
UNIVERSITÀ DEGLI STUDI DI UDINE

TESI DI DOTTORATO DI RICERCA

Per ottenere il titolo di
Dottore di Ricerca dell’Universitá di Udine
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Abstract

S
ince many years we are witnessing a progressive scaling of transistor feature size
in order to increase packing densities and to meet market demands for powerful

small size devices with reduced power dissipation. At the state of art, performance
degradation, integration for present and next generation of devices and increased
variability are among the major challenges to scaling. Degraded performances are
due to a combination of reduced mobility caused mainly by non-uniformity of the
interfaces at atomic scales, parameters variability introduced by the discreteness of
charge and matter, and, a progressively worse electrostatic control of the gate on the
channel as the physical dimension of the devices are scaled down, thus leading to
increased leakage, worst drive-current and timing issues in logic circuits. High leakage
current in deep sub-micron devices is becoming a significant contributor to power
dissipation of CMOS circuits, therefore improving performance while maintaining
leakage control and scaling dimensions is very important, especially for low power
applications.

To improve the drive current and sub-threshold regime, CMOS technology is
actively exploring devices with channel materials alternative to silicon (e.g. III-V
group semiconductors) and/or alternative device architectures (e.g. FinFET, GAA
MOSFETs) with induced channel-stress to further improve performances. In this
framework, the modelling of modern devices should be able to take into account
the most relevant technological options to save development, implementation time
and costs. This requires an appropriate description of the most relevant scattering
mechanisms and of the quantum mechanical effects. Due to the lack of dependable,
commercial TCAD models that can predict the performance of the next generation
devices, the aim of this thesis is the development and validation of TCAD tools for
both the purpose of device performance analysis and performance improvement. We
first present a comparative simulation study of Ultra-Thin-Body (UTB) strained
silicon (sSi) and III-V semiconductor based MOSFETs by using a comprehensive
semiclassical Multisubband Monte Carlo (MSMC) transport model. In particular we
show that, due to the finite screening length in the source-drain regions, III−V and Si
nanoscale MOSFETs with a given gate length (LG) may have a quite different effective
gate length (Leff), and the difference in Leff provides a useful insight to interpret the
performance comparison of III−V and Si MOSFETs. In the second part we present
a new model for the surface roughness scattering. The model is suitable for bulk, for
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0. Abstract

UTB and for Hetero-Structure Quantum Well (HS-QW) MOSFETs. Comparison
with experimental mobility for Si bulk MOSFETs shows that a good agreement with
measured mobility can be obtained with a r.m.s. value of the Surface Roughness
(SR) spectrum close to several AFM and TEM measurements. Finally, we developed
a deterministic solver for the Boltzmann Transport Equation (BTE) for Gate All
Around (GAA) circular MOSFETs. In particular, we solve the Schrödinger equation
for arbitrary crystal transport directions within the Effective Mass Approximation
(EMA) including the wave-function penetration into the oxide and the nonparabolicity
of the energy dispersion relation along the quantization plane and transport direction.
Then, the BTE is solved without any a-priori assumption and including the main
scattering mechanisms responsible for performance degradation, with a new model
for the SR scattering.
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Chapter 1

Introduction

F
or many decades the Complementary-Metal-Oxide-Semiconductor (CMOS) tran-
sistor has been continually scaled down, which has resulted in high transistors

density per unit of wafer area but also in faster chips that consume less power
per transistor in every generation. This has been made possible by the improved
lithographic capability to print shorter gate lengths and the ability to grow nearly
perfect oxides with ever decreasing thicknesses up to few atomic layers [1].

In past years, scaling has followed three paradigms and the main features are
reported in Tabs.1.1 and 1.2. In constant field scaling [2], physical dimensions
and applied voltage are scaled by the same factor while doping concentration is
increased by the same factor, because the target is to maintain a constant electric
field to ensure the electrostatic integrity and reliability of devices. However, this may
jeopardize compatibility with other devices that operate at different voltages and
decrease on-performances due to increased Coulomb scattering. This scenario yields
the largest power-delay product reduction (see Tab.1.2), and VT scales as the VDD

but the scaling is limited by the targets on the IOFF prescribed by the roadmap [3].

An alternative approach, which is referred to as constant voltage scaling, consists
in keeping the voltage constant for an easier integration with pre-existing systems,
but the disadvantage is that the electric field increases as the minimum feature length
is reduced. This leads to velocity saturation, mobility degradation, increased leakage
currents and lower breakdown voltages. For these reasons, the typical approach
to scaling feature size for devices has been a middle way between the two scaling
techniques, namely generalized scaling [4] where voltages are scaled less aggressively
than linear dimensions, while still maintaining constant the shape of the electric-field
pattern. Even with the best choice of scaling rules, as gate length becomes the same
order of magnitude as the depletion layer width, several phenomena affect adversely
the performance of MOS devices:

• reduction in threshold voltage of short devices compared to the long channel
ones making VT dependent on VDS (Voltage threshold roll-off).

• degradation of gate oxide due to tunneling and hot carriers.
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1. Introduction

These aforementioned issues are due on the one hand to: Short Channel Effects (SCE),
Drain-Induced Barrier Lowering (DIBL) and Punchthrough, and on the other hand to
Impact Ionization, Tunneling and Channel Hot Electrons effects. In this respect, the
success attained by CMOS technology is also related to the strategies used to continue
along the path of technology improvement. In fact, in the last ten years the gate
length has not scaled proportionately with the device pitch [5–10] because of other
technology boosters that can provide some relief by also allowing more aggressive
VDD scaling: new materials for the gate dielectric in replacement of the SiO2, namely
high-κ gate dielectrics, that can keep low the Equivalent Oxide Thickness (EOT),
architectures alternative to the planar bulk MOSFETs with induced stress, as well
as high-mobility channel materials (i.e. III-V group semiconductors).

As reported in [3], in future devices for logic applications the amount of power
that can be dissipated by a single transistor as well as the total amount per chip
(which increases rapidly due to the aggressive downscaling) are the limiting factors
along the path of miniaturization. Power dissipation is given by the contribution of
the dynamic power Pdyn=α CloadVDD

2 fswitch(where α is the fraction of gates actively
switching) and static power (Pstat=IoffVDD). Consequently, the VDD lowering is the
most effective way for power reduction. After a regular decrease of VDD from 5V in
the ’80s to 1.2V in the 2002, we have seen a plateau close to 1V till 2010. In recent
years lot of efforts have been put into reducing VDD, however, when VDD approaches
about 0.6 V, it poses noise/variability challenges, and moreover, it becomes more
difficult to scale than other parameters mainly because of the fundamental limit of
the sub-threshold slope of 60 mV/decade in MOS devices. This fact, along with the
need for high performance transistors to achieve currents in the order of 1.9 mA/µm
at VDD=0.68 V (for HP MOSFETs for the year 2020 [3]), makes the static power
dissipation particularly difficult to control while at the same time meeting aggressive
targets for performance scaling.

1.1 Overview of MOSFET scaling

1.2 Material and device innovations

1.2.1 Alternative channel materials

Semiconductors alternative to silicon and belonging to the III-V group of the
periodic table are being actively investigated to improve the transistors performances
or keep them constant while decreasing transistors feature size and VDD because
of their superior injection velocity vinj as shown in Fig.1.1. In fact, according to
[12, 13] the on-current (ION) in the quasi-ballistic transport regime is defined at
VDS=VGS=VDD and can be expressed as:

ION = WCG,eff(VDD −VT)vinj
1− r
1 + r

(1.1)

2



1.2. Material and device innovations

Table 1.1: Comparison of the effect of scaling on MOSFET device parameters.
1 < k < α and α > 1.

Parameter Expression Constant Constant Generalized
Field Voltage scaling

Dimensions W,L,tox
1
α

1
α

1
α

Voltage Vdd,Vt
1
α 1 1

k

Area A WL 1
α2

1
α2

1
α2

Doping concentration NA
#dopant
cm3 α α2 α2

k

Gate capacitance Cgate
εox
tox
WL 1

α
1
α

1
α

Electric Field F 1 α α
k

Current ION
1
α α α

k2

Current density J ION/Area α α3 α3

k2

Table 1.2: Power-delay scaling.

Parameter Expression Constant Constant Generalized
Field Voltage scaling

Power P IONVDD
1
α2 α α

k3

Gate delay td
CgateVDD

ION

1
α

1
α2

k
α2

Power delay P · td CgateV
2
DD

1
α3

1
α

1
k2α

where W is the device width, vinj the injection velocity defined as the average electron
velocity at the virtual source (VS), r is the back-scattering coefficient and CG,eff

is an effective gate capacitance accounting for quantum mechanical confinements,
finite density-of-states and dead spaces at the oxide-semiconductor interfaces [14].
CG,eff is given by the series combination of the gate oxide capacitance (Cox) and
the inversion layer capacitance (Cinv), which in turn is given by the series of the
centroid capacitance (Ccentr,i) and a quantum capacitance (Cquant,i) defined in [15].
By assuming a simplified case in which only one subband contributes to the transport
(quantum-limit transport) and a strong degeneracy in Fermi-Dirac statistics, Cinv is
given by [16]:

Cinv ≈
e2µνmDOS

π~2
(1.2)
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1. Introduction

Figure 1.1: Experimentally extracted injection velocity vinjin HEMTs measured at
VDD=0.5V and Si MOSFETs at VDD=1.1-1.3 V [11]

where µν is the valley degeneracy and mDOS the DOS effective mass. The inversion
capacitance in Eq.1.2 is useful to compare the on-current for different semiconductors
at a given bias. In fact, looking at Eqs.1.1 and 1.2, the gain given by larger vinj for
III-V based semiconductors is mitigated by the counteracting effect of a lower mDOSif
compared with silicon, which leads to a smaller inversion capacitance at given supply
voltage with respect to materials with larger masses. We also calculate a first-order
estimate [17] of switching delay of a digital gate as:

Tsw =
Qsw

ION
(1.3)

where Qsw is the switched charge and includes also parasitics (i.e. interconnection
capacitance, fringing capacitance). Eqs.1.1 and 1.3 suggest that Tsw is roughly
proportional to vinj

−1, regardless of Qsw being mostly due to the intrinsic transistor
charge or to the parasitic capacitances. More refined estimates of Tsw can be
obtained by replacing the ION in Eq.1.3 with an effective drive current [18, 19],
however, Eq.1.3 is reasonably adequate for the purpose of comparing MOSFETs
with different semiconductor materials.

Since Tsw is inversely proportional to vinj, it is substantially degraded when VDD

is reduced because, for a given technology, it can be demonstrated that vinj increases
with VGS [13], because the thermal velocity at the virtual source is enhanced by
VGS through the electron degeneracy and, furthermore, the channel back-scattering
coefficient is reduced increasing VGS [13].

In this scenario, new channel materials with large carrier mobility and injection
velocity (see Fig.1.1) are being investigated for n-type MOSFETs [20–26] as shown
in Fig.1.2 to allow for VDD reduction at approximately constant delay.

4



1.2. Material and device innovations
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Figure 1.2: Number of papers on III-V semiconductor MOSFETs published on
major journals and conference proceedings (IEEE, IEDM, ESSDERC, VLSI Symp.).

1.2.2 Alternative device architectures

Planar transistors have been the backbone of integrated circuits for several decades
and the constant scaling has reduced the channel length such that SCE have become
very challenging. Hence, through continuous efforts to fabricate devices beyond bulk
MOSFET scaling limits, CMOS technology is rapidly moving from classical planar
single gate devices toward UTB and Double-Gate UTB (DG-UTB) MOSFETs, and
then to 3D structures such as TriGate, FinFET, and to GAA MOSFETs.

The short channel effects arise from the electrostatic effect of the source and drain
regions on the channel, namely when source/drain competes with gate to control the
channel barrier, so in order to improve the electrostatic integrity (EI) the gate to
channel capacitive coupling must be large compared to the source/drain to channel
coupling [27, 28]. To achieve this objective in a single gate MOS transistor having a
thick channel, it is necessary a high level doping to decrease the depletion depth [27]
and in addition shallow junctions are required in source/drain regions. Conversely,
in UTB SOI and in 3D devices (TriGate, FinFETs, GAA MOSFETs) sub-threshold
parameters are better than in a traditional MOSFETs (without affecting the doping),
due to the reduced channel thickness in the first case and due to more than one gate
surrounding the channel in the second.

In UTB MOSFETS (also known as a fully depleted SOI) [29, 30] the reduction
of off-current is obtained thanks to the use of a body region which is significantly
thinner than the gate length (about 1/3 to 0.5 of the natural length scale [31, 32]) in
order to maintain full substrate depletion under gate control and prevent leakage
paths far from the gate. The potential barrier for any path between the source and
drain is strongly coupled to the gate than to the drain due to a better electrostatic
control, leading to smaller SCE and superior EI [28] compared to the conventional
Bulk MOSFETs. Furthermore, the undoped UTB is a promising choice since it
can yield higher carrier mobilities due to negligible impurity scattering, offering the
opportunity to eliminate the impact of random dopant fluctuations on the threshold

5



1. Introduction

voltage [33]. A further improvement consists in UTB Double Gate (DG-UTB), that
can be regarded as the natural extension of SOI technology for which the effective
thickness of the body becomes equal to Tw/2 without any effort on doping. Moreover,
in UTB-DG MOSFETs, back-gate bias option results in better control of VT by
exploiting the electrostatic coupling from two gates on either side of the channel.

A further evolution driven by extremely accurate lithography processes consist in
FinFET, TriGate-FET, Omega-FET and GAA MOSFETs that allow high density
lateral and vertical integration. They overcome the limit of scaling issue of planar
MOSFTEs and inherently have good suppression of SCEs, high transconductance and
quasi ideal sub-threshold slope (SS) [34]. Moreover, they can easily incorporate some of
the technology boosters including alternative channel orientations, strained channels
[35], high-k gate dielectrics and metal gate electrodes, so that, they can provide
significantly higher nMOS and pMOS drive current than the planar counterpart at
the same off-state leakage [36]. Short channel effects can be controlled with much
less stringent oxide thickness requirements than in traditional MOSFETs due to a
better electrostatic control of the gate. However, the superior electrostatic control
will be offset by parasitics (i.e. gate-to-source/drain capacitance) [37].

FinFET transistor was first demonstrated in 1998 [38] and the conduction takes
place on the vertical side-walls of the fin, thus the effective device width of a narrow
fin is approximately twice the fin height. The thickness requirement is relaxed to
approximately 2/3 to 1 of the natural channel length since each gate controls half of
the body thickness [39]. First III-V based FinFET was demonstrated in 2009 [40] and
in 2014 INTEL Corporation has announced its new 14-nm technology node FinFET
[41] featuring an LG of 20nm, Wfin= 8nm and Hfin=42nm.

Triple-Gate MOSFETs [42] and Omega-FinFETs on buried oxide[43] and on bulk
substrate [44] have been proposed as a means to alleviate the stringent thin width
requirements of FinFETs, enabling more relaxed fin aspect-ratio (Hfin/Wfin) due
to additional electrostatic control from the top gate. In this respect, in 2012 Intel
has reported [45] on a leading edge 22nm Silicon-on-Chip (SoC) process technology
featuring 3-D Tri-Gate MOSFETs for logic applications.

Finally, Gate All Around MOSFETs, that have been first demonstrated in silicon
[46] and later in III-V [47][48], are the most promising architectures for ultimate device
scaling allowing to achieve the best electrostatic control since the gate surrounds the
entire channel.

Finally, Figs.1.3, 1.4, 1.5, 1.6 report the most important figures of merit for
logic applications for HP devices reported in experiments published between 2007
and 2015 for planar, FinFET, HEMTs and nanowire transistors. To make this
comparison fair, the displayed data points meet strict criteria: data are extracted at
the relevant drain bias VDS= 0.5 V for III-V based MOSFETs and VDS>=0.7 V for
silicon-based MOSFETs (values are referenced in the figures). For ION-versus-LG

results (Fig.1.4), only data with IOFF= 100 nA/µm have been included since the
target is the analysis of HP devices (IOFF is defined at VGS= 0 V and the IOFF target
meets the requirements in [3]), whereas ION has been extracted at VDS=VGS=0.5

6



1.2. Material and device innovations
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Figure 1.3: Measured maximum saturation transconductance gmsat,max-versus-SS
for III-V- and silicon-based transistors and for VDS=0.5 V unless otherwise stated.
Extracted data fulfil requirements for IOFF =100 nA/µm or, if not possible, for
ION/IOFF> 1·103. Dashed lines: lines of constant Q=gmsat,max/SS. LG values are
referenced therein close to the symbols.

V for III-V-based or VDS=VGS>= 0.7 V for silicon-based transistors. For SSsat

versus LG in Fig.1.5, gmsat,max versus SSsat in Fig.1.3 and DIBL versus LG in Fig.1.6
we have reported only data with IOFF= 100 nA/µm or, in the case of larger IOFF

values, with an ION/IOFF ratio larger than 1·103 (with ION defined as the current at
VDS=VGS= 0.5 V for III-V-based or > 0.7 V for silicon-based transistors).

Fig.1.3 shows that the transconductance gmsat,max strongly depends on the device
channel length and, that silicon devices are still superior to III-V based transistors.
This is due to the combination of worse oxides in III-V based devices with respect
to the native SiO2 oxide used for Silicon MOSFETs and in general terms, to a less
mature technology for III-V transistors. However, very good results are obtained
for InAs MOSFETs with SSsat values approaching 60 mv/dec and large gmsat,max

values. Nevertheless, the leading edge INTEL silicon devices for the 22-nm and
14-nm technology node [41, 45] outperform the competitor devices in terms of SS and
gmsat,max, but at a larger operating voltage with respect to III-V MOSFETs. Fig.1.4
shows the ION current for transistors at the operating voltage VGS=VDS=0.5V, unless
otherwise stated, at the same IOFF current. It can be shown that the best results are
obtained for silicon but at a voltage quite above the operating voltage of 0.5V used
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Figure 1.4: Measured on-current ION-versus-LG at VDS=VGS= 0.5 V unless otherwise
stated. IOFF= 100 nA/µm.
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Figure 1.5: Measured SS-versus-LG at VDS= 0.5 V unless otherwise stated. IOFF

requirements are the same as reported in Fig.1.3.
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1.2. Material and device innovations
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Figure 1.6: Measured DIBL-versus-LG at VDS= 0.5 V unless otherwise stated. IOFF

requirements are the same as reported in Fig.1.3.

for the III-V MOSFETs reported in the figure. In fact, when the gate voltage of the
silicon based MOSFETs is decreased to 0.5V (right-triangles), III-V MOSFETs show
performances comparable, or better, to those of silicon.
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1. Introduction

1.2.3 Purpose of this work

In the framework of aggressively scaled devices and architectures alternative to
planar devices, the aim of this thesis is manyfold. We start by the metrics that
can provide useful insight when III-V- and silicon- based transistors are compared.
Then we develop a new model for one of the most important scattering mechanism
in ultra-thin channel and nanowire MOSFETs, that is surface roughness scattering.
Another important part of the work is the development of a comprehensive simulator
for GAA MOSFETs that is a valuable alternative to conventional simulators based
on drift-diffusion solutions, MonteCarlo-like solvers [49], or highly computational
burden full-quantum simulators [50–56] including also the main scattering mechanisms
responsible for performance degradation.

The present manuscript is organized as follows. Chapter2 presents a comparative
simulation study of ultrathin-body InAs, InGaAs and strained Si MOSFETs by
using a comprehensive semiclassical multisubband Monte Carlo (MSMC) transport
model. Our results show that, due to the finite screening length in the source-drain
regions, III-V and Si nanoscale MOSFETs with a given LG may have a quite different
Leff. The difference in Leff provides a useful insight to interpret the performance
comparison of III-V and Si MOSFETs and we also show that the engineering of
the source-drain regions has a remarkable influence on the overall performance of
nanoscale III-V MOSFETs. In Chapter3 we present a new model for the SR limited
mobility in MOS transistors. The model is suitable for bulk , planar thin body devices
and nanowire MOSFETs and explicitly takes into account the non linear relation
between the displacement ∆ of the interface position and the SR scattering matrix
elements, which is found to significantly influence the r.m.s value (∆r.m.s.) of the
interface roughness that is necessary to reproduce SR-limited mobility measurements.
In particular, comparison with experimental mobility for bulk Si MOSFETs shows
that with the new SR scattering model a good agreement with measured mobility
can be obtained with ∆r.m.s. values of about 0.2 nm, which is in good agreement
with several AFM and TEM measurements. For thin body III-V MOSFETs, the
proposed model predicts a weaker mobility degradation at small Tw, compared to
the Tw6 behavior observed in Si extremely thin body devices.

Chapter4 presents a Schrödinger-Poisson solver for circular sections of nanowire
transistors taking into account the non-parabolicity of the electron energy relation
along transport direction and quantization plane and, furthermore, allows one to
simulate different transport directions considering valleys anisotropy. Also the
penetration of the electron wave-function into the gate oxide material is considered.
Finally, Chapter5 presents a deterministic solver for the BTE equation in GAA
circular nanowires. All the main scattering mechanisms are included as well as
screening effects for surface roughness and coulomb scattering. The model for the
SR scattering is the extension to circular domains of the new model developed for
planar devices and reported in Chapter3.

10



References

[1] M. Krishnan, L. Cheng, T.-J. King, J. Bokor, and C. Hu, “MOSFETs with
9 to 13 A thick gate oxides”, in IEEE IEDM Technical Digest, Dec. 1999,
pp. 241–244.

[2] R. Dennard, V. Rideout, E. Bassous, and A. LeBlanc, “Design of ion-implanted
MOSFETs with very small physical dimensions”, IEEE Journal of Solid-State
Circuits, vol. 9, no. 5, pp. 256–268, Oct. 1974.

[3] (2013). International Technology Roadmap for Semiconductors, [Online]. Avail-
able: http://www.itrs.net/Links/2012ITRS/Home2012.htm.

[4] G. Baccarani, M. Wordeman, and R. Dennard, “Generalized scaling theory
and its application to a 1/4 micrometer MOSFET design”, IEEE Trans. on
Electron Devices, vol. 31, no. 4, pp. 452–462, Apr. 1984.

[5] T. Ghani et al., “A 90nm high volume manufacturing logic technology featuring
novel 45nm gate length strained silicon CMOS transistors”, in IEEE IEDM
Technical Digest, Dec. 2003, pp. 11.6.1–11.6.3.

[6] S. Tyagi et al., “An advanced low power, high performance, strained channel
65nm technology”, in IEEE IEDM Technical Digest, Dec. 2005, pp. 245–247.

[7] K. Mistry et al., “A 45nm Logic Technology with High-k Metal Gate Tran-
sistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning,
and 100 Pb-free Packaging”, in IEEE IEDM Technical Digest, Dec. 2007,
pp. 247–250.

[8] P. Packan et al., “High performance 32nm logic technology featuring 2nd
generation high-k metal gate transistors”, in IEEE IEDM Technical Digest,
Dec. 2009, pp. 1–4.

[9] C.-H. Jan et al., “A 22nm SoC platform technology featuring 3-D tri-gate
and high-k metal gate, optimized for ultra low power, high performance and
high density SoC applications”, in IEEE IEDM Technical Digest, Dec. 2012,
pp. 3.1.1–3.1.4.

[10] S. Natarajan et al., “A 14nm logic technology featuring 2nd-generation Fin-
FET, air-gapped interconnects, self-aligned double patterning and a 0.0588
µm2 SRAM cell size”, in IEEE IEDM Technical Digest, Dec. 2014, pp. 3.7.1–
3.7.3.

11

http://www.itrs.net/Links/2012ITRS/Home2012.htm


REFERENCES

[11] J. Del Alamo, “Nanometre-scale electronics with III-V compound semicon-
ductors”, Nature, vol. 479, pp. 317 –323, 2011.

[12] M. Lundstrom, “Elementary scattering theory of the Si MOSFET”, IEEE
Electron Device Lett., vol. 18, no. 7, pp. 361–363, Jul. 1997.

[13] D. Esseni, P. Palestri, and L. Selmi, Nanoscale MOS Transistors - Semi-
Classical Transport and Applications, 1st. Cambridge University Press., 2011.

[14] Y. Taur and T. Ning, Fundamentals of VLSI Devices, 1st. Cambridge Univer-
sity Press., 2011.

[15] D. Jin, D. Kim, T. Kim, and J. del Alamo, “Quantum capacitance in scaled
down III-V FETs”, in IEEE IEDM Technical Digest, Dec. 2009, pp. 1–4.

[16] G. Hiblot, Q. Rafhay, F. Boeuf, and G. Ghibaudo, “Analytical Model for the
Inversion Gate Capacitance of DG and UTBB MOSFETs at the Quantum
Capacitance Limit”, IEEE Trans. on Electron Devices, vol. 62, no. 5, pp. 1375–
1382, May 2015.

[17] F. Conzatti, M. Pala, D. Esseni, E. Bano, and L. Selmi, “Strain-Induced
Performance Improvements in InAs Nanowire Tunnel FETs”, IEEE Trans.
on Electron Devices, vol. 59, no. 8, pp. 2085 –2092, 2012.

[18] M.-H. Na, E. Nowak, W. Haensch, and J. Cai, “The effective drive current in
CMOS inverters”, in IEEE IEDM Technical Digest, 2002, pp. 121–124.

[19] J. Deng and H.-S. Wong, “Metrics for performance benchmarking of nanoscale
Si and carbon nanotube FETs including device nonidealities”, IEEE Trans.
on Electron Devices, vol. 53, no. 6, pp. 1317–1322, 2006.

[20] M. Luisier, “Performance Comparison of GaSb, Strained-Si, and InGaAs
Double-Gate Ultrathin-Body n-FETs”, IEEE Electron Device Lett., vol. 32,
no. 12, pp. 1686–1688, 2011.

[21] M. Heyns et al., “Advancing CMOS beyond the Si roadmap with Ge and
III/V devices”, in IEEE IEDM Technical Digest, Dec. 2011, pp. 13.1.1–13.1.4.

[22] S. Kim, M. Yokoyama, N. Taoka, R. Nakane, T. Yasuda, O. Ichikawa, N.
Fukuhara, M. Hata, M. Takenaka, and S. Takagi, “Enhancement technologies
and physical understanding of electron mobility in III-V n-MOSFETs with
strain and MOS interface buffer engineering”, in IEEE IEDM Technical Digest,
Dec. 2011, pp. 13.4.1–13.4.4.

[23] M. Radosavljevic et al., “Electrostatics improvement in 3-D tri-gate over
ultra-thin body planar InGaAs quantum well field effect transistors with
high-K gate dielectric and scaled gate-to-drain/gate-to-source separation”, in
IEEE IEDM Technical Digest, Dec. 2011, pp. 33.1.1–33.1.4.

[24] X. Zhou, Q. Li, C. W. Tang, and K. M. Lau, “30nm enhancement-mode
In0.53Ga0.47As MOSFETs on Si substrates grown by MOCVD exhibiting high
transconductance and low on-resistance”, in IEEE IEDM Technical Digest,
Dec. 2012, pp. 32.5.1–32.5.4.

12



REFERENCES

[25] S.-H. Kim, M. Yokoyama, R. Nakane, O. Ichikawa, T. Osada, M. Hata, M.
Takenaka, and S. Takagi, “High Performance Tri-Gate Extremely Thin-Body
InAs-On-Insulator MOSFETs With High Short Channel Effect Immunity and
Vth Tunability”, IEEE IEDM Technical Digest, vol. 61, no. 5, pp. 1354–1360,
May 2014.

[26] S. Lee, V. Chobpattana, C.-Y. Huang, B. Thibeault, W. Mitchell, S. Stemmer,
A. Gossard, and M. Rodwell, “Record Ion (0.50 mA/µm at VDD= 0.5 V and
IOFF= 100 nA/µm) 25 nm-gate-length ZrO2/InAs/InAlAs MOSFETs”, Jun.
2014, pp. 1–2.

[27] A. Pouydebasque, C. Charbuillet, R. Gwoziecki, and T. Skotnicki, “Refinement
of the Subthreshold Slope Modeling for Advanced Bulk CMOS Devices”, IEEE
Trans. on Electron Devices, vol. 54, no. 10, pp. 2723–2729, Oct. 2007.

[28] T. Skotnicki et al., “Innovative Materials, Devices, and CMOS Technologies
for Low-Power Mobile Multimedia”, IEEE Trans. on Electron Devices, vol.
55, no. 1, pp. 96–130, Jan. 2008.

[29] Y.-K. Choi, K. Asano, N. Lindert, V. Subramanian, T.-J. King, J. Bokor, and
C. Hu, “Ultrathin-body SOI MOSFET for deep-sub-tenth micron era”, IEEE
Electron Device Lett., vol. 21, no. 5, pp. 254–255, May 2000.

[30] K. Cheng et al., “Extremely thin SOI (ETSOI) CMOS with record low vari-
ability for low power system-on-chip applications”, in IEEE IEDM Technical
Digest, Dec. 2009, pp. 1–4.

[31] R.-H. Yan, A. Ourmazd, and K. Lee, “Scaling the Si MOSFET: from bulk to
SOI to bulk”, IEEE Trans. on Electron Devices, vol. 39, no. 7, pp. 1704–1710,
Jul. 1992.

[32] R. Chau, J. Kavalieros, B. Doyle, A. Murthy, N. Paulsen, D. Lionberger,
D. Barlage, R. Arghavani, B. Roberds, and M. Doczy, “A 50 nm depleted-
substrate CMOS transistor (DST)”, in IEEE IEDM Technical Digest, Dec.
2001, pp. 29.1.1–29.1.4.

[33] K. Takeuchi, R. Koh, and T. Mogami, “A study of the threshold voltage
variation for ultra-small bulk and SOI CMOS”, IEEE Trans. on Electron
Devices, vol. 48, no. 9, pp. 1995–2001, Sep. 2001.

[34] J. P. Colinge, FinFETs and Other Multi-Gate Transistors. Springer Science
and Business Media, 2008.

[35] I. Tienda-Luna, F. Ruiz, A. Godoy, and F. Gamiz, “The influence of orientation
and strain on the transport properties of SOI trigate nMOSFETs”, Sep. 2009,
pp. 319–322.

[36] B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros,
T. Linton, R. Rios, and R. Chau, “Tri-Gate fully-depleted CMOS transistors:
fabrication, design and layout”, Jun. 2003, pp. 133–134.

13



REFERENCES

[37] M. Guillorn et al., “FinFET performance advantage at 22nm: An AC perspec-
tive”, Jun. 2008, pp. 12–13.

[38] D. Hisamoto, W.-C. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, K. Asano,
T.-J. King, J. Bokor, and C. Hu, “A folded-channel MOSFET for deep-sub-
tenth micron era”, in IEEE IEDM Technical Digest, Dec. 1998, pp. 1032–
1034.

[39] N. Lindert, L. Chang, Y.-K. Choi, E. Anderson, W.-C. Lee, T.-J. King, J.
Bokor, and C. Hu, “Sub-60-nm quasi-planar FinFETs fabricated using a
simplified process”, IEEE Electron Device Lett., vol. 22, no. 10, pp. 487–489,
Oct. 2001.

[40] Y. Wu, R. Wang, T. Shen, J. Gu, and P. Ye, “First experimental demonstration
of 100 nm inversion-mode InGaAs FinFET through damage-free sidewall
etching”, in IEEE IEDM Technical Digest, Dec. 2009, pp. 1–4.

[41] S. Natarajan et al., “A 14nm logic technology featuring 2nd-generation Fin-
FET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm
SRAM cell size”, in IEEE IEDM Technical Digest, Dec. 2014, pp. 3.7.1–3.7.3.

[42] B. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton,
A. Murthy, R. Rios, and R. Chau, “High performance fully-depleted Tri-gate
CMOS transistors”, IEEE Electron Device Lett., vol. 24, no. 4, pp. 263–265,
Apr. 2003.

[43] L. Yang et al., “25 nm CMOS Omega FETs”, in IEEE IEDM Technical Digest,
Dec. 2002, pp. 255–258.

[44] T. Park et al., “Fabrication of body-tied FinFETs (Omega MOSFETs) using
bulk Si wafers”, Jun. 2003, pp. 135–136.

[45] C.-H. Jan et al., “A 22nm SoC platform technology featuring 3-D tri-gate
and high-k/metal gate, optimized for ultra low power, high performance and
high density SoC applications”, in IEEE IEDM Technical Digest, Dec. 2012,
pp. 3.1.1–3.1.4.

[46] N. Singh et al., “High-performance fully depleted silicon nanowire (diameter
≤ 5 nm) gate-all-around CMOS devices”, IEEE Electron Device Lett., vol. 27,
no. 5, pp. 383–386, May 2006.

[47] J. Gu, Y. Liu, Y. Wu, R. Colby, R. Gordon, and P. Ye, “First experimental
demonstration of gate-all-around III-V MOSFETs by top-down approach”, in
IEEE IEDM Technical Digest, Dec. 2011, pp. 33.2.1–33.2.4.

[48] K. Tomioka, M. Yoshimura, and T. Fukui, “Vertical In0.7Ga0.3As nanowire
surrounding-gate transistors with high-k gate dielectric on Si substrate”, in
IEEE IEDM Technical Digest, Dec. 2011, pp. 33.3.1–33.3.4.

[49] L. Lucci, P. Palestri, D. Esseni, and L. Selmi, “Multi-subband monte carlo
modeling of nano-mosfets with strong vertical quantization and electron gas
degeneration”, in IEEE IEDM Technical Digest, 2005, pp. 617–620.

14



REFERENCES

[50] Y. Zheng, C. Rivas, R. Lake, K. Alam, T. Boykin, and G. Klimeck, “Electronic
properties of silicon nanowires”, IEEE Trans. on Electron Devices, vol. 52,
no. 6, pp. 1097–1103, Jun. 2005.

[51] K. Nehari, N. Cavassilas, J. Autran, M. Bescond, D. Munteanu, and M.
Lannoo, “Influence of band structure on electron ballistic transport in silicon
nanowire mosfets: an atomistic study”, Solid State Electronics, vol. 50, no. 4,
pp. 716 –721, 2006.

[52] M. Luisier, A. Schenk, W. Fichtner, and G. Klimeck, “Atomistic simulation of
nanowires in the sp3d5s* tight-binding formalism: From boundary conditions
to strain calculations”, vol. 74, p. 205 323, 20 Nov. 2006.

[53] M. Luisier and G. Klimeck, “OMEN an Atomistic and Full-Band Quantum
Transport Simulator for post-CMOS Nanodevices”, in IEEE Conference on
Nanotechnology, Aug. 2008, pp. 354–357.

[54] A. Martinez, A. Brown, A. Asenov, and N. Seoane, “A Comparison between
a Fully-3D Real-Space Versus Coupled Mode-Space NEGF in the Study of
Variability in Gate-All-Around Si Nanowire MOSFET”, in Proc.SISPAD,
2009, pp. 1–4.

[55] M. Luisier, “Phonon-limited and effective low-field mobility in n- and p-type
[100]-, [110]- and [111]-oriented si nanowire transistors”, Applied Physics
Letters, vol. 98, no. 3, 032111, 2011.

[56] S. Kim, M. Luisier, A. Paul, T. Boykin, and G. Klimeck, “Full Three-
Dimensional Quantum Transport Simulation of Atomistic Interface Roughness
in Silicon Nanowire FETs”, IEEE Trans. on Electron Devices, vol. 58, no. 5,
pp. 1371–1380, May 2011.

15



REFERENCES

16



Chapter 2

Performance Benchmarking and
Effective Channel Length for
Nanoscale Planar Transistors

T
hanks to the high electron velocities, III-V semiconductors have the potential
to meet the challenging ITRS requirements for high performance for sub-22nm

technology nodes and at a supply voltage approaching 0.5V. We present a comparative
simulation study of ultra-thin-body (UTB) InAs, In1-xGaxAs and strained Si (sSi)
MOSFETs, by using a comprehensive semi-classical Multi-Subband Monte Carlo
(MSMC) transport model. Our results reported in [1] show that due to the finite
screening length in the source-drain regions, III-V and Si nanoscale MOSFETs with
a given gate length (LG) may have a quite different effective channel length (Leff).
Moreover, the difference in Leff provides an useful insight to interpret the performance
comparison of III-V and Si MOSFETs, and, the engineering of the source-drain
regions has a remarkable influence on the overall performance of nanoscale III-V
MOSFETs.

2.1 Introduction

The competitive edge of III-V compared to Si MOSFETs for low VDD logic
circuits is being actively investigated [2–6]. The most critical questions concern the
electrostatic integrity (e.g. drain-induced barrier-lowering (DIBL) and sub-threshold
swing (SS)), the dynamic performance (e.g. on-current (Ion) and switching time
(Tsw)) and the energy efficiency (e.g. switching energy (Esw)) of In0.53Ga0.47As, InAs
and Si transistors for a given gate length (LG).

Because of the huge costs and the technical difficulties related to the fabrication
of III-V and Si transistors with identical geometrical features, physically based
numerical simulations are an appealing means to compare III-V and Si nanoscale
MOSFETs, and several computational studies have already appeared based on simple

17
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top-of-the-barrier or semi-analytical models [7, 8], on 3D semi-classical Monte Carlo
[9, 10], or on full quantum but mainly ballistic transport models [5, 6].

Recently, encouraging experimental mobility data for n-type InGaAs MOSFETs
have been reported [11–13], which makes it possible to revisit the assessment of
III-V n-MOSFETs performance with a transport model comprising the most relevant
scattering mechanisms and calibrated against mobility experiments.

We will investigate the performance of In0.53Ga0.47As and InAs compared to Si
and sSi nanoscale MOSFETs by using a comprehensive semi-classical multi-subband
Monte Carlo simulator with a parallel implementation [14, 15]. Our simulation
approach, is inherently 2D in real space (as well as in k-space) and we simulate
a cutline of the device in the channel length direction. In this sense our analysis
is appropriate for relatively wide devices (wider than about 100nm), and in fact
the current is always quoted per unit device width. The MSMC tool, employs an
effective mass approximation model (EMA) with non parabolic effects both in the
quantization and in the transport directions, includes Γ, X and Λ valleys for III-V,
only ∆ valleys for Si, and accounts for acoustic and optical phonons, polar phonons
of the channel material (for III-V), remote phonons originating in high-κ oxide stack
[16], alloy scattering [17] (for In0.53Ga0.47As) and surface roughness scattering [18].
For Si and sSi the validation and calibration of our transport model was discussed in
[19], whereas the calibration of the scattering parameters for InAs and In0.53Ga0.47As
is reported in this work by comparing to recent mobility experiments [11, 12].

Since III-V technologies are not at the manufacturing stage, available data on
series resistance are scarce and scattered [6]. A comparison with silicon transistors
accounting for the effects of series resistance is thus problematic and possibly unfair.
Also because of this, the simulations in this work do not consider series resistance,
and thus our results should be regarded as an upper limit for device performance.
Moreover, since this work aims at assessing the performance limits of III-V compared
to Si n-MOSFETs, our simulations, similarly to several previous studies [5, 6, 20],
do not account for the effects of interface traps; however we will further discuss this
point at the end of Sec.2.3.

This work presents a systematic study of SS, DIBL, Ion, Tsw and Esw for n-type
double-gate (DG), ultra-thin body (UTB) MOSFETs with LG=14nm and employing
Si, sSi, In0.53Ga0.47As and InAs as channel materials. Different source-drain doping
concentrations (NSD) and gate alignments to source-drain metallurgical junctions
are also included in the analysis.

2.2 Description of the simulation tool for planar MOS-
FETs

Our simulations are based on a Multi-subband Monte Carlo (MSMC) approach
[14], that allows to solve with no a priori approximations the Boltzmann transport
equation for the 2D electron gas in both long and nanoscale MOSFETs.
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Figure 2.1: Band structure for In0.53Ga0.47As (left) and InAs (right) from the
calibrated non-parabolic analytical model (Eq.C.31), k·p (open circles) [21], EPM
[22] and DFT [23] calculations (dashed lines). a0 is the lattice constant. The CB
minima have been taken as the zero for the energy.

2.2.1 Nonparabolic band structure model

The conduction band is described within the effective mass approximation in-
cluding non-parabolic corrections; for Si only the ∆ valleys are considered, whereas
for III-V the Γ, X and Λ valleys are included in the simulations. Given the large
non-parabolicity in the conduction band of InAs and In0.53Ga0.47As close to the Γ
minimum (see Fig.2.1), in each section of the device normal to the transport direction
x, we expressed the energy E(k) versus the wave-vector k= (kx, ky) in the transport
plane as in Eq.C.31. Appendix C.2 reports some useful considerations regarding the
non-parabolic model adopted in this work.

For unstrained InAs and In0.53Ga0.47As the Γ minimum is approximately isotropic,
hence in Eq.C.31 we set mx=my=mc, and then calibrated mc and α by comparison
with E(k) of the bulk materials calculated with the 8-band k·p model of [21], with
the k·p parameters from [24]. The calibrated E(k) for InAs and In0.53Ga0.47As are
illustrated in Fig.2.1, showing that the non parabolic model can track very well
the k·p results and also the DFT calculations from [22, 23] up to 0.7eV, which is
sufficient for the purposes of this work. The calibrated effective masses and α values
of the Γ valleys, are reported in Tab.2.1, and confirm the strong non-parabolicity.

The effective masses for Si and sSi were extracted by using a 30 bands k·p solver
[27]. In all the simulations the parabolic effective mass Schrödinger-like equation was
solved both in the semiconductor and in the oxide regions, with the appropriate con-
tinuity conditions for the wave-function ψn,x(z) at the semiconductor-oxide interface
[28]. This clarification is relevant for the formulation of surface roughness scattering,
as further discussed in Sec.2.2.2. Then, non-parabolicity corrections for the subband
minima and the in-plane energy relation are introduced according to Eq.C.31.
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Table 2.1: Effective masses and non-parabolicity coefficients α used in
this work for In0.53Ga0.47As, InAs and silicon in the Ellipsoid Coordi-
nate System (ECS). Effective masses and non parabolicity coefficients
for InAs satellite valleys are taken from [24] and [25], respectively,
whereas for In0.53Ga0.47As they are taken from [26].

Material Valley eff.mass [m0] α [eV−1]
ml mt

InAs
Γ 0.026 2.5
X 1.13 0.16 0.9
Λ 0.64 0.05 0.45

In0.53Ga0.47As
Γ 0.043 1.5
X 2.26 0.25 0.5
Λ 1.57 0.23 0.5

silicon ∆ 0.92 0.19 0.5

2.2.2 Scattering mechanisms and calibration to experiments

Our simulations account for a comprehensive set of scattering mechanisms, in-
cluding elastic intra-valley and inelastic inter-valley phonons, remote phonons from
the high-κ dielectric (with the scattering rate formulation discussed in [28]), local
polar phonons (for InAs and In0.53Ga0.47As), surface roughness (SR) scattering and
alloy scattering (for In0.53Ga0.47As) [17]. The effect of carrier screening for both
alloy and surface roughness scattering was introduced by using a tensorial dielectric
function [17, 18].

Our model does not account for the coupling between the polar phonons in
III-V semiconductors and in the high-κ dielectric [26], and for the possible coupling
between polar phonons and plasma oscillations in the inversion layer (i.e. the
plasmon to phonon coupling) [16, 26]. However, our results show that, in the 5nm
In0.53Ga0.47As film used for the nanoscale MOSFETs, the SR scattering is by far
the dominant scattering mechanism (see Fig.2.2 and the discussion below), so that
further refinements in the modeling of polar and remote polar phonons are expected
to have a minimal impact on the final results.

The modeling of SR scattering in ultra-thin III-V transistors is quite critical
and challenging. In fact the widely used formulation leading to matrix elements
proportional to the wave-function derivative at oxide interfaces has been derived
for a closed boundary quantization model [28–32], while in UTB, high-κ III-V
MOSFETs the wave-function penetration in the dielectrics is significant and affects
the SR scattering rates [33]. In this work, as a semi-empirical approach to account
for the wave-function penetration in the SR scattering rates, we maintained the
matrix element expression proportional to wave-function derivative at the oxide
interfaces, evaluating such expression by using the wave-functions obtained solving
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Figure 2.2: Measured and simulated mobility including the wave-function pene-
tration into the oxide versus sheet carrier density (Nsh). Experiments for bulk-like
In0.53Ga0.47As MOSFETs are from [11, 12]. The figure also reports the bulk Si
mobility. MSMC simulations for bulk In0.53Ga0.47As MOSFETs with HfO2 dielectric
account for elastic intra-valley phonons, polar and remote polar phonons from the
high-κ dielectric, alloy and SR scattering. The figure also shows simulated mobil-
ity for DG-UTB MOSFETs with Tw=8nm and Tw=5nm, as well as the mobility
obtained for Tw=5nm by switching off the SR scattering. The SR power spectrum
is exponential with a r.m.s. roughness value ∆rms=1.3nm and a correlation length
Λ=1.5nm.

the Schrödinger-like equation in the semiconductor and in the oxide region. Simulated
mobility for In0.53Ga0.47As as a function of the sheet carrier density is reported
in Fig.2.2, where the parameters for SR scattering have been calibrated against
experimental mobility data for bulk-like In0.53Ga0.47As MOSFETs [11, 12]. The
choice for the reference experiments is also justified by the attempt carried out in
[11, 12] to avoid the systematic errors in the mobility measurement at high Nsh by
including a correction for the interface traps contribution, produced by the large
interface state density inside the conduction band of In0.53Ga0.47As [13]. As can be
seen the agreement between simulations and experiments for bulk-like In0.53Ga0.47As
MOSFETs is fairly good, and, furthermore, Fig.2.2 also reports the simulated mobility
for DG-UTB In0.53Ga0.47As MOSFETs. In this latter respect, the mobility for a well
thickness Tw=5nm is in the range of 1000cm2/Vs, which is fairly consistent with
the best mobility values recently reported in UTB and HS-QW III-V MOSFETs
[34, 35]. We verified that if, instead, the SR scattering is calculated by using wave-
functions obtained neglecting the penetration in the oxides, and the SR parameters
are calibrated against the same experiments for bulk-like In0.53Ga0.47As transistors
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Figure 2.3: Measured and simulated mobility versus inversion density NINV . Experi-
ments for bulk-like In0.53Ga0.47As MOSFETs [11, 12]. MSMC simulations for bulk
and UTB In0.53Ga0.47As MOSFETs with HfO2 dielectric include elastic intra-valley
phonons, polar and remote polar phonons from the high-κ dielectric [16, 28], alloy
scattering [17], and SR with the Prange-Nee model [18] (∆r.m.s.=0.8nm, Λ =1.5nm)
without accounting for the wave-function penetration into the oxide in the Schrödinger
equation. Diamonds: experimental mobility for Si bulk MOSFETs.

[11, 12], then the simulated mobility for Tw=5nm drops to about 200cm2/Vs as
shown in Fig.2.3. Such a result is consistent with simulations in [32], but not with
the experiments [34, 35], which underlines the critical role played by SR scattering
in ultra-thin InGaAs devices. This is further confirmed comparing in Fig.2.2 the
mobility for Tw=5nm calculated with or without including the SR scattering; the
SR is clearly the dominant scattering mechanism in such ultra-thin InGaAs films.

2.3 Benchmarking of In0.53Ga0.47As InAs and Si nanoscale
MOSFETs

2.3.1 Device structures and figures of merit

The DG-UTB transistor of this work has a semiconductor thickness Tw=5nm,
the gate length is LG=14nm and the gate dielectric is HfO2 (κ =22 [28]), with an
equivalent oxide thickness of 0.7nm.

The simulated (001)/[100] III-V devices were assumed to be unstrained, while
the (110)/[11̄0] Si transistors (the crystallographic orientation is representative of
the sidewall interfaces in FinFETs fabricated in (001) wafers and with a Manhattan
layout [36]), were simulated for a relaxed channel material, for a 1GPa and a 2GPa
tensile stress in the [11̄0] source to drain direction. The different stress conditions
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MOSFETs

are representative of different possible scenarios concerning the technological ability
to induce stress in LG=14nm transistors.

Our simulations include a volume gate electrode with a gate height Tgate=4nm,
which is a relevant point to be mentioned for the capacitive coupling of the gate to
the source/drain regions and also for the effective length defined below in Sec.2.3.2
Devices with different gate overlap or underlap configurations have been studied.
The source-drain doping profiles have been taken as simply abrupt.

Our performance comparisons target a low supply voltage VDD=0.5V and the
gate work-function of Si and III-V transistors was adjusted to have the same
Ioff=100nA/µm, corresponding to the ITRS specification for high performance and
III-V/Ge high-performance logic circuits. The on-current (Ion) is defined as the IDS

for VGS=VDS=0.5V. We also calculated a first order estimate of Tsw as [37]:

Tsw =
Qon −Qoff

Ion
=

∆Qsw

Ion
, (2.1)

where Qon and Qoff are defined as the charge in the device respectively for VGS=VDD,
VDS=0, and for VGS=0,VDS=VDD; Qon and Qoff were determined by integrating
numerically the charge density in the device. More refined estimates of Tsw can be
obtained by replacing the Ion in Eq.2.1 with an effective drive current [38, 39], however
Eq.2.1 is reasonably adequate for the purpose of comparing MOSFET devices with
different semiconductor materials. A similarly simple metric for the switching energy
Esw can be expressed as:

Esw = VDD(Qon −Qoff) . (2.2)

Fig.2.4 shows the IDS-VGS characteristics for a sSi, InAs and In0.53Ga0.47As
transistor, with the gate aligned to the source/drain regions (i.e. neither overlap nor
underlap). The corresponding SS and DIBL values are reported in Tab.2.2. As can
be seen, the Ion for the unstrained InAs device is slightly larger than for sSi with
2GPa stress and significantly larger than the 1GPa, or the unstrained, Si devices.
Furthermore, even the electrostatic integrity of the InAs transistor (i.e. SS and
DIBL) is somewhat better (see Tab.2.2).

We will return to a more systematic comparison of all figures of merit in Sec.2.3.3
We here notice, however, that the better SS and DIBL values for InAs MOSFETs
suggest to analyze in more detail the effective channel length (Leff) of III-V and Si
MOSFETs having the same LG, Tw and Tox.

It should be noticed that the simulations in this work do not account for band-
to-band tunneling (BTBT), which may set the lower limit for Ioff and prevent to
achieve Ioff=100 nA/µm.

As far as In0.53Ga0.47As UTB devices are concerned, there are several experimental
data [40] and simulation results [5] showing that well-designed, ultra-thin body
transistors or FinFETs can reach Ioff values well below 100 nA/µm. Such references
also indicate that leakage mechanisms do not significantly distort the IDS vs. VGS
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Figure 2.4: Simulated drain current (IDS) versus gate voltage (VGS) characteristics
for (001)/[100] InAs (open circles), In0.53Ga0.47As (open squares) DG devices. Figure
also reports results for a (110)/[110] 2GPa, 1GPa and relaxed uniaxial tensile strained
Si (closed symbols) DG device. The gate is aligned to the source/drain regions.
Source and drain doping is NSD= 5 · 1019 cm−3, LG=14nm and Tw=5nm. SS and
DIBL values are reported in Tab.2.2
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characteristic down to IDS≈ 100 nA/µm and, in particular, do not degrade the
sub-threshold slope [5, 40]. We believe that this is an evidence that BTBT does not
play a critical role in well designed, high performance In0.53Ga0.47As nMOSFETs and
demonstrate that Ioff=100 nA/µm is feasible for VDD=0.7V or below in UTB devices.
BTBT is admittedly expected to be more critical for InAs devices because of the low
InAs energy band-gap, which however is significantly enlarged by quantization in a
Tw=5nm transistor. As a matter of fact, an Ioff=100 nA/µm has been experimentally
demonstrated for VDD=0.5V and Tw=10nm [41], which makes it reasonable to assume
that BTBT may not play a critical role in a Tw=5nm transistor at VDD=0.5V and
for IDS larger than 100 nA/µm.

2.3.2 Definition of an effective channel length

Among many possible definitions [42, 43], in this work we defined Leff as the
length of the device region where the gate terminal is able to induce a significant
modulation of the charge density. A quantitative extraction of Leff was obtained
by numerically integrating along the transport direction the variation in the charge
density produced by a prescribed VGS change. In this respect, Fig.2.5 shows the
cumulative integral of the charge variation for a VGS change from 0V to 0.1V, that
is the integral from the left border of the simulation domain to a generic x value and
normalized to the integral over the entire domain.

As illustrated in Fig.2.5, we calculated Leff as the length over which the cumulative
integral of charge density variation goes from 10% to 90%, so that Fig.2.5 reveals a
larger Leff for InAs than for sSi transistor. As can be seen, in the InAs MOSFETs
the gate bias can modulate the charge density deeper into the source/drain regions
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compared to the sSi transistor. This is consistent with a longer screening length
in InAs, which in turn is due to an higher dielectric constant, a smaller density of
states and a stronger carrier degeneracy compared to Si [44]. To capture these effects
in a Monte Carlo simulation, it is mandatory to implement the Pauli′s exclusion
principle by rejecting scattering events according to the occupation in the k-plane [14,
45] and by careful injection of particles at the contacts according to a Fermi-Dirac
distribution [46]. Furthermore, the Multi-subband approach provides the correct 2D
density of states typical of thin quantum wells.

As implicit in its definition, the Leff is VGS dependent [43]. Since we are mainly
interested to interpret the performance comparison of III-V and Si MOSFETs in
terms of SS and DIBL, in this work we employed an off-state effective channel length

(L
(off)
eff ) defined as the one extracted by using a VGS variation from 0V to 0.1V.

2.3.3 Analysis of the transistor performance

Table 2.2: Summary of the performance metrics for Si, In0.53Ga0.47As and
InAs in DG-UTB MOSFETs. The power supply voltage is set to 0.5V
and the off-state current IOFF is set to 0.1 µA/µm. SS is calculated in
the range [0.1µA/µm,5µA/µm] and the DIBL is calculated by varying
VDS between 0.05V and 0.5V and for a VT defined as the VGS yielding
IDS=1µA/µm. Vx@VS is the carrier velocity at the virtual source (VS)
and Nsh @VS is the sheet carrier density at the VS. The remaining
symbols are defined in the text.

Channel Stress/ Gate NSD SS DIBL Ion Vx@VS Nsh@VS Tsw Esw ∆Qsw
material relaxed alignment [1019 cm−3] [ mV

dec
] [ mV

V
] [ mA

µm
] [107 cm/s [1012 cm−2] [fs] [ fJ

µm
] [ fC

µm
]

Si

2 GPa aligned
10 83 126 0.98 0.96 6.47 417 0.205 0.409
5 80 101 1.07 1.03 6.54 362 0.195 0.389

1 GPa
aligned

10 82 128 0.87 0.81 6.74 473 0.207 0.413
5 77 102 0.87 0.80 6.82 445 0.195 0.389

underlap 5 74 76 0.89 0.71 7.91 404 0.185 0.361

relaxed
aligned 5 78 98 0.69 0.54 8.14 564 0.197 0.393

underlap 5 76 76 0.71 0.56 7.94 519 0.184 0.368

In0.53Ga0.47As relaxed aligned
10 80 120 0.98 2.97 2.03 369 0.180 0.360
5 77 93 0.98 2.69 2.28 327 0.160 0.320
2 70 68 0.94 1.92 3.05 306 0.144 0.288

InAs relaxed

overlap
10 85 152 0.98 3.65 1.67 400 0.194 0.388
5 76 113 1.03 3.66 1.91 320 0.165 0.331
2 70 77 1.10 2.77 2.49 264 0.146 0.292

aligned
10 80 125 1.08 3.71 1.88 327 0.177 0.353
5 73 90 1.11 3.53 1.98 282 0.158 0.316
2 67 66 1.09 2.65 2.57 255 0.139 0.278

underlap
10 76 93 1.16 3.71 1.96 278 0.162 0.323
5 71 75 1.17 3.30 2.21 255 0.149 0.297
2 66 59 1.10 2.57 2.67 244 0.134 0.269

Many different Si and III-V UTB-DG transistors were included in our performance
benchmarking by varying both the source-drain doping (NSD) and the gate alignment.
More precisely, we simulated devices with a perfect gate alignment as well as with a
2nm underlap or overlap and, furthermore, we considered NSD=2·1019, 5·1019 and
1020cm−3. For Si devices the lowest NSD value was not considered because we verified
that this leads to significant resistive voltage drops in source/drain regions (not
shown), which are instead practically negligible in all the other cases.
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Figure 2.6: Off-state effective channel length (L
(off)
eff ) versus source and drain doping

concentration (NSD) for III-V and Si MOSFETs.

Fig.2.6 reports the L
(off)
eff for different NSD considering a gate aligned configuration.

As can be seen III-V transistors have Leff values systematically larger than sSi
MOSFETs.

Figs.2.7 and 2.8 report respectively SS and DIBL versus L
(off)
eff for III-V and sSi

MOSFETs; the LG is 14nm for all the devices and L
(off)
eff changes because of different

NSD and gate alignments. Fig.2.7 shows that the SS is similar for III-V and Si devices

at a given L
(off)
eff , so that at fixed LG III-V transistors tend to have a somewhat

better SS compared to Si MOSFETs mainly because they feature a larger L
(off)
eff (see

Fig.2.6). As for DIBL, Fig.2.8 suggests that Si has a slight advantage compared to

In0.53Ga0.47As and InAs at a given L
(off)
eff , because of the larger dielectric constant

of In0.53Ga0.47As and InAs [47]. However Si MOSFETs tend to lose their potential

advantage at a given LG because their L
(off)
eff is smaller.

The results in Figs.2.7 and 2.8 suggest that the comparison of electrostatic
integrity (i.e. SS and DIBL) between III-V and sSi MOSFETs at a given LG, which
is understandably a crucial comparison, is a delicate exercise because, for a given
LG, the Leff can be quite different.

Table 2.2 summarizes the figures of merit for many different design options with
Si, sSi, In0.53Ga0.47As and InAs. As can be seen the III-V transistors have an Ion

essentially comparable to the sSi MOSFETs with the 2GPa stress, thus they have a
clear Ion advantage over 1GPa sSi or relaxed Si.

At this regard Fig.2.10 compares the sheet carrier density (Nsh) and the carrier
velocity (Vx) profiles along the channel for InAs and 2GPa sSi devices. The virtual
source (VS) is identified as the position of maximum in the profile of the lowest
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subband and is located deeper into the channel for InAs than for Si due to a longer
screening length [44]. Fig.2.10 confirms, consistently with [44], that the reduced Nsh

at the VS in InAs transistors is due, to a large extent, to the fact that the VS is
located well inside the channel region (actually close to the center of the channel),
while for Si it is located close to the source junction. Consequently the smaller Nsh

does not correspond to a similarly lower sheet density integrated throughout the
channel.

As a result the III-V has only a modest advantage compared to Si in terms
of switched charge ∆Qsw= (Qon − Qoff) (obtained by switching between the off-
state (i.e. VGS=0,VDS=VDD) and the on-state (i.e. VGS=VDD, VDS=0)), even
because the modulation of the charge in the source-drain regions accounts for an
important contribution to the overall ∆Qsw as shown in Fig.2.9 where the ∆Nsw

term is given by ∆Nsw=∆Qsw/e. Since the difference in ∆Qsw is not large between
In0.53Ga0.47As, InAs and Si transistors (see Tab.2.2 that shows the integral of ∆Qsw

along the transport direction), the In0.53Ga0.47As and InAs devices have a sizably
better switching time Tsw only if they can significantly improve Ion, hence only when
compared to relaxed Si or 1GPa sSi MOSFETs. Furthermore, modest differences in
∆Qsw also imply modest differences in the switching energies Esw for a fixed VDD

(see Tab.2.2).

We recall that, as already mentioned in Sec.2.1, our analysis does not account for
interface traps. This simulation analysis aims at assessing the performance limits of
In0.53Ga0.47As compared to all Si CMOS transistors in the perspective that largest
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material and technological challenges for III-V based transistors can be overcome. In
this spirit our analysis assumes that the density of interface defects in In0.53Ga0.47As
devices can be reduced to such an extent that they do not significantly affect the
device performance at least for the low VDD and high Ioff values targeted by this
work. Incidentally, this is also the assumption made in most of the papers comparing
performance of all Si and III-V CMOS devices on the basis of numerical simulations
[5, 6, 20, 44].

As for the possible impact of interface states, we first recall that for a fully
depleted UTB and in the presence of interface traps the sub-threshold slope can be
written as: [48]

SS ≈ 2.3KBT

q

[
1 +

Cit
Cg

]
(2.3)

where Cg is the gate oxide capacitance and it is assumed that in the sub-threshold
region the depletion and inversion capacitances are negligible compared to the
capacitance Cit due to interface states. By recalling that our devices are double-gate
transistors we can estimate Cg'2 (εSiO2/EOT), where EOT=0.7nm is the effective
oxide thickness, which leads to Cg ' 9.87 · 10−6 F/cm2. As for Cit we can simply
take Cit ' eDit, with e being the elementary charge and Dit the trap density. By
using reasonable Dit values in the energy gap of about Dit = 6 · 1012 eV−1 cm−2 [13,
49], we obtain Cit/Cg ' 0.097. This analysis suggests that MOS transistors with an
aggressive gate oxide scaling are relatively robust against sub-threshold degradation
due to interface defects. This has been recently pointed out even for nanowire InAs
MOSFETs [50], and it is an encouraging observation for III-V based MOSFETs.

As for the on-state of the transistors, Tab.2.2 shows that at VDD=0.5V the
maximum Nsh at the virtual source in the channel for III-V UTB transistors does
not exceeds 3·1012 cm−2. This sheet density is quite below the best values of
Nsh ' 6 ·1012 cm−2 determined via Hall measurements even in In1-xGaxAs transistors
with significant Fermi level pinning [13].

These considerations suggest that the operation of the UTB devices of this
work may be quite robust against interface defects, at least for the low VDD value
considered in our study.

2.4 Conclusions

This work presented an investigation of the performance limits of III-V and sSi
UTB-DG MOSFETs comparing several figures of merit for digital circuit operation
in striving to understand if III-V MOSFETs are a cost-effective device solution to
continue MOSFETs scaling beyond the 22-nm technology node. Our results obtained
for intrinsic devices show that, III-V MOSFETs have a clear performance advantage
compared to relaxed and 1GPa strained silicon devices, while Si MOSFETs with
a 2GPa remain competitive with III-V MOSFETs. Quite interestingly, our main
conclusions are qualitatively consistent with the results of previous studies based on
the NEGF simulation approach [5, 6].

30



2.4. Conclusions

-30 -20 -10 0 10 20 30
x [nm]

-1.5

-1

-0.5

0

L
o
w

e
s
t 
s
u
b
b
a
n
d
 [
e
V

]

10
12

10
13

N
s
h
 [
c
m

-2
]

InAs
sSi (2GPa)

V
GS

=V
DS

=0.5V
E

F,source

E
F,drain

-1.5

-1

-0.5

0

L
o
w

e
s
t 
s
u
b
b
a
n
d
 [
e
V

]

InAs
sSi (2GPa)

-30 -20 -10 0 10 20 30
x [nm]

0

2

4

6

V
x
 [
1
0

7
c
m

/s
]

V
GS

=V
DS

=0.5V

E
F,drain

E
F,source

Figure 2.10: Sheet carrier density (Nsh) and velocity (Vx) profiles for InAs and
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31



2. Performance Benchmarking and Effective Channel Length

These results, which are qualitatively consistent to those reported for different
device architectures like FinFETs [6], suggest that the competitive edge of III-V
MOSFETs depends quite critically on the one hand on the technological capabilities
to induce a large stress magnitude in sub-22nm silicon transistors, and, on the
other hand, on the further improvements in III-V MOSFETs possibly induced by an
appropriate strain engineering.

In this latter respect, even if interesting and promising contributions have been
recently reported [51, 52], experimental data are still quite sparse and not fully
consistent. As a result, even the physical interpretation of the strain induced
mobility variations in III-V MOSFETs is still debated [51, 52], so that the predictive
capabilities of transport models to make performance projections about strained
III-V MOSFETs are still limited, which is also the reason why we refrained from
including strained III-V MOSFETs in our analysis.

We conclude by reiterating that the Ion and dynamic performance reported in this
work are best case estimates obtained by neglecting the effect of series resistances.
Since series resistances will certainly degrade the performance for both III-V and
Si devices, the potential advantages of III-V transistors critically depend on the
technological capabilities to realize for III-V materials series resistances complying
with ITRS projections and in any case comparable to those of all silicon CMOS
technologies.
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Chapter 3

Improved modelling for Surface
Roughness

I
n this chapter of the thesis we present a new model for the surface roughness
(SR) scattering in planar and circular gate-all-around (GAA) MOS transistors.

The new model is first derived for planar transistor and validated against mobility
data and published in [1], and then, it is extended to circular GAA MOSFETs. The
model is suitable for bulk and thin body devices and explicitly takes into account
the non linear relation between the displacement ∆ of the interface position and the
SR scattering matrix elements, which is found to significantly influence the r.m.s
value (∆r.m.s.) of the interface roughness that is necessary to reproduce SR-limited
mobility measurements. In particular, comparison with experimental mobility for
bulk Si MOSFETs shows that with the new SR scattering model a good agreement
with measured mobility can be obtained with ∆r.m.s. values of about 0.2 nm, which is
in good agreement with several AFM and TEM measurements. For thin body III-V
MOSFETs, the proposed model predicts a weaker mobility degradation at small well
thicknesses (Tw), compared to the T 6

w behavior observed in Si extremely thin body
devices.

3.1 Introduction

The development of sub 14 nm CMOS technologies will make use of extremely
thin body (ETB) planar MOSFETs, FinFETs with very narrow fins or nanowire
devices with only a few nanometer diameter [2], because an aggressive scaling of
the device cross section is necessary to assure a good electrostatic integrity at such
gate lengths. Furthermore, in the quest for high performance at low supply voltage,
III-V semiconductors (e.g. In1-xGaxAs) are being actively investigated as channel
materials alternative to strained silicon [3–6], because the large carrier velocities in
III-V semiconductors may offer on-current advantages for a supply voltage around
0.6V or below [7, 8].

In ETB or narrow fin transistor structures the surface roughness (SR) is a
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dominant scattering mechanism, which typically limits the overall mobility especially
at large inversion densities [9–12]. For an electron inversion layer in an ETB planar
device the formulation of the SR scattering matrix element is also closely related
to the quantization model employed for the calculation of the subband minima and
envelope wave-functions. In this latter respect, it is interesting to notice that high-κ
dielectrics (e.g. HfO2 and hafnium based oxides) form a relatively small energy barrier
(ΦB) with Si and III-V materials compared to the ΦB=3.1eV of the Si-SiO2 system.
The effective barrier height is further reduced by the strong subband quantization in
the inversion layer resulting from the small effective mass of III-V materials, so that
in III-V MOSFETs with high-κ dielectrics a significant penetration of the electron
wave-function into the oxide region is expected to occur. This is well illustrated by
numerical calculations in Fig.3.1 for a HfO2−InAs−HfO2 quantum well, where it is
observed a much larger wave-function penetration than in a HfO2−Si−HfO2 well
with the same 5 nm thickness.
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Figure 3.1: Lowest subband wave-function ξ0(z) in a 5 nm square well for either finite
energy barrier ΦB or infinite ΦB and corresponding to: (a) a HfO2-InAs-HfO2 system
(ΦB=2.4eV); (b) a HfO2-Si-HfO2 system (ΦB=1.55eV). Results obtained with an
effective mass approximation model (see Sec.3.2.1) and considering for silicon both
the light quantization mass (msct=0.19 m0, dotted-line) and the heavy quantization
mass (msct=0.92 m0, dashed-line). The oxide mass in the energy gap is mox=0.11
m0 [13].

Even if the penetration into the oxide region has a remarkable impact on the
shape of the wave-function close to the semiconductor-oxide interface (see Fig.3.1),
SR scattering matrix elements are still often formulated according to the so-called
Prange-Nee (PN) model [9, 14–17], which corresponds to a closed boundary conditions
treatment of the quantization problem, that is to an infinite ΦB resulting in no wave-
function penetration into the oxide. When calibrated against mobility experiments in
bulk-like III-V MOSFETs, SR mobility calculations based on the PN model predict
an electron mobility around 250 cm2/Vs for In0.53Ga0.47As FETs with Tw≈5 nm
[16], whereas recent experiments reported a mobility exceeding 1000 cm2/Vs in such
a Tw range [6, 12, 18].
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The generalized Prange-Nee (GPN) model provides a formulation of the SR
scattering matrix elements accounting for the wave-function penetration into the
oxide and it has been developed for ETB planar devices [19, 20], and also for nanowire
transistors [21].

We start by revisiting the GPN model and discussing some critical points in its
derivation. Then, we extend the preliminary results for planar devices reported in [22]
and present a new model for SR scattering that accounts for wave-function penetration
into the oxide and, furthermore, takes into account the non linear dependence of the
scattering matrix element on the amplitude ∆ of the fluctuations of the interface
position. The new model is first employed for the interpretation of well established,
experimental mobility curves in Si-SiO2 bulk MOSFETs and then for the analysis of
SR-limited mobility (µSR) in silicon and III-V ETB transistors. Our results show
that the new SR scattering model can reproduce the experimental µSR in Si-SiO2

bulk MOSFETs with r.m.s. values ∆r.m.s. of the SR spectrum in close agreement
with AFM and TEM measurements, and substantially smaller than the ∆r.m.s. values
reported in several previous studies employing the PN or the GPN modeling approach
[9, 14–17, 19–21, 23–29]. As for the µSR dependence on Tw predicted by the new
SR scattering model, it is found that while in the Si-SiO2 system the µSR degrades
as T6

w at small well thicknesses (as predicted also by the GPN model and observed
in experiments [11]), in III-V materials the µSR exhibits a weaker reduction with
decreasing Tw. Then, the new model for SR is extended to circular GAA MOSFETs
for the cases with either isotropic or anisotropic quantization masses.

The work is organized as follows. In Sec.3.2 we first revisit the GPN model and
then we present a new formulation of SR scattering matrix elements and discuss in
detail the non linear dependence of the scattering matrix elements on the amplitude
∆ of the interface roughness. In Sec.3.3 we describe the mobility calculation. In
Sec.3.4 we finally show the numerical results for µSR calculations in silicon and III-V
MOSFETs. Some concluding remarks are finally reported in Sec.3.5. In Sec.3.6 we
extend the new SR model to circular GAA MOSFETs.

3.2 Modeling of surface roughness scattering: planar
MOSFETs

Let us assume that in the absence of surface roughness the envelope wave-function
can be written in the form

ψnk(z, r) =
1√
A
ξn(z)eik·r (3.1)

where A is the normalization area in the (x,y) transport plane, z is the quantization
direction, k= (kx, ky) the in-plane electron wave-vector and n the subband index
(the valley index has been dropped to simplify the notation). The ξn(z) is determined
by the eigenvalue problem

Ĥ0ξn(z) = εn ξn(z) (3.2)
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where εn is the subband minimum and, for a thin body MOS system, the unperturbed
effective mass Hamiltonian reads

Ĥ0 = −~2

2

∂

∂z

1

mz

∂

∂z
− eφ(z) + ΦBΘ(−z) + ΦBΘ(z − Tw) (3.3)

with φ(z) being the electrostatic potential, ΦB the semiconductor-oxide energy
barrier, Θ(x) the unit step function and Tw the semiconductor well thickness. The
quantization mass mz changes with the material and can be written as

mz = mox [Θ(−z) + Θ(z − Tw)] +msct [Θ(z)−Θ(z − Tw)] (3.4)

with msct and mox being the semiconductor and oxide mass, respectively.
It is worth recalling that, as demonstrated in Appendix.B.1, if the direction z is not

aligned with any axis of the energy ellipsoid, then the ansatz for ψnk(z, r) in Eq.3.1 is
not valid because the wave-function ξn(z) becomes k dependent [30], even though the
dependence is through a mere phase factor that is expected to have a limited impact
on scattering rates and it is typically neglected in transport studies. Moreover, even
for spherical bands, if msct and mox are different the k dependent kinetic energy is not
a simple additive term to the subband minima εn obtained from Eqs.3.2, 3.3. More
precisely, it can be easily shown that, for msct 6= mox, Eqs.3.2, 3.3 should be rewritten
by adding in the oxide region a term [~2k2/2(1/mox−1/msct)] which adds to the
energy barrier ΦB. Strictly speaking, the presence of such a k dependent term makes
Eq.3.1 invalid because ξn(z) becomes k dependent. For the oxide-semiconductor
systems considered in this work, however, [~2k2/2(1/mox−1/msct)] is much smaller
than ΦB for the k values of practical interest, which makes Eq.3.1 a reasonable
assumption. Finally, for interfaces where the semiconductor and oxide conduction
band minima occur at different points in the Brillouin zone, Eq.3.3 does not account
for the conservation of the total crystal momentum, which is a simplifying assumption
employed, for example, in all papers dealing with transport at the Si-SiO2 interface
that we are aware of.

We now move to the system in the presence of surface roughness, and assume
that the SR at the two interfaces of an ETB MOSFET is uncorrelated and denote
by ∆(r) the roughness at the front interface, nominally located at z=0, as a function
of the position r in the transport plane. The perturbed Hamiltonian reads

Ĥp,rz = −~2

2

∂

∂z

1

mp,rz

∂

∂z
− eφ(z) + ΦBΘ(−z + ∆(r)) + ΦBΘ(z − Tw). (3.5)

where mp,rz is

mp,rz = mox [Θ(−z + ∆(r)) + Θ(z − Tw)] +msct [Θ(z −∆(r))−Θ(z − Tw)] . (3.6)

The unscreened SR scattering matrix element can thus be written as

Mnn′(q) =
1

A

∫
A
Mnn′ [∆(r)] e−iq·rdr (3.7)
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where q=(k′−k) and Mnn′ [∆(r)] is written as

Mnn′ [∆(r)] =

∫
z
ξ†n′(z)[(Ĥp,rz − Ĥ0) ξn(z)] dz. (3.8)

As can be seen, the definition of the SR scattering matrix element in Eq.3.8 accounts
only for the contribution to the scattering matrix element due to the roughness
induced changes of the energy barrier (ΦB) and effective mass, whereas it does not
include the terms due to the perturbations of the electrostatic potential produced by
the fluctuations of electron and polarization charges [19, 31]. We will further discuss
these additional terms in Sec.3.4.

It should be also noticed that the equations discussed so far refer to thin body
SOI MOS transistors, however all the derivations and discussions developed in this
work apply also to a bulk MOSFET. In particular, the equations describing the bulk
transistors can be readily obtained by taking the limit Tw→ ∞ in the equations
written for thin body MOSFETs, and a few equations for bulk transistors will be
explicitly discussed below.

3.2.1 The generalized Prange-Nee model (GPN)

In this section we briefly review the derivation of the PN model and of the GPN
model, that have been widely used in the literature [9, 14–17, 19–21, 23–29], where
the Mnn′ [∆(r)] defined in Eq.3.8 is simplified to be a linear function of ∆(r). We
will see that a few assumptions in the derivation deserve a reconsideration, and in
fact stimulated us to propose the new model presented in the next section.

The determination of Mnn′ [∆(r)] according to Eq.3.8 essentially requires to
calculate the matrix element for Ĥp,rz, in fact the matrix element for Ĥ0 is simply
given by εnδn,n′ , where εn is the subband minimum defined in Eq.3.2. This is typically
tackled by introducing the auxiliary abscissa z′ defined as [19, 20]

z′ =
Tw(z −∆(r))

Tw −∆(r)
⇒ z = z′ +

[
1− z′

Tw

]
∆(r) (3.9)

such that the interfaces in the presence of roughness are located at z′=0 and z′=Tw.
Consequently the perturbed Hamiltonian can be written in terms of z′ as

Ĥp,rz′ = −~2

2

[
Tw

Tw −∆(r)

]2 ∂

∂z′
1

mp,rz′

∂

∂z′
− eφz′(z′) + ΦBΘ(−z′) + ΦBΘ(z′ − Tw)

(3.10)
where the mp,rz′ dependence on z′ is the same as the mz dependence on z given by

Eq.3.4. As can be seen, Ĥp,rz′ can be expressed in terms of z′ in a form which is very

similar to the form of Ĥ0 in terms of z, except for the electrostatic potential φz′(z
′),

which is a notation better explained a few lines below.
The derivation of the GPN continues by calculating the matrix elements of Ĥp,rz′

using the auxiliary abscissa z′. In order to do that, however, we need to identify the

43



3. Improved modelling for Surface Roughness scattering in
planar and GAA MOSFETs

form of the unperturbed wave-functions, ξn,z′(z
′), and of the electrostatic potential,

φz′(z
′), when they are expressed as a function of z′. We first consider the wave-

function and notice that, since the ξn(z) is a known function of the abscissa z, then
Eq.3.9 readily allows us to write ξn,z′(z

′) as

ξn,z′(z
′) = ξn(z′ + (1− z′/Tw)∆(r)) (3.11)

and a similar expression holds for φz′(z
′). The notation ξn(z′ + (1− z′/Tw)∆(r)) in

Eq.3.11 denotes the wave-function ξn evaluated in z = z′ + (1− z′/Tw)∆(r).

If one wished to calculate the matrix elements for Ĥp,rz′ by using ξn,z′(z
′) from

Eq.3.11 (and the corresponding expression for φz′(z
′)), one would face two difficulties.

The first is that in Eq.3.10 the energy barrier and the discontinuity ofmp,rz′ are located
in z′=0 (for the front interface), whereas ξn,z′(z

′) in Eq.3.11 has the discontinuity of
(∂ξn,z′/∂z

′) at the point z′= (−∆(r)Tw)/(Tw−∆(r)) (i.e. z′' −∆(r) for ∆(r)�Tw),
which is in fact the z′ corresponding to z =0. The second critical point is that the
corresponding matrix element Mnn′ [∆(r)] would be a non linear function of ∆(r):
in fact, besides the pre-factor of Ĥp,rz′ in Eq.3.10, the ξn,z′(z

′) dependence on ∆(r)
implied by Eq.3.11 is also non linear.

At this stage some approximations are typically introduced and, in particular,
the ξn,z′(z

′) expression in Eq.3.11 is simplified as [20, 21, 27, 29]

ξn,z′(z
′) ' ξn(z′) +

∂ξn(z′)

∂z′
(1− z′/Tw)∆(r) (3.12)

obtained by using a first order expansion of ξn around the point z′ where ξn,z′(z
′)

is to be evaluated. A similarly approximated expression is introduced also for the
electrostatic potential φz′(z

′). The matrix elements for Ĥp,rz′ are then calculated
by using such simplified expressions for ξn,z′(z

′) and φz′(z
′) and, by keeping only

the first order terms in ∆(r), the following expression for the SR scattering matrix
element can be derived [19, 20]

Mnn′ [∆(r)] = ∆(r)

[
−
∫
z
ξne

∂φ

∂z
ξn′ dz + (εn − εn′)

∫
z
ξn
∂ξn′

∂z
dz

]
− ∆(r)

Tw

[∫
z
ξn

(
~2 ∂

∂z

1

mz

∂

∂z
− ze∂φ

∂z

)
ξn′ + (εn − εn′)

∫
z
ξnz

∂ξn′

∂z
dz

]
.

(3.13)

It is also worth noting that in the limit of an infinitely large barrier ΦB, we obtain
the well known Prange-Nee expression [19, 20]

Mnn′ [∆(r)] =

[
~2

2mz

∂ξn′(0)

∂z

∂ξn(0)

∂z

]
∆(r) (3.14)

so that Eq.3.13 is regarded as a generalized Prange-Nee model taking into account
the wave-function penetration into the oxide region.
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The GPN model summarized by Eq.3.13 has removed the non linear dependence
of the matrix element on ∆(r) which is implicit to Eq.3.8. This has been accomplished
by introducing z′ (such that Ĥp,rz′ has the front interface in z′=0), then by using
the approximated expression of ξn,z′(z

′) in Eq.3.12 (and a similar expression for the
potential), and finally by keeping only the first order terms in ∆(r). The use of
Eq.3.12 is a key step in the derivations and deserves further discussion because it is
quite delicate when the oxide and semiconductor masses are different, as it is the
case in most material systems used for MOS transistors. In fact for mox 6= msct the
function ξn,z′(z

′) in the exact form given by Eq.3.11 is a continuous function of z′

whose first derivative is discontinuous in z′= (−∆Tw)/(Tw −∆) (i.e. z′' −∆ for
∆ �Tw), while the approximated form of ξn,z′(z

′) in Eq.3.12 is discontinuous in
z′=0, because the derivative of the unperturbed wave-function ξn(z′) is discontinuous
in z′=0.

Fig.3.2 compares the ξn,z′(z
′) expressions in Eqs.3.11 and Eq.3.12 in a HfO2-Si-

HfO2 quantum well with Tw=5 nm for either msct=0.92 m0 or msct=0.19 m0. As
can be seen Eq.3.12 is very different compared to the ξn,z′(z

′) of Eq.3.11 for z′ from
approximately −∆ to 0 (corresponding to z from 0 to ∆), where Eq.3.12 leads to
the expected discontinuity at z′=0. In fact, the main issue with Eq.3.12 is that it is
based on a first order expansion of ξn around the point z′, which for mox 6= msct is
very inaccurate when z′ and [z′+(1-z′/Tw)∆] have a different sign (i.e. for z′ from
approximately −∆ to 0 in Fig.3.2), because the ξn derivative is discontinuous at z′=0.
The same problem holds for the approximated expression of the electrostatic potential
φz′(z

′) which is used to reach the GPN model formulation in Eq.3.13, because the
derivative of φ is also discontinuous at z′=0 for most semiconductor-oxide interfaces
due to the different dielectric constant for z < 0 and z > 0.

It is now important to notice that the main remarks discussed for the derivation of
Eq.3.13 apply also to a bulk MOSFET. For a bulk MOSFET, in fact, the derivations
follow the same path by first defining the abscissa z′ = z−∆(r)(as obtained from
Eq.3.9 for Tw→∞), then by expanding ξn,z′(z

′) as

ξn,z′(z
′) ' ξn(z′) +

∂ξn(z′)

∂z′
∆(r) (3.15)

and with a similar expression for the electrostatic potential. Finally the matrix
element can be derived by keeping only the first order terms in ∆(r), and we obtain
[19, 20]

Mnn′ [∆(r)] = ∆(r)

[
−
∫
z
ξne

∂φ

∂z
ξn′ dz + (εn − εn′)

∫
z
ξn
∂ξn′

∂z
dz

]
. (3.16)

The main issue with Eq.3.15 is the same as with Eq.3.12: since for mox 6= msct the
derivative of ξn is discontinuous at z′=0, then Eq.3.15 can be very inaccurate for z′

close to zero.
In consideration of the above discussion and of the ξn,z′(z

′) plots in Fig.3.2, we
believe that the use of Eqs.3.12, 3.15 is somewhat unjustified for mox 6= msct, but
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Figure 3.2: Unperturbed wave-function ξ0 in a 5 nm HfO2-Si-HfO2 quantum well for
(a) the lowest unprimed subband (msct=0.92 m0) and (b) the lowest primed subband
(msct=0.19 m0) versus the auxiliary abscissa z′ defined in Eq.3.9 (bottom horizontal
axis) or versus z (top horizontal axis). ξ0 is calculated either with the exact form in
Eq.3.11 or according to the approximation in Eq.3.12 and for a positive ∆ =0.5 nm.
The oxide mass is mox=0.11 m0 [13].
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it is nevertheless a necessary step if the final goal is to obtain a linear model for
SR scattering, that is a model where the matrix elements Mnn′ [∆(r)] are simply
proportional to ∆(r). In fact Eqs.3.13, 3.14 and 3.16 can all be cast in the form

Mnn′ [∆(r)] = M
(0)
nn′ ∆(r), which is also an implicit definition of M

(0)
nn′ . Such a linear

dependence on ∆(r) is, in turn, the crucial result to obtain an ensemble averaged
squared matrix element

〈
|Mnn′(q)|2

〉
that is simply proportional to the power

spectrum of the surface roughness. In fact, by assuming Mnn′ [∆(r)] = M
(0)
nn′ ∆(r),

the
〈
|Mnn′(q)|2

〉
is readily obtained using the Wiener−Khinchin theorem as [19, 20]

(that states that the power spectrum of a stationary random process is given by the
Fourier transform of the autocorrelation function of the process):

〈
|Mnn′(q)|2

〉
= |M (0)

nn′ |
2S∆(q)

A
(3.17)

where the roughness power spectrum S∆(q) is given by

S∆(q) =

∫
A
C∆(r) e−iq·r dr. (3.18)

which is the Fourier transform of the auto-correlation function [32]

C∆(r) =
1

A

∫
A

∆(r′)∆(r′ + r)dr′. (3.19)

An exponential or a Gaussian form for the auto-correlation function has frequently
been used to describe surface roughness limited mobility in MOS transistors [16, 17,
19, 20, 23–27].

3.2.2 New formulation for the SR scattering matrix elements

The discussion carried out in the previous section raised some doubts, at least
for mox 6=msct, about the derivations leading from the definition of the SR scattering
matrix element Mnn′ [∆(r)] in Eq.3.8 to the linear formulation in Eqs.3.13 or 3.14. As
can be seen, in fact, the Mnn′ [∆(r)] defined in Eq.3.8 is a non linear function of ∆(r),
which defines the narrow region around the interface at z=0 where the integrand
function is not zero. Furthermore for mox 6=msct the wave-function derivative is
discontinuous at z=0 with quite different values of the ∂ξn/∂z at z=0− and z=0+, so
that the Mnn′ [∆(r)] defined in Eq.3.8 is not expected to be symmetric for positive
and negative ∆(r), not even for arbitrarily small ∆(r) values.

In virtue of the above discussion, in this section we propose a fully numerical
calculation of Mnn′ [∆(r)] based directly on Eq.3.8. We thus proceed by directly
inserting in Eq.3.8 the unperturbed Ĥ0 and perturbed Hamiltonian Ĥp,rz given
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respectively by Eq.3.3 and 3.5, and obtain

Mnn′ [∆] =

∫ 0

∆
ξ†n′(z)

[(
~2

2mox
− ~2

2msct

)
∂2ξn(z)

∂z2
− ΦB ξn(z)

]
dz ∆ ≤ 0. (3.20a)

Mnn′ [∆] =

∫ ∆

0
ξ†n′(z)

[(
− ~2

2mox
+

~2

2msct

)
∂2ξn(z)

∂z2
+ ΦB ξn(z)

]
dz ∆ ≥ 0

(3.20b)

Fig.3.3 reports the Mnn′ [∆] versus ∆ calculated with Eq.3.20 for a 5 nm thick
HfO2-Si-HfO2 quantum well and compares it with the linear formulations given by
the GPN model in Eqs.3.13 and the PN model in 3.14. The difference between the
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Figure 3.3: SR scattering matrix elements versus ∆ for a 5 nm HfO2-Si-HfO2 square
quantum well calculated according to the PN model of Eq.3.14 (dashed line), the
GPN model of Eq.3.13 (dot-dashed line) and the new model of Eq.3.20 (solid line).
(a),(b),(c): unprimed subbands having msct=0.92 m0; (d),(e),(f): primed subbands
having msct=0.19 m0. Results are for different subband transitions (e.g. (a) and
(d) are for the lowest subband, i.e. n=n′ =0). The matrix elements calculated with
Eq.3.20 exhibit a quite strong non linear behavior. Open squares and open circles
are calculated either including or neglecting the kinetic term discussed in Sec.3.2.3.

calculations with (open square) or without (open circles) the kinetic term will be
discussed in Sec.3.2.3. We first notice that, for a given ∆ magnitude, Mnn′ [∆] is
much larger for a positive than it is for a negative ∆. This is consistent with the
wave-function behavior close to the interface (see Fig.3.1(b)): in fact the exponential
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∆r.m.s. and Λ from AFM or TEM measurements for the Si-SiO2 interface

∆r.m.s.[nm] Λ[nm] Spectrum

S.M.Goodnick et al. [23] 0.14-0.20 0.6-2.5 Gaussian
0.14-0.20 0.7 - 3.7 Exponential

T.Yamanaka et al. [33] 0.21 — —

A.Pirovano et al. [34] 0.18 1.8 Gaussian

O.Bonno et al. [35] 0.18 '4.1 Exponential

∆r.m.s. and Λ extracted from mobility calculations

∆r.m.s.[nm] Λ[nm] Spectrum

M.V.Fischetti et al. [25] 0.48 1.3 Exponential

C.Jungemann et al. [24] 0.44 2.5 Gaussian

T.Ishihara et al. [27] 0.55 1.3 Gaussian

D.Esseni et al.[20] 0.62 1.0 Gaussian

This Work 0.21 1.4 Exponential

Table 3.1: SR scattering spectrum parameters for (100) silicon MOSFETs measured
by AFM and TEM techniques (top part of the table) or inferred from a comparison
between simulated and experimental mobility values (bottom part of the table).

decay in the oxide region and the super-linear increase in the semiconductor region
result in a stronger interaction with the scattering Hamiltonian when ∆ is positive.
Then we also see that such a strong asymmetry of Mnn′ [∆] for either negative or
positive ∆ makes it inherently difficult to find a fairly good approximation with
a linear model, as attempted by Eqs.3.13 or 3.14. In this latter respect, in fact,
it is useful to recall that the r.m.s. roughness value, ∆r.m.s., typically reported to
reproduce experimental mobility in silicon MOSFETs by using the GPN or PN
model is in the range of 0.4−0.6 nm (see also Tab.3.1), so that the linearity assumed
by Eqs.3.13 or 3.14 should hold at least up to 1−1.5 nm in order for the modeling
assumption to be consistent with the extracted ∆r.m.s. value.

The numerical determination of Mnn′ [∆(r)] shown in Fig.3.3 can be used as a
basis for a new SR scattering model, however the problem is to calculate

〈
|Mnn′(q)|2

〉
when Mnn′ [∆(r)] is not simply proportional to ∆(r), so that

〈
|Mnn′(q)|2

〉
is not

proportional to the power spectrum S(q) of the roughness. In fact, since ∆(r) is a
stochastic process (whose auto-correlation function and spectrum can be assumed to
be known), then Mnn′ [∆(r)] must be treated as a non linear transformation of the
stochastic process ∆(r). This is a known and studied problem in signal theory and
it can be shown that the auto-correlation function CM (r) of Mnn′ [∆], can be written
as [36]

CM (r) =
1

2π C∆(0)
√

1− C2
∆,N (r)

∫ +∞

−∞

∫ +∞

−∞
Mnn′ [∆1]Mnn′ [∆2]×

× exp

[
−

∆2
1 + ∆2

2 − 2C∆,N (r)∆1∆2

2C∆(0)(1− C2
∆,N (r))

]
d∆1 d∆2 (3.21)
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where C∆(r) is the SR auto-correlation function defined in Eq.3.19 and C∆,N (r)=C∆(r)/C∆(0)
1.

Once CM (r) is known, the corresponding power spectrum SM (q) is readily given
by the Fourier transform of CM (r). In all the calculations of this work we will assume
an exponential form for the roughness auto-correlation function

C∆(r) = ∆2
r.m.s.e

−r
√

2/Λ (3.22)

where Λ is the correlation length of interface fluctuations. Eq.3.22 shows that for an
exponential spectrum C∆(r) depends only on r = |r|, so that also the correlation
function CM (r) of Mnn′ [∆(r)] depends only on r, which simplifies the calculation of
the two dimensional Fourier transform as shown in AppendixF. In this case, in fact,
according to Eq.F.5 we finally obtain:

〈
|Mnn′(q)|2

〉
=

2π

A

∫ +∞

0
CM (r) J0(qr) rdr (3.23)

where J0(x) is the zero order Bessel function. In all the results obtained with the
model developed in this section, the integrals in Eqs.3.21 and 3.23 were obtained by
direct numerical calculation. In scattering rate calculations the normalization area A
in the

〈
|Mnn′(q)|2

〉
expression always cancels out when summing over final k states

[20].

After the determination of the ensemble averaged matrix elements
〈
|Mnn′(q)|2

〉
(and the inclusion of screening described Sec.3.2.5), in our work we calculate SR
scattering rate and momentum relaxation time by using the first Born approximation.
The use of the first Born approximation for SR scattering has been recently revisited
in [37], where it is shown that, in analogy to Coulomb scattering, the validity of
the approximation requires that the amplitude of the scattered wave-function be
small (compared to the incident wave-function), and that the scattering potentials
be separated by an average distance larger than the carriers mean-free-path. For SR
scattering these requirements are ultimately related to the magnitude of the matrix
elements and to the correlation length of the ∆(r) process. We will see in Sec.3.4 that
our SR model leads to matrix elements similar to the conventional linear formulations
when the models are calibrated against the same experimental data; the roughness
correlation length used in our calculations is also consistent with previous studies.
Consequently, we think that the validity of the first Born approximation does not
change substantially in the surface roughness formulation of this work compared to
conventional linear models.

1 Eq.3.21 holds for a Gaussian joint probability distribution for ∆(x) and ∆(r + x) [32, 36]. The
Gaussian joint probability should not be confused with the Gaussian auto-correlation function and
power spectrum.
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3.2.3 Kinetic and potential energy contribution to the matrix ele-
ments

In order to gain some insight concerning the relative importance of the kinetic
and potential energy contributions to the matrix elements Mnn′ [∆(r)], we rewrite
the unperturbed Hamiltonian of Eq.3.3 as

Ĥ(ox) = ΦB + Ĥ
(ox)
kin = ΦB + Ê(ox)

cz (−i ∂
∂z

) = ΦB −
~2

2mox

∂2

∂z2
z < 0 (3.24a)

Ĥ(sct) = Ĥ
(sct)
kin = Ê(sct)

cz (−i ∂
∂z

) = − ~2

2msct

∂2

∂z2
0 ≤ z ≤ Tw (3.24b)

where a square quantum well with electrostatic potential φ(z)=0 has been assumed
and the Hamiltonian in the back oxide (i.e. for z>Tw) is not indicated. Eq.3.24 recalls

that the kinetic energy operators Ĥ
(ox)
kin and Ĥ

(sct)
kin are obtained with the canonical

substitution kz→(−i∂/∂z) respectively in the oxide E
(ox)
cz (kz) and semiconductor

E
(sct)
cz (kz) conduction band energy relation, where Ecz is the kz related energy

component which is separable from the kx, ky components in a parabolic effective
mass model.

It is now interesting to notice that, by recalling Eq.3.2 (valid in all spatial
domains), one can readily write the eigenvalues of the kinetic energy operators

Ĥ
(ox)
kin ξn(z) = −(ΦB − εn) ξn(z) z < 0 (3.25a)

Ĥ
(sct)
kin ξn(z) = εn ξn(z) 0 ≤ z ≤ Tw (3.25b)

where we always assume εn<ΦB.

Eq.3.25 shows that the eigenvalue of Ĥ
(sct)
kin inside the quantum well is εn, hence

it is a positive value corresponding to a sinusoidal form of the wave-function for

0≤z≤Tw. In the oxide region, instead, Ĥ
(ox)
kin has a negative eigenvalue corresponding

to the exponential decay of the wave-function. More precisely, the negative eigenvalue

of Ĥ
(ox)
kin =Ê

(ox)
cz (−i∂/∂z) is due to the imaginary wave-vector kz of an electron in the

oxide having an energy εn, that is an energy [ΦB−εn] below the oxide conduction
band edge and thus belonging to oxide energy gap.

This analysis is supported by the simple example of the wave-function ξ0(z) for
the lowest subband in a square quantum well, that can be expressed analytically as
[38]

ξ0(z) =


C0 cos(0.5k0Tw) eγ0z z ≤ 0
C0 cos [k0(z − 0.5Tw)] 0 ≤ z ≤ Tw

C0 cos(0.5k0Tw) e−γ0(z−Tw) z ≥ Tw

(3.26)

where C0 is a normalization constant, k0 and γ0 are

k0 =

√
2msctε0

~2
γ0 =

√
2mox(ΦB − ε0)

~2
(3.27)
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and ε0 is finally given by the lowest solution of the transcendent equation

tan

[
k0Tw

2

]
=
msctγ0

moxk0
. (3.28)

As can be seen, γ0 is the magnitude of the imaginary kz in the oxide corresponding
to an exponentially decaying wave-function and resulting in the negative eigenvalue

of Ĥ
(ox)
kin =Ê

(ox)
cz (−i∂/∂z) in Eq.3.25a.

By recalling Eq.3.20, we see that the calculation of the SR scattering matrix

element Mnn′(∆) requires: for a negative ∆ the evaluation of Ĥ
(sct)
kin ξn(z) in the

oxide region (i.e. for z < 0); for a positive ∆ the evaluation of Ĥ
(ox)
kin ξn(z) in the

semiconductor region (i.e. for 0≤z≤Tw). For a square quantum well we can use
Eqs.3.25 and obtain

Ĥ
(sct)
kin ξn(z) =

mox

msct
Ĥ

(ox)
kin ξn(z) = −mox

msct
(ΦB − εn) ξn(z) z < 0 (3.29a)

Ĥ
(ox)
kin ξn(z) =

msct

mox
Ĥ

(sct)
kin ξn(z) =

msct

mox
εn ξn(z) 0 ≤ z ≤ Tw (3.29b)

By substituting Eq.3.29 in Eq.3.20 we have

Mnn′ [∆(r)] =

[
−ΦB −

(
mox

msct
− 1

)
(ΦB − εn)

] ∫ 0

∆
ξ†n′(z) ξn(z)∂z ∆ < 0

(3.30a)

Mnn′ [∆(r)] =

[
ΦB +

(
msct

mox
− 1

)
εn

] ∫ ∆

0
ξ†n′(z) ξn(z)dz ∆ ≥ 0

(3.30b)

which is a form of the matrix element that, for a square quantum well with φ(z) =0,
is equivalent to Eq.3.20.

In Eq.3.30 the contribution to Mnn′ [∆(r)] produced by the kinetic energy op-
erators is easily identified in the term that vanishes for mox=msct. Furthermore,
because of the exponential decay of the wave-functions in the oxide, the integral of
the wave-functions in Eq.3.30a for negative ∆ is much smaller, for a given |∆|, than
the corresponding integral in Eq.3.30b for positive ∆. This observation essentially
reiterates our argument about the strong non linear dependence of Mnn′ [∆(r)] on ∆
also illustrated by Fig.3.3.

Eqs.3.29 and 3.30 deserve a few more specific comments that we discuss separately
for either a semiconductor-oxide system or a hetero-structure between two different
semiconductors.

Semiconductor-oxide interface with large energy barrier

For the semiconductor-oxide interfaces typically employed in the transistors of
mainstream CMOS technologies (e.g. Si-SiO2, Si-HfO2, Si-Al2O3, InGaAs-HfO2,
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InGaAs-Al2O3), the barrier height ΦB ranges from about 2eV to more than 3eV and
it is thus much larger than εn for all the well thicknesses of practical interest.

In this case, for ∆>0 the kinetic energy contribution to Mnn′ [∆(r)] is typically
smaller than the energy barrier contribution, that is the second term in the square
bracket of Eq.3.30b is small compared to ΦB. This is confirmed by the numerical
calculations in Fig.3.3 where the matrix element obtained by neglecting the kinetic
term is also shown.

The situation is instead more complicated for ∆<0 and we believe that, depending
on ΦB and mox/msct, the final result may not be physically meaningful. The problem

can be identified in Eq.3.29a, where Ĥ
(sct)
kin is applied to the exponentially decaying

wave-function in the oxide leading to the negative eigenvalue [−(mox/msct)(ΦB−εn)].
Such an eigenvalue corresponds to an electron in the semiconductor having an
imaginary kz value and an energy [(mox/msct)(ΦB−εn)] below the conduction band.
This result is for sure not physically meaningful if [(mox/msct)(ΦB−εn)] is larger
than the energy gap EG of the semiconductor. More realistically, since the parabolic

effective mass kinetic energy operator Ĥ
(sct)
kin = Ê

(sct)
cz (−i∂/∂z) can be considered

a fairly accurate model for energies in the gap down to, at best, roughly half the
energy gap [39], then [(mox/msct)(ΦB−εn)] should be limited more prudentially to
values smaller than about 0.5EG.

In silicon MOSFETs with a (100) interface the quantization mass is 0.92m0

for the unprimed subbands, hence [mox/msct] is smaller than 1.0; in fact we have
[mox/msct]'0.54 for an SiO2 gate oxide (mox=0.5m0) and [mox/msct]'0.12 for an

HfO2 oxide (mox=0.11m0). In these systems the limitations in the use of Ĥ
(sct)
kin in

the oxide region are not so critical in practical calculations, even because the overall
matrix element is largely dominated by the Mnn′ [∆(r)] for positive ∆ values, as
illustrated in Fig.3.3.

In III-V semiconductors with a very small msct at the Γ point, instead, [mox/msct]
can be significantly larger than 1: for example [mox/msct] '4.2 for the InAs-HfO2

system. In such systems Eq.3.29a affirms that the application of Ĥ
(sct)
kin to the wave-

function in the oxide results in negative eigenvalues whose magnitude is as large as
10eV or more; of course such energy values cannot be considered physically meaningful.
We believe that this is a fundamental limitation related to the use of the parabolic
effective mass Hamiltonian for the kinetic operator, which precludes a physically
meaningful calculation of the kinetic energy contribution to the SR scattering matrix
element when the effective mass in the semiconductor is smaller than in the oxide and
ΦB is a few eV. This underlines also the interest for surface roughness models based
on a Hamiltonian going beyond the effective mass approximation, such as the recently
proposed approach based on pseudo-potentials calculations [37]. In the present work,
we decided to neglect the kinetic term in the calculations for high-κ/III-V systems.
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Hetero-structures between small gap semiconductors

In the hetero-structures between different semiconductors that are routinely
employed in the fabrication of III-V based CMOS transistors and HEMTs, the energy
barrier ΦB given by the conduction band discontinuity is in the range of a few
hundreds meV: for example 0.12eV for InP-In0.53Ga0.47As; 0.3eV for In0.52Al0.48As-
In0.53Ga0.47As; 0.5eV for InAs-InP; 0.4eV for In0.53Ga0.47As-InAs. This implies that
for a given ∆r.m.s. the energy barrier contribution to the SR scattering matrix element
is much smaller than in the oxide-semiconductor system of an MOS transistor, hence
the kinetic contribution may have a larger relative importance.

The reduction of ΦB also implies that, depending on the ratio between the

effective masses in the active and barrier semiconductor, the application of Ĥ
(sct)
kin to

the wave-function in the barrier region results in contributions to the SR scattering
matrix element that retain full physical meaningfulness.

3.2.4 Surface roughness at front and back interface

Since in our model the SR matrix element is a non linear transformation of the
SR process, one may legitimately wonder if in an ETB transistor the effects of the
roughness ∆F (r) at the front and the roughness ∆B(r) at back interface are simply
additive. At this regard, let us denote with MF (r) = Mnn′ [∆F (r)] the matrix element
produced by ∆F (r) alone (i.e. with ∆B(r) =0), and with MB(r) = Mnn′ [∆B(r)] the
matrix element produced by ∆B(r) alone; MF (r) and MB(r) can be calculated by
using Eq.3.20 and, furthermore, we assume that ∆F (r) and ∆B(r) are uncorrelated.
MF (r) and MB(r) are non linear transformations of ∆F (r) and ∆B(r) and have
non zero mean, that we denote respectively by MF0 and MB0. Moreover MF (r)
and MB(r) are uncorrelated because they are space invariant transformations of
uncorrelated processes. The auto-correlation function needed for scattering rate
calculations via Eq.3.23 is given by

C(r) =
1

A

∫ [
MF (r′) +MB(r′)

] [
MF (r′ + r) +MB(r′ + r)

]
dr′ (3.31)

= CF (r) + CB(r) +
2

A

∫
A

[
MF (r′)MB(r′ + r)

]
dr′

where CF/B(r) is the autocorrelation function of the process MF/B(r). We now write

MF (r) = MF0 +MF,z(r) MB(r) = MB0 +MB,z(r)

where MF,z(r), MB,z(r) have by definition zero mean, and readily obtain

2

A

∫
A

[
MF0 +MF,z(r

′)
] [
MB0 +MB,z(r

′ + r)
]
dr′ = 2MF0MB0 (3.32)

where we have used the fact that the mutual correlation function of MF,z(r), MB,z(r)
is zero because they are uncorrelated and have zero mean. It should be noticed
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3.3. Mobility calculations: planar MOSFETs

that 2MF0MB0 is just an r independent term, so that Eqs.3.31 and 3.32 show
that, in virtue of the Wiener−Khintchine theorem, the power spectrum density of
[MF (r)+MB(r)] is given by the sum the MF and MB spectra, up to an irrelevant
term related to the mean of MF (r) and MB(r), that of course gives no contribution
to momentum relaxation via scattering.

For ETB devices the assumption of uncorrelated front and back interface roughness
may be questionable, however the analysis of a possible correlation between ∆F (r)
and ∆B(r) is beyond the scope of the present work.

3.2.5 Carrier screening

Eqs.3.17 and 3.23 express the unscreened squared matrix elements respectively
for the PN or GPN models and the new model proposed in this work. The screening
effect produced by the electron in the inversion layer was introduced by using the
static, scalar dielectric function εD(q). This approach is fairly standard and widely
discussed in the literature [24, 40], so that here we only summarize the basic equations.
The dielectric function εD(q) can be calculated as [20, 24, 40]

εD(q) = 1−
∑
ν,n

e2

q(εsct + εox)
Fν,n,n(q) Πν,n,n(q) (3.33)

where the sum is over subbands n and valleys ν (for inversion layers having more
valleys), and the form factor Fν,n,n(q) and polarization factor Πν,n,n(q) are defined
in [20, 40]. Consistently with a scalar dielectric function approach, the inter-subband
transitions were left unscreened while the screened matrix element for intra-subband
transitions is simply given by M(scr)

n,n (q)=Mn,n(q)/εD(q).

3.3 Mobility calculations: planar MOSFETs

In mobility calculations only the ∆ valleys are considered for silicon and only the
Γ valley for III-V semiconductors. In fact the simulations for III-V semiconductors
are focused on InAs in a (100) inversion layer, where the contribution to transport of
satellite valleys is essentially negligible down to very small well thicknesses [16, 41].

3.3.1 Non-parabolicity corrections for mobility calculations

As explained in Sec.3.2 the SR scattering matrix element of Eq.3.20 has been
derived within the parabolic effective mass approximation (EMA) Hamiltonian. While
the development of a complete SR scattering model based on a Hamiltonian beyond
the EMA approach goes beyond the scope of the present work [37], we introduced non
parabolic corrections in the calculation of the subband minima and in plane energy
relation, which in turn affect the calculation of mobility, as discussed in Sec.3.3.2. The
non parabolicity factor α in the conduction band of silicon is about 0.5eV −1, but it
becomes substantially larger at the Γ conduction band of In0.53Ga0.47As (α=1.4eV −1)
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and InAs (α=2.5eV −1) [42–44]. The non parabolicity effects are included in our
model by writing the energy E(k) versus the wave-vector k=(kx,ky) as in Eq.C.31.
As can be seen, Eq.C.31 provides nonparabolicity corrections for both the subband
minima (obtained by setting kx and ky to 0 into Eq.C.31) and the in-plane kinetic
energy E(k). In particular, the transport mass becomes dependent on size and bias
induced quantization and, consequently, dependent on the well thickness and different
in each subband [44].

3.3.2 Relaxation time and mobility calculation

A rigorous calculation of the k dependent momentum relaxation time τn(k) for
an anisotropic scattering mechanism, such as surface roughness, and for anisotropic
bands is a quite complicated problem, and it is equivalent to solving the linearized
Boltzmann transport equation for a small, uniform electric field. Even if a general
solution to the problem can be obtained for anisotropic scattering mechanisms
and anisotropic bands [45], a simplification is introduced in this work by assuming
isotropic bands, in which case the relaxation time τn(E) depends only on the energy
E and not on the direction of k[45].

In a silicon (100) inversion layer and within the parabolic effective mass ap-
proximation, the isotropic dispersion is essentially correct for unprimed subbands
(having quantization mass msct=0.916 m0 and in-plane masses mx=my=0.19 m0),
while it is an approximation for primed subbands (having msct=0.19 m0 and dif-
ferent in-plane masses 0.19 m0 and 0.916m0). Moreover, isotropic bands are a
very good approximation for the Γ point conduction band minimum of most III-V
semiconductors.

Since the inter-subband transitions couple the calculation of the momentum
relaxation time τn(E) in the different subbands (within a given valley), we determined
τn(E) by solving the corresponding set of algebraic equations as described in [40].
We thus write the wave-vector kn = (kn,βn) in polar coordinates in the subband n
and for an energy E, where kn is obtained from Eq.C.31 as [21]

kn(E) =
1

~
√

2md(E − εn + α(E − 〈Un〉)2) (3.34)

with md =
√
mxmy being the density of state effective mass. Then the magnitude q

of q= (kn − kn′) can be written as

q(θ,E) =
√
k2
n(E) + k2

n′(E)− 2kn(E)kn′(E) cos θ (3.35)

hence it depends on E and on the angle θ=(βn′−βn) between kn and kn′ . Since
surface roughness is an elastic scattering mechanism, the relaxation time τn(E),
calculated by using the first Born approximation [46], is implicitly defined by the
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3.4. Simulation results: planar MOSFETs

equation [20, 40]∑
n′

Θ(E − εnpn′ )
md

2π~3

∫ 2π

0
[1 + 2α(E − 〈Un′〉)]

〈
|M(scr)

nn′ (q(θ,E))|2
〉
×

×
[
τn(E) kn(E)− τn′(E)kn′(E)

1 + 2α(E − 〈Un〉)
1 + 2α(E − 〈Un′〉)

cos θ

]
dθ = kn(E) (3.36)

Where εnpn′ is the nonparabolic eigenvalue of the n′-th subband obtained from Eq.C.31

by setting kx and ky to 0, and M(scr)
nn′ (q(θ,E)) is the screened matrix element.

Since the τn(E) does not depend on the integration angle θ for isotropic bands,
then for any energy E the set of τn(E) can be obtained from Eq.3.36 by solving the
algebraic linear system [40]

τn(E)
∑
n′

Ann′ (E)−
∑
n′

Bnn′ (E) τn′(E) = kn(E) (3.37)

where the coefficients Ann′ and Bnn′ are given by

Ann′ (E) = Θ(E − εnpn′ )
md

2π~3
[1 + 2α(E − 〈Un′〉)] kn (E)

∫ 2π

0

〈
|M(scr)

nn′ (q(θ, E))|2
〉
dθ

(3.38)

Bnn′ (E) = Θ(E − εnpn′ )
md

2π~3
[1 + 2α(E − 〈Un〉)] kn′ (E)

∫ 2π

0

〈
|M(scr)

nn′ (q(θ,E))|2
〉

cos θ dθ.

(3.39)

Once the τn(E) have been determined, the electron mobility evaluated without
accounting for the valley multiplicity is finally obtained as [20, 40]

µn =
e nsp

Nn 2π ~2

(
md

mc

)2 ∫ ∞
εnpn

(E − εn + α(E − 〈Un〉)2)

1 + 2α(E − 〈Un〉)
τn(E)

∣∣∣∣∂f0(E)

∂E

∣∣∣∣ dE (3.40)

where nsp = 2 is the spin degeneracy, mc = 2(m−1
x + m−1

y )−1 is the conduction
mass, f0(E) is the equilibrium Fermi occupation function, and Nn is the electron
inversion density in the n-th subband by setting the valley multiplicity to 1. Finally
the effective mobility in the inversion layer is obtained as the average of the subband
mobilities weighted by the corresponding electron densities.

3.4 Simulation results: planar MOSFETs

In this section we present the results for SR-limited mobility in silicon and InAs
inversion layers obtained using the new model of this work as well as the GPN and the
PN models. In the calculations, beside the terms described in Sec.3.2.2, we included
also the contributions to the SR scattering matrix element due to the perturbations
of the electrostatic potential produced by the fluctuations of electron and polarization
charges [19, 31]. For these terms we employed the formulation reported in [19].
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3.4.1 Silicon MOSFETs

Fig.3.4 compares simulation results and experimental data for the mobility versus
the effective field, Eeff , in bulk silicon MOSFETs at T=77K. The low temperature
allows us to investigate an experimental condition where the dominant scattering
mechanism at large Eeff is surface roughness. As already said in Sec.3.2.2, in

0.2 0.3 0.4 0.5 1
E

eff
 [MV/cm]

10
3

10
4

M
o

b
ili

ty
 [

c
m

2
/V

s
]

This work
∆

RMS
=0.21 nm 

GPN model
∆

RMS
=0.65 nm

PN model
∆

RMS
=0.60 nm 

1
E

eff
 [MV/cm]

10
3

10
4

M
o

b
ili

ty
 [

c
m

2
/V

s
]

Exper: N
A
=7.2x10

16
cm

-3

Exper: N
A
=2.0x10

16
cm

-3

Exper: N
A
=3.9x10

15
cm

-3

Simulations:

N
A
=7.2x10

16
cm

-3

T=77K

Figure 3.4: SR-limited mobility obtained with the matrix elements given by the
model of this work (i.e. Eq.3.20), by the GPN model (i.e. Eq.3.13), or by the PN
model (i.e Eq.3.14). All simulations are performed using a SR correlation length
Λ =1.4 nm. The corresponding ∆r.m.s. values are reported in the legend. Symbols
are experimental data from [47].

all calculations we assume the exponential form for the roughness auto-correlation
function given by Eq.3.22 [23], and the correlation length Λ is set to 1.4nm. As can be
seen the SR scattering model of this work can reproduce the experimental data with a
∆r.m.s. of 0.21 nm. It is worth noting that such a ∆r.m.s. value is very close to the r.m.s.
interface roughness values reported by several AFM and TEM measurements and
summarized in Tab.3.1. Furthermore, ∆r.m.s.=0.21 nm corresponds to approximately
one mono-layer of interface width. Fig.3.4 also shows that with the GPN and the
PN models, instead, we must use ∆r.m.s.=0.65 nm and ∆r.m.s.=0.60 nm, respectively,
to reproduce the same experimental mobility data. Tab.3.1 shows that the ∆r.m.s.

for the GPN and the PN model extracted in Fig.3.4 are consistent with the values
inferred in several previous simulation studies based on the GPN or PN model, but
systematically larger than those reported by AFM and TEM measurements.

To gain a further insight about the behavior of the models, Fig.3.5 compares the
lowest subband matrix element versus ∆ and the ensemble averaged, squared matrix
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element versus q for the GPN model and the model of this work for the cases with
Eeff ≈0.9 MV/cm in Fig.3.4. As can be seen, despite the different matrix element
versus ∆ in Fig.3.5(a), the

〈
|M0,0(q)|2

〉
entering directly the mobility calculation

and reported in Fig.3.5(b) is very similar for the two models, which is consistent
with the fact that the ∆r.m.s. has been calibrated in each model to reproduce the
same experimental mobility data, as illustrated in Fig.3.4.

Fig.3.6 reports the simulated SR mobility versus Tw at room temperature for
Si-SiO2 SOI single gate (SG) MOSFETs obtained with the GPN, the PN and the
SR scattering model of this work. When the ∆r.m.s. values calibrated in Fig.3.4 are
used, the three models provide consistent trends of µSR versus Tw. Moreover, Fig.3.6
shows that for Tw lower than approximately 4 nm and at small inversion densities all
models approach the well known T6

w mobility dependence [10, 19]. The T6
w behavior

can be easily derived and justified analytically for the PN model relying on an infinite
barrier ΦB quantization model [20]. The fact that the GPN model and the model of
this work, both of which account for a finite ΦB, result in essentially the same T6

w

trend confirms that in the Si-SiO2 system the wave-function penetration into the
oxide plays a modest role.

3.4.2 III-V based MOSFETs

In Fig.3.7 we present the calculated SR-limited mobility for InAs SOI SG MOS-
FETs versus Tw at room temperature, obtained with the same parameters of the SR
spectrum used for silicon in Fig.3.6.

Simulation results from the new model and the GPN model accounting for wave-
function penetration into the oxide show similar mobility results but for different
values of ∆r.m.s.. In particular, the new model and the GPN model show a much
weaker mobility degradation at small Tw than the PN model, which, as expected,
predicts the T6

w trend.

The discrepancy between SR-limited mobility predicted by the PN compared to
either the GPN or the model of this work stems from the importance of wave-function
penetration into the oxide in this InAs-HfO2 structure (see Fig.3.1.a), which is a
clear difference compared to the Si-SiO2 transistor analyzed in Fig.3.6.

3.5 Conclusions

We have revisited the formulation of surface roughness scattering for an effective
mass approximation Hamiltonian and in the framework of the significant wave-
function penetration into the oxide region occurring particularly in high-κ, III-V
based MOS transistors.

Besides reconsidering the derivation of the well-known GPN model when the
semiconductor and oxide masses are different, we have proposed a new SR scattering
model that accounts for the markedly non linear relation between the displacement
∆ of the interface position and the SR scattering matrix elements. To our best
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knowledge, this is the first attempt to account for such a non linear relation in semi-
classical SR scattering modeling, and we show that, since the deviations from a linear
model are in fact large, then the proper inclusion of the non linearity remarkably
influences the r.m.s value ∆r.m.s. of the interface roughness that is necessary to
reproduce SR-limited mobility measurements.

In this respect, comparison with experimental mobility for bulk Si MOSFETs at
low temperature shows that with the new SR scattering model a good agreement
with measured mobility can be obtained with ∆r.m.s. values of about 0.2 nm. This is
a very plausible ∆r.m.s. value because it is in good agreement with several AFM and
TEM measurements and, furthermore, it is close to one mono-layer of interface width,
as already noticed in [23]. The ∆r.m.s. value extracted by using the GPN model and
the PN model to reproduce the same set of experimental data is about 0.60-0.65
nm, which is consistent with previous studies based on the PN formulation, but
significantly larger than the ∆r.m.s. obtained from AFM and TEM measurements.

The results of the new model, the PN and of the GPN model are also compared
for SR-limited mobility in silicon and InAs thin-body transistors. For the Si-SiO2

system all models provide very similar mobility dependence on Tw if we use, for each
model, the ∆r.m.s. value calibrated by comparing to experimental mobility in bulk
silicon MOSFETs. This reflects the weak wave-function penetration into the Si-SiO2

system.
For the InAs-HfO2 system, instead, the PN model predicts a much stronger

mobility degradation at small Tw than observed with either the GPN or the model
of this work. In particular the PN model predicts a T6

w mobility behavior also
in the InAs-HfO2 system, that is not observed in the simulations obtained with
the GPN or the model of this work. This significant discrepancy, that implies
quite different projections for the SR-limited mobility in ultra-thin, III-V based
transistors obtained with the different models, stems from the substantially larger
wave-function penetration into the oxide region observed in the InAs-HfO2 compared
to the conventional Si-SiO2 system. This new SR model has been implemented in a
comprehensive semi-classical multi-subband Monte Carlo simulator with a parallel
implementation [28, 48], that accounts for all the main scattering mechanisms and
has confirmed the results here obtained for the SR limited mobility [49].
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Figure 3.5: Unscreened matrix element of the lowest subband for the GPN and the
model of this work for the bulk MOSFET analyzed in Fig.3.4 at Eeff ≈0.9 MV/cm.
(a): intrasubband matrix element versus ∆ for the lowest subband. (b): Ensemble
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Figure 3.6: Simulated SR-limited mo-
bility at room temperature in Si-SiO2

SOI SG MOSFETs versus semicon-
ductor thickness Tw for three inver-
sion densities. Electron mobility is
calculated using the GPN model, the
PN model and the new model of this
work. The doping concentration in
the silicon film is 1015cm−3.
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Figure 3.7: Simulated SR-limited mo-
bility at room temperature in InAs-
HfO2 SOI SG MOSFETs versus Tw
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3.6 Modeling of surface roughness scattering: GAA MOS-
FETs

The aim of this section is to extend to circular GAA nanowire MOSFETs the
non-linear model for SR scattering developed for planar transistors in [1]. Let us
assume that, as shown in Appendix B.2, the envelope wave-function can be written
in the form:

Φn,kx(r, θ, x) =
ei kxx√
LNW

ξn(r, θ) (3.41)

that corresponds to Eq.B.31 neglecting the term ei kx (αy+βz) as discussed in Sec.4.4.2.
The unscreened SR matrix element for a 1D gas is written according to the definition
used in Eqs.3.7,3.8:

Mn′
n (qx) =

1

LNW

∫
LNW

 π∫
−π

dθ

∞∫
0

r ξ†n′(r, θ)
[(
Ĥp,rθx − Ĥ0

)
ξn(r, θ)

]
dr

 e−i qxxdx
(3.42)

where qx = (k′x − kx), Ĥ0 is the unperturbed effective mass Hamiltonian and Ĥp,rθx

is the Hamiltonian perturbed by the presence of surface roughness.
For the general case of anisotropic bands, the expression for the unperturbed

Hamiltonian is (see Eq.4.1):

Ĥ0 = −~
2

[
wrr

∂2

∂r2
+ wr

∂2

∂r
+ wrθ

∂2

∂r∂θ
+ wθ

∂2

∂θ
+ wθθ

∂2

∂θ2

]
− eφ(r, θ) + ΦBΘ(r − rNW )

(3.43)

with φ(r, θ) being the electrostatic potential, ΦB is the semiconductor-oxide energy
barrier, Θ(•) is the unit step function, and rNW is the semiconductor nanowire
radius. Since the wij terms of Eq.3.43 are different in the semiconductor and oxide
materials, we write that:

wij = wij,sctΘ [rNW − r] + wij,oxΘ [r − rNW ] . (3.44)

where the wij terms are defined in Eq.4.2. Similarly, Ĥp,rθx is defined as:

Ĥp,rθx = −~
2

[
wrr

∂2

∂r2
+ wr

∂2

∂r
+ wrθ

∂2

∂r∂θ
+ wθ

∂2

∂θ
+ wθθ

∂2

∂θ2

]
− eφ(r)+

+ ΦBΘ (r − (rNW −∆ (θ, x))) (3.45)

and

wij = wij,sctΘ [(rNW −∆ (θ, x))− r] + wij,oxΘ [r − (rNW −∆ (θ, x))] . (3.46)

In this thesis we consider that the oxide has isotropic energy bands, hence, Eqs.3.43
and 3.45 when written for the oxide domain have wrθ,ox = wθ,ox = 0. The difference
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between the perturbed (Eq.3.45) and unperturbed (Eq.3.43) Hamiltonians leads to
a quite complicated operator not reported here explicitly. However it can be easily
seen that the perturbation consists of two terms: one contribution is proportional to
the potential energy barrier ΦB and the second term is given by the kinetic parts of
the Hamiltonian that we here denote with the symbol ∇Ĥkin, and consists of the
radial, angular and mixed derivatives. In order to proceed further and discuss on
these two terms, we analyze below the case for isotropic quantization masses.

In this case, according to Appendix A, wij = 0 with i 6= j, hence, the unperturbed
Hamiltonian according to Eq.4.1 and Eq.4.2 reads:

Ĥ0 =

[
−~2

2r

∂

∂r

r

mq

∂

∂r
− ~2

2r2mq

∂2

∂θ2
+ eφ(r) + ΦBΘ(r − rNW )

]
(3.47)

where mq is the quantization mass defined as:

mq = msctΘ (rNW − r) +moxΘ (r − rNW ) . (3.48)

Similarly, Ĥp,rθx is defined as:

Ĥp,rθx =

[
−~2

2r

∂

∂r

r

mq

∂

∂r
− ~2

2r2mq

∂2

∂θ2
+ eφ(r) + ΦBΘ (r − (rNW −∆ (θ, x)))

]
(3.49)

and

mq = msctΘ [(rNW −∆ (θ, x))− r] +moxΘ [r − (rNW −∆ (θ, x))] . (3.50)

The term
(
Ĥp,rθx − Ĥ0

)
ξn(r, θ) in Eq.3.42 is non-null only in the radial domain

between [rNW −∆(θ, x)] and rNW . The solution of the Schrödinger equation with
the unperturbed Hamiltonian in Eq.3.47 is given by the envelope wave-function
reported in Eq.3.54. Hence, Eq.3.42 can be written as(
Ĥp,rθx − Ĥ0

)
ξn(r, θ) = ±ΦBρn,l(r)e

ilθ+

±
(
− ~2

2mox
+

~2

2msct

)[
∂2

∂r2
ρn,l(r) +

1

r

∂

∂r
ρn,l(r)−

l2

r
ρn,l(r)

]
eilθ︸ ︷︷ ︸

∇Ĥkin

.

(3.51)

Eq.3.51 is valid only between [rNW −∆(θ, x)] and rNW and it is zero otherwise.
In Eq.3.51 the ± term is positive for positive ∆(θ, z) (i.e. when the barrier ΦB

penetrates into the semiconductor) and negative for negative ∆(θ, x) (i.e. when the
barrier ΦB penetrates the oxide).

Since ∆(θ, x) can be regarded as a stochastic process that occurs along the
NW surface, we now define a new coordinate s = (z, x) as the coordinate along
the NW surface with z = rNW θ as shown in Fig.3.8. Hence the roughness at the
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x
z

Figure 3.8: Sketch of a circular NW.

semiconductor interface can be treated as a stochastic process ∆(s) dependent on the
coordinate s. The matrix element of Eq.3.42 can be finally written showing explicitly
the contribution due to the potential barrier ΦB and the kinetic term ∇Ĥkin:

Mn′
n (qx) =

1

LNW

∫
LNW

 π∫
−π

dθ

rNW∫
rNW−∆(s)

r ξ†n′(r, θ)
[
ΦB +∇Ĥkin

]
ξn(r, θ) dr

 e−i qxxdx.
(3.52)

where, in the case of isotropic quantization masses, the expression for ξn(r, θ) is given
in Eq.3.54, and where the term ∆(s) can be either positive or negative.

It has been thoroughly discussed in [1] and in Sec.3.2.3 that, depending on mox

and msct, the ∇Ĥkin term in Eq.3.52 can lead to non-physical results. Moreover,
in general, the kinetic term depends on (r, θ) and cannot be separated in r− and
θ−dependent functions, hence, the integral over r in Eq.3.52 becomes a non-linear
and space-variant transformation of ∆(s) leading to an intractable problem. Based
upon these considerations, ∇Ĥkin will be neglected in the following calculations.

By neglecting ∇Ĥkin the unscreened SR matrix element for a 1D gas given by
Eq.3.52 can be written as:

Mn′
n (qx) =

1

LNW

∫
LNW

 π rNW∫
−π rNW

dz

rNW

rNW∫
rNW−∆(s)

r ξ†n′

(
r,

z

rNW

)
ΦBξn

(
r,

z

rNW

)
dr

 e−i qxxdx.
(3.53)

Before proceeding with the derivation of the explicit expressions for the matrix
element used for scattering rate calculations, we want to noticed that the equation
for the SR matrix element reported in Eq.3.53 applies to both isotropic or anisotropic
quantization masses. Throughout this work the ξn(r, z/rNW ) functions have been
calculated by using the unperturbed Hamiltonians that accounts for the crystal
orientation given by Eq.4.1.
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3.6.1 Isotropic quantization masses

In the assumption of isotropic quantization masses, the term ξn(r, θ) in Eq.3.41
is written exploiting the separability of the radial and angular components:

ξnl(r, θ) =
1√
2π
ρnl(r)e

i lθ (3.54)

where n and l indexes in Eq.3.54 are the radial and angular quantum numbers with
n = 1, 2, . . . and l = 0,±1,±2, . . .. By substituting Eq.3.54 into Eq.3.53 we obtain:

Mn′l′
nl (qx) =

1

LNW

∫
LNW

 π rNW∫
−π rNW

dz

2πrNW
e
−i (l′−l) z

rNW ×

×
rNW∫

rNW−∆(s)

r ρ†n′l′(r)ΦB ρnl(r) dr

︸ ︷︷ ︸
Mn′l′
nl [∆(s)]

]
e−i qxxdx. (3.55)

where Mn′l′
nl [∆(s)] is a space-invariant non-linear transformation of ∆(s) and it is

similar to the transformation described by Eq.3.20 neglecting the kinetic terms.
Hence, the expression of the matrix element becomes:

Mn′l′
nl (qx) =

1

2πrNWLNW

∫
LNW

 π rNW∫
−π rNW

dz e−i ql′lzMn′l′
nl [∆(s)]

 e−i qxx dx (3.56)

where ql′l = (l′ − l)/rNW . The ensemble averaged squared matrix element for
scattering rate calculations is given by:〈∣∣∣Mn′l′

nl (qx)
∣∣∣2〉 =

1

(2π rNWLNW )2

∫∫
LNW

dx dx′×

×
π rNW∫∫
−π rNW

dz dz′e−i ql′l(z−z
′)

〈
Mn′l′
nl [∆(s)]

(
Mn′l′
nl

[
∆(s′)

])†〉
︸ ︷︷ ︸

Cn
′l′

nl (τ)

e−i qx(x−x′)

(3.57)

where τ= s − s′ = (x − x′, z − z′) and Cn
′l′

nl (τ) is the autocorrelation function of
Mn′l′
nl [∆(s)]. By exploiting the Wiener-Kinchin theorem we write the autocorrelation

function as the inverse Fourier transform of the power spectrum Sn
′l′

nl (q):

Cn
′l′

nl (τ) =
1

(2π)2

∫
qz

dqz

∫
qx′

dqx′S
n′l′
nl (qz, qx′)e

+i qz(z−z′)e+i qx′ (x−x′) (3.58)
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and, by substituting Eq.3.58 into the ensemble averaged squared matrix element in
Eq.3.57, we obtain:〈∣∣∣Mn′l′

nl (qx)
∣∣∣2〉 =

1

(2π rNWLNW )2 (2π)2

∫
qz

dqz

∫
qx′

dq′x′×

∫∫
LNW

dx dx′ei(qx′−qx)(x−x′)
π rNW∫∫
−π rNW

dz dz′ei (qz−ql′l)(z−z
′)Sn

′l′
nl (qz, qx′).

(3.59)

According to Eq.E.1 we can rewrite the integrals over x and x′ as:∫∫
LNW

dx dx′ei(qx′−qx)(x−x′) =

=

+LNW /2∫
−LNW /2

eix(qx′−qx)dx

+LNW /2∫
−LNW /2

e−ix
′(qx′−qx)dx′ =

= L2
NW

[
sinc

(
LNW

2
(qx′ − qx)

)
sinc

(
LNW

2
(qx′ − qx)

)]
=

= 2πLNW

[
LNW

2π
sinc2

(
LNW

2
(qx′ − qx)

)]
. (3.60)

where sinc(x) = sin(x)/x as in Appendix E. In the limit for LNW → ∞, Eq.3.60
can be rewritten by using Eq.E.4 as:∫∫

LNW

dx dx′ei(qx′−qx)(x−x′) = 2πLNW δ(qx − qx′) (3.61)

Similar calculations can be done for the integral over dz and dz′ of Eq.3.59

π rNW∫∫
−π rNW

dz dz′ei (qz−ql′l)(z−z
′) = (2π)2 rNW

[
rNW sinc

2 (πrNW (ql′l − qz))
]

(3.62)

Hence, the ensemble squared matrix element in Eq.3.57 can be rewritten by using
Eqs.3.60 and 3.62 in a compact form as:〈∣∣∣Mn′l′

nl (qx)
∣∣∣2〉 =

1

2π rNWLNW

∫
qz

dqzF1 (ql′l, qz)S
n′l′
nl (qz, qx) (3.63)

where the form factor F1 (ql′l, qz) is given by:

F1 (ql′l, qz) = rNW sinc
2 (πrNW (ql′l − qz)) (3.64)
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and it is a normalized function, in the sense that:∫
qz

F1 (ql′l, qz) dqz = 1. (3.65)

Eq.3.63 shows a quite compact formulation where the only approximation to move
from Eq.3.59 to Eq.3.63 has been to consider the limit for LNW → ∞, which is a
reasonable assumption adopted in this work. Moreover, the formulation in Eq.3.63 for
SR matrix elements is consistent with the non linear transformation of the stochastic
process ∆(s) as in [1].

It can be noticed that an approximation can be obtained by noticing that the
integral over qz in Eq.3.63 may be reduced for large rNW values according to Eq.E.4
and leading to F1 (ql′l, qz) = δ(ql′l − qz). The simplified version in this case reads:〈∣∣∣Mn′l′

nl (qx)
∣∣∣2〉 ≈ 1

2π rNWLNW
Sn
′l′

nl (ql′l, qx′). (3.66)

The power spectrum Sn
′l′

nl (q) is calculated as in Sec.3.2.2, as the Fourier transform
of the autocorrelation function of Mn′l′

nl (i.e. Cn
′l′

nl (τ)) defined in Eq.3.21. Given the
exponential form for the autocorrelation function C∆(τ) of the stochastic ∆−process
as in Eq.3.22, Sn

′l′
nl (q) can be calculated as shown in Appendix F leading to:

Sn
′l′

nl (q) = 2π

∞∫
0

Cn
′l′

nl (τ)τJ0(qτ)dτ (3.67)

and q =
√
q2
z + q2

x.

3.6.2 Anisotropic quantization masses

In the case of anisotropic quantization masses, we can exploit the fact that for a
given radius r, ξn(r, θ) is periodic with period 2π and thus write it in form of Fourier
series expansion as:

ξn(r, θ) =
1√
2π

∑
l

ρnl(r)e
ilθ l = 0,±1,±2, . . . (3.68)

where n is the subband index and l are the angular modes for a given wave-function
associated to the n−th eigenvalue. The ρnl(r) are complex-valued functions defined
as:

ρnl(r) =
1√
2π

+π∫
−π

ξn(r, θ)e−ilθ dθ. (3.69)

Eq.3.69 implies that, since ξn(r, θ) is real-valued, then we have:

ρn,−l(r) = ρ†n,l(r). (3.70)
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We now proceed as in Sec.3.6.1 and neglect the contribution of the kinetic term to
the matrix element and, by substituting Eq.3.68 into Eq.3.53, we write:

Mn′
n (qx) =

1

LNW

∑
l,l′

∫
LNW

 π rNW∫
−π rNW

dz

2πrNW
e
−i (l′−l) z

rNW ×

×
rNW∫

rNW−∆(s)

r ρ†n′l′(r)ΦB ρnl(r) dr

︸ ︷︷ ︸
Mn′l′
nl [∆(s)]

]
e−i qxxdx. (3.71)

where the summation is performed over the modes of the wave-function for subbands
n and n′. The ensemble averaged of the squared matrix element is thus given by:〈∣∣∣Mn′

n (qx)
∣∣∣2〉 =

1

(2π rNWLNW )2

∑
l,l′

g,g′

∫∫
LNW

dx dx′×

×
π rNW∫∫
−π rNW

dz dz′e−i ql′lze+i qg′gz
′
〈
Mn′l′
nl [∆(s)]

(
Mn′g′
ng

[
∆(s′)

])†〉
︸ ︷︷ ︸

Cn
′,l′g′

n,lg (τ)

e−i qx(x−x′)

(3.72)

where l and g are expansion modes of the n−th subband and l′ and g′ are expan-
sion modes of the n′−th subband. ql′l = (l′ − l)/rNW , qg′g = (g′ − g)/rNW and

Cn
′,l′g′

n,lg (τ) is the cross-correlation function between the matrix elements Mn′l′
nl [∆(s)]

and Mn′g′
ng [∆(s)]. The cross-correlation function is written by using the Wiener-

Kinchin theorem as:

Cn
′,l′g′

n,lg (τ) =
1

(2π)2

∫
qz

dqz

∫
qx′

dqx′S
n′,l′g′

n,lg (qz, qx′)e
i qz(z−z′)ei qx′ (x−x

′) (3.73)

and by substituting Eq.3.73 into the ensemble squared matrix element given by
Eq.3.72, we obtain:〈∣∣∣Mn′

n (qx)
∣∣∣2〉 =

∑
l,l′

g,g′

1

(2π rNWLNW )2 (2π)2

∫
qz

dqz

∫
qx′

dqx′×

∫∫
LNW

dx dx′e−iql′lze+iqg′gz
′
π rNW∫∫
−π rNW

dz dz′Sn
′,l′g′

n,lg (qz, qx′)e
i qz(z−z′)ei qx′ (x−x

′).

(3.74)
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By following the same passages as in the case of isotropic quantization masses in
Sec.3.6.1, exploiting Eq.3.60 and the properties shown in Appendix E, we obtain:〈∣∣∣Mn′

n (qx)
∣∣∣2〉 =

1

2π rNWLNW

∑
l,l′

g,g′

∫
qz

dqzF2

(
ql′l, qg′g, qz

)
Sn
′,l′g′

n,lg (qz, qx) (3.75)

where the form factor F2

(
ql′l, qg′g, qz

)
is given by:

F2

(
ql′l, qg′g, qz

)
= rNW sinc (πrNW (ql′l − qz)) sinc

(
πrNW

(
qg′g − qz

))
. (3.76)

The form factor F2

(
ql′l, qg′g, qz

)
is not a normalized function for ql′l 6= qg′g. Moreover,

it can be seen that F2 (ql′l, ql′l, qz) = F1 (ql′l, qz) and, in this case, it is a normalized

function (see Eq.3.65). The cross-correlation power spectrum Sn
′,l′g′

n,lg (qz, qx) is calcu-
lated by replacing the autocorrelation function in Eq.3.67 with the cross-correlation
function. Moreover, for the calculation of Eq.3.73, Eq.3.21 must be extended to the
cross-correlation case as:

Cn
′,l′g′

n,lg (τ) =
1

2π C∆(0)
√

1− C2
∆,N (r)

∫ +∞

−∞

∫ +∞

−∞
Mn′l′
nl [∆1]

[
Mn′g′
ng [∆2]

]†
×

× exp

[
−

∆2
1 + ∆2

2 − 2C∆,N (r)∆1∆2

2C∆(0)(1− C2
∆,N (r))

]
d∆1 d∆2 (3.77)

3.6.3 A few remarks about matrix elements and form factors

By assuming that ξn(r, θ) in Eq.3.68 is normalized as:

∞∫
0

dθ

π∫
−π

dr r |ξn(r, θ)|2 = 1 (3.78)

then Eq.3.68 implies:

∞∫
0

dθ

π∫
−π

dr r |ξn(r, θ)|2 =

∞∫
0

dθ

π∫
−π

dr
1

2π

∑
l,l′

r ρnl(r)ρ
†
nl′(r)e

−i(l′−l)θ

=
∑
l

∞∫
0

dr r |ρnl(r)|2 = 1. (3.79)

Even though ξn(r, θ) is real-valued, ρnl(r) can be complex and one important property
is :

ρn,−l(r) = ρ†n,l(r) (3.80)
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which stems directly from the ρn,l(r) definition in Eq.3.69. The matrix element
Mn′l′
nl [∆(s)] of Eq.3.55 is thus in general complex-valued however it inherits the

properties of ρnl(r) which imply:

Mn′,−l′
n,−l [∆(s)] =

rNW∫
rNW−∆(s)

r ρ†n′,−l′(r)ΦB ρn,−l(r) dr

=

rNW∫
rNW−∆(s)

r ρ†n,l(r)ΦB ρn′,l′(r) dr

=
[
Mn′,l′

n,l [∆(s)]
]†
. (3.81)

We finally noticed that, since sinc(x) is an even function of x, then we have:

F2

(
q−l′,−l, q−g′,−g,−qz

)
= F2

(
ql′l, qg′g, qz

)
(3.82)

where we used ql′l = (l′− l)/rNW and qg′g = (g′−g)/rNW where l, g are the modes of
the subband n and l′, g′ the modes of the subband n′ (see Eq.3.68) As a consequence:∑

l,l′

e−iql′lzMn′l′
nl [∆(s)] (3.83)

is real-valued, which is consistent with the fact that ξn(r, θ) functions are real-valued.

The cross-correlation function Cn
′,l′g′

n,lg (τ) defined in Eq.3.72 can take complex
values and the same holds for its Fourier transform (i.e. the power spectrum

Sn
′,l′g′

n,lg (q)), however, due to the property of the matrix element in Eq.3.81, we have:

C
Mn′,−l′,−g′
n′,−l,−g

(τ) =

[
C
Mn′,l′,g′
n,l,g

(τ)

]†
(3.84a)

S
Mn′,−l′,−g′
n,−l,−g

(τ) =

[
S
Mn′,l′,g′
n,l,g

(τ)

]†
. (3.84b)

By using Eq.3.84b and Eq.3.82 one can readily verify that the double sum over all
the couples of modes (l, l′) and (g, g′) assures that the ensemble averaged squared

matrix element

〈∣∣∣Mn′
n (qx)

∣∣∣2〉 in Eq.3.75 is real-valued, as it is in fact supposed to

be.
In the general case, with anisotropic quantization masses, the form factor for the

ensemble averaged squared matrix element is given by Eq.3.76 and the number of
Form Factors is given by the possible combinations of couples of modes ((l, l′), (g, g′)).
Some considerations arise from the fact that the above form factor is given by the
product of two sinc functions peaked respectively in (ql′l−qz) and in (qg′g−qz), hence,
it is expected that the magnitude of those form factors for which (l′ − l) 6= (g′ − g) is
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small compared to the ones given by the couples of couples where (l′ − l) = (g′ − g).
Fig.3.9 shows two examples of form factor calculated for the system Si-SiO2. The
form factor with (l′ − l) = (g′ − g) is the dominant one and, as expected, for larger
rNW , F2

(
ql′l, qg′g, qz

)
with (l′−l) = (g′−g) approaches a Dirac function in agreement

with Eq.E.4. We have performed the calculation of the SR matrix elements using
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Figure 3.9: Form factors obtained by using Eq.3.76 for the Si-SiO2 system.

three different methods:

1. with no approximations for the form factor calculation, that is by using Eqs.3.75
and 3.76 as they read.

2. neglecting in the double sum of Eq.3.75 the terms having (ql′l 6= qg′g). Hence
the form factor F2 (ql′l, ql′l, qz) becomes equal to F1 (ql′l, qz) and the ensemble
averaged squared matrix element reads:〈∣∣∣Mn′

n (qx)
∣∣∣2〉 =

1

2π rNWLNW

∑
(l′−l)=(g′−g)

∫
qz

dqzF1 (ql′l, qz)S
n′,l′g′

n,lg (qz, qx)

(3.85)

3. neglecting in the double sum of Eq.3.75 the terms having (ql′l 6= qg′g) and
approximating the form factor with a Dirac function in the limit of large rNW ,
that is:

F2 (ql′l, ql′l, qz) = F1 (ql′l, qz) ≈ δ (ql′l − qz) . (3.86)

In this case the integral over qz in Eq.3.75 is reduced and we are left with a

sampling of the power spectrum Sn
′,l′g′

n,lg (q) where q =
√

(q2
l′l + q2

x):〈∣∣∣Mn′
n (qx)

∣∣∣2〉 =
1

2π rNWLNW

∑
(l′−l)=(g′−g)

Sn
′,l′g′

n,lg (ql′l, qx). (3.87)
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This simplification in Eq.3.87 may be critical for very small rNW because the
formulation with Dirac function for the form factor is valid only for large rNW
values.

In the following examples we will show the impact of the different formulations
on the ensemble averaged squared matrix element that enter the scattering rate

calculation. Fig.3.10 shows some examples of

〈∣∣∣Mn′
n (qx)

∣∣∣2〉 matrix elements for

rNW = 1.5 nm. As can be seen, even for very small rNW , the approximation of the
form factor obtained using the Dirac function in Eq.3.86 seems to work fairly well. In
addition, the computational time of the ensemble averaged squared matrix element
normalized to the case of Eq.3.87 is approximately a hundred by using Eq.3.75 and
ten by using Eq.3.85. These remarkable differences in terms of computation time are
due to the fact that, for anisotropic quantization masses (that is the case reported
in Fig.3.10), there are several expansion terms and the number of couples of modes
(l′ − l) = (g′ − g) increases a lot with the number of modes l and l′. Fig.3.11 shows

the intrasubband squared matrix element

〈∣∣∣M0′
0 (qx)

∣∣∣2〉 for the system InAs-HfO2.

Since the quantization mass is isotropic, for the lowest subband there is only one
mode that corresponds to l = 0. In this case the summation in Eq.3.75 reduces to
the single term corresponding l = l′ = g = g′ = 0. Fig.3.11 shows that, as expected,
by reducing rNW the SR matrix element is increased and by increasing rNW the
differences between solid- and dotted-line decrease.
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(a) Simulation results obtained for [110] transport direction
and two-fold valleys as shown in the inset.
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(b) Simulation results obtained for [110] transport direction
and four-fold valleys as shown in the inset.
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(c) Simulation results obtained for [111] transport direction.

Figure 3.10: Intrasubband

〈∣∣∣Mn′
n (qx)

∣∣∣2〉 matrix element for the Si-SiO2 system for

the lowest subband n=n’=0. rNW=1.5 nm, tox=0.6 nm, the rms roughness amplitude
is ∆rms = 0.2 nm and the correlation length is Λ = 1.4 nm. Simulations performed
by considering the modes l, l′ = 0,±1,±2,±3,±4,±5.
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Figure 3.11: Intrasubband

〈∣∣∣Mn′
n (qx)

∣∣∣2〉 matrix element for the InAs-HfO2 system

for the lowest subband n=n’=0. rNW=1.5, 2.5 and 5 nm, tox=1.5 nm, the rms
roughness amplitude is ∆rms = 0.2 nm and the correlation length is Λ = 1.4nm.

75



3. Improved modelling for Surface Roughness scattering in
planar and GAA MOSFETs

76



References

[1] D. Lizzit, D. Esseni, P. Palestri, and L. Selmi, “A new formulation for sur-
face roughness limited mobility in bulk and ultra-thin-body metal-oxide-
semiconductor transistors”, Journal of Applied Physics, vol. 116, no. 22,
223702, 2014.

[2] (2013). International Technology Roadmap for Semiconductors, [Online]. Avail-
able: http://www.itrs.net/Links/2012ITRS/Home2012.htm.

[3] M. Radosavljevic et al., “Non-planar, multi-gate InGaAs quantum well field ef-
fect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-
to-source separation for low power logic applications”, in IEEE IEDM Tech-
nical Digest, 2010, pp. 6.1.1–6.1.4.

[4] S. H. Park, Y. Liu, N. Kharche, M. Jelodar, G. Klimeck, M. Lundstrom, and
M. Luisier, “Performance Comparisons of III-V and Strained-Si in Planar
FETs and Nonplanar FinFETs at Ultrashort Gate Length (12 nm)”, IEEE
Trans. on Electron Devices, vol. 59, no. 8, pp. 2107–2114, 2012.

[5] S. Chang et al., “InAs N-MOSFETs with record performance of Ion=600uA/um
at Ioff=100nA/um (Vd =0.5 V)”, in IEEE IEDM Technical Digest, Dec. 2013,
pp. 16.1.1–16.1.4.

[6] S. Kim, M. Yokoyama, R. Nakane, O. Ichikawa, T. Osada, M. Hata, M. Take-
naka, and S. Takagi, “High performance sub-20-nm-channel-length extremely-
thin body InAs-on-insulator tri-gate MOSFETs with high short channel effect
immunity and Vth tunability”, in IEEE IEDM Technical Digest, Dec. 2013,
pp. 16.4.1–16.4.4.

[7] J. Del Alamo, “Nanometre-scale electronics with III-V compound semicon-
ductors”, Nature, vol. 479, pp. 317 –323, 2011.

[8] G. Doornbos and M. Passlack, “Benchmarking of III-V n-MOSFET Maturity
and Feasibility for Future CMOS”, IEEE Electron Device Lett., vol. 31, no.
10, pp. 1110 –1112, Oct. 2010.

[9] D. Esseni, “On the modeling of surface roughness limited mobility in soi
MOSFETs and its correlation to the transistor effective field”, IEEE Trans.
on Electron Devices, vol. 51, no. 3, pp. 394–401, Mar. 2004.

77

http://www.itrs.net/Links/2012ITRS/Home2012.htm


REFERENCES

[10] K. Uchida, J. Koga, and S. Takagi, “Experimental study on carrier transport
mechanisms in double- and single-gate ultrathin-body MOSFETs- Coulomb
scattering, volume inversion, and deltaTSOI-induced scattering”, in IEEE
IEDM Technical Digest, 2003, pp. 33.5.1–33.5.4.

[11] K. Uchida, M. Saitoh, and S. Kobayashi, “Carrier transport and stress engi-
neering in advanced nanoscale transistors from (100) and (110) transistors to
carbon nanotube FETs and beyond”, in IEEE IEDM Technical Digest, 2008,
pp. 1–4.

[12] K. Takei et al., “Quantum Confinement Effects in Nanoscale-Thickness InAs
Membranes”, Nano Letters, vol. 11, no. 11, pp. 5008–5012, 2011.

[13] S. Monaghan, P. Hurley, K. Cherkaoui, M. Negara, and A. Schenk, “Determi-
nation of electron effective mass and electron affinity in HfO2 using MOS and
MOSFET structures”, Solid State Electronics, vol. 53, no. 4, pp. 438 –444,
2009.

[14] R. E. Prange and T.-W. Nee, “Quantum Spectroscopy of the Low-Field
Oscillations in the Surface Impedance”, Phys. Rev., vol. 168, pp. 779–786, 3
Apr. 1968.

[15] T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional
systems”, Reviews of Modern Physics, vol. 54, pp. 437–672, 2 Apr. 1982.

[16] M.Poljak, V.Jovanović, D.Grgec, and T.Suligoj, “Assessment of Electron
Mobility in Ultrathin-Body InGaAs-on-Insulator MOSFETs Using Physics-
Based Modeling”, Electron Devices, IEEE Transactions on, vol. 59, no. 6,
pp. 1636–1643, 2012.

[17] S. Koba, Y. Ishida R. ans Kubota, Y. Tsuchiya H. ans Kamakura, N. Mori,
and M. Ogawa, “The Impact of Increased Deformation Potential at MOS
Interface on Quasi-Ballistic Transport in Ultrathin Channel MOSFETs Scaled
down to Sub-10 nm Channel Length ”, in IEEE IEDM Technical Digest, 2013,
pp. 12.1.1–12.1.4.

[18] T.-W. Kim et al., “ETB-QW InAs MOSFET with scaled body for improved
electrostatics”, in IEEE IEDM Technical Digest, 2012, pp. 32.3.1–32.3.4.

[19] S. Jin, M. Fischetti, and T.-W. Tang, “Modeling of Surface-Roughness Scat-
tering in Ultrathin-Body SOI MOSFETs”, IEEE Trans. on Electron Devices,
vol. 54, no. 9, pp. 2191–2203, Sep. 2007.

[20] D. Esseni, P. Palestri, and L. Selmi, Nanoscale MOS Transistors - Semi-
Classical Transport and Applications, 1st. Cambridge University Press., 2011.

[21] S. Jin, M. Fischetti, and T.-W. Tang, “Modeling of electron mobility in gated
silicon nanowires at room temperature: Surface roughness scattering, dielectric
screening, and band nonparabolicity”, Journal of Applied Physics, vol. 102,
no. 8, 2007.

78



REFERENCES

[22] D.Lizzit, D.Esseni, P.Palestri, and L.Selmi, “Surface roughness limited mobility
modeling in ultra-thin SOI and quantum well III-V MOSFETs”, in IEEE
IEDM Technical Digest, 2013, pp. 5.2.1–5.2.4.

[23] S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and
O. L. Krivanek, “Surface roughness at the Si(100)-SiO2 interface”, vol. 32,
pp. 8171–8186, 12 Dec. 1985.

[24] C. Jungemann, A. Edmunds, and W.L. Engl, “Simulation of Linear and
Nonlinear Electron Transport in Homogeneous Silicon Inversion Layers”, Solid
State Electronics, vol. 36, no. 11, pp. 1529–1540, 1993.

[25] M.V. Fischetti and S.E. Laux, “Monte Carlo study of electron transport in
silicon inversion layers”, Phys. Rev. B, vol. 48, pp. 2244–2274, 1993.

[26] F. Gamiz, J. B. Roldan, J. A. Lopez-Villanueva, P. Cartujo-Cassinello, and
J. E. Carceller, “Surface roughness at the Si-SiO2 interfaces in fully depleted
silicon-on-insulator inversion layers”, Journal of Applied Physics, vol. 86, no.
12, pp. 6854–6863, 1999.

[27] T. Ishihara, K. Uchida, J. Koga, and S.-i. Takagi, “Unified Roughness Scat-
tering Model Incorporating Scattering Component Induced by Thickness
Fluctuations in Silicon-on-Insulator Metal-Oxide-Semiconductor Field-Effect
Transistors”, Japanese Journal of Applied Physics, vol. 45, no. 4B, pp. 3125–
3132, 2006.

[28] L. Lucci, P. Palestri, D. Esseni, L. Bergagnini, and L. Selmi, “Multisubband
Monte Carlo Study of Transport, Quantization, and Electron-Gas Degenera-
tion in Ultrathin SOI n-MOSFETs”, IEEE Trans. on Electron Devices, vol.
54, no. 5, pp. 1156 –1164, May 2007.

[29] I. M. Tienda-Luna, F. G. Ruiz, A. Godoy, B. Biel, and F. Gamiz, “Surface
roughness scattering model for arbitrarily oriented silicon nanowires”, Journal
of Applied Physics, vol. 110, no. 8, 084514, 2011.

[30] F. Stern and W. E. Howard, “Properties of Semiconductor Surface Inversion
Layers in the Electric Quantum Limit”, Phys. Rev., vol. 163, pp. 816–835, 3
Nov. 1967.

[31] T. Ando, “Screening Effect and Quantum Transport in a Silicon Inversion
Layer in Strong Magnetic Fields”, Journal of the Physical Society of Japan,
vol. 43, no. 5, pp. 1616–1626, 1977.

[32] A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd.
McGraw-Hill Companies, Feb. 1, 1991.

[33] T. Yamanaka, S. J. Fang, H.-C. Lin, J. P. Snyder, and C. Helms, “Correlation
between inversion layer mobility and surface roughness measured by afm”,
IEEE Electron Device Lett., vol. 17, no. 4, pp. 178–180, Apr. 1996.

79



REFERENCES

[34] A. Pirovano, A. Lacaita, G. Ghidini, and G. Tallarida, “On the correlation
between surface roughness and inversion layer mobility in si-mosfets”, IEEE
Electron Device Lett., vol. 21, no. 1, pp. 34–36, Jan. 2000.

[35] O. Bonno, S. Barraud, D. Mariolle, and F. Andrieu, “Effect of strain on the
electron effective mobility in biaxially strained silicon inversion layers: an ex-
perimental and theoretical analysis via atomic force microscopy measurements
and kubo-greenwood mobility calculations”, Journal of Applied Physics, vol.
103, no. 6, 063715, 2008.

[36] R. Baum, “The correlation function of Gaussian noise passed through nonlinear
devices”, vol. 15, no. 4, pp. 448–456, Jul. 1969.

[37] M. V. Fischetti and S. Narayanan, “An empirical pseudopotential approach
to surface and line-edge roughness scattering in nanostructures: application to
si thin films and nanowires and to graphene nanoribbons”, Journal of Applied
Physics, vol. 110, no. 8, 083713, 2011.

[38] D. K. Ferry, Quantum mechanics – An introduction for device physicists and
electrical engineers. Institute of Physics publishing, 2001.

[39] E. O. Kane, “Band structure of indium antimonide”, Journal of Physics and
Chemistry of Solids, vol. 1, no. 4, pp. 249 –261, 1957.

[40] D.Esseni and A. Abramo, “Modeling of Electron Mobility Degradation by
Remote Coulomb Scattering in Ultrathin Oxide MOSFETs ”, IEEE Trans.
on Electron Devices, vol. 50, no. 7, pp. 1665–1674, 2003.

[41] T. P. O’Regan, P. K. Hurley, B. Sorée, and M. V. Fischetti, “Modeling the
capacitance-voltage response of In0.53Ga0.47As metal-oxide-semiconductor
structures: Charge quantization and nonparabolic corrections”, Applied Physics
Letters, vol. 96, no. 21, 213514, 2010.

[42] K. Kalna, S. Roy, A. Asenov, K. Elgaid, and I. Thayne, “Scaling of pseudo-
morphic high electron mobility transistors to decanano dimensions”, Solid
State Electronics, vol. 46, no. 5, pp. 631 –638, 2002.

[43] T. O’Regan, M. Fischetti, B. Soree, S. Jin, W. Magnus, and M. Meuris,
“Calculation of the electron mobility in III-V inversion layers with high-κ
dielectrics.”, Journal of Applied Physics, vol. 108, p. 103 705, 2010.

[44] D. Lizzit, D. Esseni, P. Palestri, P. Osgnach, and L. Selmi, “Performance Bench-
marking and Effective Channel Length for Nanoscale InAs, In0.53Ga0.47As,
and sSi n-MOSFETs”, IEEE Trans. on Electron Devices, vol. 61, no. 99,
pp. 2027 –2034, Jun. 2014.

[45] A.Paussa and D.Esseni, “An exact solution of the linearized Boltzmann
transport equation and its application to mobility calculations in graphene
bilayers”, Journal of Applied Physics, vol. 113, no. 8, p. 093 702, 2013.

[46] I. Schiff, QUANTUM MECHANICS, 3st. McGraw-Hill Company, 1968.

80



REFERENCES

[47] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of
inversion layer mobility in Si MOSFET’s: Part I-effects of substrate impurity
concentration”, IEEE Trans. on Electron Devices, vol. 41, no. 12, pp. 2357–
2362, Dec. 1994.

[48] P. Osgnach, A. Revelant, D. Lizzit, P. Palestri, D. Esseni, and L. Selmi,
“Toward computationally efficient Multi-Subband Monte Carlo Simulations of
Nanoscale MOSFETs”, in Proc.SISPAD, 2013, pp. 176–179.

[49] O. Badami, E. Caruso, D. Lizzit, D. Esseni, P. Palestri, and L. Selmi, “Im-
proved surface roughness modeling and mobility projections in thin film
MOSFETs”, Sep. 2015, pp. 306–309.

81



REFERENCES

82



Chapter 4

Nanowire MOSFETs

4.1 Introduction

4.1.1 State of art: manufacturing techniques

3
D MOSFETs have been proposed to overcome the issues arising from aggressive
scaling of planar devices (see Chapter.1). Multiple-gate MOSFETs are promising

devices for future CMOS scaling due to an increased electrostatic gate-to-channel
control given by the increased number of gates compared to standard planar devices.
The most promising device architecture for ultimate scaling is the GAA MOSFET
with a gate contact all-around the semiconductor channel. Moreover, semiconductor
materials alternative to silicon providing larger injection velocities (see Sec.1.2.1),
heterostructures and strain are being investigated as technological means to further
improve device performances.

Fabrication of NWs follows two different paradigms: top-down [1–15] and bottom-
up [16–29]. In the bottom-up method nano-particles are used as seeds to define
nucleation and feed the growth of NWs. The most common approach is the chemical-
vapor-deposition (CVD) with the vapor-liquid-solid (VLS) mechanisms [23]. In the
VLS method the semiconductor material in vapor phase is provided by means of
CVD, chemical beam epitaxy (CBE), or thermal evaporation reactors. The NW
growth starts on top of a semiconductor substrate where a catalytic liquid metal
seed can rapidly adsorb the semiconductor vapor to supersaturation levels from
which crystal growth can subsequently occur [16, 18] (see Fig.4.1). Au has been
widely used as catalyst for growing silicon NWs using VLS method allowing for
NWs with diameters down to 3 nm [17], posing however, contamination issues for
CMOS processing due to high Au diffusivity in silicon and to the fact that silicon
also acts as an acceptor doping [28]. Moreover, Au tends to create traps in the
bandgap acting as recombination centers degrading the device performance. Thus,
to circumvent this issue, other metal catalysts such as Al or Pt for silicon nanowire
synthesis are actively investigated to make the VLS process CMOS-compatible [24].
VLS is the most common technique but other fabrication processes include metal
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Figure 4.1: Bottom-up grown nanowire from a metal catalyst nanoparticle on a
substrate for: a)axial and b) radial hetero-structure. The axial hetero-structure
can be produced by modulating the composition and/or doping precursor during
the elongation process. The radial core/shell hetero-structure can be formed by
the conformal deposition of a radial shell after the elongation of the core structure.
Figure from [30]

organic vapor phase epitaxy (MOVPE) (that allows to grow NWs even in presence
of large lattice mismatch with the substrate material [27]), molecular beam epitaxy
(MBE) [31], and oriented attachment [32], with all of them offering the ability to
fine tune the diameter, the morphology and the semiconductor properties. Unlike
standard CMOS fabrication processes where dopants are added to the semiconductor
via ion implantation leading to dangled bonds and requiring subsequent thermal
annealing to restore the crystal ordering, in bottom-up approaches the doping of
the semiconductor is obtained thanks to the in-situ doping by dopant incorporation
during the growth procedure. Often, bottom-up methods lead to entangled meshes
of NWs [33], not suitable for large-scale device integration, thus, alignment of NWs
is necessary for VLSI production. Typically, the alignment is obtained by means
of different techniques such as dielectrophoresis [34–36], microfluidic alignment [37]
and strong electric fields [38]. Nevertheless, even with these alignment methods, the
resulting density and areal coverage of NWs cannot compete with those obtained
with top-down approaches. However, bottom-up method can be comparable in terms
of NW density with the top-down approach if the growth of vertically aligned silicon
NWs as reported in several papers [23, 39, 40] is considered.

As opposed to the bottom-up approach, the top-down method (see Fig.4.2), can
be regarded as a natural extension of standard CMOS process to produce NWs,
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where, thanks to the progress in lithography and etching processes in conjunction
with photoresist technology, it is possible to etch a larger piece of semiconductor in
order to create NWs that are aligned parallel to the substrate. Top-down methods

Figure 4.2: Top-down fabrication schematic diagram for a silicon nanowire MOSFET
on bulk substrate [11].

include spacer lithography method [41], replacement Fin process [15, 42], recessed
hard mask, trenching methods [7], and confined lateral selective epitaxial growth [5].
These methods enable excellent NW placement in the wafer and large throughput
thanks to the well established CMOS-processes as well as a fine tuning in three
dimensions of composition, shape, crystallinity, and size of the NWs. Top-down
approach can also be used to create very-high density, vertically stacked silicon
nanowire arrays [13, 43].

Bottom-up NWs suffer from worst contact resistance at source and drain interfaces
[44] and from non uniform dopant distributions. Moreover, complex integration with
CMOS and lack of ability to position many SiNW in a well defined pattern is still a
challenge for this method for VLSI device fabrication. On the other hand, this method
provides reduced dangling bonds density compared whit the top-down [44], because
of better surface control during the NW growth, and enables the fabrication of device
structures, such as novel core-shell heterostructures, that can reduce scattering and
result in higher carrier mobility [27, 29], which are much harder to be obtained with
the top-down approach [45].

As a final remark, we argue that, it is not unrealistic that device fabrication will
incorporate the top-down and bottom-up approaches. One example is the case of
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directed self-assembly (DSA) lithographic process for NW arrays fabrication, where
bottom-up self assembly process and traditional top-down lithography are used [46].

4.1.2 State of art: simulation techniques

The constant progress in NW fabrication techniques makes simulation tools capa-
ble to include quantum effects and also the main scattering mechanisms responsible
for performance degradation of increasing importance. Such simulation tools can
help decide the best semiconductor materials as well as transport orientations that
maximize performances. Simulation of NW devices passes necessarily through a
dependable description of the energy dispersion relation in the nanostructured crystal
followed by the simulation of electronic transport.

Bands structure calculation

Calculation of the subband structure can be performed with many different
methods. Among the most refined methods available that account for the atomic
structure of the semiconductor there are tight-binding [47–54] , first-principle [55, 56],
DFT, pseudo-potential, and other atomistic methods [57]. Moreover, the atomistic
description of the device allows to treat rigorously scattering mechanisms such as:
surface roughness, impurity scattering and alloy disorders. Conversely, the most
popular method to calculate subband energies and dispersion relations is the solution
of the Schrödinger equation within the effective mass approximation (EMA) [58–61].
However, it has been reported in many papers in the literature [47, 48] the failure of
the purely parabolic EMA in the presence of strong confinement, since a parabolic
model does not capture the nonparabolicity effects that make the effective mass
dependent on the well thickness as discussed in Appendix C.2 and tend to reduce
the energy of the quantized subbands as shown in [58].

In fact, simulations performed using simple parabolic models tend to overestimate
the transistor threshold voltage VT when the diameter of silicon nanowires becomes
lower than approximately 3 nm, whereas deviations in the ION start for thicknesses
lower that 5 nm (for SiNWs) [48]. One effective solution to overcome this issue is
to use a parabolic EMA model where the effective masses are tuned, for example,
against TB calculation leading to good results over wide ranges of NW diameters
[48, 52]. However this adaptive model requires a continue tuning of the masses
against more sophisticated and computationally demanding solvers making this
route not much promising. Moreover, nonparabolicity effects are expected to be
more relevant in III-V semiconductors [62, 63]. To overcome the limitations related
to the parabolic EMA, there have been proposed different methods to include
nonparabolicity effects. The simplest one makes use of the subband energy levels
obtained within the parabolic EMA and takes into account the band nonparabolicity
only in the transport directions [64], which, however, leads to appreciable error caused
by having neglected nonparabolicity in the confinement direction, or confinement
plane for 1D systems [58, 65]. On the other hand, a different correction method
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using the additional information given by the wave-function allows a quite accurate
correction to both the dispersion relation in the transport direction and the ground
energy of quantized states [66]. More sophisticated approaches have been implemented
by direct modifications of the parabolic Hamiltonian [58, 69].

Another aspect that cannot be captured by the EMA model is the valley degen-
eracy splitting that occurs for extremely thin SiNWs with dimensions lower than
2 nm2, as reported by atomistic calculations [48, 52, 70]. In this case, the strong
confinement breaks the valley degeneracy and can lead to a worst agreement in
terms of drain-to-source currents if compared with atomistic band structure methods
especially at low VDS values [52]. In addition, for pMOS NW devices or for transistors
that demand an appropriate description of the valence band, the EMA model is
even less appropriate, because the heavy and light holes in valence band are strongly
coupled and cannot be described by single band effective-mass Hamiltonian [71].

Another useful and highly efficient approach for band structure calculations is the
k·p method [71–74], which realizes a very interesting compromize between physical
accuracy and computational complexity.

Transport simulation

Transport in semiconductors has been described for many years using macroscopic
transport models such as the drift-diffusion (DD) model and other models based
on the momenta of the Boltzmann Transport Equation (BTE)(i.e Hydrodynamic
models (HD)) that assume diffusive transport regime where the average carrier
velocity is strongly influenced by scattering. However, modern MOSFETs with
channel length below 100 nm are pushing the classical DD or HD models to their
limits because transport is not dominated by scattering but is instead close to the
balistic limit. Beside this, it has been demonstrated that the DD model is very
problematic for nanoscaled MOSFETs, even if it appears to be more accurate than
expected because the overestimation of the conductivity in the linear regime can
partly compensate the underestimation of the current at high bias [75]. In addition,
in the case of moment-bases models that go beyond the DD model (e.g. HD model),
there are further issues related to the additional approximations used in order to
close the hierarchy of momentum equations [75, 76]. Hence, transport in nanoscale
MOSFETs is in general tackled by means of semi-analytical methods (also called
compact models or semi-numerical models) [48, 52, 60, 77], or fully numerical methods
[47, 49–51, 53, 54, 59, 61, 68, 71–73, 79–84]. The former are in general derived by
means of approximated relations for the potential and charge distributions that in
general are solved self-consistently by using numerical approaches and help to give a
conceptual view of the device behaviour. They are computationally very efficient and
are used to rapidly analyze the performance of MOSFETs. These models require
the knowledge of the energy relation (E(k)), that can be obtained by numerical TB,
DFT, pseudo-potential calculations or given by analytical expressions (i.e. parabolic
effective mass approximation). They assume that positive going states are injected
into the channel from the source at thermal equilibrium (i.e. states filled according
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to the source Fermi level), whereas for negative going states they are filled according
to the drain Fermi level. The ballistic IDS is calculated by subtracting the drain-
to-source transmitted current from the source-to-drain transmitted current where
the transmission coefficient can be one or zero depending on whether the electron
energy is above or below the source-to-channel barrier (i.e. the top of barrier, ToB).
Even if these methods are computationally very efficient, they can capture only the
thermionic component of the current in the ballistic limit. Hence, scattering and
source-to-drain tunneling are disregarded. In this regard, attempts have been made
to include source-to-drain tunneling within the ToB method using approximated
expressions for the potential along transport direction, and validation against 3D
full-band atomistic quantum transport simulations shows good agreement [60].

Among the most used fully numerical methods for transport simulations in scaled
MOSFETs we have the semi-classical Boltzmann transport equation (BTE) and the
non-equilibrium Green’s function (NEGF) methods. With the semi-classical BTE
approach, electrons are treated as classical particles whose kinetic energy is given
either by the effective mass or by the full energy band calculations and assumes that
collisions of carriers are instantaneous. The BTE has been typically solved by means
of stochastic methods such as Monte Carlo solvers for 3D [85–92], 2D [79, 93, 94]
and 1D [82] carrier gas. Also the direct solution of the BTE is can be attractive and
it has been successfully pursued for 3D [95, 96], 2D [96–98] electron and hole gas,
and, due to the low dimensionality, expecially for 1D gas in thin NW MOSFETs [82].
To further ease the numerical solution, the BTE for a 1D gas has been solved also by
using the momentum-relaxation-time approximation (MRT) [74, 99].

Another approach for transport consists in the quantum-mechanical non-equilibrium
Green’s function (NEGF) formalism, which takes into account the wave-nature of
electrons described according to a TB [47, 49, 50, 53, 54, 81, 83], EMA [61, 68, 80],
or a k·p Hamiltonian [71–73, 84, 100]. Fully-3D NEGF represents one of the most
advanced transport methods, but, from practical point of view, the high accuracy
comes to the cost of a large computational burden.

Finally, it must be recalled that complete simulations need to account for external
biases (VGS and VDS) and this requires necessarily the coupling of the quantum-
mechanical or semi-classical problem with 3D Poisson’s equation.

In this framework, in this thesis we also investigate the transport in NW tran-
sistors with a channel length in the decananometer domain, and it is based on the
deterministic solution of the BTE. The simulator includes size and bias induced
quantization allowing the wave-function to penetrate into the oxide surrounding
the NW and takes into account non parabolicity correction to the eigenvalues and
to the dispersion relation E(k) obtained within the EMA. The electrostatics and
the transport of the device can be solved for arbitrary transport directions and
moreover it allows to include multiple valleys in the electronic transport as well
as scattering due to phonons, Coulomb scattering, and surface roughness with an
innovative approach. In fact, although phonon scattering is found to be an important
scattering mechanisms in NW MOSFETs, surface roughness scattering cannot be
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ignored because of the strong quantum confinement that occurs particularly when
the diameters decreases downto few nm pushing the wave-function towards the
semiconductor-oxide interface. SR scattering has effects both on the ION current and
effective mobility [54]. Experimental data show that ION increases with decreasing
NW diameter until 3 nm [101], and this behavior has been attributed to the phonon
and SR scattering [54, 101].
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4.2 Schrödinger equation in polar coordinates

y

z
semiconductor

oxide

Figure 4.3: Nanowire section

For circular NWs it is convenient to move from Cartesian to polar coordinates by
setting z = rsin(θ) and y = rcos(θ) where r denotes the position along the radial
direction. Thus, the Schrödinger equation of Eq.B.29 for electrons belonging to a
given valley is rewritten as:[

− ~2

2

[
wrr

∂2

∂r2
+ wr

∂

∂r
+ wrθ

∂2

∂r∂θ
+ wθ

∂

∂θ
+ wθθ

∂2

∂θ2

]
+ U(r, θ)

]
ξn(r, θ) =

= εnξn(r, θ) (4.1)

where the energy of the eigenvalue εn is referred to the energy of the bottom of the
considered valley, and where the coefficients wi,j are given by:

wrr =wyycos
2(θ) + 2wyzsin(θ)cos(θ) + wzzsin

2(θ),

wr =
1

r

[
wyysin

2(θ)− 2wyzsin(θ)cos(θ) + wzzcos
2(θ)

]
,

wr,θ =
1

r

[
2sin(θ)cos(θ) (wzz − wyy) + 2wyz(cos

2(θ)− sin2(θ))
]
,

wθ =− wrθ
r
,

wθθ =
wr
r
.

(4.2)

A practical example for wi,j coefficients of Eq.4.2 in the case of x = [100] transport
direction is reported explicitly in Fig.4.4. Eq.4.1 shows that Schrödinger equation
cannot be always expressed in terms of the Laplacian of ξn(r, θ):[

1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂2

∂θ2

]
ξn(r, θ). (4.3)
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Figure 4.4: SiNW with [100] transport direction and corresponding wi,j coefficients.

According to the definition of the coefficients wi,j in Eq.4.2, in fact, the Schrödinger
equation has radial symmetry only in the case of wyz is null and wyy and wzz are
equal, in which case the differential operator in Eq.4.1 simplifies to the one reported
in Eq.4.3, leading to the radial symmetry of the Schrödinger equation for which the
solution can be written as

ξn,l(r, θ) =
1√
2π
ρn,l(r)e

ilθ (4.4)

where the radial and angular parts have been separated and n is the radial quantum
number and l is the angular quantum number. Eq.4.1 goes beyond the isotropic
effective mass approximation adopted in many papers in the literature [67, 82], that
preserves the cylindrical symmetry of the problem reducing the complexity of the
equation. However, this treatment (isotropic EMA) is rigorous only for the isotropic
valley Γ of the conduction band, while it becomes more problematic for the valleys
with ellipsoidal constant energy surface such as ∆ and Λ valleys for silicon and
germanium [67, 82].

4.2.1 Continuity conditions in polar coordinates

In the case of herojunctions in the direction normal to the semiconductor-oxide
interface, at the interface between different materials must hold Eq.B.35. We recall
that, in the case of homogeneous material in the nanowire circular section, Eq.B.29
allows to separate the energy of the quantized states from the kinetic energy in the
transport direction as reported in Eq.B.32. The treatment is much more complicated
in the case of wave-function penetration in the oxide, in fact, the continuity of the
component normal to the semiconductor-oxide interface of WDCS∇Φν,n(R) is in
general problematic, because, for arbitrary crystal orientations, the 3 × 3 WDCS

tensor has off-diagonal terms and coefficients α and β of Eq.B.28 are not null. This
makes the wave-vector kx in the transport direction enter the continuity equations
thus leading to a kx dependent eigenvalue problem. In fact, the term WDCS∇Φν,n(R)
leads to the vector:  wxx

∂Φ
∂x + wxy

∂Φ
∂y + wxz

∂Φ
∂z

wyx
∂Φ
∂x + wyy

∂Φ
∂y + wyz

∂Φ
∂z

wzx
∂Φ
∂x + wzy

∂Φ
∂y + wzz

∂Φ
∂z

 (4.5)
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4. Nanowire MOSFETs

where the first row of Eq.4.5 refers to the component along êx, the second along êy
and the third along êz and where êi is a versor aligned along direction i ∈ {x, y, z}.
Recalling that unit vectors are related by the coordinate transformation:

êy =cos(θ)êr − sin(θ)êθ

êz =sin(θ)êr + cos(θ)êθ (4.6)

and since the objective is to calculate the component normal to the semiconductor-
oxide interface of WDCS∇Φν,n(R) that for a circular domain corresponds to the
radial direction êr belonging to the quantization plane, we obtain that the following
conditions at the interface between different materials must be fulfilled:

Φ(rNW , θ) constant[
A(θ)

∂

∂x
+B(θ)

∂

∂r
+ C(θ)

∂

∂θ

]
Φ(rNW , θ) constant

(4.7a)

(4.7b)

where A(θ),B(θ), and C(r, θ) coefficients are given by:

A(θ) = wxycos(θ) + wzxsin(θ)

B(θ) = wyycos
2(θ) + 2wyzsin(θ)cos(θ) + wzzsin

2(θ)

C(θ) = −wyy
sin(θ)cos(θ)

rNW
+ wyz

cos2(θ)− sin2(θ)

rNW
+ wzz

cos(θ)sin(θ)

rNW
. (4.8)

Recalling the expression for the envelope wave-function, Eq.B.31 can be substituted
into the continuity condition of Eq.4.7 obtaining the new boundary conditions as a
function of ξ(r, θ) that must be fulfilled at the interface between two materials:

ξn(rNW , θ)e
ikx(α rNW cos(θ)+β rNW sin(θ)){

A(θ)ikx +B(θ)

[
∂

∂r
+ ikx (αcos(θ) + βsin(θ))

]
+

+C(θ)

[
∂

∂θ
+ ikx (βrNW cos(θ)− αrNW sin(θ))

]}
eikx(α rNW cos(θ)+β rNW sin(θ))

(4.9a)

(4.9b)

where α and β depend on the material and explicit expression are given in Eq.B.28.
Eq.4.9 shows that, in the general case, the kx vector enters the continuity equation.
As shown in Sec.4.4.1 the dependence of the eigenvalues on the kx vector through
the continuity conditions of Eq.4.9 is almost negligible, hence, continuity conditions
are implemented by setting kx to zero:

ξn(rNW , θ){
B(θ)

∂

∂r
+ C(θ)

∂

∂θ

}
ξn(rNW , θ)

(4.10a)

(4.10b)
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As an example, we here report the case of a Si nanowire with [100] transport
direction as shown in the left part of Fig.4.4. The WDCS tensor is diagonal since all
the ellipsoids for the three different group of valleys are aligned with the DCS and
the explicit expression for the inverse mass tensor become:

W∆[100]
=

m−1
l 0 0

0 m−1
t 0

0 0 m−1
t

 ,W∆[010]
=

m−1
t 0 0

0 m−1
l 0

0 0 m−1
t

 ,

W∆[001]
=

m−1
t 0 0

0 m−1
t 0

0 0 m−1
l

 (4.11)

By substituting the WDCS matrices into Eq.4.9 and assuming an isotropic dispersion
relation for the oxide, we obtain for the valleys having the longitudinal axis aligned
with the transport direction (i.e. ∆[100]−valleys) the following continuity condition
on the first derivatives:

1

mt

∂ξ(r, θ)

∂r
=

1

mox

∂ξ(r, θ)

∂r
(4.12)

that is an expected result since ∆[100]−valleys effective masses are isotropic along
the quantization plane thus leading to the same condition as reported in [102, 103].
Whereas, for the other two valleys, also an angular derivative enters the continuity
condition:(

1

ml,t
cos2(θ) +

1

mt,l
sin2(θ)

)
∂ξ(r, θ)

dr
+

(
1

mt,l
− 1

ml,t

)(
sin(θ)cos(θ)

r

)
∂ξ(r, θ)

∂θ

=
1

mox

∂ξ(r, θ)

∂r
(4.13)
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4.3 The Pseudo Spectral method

Eigenvalue-differential problems as the one reported in Eq.4.1 are typically
discretized with finite-difference (FD) or finite-element (FE) methods. These methods
are particularly flexible and powerful general-purpose numerical solution methods
but they feature a fixed and low order accuracy. The pseudospectral (PS) method,
instead, is an alternative numeric method that allows one to obtain an higher order
accuracy with respect to FE and FD methods and a remarkable reduction in the
CPU time due to the reduced number of discretization points. This last feature is
particularly useful since the goal is to solve the Schrödinger equation in the whole
2D circular domain to account for the anisotropicity of the conduction band valleys.
For analytic functions, the PS method allows for errors to decay (as the number
of discretization points N increase) typically at exponential rates rather than at
much slower polynomial rates. Moreover, the approach is surprisingly powerful for
many cases in which both solutions and variable coefficients are non-smooth or even
discontinuous and, the relatively coarse grids in PS methods results in time- and
memory reduction [104, 105].

4.3.1 PS method for bounded nonperiodic domains

FD methods approximate derivatives of a function by local arguments as in the
case of the standard first-order finite difference where, by expanding the function up
to the first term of the Taylor series, we obtain :

du(xi)

dx
=
u(xi + h)− u(xi)

h
(4.14)

where h is the grid spacing. By using the matrix formalism and writing u(xi) as
a column vector, the FD method with first-order accuracy leads to a bi-diagonal
differentiation matrix. Higher order approximations for the first derivative can be
obtained by using more terms in the Taylor series, and appropriately weighting the
various expansions in a sum. This is the idea behind PS method, that takes this
process to the limit, at least in principle, and works with a differentiation formula of
infinite order and leading to a dense differentiation matrix. In this sense, PS methods
can be regarded as global since, as an example, in the case of the derivative of a
function, the derivative calculated in xi depends on all the other points of the domain.
From here on in the derivation of the PS method we will consider a one-dimensional
case within the domain [a, b] for the sake of simplicity.

With the PS method, the function u(x) ∈ C for a given set of distinct points xi
(i = 0, . . . , N) is approximated as the sum of smooth basis functions using N-degree
interpolating algebraic or trigonometric polynomials p(x). Hence, in the PS method
there are two fundamental steps that are the choice of a proper interpolation function
for global calculations of spacial derivatives, and the knowledge of the discrete points
(collocation points) where the calculation is computed. The approximated function
p(x) is written using the interpolating polynomial of the least degree (i.e. of degree
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a b

xNx0 b+a
2

Figure 4.5: Chebyshev discretization points.

N) that is a unique interpolation polynomial and takes the form:

u(x) ≈ p(x) =
N∑
j=0

`j(x)u(xj), x ∈ [a, b] (4.15)

where `j are the N + 1 Lagrange basis polynomials and xj are the N + 1 nodes where
the u(x) function is sampled. The explicit formulation for `j(x) is given by:

`j(x) =
N∏
i=0
i 6=j

x− xi
xj − xi

, j = 0, 1, . . . , N. (4.16)

where it can be easily noticed that:

`j(xi) =

{
1, i = j

0, i 6= j.

According to Eqs.4.15,4.16 it is clear that the polynomial approximation for u(x) is
exact for x = xi being:

p(xi) = u(xi), i = 0, . . . , N. (4.17)

As reported in many papers in the literature [104, 105], the xi grid points are assumed
to be Chebyshev points over the [a, b] domain given by the following equation:

xi =
b+ a

2
− b− a

2
cos(

iπ

N
), i = 0, 1, . . . , N. (4.18)

and represent the projection onto the x-axis of the equispaced points on the circle
with radius (b−a)/2 as reported in Fig.4.5. The choice for Chebyshev points removes
the problem associated with the inability to approximate a smooth function at the
boundaries of the domain when a uniform-grid is used. This is the so-called Runge
phenomenon that makes the solution found onto a uniform spaced domain oscillate
[104]. Incidentally, the case for smooth function at the boundaries of the domain is
the case for wave-functions close to the outer boundary when the penetration of the
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wave-function into the oxide is allowed, hence, the choice for Chebyshev collocation
points is appropriate. The idea behind the solution of a differential equation within
the PS method is to approximate the derivative of the unknown u(xi) using the
derivatives of p(xi) as follow:

du(x)

dx
|xi ≈

dp(x)

dx
|xi =

N∑
j=0

`′j(xi)u(xj), x ∈ [a, b] (4.19)

where `′j(xi) = d`′(x)
dx |xi with i, j = 0, . . . , N . Eq.4.19 can be rewritten by using the

matrix formalism to write the column vector of the derivatives:
u′(x0)
u′(x1)

...
u′(xN )


︸ ︷︷ ︸

u′N+1

≈


`′0(x0) `′1(x0) `′2(x0) · · · `′N (x0)
`′0(x1) `′1(x1) `′2(x1) · · · `′N (x0)

...
...

...
. . .

...
`′0(xN ) `′1(xN ) `′2(xN ) · · · `′N (xN )


︸ ︷︷ ︸

DN+1


u(x0)
u(x1)

...
u(xN )


︸ ︷︷ ︸

uN+1

(4.20)

where DN+1 is an (N + 1)x(N + 1) matrix and denotes the first order differentiation
matrix. Explicit calculations for DN+1 are reported in [104]. Higher orders of
derivation can be obtained recursively, in fact:

d2u(xi)

dx2
=

d

dx

(
du(xi)

dx

)
≈

N∑
j=0

`′j(xi)u
′(xj) =

N∑
j=0

N∑
m=0

`′j(xi)`
′
m(xj)u(xm) =

= D2
N+1uN+1, (4.21)

which costs O(N + 1)3 floating point operations, or it can be calculated by explicit
formulas [104].

More generally, the k-order derivative can be computed as follows:

ukN+1 = Dk
N+1uN+1, k < N. (4.22)

4.3.2 Boundary conditions

PDEs that describe physical mechanisms, are completely defined only by adding
appropriate boundary conditions. We will see that with the PS method the inclusion
of boundary and continuity conditions is quite straightforward.

Let us write a second-order differential equation over the domain x = [a, b]:

d2u(x)

dx2
= −ρ(x) −→ EN+1uN+1 = −ρN+1 (4.23)

where the EN+1 matrix is calculated according to Eq.4.22 setting k = 2 and boundary
conditions are written as a combination of the values of the function and the values
of its derivative at the boundaries of the domain (Robin’s boundary conditions):

αau(a) + βau
′(a) = γa for x = a

αbu(b) + βbu
′(b) = γb for x = b (4.24)
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where α, β and γ are generic constants. By substituting Eq.4.22 setting k = 1 into
Eq.4.24 we obtain a set of equations that depend only on the vector of the unknonwns
and not on the first derivatives:

αau(a) + βaDN+1(0, :)uN+1 = γa

αbu(b) + βbDN+1(N, :)uN+1 = γb (4.25)

where DN+1(i, :) denotes the [1x(N + 1)] row vector obtained by taking the i−th
row of the matrix DN+1 and all the elements along the columns. Eq.4.25 is rewritten
in a more compact form:

PauN+1 = γa

PbuN+1 = γb (4.26)

where

Pa =

[
αa + βaDN+1(0, 0)︸ ︷︷ ︸

P11
a

βaDN+1(0, 1 : N − 1)︸ ︷︷ ︸
P12
a

βaDN+1(0, N)︸ ︷︷ ︸
P13
a

]

Pb =

[
βbDN+1(N, 0)︸ ︷︷ ︸

P31
b

βbDN+1(N, 1 : N − 1)︸ ︷︷ ︸
P32
b

αb + βbDN+1(N,N)︸ ︷︷ ︸
P33
b

]
. (4.27)

Therefore, the final set of equations for the numeric solution of Eq.4.23 is obtained
by substituting the first and last rows of Eq.4.23 with the corresponding equations
in Eq.4.26 and the final system to be solved becomes: P11

a P12
a P13

a

EN+1(1 : N − 1, :)
P31
b P32

b P33
b

 uN+1(0)
uN+1(1 : N − 1)

uN+1(N)

 =

 γa
ρN+1(1 : N − 1)

γb

 (4.28)

4.3.3 Heterostructures

The solution of the Schrödinger equation taking into account the wave-function
penetration into the oxide or the solution of the Poisson’s equation in the oxide
and semiconductor domains need to be addressed properly in order to preserve
the accuracy of the PS methods that can be compromised by the presence of
discontinuities in the material properties.

xα,0 xα,Nα xβ,0 xβ,Nβ

domain α domain β
a b c x

Figure 4.6: Sketch of an heterogeneous domain with Chebyshev discretization points.

In the presence of two different materials, in a one-dimensional case as reported in
Fig.4.6 must be defined two separate domains and differentiation matrices, and then
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the two problems must be coupled by means of appropriate continuity conditions.
Let us suppose to solve a differential problem with second-order derivative on the
domain defined in Fig.4.6: (

d

dx
ε(x)

d

dx

)
u(x) = −ρ(x) (4.29)

with Robin’s boundary conditions at x = a and x = c expressed as in Eq.4.24, where
ε(x) = εα for a 6 x 6 b and ε(x) = εβ for b 6 x 6 c and Eq.4.29 can be regarded as
the Poisson’s equation for the potential u(x). Eq.4.29 can be rewritten discretizing the
x domain into Chebyshev collocation points by defining two differentiation matrices,
one for each sub-domain:

εαEα,Nα+1uα = −ρα for domain α

εβEβ,Nβ+1uβ = −ρβ for domain β. (4.30)

where um is the discretized version of the potential u(x) over the Chebyshev domain
xm,i where m denotes the domain index and i = 0, 1, . . . , Nm and where Em,Nm+1

is the second derivative discretization matrix of dimensions [(Nm + 1)x(Nm + 1)]
obtained by squaring the differentiation matrix for the first derivative according to
Eq.4.22. Eq.4.30 can be rewritten by dividing the Em,Nm+1 matrices into blocks thus
obtaining:

εα

E11
α E12

α E13
α

E21
α E22

α E23
α

E31
α E32

α E33
α

 uα,a
uα,inn
uα,b

 =

 −ρα,a−ρα,inn
−ρα,b

 (4.31)

εβ

E11
β E12

β E13
β

E21
β E22

β E23
β

E31
β E32

β E33
β

 uβ,b
uβ,inn
uβ,c

 =

 −ρβ,b−ρβ,inn
−ρβ,c

 . (4.32)

where uα,a = uα(x = a) and where um,inn denotes the column vector of terms um,i
with i = 1, . . . , Nm − 1 (i.e. in the inner part of the m−th domain). Hence, the total
system to be solved is given by:

εα

E11
α E12

α E13
α

E21
α E22

α E23
α

E31
α E32

α E33
α

 0

0 εβ

E11
β E12

β E13
β

E21
β E22

β E23
β

E31
β E32

β E33
β







uα,a
uα,inn
uα,b
uβ,b
uβ,inn
uβ,c

 =



−ρα,a
−ρα,inn
−ρα,b
−ρβ,b
−ρβ,inn
−ρβ,c

 . (4.33)

In Eq.4.33 we must enforce the continuity conditions at the interface between the
domains and the boundary conditions. If Eq.4.29 is considered as the Poisson’s
equation for the potential u(x), continuity conditions are given by the two sets of
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equations that guarantee the continuity of the potential and the conservation of the
electrical displacement at the heterostructure interface:

uα,b = uβ,b

εα
du(x)

dx
|x=b− = εβ

du(x)

dx
|x=b+ . (4.34)

Boundary and continuity conditions can be imposed in two different ways using the
explicit or implicit formalism.

Explicit formalism for boundary conditions

Within the explicit formalisms the rows of Eq.4.33 corresponding to continuity
and boundary collocation points are simply substituted with the corresponding
continuity and boundary equations. For the former ones, the third and fourth rows
of Eq.4.33 are replaced by the two continuity conditions of Eq.4.34, whereas for
the boundary conditions, which are assumed to be Robin’s conditions (see Eq.4.24)
we substitute the first and last row of Eq.4.33 with the corresponding boundary
equations written in a compact form as reported in Eq.4.26, leading to a new system
of equations:



P11
a P12

a P13
a 0

εα
[
E21
α E22

α E23
α

]
0

0 0 1 -1 0 0
εαDα(N, :) −εβDβ(0, :)

0 εβ
[
E21
β E22

β E23
β

]
0 P31

c P32
c P33

c


︸ ︷︷ ︸

LNα+Nβ+2



uα,a
uα,inn
uα,b
uβ,b
uβ,inn
uβ,c

 =



γa
ρα,inn

0
0

ρβ,inn
γc

 (4.35)

where Dm(n, :) denotes the n−th row of the differentiation matrix Dm for the first
derivative for the domain m having dimensions [(Nm + 1)x(Nm + 1)], LNα+Nβ+2 ∈
R(Nα+1)+(Nβ+1)x(Nα+1)+(Nβ+1) and where

Pa =

αa + βa Dα,N+1(0, 0)︸ ︷︷ ︸
D11
α︸ ︷︷ ︸

P11
a

βa Dα,N+1(0, 1 : N − 1)︸ ︷︷ ︸
D12
α︸ ︷︷ ︸

P12
a

βa Dα,N+1(0, N)︸ ︷︷ ︸
D13
α︸ ︷︷ ︸

P13
a



Pc =


βc Dβ,N+1(N, 0)︸ ︷︷ ︸

D31
β︸ ︷︷ ︸

P31
c

βc Dβ,N+1(N, 1 : N − 1)︸ ︷︷ ︸
D32
β︸ ︷︷ ︸

P32
c

αc + βc Dβ,N+1(N,N)︸ ︷︷ ︸
D33
β︸ ︷︷ ︸

P33
c

 .
(4.36)

Finally, the solution of the discretized version of Eq.4.29 over the two Chebyshev
domains is obtained by solving the system of equations in Eq.4.35. We recall that
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according to the explicit method, the vector of solutions contains two degenerate
values for the point x = b.

It is interesting to see that in the case of Dirichlet’s boundary conditions of the
type uα,a = uβ,c = 0 the first and last columns of the matrix LNα+Nβ+2 have no
effect (since multiplied by zero) and the same holds for the first and last rows of
the matrix in Eq.4.35 (since ignored). In other words, to solve the one-dimensional
problem in Eq.4.29 by using Chebyshev PS method with uα,a = uβ,c = 0 boundary
conditions one can use the L̃Nα+Nβ matrix of dimensions [(Nα + Nβ)x(Nα + Nβ)]
obtained by stripping the matrix LNα+Nβ+2 of Eq.4.35 of its first and last rows and
columns obtaining:

[
L̃Nα+Nβ

] 
uα,inn
uα,b
uβ,b
uβ,inn

 =


ρα,inn

0
0

ρβ,inn

 (4.37)

Implicit formalism for boundary conditions

The second way to impose continuity and boundary conditions consists in removing
from the final system of equations the corresponding continuity and boundary
collocation points. Let us focus on the system of equations in Eq.4.33. Recalling
the continuity condition on the function u(x) at the interface x = b given by the
first equation in Eq.4.34, the system of equations can be rewritten removing the row
associated with uα,b or with uβ,b (third or fourth row of the system of equations in
Eq.4.33) leading to:

εα

E11
α E12

α E13
α

E21
α E22

α E23
α

E31
α E32

α E33
α

 0

0 εβ

[
E21
β E22

β E23
β

E31
β E32

β E33
β

]


︸ ︷︷ ︸
LNα+Nβ+1


uα,a
uα,inn
uα,b
uβ,inn
uβ,c

 =


ρα,a
ρα,inn
ρα,a
ρβ,inn
ρβ,c

 (4.38)

where we have chosen to remove from Eq.4.33 the equation for the unknown uβ,b.
According to the differentiation matrices defined in Eq.4.22, the first derivative of the
function u(x) defined over the Chebyshev collocation points can be written using the
matrix formalisms and by dividing the differentiation matrices into blocks we obtain:

εα

D11
α D12

α D13
α

D21
α D22

α D23
α

D31
α D32

α D33
α

 uα,a
uα,inn
uα,b

 =

 duα/dx|a
duα/dx|inn
duα/dx|b


εβ

D11
β D12

β D13
β

D21
β D22

β D23
β

D31
β D32

β D33
β

 uβ,b
uβ,inn
uβ,c

 =

 duβ/dx|b
duβ/dx|inn
duβ/dx|c

 . (4.39)
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The continuity condition on the derivatives of Eq.4.34 can be rewritten exploiting
Eq.4.39 as:

εα(D31
α uα,a + D32

α uα,inn + D33
α uα,b) = εβ(D11

β uβ,b + D12
β uβ,inn + D13

β uβ,c) (4.40)

and recalling that uα,b = uβ,b = ub, the above condition can be written as:

[
D31
α D32

α

(
D33
α − ξD11

β

)
−ξD12

β −ξD13
β

]

uα,a
uα,inn
ub

uβ,inn
uβ,c

 = 0 (4.41)

where ξ = εβ/εα. The same can be done for the Robin’s boundary conditions of
Eq.4.24 which leads to the set of equations:

[
P11
a P12

a P13
a 0 0

0 0 P31
c P32

c P33
c

]
uα,a
uα,inn
ub

uβ,inn
uβ,c

 =

[
γa
γc

]
(4.42)

where the Pij elements are defined in Eq.4.36. By combining Eq.4.42 and Eq.4.41 to
write explicitely the dependence of the unknown function u(xm,i) at the collocations
points x = a, b, c we obtain:P11

a P13
a 0

D31
α

(
D33
α − ξD11

β

)
−ξD13

β

0 P31
c P33

c


︸ ︷︷ ︸

L3x3

uα,aub
uβ,c

 =

 −P12
a uα,inn + γa

−D32
α uα,inn + ξD12

β uβ,inn
−P32

c uβ,inn + γc

 (4.43)

where L3x3 is a 3x3 matrix. By defining L̃3x3 the inverse of L3x3 matrix and inverting
the problem in Eq.4.43 to find explicit expressions for uα,a, ub, and uβ,c we obtain:

uα,aub
uβ,c

 =

−L̃11P12
a − L̃12D32

α L̃12ξD12
β − L̃13P32

c

−L̃21P12
a − L̃22D32

α L̃22ξD12
β − L̃23P32

c

−L̃31P12
a − L̃32D32

α L̃32ξD12
β − L̃33P32

c

[uα,inn
uβ,inn

]
+

L̃11 L̃13

L̃21 L̃23

L̃31 L̃33

[γa
γc

]
(4.44)

that written in a more compact form, becomes:uα,aub
uβ,c

 =

W11 W12

W21 W22

W31 W32

[uα,inn
uβ,inn

]
+

L̃11 L̃13

L̃21 L̃23

L̃31 L̃33

[γa
γc

]
. (4.45)
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From the system of equations in Eq.4.38, it can be seen that:

ρα,inn = εαE21
α uα,a + εαE22

α uα,inn + εαE23
α ub

ρβ,inn = εβE
21
β ub + εβE

22
β uβ,inn + εβE

23
β uβ,c (4.46)

and by substituting into Eq.4.46 the expressions for uα,a, ub, and uβ,c given by Eq.4.45
we obtain a set of equations which depend only on the inner points of the domains
(i.e. do not appear the unknown functions evaluated at the boundary and interface
collocation points):[
εαE21

α W11 + εαE22
α + εαE23

α W21 εαE21
α W12 + εαE23

α W22

εβE
21
β W21 + εβE

23
β W31 εβE

21
β W22 + εβE

22
β + εβE

23
β W32

] [
uα,inn
uβ,inn

]
=

=

[
ρα,inn
ρβ,inn

]
−

εαE21
α

(
L̃11γa + L̃13γc

)
+ εαE23

α

(
L̃21γa + L̃23γc

)
εβE

21
β

(
L̃21γa + L̃23γc

)
+ εβE

23
β

(
L̃31γa + L̃33γc

) (4.47)

where the right-hand side of Eq.4.47 represents the known terms. Solution of Eq.4.47
returns the value of the unknown at all points except at the boundary and interface
collocation points, for which Eq.4.45 must be used. Explicit and implicit methods
lead to the same results, however, due to the simplicity of implementation, the
former is to be preferred when solving differential equations (i.e. Poisson’s Equation)
whereas the implicit method can be exploited in the case of eigenvalue problems
since it does not introduce spurious eigenvalues which must be accounted for in the
case of explicit method as shown below.

4.3.4 Eigenvalue problems

As an example, let us consider and eigenvalue problem of the type:

H (u(x)) = λu(x) (4.48)

over a single domain, where u(x) is the unknown continuous and differentiable
function over the x domain [a, b], λ is a scalar value unknown of the problem and H
is a linear operator (e.g. differential operator). Boundary conditions are supposed to
be of the Dirichlet type and in particular:

u(x) = 0 for x = a, b. (4.49)

The discretized version of Eq.4.48 is written as

Su = λu (4.50)

where S can be regarded as a Chebyshev differentiation matrix. By writing the
unknown u as a vector of three components, the above eigenvalue problem becomes:S11 S12 S13

S21 S22 S23

S31 S32 S33

 ua
uinn
ub

 = λ

 ua
uinn
ub

 . (4.51)

Boundary conditions can be imposed using either the implicit or explicit method,
even though the former can be more convenient.
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Implicit method

Based upon the steps in Sec.4.3.3 for the implicit method to impose boundary
and continuity conditions, it is very simple to derive the eigenvalue problem to solve
that becomes:

S22uinn = λuinn. (4.52)

Eigenvalues and eigenfunctions solutions of the problem in Eq.4.50 are obtained by
solving Eq.4.52. A post processing of the results for the eigenfunctions is required to
obtain the value of the eigenfunction at the boundaries, that in this case are simply
zero.

Explicit method

By imposing explicitly the boundary conditions we obtain: 1 0 0
S21 S22 S23

0 0 1

 ua
uinn
ub

 = λ

 0
uinn

0

 . (4.53)

Let us suppose to calculate the eigenvalues and eigenfunctions of the matrix in
Eq.4.53. In this case we obtain: 1 0 0

S21 S22 S23

0 0 1

 Ψa

Ψinn

Ψb

 = ε

 Ψa

Ψinn

Ψb

 . (4.54)

Eigenvalues ε and eigenfunctions Ψ satisfy:

1) Ψa = εΨa

2) S21Ψa + S22Ψinn + S23Ψb = εΨinn

3) Ψb = εΨb

(4.55)

Conditions 1) and 3) are satisfied if:

ε = 1 or Ψa = Ψb = 0 (4.56)

In the case of ε = 1, condition 2) of Eq.4.55 becomes:

Ψinn = −
(
S22 − I

)−1 (
S21Ψa + S23Ψb

)
(4.57)

where I denotes the identity matrix of dimension equal to the number of elements of
Ψinn and ε = 1 is the spurious eigenvalue (in this case its multiplicity is two).

In the case of Ψa = Ψb = 0, condition 2) of Eq.4.55 becomes:

S22Ψinn = εΨinn. (4.58)
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where it can be seen that Eq.4.58 is equal to Eq.4.52 obtained with the implicit
method.

Eigenfunctions obtained with the explicit method by solving Eq.4.54, does not
need a post-processing to add the values of the eigenfunction at the boundaries
(and at the interface points in the case of heterostructures), however, this method
requires a careful evaluation of the results to remove spurious eigenvalues and the
corresponding eigenfunctions. Conversely, implicit method is, in general, of more
difficult implementation and requires post processing to add eigenfunction values at
the boundaries (and interface points in the case heterostructures), but it does not
require to remove any spurious eigenvalue (and corresponding eigenfunction).

4.3.5 Pseudospectral Integral Calculation

According to [104], PS method allows to calculate integrals by employing the
differentiation matrices used for the derivatives calculations. In fact, let the function
f(x) be continuous and differentiable over the domain x ∈ [a, b]. The integral:

I =

∫ b

a
f(x)dx (4.59)

can be regarded as a particular case of differential equation of the type: u′ = f(x, u)
where f is independent of u, thus the integral of f(x) without loss of generality can
be written as:

du(x)

dx
= f(x) with u(a) = 0 and x > a. (4.60)

Eq.4.60 states that the integral in Eq.4.59 is equal to I = u(b). It follows that,
according to the Chebyshev discretization matrices:

DN+1uN+1 = fN+1 (4.61)

and by expanding into blocks the differentiation matrix we obtain:[
D11 D12

D21 D22

] [
ua
uinn

]
=

[
fa
f inn

]
(4.62)

where ua = u(x = a) = u(0) and uinn = u(xi) with i = 1, . . . , N . Boundary
conditions on u(x) reported in Eq.4.60 can be imposed as explained in Sec.4.3.4 by
removing the first column and row of the differentiation matrix DN+1 obtaining:

D22uinn = f inn. (4.63)

Since the relation I = u(b) gives the value of the integral in Eq.4.59, it is necessary
to invert the problem in Eq.4.63 to write explicitly the dependence of uinn on f inn:

uinn = D̃22f inn (4.64)
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where D̃22 is the inverse of D22. Recalling that u(b) equals to the last element of the
vector uinn, the calculation of the integral I requires only the last row of the matrix
D̃22

I = wT f inn (4.65)

where wT ∈ R1xN is the row vector given by the last row of the matrix D̃22.

The integral of the function f(x) in Eq.4.59 can also be calculated using and
alternative and better approach as reported in [104]. Recalling that within the PS
method, a function is approximated by using a polynomial interpolation function
(see Eq.4.15), the integral of the function f(x) can be written as:

∫ b

a
f(x)dx ≈

∫ b

a
p(x)dx =

N∑
j=0

(∫ b

a
`j(x)dx

)
︸ ︷︷ ︸

hj

u(xj), x ∈ [a, b] (4.66)

where the terms hj represent the weights of the Clenshaw-Curtis quadrature formula.
It can be demonstrated that Eq.4.66 gives marginally more accurate results than
Eq.4.65 [104].

4.3.6 PS method for bounded periodic domains

The PS method can be used even in the presence of bounded, periodic grids. As
for the case of non-periodic domains in Sec.4.3.1, the method starts by writing the
periodic function u(θ) ∈ C by using a polynomial expansion, and using a trigonometric
interpolating polynomial instead of a Lagrange polynomial (see Sec.4.3.1).

The domain θ is [0, 2π] and the number of grid points N on the periodic grid is
supposed to be even, hence, θi = 2πi/N where i = 1, . . . , N . The function u(θ) can
thus be written similarly to Eq.4.15:

u(θ) ≈ p(θ) =
N∑
j=1

S(θ − θj)u(θj) . (4.67)

where S(θ − θj) is a unique trigonometric periodic function in L2 of degree N/2 (i.e
given by a linear combination of e−i(N/2)θ, . . . , e+i(N/2)θ) that interpolates u(θ) in
the the discrete points θi on the equispaced domain, and it is given by a periodic
sinc function:

S(θ) =
sin
(
θN
2

)
Ntan

(
θ
2

) . (4.68)

As for the Lagrange interpolant function of Sec.4.3.1 for nonperiodic domains, Eq.4.68
is such that u(θi) = p(θi) since:

S(θi − θj) =

{
1, θi = θj

0, θi 6= θj .
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The first derivative of u(θ) calculated in the collocation points u(θi) is given by:

u′(θi) ≈ p′(θi) =

N∑
i,j=1

S′(θi − θj)u(θj) −→ u′N ≈ Dθ,NuN (4.69)

where, according to [104], Dθ,N ∈ RNxN is a a skew−symmetric (AT = −A) Toeplitz
matrix where the last column of Dθ,N is given by:

Dθ,N (i,N) =


0, i = 0(modN)

1

2
(−1)icot

(
iπ

N

)
, i 6= 0(modN)

Second derivative of u(θ) is calculated by using the second order differentiation
matrix:

u′′N = D2
θ,NuN (4.70)

where D2
θ,N can be calculated as the squared value of Dθ,N according to Eq.4.21

requiring O(N3) floating point operations, or it can be calculated directly according
to [104] obtaining a Toeplitz matrix where the last column of D2

θ,N is given by:

D2
θ,M (i,M) =


− M2

12
− 1

6
, i = 0(modM)

− (−1)i

2sin2
(
iπ
M

) , i 6= 0(modM)

The operations required for the calculation of the derivative in Eq.4.70,4.71 over
M points are O(M2). Moreover, since a periodic grid in the real space θ is much
like an infinite grid with the semi-discrete Fourier transform, the derivatives can be
calculated by means of the DFT requiring only (NlogN) operations [104].

4.3.7 Integrals over periodic domains

Let us suppose to calculate the integral of a function periodic f(θ) over the
domain θ ∈ [0, 2π] continuous and differentiable:

I =

∫ 2π

0
f(θ)dθ. (4.71)

By writing the function f(θ) by means of the trigonometric interpolant of Eq.4.67,
we obtain:

I =

N∑
j=1

(∫ 2π

0
S(θ − θj)dθ

)
︸ ︷︷ ︸

= 2π
N

f(θj) (4.72)
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leading to the final expression for the integral:

I =
2π

N

N∑
j=1

f(θj), (4.73)

which corresponds to the trapezoidal rule for a periodic domain and it is the exact
integral of the interpolant function p(θ) through the given data values f(θi). Moreover,
it can be demonstrated that for smooth integrands the periodic trapezoid rule
converges extraordinarily fast [104].

4.3.8 Two dimensional domains: rectangle

The PS method can be extended quite easily to a 2D domain. This is the
case for a rectangular domain defined over x = [a, b] and y = [c, d]. The x and y
domains are set up on independent Chebyshev collocation points in each direction
xi, i ∈ [0, 1, . . . , Nx] and yi, i ∈ [0, 1, . . . , Ny]. We also suppose that the sorting of the
vector of the functions u(x, y) is uxy = [u0,0, . . . , u0,Nx , u1,0, . . . , u1,Nx . . . , uNy ,Nx ]T

with uxy ∈ C1,(Nx+1)(Ny+1) hence, the points over the x − y plane are sorted as in
Fig.4.7 for Nx = 6 and Ny = 5. The approximated function over the 2D Chebyshev

0 1 2 3 4 5 6

7 8 9

41

y

x

Figure 4.7: Chebyshev grid for a 2D domain with points sorting. Nx = 6 and
Ny = 5, total number of Chebyshev points is (Nx + 1)(Ny + 1).

domains is written as in Eq.4.15 resorting to the Lagrange basis polynomials:

u(x, y) ≈ p(x, y) =

Nx∑
j=0

`j(x)

Ny∑
k=0

`k(y)u(xj , yk). (4.74)
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By exploiting the matrix formalism, Eq.4.74 can be rewritten by using the Kronecker
product ⊗ between two matrices defined as:

[
1 2
3 4

]
⊗
[
a b
c d

]
=


a1 b1
c1 d1

a2 b2
c2 d2

a3 b3
c3 d3

a4 b4
c4 d4

 (4.75)

Hence, according to the sorting of the unknowns and by defining Dx,Nx+1 and
Dy,Ny+1 the differentiation matrices calculated according to Eq.4.20 for the x and y
domains respectively, the 2D mixed derivative ∂2/(∂x∂y) can be written by using
the differentiation matrix D2

xy as:

∂2

∂x∂y
≈=

(
Dy,Ny+1 ⊗Dx,Nx+1

)︸ ︷︷ ︸
D2
xy

u(Nx+1)(Ny+1). (4.76)

Following the same approach that makes use of the Kronecker product, for the
k-derivative along x or y coordinates, holds:

Dk
xx = INy+1 ⊗Dk

x,Nx+1

Dk
yy = Dk

y,Ny+1 ⊗ INx+1 (4.77)

where INm+1 denotes the identity matrix of dimensions Nm + 1.

4.3.9 PS method over a circular domain

For circular regions it is convenient to write a generic differential or eigenvalue
equation by changing the coordinate system from Cartesian to polar. Moving to the
discretized domain, this means that, according to Sec.4.3.1 and Sec.4.3.6 the domain
can be discretized by using non periodic Chebyshev grid ri with i ∈ [0, 1, . . . , Nr]
along radial direction and a uniform periodic Fourier grid θk with k ∈ [1, . . . , Nθ]
along θ

r ∈ [0, a], θ ∈ [0, 2π]. (4.78)

A generic function u(r, θ) can be approximated by the following equation:

u(r, θ) ≈ p(r, θ) =

Nr∑
j=0

`j(r)

Nθ∑
k=1

S(θ − θk)u(rj , θk). (4.79)

It must be noticed that the discretization of the circular domain in Fig.4.8 can be
problematic for differential of eigenvalue problems due to the degenerate point at
r = 0. To overcome this issue, among different possibilities the discretization of the
domain is done in a different way considering ri with i = 0, 1, . . . , Nr with Nr odd
number and θk with k = 1, . . . , Nθ with Nθ even number as reported in Sec.4.3.6
and:
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-a a0

Figure 4.8: Discretization of a circular domain according to Eq.4.78 with Nr = 6
and Nθ = 8.

r ∈ [−a, a], θ ∈ [0, 2π] (4.80)

The sketch of the polar domain according to Eq.4.80 is shown in Fig.4.9 and the
corresponding differentiation matrices for the first derivatives over the one-dimensional
r and θ domain are:

Dr,Nr+1 ∈ R(Nr+1)x(Nr+1), Dθ,Nθ ∈ R(Nθ)x(Nθ). (4.81)

Let us suppose that the radial Chebyshev points are sorted as in Fig.4.10 and that

-a a

Figure 4.9: Discretization of a circular domain according to Eq.4.80 with Nr = 9
and Nθ = 8

.

the vector ur,θ ∈ R(Nr+1)Nθ is sorted as:

ur,θ = ur0,θ1 , . . . , ur0,θNθ , ur1,θ0 , . . . , urNr+1
2

,θNθ︸ ︷︷ ︸
ur>0,θ

, urNr+1
2 +1

,θ1 , . . . , urNr ,θNθ︸ ︷︷ ︸
ur<0,θ

(4.82)
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0

Nr+1
2

Nr+1
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Figure 4.10: Sorting of the radial points.

leading to the numbering of the points on the circular domain reported in Fig.4.11.
After defining the differentiation matrices for the r and θ domains, one would be
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4

5

8
9 16

24

32

Figure 4.11: r − θ domain with sorting of discretization points.

tempted to calculate the the r, θ derivatives or mixed derivatives as reported in
Sec.4.3.8 as:

∂u(r, θ)

∂r
≈ (Dr,Nr+1 ⊗ INθ)ur,θ = D

(2D)
r,(Nr+1)Nθ

ur,θ

∂u(r, θ)

∂θ
≈ (INr+1 ⊗Dθ,Nθ)ur,θ = D

(2D)
θ,(Nr+1)Nθ

ur,θ

∂2u(r, θ)

∂r∂θ
≈ (Dr,Nr+1 ⊗Dθ,Nθ)ur,θ = D

(2D),2
rθ,(Nr+1)Nθ

ur,θ (4.83)

where the (2D) apex denotes that the corresponding matrix must be applied to
the function defined over the 2D polar domain. However, the discretization of the
circular domain (see Eq.4.80) leads to redundant informations in the mapping of a
generic u(r, θ) point, because:

u(r, θ) = u(−r, θ + π). (4.84)

Fig.4.12 reports the r − θ space divided into four regions and it follows that regions
III − IV are clearly redundant with respect to regions I − II, or the vice-versa.
Hence it will be used a simplification in the final differentiation matrices in order to
remove any redundancy. To do so, let us suppose that the index i for radial points
is i ∈ 0, 1, 2, 3 and for θ points is k = 1, 2, 3, 4 and we want to compute the first

110



4.3. The Pseudo Spectral method

r

θ
0 2π

-a

+a

0

π

I II

III IV discard by 
symmetry

Figure 4.12: r − θ domain representation. Regions III − IV are redundant with
respect to regions I − II, or the viceversa, and can be removed.

derivative along radial direction. The differentiation matrix for the 1D radial domain
is written into blocks:

θ1

θ2

θ3

θ4
r0r1r2r3r4r5

Figure 4.13: Disk discretization with ri with i ∈ 0, 1, 2, 3, 4, 5 and θk with k =
1, 2, 3, 4.



D11 D12 D13

D21 D22 D23

D31 D32 D33

D14 D15 D16

D24 D25 D26

D34 D35 D36

D41 D42 D43

D51 D52 D53

D61 D62 D63

D44 D45 D46

D54 D55 D56

D64 D65 D66





u(r0)
u(r1)
u(r2)

 r>0

u(r3)
u(r4)
u(r5)

 r<0

 =



du(r)/dr|0
du(r)/dr|1
du(r)/dr|2
du(r)/dr|3
du(r)/dr|4
du(r)/dr|5


(4.85)
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that written in a more compact form becomes:[
D̃11
Mr

D̃12
Mr

D̃21
Mr

D̃22
Mr

] [
ur>0

ur<0

]
=

[
du/dr|r>0

du/dr|r<0

]
(4.86)

where D̃ij
Mr
∈ RMrxMr and Mr = (Nr+1)/2 with Nr odd number. The first derivative

along r in the 1D r space is given by:

D11u(r0) + D12u(r1) + D13u(r2) + D14u(r3) + D15u(r4) + D16u(r5). (4.87)

If we now move to the 2D domain where the sorting of the points in polar coordinates
is the one reported in Eq.4.82, the first derivative along r for a fixed θ value (i.e.
θ1) at the point (r0, θ1) can be written by taking the product of the first row of the

matrix D
(2D)
r,(Nr+1)Nθ

defined in Eq.4.83 by the column vector ur,θ:

D11u(r0, θ1)+D12u(r1, θ1)+D13u(r2, θ1)+D14u(r3, θ1)+D15u(r4, θ1)+D16u(r5, θ1)
(4.88)

Redudancy in Eq.4.88 can be removed thanks to Eq.4.84, in fact:

u(r3, θ1) = u(r2, θ3)

u(r4, θ1) = u(r1, θ3)

u(r5, θ1) = u(r0, θ3). (4.89)

By substituting Eq.4.89 into Eq.4.88, the first derivative along r at the point (r0, θ1)
is given by:

D11u(r0, θ1)+D12u(r1, θ1)+D13u(r2, θ1)+D14u(r2, θ3)+D15u(r1, θ3)+D16u(r0, θ3)
(4.90)

and it can be seen that Eq.4.90 depends only on positive r values, that is, the
redundancy in Eq.4.88 has been removed (as shown in Fig.4.12). By extending the
same procedure for all other points of the (r, θ) domain, the first derivative along r
direction and by defining Mr = (Nr + 1)/2, can be written as:

D
(2D)
r,MrNθ

ur>0,θ =



D11

D 16

D 21

D 26

D 31

D 36

D 16

D 11

D 26

D 21

D 36

D 31

D 16

D 11

D 26

D 21

D 36

D 31

D 12

D 15

D 22

D 25

D 32

D 35

D 12

D 15

D 22

D 25

D 32

D 35

D 15

D 12

D 25

D 22

35

D 32

D 15

D 12

D 25

D 22

D 35

D 32

D 13

D 14

D 23

D 24

D 33

D 34

D 13

D 14

D 23

D 24

D 33

D 34

D 14

D 13

D 24

D 23

D 34

D 33

D 14

D 13

D 24

D 23

D 34

D 33

D 11

D 16

D 21

D 26

D 31

D 36

D





ur0,θ1
ur0,θ2
ur0,θ3
ur0,θ4
ur1,θ1
ur1,θ2
ur1,θ3
ur1,θ4
ur2,θ1
ur2,θ2
ur2,θ3
ur2,θ4



.

(4.91)
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4.3. The Pseudo Spectral method

where D
(2D),k
r,MrNθ

∈ RMrNθxMrNθ and ur>0,θ ∈ RMrNθ with ur>0,θ = ur0,θ1 , . . . , ur0,θNθ , ur1,θ0 , . . . , urMr ,θNθ .
Eq.4.91 can be rewritten for a k order derivative along r direction in a more compact
form by resorting to the matrix partitioning of Eq.4.86:

D
(2D),k
r,MrNθ

= D̃11,k
Mr
⊗
[
INθ/2 0

0 INθ/2

]
+ Ẽ12,k

Mr
⊗
[

0 INθ/2
INθ/2 0

]
(4.92)

where Ẽ12,k
Mr

denotes the D̃12,k
Mr
∈ RMrxMr obtained by partitioning the matrix for

the k derivative along radial direction (D̃k
r,Nr+1 is obtained as reported in Eq.4.22)

according to Eq.4.86 where the columns of D̃12,k
Mr

have been left-to-right flipped:

Ẽ12,k
Mr

(:, i)=D̃12,k
Mr

(:,Mr − 1 − i) with i ∈ 0, 1, . . . ,Mr − 1. The first term of the
summation in Eq.4.92 is given by the matrix coefficients circled with solid line in
Eq.4.91 whereas the second term by the dashed-line circled elements in Eq.4.91.

It is interesting to note that the initial matrix for the first derivative along r

,D
(2D)
r,(Nr+1)Nθ

, reported in Eq.4.83 has dimensions (Nr + 1)Nθ and returns redundant

results due to the non-unique mapping of the generic point (r, θ) in the circular
domain given by the choice of radial discretization points reported in Eq.4.80 (that
has been introduced to avoid the degenerate discretization point at r = 0), whereas,
according to the considerations sketched in Fig.4.12 and after some manipulations of

the D
(2D)
r,(Nr+1)Nθ

matrix, it is obtained the new matrix for the first derivative along

r ,D
(2D)
r,MrNθ

, reported in Eq.4.92 (first derivative is obtained by setting k = 1) with
reduced dimensions and without redundancy. Based upon same considerations for
the θ and mixed derivatives, and by defining Mr = (Nr + 1)/2 the new differential
operators on the circular domain become:

∂ku(r, θ)

∂rk
≈

(
D̃11,k
Mr
⊗

[
INθ

2

0

0 INθ
2

]
+ Ẽ12,k

Mr
⊗

[
0 INθ

2

INθ
2

0

])
ur,θ = D

(2D),k
r,MrNθ

ur,θ

∂ku(r, θ)

∂θk
≈ (IMr ⊗Dθ,Nθ)ur,θ = D

(2D),k
θ,MrNθ

ur,θ

∂k+lu(r, θ)

∂rk∂θl
≈
(
D̃11,k
Mr
⊗Dθ

l
Nθ

+ Ẽ12,k
Mr
⊗ Fl

θ,Nθ

)
ur,θ = D

(2D),2
rθ,MrNθ

ur,θ (4.93)

where

Ẽ12,k
Mr

(:, i) = D̃12,k
Mr

(:,Mr − 1− i), i ∈ 0, 1, . . . ,Mr − 1

Fl
θ,Nθ

=
[
Dl
θ,Nθ

(:, Nθ2 : Nθ − 1) Dl
θ,Nθ

(:, 0 : Nθ2 − 1).
]

(4.94)
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4.4 Numerical solution of the Schrödinger equation

z

y

dTox
(a) Nanowire section.

ϕB

E

r
(b) Flat potential profile with potential bar-
rier ΦB .

Figure 4.14: Sketch of the simulated nanowire.

4.4.1 Simulation results: ideal circular quantum well without wave-
function penetration into the oxide

Isotropic quantization masses

For ideal quantum wells with a flat potential profile U(r, θ) = 0eV , without
wave-function penetration into the oxide, for isotropic quantization masses, and
without taking into account non parabolicity corrections, the eigenvalues of Eq.4.1
can be analytically calculated:

εn,m =
~2

2m

(
2µm,n
d

)2

(4.95)

where d is the nanowire diameter, µm,n is the n−th zero of the Bessel function of
the first kind and order m, with m = 0,±1,±2,±3, . . .. The exact solutions of the
problem have been used as the reference to evaluate the accuracy of the proposed PS
numerical method. Since m in Eq.4.95 can be either positive or negative, there are
couples of degenerate eigenvalues as shown in Tab.4.1. Fig.4.15 shows the square
modulus of the calculated eigenfunctions with the PS method and Fig.4.16 shows
the comparison between analytical eigenvalues obtained with Eq.4.95 and numerical
eigenvalues obtained with the PS method described in Sec.4.3. Simulation results
are for silicon with [100] transport direction and for ∆[100] valleys, namely, those
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4.4. Numerical solution of the Schrödinger equation

n. eigenvalue energy [eV]

1 0.1855
2 0.4711
3 0.4711
4 0.8462
5 0.8462
6 0.9776

Table 4.1: Eigenvalues obtained with Eq.4.95 for silicon with [100] transport direction
and for the valleys with isotropic quantization masses (i.e. those with the main
ellipsoid axes aligned with transport direction with mx=0.92 m0 and mquant=0.19
m0). d is 5 nm and results are obtained without wave-function penetration into the
oxide.

with the main axes aligned along transport direction. In Fig.4.16b it can be noticed
that the PS method used in this thesis allows an exponential decrease of the error
with the number of discretization points. Fig.4.17 shows the comparison between
numerical and analytical eigenvalues for different nanowire diameters.

4.4.2 Simulation results: Ideal circular quantum well with wave-
function penetration into the oxide

In this section we show simulation results obtained under different approximations
for the oxide that can be found in the literature and without including non-parabolicity
corrections. We solve the Schrödinger equation in two cases: assuming an infinite
potential barrier ΦB between semiconductor and oxide, that is, neglecting the wave-
function penetration into the oxide, or allowing the wave-function to penetrate the
oxide. In the latter case, we still have two options: a) approximate the oxide using the
same semiconductor effective masses but using the electron affinity of the considered
oxide (this allows to impose only the continuity of the envelope wave-function and of
its derivative at the semiconductor-oxide interface); b) simulate the oxide using the
proper effective mass and electron affinity which requires more complicated continuity
conditions.

Fig.4.18 shows that, expecially for the InAs case, either the assumption of
infinite potential barrier ΦB between oxide and semiconductor (i.e. no wave-function
penetration into the oxide), or, the approximation for the oxide material using
the semiconductor effective mass but with the electron affinity of the oxide, lead
to significant differences compared to the complete treatments (triangles). The
discrepancy between triangles and circles or squares in Fig.4.18 is stronger for InAs
with respect to silicon and this is expected due to the low effective mass of the InAs.
Therefore, it seems very important to properly account for the oxide material by using
the correct value of the effective mass, hence, by imposing the continuity conditions
of Eq.4.9. We here notice that, for both silicon with [100] transport direction and
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Figure 4.15: Square modulus of the wave-function for different eigenvalues n, for
silicon nanowire with [100] transport direction and diameter d of 5 nm and Tox=2
nm.

for the fundamental isotropic valley for InAs, the tensor of the effective masses is
isotropic (see Fig.A.4), therefore, the continuity condition in Eq.4.9, that in principle
leads to a dependence of the eigenvalues on kx, reduces to the much more simple
Eq.4.10 that does not involve kx.
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Figure 4.16: Results obtained for silicon with [100] transport direction and for
the valleys with isotropic quantization masses (i.e. those with the main ellipsoid
axes aligned with transport direction). d is set to 5 nm, the semiconductor-oxide
barrier height is assumed to be infinite and we used a parabolic dispersion relation.
Numerical results are obtained for different number of discretization points.
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Figure 4.17: Comparison between numerical and analytical eigenvalues for different
NW diameters d. Analytical eigenvalues are obtained with Eq.4.95, whereas numerical
eigenvalues with the PS method and with 50 discretization points. Results obtained
for silicon with [100] transport direction and for the valleys with isotropic quantization
masses (i.e. those with the main ellipsoid axes aligned with transport direction).
We assume the semiconductor-oxide barrier height to be infinite and a parabolic
dispersion relation. n denotes the eigenvalue index.
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(a) Silicon−SiO2 with 100 transport direction. For the two
cases of wave-function penetration (squares and triangles)
ΦB=3.15 eV. The oxide mass is mSi02=0.5 m0.
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(b) InAs-Hf02 with only Γ valleys. For the two cases of wave-
function penetration (squares and triangles) ΦB=2.4eV. The
oxide mass is mHf02=0.11 m0 [106]

Figure 4.18: Comparison between parabolic eigenvalues for different nanowire
diameters obtained for silicon and InAs. Circles: results obtained by assuming an
infinite potential barrier ΦB between oxide and semiconductor. Squares: results
obtained by approximating the oxide by using the semiconductor effective mass but
with the correct electron affinity for the oxide. Triangles: results obtained including
the effective mass of the oxide. Results obtained for a flat potential, with Tox=2nm.
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Silicon [111]

So far we have considered two cases (silicon with [100] transport direction and
InAs with the fundamental Γ valley) where the continuity conditions do not involve
kx. We here consider the case of Silicon with [111] transport direction and wave-
function penetration into the SiO2 oxide. The continuity conditions between the
semiconductor and the oxide for the solution of the Schrödinger equation are given
in Eq.4.9 and, it follows that, given the tensor of the effective masses in DCS for the
three ellipsoidal ∆−valleys reported in Fig.A.4, kx enters the continuity conditions
through the coefficients A(θ), B(θ) and C(θ) in Eq.4.9. The lowest eigenvalue for
the three ellipsoid as a function of kx is shown in Fig.4.19 and, as expected, it is
threefold degenerate for kx = 0. Due to the crystal orientation specified in Fig.4.19,
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Figure 4.19: Parabolic eigenvalues versus kx for the three ∆ valleys with transport
direction x=[111]; the quantization plane coordinates are y=[1̄10] and z=[1̄1̄2] where
the miller indexes are given in CCS. d=5 nm and the oxide is SiO2 with Tox= 2 nm.

only ∆[100] and ∆[010] valleys depend on the kx vector. Moreover, subband minima
are weakly affected by the kx even at large kx values, hence we decided to neglect the
kx dependence on the boundary conditions using, for all simulations in this thesis,
Eq.4.10 instead of Eq.4.9. It must be noticed that Eq.4.10 is exact when the entries
wxy and wxz of the tensor of the inverse effective masses are zero (see Eq.A.11), that
is for isotropic valleys in the quantization plane or, for example, for silicon with [100]
transport direction.

To further investigate our choice to neglect the kx dependence for subband minima
due to the continuity conditions, we show the energy dispersion relation E(kx) for
two cases (with the energy referred to the valley energy minimum). In the fist the
total energy dispersion relation for a carrier inside a silicon ∆−valley with [111]
transport direction without non parabolic correction is written as:

E(kx) = εν,n(kx) +
h2k2

x

2mx
(4.96)

where the kx dependence of εν,n derives from the continuity conditions of Eq.4.9
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whereas, in the second, we neglect the dependence of the eigenvalues from kx using
the continuity conditions of Eq.4.10:

E(kx) = εν,n +
h2k2

x

2mx
(4.97)

According to Eq.B.33 and to the coefficient of the tensor of the inverse mass in DCS
of Fig.A.4, mx equals to 0.4320 m0 for all the ∆−valleys. Fig.4.20 shows that the
deviation between results obtained by using Eq.4.96 and Eq.4.97 is almost negligible,
hence confirming our defendable choice to use a simplified version of Eq.4.9 for the
continuity conditions given by Eq.4.10. Therefore, in the presence of wave-function
penetration into the oxide, even in the general case, kx does not enter the continuity
equation, hence, eigenvalues and ξn(r, θ) (see Eq.4.1) do not depend on kx leading
more manageable equations for scattering rates.
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Figure 4.20: Energy dispersion relation for silicon with [111] transport direction, for
the ∆[100] valley and for the lowest three eigenvalues. Transport direction x is [111],
and the quantization plane coordinates are y=[1̄10] and z=[1̄1̄2]. d=5 nm and the
oxide is SiO2 with Tox= 2 nm. Results obtained using Eq.4.96 (squares) and Eq.4.97
(circles).

Fig.4.21 shows the first nine eigenvalues obtained for silicon with [111] transport
direction and, as expected, are three-fold dengerate

4.4.3 Simulation results: nonparabolicity correction

Simulation results in this section are obtained for the system Si-SiO2 and InAs-
HfO2 by using the continuity conditions in Eq.4.10. Fig.4.22 shows that the impact
of nonparabolicity corrections is stronger for InAs and it is due to a combination of
lower effective mass with respect to silicon and a larger non parabolic coefficient α
as shown in Tab.2.1.
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Figure 4.21: Eigenvalues for the three ∆ valleys with transport direction x=[111],
y=[1̄10] and z=[1̄1̄2] where the miller indexes are given in CCS. d=5nm and the
oxide is SiO2 with Tox= 2 nm. Results obtained by using continuity conditions of
Eq.4.10.
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(a) Silicon−SiO2 with 100 transport direction. ΦB is 3.15
eV and the oxide mass is mSi02=0.5 m0.
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(b) InAs-Hf02 with only Γ valleys. ΦB is 2.4eV and the oxide
mass is mHf02=0.11 m0 [106]

Figure 4.22: Parabolic (circles) and nonparabolic (squares) eigenvalues obtained with
Eq.C.38 for different nanowire diameters for silicon and InAs. Bulk semiconductor
parameters are given in Tab.2.1. Results obtained for a flat potential, with Tox=2nm.
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4.5. Self consistent Schrödinger - Poisson equation in a circular
domain

4.5 Self consistent Schrödinger - Poisson equation in a
circular domain

The electrostatic behavior of the device in Fig.4.3 is simulated solving the
Schrödinger equation Eq.4.1 self-consistently with the Poisson equation in the circular
slice obtained by writing the laplacian of Poisson equation in polar coordinates as in
Eq.4.3 obtaining:

ε

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
φ(r, θ) = −ρ(r, θ)

= e(−n(r, θ) + p(r, θ) +ND(r) +NA(r)) (4.98)

where φ(r, θ) is the potential, ρ(r, θ) is the charge density, n is the electron density,
p is the hole density (that in this thesis is neglected since the aim is to investigate
the properties of nMOS devices that are fully depleted), ND is the density of donor
dopants and NA the density of acceptor dopants. For the boundary conditions of
the Poisson equation, we impose Dirichlet boundary conditions at the boundaries of
the nanowire, and, at the discontinuity between oxide and semiconductor, we simply
use Gauss law.

The coupled solution of the Schrödinger and Poisson equation requires an iterative
loop. At the iteration k, we solve the Schrödinger equation in a circular slice using
Eq.4.1 for the potential φ(k) (at the first iteration we use a first guess for the potential),
then, with the obtained wave-functions and eigenvalues we calculate the charge by
using Eq.C.42 that includes nonparabolicity corrections. Now, in order to obtain
an efficient convergence of the Schrödinger-Poisson loop, instead of using the linear
formulation of the Poisson equation given in Eq.4.98, we employed a non-linear
formulation of the Poisson equation [107], where we assume that the electron charge
n for a given point in the (r, θ) space, exponentially depends on the potential:

n(φ) = n exp
e(φ−φ(k))

kBT (4.99)

where φ(k) is the potential used as an input for the Schrödinger equation, that is the
potential produced by the Poisson solver at the previous iteration. With the new
potential φ(k+1) obtained by solving Eq.4.98 by substituting the electron charge n
with Eq.4.99, we solve the Schrödinger equation till convergence is reached.

Fig.4.23 shows the electron density per unit volume at the equilibrium in a circular
section of a silicon nanowire with a diameter d of 10 nm and 5 nm, [100] transport
direction and with wave-function penetration into a 2 nm thick SiO2 obtained with
a self-consistent Schrödinger-Poisson solution in a circular slice. It can be seen that
the electron density is appreciably anisotropic for large VGS biases and d = 10 nm
(Fig.4.23c), because the squared magnitude of the wave-function associated with the
lowest eigenvalues with transport mass mx=0.19 m0 and anisotropic quantization
masses featuring my=0.92 m0 and mz=0.19m0 (or my=0.19 m0 and mz=0.92 m0) is
strongly anisotropic.
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(a) d=10 nm, Tox=2 nm,
VGS=0.5 V. Ninv = 6.028
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(b) d=10 nm, Tox=2 nm,
VGS=1.0 V. Ninv = 0.417×107

cm−1.
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(c) d=10 nm, Tox=2 nm,
VGS=1.5 V. Ninv = 1.843×107

cm−1.
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(d) d=5 nm, Tox=1 nm,
VGS=0.5 V. Ninv = 0.290
cm−1.
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(e) d=5 nm, Tox=1 nm,
VGS=1.0 V. Ninv = 0.220×107

cm−1.
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(f) d=5 nm, Tox=1 nm,
VGS=1.5 V. Ninv = 1.429×107

cm−1.

Figure 4.23: Volumetric charge density in units of [cm−3] for Silicon−SiO2 with
[100] transport direction for different VGS and nanowire diameters d and with the
same gate oxide capacitance Cox = 2πεox/ln[(rNW + Tox)/rNW ]. ΦB is 3.15 eV and
the oxide mass is mSi02=0.5 m0.
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4.6. Scattering Mechanisms

4.6 Scattering Mechanisms

In this section we give the explicit equations for the matrix elements for acoustic
and optical phonon scattering and Coulomb scattering whereas the derivation of the
matrix element for surface roughness has been already discussed in Sec.3.6. Then,
scattering rates are calculated by means of Eq.5.24.

4.6.1 Matrix element for acoustic and optical phonon scattering

By embracing the elastic and isotropic approximation, the squared matrix element
for the intra-valley acoustic phonon is given by [107]:

∣∣Mn,n′
∣∣2 =

D2
ac kBT

ρLNW v2
sound

Fn,n′ (4.100)

where Dac is an effective deformation potential for acoustic phonons, ρ is the density
of the semiconductor material, vsound is the longitudinal sound velocity in the
semiconductor material and Fn,n′ is a form factor defined as:

Fn,n′ =

+π∫
−π

dθ

∞∫
0

dr r |ξn(r, θ)|2 |ξn′(r, θ)|2 (4.101)

where ξn(r, θ) is the solution of the eigenvalue problem of Eq.4.1.
For intra-valley optical phonon scattering, the squared matrix element for the

transition from state kx to k′x is given by [107]:

∣∣Mn,n′(kx, k
′
x)
∣∣2 =

D2
op ~Fn,n′

2ρLNWωph

(
Nop(~ωph)
Nop(~ωph+1)

)
(4.102)

where Dop is the optical phonon deformation potential, ωph is the phonon angular
frequency and Nop(~ωph) is the phonon number given by the Bose-Einstein statistics:

Nop(~ωph) =
1

e
~ωph
KBT − 1

. (4.103)

The upper and lower choices in Eq.4.102 correspond to absorption and emission
phonon processes, respectively. Optical phonon scattering can also assist transitions
between subbands belonging to different valleys (inter-valley scattering) where the
allowed final valleys depend on the selection rules which are thoroughly discussed
in [107]. In this case, the squared matrix element can be demonstrated to be the
same as in Eq.4.102 [107], but in the scattering rate calculations it must be properly
accounted for the multiplicity of the final valleys for a given phonon type that can
couple electrons belonging to different valleys [107]. The values for the Dac and Dop

for silicon have been taken from [107].
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4. Nanowire MOSFETs

4.6.2 Coulomb scattering

In this section we discuss calculations for the Coulomb scattering matrix element,
and as a first step we derive the expression for the potential in a cylindric nanowire
produced by a point charge.

Perturbation potential produced by a point charge

In many papers the perturbation potential Φp produced by a point charge has been
calculated assuming an homogeneous dielectric constant for oxide and semiconductor
(εox = εsct). For a nanowire with few nanometer radius, however, image charge effects
produced by difference in εox and εsct can be important. Hence, in the following we
will assume different dielectric constants for oxide and semiconductor.

Let us write the Poisson’s equation for the potential G(R,R0) produced by a
point charge located in R0:

∇2G(R,R0) = γδ(R−R0) (4.104)

where:

γ =


εsct
εox

r0 ≥ rNW

1 r0 ≤ rNW
The G(R,R0) denotes the adimensional Green’s function of the point charge and
the electric potential produced by a charge distribution ρ(R0) is then given by:

Φp(R) = e

∫
R0

G(R,R0)
ρ(R0)

εsct
dR0. (4.105)

It should be noted that in Eq.4.105 the dielectric constant at the denominator εsct is
independent of R0 because of the definition of γ in Eq.4.105. We can rewrite the
equation for the Green’s function in cylindrical coordinates (R = (r, θ, x)) obtaining:

∇2G(R,R0) = ∇2G( r,θ,x
r0,θ0,x0

)

=
1

r
δ(r − r0)δ(θ − θ0)δ(x− x0) (4.106)

where the Laplacian of the Green’s function is given by:[
1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂2

∂θ2
+

∂2

∂x2

]
G( r,θ,x

r0,θ0,x0
). (4.107)

We now recall that, in the modeling of the nanowire we have assumed that all the quan-
tities are periodic along the transport direction x in the interval [−LNW /2, LNW /2]
(as explained in Appendix D and B), hence x, x0 ∈ [−LNW /2, LNW /2]. Moreover, θ
in Eq.4.106 is an angle, so that we have periodicity also with respect to θ and, in
particular, θ, θ0 can be taken as belonging to the [−π, π] interval.
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4.6. Scattering Mechanisms

Hence, in Eq.4.106 it is implicitly assumed that the Dirac functions δ(θ− θ0) and
δ(x− x0) are periodic. We can thus exploit the Fourier series and write that:

δ(θ − θ0) =
∑
l

cle
il(θ−θ0) (4.108)

where l = 0,±1,±2, . . . and:

cl =
1

2π

+π∫
−π

δ(θ − θ0)e−il(θ−θ0)dθ =
1

2π
. (4.109)

We thus obtain:

δ(θ − θ0) =
1

2π

∑
l

eil(θ−θ0) (4.110)

Similar considerations apply to δ(x− x0) in Eq.4.106. In fact:

δ(x− x0) =
∑
q

cqe
iq(x−x0) (4.111)

where q = n2π/LNW with n = 0,±1,±2, . . . and:

cq =
1

LNW

+LNW /2∫
−LNW /2

δ(x− x0)e−iq(x−x0)dx =
1

LNW
(4.112)

which lead to:

δ(x− x0) =
1

LNW

∑
q

eil(x−x0) (4.113)

By assuming that G(R,R0) is periodic over θ = [−π,+π] and along the transport
direction over x = [−LNW /2,+LNW /2], we can make the ansatz :

G( r,θ,x
r0,θ0,x0

) =
1

2π LNW

∑
l,q

Glq(r, r0) eil(θ−θ0)eiq(x−x0). (4.114)

where Glq(r, r0) is the reduced Green’s function. By inserting Eq.4.114 into Eq.4.106
we obtain the equation for the reduced Green’s function:(

∂2

∂r2
+

1

r

∂

∂r
− q2 − l2

r2

)
Glq(r, r0) =

γ

r
δ(r − r0) (4.115)

Before solving Eq.4.115 it is necessary to impose boundary and continuity conditions:

Glq(rNW + tox, r0) = 0 metallic gate is assumed

εsct
∂Glq(r

−
NW , r0)

∂r
= εox

∂Glq(r
+
NW , r0)

∂r
continuity of the displacement vector

r+
0∫

r−0

∂Glq(r, r0)

∂r
dr =

γ

r0
Gauss law

.

(4.116)
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4. Nanowire MOSFETs

Analytical expression for the reduced Green’s function Glq(r, r0) can be worked out
as [67] leading to:

r0 < rNW

Glq(r, r0) =


a1Il(qr) 0 < r < r0

b1Il(qr) + c1Kl(qr) r0 < r < rsct

d1Il(qr) + f1Kl(qr) rsct < r < rsct + tox

r0 > rNW

Glq(r, r0) =


a2Il(qr) 0 < r < rsct

b2Il(qr) + c2Kl(qr) rsct < r < r0

d2Il(qr) + f2Kl(qr) r0 < r < rsct + tox

(4.117)

where Il and Kl are the modified Bessel functions of the first and second kind,
respectively, and coefficients a,b,c,d,f1,2 can be found in [67].

Fig.4.24 shows some examples of reduced Green’s functions. Moreover, as can
be seen also from Fig.4.24, Glq is symmetric (i.e. Glq(r, r0)=Glq(r, r0)) and this is
expected because δ(r − r0) = δ(r0 − r). The potential produced by the point charge
Φp(

r,θ,x
r0,θ0,x0

) is real-valued because (Gl,q)
† = (G−l,q) and (Gl,q)

† = (Gl,−q). Finally,
the electrostatic potential in (r, θ, x) produced by a point charge in (r0, θ0, x0) is
given by:

Φp(
r,θ,x

r0,θ0,x0
) =

e

2π LNW εsct

∑
lq

Glq(r, r0)eil(θ−θ0)eiq(x−x0) (4.118)
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Figure 4.24: Reduced Green’s function obtained obtained for the Si-SiO2 system
with rNW = 3nm, tox = 3nm.
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4.6.3 Matrix Element for Coulomb Scattering

The unscreened matrix element for Coulomb scattering is given by:

Mn,n′(R0, qx) =

∫
Ψn,kx(R)Φscatt(R,R0)Ψ†n′,k′x

(R) dR (4.119)

where qx = (k′x − kx) and where we drop the valley notation since Coulomb scattering
is an intra-valley process. Ψn,kx(R) = Ψn,kx(r, θ, x) and is given by:

Ψn,kx(r, θ, x) =
ei kxx√
LNW

ξn(r, θ). (4.120)

Φscatt(R,R0) is the potential produced by a point charge defined in Eq.4.118.

By substituting the scattering potential of Eq.4.118 into the unscreened matrix
element of Eq.4.119 we obtain:

Mn,n′(
qx

r0,θ0,x0
) =

e2

2π L2
NW εsct

+π∫
−π

dθ

∞∫
0

r dr

+LNW /2∫
−LNW /2

dx ξ†n′(r, θ)ξn(r, θ)ei(k
′
x−kx)x×

×
∑
lc,qc

Glcqc(r, r0)eilc(θ−θ0)eiqc(x−x0). (4.121)

If we write ξn(r, θ) as in Eq.3.68 and notice that, according to Appendix E:

1

LNW

+LNW /2∫
−LNW /2

ei(kx−k
′
x+qc)x dx = δqc,qx (4.122)

1

2π

+π∫
−π

ei(l−l
′+lc)θ dθ = δl−l′,lc (4.123)

where δ• denotes the Kronecker symbol, the unscreened matrix element of Eq.4.121
reads:

Mn,n′(
qx

r0,θ0,x0
) =

e−iqxx0

2π LNW

e2

εsct

∑
l,l′

e−i(l−l
′)θ0

∞∫
0

r drρnl(r)ρ
†
n′l′(r)Gl−l′,qx(r, r0).

(4.124)

To simplify the notation we introduce the symbol:

M0
n,n′(

qx
r0,θ0) =

e2

εsct

∑
l,l′

e−i(l−l
′)θ0

∞∫
0

r drρnl(r)ρ
†
n′l′(r)Gl−l′,qx(r, r0) (4.125)
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4.6. Scattering Mechanisms

The unscreened matrix element of Eq.4.124 considers only one point charge
located in (r0, θ0, x0), hence the total unscreened matrix element must be calculated
summing over all (r0, θ0, x0) points:

Mn,n′(qx) =
∑

r0,θ0,x0

e−iqxx0

2π LNW
M0

n,n′(
qx
r0,θ0). (4.126)

The squared unscreened matrix element can be expressed as:∣∣Mn,n′(qx)
∣∣2 =

1

(2π LNW )2

∑
r0,θ0,x0

∑
r′0,θ
′
0,x
′
0

e−iqx(x0−x′0)M0
n,n′(

qx
r0,θ0)

(
M0

n,n′(
qx
r′0,θ
′
0
)
)†

(4.127)
By neglecting the terms due to Coulomb centers in different locations, consistently
with a sort of random phase approximation [107], we finally write, the total squared
unscreened matrix element as:∣∣Mn,n′(qx)

∣∣2 =
1

(2π LNW )2

∑
r0,θ0

∣∣M0
n,n′(

qx
r0,θ0)

∣∣2 . (4.128)

Moving from the summation over (r0, θ0) to the corresponding integrals and intro-
ducing the symbols NII to denote a volumetric charge (e.g. due to doping impurities)
and Nit to denote a sheet charge (e.g. due to interface states) we write the total
unscreened matrix element due to Coulomb centers as:

∣∣Munsc
n,n′ (qx)

∣∣2 =
1

2π LNW


∞∫

0

dr0

π∫
−π

dθ0

2π
r0NII(r0, θ0)

∣∣M0
n,n′(

qx
r0,θ0)

∣∣2 +

+

π∫
−π

dθ0

2π
rNWNit(θ0)

∣∣M0
n,n′(

qx
rNW ,θ0)

∣∣2 (4.129)

131



4. Nanowire MOSFETs

4.7 Screening

Before starting with the mathematical treatment of the screening, we describe
the conceptual steps that will be pursued. The unscreened matrix element Muns(qx)
(e.g. due to SR, Coulomb, alloy scattering) leads to an induced charge density
ρind (calculated by using perturbation theory within the so called random-phase
approximation (RPA)). ρind produces in turn a matrix element Mind(qx), via an
induced scattering potential Vρ, that adds to the unscreened matrix element. The
aim is to obtain a system of linear equations linking the screened to the unscreened
matrix elements via a matrix/tensor called dielectric function.

According to [107], the induced charge density produced by the matrix element
Muns

n,n′(qx) where the valley index has been dropped and n, n′ denote the transition
between subband n and n′, is given by:

ρind(r, θ, x) = e
∑
n,n′

ξ†n(r, θ)ξn′(r, θ)Πn,n′(qx)Muns
n,n′(qx) eiqxx + (c.c.) (4.130)

and Πn,n′(qx) is the so called polarization factor defined as:

Πn,n′(qx) =
1

LNW

∑
kx

fn′(kx + qx)− fn(kx)

ET,n′(kx + qx)− ET,n(kx)
(4.131)

where fn is the occupation function of subband n and ET,n(kx) is the total energy
given the value kx for the subband n. By following the procedure as in [107], but
using the expressions for the point charge for a circular nanowire reported in Eq.4.118,
we give the expression for the potential induced by the point charge:

Vρ,qx(r, θ) = e
∑
n,n′

Πn,n′(qx)Muns
n,n′(qx)

π∫
−π

dθ0

∞∫
0

r0 dr0ξ
†
n′(r

′
0, θ
′
0)ξn(r,θ)Φp,qx( r,θ

r0,θ0
). (4.132)

After some calculations, the induced matrix element is thus written according to
[107]:

Mind
w,m,m′(qx) =

e2

εsct

∑
ν,n,n′

Πν,n,n′(qx)F ν,n,n
′

w,m,m′(qx)Muns
ν,n,n′(qx) (4.133)

where w and ν are valley indexes and where we have introduced the form factor

F ν,n,n
′

w,m,m′ defined as:

F ν,n,n
′

w,m,m′(qx) =

+π∫
−π

dθ

+∞∫
0

r dr ξ†w,m′(r, θ)ξw,m(r, θ)×

×
+π∫
−π

dθ0

+∞∫
0

r0 dr0 ξ
†
ν,n′(r0, θ0)ξν,n(r0, θ0)ΦpN,qx( r,θ

r0,θ0
) (4.134)
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4.7. Screening

and where ΦpN,qx( r,θ
r0,θ0

) is the normalized, adimensional potential given by:

ΦpN,qx( r,θ
r0,θ0

) =
∑
lc

Glc,q(r, r0)
eilc(θ−θ0)

2π
(4.135)

where the expression for the reduced Green’s function Glc,q(r, r0) is given in Eq.4.117.
Eq.4.133 shows that the induced matrix element is given by a linear combination
of unscreened matrix elements. As mentioned at the beginning of this section, the
induced potential Vρ induces the matrix elementMind(qx) which in turn changes the
scattering potential and thus the matrix element. In order to account for this effect
self-consistently, we need to calculate the Mind(qx) produced by the overall screened
perturbation potential. This can be accomplished by using Eq.4.133 where in the
r.h.s. Muns(qx) is substituted by Mscr(qx). Since our aim is to link the screened to
the unscreened matrix element, we can eliminate in the l.h.s. Mind(qx) by recalling
that, by definition:

Mind(qx) =Mscr(qx)−Muns(qx). (4.136)

By inserting Eq.4.136 in Eq.4.133 with the prescription thatMuns(qx) is substituted
by Mscr(qx), we obtain the linear system linking the unscreend to the screened
matrix elements:

M scr
w,m,m′(qx)−Muns

w,m,m′(qx) =
e2

εsct

∑
ν,n,n′

Πν,n,n′(qx)F ν,n,n
′

w,m,m′(qx)M scr
ν,n,n′(qx). (4.137)

Finally, Eq.4.137 can be cast in a more compact form and reads:

Muns
w,m,m′(qx) =

∑
ν,n,n′

εν,n,n
′

w,m,m′(qx)M scr
ν,n,n′(qx) (4.138)

where the dielectric matrix is defined as:

εν,n,n
′

w,m,m′(qx) = δw,νδn,mδn′,m′ −
e2

εsct
Πν,n,n′(qx)F ν,n,n

′

w,m,m′(qx). (4.139)

Eq.4.138 can be solved numerically to calculate the screened matrix element starting
from the unscreened ones. It is worth recalling that a given screened matrix element
for the transition between subband n and n′ belonging to the valley ν is linked with
the unscreened matrix elements of all other scattering via the dielectric function
defined in Eq.4.139.

4.7.1 Form factor calculation

In the form factor given by Eq.4.134, we can substitute the expression for the
ξn(r, θ) obtained for the case of anisotropic quantization masses and given by Eq.3.68
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and thus obtain:

F ν,n,n
′

w,m,m′(qx) =
1

2π

∑
g,g′,lc

+π∫
−π

ei(g−g
′+lc)θ

2π
dθ

∫ ∞
0

r dr ρw,m,g(r)ρ
†
w,m′,g′(r)×

×

∑
l,l′

+π∫
−π

ei(−l+l
′−lc)θ0

2π
dθ0

∫ ∞
0

r0 dr0 ρν,n,l(r0)ρ†ν,n′,l′(r0)Glc,qx(r, r0)


(4.140)

where g and g′ are the expansion modes of the eigenvalues m and m′, respectively
(the same holds for l and l′ that are the expansion modes of the eigenvalues n and
n′, respectively). By noting that (see Appendix E for more details):

+π∫
−π

ei(g−g
′+lc)θ

2π
dθ = δg−g′,lc (4.141)

+π∫
−π

ei(−l+l
′−lc)θ0

2π
dθ0 = δl−l′,lc (4.142)

Eq.4.140 can be written in a more compact form as:

F ν,n,n
′

w,m,m′(qx) =
1

2π

∑
g,g′

∫ ∞
0

r dr ρw,m,g(r)ρ
†
w,m′,g′(r)×

×

∑
l,l′

δl′−l,g′−g

∫ ∞
0

r0 dr0 ρν,n,l(r0)ρ†ν,n′,l′(r0)Gl′−l,qx(r, r0)

 (4.143)

4.7.2 Polarization factor calculation

In general terms, calculation of the polarization factor given by Eq.4.131, requires
the knowledge of the occupation function in the different subbands. At the equilibrium
(i.e. VDS=0), the occupation function fn(kx) reduces to the Fermi Dirac occupation
function f0(kx) given by Eq.C.22. In the non-equilibrium condition, we followed the
approach most often employed in the literature to calculate the polarization factor
by using the equilibrium Fermi Dirac function f0(ET,n(kx)) with a local quasi-Fermi
level EF . The local quasi-Fermi level for a given section s is calculated as the Fermi
level energy EF , that would give the charge at section s according to the band
structure and the density of states at section s if the system were in equilibrium.
The quasi-Fermi level can be obtained by using the expression for the charge given
by Eq.C.42 as an equation to be solved for EF .

To calculate numerically the polarization factor it is convenient to convert the
summation over kx into an integral using the prescriptions in Appendix D. Hence
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Eq.4.131 becomes:

Πν,n,n′(qx) =
µν
π

+∞∫
−∞

f0(ET,ν,n′(kx + qx))− f0(ET,ν,n(kx))

ET,ν,n′(kx + qx)− ET,ν,n(kx)
dkx (4.144)

where µν is the valley multiplicity factor and we have set nsp = 2 in Eq.D.8.

Analytical expression for the polarization factor at T=0 K: guidelines for
numerical calculations

It may be instructive to analyze an analytical expression for the polarization
factor of Eq.4.144 for a 1D electron gas. We thus assume a parabolic energy
dispersion relation E(kx), zero temperature T=0K (i.e. the Fermi function is a
unit step between [−kx,F , kx,F ] (where kx,F is the Fermi kx vector) and we consider
intrasubband polarization n = n′.

After some mathematical manipulations Eq.4.144 can be rewritten as:

Πν,n,n(qx) = −2µνmν,x

πqx~2
ln

∣∣∣∣1 + 2kx,F /qx
1− 2kx,F /qx

∣∣∣∣ . (4.145)

By looking at Eq.4.145, we noticed that it is an even function with respect to qx
and, moreover, that Πν,n,n(qx) has a singularity in |qx| = 2kx,F . In addition, for very
small qx values Πν,n,n(0) tends to −2µνmν,x/(~2πkx,F ) and finally, for very large
|qx| values Πν,n,n(±∞) has a dependence of the type 1/qx. Fig.4.25 shows the good
matching between analytic and numeric calculations at 0◦K obtained setting kF to
0.826 nm−1. Instead, Fig.4.26 shows three polarization factors calculated for an InAs
NW at 300◦K. It can be seen that as expected, the singularity is smeared out at a
finite temperature, but a peaked maximum can be observed even at qx ≈ 2kF .
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Figure 4.25: Polarization factor calculation using the analytical equation
(Eq.4.145)(solid-line) and solving numerically Eq.4.145 (circles) at 0◦K.

135



4. Nanowire MOSFETs

0 1 2 3 4 5 6

q
x
 [nm

-1
]

0.00

0.50

1.00

1.50

2.00

2.50

3.00

- 
Π

(q
x
) 

[e
V

-1
 n

m
-1

] - Π
1,1

- Π
1,0

- Π
0,0

Figure 4.26: Polarization factors calculated for InAs and for different subband
transitions at 300◦K. NWdiameter is 5 nm.
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4.7.3 Application of screening to CS matrix element

The unscreened matrix element for the scattering potential produced by a point
charge located at (r0, θ0, x0) is given by Eq.4.125. For any qx value the corresponding
screened matrix element is obtained as following:

e−i qx x0

2π LNW
M0

w,m,m′(
qx
r0,θ0) =

∑
ν,n,n′

εν,n,n
′

w,m,m′(qx)Mscr
ν,n,n′(

qx
r0,θ0,x0

) (4.146)

where εν,n,n
′

w,m,m′(qx) is the dielectric function given by Eq.4.139. Since qx is a constant
parameter that couples the matrix elements corresponding to a given qx and a given
position (r0, θ0, x0) of the point charge, the screened matrix element for any qx value
can be expressed as:

Mscr
ν,n,n′(

qx
r0,θ0,x0

) =
e−i qx x0

2π LNW
M0,scr

ν,n,n′(
qx
r0,θ0) (4.147)

where M0,scr
ν,n,n′(

qx
r0,θ0) can be obtained by solving the linear problem:

M0
w,m,m′(

qx
r0,θ0) =

∑
ν,n,n′

εν,n,n
′

w,m,m′(qx)M0,scr
ν,n,n′(

qx
r0,θ0). (4.148)

Finally, the squared matrix element is obtained by replacing the unscreened matrix
elements M0

w,m,m′(
qx
r0,θ0) in Eq.4.129 with the screened matrix element in Eq.4.148

obtaining:

∣∣Munsc
w,m,m′(qx)

∣∣2 =
1

2π LNW


∞∫

0

dr0

π∫
−π

dθ0

2π
r0NII(r0, θ0)

∣∣∣M0,scr
w,m,m′(

qx
r0,θ0)

∣∣∣2 +

+

π∫
−π

dθ0

2π
rNWNit(θ0)

∣∣∣M0,scr
w,m,m′(

qx
rNW ,θ0)

∣∣∣2
 (4.149)

Fig.4.27 shows the effect of screening for intrasubband transitions in silicon with
[100] transport direction for the lowest subbands of the corresponding valleys. As
expected, screening is more effective for the intrasubband transition for the valleys
with anisotropic quantization masses (circles) since the lowest subband for these
valleys is the most populated by electrons and the polarization factor that enters the
dielectric function in Eq.4.148 depends on the occupation function.
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Figure 4.27: Plot of the screened and unscreened matrix element for silicon with
[100] transport direction and for intrasubband transitions for the lowest eigenvalues
of each valley. Squares: matrix elements for the valleys with isotropic quantization
masses with the main ellipsoidal axes aligned with the transport direction (transport
mass equal to 0.92 m0). Circles matrix elements for the valleys with anisotropic
quantization masses with transport mass equal to 0.19 m0. Results obtained with a
density of interface states Nit = 5× 1011 cm−2 and for an inversion density of 3× 106
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4.7.4 Application of screening to SR matrix element

The screening for a linear formulation of the surface roughness scattering can
be included similarly to the case of Coulomb scattering and it has been discussed
in several previous contributions [107]. To this purpose we recall that, by definition

itself of the dielectric matrix εν,n,n
′

w,m,m′(qx), a linear relation exists between a screened
matrix elementMscr

ν,n,n′(qx) and the unscreened matrix element according to Eq.4.138.

If we denote by Lν,n,n
′

w,m,m′(qx) the inverse of the dielectric function ε(qx) defined in
Eq.4.139, then the screened matrix element can be written as a linear combination
of the unscreened matrix elements:

Mscr
ν,n,n′(qx) =

∑
w,m,m′

Lν,n,n
′

w,m,m′(qx)Muns
w,m,m′(qx). (4.150)

On the basis of Eq.4.150, the ensemble averaged screened matrix element is given by
definition as:〈∣∣Mscr

ν,n,n′(qx)
∣∣2〉 =

∑
w,m,m′

∣∣∣Lν,n,n′w,m,m′(qx)
∣∣∣2 〈∣∣Muns

w,m,m′(qx)
∣∣2〉+

+
∑

(w,m,m′) 6=(u,p,p′)

Lν,n,n
′

w,m,m′(qx)Lν,n,n
′

u,p,p′ (qx)†
〈
Muns

w,m,m′(qx)
(
Muns

u,p,p′(qx)
)†〉

(4.151)

where
〈
Muns

w,m,m′(qx)Muns
u,p,p′(qx)

〉
is the Fourier transform of the cross-correlation

function between the matrix elements Muns
w,m,m′(qx) and Muns

u,p,p′(qx).
Fig.4.28 shows the effect of the screening on the SR intrasubband matrix element

at large inversion density for silicon with [100] transport direction.
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Chapter 5

Simulator for cilindrical
nanowires based on a
deterministic solution of the
BTE

5.1 Introduction

T
he aim of this chapter is to describe a solver for cylindrical gate-all-around
nanowire transistors based on the deterministic solution of the Boltzmann

transport equation (BTE) and by including the main scattering mechanisms affecting
transport in the transistor.

5.2 BTE theory

The study of the transport in far-from-equilibrium conditions requires the knowl-
edge of the occupation function f(R,K, t) which describes the probability that an
electron finds at point R and K of the real- and phase-space respectively, at the time
t. The occupation function gives a full description of the carrier state and it is used to
extract macroscopic parameters such as carrier charge, velocity, current and mobility.
The occupation function depends on the real-space position R, phase-space position
K and on time t. However, in NWs transport occurs only along one dimension,
hence f(R,K, t) becomes a 3-dimensional function f(x, kx, t) (if we consider more
than one valley and one subband, the dimension of the problem increases from 3
to 5) and hereon all derivations will be performed under this hypothesis (i.e. of a
1D electron gas). In the BTE physical framework electrons are considered as point
charges located at the position (x, kx) in the phase space given by the centroid of
the wave-packet in real and wave-vector space. Moreover, position x and momentum
px = ~kx are assumed to be known at the same time t, thus violating the Heisenberg
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uncertainty principle, and, scattering is assumed to occur over an infinitesimal time
such to be considered instantaneous, so that the position in the real space is supposed
to be the same after the scattering event. It is also assumed that carriers move in
the real space according to their electron velocity and can change their momentum
due to an electric field. These variations along the real- and phase-space define
trajectories for carriers as depicted in Fig.5.1. If we suppose that carriers move along
a fixed trajectory, the number of carriers at a given time t0 in the neighborhood of A
located in the real- and phase-space (x0, kx,0), is equal to the number of carriers in
the neighborhood of B at the time t0 + dt and position (x0 + dx, kx,0 + dkx), and it
can be written that:

x0 x0+dx

kx,0

kx,0+dkx
dt

A

B

x

kx

t0

t0+dt

Figure 5.1: Ballistic carriers trajectories in the real- and phase-space.

f(x0, kx,0, t0) = f(x0 + dx, kx,0 + dkx, t0 + dt) −→ df(x, kx, t)

dt
= 0. (5.1)

In other words the occupation function f(x, kx, t) associated with carriers belonging
to a fixed trajectory does not change. By using the chain rule for the total derivative
over the time, Eq.5.1 can be rewritten as:

df(x(t), kx(t), t)

dt
=
∂f

∂t
+
∂f

∂x

dx

dt
+

∂f

∂kx

dkx
dt

. (5.2)

According to the semi-classical approach to describe the motion of carriers, the term
dx/dt is the group velocity vg,ν,n(kx) of a wave-packet (representing the carrier)
inside a crystal, where ν is the valley and n is the subband index of the carrier,
whereas the term dkx/dt is equal to the force Fν,n(x) = −eEF,ν,n(x) acting on a
particle subjected to an electric field EF,ν,n (we here neglect the contribution due to
magnetic fields). These two equations representing the motion of the wave-packet
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centroid in real and phase- space can be written in the general case as:

dx(t)

dt
= vg,ν,n(kx) =

1

~
∂ET,ν,n(x, kx)

∂kx
dkx(t)

dt
= Fν,n(x) = −1

~
∂ET,ν,n(x, kx)

∂x
(5.3)

where ET,ν,n(x, kx) is the total energy of a carrier with wave-vector kx and belonging
to subband n, and valley ν. By substituting Eq.5.3 into Eq.5.2, and dropping the
valley and subband indexes to simplify the notation, we obtain the BTE equation:

df(x, kx, t)

dt
=
∂f

∂t
+
∂f

∂x

(
1

~
∂ET (kx, x)

∂kx

)
+

∂f

∂kx

(
−1

~
∂ET (kx, x)

∂x

)
. (5.4)

Same result as in Eq.5.4 can be obtained by using another approach that exploits
the continuity condition for carriers inside a control region in the real- and phase-
space [1, 2]. So far scattering has not been mentioned in the derivation of Eq.5.4.
We now assume that scattering mechanisms are local and instantaneous processes
and change only the state of an electron in the kx−space. Every scattering into
kx increases the occupancy f(x, kx, t) and every scattering out of kx decreases the
occupancy, hence the net change of occupancy due to scattering is given by the
difference between the in- and out-scattering. For each state kx one can add the
contributions associated to all possible in-scattering events (from k′x states) and the
contributions associated to out-scattering events (to k′x states) as shown in Fig.5.2
and written in Eq.5.5.

x

kx

kx'

x

kx

S(kx',kx)f(r,kx,t) S(kx,kx')f(r,kx',t)

Figure 5.2: Sketch of scattering in the k-space.

∂f(x, kx, t)

∂t
=
∑
k′x

[
S(k′x, kx)f(x, k′x, t)− S(kx, k

′
x)f(x, kx, t)

]
(5.5)
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where the term S(k′x, kx)f(x, k′x, t) denotes the transition rate from states k′x to
state kx times the occupancy f(x, k′x, t) of the initial state k′x. According to Pauli’s
exclusion principle, only one electron can fill a state at a given time (regardless of
spin), hence an electron from state k′x can scatter into state kx only if the arrival
state is empty. In other words, to account for exclusion principle (or for degenerate
statistics) the transition rate for in-scattering is multiplied by the probability that
the arrival state f(x, kx, t) is empty, whereas the transition rate for out-scattering is
multiplied by the probability that the arrival state f(x, k′x, t) is empty. This results
in the Boltzmann transport equation:

∂f(x, kx, t)

∂t
= (1− f(x, kx, t))

∑
k′x

[
S(k′x, kx)f(x, k′x, t)

]
−

− f(x, kx, t)
∑
k′x

[(
1− f(x, k′x, t)

)
S(kx, k

′
x)
]

= Sin − Sout. (5.6)

The presence of the terms (1− f(x, kx, t)) and (1− f(x, k′x, t)) makes the BTE a
non-linear equation. Since kx is almost continuous the summations in Eq.5.6 can be
converted into integrals according to:∑

kx

=
nspLNW

2π

∫
kx

dkx (5.7)

where nsp is the spin degeneracy (see Appendix D for more details) and LNW a
normalization length. The normalization length cancels out when summing over the
final states as, for example, in Eq.5.6. Hence the scattering integral in Eq.5.6 can be
written as:

Sin − Sout = (1− f(x, kx, t))
LNW

2π

∫
k′x

[
S(k′x, kx)f(x, k′x, t)dk

′
x

]
−

− f(x, kx, t)
LNW

2π

∫
k′x

[(
1− f(x, k′x, t)

)
S(kx, k

′
x)dk′x

]
. (5.8)

Under the assumption that particles are conserved (generation/recombination mecha-
nisms are not taken into account) the total derivative over time in the left-hand side
of Eq.5.4 is equal to the scattering term of Eq.5.6. Hence, the final equation for the
BTE is consistent with the fact that electrons can scatter in from other trajectories
or out to other trajectories as shown in Fig.5.3 and reads:

∂fkx
∂t

+
∂fkx
∂x

(
1

~
dET (kx, x)

dkx

)
− ∂fkx
∂kx

(
1

~
dET (kx, x)

dx

)
= Sin − Sout. (5.9)

where fk′x = f(x, k′x, t).
Similarly, the BTE formulation for a 3D domain is given by:

∂fK
∂t

+
1

~
∇KET (K,R) · ∇RfK −

1

~
∇RET (K,R) · ∇KfK = Sin − Sout (5.10)
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x0 x0+dx

kx,0

kx,0+dkx

dt

In-scattering 

Out-scattering
A

B

x

kx

t0

t0+dt

Figure 5.3: Real- and phase-space with carriers trajectories and scattering.

or equivalently by:

∂fK
∂t

+ Vg(K) · ∇RfK − F(R) · ∇KfK = Sin − Sout. (5.11)

As can be seen, for a 3D or for a 2D gas the BTE equation is a very complicated
equation to solve numerically. The typical approach is either to employ Monte-Carlo
techniques [3–14] or to introduce simplifications for the scattering term based, for
example, on the so called momentum relaxation time approximation (MRT or RTA)
[15, 16].

5.3 BTE discretization for a 1D electron gas

For a 1D gas carriers are free to move only along one direction, that is both
real space and k− space are 1D. In this case the complexity of the BTE reduces
considerably with respect to the cases of 3D or 2D electron gas. Moreover, we assume
steady-state conditions, which means that the occupation function depends only on
kx and x coordinates, so that the BTE in Eq.5.9 for each subband reads:

vg,n(x, kx)
∂fn(x, kx)

∂x
− ∂fn(x, kx)

∂kx

(
1

~
∂ET,n
∂x

)
= Sin − Sout. (5.12)

where fn is the occupation function and it is function of (x, kx). ET,n is the total
electron energy for a given subband n (and valley, not reported explicitly in Eq.5.12)
and vg,n is the group velocity for a given electron located in the real- and phase-
space in (x, kx). To reduce the complexity of Eq.5.12 it is convenient to rewrite the
occupation function fn as a function of the position along transport direction x and
the total energy (instead of the wave-vector kx) [17].
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5.3.1 Reformulation of the BTE for 1D GAS

It can be easily noticed (see the example in Fig.5.4) that the relation between
kx and the total energy ET,n is not one-to-one (neither for a 1D gas nor for 2D or
3D gas), therefore the kx domain can be splitted into two parts such that ET,n(kx)
becomes an injective function of kx. This is obtained by dividing the kx values into
positive and negative values.

kx

ET,n(kx)

k-(ET,n) k+(ET,n)

εn

Figure 5.4: Dispersion relation for a 1D electron gas. εn corresponds to the lowest
total energy for subband n and equals to the n-th eigenvalue.

The space- and energy-dependent occupation function fn(x,ET,n) can thus be
written as:

fn(x,ET,n) =

{
f+
n (x,ET,n) = fn(x, kx), for kx > 0

f−n (x,ET,n) = fn(x, kx), for kx < 0

where n is the subband index (for simplicity the valley index has been dropped) and
ET,n = ET,n(x, kx) is the total energy. Let us focus on the f+

n (x,ET,n) occupation
function and calculate the total derivative over x:

df+
n (x,ET,n)

dx
=
∂fn(x, k+

x )

∂x
+
∂fn(x, k+

x )

∂k+
x

dk+
x

dx
(5.13)

where k+
x : kx > 0, and recalling that:

dET,n
dx

= 0 =
∂ET,n
∂x

+
∂ET,n

∂k+
x

dk+
x

dx
(5.14)

it follows that:

dk+
x

dx
= −

∂ET,n
∂x

(
∂ET,n

∂k+
x

)−1

= −
∂ET,n
∂x

1

~ v+
g,n(ET,n)

. (5.15)
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Eq.5.13 is written by using Eq.5.15 as:

df+
n (x,ET,n)

dx
=
∂fn(x, k+

x )

∂x
− ∂fn(x, k+

x )

∂k+
x

[
∂ET,n
∂x

1

~ v+
g,n(ET,n)

]
(5.16)

and by multiplying both sides of Eq.5.16 by the group velocity v+
g,n(kx) (it is the

positive carrier velocity, i.e. the one corresponding to k+
x values) we obtain exactly

the l.h.s. of the BTE equation for a 1D GAS:

v+
g,n(ET,n)

df+
n (x,ET,n)

dx
= vg,n(k+

x )
∂fn(x, k+

x )

∂x
− 1

~
dfn(x, k+

x )

dk+
x

∂ET,n
∂x

. (5.17)

So far no assumption about the expression for the total energy has been made. We
recall that the derivation that leads to Eq.5.17 is valid except when

∂ET,n
∂kx

6= 0, that is
when the total energy is larger than the subband energy εn (see Fig.5.4). By following
the same steps that lead to Eq.5.17 also for the occupation function corresponding
to negative kx values, the original BTE can be split in two equations:

BTE+ : v+
g,n

df+
n (x,ET,n)

dx
= Sin,+n − Sout,+n , for kx > 0

BTE− : v−g,n
df−n (x,ET,n)

dx
= Sin,−n − Sout,−n , for kx < 0. (5.18)

Before moving forward to the analysis of the scattering integral of the BTE, it is
useful to recall that, for a given x, the integral for positive kx values of a generic
g(kx) function, can be transformed into an energy integral for the function g+(ET,n)
(where the + apex denotes that the function g is evaluated for positive kx(ET,n)
values) as: ∫ +∞

0
g(kx)dkx =

∫ +∞

εn

g+(ET,n)
∂kx
∂ET,n

dET,n

=

∫ +∞

εn

g+(ET,n)

~ v+
g,n(ET,n)

dET,n (5.19)

the same can be done for the integrals over negative kx values:∫ 0

−∞
g(kx)dkx =

∫ εn

+∞

g−(ET,n)

~ v−g,n(ET,n)
dET,n

= −
∫ εn

+∞

g−(ET,n)

~ v+
g,n(ET,n)

dET,n

=

∫ +∞

εn

g−(ET,n)

~ v+
g,n(ET,n)

dET,n (5.20)

where εn is the eigenvalue for the n−th subband, v−g,n(ET,n) is the group velocity for
a given total energy ET,n for negative kx values, namely, it is always smaller than
zero and v+

g,n(ET,n) = −v−g,n(ET,n) .
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The right-hand side of Eq.5.18, represents the scattering integral for occupation
functions defined over a positive or negative kx domain. In order to be more explicit,
we consider the term Sin,+ in Eq.5.18 (same steps can be used for Sin/out,−/+). Sin,+

is the in-scattering integral for final states belonging to f+
n :

Sin,+ =
(
1− fn(k+

x )
) LNW

2π

∑
n′

∫
k′x

Sn′n(k′x, k
+
x )fn′(kx)dk′x

=
(
1− fn(k+

x )
) LNW

2π

∑
n′

[∫ 0

−∞
Sn′n(k′x, k

+
x )fn′(kx)dk′x +

∫ ∞
0

Sn′n(k′x, k
+
x )fn′(kx)dk′x

]
(5.21)

where Sn′n(k′x, kx) is the transition rate from the state k′x,n′ to kx,n (as mentioned
before, for simplicity of notation, the section index x and valley index ν have been
dropped). It can be noticed that even though the in-scattering integral of Eq.5.21
is written for the fn(k+

x ) occupation function (for states with positive kx), the
summations over the initial states k′x are performed for both positive and negative
k′x values. In this sense the right-hand side of the BTE (scattering integrals) couples
the fn(k+

x ) and fn(k−x ) occupation functions, or, by writing the occupation functions
as a function of the energy, couples the f+

n (ET,n) and f−n (ET,n) occupation functions.
By using Eqs.5.19,5.20 integrals over k′x are transformed into integrals over the total
energy ET,n′ , and the in- and out-scattering integrals for the fn(kx) occupation
function become:

Sin,+ =
(
1− f+

n (ET,n)
) LNW

2π

∑
n′

[∫ ∞
ε′n

Sn′n(k′x
−, k+

x )f−n′(ET,n′)

~ v+
g,n′(ET,n′)

dET,n′

+

∫ ∞
ε′n

Sn′n(k′x
+, k+

x )f+
n′(ET,n′)

~ v+
g,n′(ET,n′)

dET,n′

]
(5.22)

where k′x
+(−) = k′x

+(−)(ET,n′) is the positive (negative) kx vector of the electron
belonging to subband n′ before scattering to the state kx

+ = kx
+(ET,n), and

Sout,+ =
(
f+
n (ET,n)

) LNW
2π

∑
n′

[∫ ∞
ε′n

Snn′(k
+
x , k

′−
x )(1− f−n′(ET,n′))

~ v+
g,n′(ET,n′)

dET,n′

+

∫ ∞
ε′n

Snn′(k
+
x , k

′+
x )(1− f+

n′(ET,n′))

~ v+
g,n′(ET,n′)

dET,n′

]
(5.23)

where k′x
+(−) = k′x

+(−)(ET,n′) is the positive (negative) kx vector of the electron
belonging to subband n′ after scattering from the state kx

+ = kx
+(ET,n). Transition

rate Sn′n(k′x, kx) can be written by means of the Fermi-Golden’s Rule introducing
the matrix element Mn′n(kx, k

′
x) for the transition between the state k′n′ to kn:

Sn′n(k′x, kx) =
2π

~
∣∣Mn′n(k′x, kx)

∣∣2 δ (ET,n′(k′x)− ET,n(kx)± ~ωqx
)
. (5.24)
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where ~ωqx with qx = kx − k′x is a term indicating the energy exchanged with
the scattered electron and for acoustic phonons ~ωqx=0 whereas for optical phonons
~ωqx 6= 0, and, δ(•) is a Dirac delta. By substituting Eq.5.24 into Eq.5.22 for the
in-scattering collision integral for f+

n , we obtain:

Sin,+ =
(
1− f+

n (ET,n)
) LNW

2π

∑
n′

[
2π

~2v+
g,n′(ET,n′)

∣∣∣Mn′n(k′x
−
, k+
x )
∣∣∣2 f−n′(ET,n′)+

+
2π

~2v+
g,n′(ET,n′)

∣∣∣Mn′n(k′x
+
, k+
x )
∣∣∣2 f+

n′(ET,n′)

]
.

(5.25)

The Dirac function in Eq.5.24 reduces the integral in Eq.5.22 to an evaluation of the
occupation functions at discrete energy values ET,n′ = ET,n(k)± ~ωqx leading to a
considerable reduction of complexity of the BTE.

5.3.2 Evaluation of macroscopic quantities

The solution of the coupled BTE and Poisson’s equations with appropriate
boundary conditions provides a self-consistent occupation function fn(x, kx). Once
fn(x, kx) is known, all the internal quantities of interest in the device can be derived.

Inversion electron density

Given the coordinate system in Fig.B.2, the total inversion electron density is
calculated by definition as :

ninv(r, θ, x) =
1

LNW

∑
ν,n

µν |Φν,n(r, θ, x)|2
∑
kx

fν,n(x, kx) (5.26)

where µν is the valley multiplicity, Φν,n,x(r, θ) is the wave-function for a given valley
ν, subband n and position x along transport direction and it is the solution of the
Schrödinger equation in the circular slices of the NW. By splitting the calculation
for positive and negative kx values we write:

ninv(r, θ, x) =
1

LNW

∑
ν,n

µν |Φν,n,x(r, θ)|2
∑
kx<0

fν,n(x, kx) +
∑
kx>0

fν,n(x, kx)

 .

(5.27)
By exploiting Eq.5.7 to convert the summation over kx into an integral by setting
the spin coefficient nsp = 2 we obtain:

ninv(r, θ, x) =
1

π

∑
ν,n

µν |Φν,n,x(r, θ)|2
(∫ 0

−∞
fν,n(x, kx)dkx +

∫ +∞

0
fν,n(x, kx)dkx

)
.

(5.28)
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Integrals over kx are converted into total energy integrals by means of Eqs.5.20,5.19

ninv(r, θ, x) =
1

π

∑
ν,n

µν |Φν,n,x(r, θ)|2
(∫ +∞

εν,n

f−ν,n(x,ET,n)

~ v+
g,ν,n(x,ET,n)

dET,n+

+

∫ +∞

εν,n

f+
ν,n(x,ET,n)

~ v+
g,ν,n(x,ET,n)

dET,n

)
. (5.29)

Eq.5.29 is valid for both parabolic and non-parabolic total energy description since
non-parabolicity effects in Eq.5.29 enter in the group velocity terms only.

Hence, the charge per unit of length can be obtained by integrating Eq.5.29 over
r and θ leading to:

ninv(x) =
1

~π
∑
ν,n

µν

(∫ +∞

εν,n

f−ν,n(x,ET,n)

v+
g,ν,n(x,ET,n)

dET,n +

∫ +∞

εν,n

f+
ν,n(x,ET,n)

v+
g,ν,n(x,ET,n)

dET,n

)
.

(5.30)

Electron current

The calculation of electron current follows the same steps as in the calculation of
the inversion electron density. The starting point is to resort to the equation for the
current:

I(x) =
e

LNW

∑
ν,n

µν
∑
kx

vg,ν,n(x, kx)fν,n(x, kx). (5.31)

By converting the summation over kx into an integral (see Eq.5.7 setting the spin
coefficient nsp = 2) and then by splitting the kx domain into positive and negative

kx and moving from integrals over k
+/−
x to energy integrals we obtain:

I(x) =
e

~π
∑
ν,n

µν

(∫ +∞

εν,n

f+
ν,n(x,ET,n)dET,n −

∫ +∞

εν,n

f−ν,n(x,ET,n)dET,n

)
. (5.32)

Hence, current calculation reduces to an integral over the occupation functions and
it is valid for both parabolic and non-parabolic descriptions of the total energy
dispersion relation.

5.3.3 Domain discretization

As seen in Sec.5.2, the unknowns of the BTE are the occupation functions
fn(x,ET,n). In other words, the domain of the BTE for a 1D electron gas consists
of the space coordinate x that denotes the transport direction, the total energy
ET,n of electrons but also the valley ν, the subband n and the sign (±) of the
occupation function corresponding to positive of negative kx(ET,n) values. Before
solving numerically the BTE in Eq.5.18, a discretized domain must be defined.
Fig.5.5 shows a subband energy profile in the x−ET,n space with a uniform grid for
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5.3. BTE discretization

energy and x. The unknown occupation functions for a given subband correspond
to energies larger than the subband profile and are identified by the solid circles
in Fig.5.5. From the implementation point of view, a given unknown of the BTE
problem is identified as f ts,ν,n,j where these indexes denote the section s, the valley
ν, the subband n, the energy j, and the type t ∈ [+,−], which is the sign of the
associated kx vector. Hence the total number of unknowns is:

Nunk = 2 ·
∑
j

∑
ν

∑
n

nsec(j, ν, n) (5.33)

where nsec(j, ν, n) is the number of discretization points along x direction for a given
(j, ν, n) and the 2 derives from the fact that for a given set of indexes (s, ν, n, j) can
be defined two unknowns corresponding to positive or negative kx values.

ET,n

x
j=0

s=0

Figure 5.5: Subband profile with discretization of the real and energy space for
the solution of the BTE. Solid circles represent two generic discretized occupation
functions (for positive and negative kx values).

5.3.4 Discretization of the left hand side of the BTE

The left-hand side of the BTE reported in Eq.5.18 is discretized by means of
finite-difference method. Hence, the derivative term in the l.h.s. of the two BTEs
written at section s is given by:

df+

dx
|xs =

f+
s,n,j − f

+
s−1,n,j

xs − xs−1

df−

dx
|xs =

f−s+1,n,j − f
−
s,n,j

xs+1 − xs
. (5.34)
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where the valley index ν has been dropped, which leads to:

BTE+
s,n,j : v+

g,s,n,j

f+
s,n,j − f

+
s−1,n,j

∆x︸ ︷︷ ︸
l.h.s.s

=
(
Sin,+s,n,j − S

out,+
s,n,j

)
︸ ︷︷ ︸

r.h.s.s

BTE−s,n,j : v−g,s+1,n,j

f−s+1,n,j − f
−
s,n,j

∆x︸ ︷︷ ︸
l.h.s.s

=
(
Sin,−s+1,n,j − S

out,−
s+1,n,j

)
︸ ︷︷ ︸

r.h.s.s+1

(5.35)

We will see in Sec.5.3.7 that this discretization technique allows for the current to be
conserved in the different sections along transport directions.

The BTE can be equivalently written evaluating the scattering integrals at the
same section s as:

BTE+
s,n,j : v+

g,s,n,j

f+
s,n,j − f

+
s−1,n,j

∆x︸ ︷︷ ︸
l.h.s.s

=
(
Sin,+s,n,j − S

out,+
s,n,j

)
︸ ︷︷ ︸

r.h.s.s

BTE−s−1,n,j : v−g,s,n,j
f−s,n,j − f

−
s−1,n,j

∆x︸ ︷︷ ︸
l.h.s.s−1

=
(
Sin,−s,n,j − S

out,−
s,n,j

)
︸ ︷︷ ︸

r.h.ss

(5.36)

where in the term r.h.ss we have included all the occupation functions that are linked
by scattering mechanisms with f+

s,n,j for the BTE+ and f−s,n,j for the BTE−. We will
see that this numerical method to discretize the spatial derivatives of the BTE allows
to account for boundary conditions at the left side and right side of the domain
(source and drain contacts) in a very natural way.

5.3.5 Boundary Conditions

Source and drain regions are assumed to behave as perfect reservoirs of carriers
at thermal equilibrium, and the boundary conditions of the BTE are given by the
occupation function of electrons injected with positive group velocity (i.e. carriers
moving from source to drain) from the source contact, and by electrons injected
from the drain contact with negative group velocity. For such electrons the occupa-
tion function is simply determined by their total energy through the Fermi-Dirac
occupation function and the Fermi level at the contacts:

f0(ET,n) =
1

1 + exp(
ET,n−EF,source/drain

KBT
)
. (5.37)

If we set the Fermi energy at the source contact to 0 eV, the drain Fermi energy will
be given by −eVDS , thus occupation functions at source contact for carriers with k+

x
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(f+
n,source) and at drain contact for carriers with k−x (f−n,drain) are given by:

f0,source(ET,n) =
1

1 + exp(
ET,n
KBT

)

f0,drain(ET,n) =
1

1 + exp(
ET,n+eVDS

KBT
)

(5.38)

where KB is the Boltzmann constant and T the temperature.

ET,n

x

j

sNxs0

EF,Source

EF,Drain

Figure 5.6: Subband profile with discretization of the real and energy space for
the solution of the BTE. Solid circles represent two generic discretized occupation
functions (for k+

x and k−x ).

It must be noticed that there are no boundary conditions for f−n,source and f+
n,drain

because the corresponding source and drain regions must be long enough to let
f−n,source and f+

n,drain relax to their quasi-equilibrium regions via scattering inside the

source and drain extensions. According to the above considerations, the BTE+
s,n,j of

Eq.5.35 is written only for the section indexes s = 1, . . . , Nx whereas for the BTE−s,n,j
only for s = 0, . . . , Nx − 1. It follows that boundary conditions enter in the l.h.s. of
the BTE+

s,n,j for section s = 1 (see Fig.5.6) as reported in the explicit expression for

the BTE+
s,n,j taken from Eq.5.35:

v+
g,1,n,j

df+

dx
|x1 = v+

g,1,n,j

f+
1,n,j − f0,source(n, j)

∆x
(5.39)

and for section s = Nx − 1 for the BTE−s,n,j :

v−g,Nx,n,j
df−

dx
|xNx−1 = v−g,Nx,n,j

f0,drain(n, j)− f−Nx−1,n,j

∆x
(5.40)

5.3.6 Discretization of the right hand side of the BTE

As shown in Sec.5.3.1, scattering integrals can be written for a generic scattering
mechanism by evaluating the occupation functions at discrete energy values as
shown in Eq.5.25 for the in-scattering integral for a generic f+

n unknown of the
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BTE. Hence, we can define the in-scattering matrix Rin,iscatt,s for the iscatt−th
scattering mechanisms at section s as the matrix of dimensions [N s

unkxN
s
unk] where

N s
unk represents the number of unknowns for a given section s, that links the generic

unknown f ts,n,j with all others occupation functions f t
′
s,n′,j′ belonging to the same

section s because the scattering events are instantaneous in time, hence, leaving
unchanged the position x of the scattered electron. By means of this matrix, the
in-scattering integral for all the unknowns belonging to a given section s is given by:

Rin,     ,s    iscatt fs

element index
(n,j,t)

1-fs=Sin,     ,s    iscatt

(5.41)

where fs = f
t
s,n,j represents the vector of unknowns for a given section s. Hence the

in- and out- scattering integrals of Eqs.5.22 and 5.23, after replacing transition rates
with Eq.5.24 for a generic unknown identified by the set of indexes (n, j, t) and for a
given section s, can be written as:

Sin,iscatt,sn,j,t =
[
1− f ts,n,j

] (
Rin,iscatt,s
n,j,t · fs

)
Sout,iscatt,sn,j,t = f ts,n,j

(
Rin,iscatt,s
n,j,t ·

[
1− fs

])
. (5.42)

It is interesting to note that in the case of multiple scattering mechanisms the matrices
Rin/out,s that account for all the scattering mechanisms can be simply added:

Rin,s =
∑
iscatt

Rin,iscatt,s

Rout,s =
∑
iscatt

Rout,iscatt,s. (5.43)

Finally, the discretized BTE written by evaluating the r.h.s. for both BTE+ and
BTE− at the same section becomes:

v+
g,s,n,j

f+
s,n,j − f

+
s−1,n,j

∆x
=[

1− f+
s,n,j

] (
Rin,s
n,j,+ · fs

)
− f+

s,n,j

(
Rout,iscatt,s
n,j,+ ·

[
1− fs

])
, for s = 1, . . . , Nx

v−g,s,n,j
f−s,n,j − f

−
s−1,n,j

∆x
=[

1− f−s,n,j
] (

Rin,s
n,j,− · fs

)
− f−s,n,j

(
Rout,iscatt,s
n,j,− ·

[
1− fs

])
, for s = 1, . . . , Nx

(5.44)
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5.3.7 Current conservation

We now demonstrate that the BTE discretization method of Eq.5.35 used in this
work is such that the writing of the BTE− and BTE+ for all indexes n, j, t with the
r.h.s. evaluated in section s as reported in Eq.5.36 (or more explicitly in Eq.5.44)
leads to the current conservation between section s and section s− 1. Equivalently,
the current is conserved between section s− 1 and section s when are written the
BTE−s−1,n,j for section s− 1 and the BTE+

s,n,j for section s given in Eq.5.36 for all
indexes n, j.

Let us first suppose the case of elastic scattering where only acoustic phonons
are considered with only one subband. Under this condition each energy bin leads
to a separate BTE problem since there are no scattering mechanisms that connect
electrons belonging to different energy bins and for this reason in the following
calculations n and j indexes will be dropped. Moreover, in this case scattering can
only change the sign of the kx associated to the scattering electron (i.e. the final state
for the unknown identified by indexes (s, n, j, t) must be (s, n, j,−t)) as shown in
Fig.5.7. Under the hypothesis of single subband and elastic scattering, the scattering
rate S(k+

x , k
−
x ) equals to S(k−x , k

+
x ), being the transition rate according to the Fermi’s

Golden rule given by:

Snn(k−x , k
+
x ) =

2π

~
|M |2 δ(ET,n, ET,n)

=
2π

~

(
KBTD

2
acc

ρLNW v2
sound

Fn,n

)
δ(ET,n, ET,n) (5.45)

ET,n

Sout,s
s,n,j,+

Sin,s
s,n,j,+

j

n

kxk+
xk-

x

Figure 5.7: Schematic representation of elastic in- and out-scattering referred to the
electron identified by indexed s, n, j,+ in the case of single subband. The scattering
can only change the sign of the kx vector.

where Fn,n′ is the form factor defined in Eq.4.101, KB is the Boltzmann constant,
T is the temperature, Dacc is the acoustic deformation potential, ρ is the density
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of the semiconductor and vsound is the sound velocity inside the semiconductor.
According to Eq.5.25 the in-scattering integral for a given section s is given by:

Sin,+s = (1− f+
s )

(
KBTD

2
accF

s
n,n

~2ρv2
soundv

+
g,n

)
︸ ︷︷ ︸

Rs

f−s (5.46)

where the normalization length LNW in Eq.5.45 canceled out by converting the
summation over states k′x to integrals in the calculation of the in-scattering integral.
Hence the r.h.s. of BTE± evaluated at section s can be written in a compact form
as:

BTE+
s : Sin,+s − Sout,+s =

(
1− f+

s

)
Rsf−s − f+

s R
s
(
1− f−s

)
= +Rsf−s −Rsf+

s︸ ︷︷ ︸
r.h.s.+s

BTE−s−1 : Sin,−s − Sout,−s =
(
1− f−s

)
Rsf+

s − f−s Rs
(
1− f+

s

)
= −Rsf−s +Rsf+

s︸ ︷︷ ︸
r.h.s.−s

(5.47)

where it can be noticed that the BTE reduces to a linear problem. It can be
demonstrated that for elastic scattering, even in the presence of multiple subbands,
the nonlinear terms in the r.h.s. cancel out leading to a linear BTE. The BTE± in
Eq.5.36 with the r.h.s. evaluated in section s can be written as:

v+
g,s

f+
s − f+

s−1

∆x
= r.h.s.+s

v−g,s
f−s − f−s−1

∆x
= −r.h.s.−s

(5.48)

By noting that in Eq.5.48 we have r.h.s.+s = −r.h.s.−s = r.h.s.s (see Eq.5.47) and
recalling that v+

g,s,n,j = −v−g,s,n,j , the BTEs in Eq.5.48 finally become:
v+
g,s

f+
s − f+

s−1

∆x
= r.h.s.s

v+
g,s

f−s − f−s−1

∆x
= r.h.s.s

. (5.49)

which leads to:
f+
s − f−s = f+

s−1 − f
−
s−1. (5.50)

According to Eq.5.32, Eq.5.50 gives the conservation between section s and s−1 of the
current density at the fixed energy value used to write Eqs.5.45 to 5.49. Since we are
dealing with elastic scattering, current conservation is guarantee energy per energy,
but in general, current conservation is obtained after summing over all subbands,
and energy bins.
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5.3. BTE discretization

Current conservation can be algebraically demonstrated also in the case of elastic
scattering and multiple subbands, energy per energy but after summing over the
subbands n. Moreover, also in the more complicated case of inelastic scattering,
current conservation (after summing over all the subbands and energy bins) can be
numerically demonstrated. So far we have assumed that the BTE can be written
at any point of the discretized x− ET,n space of Fig.5.5, but this is not the case at
the classical turning points. In fact, the BTE l.h.s. discretization method proposed
in Eq.5.36 becomes critical when we write the BTEs at the square points shown in
Fig.5.8. These points are such that, taken a generic unknown f±s,n,j , there exist no
unknowns at section s+ 1 or s− 1 for the same n, j indexes. We will refer to these
points as classical-turning-point (CTPs) for the unknown f±s,n,j . When solving the

ET,n

x

j

s-*

CTP- CTP+

s+*

Figure 5.8: Subband profile with discretization of the real and energy space for the
solution of the BTE. Solid circles represent a generic discretized unknown of the BTE
and square symbols the unknowns at the so-called classical turning points (CTPs).

transport in the entire spatial domain, for each point belonging to nsec(j, n) (where
nsec(j, n) is the number of discretization points along x direction for a given (j, n))
we write the BTE as in Eq.5.44. For the point s∗+ shown in Fig.5.8, the l.h.s of the
BTE± becomes:

BTE+
s∗+,n,j

: v+
g,s∗+,n,j

f+
s∗+,n,j

− f+
(s∗+−1),n,j

∆x

BTE−s∗+,n,j
: v−g,s∗++1,n,j

f−s∗++1,n,j − f
−
(s∗+),n,j

∆x

(5.51)

The unknown f+
(s∗+−1),n,j for the BTE+

s∗+,n,j
in Eq.5.51 does not exist because it would

be located under the subband profile, and thus in a forbidden region. For the l.h.s
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for the BTE± evaluated in s∗−, we write:

BTE+
s∗−,n,j

: v+
g,s∗−,n,j

f+
(s∗−),n,j − f

+
(s∗−−1),n,j

∆x

BTE−s∗−,n,j
: v−g,(s∗−+1),n,j

f−(s∗−+1),n,j − f
−
s∗−,n,j

∆x

(5.52)

which requires the knowledge of the unknown f−(s∗−+1),n,j for the BTE−s∗−,n,j
that also

does not exist because it would be located under the subband profile. To overcome
the issue given by the fact that the BTE cannot be written for the f+

s,n,j occupation

functions at the CTP+ and for the f−s,n,j occupation functions at the CTP−, we will
show how to introduce alternative equations that ensure the continuity of the current
along the transport direction.

To summarize, the discretization of the BTE used in this work is such that if
the l.h.s. of the BTE−s−1,n,j and the l.h.s. of the BTE+

s,n,j can be written for all n, j
values, i.e. if the corresponding unknowns in Eq.5.35 exist, then current conservation
is guaranteed between the section s and section s− 1 . In other words, if both the
r.h.s. for BTE± evaluated at section s can be written and at the section s− 1 there
are no CTP−, then current conservation is guaranteed between the section s and
section s− 1. This rule can be rewritten in a more compact form saying that current
conservation between section s and section s− 1 is guaranteed if:

• there are no CTP− in section s− 1

• there are no CTP+ in section s.

In fact, as shown in Fig.5.9a, if we consider the two sections inside the dashed line,
both the l.h.s. for the BTE−s−1,n,j and the l.h.s. for the BTE+

s,n,j given in Eq.5.36
can be legitimately written thus leading to the conservation of the current between
section s and s− 1. The same does not hold for Fig.5.9b because there is a CTP+
is section s − 1 and energy bin j, and consequently we cannot write the l.h.s. for
BTE−s−1,n,j .

5.3.8 Classical Turning Points

As we have seen in Sec.5.3.7, the BTE cannot be written for the f+
s,n,j if the point

(s, j) of the x− ET,n domain for the subband n is a CTP+ and for the f−s,n,j if the
point (s, j) of the x − ET,n domain for the subband n is a CTP−. Of course the
number of equations and unknowns must match, so that we must have:

Nunk −Nboundary = NBTE +NCTPE (5.53)

where Nunk are the number of unknowns given by Eq.5.33, NBTE is the number of
BTEs written according to Eq.5.36, Nboundary is the number of boundary unknowns
(see Sec.5.3.5) and NCTPE = NCTP /2 are the number of equations written at the
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ET,n

xss-1

CTP+
CTP-

j

(a)

ET,n

xss-1

CTP+
CTP-

j

(b)

Figure 5.9: Subband profile with unknowns. a) The BTE discretization technique
guarantees the continuity of the current between section s and s − 1 because in
section s there are no CTP+ and there are no CPT− in section s − 1. b) Since
in section s− 1 there is a CTP−, the BTE−s+1,j,n cannot be written leading to an
under-determined system of equations for the solution of transport.

CTPs where NCTP is the number of CTPs; the 2 factor is because for each CTP
only one equation (for f+ or for f−) cannot be written as shown in Sec.5.3.7.

A reasonable choice for the NCTPE equations is to write them in order to ensure
the drain-to-source current (IDS) to be solenoidal.

BTE in the presence of CTP−

ET,n

xss-1

CTP-

j

s-2s-3

Figure 5.10: Template case study with CTP−.

We now focus of the CTP− as shown in Fig.5.10. As mentioned in Sec.5.3.7,
current continuity between sections s− 1 and s− 2 is guarantee because the corre-
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sponding BTE−s−2,n,j and BTE+
s−1,n,j can be written, and the same holds for sections

s− 2 and s− 3. Instead, we are not able to write the l.h.s. of the BTE−s−1,n,j due to

the presence of a CTP−, hence, the corresponding BTE−s−1,n,j can be replaced by:

f−s−1,n,j = f+
s−1,n,j . (5.54)

The condition in Eq.5.54 implies that current contribution in section s−1 and for the
energy index j is null (see Eq.5.31). By replacing the missing BTE−s−1,n,j equation
with Eq.5.54 and according to Sec.5.3.7, current is conserved between section s and
section s− 1. In fact, looking at Fig.5.10 for the unknowns inside the dotted region,
both BTE−s−1,n,j and BTE+

s,n,j can be written and, since the current contribution
given by the unknowns at the CTP− at position (s− 1, j, n) is null, it follows that
current is conserved between section s and s− 1.

BTE in the presence of CTP+

ET,n

xss-1

CTP+

j

dummy point

Figure 5.11: Template case study with CTP+.

As reported in Sec.5.3.7 we cannot write the BTE+
s,n,j because there is a CTP+

at section s for the unknown belonging to the energy bin j and subband n. Hence,
one could be temped to write a similar expression as in Eq.5.54 for the BTE+

s,n,j at
the CTP+ of Fig.5.11:

f+
s,n,j = f−s,n,j . (5.55)

However, it can be demonstrated that for a general case of multiple subbands with
elastic or inelastic scattering, Eq.5.55 brings to a non conservation of the current
between section s and s−1 in Fig.5.11. This is because, by substituting the BTE+

s,n,j

with Eq.5.55, all the informations regarding the in- and out-scattering for f+
s,n,j

contained in the r.h.s. of the BTE+
s,n,j will be lost. Hence, the balance of charge

fluxes at section s due to scattering for all the unknowns linked with f+
s,n,j will be

modified in disagreement with the BTE (see Sec.5.2) . Our goal here is to find a
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relation between f+
s,n,j in the CTP+ and the other unknowns in section s. We thus

introduce a dummy point ( triangle symbol in Fig.5.11) in the forbidden region for
subband n for which we write:

f+
s−1,n,j = f−s−1,n,j . (5.56)

By doing so, for the unknowns located in (s, n, j) we can write the following equations:
v+
g,s,n,j

f+
s,n,j − f

+
s−1,n,j

∆x
= r.h.s.+s

v−g,s,n,j
f−s,n,j − f

−
s−1,n,j

∆x
= r.h.s.−s

f+
s−1,n,j = f−s−1,n,j

(5.57)

Eq.5.57 can be rewritten as:

f+
s,n,j = f−s,n,j +

∆x

v+
g,s,n,j

(r.h.s.+s + r.h.s.−s ). (5.58)

Hence, Eq.5.58 is the new equation to be written in place of the BTE+
s,n,j at the

CTP+.
In the ballistic case or in the elastic case with only one subband, the equations

for the CTPs according to Eqs.5.54 and 5.58 become:

f−sCTP−,n,j = f+
sCTP−,n,j

f+
sCTP+,n,j

= f−sCTP+,n,j
(5.59)

that correspond to reflecting boundary conditions at the corresponding turning points
as shown in Fig.5.12.

Moreover, in the ballistic limit occupation functions are given by the propagation
of boundary conditions through the device. Hence, according to Eqs.5.32 and 5.59 the
contribution to the total current is given by the carriers sitting above the top of the
subband profile n, because below the top for each section s the current contribution
is null being f+

s,n,j = f−s,n,j .
There is also an alternative way to impose current continuity between section s

and s − 1 without resorting to Eqs.5.54 and 5.58 and consist in writing explicitly
the continuity equation for current. Let us consider a generic case with inelastic
scattering and multiple subbands as shown in Fig.5.13. In this case, we can replace
the BTE−s−1,1,j (that cannot be written in the CTP-) with the continuity condition
for the current between section s− 1 and s that reads:∑

j∗

∑
n

(
f+
s−1,n,j − f

−
s−1,n,j

)
=
∑
j∗

∑
n

(
f+
s,n,j − f

−
s,n,j

)
(5.60)

where the summation over the energy bins does not need to include all energies
but can be limited to the unknowns in section s− 1 and s connected by scattering
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ET,n

x

j

sCTP+

f+

f- f+

f-

sCTP-

Figure 5.12: Schematic diagram showing the perfect reflection of the carriers at the
CTPs in the case ballistic transport.

with the occupation function f−s−1,1,j at the CTP−. In this case, only the unknowns
connected by arrows shown in Fig.5.13 enter Eq.5.60. This method can be used
either for the BTE−s,n,j for which the point (s, j) for subband n is a CTP− or for

the BTE+
s,n,j for which the point (s, j) for subband n is a CTP+. However, it must

be noticed that for each section s and group of unknowns linked by scattering, the
continuity equation of Eq.5.60 can be written only once. In fact, in the case of
multiple CTP per section connected by scattering, it will result in the imposition
of multiple identical equations leading the system to be solved for the transport
underdetermined. Hence, from the practical point of view, the direct imposition of
the continuity condition on the current as in Eq.5.60 it is not a viable solution.

5.3.9 Critical Regions

During the convergence loop between the Schrödinger equation and the Poisson
equation, or due to resistive voltage drops in the source or drain regions, the trajectory
of electrons for a given energy bin can exhibit two CTPs as shown in Fig.5.14. In the
case of elastic scattering (and assuming a single subband as in Fig.5.15a, or, assuming
multiple subbands where electrons inside the critical region are not connected by
elastic scattering with carriers of other subbands as in Fig.5.15b), in principle it is
not possible to solve the BTE inside that region because the connection with the
boundaries is lost. However, if carriers inside a critical region are connected with
the boundaries of the transport problem (i.e. source and drain contacts) through
scattering, either inelastic or elastic as in Fig.5.16, the BTE can be solved for all the
unknowns f ts,n,j .

In this work, if carriers inside a critical region are not connected with boundaries
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ET,n

xss-1

CTP- for n=0

j

unknowns for n=0

n=0

n=1

unknowns for n=1

CTP- for n=1

ΔE

Figure 5.13: Two subband profiles and corresponding unknonws. The CTP− for
subband n=1 represented by a filled square symbol is connected with other unknowns
by arrows at a distance ~ωqx = 2∆E.

through scattering, the BTE is solved only outside critical region, and, for charge and
current calculations it is assumed that the occupation functions inside the critical
region are equal, section by section, to the occupation of the states at the energy bin
j + 1 where j is the largest energy bin of the carriers inside the critical region.
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ET,n

x

j

f+

f-
f-

f-

f+

f+

f+

f-

Figure 5.14: Subband profile with different trajectories that exhibits a critical region
with two CTPs for the trajectory at energy bin j.

ET,n

x

CTP- for n=0

j

unknowns for n=0

n=0
CTP+  for n=0

(a) Subband profile with a critical region at
energy bin j.

ET,n

x

CTP- for n=0

j
unknowns for n=0

n=0

n=1
unknowns for n=1

CTP-  for n=1
CTP+  for n=0

(b) Subband profiles with a critical region
for carriers belonging to subband n = 0 not
connected with carriers belonging to subband
n = 1 in the case of elastic scattering only.

Figure 5.15
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ET,n

x

CTP- for n=0

j

unknowns for n=0

n=0

n=1
unknowns for n=1

CTP-  for n=1
CTP+ for n=1

(a) Subband profiles with a critical region for
the subband n = 1 circled with solid line

ET,n

x

CTP- for n=0

j

unknowns for n=0

n=0
CTP+  for n=0

(b) Subband profile with a critical region for
carriers belonging to subband n = 0 con-
nected by inelastic scattering (arrows) with
carrier at larger energies.

Figure 5.16: Two cases of elastic and inelastic scattering where the presence of
critical regions do not jeopardize the solution of the BTE because scattering connect
carriers inside critical regions with the source and drain boundaries through the
scattering with other carriers.
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5.3.10 Singularity of the BTE r.h.s. for Ekinetic approaching 0 eV

According to the expression for the scattering integral given in Eqs.5.22,5.23,
the term 1/v±g,n(ET,n) diverges for total energy ET,n approaching the bottom of
the n−th subband (i.e. ET,n → εn), or, equivalently, when the kinetic energy of a
carrier approaches to zero. This is a peculiarity of 1D gas, and can lead to numerical
problems with occupation functions out of boundaries [0, 1] when solving the BTE
equation because the scattering rates in the r.h.s. of the BTE for energies approaching
the bottom of the subband can be very large. The way around to singularity of
scattering rates adopted in this work is to solve only for the unknowns having a
kinetic energy larger than a minimum value Ek,min.

As stated above, in a 1D electron gas the DoS (or equivalently the group velocity)
tends to diverge when approaching the bottom of the subband, hence, the calculation
of the current and charge must be performed carefully. Fig.5.17 shows a subband

ET,n

xs

j
j*

Figure 5.17: Subband profile with energy and space discretization.

profile with the discretization of the transport direction and total energy. If we
focus on section s, the contribution to the current or charge given by the occupation
function between the energy j∗ and the first energy bin j cannot be neglected due
to the divergence of the DoS approaching the subband profile. To account for this
contribution in the charge but also in the current calculations, we assume that
f±s,j∗ = f±s,j which of course is an approximation given by the fact that the BTE is
not solved for the energy ET,n(j∗) since it does not correspond an energy bin. Hence,
according to Eq.5.30 the contribution to the charge density per unit length calculated
at section s, for a given subband n and for f±s,n,j is given by:∫ ∞
εn

1

~v+
g,s,n(ET,n)

f±s,n(ET,n)dET,n

= f±s,n(ET,n(j∗))
∫ ET,n(j)

ET,n(j∗)=εn

1

~v+
g,s,n(ET,n)

dET,n +

∫ ∞
ET,n(j)

1

~v+
g,s,n(ET,n)

f±s,n(ET,n)dET,n

(5.61)
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The integral in the first term of the summation in the right-hand side of Eq.5.61,
can be rewritten using the expression for the group velocity reported in the first
equation in Eq.5.3 and can be easily demonstrated to be equal to kx (ET,n(j)).
Hence, the charge at section s without accounting for the valley multiplicity and by
considering the case of single valley, reads as:

ninv,s =
1

~π
∑
n

∑
t=±

[
f ts,n(ET,n(j∗)) kx (ET,n(j)) +

∫ ∞
ET,n(j)

f ts,n(ET,n)

v+
g,s,n(ET,n)

dET,n

]
.

(5.62)
Similar calculations can be done for the current leading to:

Is =
e

~π
∑
n

∑
t=±

t
[(
f ts,n(ET (j)

)
· (ET (j)− ET (j∗)) +

∫ ∞
ET (j)

f ts,n(ET (j))dET

]
(5.63)
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5.3.11 BTE results with template subband profile

In this section we will show some results obtained with the template subband
profile shown in Fig.5.18 including different scattering mechanisms maintaining the
same subband profile. VDS is set to 0.5 V for all the simulations. The source Fermi
level EF,source at x = 0 nm is set to 0 eV whereas the drain Fermi level at x=65 nm
is −eVDS = −0.5 eV. Simulations are performed including two subbands.
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Figure 5.18: Template subbands profile. VDS is set to 0.5 V and the source and
drain Fermi levels are referenced therein.

Ballistic Results

Fig.5.19 shows the occupation function for electrons with both positive and
negative group velocity for the two subbands. As shown in Fig.5.19(a) since the
top-of-the-barrier (ToB) for the first subband is about 100 meV lower than the source
Fermi level (EF,source), which is set to 0 eV, there is a non negligible flux of electrons
injected from the source contact with positive kx (i.e. positive group velocity) above
the ToB that reach the drain contact preserving their crystal momentum (~ kx)
because of the absence of scattering. Instead, being the ToB for the second subband
about 100 meV higher than EF,source, as can be seen in Fig.5.19(c) electrons injected
from the source contact are mainly reflected at the CTPs leading to electrons with
negative velocity below the ToB in the source region (see Fig.5.19(d)). The same
holds for electrons with positive group velocity at the right of the ToB in Figs.5.19(b)
and 5.19(d), that correspond to electrons injected from the drain contact. The ToB
for both subbands is well above the drain Fermi level EF,drain, hence the number of
injected electrons from the drain contact that reach the source contact is very low.

Moreover, due to the absence of scattering, there is no exchange of electrons
belonging to different subbands. The current spectrum is defined as:

f+
s,n,j, − f

−
s,n,j, (5.64)
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hence the current according to Eq.5.63 is given by the integral over the energy of the
current spectrum for a given subband (and valley) times the factor e/(π~) and then
summed over all the subbands (and valleys). Fig.5.20 shows the current spectrum
for the two subbands and the current contribution is given only by electrons above
the ToB due to the presence of CTP and absence of scattering which leads, for
energy below the ToB, to a flux of carriers with positive velocity that equals that
with negative velocity and thus to a null contribution to the current. Moreover,
due to the position of the ToB for the second subband, only carriers in the lowest
subband contribute to the total current as shown in Fig.5.21. Fig.5.22 shows the
back-scattering coefficient for each section calculated as:

I−s /I
+
s (5.65)

where I+
s can be calculated by using the expression in Eq.5.63 and summing over the

states t = +, whereas I−s corresponds to the terms t = −. As can be seen in Fig.5.22,
close to the ToB the backscattering becomes order of magnitudes lower than the
value at the source or drain (which is close to 0.87), because of the combination of
the applied VDS and position of the ToB which lead to a negligible flux of carriers
with negative group velocity above the ToB.
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(a) Occupation function of electrons belonging to
the first subband with positive group velocity

(b) Occupation function of electrons belonging to
the first subband with negative group velocity

(c) Occupation function of electrons belonging to
the second subband with positive group velocity

(d) Occupation function of electrons belonging to
the second subband with negative group velocity

Figure 5.19: Occupation functions of ballistic simulation including two subbands.
VDS is 0.5V, EF,source = 0 eV and EF,drain = −0.5 eV
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(a) Current spectrum for the first subband (b) Current spectrum for the second subband

Figure 5.20: Current spectrum for ballistic simulation with two subbands.

0 10 20 30 40 50 60 70
x [nm]

1e-08

1e-07

1e-06

1e-05

I D
S
 [

A
]

Total I
DS

I
DS

 subb.1

I
DS

 subb.2

Figure 5.21: Current versus transport di-
rection with contrinution of each subband.
Ballistic simulation results.
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Figure 5.22: Back-scattering coefficient
for a ballistic simulation.
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Elastic Scattering

(a) Occupation function of electrons belonging to
the first subband with positive group velocity

(b) Occupation function of electrons belonging to
the first subband with negative group velocity

(c) Occupation function of electrons belonging to
the second subband with positive group velocity

(d) Occupation function of electrons belonging to
the second subband with negative group velocity

Figure 5.23: Occupation functions of a simulation including elastic scattering with
two subbands. VDS is 0.5V, EF,source = 0 eV and EF,drain = −0.5 eV

Fig.5.23 shows the occupation functions for two subbands with elastic scattering.
The occupation function for electrons belonging to the first subband and with positive
group velocity is shown in Fig.5.23(a). As opposed to Fig.5.19 it can be seen that
electrons above the ToB of the first subband due to the elastic scattering undergo two
different effects. The first is that they are backscattered to the source still remaining
in the first subband: in fact Fig.5.23(b) shows that the occupation function for
electrons belonging to the first subband with negative group velocity is not zero
above the ToB of the first subband. Hence, there is a lowering of the net flux of
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electrons from source to drain (i.e. the electron current). The second effect is that
elastic scattering can also move electrons from one subband to another: in fact
Figs.5.23(c) and 5.23(d) show that on the right of the ToB and for energies larger
than approximately −100 meV there is a non negligible flux of electrons either with
positive or negative group velocity due to the scattered electrons belonging to the
first subband.

Finally, Fig.5.24 shows the current spectrum calculated as in Eq.5.64. Fig.5.24(a)

(a) Current spectrum for the first subband (b) Current spectrum for the second subband

(c) Total Current spectrum

Figure 5.24: Current spectrum for simulation with elastic scattering and with two
subbands.

shows that the current contribution is non-null only above the ToB for the first
subband. This is because, as in the case of ballistic simulation, carriers below the ToB
that are injected from the source are reflected at the corresponding CTPs and the
contribution to the total current cannot but be zero. In Fig.5.24(b) it can be shown
that, due to the intersubband scattering, there is a non negligible contribution to the
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5. Simulator for cilindrical nanowires based on the BTE

total current from carriers belonging to the second subband below the corresponding
ToB, differently from Fig.5.20(b) where electrons are mainly confined in the source
and drain regions and their contribution to the current is close to zero. The current
spectrum summed over the two subbands is shown in Fig.5.24(c) and the integral
over the energy gives the current shown in Fig.5.25. As expected, the total current
is constant along the transport direction whereas the contribution of each subband
changes along x. Fig.5.26 shows the back-scattering coefficient calculated as in
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Figure 5.25: Current versus transport di-
rection with contrinution of each subband.
Simulation with elastic scattering.
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Figure 5.26: Back-scattering coefficient
for a simulation with elastic scattering.

Eq.5.65. Differently from the back-scattering for the ballistic case in Fig.5.22, since
scattering can change the sign of group velocity at any energy electrons with negative
group velocity are observed even for energies well above the drain Fermi level.
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5.3. BTE discretization

Inelastic Scattering

(a) Occupation function of electrons belonging to
the first subband with positive group velocity

(b) Occupation function of electrons belonging to
the first subband with negative group velocity

(c) Occupation function of electrons belonging to
the second subband with positive group velocity

(d) Occupation function of electrons belonging to
the second subband with negative group velocity

Figure 5.27: Occupation functions of a simulation with inelastic scattering with
optical phonons with ~ωqx = 50meV and two subbands. VDS is 0.5V, EF,source = 0
eV and EF,drain = −0.5 eV

Fig.5.27 shows that inelastic scattering for both subbands fills states with electrons
with positive and negative velocities for the energy window below the corresponding
ToBs and few tens of meV above EF,drain and at the right of the ToBs, that is,
an energy in a region that is forbidden in the case of ballistic or elastic scattering
simulations. Current spectrum is shown in Fig.5.28 where it can be seen that there
is a non-negligible contribution to the total current given by electrons that lose their
kinetic energy via optical phonons emissions while moving from the ToB to the drain
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5. Simulator for cilindrical nanowires based on the BTE

(a) Current spectrum for the first subband (b) Current spectrum for the second subband

(c) Total current spectrum

Figure 5.28: Current spectrum for simulation with inelastic scattering and with two
subbands.

region. Even though the current spectrum in Fig.5.28(c) changes section by section,
its integral over the energies and summed over the subbands gives a current which is
constant throughout the device sections as shown in Fig.5.29.

Fig.5.30 shows the back-scattering coefficient.
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Figure 5.29: Current versus transport di-
rection with contribution of each subband.
Simulation with inelastic scattering.
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Figure 5.30: Back-scattering coefficient
for a simulation with inelastic scattering.
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5. Simulator for cilindrical nanowires based on the BTE

5.4 Solver for transport calculations

5.4.1 Device discretization

Metal Gate

Metal Gate

Figure 5.31: left: slice along the quantization plane of the circular nanowire with
discretization points. right: slice along the transport direction.

The device circular sections are discretized as explained in Sec.4.3.9 using a non
periodic Chebyshev grid along radial direction and a uniform periodic Fourier grid
along angular direction in order to employ the PS method that allows for an high
accuracy (i.e. the so-called spectral accuracy) and a fast numerical solution of the
Schrödinger equation due to the reduced number of points with respect to traditional
FD of FE methods. A Chebyshev grid is used also along transport direction in order
to obtain spectral accuracy for the solution of the Poisson equation. A sketch of the
device discretization is shown in Fig.5.31.

We solve the Schrödinger equation Eq.4.1 along circular slices to obtain the
subband profile and the wave-function. We impose homogeneous Dirichlet boundary
conditions at the boundaries of the circular slices and the continuity conditions of
Eq.4.10 at the discontinuity surface between oxide and semiconductor.

The Poisson equation is solved in the 3D cylindrical domain by using the same
methodology explained in Sec.4.5 but extending Eq.4.98 to a 3D domain. We now
focus on the boundary conditions for the Poisson equation which have been already
discussed for the metal gate contact region in Sec.4.5 and we extend it to the 3D
nanowire. In order to maintain an average space-charge neutrality in the source-
drain regions close to the source and drain contacts, we use homogeneous Neumann
conditions at the idealized source and drain contacts along transport direction:

∂φ(r, θ, x)

∂x
= 0. (5.66)

Same Neumann conditions are also imposed along radial direction in the nanowire
external surface that is not surrounded by the metal gate (see Fig.5.31); at the oxide
to gate electrode interface, Dirichlet conditions are used to set the potential.
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5.4. Solver for transport calculations

5.4.2 Iterative solution for transport calculation

The overall flowchart for the solver is shown in Fig.5.32.

3D Poisson 
(classical carrier density)

2D Schrodinger eq. 

Longitudinal BTE

Charge calculation

3D Poisson 
(quantum carrier density)

Initial guess for the potential

Subband energy 
Wavefunctions

Occupation functions
Wavefunctions

Electron charge density

Error 
check

Figure 5.32: Flowchart of the solution scheme.

At the first iteration the solver needs an initial condition to start. This is provided
by the potential at the equilibrium (VDS = 0V) calculated by solving the 3D Poisson
equation for a 3D gas using the Fermi-Dirac statistics (quantization is not taken into
account in this preliminary step), and accounting for non-parabolicity corrections
that have a vast effect on the resulting degeneracy of the electron gas; the expression
for the charge is given in Eq.C.26.

To work out an initial guess for the potential in out-of-equilibrium conditions
(i.e. VDS 6= 0), the first guess for the potential obtained for VDS = 0 V is linearly
shifted starting from the source-channel interface to the channel-drain interface (see
Fig.5.33). Then, the Schrödinger equation is solved in each circular section of the
device in order to obtain the subband profile of the entire device.

The BTE equation is solved for out-of-equilibrium conditions according to Sec.5.3
with:

• boundary conditions for f+ at source according to Fermi-Dirac occupation
with EF,S=0;
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Figure 5.33: Plot of the potential at the center of the Nanowire. squares: potential
used as an initial guess to introduce non equilibrium conditions being VDS =0.5
V. It is initial guess for Schrödinger and BTE solvers. circles : potential profile at
equilibrium (i.e. VDS = 0V).

• boundary conditions for f− at drain according to Fermi-Dirac occupation with
EF,S = −eVDS

Then, the Poisson equation reported in Eq.4.98 but extended for a 3D domain
introducing the derivative along the transport direction, is solved to find a new guess
for the electrostatics potential and the loop in Fig.5.32 is repeated until convergence
is reached.

5.5 BTE Simulation results

The device has a silicon channel with diameter d = 5 nm, the gate length is LG=
15 nm, and the gate dielectric is HfO2 (κ = 22 [2]), with a thickness of 4 nm, gate
workfunction is 4.6 eV, source and drain regions with LS,D = 20 nm, and donor
doping of 1 × 1020 cm−3. The transport direction is [100]. Coulomb scattering is
activated only in the channel region and not in source and drain regions, this is also
because, for very large doping concentrations (or scattering rates), the scattering
model should take into account the correlation between Coulomb centers (see also
Sec.4.6.2), that is not considered in the present model and in most of the papers in
the literature, as well as for corrections beyond first-order Born approximation [18].

Fig.5.34 shows the results obtained for different scattering conditions: a) without
scattering; b) including acoustic and optical phonon scattering according to Sec.4.6.1
with deformation potentials from [2]; c) with the inclusion of Coulomb scattering
accounting for interface states with NIT = 1× 1012 cm−2 according to Sec.4.6.2; d)
including surface roughness with the new model described in Sec.3.6 and using root
mean squared roughness amplitude ∆rms = 0.21 nm and correlation length Λ = 1.3
nm.

Results show the strong reduction of the current in the presence of phonons, and
also surface roughness implemented with the new model of Chapter 3. In particular,
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Figure 5.34: Drain current versus gate voltage characteristics for silicon with [100]
transport direction, for VDS= 0.5 V and with the inclusion of different scattering
mechanisms. The density of interface states for the coulomb scattering is NIT =
1× 1012 cm−2.

the SR scattering is responsible for a strong performance degradation as already
pointed out for planar devices in [19].
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5. Simulator for cilindrical nanowires based on the BTE

5.6 Conclusions

The development of a comprehensive simulator based on the deterministic solution
of the BTE for circular nanowires has required lot of time, therefore, we are still
validating this new tool against available experimental data. We believe that the
inclusion of the surface roughness scattering with the new non linear formulation
already validated against available experimental results for planar devices is one
of the highlights of this work. In fact it has been already demonstrated that for
aggressively scaled nanowire, SR is one of the most important scattering mechanisms
[20, 21]. Moreover, the deterministic solution of the BTE allows for the study of the
sub-threshold regime without being affected by the statistical noise that is present
in MonteCarlo solvers. This, in principle, allows for the simulation of low field
mobility by simply applying a very low longitudinal field along transport direction
still maintaining the precision of the solution.
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Appendix A

Tensor of the inverse effective
masses for different orientations

T
he knowledge of the band structure provides information that goes beyond the
energy values of the valley minima and the energy gap. Indeed, the energy

band curvature in K space, can provide the effective mass of the carriers. Effective
mass can be intuitively interpreted as the mass of a carrier within a crystal and it
governs the response of the carrier to an external force. For transport applications
the effective masses are particularly important because they affect the velocity of
carriers along the transport, the quantization of energy levels and the density of
states. An electric field or a magnetic field affect the state of a carrier as if it was a
free particle, but having a different mass with respect to the mass in vacuum, which
is the effective mass. The electron is described by a wave-packet which has group
velocity in three-dimensions given by:

vg =
1

~
∇KE (K) (A.1)

where ∇K is the gradient as a function of the wave-vector K. Denoting a the
acceleration due to an applied force F we can write:

a =
dvg
dt

=
d

dt

∇KE (K)

~
=
∇K

~

(
dK

dt
∇KE(K)

)
. (A.2)

Recalling that the rate of change of the crystal momentum P of a particle is
proportional to the force F acting on it:

F =
dP

dt
= ~

dK

dt
, (A.3)

we can rewrite the Newton’s second law for a classical particle under the influence of
a force as:

a =
∇K

~2
(F∇KE(K)) . (A.4)
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A. Tensor of the inverse effective masses

By using matrix formalism the column vector a is linked to the force column vector
F through

a = WF (A.5)

where W is the [3x3] tensor of the inverse of the effective masses and the (i, j)
component is given by

Wi,j =
1

~
∂2E(K)

∂ki∂kj
i, j ∈ x, y, z (A.6)

It follows that the tensor of the effective mass is the inverse of the W tensor

Mi,j = (W)−1
i,j . (A.7)

We now consider the dispersion relation for electrons derived under the parabolic

kx

kz

ky

(a) Aligned Ellipsoid

kx

kz
kt2

kt1

kl

ky

(b) Non Aligned Ellipsoid

Figure A.1: Ellipsoid Coordinate System.

band approximation, that is expanding the energy dependence in Taylor series
of second order in K around the band minimum. If we suppose that ellipsoidal
equi-energy surfaces are aligned with the coordinate axis as in Fig.A.1a we write

E (K) = Eν,0 +
~2kx

2

2mx
+

~2ky
2

2my
+

~2kz
2

2mz
(A.8)

where Eν,0 is the energy of the bottom of the conduction band, and kx, ky, kz are the
deviations with respect to the energy at the bottom of the valley (ki are measured
from the value of the wave-vector where the band has its relative minimum). Even
more generally, if the ellipsoids are not aligned with the kx, ky, kz-coordinate axis as
shown in Fig.A.1b the dispersion relation for a 3D gas reads:

E (K) = Eν,0 +
~2

2

∑
i,j

Wi,jkikj i, j ∈ kx, ky, kz (A.9)
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where W is the tensor of the inverse effective masses defined in Eq.A.6 with respect
to the kx, ky, kz-coordinate system. It is now convenient to start introducing three
different systems of coordinates as depicted in Fig.A.2: Device Coordinate System
(DCS), Crystal Coordinate System (CCS) and Ellipsoid Coordinate System (ECS).
The DCS is independent of the crystallographic orientation of the semiconductors
atoms, but it depends exclusively on the transport and quantization directions. The
second, CCS, allows to specify directions in relation to crystallographic axes and the
last, the ECS, is a coordinate system oriented with the ellipsoidal equienergy surfaces.
It is useful to distinguish between DCS, CCS and ECS because the orientation of
the device can be decoupled from that of the crystal or that of the single valley to
make it easy and intuitive the study of devices with different crystal orientations as
depicted in Fig.A.2 In the general case Eq.A.9 is written using matrix formalism as:

kz
DCS

kx
DCS

ky
DCS

kz
CCS

ky
CCS

kx
CCS

kt1
ECS

kl
ECS

kt2
ECS

Figure A.2: Sketch of the Brillouin zone with ellipsoidal equienergy surfaces belonging
to L-valleys and the corresponding coordinate-system.

E (K) = Eν,0 +
~2

2
(kx, ky, kz)WDCS(kx, ky, kz)

T (A.10)

where (kx, ky, kz)
T indicates a column vector. The knowledge of the matrix WDCS :

WDCS =

wxx wxy wxz
wyx wyy wyz
wzx wzy wzz

 (A.11)

is thus of extremely importance to determine the energy dispersion relation along the
transport and quantization directions. It is now useful to recall that in the ECS the
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A. Tensor of the inverse effective masses

W tensor is always diagonal and, in particular, takes the form reported in Fig.A.3
and the diagonal coefficients are given by the inverse element-wise of the masses

WECS =

1/mt1 0 0
0 1/mt2 0
0 0 1/ml

 kl

kt1

kt2

Figure A.3: Tensor of the inverse effective mass for the ECS and ellipsoid orientation.

along the two transverse ellipsoidal directions and along longitudinal axial direction.
Effective masses in literature for the different semiconductor valleys are always given
in the ECS-coordinate system, thus, it is convenient to relate the WDCS to the
WECS . The link between the DCS- and the ECS-coordinate system is given by the
rotation matrix by the following equation:

(kt1, kt2, kl)
T = RDCS→ECS(kx, ky, kz)

T (A.12)

where RDCS→ECS denotes the orthogonal rotation matrices that map a point defined
in the kx, ky, kz system into the kt1, kt2, kl system. In such a way, it is straightforward
demonstrate that:

WDCS = RDCS→ECS WECS RDCS→ECS (A.13)

and it can be demonstrated that WDCS is always a symmetric matrix, and expressions
for rotation matrices RDCS→ECS can be found in [1].

According to the definition of WDCS in Eq.A.13, the effective mass corresponding
to the coordinate (i, j) ∈ (x, y, z) of the DCS, can be calculated from the tensor
WDCS as follows:

(MDCS)i,j =
Cof((WDCS)i,j)

det (WDCS)
(A.14)

where Cof((MDCS)i,j) represents the cofactor (i, j) and the determinant can be
easily calculated recalling that WECS is the diagonalization of the WDCS tensor.
Hence the determinant of WDCS equals to the determinant of WECS being the
determinant of the rotation matrices equal to 1. It follows that det(WECS) is given
by the product of the diagonal elements of WECS :

det (WDCS) = det (WECS) =
1

mt1mt2ml
(A.15)
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Fig.A.4 shows an example of WDCS tensors for silicon ∆-valleys labelled as ∆[100],∆[010]

and ∆[001] according to the sketch reported in Fig.A.4 for different DCS orientations
referred to the ECS.
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Figure A.4: Expressions for the W3D
DCS tensor for different DCS transport directions

{x, y, z}. DCS directions are expressed as a function of the CCS. ∆i,j,k−valleys in
the right table are oriented according to the sketch of the Brillouin zone reported on
the left

.
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Appendix B

Effective mass Schrödinger
equation for a 2D and 1D
electron gas for arbitrary crystal
orientations and for
heterostructures

Because of confinement, the quantized nature of the electron gas must be taken
into account. Below we follow the approach in [1]: for a more complete derivation
the reader may want to refer to [1]. The single electron, time-dependent Schrödinger
equation can be written as:

i~
∂

∂t
Ψ(R, t) =

[
− ~2

2m0
∇2

R + UC(R) + U(R)

]
Ψ(R, t) (B.1)

where UC(R) represents the stationary periodic potential of the crystal atoms,
U(R) = −eφ(R) is a generic potential energy that can be due to an applied external
bias, and Ψ(R, t) is the wave-function of the quantum system. For a uniform and
homogeneous crystal domain with U(R) = 0 the solution of Eq.B.1 is given by Bloch
waves in the form:

Ψm,K(R, t) = um,K(R)e(−iK·R)e(i
Em(K)

~ t) (B.2)

where m is the index of the eigenstates, um,K(R) represents the rapid oscillations on
the scale of the crystal lattice and Em(K) are the eigenvalues solutions of Eq.B.1
once the space and time dependent problems are decoupled in virtue of the stationary
potential UC(R).

More generally, in the presence of a potential U(R) with slow space variations with
respect to the crystal potential UC(R), Eq.B.1 can be expanded in eigenfunctions of
the unperturbed Hamiltonian and after some non-trivial steps it can be demonstrated
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B. Effective mass Schrödinger equation for a 2D and 1D electron
gas

that, close to a given minima identified by the index m and for minima sufficiently
distant from each other, the Laplacian operator written with the rest electron mass
summed with the crystal potential in Eq.B.1, can be replaced by the operator
Em(−i∇R) obtained by replacing K with −i∇R in the expression for Em(K). Hence,
Eq.B.1 can be rewritten within the so-called effective mass approximation (EMA) by
introducing an equivalent Hamiltonian operator (Heq):

i~
∂

∂t
Ψm,K(R, t) = [Em(−i∇R) + U(R)]︸ ︷︷ ︸

Heq

Ψm,K(R, t). (B.3)

In Eq.B.3 all the rapid potential variations of the crystal are accounted in the
Em(−i∇R) term. The most common way to write the Em(−i∇R) operator for
electrons with K values in the proximity of a valley minimum inside the Brillouin
zone for the lowest eigenstate (i.e. by setting the m index equal), is to use the
parabolic effective mass approximation, for which the energy dispersion relation E(k)
of the Bloch electrons can be written as:

Eν = Eν0 +
~2 (kx − kx0)2

2mx
+

~2 (ky − ky0)2

2my
+

~2 (kz − kz0)2

2mz
(B.4)

where ν is the valley index and Eν0 represents the energy of the bottom of the
conduction band for the valley ν. Eq.B.4 is valid for valleys aligned with the x, y, z-
coordinate system and more details are given in Section.A. Under the hypothesis of
K values close to subband minima, the wave-function can be written as:

Ψν,n,K(R, t) = un,Kν (R)Φν,n,K(R)e(iKν ·R)e(−i εν,nt~ ) (B.5)

where the function Φν,n,K(R) is a slowly varying envelope wave-function reflecting
the variations of the potential U(R). By substituting Eq.B.5 into Eq.B.3 we finally
obtain the eigenvalue problem written for the envelope wave-function:

[Eν(−i∇R) + U(R)] Φν,n(R) = εν,nΦν,n(R) (B.6)

where εν,n is the eigenvalue, and U(R) is the confinement energy.
Eq.B.6 can be used to derive the properties of a quantized gas from the slowly

varying wave envelope wave-function Φν,n(R) rather than from the much more com-
plicated wave-function defined in Eq.B.1. The envelope wave-function approximation
relies on the fact that for large semiconductor domains the number of atoms is such
that their potential can be represented by a global average potential. Based upon
previous steps, the time-independent Schrödinger equation derived within EMA
(Eq.B.6) is recast in a more explicit form in Eq.B.7−~2

2

∑
i,j

Wi,j
∂2

∂xi∂xj
+ Uν(R)

Φν,n(R) = ε
′
ν,nΦν,n(R) (B.7)
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B.1. 2D electron gas

where ε
′
ν,n is the eigenvalue referred to the energy of the ν−th valley minimum (i.e.

εν,n = ε
′
ν,n + Eν,0) and xi is a generic coordinate in the device coordinate system

(DCS) {x, y, z} .W is the tensor of the inverse of the effective mass tensor M in the
DCS for which holds the relation (Mi,j = (W)−1

i,j ). M takes a particularly simple
form when the inverse mass tensor is diagonal:

W =

1/mx 0 0
0 1/my 0
0 0 1/mz

 (B.8)

that leads to a diagonal matrix

M =

mx 0 0
0 my 0
0 0 mz

 . (B.9)

More generally, for arbitrary orientations and by exploiting the matrix formalism, the
Schrödinger equation written in the device-coordinate-system (DCS) (see Section.A
for more details) reads:[

−~2

2
∇ · (WDCS ∇) + Uν(R)

]
Φν,n (R) = ε

′
ν,nΦν,n (R) (B.10)

where ∇· denotes the divergence and ∇Φν,n (R) the gradient of the envelope wave-
function and where the effective-mass tensor may no longer be diagonal for an
arbitrary crystallographic orientations.

B.1 2D electron gas

Let us assume the case of a 2D quantized electron gas where quantization direction
and transport plane are shown in Fig.B.1. The Schrödinger equation in a 3D domain

y
z

x

Gate

Source Drain

Figure B.1: Sketch of a MOS transistor with DCS.

given in Eq.B.10, under the hypothesis that the potential energy is a function of the
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B. Effective mass Schrödinger equation for a 2D and 1D electron
gas

z coordinate only (U(R) = U(z)), can be solved using the ansatz for the envelope
wave-function Φn,k(z, r) given by:

Φn,k(z, r) =
ξn,k(z)√

A
ei kx x+i ky y (B.11)

where A is a normalization area. By substituting Eq.B.11 into Eq.B.10 we obtain:

1

2
wzz~2

(
d2ξn,k(z)

dz2

)
− ~2 (wxzkx + wyzky)

(
dξn,k(z)

dz

)
=
[
U(z) + ε′n

]
ξn,k(z)

(B.12)
where the wij terms with (i, j) ∈ {x, y, z} are the elements of the tensor of the inverse
effective masses describing the kinetic energy operator reported in Eq.A.6 and the
total energy En(k) with k∈ {kx, ky} is given by:

En(k) = E0 + ε
′
n +

1

2
~2
(
wxxk

2
x + 2wxykxky + wyyk

2
y

)
. (B.13)

where E0 represents the energy of the bottom of the considered valley. To eliminate
the first derivative with respect to the z coordinate in Eq.B.12, it is convenient to
make a second ansatz for the unknown ξn,k(z) [2]:

ξn,k(z) = ζn(z)ei z(wxzkx+wyxky)/wzz (B.14)

where ζn(z) must satisfy:[
− ~2

2mz

d2

dz2
+ U(z)

]
ζn(z) = ε′′nζn(z) (B.15)

where mz = w−1
zz and the total energy is given by:

En(k) = E0+ε′′n+
~2

2

[(
wxx −

w2
xz

wzz

)
k2
x + 2

(
wxy −

wxzwyz
wzz

)
kxky +

(
wyy −

w2
yz

wzz

)
k2
y

]
.

(B.16)
The definition of ξn,k(z) in Eq.B.14 shows that, if the entries wxz and wyx are not
null, that is for semiconductors having ellipsoidal conduction band minima (e.g.,
silicon and germanium), and with z not aligned with any axis of the energy ellipsoid,
then ξn,k(z) depends on the in-plane wave-vector k through a phase factor.

Hence, in the case of equi-energy ellipsoids aligned with the quantization direction
z (i.e. WDCS is diagonal), the ξn,k(z) term in the envelope wave-function of Eq.B.11
is given by the solution of:[

− ~2

2mz

d2

dz2
+ U(z)

]
ξn(z) = ε′nξn(z) (B.17)

and the total energy reads:

En(k) = E0 + ε′n +
~2

2

[
(wxx) k2

x + (wyy) k
2
y

]
. (B.18)

It is now interesting to analyze the implications of the formulation for the envelope
wave-function given in this appendix for the cases of single and multiple domains.
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B.1. 2D electron gas

Single domain

Let us suppose the case of simple Dirichlet boundary conditions:

Φ(z0) = 0 (B.19)

where z0 denotes the boundary coordinate z. Since ξn,k(z0) = 0 implies ζn,k(z0) = 0
according to Eq.B.14, ε′′n and ζn(z) are independent of the in-plane k−vector even if
wxz and wyx are not zero. Instead, in the case of Dirichlet boundary conditions of
the type:

Φ(z0) 6= 0 (B.20)

or in the case of Neumann boundary conditions, according to Eqs.B.11 and B.14
both ε′′n and ζn(z) depend on k, unless we have wxz = wyx = 0.

Multiple domains

If we consider the penetration of the wave-function into the oxide (or into another
semiconductor with a different effective mass tensor), even for spherical bands (i.e.
wxz(z) = wyx(z) = 0), if the semiconductor mass (msct) and the oxide mass (mox)
are different, the z dependent mass mz makes the kinetic energy related to the in
plane wave-vector k not a simple additive term and brings about a k dependence of
the term ξn,k(z) (it is not necessary to introduce the ansatz in Eq.B.14 being in this
simple case of spherical bands the tensor of the effective masses diagonal). In fact,
let us consider isotropic bands, in this case ξnk(z) in Eq.B.15 must satisfy[

− ~2

2mox

∂2

∂z2
− eφ(z) + ΦB +

~2k2

2mox

]
ξnk = En ξnk (oxide) (B.21a)[

− ~2

2msct

∂2

∂z2
− eφ(z) +

~2k2

2msct

]
ξnk = En ξnk (semiconductor) (B.21b)

where k= |k|, φ(z) is the electrostatic potential and ΦB is the barrier height. Eq.B.21
can be cast in the equivalent form:[
− ~2

2mox

∂2

∂z2
− eφ(z) + ΦB +

~2k2

2

(
1

mox
− 1

msct

)]
ξnk = εn ξnk (oxide) (B.22a)[

− ~2

2msct

∂2

∂z2
− eφ(z)

]
ξnk = εn ξnk (semiconductor) (B.22b)

where εn is related to the eigenvalue En of Eq.B.21 by En=εn+~2k2/(2msct). For
mox 6= msct the transverse wave-vector k does not simply provide an additive term to
the subband minima εn given by Eq.B.22, but instead enters Eq.B.22 as a parameter
and makes both ξnk(z) and εn dependent on k.

In this thesis we essentially solved Eq.B.22 by neglecting the term ~2k2/2(1/mox−
1/msct) compared to the barrier energy ΦB. To make a quantitative assessment about
the importance of the ~2k2/2(1/mox − 1/msct) term, we considered the HfO2-InAs
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B. Effective mass Schrödinger equation for a 2D and 1D electron
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system (mHfO2=0.11 m0 and mInAs=0.026 m0) with an electron density n=2 · 1012

cm−2. The corresponding magnitude of the Fermi wave-vector is kF =
√

2π · n ' 0.35
nm−1, leading to ~2k2/2(1/mox − 1/msct) '177 meV, which is very small compared
to ΦB = 2.9eV . This analysis suggests that the k dependent term provides only a
minor correction to the solution of Eq.B.22.

B.1.1 Conservation of the transverse momentum

Let us analyze the case of the Si-SiO2 system including wave-function penetration.
In the solution for the Schrödinger equation we use an effective mass approximation
and notice that Si and SiO2 conduction band minima have different positions in the
3D Brillouin zone: ∆−valleys of silicon are located at (0.852π/a0) (where a0 is the
lattice constant), whereas for the oxide the minimum is at the Γ point. Hence, while
the wave-function used in our calculations is only the envelope wave-function, one
may argue that, when the wave-function penetration in the oxide is considered, one
should impose the continuity of the complete wave-function (i.e. accounting also for
the different Bloch functions in the two materials) and that, furthermore, parallel
momentum should be conserved.

The parallel momentum conservation is of course very important, for example,
for the calculation of tunneling currents and it has been debated in several previous
publications [3]. If parallel momentum conservation is used in tunneling calculations,
for example, it is known that much larger barriers and correspondingly smaller
tunneling currents are obtained for 〈110〉 and 〈111〉 silicon interfaces compared to
the 〈100〉 interface; however this has not been observed in experiments.

The lack of a clear experimental evidence for parallel momentum conservation
in the Si−SiO2 system has been tentatively ascribed to the amorphous nature of
thermally grown SiO2 films, or to the fact that some scattering mechanisms (e.g.
phonons, disorder induced scattering or surface roughness itself) may assist tunneling
and provide the missing momentum. At this regard, it is finally worth recalling that
the so called unprimed subbands in 〈100〉 silicon inversion layers stem from the two
out of plane ∆ minima (with quantization mass mz '0.92m0), which are projected at
the Γ point in the 2D Brillouin zone of the quasi-2D electron gas. This implies that,
in terms of 2D wave-vectors in the the 2D Brillouin zone, the dominant subbands in
the silicon inversion layer are actually located at the Γ point.

While the above discussion is certainly not conclusive, the point we tried to make
is that several physical explanations have been proposed in the literature to justify
quantization models for inversion layers at a Si−SiO2 interface that do not account
for the parallel momentum conservation.
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B.2. 1D electron gas

Figure B.2: Sketch of a circular NW.

B.2 1D electron gas

Under the hypothesis that the confinement energy Uν(R) can be written as the
sum of two terms

U(R) = U(x) + Uν(y, z), (B.23)

the envelope wave-function can be written as the product of two components

Φ(R) = Φ(x)Φ(y, z). (B.24)

Assuming that the confinement potential varies only in the quantization plane y, z
by setting U(x) = 0, and substituting Eqs.B.24,B.23 into Eq.B.10 it can be easily
demonstrated that a plane wave satisfies the equation for Φ(x) giving the dispersion
relation Ex(kx) = (~2k2

x)/(2mx). According to this ansatz on the longitudinal poten-
tial U(x), the envelope wave-function can be written as the separated contributions
of a transverse and longitudinal component:

Φn,kx (R) =
Sn,kx (y, z)√

Lx
eikxx (B.25)

where for the sake of simplicity the notation for the valley ν has been dropped from
the envelope wave-function and where Lx is a normalization length that always
disappears in the final results (i.e. for matrix elements, scattering rates). The kx
value in Eq.B.25 are set by the boundary conditions and according to Appendix D
are given by the discrete kx values:

kx = n
2π

L
. (B.26)
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Following the approach in [4], it can be shown that it is convenient to introduce a
second ansatz and write Sn,kx (y, z) as:

Sn,kx (y, z) = ξn (y, z) ei kx(αy+βz) (B.27)

in order to obtain an eigenvalue equation where appears only the second derivative
operator and where coefficients α and β are given by:

α =
−wxywzz + wyzwxz
wyywzz − w2

yz

, β =
−wyywxz + wyzwxy
wyywzz − w2

yz

. (B.28)

According to the EMA and based upon the approximate expression for the band
structure close to the band minima of Eq.A.10 the stationary envelope wave-function
ξn(y, z) and the quantized energy levels in the cross-section are the solutions of the
eigenvalue problem:[

−~2

2
∇ ·
(
W2D

DCS∇
)

+ U(r, θ)

]
ξn(y, z) = εnξn(y, z) (B.29)

where W2D
DCS is defined as:

W2D
DCS =

(
wyy wyz
wzy wzz

)
. (B.30)

The resulting envelope wave-function where the quantum confinement is decoupled
from the transport direction is given by:

Φn,kx (R) =
ξn(y, z)√

Lx
eikx(αy+βz+x) (B.31)

and the total energy of a particle for the valley ν is written as:

En,ν(kx) = εν,n +
~2k2

x

2
mxx (B.32)

where mxx is the effective mass along transport direction:

mxx = [WDCS ]−1
(1,1) =

wt1wt2wl
wyywzz − w2

yz

(B.33)

and where wt1,wt2, and wl are the inverse of the effective masses in the ECS (see
Appendix A for more details).

B.3 On the continuity conditions of the Schrödinger
equation

The remarkable advantage of the Schrödinger equation written within the EMA
is that all the informations of the microscopic structure of the semiconductor are
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accounted in the effective mass and band edge energy Eν,0. This model can be
used even in the presence of heterostructures as in the case of semiconductor-oxide
domains. One could be tempted to write the Eq.B.10 in a more general form:[

−~2

2
∇ · (WDCS(R)∇) + U(R)

]
Φν,n (R) = ε

′
ν,nΦν,n (R) (B.34)

where the effective masses are R dependent. Typically, the interfaces between oxide
and semiconductor, or between different semiconductors, take place over a few lattice
layers, so that potential variation which is typically on the range of few tens of
meV up to 1-2 eV cannot be considered smooth with respect to the atoms potential
as discussed in Sec.B for the derivation of Eq.B.10. To circumvent this issue, the
Schrödinger equation can be solved in the different domains resorting to Eq.B.10 and
then by using appropriate continuity conditions at the semiconductor-oxide interface.
In order for the eigenvalue problem to be well posed we need two conditions at the
semiconductor-oxide interface:

Φn,kx (R) and (WDCS∇Φn,kx (R))⊥ continuous. (B.35)

where (•)⊥ denotes the quantity (•) normal to the semiconductor-oxide interface (e.g.
for a planar device with a 2D electron gas corresponds to the direction normal to
the semiconductor-oxide interface, whereas, for a circular GAA device, to the radial
direction). The first equation follows directly from the fact that the probability
distribution function must be single-valued everywhere in space, the second is a
generalization for a 3D domain of the Ben Daniel-Duke condition [5]. In fact, if
we consider for simplicity a 2D electron gas (the gas can freely move on the x, y
plane), under the assumption of continuous envelope wave-function and integrating
the Schrödinger equation over an infinitesimal range across the boundary [−ε/2, ε/2]
between the two materials (assuming the interface located at z=0) we write:∫ ε/2

−ε/2

[
− ~2

2m∗
∂2

∂z
+ U(z)

]
Φn(z)dz = εn

∫ ε/2

−ε/2
Φn(z)dz

−~2

2

[
1

m

∂

∂z
Φn(z)

]+ε/2

−ε/2
=

[
εn −

|U+(0)− U−(0)|
2

]
Φn(z)ε.

(B.36)

Obviously the εn term exits the integral being a non-local term since it is an eigen-
energy solution of the Schrödinger equation in the whole domain. Evaluating the
limit for ε→ 0 we obtain the second boundary condition of Eq.B.35 for a 1D case:[

1

mI

∂

∂z
ΦI
n(z)

]
z=0

=

[
1

mII

∂

∂z
ΦII
n (z)

]
z=0

(B.37)

where I and II denotes the two media. The above equation is the one obtained in
[6] from k·p analysis and is the same as in [5] by considering steady state electron
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transport across a heterojunction. Moreover, it can be demonstrated that Eq.B.37
satisfies the condition for the probability current density (JΦ) to be solenoidal along
the direction normal to the semiconductor-oxide interface. The starting point is to
resort to the charge continuity equation expressed in the local form as:

∇ · J = −∂ρ
∂t

(B.38)

where the current density J and the charge ρ must be regarded as probability
current density (JΦ) and probability density (PΦ), respectively. The derivative of
the probability density over the time is defined as:

∂PΦ

∂t
= Φ

∂Φ∗

∂t
+ Φ∗

∂Φ

∂t
. (B.39)

By multiplying the l.h.s of the time-dependent Schrödinger equation of Eq.B.1
(by replacing the wave-function with the envelope wave-function) by Φ∗ and the
corresponding Schrödinger equation for Φ∗ by Φ and taking the difference of the two
equations we obtain:

∂PΦ

∂t
= Φ

∂Φ∗

∂t
+ Φ∗

∂Φ

∂t
=

~
2im

[
Φ∗∇2Φ− Φ∇2Φ∗

]
. (B.40)

Using the Green’s identity f∇2g − g∇2f = ∇ · (f∇g − g∇f) to rewrite the r.h.s of
Eq.B.40 we finally obtain the generalization for 3D dimensions case of the continuity
condition of Eq.B.38:

∂PΦ

∂t
= −∇ · i~

2
[WDCS (Φ∗∇Φ− Φ∇Φ∗)]︸ ︷︷ ︸

JΦ

(B.41)

where the term JΦ denotes the probability current density. The existence of stationary
states along the direction normal to the semiconductor-oxide interface, implies the
component parallel to this direction of JΦ to be constant. Therefore the continuity
of JΦ implies:

W I
DCS=

{
ΦI,∗∇ΦI

}
|interface = W II

DCS=
{

ΦII,∗∇ΦII
}
|interface (B.42)

where =(•) denotes the imaginary part of (•). In virtue of Eq.B.42 it is now apparent
that boundary conditions in Eq.B.35 implies that the probability current is constant
along the direction normal to the semiconductor-oxide interface.
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Appendix C

Non-parabolicity corrections

As mentioned in Appendix B throughout this work, the Schrödinger equation
is solved within the EMA with a parabolic effective mass approximation for the
energy relation E(K) close to a valley minima, with an overall energy dispersion
that is given by Eq.B.4 for a 3D electron gas, by Eq.B.16 for a 2D electron gas and
by Eq.B.32 for a 1D electron gas. However, expecially for III-V semiconductors
nonparabolicity cannot be neglected as shown in Fig.C.1. In this work we account
for these effects by applying proper corrections to the DOS (for 3D electron gas),
and to the eigenvalues for 2D and 1D quantized electron gas.

C.1 3D electron gas

C.1.1 Density of states

Carriers in a semiconductor without band quantization, occupy essentially con-
tinuum energy states either in the conduction or in the valence band. The number of
allowed states per unit of energy and volume in R-space is described by the density
of states (DoS) here denoted by g(E). By definition, the density of states can be
evaluated by counting all the states available at a given energy E and then dividing
by the normalization volume (or area for a 2D gas or length for a 1D gas).

The mathematical definition of DoS is thus:

g (E) =
1

Ω

∑
K

δ(E − E(K)) (C.1)

where Ω is the volume in the real space R and δ(•) is the Dirac delta distribution.

In order to ensure that Eq.C.1 is more mathematically manageable, it is better
converting the summation over K into an integral by using the prescriptions given
by Eq.D.8:

gν (E) =
nspµν

(2π)3

∫
δ (E − Eν (K)) dK (C.2)
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Figure C.1: Comparison between the energy band structure obtained for bulk
InAs using an 8 bands k·p solver [7] (dashed-line), and the energy profile obtained
by fitting the dashed-line with a parabolic equation (triangles) and with the non
parabolic equation of Eq.C.15 (circles).

where ν is the valley index, µν is the valley multiplicity factor and nsp is the spin
factor that is set to 2 according to Appendix D.

The energy regions around the minima of the conduction band for a given valley
ν, can be approximated by a quadratic function of K:

Eν (K)− Eν,0 =
~2Kx

2

2m∗x
+

~2Ky
2

2m∗y
+

~2Kz
2

2m∗z
(C.3)

where Eν,0 is the energy of the bottom of the conduction band, and Kx, Ky, Kz are the
deviations with respect to the K-point at the bottom of the considered valley. When
considering the ellipsoidal energy dispersion relation, in order to simplify analytical
calculations for the DoS, it is useful to introduce a scale-transformation applied to
an ellipsoid to turn it into a sphere. This is the Herring-Vogt transformation.

Herring-Vogt transformation

For the ellipsoidal equi-energy surfaces the transformation to turn an ellipsoid
into a sphere is defined as:

K∗i =
∑
j

TijKj (C.4)
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C.1. 3D electron gas

where K∗i is the transformed wave-vector, Kj is the wave-vector belonging to the
ellipsoidal dispersion relation and Tij the linear transformation matrix with i, j ∈
(x, y, z). For the energy relation in Eq.C.3 the T matrix is defined as:

Tij =


(
m0
m∗x

)1/2
0 0

0
(
m0
m∗y

)1/2
0

0 0
(
m0
m∗z

)1/2

 (C.5)

where m0 is the free electron mass. It should be noticed that, since the T matrix
is diagonal, the inverse transformation is again diagonal with the inverse matrix
element. We have:

K∗x =
∑
j

T1jKj = Kx

√
m0

m∗x

K∗y =
∑
j

T2jKj = Ky

√
m0

m∗y

K∗z =
∑
j

T3jKj = Kz

√
m0

m∗z
(C.6)

By substituting Eq.C.6 into Eq.C.3, we obtain the desired spherical relation:

Eν (K∗)− Eν,0 =
~2(K∗)2

2m0
. (C.7)

Looking at Eq.C.2 the volume element dK is modified into dK∗

dK∗ = dK∗xdK
∗
ydK

∗
z

=
∑
j

T1jdKj

∑
j

T2jdKj

∑
j

T3jdKj

= dKx
m0

mx
dKy

m0

my
dKz

m0

mz

= dK

√ (
m3

0

)
mxmymz

(C.8)

Density of states: parabolic case

If we step back to the DoS for one of the simplest band structure, that is the case
of parabolic dispersion relation, the energy simply depends on the square of the K
vector through Eq.C.3. To perform the DoS calculation, we apply the Herring-Vogt
transformation by replacing Eqs.C.3 with Eq.C.7, therefore, Eq.C.2 becomes:

gν (E) =
2µν

(2π)3

√
mx,νmy,νmz,ν(

m3
0

) ∫
K∗

δ (E − Eν (K∗)) dK∗. (C.9)
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C. Non-parabolicity corrections

Since the energy relation Eν (K∗) is isotropic, Eq.C.9 can be rewritten as:

gν (E) =
2µν

(2π)3

√
mx,νmy,νmz,ν(

m3
0

) ∫
K∗

δ (E − Eν (K∗)) 4π (K∗)2 dK∗ (C.10)

where K∗ = |K∗| and 4π (K∗)2 is the surface of a sphere of radius K∗. By writing:

(K∗)2 =
(Eν (K∗)− Eν,0) 2m0

~2
(C.11)

and differentiating K∗, we obtain:

dK∗

dEν
=

√
2m0

2~
1√

Eν (K∗)− Eν,0
. (C.12)

To perform the DoS calculation, we must then substitute Eqs.C.11 and C.12 into
Eq.C.10, obtaining:

gν (E) =
2µν

(2π)3

∞∫
Eν,0

δ (E − Eν)

[
4π

(Eν − Eν,0) 2m0

~2
×

×
√

2m0

2~
1√

Eν − Eν,0

√
mx,νmy,νmz,ν(

m3
0

) dEν

]
(C.13)

The Dirac delta in Eq.C.13 reduces the integral and we obtain:

gν (E) =
µν
√

2

π2~3
m

3
2
0

√
Eν − Eν,0

√
mx,νmy,νmz,ν(

m3
0

)
=
µν
√

2

π2~3
(md,ν)

3
2
√
Eν − Eν,0. (C.14)

where md,ν = (mx,νmy,νmz,ν)1/3 is the so called density of state effective mass, which
is equal to the geometric mean of the three masses for the valley ν. It can be
demonstrated that Eq.C.14 corresponds to the DoS obtained for an isotropic case
but with md = m

1
3 where m is the isotropic effective mass. It should be noticed

that, to obtain the total DoS, gν(E) must be summed over all the valleys. If the
main axes of constant-energy ellipsoids are aligned with the Kx Ky Kz axis of the
crystal coordinate system (CCS) (see Appendix A for more details), then we can

write md = (mlmtmt)
1/3 where ml,t are the longitudinal and transverse mass of the

ellipsoids equienergy surfaces.

Density of states: nonparabolic case

At energies not too close to the band minimum, the conduction band deviates from
a parabola as illustrated in Fig.C.1. The non-parabolicity effect is included within
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C.1. 3D electron gas

the dispersion relation by the non-parabolicity factor α which has the dimensions of
an inverse energy, and is implicitly defined by:

(Eν (K)− Eν,0) [1 + αν (Eν (K)− Eν,0)] =
~2Kx

2

2m∗x
+

~2Ky
2

2m∗y
+

~2Kz
2

2m∗z
(C.15)

with the prescription that Kx, Ky, Kz are the deviations with respect to the wave-
vector at the bottom of the valley. To simplify the DoS calculations, we define a new
variable named γ (E):

(Eν (K)− Eν,0) [1 + αν (Eν (K)− Eν,0)] = γν (E) . (C.16)

According to Herring-Vogt transformations (see Section C.1.1), we rewrite Eq.C.15
as if it was isotropic with an effective mass equal to md,ν :

(Eν (K)− Eν,0) [1 + αν (Eν (K)− Eν,0)] =
~2K2

2md,ν
(C.17)

From the above equation, K and its derivative dK can be computed:

K =

√
2m∗

√
γν (E)

~
(C.18)

dK

dE
=

√
m∗

2~2

1√
γν (E)

dγν (E)

dE
(C.19)

By replacing Eqs.C.19 and C.18 into Eq.C.2 with the energy relation given by Eq.C.17,
we obtain the DoS for the valley ν for non-parabolic conduction energy bands:

gν (E) =
µν
4π3

∫
Eν,0

δ
(
E − Eν

(
K
′
))

4π

∣∣∣∣∣
√

2m∗
√
γν (E′)

~

∣∣∣∣∣
2

×

×
√
md,ν

2~2

1√
γν (E′)

dγν

(
E
′
)

dE′
dE
′

=
µν
√

2

π2~3
md,ν

3

2

∫
Eν,0

δ
(
E − E

(
K
′
))√

γν (E′)
dγν

(
E
′
)

dE′
dE
′

=
µν
√

2

π2~3
md,ν

3

2

√
γν (E)

dγν (E)

dE
dE

=
4µνπ (2md,ν)

3
2

h3

√
(Eν − Eν,0) (1 + αν (Eν − Eν,0)) [1 + 2αν (Eν − Eν,0)]

(C.20)

where m∗ = (mxmymz)
1
3 .
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C. Non-parabolicity corrections

C.1.2 Charge density

By definition the charge density is given by:

n =
∑
ν

∞∫
Eν,0

gν(E)f(E) dE (C.21)

where gν(E) is the density of states for the valley ν given by Eq.C.20, Eν,0 is the
conduction band energy minima for valley ν and f0(E) is the Fermi-Dirac distribution
function given by:

f0(E) =
1

1 + e
E−EF
kBT

(C.22)

where E is the total energy, EF is the Fermi level energy, kB is the Boltzmann
constant and T is the temperature. By substituting Eqs.C.20 and C.22 into Eq.C.21
we obtain:

n =
∑
ν

µν(2md,ν)3/2

2π2~3

∞∫
Eν,0

√
(E − Eν,0) [1 + αν (E − Eν,0)] [1 + 2αν (E − Eν,0)]

1 + e
E−EF
kBT

dE.

(C.23)
By introducing the variables:

ζν =
E − Eν,0
KBT

(C.24)

ην =
EF − Eν,0
KBT

(C.25)

Eq.C.23 becomes:

n =
∑
ν

µν(2md,νKBT )3/2

2π2~3

∞∫
0

√
ζν [1 + ανζν kBT ] [1 + 2ανζν kBT ]

1 + eζν−ην
dζν . (C.26)

In the case of parabolic dispersion relation (i.e. α = 0), Eq.C.26 simplifies to:

n =
∑
ν

µν(2md,νKBT )3/2

2π2~3

∞∫
0

√
ζν

1 + eζν−ην
dζν

=
∑
ν

µν(2md,νKBT )3/2

2π2~3
F 1

2
(η) Γ(1 +

1

2
) (C.27)

where F 1
2
(η) is the Fermi integral of order 1/2 defined as:

Fj(η) =
1

Γ(1 + j)

∞∫
0

ζj

1 + eζ−η
dζ (C.28)
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C.2. 2D electron gas

and Γ(1 + 1
2) =

√
π/2 is the Gamma function of 3/2. Finally, for a 3D electron gas

under the approximation of parabolic bands, the charge density reads:

n =
∑
ν

µν
(2md,νKBT )3/2

2π2~3

√
π

2︸ ︷︷ ︸
NC,ν

F 1
2
(ην)

=
∑
ν

NC,ν F 1
2
(ην). (C.29)

where NC is the so-called effective density of states for the conduction band. Moreover,
if we assume a Maxwell-Boltzmann distribution function instead of the Fermi Dirac,
we obtain:

n =
∑
ν

NC,ν e
−
EF−Eν,0
KBT . (C.30)

C.2 2D electron gas

Non-parabolic corrections have been implemented following [8]. In each section
of the device normal to the transport direction x, we expressed the energy En(k)
versus the wave-vector k= (kx, ky) for a given valley in the transport plane as [8]:

En(k) = 〈Un〉+

√
1 + 4α[~

2

2

[
k2
x

mx
+

k2
y

my

]
+ ε

(p)
n − 〈Un〉]− 1

2α
(C.31)

where 〈Un〉=
∫
|ξn,x(z)|2U(x, z)dz is the expectation value in section x of the total

potential energy (U(x, z)) for subband n, z is the quantization direction, y is the

direction normal to the transport, while ε
(p)
n and ξn,x(z) are the subband minimum

referred to the energy of the conduction band minima of the considered valley and
envelope wave-function for the parabolic effective mass Hamiltonian in Eq.B.17; α is

finally the non-parabolicity factor [8]. The non-parabolic subband minimum (ε
(np)
n )

is obtained by setting k= 0 into Eq.C.31.

The expressions for the electron velocity and density of states stemming from
Eq.C.31 are reported in [8].

In Eq.C.31 the non-parabolicity affects both the subband minima and the energy
versus k relation in the transport plane. This is a distinctive feature of the model
in [8], which makes the transport mass (as well as other band-structure figures)
dependent on size and bias induced quantization and, consequently, dependent on the
well thickness and different in each subband. To be more specific, the transport mass
mtr at the subband minimum can be calculated from the E(k) in Eq.C.31 and, for
an isotropic material and an ideal square quantum well corresponding to 〈Un〉 = 0,
one readily obtains:

mtr,n = mxy

√
1 + 4α ε

(p)
n (C.32)
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C. Non-parabolicity corrections

where α is the non-parabolicity coefficient, ε
(p)
n are the subband minima for the n−th

eigenvalue of the parabolic Schrödinger equation and mxy=mx=my is the transport
mass for the bulk material.

Eq.C.32 clearly shows that mtr changes with the subband, differs from mxy and
depends on the well thickness. This can be also observed in Fig.C.2, reporting the
energy relation E(k) from Eq.C.31 for the lowest subband of a quantum well with
different well thickness Tw. The curvature of the E(k) at the subband minimum is
clearly affected by Tw.
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Figure C.2: Energy versus wave-vector magnitude k obtained with Eq.1 of the
manuscript, for an ideal quantum well and different well thickness Tw including
wave-function penetration in the HfO2 oxide. The potential energy in the quantum
well is taken as the zero.

Since in our model the transport mass is not simply mxy and changes with Tw,
we believe that it is not advisable to employ a Tw dependent mxy, as it has been
often done in strictly parabolic models, with an mxy extracted from, for example,
tight-binding simulations as in [9]. It should be also considered that in In1-xGaxAs
semiconductor materials the E(k) is strongly non parabolic (see Fig.2.1 and Fig.C.2),
and so the band curvature at the very bottom of the subband is by no means the
only relevant figure.

In order to address pragmatically the validity of our non parabolic energy model
for different Tw, we decided to analyze first the subband minima versus Tw and then
the E(k) in a 5 nm thick quantum well comparing the results of our model with
those retrieved in the literature and obtained with tight-biding calculations.

In this respect, Fig.C.3 compares the lowest subbands obtained with the model
of this work and the sp3d5s∗ tight-binding method. As can be seen the non parabolic
model can track very well the tight-binding results, reinforcing our confidence in the
dependability of the model proposed in [8].
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C.2. 2D electron gas

As a final verification, Fig.C.4 compares the E(k) in a 5nm quantum well obtained
with our model and from the tight-binding calculations reported in [10]. As can be
seen, the effective mass non parabolic model of Eq.C.31, can reproduce very well the
tight-binding results, and for the well thickness which is used for most the device
simulations reported in this work.
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Figure C.3: Lowest subbands versus well thickness Tw. Subband minima for [11]
and [12] were calculated as ~2/2mq(π/Tw)2, from the values of the Tw dependent
quantization mass mq reported in the papers.
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C. Non-parabolicity corrections

C.2.1 Charge density at equilibrium

In the case of a 2D electron gas described according to the EMA approximation
discussed in Appendix B.1, and assuming that ξn(z) does not depend on the k−vector
in the transport plane, the equilibrium electron density per unit volume can be
expressed as:

n(z) =
∑
ν,n

|ξν,n(z)|2
+∞∫

ε
(np)
ν,n

gν,n(E)fν,n(E)dE (C.33)

where ε
(np)
ν,n is the nonparabolic subband minimum obtained by setting k = 0 in

Eq.C.31, ν is the valley index, n is the subband index, gν,n(E) is the nonparabolic
density of states from [8], and fν,n(E) is the Fermi Dirac distribution function defined
in Eq.C.22. By introducing the new variables:

ζν,n =
E − ε(np)

ν,n

KBT
(C.34)

ην,n =
EF − ε(np)

ν,n

KBT
(C.35)

EqC.33 can be rewritten as:

n(z) =
∑
ν,n

|ξν,n(z)|2 nspµν
2π~2

md,ν

+∞∫
0

[
1 + 2α

(
KBTζν,n + ε

(p)
ν,n − Uν

)]
1 + eζν,n−ην,n

KBT dζν,n

(C.36)
where md,ν =

√
mx,νmy,ν is the DoS effective mass, µν is the valley multiplicity, and

nsp is the spin factor is set to 2 according to Appendix D. After some calculations,
Eq.C.36 can be finally written as:

n(z) =
∑
ν,n

|ξν,n(z)|2
md,νµνKBT

π~2

{[
1 + 2α

(
ε(p)
ν,n − Uν

)]
ln (1 + eην,n) + 2αKBTF1(ην,n)

}
(C.37)

where F1(ην,n) is the Fermi integral of order 1 of ην,n defined in Eq.C.28.

C.3 1D electron gas

Non-parabolic corrections have been implemented following [8]. Along the trans-
port direction x, we expressed the energy En(kx) for the subband n belonging to a
given valley as [8]:

En(kx) = 〈Un〉+

√
1 + 4α

[
~2

2

[
k2
x

mx

]
+ ε

(p)
n − 〈Un〉

]
− 1

2α
(C.38)
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C.3. 1D electron gas

where 〈Un〉=
∫
|ξn(y, z)|2U(y, z)dydz is the expectation value in section x of the total

potential energy (U(y, z)) for subband n, (y, z) is the quantization plane, while ε
(p)
n

and ξn,x(y, z) are the subband minimum referred to the energy of the conduction band
minima of the considered valley and wave-function for the parabolic effective mass
Hamiltonian in Eq.4.1; α is finally the non-parabolicity factor [8]. The non-parabolic

subband minimum (ε
(np)
n ) is obtained by setting kx = 0 in Eq.C.38.

C.3.1 Charge density at equilibrium

In the case of a 1D electron gas described according to the EMA approximation
discussed in Appendix B.2, and assuming that ξn(y, z) does not depend on the kx,
the electron density per unit volume at a given section along transport direction is
given by:

n(z, y) =
∑
ν,n

|ξν,n(y, z)|
+∞∫

ε
(np)
ν,n

gν,n(E)fν,n(E) dE (C.39)

where ν is the valley index, n is the subband index, gν,n(E) is the nonparabolic
density of states from [8], and fν,n(E) is the Fermi Dirac distribution function defined
in Eq.C.22.

The equation for the DoS in a 1D electron gas can be calculated following the
procedure used for the 3D gas in Appendix C.1.1 but using the one dimensional
energy relation of Eq.C.38 obtaining:

gν,n(E) =
2µν
π~

1

vg,ν,n(E)
(C.40)

where µν is the valley multiplicity factor, vg,ν,n(E) is the group velocity for the
subband n belonging to the valley ν and where we have accounted for the spin
degeneracy factor (that has been set to 2). Eq.C.40 shows that the DoS has a
singularity for the total energy E approaching the subband minima, because the
velocity of carriers tends to zero. The expression for vg,ν,n(E) is:

vg,ν,n(E) =
~ kx

mx,ν [1 + 2αν (E − Uν,n)]
. (C.41)

By substituting Eq.C.40 into Eq.C.39 and introducing the new variables given by
Eq.C.35, we obtain:

n(y, z) =
∑
ν,n

|ξν,n(y, z)|2 µν
√

2mx

π~

+∞∫
0

{
1 + 2α

(
KBTζν,n + ε

(np)
ν,n − Uν

)
√
KBTζν,n + ε

(np)
ν,n − ε(p)

ν,n + α
(
KBTζν,n + ε

(np)
ν,n − Uν

)2
×

× KBT

1 + eζν,n−ην,n
dζν,n

}
(C.42)
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C. Non-parabolicity corrections

In the parabolic case (α = 0), it can be quite easily demonstrated that the DoS is
given by:

gν,n(E) =
µν
√

2mx,ν

π~
1√

E − ε(p)
ν,n

(C.43)

therefore, Eq.C.42 reduces to:

n(y, z) =
∑
ν,n

|ξν,n(y, z)|2 µν
√

2mxKBT

π~

+∞∫
0

ζ
− 1

2
ν,n

1 + eζν,n−ην,n
dζν,n

=
∑
ν,n

|ξν,n(y, z)|2 µν
√

2mxKBT

π~
F− 1

2
(ην,n)Γ− 1

2

=
∑
ν,n

|ξν,n(y, z)|2 µν
~

√
2mxKBT

π
F− 1

2
(ην,n) (C.44)
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Appendix D

Summations and integrals in
k-space

In the presence of a chain of N atoms, the boundary conditions for the wave-
function are set accordingly to the so called Born von Karman conditions imposed on
the wave-function Ψn,kx(x) (we here consider the case of a one-dimensional domain),
which are given by the equation:

Ψn,kx(x+Na) = Ψn,kx(x) (D.1)

where Ψn,kx(x) is the Bloch function solution of the time-independent Schrödinger
equation for a one-dimensional domain and for the unperturbed Hamiltonian (see
Eq.B.1 with U(x)=0), n is the index of the eigenvalue of the Schrödinger equation,
and a is the lattice constant. Being the Bloch function such that:

Ψn,kx(x) = un,kx(x)ei kxx (D.2)

where un,kx(x) is a rapid oscillating function on the scale of the crystal lattice with
the periodicity of the Bravaix lattice, Eq.D.1 can be written as:

Ψn,kx(x+Na0) = ei kx(x+Na0)un,kx(x+Na0) = ei kx(Na0)Ψn,kx(x) (D.3)

where a0 is the lattice constant. Hence, boundary conditions of Eq.D.1 require that:

kxNa0 = 2πn, n = 0,±1,±2, . . . (D.4)

so only discrete kx values are allowed:

kx =
2πn

Na0
, n = 0,±1,±2, . . . (D.5)

Since Na0 = L is the domain length (L is a normalization length) the density of kx
states defined as the number of kx states per unit length in the k−space as depicted
by Fig.D.1 is given by:
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E(k)

k

2π/L

Figure D.1: State dimension in k-space

g(kx) =
L

2π
(D.6)

that, for the case of a d−dimensional space becomes:

g(k) =
Ld

(2π)d
. (D.7)

Similarly to the Born von Karman boundary conditions imposed on the wave-function
Ψn,kx(x), being the length L of the domain enough long and since we are not interested
to have very accurate solutions of the Schrödinger equation within the EMA close
to the boundaries of the x−domain, in this work we assume periodic boundary
conditions in the transport direction for the envelope wave-function of Eq.B.25
leading to discrete kx values as in Eq.D.5. As the normalization length L increases,
the density of kx states increases as well: if L is long enough the k−space can be
regarded as a continuum space. Hence, a generic sum over K for a d−dimensional
case can be replaced by an integral over K according to:

(2π)d

Ld

∑
K

S(K) = nsp

∫
K

S(K)dK (D.8)

where nsp is the spin degeneracy factor. For each kx, two degenerate states with op-
posite spin exist and, furthermore, we wish to include both of them in the summation.
To clarify the value of the nsp factor, let us consider a few examples. In the case spin
does not enter the Hamiltonian, all eigenstates are simply two times degenerate and
the two states are occupied by electrons according to the Pauli’s exclusion principle.
Consequently, in all calculations that require a summation over all the kx states (i.e.
calculation of the electronic charge, or current ), when the summation over kx is
converted into an integral, nsp must be set to 2. For more complex Hamiltonian
formulations (e.g. k·p or tight-binding Hamiltonian), the nsp should be taken as 1 or
2 in the charge and current calculations when the spin-orbit interaction is or is not
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included in the Hamiltonian, respectively. Finally, if the summation over k−states
is used for scattering rate calculations, nsp must be set to 1 because the scattering
mechanisms considered in this work do not change the spin.
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Appendix E

Properties and definitions of
Dirac function

The definition of the sinc function can be linked to the following integral:

1

L

∫ L/2

−L/2
ei k xdx =

sin(0.5Lk)

0.5Lk
≡ sinc (0.5Lk) (E.1)

where we have used the definition of the non-normalized sinc function sinc(x) =
sin(x)/x , in the sense that its integral equals to π and not to 1. The sinc function
can be used as a nascent delta function, in the sense that the following weak limit
holds:

limL→∞
L

2π
sinc(0.5Lk) = δ(k) (E.2)

Hence, according to Eqs.E.1 and E.2:

limL→∞

∫ L/2

−L/2
ei k xdx = 2πδ(k). (E.3)

Several equivalent definitions of the Dirac function are:

δ(k) =



limL→∞
1

2π

∫ L/2

−L/2
ei k xdx

limL→∞

(
L

π

)
sinc (Lk)

limL→∞

(
L

π

)
sinc2 (Lk)

(E.4)

So far k has been considered a real number, but due to the Born von Karman
conditions applied to the wave-function in Eq.D.1, k assumes discrete values k = 2π/L
with n = 0,±1,±2, . . . as demonstrated in Eq.D.5. As can be seen the discrete k
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E. Properties and definitions of Dirac function

values correspond to all the zeros of the sinc(0.5Lk) function, except for k = 0. In
other words we have:

1

L

+L/2∫
−L/2

eikxdx = sinc(0.5Lk)

= δk,0 =

{
1 if k = 0

0 otherwise
(E.5)
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Appendix F

From autocorrelation function
to power spectrum

Let us write the Fourier transform of a two-dimensional function as:

F (qx, qy) =

∞∫∫
∞

f(x, y)e−i qx x−i qy ydxdy. (F.1)

By changing the coordinate system from Cartesian to polar (x = r cosθ, y = r sinθ),
we have:

F (qx, qy) =

2π∫
0

∞∫
0

f(r, θ)e−i qx r cosθ−i qy r sinθ r dr dθ. (F.2)

We can also write qx and qy using polar coordinates (qx = qcosφ and qy = qsinφ)
and rewrite Eq.F.2 as:

F (q, φ) =

2π∫
0

∞∫
0

f(r, θ)e−i q r cos(θ−φ) r dr dθ. (F.3)

In the special case when the function f(r, θ) depends only on the r−coordinate, we
can set α = θ − φ and obtain:

F (q, φ) =

2π−φ∫
−φ

∞∫
0

f(r)e−iqrcosαrdrdα

=

∞∫
0

rf(r)dr

2π∫
0

e−iqrcosαdα

︸ ︷︷ ︸
2πJ0(qr)

. (F.4)
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F. From autocorrelation function to power spectrum

where J0(qr) is the Bessel function of zero order and first kind. As can be seen, the
Fourier transform of a function f(r) that depends only on the radial abscissa r can
be written as:

F (q) = 2π

∞∫
0

f(r)rJ0(qr)dr (F.5)
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