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INTRODUCTION 

 

HDACs – a heterogeneous family of transcriptional repressors 
  

 How the cells adapt to a constantly challenging environment is one of the most 

studied topic of the biological science and, despite a growing body of experimental 

data, a comprehensive scenario is still missing. In general, cells face a particular 

stimulus by activating a complex response that ultimately leads to a change in the 

gene expression profile. In a specific moment, the chromatin status of a gene 

determines its propensity to be actively transcribed and two main classes of 

epigenetic modifiers are able to switch the chromatin organization from a condensed 

to a relaxed conformation – the Histone Acetyltransferases (HATs) – or viceversa – 

the Histone Deacetylases (HDACs). By acetylating the lysine’s ε-amino group of the 

histone tails, HATs decrease the overall positive charge of histones leading to a 

decrease in their interaction with the negatively charged DNA and, thus, allowing the 

transcriptional machinery to access the gene locus. In contrast, the deacetylation of 

histones by HDACs increases their affinity for DNA, tightening the chromatin and 

reducing the transcriptional activity (Narlikar GJ et al., 2002). Hyperacetylation of 

lysine residues in the N-terminus of core histones, indeed, is commonly found in 

promoter and enhancer sequences, as well as in intragenic regions of actively 

transcribed genes, demonstrating the key role of this post-translational modification in 

the initiation and elongation phases of the transcription process. Conversely, HDACs 

have been traditionally associated with gene repression and a great body of 

evidences supports this notion. Interestingly, recent finding coming from whole-

genome mapping and ChIP-seq experiments revealed that the majority of HDACs in 

the human genome are associated also with active genes, suggesting the possibility 

that the main function of HDACs is to remove the acetyl group added by HATs and to 

reset the “histone code” following gene activation (Wang Z et al., 2009). In addition, 

the deacetylation of non-histone proteins, such as several transcription factors can 

result in either their activation or inactivation and hence impacting the expression of 

their target genes. 

In the human genome 18 proteins which contain a deacetylase domain exist. The 

deacetylases have been classified into two main macrogroups according to their 

homology with the yeast orthologues and to their co-factor dependence. The first 
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group, to which all the HDACs that need a zinc ion for their catalytic activity belong, is 

further divided into 4 classes: class I (HDAC1, 2, 3, 8); class IIa (HDAC4, 5, 7, 9); 

class IIb (HDAC6, 10) and class IV (HDAC11). The second group, instead, is 

composed by deacetylases which require NAD+ as co-factor and, since homologous 

to budding yeast Sir2, are commonly designed as Sirtuins (SIRT1-7). Ubiquitously 

expressed and with a subcellular localization that is completely nuclear, class I 

HDACs are thought to be the “canonical” histone deacetylases and share sequence 

similarity with budding yeast Rpd3. Structurally, they are constituted by a central 

deacetylase domain with very small N- and C-termini. With the exception of HDAC8, 

all class I HDACs work in multiprotein repressor complex, such as NuRD, sin3, 

CoREST, NcoR or SMRT, whose subunits can activate the catalytic domain of 

HDACs and conjugate coherent functions (ATP-dependent nucleosome-remodeling, 

histone demethylation) for initiation and/or maintenance of gene silencing. Recently, 

the crystal structure of HDAC3 in complex with its co-repressor SMRT was solved 

and it was demonstrated that HDAC3 binding to a D-myo-inositol-1,4,5,6-

tetrakisphosphate is essential for complex formation acting as an “intramolecular 

glue” (Watson PJ et al., 2012). HDAC8, which not requires assembly into multiprotein 

complexes for its fully activation, displays important structural differences, exactly in 

the corresponding region of HDAC3-SMRT-inositol interaction. This structural 

peculiarity allows a better access of the substrate to the active site of HDAC8 

compared to the naive HDAC3 (figure 1A). 

Figure 1: Crystal structures of representative class I and IIa HDACs. A) Surface 
representations of class I HDAC3 complexed with the deacetylase activation domain (DAD) 
of SMRT/Ncor2 (left) and HDAC8 (right), coloured by crystallographic temperature factors 
(blue to red = low to high). HDAC8’s surface around the active site is relatively disordered, 
yet the catalytic site is accessible. B) Superimpositiion of the inhibitor (TFMK)-bound ribbon 
structure of HDAC8 (in green) and of HDAC4 (in white) catalytic sites. Note that His 976 in 
HDAC4 is rotated away from the active site differently from Tyr 306 in HDAC8. The His/Tyr 
substitution in HDAC4 prevents the formation of the hydrophilic tunnel necessary for the 
release of the reaction product (adapted from Watson PJ et al., 2012 and from Di Giorgio E 
et al., 2014). 
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Figure 2: Schematic representation of human zinc-dependent histone deacetylases. All 
zinc-dependent HDACs present a modular organization with a highly conserved catalytic 
domain (in green). Apart from HDAC10 and HDAC11, all HDACs possess a nuclear 
localization signal (NLS, in white) and, along with HDAC3, all class II HDACs are 
characterized by a nuclear export signal (NES, in black). For each human HDAC, the amino 
acids’ protein length and the known post-translational modifications are reported (adapted 
from Chiaradonna F et al., 2014). 
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HDAC4 and class IIa HDACs 
 

 Class IIa HDACs, and more in general class II HDACs, are defined by their 

phylogenetic similarity to budding yeast Hda1. Their bipartite structure is 

characterized by a conserved C-terminal deacetylase domain and a long N-terminal 

adaptor region that is mainly devoted to protein-protein interactions and site of post-

translational modifications that regulate class IIa HDAC subcellular localization and 

functions. 

Despite class I and class IIa HDACs share a very similar deacetylase domain, class 

IIa display a neglected deacetylase activity which is about 1000 fold less compared 

to class I HDACs. The low enzymatic activity toward acetyl-lysines of class IIa 

HDACs is caused by an aminoacid substitution (Tyr 976 His in HDAC4) in the 

catalytic pocket that is conserved in all vertebrate class II HDACs (figure 1B). 

Thanks to crystallographic analysis, it was determined that, while in class I and IIb 

HDACs the hydroxyl group of the tyrosine306 can stabilize the transition state of the 

reaction, by hydrogen bonding with the oxyanion intermediate, the corresponding 

histidine976 side chain in HDAC4 is pointing outward the catalytic site, thus limiting its 

stabilizing power toward the intermediate and selecting for a low enzymatic activity 

(Bottomley MJ et al., 2008). Notably, the gain of function mutant H976Y of HDAC4 in 

which the histidine is restored to tyrosine shows a deacetylating capability that is 

1000 fold higher than HDAC4WT (Lahm A et al., 2007), confirming the importance of 

this mutational event in the evolution of class IIa HDACs. Nevertheless, a 

deacetylase activity can be associated with class IIa HDACs in vivo since the 

catalytic domain of HDAC4 is able to physically interact with the NCoR co-repressor 

via its repression domain 3 (RD3) in a multiprotein complex in which the deacetylase 

activity is granted by class I HDAC3 (Fischle W et al., 2002). 

The long N-terminal region characterizes the class IIa HDACs (figure 2). This region 

contains a nuclear localization signal (Wang AH and Yang XJ, 2001) and a region 

devoted to the binding to several transcription factors, the most characterized being 

the myocyte enhancer factor 2 (MEF2) family members (Lu J et al., 2000). The 

amino-terminal region is also responsible for the interaction with the chaperones like 

β- and ε-14-3-3 proteins, which play important function in the regulation of class IIa 

activity (Wang AH et al., 2000). Since class IIa HDACs are not able to bind directly 

the DNA and given their ability to interact with both transcription factors and co-
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repressors, the emerging model is that class IIa HDACs function as a bridging factor 

to tether the repressor complex to the transcription factor binding sites in the 

genome. However, a puzzling finding was made by Zhou and colleagues, through the 

identification of a splicing variant of HDAC9, which lacks exon 22 at the carboxy-

terminus and so the deacetylase domain. This truncated version of the deacetylase 

was still able to repress the transcription of MEF2 target genes (Zhou X et al., 2001). 

This observation was further confirmed when it was discovered that the 289 aa 

amino-terminal fragment of HDAC4 generated by caspase-2/3 processing during 

apoptosis accumulates in the nuclear compartment where it acts as a potent 

transcriptional repressor of MEF2 activity (Paroni G et al., 2004). 

Class IIa HDACs possess both nuclear localization signal (NLS) and nuclear export 

sequence (NES) presents at the carboxy-terminus, the N-terminal domain is also 

indirectly responsible for their subcellular localization. In fact, in this region a set of 

serine residues is conserved among all class IIa HDAC members and can be target 

of phosphorylation by multiple kinases. Once phosphorylated, these serines become 

docking site for 14-3-3 chaperon proteins, which drive class IIa HDACs out of the 

nucleus, thus relieving their repressive potential. In other words, the phosphorylation 

status of these key serines governs the nucleus-cytoplasmic shuttling of these 

enzymes; a distinctive feature of class IIa HDACs. In accordance, site-specific 

mutagenesis to substitute Ser246, Ser467 and Ser632 (in HDAC4) with alanine 

generates a phospho-resistant mutant of HDAC4 that displays increased nuclear 

localization and operates as a super-repressor of MEF2-dependent transcription 

(Grozinger CM and Schreiber SL, 2000). Several kinases have been implicated in the 

regulation of class IIa HDACs subcellular localization. For instance, it has been 

shown that calcium/calmodulin-dependent protein kinases (CaMKs) are able to 

phosphorylate HDAC4 and HDAC5, although with different dynamics, resulting in 

their binding to 14-3-3 proteins, nuclear export and consequent disruption of the 

MEF2-HDAC complex. Through this mechanism CaMK signalling can affect the 

myogenic program under the control of MEF2 during the fibroblast-to-muscle 

differentiation process (McKinsey TA et al., 2000). A similar mechanism was 

proposed in the case of HDAC4-SRF interaction in cardiac myocites challenged with 

a hypertrophic stimulus. In this context, calcium influx and CaMK-IV activation, 

through HDAC4 phosphorylation and its cytoplasmic sequestration, allow SRF to 

dissociate from HDAC4 and enhance SRF-dependent transcription (Davis FJ et al., 
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2003). In summary, class IIa HDACs act as nodal regulators of striated muscle stress 

response by linking upstream Ca2+-dependent kinases to downstream gene program 

involved in hypertrophy. Interestingly, in cardiomyocytes PKA, whose activity can be 

stimulated by short repetitive catecholaminergic pulses, exerts an opposite effect with 

respect to CaMKs on the MEF2-HDAC4 axis. Activated PKA is able to indirectly but 

reproducibly induce a proteolytic cleavage of HDAC4. This uncharacterized 

proteolytic activity generates a N-terminal fragment that localizes into the nucleus 

where it serves as MEF2 repressor. Intriguingly, this HDAC4 N-terminal fragment 

shows a higher repressive potential against MEF2 compared to SRF, demonstrating 

that PKA-dependent HDAC4 proteolysis results in differential regulation of target 

transcription factors (Backs J et al., 2011).  

Not all the phosphorylation events acting on class IIa HDACs show the invariable 

outcome of the cytoplasmic retention of these proteins. It has been demonstrated 

that in C2C12 myoblasts, the constitutive activation of MAPK signalling by oncogenic 

HRAS or MEK1, which culminates with the switch on of ERK1/2 kinases, results in 

HDAC4 nuclear accumulation. In this case, the nuclear shuttling of HDAC4 can be 

justified by the MEF2-dependent repression of MyoD and myogenin and the inhibition 

of muscular differentiation of myoblasts as operated by mitogens or by oncogenic 

RAS signaling (Zhou X et al., 2000). 

 

Cancer cell metabolism: a step out Warburg’s shadow 
 

 It’s hard to start a discussion about cancer without first mentioning the seminal 

review by Hanahan and Weinberg in which the hallmarks of cancer cells have been 

described and categorized. Those fundamental hallmarks, namely the autonomous 

sustained proliferative signalling, the evasion from growth suppressors control, the 

resistance to cell death mechanisms, the unlimited replicative potential, the induction 

of angiogenesis and the activated invasion and metastasis programs underlie 

selective advantages that cancer cells acquire via distinct mechanisms and at various 

times during the multistep tumorigenesis process in-vivo (Hanahan D and Weinberg 

RA, 2000). However, during the last decade, another new basic characteristic of 

tumor cells has been recognized and comprised among the cancer hallmarks: the 

metabolic reprogramming (Hanahan D and Weinberg RA, 2011). Despite a renewed 

interest in this field has re-emerged quite recently, the metabolic reprogramming of 
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cancer cells was already known since the pioneering work by Otto Warburg in 1920s. 

In his seminal research, he noticed that ascites tumor cells consume more glucose 

than normal cells and the majority of glucose-derived carbons can be retrieved in 

secreted lactate, even in the presence of an oxygen concentration that would allowed 

oxidative phosphorylation (OXPHOS) to proceed (Warburg O, 1927). These peculiar 

features have been observed in several types of cancers and constitute the 

fundamental principles of the so-called “Warburg effect”. In order to justify the 

increased dependence from glycolysis and the concomitant decrease in respiration 

observed in tumor cells with respect to normal cells, it has been postulated a model 

in which cancer cells arise from the body of normal cells in two temporally distinct 

phases. In the first phase an irreversible injury of mitochondrial respiration takes 

place and is followed by a second phase of cancer formation where the selective 

pressure saves only those cells that succeed in replacing the irretrievably lost 

respiration energy by fermentation (Warburg O, 1956). Therefore, from a biological 

point of view, this altered metabolism confers to cancer cells a selective advantage 

for survival and proliferation in the unique tumor microenvironment characterized by 

continuously fluctuating oxygen levels (Hsu PP and Sabatini DM, 2008). However, 

this implies that, just to meet the energy demand for sustained cell proliferation and 

given that glycolysis is 18 times less efficient in terms of ATP production per glucose 

molecule compared to mitochondrial oxidative phosphorylation, cancer cells need to 

up-regulate the glucose flux through glycolysis several times. While this is true for 

most human tumors for the radiological visualization of which 18FDG-PET is clinically 

employed by virtue of their pronounced avidity for this glucose analogue, the issue 

regarding the presence of a real mitochondrial defect that can account for a 

“compensatory” increase in aerobic glycolysis is still debated in the scientific 

community. In most cancer cells, mitochondria are not defective for the capability of 

carrying out oxidative phosphorylation, but they are actually reprogrammed to meet 

the augmented biosynthetic needs that a cancer cell experiences (Ward PS and 

Thompson CB, 2012). Cell proliferation, indeed, is a costly process not only in terms 

of ATP consumption but also because it involves the de-novo synthesis of cellular 

components like nucleotides, fatty acids and membrane lipids for cell duplication. 

Under this view, the increased glycolysis flux can foster the production of various 

glycolytic intermediates that can be diverted to other biosynthetic pathways such as, 

for example, the pentose phosphate pathway (PPP). Hexokinase is the enzyme 
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responsible for the conversion of glucose to glucose-6-phosphate (G6P) and is 

frequently upregulated in various tumor cell lines, among which cervix carcinoma 

HeLa and AS-30D hepatoma cells could be cited. G6P, as a substrate for the first 

rate-limiting enzyme of the PPP – the glucose-6-phosphate dehydrogenase (G6PD) 

–, can feed the oxidative arm of the pathway in order to generate NADPH, the 

principal intracellular reducing molecule required for the biosynthesis of lipids, and 

ribose-5-phosphate, an essential precursor for nucleotides biosynthesis. 

Furthermore, glycolysis can provide dihydroxyacetone phosphate for triacylglyceride 

and phospholipid synthesis, 3-phosphoglycerate for serine, cysteine and glycine 

synthesis and pyruvate for oxidative phosphorylation and for alanine and malate 

synthesis. So the rationale for cancer cells of upregulating the glucose flux through 

glycolysis is to maximize the activity of lower-flux biosynthetic pathways, even though 

this results in a high rate of lactate production (DeBerardinis RJ et al., 2008). From 

this perspective, it is not surprising that most cancer cell lines, including A549 and 

H1299 lung carcinoma, 293T transformed embryonic kidney and HeLa cervix 

carcinoma cell lines, express the embryonic M2 splice variant isoform of pyruvate 

kinase (PK), the enzyme that catalyzes the third irreversible reaction of glycolysis by 

transforming phosphoenolpyruvate into pyruvate. The PKM2 is a less efficient 

isoform compared to PKM1 (the one expressed by normal adult cells), thus acting as 

a bottleneck of the pathway causing the upstream intermediates to accumulate and 

to be available for the biosynthetic pathways (Christofk HR et al., 2008). Moreover, 

cancer cells can also take advantage from mitochondrial tricarboxylic acid (TCA) 

cycle intermediates for biosynthetic reactions. The classic example is the continuous 

efflux (cataplerosis) of citrate from the mitochondria to the cytoplasm, where, thanks 

to the catalytic activity of ATP citrate lyase, an enzyme often upregulated in tumor 

cells (Gao Y et al., 2014), can be converted to oxaloacetate and acetyl-CoA. 

Cytoplamic acetyl-CoA, beyond being the source of acetyl groups for HATs, is used 

by fatty acid synthase, another enzyme frequently overexpressed in human tumors 

(Menendez JA et al., 2007), to generate lipids and cholesterol, while oxaloacetate is 

transformed by malate dehydrogenase to malate which, in turn, can either return to 

the mitochondria or be converted to pyruvate by malic enzyme and contribute to 

lactate production (Icard P et al., 2012). This example demonstrates that TCA-

functional mitochondria not only are present and active in cancer cells but they are 

also necessary to sustain tumor growth. The importance of a functional mitochondrial 
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compartment for cancer proliferation is confirmed by the glutamine addiction that 

many cancer cells display. In fact, in order to replenish the loss of TCA intermediates, 

because of citrate efflux from mitochondria, cancer cells engage in an anaplerotic 

mechanism that involves the glutamine-derived glutamate conversion into α-

ketoglutarate (Hensley CT et al., 2013). In this way, the glutaminolysis can serve the 

double purpose of generating reducing equivalents for the mitochondrial electron 

transport chain and to provide the cell, through the cytosolic conversion of glutamine-

derived malate to pyruvate, with the essential NADPH for fuelling fatty acid synthesis, 

as in the case of glycolytic SF188 human glioblastoma cell line (DeBerardinis RJ et 

al., 2007). In the same cell line, which was originally isolated from a patient whose 

tumor displayed an amplification of c-Myc, the mitochondrial glutamine metabolism is 

under the control of Myc. This oncogene/transcription factor can associate to the 

promoter of the high affinity glutamine importers, ASCT2 and SN2, upregulating their 

expression levels (Wise DR et al., 2008). Further supporting the importance of 

glutaminolysis for cancer cell proliferation, recently it has been shown that murine 

fibroblast NIH-3T3 cells overexpressing an hyperactive form of K-Ras, once deprived 

of glutamine, display an abortive S-phase (Gaglio D et al., 2009) and the anaplerotic 

block of glutamine utilization in cancer cells harboring K-Ras mutations causes S or 

G2/M cell cycle arrest and sensitizes cells to cytotoxic drug treatments (Saqcena M 

et al., 2014). Interestingly, it was discovered that glutamine-supported oxidative 

phosphorylation is a major source of ATP, both in normoxic and hypoxic conditions, 

in 4T1 Akt-driven mouse mammary tumor cell line, in ASPC1 K-Ras-driven human 

pancreatic cancer cell line, as well as in iBMK murine renal epithelial cells 

constitutively overexpressing either oncogenic H-RasG12V or myristoylated Akt, both 

proteins known to induce the Warburg phenotype. Notably, however, the inhibition of 

OXPHOS has a higher impact in terms of ATP/ADP ratio in Akt- compared to Ras-

overexpressing cells, underlining the heterogeneity which characterizes the 

metabolic regulation in cancer cells, especially regarding oxidative phosphorylation 

control (Fan J et al., 2013). In a computational analysis performed by Hu and 

collegues on 1421 human genes classified as “metabolic” according to KEGG 

database, in more than 2500 microarray gene expression profiles spanning 22 

different tumor types, it has been demonstrated that, if the glycolysis and the 

purine/pyrimidine biosynthetic pathway are commonly up-regulated in many tumors, 

this is not the case for oxidative phosphorylation. As a matter of fact, OXPHOS genes 
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has the most heterogeneous expression pattern among the considered cancer types, 

being significantly down-regulated in brain, colon, kidney, pancreatic and thyroid 

cancers whereas consistently up-regulated in breast, leukemia, lung, lymphoma and 

ovarian cancers (Hu J et al., 2013). This scenario is getting even more complicated if 

we consider that the OXPHOS gene expression profile is not only heterogeneous 

between different tumor types but also between samples of the same tumor, 

suggesting that the activity of oxidative phosphorylation is influenced by both the 

environmental variability across different tumors and the specific physiological 

conditions and/or genetic background of individual tumors in each patient (Hu J et al., 

2013). Therefore, although most tumor cell types show an enhanced glycolytic flux, 

not all have a diminished mitochondrial metabolic capacity. In other words, the 

accelerated cellular proliferation may impose an energy deficiency that, together with 

a higher demand for glycolytic and TCA cycle intermediates for biosynthetic 

purposes, can be satisfied only by increasing the glycolytic flux leaving, in the 

meanwhile, the oxidative phosphorylation unperturbed (Moreno-Sánchez R et al., 

2007). 

One of the six founder hallmarks of cancer described by Hanahan and Weinberg is 

the independence from growth signalling for proliferation. Normal cells, do not 

proliferate autonomously and enter and progress through the cell cycle only when 

systemic growth factors are present in the environment and capable of interaction 

with the relative receptors. This engagement turns on molecular pathways that 

ultimately activate gene programs leading to cell proliferation. Interestingly, in the 

absence of an appropriate growth stimulus, normal cells rapidly lose the membrane 

transporters of nutrient – mainly glucose and glutamine – and, just to retrieve the 

ATP support necessary for survival, engage the autophagy process (Thompson CB 

et al., 2005). In cancer cells the proliferation-promoting pathways downstream the 

growth factors signalling are often constitutively engaged because of the oncogene 

activation, which confers the well-known independence from environmental growth 

signals. An important effect of the constitutive activation of these pathways is the 

enhancement of nutrient uptake from the environment, thanks to the overexpression 

of the relative membrane importers. This strategy allows cancer cells to generate the 

high glycolytic and glutaminolytic fluxes, which are needed to maintain a metabolic 

phenotype of biosynthesis, independently from normal physiologic constraints, 

rendering cancer cells a metabolic-autonomous entity (DeBerardinis RJ et al., 2008). 
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Therefore, cellular metabolism and oncogene activation (or tumor suppressor 

inactivation) are two faces of the same coin, being intimately cross-linked and under 

the reciprocal influence. Hence, not surprisingly, the key components of the Warburg 

effect, namely the increased glucose consumption and aerobic glycolysis (with or 

without a decrease in the oxidative phosphorylation) accompanied by the 

concomitant increase in lactate secretion, are also distinguishing features of 

oncogene activation (figure 3). 

 

 
Figure 3: Metabolic reprogramming of cancer cells. A) In normal cells, the imported 
glucose is metabolized to pyruvate which is converted to acetyl-CoA and completely 
oxidized, through the mitochondrion-localized TCA cycle, to CO2 and H2O. In contrast, the 
aerobic glycolysis in tumor cells implies the conversion of glucose to pyruvate and 
subsequently into the waste product lactate. Moreover, in cancer cells, acetyl-CoA tends to 
be introduced into a truncated TCA cycle from which the citrate is exported to the cytosol to 
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be converted again in acetyl-CoA and serves as a building block for cell growth and 
proliferation. B) As a result of oncogenes gain of functions (in pink) or the the loss of function 
of tumor suppressor genes (in green) affecting the Ras pathway or the PI3K/Akt/mTOR/HIF 
pathway, the typical pattern of metabolic changes is induced, leading to cancer-associated 
alterations in basal metabolism (adapted from Kroemer G & Pouyssegur J, 2008). 
 

Oncogenes’ metabolic face 
A             B              C 

 
Figure 4: Representation of main oncogene signalling molecular pathways. A) The 
PI3K signalling: class IA PI3Ks are heterodimers of p85 regulatory subunit and p110 catalytic 
subunit and are capable to phosphorylate phosphatidylinositol-4,5-bisphosphate generating 
the membrane-bound second messenger phosphatidylinositol-3,4,5-triphosphate which is 
recognized by a set of signalling proteins with pleckstrin homology domain, the most 
characterized of which is the serine/threonine kinase Akt. Akt controls cell survival, cell cycle, 
cell growth and metabolism through phosphorylation of a pletora of key substrates. B) the 
mTOR signalling: mTOR kinase is an integrator of growth factor and nutrients signals. 
Growth factor signalling through Ras-Erk and PI3K-Akt axes activates mTORC1, while low 
nutrient availability or hypoxia inhibit mTORC1, in part through the LKB1-AMPK pathway. C) 
The Ras signalling: upon growth factors binding, receptor tyrosine kinase (RTK) dimerizes 
leading to phosphorylation of their tyrosines in the cytoplasmic face. These phospho-
tyrosines become docking sites for adaptor proteins such as GRB2 and GEF like SOS that 
can activate Ras GTPases. Upon activation, Ras proteins can switch on signalling cascades 
that ultimately lead to cell growth and cell cycle entry. Proteins whose genes are mutationally 
activated in human cancers are shown in red; those inactivated are in green. (adapted from 
Shaw RJ & Cantley LC, 2006). 
  

 The PI3K/Akt/mTOR pathway (figure 4A), which is engaged by normal cells in 

response to a wide range of growth and also hypertrophic stimuli, represents one of 

the most frequently dysregulated pathway in human malignancies. The activation of 

the PI3K following growth-factor stimulation results in the phosphorylation of 

phosphatidylinositol lipids at the plasma membrane and subsequent recruitment and 

phosphorylation-dependent activation of the serine/threonine kinase Akt (PKB). 

Beyond being amplified in certain tumors, Akt is a common downstream effector hub 

for multiple oncogenic pathways and its uncontrolled activity promotes the 
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constitutive expression of cell-surface nutrient receptors, as well as the upregulation 

of proliferation-related macromolecules biosynthesis, such as lipids and, through the 

mTOR activity, proteins. On the other hand, Akt activation is sufficient to induce the 

Warburg phenotype in leukemia and glioblastoma cell lines causing a dose-

dependent stimulation of aerobic glycolysis that results in increased lactate secretion, 

without affecting oxygen consumption. In accordance, PI3K inhibition in these cell 

lines blunts the glucose uptake and lactate production (Elstrom RL et al., 2004). A 

major negative regulator of the PI3K/Akt/mTOR pathway is the phosphatase and 

tensin homologue deleted in chromosome ten (PTEN). This enzyme is able to switch 

off the signalling throughout this pathway by dephosphorylating the 

phosphatidylinositol-3-phosphate species, thus avoiding Akt activation. Thanks to its 

role in the control of the PI3K/Akt axis, PTEN is considered as an oncosuppressor 

and loss of PTEN is a common genetic lesions observed in several human tumor 

types, including breast, ovarian, colon cancers and glioblastomas. Interestingly, the 

systemic overexpression of PTEN in mice results in smaller animals (because of 

lower organ cellularity), confirming the anti-proliferative function of this protein, but, 

more importantly, determines a tumor suppressive metabolic state characterized by 

decreased glucose consumption and lactate extrusion accompanied by increased 

mitochondrial oxygen consumption and ATP production as well as mitochondrial 

biogenesis. Mechanistically, the overexpression of PTEN in-vivo redirects, thanks to 

the decreased PKM2 protein levels, a great fraction of glycolytic intermediates into 

oxidative phosphorylation at the expense of lipid biosynthetic pathways, consistent 

with a reduced body fat accumulation in the “Super-PTEN” animals compared to 

normal littermates (Garcia-Cao I et al., 2012). Accordingly, in a model of thyroid 

neoplasia progression, the thyroid-specific deletion of PTEN in mice causes the 

repression of TCA cycle and OXPHOS genes that influences the overall 

mitochondrial functionality. Surprisingly, the compensatory aerobic glycolysis 

observed in this transformation model is not the outcome of the increased expression 

of transcription factors commonly responsible for the upregulation of glycolytic gene 

expression, such as Myc or HIF1α. Instead, it relies on the PI3K/Akt-dependent 

inhibition of the AMP-activated protein kinase (AMPK). Re-stimulation of AMPK, 

through the use of the AMP-analogue AICAR is able to reduce, at least in part, the 

mitochondrial defects, to reverse the glycolytic switch and, more importantly, to 

mitigate the thyroid hyperplasia caused by constitutive PI3K/Akt activation (Antico 
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Auciuch VG et al., 2013). In the same direction goes the discovery that, in colon 

cancer cells, the miRNA-mediated downregulation of PTEN induces a similar 

metabolic shift (Wei Z et al., 2014). 

The serine/threonine kinase mechanistic target of rapamycin (mTOR) is a conserved 

integrator of mitogenic and nutrient stimulations in mammalian cells (figure 4B) and, 

as such, deregulated mTOR signalling is frequently observed as an underlying 

driving force in cancer development (Shaw RJ & Cantley LC, 2006). mTOR can be 

engaged into two different complexes, mTORC1 and mTORC2, whose composition 

in terms of ancillary proteins dictates their functional specificity and their set of 

downstream effectors. Although there are other proteins specifically associated with 

either complexes, traditionally Raptor and Rictor scaffold proteins define mTORC1 

and mTORC2, respectively. mTORC1, which is the sole complex that can be 

effectively inhibited by rapamycin, responds to four major, not always synergistic, 

regulatory inputs: nutrients, growth factors, energy status and stress cues. Amino 

acids stimulation causes the shuttling of mTORC1, mediated by the activation of the 

small-GTPase Rag, to the endomembrane system (endosomes and lysosomes) 

where it can interact with and be activated by another small GTPase called Rheb, 

which in turn is stimulated by growth factors. Only when both nutrients (amino acids) 

and mitogenic (growth factors) stimuli are provided to the cells, mTORC1 is activated, 

thus operating as converging hub to generate coherent signalling in response to 

physiological favourable environmental conditions or to pathological hyperactivation 

of pro-growth pathways (Zoncu R et al., 2011). Upon activation, mTORC1 is able to 

promote protein synthesis with two different strategies. First it phosphorylates 4E-

BP1, a repressor of mRNA translation, preventing it to bind to eIF-4E and thus 

allowing the recruitment of the translational machinery to the 5’ end of most mRNA. 

Second, it can favour the initiation and elongation phases of the translation process 

by phosphorylating and activating S6K, a key positive regulator of translation (Ma XM 

& Blenis J, 2009). Thanks to their functional role as GAP for Rheb, hamartin (TSC1) 

and tuberin (TSC2), the protein subunits of Tuberous Sclerosis Complex (TSC), are 

actually effective in the shutting off of mTORC1 signalling and their homozygous 

deletion in mice is embryonic lethal. Interestingly, however, in immortalized MEFs 

derived from mouse embryos lacking TSC1, an increase in glucose consumption and 

lactate production was observed as the result of a mTORC1-dependent increase in 

several glycolytic enzymes expression, expecially PKM2. The upregulation of PKM2 
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is achieved through two independent mechanisms: the first involves the mTORC1-

HIF1α axis and implies a direct transcriptional activation of the PKM promoter by 

HIF1α. The second depends on the mTORC1-dependent upregulation of c-Myc that, 

in turn, can enhance the expression of three hnRNPs (PTB, hnRNPA1 and 

hnRNPA2) responsible for the repression of the alternative splicing of PKM1. This 

scenario applies also to human pancreatic (PANC-1) and hepatic (HepG2) cancer 

cell lines. The simultaneous inhibition of mTORC1 and glycolysis, or the stable 

knock-down of PKM2 in PC3 prostate cancer cell line, significantly retarded the 

development of tumors, when cancer cells were xenografted in mice (Sun Q et al., 

2011). Strikingly, the glycolytic switch caused by mTORC1 hyperactivation and 

mediated by HIF1α seems to contribute also to the sustaining of the trained 

immunity, the physiological ability of the innate immunity to mount an adaptive 

response (Cheng SC et al., 2014). Therefore, mTORC1 fulfils a key role in glucose 

metabolism and in the induction of aerobic glycolysis, not only in malignant cells but 

also in proliferating normal cells. However, it has been shown that, in proliferating 

cells, chemical inhibition of mTORC1 impacts also mitochondrial oxidative 

phosphorylation by imposing a 4E-BP-dependent block in the translation of a specific 

subset of mitochondrial nuclear-encoded genes, among which the ATP synthase 

subunits ATP5D, ATP5O, ATP5G1 and ATP5L and the mitochondrial transcription 

factor TFAM. Accordingly, mTORC1 inhibition results in a decreased overall oxygen 

consumption and mitochondrial mass, but also in a consistent drop in intracellular 

ATP levels (Morita M et al., 2013). These findings demonstrate that mTOR is not only 

a master regulator and inducer of glycolysis, but more in general, can act at multiple 

levels to coordinate the cellular increase in metabolic fluxes during high aminoacids 

and growth factors environmental conditions. 

Oncogenic transformation driven by the Ras family of small GTPase is another 

signalling cascade that has been identified to alter cellular metabolism (Chiaradonna 

F et al., 2006) (figure 4C). In the work of Schreiber group, the BJ human fibroblast 

cell line was subsequently engineered to express the catalytic domain of human 

telomerase, the large T antigen, the small T antigen and the oncogenic allele H-RAS 

to obtain a multistep progression toward full transformation. By challenging the 

resulting cell lines with small molecules able to modulate the aerobic as well as the 

anaerobic metabolism (oligomycin, 2-deoxyglucose, oxamic acid, wortmannin and 

rapamycin), they found that, when the cells are fully transformed by hyperactive H-
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RAS, they are also more sensitive to glycolysis and lactate production inhibition, as 

predicted by the Warburg effect, both in terms of growth inhibition and ATP 

generation (Ramanathan A et al., 2005). A mitochondrial dysfunction has been 

elucidated as a potential cause for Ras-driven aerobic glycolysis. In HEK-293T cells 

expressing a doxycycline-inducible oncogenic K-RAS isoform, it has been shown 

that, as early as 16 hours after the induction of K-RAS, mitochondrial morphology 

alterations such as disturbed cristae or disorganized network were already evident 

(Hu Y et al., 2012). Furthermore, K-RAS induction determined a substantial decrease 

in oxygen consumption that was caused by the down-regulation of OXPHOS 

complex I, both in terms of protein levels and activity (Baracca A et al., 2010). 

 

The metabolic side of class IIa HDACs 
 

 It is well established that a good fraction of pivotal metabolic enzymes are 

subjected to reversible acetylation/deacetylation processes able to fine tune their 

activity or protein stability (Huang W et al., 2014; Lv L et al., 2011). Moreover, most 

pathways (both anabolic and catabolic) converge on two key molecules, acetyl-CoA 

and NAD+, that are substrate or cofactor for HATs and of a particular class of HDACs 

– the Sirtuins –, respectively. These evidences have encouraged to hypothesize that 

HDACs can regulate cellular metabolism and that changes in the metabolic profile of 

a cell can influence the HAT/HDAC dynamic equilibrium, as a feedback loop. Thanks 

to their ability to shuttle between the nucleus and the cytoplasm depending on the 

phosphorylation status of their key serine residues, class IIa HDACs represent ideal 

effectors to solve a regulatory function on cytoplasmic metabolic enzymes and link 

metabolic changes with coherent transcriptional responses in the nucleus. In the last 

years several studies were published in support of this hypothesis establishing a 

functional link between class IIa HDACs and some metabolic responsive kinases. For 

instance, it has been discovered that AMP-activated protein kinase (AMPK) can 

phosphorylate HDAC5, promoting its nuclear export after interaction with 14-3-3 

proteins. Treatment of human primary myotubes with the AMP analogue AICAR, an 

inducer of AMPK activity, results in the enhanced expression of glucose transporter 

GLUT4 following HDAC5 phosphorylation and subsequent nuclear export, which is 

critical for relieving the repression operated on MEF2 TFs (McGee SL et al., 2008). A 

similar mechanism is acting also during the adaptation of skeletal muscle to exercise. 
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In this context, the increased contractile load that muscle cells experience during 

exercise causes the cytosolic Ca2+ concentration to increase. In this condition, 

CaMKII is activated by the Ca2+/calmodulin complex and phosphorylates HDAC5, 

which dissociates from MEF2s at the promoter region of the GLUT4 gene. This 

phosphorylation up-regulates GLUT4 expression, in order to meet the metabolic 

demand of the cell during training (Ojuka EO et al., 2012). AMPK is a 

serine/threonine kinase belonging to the LKB1-activated kinase macrofamily, 

fundamental in sensing the variation in AMP/ATP ratio (and to a lesser extent the 

ADP/ATP ratio). For this reason, AMPK is a sensor of the bioenergetic status of the 

cell. In general, if an energy deficit is detected, AMPK operates to restore the energy 

homeostasis by promoting the engagement of pathways that generate ATP while 

switching off those that consume it (Hardie DG, 2014). Interestingly, in liver and 

hepatoma cell lines, LKB1 deletion causes the loss of basal HDAC4/5/7 

phosphorylation. Conversely, the use of metformin, a widely used anti-diabetic drug 

for its ability to stimulate AMPK activity in an LKB1-dependent manner, leads to an 

increase in HDAC4/5/7 phosphorylation. More importantly, in these cell lines, class 

IIa HDACs subcellular localization is subjected to hormonal control: the fasting 

hormone glucagon or the cAMP inducer forskolin trigger a fast dephosphorylation 

and accumulation into the nucleus of HDAC4/5, where they are essential to promote 

the expression of rate-limiting enzymes belonging to gluconeogenic or glycogenolytic 

pathways such as the catalytic subunit of G6Pase, PEPCK and FBP1. In this context, 

the emerging model predicts that, following a glucagon stimulus, the increase in 

cyclic AMP can activate PKA that, in turn, is able to phosphorylate and inactivate 

AMPK. Inactive AMPK is no more prone to phosphorylate class IIa HDACs that are 

free to shuttle into the nucleus where they associate with the deacetylating complex 

composed by HDAC3/NCOR/SMRT. This complex deacetylates the FOXO family of 

transcription factors, keeping them nuclear and promoting the expression of 

glucagon-induced gluconeogenic genes. Therefore, at least in liver and despite their 

canonical role as transcriptional repressors, class IIa HDACs can also act as 

transcriptional co-activators by recruiting a deacetylating function on FOXO 

transcription factors, thus orchestrating the cellular metabolic response during 

fasting. From a translational medicine point of view, this discovery has important 

consequences, as the liver depletion of HDAC4/5/7 in a mouse model of type 2 

diabetes lower fasting blood glucose levels and improve glucose tolerance, 
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demonstrating a key role for class IIa HDACs in controlling glucose homeostasis  

(Mihaylova MM et al., 2011). In support of the importance of class IIa HDACs/FOXOs 

axis, a similar module regulating lipid storage have been discovered in Drosophila 

melanogaster by Wang and collaborators. In their work, they reported that, in the fat 

body – the Drosophila analogue of liver and adipose tissue in mammals – of fed 

animals, insulin-activated Akt physically interacts with and phosphorylates Salt 

Inducible Kinase 3 (SIK3), another LKB1-activated metabolic responsive 

serine/threonine kinase belonging to the AMPK family. Once activated, SIK3 

phosphorylates class IIa HDACs provoking their cytoplasmic sequestration and 

preventing FOXO deacetylation. Through this mechanism, acetylated FOXO is kept 

in the cytoplasmic compartment and, therefore unable to trigger the expression of the 

brummer lipase, thus promoting lipid storage. This observation was confirmed also in 

mammals, where insulin and glucagon impinge on two different kinases – Akt and 

PKA, respectively – that converge their activity on SIK2 with opposite outcomes 

depending on the phosphorylation sites: Akt phosphorylation of SIK2 determines its 

activation, whereas SIK2 phosphorylation by PKA implies its inactivation. When 

inactive, SIK2 is not able to phosphorylate HDAC4. Hence it can enter into the 

nucleus where, by deacetylating FOXO, collaborates to the induction of lypolytic 

(ATGL) or gluconeogenic (Pck1, G6Pase) genes (Wang B et al., 2011). These 

findings highlight how changes in hormonal balance, which occur in different cellular 

metabolic requirements, can take advantage of class IIa HDACs nuclear/cytoplasmic 

shuttling upon phosphorylation by metabolic responsive kinases to orchestrate the 

cellular metabolic adaptation. 

Very recently it has been found that, in human glioblastoma cell lines, mTORC2 is 

also able to regulate class IIa HDACs subcellular localization by phosphorylation. 

Again, the nuclear exclusion of class IIa HDACs has an impact on FOXOs (FoxO1 

and FoxO3) acetylation. The subsequent cytosolic sequestration of FOXOs prevents 

these transcription factors from enhancing the transcription of a specific miRNA (mir-

34c), which targets c-Myc. c-Myc stabilization is responsible for the Warburg effect 

well evident in GBM cells, thus rendering GBM cells exquisitely sensitive to glycolysis 

inhibition (Masui K et al., 2013). 

In addition to the role of class IIa HDACs in the regulation of metabolic genes at the 

transcriptional level through the modulation of the activity of specific transcription 

factors, some evidences have linked class IIa HDACs to the direct regulation of key 
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metabolic proteins through post-translational modifications. One of such proteins is 

the Hypoxia Inducible Factor 1α (HIF1α), a transcription factor that is constantly 

translated but, in condition of normoxia, is hydroxylated by oxygen-dependent prolyl-

hydroxylases (PHDs) and rapidly ubiquitylated and targeted for the proteasomal 

degradation by the Von Hippel-Lindau (VHL) E3 ligase complex. When stabilized by 

low oxygen concentration, HIF1α is able to translocate into the nucleus where it 

dimerizes with HIF1β and to engage the transcriptional program that involves the 

expression of glycolytic enzymes, glucose transporters and inhibitors of the Kreb 

cycle. All these activities switch the metabolic phenotype of the cell toward a 

glycolytic one in order to cope with hypoxia. In the UMRC2 renal carcinoma cell line, 

defective for VHL, it has been discovered that, both class IIa (HDAC4) and class IIb 

(HDAC6) HDACs can physically interact with HIF1α. Their knockdown results in the 

reduction of HIF1α protein levels and transcriptional activity. However, only the 

silencing of HDAC4 determines an increase in HIF1α acetylation. In summary, by 

deacetylating HIF1α, HDAC4 can increase HIF1α protein stability, avoiding its 

proteasomal degradation even in a VHL defective context (Qian DZ et al., 2006). 

Some years later, the same group identified a set of lysine residues at the very N-

terminal region of HIF1α as the target for HDAC4 deacetylation in VHL-competent 

prostate (C42B) and liver (Hep3Bc1) cancer cell lines. Interestingly, the deacetylating 

activity against HIF1α seems to be specific for HDAC4, despite its reduced 

enzymatic activity versus acetyl-lysines, since the silencing of class I HDACs did not 

influence the acetylation level of HIF1α. Importantly, in these cancer cell lines 

exposed to hypoxia, down-regulation of HDAC4 decreased the expression of cancer-

relevant genes such as the glucose transporter Glut1 and the lactate dehydrogenase 

LDHA in order to promote the glycolytic switch in cancer cells or the VEGF for tumor 

neoangiogenesis (Geng H et al., 2011). 

Another example of how class IIa HDACs, and in particular HDAC4, can modulate 

bioenergetic/biosynthetic pathways through their direct action on key metabolic 

proteins is represented by the enzyme 6-phosphogluconate dehydrogenase (6PGD). 

6PGD is the third enzyme in the oxidative arm of the pentose phosphate pathway, 

which catalyses the decarboxylating reduction of 6-phosphogluconate to ribulose-5-

phosphate with the concomitant production of NADPH. Consistently with the 

increased biosynthetic and antioxidant needs of tumor cells, the activity of this 

enzyme is commonly upregulated in many human cancer cells. It has been shown 
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that the acetylation of 6PGD increases its activity and, accordingly, 6PGD is 

commonly acetylated in diverse cancer and leukemia cell lines as well as in primary 

leukemia cells. Protein expression and lysines acetylation levels of 6PGD are 

important for cancer cell proliferation and tumor growth. HDAC4 can deacetylate 

6PGD, thus dampening its activity. A less active 6PGD determines an accumulation 

of its substrate 6PG that is able to allosterically activate the glycolytic enzyme PFK 

resulting in elevated glycolytic rate, lactate production and ATP levels. Nevertheless, 

despite the increased glycolysis and ATP levels, H1299 lung cancer cells with a 

decreased 6PGD activity show reduced cell proliferation and tumor growth. In 

tumor/leukemia cells where the lysine acetylation-dependent activation mechanism of 

6PGD is hijacked, 6PGD may be activated due to alterations in the protein levels of 

upstream regulators of the 6PGD, such as acetyltransferases (DLAT and ACAT2) 

and deacetylase (HDAC4), respectively (Shan C et al., 2014). Interestingly, it has 

been discovered that, in tumor cell lines overexpressing the transcription factor Nrf2 a 

clear upregulation of the PPP genes such as glucose-6-phosphate dehydrogenase 

(G6PD), 6PGD, transketolase (TKT) and transaldolase (TALDO1) can be observed. 

At the molecular level, Nrf2 overexpression results in the down-modulation of miR-1 

and miR-206, two micro RNAs which are directly repressed by HDAC4 and that, in 

turn, as a feedback loop, can target HDAC4 itself (Singh A et al., 2013). 

The following table summarize some representative evidences linking class IIa 

HDACs to the modulation of cellular metabolism. 

 

Model Evidence Reference 
 
Human primary 
myotubes 
 
 
 
Murine 
adipocytes/preadipocytes 
and fasting mice 
 
 
Human hepatocytes and 
mouse liver 
 
 
 
 

 
Active AMPK phosphorylates HDAC5, 
determining its nuclear export and 
resulting in increased expression of 
GLUT4 gene. 
 
Forskolin increases intracellular cAMP 
levels, induces HDAC4 nuclear 
localization and downregulates the 
GLUT4 promoter. 
 
Glucagon-dependent increase of cAMP 
stimulates PKA which phosphorylates 
and inactivates AMPK, resulting in 
nuclear accumulation of class IIa 
HDACs. Once nuclear, they 
deacetylate FOXO TFs contributing to 

 
McGee SL et 
al., 2008 
 
 
 
Weems JC et 
al., 2012 
 
 
 
Mihaylova 
MM et al., 
2011 
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Drosophila melanogaster 
fat body and mouse liver 
 
 
 
 
Human glioblastomas 
 
 
 
 
 
 
 
Human prostate, renal 
and liver cancer cell lines 
 
 
 
 
 
 
Human lung cancer and 
leukemia cell lines 
 
 
 
Murine cardiomyocytes 

gluconeogenic and glycogenolytic 
genes expression. 
 
Insulin-activated Akt phosphorylates 
activates SIK3/2 that, in turn, 
phosphorylate class IIa HDACs 
determining their cytoplasmic 
sequestration and lipid storage. 
 
mTORC2 phosphorylates and induces 
the cytoplasmic retention of class IIa 
HDACs, thus preventing FOXO TFs to 
promote the expression of mir34c 
targeting c-Myc. C-Myc stabilization 
contributes to the glycolytic 
reprogramming of U87 cancer cells. 
 
HDAC4 can interact with and 
deacetylate HIF1α, promoting its 
protein stability. In hypoxia conditions, 
the down-regulation of HDAC4 
determines the HIF1α-dependent 
decrease of GLUT1 and LDHA gene 
expression. 
 
HDAC4 can deacetylate and dampen 
the activity of the pentose phosphate 
enzyme 6PGD, stimulating the 
glycolytic flux. 
 
Inducible cardiac-specific expression of 
an unphosphorylatable form of HDAC5 
negatively regulates the expression of 
key metabolic genes involved in energy 
generation, along with MCAD, M-CPT-I 
and CPT-II (fatty acid β-oxidation), ATP 
synthase β (oxidative phosphorylation), 
hexokinase II (glycolysis), glycogen 
phosphorylase (glycogenolysis) and 
PGC1α (mitochondrial biogenesis). 

 
 
 
Wang B et 
al., 2011 
 
 
 
 
Masui K et 
al., 2013 
 
 
 
 
 
 
Qian DZ et 
al., 2006; 
Geng H et al., 
2011 
 
 
 
 
Shan C et al., 
2014 
 
 
 
Czubryt MP 
et al., 2003 

 

Together, these experimental evidences demonstrate how complex is the 

involvement of class IIa HDACs in the regulation of cellular metabolism both in 

physiologic and pathologic conditions. Furthermore, it is evident that the pleiotropic 

and somethimes antithetic metabolic functions of class IIa HDACs may be explained 

by the different tissue-specific metabolic requirements. All these studies, although 

depicting a complex scenario, highlight, in the meanwhile, the importance of class IIa 
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HDACs as versatile regulators of cellular metabolism and as possible targets for 

cancer therapy. 
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EXPERIMENTAL BACKGROUND AND AIM 
 

 As briefly explained in the introduction section, cancer cells rely on activated 

metabolic pathways to promote survival and support cell proliferation that actually 

reprogram cancer cell metabolism (Vander Heiden MG et al., 2009). Interestingly, the 

wiring and directional fluxes through these metabolic routes are fine tuned by 

signaling and transcriptional events that can be, in turn, modulated by oncogenes 

and tumor-suppressor genes (Levine AJ and Puzio-Kuter AM, 2010). Therefore, 

targeting metabolic hubs represents a promising and attractive opportunity for cancer 

therapy. 

In recent years, the discovery of the involvement of class IIa HDACs, and in particular 

of HDAC4, in the regulation of pivotal metabolic enzymes and transcription factors 

has raised the possibility to look at this class of deacetylases as a druggable target 

for cancer treatment, even from a metabolic point of view (Di Giorgio E et al., 2014). 

Furthermore, it has been discovered a pro-tumorigenic role of HDAC4 in several 

human malignancies. For instance, in ovarian, colon and neuroblastoma cancer cells 

HDAC4 represses in an Sp1-dependent manner, p21 transcription, thus contributing 

to the cell cyle progression (Wilson AJ et al., 2008; Mottet D et al., 2009). In breast 

cancer the expression of class IIa HDACs positively correlates with the 

aggressiveness of luminal ER+ tumor subtypes  (Clocchiatti A et al., 2013). Recently, 

the oncogenic properties of HDAC4 have been rigorously confirmed in NIH-3T3 

murine fibroblasts. In particular, the overexpression of a S/A phospho-resistant form 

of HDAC4 (HDAC4TM) that displays an almost total nuclear localization, beyond 

causing a deep change in cellular morphology and cytoskeleton organization, confers 

proliferative advantage to murine fibroblasts with respect to wild type HDAC4-infected  

cells in-vitro and elicits pro-tumoral functions in-vivo (Di Giorgio E et al., 2013). 

Provided the increasing relevance that cancer metabolism is gaining as a therapeutic 

option and the involvement of class IIa HDACs in the control of tumor metabolic 

homeostasis and tumor growth (Mihaylova MM et al., 2011; Wang B et al., 2011, 

Masui K et al., 2013), the aim of this thesis is to characterize the metabolic 

phenotype of NIH3T3-HDAC4TM tumorigenic cell line. During the PhD thesis, I 

studied the metabolic alterations induced by the overexpression of this “super-

repressor” HDAC4 mutant, with particular attention to the “Warburg effect” typical 

features, namely increased glycolysis and downregulated mitochondrial metabolism. 
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The expected results could help to better understand the contribution of HDAC4 to 

metabolic reprogramming in cancer cells and to address future research for 

therapeutic intervention. 



Materials and Methods 
 

27 

MATERIALS AND METHODS 
 

Cell culture and reagents 

NIH-3T3 cells were routinely grown in high glucose (4,5 g/L) Dulbecco modified 

Eagle medium (DMEM) (Lonza). For the lactate quantification experiments, the 

DMEM without phenol red was purchased from Lonza. For the cell proliferation 

experiments with low glucose concentration (1 g/L), the DMEM low glucose from 

Sigma-Aldrich was used. All culture media were provided with 1 mM sodium pyruvate 

and supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL 

penicillin and 100 µg/mL streptomycin (Lonza). 

The following reagents were used: 2-deoxy-D-glucose (2-DG) and sodium oxamate 

at working concentrations specified in the text, 2 µM oligomycin A, 10 µM resazurin, 

0,5 mg/mL [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] (MTT), 

1X protease inhibitor cocktail (PIC), 1 mM phenylmethanesulfonyl fluoride (PMSF), 1 

µM rotenone, 3,3 µM carbonyl cyanide p-trifuoromethoxy-phenylhydrazone (FCCP), 

2,5 µM antimycin A, 75 µM NADH, 4 mM sodium azide, 80 µM decylubiquinone (all 

from Sigma-Aldrich) and 200 nM tetramethylrhodamine methyl ester perchlorate 

(TMRM) (from Molecular Probes). 

 

Plasmid construction, transfection and retroviral infection 
The retroviral pWZL-Hygro-flag plasmid was obtained by PCR and subsequent 

EcoRI-SalI/XhoI subcloning of the flag sequence with the entire MCS from pFlag5c 

plasmid into retroviral pWZL-Hygro construct. The cDNA encoding for human wild 

type or triple mutan HDAC4 were cloned into pWZL-Hygro-flag by EcoRI restriction. 

The correct orientation and sequence of the insert was verified. Cells expressing the 

different transgenes were generated by retroviral infections as previously described 

(Fontanini A et al., 2009). Briefly, retroviral vectors carrying these transgenes or 

empty vectors expressing only the Hygro resistance gene were used to singularly 

transfect the ecotropic packaging cell line LinX-E. Transfection was performed by 

calcium phosphate method. At 60 hours post-transfection, viral supernatants were 

collected, filtered, supplemented with 8 µg/mL polybrene, and combined with fresh 

medium in order to infect NIH-3T3 murine fibroblasts. 
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Soft-agar assay 

Equal volumes of 1,2% agar and DMEM were mixed to generate 0,6% base agar. A 

total of 1 × 105 or 3,3 × 104 NIH-3T3 were seeded in 0,3% top agar, followed by 

incubation at 37°C in humidified conditions. The cells were grown for 21 days, and 

the culture medium, containing 2-DG (at concentrations indicated in the text) or 

oligomycin (2 µM) was changed twice per week. Colonies were visualized by MTT 

staining. 

 

pH measurement of supernatant media 
A total of 1,5 × 104 cells were seeded in Petri dishes and counted every 2 days. In 

parallel, the supernatant medium was collected and its pH immediately measured by 

mean of a pH meter. 

 

Extracellular lactate quantification 

A total of 1 × 105 cells were seeded in 12-well plate. After 24 hours, the culture media 

were substituted with complete media without phenol red and, after other 24 hours, 

the lactate amount in supernatant media was quantified using lactate 

colorimetric/fluorometric assay kit (BioVision) following manufacturer’s instructions. 

Briefly, the supernatant media were passed through a 30 KDa cut-off Vivaspin 

(Sartorius) to remove serum LDH and 2 µL of the 1:10 dilution of the filtrates were 

diluted in 100 µL of assay buffer in 96-well plate. Then, 50 µL of the reaction mix/well 

were added and, after 30 minutes incubation, the colorimetric intensity was measured 

at 570 nm using EnSpire multimode plate reader (Perkin-Elmer). The lactate 

concentration was calculated by comparison with a titration curve performed with the 

provided lactate standard and normalized on total cell number. 

 

Resazurin assay and IC50 calculation 
A total of 5 × 104 cells/well were seeded in 48-well plate and, after 24 hours, the cells 

were treated with increasing doses of sodium oxamate (0, 12,5, 25, 50, 75 and 100 

mM) or 2-DG (0, 1, 2,5, 5, 10, 20, 30, 40 and 50 mM). After 48 hours treatment, the 

culture media were substituted with complete media containing 10 µM resazurin and 

the cells were incubated for 95 minutes at 37°C in humidified conditions. The 

resazurin fluorescence was measured using EnSpire multimode plate reader (Perkin-
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Elmer). The relative fluorescence values were interpolated with a linear regression to 

calculate the IC50 of oxamate and of 2-DG using GraphPad Prism software. 

 

Intracellular ATP quantification 
A total of 1 × 104 cells/well were seeded in a Viewplate® black 96-well (Perkin-Elmer) 

and grown for 36 hours. Cells were then treated with 25 mM 2-DG or 2 µM 

oligomycin for 1 hour at 37°C in humidified conditions. The intracellular ATP content 

was determined using ATP-Lite kit (Perkin-Elmer) following manufacturer’s 

instruction. Briefly, 50 µL of lysis buffer were added to each well and, after 5 minutes 

shaking, 50 µL of luciferase solution per well were added. The resulting 

bioluminescence was detected using EnSpire multimode plate reader (Perkin-Elmer). 

 

High resolution respirometry 

Mitochondrial oxygen consumption, measured in intact cells under conditions of 

physiological substrate supply, was performed at 37°C using a high resolution 

respirometer Oxygraph 2k (Oroboros instruments, Innsbruck, Austria). Routine 

respiration (R) was measured in 3 × 106 cells in  3 mL chambers containing culture 

medium, while the leak respiration (L) was obtained in the presence of oligomycin 

(2,5 µg/mL), which inhibits ATP synthase; consequently, the electron flow reflects the 

energy requirement to compensate the futile circle of proton pumping. The maximal 

uncoupler–stimulated respiratory activity (E), measured in the presence of a 

concentration of the uncoupler FCCP (carbonyl cyanide p-trifuoromethoxy-

phenylhydrazone) empirically determined as optimal (3,3 µM), provides a measure of 

the capacity of the electron transport system (ETS). 1 µM rotenone (which inhibits 

complex I) and 2,5 µM antimycin A (which inhibits complex III) were used to 

determine the non mitochondrial oxygen consumption. This rate was subtracted from 

cell total oxygen consumption to assess the mitochondrial respiration. Data were 

digitally recorded using DatLab4 software; oxygen flux was calculated as the 

negative time derivative of the oxygen concentration, -d[O2](t). A standard correction 

was performed for instrumental background oxygen flux arising from oxygen 

consumption of the oxygen sensor and minimal back-diffusion into the chamber. 
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Mitochondrial DNA quantification 
Total (genomic plus mitochondrial) DNA was extracted starting from 3 × 106 cells 

using DNeasy Blood and Tissue kit (Qiagen), following manufacturer’s instructions. 

Real-time quantitative PCR (qPCR) analysis was performed starting from 50 ng of 

total DNA using Bio-Rad CFX96 and SYBR green technology. ATP6 and ND4 genes 

were chosen as representative for mitochondrial DNA. The data were analyzed by 

use of a comparative threshold cycle using β2-microglobulin as normalizer gene 

representative for genomic DNA. The primers employed for this analysis are reported 

in the following table. 
mouse ATP6 for TCCCATCCTCAAAACGCCTA 
mouse ATP6 rev CCAGCTCATAGTGGAATGGC 

mouse ND4 for CCCCTTCATCCTTCTCTCCC 

mouse ND4 rev AGGAGTGATGATGTGAGGCC 

mouse β2m intron for TGAGGCTTATTGCAATGCTG 

mouse β2m intron rev ATGGCGGTTACAGTCCAAAG 

 

Mitochondrial membrane potential (∆Ψm) quantification 

Collected cells were incubated in phosphate buffer containing 200 nM TMRM and 

200 nM cyclosporine A (in order to inhibit dye export from the cells by the multidrug 

transporters) for 30 minutes at 37°C in humidified conditions. ∆Ψm was investigated 

in basal conditions and in the presence of some specific inhibitors: i.e. 2 µM 

oligomycin or 1 µM rotenone to inhibit ATP synthase and complex I, respectively. 

TMRM fluorescence was analyzed on a FACScan flow cytometer (Becton Dickinson) 

equipped with a single 488 nm argon laser and data were acquired on a logarithmic 

scale using Cell Quest and analyzed with WinMDI 2.8 softwares. 

 

Complex I activity measurement 
Mitochondria-enriched fractions were obtained from the cell lines as follows: 8 × 106 

cells were resuspended in mitochondrial isolation buffer (250 mM sucrose, 1 mg/mL 

BSA, 2 mM EDTA, 1X PIC, pH 7.4) and sonicated at ice-cold temperature (five 5 

seconds pulses separated by 30 seconds intervals). The resultant homogenates 

were subjected to differential centrifugations: 800g and 16000g for 20 minutes. All 

the centrifugations were performed at 4°C. The final pellets (i.e. crude mitochondria 

fractions) were resuspended in 100 µL of hypotonic buffer containing 25 mM K2PO4, 
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and 5 mM MgCl2, pH 7.2, freezed-and-thawed two times to disrupt mitochondrial 

membranes and immediately used for enzymatic analysis. 

Complex I activity measurements were performed as previously reported (Barrientos 

A, 2002). Briefly, 10 µg of mitochondria were suspended in 200 µL of water 

containing 150 µM NADH, 2,5 µM antimycin A and 4 mM sodium azide with or 

without 1 µM rotenone. After 2 minutes, the reaction was started by adding 50 µL of 

50 mM Tris-HCl, pH 8.0 containing 80 µM decylubiquinone and the decrease in 

absorbance at 340 nm, due to the oxidation of NADH, was monitored for 5 minutes 

using EnSpire multimode plate reader (Perkin-Elmer). The complex I activity was 

corrected for the rotenone-sensitive activity. 

 

Immunoblot analysis 
Cell lysates were obtained by scraping the cells in 2X Laemmli sample buffer 

completed with 2% (v/v) β-mercaptoethanol, PIC and 1mM PMSF. Cell lysates were 

subjected to SDS-PAGE and subsequent western blot and incubated o/n with primary 

antibodies. HRP-conjugated secondary antibodies were purchased from Sigma-

Aldrich and the blots were developed using Super Signal West Dura substrate 

(Pierce). The following primary antibodies were used: mouse monoclonal anti-

NDUFA9 subunit of complex I (Abcam), mouse monoclonal anti-Fp subunit of 

complex II (Invitrogen), mouse monoclonal anti-UQCRC2 subunit of complex III 

(Abcam), mouse monoclonal anti-COX IV subunit of complex IV (Abcam), rabbit 

polyclonal anti-β subunit of ATP synthase (Mitosciences) and rabbit polyclonal anti-

PGC1α (Abcam). 
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RESULTS and DISCUSSION 
 

 In order to evaluate the metabolic phenotype related to the expression of the 

unphosphorylatable mutant of HDAC4 S246/467/632A (hereafter referred to as triple 

mutant HDAC4TM), we took advantage of murine NIH-3T3 cell lines engineered to 

express four different genes. NIH-3T3 fibroblasts were retrovirally infected with 

pWZL-hygro plasmids encoding for: 1) the GFP, selected as control gene; 2) the 

GTPase defective oncogenic mutant of H-RAS (H-RASG12V) as the tumorigenic 

control showing the classic Warburg phenotype; 3) the GFP-tagged triple mutant of 

HDAC4 and 4) the GFP-tagged wild type version of HDAC4 (HDAC4WT) as the direct 

experimental counterpart. Fluorescence imaging demonstrated that, in NIH-3T3 cells, 

HDACWT is excluded from nuclei because subjected to nuclear cytoplasmic shuttling, 

while the TM mutant has a clear nuclear subcellular localization in a high percentage 

of cells. 

 

NIH3T3-GFP                NIH3T3-HDAC4WT        NIH3T3-HDAC4TM 

 
 

HDAC4TM-driven transformation doesn’t affect lactate production in 
NIH-3T3 cells 
 

 From the naive observation of the colour of the culture medium during the 

daily cell culture maintenance, or of the agar in the soft-agar assays (figure 5A), the 

clear difference in the medium acidification rate between NIH3T3-HRASG12V and 

NIH3T3-HDAC4TM led us to hypothesize that, despite both these cell lines displayed 

a proliferation advantage with respect to control cells, they may differ in terms of 

basal metabolism. In fact, as evidenced in the soft-agar assays (figure 5A), the 

qualitative colour shift of the upper agar layer, which can be taken as a marker of 
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medium acidification, greatly differred between NIH-3T3 cells expressing HDAC4TM 

and HRASG12V, although the overexpression of these mutant proteins conferred to 

NIH-3T3 cells a quite similar transforming potential (figure 5B). HDAC4TM-expressing 

cells exhibited a tint of the phenol red indistinguishable with the non-transformed cell 

lines expressing GFP or the wild type version of HDAC4. 

To support these qualitative data, pH measurements of conditioned media were 

performed. The cell growth rates were monitored every 2 days during 8 days period 

of culture by cell counting and, in parallel, the pH of the corresponding medium was 

measured using a pH meter (figure 5C). As previously published (Di Giorgio E et al., 

2013), HDAC4TM-expressing cells displayed a proliferative advantage with respect to 

HDAC4WT- or GFP-expressing cells. nevertheless they did not lower the pH of the 

medium that remained around 7.8. In contrast, the pH of the medium conditioned by 

oncogenic HRASG12V-expressing cells fell down to 6.7, as the cells grew. Notably, at 

the same cell density reached by HRASG12V and HDAC4TM at day 6 and 8 

respectively, a difference in medium pH was already observed. This data leads us to 

refuse the possibility that differences in the acidification of the environment could 

simply mirror the different number of cells growing in the Petri dish. 

As already explained in the introduction section of this thesis, the augmented 

secretion of lactate in the extracellular environment, as consequence of increased 

glycolytic flux is a hallmark of Warburg-like phenotype. Therefore, we sought to 

analyze the lactate concentration in the extracellular environment after 2 days of cell 

culture (figure 5D). As expected, the lactate concentration in the medium of 

HRASG12V-expressing cells, once normalized to cell number, was almost the double 

when compared to GFP- and HDAC4WT-expressing cells. In contrast, as expected 

from previous results and despite the increased proliferation rate, HDAC4TM-

expressing fibroblasts did not secrete more lactate in the extracellular medium. 

Hence, they resulted indistinguishable from un-transformed cells. 

Lactate is produced by the lactate dehydrogenase (LDH) complex, which is able to 

convert pyruvate into lactate. This complex is composed by two subunits (LDHA and 

LDHB) that can combine with different stoichiometry to give rise to complexes with 

different enzymatic activities. LDHA, as transcriptional target of c-Myc and HIF1α, is 

a central player in the cellular response to hypoxia and participates in the 

externalization of the Warburg effect. Indeed, the inhibition of LDHA by targeted 

siRNA or by chemical compounds such as FX11 can halt tumor growth in-vivo (Lee A 
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et al., 2010). Moreover, as the tumoral cell progresses toward a fully transformed 

phenotype, it become also more sensitive to treatment with oxamate, another LDHA 

inhibiting small molecule, underscoring the pivotal importance of LDHA in cancer 

progression (Ramanathan A et al., 2005). Provided these experimental evidences, 

we examined the dose-dependent sensibility to oxamate of our four cell lines after 48 

hours treatment. The data reported in figure 5E demonstrate that NIH-3T3 cells 

overexpressing the oncogenic HRAS were generally more sensitive, in terms of 

growth inhibition, to oxamate treatment compared to control cells. Strikingly, the 95% 

confidence interval of oxamate IC50 for HRASG12V-expressing cells was significantly 

lower compared to the other cell lines (38,37<IC50<44,25, 56,39<IC50<67,39, 

50,42<IC50<60,19 and 50,60<IC50<56,99 for HRASG12V- GFP- HDAC4WT- and 

HDAC4TM-expressing cells, respectively). Furthermore, the IC50 of HDAC4TM-

expressing cells was not statistically different from HDAC4WT- and GFP-expressing 

cells (figure 5F). 

Together, these results demonstrate that the HDAC4TM-induced transformation of 

NIH-3T3 murine fibroblasts is not coupled to increased lactate secretion, suggesting 

that these transformed cells are characterized by a metabolic profile that may divert 

in some aspects from the canonic features of the Warburg effect. In sharp contrast, 

as exhaustively reported in literature, oncogenic HRAS-driven transformation in 

fibroblasts results in the augmented lactate secretion in the extracellular space, 

probably as the consequence of an increased glycolytic rate, thus confirming the 

Warburg-like nature of the metabolic phenotype of this cell line. 
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Figure 5: HDAC4TM-driven transformation doesn’t affect lactate production in NIH-3T3 
cells. A) Representative soft-agar assay in which 1 × 105 cells/plate were seeded and the 
transforming potential evaluated after 21 days. B) colonies/plate quantification of A; n = 3. C) 
Cell proliferation rate during 8 days of cell culture and concomitant measurement of medium 
pH; n = 3. D) Lactate concentration in cell medium after 48h of cell culture; n = 4. E) 
Resazurin assay of infected cells treated with different oxamate concentrations for 48h; n = 
7. F) Oxamate IC50 for each cell line calculated from E.  = p < 0,05;  = p < 0,01;  
= p < 0,001 t-test statistics. 
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Glycolysis inhibition differentially impacts on HDAC4TM and 
HRASG12V bioenergetics and tumorigenic potential 
 

 Since the increased glucose flux through the glycolytic pathway and the 

consequent metabolic reprogramming are generally recognized as common features 

of cancer cells, we tested the sensibility of our cell lines to glucose shortage or 

glycolysis inhibition. To this purpose, in a first set of experiments, the investigated cell 

lines were grown in media containing two different glucose concentrations: 25 mM 

(high glucose) or 5,56 mM (low glucose). It is important to note that in the media were 

present L-glutamine (5mM) and sodium pyruvate (1mM), both metabolites able to fuel 

mitochondrial oxidative phosphorylation for energy production. As reported in figure 

6A, while control cells did not suffer the glucose shortage in terms of cell proliferation, 

even after 72h of culture, HRASG12V-expressing cells demonstrated a dramatic drop 

in cell number between high and low glucose conditions. This difference was already 

evident after 48h of glucose reduction and suggests that HRASG12V-expressing cells 

are more dependent on glucose for proliferation. This hypothesis is in agreement with 

the notion that glucose is a major source of metabolic intermediates, which can be 

used by cancer cells to increase, through biosynthetic pathways, their pool of building 

blocks for sustained proliferation. Similarly, HDAC4TM-expressing cells were more 

sensitive to glucose shortage with respect to GFP- or HDAC4WT-expressing control 

cells, even though to a less extent compared to HRASG12V-expressing cells. In fact, 

significative difference in cell numbers between high and low glucose condition was 

appreciable only after 72h of glucose reduction. Interestingly, in all cell lines, no 

substantial cell death was observed by trypan blue-positive cell counting, even after 

72h of low glucose culture condition (data not shown), suggesting that glucose 

limitation can arrest cell proliferation without affecting cell viability. The different 

glucose shortage sensibility displayed by the four cell lines might reflect their diverse 

proliferative rates, HRASG12V-expressing cells being the most aggressive and 

glucose-dependent and HDAC4TM-expressing cells showing an intermediate 

behaviour between non-transformed control cells and oncogenic HRAS control cells. 

The results obtained in the glucose shortage experiments prompted us to explore the 

biological relevance of the main glucose-consuming metabolic pathway – the 

glycolysis – in conferring the proliferative advantage to fibroblasts overexpressing the 

phospho-resistant mutant of HDAC4. To this end, we challenged our cell lines with 

several concentrations of 2-deoxy-glucose (2-DG) for 48h and scored the cell 
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proliferation by mean of a resazurin assay. The synthetic glucose analogue 2-DG 

competitively inhibits glucose uptake since they are both internalized by glucose 

transporters. Moreover, once inside the cell, 2-DG is phosphorylated by hexokinase 

(HK), but the resulting 2-DG-6-P cannot be further metabolized and accumulates in 

the cytoplasm where non-competitively inhibits HK and competitively inhibits 

phospho-glucose isomerase (PGI). For these reasons 2-DG is widely used as 

glycolysis inhibitor in cancer therapy (Zhang D et al., 2014). As reported in figure 6B, 

2-DG treatments inhibited cell growth in all cell lines in a dose-dependent manner. 

However, HRASG12V-expressing cells displayed the highest sensibility to glycolysis 

inhibition when compared to untreated cells, confirming the importance of glucose 

metabolism in HRAS oncogenic transformation. On the other side, the non-

tumorigenic GFP-expressing NIH-3T3 cells showed the lowest sensibility to 2-DG. In 

fact, the calculated 2-DG IC50 for GFP-expressing cells is more than twice that of 

HRASG12V-expressing cells (11,71 ± 0,93 mM and 5,41 ± 0,20 mM, respectively) 

(figure 6C). Here, again, HDAC4TM-expressing cells exhibited a 2-DG sensibility in 

between those of non-transformed and HRASG12V-transformed cells. Curiously, the 

95% confidence intervals of the IC50 of all cell lines did not overlap (data not shown), 

suggesting that the overexpression of HDAC4 and of its super-repressor mutant can 

alter the cellular dependence on glycolysis and, therefore, the cellular susceptibility to 

its inhibition. To reinforce these data, cells were treated for 48h with two different 

concentrations of 2-DG: the first equimolar to the glucose present in the culture 

medium (25 mM) and the second based on the previously calculated IC50 for 

HRASG12V-expressing cells (5 mM). Cells were then counted and we noticed that 

both concentrations markedly affected the proliferative advantage of oncogenic 

HRAS- and HDAC4TM-expressing cells (figure 6D). This data, if expressed as 

percent with respect to not treated cells, are quite in accordance with the data 

obtained in the resazurin assay. Notably, neither one of the two 2-DG concentrations 

caused appreciable cell death after 48h treatment in any of the four cell lines, as the 

trypan-blue positive cells rarely exceeded the 10% (data not shown). These sets of 

experiments seem to suggest that the increased cell proliferation rate observed in 

HRASG12V- and HDAC4TM-expressing fibroblasts is linked to an augmented glucose 

flux through glycolysis, since its inhibition results in the restoration of proliferative 

levels similar to those of non-tumorigenic control cell lines. 
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Since 2-DG is known to induce energy depletion by blocking the glycolysis pathway, 

we tested the impact of 2-DG treatment on intracellular ATP content. As depicted in 

figure 6E, short-term treatment (1h) of the four cell lines with 2-DG (25 mM) caused 

a pronounced decrease in intracellular ATP level in HRASG12V-expressing cells. In all 

the other cells lines, including the HDAC4TM-expressing cells, 2-DG provoked a 

negligible reduction on the ATP levels. This result suggests that interfering with the 

glycolytic flux has an immediate impact on HRAS cells, which heavily rely on 

glycolysis for their unrestrained proliferation and hence also for energy production. It 

is important to keep in mind thay ATP loss caused by 2-DG-mediated glycolysis 

inhibition could be rescued by compensatory mechanisms, involving an up-regulation 

of metabolic flux through oxidative phosphorylation. In fact, when the analysis was 

performed after 24 hours, in HRASG12V-expressing cells ATP levels were similar to 

after 1 hour of treatment but now also in the other cells expressing GFP, HDAC4WT or 

HDAC4TM ATP levels were partially compromised and undistinguishable form HRAS 

(data not shown). 

Provided the differential effects that 2-DG treatment had, as acute response, on 

bioenergetics between HDAC4TM- and oncogenic HRAS-expressing cells, we asked 

whether glycolysis inhibition could have a similar differential impact on the long-term 

tumorigenic process. Therefore, in order to evaluate the tumorigenic potential of 

these cell lines under metabolic stress condition, we performed a series of soft-agar 

assays in which cells were periodically challenged with 2-DG. As reported in figure 
6F, glycolysis inhibition by 2,5 mM 2-DG almost completely abrogated the 

transforming potential of both hyperactive HRAS- and HDAC4TM-expressing cells in-

vitro. However, using a 2-DG concentration of 1 mM in the upper medium layer, the 

number of colonies/plate was dramatically different between the two cell lines. In this 

condition, HDAC4TM-expressing cells formed only about 30% less colonies than 

untreated control. In sharp contrast, HRAS-expressing cells did not develop colonies 

in soft-agar, similarly to the 2,5 mM 2-DG condition. 

Together, these data suggest a model in which the relative dependence of the cell 

lines from glycolysis dictates the cellular susceptibility to glucose shortage and 

glycolysis inhibition. Indeed, HRASG12V-expressing cells, that in literature are known 

to be extremely glycolytic, displayed the highest sensibility to glucose shortage 

among the four cell lines and the lowest 2-DG IC50. Moreover, in these cells, 

glycolysis inhibition perturbed ATP production and halted colonies formation in soft-
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agar assay. On the other side, HDAC4TM-expressing cells displayed an intermediate 

behaviour, suffering from glucose shortage only at late time points but showing a 2-

DG IC50 lower than control cells. However, short-term glycolysis inhibition in 

HDAC4TM-expressing cells did not alter the intracellular content of ATP in a different 

manner with respect to control cells. Finally their tumorigenic potential is less 

influenced by 2-DG compared to HRASG12V transformed cells. 
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Figure 6: Glycolysis inhibition differentially impacts HDAC4TM and HRASG12V 
bioenergetics and tumorigenic potential. A) Differential sensibility to glucose shortage of 
the four cell lines. 105 cells/plate were seeded and after 24h the cells were maintained in 
DMEM containing 25 mM glucose or shifted to DMEM 5,56 mM glucose for 72h and counted 
every 24h; n = 3. B) Resazurin assay of the cell lines treated with different 2-DG 
concentrations for 48h; n = 3. C) 2-DG IC50 for each cell line calculated from B. D) Cell count 
after 48h treatment with 2-DG at 5 mM (left) and 25 mM (right); n = 3. E) Intracellular ATP 
content of the four cell lines treated for 1h with 2-DG 25mM; n = 3. F) Quantification of soft-
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agar experiments in which 3,3 × 104 cells/plate were seeded and the upper medium layer 
containing 2-DG (1 and 2,5 mM) changed every 3 days. The transforming potential was 
evaluated after 21 days; n = 3.  = p < 0,05;  = p < 0,01;  = p < 0,001 t-test 
statistics. 
 
HDAC4TM overexpression does not alter mitochondrial functionality 
in NIH-3T3 fibroblasts 
 

 As mentioned in the introduction section, if the increased glycolysis is 

generally recognized as a common metabolic alteration in cancer cells, this is not 

always true for the concomitant down-regulation of mitochondrial oxidative 

phosphorylation (Hu J et al., 2013; Ward PS and Thompson CB, 2012; Moreno-

Sánchez R et al., 2007). Therefore, in order to evaluate the overall functionality of the 

mitochondrial compartment in our cell lines, we determined the mitochondrial oxygen 

consumption. To perform these polarographic measurements we took advantage of a 

high resolution respirometry approach (figure 7A) thanks to which 3 × 106 intact cells 

for each cell line were tested for their basal (routine) respiration, the “proton-leak” 

respiration after the inhibition of the ATP synthase with oligomycin – in other words, 

the fraction of the mitochondrial oxygen consumption not coupled to ATP synthesis – 

and the maximal stimulated respiration after mitochondrial membrane potential 

collapse by the protonophore FCCP. This strategy allowed us to assess also the non-

mitochondrial oxygen consumption – the residual oxygen consumption when the 

electron transport chain was inhibited by rotenone, antimycin A and oligomycin – but, 

in this case, no significative differences between the cell lines were observed (data 

not shown). 

As shown in figure 7B, HRASG12V-expressing cells displayed more than 30% lower 

oxygen flow per cell compared to GFP-expressing control cells. This data is in good 

accordance with previous experimental evidences (Hu Y et al., 2012) and strongly 

suggests that the mitochondrial compartment in this cell line may be down-modulated 

in basal conditions. In contrast, while HDAC4WT-expressing cells did not differ from 

GFP control, HDAC4TM-expressing cells showed even a slightly higher basal 

respiration rate compared to control cells, allowing to hypothesize an unperturbed or 

even upregulated mitochondrial compartment in the transforming HDAC4TM cell line 

and underlining its pronounced divergence with respect to oncogenic HRAS cell line. 

Instead, no difference was noticed between the cell lines when we evaluated the 

oxygen consumption due to futile cycles not coupled to ATP synthesis (oligomycin-
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insensitive leak respiration). However, when mitochondria were maximally stimulated 

by the protonophore FCCP titration, the maximal activity of the electron transport 

system displayed consistent variability between the cell lines. In particular, HRASG12V 

cell line was characterized by the lowest maximal mitochondrial spare capacity, thus 

suggesting that this cell line may not be able to upregulate mitochondria in case of 

higher metabolic requirements. In contrast, HDAC4TM cell line consumed significantly 

more oxygen than GFP control cells in their maximal mitochondrial stimulation state. 

Once again, this data highlights the marked difference existing between HRASG12V 

and HDAC4TM cell lines also in the mitochondrial performance. Therefore, this high 

resolution respirometry analysis markedly support the notion that, while hyperactive 

HRAS-expressing cells displayed less functional or bad-performing mitochondria, 

HDAC4 overexpression (both the wild type and the super-repressive forms) had a 

different effect on mitochondrial activity, since the oxygen consumption in the various 

metabolic states was comparable or even slightly higher than control GFP-expressing 

cells. However, when the values were normalized for the maximal respiratory 

capacity, the fraction of the respiration used in routine conditions to produce ATP (i.e. 

(R-L)/ME) did not show any difference between the cell lines. It should be 

emphasized that the higher ETC capacity displayed by HDAC4TM-expressing cells 

respect to the control cell lines may account for a great mitochondrial plasticity in this 

cell line, but not in HRASG12V-expressing cells. In fact, by increasing the fraction of 

the respiration used to generate ATP, HDAC4TM-expressing cells may better adapt to 

stress conditions that involve an ATP depletion. The lower susceptibility exhibited by 

HDAC4TM-expressing cells to 2-DG, compared to HRASG12V transformed cells (figure 

6E), may be explained by such a mechanism. 

Certainly, a difference in oxygen consumption between the cell lines could be 

explained by a variation in the number of mitochondria per cell. For this reason, we 

quantified the mitochondrial DNA by RT-PCR as a parameter to estimate the 

mitochondrial mass in each cell line (figure 7C). The DNA sequences coding for the 

NADH dehydrogenase subunit ND4 and for the ATP6 subunit of the ATP synthase 

were chosen as representative of mitochondrial DNA, whereas β2-microglobulin gene 

was used for genomic DNA normalization. This analysis revealed no obvious change 

in mitochondrial DNA amount among the cell lines, suggesting that the mitochondrial 

mass was similar between all the cell lines. This result excludes the possibility that 

the differences in oxygen consumption observed among the cell lines were due to 
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variations of mitochondrial content. To confirm these data, the protein levels of 

peroxisome proliferator activated receptor γ coactivator 1 α (PGC1α), a well known 

inducer of mitochondrial biogenesis (Vazquez F et al., 2013), were assessed by 

western blot analysis. Also in this case, we didn’t find any change in PGC1α protein 

expression throughout the cell lines (data not shown), reinforcing the hypothesis that 

a variation in the mitochondrial load was not the cause of the observed differences in 

oxygen consumption between the cell lines . 

In order to further support the functionality of the mitochondrial compartment of 

HDAC4TM-expressing cells, we sought to measure their mitochondrial membrane 

potential (MMP). To this aim, we first generated new NIH-3T3 cell lines stably 

expressing the flag-tagged HDAC4 proteins (both wild type and triple S/A mutant) 

and the counterpart empty hygromycin control, to avoid that the GFP fusion may 

interfere with the cytofluorimetric analysis. The effective expression of ectopic 

proteins was verified by western blot analysis. Next, the proliferative advantage and 

the tumorigenic potential of the flag-HDAC4TM-expressing cells were confirmed by 

cell counting and soft-agar assays (data not shown). To measure the MMP, we 

employed a TMRM-based cytofluorimetric analysis in which the cells were stained 

with 200 nM TMRM in the presence or absence of 2 µM oligomycin and 1 µM 

rotenone (figure 7D). Oligomycin, by inhibiting the ATP synthase, is able to block the 

proton influx from the mitochondrial inter-membrane space into the matrix. Since the 

other proton-extruding electron transport system complexes, namely complex I, III 

and IV, are not perturbed and still functional working, oligomycin treatment results in 

the net increase of the mitochondrial membrane potential. In contrast, rotenone is a 

potent inhibitor of OXPHOS complex I and it can block, at least in part, the electron 

flux through the electron transport chain and the proton efflux from the mitochondrial 

matrix. 

As shown in figure 7D, in basal conditions the mitochondrial membrane potential did 

not differ among the tested cell lines. However, when the cells were co-treated with 

TMRM and oligomycin, a substantial difference in fluorescence response between 

HRASG12V and control cells was evident, thus suggesting that a less active electron 

transport chain was operating upstream the ATP synthase in HRAS-expressing cells. 

On the contrary, no statistically significant differences were observed in oligomycin-

induced MMP between HDAC4WT or HDAC4TM and control cells, indicating an 

unperturbed functionality of ATP synthesis system coupled with the electron transport 
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system and consuming MMP in these cell lines. Concomitant co-treatment with 

rotenone greatly decreased the oligomycin-induced MMP, indicating that ETC were 

major contributors to the maintenance of the mitochondrial membrane potential in all 

cell lines. However, this decrease was significatively less pronounced (p<0,05) in 

HRASG12V (-67,3%) and in HDAC4TM (-67,1%) cells compared to control cells (-84,9% 

and -75,2% for 3T3-Hygro and 3T3-HDAC4WT, respectively). This prompted us to 

investigate the complex I in particular, through the assessment of its catalytic activity 

(figure 7E). To this aim, the mitochondria-enriched fraction was obtained for each 

cell line and the complex I activity tested, as described in the Material and Methods 

section. Interestingly, compared to control cells, in HRASG12V and HDAC4TM 

expressing cells, complex I activity was determined to be about 30% lower and 28% 

higher, respectively. To strengthen this data, we analyzed the protein expression of 

complex I (NDUFA9 subunit) by western blot (figure 7F) and found that it was less 

expressed in HRASG12V cells compared to control cells, while no difference was 

observed in HDAC4TM-expressing cells. No differences in the protein level of the 

other components of the mitochondrial electron transport chain were evident between 

the cell lines (data not shown). These findings are in accordance with literature data, 

involving a complex I dysfunction as one of the causing event contributing to the 

onset of the Warburg effect in oncogenic Ras cancers (Yang D et al., 2010; Baracca 

A et al., 2010; Palorini R et al., 2013). Moreover, together with the data regarding the 

MMP, these data support the hypothesis that in HRASG12V-expressing cells, the 

complex I reduced activity likely caused an electron transport system defect leading 

to mitochondrial OXPHOS down-regulation. By contrast, in HDAC4TM-expressing 

cells exhibiting a normal (or slightly higher) complex I activity, the low decrease of the 

oligomycin-induced MMP caused by concomitant treatment with rotenone, mimicking 

an apparent low contribution of complex I to MMP, may be speculatively explained by 

a compensatory up-regulation of complex II that can allow the other proton-pumping 

ETS complexes, namely complex III and IV, to function. 
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Figure 7: HDAC4TM overexpression does not alter mitochondrial functionality in NIH-
3T3 fibroblasts. A) Representative output of a typical high resolution respirometry analysis: 
3 × 106 cells were transferred in complete medium into the polarographic chamber and the 
oxygen consumption in basal condition was recorded after the flow equilibrium was reached. 
2,5 µg/mL oligomycin were then added to measure the proton-leak respiration and a titration 
with the protonophore FCCP was performed to evaluate the maximal uncoupler-stimulated 
respiratory activity that was reached at 3,3 µM FCCP. No-mitochondrial oxygen consumption 
was obtained by adding rotenone (1 µM) and antimycin A (2,5 µM) and this value was 
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subtracted from all the previous to assess the mitochondrial-specific respiration. (B) Oxygen 
flow, measured as (pmol/(s × 106 cells) in routine (R), oligomycin-insensitive proton-leak (L) 
and maximal stimulation of the electron transport system (M.E.) conditions by high resolution 
respirometry; n = 4. (C) Relative mitochondrial DNA content quantified by RT-PCR on two 
mitochondrial genes (ND4 and ATP6) and normalized to genomic β2m; n = 3. (D) 
Mitochondrial membrane potential in intact cells measured by cytofluorimetric analysis after 
mitochondrial staining with 200 nM TMRM and co-treatment with oligomycin (2 µM) and 
rotenone (1 µM); n = 3. (E) Relative electron transport system complex I activity 
biochemically determined as reported in the Materials and Methods section; n = 3. (F) 
Representative immunoblot of complex I protein level. All the statistical significancies have 
been calculated with respect to GFP-expressing or Hygro control 3T3 cells.  = p < 0,05; 
 = p < 0,01;  = p < 0,001 t-test statistics. 
 

Mitochondrial ATP synthesis inhibition by oligomycin does not 
abolish the tumorigenic potential of HDAC4TM-expressing cells 
 

 Given the unperturbed functionality of mitochondrial oxidative phosphorylation 

in HDAC4TM-expressing fibroblasts, we wondered if OXPHOS inhibition would 

hamper their tumorigenic potential. To test this hypothesis, we first evaluated the 

impact of oligomycin treatment on the intracellular ATP content. As reported in figure 
8A, 1h treatment with 2 µM oligomycin did not affect the intracellular ATP amount in 

none of the cell lines. Similar results were obtained also when the treatment duration 

was prolonged to 2 and 24h (data not shown). This could reflect compensatory 

mechanisms aimed to restore the oligomycin-induced ATP depletion, which are 

operating in all cell lines, as already reported by other authors using different electron 

transport chain inhibitors in oncogenic HRAS and normal NIH-3T3 cells (Yang D et 

al., 2010). However, these data are partially in contrast with previous published 

results where an oligomycin-provoked effect on ATP production was observed even 

after 24h treatment in KRAS and normal NIH-3T3 fibroblasts (Palorini R et al., 2013). 

Nonetheless, we sought to investigate the impact on cellular proliferation upon long-

term oligomycin treatment (figure 8B). Strikingly, 48h treatment of HDAC4TM-

expressing cells with 2 µM oligomycin affected the proliferative advantage that this 

cell line exhibited with respect to untreated control cells. The same treatment, 

although reduced the proliferative index of HRASG12V-expressing cells, did not cancel 

the proliferative advantage of these transformed cells. Therefore, oligomycin 

treatment, in this experimental setting, had a lower impact on HRASG12V- than on 

HDAC4TM-expressing cells (i.e. 28,53% versus 43,98% decrease in cell proliferation, 

respectively), in line with their mitochondrial profiles. 
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Prompted by these results, we examined by soft-agar assays the in-vitro tumorigenic 

potential of hyperactive HRAS- and HDAC4TM-expressing cells when challenged with 

repeated pulses of oligomycin for the entire duration of the experiment (figure 8C). It 

should be noted that 2 µM oligomycin treatment still permitted the colony growth of 

both HRASG12V- and HDAC4TM-expressing cells, in contrast to what observed with 

the 2-DG treatment at 25 and 5 mM, where no colonies were present in none of 

these cell lines (data not shown). Oligomycin treatment hampered the ability to grow 

in anchorage-independent way in both cell lines but, unexpectedly, had a higher 

impact on the tumorigenic potential of HRASG12V- respect to HDAC4TM-expressing 

cells. These apparently puzzling results highlight how complex could be the response 

of cells exposed to chronic metabolic inhibition, and may be explained  by different 

adaptive mechanisms likely occurred with a different time-scale. In fact, although 

HDAC4TM-expressing cells, being mitochondrially competent, showed an oligomycin 

impact on cell proliferation higher than HRASG12V- expressing cells within 48 hours, 

they could be able to respond to the constraint on oxidative phosphorylation imposed 

by oligomycin treatment by the activation/up-regulation of glycolytic flux. Such a 

response has been recently suggested in other “oxidative” cancers (Lim JH et al., 

2014).  In other words, the glycolytic reserve capacity of HDAC4TM-expressing cells 

could be, similarly to their mitochondrial competence, as their normal counterparts 

(i.e. HDAC4WT and GFP-expressing cells).  This hypothesis is corroborated by the 

empirical observation in the three cell lines of a slight change of color of the phenol-

red toward the acidic pH upon oligomycin treatment, either in the culture medium 

or in the upper agar layer (data not shown). In addition, we may hypothesize that, in 

principle, the long-term blockade of ATP synthase caused a cumulative ROS 

production exceeding, in the 21 days time-scale, the cellular repair capability and 

leading to cell death. Such an effect may be more invasive in the hyperactive HRAS 

context where ROS over-production is reported as elevated per se (Kopnin PB et al., 

2007; Weinberg F et al., 2010), thereby explaining the higher impact observed on the 

tumorigenic potential of HRASG12V- respect to HDAC4TM-expressing cells. It should 

be emphasized that preliminary results (not shown), obtained by assessing 

intracellular ROS levels in basal conditions by H2-DCF-DA fluorescence, documented 

a 25% higher intracellular ROS in HRASG12V-expressing cells compared to not 

transformed fibroblasts. In contrast, HDAC4TM-expressing cells did not show a 

significative difference in intracellular ROS levels with respect to both HDAC4WT-
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expressing or Hygro-control cells. These results, although very preliminary, may 

support our latter hypothesis and prompt us to investigate the possible preventive 

effects of antioxidants such as NAC, as well as to detect markers of oxidative 

damage and intracellular ROS generation following oligomycin treatment. 
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Figure 8: Mitochondrial ATP synthesis inhibition by oligomycin abolishes HDAC4TM 
proliferative advantage, but not its tumorigenic potential. A) Intracellular ATP content of 
the four cell lines treated for 1h with 2 µM oligomycin; n = 3. B) Cell count after 48h treatment 
with 2 µM oligomycin; n = 4. C) Quantification of soft-agar experiments in which 3,3 × 104 
cells/plate were seeded and the upper medium layer containing 2 µM oligomycin changed 
every 3 days. The transforming potential was evaluated after 21 days; n = 3.  = p < 0,05; 
 = p < 0,01;  = p < 0,001 t-test statistics.
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CONCLUDING REMARKS 
 

 Nearly 90 years have passed since the pioneering discovery of cancer cell 

metabolic reprogramming (Warburg O, 1927) and, in the last decade, a lot of efforts 

have been profused to understand the molecular mechanisms governing this 

metabolic shift and the interconnection with oncogenes activation or tumor 

suppressors’ loss of function. Pioneering work demonstrated that cancer cells rely 

mostly on enhanced glycolysis to survive and support cell proliferation. Otto Warburg 

proposed a possible explanation for this metabolic dependence. He identified in a 

mitochondrial defect, which depletes cellular energy support, the leading cause 

forcing cancer cells to restore ATP levels by the less efficient fermentation process 

(Warburg O, 1956). Unfortunately, these early observations, while remaining true for 

several cancer types, have led to the belief that all tumors are characterized by 

mitochondrial compartment down-regulations. In fact, it was demonstrated that, in 

most cancer cells, mitochondria are actually reprogrammed to contribute, through 

cataplerotic mechanisms, to the synthesis of macromolecules necessary for tumor 

cell growth (DeBerardinis RJ et al., 2007) and that mitochondrial oxidative 

phosphorylation can be still operative (Hu J et al., 2013; Moreno-Sánchez R et al., 

2007), even if the carbon source used to fuel the TCA cycle may be shifted from 

glucose to glutamine (Fan J et al., 2013). 

In this thesis, we have addressed the question whether the transformation induced in 

NIH-3T3 murine fibroblasts by the overexpression of a “super-repressor”, phospho-

resistant mutant form of HDAC4 could present the typical metabolic features 

characterizing the Warburg phenotype. We have demonstrated that the proliferative 

advantage of HDAC4TM-expressing cells was not accompanied by an increase in 

extracellular lactate secretion, a hallmark of the Warburg effect, instead it was 

evident in oncogenic HRAS-expressing cells. Therefore, despite a quite similar 

tumorigenic potential, HDAC4- and HRAS-driven tumorigenesis greatly differ in terms 

of lactate production and sensibility to lactate dehydrogenase chemical inhibition, as 

demonstrated by the statistically significant difference in oxamate IC50 between the 

cell lines. Nevertheless, we have found that HDAC4TM-expressing fibroblasts are also 

more sensible, compared to normal cells, to both glucose shortage and 2-DG-

mediated glycolysis inhibition, even if to a less extent compared to HRASG12V-

expressing cells. These data could suggest that, in HDAC4TM cells, the glucose flux 
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through glycolytic route is increased in order to speculatively provide a higher amount 

of glycolytic intermediates for the biosynthesis of cellular components and sustain cell 

proliferation. In fact, when glycolysis is blocked the proliferative advantage of 

HDAC4TM cells is lost. However, in HRASG12V-expressing cells glycolysis up-

regulation is even higher thus leaving open the possibility that the excess of pyruvate 

produced is disposed through fermentation and lactate secretion. The higher levels of 

glycolysis in HRAS were confirmed by the decrease in intracellular ATP content 

following acute 2-DG treatment and by the differential 2-DG dose-dependent 

tumorigenic response compared to HDAC4TM cells. 

As a matter of facts, the higher rate of glycolysis observed in oncogenic HRAS cells 

can be, at least in part, justified and, in a certain way, constrained by a defect at 

mitochondrial level. We have determined, indeed, that most parameters that we have 

used to evaluate mitochondrial functionality resulted downregulated in HRASG12V-

expressing cells, as already reported in several papers (Yang D et al., 2010; Rimessi 

A et al., 2014). In particular, we have observed a down-modulation of OXPHOS 

complex I, both at the activity and protein expression level in HRASG12V cells, as also 

reported in literature for other oncogenic Ras isoforms (Baracca A et al., 2010). This 

may explain why in HRASG12V cells we have measured a lower mitochondrial-specific 

oxygen consumption, both in basal condition and when the mitochondria were 

maximally stimulated by mitochondrial membrane collapse. In this regard, the 

decreased activity and/or protein expression of OXPHOS complex I could be also 

responsible for the lower mitochondrial membrane potential increase detected in 

hyperactive HRAS cells when the proton influx toward the mitochondrial matrix was 

blocked by oligomycin-mediated ATP synthase inhibition. Together, these data point 

to a general down-regulation of the mitochondrial compartment in the oncogenic 

HRAS context, even though it is not yet clear if this mitochondrial defect would be a 

causing event or simply a consequence of the aerobic glycolysis displayed by these 

cancer cells. 

In sharp contrast, we did not detect any particular mitochondrial impairment in 

HDAC4TM-expressing fibroblasts. In this cell line, all the mitochondrial parameters 

tested were within the normal range or even slightly higher, as in the case of the 

oxygen consumption, indicating that the increased glycolytic flux observed was not 

the result of a compensatory molecular mechanism to restore cellular bioenergetics. 

Although a well performing oxidative phosphorylation in HDAC4TM cells, we did not 
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notice appreciable depletion of ATP content following oligomycin treatment, probably 

because, during the 1 hour period of ATP synthase inhibition, an up-regulation of 

other ATP-generating pathways (glycolysis) could account for the ATP level 

restoration, as previously reported (Yang D et al., 2010). However, longer inhibition 

(48 hours) of mitochondrial oxidative phosphorylation efficiently blunted the 

proliferative advantage of HDAC4TM-expressing cells, whereas had a much limited 

effect on oncogenic HRAS cell growth. Unexpectedly, this finding was not confirmed 

when we have scored the tumorigenic potential of these cell lines, once challenged 

with oligomycin pulses for the entire duration of the soft-agar assays (21 days). It is 

likely that differences in the ability of HRASG12V and HDAC4TM cells to mount 

compensatory metabolic mechanisms, such as an increase in glycolysis, in order to 

face the block of oxidative phosphorylation can account for the different clonogenic 

potential displayed by these cell lines upon oligomycin treatment, as already 

proposed (Lim JH et al., 2014). 

Altogether, these data have highlightened a marked metabolic difference, the 

classical Warburg effect, between HRAS and HDAC4TM transformed fibroblasts. In 

conclusion, the data support the hypothesis that HDAC4-driven tumorigenic process 

is characterized by increased glucose dependence and glycolysis, as the vast 

majority of cancers, but, in contrast to HRAS-driven tumors, does not show the 

typical Warburg phenotype because the augmented glycolysis is not coupled to a 

concomitant increase in lactate secretion and no obvious mitochondrial defects are 

present in transformed fibroblasts. Interestingly, it was discovered that in rat 

fibroblasts, the exogenous expression of KRASG12V led to the γ-catenin/Lef1-

mediated transcriptional down-regulation of HDAC4 and that the re-expression of 

HDAC4 had a dramatic effect on the invasive, migratory and motility ability of 

KRASG12V-infected fibroblasts (Yim JH et al., 2013). Moreover, Wang and colleagues 

have demonstrated that, in a microglial cellular model challenged with LPS, high level 

of glycolysis are responsible for the caspase-3-dependent degradation of HDAC4 

and consequent modulation of pro-inflammatory cytokines production (Wang B et al., 

2014). These results, however, are partially in contraddiction with those obtained in 

the skeletal muscle context, where class IIa HDACs have been implicated in the 

physiological skeletal muscle fiber determination (Potthoff MJ et al., 2007). In this 

paper, it has been shown that the combined depletion of HDAC5 and HDAC9 or 

muscle-specific depletion of HDAC4 and HDAC5 in mice results in an increase of 
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slow-twitch oxidative fibers. Moreover, the continuous repression of MEF2 target 

genes by class IIa HDACs in adult skeletal muscle is sufficient to block the exercise-

induced switch from glycolytic to oxidative muscle fibers in-vivo. Infact, from a 

functional point of view, in slow, oxidative muscle fibers, class IIa HDACs are 

ubiquitylated in the nucleus and rapidly degraded through the proteasome system 

(Potthoff MJ et al., 2007). Recently, these results have been confirmed by another 

research group which demonstrated that the phosphorylation status of HDAC4, 

through the repression of MEF2-dependent, PGC1α-mediated oxidative metabolic 

gene program, contributes to the establishment of muscle fiber type-specific 

transcriptional programs (Choen TJ et al., 2015). 

These results illustrate the tissue-specific nature and the pleiotropic roles that 

HDAC4 can play as a versatile connector between cell metabolism and the response 

to stimuli, both in physiological and pathological conditions. This complexity fully 

justifies the need of future rigorous studies on HDAC4 and metabolism, which were 

only preliminary addressed with this thesis. It is evident that understanding this 

connection will help to better explore the possibility of pharmacologically target 

HDAC4 for the metabolic modulation of cancer cells as a therapeutic strategy. 
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