − ϑ2 6= 2`π ∀` ∈ Z .
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Therefore, when we project the fixed points of h on the annulus via the
map π, the two families above defined will generate two points z1 6= z2
in the interior of A, which are fixed points for ϕ.

As the reader can see, Poincaré’s theorem has a simple and plain
statement; on the other hand its proof is far from being easy and clear.

However there is a special case in which the proof of the theorem is
quite simple and can be sketched in few lines. It is sufficient to add
the hypothesis of strict monotonicity of the angular variation, that is
assume that h(ϑ, ·) is strictly increasing in the radial coordinate for all
the values ϑ ∈ R. With this auxiliary condition and recalling the twist
condition, one obtains the inequalities

h(ϑ, a) < 0 < h(ϑ, b) ∀ ϑ ∈ R

then, due to the fact that h is continuous, for every ϑ ∈ R there exists
a special value for the ray r̄(ϑ) such that

h(ϑ, r̄(ϑ)) = 0 ;

the map ϑ 7→ r̄(ϑ) is continuous and 2π-periodic. Define now the set

Γ = {(x, y) ∈ A : x = r̄(ϑ) cos ϑ, y = r̄(ϑ) sin ϑ} (2.5)

whose points are moved by ϕ only in the radial direction, by construc-
tion. Recalling that the map ϕ is area-preserving, we conclude that Γ
must intersect its image in at least two points, that are two fixed points
for ϕ.

2.3 GENERALIZATIONS AND EFFORTS OF PROOF
In 1913 the first proof of theorem 2.2 appeared in George Birkhoff’s
paper Proof of Poincaré’s geometric theorem [7]. The American mathe-
matic George Birkhoff (1884-1944) was an assistant professor at Har-
vard University and during his career he had been working on many
different mathematical topics like asymptotic expansions, boundary
value problems, and Sturm-Liouville type problems; his doctoral stud-
ies had been widely influenced and guided by Poincaré’s works on
differential equations and celestial mechanics.

As the author says in the first lines of [7], his proof of Poincaré’s the-
orem is based on methods he had already applied to some questions
of similar character and it was said to be “one of the most exciting
mathematical events of the era” [1]. The proof exposed in his article
takes only few pages and is based on the fixed point index theory. In-
deed, Birkhoff proves the existence of one fixed point and eventually
the fact that the sum of the indices of all the fixed points is zero. Then
his conclusion is based on this sentence:
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Figure 5: George Birkhoff, 1884-1944

As Poincaré remarks, the existence of one invariant point implies
immediately the existence of a second invariant point.

Of course this is true if the first fixed point has a nonzero index, but
Birkhoff’s argument could not be correct in general. Indeed his proof
does not precise how to avoid the case in which the first fixed point
has zero index. For this reason it has often been said that Birkhoff’s
first proof was not complete. However it is interesting to notice that,
considering a quite recent work by E.E. Slaminka [101], now we can
say that Birkhoff’s argument was correct; more precisely, proving the
existence of one fixed point is enough for obtaining Poincaré’s conclu-
sion; the conclusion can be achieved using a theorem that shows that
it is possible to “remove” isolated fixed points of an area-preserving
homeomorphism having index equal to 0. The result we are referring
to is the following.

Theorem 2.10 Let h :M→M be an area-preserving homeomorphism of an
orientable 2−manifold and let z be an isolated fixed point with index 0, such
that there exists a neighbourhood Uz of p with Uz ∩ Fix(h) = {z}. Then there
exists an area-preserving homeomorphism h ′ such that h ≡ h ′ on MrUz
and h ′ has no fixed points on Uz.

Using Birkhoff’s result, we know that every area-preserving twist
homeomorphism of the annulus has at least one fixed point; assume,
by contradiction, that there exists a homeomorphism h which has ex-
actly one fixed point z. Clearly, z has index equal to zero. As stated in
theorem 2.10, we can construct a homeomorphism h ′ (which is area-
preserving too) which coincides with h on ArUz (and, therefore, it
has no fixed points in ArUz) and which has no fixed points in Uz.
Then h ′ is an area-preserving twist homeomorphism which has no
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fixed points, in contradiction with Birkhoff’s theorem. In light of this
theorem, we can now say that also the one in [7] is a complete proof of
Poincaré’s theorem.

Anyway, in 1925 Birkhoff published a second work [10] on this topic,
in which he corrected his previous proof of the theorem, finally remov-
ing any doubt about the existence of two distinct fixed points, as he
says in his article:

Furthermore the existence of two distinct invariant points is es-
tablished, whereas the possibility of only a single invariant point
has not hitherto been excluded.

In this second article Birkhoff presented also an extension of Poincaré’s
result, moving towards two different directions. First of all, he weak-
ened the hypothesis on the annular domain, removing the request
about the invariance of the outer boundary of the annulus. As he said,
the removal of this condition allows to apply the theorem to the prob-
lem of proving the existence of infinitely many periodic solutions in a
dynamical system with two degrees of freedom. On the other hand, he
worked also on the area-preserving condition which appeared to be a
strong restriction in its original formulation.

Moreover, Birkhoff’s theorem applies to more general domains than
the standard annuli, namely to domains that are homeomorphic to a
standard annulus. Therefore, we need to introduce a new definition.

Definition 2.11 A set A ⊂ R2 is a generalized (or topological) annulus if
A is homeomorphic to a standard annulus.

Let A = A[1, 2] be a planar annulus and let A ′ be a generalized
annulus; then there exists a homeomorphism η : A → η(A) = A ′. As
a consequence of Schoenflies’s theorem, the set η(∂A) is independent
of the choice of the homeomorphism η. We call the set η(∂A) the
contour of A ′ and denote it by ϑA ′. Clearly, for a topological annulus
A ′ embedded in R2, the contour of A ′ coincides with the boundary
of A ′. The contour of A ′ consists into two connected components
which are closed arcs (Jourdan curves) since they are homeomorphic
to S1. We call such closed arcs A ′i and A ′o, as in the case of standard
annuli. For a planarly embedded topological annulus, they could be
chosen as the inner and the outer boundaries of the annulus. In such
a special case, the bounded component of R2 rA ′ turns out to be an
open simply connected set D = D(A ′i) with

∂D = A ′i and clD = D∪A ′i

homeomorphic to the closed unit disc. For a standar annulus A =
A[a, b] we have D(Ai) = B(0, a). On the other hand, in the general
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2 The Poincaré-Birkhoff theorem: one century of research

setting, speaking of inner and outer boundaries is meaningless; yet we
keep this terminology. Finally, we define the interior of A ′ as

intA ′ = A ′ \ ϑA ′ .

According to the notation introduced throughout the chapter, the
statement of the theorem presented in [10] can be written as follows.

Theorem 2.12 (Birkhoff) Let A and A ′ be two generalized annuli whose
common inner boundary is the circle Ca, while their outer boundaries are
strictly star-shaped curves; let ϕ : A → A ′ be a homeomorphism which
leaves Ca invariant. If ϕ is a twist homeomorphism, then one of these two
alternatives occurs:

• there exists an annular region A ′′ ⊂ A surrounding Ca such that

ϕ(A ′′) $ A ′′ (2.6)

• ϕ has at least two fixed points.

O O

Figure 6: A pictorial description of Birkhoff theorem 2.12

In particular, if the homeomorphism ϕ is area-preserving, condition
(2.6) can not happen and then the existence of two fixed points im-
mediately holds. It follows that Poincaré’s theorem can be seen as
a corollary of theorem 2.12. The important feature of this statement
lies in condition (2.6), which is a much weaker request than the origi-
nal hypothesis of area-preserving of Poincaré’s theorem 2.2. We stress
also the fact that the outer boundaries of the annuli are required to be
strictly star-shaped curves (see figure 2.12).

Birkhoff was working on this topic for many years, motivated by the
interest in finding other versions of the theorem, more suitable for the
applications to nonautonomous differential equations; indeed his in-
terest was in proving the existence of fixed points of the Poincaré map
associated to systems of ODEs. Moving in this direction and following
some remarks made by Poincaré, in [8] he stated a new version of the
theorem, dealing with the case in which the domain of the homeomor-
phism is an infinite annulus.
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Definition 2.13 An infinite annulus is a set of the form A = A[a,∞[ =
{(x, y) : x2 + y2 > a2} for some a > 0.

Theorem 2.14 Let A = A[a,∞) be an infinite annulus and let ϕ : A → A

be an area-preserving homeomorphism which advances the points on Ca and
regresses the points on Cr for all r > R > a with a rotation of an angle which
is at least ϑ1 > 0. Then ϕ has at least two fixed points in A.

Going on with the history of the theorem, during the second half
of the twentieth century many authors were motivated to produce
extensions of the Poincaré-Birkhoff theorem, trying to generalize the
condition of invariance of the annular domain of the homeomorphism
under consideration, and in particular of its outer boundary, with the
purpose of applying the theorem to the study of the existence of pe-
riodic solutions of second order ordinary differential equations of the
form

x ′′ + f(t, x) = 0

with f : R2 → R a continuous and T -periodic function in the t-variable.
Among the large number of works on this subject, we want to men-

tion those by Howard Jacobowitz [52, 53]. In 1976 he published a paper
in which he succeeded in extending the Poincaré-Birkhoff theorem to
regions that are homeomorphic to a pointed (say holed) disc, develop-
ing an idea already formulated by Poincaré. Indeed, in [94] we find
the following remark:

Imaginons en effet d’abord que la circonférence extrême inté-
rieure x = b vienne à se réduire à un point, notre couronne
circulaire se réduira à un cercle. Si alors sur la circonférence exté-
rieure x = a, on a toujours Y > y, et dans le voisinage du centre
Y < y on inversement ; si, de plus, la transformation adumet un
invariant intégral, il y aura à l’intérieur du cercle au moins deux
points inaltérés par la transformation. D’autre part, nous pou-
vons appliquer les memes principes à une puissance quelconque
Tn de la transformation T .

To be more precise, we introduce the following definition.

Definition 2.15 A set A ⊂ R2 is a generalized pointed disc if it is homeo-
morphic to the set

A(0, r] = B[0, r] \ {O} (2.7)

It is important to stress the fact that Jacobowitz does not impose any
condition on the outer boundary of the set since he does not require
that it is a star-shaped curve, but only a simple one. In this setting
the twist condition expressed as in (2.4) is meaningless and must be
replaced with a condition written in terms of a limit computed moving
towards the centre of the disc.
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O O

Figure 7: A pictorial description of theorem 2.16

Theorem 2.16 Consider two generalized pointed discs A1 and A2, whose
outer boundaries are two simple closed curves Γ1, Γ2. Let ϕ : A1 → A2 be
a homeomorphism whose lifting to the space R×R+ has the form ϕ̃(ϑ, r) =
(ϑ+ s(ϑ, r), f(ϑ, r)) and satisfies the twist condition

• s(ϑ, r) < 0 on Γ1

• lim infr→0 s(ϑ, r) > 0.

If ϕ is area-preserving, then it has at least two distinct fixed points.

Among the papers appeared in those years dealing with the problem
of generalizing the hypothesis about the invariance of the annulus,
finally we mention the contributes brought by Wei Yue Ding in [29, 30].

In [29] a paper by Ding appeared in Acta Mathematica Sinica; in this
work he formulates a first version of the theorem considering a gener-
alized annulus bounded by two simple curves Γ1 and Γ2; this theorem
allows the annulus not to be invariant, but adds a condition about the
existence of an extension of the homeomorphism to the whole closed
disc clD(Γ2), guaranteeing the fact that the annulus is not moved too
far. More precisely, the theorem asserts what follows.

Theorem 2.17 Let A = A[a, b] be a standard planar annulus and let ϕ :
A → ϕ(A) ⊂ R2 r {O} be an area-preserving twist homeomorphism. If
there exists an extension ϕ0 : B[0, b]→ R2 such that 0 ∈ ϕ0(B(0, a)), then
ϕ has at least two fixed points.

The proof is based on the previous result 2.16 by Jacobowitz. In the
following year, Ding generalized the result to the case of an annulus
bounded by two simple curves. This version of the Poincaré-Birkhoff
theorem (see theorem 2.18) is the most general one and also the most
useful under the point of view of the applications to the study of sec-
ond order differential equations.

Theorem 2.18 Let A be a generalized annulus, whose inner boundary is a
strictly star-shaped curve Γ1, while its outer boundary Γ2 is a simple closed
curve. Let ϕ : A → ϕ(A) be a homeomorphism which can be extended to
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the all closed disc clD(Γ2) surrounded by Γ2. If ϕ is an area-preserving twist
homeomorphism such that 0 ∈ ϕ(D(Γ1)), then ϕ has at least two fixed points.

O O

Figure 8: Ding’s theorem

When the theorem is applied to the search of periodic solutions of
planar Hamiltonian systems, the domains to which the theorem ap-
plies tipically are sets of the form

A = {z ∈ R2 : E(z) ∈ [a, b]}

which are surrounded by level-lines of an energy function; therefore
the boundaries of the domains are strictly star-shaped curves. This fact
is crucial, because some counterexamples to Ding’s theorem 2.18 have
appeared in recent years, showing that the condition of star-shapness
for the outer boundary is essential for the proof of the theorem and
can not be removed. We will briefly talk about these counterexamples
in section 2.7.

The other direction in which generalizations of the Poincaré-Birkhoff
theorem were exploited was the one related to the area-preserving con-
dition. Having Birkhoff’s theorem 2.12 as a first step, some authors
proposed weaker conditions than condition (2.6). In this context we
quote the work by Patricia Carter [22], who stated and proved the fol-
lowing theorem.

Theorem 2.19 If ϕ : A → A is a twist homeomorphism of the annulus A
which has at most one fixed point, then there exists a simple essential closed
curve C ⊂ intA which meets its image in at most one point.

Other recent works have also proved some modified and more gen-
eral version of the twist condition, see for instance [64, 20, 24, 12, 95]. A
further approach to the proof of the Poincaré-Birkhoff theorem shows
a connection with the Brouwer plane translation theorem, as exposed
by Guillou in [41] and Bonino in [12]. Finally, we mention the possibil-
ity of studying the twist theorem under the assumption that a different
measure than the Lebesgue one is preserved (see for instance [32, 4]).

For what concerns the proof of the theorem, Birkhoff’s proof of the-
orem 2.2 had not been completely accepted for a long time, especially
for what concerned the existence of the second fixed point. Indeed
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the proof was very complex and difficult to understand and it left the
mathematical community quite sceptical. Many efforts of obtaining a
convincing proof had been performed during the second part of the
century and many erroneous proofs were given too. The first proof ac-
cepted by the majority of the mathematicians appeared in 1977, in a pa-
per by Morton Brown and Walter D. Neumann [14]. The authors pub-
lished a very detailed and accurate analysis of Birkhoff’s arguments
which clarified any doubt about the existence of two fixed points, as
stated by Poincaré more than sixty years before.

2.4 THE PROOF BY BROWN AND NEUMANN
In this section I would like to expose all the details of the proof of
Poincarè’s theorem, following the one presented by Brown and Neu-
mann in [14]. As a reference, I used also the more recent work by
Dalbono and Rebelo in which a more detailed exposition is provided.

Let A = A[a, b] be a standard annulus in the plane and let ϕ : A→ A

be a homeomorphism satisfying the hypothesis of theorem 2.2. Let
Ã = R× [a, b] be the lifting of A to the covering space R×R+

o , whose
boundaries are the straight lines

Ãi = π
−1(Ai) = R× {a} and Ão = π−1(Ao) = R× {b} . (2.8)

Assume that the lifting of the homeomorphism h : Ã → Ã has the
following properties:

• h(ϑ, a) = (ϑ+ s2(ϑ), a) for every ϑ ∈ R

• h(ϑ, b) = (ϑ− s1(ϑ), b) for every ϑ ∈ R

• h(ϑ+ 2π, r) = h(ϑ, r) + (2π, 0) for every (ϑ, r) ∈ Ã

where s1(·) and s2(·) are continuous, strictly positive and 2π-periodic
funtions.

Define the sets

Ha = {(ϑ, r) ∈ R2 : r 6 a} and Hb = {(ϑ, r) ∈ R2 : r > b} ,

such that R2 = Ha ∪ Ã∪Hb. In the following we need to assume that
h is extended by continuity to all the plane R2, therefore we set

h(ϑ, r) =

{
(ϑ+ s2(ϑ), r) on Ha
(ϑ− s1(ϑ), r) on Hb .

(2.9)

Note that when we extend our setting to all the plane R2, speaking
about (ϑ, r) as an angular and a radial coordinate looses its original
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meaning; although we keep this terminology for consistency with the
rest of the exposition.

The argument we are going to expose assumes, by contradiction,
that h has only one family of fixed points. Without loss of generality,
we can say that z is a fixed point for h if and only if it has the form

z = Fk = (2π k, r∗)

for some k ∈ Z and for a fixed r∗ ∈ ]a, b[. Define now the sets

W` = ]
π

2
`,
3π

2
`[×R

for every ` ∈ Z (see figure 9) and let W be the union of all the rectan-
gles

W =
⋃

`∈Z

W` ⊂ R2 .

From the assumption made on the position of the fixed points, the set
clW does not contain fixed points of h, then there exists a value ε > 0
such that

||z− h(z)|| > ε ∀ z ∈ clW .

By this definition, it holds that

ε < min{min s1,min s2} . (2.10)

We construct now an area-preserving homeomorphism T : R2 → R2

which modifies only the radial coordinate of the points of the plane
and whose expression is

T : (ϑ, r) 7→ (ϑ, r+
ε

2
(| cos ϑ|− cos ϑ)) (2.11)

Observe that two cases can occour:

• if z = (ϑ, r) ∈W, then cos ϑ < 0 and T(ϑ, r) = (ϑ, r− ε cos ϑ), with
T2(ϑ, r) = r− ε cos ϑ > r

• if z /∈W, then cos ϑ > 0 and T(z) = z;

this means that T moves upwards all and only the points in W, while
the ones in R2 rW are left fixed. Moreover, the vertical displacement
performed by T is bounded by the value of ε, that is

||T(z) − z|| = |T2(r, ϑ) − r| = ε| cos ϑ| 6 ε ∀ z ∈ R2 . (2.12)

Consider now the composition of the maps T ◦ h; since both T and
h are area-preserving homeomorphims, their composition is an area-
preserving homeomorphism too. We claim that T ◦ h has the same
fixed points as h. Let z be a fixed point for h, for instance, z = F0 =
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F0 F1F−1

W1 W2W−1

Figure 9: The sets W` and the fixed points Fk

(0, r∗); then (T ◦ h)(z) = T(z) = z, because T fixes the points not in W.
Then every fixed point of h is a fixed point for T ◦ h too. On the other
hand, if h(z) 6= z, then, by the choice of ε, we recall that ||z− h(z)|| > ε,
while ||T(h(z)) − h(z)|| 6 ε as proved in (2.12); then it must be z 6=
T(h(z)), since ||z− T(h(z))|| > 0. Thanks to these arguments we can
conclude that z is a fixed point for h if and only if z is a fixed point for
T ◦ h. In particular, T ◦ h has no fixed points in W.

We are going now to introduce a recursive sequence of sets, which
do not contain fixed points of h. To begin with, define D0 as the set
of the points of Ha = R× (−∞, a] which are mapped by T ◦ h outside
Ha; more precisely,

D0 = Ha \ (T ◦ h)−1(Ha) (2.13)

while the other sets are defined by the recursive relation

Di = (T ◦ h)(Di−1) ∀ i > 1 . (2.14)

From the definition of D0, it follows that D1 ∩D0 = ∅. Indeed, if
there existed a point z in this intersection then from z ∈ D1 we would
get z = (T ◦ h)(z ′) for some z ′ ∈ D0 ⊂ Ha, then z ′ ∈ (T ◦ h)−1(Ha);
on the other hand, since D0 ⊂ Ha we would obtain z ∈ Ha too, in
contradiction with definition (2.13) of D0. By definitions (2.13) and
(2.14), we also deduce that D1 ∩Ha = ∅; hence, going on by induction,

Di ∩Dj = ∅ ∀ i 6= j and Di ∩Ha = ∅ ∀ i > 1 .

For what concerns the negative indices i < 0, we observe that (T ◦
h)−1(Ha) ⊂ Ha. Indeed, according to definition (2.9), the map h acts
as a horizontal motion on the set Ha, while T−1 moves the points
downwards. Then, points in Ha (that is points z = (ϑ, r) with r 6 a)
still lie in Ha under the action of the negative iterates of T ◦ h. Hence
Di ⊂ Ha for every i < 0.

In this way we have defined a family (Di)i of disjoint sets, which
are contained in R2 rHa for i > 1. We also note that by the definition
of D0, none of the sets Di contains fixed points of h.
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Since the map T ◦ h has a periodic behaviour, the sets Di have a
periodic structure. Indeed, if z = (ϑ, r) ∈ D0, then, by definition,
z ∈ Ha and (T ◦ h)(z) = (ϑ+ s2(ϑ), r

′) /∈ Ha; according to (2.11), since
r ′ > a, then r ′ = r− ε cos ϑ, with cos ϑ < 0. Consider now the point
z ′ = (ϑ+ 2kπ, r) = z+ (2π, 0) ∈ Ha and (T ◦h)(z ′) = (ϑ+ 2kπ+ s2(ϑ+
2kπ), r− ε cos ϑ) = (T ◦ h)(z) + (2kπ, 0), simply using the periodicity
of s2 and of the cosenum. Then z ∈ D0 if and only if every translated
point z+ (2kπ, 0) ∈ D0. Since T ◦ h is a homeomorphism, also all the
other sets Di have the same periodic structure.

We want now to prove that the sets Di have a positive measure.
Consider a point z = (ϑ, a) ∈ W1 ∩ {r = a} ⊂ Ha; then (T ◦ h)(z) =
(ϑ+ s2(ϑ), r

′) /∈ Ha, which means that z ∈ D0. Since T ◦ h is a home-
omorphism, we can find an open ball B(z, δ) ⊂ Ha which is mapped
outside Ha. Then D0 contains B(z, δ)∩Ha and this allows to conclude
that µ(D0) > 0.

The next step consists in proving that there exists an index n > 1

such that Dn ∩Hb 6= ∅. If D1 ∩Hb 6= ∅ simply take n = 1. Otherwise,
D1 ⊂ R× ]a, b[. Since the sets Di are periodic and Di ⊂ {r > a} if
i > 0, we can project (Di)i>1 in R2o, using a modified projection map

π̂(ϑ, r) = (
√
2r cos ϑ,

√
2r sin ϑ) (2.15)

which preserves Lebesgue’s measure, in the sense that if D ⊂ R2o with
µ(D) < ∞, then µ(D) = µ(π̂(D)). From the assumption made above,
we have π̂(D1) ⊂ A[

√
2a,
√
2b], then we can conclude that

0 < µ(π̂(D1)) <∞ (2.16)

and, since T ◦ h is an area-preserving homeomorphism,

µ(π̂(D1)) = µ(π̂(Di)) ∀ i > 1 ,

where π̂(Di) are disjoint subsets of the infinite annulusA[a,+∞). Then
there exists an index n > 0 such that

π̂(Dn)∩Ao 6= ∅ .

Going back to the infinite strip Ã via π̂−1, we get Dn ∩Hb 6= ∅ and,
recalling that Dn ⊂ (T ◦ h)n(Ha) immediately obtain

(T ◦ h)n(Ha)∩Hb 6= ∅ .

Having achieved our purpose, from now on we can forget the sets
(Dk)k since we are not using them anymore.

Let now zn = (ϑn, rn) be a point in (T ◦h)n(Ha)∩Hb, choosed with
maximal radial coordinate in such a way that

z = (ϑ, r) ∈ (T ◦ h)n(Ha)∩Hb ⇒ r 6 rn ; (2.17)
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moreover zn can always be choosen in W0. Recalling that T ◦ h is
non-decreasing with respect to the radial coordinate, we have

(T ◦ h)m(Ha)∩Hb 6= ∅ ∀m > n .

We introduce now a sequence of points made by the complete orbit
of zn under the positive and negative iterates of the map, setting

zi = (ϑi, ri) = (T ◦ h)i−n(zn) ∀i ∈ Z ; (2.18)

this orbit is nontrivial since, from rn > b, we immediately deduce that
zn is not a fixed point of h (see (2.9)); therefore z0 ∈ Ha while, by
definition, zn ∈ Hb. Moreover, by (2.18), it is easy to see that

zi = (T ◦ h)
(
(T ◦ h)i−1−n(zn)

)
= (T ◦ h)(zi−1)

for every index i ∈ Z.
Our purpose is to use the sequence of points (zk)k in order to con-

struct a curve running from Ha to Hb, avoiding all the fixed points of
h and which is a flow-line for the map T ◦ h, that is which is mapped
into itself (except near one of its endpoints). The starting point of such
a curve γ is z−1. Let γ0 be the segment connecting z−1 = (T ◦h)−1(z0)
with z0 and recursively define a sequence of arcs setting

γi = (T ◦ h)i(γ0) ∀ i ∈ Z .

The curve γ is obtained “pasting” together the curves γi for the values
i ∈ {0, . . . , n} in such a way that

γ = γ0γ1 · · ·γn and (T ◦ h)γ = γ1γ2 · · ·γn+1 . (2.19)

The endpoints of γ are z−1 and zn which belong to Ha and Hb re-
spectively. Consider now the curve γγn+1 joining z−1 ∈ Ha with
zn+1 ∈ Hb. We are interested in proving two properties of this curve:

• the curve γγn+1 is simple

• for every z = (ϑ, r) ∈ γ we have r−1 6 r 6 rn+1.

Lemma 2.20 The curve γγn+1 is simple.

Proof. Since T ◦h is a homeomorpshim, and in particular it is injective,
then every subcurve γi does not intersect itself; indeed we have

](γi ∩ γj) =
{
1 if |i− j| = 1,
0 otherwise.

To begin with, recall that the set γ0 is a segment whose endpoints
are z−1 = (T ◦ h)−1(z0) and z0 = (ϑ0, r0); γ0 is contained in Ha, then
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2.4 The proof by Brown and Neumann

h acts on it as the horizontal translation (ϑ, r) 7→ (ϑ + s2(ϑ), r); h is
a homeomorphism, then its first component h1 : ϑ 7→ ϑ+ s2(ϑ) is a
homeomorphism too. More precisely, h1 is continuous and bijective
and, moreover, it is an increasing function. To prove this last feature,
as a first step recall that the map T does not act on the angular variable,
then the first component of (T ◦h) coincides with h1 and (T ◦h)(z−1) =
(h1(ϑ−1), r0) = z0. Then we have h1(ϑ−1) = ϑ0 = ϑ−1 + s2(ϑ−1) >
ϑ−1 since s2(·) is a positive function. Consider now the restriction of
h1 to the closed interval [ϑ−1, ϑ0]; in general, a homeomorphism of a
closed real interval is always strictly monotone, then, in this case, we
only need to check that h1(ϑ−1) < h1(ϑ0). From the definitions, it
immediately holds that h1(ϑ−1) = ϑ0 < h1(ϑ0) and this proves that
h1 is a strictly increasing homeomorphism (see figure 10). Therefore
also the inverse function h−11 is strictly increasing and its expression is
ϑ 7→ ϑ− s2(ϑ). Then the following relations holds:

• h−11 (ϑ0) 6 ϑ 6 ϑ0 for all the points z = (ϑ, r) ∈ γ0
• h−21 (ϑ0) 6 ϑ 6 h−11 (ϑ0) for all the points z = (ϑ, r) ∈ γ−1 .

More in general, we conclude that

γi ⊂ Vi
def
= {(ϑ, r) : hi−11 (ϑ0) 6 ϑ 6 hi1(ϑ0), r ∈ R} (2.20)

for every i 6 0. Since γ0 is a segment whose endpoints are z−1 and z0,
by the remarks above exposed, it intersects the boundaries of the strip
V0 only at its endpoints, then, by induction, all the curves γi intersect
the boundaries of Vi only at their endpoints (see also figure 10). Thus
we conclude that for every distinct i, j 6 0, γi and γj intersect at most
in one endpoint. Clearly, the intersection is nonempty if and only if
zi+1 = zj or viceversa.

Consider now a pair of arbitrary sets γi and γj with i 6= j; then there
exists an integer ` such that (T ◦ h)`(γi) = γi ′ and (T ◦ h)`(γj) = γj ′ ,

z0

z−1

z−2

V0

γ−1

γ0

h−2
1 (ϑ0) h−1

1 (ϑ0) = ϑ−1 ϑ0 = ϑ−1 + s2(ϑ−1)

Figure 10: A description of the proof
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with i ′, j ′ < 0. The argument above ensures that γi ′ and γj ′ intersect
at most at one endpoint; therefore, since T ◦ h is a homeomorphism,
the thesis immediately follows.

We want now to prove the second property of the curve γγn+1,
which is expressed by the following lemma.

Lemma 2.21 For all the points z = (ϑ, r) ∈ γ, we have that

r−1 6 r 6 rn+1 .

Proof. Because of T ◦ h is a homeomorphism, we can prove, by few
computations, thatHa ⊂ (T ◦h)(Ha); indeed, let z ∈ Ha, then the point
z ′ = (T ◦ h)−1(z) satisfies r(z ′) 6 r(z) 6 a, because T ◦ h is increasing
in the radial component. Then z ′ ∈ Ha too, hence z ∈ (T ◦ h)(Ha). By
induction, we have

(T ◦ h)n(Ha) ⊂ (T ◦ h)m(Ha) ∀m > n .

Then γ0 ⊂ Ha ⊂ (T ◦ h)(Ha) ⊂ (T ◦ h)n(Ha), and by induction

γi ⊂ (T ◦ h)i(Ha) ⊂ (T ◦ h)n(Ha) ∀i ∈ {0, . . . , n} .

We can conclude that the set γ is contained in (T ◦ h)n(Ha). Let z =
(ϑ, r) ∈ γ; then there exists an index i ∈ {0, . . . , n} such that z ∈ γi ⊂
(T ◦ h)n(Ha). Assume, by contradiction, that ri > rn+1 > b; then
zi ∈ (T ◦ h)n(Ha) ∩ Hb and, by (2.17), we are led to an absurd by
ri = rn 6 rn+1.

The next step consists in proving that γ ⊂ R× [r−1,+∞[. First of
all, since z−1 = (T ◦ h)−1(z0), recalling that the vertical displacement
performed by the homeomorphism T ◦ h is always positive, we get
r0 > r−1 and γ0 ⊂ R× [r−1,+∞[. Moreover, since γ1 = (T ◦ h)(γ0),
using again the property of the map, we get that r > r−1 for every
point in γ1. Then, by induction we can easily conclude the proof.

Note that from lemma 2.20 it follows that γ does not pass through
the fixed points of h. Indeed, assume that z is a fixed point of h and,
consequently, a fixed point for T ◦ h too; if z ∈ γ, then z ∈ γi for some
index i; then z = (T ◦ h)(z) ∈ γi+1 and this means that z ∈ γi ∩ γi+1.
The only possibility is that z = zi, but if zi is a fixed point, then the
whole orbit of equation (2.18) is trivial and coincides with the constant
sequence zi = zn ∀ i ∈ Z in contrast with the assumption that zn is
not a fixed point.

The crucial point of the proof of the Poincaré-Birkhoff theorem is
the computation of the index of the curve γ. For a brief survey about
the index of a vector field along a curve, see appendix A. The first step
consists in proving the following lemma.
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Lemma 2.22 Every curve γ running from Ha to Hb and avoiding any fixed
point Fk = (2kπ, r∗) of h has index

iγ(h) ≡1
1

2
;

moreover, the index is independent of the curve γ.

Proof. Consider the curve γ whose endpoints are z−1 and zn and re-
call that h(z−1) = (ϑ−1 + s2(ϑ−1), r−1) and h(zn) = (ϑn − s1(ϑn), rn).
According to definition (A.1), we have γ̃(0) = (−1, 0) and γ̃(1) = (1, 0),
therefore, the angle between these two vectors is equal to π. Hence we
gain

iγ(h) ≡1
π

2π
=
1

2
.

We want now to prove that the value of the index is independent of
the path. More precisely, let γ1, γ2 be two paths going from Ha to Hb
and avoiding all the fixed points of h. Denote by zia the starting points
of γi and by zib the endpoints of γi, for i = 1, 2. Then construct two
other curves, γ3 and γ4, such that

• the support of γ3 is the segment joining z1b and z2b

• the support of γ4 is the segment joining z2a and z1a.

Since the points of γ3 and γ4 lies in Hb and Ha respectively, the home-
omorphism h acts on them simply as a horizontal translation; more
precisely, γ̃3(·) = (−1, 0) and γ̃4(·) = (1, 0) are constant maps, then we
conclude that

iγ3(h) = iγ4(h) = 0 . (2.21)

Afterwards we construct a new closed curve γ ′ = γ1γ3(−γ2)γ4; using
the additivity of the index, we have

iγ ′(h) = iγ1(h) + 0− iγ2(h) + 0 = iγ1(h) − iγ2(h) .

Our aim is to prove that γ ′ has index zero. In order to reach this
conclusion, we need that the planar region surrounded by γ ′ does not
contain fixed point of h. Let F(h) = {Fk : k ∈ Z} be the set of the fixed
points of h and consider the fundamental group of X = R2 r Fix(h)
with base in the point z1a and denote it by Π(X, z1a); the fundamental
group, by definition, is the set of all the loops σ : [0, 1] → X such that
σ(0) = σ(1) = z1a. Then for every t in [0, 1], the point σ(t) is not a fixed
point of h. The generators of the fundamental group are all the loops
σ such that the region surrounded by their support contains zero or
one element of Fix(h). Since γ ′ ⊂ X, then γ ′ is homotopic to some
generator path and, since the index is invariant under homotopies, it
is sufficient to prove that the index of γ ′ is zero under the assumption
that γ ′ is a generator of Π(X, z1a).
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If γ ′ is a path which does not surround any fixed point, then it is
homotopic to the constant loop and therefore, its index is equal to zero
and then iγ1(h) = iγ2(h). As a second case, without loss of generality,
we can suppose that γ ′ is a loop which surroundes F0 = (0, r∗); for the
assumptions made on the position of the points Fk, γ ′ is homotopic to
σ ′ = σ1σ2σ3σ4 such that

• σ1 is the horizontal segment joining u1 = (−π, r) to u2 = (π, r)
with r < a;

• σ2 is the vertical segment joining u2 = (π, r) to u3 = (π, R) with
R > b;

• σ3 is the horizontal segment joining u3 to u4 = (−π, R)

• σ4 is the vertical segment joining u4 to u1.

Since σ1, σ3 lie in Ha and Hb respectively, their index is zero; since h
is a 2π-periodic function in the first variable, then ih(σ2) = −ih(σ4).
Then, for the additivity of the index, we conclude that

iσ ′(h) = iσ2(h) + iσ4(h) = 0 .

With this argument, we have proved that

iγ ′(h) = 0 = iγ1(h) − iγ2(h)

then the index is independent of the choice of the path.

The last step of the proof of Poincaré-Birkhoff theorem consists in
the following lemma, whose proof will lots of computations.

Lemma 2.23 The index iγ(h) is equal to 12 .

Proof. To begin with, we are computing iγ(T ◦ h). We recall that the
endpoints of γ are the points z−1 ∈ Ha and zn ∈ Hb on which the
map T ◦ h acts in the following way:

z−1 = (ϑ−1, r−1) 7→ z0 = (ϑ−1 + s2(ϑ−1), r−1 + δ2)

zn = (ϑn, rn) 7→ zn+1 = (ϑn − s1(ϑn), rn + δ1)

with 0 6 δ1, δ2 6 ε, for ε as in (2.12). Then the directions γ̃(0), γ̃(1) (cf.
(A.1)) can be easily obtained as

γ̃(0) =
(s2(ϑ−1), δ2)

||(s2(ϑ−1), δ2)||
and γ̃(1) =

(−s1(ϑn), δ1)

||(−s1(ϑn), δ1)||
. (2.22)

By the behaviour of the map T ◦h in the regions Ha and Hb, we know
that the angular coordinates of the vectors ˜γ(0) and ˜γ(1) satisfy the
inequalities 0 6 ϑ(0) 6 π

2 and π
2 6 ϑ(1) 6 π; then, from (2.22) we get

ϑ(0) = arctan
δ2

s2(ϑ−1)
ϑ(1) = π− arctan

δ1
s1(ϑn)
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and, therefore,

∆ϑ = ϑ(1) − ϑ(0) = π− arctan
δ1

s1(ϑn)
− arctan

δ2
s2(ϑ−1)

.

Using the second property of the index, we conclude that

iγ(T ◦ h) ≡1
∆ϑ

2π
=
1

2
−
1

2π
(arctan

δ1
s1(ϑn)

+ arctan
δ2

s2(ϑ−1)
) . (2.23)

Simply by the definition of ε and recalling equation (2.10), we have the
following inequalities

0 6 δ1 6 ε < min s1 and 0 6 δ2 6 ε < min s2 (2.24)

which allow us to conclude that arctan δ1
s1(ϑn)

and arctan δ2
s2(ϑ−1)

both
belong to the interval [0, π4 [ and therefore

∆ϑ ∈ ]
π

2
, π] . (2.25)

We are now going to prove that in (2.23) we can replace the congru-
ence ≡1 with the equality =. Let P : [−1, 0] → R2 be a parametriza-
tion of γ0, such that P(−1) = z−1 and P(0) = z0; extend it defining
P(t+ 1) = (T ◦ h)(P(t)) for every t ∈ [−1, n+ 1]. The map P : [−1, n+
1] → R2 is a parametrization of γγn+1 which satisfies P(i) = zi for
every i = −1, . . . , n+ 1 and its restriction

P : [−1, n]→ R2

is a parametrization of γ.
In order to evaluate the index, we introduce the curve

d(t)
def
= D(P(t), (T ◦ h)(P(t))) = D(P(t), P(t+ 1)) (2.26)

defined from [−1, n] to S1 (see figure 11); we will use this curve to
compute the index of T ◦ h thanks to the fact that, by definition, iγ(T ◦
h) coincides with the winding number wd. First of all, we extend d(·)
to the interval [−1, 2n+ 1] setting

d0(t) =

{
d(t) if t ∈ [−1, n],

d(n) if t ∈ [n, 2n+ 1].
(2.27)

Since d0 is constant on [n, 2n+ 1], we can use d0 to evaluate the index
along γ instead of d. Our purpose is to write a homotopy between d0
and the map dn+1

dn+1(t) =

{
D(z−1, P(t+ 1)) if t ∈ [−1, n],

D(P(t−n− 1), zn+1) if t ∈ [n, 2n+ 1].
(2.28)
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z−1

zn

zn+1

γ

P(t)

P(t + 1) =

(T ◦ h)(P(t))

z0

Figure 11: The value d(t), for t ∈ [−1, n] consists in the normalization of the
vector painted in this figure, where P(t) is running from z−1 to zn
along γ

For t in [−1, n], this map represents the normalized vector which joins
z−1 and a point A, where A runs on γ from z0 to zn+1; for t ∈ [n, 2n+
1], the map represents the normalization of the vector which joins a
point B with the point zn+1, where B runs on γ from z−1 to zn (see
figure 12). At this point we introduce the homotopy

dλ(t) = d(t, λ) : [−1, 2n+ 1]× [0, n+ 2]→ R2 .

If 0 6 λ 6 n+ 1, we set

dλ(t) =


D(z−1, P(t+ 1)) if t ∈ [−1, λ− 1[

D(P(t− λ), P(t+ 1)) if t ∈ [λ− 1, n[

D(P(t− λ), P(n+ 1)) if t ∈ [n,n+ λ[

D(P(n), P(n+ 1)) if t ∈ [n+ λ, 2n+ 1]

(2.29)

which coincides with d0 when λ = 0 and with dn+1 when λ = n+ 1.
This mapping is well-defined, since it is always of the formD(P(t), P(t ′))
with −1 6 t < t ′ 6 n+ 1 and P(t), P(t ′) ∈ γγn+1, which is a simple
curve. The map dλ, for some λ ∈ ]0, n+ 1[ corresponds to the normal-
ization of a vector moving in the plane as follows:

• on the interval [−1, λ− 1], its first endpoint is fixed in z−1, while
the second is running from z0 to zλ along γ;

• on the interval [λ− 1, n], the first endpoint is running from z−1
to zn−λ, while the second one is running from zλ to zn+1;
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zn+1

zn

z0z−1

γ

A

B

Figure 12: A pictorial description of the map dn+1. During the first time
interval, the vector has the first endpoint fixed in z−1, while the
other is the point A, running from z0 to zn; on the second interval,
the vector has as first endpoint the point B, which runs from z−1
to zn, while the second endpoint is fixed in zn+1.

• on the interval [n,n+ λ] the first endpoint is running from zn−λ
to zn, while the second one is fixed in zn+1;

• on the interval [n+ λ, 2n+ 1] the endpoints are fixed in zn and
zn+1, respectively.

For what concerns the values n + 1 6 λ 6 n + 2, let P ′ : [0, n +
1] → R2 be a parametrization of the segment whose endopoints are
z0 and zn+1 and P ′′ : [−1, n] → R2 a parametrization of the segment
whose endpoints are z−1 and zn. The goal is constructing a homotopy
between dn+1 and the curve

dn+2(t) =

{
D(z−1, P

′(t+ 1)) if t ∈ [−1, n],

D(P ′′(t−n− 1), zn+1) if t ∈ [n, 2n+ 1].
(2.30)

For t ∈ [−1, n] this curve represents the normalized vector whose end-
points are z−1 and a point which runs along the segment −−−−→z0zn+1; for
t ∈ [n, 2n+ 1] it represents the normalized vector whose endpoints are
a point which runs along the segment −−−−→z−1zn and the point zn+1 (see
figure 13).

The required homotopy has the form

dn+1+µ(t) =

=

{
D(z−1, (1− µ)P(t+ 1) + µP

′(t+ 1)) if t ∈ [−1, n],

D((1− µ)P(t−n− 1) + µP ′′(t−n− 1), zn+1) if t ∈ [n, 2n+ 1].
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zn

z0z−1

zn+1

γ

P �(t + 1)

P ��(t − n − 1)

Figure 13: The map dn+2 consists in the normalization of a vector which has
the first endpoint fixed in z−1 and the second one running along
P ′ from z0 to zn+1 during the time interval [−1, n]; during the
second interval, the first endpoint of the vector is running along
P ′′ from z−1 to zn, while the second endpoint is fixed in zn+1.

for µ ∈ [0, 1]. Note that when µ = 0 we obtain back the expression
of dn+1 and when µ = 1 we obtain dn+2, as required. In order to
make the definition clearer, consider, for instance, the case µ = 1/2;
the behaviour of dn+1+ 1

2
corresponds to the normalization of a vector

which moves in the plane as follows:

• during the first time interval, the first endpoint is fixed in z−1,
while the second one is the mean point of a segment

−→
AB such

that A is running from z0 to zn+1 along γ and B is running from
z0 to P ′(n+ 1) = zn+1 along the segment −−−−→z0zn+1;

• during the second time interval, the first endpoint is the mean
point of a segment

−→
CD such that C is running from z−1 to zn

along γ and D is running from z−1 to P ′′(n) = zn along the
segment −−−−→z−1zn, while the second endpoint is fixed in zn+1.

Also this homotopy is well-defined. Indeed, assume first by contradic-
tion that a point Q = (1− µ)P(t+ 1) + µP ′(t+ 1) coincides with z−1
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2.4 The proof by Brown and Neumann

for some t ∈ [−1, n]. By the properties of γ, this can happen only if
µ = 0 and t = −2 or µ = 1 and t = −2. But none of these cases is
possible. In the same way it is easy to prove that also the second part
of the definition of dn+1+µ is well-posed.

For the special form of the curve dn+2, we can compute its index.
Indeed, the support of dn+2 corresponds to the arc on S1 delimited by
the angles

D(z−1, z0) = arctan
δ2

s2(z−1)
and D(zn, zn+1) = π− arctan

δ1
s1(zn)

hence, the winding number of dn+2 is equal to the right-hand side of
equation (2.23) (see figure 13). Since the winding number is invariant
under homotopies, we can conclude that

w(dn+2) = w(d0) = iγ(T ◦ h)
= π− arctan

δ1
s1(ϑn)

− arctan
δ2

s2(ϑ−1)
∈ ]
1

4
,
1

2
] . (2.31)

As a last step, using (2.31), we can finally compute iγ(h). To this
end, we are going to deforme the map T and to construct a homotopy
between T and the identity map. Indeed, for every s ∈ [0, 1] define the
map Ts : R2 → R2

Ts(ϑ, r) = (ϑ, r+ s
ε

2
(| cos ϑ|− cos ϑ))

such that T0 = id and T1 = T . With the same argument previously
used for T , we can obtain an estimate for iγ(Ts ◦ h)

iγ(Ts ◦ h) ≡1
∆ϑ

2π
=
1

2
−
1

2π
(arctan

sδ1
s1(ϑn)

+ arctan
sδ2

s2(ϑ−1)
) . (2.32)

Observe now that for s = 1 the congruence in (2.32) becomes an equal-
ity; then, using the invariance of the index, we conclude that it must be
an equality also for s = 0. This leads to the final formula of the index

iγ(h) = iγ(T0 ◦ h) =
1

2
− 0 =

1

2
.

At this point, using the independence of the index on the curve (see
lemma 2.22), we have proved that every curve γ which goes from Ha
to Hb avoiding all the fixed points of h has index equal to 1

2 .
The absurd will arise showing that there exists another curve with

the required properties, but with index different from 1
2 . In order to do

this, we can repeat the above argument replacing h with h−1. In this
way, the sets Ha and Hb are moved in opposite directions with respect
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to the previous case. Repeating all the argument, we will provide a
curve γ ′ such that iγ ′(h−1) = −12 . Then from property 4 of the index
(see appendix A) we finally gain the required contradiction

−
1

2
= iγ ′(h

−1) = ih−1(γ ′)(h) = iγ(h) =
1

2

which allows to conclude that h has at least two distinct families of
fixed points.

2.5 THE PROOF BY BIRKHOFF
As said in section 2.3, considering theorem 2.10, in order to reach the
thesis of theorem 2.2 it is sufficient to prove that the homeomorphism
ϕ has at least one fixed point. For this reason, I am going now to
reexamine the original proof provided by Birkhoff, following what he
exposed in [11, chapter VI].

The framework and the construction are very similar to the ones ex-
posed in section 2.4, therefore many details will be skipped and the ex-
position will be more concise. Consider the infinite strip Ã = R× [a, b]

and an area-preserving homeomorphism h : Ã → Ã which is periodic
in the ϑ-coordinate and leaves the boundaries invariant. Assume that
the points of the bottom boundary Ãi = {(ϑ, r) : r = a} are moved by
h to the right, while the ones of Ão = {(ϑ, r) : r = b} are moved to the
left; extend h to the whole plane R2 as done in (2.9).

Assume, by contradiction, that h has no fixed points in Ã. Then
there exists a value δ > 0 such that for every z ∈ Ã

||h(z) − z|| > δ .

Consider an auxiliary transformation of the plane R2 defined by

Tε : (ϑ, r) 7→ (ϑ, r+ ε) (2.33)

for a fixed 0 < ε < δ and the resulting composite map Tε ◦ h which
is area-preserving too and translates Ã to the strip R× [a+ ε, b+ ε].
Define as Hε the narrow strip R× [a, a+ ε] and observe that its bot-
tom boundary is moved by Tε ◦ h into its upper boundary. Moreover,
every point of Hε is moved to a point with radial coordinate r > a+ ε.
Indeed (Tε ◦h)(Hε) ⊂ {(ϑ, r) : r > a+ ε}. Going on applying the home-
omorphism Tε ◦ h, we obtain the sequence of closed periodic sets

(Tε ◦ h)j(Hε) (2.34)

all having the same area and filling all the set Ã. Then there exists an
index n > 0 such that

(Tε ◦ h)n(Hε)∩ Ão 6= ∅ (2.35)
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2.6 The case of a holed disc

and a point zn ∈ (Tε ◦h)n(Hε), with maximal radial coordinate rn > b.
Define now the orbit of zn, starting from z0 = (Tε ◦h)−n(zn), such that

zi = (ϑi, ri) = (Tε ◦ h)i−n(zn) ∀i > 0 ;

construct a curve γ = γ1 · · ·γnγn+1, running from z0 to zn+1, where
γ1 is the segment connecting z0 and z1 and γj = (Tε ◦ h)(γj−1) for
j > 2. Due to the behaviour of h on the boundaries of Ã, the angle
ϑ(0) = D(z0, z1) ∈ ]0, π/2[ and the angle ϑ(1) = D(zn, zn+1) ∈ ]π/2, π[
and therefore the index iγ(Tε ◦ h) ≡1 ∆ϑ = ϑ(1) − ϑ(0) ∈ ]0, π[. Since
Tε ◦ h has no fixed points in Ã, we can homotopically deform γ into
a curve γ∗ = γ1σγn+1 where σ is a parametrization of the segment
−−→z1zn. Then, from the invariance of the index, we have

iγ(Tε ◦ h) = iγ∗(Tε ◦ h) = ∆ϑ ∈ ]0, π[ .

When ε→ 0, we conclude that iγ(h) = ∆ϑ.
Considering now the inverse map h−1 and repeating the construc-

tion above, we can find a curve γ ′ such that

iγ ′(h
−1) ∈ ]−π, 0[ ;

on the other hand, using properties 1 and 4 of the index,

iγ ′(h
−1) = ih−1(γ ′)(h) = iγ(h) ∈ ]0, π[

in contradiction with what proved above. Then h must have at least
one family of fixed points.

2.6 THE CASE OF A HOLED DISC
As already mentioned in section 2.3, in [52] Jacobowitz stated a version
of the Poincaré-Birkhoff theorem for a pointed disc whose external
boundary is a simple closed curve; however, the proof in [52] is only
sketched and many details are missed. In this section, a complete
proof of a related result, which is a weaker version of theorem 2.16,
will be provided, following closely a work by Rebelo [96], in which
the theorem is proved by a direct reduction to the standard Poincaré-
Birkhoff theorem.

Theorem 2.24 Consider a pointed disc A1 = A(0, R], such that its external
boundary is the circumference Γ1 = CR and let A2 = (0, Γ2] be a generalized
pointed disc whose boundary is a simple closed curve Γ2 surrounding the
origin. Assume that there exists a homeomorphism ϕ : A1 → A2 such that
its lifting to the covering space R×R+

o has the form

h(ϑ, r) = (ϑ+ s(ϑ, r), f(ϑ, r)) (2.36)

where s and f are continuous functions, 2π-periodic in ϑ. If
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2 The Poincaré-Birkhoff theorem: one century of research

• s(ϑ, R) < 0 for all ϑ ∈ R

• lim infr→0 s(ϑ, r) > 0 uniformly in ϑ,

then ϕ has at least two fixed points in the interior of A1.

Proof. The lifting of A1 is the infinite strip Ã1 = R× ]0, R], whose outer
boundary is the straight line Γ̃1 = {(ϑ, r) : r = R}; the lifting of A2 is the
strip bounded by the x-axis and the curve Γ̃2 = π−1(ϕ(Γ1)) which is a
simple and periodic curve in R×R+

o .
To begin with, we observe that h(Γ̃1) = Γ̃2 and limr→0 f(ϑ, r) = 0,

uniformly in ϑ ∈ R. From the twist condition, there exists ε1 > 0 such
that

0 < ε1 < lim inf
r→0

s(ϑ, r) (2.37)

and there exists ε2 > 0 such that

0 < ε2 < −s(ϑ, R) ∀ ϑ ∈ R . (2.38)

From (2.37), we can choose a radius r2 < R such that s(ϑ, r2) > ε1 for
all ϑ ∈ R; then, moving to the lifting, we obtain the straight line

C̃r2 = π
−1(Cr2) ⊂ int Ã1

whose image under h is contained in int Ã2 and does not intersect Γ̃2.
By construction, we also have

ϕ(A[r2, R]) = cl(D(Γ2)) \D(ϕ(Cr2))

or, equivalently, in terms of the lifting h(Ã[r2, R]) is the strip bounded
by h(C̃r2) and Γ̃2 (see figure 14).

Since Γ3
def
= ϕ(Cr2) is contained in the interior of A2 and therefore

0 ∈ D(Γ3), we can choose a value

r1 ∈ ]0, r2[ such that Cr1 ⊂ D(Γ3)

or, equivalently, C̃r1 is contained in the interior of the strip whose
upper boundary is Γ̃3. Finally, choose R∗ > 0 such that Γ2 ⊂ B(0, R∗)
and therefore Γ̃2 is contained in the strip whose upper boundary is
the line C̃R∗ . Due to the area-preserving condition, we also have R <
R∗ and therefore A1 ⊂ B(0, R∗). In figure 14 all the construction is
schematized.

We are going to apply the classical Poincaré-Birkhoff theorem to the
annulus A[r1, R∗] and to a homeomorphism

ϕ ′ : A[r1, R
∗]→ A[r1, R

∗]

which will coincide with ϕ on A[r2, R].
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Figure 14: The constructions involved in the proof of theorem 2.24
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Let η1 : A[r1, r2] → A[r1, Γ3] be a homeomorphism such that η1 :
Cr2 7→ ϕ(Cr2) and leaving the circumference Cr1 fixed. Since ϕ is
area-preserving, µ(B[0, r2])) = µ(clD(Γ3)) and therefore µ(A[r1, r2]) =
µ(A[r1, Γ3)]. Then there exists an area-preserving homeomorphism η∗1 :
A[r1, r2] → A[r1, Γ3] which coincides with η1 on the boundaries of its
domain, so that

η∗1|Cr2 = h and η∗1 : Cr1 7→ Cr1 .

This is guaranteed by a result in [71, Chapter 13]. In the same way,
there exists a homeomorphism η2 : A[R, R∗] → A[Γ2, R

∗] which coin-
cides with h on the circumference Γ1 and leaves CR∗ invariant. Using
the area-preserving condition forϕ, the measure ofA[R, R∗] is the same
of the one of A[Γ2, R∗] and therefore there exists an area-preserving
homeomorphism η∗2 such that η∗2 : A[R, R

∗]→ A[Γ2, R
∗], with

η∗2|CR = h and η∗2 : CR∗ 7→ CR∗ .

Define now a new area-preserving homeomorphism ϕ ′, combining ϕ
with η∗1 and η∗2; the map ϕ ′ is defined on the set A[r1, R], takes values
in A[r1, R] and is given by

ϕ ′ =


η∗1 on A[r1, r2] ,
ϕ on A[r2, R] ,
η∗2 on A[R, R∗] .

(2.39)

Its lifting to R×R+
o can be expressed as

h ′(ϑ, r) = (ϑ+ s∗(ϑ, r), f∗(ϑ, r))

with s∗ and f∗ some continuous functions, 2π-periodic in the ϑ-variable.
By construction, h ′ agrees with h on Ã[r2, R] and, in particular, on
the boundaries C̃r2 and C̃R. From the choice of r2, we have that
s∗(ϑ, r2) = s(ϑ, r2) > ε1 for every ϑ ∈ R and then there exists a value
δ1 such that

s∗(ϑ, r) > ε1 ∀ r ∈ ]r2 − δ1, r2] ∀ ϑ ∈ R ;

in the same way, since −s∗(ϑ, R) = −s(ϑ, R) > ε2, there exists δ2 such
that

−s∗(ϑ, r) > ε2 ∀ r ∈ [R, R+ δ2[ ∀ ϑ ∈ R .

Let now M be a constant defined as

M = sup {1+ |s∗(ϑ, r)| : (ϑ, r) ∈ Ã[r1, R∗]}
and consider the area-preserving homeomorphism ψ1 : A[r1, R

∗] →
A[r1, R

∗] whose lifting is defined by

ψ̃1(ϑ, r) = (ϑ+Mξ1(r), r) (2.40)

with ξ1 : R→ R a positive smooth function such that
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2.6 The case of a holed disc

• ξ1(r) = 0 if r > r2

• ξ1(r) = 1 if r 6 r2 − δ1

and therefore ψ1 = id on A[r2, R∗] (see figure 15a). Similarly, define

HR∗

HR

Hr2

δ1

ϑ+ M

(a) The behaviour of ψ1: the shadowed
region is left fixed

HR∗

HR

Hr2

δ2

ϑ− M

(b) The behaviour of ψ2: the shadowed re-
gion is left fixed

ψ2 : A[r1, R
∗]→ A[r1, R

∗] whose lifting has the form

ψ̃2(ϑ, r) = (ϑ−Mξ2(r), r) (2.41)

with ξ2 : R→ R a positive smooth function such that

• ξ2(r) = 0 if r 6 R

• ξ2(r) = 1 if r > R+ δ2

and therefore ψ2 = id on A[r1, R] (see figure 15b).
Let now z = (ϑ, r) be a point with r ∈ [r1, r2], then

(h ′ ◦ψ1)(ϑ, r) = h(ϑ+Mξ1(r), r)

= (ϑ+Mξ1(r) + s
∗(ϑ+Mξ1(r), r), f

∗(ϑ+Mξ1(r), r))

= (ϑ∗, r∗)

with ϑ∗ > ϑ, while, developing similar computations, (h ′ ◦ψ2)(ϑ, r) =
(ϑ∗, r∗) with ϑ∗ < ϑ if r ∈ [R, R∗].

Consider now the area-preserving homeomorphism

Ψ
def
= h ′ ◦ψ2 ◦ψ1 : A[r1, R∗]→ A[r1, R

∗]

and its lifting
Ψ̃(ϑ, r) = (ϑ+ s∗(ϑ, r), f∗(ϑ, r))

with s∗(ϑ, r1) > 0 and s∗(ϑ, R∗) < 0 for all ϑ ∈ R. Then Ψ satisfies
all the hypotheses of the Poincaré-Birkhoff theorem and therefore it
has two fixed points in A(r1, R∗). Moreover, since Ψ rotates the sets
A[R, R∗] and A[r1, r2], the fixed points of Ψ are fixed points for ϕ.
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Theorem 2.24 can be extended to the case in which the external
boundary of the pointed disc is a strictly star-shaped curve, surround-
ing the origin.

Corollary 2.25 Consider two generalized pointed discs A1 = A(0, Γ1] and
A2 = A(0, Γ2] whose external boundaries are strictly star-shaped curves
which surround the origin. Assume that there exists a homeomorphism ϕ :
A1 → A2 such that its lifting to the covering space R×R+

o has the form

ϕ̃(ϑ, r) = h(ϑ, r) = (ϑ+ s(ϑ, r), f(ϑ, r)) (2.42)

where s and f are continuous functions, 2π-periodic in ϑ. If

• s(ϑ, r) < 0 for all (ϑ, r) ∈ Γ1
• lim infr→0 s(ϑ, r) > 0 uniformly in ϑ,

then ϕ has at least two fixed points in the interior of A1.

Proof. The basic idea of this corollary consists in transforming A1 into
a standard pointed disc, on which we can subsequentely apply theo-
rem 2.24. Since Γ1 is a strictly star-shaped curve, it can be parametrized
by a 2π-periodic and continuous function

ρ : R→ R+
o with ϑ 7→ ρ(ϑ)

such that
Γ̃1 = {(ϑ, ρ(ϑ)) : ϑ ∈ R} .

Defining µ as the mean-value of ρ, that is

µ =
1

2π

∫2π
0

ρ(s)ds ,

we can construct an area-preserving homeomorphism ζ : R2 r {O} →
R2 r {O} whose lifting ζ̃ transforms Γ̃1 onto C̃µ.

Consider now the map

ζ ◦Ψ ◦ ζ−1 : A(0, µ]→ A3 = ζ(A2) (2.43)

which is an area-preserving homeomorphism too. It also satisfies the
twist-condition (see [96] for all the computations) and therefore we
can apply theorem 2.24 to it, since its domain is a standard pointed
annulus, as required. Then there exist two fixed points (x∗i , y

∗
i ) for

i = 1, 2 such that
ζ(Ψ(ζ−1(z∗i ))) = z

∗
i

and naming z ′i = ζ(z
∗
i ) we find

Ψ(z ′i) = z
′
i

for i = 1, 2.
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2.7 Counterexamples and open problems

In the application of the Poincaré-Birkhoff theorem to differential
equations, we often deal with domains whose boundaries are orbits
of dynamical systems, which are strictly star-shaped curves, under a
topological point of view. In this context, the following corollary turns
out to be the most useful version of the Poincaré-Birkhoff theorem.

Corollary 2.26 Let A = A[Γ1, Γ2] be an annulus with strictly star-shaped
boundaries Γ1, Γ2, with 0 ∈ D(Γ1). Let ϕ : A→ ϕ(A) be an area-preserving
twist homeomorphism such that there exists a homeomorphism ϕ0 : D(Γ2)→
R2 with ϕ0(O) = O and ϕ0|A = ϕ. Then ϕ has two fixed points.

Proof. The proof is developed applying corollary 2.25 to the holed disc
A(0, Γ2]. We define an auxiliary homeomorphism h which rotates the
set D(Γ1) in a convenient way (see [30, Lemma 2] for the details) and
leaves fixed the other points of the plane. In this way, the homeomor-
phism h ◦ Ψ satisfies the hypothesis of the corollary of theorem 2.24

and therefore it has two fixed points.
Eventually observe that h has no fixed point by definition, then Ψ

has two fixed points in A as required.

Note that the condition ϕ0(O) = O can be weakened and replaced
with ϕ0(O) ∈ D(ϕ(Γ1)).

2.7 COUNTEREXAMPLES AND OPEN PROBLEMS
The most used version of the Poincaré-Birkhoff theorem is the one by
Ding (theorem 2.18), in which the weaker hypotheses on the shape of
the boundaries make its statement more suitable for the applications.
In the last years, it has been proved that almost all the assumptions of
that theorem are necessary and cannot be removed from the statement.
Nevertheless the question about the possibility of removing the condi-
tion on the inner boundary, allowing it being a simple curve instead
of a star-shaped one, was still an open problem, as remarked by Ding
himself in [30]:

The condition is crucial for our proof. However, we doubt of its
necessity for the theorem.

On the other hand nobody could success in providing a proof of the
theorem which did not use that assumption. This open problem was
definitively solved by Martins and Urena in 2007; in [66], they prove
that the condition about the star-shapeness of the inner boundary can
not be removed, providing an explicit example of an annular domain
on which an area-preserving homeomorphism has not fixed points.
More in detail, they proved the following theorem.
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Theorem 2.27 Let A[Γ1, Γ2] be an annular domain whose boundaries are
two simple closed curves. Then there exists a C∞ diffeomorphism ϕ : A →
ϕ(A) ⊂ R2 r {O} such that

• it satisfies the twist condition

• there exists an extension ϕ0 : clD(Γ2) → R2 with ϕ0|A = ϕ and
O ∈ ϕ0(D(Γ1))

• ϕ has no fixed points in A.

The authors expose also an intuitive argument which explain the
basic idea of their paper and the reason for which is not possible to re-
move that condition without replacing it with some other hypothesis.
Indeed, let ϕ(ϑ, r) = (ϑ+ s(ϑ, r), f(ϑ, r)) be an area-preserving home-
omorphism of the annulus A[Γ1, Γ2] and let Γ be the set of the points
with angular displacement equal to zero; it is reasonable to think that
in some cases the set Γ can be a Jordan curve. If Γ1 is not star-shaped,
then we can not discard the case in which the inequality f(ϑ, r) > r

can be satisfied on the whole curve Γ (note that this assumption is not
possible if Γ1 is strictly star-shaped, otherwise the condition of area-
preserving would be violated). But this immediately implies that ϕ
has not fixed points in A (see [66, figure 2]).

The importance of the explicit example provided in [66] is remarked
also by Le Calvez e Wang in [62, Remark 4] where it is said that the
proof of the Poincaré-Birkhoff theorem

may fail if none of the loops projects injectively onto S1, unlike
what is said in [30] and [52].

Indeed the authors conclude their remark constructing of an area-
preserving and fixed point free homeomorphism satisfying the twist
condition.

Hence in conclusion we can say that the most general version of the
Poincaré-Birkhoff theorem that we can obtain is corollary 2.26 where
the star-shapeness condition can not be removed.

2.8 AN APPLICATION
In this last section an application of the Poincaré-Birkhoff theorem to
the problem of finding subharmonic solutions of a second order ODE
is presented.

The system we are going to study is related to the planar nonau-
tonomous Kolmogorov system which describes and models the inter-
action of two species {

p ′ = pP(t, p, q)
q ′ = qQ(t, p, q)

(2.44)
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with P and Q two continuous functions defined on R×R+ ×R+ to
R, which are T -periodic in the first variable for some T > 0. System
(2.44) can be seen as a generalization of Lotka-Volterra prey-predator
equations, which can be obtained choosing

P(t, p, q) = a− cq Q(t, p, q) = −d+ ep

with a, c, d, e positive constants. In recent years, the attention has
been focused on the case of time-varying coefficients; one of the sim-
plest cases consists in transforming the constants of the Lotka-Volterra
model into four functions of the time variable, all periodic of the same
period T > 0. For instance, we can set P(t, p, q) = a(t) − b(t)p −
c(t)q,Q(t, p, q) = −d(t) + g(t)pq where all the coefficients are non-
negative as in [17] or P(t, p, q) = a(t) − b(t)p − c(t)q,Q(t, p, q) =
−d(t) + e(t)p− f(t)q with b, c, e, f positive continuous functions as in
[63]. In the papers dealing with such kind of applications, conditions
about the coefficients have to be imposed in order ot obtain the exis-
tence of a positive periodic solution, the asymptotic stability of that
solution or, more in general, the existence of a compact attractor in
R+
o ×R+

o .
On the other hand, if we consider the simpler choice P(p, t, q) =

a(t) − c(t)q,Q(t, p, q) = −d(t) + e(t)p with a, c, d, e positive and con-
tinuous functions having a common period, corresponding to a Lotka-
Volterra model with periodic coefficients, then in this case it is not
possible to find a compact attractor or the asymptotic stability of a pos-
sible periodic solution. In this case, which presents anologies with the
periodically perturbed Duffing’s equation u ′′ + g(u) = e(t), some re-
sults have been obtained via the Moser twist theorem, the bifurcation
theory and by the generalized Poincaré-Birkhoff theorem (see [28] and
the references therein).

The application herein presented deals with the generic system{
p ′ = pP(t, q)
q ′ = qQ(t, p)

(2.45)

with the assumptions p(t) > 0 and q(t) > 0 for every t. Via the change
of variable u = logp, v = logq it is possible to transform system (2.45)
into the form {

u ′ = U(t, v)
v ′ = V(t, u)

(2.46)

with U(t, v) = P(t, ev), V(t, u) = Q(t, eu), in such a way that there
is a one-to-one correspondence between the periodic solutions of the
two systems. Thus, we will look for subharmonic solutions of system
(2.46), with U,V : R×R → R two continuous functions, T -periodic
in the time variable. The scheme adopted in this kind of applications
consists in proving the existence of one periodic solution via some

53



2 The Poincaré-Birkhoff theorem: one century of research

topological-degree theorems; then, via a change of variables, proving
the existence of subharmonics using the Poincaré-Birkhoff fixed point
theorem.

First of all, we state some hypotheses about the boundedness of
these functions; indeed we will assume that there exist four continuous
and T -periodic functions α−, α+, β−, β+ such that

• α−(t) 6 lim infs→−∞U(t, s) and lim sups→+∞U(t, s) 6 α+(t)

• β+(t) 6 lim infs→−∞ V(t, s) and lim sups→+∞ V(t, s) 6 β−(t)

uniformly in t ∈ [0, T ]; moreover there exists a continuous map γ :
R→ R+

o such that one of the two conditions

• −γ(t) < U(t, s) < γ(t)

• −γ(t) < V(t, s) < γ(t)

holds for every t, s ∈ R. Under these assumptions, there exists a peri-
odic solution (u0(t), v0(t)) of system (2.46) if∫T

0

α+(t)dt < 0 <

∫T
0

α−(t)dt and∫T
0

β−(t)dt < 0 <

∫T
0

β+(t)dt .
(2.47)

Moreover, there exists a constant r1 > 0 such that ||(u0(t), v0(t))|| <
r1
√
2 for every t ∈ R. The result follows from the application of

Mawhin’s continuation theorem [67], which is based on the theory of
the Leray-Schauder degree.

In order to apply the Poincaré-Birkhoff theorem and find subhar-
monic solutions for system (2.46), we also assume conditions guaran-
teeing the uniqueness of the solutions for the Cauchy problem associ-
ated to (2.46). Moreover, we assume that at least one between −U(t, ·)
and V(t, ·) is strictly increasing for every t ∈ [0, T ].

Having to prove the twist condition of the Poincaré-Birkhoff theo-
rem, we need a tool which counts the turns of a solution around the
origin. Thus, let ζ : I → R2 r {O} be a C1(I) function defined on an
interval I such that ζ(t) = (x(t), y(t)). For every pair t, s ∈ I we define
the usual rotation number along the interval [s, t] denoted by

wζ(s, t)
def
=

1

2π

∫t
s

y ′(ξ)x(ξ) − x ′(ξ)y(ξ)
x(ξ)2 + y(ξ)2

dξ . (2.48)

Let now (u0(t), v0(t)) be the T -periodic solution of system (2.46);
perform a change of variables setting x(t) = u(t) − u0(t) and y(t) =
v(t) − v0(t) thus obtaining the equivalent system{

x ′ = X(t, y) = U(t, v0(t) + y) −U(t, v0(t))
y ′ = Y(t, x) = V(t, u0(t) + x) − V(t, u0(t)) . (2.49)
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Just to clarify things, we assume U upper bounded and V(t, ·) strictly
increasing; then the conditions on the field (X, Y) can be summarized
as follows

• X(t, 0) = Y(t, 0) = 0 for every t ∈ R;

• Y(t, x)x > 0 for every t ∈ R and for every x 6= 0 (due to the
monotonicity of V);

• there exists a constant M > r1
√
2 and there exist four continuous

and T -periodic functions k−, k+, `−, `+ with∫T
0

k+(t)dt < 0 <

∫T
0

k−(t)dt and∫T
0

`−(t)dt < 0 <

∫T
0

`+(t)dt .

such that

– X(t, s) > k−(t) and Y(t, s) 6 `−(t) for every s 6 −M and
for every t ∈ R

– X(t, s) 6 k+(t) and Y(t, s) > `+(t) for every s > M and for
every t ∈ R;

• there exists a continuous and T -periodic function Γ(t) > 0 such
that X(t, s) 6 Γ(t) for every t, s ∈ R.

First of all, we denote by f the mean-value of a generic function f on
the interval [0, T ], that is f = 1

T

∫T
0 f(s)ds; afterwards, fix two constants

η, K ∈ R such that

0 < η < min
{
k+, k−, `+, `−

}
(2.50)

and

K > max
{
||k+ − k+||1, ||k− − k−||1, ||`+ − `+||1, ||`− − `−||1

}
, (2.51)

where || · ||1 denotes the standard L1 norm.
Let z0 be a point in R2 r {O} and consider the solution ζ(t; z0) =

z(t; z0) = (x(t; z0), y(t; z0)) of (2.49) having z0 as initial point. For
shortening the notations, we will simply write z(t) = (x(t), y(t)), omit-
ting the dependence on the initial point z0. Then

ζ(t; z0) = z(t) = (x(t), y(t)) : I0 = ]α,ω[→ R2 \ {O}

where I0 is the maximal interval of definition of the solution; more-
over, since the Cauchy problems associated to the system under con-
sideration have an unique solution and recalling that z(t) ≡ 0 is a
solution of system (2.49), then z(t) 6= O for every t ∈ I0. Therefore it
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is possible to express the solution ζ(t; z0) in polar coordinates, setting
z(t) = r(t)(cos ϑ(t), sin ϑ(t)) and, recalling the definition of the rotation
number, by few computations we obtain

wζ(·;z0)(s, t) =
ϑ(t) − ϑ(s)

2π
=
1

2π

∫t
s

Y(ξ, x)x(ξ) −X(ξ, y)y(ξ)

||z(ξ)||2
dξ .

(2.52)
Then the twist condition of the Poincaré-Birkhoff theorem can be ex-
pressed in terms of wζ since

wζ(·;z0)(0, T) < j⇔ ϑ(T) − ϑ(0) < 2jπ (2.53)

according to (1.4) and (1.5).

Lemma 2.28 Due to the assumptions on the vector field (X, Y), we have that
for every s, t ∈ I0 with s > t

wζ(·;z0)(t, s) > −1/2 . (2.54)

Proof. Let t ∈ I be such that y(t) = 0 and x(t) 6= 0, then ϑ̇(t) =
Y(t, x)x(t)/|x(t)|2 > 0. Hence, for every k ∈ Z the set Sk = {(ϑ, r) :
ϑ > kπ, r > 0} is positively invariant under the action of (X, Y), that is
if ζ(s; z0) ∈ Sk, then ζ(t; z0) ∈ Sk for every t > s. Then ϑ(t) > ϑ(s) − π
and therefore wζ(·;z0)(t, s) > −1/2.

We need now to prove some inequalities about the behaviour of
the solution z(t). The first property is summarized by the following
lemma.

Lemma 2.29 For every choice of two constants A, L with M < A 6 L if
y(t1) > −A for some t1 ∈ I0 then there exists a constant B = B(A, L) > A
such that if x(t1) > B then there exists a time-value t2 > t1 at which
x(t2) = A and y(t2) > L; moreover x(t) > A for every t ∈ [t1, t2[.

Proof. As a first case, choose t1 ∈ ]α,ω[ such that

y(t1) > L+K and x(t1) > A . (2.55)
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Let t3 6 ω be such that x(t) > A for every t ∈ [t1, t3[. Since x(t) >
A > M, then Y(t, x(t)) = y ′(t) > `+(t) for every t ∈ [t1, t3[, which
implies

y(t) = y(t1) +

∫t
t1

y ′(s)ds > y(t1) +
∫t
t1

`+(s)ds

> y(t1) +
∫t
t1

(`+(s) − `+)ds+

∫t
t1

`+ ds

= y(t1) + `+(t− t1) +

∫t
t1

(`+(s) − `+)ds

> y(t1) + `+(t− t1) −
∫T
0

|`+(s) − `+|ds

> y(t1) + η(t− t1) −K > L+K+ η(t− t1) −K

= L+ η(t− t1) > L > A > M ;

the chain of inequalities leads to y(t) > M ∀t ∈ [t1, t3[, hence x ′(t) 6
k+(t) and, as above,

x(t) 6 x(t1) − η(t− t1) +K ∀ t ∈ [t1, t3[ . (2.56)

Let now m(t) be a T -periodic function such that

m(t) > max{|Y(t, x)| : x ∈ [A, x(t1) +K]}

then we also have

y(t) 6 y(t1) +
∫t
t1

m(s)ds ∀ t ∈ [t1, t3[ . (2.57)

Inequalities (2.56) and (2.57) mean that, whenever the solution z(t) lies
int the strip [A, x(t1) +K]× [L,+∞[, it is bounded. Then there can not
be a blow-up in the time interval [t1, t3[; this allows to conclude that
t3 < ω and x(t3) = A with y(t3) > L. Then the statement of the
lemma is proved for every choice of B = B(A, L) > A and for t2 = t3.

As a second case, we assume −A 6 y(t1) < L+K. Let [t1, t4[ be the
maximal interval on which x(t) > A and y(t) < L+ K, with t4 6 ω.
As in the first case, for every t ∈ [t1, t4] we have

y(t) > y(t1) + η(t− t1) −K > −A+ η(t− t1) −K > −A−K ;

define the positive T -periodic function

n(t) > max{|X(t, y)| : y ∈ [−A−K, L+K]} .

Since α < t1 6 t 6 t4 6 ω, we can introduce the inequality

t1 + b
t− t1
T
cT 6 t < t1 + (bt− t1

T
c+ 1)T = t1 + b

t− t1
T
cT + T
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which helps us to split the integral as

x(t) 6 x(t1) +
∫t
t1

n(s)ds 6 x(t1) +
∫t1+b t−t1T cT+T
t1

n(s)ds

6 x(t1) + b
t− t1
T
c||n||1 + ||n||1 6 x(t1) +

t− t1 + T

T
||n||1

and, on the other side,

x(t) > x(t1) −
∫t1
t

n(s)ds > B−
t− t1 + T

T
||n||1 . (2.58)

Then a blow-up can not happen if z(t) lies in [A,+∞[× [−A−K, L+K];
hence t4 < ω and x(t4) = A or x(t4) > A ,y(t4) = L+K.

If x(t4) = A, then

L+K > y(t4) > y(t1) + η(t4 − t1) −K > −A−K+ η(t4 − t1)

⇒ η(t4 − t1) 6 L+A+ 2K < 2L+ 2K⇒ t4 − t1 6 2
L+K

η
.

Choose now the constant B = B(A, L) such that

B > A+ ||n||12
L+K+ ηT

ηT
= A+ ||n||1k

def
= A1 (2.59)

and assume x(t1) > B. Then from (2.58)

x(t4) >B−
t4 − t1 + T

T
||n||1 >

A+ ||n||1(k−
t4 − t1 + T

T
) > A+ ||n||1(k− 2

L+K

ηT
+ 1) =

A+ ||n||1(k− (k− 2) − 1) = A+ ||n||1 > A

But x(t4) > A implies y(t4) = L+K, with x(t) > A on [t1, t4[, which
is the first case considered in this proof, with t4 playing the role of
t1. Therefore the choice of B > A1 allows to reach the thesis in both
cases.

Using similar arguments, the following statements can be proved.

Lemma 2.30 For every A > M and L > A there exists a constant B =
B(A, L) such that, for every t1 ∈ I0 there exists a time t2 > t1, with t2 ∈
Dom(ζ(·; t0)) such that

• if x(t1) > B and y(t1) > −A then there exists t2 with x(t2) = A and
y(t2) > L, and x(t) > A for every t ∈ [t1, t2[;

• if x(t1) 6 A and y(t1) > B > A then there exists t2 with x(t2) 6 −L
and y(t2) = A, and y(t) > A for every t ∈ [t1, t2[;
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• if x(t1) 6 −B and y(t1) 6 A then there exists t2 with x(t2) = −A
and y(t2) 6 −L, and x(t) < −A for every t ∈ [t1, t2[;

• if x(t1) > −A and y(t1) 6 −B then there exists t2 with x(t2) > L

and y(t2) = −A, and y(t) < −A for every t ∈ [t1, t2[.

Using this lemma we can then prove the following three facts, which
will be used in order to obtain the twist condition on one boundary
needed for the application of the Poincaré-Birkhoff theorem.

Lemma 2.31 Let R > M
√
2 and let R > R1, then there exist R2, R3 with

R1 < R2 < R3 such that if z(t) is a solution with initial point z(t0) ∈
A(R1, R3) then the following properties hold:

• if ||z(t0)|| > R2 and there exists t1 > t0 such that ||z(t1)|| 6 R1, then
wζ(t1, t0) > 1 for every t > t1;

• if ||z(t0)|| 6 R2 and there exists t1 > t0 such that ||z(t1)|| > R3, then
wζ(t1, t0) > 1 for every t > t1;

• if ||z(t)|| ∈ ]R1, R3[ for every t > t0, then there exists an integer m∗ =
m∗(R1, R3) > 2 such that wζ(t, t0) > 1 for every t > t0 +m∗T .

The long proof is omitted, since it uses arguments which can be
found in [27, 34].

Notice that this lemma also means that any solution which blows up
in a finite positive time must perform an infinite number of rotations
around the origin. On the other hand, if the third case holds, then the
solution is globally defined in the future.

We need now to prove opposite inequalities about wζ(·, t0), which
will provide us with the second part of the twist condition on the
boundary of a suitable annulus.

Lemma 2.32 For each time interval τ > 0 there exists an S > 0 sufficiently
large such that for every solution z satisfying x(t1) 6 −S and x(t2) > S for
some t1 < t2, then t2 − t1 > τ.

Hence it is always possible to choose an initial point sufficiently far
from the origin such that its rotation around the origin is arbitrarly
slow. This also allows to conclude that the solutions are globally de-
fined in R.

Proof. We have assumed that x ′(t) = X(t, y(t)) 6 Γ(t); hence

x(t2) − x(t1) 6
∫t2
t1

Γ(s)ds 6
t2 − t1 + T

T
||Γ ||1
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which holds to the inference x(t2) − x(t1) → +∞ ⇒ t2 − t1 → +∞.
Then for every τ > 0 there exists S > 0 such that if |x(t2) − x(t1)| > S
then t2 − t1 > τ.

As a last step, we conclude that:

Lemma 2.33 For every S > 0 and for every m ∈ N there exist S1, S2 with
S < S1 < S2 such that if a solution satisfies ||z(0)|| > S2, then ||z(t)|| > S1
with wζ(t, t0) < 1 for every t ∈ [0,mT ].

Proof. Let S > 0 and choose S1 > S(mT), with S(mT) playing the role
of S in lemma 2.32 for τ = mT . Define the second radius S2 as

S2 = 1+ sup{||ζ(t; s,w)|| : s, t ∈ [0,mT ], w ∈ B[0, S1]} (2.60)

and assume, by contradiction, that there exists a point z and ||z|| > S2
with ||ζ(t∗; 0, z)|| < S1. By construction, ||ζ(0; 0, z)|| = ||z|| > S2. If we
define z ′ = ζ(t∗; 0, z), then z ′ ∈ B(0, S1), but z = ζ(0; t∗, z ′) with ||z|| >
S2, in contradiction with the definition of S2. Hence, for every initial
point z ∈ Bc(0, S2) the solution ζ(·; 0, z) is in Bc(0, S1), as required.
Note that the global existence of the solution is a crucial assumption
for the proof.

Suppose now that the solution ζ(·; z0) performs more than one turn
around the origin during the time interval [0,mT ]; then there exist
0 6 t1 < t2 < mT such that ϑ(t1) = 0 and ϑ(t2) = π, with x(t1) > S
and x(t2) < −S. In this case, due to lemma 2.32, we would have
t2 − t1 > mT , a contradiction. Hence wζ(s, t) < 1 for every s, t ∈
[0,mT ].

Eventually, we can apply the Poincaré-Birkhoff theorem in order to
obtain subharmonic solutions. Let R∗1 > R > max{M

√
2, R(M,1/3)}.

Then, lemma 2.31 guarantees the existence of R∗2, R
∗
3 and m∗ > 2 such

that
||z(0)|| = R∗2 ⇒ wζ(mT, 0) > 1 ∀m > m∗ .

On the other hand, fixm > m∗, then lemma 2.33 asserts the existence
of S1, S2 with R∗3 < S1 < S2 such that

||z(0)|| = S2 ⇒ wζ(mT, 0) < 1 .

These are exactly the inequalities we can use as a twist-condition for
the Poincaré-Birkhoff theorem. Indeed, let Φ be the Poincaré map
associated to system (2.49), such thatΦ(z) = ζ(T ; z). From the standard
theory of Hamiltonian systems we know that Φ is an area-preserving
homeomorphism of the plane R2 such that Φ(O) = O. If we consider
its m-th iterate

Φm(z) = ζ(mT ; z)
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we can observe that it satisfies a twist condition on the annulus

A = B[0, S2(m)] \B(R∗2) ;

indeed, if z(0) ∈ Ai, then wζ(mT, 0) > 1 which means that Θ(ϑ0, r0) >
0, while for z(0) ∈ Ao we havewζ(mT, 0) < 1 and therefore Θ(ϑ0, r0) <
0. Then we can apply Ding’s version of the Poincaré-Birkhoff theorem
and deduce that there exist two fixed point zm1 , z

m
2 for Φm in A cor-

responding to two solutions of system (2.49) which are mT -periodic.
Moreover, since wζ(·;zm1 )(mT, 0) = wζ(·;zm2 )(mT, 0) = 1, they have mT
as their minimal period, which means that they are subharmonic solu-
tions of order m.

Let now m > m∗ be a fixed integer and let ζm be one of the sub-
harmonic solutions of order m obtained above. Since its rotation num-
ber is equal to one and recalling lemma 2.31, then ||ζm(t)|| > R∗1 for
every t ∈ R. Fix two constants W,W0 such that R∗1 < W < W0
and apply lemma 2.31 with R∗1,W,W0 playing the role of R1, R2, R3.
Then, if ||ζm(t)|| ∈ ]R∗1,W0[ for every t, then there exists an integer
m̂ such that wζm(mT, 0) > 1 for every m > m̂, in contradiction with
wζm(mT, 0) = 1.

Hence, for every W0 there exists m̂ > m∗ and a time-value t0 ∈
[0,mT ] at which ||ζm(t0)|| > W0 for all m > m̂. Fix now an arbitrary
m > m̂. We claim that we cannot have any t1 with t0 < t1 6 t0 +mT
such that ||ζm(t1)|| 6 W. Indeed, if such a t1 existed then, according
to the first property of lemma (2.31) we would obtain 1 < wζm(t0 +
mT, t0) = wζm(mT, 0) = 1, a contradiction. In conclusion, for any
W > R∗1 there exists m̂ > m∗ such that ||ζm(t)|| > W for every t ∈ R

and m > m̂.
Finally, let ζm as above and define

(um(t), vm(t)) = ζm(t) + (u0(t), v0(t))

where (u0, v0) is the T -periodic solution of system (2.46) considered at
the beginning of this section. Since ||ζm(t)|| > R∗1 for every t ∈ R, with
R∗1 > R > max{M

√
2, R(M,1/3)} and ||(u0(t), v0(t))|| < M for every t,

then we obtain w(um,vm)(mT, 0) ∈ ]2/3, 3/4[. On the other hand wm is
a T -periodic solution of (2.46) and therefore its rotation number must
be an integer. Hence, w(um,vm)(mT, 0) = 1 which also guarantees that
(um(t), vm(t)) has mT as minimal period.
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3 C R O S S I N G P R O P E R T I E S F O R T W O
C L A S S E S O F P L A N A R S E T S

This chapter deals with the problem of finding a compact and con-
nected set crossing a prescribed domain “from one side to another”;
in order to do this, we are interested in domains on which it is possi-
ble to define a concept of opposite sides. The investigation on this topic
has as a starting point a crossing lemma developed for the case in which
the domain is a rectangular region R ⊂ R2, homeomorphic to the unit
square Q. In [87] we presented an exhaustive exposition of the cross-
ing lemma and its possible applications, ranging from game theory
to planar Hamiltonian systems. In some sense, that is a classical re-
sult, implicity used by Poincaré, as well as by Butler and Conley, and
rediscovered and applied recently in many different contexts. From
the crossing lemma, it is possible to derive a fixed point theorem for
continuous functions defined on rectangular domains having the par-
ticular property of “stretching” the paths which cross the domain from
one side to the other; this theorem leads also to the proof of the exis-
tence of periodic points and chaotic dynamics of some second order
differential equations (theorems 4.4 and 4.5).

This chapter is beginning recalling some crossing properties for rect-
angular sets, summarized in section 3.2; afterwards, we will move to
two other settings, namely, the study of annular regions (section 3.3)
and the case of invariants sets (section 3.4), trying to obtain similar
results and showing what we are able to extend to these new frame-
works.Analogous problems have been already investigated in the lit-
erature for continua of the sphere which are invariant under the an-
tipodal map or continua of fixed points for a twist map in a planar
annulus.

3.1 CROSSING PROPERTIES
In 1817 the Czech philosopher and mathematician Bernard Bolzano
gave the first proof of the intermediate-value theorem for continuous
functions defined on a compact interval [a, b] ⊂ R; in 1883-1884, H.
Poincaré introduced a generalization of that result to the case of con-
tinuous vector fields defined on a hypercube in RN:

Soient X1, X2, . . . , XN n fonctions continues des n variables x1,
x2,. . . , xN. Supposons que Xi soit toujours positif pour xi = ai et
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toujours négatif pour xi = −ai. Il existera au moins un système
de valeurs des x qui satisfera aux inégalités

−a1 < x1 < a1, −a2 < x2 < a2, . . . ,−aN < xN < aN

et aux équations

X1 = X2 = · · · = XN = 0.

This result was published by Poincaré on the Bulletin Astronomique in a
paper [93] concerning the three-body problem applied to celestial me-
chanics; he showed that the initial conditions of the periodic solutions
of a differential system in RN must satisfy the hypothesis of this gen-
eralization of the intermediate-value theorem. But his work remained
unknown to the most part of the mathematicians.

This theorem is now known as the Poincaré-Miranda theorem, due to
the fact that the Italian mathematician Carlo Miranda proved its equiv-
alence with the Brouwer fixed point theorem, in 1940. For a continuous
vector field defined on a rectangle in R2, its statement reads as follows:

Theorem 3.1 Let f = (f1, f2) : R = [a1, a2]× [b1, b2] → R2 be a continu-
ous function such that

f1(a1, x2) 6 0 6 f1(a2, x2) , ∀x2 ∈ [b1, b2]

f2(x1, b1) 6 0 6 f2(x1, b2) , ∀x1 ∈ [a1, a2] ,

then there exists a point z ∈ R such that f(z) = 0.

An heuristic proof of this result, as suggested by Poincaré himself
in [93], can be described as follows. The “curve” f2(x1, x2) = 0 starts
at some point of the left side x1 = a1 and it ends at some point of the
right side x1 = b1 . Similarly, the “curve” f1(x1, x2) = 0 starts at some
point of the lower side x2 = a2 and it ends at some point of the upper
side x2 = b2 . Hence they must intersect at some point of the rectangle.
Clearly, in modern language, using in this context the term “curve” is
erroneous, but the argument of the proof is safe if we use the fact that
the set f2(x1, x2) = 0 contains a continuum joining the left to the right
side and, similarly, the set f1(x1, x2) = 0 contains a continuum joining
the lower to the upper side. In order to prove the existence of such con-
tinua, one can observe that the set f2(x1, x2) = 0 crosses any path from
the lower to the upper side of the rectangle (and similarly happens for
the set f1(x1, x2) = 0 with respect to the paths connecting the left to
the right side of the rectangle). In [84] we proved that such “cutting
property” for a compact set S guarantees the existence of a compact
connected set C ⊂ S with the same cutting property. Moreover, if C
cuts the paths between the lower and the upper sides of a rectangle,
then it must intersect the left and the right sides of the rectangle. This
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3.1 Crossing properties

properties are still true for the more general framework of the so-called
oriented rectangles, as we are going to expose in section 3.2.

We call such kind of results as crossing lemmas and propose new
applications to the study of the dynamics of some planar maps. Some
important theorems where some forms of these crossing properties are
considered, appear in dimension theory with the results of Hurewicz
and Wallman[51], in topological games [5, 37], as well as in some
proofs of the existence of solutions to nonlinear differential equations
[23].

In the applications, typically the set S is a set of solutions of a nonlin-
ear equation depending on a parameter (or equivalently a set of fixed
points for a family of parameter-dependent operators). From this point
of view, results in this direction, although they may look quite elemen-
tary, present a great usefulness in different areas of nonlinear analysis,
especially in connection with bifurcation theory (see [2, 18, 23, 97]).

When the operators whose fixed points correspond to the element of
S have some special symmetries, it is likely that some of these symme-
tries are inherited by the set S itself. In this case, it would be desirable
to prove that also the continuum C ⊂ S inherits the symmetries of S.

Our perspective is a little bit different. Namely, we do not assume
the knowledge of a map or of an operator (possibly depending on
a parameter) whose fixed points are described by the set S. In our ap-
proach we consider as a starting point the set Swith a generic “symme-
try property” (expressed in terms of invariance with respect to a given
homeomorphism) and try to develop an analogous crossing lemma
which preserves the simmetry. Along this investigation, we will also
reconsider some classical properties of continua with the aim to extend
them to the invariant setting.

In order to conclude this introduction, we present now some prelimi-
nar definitions and results which will be used in the following. Slightly
modifying an analogous definition in [6, Defintion 2.1] we give the fol-
lowing:

Definition 3.2 Let X be a topological space and let A,B ⊂ X be two
nonempty disjoint sets. Let also S ⊂ X. We say that S cuts the paths
between A and B if S ∩ γ̄ 6= ∅, for every path γ : [0, 1] → X such that
γ(0) ∈ A and γ(1) ∈ B.

In order to simplify the statements of the next results, we write

S : A - B

to express the fact that S cuts the paths between A and B. For having
definition 3.2 meaningful, we implicitly assume that there exists at
least a path γ in X connecting A with B (otherwise, we could take S =
∅, or S any subset of X). Clearly, if a set S satisfies the cutting property
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3 Crossing properties for two classes of planar sets

of definition 3.2, then also its closure clS cuts the paths between A and
B. Therefore, in the sequel and without loss of generality we usually
assume S closed. Such an assumption is also well-suited for proving the
existence of minimal (closed) sets satisfying definition 3.2. Indeed, we
can easily prove the following lemma:

Lemma 3.3 Let X be a topological space and let A,B ⊂ X two nonempty
disjoint sets which are connected by at least one path in X. Let S ⊂ X be
a closed set which cuts the paths between A and B. Then there exists a
nonempty, closed set C ⊂ S which is minimal with respect to the property of
cutting the paths between A and B.

Proof. The proof is a standard application of Zorn’s lemma. Let F be
the set of all the nonempty closed subsets F of S such that F : A - B,with
the elements of F ordered by inclusion. Clearly, F is nonempty for at
least S ∈ F. Let (Fα)α∈J be a totally ordered family of subsets of F. We
claim that F∗ =

⋂
α∈J Fα ∈ F. Indeed, let γ : [0, 1] → X be a path such

that γ(0) ∈ A and γ(1) ∈ B. The family of compact sets (γ̄∩ Fα)α∈J has
the finite-intersection property and therefore γ̄∩⋂α∈J Fα = γ̄∩ F∗ 6= ∅.
This proves the claim and the conclusion follows by Zorn’s lemma.

Due to the above remarks, whenever we speak about a set S such
that S : A - B, we can assume S closed and minimal.

In [31], Dolcher studied a similar minimality problem, dealing with
closed sets separating two points. The definition of separation is the
standard one, that is a set S ⊂ X separates two points (or, in general,
two nonempty sets) if the two points belong to different components of
the complement Xr S. With this respect, we reconsider the following
example from [31]. Let X ⊂ R2, with the topology of the plane, be
defined by

X = {(x, y) : x > 0, y = x/n, n ∈N0}∪ (R+ × {0})

and let A = {(0, 0)}, B = {(2, 0)} and S = {(x, y) ∈ X : x = 1}. Clearly,
S : A - B and S separates A and B in X. As shown in [31] there is no
subset of S which is minimal for the property of separating A and B
in X. On the other hand, C = {(1, 0)} is the minimal subset of S which
cuts the paths between A and B. In this sense, we remark the fact that
the property of cutting the paths is not equivalent to the property of
separating.

In general, if we know that a set S satisfying S : A - B, even if
minimal with respect to such cutting property, we can say nothing
about its connectedness. For an elementary example, one can take
X = S1 (with the topology of the plane), A = {(−1, 0)}, B = {(1, 0)} and
S = {(−1, 0), (1, 0)}. In this case, S is a closed set, minimal with respect
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to the property of cutting the paths between A and B, but it is not con-
nected. The connectivity of S (or of a minimal subset of it) is, however,
an important property for the proof of the existence of fixed points or
of zeros for maps in Euclidean spaces. Such connectivity properties
have been employed recently in [81, 85, 91] in connection with the the-
ory of Topological Horseshoes. In order to recall some main results from
the above quoted papers and to propose some further developments,
we introduce some main definitions which play a crucial role in our
approach.

3.2 GENERALIZED RECTANGLES

Definition 3.4 We say that J ⊂ R2 is a Jordan curve if it is homeomor-
phic to S1 = {x ∈ R2 : ||x|| = 1}. We can equivalently say that J is a
Jordan curve if it is the support of a simple closed curve.

Jordan’s theorem and Schoenflies’s theorem are the most important
results about Jordan curves and play a crucial role in our approach;
even if their statements are intuitively clear, a rigorous proof is not
elementary. The interested reader can find all the details in [71]. We
assume these two theorems as a starting point for the exposition.

Theorem 3.5 (Jordan Theorem) Every Jordan curve J splits the plane in two
connected components, of which it is the common boundary.

Therefore R2 r J = Ai ∪Ae, where Ai, Ae are open connected sets
such that Ai ∩Ae = ∅ and ∂Ai = ∂Ae = J; moreover Ai is a bounded
set, while Ae is unbounded.

Theorem 3.6 (Schoenflies Theorem) Given a Jordan curve J and a homeo-
morphism η : S1 → J, there exists a homeomorphism η̃ : R2 → R2 such
that η̃|S1 = η. As a consequence, we have η̃(B) = clAi = Ai ∪ J and
η̃(R2 rB) = Ae.

Definition 3.7 We say that D ⊂ R2 is a Jordan domain if it is homeomor-
phic to B. Equivalently, D = clAi, where Ai is the internal part of a
Jordan curve.

In our approach the sets under consideration are Jordan domains,
but we prefer to think about them starting from a planar homeomor-
phism defined on the unit square Q, instead of the unit disc B. In this
way we can more easily introduce a concept of orientation for these
sets.
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3 Crossing properties for two classes of planar sets

Definition 3.8 A topological space X is a generalized rectangle if it is
homeomorphic to the unit square Q.

Given a generalized rectangle X and a homeomorphism η : Q →
η(Q) = X, the set η(∂Q) is independent of the choice of the homeomor-
phism η. We call this set the contour of X and denote it by ϑX. Clearly,
if X is a generalized rectangle embedded in R2, then the contour of X
coincides with the standard concept of the boundary ∂X.

We want now to introduce the concept of sides of a rectangle; in
particular we are interested in defining pairs of opposite sides.

Definition 3.9 An oriented rectangle is a pair (X,X−) = X̃ such that X is
a generalized rectangle and X− ⊂ ϑX is the union of two disjoint arcs:

X− = X−
l ∪X−

r , X−
l = η({0}× [0, 1]) , X−

r = η({1}× [0, 1]) .

The sets X−
l and X−

r are respectively the left and the right-hand side
of the rectangle X. In the same way we define the top and the bottom
sides of X as the images of the corresponding sides of Q and denote
them by X+

t and X+
b , with X+ = X+

b ∪X+
t = ϑXrX−. We will also write

X = |X̃|. When we provide a generalized rectangle of the structure of
oriented rectangle, the choice between X− and X+ is not relevant; in
any way we do the choice, we can always assume that the sequence
of the arcs we meet moving along the boundary is “bottom-right-top-
left”.

Conversely, suppose that D ⊂ R2 is a Jordan domain and J ′ and J ′′

two compact disjoint arcs contained in ∂D. Then Schoenflies’s theorem
ensures the existence of a homeomorphism η : Q→ D which provides
D with an orientation of its boundary such that D− = J ′ ∪ J ′′. In this
case we also have that D+ = ∂Dr (J ′ ∪ J ′′) and the order in which we
decide to label the “bottom” and “top” parts is irrelevant.

More in general, observe that for any homeomorphism η1 : Q →
η1(Q) = X, defining the oriented rectangle (X,X−), there exists a
homeomorphism η2 : Q → η2(Q) = X such that η1([0, 1])× {0, 1} =

η2({0, 1} × [0, 1]); then, for every oriented rectangle X̃ there exists a
“dual” oriented rectangle X̃ ′ with |X̃| = |X̃ ′| = X and X− = X ′+.

Defined the framework, we can now investigate the existence of sets
which cross this type of domains. The next (classical) result guarantees
the fact that continua connecting opposite sides of an oriented rectan-
gle must cross each other. Although this seems an obvious fact, its
proof requires some work; indeed it can be proved as a consequence of
the Jordan curve theorem and using some strong properties of Peano’s
spaces. The proof is here omitted but the reader can find all its details
in [87] and an application to ordinary differential equations in [74].
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3.2 Generalized rectangles

Lemma 3.10 Let X̃ = (X,X−) be an oriented rectangle and let C1 , C2 ⊂ X
be two closed connected sets such that

C1 ∩X−
l 6= ∅ 6= C1 ∩X−

r and C2 ∩X+
b 6= ∅ 6= C2 ∩X+

t .

Then
C1 ∩C2 6= ∅.

Note that the connectedness of C1 and C2 is not enough to guarantee
the existence of a nonempty intersection (see [39] for a counterexam-
ple).

We present now some results about sets separating the opposite
sides of an oriented rectangle and show their role in the proof of the ex-
istence of fixed points and periodic points for continuous maps defined
on such domains. Some of these results can be extended to higher di-
mension using the topological degree or the fixed point index or other
index theories (see [91] and the references therein). Since the applica-
tions in the present paper will be all related to planar maps, we pre-
fer to confine ourselves to the use of a more direct tool, Alexander’s
lemma. Such result, named after J.W. Alexander [3], as shown both in
Newman’s book [76] and in Sanderson’s article [100], is quite useful
in proving a broad range of theorems of plane topology. Quoting P.A.
Smith [102]

this lemma, the proof of which requires but a few lines, is shown
[. . . ] to be one of the sharpest tools in the theory of separation,
if skilfully handled.

Results based on applications of Alexander’s lemma or to other re-
lated theorems in [76] have been fruitfully applied to differential equa-
tions by S.P. Hastings [46, 44, 45], J.B. McLeod and J. Serrin [70], R.E.L.
Turner [106] and others. For more recent applications see also [61],
[54], [97].

The following version of Alexander’s lemma will be used in our
next results. The proof requires only an elementary modification of
the standard one in [47] and therefore is omitted.

Lemma 3.11 Let X̃ = (X,X−) be an oriented rectangle and let K1 , K2 be
two closed disjoint subsets of X. Assume that there exist two paths γ1 , γ2 :
[0, 1]→ X, with γ1(0), γ2(0) ∈ X−

l and γ1(1), γ2(1) ∈ X−
r such that

γ̄1 ∩K1 = ∅, γ̄2 ∩K2 = ∅.

Then there exists a path γ : [0, 1]→ X, with γ(0) ∈ X−
l and γ(1) ∈ X−

r such
that γ̄∩ (K1 ∪K2) = ∅.
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3 Crossing properties for two classes of planar sets

The next result is a classical and useful consequence of the above
lemma (see [76]) and it is usually expressed by the fact that if a closed
set separates the plane, then some component of this set separates the plane
[45, p.131].

Lemma 3.12 Let X̃ = (X,X−) be an oriented rectangle and let S ⊂ X be a
closed set such that

S : X−
l - X−

r .

Then there exists a compact, connected set C ⊂ S such that

C : X−
l - X−

r .

Proof. By lemma 3.3 there exists a closed set C ⊂ S such that C : X−
l -

X−
r , with C minimal with respect to the cutting property. Suppose,

by contradiction, that C is not connected and let C1 , C2 ⊂ C be two
closed nonempty disjoint sets with C1 ∪ C2 = C. Since C is minimal
and C1 , C2 are proper subsets of C, there exist two paths γ1 , γ2 in
X which connects X−

l to X−
r and such that γi avoids Ci (for i = 1, 2).

Then, by lemma 3.11, there exists a path γ : [0, 1] → X with γ(0) ∈ X−
l

and γ(1) ∈ X−
r with γ̄ ∩ C = ∅, contradicting the assumption that

C : X−
l - X−

r .

The cutting property obtained in lemma 3.12 for the continuum C

can be equivalently expressed as follows.

Lemma 3.13 Let X̃ = (X,X−) be an oriented rectangle and let C ⊂ X be a
closed connected set. Then

C : X−
l - X−

r

if and only if
C∩X+

b 6= ∅ 6= C∩X+
t .

Proof. If C : X−
l - X−

r , then, necessarily, C must cut the upper and the
lower sides of X̃ which are the images of particular paths connecting
X−
l to X−

r . On the other hand, if γ : [0, 1] → X is any path with γ(0) ∈
X−
l and γ(1) ∈ X−

r , then γ̄ and C are two continua connecting the
opposite sides of the oriented rectangle and therefore, γ̄ ∩ C 6= ∅ by
lemma 3.10. This proves that C : X−

l - X−
r .

There are some interesting connections between these pure topolog-
ical theorems and some results about combinatorial games. For in-
stance, lemma 3.13, as well as lemma 3.10 can be seen as a continuous
version of the so-called Hex theorem asserting that the game Hex can
not end in a tie [37, 87].

The combination of lemma 3.12 and lemma 3.13 gives the crossing
lemma for rectangular regions, asserting that if a closed set intersects all
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the paths from the left to the right side of an oriented rectangle, then it con-
tains a continuum connecting the two other sides. Note also that such
a continuum can be taken as irreducible between X+

b and X+
t (by using

some classical results from [59] and [2]). See [87] for a recent survey on
this subject and its connections with various different results of plane
topology, as well as for a different proof based on Whyburn’s lemma.

At this point we have all the tools for formalizing Poincaré’s com-
ment to the proof of the planar case of the Poincaré-Miranda theorem.
The next result is a version of the Poincaré-Miranda theorem for ori-
ented rectangles. Such theorem ensures the existence of a zero for
a continuous vector field defined on a hypercube of Rn under the
assumptions that the i-th component of the vector field changes its
sign on the i-th opposite faces of the hypercube. It was first stated
by Poincaré in 1883-1884 in [92, 93]. In 1940, C. Miranda published a
simple proof of the equivalence between this theorem and the Brouwer
fixed point theorem. For recent comments about this result, see [13, 58,
68, 87].

There are several different approaches to prove this classical result,
especially in the two-dimensional case. We propose a proof which
is based on some elementary concepts introduced above and which
is also in the spirit of Poincaré’s own description of his result in the
planar case.

Lemma 3.14 Let X̃ = (X,X−) be an oriented rectangle and let f = (f1, f2) :
X→ R2 be a continuous function such that

f1 6 0 on X−
l , f1 > 0 on X−

r and f2 6 0 on X+
b , f2 > 0 on X+

t

(or vice-versa). Then, there exists w ∈ X such that f(w) = (0, 0).

Proof. Let Si = {z ∈ X : fi(z) = 0} be the set of the zeros of fi, for
i = 1, 2 and consider two paths γi : [0, 1]→ X such that

γ1(0) ∈ X−
l , γ1(1) ∈ X−

r , γ2(0) ∈ X+
b , γ2(1) ∈ X+

t .

Introduce now the composite maps computing fi along γi,

f̂i = fi ◦ γi : [0, 1]→ R for i = 1, 2 .

From the assumptions on f, we observe that f̂i(0) 6 0 and f̂i(1) > 0

for i = 1, 2. Hence we can apply the intermediate-value theorem to f̂1
and f̂2 and conclude that there exist t∗1, t

∗
2 ∈ [0, 1] such that

f̂1(t
∗
1) = f1(γ1(t

∗
1)) = 0 ⇒ γ1(t

∗
1) ∈ S1

f̂2(t
∗
2) = f2(γ2(t

∗
2)) = 0 ⇒ γ2(t

∗
2) ∈ S2 .
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3 Crossing properties for two classes of planar sets

This argument proves that S1 : X−
l - X−

r and then, from lemma 3.12 it
contains a compact connected set C1 with the same cutting property.
In the same way, since S2 : X+

b - X+
t , then there exists a continuum C2

which cuts the paths between the top and the bottom sides of X.
As a last step, applying lemma 3.13 to the sets Ci, we can conclude

that C1 ∩X+
b 6= ∅ 6= C1 ∩X+

t and C2 ∩X−
l 6= ∅ 6= C2 ∩X−

r (recall that the
way in which we choose to label the sides of X is purely conventional).
Lemma 3.10 guarantees that there exists a point w ∈ C1 ∩C2 ⊂ S1 ∩S2,
that is a point in which both the components of f vanish. Hence f(w) =
(0, 0), as required.

Another way to conclude the proof is applying Bolzano’s theorem
to f2|C1 . Since f2 6 0 on C1 ∩ X+

b and f2 > 0 on C1 ∩ X+
t , there exists

a point w ∈ C1 such that f2(w) = 0.

3.3 ANNULAR REGIONS
In this section, we are moving our attention from generalized rectan-
gles to planar annuli, trying to devolop analogous results of section 3.2
in this new setting. Our aim now is to reconsider the results obtained
for topological rectangles and adapt them to a form which may be bet-
ter suited to deal with the new setting of topological annuli in which
the role of the left and the right sides of the rectangle will be played
by the inner and the outer boundaries of the annulus. We begin with
a version of Alexander’s lemma which reads as follows.

Lemma 3.15 Let X be a topological annulus and let K1 , K2 be closed disjoint
subsets of X. Assume that there exist two paths γ1 , γ2 : [0, 1] → X, with
γ1(0), γ2(0) ∈ Xi and γ1(1), γ2(1) ∈ Xo such that

γ̄1 ∩K1 = ∅, γ̄2 ∩K2 = ∅.

Then there exists a path γ : [0, 1] → X, with γ(0) ∈ Xi and γ(1) ∈ Xo such
that γ̄∩ (K1 ∪K2) = ∅.

In the setting of the rectangles we were interested in finding sub-
sets which link the sides belonging to one of the pairs X− or X+. In
the annulus we can produce only one pair of sides, that is the couple
(Xi, Xo); the crossing properties in the other direction will be trans-
lated in the request that a set turns around the whole annulus. More
precisely we want to find subsets of X which are essentially embedded
in X, according to the next definition.

Definition 3.16 A set C ⊂ X is essentially embedded in X if the inclusion

iC : C→ X, iC(x) = x, ∀ x ∈ C
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is not homotopic to a constant map.

We can obtain a new version of the crossing lemma, analogous to
lemma 3.13. The result is a corollary of Borsuk’s separation theorem
[50, Theorem 6-47] adapted to our situation. We give a proof, for com-
pleteness, following [50].

Lemma 3.17 Let X be a topological annulus and let S ⊂ X be a closed set.
Then S is essentially embedded in X if and only if

S : Xi - Xo .

Proof. Up to a homeomorphism defining the annulus X, we can as-
sume X = A[a, b] with

0 < a < b < 1.

In this case, Xi = ∂B(0, a) and Xo = ∂B(0, b).
Suppose that S : Xi - Xo and let C(0) be the connected component

of R2 r S containing the origin. By the assumption, C(0) ∪ S is closed
and

B[0, a] ⊂ C(0)∪ S ⊂ B[0, b].
Assume, by contradiction, that S is not essentially embedded in X and
therefore the inclusion iS : S → X is homotopic in X to a constant
map, say X 3 x 7→ p, for all x ∈ X, for a suitable point p ∈ X. It
follows immediately that the map f : S → S1 defined by x 7→ x/||x||

is homotopic to a constant, that is inessential. Then, by [50, Theorem
4-5], there exists a continuous and inessential extension f̃ of f with f̃
defined on C(0)∪ S. We define now the map r : B[0, 1]→ S1 by

r(x) =

{
f̃(x), for x ∈ C(0)∪ S
x/||x||, for x 6∈ C(0)∪ S

which is continuous. We are led to a contradiction since r(·) is a retrac-
tion of B[0, 1] onto S1.

Suppose now that S is essentially embedded in X and also assume,
by contradiction, that there exists a path γ : [0, 1]→ X with ||γ(0)|| = a,
||γ(1)|| = b and such that γ(t) 6∈ S, for all t ∈ [0, 1]. Passing to the
covering space H = R× [a, b] of X = A[a, b], the path γ lifts to a family
of paths γ̃n : [0, 1] → H with γ̃n(t) = γ̃0(t) + (2nπ, 0) and such that
γ̃n(t)∩π−1(S) = ∅, for all t ∈ [0, 1] and every n ∈ Z. We can replace γ̃0
(as well as all its copies) with a one-to-one continuous map defining an
arc Γ0 ⊂ H connecting the lines ρ = a and ρ = b and avoiding π−1(S).
Without loss of generality we can also assume that Γ0 intersects the line
{ρ = a} exactly at one point and the same happens with respect to {ρ =
b}. Let Γ0∩ {ρ = a} = {Pa} and Γ0∩ {ρ = b} = {Pb} and Γ1 = (2πn, 0)+ Γ0
for some n > 1 in order to have Γ0 ∩ Γ1 = ∅. In order to simplify the
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3 Crossing properties for two classes of planar sets

notation, assume n = 1. Let J be the Jordan curve obtained by joining
(in the counterclockwise sense) the point Pa to (2π, 0) + Pa along the
line {ρ = a}, the point (2π, 0) + Pa to (2π, 0) + Pb along Γ1 , the point
(2π, 0) + Pb to Pb along the line {ρ = b} and, finally, the point Pb to
Pa along Γ0 . The curve J is the boundary of an open bounded domain
D with clD = D ∪ J homeomorphic to the unit square Q. Roughly
speaking, clD is the set of all the points of the strip H between Γ0 and
Γ1 , with the boundary arcs included. Let η : Q → η(Q) = clD be a
homeomorphism mapping the left side of Q to Γ0 , the lower side of Q
to the segment {Pa + (ϑ, 0) : ϑ ∈ [0, 2π]}, the right side of Q to Γ1 and
the upper side of Q to the segment {Pb + (ϑ, 0) : ϑ ∈ [0, 2π]}. By the
construction of the topological rectangle clD and since Γ0∩π−1(S) = ∅,
we have that the set

S ′ = π−1(S)∩ η( ]0, 1[×[0, 1]) ⊂ clD

is mapped homeomorphically onto S by the covering projection π.
Now we choose ε ∈ ]0, 1/2[ sufficiently small such that

S ′ ⊂ π−1(S)∩ η( [ε, 1− ε]× [0, 1])

and we also introduce the set

B = π(η( [ε, 1− ε]× [0, 1])).

By construction, the set B is a topological rectangle contained in A[a, b]
and containing the set S. The continuous map

(z, λ) 7→ π
(
η
(
(1− λ)z+ λ(1/2, 1/2)

) )

defined on ([ε, 1 − ε]× [0, 1])× [0, 1] when restricted to S× [0, 1] pro-
vides a homotopy between the identity iS and a constant map. This
contradicts the assumption that S is essentially embedded in A[a, b].

In this context too we are able to recover a result of minimality for
the crossing set; indeed the version of lemma 3.12 for a topological
annulus reads as follows.

Lemma 3.18 Let X be a topological annulus and let S ⊂ X be a closed set
such that

S : Xi - Xo .

Then there exists a compact, connected set C ⊂ S such that

C : Xi - Xo

(and, therefore, C is essentially embedded in X).
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Proof. The proof follows the same argument of the one of lemma 3.12,
nevertheless we give the details for completeness. By lemma 3.3 there
exists a closed set C ⊂ S such that C : Xi - Xo , with C minimal with
respect to the cutting property. Suppose, by contradiction, that C is not
connected and let C1 , C2 ⊂ C be two closed nonempty disjoint sets
with C1 ∪C2 = C. Since C is minimal and C1 , C2 are proper subsets
of C, there exist two paths γ1 , γ2 in X which connects Xi to Xo and
such that γi avoids Ci (for i = 1, 2). Then, by lemma 3.15, there exists
a path γ : [0, 1] → X with γ(0) ∈ Xi and γ(1) ∈ Xo with γ̄ ∩ C = ∅,
contradicting the assumption that C : Xi - Xo . The continuum C is also
essentially embedded in X by lemma 3.17.

The result in lemma 3.18 has been proved using a minimality argu-
ment. In some cases, the minimality of the set C may be useful for the
proof of some topological properties of the continuum. An example in
this direction is given in the next lemma.

Lemma 3.19 Let X be a topological annulus and let C ⊂ X be a compact
connected set which is minimal with respect to the property of cutting all the
paths in X from Xi to Xo . Let f : C → R be a nonconstant continuous
function. Then, for every k ∈ ]min f(C),max f(C)[ there exist at least two
points w, z ∈ C with w 6= z such that f(w) = f(z) = k.

Proof. Without loss of generality, we can assume that k = 0 and f

changes its sign on C. The existence of at least a zero for f|C follows
from Bolzano’s theorem. Suppose, by contradiction, that there is only
one point, say z, in C such that f(z) = 0. Consider the two nonempty
compact sets K1 = {x ∈ C : f(x) 6 0} and K2 = {x ∈ C : f(x) > 0}. By the
assumption, we have that {z} = K1 ∩K2 and K1 6= C as well as K2 6= C.
By the assumption of minimality of C, it follows that there exists a path
γ1 connecting Xi to Xo in X and avoiding K1 and, similarly, there exists
a path γ2 connecting Xi to Xo in X and avoiding K2 . From lemma
3.15 we know that there exists a path γ in X connecting Xi to Xo and
avoiding C = K1 ∪K2 . This contradicts the cutting property of C.

We observe that the existence of two solutions is not guaranteed if
the minimality of the set C is not assumed (see [88, Example 2.8]).

In the case of topological rectangles, there is a complete symmetry
between the fact that a set cuts the paths between a given pair of op-
posite sides or it cuts the paths connecting a complementary pair of
opposite sides. Thus once we have achieved a result as lemma 3.13,
also its dual version, involving the other pair of sides, is guaranteed.
In the case of topological annuli, the situation is different. We have
just proved a result which express the fact that a compact set which
crosses all the paths from the inner to the outer boundary must con-
tain a continuum which nontrivially winds around the annulus. A
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3 Crossing properties for two classes of planar sets

dual result should express the fact that if a compact set intersects all
the nontrivial loops of the annulus, then it must contain a continuum
joining the inner and the outer boundaries of the annulus. This is pre-
cisely the content of the next lemma. To this end, we first recall some
basic facts from homotopy theory. Let ω : I→ X be a loop, that is a con-
tinuous path such that ω(0) = ω(1). We say that ω is (homotopically)
trivial in X is homotopic in X to the constant loop ex0 : I → x0 with
x0 = ω(0) = ω(1). Since a loop in X (up to a change in the parameter)
may be also seen as a continuous map ω : S1 → X, triviality of ω
can be also expressed by the fact that there is a continuous extension
α : B[0, 1]→ X with αS1 = ω. We say that a loop ω in X is nontrivial if
it is not homotopically trivial in X.

Lemma 3.20 Let X be a topological annulus and let S ⊂ X be a closed set
such that S ∩ ω̄ 6= ∅ for each nontrivial loop ω in X. Then there exists a
compact, connected set C ⊂ S such that

C∩Xi 6= ∅ 6= C∩Xo . (3.1)

Proof. Without loss of generality (up to a homeomorphism) we sup-
pose that X = A[a, b] with 0 < a < b, so that Xi = aS1 and Xo = bS1.
By the assumption of crossing the nontrivial loops, we know that
Si = S∩Xi 6= ∅ and also So = S∩Xo 6= ∅.

Suppose, by contradiction, that S does not contain any compact
connected set C satisfying (3.1). Then, by the Kuratowski-Whyburn
lemma [2, 59], it follows that S splits as the disjoint union of two com-
pact sets S ′, S ′′ with S ′ ⊃ Si and S ′′ ⊃ So . We pass now to the covering
space H = R× [a, b] of X = A[a, b] and consider the closed subsets of
H

W ′ = π−1(S ′)∪R× {a} and W ′′ = π−1(S ′′)∪R× {b} .

By definition, π(W ′ ∪W ′′) ⊃ S. Moreover, W ′ ∩W ′′ = ∅ and both sets
are invariant with respect to the translation (ϑ, r) 7→ (ϑ+ 2π, r). We
define

δ = dist(W ′,W ′′) = inf{||w ′ −w ′′|| : w ′ ∈W ′, w ′′ ∈W ′′}.
It is clear that δ > 0 and it is actually a minimum (this follows from a
standard compactness argument, using the periodicity). Then we de-
fine the two closed ε-tubular neighborhoods of W ′ and W ′′ as W ′[ε] =
{z = (ϑ, r) ∈ H : dist(z,W ′) 6 ε} and W ′′[ε] = {z = (ϑ, r) ∈ H :
dist(z,W ′′) 6 ε}, for

0 < ε 6 δ/3.

We modify now a pigeonhole argument used in the proof of Theorem
1 in [5] as follows. Let us fix a positive integer N > (b − a)/ε and
consider the rectangle

R = [0, 2Nπ]× [a, b].
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The sets
K1 =W

′[ε]∩R and K2 =W
′′[ε]∩R

are closed and disjoint. The lower edge [0, 2Nπ] × {a} is the image
of a path connecting the left to the right side of R and avoiding the
set K2 . Similarly, the upper edge [0, 2Nπ]× {b} corresponds to a path
connecting the left to the right side of R and avoiding the set K1 .
Alexander’s lemma (lemma 3.11) guarantees the existence of a path
γ(t) = (ϑ(t), r(t)) : I = [0, 1] → R with ϑ(0) = 0 and ϑ(1) = 2Nπ, such
that γ(t) 6∈ K1 ∪K2 for all t ∈ I. For each i = 0, . . . ,N, let

ti = min{t ∈ I : ϑ(t) = 2iπ},

so that
0 = t0 < t1 < · · · < tN 6 1

and the N+ 1-tuple of points (r(t0), r(t1), . . . , r(tN)) in ]a, b[ is well
defined. Clearly, by the choice ofN such thatNε > (b−a), there exists
at least a pair of points (tj, tk) with j < k such that |r(tj) − r(tk)| < ε.
Since ε 6 δ/3 and

min
t∈I

{dist(γ(t),W ′ ∪W ′′)} > δ/3,

we conclude that the segment joining (2kπ, r(tj)) and (2kπ, r(tk)) does
not intersect the set W ′ ∪W ′′ (of course, such statement is trivial if
r(tj) = r(tk) ). We can now define the path

ω̃(s) =

{
γ(tj + 2s(tk − tj)), for 0 6 s 6 1/2(
2kπ, r(tk) + (2s− 1)(r(tj) − r(tk))

)
, for 1/2 6 s 6 1

which takes values in Rr (W ′ ∪W ′′) and

ω̃(0) = (2jπ, r(tj)), ω̃(1) = (2kπ, r(tj)).

Hence the projection ω = π ◦ ω̃ : I → X is a nontrivial loop in X (in
fact, it corresponds to k− j ∈ Z r {O} in the fundamental group of X)
and, by construction, ω(t) 6∈ S, ∀ t ∈ I. This contradicts the hypothesis
and hence the conclusion follows.

Our last result can be seen as a continuous version of the no-tie
theorem for Hex game on the annulus, which has been proved being
equivalent to the Poincaré-Birkhoff theorem. See [5] for a discrete ver-
sion of this result.

Lemma 3.21 Let X be a topological annulus and let C1 , C2 ⊂ X be closed
connected sets such that

C1 ∩Xi 6= ∅ 6= C1 ∩Xo and C2 is essentially embedded in X.

Then
C1 ∩C2 6= ∅.
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3 Crossing properties for two classes of planar sets

Proof. Assume, by contradiction that C1∩C2 = ∅, and let dist(C1, C2) =
δ > 0. In a δ/2-neighbourhood of C1 we can find the image of a
path γ : [0, 1] → X with γ(0) ∈ Xi and γ(1) ∈ Xo . By construc-
tion, γ(t) 6∈ C2 , for all t ∈ [0, 1]. This proves that it is not true that
C2 : Xi - Xo and therefore (by lemma 3.17) C2 is not essentially embed-
ded in X, thus contradicting one of our assumptions.

3.4 A CROSSING LEMMA FOR INVARIANT SETS

The lifting of a planar annulus A[a, b] is a set which is invariant under
the translation (ϑ, r) 7→ (ϑ+ 2π, r). The question arising now is wheter
the crossing results obtained in the previous section hold also for sets
which are invariant under a generic homeomorphism h.

Let X be a topological space and let h : X→ X be a homeomorphism.
Our first result is a version of lemma 3.3 for h-invariant sets. Indeed,
we have

Lemma 3.22 Let A,B ⊂ X two nonempty disjoint sets which are connected
by at least one path in X. Let S ⊂ X be a closed set which satisfies S : A - B
and is invariant for h. Then there exists a nonempty closed set C ⊂ S which
is minimal with respect to the property of cutting the paths between A and B
and invariant for h.

Proof. Let F be the set of all the nonempty closed subsets F of S such
that F : A - B and h(F) = F,with the elements of F ordered by inclusion.
Let (Fα)α∈J be a totally ordered subset of F and define F∗ =

⋂
α∈J Fα .

From h(Fα) = Fα for all α ∈ J, it follows that h(F∗) = F∗. The proof
that F∗ : A - B is the same as that of lemma 3.3. Thus we obtain F∗ ∈ F

and the conclusion follows from Zorn’s lemma.

The purpose consists in developing a result analogous to lemma 3.12

in the frame of h-invariant sets. Note that if in lemma 3.12 we have a
continuum C : X−

l - X−
r which is also h-invariant, then by lemma 3.13

we also have an h-invariant continuum intersecting X+
b and X+

t .
Before moving to the class of generalized and oriented rectangles, we

consider for one moment a planar rectangle R = [a, b]× [c, d] oriented
in the standard way and suppose that h : R → R is a homeomorphism.
Let also S ⊂ R be a compact set which intersects all the paths in R
joining R−l to R−r and such that h(S) = S. We are looking for the exis-
tence of a continuum C ⊂ S with C : R−l - R−r and h(C) = C. It is not
difficult to see that, in general, the answer is negative, as shown by the
following elementary example.
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Example 3.23 Let R = [−2, 2] × [0, 1] and S = {(±1, y) : y ∈ [0, 1]}.
Clearly, S has the property of intersecting all the paths in R joining the left
edge to the right edge. Moreover, consistently with lemma 3.12, S contains
two continua {−1}× [0, 1] and {1}× [0, 1] connecting the lower and the upper
sides of R. However, if we take as a homeomorphism h(x, y) = (−x, y), that
is the symmetry with respect to the y-axis, then h(S) = S but there is no
connected subset of S which is invariant under h. C

Observe that in example 3.23 the set S cannot be split as the union
of two disjoint closed (nonempty) invariant subsets; this is equivalent
to saying that S is not invariantly connected, according to [60, Definition
4.2]. Then, if we are allowed to replace the word connected with invari-
antly connected, we can get a full extension of lemma 3.12, as follows.

Lemma 3.24 Let X̃ = (X,X−) be an oriented rectangle, let h : X → X be a
homeomorphism and let S ⊂ X be a closed set such that

S : X−
l - X−

r and h(S) = S.

Then there exists a compact, invariantly connected set C ⊂ S such that

C : X−
l - X−

r .

Proof. By lemma 3.22 there exists a closed set C ⊂ S such that C :
X−
l - X−

r , with C invariant for h and minimal with respect to the cut-
ting property. Suppose, by contradiction, that C is not invariantly con-
nected and let C1 , C2 ⊂ C be two closed nonempty disjoint sets with
C1 ∪C2 = C and h(Ci) = Ci for i = 1, 2. Now we conclude as in the
proof of lemma 3.12. Indeed, since C is minimal and C1 , C2 are proper
subsets of C, there exist two paths γ1 , γ2 in X which connects X−

l to
X−
r and such that γi avoids Ci (for i = 1, 2). Then, by lemma 3.11, there

exists a path γ : I → X with γ(0) ∈ X−
l and γ(1) ∈ X−

r with γ̄ ∩C = ∅,
contradicting the assumption that C : X−

l - X−
r .

In order to achieve the connectedness of the set C, we propose a
partial extension of lemma 3.12 with a further assumption on h which
prevents the possibility of a situation like the one described in example
3.23. For simplicity in the exposition, we confine ourselves to the case
of a planar rectangle. Note that here we are not requiring h to be a
homeomorphism.

Lemma 3.25 (h-Invariant Crossing lemma) Let R = [a, b] × [c, d] be an
oriented rectangle and let h : R→ R be a continuous map such that

h(R+b ) ⊂ R+b , h(R+t ) ⊂ R+t . (3.2)

Suppose that there exists a path σ : I → R with σ(0) ∈ R−l and σ(1) ∈ R−r
such that

79



3 Crossing properties for two classes of planar sets

• ∀ t ∈ I, ∃ s > t : h(σ(t)) = σ(s).
Assume that there exists a compact set S ⊂ R which cuts the paths between
R−l and R−r and satisfies

h(S) ⊂ S.

Then there exists a compact connected set C ⊂ S such that

• h(C) = C

• C∩ R+b 6= ∅ 6= C∩ R+t
• C cuts the paths between R−l and R−r .

Proof. As a first step, lemma 3.12 and lemma 3.13 guarantee the exis-
tence of a continuum in S joining the lower and the upper sides of the
rectangle and cutting the paths from the left to the right side in R. We
call such a continuum C0. Note that C0 is not necessarily invariant.

In order to obtain an invariant set, define a sequence of continua

Ci+1 = h(Ci), ∀ i > 0.

Since h(S) ⊂ S, we also know that Ci ⊂ S, ∀ i > 0. By the cutting
property of C0

C0 ∩ σ̄ 6= ∅,
so that there exists t0 ∈ I with σ(t0) ∈ C0 . Clearly, h(σ(t0)) ∈ C1.
On the other hand, by the hypothesis on σ, there exists t1 ∈ I such
that t1 > t0 and h(σ(t0)) = σ(t1) ∈ C1 . Going on by induction and
using step by step the hypothesis on σ,we obtain a monotone sequence
t0 6 t1 6 . . . ti 6 ti+1 6 . . . in [0, 1] such that σ(ti) ∈ Ci, ∀ i > 0. Let
ti ↗ t∗ ∈ [0, 1]. Then, passing to the limit in σ(·) and h ◦ σ, we obtain

h(σ(t∗)) = σ(t∗) ∈ LiCi

and therefore, by a classical result from [59, Theorem 6, Ch.5, §47, II],

C = LsCi

is a nonempty continuum. Recall that z ∈ C if and only if there exists a
sequence zk with zk ∈ Cik for (ik)k an increasing sequence of indexes
such that zk → z. Then h(zk)→ h(z),with h(zk) ∈ C1+ik and therefore
h(z) ∈ C. Thus we have proved that h(C) ⊂ C.

Conversely, for z ∈ C and (zk)k → z, as above, fix k > 2 and,
from zk ∈ Cik = h(C−1+ik), take yk ∈ C−1+ik such that h(yk) =
zk . By compactness, (yk)k has a convergent subsequence, which can
be named (ykn)n → w. By definition, w ∈ C. On the other hand,
h(w) = limh(ykn) = lim zkn = z. This proves that h(C) = C. Since
C0 ∩ R+b 6= ∅, we have

∅ 6= h(C0)∩ R+b ⊂ h(C0)∩ h(R+b ) ⊂ C1 ∩ R+b .

80



3.4 A crossing lemma for invariant sets

Then, by induction, we obtain

Ci ∩ R+b 6= ∅, ∀ i > 0
and, by compactness, we conclude that C ∩ R+b 6= ∅. The fact that
C ∩ R+t 6= ∅ is proved in the same way. Having proved that C is a
continuum intersecting the horizontal edges of the rectangle, we con-
clude that it cuts all the paths between R−l and R−r .

Note that the same result holds true (with an obvious modification
in the proof) if we replace condition (3.2) with

h(R+b ) ⊂ R+t , h(R+t ) ⊂ R+b . (3.3)

By the assumption h(R+b ) ⊂ R+b in equation (3.2), we have

h(x, c) = (f(x), c), ∀ x ∈ [a, b],

where f : [a, b] → [a, b] is a suitable continuous function. It easily
follows that if f is monotone nondecreasing, then the path σ(t) =
(a+ t(b−a), c) satisfies the hypothesis of lemma 3.25. A similar obser-
vation holds for R+t . Hence, we easily obtain the following corollary.

Corollary 3.26 Let R̃ = (R, R−) be an oriented rectangle, as in lemma 3.25,
and let h : R→ R be a continuous map satisfying relations (3.2); suppose also
that at least one between h|R+

b
and h|R+

t
is monotone nondecreasing. Assume

that there exists a compact set S ⊂ R which cuts the paths between R−l and
R−r and satisfies h(S) ⊂ S. Then the same conclusions of lemma 3.25 hold.

Notice that in example 3.23 the function h is decreasing along both
the horizontal edges of the rectangle. A trivial case of a continuous
map which is monotone nondecreasing along the horizontal lines is the
identity. In such a case, corollary 3.26 reduces to the crossing lemma
of section 3.2.

A useful property of continua connecting two compact disjoint sets
is the minimality, often named as irreducibility [2]. Indeed, a stronger
version of lemma 3.12 holds, guaranteeing the existence of compact
connected set C ⊂ S, irreducible between the left and the right sides of
the domain. (see [2, Proposition 3]).

Then, as a next step, we look for the existence of irreducible invariant
continua in this new setting.

Lemma 3.27 Let X be a compact Hausdorff space and let h : X → X be a
homeomorphism. Assume A,B ⊂ X are closed disjoint sets, invariant for h
and let C ⊂ X be a continuum such that

h(C) = C, and C∩A 6= ∅ 6= C∩B. (3.4)

Then there exists E ⊂ C satisfying (3.4) and minimal with respect to such
property.
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Proof. Let F be the family of all the continua C ⊂ Cwhich are invariant
for the homeomorphism h and which intersect both A and B, with F

ordered by inclusion. The family F is nonempty since C ∈ F. The
existence of a minimal sub-continuum of C satisfying (3.4), will be
ensured by Zorn’s lemma.

Given any chain (Cj)j in F, we observe that
⋂
j∈JCj 6= ∅ for every

finite subset of indices J. Hence, by the compactness of X, C∗ =
⋂
Cj

is nonempty. Moreover C∗ is compact and intersects both A and B.
Using the fact that h is a homeomorphism, we obtain the invariance
of C∗. Thus, if we prove that C∗ is connected, we will get C∗ ∈ F and
Zorn’s lemma will allow to conclude the proof.

Assume, by contradiction, that C∗ is not connected. Then there exist
C ′, C ′′ nonempty compact sets such that C∗ = C ′ ∪C ′′ and C ′ ∩C ′′ =
∅. Then there are also two open disjoint sets A ′, A ′′ with A ′ ⊃ C ′

and A ′′ ⊃ C ′′. We claim that there exists an index j∗ such that the
set Cj∗ ⊂ A ′ ∪A ′′. Otherwise, it would happen that Cj * A ′ ∪A ′′
which would imply that Dj = Cj r (A ′ ∪A ′′) 6= ∅, ∀ j ∈ J. The family
(Dj)j∈J is a family of closed sets with the finite-intersection property
and therefore we obtain that

∃ x̂ ∈
⋂

j∈J
Dj ⊂ X \ (A ′ ∪A ′′).

This is in contradiction to
⋂
j∈JDj ⊂

⋂
j∈JCj = C∗ ⊂ A ′ ∪A ′′, then

there exists some Cj∗ ⊂ A ′ ∪A ′′.
Let us now define J∗ = {j ∈ J : Cj ⊂ Cj∗} and observe that

⋂

j∈J∗
Cj =

⋂

j∈J
Cj = C

∗ and Cj ⊂ A ′ ∪A ′′, ∀ j ∈ J∗ .

If J ′ = {j ∈ J∗ : Cj ∩ A ′ 6= ∅} and J ′′ = {j ∈ J∗ : Cj ∩ A ′′ 6= ∅}
then J∗ = J ′ ∪ J ′′ and, moreover, both J ′ and J ′′ are nonempty sets.
Otherwise, if J ′ = ∅, then Cj ⊂ A ′′ for all j ∈ J∗, from which we derive
that Cj ⊂ XrA ′ which is a closed set. Then C∗ ⊂ XrA ′ that means
C∗ ∩A ′ = ∅, which is an absurd.

Hence we have proved that J ′ 6= ∅ 6= J ′′ and thus there are two
indices j ′ ∈ J ′ and j ′′ ∈ J ′′ such that Cj ′ ∩A ′ 6= ∅ 6= Cj ′′ ∩A ′′. Consider
the set Ĉ = Cj ′ ∪ Cj ′′ ⊂ Cj∗ By definition, Ĉ ∩ A ′ 6= ∅ 6= Ĉ ∩ A ′′.
On the other hand, we know that Ĉ = Cj ′ or Ĉ = Cj ′′ and thus we
have found a disconnection of an element of the chain, leading to a
contradiction.

3.5 AN APPLICATION
As a conclusion of this chapter, a possible application of the results ex-
posed in section 3.3 is presented, consisting in an example inspired
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by a model arising from the theory of fluid mixing considered by
Kennedy and Yorke in [55]. Following [55, Section 2], we consider
a planar map Φ : R2 → R2 which is the composition of a squeeze
map Jλ and a rotation map Rϑ0 . In [55] these two maps are defined as
follows:

Jλ(x, y) = (λx, y/λ), with λ > 1.

In order to define the map Rϑ0 we pass to the polar coordinates (ϑ, ρ)
and require that Rϑ0 is a counterclockwise rotation which leaves invari-
ant all the concentric circumferences ρ > 0, keeps still all the points of
the plane with ρ > 1 and satisfies

lim
ρ→0+

Θ(ϑ, ρ) = ϑ0 > 0 ,

where Θ(ϑ, ρ) is the angular displacement performed by Rϑ0 on the
point z = (ρ cos ϑ, ρ sin ϑ).

In [55], under the hypotheses that Rϑ0 is a diffeomorphism and that
ϑ0 >

π
2 , with ϑ0 not an odd multiple of π/2, the authors prove the ex-

istence of a Smale horseshoe if λ > 0 is sufficiently large. In particular,
they prove that there exists an invariant Cantor set on which the map
F = Rϑ0 ◦ Jλ is conjugate to an m-shift.

We are going to prove a result which, although not so sharp like that
in [55], makes use of weaker conditions. To be more specific, from now
on, the following assumptions will be made.

Let J : R2 → R2 be a continuous map with

J(x, y) = (J1(x, y), J2(x, y))

which satisfies the following properties.

• J(0) = 0, J(z) 6= 0 for z 6= 0 and J(Qi) ⊂ Qi for i = 1, . . . , 4, where
Qi denotes the i-th closed quadrant of the plane;

• J2(x, 0) = 0 and J1(x, 0) = a(x)x, with a(x) > 1 for x 6= 0;

• J1(0, y) = 0 and J2(0, y) = b(y)y, with 0 < b(y) < 1 for y 6= 0.
Plainly speaking, J leaves the quadrants invariant and moves the points
of the x-axis away from the origin, while it pushes the points of the y-
axis toward the origin. In the sequel it will be convenient to express
the map J (restricted to R2 r {O}) via its lifting to the covering space
R×R+

0 as

J̃ : (ϑ, ρ) 7→ (ϑ ′, ρ ′), ϑ ′ = ϑ+ΘJ(ϑ, ρ), ρ
′ = RJ(ϑ, ρ),

with ΘJ and RJ continuous functions which are 2π-periodic in the ϑ-
variable. Note that the assumption J(Qi) ⊂ Qi for i = 1, . . . , 4, reflects
to the fact that

|ΘJ(ϑ, ρ)| 6
π

2
. (3.5)
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As a second map, we consider a continuous counterclockwise rotation
R around the origin such that R(0) = 0 and R(z) 6= 0 for z 6= 0. We
also express R (restricted to R2 r {O}) by means of polar coordinates
through its lifting

R̃ : (ϑ, ρ) 7→ (ϑ ′, ρ ′), ϑ ′ = ϑ+ΘR(ϑ, ρ), ρ
′ = RR(ϑ, ρ), (3.6)

with ΘR and RR continuous functions which are 2π-periodic in the ϑ-
variable and assume the following conditions.
There exist r0 ∈ ]0, 1[ and ϑ0 such that

• ΘR(ϑ, r0) > ϑ0 , ΘR(ϑ, 1) = 0, ∀ ϑ ∈ R;

• RR(ϑ, ρ) = ρ , ∀ ϑ ∈ R and ρ ∈ [r0, 1].

According to the above hypotheses, the map R leaves invariant the
circumferences of center the origin and radius ρ ∈ [r0, 1]. Moreover,
the points with ρ = r0 are rotated in the counterclockwise sense by an
angle larger or equal to ϑ0 , while the points with ρ = 1 are kept still.

Under the above assumptions on J and R, the following result holds.

Theorem 3.28 Let R be a homeomorphism of the annulus A = A[r0, 1] onto
itself and suppose also that ϑ0 > 2π+ π

2 . Then the map Ψ = J ◦ R has at
least four fixed points in the interior of the annulus. Such result is stable with
respect to small continuous perturbations of the map Ψ.

Proof. Let us denote Ai and Ao the inner and outer boundaries of A.
We also restrict the map Ψ to the annulus A and consider its lifting Ψ̃
to the covering space R× [r0, 1] as

Ψ̃ : (ϑ, ρ) 7→ (ϑ ′′, ρ ′′), ϑ ′′ = ϑ+ΘΨ(ϑ, ρ), ρ
′′ = RΨ(ϑ, ρ),

with ΘΨ and RΨ continuous functions which are 2π-periodic in the
ϑ-variable. By the above positions for J̃ and R̃ we have that

ϑ ′′ = ϑ ′ +ΘJ(ϑ
′, ρ ′), with ϑ ′ = ϑ+ΘR(ϑ, ρ), ρ ′ = RR(ϑ, ρ).

We also introduce a set S ⊂ A defined as

S = π ({(ϑ, ρ) : ΘΨ(ϑ, ρ) = 2π}) ,

where π is the standard covering projection associated to the polar
coordinates. The set S is a compact subset of the annulus consisting of
the points which are rotated by an angle of exactly 2π under the action
of Ψ.

Suppose that γ : I→ A is a path with γ(0) ∈ Ai and γ(1) ∈ Ao . We
express the points of γ(t) in polar coordinates as

γ(t) = (ρ(t) cos ϑ(t), ρ(t) sin ϑ(t))
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and consider the angular displacement for the map R along the points
of γ(t), using the function

ωγ(t) : I 3 t 7→ ΘR(ϑ(t), ρ(t)).

By the assumptions, ωγ(0) > 2π+ π
2 and ωγ(1) = 0. Now we apply

the map J to the points of R(γ(t)). Using condition (3.5) we have that
the angular displacement ΘΨ along the curve γ(t) can be expressed as

ΘΨ(ϑ(t), ρ(t)) = ωγ(t) +∆(t),

where ∆(t) is a continuous function satisfying

|∆(t)| 6
π

2
, ∀ t ∈ [0, 1].

Recalling the properties of ωγ we find

ΘΨ(ϑ(0), ρ(0)) > 2π, ΘΨ(ϑ(1), ρ(1)) 6
π

2
< 2π

and therefore, by the continuity of γ we can conclude that γ̄ ∩ S 6=
∅. Now we can apply lemma 3.18 which ensures the existence of a
compact connected set C ⊂ S which is essentially embedded into A. It
is also clear that C (as well as S) is contained in the interior of A.

Let us consider now the intersection of A with the first quadrant
Q1 . The boundary of such intersection consists of two segments L1 =
[r0, 1] × {0}, L2 = {0} × [r0, 1] and two arcs C1 = r0S

1 ∩Q1 , C2 =
S1 ∩Q1 . We also define

B = R−1(A∩Q1).
The set B is a topological rectangle for which we give an orientation
by setting

B−
l = R−1(L1), B−

r = R−1(L2), B+
t = R−1(C1), B+

b = R−1(C2).

By the assumptions, we see that

||Ψ(z)|| > ||z||, ∀ z ∈ B−
l and ||Ψ(z)|| < ||z||, ∀ z ∈ B−

r .

Hence, on each path with values in B connecting B−
l with B−

r there
is some point where ||Ψ(z)|| = ||z||. lemma 3.13 ensures the existence
of a continuum C ′ ⊂ B with C ′ ∩B+

b 6= ∅ and C ′ ∩B+
t 6= ∅. We are

now in position to apply lemma 3.21 which guarantees that C ′ ∩C 6= ∅.
By definition of C and C ′ we conclude that any point w ∈ C ′ ∩C is a
fixed point for Ψ with Ψ(w) = w ∈ int(Q1 ∩A). Repeating the same
argument for the other quadrants we find the remaining three fixed
points.

Following the proof it is clear that if ϑ0 > 2jπ+ π
2 , for some positive

integer j, then there are at least 4j fixed points.
For a different application of classical separation results to the exis-

tence of fixed points and periodic points to planar maps arising from
ordinary differential equations, we refer also to [88].
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4 F I X E D P O I N T R E S U LT S F O R R E C T-
A N G U L A R R E G I O N S

In chapter 3 some topological lemmas about the existence of continua
crossing rectangular and annular regions from one side to another
have been presented. Now it is time to explain how those tools can be
exploited in order to obtain fixed point theorems, which are of great
use for proving the existence of periodic solutions of planar Hamilto-
nian systems.

This chapter is devoted to recalling some results about rectangular
domains, while chapter 5 will deal with some fixed point theorem for
maps defined on annular domains. The results which are recollected
in the present chapter are not new; indeed they were first presented
in [80] and afterwards further developed in [85, 90]; a survey on these
topics can also be found in [88]. Nevertheless, for reader’s convenience
and in order to make this thesis more complete and self-contained, all
the most relevant results will be herein recollected.

4.1 A FIXED POINT THEOREM
The main result treated in this section is a fixed point theorem for con-
tinuous maps defined on generalized rectangles, which are expansive
along some direction. The proof of this theorem has as a key point the
crossing lemma which we talked about in section 3.2 and it depends
also on the concept of stretching along the paths (SAP property) that we
are now going to define.

Definition 4.1 Let Ã = (A,A−) and B̃ = (B,B−) be two oriented rect-
angles and let K ⊂ A be a nonempty compact set. Suppose also that
f : K→ R2 is a continuous map. We say that the pair (K, f) stretches A
to B along the paths and write

(K, f) : Ã m−→B̃ ,
if, for every path γ : [t0, t1] → A, with γ(t0) and γ(t1) belonging to
different components of A−, there exists a subinterval [s0, s1] ⊂ [t0, t1]
such that

γ(t) ∈ K and f(γ(t)) ∈ B ∀ t ∈ [s0, s1]

with f(γ(s0)) and f(γ(s1)) belonging to different components of B−. If
K = A, we simply write f : Ã m−→B̃, instead of (A, f) : Ã m−→B̃.

87



4 Fixed point results for rectangular regions

If it is more convenient, without loss of generality we can assume
f(K) ⊂ B. Indeed, (K, f) : Ã m−→B̃ , if and only if (K ′, f) : Ã m−→B̃ ,
with K ′ = K ∩ f−1(B). However we also stress that f : Ã m−→B̃ , does
not imply that f(A) ⊂ B; if we know that f : Ã m−→B̃, we can only infer
that (H, f) : Ã m−→B̃ , for H = f−1(B). In general, for a continuous map
f : A→ R2, it holds that if (K, f) : Ã m−→B̃ , for a suitable set K ⊂ A, then
(H, f) : Ã m−→B̃ , for any compact set H such that K∩ f−1(B) ⊂ H ⊂ A.

Figure 15: A pictorial description of the SAP property: A map f transforms a
generalized rectangle A to a snake-like set f(A) which crosses the
generalized rectangle B. Both A and B are oriented by putting in
evidence with bold lines their [·]−-sets. A path γ in A connecting
the two components of A− contains a sub-path σ such that f(σ)
is contained in B and connects the two components of B−. For a
suitable compact set K ⊂ A (for instance, the part of A indicated
in figure with a darker color), we have that (K, f) : Ã m−→B̃ .

Now we are in position to present the fixed point theorem. Its proof
was already given in some preceding papers (see [82, 85]) but it will
be here repeated in order to show to the reader the role played by the
crossing lemma.

Theorem 4.2 Let R̃ = (R, R−) be an oriented rectangle and let f : H → R2

be a continuous map defined on a compact set H ⊂ R. Assume that

(H, f) : R̃ m−→R̃ .

Then there exists a point w ∈ H such that f(w) = w.

Proof. Without loss of generality, we suppose that f(H) ⊂ R. Let
η : Q → η(Q) = R be a homeomorphism which provides R with the
structure of oriented rectangle and let K = η−1(H), ϕ = η−1 ◦ f ◦ η. By
the assumptions, ϕ : K → Q and (K,ϕ) : Q̃ m−→Q̃, where Q̃ = (Q,Q−).
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4.1 A fixed point theorem

For ϕ = (ϕ1, ϕ2) observe that 0 6 ϕ2(x, y) 6 1, for all (x, y) ∈ K and,
moreover, let S ⊂ Q, be the compact set defined by

S = {(x, y) ∈ K : x−ϕ1(x, y) = 0}.

Let γ = (γ1, γ2) : [0, 1] → Q be a a path joining the bottom and the
top sides of Q, that is γ1(0) = 0 and γ1(1) = 1. Since (K,ϕ) : Q̃ m−→Q̃,
there exists [s0, s1] ⊂ [0, 1] with γ(t) ∈ K and ϕ(γ(t)) ∈ Q such that
t ∈ [s0, s1] and, moreover, ϕ1(γ(s0)) = 0, ϕ1(γ(s1)) = 1. Then, by
Bolzano’s theorem, the map [s0, s1] 3 t 7→ γ1(t) − ϕ1(γ1(t), γ2(t))
vanishes at some point t∗ ∈ [s0, s1], with γ(t∗) ∈ K. We have thus
proved that S ∩ γ̄ 6= ∅ for each path γ with values in Q and joining
Q−
l with Q−

r . Now the crossing lemma guarantees that S contains a
continuum C which intersects Q+

b and Q+
t at some points, say p =

(p1, 0) and q = (q1, 1), respectively. Evaluating ψ(x, y) = y−ϕ2(x, y)
along C, we have that ψ(p) = −ϕ2(p) 6 0 and ψ(q) = 1−ϕ2(q) > 0.
Therefore, there exists z ∈ C such that ψ(w) = 0. By the definition of S
and the inclusions C ⊂ S ⊂ K, we conclude that ϕ(z) = z and, finally,
f(w) = w, for w = η(z) ∈ H.

In theorem 4.2 we have required f to be defined and continuous only
on H ⊂ R. Using Tietze theorem, it is also possible to assume f : R →
R2 continuous. In any case, the behaviour of f outside H, as well as
possible discontinuities of f in RrH, do not effect the result.

An immediate consequence of definition 4.1 is the fact that the SAP
property is preserved by the composition of maps, as stated in the
following lemma.

Lemma 4.3 Let ` ∈ N be a fixed index, with ` > 3 and consider the family
of oriented rectangles Ãi = (Ai, A

−
i ) for i = 1, . . . , `; for i = 1, . . . , `− 1 let

fi : Ki → R2 be continuous maps defined on the compact sets Ki ⊂ Ai. Let
K be the (compact) subset of K1 where the map f = f`−1 ◦ . . . f2 ◦ f1 is defined
and such that f1(x) ∈ K2 , (f2 ◦ f1)(x) ∈ K3 , . . . , (fj−1 ◦ . . . f2 ◦ f1)(x) ∈
Kj , . . . , (f`−2 ◦ . . . f2 ◦ f1)(x) ∈ K`−1 , ∀ x ∈ K. If

(Ki, fi) : Ãi m−→Ãi+1 ∀ i = 1, . . . , `− 1

then
(K, f) : Ã1 m−→Ã` .

Then, from theorem 4.2 and lemma 4.3, the following result holds.

Theorem 4.4 Let R̃ = (R, R−) be an oriented rectangle, letH0 , H1 , . . . , Hm−1

be m > 2 nonempty compact and pairwise disjoint subsets of R, and let
f : H =

⋃m−1
j=0 Hj → R2 be a continuous map. Assume that

(Hj, f) : R̃ m−→R̃ ∀ j = 0, 1, . . . ,m− 1 . (4.1)
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4 Fixed point results for rectangular regions

Then, for any k-periodic sequence (si)i ∈ {0, 1, . . . ,m− 1}Z, with k > 1,

there exists at least one two-sided sequence (wi)i∈Z such that

wi ∈ Hsi and wi+1 = f(wi) ∀ i ∈ Z,

with wi+k = wi , ∀ i ∈ Z.

On the other hand, lemma 4.3 leads to the following result.

Theorem 4.5 Let R̃ = (R, R−) be an oriented rectangle, letH0 , H1 , . . . , Hm−1

be m > 2 nonempty compact and pairwise disjoint subsets of R, and let
f : H =

⋃m−1
j=0 Hj → R2 be a continuous map. Assume that (4.1) holds.

Then, for any sequence ξ = (si)i∈N ∈ {0, 1, . . . ,m − 1}N, there exists a
continuum

Cξ ∈ Hs0 , with Cξ ∩ R+b 6= ∅, Cξ ∩ R+t 6= ∅,

such that, for each w ∈ Cξ , the sequence

w0 = w, wi+1 = f(wi), ∀ i ∈N,

satisfies
wi ∈ Hsi ∀ i ∈N.

From one-sided sequences it is possible to get two-sided sequences
via a diagonal argument (see [82, theorem 2.2]). Thus, as a corollary of
theorem 4.4 and theorem 4.5 one easily obtains the existence of chaotic
dynamics.

Theorem 4.6 Let R̃ = (R, R−) be an oriented rectangle, letH0 , H1 , . . . , Hm−1

be m > 2 nonempty compact and pairwise disjoint subsets of R and let
f : H =

⋃m−1
j=0 Hj → R2 be a continuous map. If (4.1) holds, then f induces

chaotic dynamics on m symbols on H, in the sense that for every two-sided
sequence of m symbols (si)i∈Z ∈ Σm there exists a point z ∈ Hs0 such that

ϕi(z) ∈ Hsi ∀i ∈ Z . (4.2)

Moreover, if (si)i∈Z is a k-periodic sequence (for some k > 1) then there
exists a point z satisfying (4.2) and which is also a k-periodic point.

The definition of chaos which we refer to is the so-called coin-tossing
chaos asserting that for every possible sequence of outcomes of an m-
sided coin, there exists a point z ∈ H which is able to reproduce that
sequence jumping among the sets Hsi . In the applications, the map f
will be the Poincaré map of some planar system; hence, the possibility
of reproduce the outcomes of a periodic sequence will provide us with
the existence of a periodic point for every possible period k > 1.
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4.2 An application

Theorem 4.6 is strongly related to a result by Kennedy and Yorke [56,
theorem 1]. Indeed the assumption of the stretching (Hj, f) : R̃ m−→R̃, for
j = 0, 1, . . . ,m− 1 corresponds to a horseshoe hypothesis with a crossing
number M > m, assumed by Kennedy and Yorke. Their theorem en-
sures the existence of a closed invariant set RI ⊂ R for f such that f|RI
is semiconjugate to a one-sided M-shift (respectively, semiconjugate to
a two-sided M-shift if f is one-to-one). The results in [56] hold in the
more general setting of mappings defined on locally connected com-
pact sets of a separable metric space; however, the special geometry for
our simplified setting allows us to draw as a further conclusion with
respect to [56, theorem 1] also the information about the existence of
periodic points for f and therefore to harmonic and subharmonic solu-
tions in the framework of Poincaré maps.

In the applications of theorem 4.6 there is often a natural splitting of
the map f as

f = ψ ◦ϕ. (4.3)

For instance, if f is the Poincaré map associated to a planar differential
system, it may be natural to decompose f as two (or more than two)
Poincaré maps corresponding to some peculiar behaviours of the sys-
tem in different time intervals. In [84, 85] we introduced a corollary of
theorem 4.6 dealing with this situation which will be also used in the
application presented in the next section. For sake of simplicity, we
confine ourselves to the case m = 2.

Corollary 4.7 Let M̃ = (M,M−) and Ñ = (N,N−) be a pair of oriented
rectangles, and let H0 and H1 be two nonempty compact and disjoint subsets
of M. Let also ϕ : H = H0 ∪H1 → R2 and ψ : N → R2 be continuous
maps. Assume the conditions

• (Hj, ϕ) : M̃ m−→Ñ for j = 0, 1

• ψ : Ñ m−→M̃.

Then f = ψ ◦ϕ induces chaotic dynamics on two symbols in H.

Corollary 4.7 has been applied in [86] in connection to the theory of
the linked twist maps.For extensions of this theory to higher dimen-
sions, see [83], [91, 90] and [99].

4.2 AN APPLICATION
In the second part of the chapter a possible application of the topo-
logical theorems to the search of periodic solutions and chaotic-like
dynamics associated to a second order scalar ODEs is presented. The
results are obtained applying the theoretical theorems above exposed
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4 Fixed point results for rectangular regions

to the associated Poincaré map. More in detail, we focus our attention
to the pendulum equation with a moving support. As explained in
[43, Ch.8], a pendulum equation with a harmonically moving support
is equivalent to a pendulum with a stationary support in a space with
a periodically varying constant of gravity. Accordingly, mechanical
systems of this kind are modelled by a second order equation of the
form

u ′′ +w(t) sinu = 0, (4.4)

or, equivalently, by the first order system in the phase plane (x, y) =
(u, u ′) {

x ′ = y
y ′ = −w(t) sin x, (4.5)

where the weightw(t) is a periodic function of period T > 0. Following
a classical approach (see [43]) one is usually led to study the linearized
equation {

x ′ = y
y ′ = −w(t)x,

(4.6)

which represents a reasonable approximation of (4.5) in the case of
small solutions. In this special case we have to study a Hill equation,
which, for a general w(t), represents still a nontrivial task. In [43, p.
344] Den Hartog suggests to consider a simplified form of (4.6) by
assuming a squarewave weight function. For recent results about the
Hill equation with stepwise coefficients we refer also to [78, 77, 38] and
the references therein. Following the same suggestion, we are going to
analyze the global dynamics of system (4.5) in the simplified case in
which w(t) is a stepwise function. In [15] and in [16] the case in which
w(t) > 0 for all t ∈ R and the case in which w(t) changes its sign
were discussed, respectively; here we consider the case in which the
weight may vanish during some time interval. This results has already
appeared in [87].

Physically, for u(t) = ϑ(t), which is the angle between the rod and
the vertical line pointing downward, this corresponds to a model in
which the pendulum winds around its pivot with constant angular
speed ϑ ′(t) = constant = ϑ0 and without the effect of a gravity field for
some time interval, coming back to the usual oscillation mode under
the effect of a constant gravity field for a subsequent time interval. We
also assume that the switching between these two oscillatory modes
occurs in a T -periodic fashion. In conclusion, we suppose that the
weight w : R→ R is a T -periodic function and there are T0, T1 ∈ ]0, T [
with

T0 + T1 = T,

such that

w(t) =

{
K for 0 6 t < T0
0 for T0 6 t < T . (4.7)
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We assume K > 0 (it is easy to check that the case K < 0, which
corresponds to the so-called inverted pendulum, can be treated with
minor modifications in our forthcoming analysis).

Equation (4.5) with a weight function as in (4.7) can be viewed as a
superposition of the equations{

x ′ = y
y ′ = −K sin x, (4.8)

and {
x ′ = y
y ′ = 0

(4.9)

the first acting on an interval of length T0 and the second one on an in-
terval of length T1 . As a last but crucial remark, we notice that system
(4.5), as well as (4.8) and (4.9) is studied in the cylindrical phase space,
namely, we assume

(x1, y) ≡ (x2, y) for
x2 − x1
2π

∈ Z.

This last remark, however, will not be used in the proof of theorem
4.8 below; however, it turns out to be useful in view of extending our
theorem to more general situations (see remark 4.1).

The Poincaré map Φ : z 7→ ζ(T, z) associated to system (4.5) can be
splitted as

Φ = Φ1 ◦Φ0 (4.10)

where Φ0 is the Poincaré map associated to the classical pendulum
equation (4.8) for the time interval [0, T0], whileΦ1 is the Poincaré map
associated to equation (4.8) for the time interval [0, T1]. By a direct
integration of the equation, Φ1 can be easily described as the shift
Φ1(x, y) = (x+ T1y, y).

We describe now the main steps of the proof of the presence of
chaotic dynamics for equation (4.4), using corollary 4.7. To this aim,
first of all we recall some basic facts about the phase plane analysis of
(4.8), which corresponds to the nonlinear simple pendulum equation

x ′′ +K sin x = 0, K > 0.

Equation (4.8) is a simple example of a first order planar Hamiltonian
system {

x ′ = y
y ′ = −g(x),

(4.11)

with g : R → R a locally Lipschitz continuous function. The orbits
associated to (4.11) lie on the level lines of the energy function

E(x, y) =
1

2
y2 +G(x), with G(x) =

∫x
0

g(s)ds.
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For the pendulum equation we have

G(x) = K(1− cos x)

and the well known phase portrait shown in figure 16 below. We set

d = 2
√
K

and consider, for each µ ∈ ]0, d], the set

Γ µ = {(x, y) ∈ [−π, π]×R : E(x, y) =
1

2
µ2}.

For each 0 < µ < d, the set Γ µ is a closed curve surrounding the origin
and intersecting the x-axis at the points (± arccos(1− µ2/2K), 0) and
the y-axis at the points (0,±µ). Actually, Γ µ is a periodic orbit which
is run in the clockwise sense and its period, denoted by τµ, can be
expressed by means of an elliptic integral (see [42, pp. 180-181]). The
time-map e 7→ τµ is a strictly increasing function with

lim
µ→0+

τµ =
2π√
K

and lim
µ→d−

τµ = +∞
(see [105, Figure 14]). On the other hand, for µ = d, the level set Γd is
the union of four orbits which are the two equilibrium points (−π, 0)
and (π, 0) (which coincide each other in the cylindrical phase space
and correspond to the unstable equilibrium position of the pendulum)
and the two connecting orbits

L+ = {(x, y) ∈ ]−π, π[×R : E(x, y) = 2K, y > 0},

L− = {(x, y) ∈ ]−π, π[×R : E(x, y) = 2K, y < 0}.

The line L+ is the orbit through (0, d) which connects (−π, 0) (for t→
−∞) to (π, 0) (for t → +∞) in the upper half-plane, while L− is the
orbit through (0,−d) which connects (π, 0) (for t → −∞) to (−π, 0)
(for t→ +∞), in the lower half-plane.

We are ready now to define two generalized rectangles M and N and
choose a suitable orientation for each of them (see Figure 17) in order
to apply corollary 4.7. To this end, we fix two numbers b, c with

0 < b < c < d

and consider (in the upper half plane) the intersection of the region

W = {(x, y) ∈ [−π, π]×R :
1

2
c2 6 E(x, y) 6

1

2
d2}

with the strip
S = R× [0, b]
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Figure 16: Energy level lines for equation (4.8) in the phase plane. The
two separatrices (heteroclinic connections) connecting the unsta-
ble equilibria (saddle points) (−π, 0) and (π, 0) intersect the verti-
cal axis at (0, d) (in the upper half-plane) and (0,−d) (in the lower
half-plane), respectively, for d = 2

√
K.

This intersection is made by two disjoint sets which are topological
rectangles. We call M the component of W ∩ S contained in the right
half-plane and we call N the symmetric one with respect to the y-axis.
One can easily find a homeomorphism mapping the unit square onto
M. Indeed, the function

h : (µ, y) 7→ (arccos(1− (2K)−1(µ2 − y2), y)

maps the rectangle [c, d]× [0, b] homeomorphically onto M and from
this it is a simple task to obtain the desired homeomorphism defined
on Q onto M. Having checked that M is a topological rectangle, we
have that also N is a topological rectangle, using the symmetry (x, y) 7→
(−x, y) transforming M into N.

Observe that W is an invariant set for system (4.8); indeed, each
point z0 = (x0, y0) ∈W belongs to the energy level line Γµ0 with

µ0 = 2
√
E(x0, y0) ∈ [c, d]

and the solution of (4.8) with initial point z0 lies on Γµ0 . In particular,
for each z0 ∈M, we can represent the solution (x(t), y(t)) of (4.8) with
(x(0), y(0)) = z0 in polar coordinates, so that

x(t) = ρ(t, z0) cos ϑ(t, z0), y(t) = ρ(t, z0) sin ϑ(t, z0),
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4 Fixed point results for rectangular regions

Figure 17: The set W is the part of the strip [−π, π]×R between the energy
level lines Γc and Γd . The intersection of W with the strip S pro-
duces two rectangular regions (generalized rectangles), painted
with a darker color. The set N is the component of the intersection
with x < 0, while M is the component of the intersection with
x > 0. The sets M and N are symmetric with respect to the y-axis.

The angular function ϑ(t, z0) is well defined, continuous with respect
to (t, z0) ∈ R×M and satisfies ϑ(0, z0) ∈ [0, π/2] (since M is contained
in the first quadrant). It is easy to check that t 7→ ϑ(t, z0) is a strictly
decreasing function provided that z0 6= (π, 0). As we have already ob-
served, for µ0 ∈ [c, d[, we know that Γµ0 is a periodic orbit of period
τµ0 which is run in the clockwise sense. Hence, if we take any initial
point z0 ∈ M− Γd, we conclude that z0 is a periodic point of system
(4.8) of period τµ0 and therefore, for j a nonnegative integer,

ϑ(t, z0) − ϑ(0, z0) Q −2jπ if and only if t R j τµ0

(remember that the motion associated to (4.8) occurs in the clockwise
sense and therefore the angle decreases when the time increases).

As W is invariant for Φ0 , similarly, the strip S is invariant for Φ1 . In
this case, under the effect of (4.9), all the points of N which belong also
to the x-axis are rest points, while all the other points in N (with y > 0)
move from the left to the right along the lines y = constant = y0 with
constant speed x ′(t) = y0 > 0.

For M and N we consider now the following orientations:

M−
l = M∩ Γ c , M−

r = M∩ Γ d = M∩ L+ ∪ {(π, 0)}.

N−
l = N ∩ [−π, 0]× {0} , N−

r = N ∩ [−π, 0]× {b}.
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Step 1. Stretching the paths from M to N by Φ0 . Assume that T0 is
fixed with

T0 > 2τc .

Consider any initial point z0 ∈M−
r . Since M−

r ⊂ L+ ∪ {(π, 0)}, which is
an invariant set, we have that, for every t ∈ [0, T0], the solution of (4.8)
with (x(0), y(0)) = z0 belongs to M−

r . Hence

ϑ(T0, z0) > 0, ∀ z0 ∈M−
r .

On the other hand, if z0 ∈M−
l , then

ϑ(T0, z0) 6 ϑ(0, z0) − 4π <
π

2
− 4π = −3π−

π

2
.

Now we define the compact sets

H0 = {z ∈M : Φ0(z) ∈ N and ϑ(T1, z) ∈ [−3π/2,−π]}

and

H1 = {z ∈M : Φ0(z) ∈ N and ϑ(T1, z) ∈ [−7π/2,−3π]}.

Using the fact that the angular coordinates of the points of N belong
to the intervals ]π/2+ 2kπ, π+ 2kπ] (for k ∈ Z) and using the above
angular estimates, we conclude that H0 and H1 are both nonempty
and, moreover, H0 ∩H1 = ∅.

Note that a point z ∈M belongs toH0 (j = 0, 1) if and only if the solu-
tion (x(t), y(t)) of (4.8) with (x(0), y(0)) = z is such that (x(T0), y(T0)) ∈
N and, moreover, x(0) > x(T0) with x(t) having exactly 2j+ 1 simple
zeros in ]0, T0[ where it changes its sign with x ′ 6= 0.

Let γ : [0, 1] 3 s 7→ γ(s) ∈ M be a continuous curve with γ(0) ∈ M−
l

and γ(1) ∈M−
r . By the previous estimates, we know that

ϑ(T0, γ(0)) < −3π−
π

2
and ϑ(T0, γ(1)) > 0.

By a continuity argument, we can find two subintervals [s ′0, s
′′
0 ] and

[s ′1, s
′′
1 ] of [0, 1], with

0 < s ′1 < s
′′
1 < s

′
0 < s

′′
0 < 1,

such that
γ(s) ∈ Hj , ∀ s ∈ [s ′j, s

′′
j ], j = 0, 1,

Φ0(γ(s)) ∈ N, ∀ s ∈ [s ′1, s
′′
1 ]∪ [s ′0, s ′′0 ],

Φ0(γ(s
′
j)) ∈ N−

r , Φ0(γ(s
′′
j )) ∈ N−

l , for j = 0, 1.

We have thus proved that condition (i) of Corollary 4.7 holds for ϕ =
Φ0 .
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4 Fixed point results for rectangular regions

Figure 18: A graphical illustration of the property Φ0 : M̃ m−→Ñ with crossing
number larger than or equal to two. The path γ in M joining a
point P ∈M−

l to a point Q ∈M−
r is transformed by Φ0 into a path

Φ0(γ) joining P ′ to Q ′ . If the time T0 is sufficiently large, the path
Φ0(γ) will make a certain number of windings around the origin
and will cross the set N at least twice.

Step 2. Stretching the paths from N to M by Φ1 . Assume that

T1 >
2π

b
.

By the simple form of Φ1 we immediately see that

Φ1(z) = z ∀ z ∈ N−
l

and
x1 > π, for (x1, b) = Φ1(z) with z = (x, b) ∈ N−

r .

Let γ : [0, 1] 3 s 7→ γ(s) ∈ N be a continuous curve with γ(0) ∈ N−
l

and γ(1) ∈ N−
r . Hence, for γ(s) = (γ1(s), γ2(s)), and Φ1(γ(s)) =

(σ1(s), σ2(s)), we have that

σ1(0) = γ1(0) < 0, σ1(1) > π/2
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and

σ2(s) = γ2(s) ∈ [0, b], ∀ s ∈ [0, 1].

By a continuity argument, we can find a subinterval [s ′, s ′′] of [0, 1]
such that Φ1(γ(s)) ∈M for all s ∈ [s ′, s ′′] and

Φ1(γ(s
′)) ∈M−

l , Φ1(γ(s
′′)) ∈M−

r .

We have thus proved the second condition of corollary 4.7 for ψ =
Φ1.

Figure 19: A graphical illustration of the property Φ1 : Ñ m−→M̃. In this case,
the SAP property is evident from the way in which Φ1(N) goes
across M.

In conclusion, using corollary 4.7 we have proved the following the-
orem.

Theorem 4.8 Let w(t) be a T -periodic stepwise function defined as in (4.7).
Fix two constants b, c with

0 < b < c < d = 2
√
K
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4 Fixed point results for rectangular regions

and let τc be the fundamental period of the periodic orbit of the pendulum
equation x ′′ +K sin x = 0 with x(0) = 0 and x ′(0) = c. Then, for

T0 > 2τc and T1 >
2π

b
, T = T0 + T1 ,

equation (4.4) exhibits chaotic dynamics on two symbols. The precise be-
haviour of the chaotic-like solutions can be described as follows.

There exists a (nonempty) compact set Λ which is contained in the first
quadrant of the phase plane which is invariant for the Poincaré map Φ associ-
ated to (4.5) and such that Φ|Λ is semiconjugate (via a continuous map g) to
the two-sided Bernoulli shift on two symbols. In particular, for any sequence
ξ = (si)i ∈ {0, 1}Z there exists a point z ∈ g−1(ξ) ∈ Λ such that the so-
lution x(t) of (4.4) with (x(0), x ′(0)) = z has precisely 2si + 1 simple zeros
in ]iT, T0 + iT [ and exactly one zero in ]T0 + iT, (i+ 1)T [ . Moreover, if the
sequence of symbols ξ = (si)i is k-periodic, then there exists a z ∈ g−1(ξ)
which is a k-periodic point for Φ in Λ and, consequently, the solution x(t) is
kT -periodic.

By the oddness of the sin function, it is clear that there is another
family of chaotic solutions with initial points belonging to an invariant
set (for the Poincaré map) contained in the third quadrant of the phase
plane.

A careful checking of the proof will convince the reader that the
argument is stable with respect to small perturbations on all the coef-
ficients of the equation. The same observation was already employed
in the previous papers [15, 16] where Corollary 4.7 was applied to the
pendulum equation (under different conditions on the weight coeffi-
cient). The mathematical details which justify this assertion about the
robustness of our result are fully developed in [86] and we refer to [86,
pp. 900-902] for a description how to slightly modify the sets M and N

in order to make the proof valid also in presence of small perturbations.
Thus the following result holds true as well.

Theorem 4.9 Let w(t) be a T -periodic stepwise function defined as in (4.7).
Fix two constants b, c with 0 < b < c < d = 2

√
K and let τc be the funda-

mental period of the periodic orbit of the pendulum equation x ′′+K sin x = 0
with x(0) = 0 and x ′(0) = c. Then, for T0 and T1 fixed and satisfying

T0 > 2τc and T1 >
2π

b
, T = T0 + T1 ,

there exists ε > 0 such that for every T -periodic L1loc functions q(t) and p(t)
satisfying ∫T

0

|q(t) −w(t)|dt < ε,

∫T
0

|p(t)|dt < ε
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and for every κ with |κ| < ε, the pendulum equation

u ′′ + κu ′ + q(t) sinu = p(t)

exhibits chaotic dynamics on two symbols.

Remark 4.1 Here is a list of possible directions toward which our re-
sults (theorem 4.8 and theorem 4.9) can be easily extended.

• If we work in the cylindrical phase plane and take T1 sufficiently
large we can easily find conditions in order to have that Φ1(N)
crosses multiple times the set M (mod 2π). In this manner, and
with a minimal expense in the computations needed for the proof,
we can prove the presence of even more complicated dynam-
ics (namely on a larger set of symbols) in which the classical
oscillations of the pendulum around the equilibrium position
u(t) = ϑ(t) = 0 alternate with a certain number of full revolu-
tions.

• In theorem 4.9, due to the particular form of w(t) in (4.7), we
assume that

∫T1
0 |q(t)|dt < ε. Actually, it is not difficult to get a

more precise and better upper bound in terms of the L1-norm of
q(·) in [0, T1] so that our perturbative argument works.

• We have confined ourselves to the study of the nonlinear equa-
tion

u ′′ +w(t)g(u) = 0,

for g(x) = sin x, motivated by the study of a pendulum type
equation with moving support. It is possible to adapt our ar-
gument to some more general functions g(x) (see [15, 16] for a
similar treatment in the cases when w(t) is of constant sign or
w(t) is a sign-changing weight).

The geometry for the application of Corollary 4.7 is that of the com-
position of a twist map acting on a topological annulus (the set W in
our proof) with a squeezing and stretching map on a strip (the set S in
our proof). Such kind of geometry, unlike the case of the linked twist
maps [25, 107, 104], requires only one of the two mappings twisting the
boundaries of an annulus. The same kind of geometrical configura-
tion as the one considered in our example was proposed in an abstract
setting in [84]. Concrete examples of ODEs presenting such kind of
geometry have been obtained by Ruiz-Herrera in [98] dealing with
population dynamics models. Some geometric configurations which
are topologically equivalent (in the sense that an annulus is crossed by
a topological strip) have been considered in [79, 85, 109, 110] and in
1997 by Kennedy and Yorke [55] dealing with a problem of turbulent
fluid dynamics.
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5 B E N D -T W I S T M A P S

Our study for this section of the thesis is motivated by a recent ap-
proach considered by T. Ding in [26, Chapter 7] for the proof of the
Poincaré-Birkhoff theorem for analytic functions. In the same chapter,
a concept of bend-twist map is introduced. Roughly speaking, analytic
bend-twist maps are those analytic twist maps in which the radial
displacement ||ϕ(z)|| − ||z|| changes its sign on a Jordan closed curve
which is non-contractible in the annulus and where the angular dis-
placement vanishes. Our goal is to extend Ding’s definition to a pure
topological setting and obtain some fixed point theorems for continu-
ous bend-twist maps. The results do not require any regularity on the
maps involved. Moreover, we do not assume hypotheses like homeo-
morphism, area-preserving or invariance of the boundaries and, as an
additional feature, some of our results are stable under small perturba-
tions. These facts, in principle, suggest the possibility to produce some
new applications to planar differential systems which are not conser-
vative. Our main existence theorem (see theorem 5.6) follows from the
Borsuk separation theorem and Alexander’s lemma which we have ex-
tensively applied in a recent paper [89]. The result partially extends
Ding’s theorem to the non-analytic setting. The main difference be-
tween theorem 5.6 and the corresponding theorem in [26] lies on the
fact that we obtain at least one fixed point, whence two fixed points
are given in [26]. On the other hand, we show, by a simple example,
that only one fixed point may occur in some situations. Both in our
case and in Ding’s, the main hypothesis for the bend-twist theorem is
a rather abstract one. Hence some more applicable corollaries, in the
line of [26], are provided (see theorem 5.10 and corollary 5.11). In a
final section we outline an application of our results to the periodic
problem for some nonlinear ordinary differential equations.

In this chapter we are going to reconsider, in a purely topological
framework, the concept of bend-twist map introduced by Tongren Ding
in [26], using the crossing lemmas developed in chapter 3 for annular
regions and managing to obtain some interesting fixed-points results.
The basic setting in [26] consists in a pair of starlike planar annuli A
and A∗ with A ⊂ A∗ and a continuous map f : A → A∗. Without loss
of generality (via a translation of the origin), one can always assume
that 0 = (0, 0) belongs to the open set D(A∗). Accordingly, our basic
setting can be described as follows.
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5 Bend-twist maps

Let A ⊂ R2 be a topological annulus (embedded in the plane) with
0 ∈ D(A). Passing to the covering space R×R+

o we have that the inner
and outer boundaries of A are lifted to the lines Ji = π−1(Ai) and
Jo = π−1(Ao) which are periodic in the sense that (ϑ, r) ∈ J if and only
if (ϑ+ 2π, r) ∈ J, for J = Ji , Jo . In [26] the boundaries are assumed to
be starlike, that is both Ji and Jo are graphs of 2π-periodic functions
λi , λo : R → R+

0 , ϑ 7→ r = λ(ϑ) (for λ = λi , λo) with λi(ϑ) < λo(ϑ),
for all ϑ ∈ R. The condition about the strictly star-shapeness of the
boundaries of A is crucial for entering in the setting of the Poincaré-
Birkhoff theorem (see [26, 62, 66, 96]). However, it is not assumed in
this chapter unless when explicitly required.

Let ϕ = (ϕ1, ϕ2) : A→ R2 r {O} be a continuous map and consider
its lifting ϕ̃ defined on Ã = π−1(A) to R×R+

0 such that

ϕ ◦ π = π ◦ ϕ̃ .

By definition, given a lifting ϕ̃ of ϕ, all the other liftings of ϕ are of
the form

(ϑ, r) 7→ ϕ̃(ϑ, r) + (2kπ, 0),

for some k ∈ Z. We assume that ϕ̃ can be expressed as

ϕ̃ : (ϑ, r) 7→ (ϑ+Θ(ϑ, r), R(ϑ, r)), (5.1)

where Θ,R are continuous real-valued functions defined on π−1(A)
and 2π-periodic in the ϑ-variable. We also introduce an auxiliary func-
tion Υ giving the radial displacement

Υ(ϑ, r) = R(ϑ, r) − r for (ϑ, r) ∈ Ã

which will play a key role in the definition of bend-twist maps. Ob-
serve that, instead of using the polar coordinates, we can equivalently
express Υ on the points of A as

Υ(z) = ||ϕ(z)||− ||z|| with z ∈ A .

In the same way, also the angular displacement Θ can be referred di-
rectly to the points of the annulus A since Θ(ϑ, r) has the same value
at every point (ϑ, r) ∈ π−1(z). This allows to define

Θ(z) = Θ(ϑ, r) for z = π(ϑ, r) .

In some applications (for instance to some planar maps associated to
ordinary differential equations), the number Θ(ϑ, r) has the meaning
of a rotation number associated to a given trajectory departing from the
point π(ϑ, r). In particular, observe that any solution (ϑ̄, r̄) ∈ Ã of the
system {

Θ(ϑ, r) = 2`π
Υ(ϑ, r) = 0

(5.2)
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determines a fixed point z̄ = (x̄, ȳ) = π(ϑ̄, r̄) ∈ A of the map ϕ. Ev-
ery fixed point is “tagged” with the integer ` computing the rotations
performed by the fixed point around the origin. This is an important
information associated to z̄ in the sense that, once we have fixed Θ in
order to express ϕ̃ as in (5.1), then solutions of (5.2) for different val-
ues of ` ∈ Z determine different fixed points of ϕ. In other words, if
(ϑ̄1, r̄1) and (ϑ̄2, r̄2) are solutions of (5.2) for ` = `1 and ` = `2 respec-
tively, with

`1 6= `2 ,
then their projection on A are distinct points, that is

z̄1 = π(ϑ̄1, r̄1) 6= z̄2 = π(ϑ̄2, r̄2).

Indeed, if, by contradiction, z̄1 = z̄2 , then r̄1 = r̄2 and ϑ̄2 = ϑ̄1 + 2mπ
for some m ∈ Z. Hence, by the 2π-periodicity of Θ(·, r), we have

2π`2 = Θ(ϑ̄2, r̄2) = Θ(ϑ̄1 + 2mπ, r̄1) = Θ(ϑ̄1, r̄1) = 2π`1 ,

a contradiction.
Conversely, one can easily check that any fixed point z̄ ∈ A of the

map ϕ lifts to a discrete periodic set

π−1(z̄) = {(ϑ̄+ 2`π, r̄) : ` ∈ Z},

for which there exists an integer ` = `z̄ such that each point (ϑ̄, r̄) ∈
π−1(z̄) is a solution of (5.2) with the same value of ` = `z̄.

Looking for a solution of system (5.2), an usual assumption on the
map ϕ̃ is the so-called twist condition at the boundaries, which is one
of the main hypotheses of the Poincaré-Birkhoff fixed point theorem,
as widely exposed in chapter 2. In our setting, the twist condition is
expressed as follows.

Definition 5.1 We say that ϕ̃ satisfies the twist condition if{
Θ(ϑ, r) < 2jπ, for (ϑ, r) ∈ Ji
Θ(ϑ, r) > 2jπ, for (ϑ, r) ∈ Jo (5.3)

(or viceversa), for some j ∈ Z.

If we prefer to express the twist condition directly on ϕ, we will
write

Θ < 2jπ on Ai and Θ > 2jπ on Ao (5.4)

(or viceversa).
In order to introduce the concept of bend-twist maps we recall a

(wrong) attempt of proving the Poincaré-Birkhoff theorem (see chapter
2, thorem 2.2), as described by M. Wilson in a letter to Birkhoff [9]:1

1 We put in Italic the original words by Wilson. The notation is the original one and to
make it compatible with that of the present paper we have to notice that the lifting of
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5 Bend-twist maps

Figure 20: A sketch of the problem in Wilson’s argument. We depict a sector
of an annular domain in which there is a portion of a non star-
shaped curve Γ where Θ = 0. The points of Γ are moved radially
to the points of ϕ(Γ) with preservation of the area. The points in
Γ ∩ϕ(Γ) are not fixed points for ϕ. A similar situation is described
by Martins and Ureña in [66, Figure 1-2].

“Won’t you bother with finding out what ridiculous error there is in this
simple thing that occurred to me yesterday ? [. . . ] The set of the points of
the annulus with ϕ ′ −ϕ = 0 may be of great complexity containing ovals
or ovals within ovals in the ring. But, as this set is closed and cannot be
traversed by any continuous curve from the inner to the outer circles without
being cut in at least one point, such set must include at least one continuous
curve circling around the ring. [. . . ] Now, upon this curve, the shift r ′ − r
is continuous and could not be always positive or always negative without
shrinking said curve or expanding it, contrary to the supposed invariance of
areas or integrals. Hence, there must be at least two points for which r ′ = r

as well as ϕ ′ = ϕ.”
The gap in this argument is not only in the fact that the set of the

points of the annulus where Θ = 0 may not contain a “curve” (this
perhaps is not the serious mistake), but even in the case in which there
is actually a simple closed curve Γ ⊂ A[a, b] included in the set where
Θ = 0,with Γ encirclingAi , the points of ϕ(Γ)∩ Γ (which are supposed
to exist by the area-preserving assumption) are not necessarily fixed
points for ϕ. Indeed, if Γ is not star-shaped, one could have that Υ > 0
(or Υ < 0) along Γ and, at the same time, ϕ(Γ)∩ Γ 6= ∅.

Of course, if we were able to prove that the radial displacement
function Υ vanishes at some points of the locus Θ = 0, then we would
find fixed points for ϕ (making the above wrong argument meaning-
ful). From this point of view, the study of the structure of the sets
of points where Θ = 0, may give useful information for the search of
fixed points of ϕ. Such approach was considered, for instance, by G.R.

ϕ considered in [9] is expressed as a map (r,ϕ) 7→ (r ′, ϕ ′). Thus our condition Θ = 0
corresponds to ϕ ′ −ϕ = 0 in [9]. We also remark that the twist condition is assumed
in [9] with j = 0 (like in the original version of Poincaré-Birkhoff theorem).
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Morris in [72] who proved the existence of infinitely many periodic
solutions of minimal period 2mπ (for each positive integer m), for the
forced superlinear equation

ẍ+ 2x3 = p(t),

where p(t) is a smooth function with least period 2π and mean value
zero. For his proof, Morris considered the problem of the existence of
fixed points for the area-preserving homeomorphism of the plane

Tm : (a, b)→ (a ′, b ′) = (x(2mπ;a, b), ẋ(2mπ;a, b)),

where x(t;a, b) is the solution of the differential equation such that

x(0;a, b) = a, ẋ(0;a, b) = b.

In [72], starlike Jordan curves around the origin C were constructed
such that each point P ∈ C is mapped to TmP on the same ray OP
(see also [21] for a description of Morris result in comparison to other
different approaches).

In [26] Tongren Ding considers the case of a topological annulus A

embedded in the plane having as its boundaries two simple closed
curves which are starlike with respect to the origin. It is assumed that
there exists an analytic function f : A → A∗, with A∗ another starlike
annulus with A ⊂ A∗ and, moreover, that f satisfies the twist condition
(5.3). It is also observed that the set Ωf of the points in A where
Θ = 2jπ contains at least a Jordan curve Γ which is not contractible
in A. The function f is called a bend-twist map if there exists a Jordan
curve Γ ⊂ Ωf , with Γ non contractible in A, such that Υ changes its
sign on Γ . Then, Ding’s theorem is stated in [26, Theorem 7.2, p.188] as
follows.

Theorem 5.2 Let f : A → A∗ be an analytic bend-twist map. Then it has at
least two distinct fixed points in A.

Note that in Ding’s theorem, the assumptions that f is area-preserving
and leaves the annulus invariant are not needed. This represents
a strong improvement of the hypotheses required for the Poincaré-
Birkhoff twist theorem. On the other hand, the assumption that a
given function is a bend-twist map does not seem easy to be checked
in the applications. The following corollary (see [26, Corollary 7.3,
p.188]) comes in our help providing more explicit conditions for the
applicability of the abstract result.

Corollary 5.3 Let f : A → A∗ be an analytic twist map. If there are two
disjoint continuous curves Γ1 and Γ2 in A, connecting respectively the inner
and the outer boundaries of A and such that Υ < 0 on Γ1 and Υ > 0 on Γ2 ,
then f is a bend-twist map on A and therefore it has at least two distinct fixed
points.
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5.1 MAIN RESULTS
Our aim now is to reformulate the above results in a general topolog-
ical setting in order to obtain a version of Theorem 5.2 and Corollary
5.3 for general, and not necessarily analytic, maps.

Let A ⊂ R2 be a topological annulus (embedded in the plane) with
0 ∈ D(A) and let ϕ : A → R2 r {O} be a continuous map admitting a
lifting of the form (5.1). For every j ∈ Z, let us introduce the set of the
points of A which are rotated by ϕ of an angle of 2jπ, denoted by

Ωjϕ = {(r cos ϑ, r sin ϑ) : Θ(ϑ, r) = 2jπ} .

Lemma 5.4 Let ϕ satisfy the twist condition (5.3) for some j ∈ Z. Then the
set Ωjϕ contains a compact connected set Cj which is essentially embedded in
A and Cj : Ai - Ao .

Proof. Our claim is an immediate consequence of Lemma 3.18 once
that we have checked that Ωjϕ : Ai - Ao . This latter property follows
from the continuity of Θ and the twist condition. Indeed, if γ : [0, 1]→
A is a path with γ(0) ∈ Ai and γ(1) ∈ Ao , then Θ(γ(t)) − 2jπ must
vanish somewhere.

This result corresponds to [26, Lemma 7.2, p.185] for a general ϕ.
The Jordan curve Γ ⊂ Ωf considered in [26] in the analytic case is now
replaced by the essentially embedded continuum Cj ⊂ Ωjϕ . Following
[26] we can now give the next definition.

Definition 5.5 Let ϕ : A → R2 r {O} be a continuous map (admitting
a lifting of the form (5.1)) which satisfies the twist condition (5.3), for
some j ∈ Z. We say that ϕ is a bend-twist map in A if there exists a
compact connected set Cj ⊂ Ωjϕ with Cj essentially embedded in A
and such that Υ changes its sign on Cj .

As a consequence of this definition, the following theorem, a version
of theorem 5.2 for mappings which are not necessarily analytic, holds.

Theorem 5.6 Let ϕ : A→ R2 r {O} be a bend-twist map. Then there exists
a fixed point z ∈ intA with Θ(z) = 2jπ.

The proof is an obvious consequence of the connectedness of Cj. Ob-
serve that, if we were able to prove that Cj is a Jordan curve, then, as
in [26], the existence of at least two fixed points could be ensured.

In general, and in contrast with theorem 5.2, we cannot hope to have
more than one fixed point as shown by the following example which
refers to a standard planar annulus A = A[a, b].
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Example 5.7 Let c = (a+ b)/2 and consider the set

C = {(ϑ, r) : r = c+ ε1 sin2(ϑ/2)}∪ {(2kπ, r) : r ∈ [c− δ, c+ δ], k ∈ Z },

with 0 < ε1, δ < (b− a)/4. The angular map Θ in π−1(A) is defined as

Θ(ϑ, r) =


−

dist(z,C)
dist(z,C)+dist(z,Ji)

for z = (ϑ, r), with r < c+ ε1 sin2(ϑ/2)

dist(z,C)
dist(z,C)+dist(z,Jo)

for z = (ϑ, r), with r > c+ ε1 sin2(ϑ/2)

while, for the radial map R, we set

R(ϑ, r) = r+ ε2(r− a)(r− c)(r− b),

with ε2 > 0 and sufficiently small in order to have a 6 R(ϑ, r) 6 b, for
all (ϑ, r). The functions Θ and R define by (5.1) a continuous map ϕ̃ : R×
[a, b] → R× [a, b] and, projecting by π, a map ϕ : A[a, b] → A[a, b]. It
is easy to check that ϕ leaves the boundaries of the annulus invariant and
satisfies the twist condition (5.3) with j = 0. The set Ω0ϕ is the image of
C through π. In accordance with Lemma 5.4 we can take C0 = Ω0ϕ . The
function Υ vanishes on the circumferences r = a, r = b and r = c and,
moreover, it is negative on the open annulus A(a, c) and positive on A(c, b).
Hence it changes its sign on C0 . However, ϕ has a unique fixed point in
A[a, b] which is F = (c, 0) (see figure 21). C

Perhaps the set C0 in example 5.7 is not completely satisfactory. In-
deed, although it represents a compact connected set which cuts all
the paths between Ai and Ao , it is not minimal with respect to this
property. One could suppose that if we modify Definition 5.5 by con-
sidering only minimal compact subsets of Ωjϕ which are essentially
embedded in A, then we could provide the existence of at least two
fixed points for ϕ, as in Ding’s theorem. Though, we have preferred
to give a definition avoiding the concept of minimality because the ex-
istence of minimal sets will be only guaranteed by Zorn’s lemma and,
moreover, such sets could be quite pathological and thus intractable
from the point of view of the applications. Nevertheless, the following
improvement of the result can be proved.

Theorem 5.8 Let C ⊂ A = A[a, b] be a compact connected set which is
minimal with respect to the property of cutting all the paths in A from Ai to
Ao. Let f : C → R be a continuous function such that f changes sign on C.
Then there exist at least two points z1, z2 ∈ C with z1 6= z2 and such that
f(z1) = f(z2) = 0.

Proof. The existence of at least a zero for f|C follows from Bolzano’s
theorem. Suppose, by contradiction, that there exists only one point
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5 Bend-twist maps

Figure 21: A description of the geometry in Example 5.7. The set C0 made
of the points of the annulus A[a, b] where Θ = 0, is the union of a
closed curve (contained in the part of the annulus between r = c
and Ao) and a small segment [c− δ, c+ δ]× {0}. The function Υ
vanishes at r = a, c, b, it is negative for a < r < c and positive
for c < r < b (we have painted with a darker color the part of the
annulus where Υ < 0). The point F is the unique fixed point of ϕ
since {F} = C0 ∩ {Υ = 0}.

z ∈ C such that f(z) = 0 and consider the two nonempty compact sets
K1 = {x ∈ C : f(x) 6 0} and K2 = {x ∈ C : f(x) > 0}. By the assump-
tion, we have that {z} = K1 ∩ K2 and K1 6= C as well as K2 6= C. By
the minimality of C, it follows that there exists a path γ1 connecting
Ai to Ao in A and avoiding K1 and, similarly, there exists a path γ2
connecting Ai to Ao in X and avoiding K2 . From a version of Alexan-
der’s lemma in the plane (see Newman and Kallipoliti-Papasoglu) we
know that there exists a path γ in A connecting Ai to Ao and avoiding
C = K1 ∪K2. This contradicts the cutting property of C.

The proof is based on a version of Alexander’s lemma which we
rewrite below.

Lemma 5.9 (Alexander’s lemma) Let K1, K2 be closed sets on the plane such
that or K1 ∩ K2 is a connected set (possibly empty) and at least one between
K1 and K2 is bounded. Let x, y ∈ R2 r (K1 ∪K2). If there is a path joining
x and y in R2 r K1 and a path joining x and y in R2 r K2, then there is a
path joining x and y in R2 r (K1 ∪K2).

The crucial problem in this approach consists in the fact that finding
the minimal set C could not be possible in practical cases. Although,
we are able to gain the existence of two fixed points also by the follow-
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ing corollary, in which stronger, but easier to check, assumptions on Υ
are required, as happens in corollary 5.3.

Theorem 5.10 Let ϕ : A → R2 r {O} be a continuous map (admitting a
lifting of the form (5.1)) which satisfies the twist condition (5.3), for some
j ∈ Z. If there are two disjoint arcs Γ1 and Γ2 in A, both connecting Ai with
Ao in A and such that Υ < 0 on Γ1 and Υ > 0 on Γ2 , then ϕ has at least
two distinct fixed points in intA with Θ = 2jπ.

Proof. Our argument is reminiscent of a similar one used in the proof
of a bifurcation result in [49]. Without loss of generality (up to a home-
omorphism), we can suppose that A = A[a, b]. We also suppose (pass-
ing possibly to a sub-arc) that each Γn intersects Ai and Ao exactly in
one point, respectively. Let also Pna and Pnb be the intersection points of
Γn with the circumferences r = a and r = b, respectively (for n = 1, 2).
Let C ′a be the arc of Ai from P1a to P2a and let C ′′a be the arc of Ai from
P2a to P1a (in the counterclockwise sense). Similarly (again in the coun-
terclockwise sense), we determine two arcs C ′b and C ′′b on Ao . The
Jordan curves obtained by joining C ′a , Γ2 , C ′b , Γ1 and C ′′a , Γ1 , C

′′
b , Γ2

bound two generalized rectangles R1 and R2 . We claim that in the in-
terior of Rn (n = 1, 2) there exists at least one fixed point for ϕ having
j as associated rotation number. We prove the claim for R1 , since the
proof for R2 is exactly the same.

First of all, by the covering projection π, we lift the set R1 to the strip

π−1(A) = R× [a, b]

and observe that π−1(R1) can be written as

π−1(R1) = R+ (2mπ, 0),

with R a generalized rectangle contained in the strip and such that
its boundary projects homeomorphically onto ∂R1 by π. As observed
above, R1 is the compact region of the plane bounded by the Jordan
curve C ′a , Γ2 , C ′b , Γ1 . By the Schoenflies theorem [71] we can choose a
homeomorphism η : [0, 1]2 → R in such a way that

(π ◦ η)([0, 1]× {0})) = C ′a , (π ◦ η)([0, 1]× {1}) = C ′b ,

(π ◦ η)({0}× [0, 1]) = Γ2 , (π ◦ η)({1}× [0, 1]) = Γ1 .

The vector field
f = (f1, f2) : [0, 1]

2 → R2,

defined by
f(x, y) =

(
Υ(η(x, y)), Θ(η(x, y)) − 2jπ

)
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is such that

f1(0, y) = Υ(ϑ, r) with π(ϑ, r) ∈ Γ2 , ∀y ∈ [0, 1],
f1(1, y) = Υ(ϑ, r) with π(ϑ, r) ∈ Γ1 , ∀y ∈ [0, 1],
f2(x, 0) = Θ(ϑ, r) − 2jπ with π(ϑ, r) ∈ C ′a , ∀ x ∈ [0, 1],
f2(x, 1) = Θ(ϑ, r) − 2jπ with π(ϑ, r) ∈ C ′b , ∀ x ∈ [0, 1].

Thus, by the assumptions on Θ and Υ, we find that

f1(0, y) > 0 > f1(1, y), ∀y ∈ [0, 1]
f2(x, 0) < 0 < f2(x, 1), ∀ x ∈ [0, 1]. (5.5)

The above (strict) inequalities imply that we are in the setting of a
two-dimensional version of the Poincaré-Miranda theorem and that

deg(f, ]0, 1[2, 0) = −1, (5.6)

where “deg” denotes Brouwer’s degree. Therefore there exists at least
one point (x∗, y∗) such that f(x∗, y∗) = 0. This, in turns, implies the
existence of a fixed point (ϑ∗, r∗) = η(x∗, y∗) ∈ intR such that π(ϑ∗, r∗)
is a fixed point of ϕ in the interior of R1 and such that Θ = 2jπ.

With the same argument of the proof of theorem 5.10, the next result
can be obtained.

Corollary 5.11 Let ϕ : A → R2 r {O} be a continuous map (admitting a
lifting of the form (5.1)) which satisfies the twist condition (5.3), for some j ∈
Z. Assume that there exist 2k disjoint arcs (k > 1) connecting Ai with Ao
in A. We label these arcs in a cyclic order Γ1 , Γ2 . . . , Γn , . . . Γ2k , Γ2k+1 = Γ1
and assume that

Υ < 0 on Γn for n odd, Υ > 0 on Γn for n even

(or viceversa). Then ϕ has at least 2k distinct fixed points in intA, all the
fixed points with Θ = 2jπ.

Observe that theorem 5.10, as well as corollary 5.11, are stable with
respect to small continuous perturbations of the map ϕ. This follows
from the fact that equality (5.6) is true for any function f satisfying the
strict inequalities (5.5). Thus, if we perturb the function ϕ with a new
continuous map ψ with ||ψ−ϕ||∞ 6 ε on A for ε > 0 sufficiently small,
we have that the twist condition and the conditions on Υ on Γ1 and Γ2
are satisfied also for ψ, and hence we get fixed points for ψ as well.

On the other hand, both theorem 5.6 and theorem 5.2 are not stable
even in case of arbitrarily small perturbations, which can make the
fixed point disappear. In order to show this possibility, the following
example can be considered.
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Example 5.12 Let A = A[a, b] be a planar annulus with a = 1
2 and b = 5.

We consider an angular map Θ in π−1(A) as Θ(ϑ, r) = (r − 3)2(r − 1),
while, for the radial map, we take R(ϑ, r) = r+ r2(cos2 ϑ+ 4 sin2 ϑ) − 16.
The functions Θ and R define by (5.1) a continuous map ϕ̃ : Ã → Ã and,
projecting by π, a map ϕ : A[a, b] → A[a, b]. It is easy to check that ϕ
satisfies the twist condition (5.3) with j = 0. The set Ω0ϕ is the union of
the circumferences S1 and 3S1 . The function Υ vanishes on the ellipse x2 +
4y2 = 16. According to definition 5.5, the map ϕ is a bend-twist map as Υ
changes its sign on 3S1 . Indeed ϕ has exactly four fixed points which are
the intersections of the ellipse with the circumference 3S1. However, for any
ε > 0 sufficiently small, the map ϕε = Mε ◦ϕ (where Mε(z) = zeiε) is a
rotation of a small angle ε) has no fixed points in A. The reason is that the set
3S1 disappears after an arbitrary small perturbation for ε > 0, while the set
S1 is stable (in the sense that it continues into a nearby closed Jordan curve)
but it is not suitable for the bend-twist map theorem since Υ has constant sign
on it. C

Up to now we have presented all our results in terms of liftings
of planar maps given by the standard covering projection π in polar
coordinates. In this way we can make a simpler comparison with other
results, like the Poincaré-Birkhoff fixed point theorem and the Ding’s
analytic bend-twist maps theorem, which are usually expressed in the
same framework. It is clear, however, that our approach works exactly
the same also if different covering projections are used. For instance,
in the applications to planar systems which are a perturbation of the
first order Hamiltonian system{

ẋ = ∂H
∂y (x, y)

ẏ = −∂H∂x (x, y),
(5.7)

if we have an annulus filled by periodic orbits of (5.7), it could be
convenient to choose as a radial coordinate the number E expressing
the level of the Hamiltonian and as an angular coordinate a normalized
time of the corresponding orbit at level E. We are going to use this
remark for the application in the next section (see [49, 65] for some
analogous cases).

5.2 AN APPLICATION

It appears that the presence of bend-twist maps associated to planar
differential equations is ubiquitous. This does not mean that proving
their existence in concrete equations is a simple task. It is a common
belief that periodic solutions obtained for planar Hamiltonian systems
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via the Poincaré-Birkhoff fixed point theorem are not preserved by arbi-
trarily small perturbations which destroy the Hamiltonian structure of
the equations. A typical example occurs when we add a small friction
to a conservative system of the form

ẍ+ f(x) = 0, (5.8)

passing to
ẍ+ εẋ+ f(x) = 0. (5.9)

In general, for any continuous f and each continuous function δ : R→
R such that δ(s)s > 0 for all s 6= 0, the only possible periodic solutions
of

ẍ+ δ(ẋ) + f(x) = 0

are the constant ones, corresponding to the zeros of f (if any).
For (5.8) one can easily find conditions on f(x) guaranteeing the

existence of an annulus in the phase-plane filled by periodic orbits of
the equivalent first order Hamiltonian system{

ẋ = y
ẏ = −f(x). (5.10)

To present a specific example, let us assume that there exists an open
interval I = ]a, b[ with −∞ 6 a < 0 < b 6 +∞ such that f : I → R is
locally Lipschitz continuous with f(0) = 0 and

f(s)s > 0, ∀ s ∈ I \ {O}. (5.11)

The corresponding potential function

F(x) =

∫x
0

f(s)ds,

is strictly decreasing on ]a, 0] and strictly increasing on [0, b[ . Hence,
for every constant c with

0 < c < C = min{F(a+), F(b−)},

the energy level line Ec defined by

E(x, y) = c, for E(x, y) =
1

2
y2 + F(x), x ∈ I,

is a closed periodic orbit surrounding the origin. We denote by τc the
fundamental period of Ec . By the above assumptions it turns out that
the map c 7→ τc is continuous (see, for instance [49, (v) page 83] where
such result is proved in a more general situation).

In this setting we propose an application of the Poincaré-Birkhoff
twist theorem and the bend-twist maps theorem to equations which
are small perturbations of (5.8).
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To begin with, we suppose that there exist two levels c1 and c2 such
that

τ1 < τ2 ,

for τi = τci . For convenience in the next exposition, we also suppose
that

0 < c1 < c2 < C.

The case in which c2 < c1 can be treated analogously. The planar
annulus

A = {(x, y) ∈ I×R : c1 6 E(x, y) 6 c2} (5.12)

is filled by periodic trajectories whose period varies continuously with
the parameter c. In particular the inner boundary Ai and the outer
boundary Ao of the annulus are the energy level lines Ec1 and Ec2 ,

respectively.
Consider the level line Ec with c1 6 c 6 c2 . By (5.11) it follows that

Ec is strictly star-shaped around the origin. Hence, for every angle ϑ,
the line

Lϑ = {(r cos ϑ, r sin ϑ) : r > 0} (5.13)

intersects the curve Ec exactly in one point. From this fact, we can
immediately obtain another covering projection map onto the annulus
which is equivalent to the projection in polar coordinates π. In this way,
we can describe the points of A by means of pairs (ϑ,E), where, for
each point z ∈ A, we have that ϑ is the usual angle in polar coordinates
and E = E(z).

The continuity of the map c 7→ τc implies that for every T with

τ1 < T < τ2 , (5.14)

equation (5.8) has at least one T -periodic solution x̂(·), where for

ĉ := E(x̂(0), ˙̂x(0)),

we have that τĉ = T . Actually, due to the autonomous nature of the
system, there is at least a continuum of periodic solutions given by the
shifts in time of x̂, that is the functions x̂ϑ(·), with x̂ϑ(t) = x̂(t + ϑ).
From the point of view of the Poincaré map, which is the map

Φ : z 7→ ϕ(T, z),

where ϕ(·, z) is the solution of (5.10) with ϕ(0, z) = z, we have that Φ
has a continuum of fixed points which are all the points of the closed
curve Eĉ. The uniqueness of the periodic trajectory is not guaranteed
in general (unless we assume some further conditions, like the strict
monotonicity of the period with respect to c). In this autonomous case,
as we have observed above, an arbitrarily small perturbation destroy-
ing the Hamiltonian structure of the equation may have the effect that
the nontrivial T -periodic solutions disappear.
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As a next step, we consider a perturbation of equation (5.8) in the
form of

ẍ+ (1+w(t))f(x) = 0, (5.15)

where w : R → R is a T -periodic function. For our purposes, only
weak regularity assumptions on w(·) are needed. For instance, we can
suppose that w ∈ L1(0, T) and consider the solutions of (5.15) in the
generalized (Carathéodory) sense (see [42]). In this case, by the the-
orem of continuous dependence of the solutions in the Carathéodory
setting, the Poincaré map associated to the planar system{

ẋ = y
ẏ = −(1+w(t))f(x)

(5.16)

is well defined on A ifw(t) is sufficiently small in the L1-norm on [0, T ].
Then the following theorem holds.

Theorem 5.13 Assume (5.14). Then there exists ε > 0 such that for each
w(·) with |w|L1(0,T) < ε equation (5.15) has at least two T -periodic solutions
with initial value in A, for A defined in (5.12).

Theorem 5.13 is substantially a variant of a result of Buttazzoni and
Fonda [19]. The proof follows a version of the Poincaré-Birkhoff fixed
point theorem due to W. Ding [30] which applies to an area-preserving
twist homeomorphism of a planar annulus with star-shaped bound-
aries. To be more precise, it should be remarked that recently the
counterexamples in [66] and in [62] have shown that the theorem fails
for annular domains with non star-shaped boundaries as already re-
called in section 2.7. Here we use a result by Rebelo [96, Corollary
2] which holds for an area-preserving homeomorphism of the plane
Ψ such that Ψ(0) = 0 and with Ψ satisfying a twist condition on the
boundary of a starlike annulus surrounding the origin.

We give a sketch of the proof of Theorem 5.13 for the reader’s con-
venience.

Proof. If we denote by ψ(·, z) = (ψ1(·, z), ψ2(·, z)) the solution of (5.16)
with ψ(0, z) = z and by Ψ the corresponding Poincaré map

Ψ(z) = ψ(T, z), (5.17)

we have that Ψ is defined on the set

D = {(x, y) ∈ I×R : E(x, y) 6 c2}

(if |w|L1(0,T) is sufficiently small) as an area-preserving homeomor-
phism of D onto Ψ(D) with Ψ(0) = 0 and ψ(t, z) 6= 0, for all t ∈ [0, T ]
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and z ∈ A. Passing to the polar coordinates we can determine an an-
gular function ϑ(t, z) so that

ψ(t, z) = ||ψ(t, z)||(cos(ϑ(t, z)), sin(ϑ(t, z))).

It turns out that, in terms of the lifting Ψ̃ associated to Ψ (compare to
(5.1)), we have that

Ψ̃(ϑ, r) = (ϑ+Θ(ϑ, r), R(ϑ, r)) (5.18)

with
R(ϑ, r) = ||Ψ(z)||

and

Θ(ϑ, r) = ϑ(0, z)−ϑ(T, z) =

∫T
0

(1+w(t))f(ψ1(t, z))ψ1(t, z) +ψ
2
2(t, z)

||ψ(t, z)||2
dt,

for z = (r cos ϑ, r sin ϑ) (see [111] for the details). Assumption (5.14) for
system (5.10) which now is viewed as a comparison system for (5.16)
implies that if the perturbation w(·) is sufficiently small, then Θ > 2π
on Ai and Θ < 2π on Ao and thus the twist condition (5.3) holds for
j = 1.

Finally, using the fact that Ai and Ao are strictly star-shaped with
respect to the origin with Ψ(0) = 0, we can apply W. Ding’s version of
the Poincaré-Birkhoff theorem [30, 96] and the existence of at least two
distinct fixed points for Ψ in the interior of A is ensured.

A natural question that now can arise is whether such (nontrivial)
T -periodic solutions would persist if a sufficiently small perturbation
destroying the Hamiltonian structure of the equation was performed.
In the abstract setting of the Poincaré-Birkhoff theorem an answer can
be found in the papers by Neumann [75] and Franks [35, 36] according
to which if we have a finite number of fixed points then there are also
fixed points with nonzero index. Actually, in [75, Theorem 2.1], the
more general situation that the set of fixed points does not separate
the boundaries is considered as well. In such cases, a standard appli-
cation of the fixed point index theory (or the topological degree theory
for maps of the plane) guarantees the persistence of fixed points for
maps which are close to the Poincaré map and hence the existence of
nontrivial T -periodic solutions also for sufficiently small perturbations
of equation (5.15) holds. From this point of view, we could say that
the bend-twist map theorem, in the form of theorem 5.10 provides an
effective criterion to prove the persistence of periodic solutions under
small perturbations. In order to show an example of equation (5.15)
to which our result can be applied, we consider a special form of the
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T -periodic weightw(t). For simplicity in the exposition we confine our-
selves to the case of a continuous and T -periodic function w : R → R

such that there is an interval ]t0, t1[⊂ [0, T ] such that

w(t) > 0, ∀ t ∈ ]t0, t1[ and w(t) = 0, ∀ t ∈ [0, T ] \ ]t0, t1[ . (5.19)

By the continuity of w(·) we can get the following corollary of theorem
5.13 where the smallness of w in the L1-norm is expressed in terms of
δ0 .

Corollary 5.14 Assume (5.14) and let w(·) be a continuous and T -periodic
function satisfying (5.19). Then there exists δ0 > 0 such that if

t1 − t0 < δ0 ,

equation (5.15) has at least two T -periodic solutions with initial value in A.

In comparison to this result obtained via the Poincaré-Birkhoff fixed
point theorem, using Corollary 5.11 we can obtain the following.

Theorem 5.15 Assume (5.14) and let w(·) be a continuous and T -periodic
function satisfying (5.19). Then there exists δ1 > 0 such that if

t1 − t0 < δ1 ,

equation (5.15) has at least four T -periodic solutions with initial value in A.
Moreover, the result is stable with respect to small perturbations. In particular,
for the equation

ẍ+ εẋ+ (1+w(t))f(x) = 0, (5.20)

there are at least four T -periodic solutions with initial value in the annulus A
if ε is sufficiently small.

Proof. Without loss of generality (via a time-shift leading to an equiva-
lent equation), we can suppose that

w(t) = 0, ∀ t ∈ [0, T − δ] and w(t) > 0, ∀ t ∈ ]T − δ, T [ ,

where we have set
δ = t1 − t0 .

To begin with, we consider the Poincaré map Ψ on the annulus A,

with Ψ defined as in (5.17). Passing to the polar coordinates and fol-
lowing the same argument as in the proof of theorem 5.13, we find a
constant δ0 such that if δ < δ0 then Θ > 2π on Ai and Θ < 2π on Ao
and hence the twist condition (5.3) holds for j = 1.

In order to check the validity of the condition on the map Υ, it is
convenient to enter in the setting of the modified polar coordinates
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(ϑ,E), instead of the standard polar coordinates (ϑ, r). In this case, we
can express the function Υ as

Υ(z) = E(Ψ(z)) − E(z). (5.21)

We split now the map Ψ as

Ψ = Ψ2 ◦Ψ1
with Ψ1 and Ψ2 defined as

Ψ1(z) = ϕ(T − δ, z),

where ϕ(·, z) is the solution of the autonomous system (5.10) with
ϕ(0, z) = z and

Ψ2(z) = ψ(T ; T − δ, z),

where ψ(·; T − δ, z) is the solution of system (5.16) which departs from
the point z at the time T − δ. Performing this splitting we have also
used the fact that system (5.16) coincides with the autonomous system
(5.10) on [0, T − δ]. Hence we have

E(Ψ1(z)) = E(z), ∀ z ∈ A. (5.22)

Let us consider now a solution ψ(t) = (ψ1(t), ψ2(t)) of (5.16) and
evaluate the energy E along such solution. We obtain

d

dt
E(ψ1(t), ψ2(t)) = ψ ′2(t)ψ2(t) + f(ψ1(t))ψ

′
1(t)

= −(1+w(t))f(ψ1(t))ψ2(t) + f(ψ1(t))ψ2(t)

= −w(t)f(ψ1(t))ψ2(t).

For t ∈ ]T − δ, T [ we have that w(t) > 0 and therefore the energy evalu-
ated on a solution for the time interval [T − δ, T ] is decreasing as long
as the solution remains in the first or in the third quadrant and it is in-
creasing as long as the solution remains in the second or in the fourth
quadrant.

Let α ∈ ]0, π/2[ be a fixed angle (the smaller α we take, the larger δ1
will be allowed). Recalling the definition of Lϑ in (5.13), let Λ1 be the
intersection of the line Lπ

2−α
with the annulus A. We are interested in

the motion of the points ofΛ1 under the action of Ψ2 . Since d
dtϑ(t) > 0,

the points of Λ1 move in the clockwise sense and therefore they remain
in the first quadrant if δ is sufficiently small. Hence d

dtE(ψ1(t), ψ2(t))
is negative for t ∈ [T − δ, T ] when (ψ1(0), ψ2(0)) ∈ Λ1 . This proves
that

E(Ψ2(z)) − E(z) < 0, ∀ z ∈ Λ1 .

Arguing in the same way, we have that

E(Ψ2(z)) − E(z) > 0, ∀ z ∈ Λ2 = Lπ−α ∩A ,
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E(Ψ2(z)) − E(z) < 0, ∀ z ∈ Λ3 = L 3π
2 −α ∩A ,

E(Ψ2(z)) − E(z) > 0, ∀ z ∈ Λ4 = L2π−α ∩A .

All these relations hold provided that δ is chosen suitably small (say
δ < δ1) so that the solutions of (5.16) which depart at the time T − δ
from Λi , remain in the same quadrant of Λi for all t ∈ [T − δ, T ]. In
order to make such argument more precise we can evaluate the angular
displacements and choose δ > 0 such that∫T

T−δ

(1+w(t))f(ψ1(t, z))ψ1(t, z) +ψ
2
2(t, z)

||ψ(t, z)||2
dt <

π

2
−α, (5.23)

holds for all z ∈ Λi (i = 1, . . . , 4).
Finally, recalling (5.22) and the definition of Υ in the (ϑ,E)-coordinates

given in (5.21) and setting

Γi = Ψ
−1
1 (Λi), i = 1, . . . , 4,

we conclude that Υ < 0 on Γi for i odd and Υ > 0 on Γi for i even. The
thesis is thus achieved using Corollary 5.11.

An analysis of the proof and of inequality (5.23) shows that our
argument is still valid if we take w(t) = χ[t0,t1]W(t), where W(·) is a
fixed positive function in L1([0, T ]).

Clearly, the same result holds also for equation (5.20) which can be
viewed as a perturbation of (5.15). Of course, for such an application
we exploit also the fact that in Corollary 5.11 no area-preserving type
hypothesis is required. The smallness of ε will depend on the small-
ness of δ1 .

We have achieved our result for a very special form of the weight
function w. A natural question concerns which kind of shape for a
T -periodic coefficient q(t) may be required in order to obtain a similar
result for equation

ẍ+ q(t)f(x) = 0.

Generally speaking our argument may work (modulo technical diffi-
culties) whenever we can split the behaviour of the solutions of the
equivalent system in the phase-plane into two regimes, depending by
a different shape of q(t) in two subintervals of its domain. In at least
one of these regimes, we need to have a control of the trajectories and
prove that they do not go too far from an annular region described
by the level lines of an associated autonomous system. In the other
regime, we need to show that there are at least some trajectories which
are, in some sense, transverse to the annulus (and move into oppo-
site directions). A different application of our technique has already
been exposed in section 3.5 where we have considered a model of fluid
mixing which is reminiscent to the case in which q(t) changes its sign.

120



5.2 An application

A theorem about the existence of four solutions in this setting ap-
pears rather unusual (with respect to corollary 5.14 and other analo-
gous results following from the Poincaré-Birkhoff twist theorem). For
previous multiplicity results in a completely different setting (namely
the Floquet problem for a superlinear equation), see [48].
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A I N D E X O F A V E C TO R F I E L D A LO N G
A C U R V E : D E F I N I T I O N A N D P R O P E R T I E S

We recall here some definitions and basic properties of the fixed point
index. They are basic well-known facts, which are summarized in the
sequel for completeness.

Let u and v be two distinct points in the plane R2; the direction from
u to v is the normalized vector

D(u, v) =
u− v

||u− v||

which can be seen as a point in S1. If h : X → R2 \ {0} is a map which
has no fixed points on a curve γ : [0, 1]→ X, then we can compute the
index of h along γ which is denoted by iγ(h) and represents the total
rotation performed by the vector D(z, h(z)) when z moves along the
curve γ. Since h has no fixed points on γ, the direction

γ̃(t)
def
= D(γ(t), h(γ(t))) =

γ(t) − h(γ(t))

||γ(t) − h(γ(t))||
(A.1)

is a well-defined vector of R2 which lies on S1. Therefore there exists
a continuous function ϑ(·) such that it can be expressed by the polar
coordinates

γ̃(t) = (cos ϑ(t), sin ϑ(t)) ∀ t ∈ [0, 1] . (A.2)

The index of h along γ is defined as

iγ(h) =
ϑ(1) − ϑ(0)

2π
. (A.3)

Notice that the index is well-defined, since it is independent of the
choice of the angular function ϑ(·). Indeed, if ϑ1(·) and ϑ2(·) are
two different functions both satisfying relation (A.2), then necessarily
ϑ1(·) = ϑ2(·) + 2kπ for some k ∈ Z, then ϑ1(1) − ϑ1(0) = ϑ2(1) − ϑ2(0).
The index of a map along a curve satisfies some basic properties.

1. Let hλ : X → R2 be a family of homeomorphism such that
λ 7→ hλ is a continuous map, and let γλ : [0, 1] → X be a fam-
ily of paths such that λ 7→ γλ is a continuous map, then, if every
hλ(γλ(t)) 6= γλ(t) for every λ and for every t ∈ [0, 1], then the
index of hλ along γλ is constant with respect to the parameter λ.
This property is called homotopy invariance.
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A Index of a vector field along a curve: definition and properties

2. The index is congruent modulo 1 to 1
2π times the angle between

γ̃(0) and γ̃(1)

3. If γ = γ1γ2 is a path obtained by pasting two different paths,
that is γ|[a,c] = γ1 and γ|[c,b] = γ2, with suitable a < c < b, then
iγ(h) = iγ1(h) + iγ2(h) .

4. The index iγ(h) coincides with ih(γ)(h−1).
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B N OTAT I O N S

• Z,R,C are the sets of integer, real and complex numbers respec-
tively; N = {0, 1, . . . , n, . . .} is the set of the nonnegative integers,
while N∗ is the set {1, 2, . . . , n, . . .}

• Rno = Rn r {O}, R+ = [0,+∞[, R+
o = ]0,+∞[

• || · || the euclidean norm in Rn, || · ||p is the norm in Lp

• Q = [0, 1]× [0, 1] is the unit square in R2

• B[P, r] = {z ∈ R2 : ||P − z|| 6 r} is the closed ball of centre P and
radius r, while the open one is B(P, r) = {z ∈ R2 : ||P− z|| < r}

• Cr = ∂B(0, r) = B[P, r]rB(P, r)

• S1 = ∂B(0, 1)

• A[a, b] = B[0, b] r B(0, a) is a standard planar annulus whose
interior is A(a, b) = intA[a, b]
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