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Abstract

We provide analytical approximations for the law of the solutions to a certain class of scalar McKean-
Vlasov stochastic differential equations (MKV-SDEs) with random initial datum. “Propagation of
chaos” results ([Szn91]) connect this class of SDEs with the macroscopic limiting behavior of a par-
ticle, evolving within a mean-field interaction particle system, as the total number of particles tends
to infinity. Here we assume the mean-field interaction only acting on the drift of each particle, this
giving rise to a MKV-SDE where the drift coefficient depends on the law of the unknown solution. By
perturbing the non-linear forward Kolmogorov equation associated to the MKV-SDE, we perform a
two-steps approximating procedure that decouples the McKean-Vlasov interaction from the standard
dependence on the state-variables. The first step yields an expansion for the marginal distribution at a
given time, whereas the second yields an expansion for the transition density. Both the approximating
series turn out to be asymptotically convergent in the limit of short times and small noise, the con-
vergence order for the latter expansion being higher than for the former. Concise numerical tests are
presented to illustrate the accuracy of the resulting approximation formulas. The latter are expressed
in semi-closed form and can be then regarded as a viable alternative to the numerical simulation of the
large-particle system, which can be computationally very expensive. Moreover, these results pave the

way for further extensions of this approach to more general dynamics and to high-dimensional settings.
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1 INTRODUCTION

1 Introduction

Model. Consider the non-linear diffusion

dXt = ]E[b(x,Xt)”z:Xtdt + O'th, t>0
Xo=Y.

(1.1)

Here, W is a scalar Brownian motion and Y is a square integrable random variable, independent of W.
Throughout the paper, we assume that there exist two positive constants M, & > 0 such that the following

standing assumptions hold:
[Hyp-b.0] b: R x R+ R is a globally Lipschitz function, and is bounded by Mo?;
[Hyp-o] The diffusion coefficient o is such that 0 < o < 7.

For high order expansions, [Hyp-b.0] will be reinforced by adding the following further assumption, for a
given N e N, N > 1.

[Hyp-b.N] For any y € R, the function b(-,y) € CV(R) with all the derivatives d7b(-,-) up to order N

being measurable and bounded by Mo?. Moreover, d1b(-,-) is continuous.

Such non-linear SDEs, where the coefficient b of the equation depends not only on the state of the solution
at time ¢, but also on its whole distribution, is a particular case of a class of SDEs known as McKean-type
non-linear diffusions. Tt is well known that, under [Hyp-b.0], Eq. (L) admits a unique strong solution
(see for instance [Szn91]). The extra assumption [Hyp-o], along with other additional regularity and
boundedness assumptions on b, will be used to derive expansions for the density of the distribution of X;.
In particular, the need for the constant ¢ will be clarified in the sequel. Loosely speaking, it will allow to

prove sharp error estimates not only for small times, but also for small o.

Background results and main contributions. So far, the study of numerical approximations of
SDEs of McKean-type has been mainly conducted under the point of view of time discretization and
simulation through an interacting particles system. References are numerous and we refer to [MéEI96,
BT97, [AK02l [TV03|, [Tra08] among others. Recently, an alternative method using cubature formula has
been investigated in [CGI15]. Our approach is quite different and relies on analytical expansions; to the
best of our knowledge this is fully novel in this context. We emphasize that during the last decade,
there has been an increasing gain of interest in the study of SDEs of McKean-type, with new applications
ranging from modeling economic interactions and mean-field games [CDL13| [CD15|, to financial portfolio
[BK10, JRI5| and neuroscience [DIRT15]. The first main contribution of the paper is a semi-closed N-th
order approximation ]BNyt for the density P, of Xy, for which we are able to prove an asymptotic error
bound (Theorem 2.9)) that can be roughly summarized as

N+1

HPt — f’N,t”Ll(R) = O(O'Qt) 2 as ot — 07.

The second main contribution is a family of semi-closed N-th order approximations p (s, &;t, ) for the

transition density p(s,&;t,x) of X (seen as a time-inhomogeneous standard SDE), the latter depending on
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the previous approximation ]:DNyt in a way that will be specified in Section 2l In this case we are able to

prove an asymptotic result (Theorem 2.16]) that roughly reads as

N+1

o2
|(p—pR) (s, &t )| = 67%0(020 ’ as 0%t — 07,

uniformly w.r.t. z,€ € R. In Section Bl numerical comparisons between p (s,&;t, ) and p(s,&;t,x) are
performed, for a specification of the coefficient function b that allows for an explicit benchmark of the
latter.

We emphasize that, even though such results are carried out here for a scalar Mc-Kean SDE as in (ILTI),
our approach can be generalized to multi-dimensional settings allowing for Mc-Kean interactions not only
in the drift but also in the diffusion coefficient. These extensions, as well as more thorough numerical
tests to illustrate the accuracy and the efficiency of different approximation formulas, will be handled in a

further work.

Organization of the paper. In the rest of this section we introduce extra notations, which will be
used throughout the whole paper. Section [2 is then devoted to present our approximation strategy and
state the main results (approximation formulas and error analysis). In Section 3] we provide brief numerical
illustrations related to the accuracy of the approximation. Section M gathers the proofs about the expansion
of the marginal distribution of the diffusion process. The proofs about approximations of the transition

density are given in Section

Notation 1.1. For any random variable U, we denote by U’ an independent copy of U, and by E’ the
expectation w.r.t. the distribution of U’ only, i.e. E'[p(U’, Z)] = E[p(U, z)]|.=z for any random variable
Z independent on U. With this notation we can rewrite (1) as

dXt = ]E/[b(Xt,X;)]dt + O'th, t>0
X, =Y.

(1.2)

Notation 1.2. For any measure u on (R, B), and any function f € L*(R, ) we define the average
)= [ Foutaa).
Moreover, for any functions P € L*(R, Leb) and f such that (fP) € L*(R, Leb) we set

PIfl = [ f@)Pla)da.

In particular, if u is absolutely continuous w.r.t. the Lebesgue measure with density P, i.e. p(dz) = P(z)dz,
then we have u[f] = P[f].

Notation 1.3. We will denote by px, and py the laws of the random variable X; and Y respectively.
Sometimes, to shorten notation, we well use u; instead of ux, when the dependence on X is clear from the
context. Moreover, under the standing assumptions [Hyp-b.0] and [Hyp-o], u: is absolutely continuous
with respect to the Lebesgue measure at any time ¢ > 0 (see the discussion below), and we will denote by

P,(-) its probability density, i.e. u;(dz) = P,(z)dz for any ¢ > 0.
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Remark 1.4. Under assumptions [Hyp-b.0] and [Hyp-o], the function (¢, x) — u:[b(z, )] is bounded and
continuous, and the function x — u:[b(z,-)] is Lipschitz continuous uniformly w.r.t. ¢ > 0. Therefore, it is
well known (see [Fri64, Chapter 1, p. 23]) that the parabolic operator (9s + .A%), with A% given by

2
g
Al = 7355 + s [b(€, )]0k, 5>0,

has a fundamental solution p(), i.e. a continuous function p*(s,&;t,x) defined for any &,z € R and
0 < s < t, such that, for any (¢,2) €]0,00[xR the function p(*)(-,-;t,z) solves the backward Cauchy
problem

(0s + AP)u =0 on [0,¢[xR,

u(t,:) = 0,.

(1.3)

Moreover, if we additionally assume [Hyp-b.2] to be in force, then the function (¢,x) — Opue[b(z,-)] is
bounded and continuous, and the function a — 9, pu:[b(x, -)] is Lipschitz continuous uniformly w.r.t. ¢ > 0.
Thus p*) (s, &;t, ) also coincides with the fundamental solution of the linear parabolic operator (—d; + A;)
(see [Fri64, Chapter 1, p. 28]), where A, is the so called formal adjoint of Ab, acting as

2

Apu(z) = 7

5 Owau(z) — Oy (u(@) e [b(z, -)]), t > 0. (1.4)

In particular, for any (s, &) € [0, 00[xR the function p*) (s, &;-,-) solves the forward Cauchy problem

(=0 + A )u=0 on]ls,oco[xR,
u(s,-) = 0¢.

Note that, once existence of the solution X is ensured, the McKean-Vlasov SDE (LI)) can also be
regarded, a fortiori, as an ordinary SDE with random initial condition Y and unknown variable drift-
coefficient p:[b(x,-)], i.e.

dX; = e [b( Xy, )]dt + odW, t>0

Xo=Y.

(1.5)

Therefore, a simple application of Feynman-Kac representation formulas shows that the Markovian process
X, solution of (LHl), has a transition density kernel that coincides with the fundamental solution p) in
Remark [[4l Precisely, p(“)(s, -3 t,-) is the density of the marginal X, of the process conditioned to Xj.
Note that the superscript (p) emphasizes the fact that the transition kernel does depend on the distribution
of X; in particular it depends on the p,(.) for any 0 < v < ¢, and on the initial distribution puy. This fact
represents a key difference with respect to standard SDEs.

Now, by Chapman-Kolmogorov equation, we can conclude that the distribution u; has a density P;
given by

Pi(x) = /Rp(“)((),g;t,:zr)uy(df), t>0, zekR.

In particular, by changing the notation of p(* into p(*’), the density P can be regarded as the solution of

the fixed-point functional equation

Py(x) :/Rp(P)(O,{;t,x)uy(dg), t>0, zeR. (1.6)
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Hereafter, to simplify the notation, we will suppress the suffix P, or p, and we will use p(s, &;t,2) to denote
the transition density of X. However, the reader should always bear in mind that the transition density p

depends on the law p (with density P) of the process X.

Notation
e N=1{0,1,...,n,...} denotes the set of non-negative integers.

e N* = N\{0} denotes the set of positive integers.

2 Analytical Approximations

In order to expand the density P:(-) of the solution X; to the MKV SDE (L3 we propose a two-steps
(or decoupling) perturbation scheme. Loosely speaking, the main idea is as follows: we obtain a first
approximating expansion ]:DNyt of the marginal P;, then we further approximate the transition density of
the solution to the SDE

dY; = Py4[b(Ys, V]dt + odWy, ¢ >0, (2.1)

and finally, we obtain an new approximation of P, by reintegrating w.r.t. uy (see Eq. (L0Q)).

Besides providing with a first approximation for the marginal distributions p; of the solution Xj, the
first step is relevant because it allows to separate (or decouple) the two kinds of interactions in (LH): the
McKean-Vlasov interaction through the law of the solution, and that through the realization of the solution.
This first step should be regarded as the main element of novelty in this paper. Once the decoupling of the
two interactions is done, the problem boils down to approximating the transition density of a standard SDE
of the type (Z1), where the coefficient only depends on state and time. Thus the second approximation, the
one for the transition density, follows by adapting some previous PDE techniques that allow to expand the
transition density of the solution to a standard SDE (see [LPP15]). Note that the latter techniques admit
a stochastic counterpart that allows to obtain similar results (see [BG12] for a review). It is important
to mention that, however certainly more standard, this second step returns a higher order approximation
compared to the first one. The improvement is relevant because it has a major impact for low values of IV,

which are the only cases when the approximation can be easily computed in practice.

2.1 Expansion of the marginal distributions

We carry out an approximating expansion for the marginal distributions (marginal densities) P;(-) of X.

2.1.1 Approximation strategy

We introduce an interpolation parameter . For any ¢ € [0, 1], let us consider the family of McKean SDEs
given by
AdX; = eE'[b(Y + (X —Y), X[9)|dt + odW;, ¢ >0,

i (2.2)
Xe=V.
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Due to the presence of Y = XS in the b-term, this is a path-dependent McKean SDE: Lemma [B.1] justifies
the existence and uniqueness of a strong solution to the above equation under [Hyp-b.0]. Note that, if
e = 1, then ([22) reduces to the original McKean equation (I2Z). For any ¢ > 0, denote by P¢(-) the density
of X7, which exists for the same reason as for P, (see Remark [[4] and following discussion). The density
P# can be given an interpretation within the PDE framework. In fact, even though the process X¢in 22

is not Markovian, it becomes Markovian when conditioned to Y. Therefore P¢ can be written as
Fiw) = [[FOGLom @), 10, scR
R

where p° = p°(0,&;¢, ) is the density of the marginal Xﬂy:g, or the fundamental solution of the linear
parabolic operator (—6,5 + fla’g), with A¢ acting as

2

ASEu(t, x) = % ou(t, ) — 0y ( (t,2)PE[b(& + ez — ©), )}) . (2.3)
In particular, the function p°(0,¢&;-, ) satisfies
—8, + A58)pe(0,&; -, ) = on 0, co[ xR,
0+ A (0,6, ) 10| o
For a given N € N*, consider the N-th order approximations
) N
P06t a) o = n(0,658,2) == Y —pn(0.6ita), 0<s<t, wEeR (25)
n=0
. - N o
Fo@)lmn = Poe) = [ (0.6 iy (0 = 3 1P
with P, (z) = /pn(() &ty x)py (dE), t>0, ze€R, (2.6)

where the rigorous definition of each function p,, will be given later. Had p° and P? had a Taylor expansion

in e, we would have taken naturally

dn ~ dr

ﬁn(svg; t,.’L’) = @ﬁg(svg; t,.’L’) ) Pﬂi(m) = @Pta(x)

. , 0<s<t, z,£€R. (2.7)
=

In what follows we will not prove, strictly mathematically speaking, the existence of Taylor expansions in

g, but this Taylor expansion principle will guide us through the definitions of p,, (and therefore Pn,t owing

to (2.4)).

2.1.2 (0-th order approximation

Here we will give an explicit representation of the leading term p07t = Pto appearing in the expansion (2.0))
of the marginal density Pf.
All the definitions of this subsection are well posed under assumption [Hyp-b.0] and [Hyp-o].
setting € = 0 in (22) we obtain
dX? = odW, t >0,

X\ =v,
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which clearly yields
Poa(o) = [ o0, &5t 2}y (09, t>0, seR (2.
R
po(0,&;t, ) := Fg(t,x—g), t>0, &xzeR, (2.9)

where T',(+,-) is the Gaussian density with variance proportional to o2

2

1
- exp |2
oV 2t P ( 202t

In order to maintain the parallel with the PDE’s setting, note that, by setting ¢ = 0 in (2.3)), we have that

T, (t,z) = ), r€R, t>0.

the kernel py represents the fundamental solution of the operator (—8,5 + flo), with

~ 0'2

Ao = 5 Ous, (2.10)

i.e. for any £ € R the function pg(0,&;-, ) solves the forward Cauchy problem
(=0 +Ag)u=0 on]0,00[xR,
u(0,-) = de.

(2.11)

2.1.3 Higher orders approximations

In order to achieve higher orders expansions for the marginal density P, = Pﬂa:l, we follow the strategy
explained previously. Hereafter throughout this subsection we fix N € N* and we assume the assumptions
[Hyp-b.N — 1] and [Hyp-o] to be in force.

Formal derivation. We start by freely assuming that all quantities are smooth in € and that all sub-
sequent PDEs are well posed. It will enable us to formally represent the terms p,(s,&;t, ) appearing in
[23) as the solutions of some nested PDEs. By formally differentiating both sides of ([2.4]) we obtain

(=0s + Ao) 7 (0, & t, ) = D, 0" (5155(0; &t 2)PE[b(€ + (o — &), -)])

= 20,02 (5°(0:&5t,0) Py b (¢ + 22— €),)] )
e n—1 h n—1—hze/n. ¢.
—I—n(?ng( 2 () e reeo)
(=& (ALTPE) [0ib (¢ +e(x - €), )], (2.12)

h=0
along with the terminal condition 97p°(0,&;0,2z) = 0. Now, if we were to define 5,,(0,&;t, ) as in (2.1,

by shifting the index h, reorganizing the binomial coefficients, and setting now ¢ = 0 in (ZI2]) we would

obtain
(=00 +A0)pu(0,6:-,) = Sy X200 h () (7 ) Bl 1) B (065, -), on0,0o<R, )\
Pn(0,£;0,-) =0, on R,
with Biﬂ. = 32,1'('7 -) being the differential operator acting as
(B, (L)) (t,2) = Py [00(E, )] 00 (@ — ©)'ult,z),  0<i<h. (2.14)
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Rigorous definition. Although all the previous computations were only meant to be heuristic, the
Cauchy problems (ZI3]) lead us through giving rigorous definitions for the expansion terms p, entering
in the definition ([ZG) of the approximate marginal distribution P:’Nﬁt. Precisely, by applying Duhamel’s
principle we can give integral definitions that are coherent with aforementioned Cauchy problems. A
fortiori, in Section 2] (Remark [L6]) it will be shown that p,, actually solves (2.13)), with the initial condition

meant in the distributional sense.

Definition 2.1. For any n € N* with n < N, set

Pas@) = [ n0.Gt0)uy(de), 120, cER, (2.15)
R
where, for any £ € R, the functions (]5"(0, & -, -))1<n<N are defined, recursively, as
n AN h =1 ¢
= . - - . 3 = ..
st == 3 () (1) [ 1o —wmi e 1o

with po as defined in ([Z3]).

As it is stated in Theorem below, Definition 211 is well posed under assumptions [Hyp-b.N — 1]
and [Hyp-o], and the function P, can be given a representation in terms of differential operators acting
on the leading term Py. Such representation can be manipulated, see Corollary 25 in order to achieve a

fully explicit characterization.
Theorem 2.2. Under assumptions [Hyp-b.N — 1] and [Hyp-o], for any n € N* with n < N, we have:
(i) the functions P, and p, as in ZIN)-ZI6) are well defined;

(i) it holds:

f)n(ovga t,.I) = —L%(t,-f)ﬁo(o,f, t,.I), t> 05 $7§ ER (217)

where L& = L& (-, ) is the differential operator defined as

B n t s1 Sh—1 ~ ~
L8 (t,x) = n!Z/O dsl/o d52~-~/0 dsp, Z Sfl(sl,t,x)~-~9§h(sh,t,x),
h=1

ie]n,h

wher
L= {i = (in,-in) € (N [in+ o tin=n}, Lshsn, o (218)

and the operator Gt = §i(, -,+) is defined as, for k > 1,

-1

5 1 k—1 ~ -

Si(s,t,:c) = ' Z < i )Bi_ld (S,M(s,t,x)), M(s,t,z) :=x + 0%(t — 5) Dy, (2.19)
In (Z19), ngfl,j (s, M(s, t, x)) is a slight abuse of notation for the operator Biiu acting as in (214)
composed with M, i.e. Bi_ld (s, J\?[(s, t, x))u = Ij’k,l,jﬁs [8{()({, )]81 ((:17 +02(t—8) 0y — {)Ju)

I For instance, for n = 3 we have I3 3 = {(1,1,1)}, Is,2 = {(1,2),(2,1)} and I5,1 = {(3)}.
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We are now going to re-write the operator f)fl(t, x) in a different way that is more explicit, though less
intuitive. Such representation is useful in the practical implementation of the expansion. We state the

next result in terms of the following functions and operators.

Notation 2.3. For any [, j,4,m € N* and ¢ € R, we let the function F0 L Fg L ;(-) be defined as
t sp
lq
L R A | o R R E T

the operator fH?l = 5—(§l() be defined as

96 (0) = (@ =& (G =+ (= 98,9 ) (0 = P77 (ja — la + (2 = €)0,) 0% ) -+
. ((:1: — g)jh,flh,fl(jh Sy (:Z? _ 5)395)3;"), z € R, (2'21)

and the constant cg m,,j,; be defined as

g — 2
s TL () () (5)
1. Ja q q

9=

Remark 2.4. For any [, j € N” we have

55 (x) = 9

Ji,h

( )}(.?27[2( ) j-(.fh ln ($)7 57 T e R'

Corollary 2.5. Under assumptions [Hyp-b.N —1] and [Hyp-o], for any n € N* with n < N, the function
pn(0,&;t, ) is as in (ZI7) where

- n 1
L5, (t, ) = n!Z Z ( H m) Z Co,m,l,j,i—1 Fg,um,j,iq(f)j'fizm,z(w)a (2.22)
h

h=14i€l,  Nq=1,-, m,l,jeN"
lg<jq<iqg—1

jq—1
quLJqQ qJ

with I as in (ZI8).

Proof. Consider the operator O acting as (Of)(z) = (a(z — ¢) + bd,) f(x). Then, one can prove (proof
made with Mathematica) that

jfl

i 2 (2m —1) ”< ) (j —12m> (x — c)i~i=2mgi=l=mpltmal £ ().
0

=0 m=

Therefore, the operators Qi in (ZI9) can be represented in a more explicit, though less compact, fashion

as follows:
k-1 j L5
- ~ k—1 37 j—2m
gizgf(s,t,x I Z 2m—1”< ] ><2m)( ; >Pk 1_ Js[ab(g, )}
§=0 1=0 m=0
(UQ(t—s))Hm(x g£)i—m=l= 1(j—2m—l+(:17—§)8z)8i.
Finally Corollary 2.5 stems from Theorem O
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Remark 2.6. Tt is important to observe that the representation (ZIT7)-(Z22) for P, (z) is fully explicit
up to computing the coefficient functions Fg 17.:(t) defined in (Z20). In fact, the operator J'C?l(ac) can be

easily computed even at high orders, possibly by means of a symbolic computation software.

Example 2.7. For n = 1 we have

t
L5 (t,2) = F§0,0,0(8)3C (), F§o00(t) = / Por[b(&)]dr, 3G p(a) = 0.
Example 2.8. For n = 2 we have
ig(t, T) = 2(F€)070)1(t)f}(§70(x) + Fg,o,l,l(t)j{io(x) + Fg,l,l,l(t)g{il(x)
13 §
+ F(o,o),(o,o),(o,o),(o,o)(t)g{(o,o),(o,o) (w)) ;
with
t t
F§0.(t) = /O 1,s1 [0(€, )] dsa, Ffo1(t) = /0 Po,s, [01b(&, )] ds1,
t
Fg,l,l,l(t) = /0 0,s1 [81b(§,-)]a2(t—51)d51,

t N s1
Ffo,o),(o,o),(o,O),(o,o)(t):/O Po.s, [b(&,-)] dSl/O Po,s, [b(§, )] dsa,

and
J'Cg,o(x) = O, j'fio(gc) = (1 + (= — 5)31), 5{31(3@) = j'f(go,o),(o,o) (x) = 07.

2.1.4 Error estimates

In this subsection we provide some rigorous error bounds for the N-th order approximation PN,t of the
true marginal density P, as it is defined in (2.0)).

We are in the position to prove the following result.

Theorem 2.9. Let N € N*, T > 0, and assume [Hyp-o], [Hyp-b.0] and [Hyp-b.N + 1] to be in force.
Then, for any N € N with N < N + 1, and for any ¢ > 1, we have

N+1

|(p = n)(0,&t,2)| < C(0%) 7 Tep(ta—€),  &Ex€R, 0<t<T, (2.23)

where C' > 0 only depends on N, T, c, and on the constants M, & of assumptions [Hyp-o], [Hyp-b.N +1].
In particular, we have

N+1

HPt_ﬁN,tHL1(R)§C(U2t) 2 5 0<t§T

2.2 Expansion of the transition density

We carry out an approximating expansion for the transition densities p(s, &;t, x) of X.

10
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2.2.1 Approximation strategy

We consider the family of standard Markovian non-homogeneous SDEs, indexed by Z € R and ¢ € [0, 1],
given by
dX;" = Pi[b(z + (X" — @), ) ]dt + 0dW;, ¢ > 0. (2.24)

Recall that Pf represents the marginal distribution of the process Xf in 22). The initial point Xg’i is
deterministic; its value is unimportant since we are interested only in the transition density of X%, Again,
one can observe that, if ¢ = 1, then ([2:24]) with initial point sampled according to uy reduces to the original
McKean SDE (LB). We now denote by p=%(s,&;t,x), s < t, the transition density of X%, To ease the
notation we preferred here to use p>% instead of p(l5 )52 however, the reader should bear in mind that
the drift coefficient in ([2:24)), and thus also the kernel p*%, do depend on the density P¢. From the PDEs
perspective, the kernel p©% can be interpreted as the fundamental solution of the linear parabolic operator
(— O + A=), with A= acting as

~ 0.2 ~
A Tult,2) = T-Oapult, ) = 0, (ult, 0) P [b(z + (2 = 7),)] )

In particular, the function p=7®(s,¢; -, ) satisfies
(= 0+ AT)p=T(s,&-,) =0 on]s,00[xR,
po7(s,&;8,0) = ¢

Although ([22) and [2:24) with py-random initialization coincide at € = 1, they differ at & # 1 because

of the different scalings in € and because of different form of the interpolated drift (involving Y or a fixed

(2.25)

point z). This difference is instrumental for our decoupling approach.
For a fixed T € R and given N € N*, consider the N-th order approximation,

N
% i Lz
poE(8,&5t,x)|em1 = P (s, &ty ) = E Epn(s,ﬁ;t,:v), 0<s<t, =z,£€eR, (2.26)

n=0
where the rigorous definition of each function p% will be provided later. Had p*® had a Taylor series

expansion in ¢, we would take naturally

_ dn _
pfz(‘sag?tax) = @ps,m(s7§;t7$) E:O; (227)

this principle will serve as a guide to define pZ.

Remark 2.10. Instead of considering the parametrization in (224)), one might prefer to fix N € N and

consider the dynamics
AX5T = Py [b(z + (X7 — 7),)]dt + 0dWs, ¢ >0, (2.28)

Now, an expansion for the transition density would be readily available be simply employing perturbation
methods for standard SDEs and linear PDEs, like those introduced by the authors in [BGI12|, [LPP15].
Although this way of proceeding would certainly return an approximation with the same order of asymptotic
convergence as the expansion in (Z28)- (Z27]), the expansion stemming from ([2:28)) would contain some extra

terms that lengthen the approximation formulas without improving the order of convergence.
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2.2 Expansion of the transition density 2 ANALYTICAL APPROXIMATIONS

Now, reintegrating w.r.t. py, by setting & = € or T = z, and in view of (L.f]), we obtain two N-th order

approzimations for the marginal density P:(z) of X, namely
PNy (@) = /ﬁfv((),é;t,x)uy(dﬁ), PR (x) = /ﬁﬁ(O,é;t,I)uy(dﬁ), t>0, z€R.
R R

In general, we will show that any Z that lies on the segment connecting the initial point £ and the terminal

point = represents a sensible choice, which yields the A-approximation
Pra(@)i= [ BROG00)] e ir @), A€ 1L (2.29)

Note that Pﬁ,)t reduces to Pﬁ}ﬁ” and Pﬁ,‘?? for A = 0 and A = 1, respectively. Theoretically, all the above
approximations have the same asymptotic accuracy, uniform in ), in the limit ot — 0 (see Theorem 2.16]).

Their actual accuracy for different choices of A will be compared in a further work.

2.2.2 0-th order approximation

Here we will give an explicit representation of the leading term pZ (s, &;t, x) := p®®(s,&;t, z) appearing in
the expansion (2.26)-2.21) of the transition density p®(s, &;t, ).

All the definitions of this subsection are well posed under assumptions [Hyp-b.0] and [Hyp-o]. By
setting ¢ = 0 in ([2:24]) we obtain

dX)" = Pou[b(z, ))dt +odW;, >0,
which yields

po(s, &t m) =T (t — 5,2 — & —m®(s,1)), m”(s,t) = /tf’oyr[b(jf)]dr, 0<s<t ¢&xzeR
) (2.30)
Note that, owing to the boundedness of b in assumption [Hyp-b.0], the mean m?(s,t) in ([230) is well
defined. Furthermore, owing to the continuity of b(Z, -), again by [Hyp-b.0], the function t — Py +[b(Z, -)]
is continuous and bounded and thus p{ corresponds to the fundamental solution of the parabolic linear

operator (— 8, + Ag), where

2
Tu(t,z) = %amu(t,x) — Pyu[b(z, )| 0sult, z),

i.e. for any (s,&) € [0,00[xR the function pE(s,&;-, ) solves the forward Cauchy problem

(=0 + Af)u=0 on ]s,00[xR,
u(s, ) = de.

(2.31)

2.2.3 Higher orders approximations

In order to achieve higher orders expansions for the transition kernel p(s,&;t,z) = p©%(s,&;t,@)|c=1, We
follow the strategy explained previously. Hereafter throughout this subsection we fix NV € N* and we

assume assumptions [Hyp-b.N] and [Hyp-o] to be in force.

12



2.2 Expansion of the transition density 2 ANALYTICAL APPROXIMATIONS

Formal derivation. In analogy to what was done in Section B.T.3 we start by freely assuming that all
quantities are smooth in & and that all subsequent PDEs are well posed. This will allow us to formally
represent the terms pZ(s,&;t,z) appearing in ([2.26) as the solutions of some nested PDEs.

By formally differentiating both the left and the right-hand sides of (2.25)) we obtain

(—8t—|—fl0)8gp5’i(s,§;t,:r):818;1( *(s;6t, )P [b(z —I—E(aj—j),-)])

_azzn:zh:< >< > (0" p T (s: 651, 1)

h=0 i=

(a—2) (L) [0ib(z + e(x — 7), )],

along with the terminal condition 87p**(s,&; s, z) = 0. Once again, setting e = 0 yields

(=0 +A5)p(s.&) = Chot Xiso () (1) Bh ) pho(s: 6,0, on Js, 00[xR,

] (2.32)
pi(s,f;s,-) :Oa on R.

with the operators B ; acting as in (2.14)).

Rigorous definition. Proceeding as we did in Section [2.1.3 we use the previous heuristic computations,
in particular the Cauchy problems ([2.32)), in order to give rigorous definitions for the correcting terms
pZ. Precisely, by applying Duhamel’s principle we can give integral definitions that are coherent with
aforementioned Cauchy problems. A fortiori, in Section [5.2] it will be shown that p? actually solves ([2.32)),

with the initial condition meant in the distributional sense.

Definition 2.11. For any n € N* withn < N, and z,{ € R, the functions (p (s, &;-, ))n
defined as

P61t ) = ZZ(Z) () [ o=y )8 ) s, (239)

h=1 =0

<y are recursively

forany 0 < s <t and z € R.

As it is stated in Theorem [ZT2] below, Definition [ZT1] is well posed under assumptions [Hyp-b.N] and
[Hyp-o], and the function pZ can be given a representation in terms of differential operators acting on the
leading term pf. Such representation can be manipulated, see Corollary 214 in order to achieve a fully

explicit characterization.

Theorem 2.12. Under assumptions [Hyp-b.N] and [Hyp-o], for any n € N* withn < N and z € R, we

have:
(i) the functions p% as in [2.33) are well defined;

(i) it holds:
pr(s, &t ) = L7 (s, t,2) pi (s, &5t @), 0<s<t, xz,&€R, (2.34)

where LE = LE(-,-,-) is the differential operator defined as

n t s1 Sh—1
LI (s,t,x) = n'Z/ dsl/ d52---/ dsp Z G7 (s1,t,2) -+ G7 (sn.t,x),
h=1 S S S

ie]n,h

13



2.2 Expansion of the transition density 2 ANALYTICAL APPROXIMATIONS

where the set I, , is defined in [2.I8)), and the operator G5 = G5(-,-,-) is defined as

k
Gi(s,t, ) := % Z (I;) b5, M (s, ), M¥(s,t,2) =2 —m"(s,t) + 07 (t —5) 0y, (2.35)

J=0

with m®(s,t) as in 2.30). In 2.35), Bf ; (5,8, M%(s,t,x)) is a slight abuse of notation for the operator
B ; acting as in ZI4) composed with M*, i.e. BY ; (5,8, M7(s,t,2))u = Py [8{1)(:77, )]0 ((z —
m”(s,t) + 02(t — s) O, — T)7u).

In analogy to Corollary 2.5 we are now going to re-write the operator £Z(s, ¢, x) in a more explicit way,

which is useful in order to implement the expansion. We generalize Notation

Notation 2.13. For any +,1,7,4,m € N* and # € R, we let the function FZ,,:=F2,;.(,") be defined

as
t Sh—1 - . _

Fi)m)i(s,t) = / dsy -- / dsy, H P, j..s, [8{"()(3—:, )] (—mz(sq,t))'yq (UQ(t—sq))lq, 0<s<t,
s s q=1,---,h

with m?(-,-) as in (Z30), and the constant ¢, ;,; be defined as
i Ja Ja = 2mq\ (Jq = 2mq — g
comisi= [T Cmg=() (e )( )| .
e q:}j[" h ! Ja) \2myq ly Yq

Corollary 2.14. Under assumptions [Hyp-b.N] and [Hyp-o], for any n € N* with n < N, the function
pZ(s, &t x) s as in (Z34), where

I ol S ( 11 Z.iq,)cw,m,z,j,iFﬁ,z+m,j,i<s,t> T (@)
=1,-,h &

h=li€ln,n ~ m,l,jeN" q=1,
1g<jq<iq

mg< L@J
Vg<Jq—2mq—lq

where I, and 37, (x) are respectively defined in 2.I8) and 2.21).
Proof. Analogous to that of Corollary O
Example 2.15. For n = 1 we have
Li(s,t,z) = Fg,l,l,l(sa t) 9@,1(17) + Fg,o,l,l(svt) j{f,o(x) + (Fg,o,o,l(sa t) + Fﬂio,l,l(sa t))f)-fg”ﬁo(:zr),
with
— t ~ — t ~
F300.1(s1) = / Pro, [b(@, )] dsi. FI o (s0) = / Po.sy [0:0(7. )] 0%(t — s1) sy,

t t
F?,O,l,l(s’ t) = —/ PO,sl [811)(@, )] mi(sl,t) dSl, F§,0,1,1(57t> = / PO,sl [8117(:%, )} dSl,

S S
and

Hoo@) = 0o, Higla) = (14 (@ —17)0),  Hi,(z)=0;.

)
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3 NUMERICAL ILLUSTRATIONS

2.2.4 Error estimates

In this subsection we provide some rigorous error bounds for the N-th order approximation py(s,&;t, z)
with Z = Az + (1 — A\)€ and A € [0, 1], as defined in (2.20]), of the transition density p(s,;t, z) of X; such
bounds in turn imply analogous error bounds for the approximation Pﬁ‘,yt(x), as defined in (229), of the

density P;(x) of X;. We are in the position to prove the following result.

Theorem 2.16. Let N € N*, T > 0, and assume assumptions [Hyp-o], [Hyp-b.0] and [Hyp-b.N + 1]
to be in force. Then, for any N € N with N < N, X € [0,1], and for any ¢ > 1, we have
- Nt 1
’(p — ) (s,& t,x)‘i:/\ﬁ(l_/\)g‘ <C(c?) % (0*(t—5)) Lo (t — s,z — &) (2.36)
forany &, 2 €R and 0 < s <t < T, where C > 0 only depends on N, T,c, and on the constants M and &
of assumptions [Hyp-o|, [Hyp-b.N + 1]. In particular, we have

N+2

[(Pr = PR )l 11 gy < C0%t) T 0<t<T

1
Note that the factor (02(15 — s)) * brings extra accuracy when the transition densities are computed on

a small time interval.

3 Numerical illustrations

In this brief numerical section we test the accuracy of the transition density approximation py(s,&;t,z)
carried out in Section 2.2] for N = 0,1. Due to the shortage of explicit solutions for McKean-Vlasov
equations, we need to consider a function b that fails to meet the boundedness assumption in [Hyp-b.0] in
order to have a benchmark for the transition density of the solution to (IT]). This should not be surprising
as it is known that coeflicient functions which make McKean-Vlasov equations analytically tractable often

fall within the class of affine functions w.r.t. the state variable. Precisely, we consider
b(x,y) = cos(y) + ax (3.1)

and the random initial datum Y distributed as a Laplace distribution with unitary mean, i.e. NY(dﬁ =

%e*“v"dy. Under this choice the transition density p(0,¢&;t,-) is clearly Gaussian, and can be provedd to
have mean and variance respectively given by
0,2 (1 _ 672at)
—at
t ) - 5.
e +(t) o
where 7 is the unique solution of
2 1— —2at
Y (t) = :ff]t(?l exp (—%) —ay(t) t>0, (32)

~v(0) = 0.

Note that, although the function b in 1)) is unbounded, a straightforward modification of the classical
proof in [Szn91] leads to strong existence and uniqueness for the solution of (II)). As for the validity of the

2The details of the computation will be part of the forthcoming paper [AGP17], where an alternative approach is proposed

for the re-solution of McKean-Vlasov SDEs with affine coefficients w.r.t. the state variable.
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3 NUMERICAL ILLUSTRATIONS

results of Section 2] we claim that they can all be extended by replacing the boundedness requirement in
[Hyp-b.0] with a linear growth assumption. However, since a rigorous analysis would become excessively
heavy and technical, we request to the reader a little act of faith by considering as true the statements of
Theorems and for any N € N when the b function is as in ([BI). In particular, we focus on the

approximations
B (5,6 t,2) = p (s, t, ), pr(s &t x) = (1+£7(s,t,2))pg (s, &5t @),

with pE(s, &;t, x) as defined in (Z30) and the operator L (s, t, z) as explicitly represented in Example 215

In Figure [[l we compare the true transition density p(0,¢;t,-) with the zero and first order approxima-
tions pi(0,&;t,-)|z=¢ and pi(0,&;t,)|z=¢, for several choices of &, t, a and o. The function ~(¢) in (B.2) is
computed by using a standard built-in Wolfram ODE solver.

Transition density accuracy

t=0.1, ¢=0; a=0.25, 0=0.3 t=0.5, {=0; a=0.25, 0=0.3 t=1, {=0; a=0.25, 0=0.3

-02 -01 0.1 0.2 0.3 -0.2 0.2 0.4 0.6 0.8 0.5 1.0

t=0.1, {=0; a=1, 0=0.6 t=0.5, {=0; a=1, 0=0.6 t=1, {=0; a=1, 0=0.6

-04 -02 02 04 08 -05 ' 05 1.0 05 f 05 1.0 15

t=0.1, {=-0.3; a=0.25, 0=0.3 t=0.5, {=-0.3; a=0.25, 0=0.3 t=1, {=-0.3; a=0.25, 0=0.3

-05 -04 -03 -02 -01 -06 -04 -02 0.2 0.4 06 -05 0.5 1.0

t=0.1, {=-0.3; a=1, 0=0.6

-06 -04 -02 0.2 -1.0 -05 05 1.0

Figure 1: Plot of the transition density for different values of times and parameters. The continuous line
is the exact transition density p(0,&;t, ), whereas the dotted and the dashed lines represent respectively

the approximations pg (0, &;¢, ) and p(0,&;¢,-), with & = &.
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4 PROOF OF THEOREMS 2.2 AND 2.9

4 Proof of Theorems and

4.1 Proof of Theorem

Hereafter, throughout this subsection, we assume assumptions [Hyp-b.N — 1] and [Hyp-o] to be in force
for a fixed N € N*. We start by stating the following a priori estimates on the functions 9%p,,(0,¢;t, )
and Pn,t[a{ b(x, -)], which will be employed recursively in order to prove Theorem [Z2] in particular to prove

wellposedness of Definitions 211

Lemma 4.1. Assume Corollary to hold. Then, for any ¢ > 1, and for any n,k,j € N withn < N and
7 <N —1, we have

n—k
‘8§~n(0,§;t,$)‘ < OC(O'2t)TFCU(t,ZE—§), (41)
| Py 1[0]b(x,)]| < Ceo®(0?t) 2, (4.2)
forany 0 <t <T and x,&,€ R, where C. > 0 depends at most on N, k, T and on the constants M and &
of assumptions [Hyp-o| and [Hyp-b.N — 1]

Proof. We proceed by induction on n. First consider the case n = 0. Then, (@) follows by definition (2.9)
and by Lemma A2l Consequently, [2) stems from definition (Z8), since by assumption |3/b| < M.

Fix now 7 € N with 7 < N, assume ([@I) and (@2) to hold true for any n < 7, and prove it true for
n =n + 1. By Corollary we have

’afﬁﬁ"'l(o’ 5’ t’ :E)’ < Cc Z Z Z ‘Fgﬂ,H»m,j,ifl(t)‘ ‘a§%§72m,l($)ﬁ0 (07 57 t7 JI) ’ (43)

h=li€lnt1,n m,l,jeN"
14<54<iq—1

iq—1
quI.JqTqJ

and by definition (220), we obtain
¢ ' e 5 j 2 lg+m
’F07l+m,j,i—1(t)’ < Oc/ dsy - - / dsp, H ’Piqflqu,sq [31‘717(5, )” (0’ (t — sq)) atita
0 0 g=1,,h
(by inductive hypothesis, since iq — 1 — j, <)
2t ) [ " (ig—1-1s)/2 Lo+
< OCO' q=1 2 q q dSl . dSh H Sqlq Jaq (t _ Sq) qTMgq
0 0 q=1,--- ,h
(by solving the time integrals)

Sh_ ) (ig+1-jq+2lq+2mg)

< Ce(o?t) 2 . (4.4)

On the other hand, by employing the Gaussian estimates of Lemmas [A.T] and [A.2] along with definition

221), we obtain

h .
—k+Yh_ (Gg—2mg—21g—1)

|08, 1 (@)P0(0,&:t,2)| < Co(0®t) 2 Teo(t, — £).

Therefore, by (£3)-(@4) and since 2221 iqg =n+1, we get (@1]) with n = 7+ 1. By integrating (@.1]), and
by using ([2.I5) and that |3]b] < Mo?, we also obtain ({{.2). O
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4.1 Proof of Theorem [2.2 4 PROOF OF THEOREMS 2.2 AND 2.9

The rest of the section is devoted to the proof of Theorem 2.2] which is based on the a priori estimates
in Lemma [£.J] combined with following lemmas. Hereafter, throughout the rest of this section, we denote

by 8(R™) the Schwartz space of rapidly decreasing functions on R".

Lemma 4.2. For any tyo < s <t, z,y,£ € R, and k € N* with k < N, we have

k—1
G _1 i (k ]_ 1) /Rrg(t —six = y)Bi_y (5. 9) (W)dy = Gi(s, taw)/RFa(f —se=m)fm)dn,

! £
(4.5)

k-1 =

G ! o > (’“ E 1> A F(@)B5_y ;(5,2)To (s — to; — y)do = G5 (to, 5,y) / Lo (s = tosn —y) f(n)dn,

j=0

(4.6)

for any f € 8(R), where §i = §i(t0, s,y) is the differential operator acting as
- 1 k- - ‘ . :
5 s)u) =~y (1) P [O00E ) (a5 - 9000, 41
b=

and the operator M = M(to, s,y) s as defined in (ZI9). Moreover, the following relation holds:
gi(s, t,x)lo(t —to;z—y) = éi(to, $,Y)To(t — to;z — y). (4.8)
Proof. We start by observing that
0. To(t —s;0 —y) = =0, T (t —s;2 — y), (4.9)
and, for any j € N*,

yj Ly(t—s;x—y) = Mj(s,t,x)Fg(t— s;x—y), e Ly(t—s;x—y) = Mj(s,t,y)Fg(t— s;x—y). (4.10)

Actually the above identity is clear for j = 1 thanks to (@3] and the case j > 1 is obtained by simple
iteration. Therefore, for any £ € R and j € N*, by (£I0) we also have

(& — &) To(t — 552 — ) = (M(s,t,y) — €)' To(t — s;2 — ), (4.11)

(y = & (t — s;2 —y) = (M(s, t,2) — €)' Tyt — 532 — ), (4.12)
for any 0 < i < k. We now prove @H). By (2I4), for any j < k — 1 we get
/Rl“a(t —six—y)Bi_y (5, 9)f(y)dy = Peo1j.s [01B(E, )] /RFa(t —siz—y) 0y ((y — )’ fy))dy
(integrating by parts, and applying (£3]))
= Py [00b(E, )]0 /R Ly (t = iz — y)(y — € f(y)dy

(by @12))
= Pu_1-j,5[0]b(€,)]0n ((M(s,t, z) —¢)’ /

Tyt = 52— ) f(y)dy)
R

18



4.1 Proof of Theorem [2.2 4 PROOF OF THEOREMS 2.2 AND 2.9

— B (s, M(s,1,2) /R Tyt — s:0 — 5) f(y)dy.

Now (A stems from ([ZI9). We proceed analogously to prove [@6). For any j < k — 1 we have

/ f(x)ngij (S, x)l—‘o(s —to;x — y)dx = Pk—l—j,s [a{b(& )} / f(CL') O ((;E - f)jl—‘g(s —toy T — y))d.%‘
R R

(by @11))

= P15, [0]b(E, )] (M(to, 5,9) — /f )0. (s — to; 2 — y)da
:—P]g_l—j,s [6{()(5,)] (M(fo,s y /f S—to,x—y)dx,

where we used ([£9) in the last equality. Now (6] stems from (@7T). Eventually, identity (L8] follows by
combining [@E) with f(n) = Ty(s — to;n — y) and [@G) with f(n) = Tx(t — s;2 — 1), together with the
Chapman-Kolmogorov identity

/Fg(s—to,n—y)Fg(t—s,x—n)dn:Fg(t—to,x—y), th<s<t, zyek
R

O
In the next statement we denote by C: §(R?) x §(R?) — 8§(R?) the operator acting as
C(f,9)(& ) = f(2)9(& ), SrekR
Lemma 4.3. Let ((ps’t)0§5<t be a family of functions in 8(R?), such that
Pto,t = C(Ps,t, Pto,s), 0<ty<s<t. (4.13)

Let also (,thsvtﬁz)heN* 0<s<t.zcR’ (ﬁhVS’tVZ)hEN* 0<s<t.z€R be two families of operators from S(Rz) onto itself

that can be represented as finite sums of the form

Prse:fE)= > al?(s,0)2'0lf (€, ), (4.14)
i>0,7>1

Protof€x)= > al?(s,)¢'0if(€,x), €Ex€ER,
1>0,7>1

(h,z

where az(-?z)(-, t) and a; ; )(-, t) are bounded measurable functions on [0,t], and such that

Ph,&t,z(ptmt = 73}17,50)572([7,507,5, 0<ty<s<t. (415)
Then, (fn”to’tVZ)n6N70§t0<t,z€R gwen by

Joto,t,2 1= Ptot (4.16)

n t Sh—1
frtotz = n'Z/ dSl"'/ dsn D Pivsite Pinsnitsz Ptots 1 €N, (4.17)
h=1"to to

1€l n
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4.1 Proof of Theorem [2.2 4 PROOF OF THEOREMS 2.2 AND 2.9

is well defined as a family of functions in S(R?). Here, the set I, , is as defined in 2I8). Moreover, for
anyn € N* z€ R and 0 < ty <t we have

= n! t
n z = T\ stz C(Ws b, fr- s,2)ds. 4.18
ftort, }; e Ph.s,t,2 C(@s,ts fnmhto,s,z)ds (4.18)
Proof. The first part of the statement easily follows from ([4.I4) (note that we mainly use that az(-Z’Z) are

bounded in time). Now note that for any f,g € 8(R?), we have the following commutation properties:
e(f, 75h,s,t,z g) = ﬁh,s,t,ze(f; g), Phl,sl,tl,zﬁh2,sz,t2,zf = 75h2,52,t2,z73h1,51,t1,zf- (4-19)

In order to prove [AI])) we first need to prove that, for any h € N*, 0 < t; < s <t and z € R, we have
Pirsitz P snit,z Prot = e(%,t, Pirsi,sz Pinsn,s,z QOt(,,s)7 (4.20)

for any i € (N*)" and tg < s1 < -+ < s, < 5. We proceed by induction on k. If h = 1, by using (@15,
(#E13), @I9) and then again (IH), exactly in this order, one has

Pis,si 2P0t = Piyto,s1,2Pt0,t = Pi11t0,51>ze(</7s,tv <Pto,S) = e(‘/)s,tvpihto,sl,zwtoﬁs) = e(‘PS,tv,Pil,Sl,S,zwtoﬁs)'

We now assume ([€20) to hold for h € N* and we prove it true for h + 1. We get

G(Sﬁs,t; Piy,s1,s,2 .Pih1S}L)S1z7)ih+1)shr+l)sqz @tms)

by @.I5))
by @13))

e(‘/)s,ta Pi1151,51Z e Pih,15}115>z73ih,+11t0>5h,+1>z </7t0>5) (
ih+17t0>8h+17zpi1>51>t72 o .Pih75h7tyz Pto,t (by inductive hypOtheSiS)

ih,+1>t015}1+1>ze(¢51t’ Pi1151,51Z e Pih,>5h,15>z wtoﬁ)

by (@I9))
by @.I3)),

Pi1>51>t72 T Pih75hyt7zpih+l>t075h+17z Pto,t
= Fiy,s1,t,z 00 Pih,>5h,wt>zpih,+115h+11t,z Pto,t
which is [@20) for h + 1.

We are now ready to conclude the proof of (@I8). For n = 1, [@I8)) directly stems from (@.I3]) For
n > 2, by definition (£I7) we have

fntort —~ [ " e
n,to,t,2
| - Z/ dr / drg--- / dry Z Pi17T1>t7ZPi27T2>t,z T Pizyrl,t,z Pto,t
n.
=110 to

to iGIn,l

(by ZI3))

t
= / drl Pn,rl 2Pt t

to

n n+l—1 t o) i1
+ Z Z / drl / dT2 o / d’l“[ Z ,Phﬂ"btvzpil,rg,t,z o ',Pizfl,m,t,Z Pto,t
1=2 h=1 "0 to to i€00_pi—1
(by replacing the integration variables: (dry,---,dr;) — (ds,--- ,ds;—1))
t
= / dS,Pn,s,t,z@tg,t
to
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4.1 Proof of Theorem [2.2 4 PROOF OF THEOREMS 2.2 AND 2.9

n n+l—1 t s Si_o
+ E E / dS/ dsy -~ / dsi—1 E Phys,t,zPir,sistez Pip i s 1tz Prost
=2 h=1 "Yto to to i€l _pi—1
(by setting j =1—1)
t
- / dSPn s,t,zPto,t
—1ln—j
§ § / dS/ dSl / § 7Dh,s,t,z i1,81,t,2 " " Pij,Sj,t,z Pto,t
Jj=1h=1 Ze]n h,j
(by exchanging summation and integration, using again that ag ; *) are bounded)
t
= / dSPn,s,t,zSDto,t
to
n—1 t n—h g Sj-1
+ g / ds Ph,s,t,z g / dSl © / de § Pil,sl,t,z e Pij,Sj,t,z Pto,t -
h=1"to j=1“to to i€ly_n
=Wh s,t0,t,2

Observe that, under the assumptions on the operator P s ;.2 U s 1.2 is a function in §(R?) uniformly in
s, in the sense that derivatives of a given order are rapidly decreasing uniformly in s. The resulting function
Ph.s,t,zUh,s,t0,t,2 15 also in 8(R?), uniformly in s. We now give another representation of this function: by
[#20), we have for a given s € (tg, 1)

n—h g sj-1
\Ilh,s,to,t,z = E / dSl te / de § e(@s,t, Pil,sl,s,z te Pij,Sj,s,z Spto,s)
j=1 to to

’L'Gln,h,,j

(by Fubini’s Theorem)

n—h .g
= e(@s,taz/ dsl/ Z Pz1751,sz"'7)ij,5j,s,z (pto,s)

j=1 to Ze]n h,j

(finally, by (£.I6)-@.I7))

1
= mc (Sﬁs,h fnh,to,s,z) .

Therefore, we obtain

1 n—1 t
m = dspn,s,t,z@tg,t + — ds Ph,s,t,ze Ps,ts fnfh,to,s,z 5
( - h)' to

|
n! to Do
which proves (£I8)) and concludes the proof. O
We are now ready to prove Theorems 2.2 which will be proved by induction on n.

Proof of Theorem[Z.2. The result will follow by applying Lemma with:

@s,t(fax)zra(t—s,w—@, §,x€R.
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4.1 Proof of Theorem [2.2 4 PROOF OF THEOREMS 2.2 AND 2.9

We first prove the statement for n = 1. Set
Pistz= G¥(s,t,z) = Pys[b(2, )]s, Prsitz = G¥(s,t,€) = — Py o [b(2, )]0,

which are operators from §(R?) onto itself of the form (@I4). Moreover, by definition (ZJ)-(23), as-
sumption [Hyp-b.N — 1], and by estimate ([@2)) with n = 0, the function s — Py [b(z,-)] are measurable
and bounded on [0,¢]. Finally, (£8) implies @I5) for h = 1. Therefore, by Lemma we have that
(f1.t0.t.2)0<to<t.zcr as in ([@IT) is well defined as a family of functions in §(R?), and

Frtos(6.2) /9 sta:/ ot — 5,2 — ) 1o (€, y)dyds

t
= / / Dot — 5,2 —y)BF o (5, 4)¢t0,5 (&, y)dyds.
0 JR
This proves that the function pi1(0,&;t,x) := — f1,0.+,¢(§, x) is well defined, satisfies (2.16)), and also

ﬁl (0; 57 ta I) = _ig(ta I) ﬁo(oa 57 ta I)

Eventually, the wellposedness of definition (ZI5) for P, stems directly from estimate @I) with n = 1,
which is integrable w.r.t. py (d§).

Set now 1 € N*, n < N, assume the statement true for any n < n, and prove it true for n = n+ 1. Set
Ph,s,t,z - Q}ZL(S,t,JJ), ﬁh,s,t,z - gi(s,t,f), h S n+ 17

with Q,ZI and éi as in (2I9) and (@1), respectively. In particular, by inductive hypothesis, the functions
P,.+,n < 7, are well defined and satisfy the a priori estimates ([@2)). Therefore, it follows by (ZI9) and (@71)
that Pp, s+ . and 75h,s,t,z are well defined as operators from S(Rz) onto itself, and they admit a representation
of the form (£I4) where s — al(-zfz)(s, t) and s — dl(-zfz)(s, t) are bounded and measurable (by assumption
[Hyp-b.N — 1] and estimate ([@2])) functions on [0,¢]. Moreover, ([A8]) implies the symmetry property
I3). Therefore, by Lemma we have that (fn t0.¢,2)n<at1,0<to<t,zer as in [@IT) is well defined as a
family of functions in §(R?), and that in particular

ﬁ+

(n+1)!
fﬁ+1,t0;t72(§7 ;C) -

BN / G (5.0) [ Tt = 5.0 = )it -6 9)ys

(by @3))

n+1

7 . t
= Z ( N 1> > <h i 1) /0 /ng(t — 5,2 —Y)Bi_1 (5, 9) fat1i—h.to.s (& y)dyds.
j=0

This proves that the function pz+1(0,&;¢, ) := — frt1,0,,¢(§, x) is well defined, satisfies (2.10]), and also

P10, 6t 2) = L5, (t,7) Po(0, & ¢, ).

Eventually, the wellposedness of definition (ZI8) for Py, stems directly from estimate @I with n =
i+ 1, as before. This concludes the proof. O
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4.2 Proof of Theorem [2.9 4 PROOF OF THEOREMS 2.2 AND 2.9

4.2 Proof of Theorem

Throughout this section we fix a time 7" > 0 and we consider assumptions [Hyp-o], [Hyp-b.0] and [Hyp-
b.N + 1] to be in force for a fixed N € N*.

Notation 4.4. Throughout the rest of this section, unless explicitly stated, we will denote by (C.)c>0
any family of positive constants that depend at most on N, T and on the constants M, & of assumptions
[Hyp-o], [Hyp-b.0] and [Hyp-b.N + 1]. Note that, in particular, C, is independent of o.

In light of Remark [[L4] we have the following classical Gaussian upper bounds for p(s,&;t,z) and
Oep(s,&;t,x) (see [Fri64, Chapter 1, p. 28]) that will be used here below.

Lemma 4.5. For any m,n € N with m < N +1 and n < 1 and for any ¢ > 1, we have

|x—§|m’3gp(s,§,t,x)’ < 06(02(t_ S))¥F00(t_ $, & _5)5
forany&,x eRand0<s<t<T.

Remark 4.6. Under assumptions [Hyp-b.N + 1] and [Hyp-o], the functions $,(0,&;-,-), 1 <n < N +1,
are solutions of the Cauchy problems ([Z.I3]) , meaning that the PDE is satisfied on the internal domain

10, 00[xR, and that the initial condition is fulfilled in the distributional sense, i.e.

im [ pa0,6t2)pta)de =0,  E€R, e G0, TIxR), T €]o,o0. (4.21)

(6= (0,6)
>0 - /R

In fact, the initial condition above is a straightforward consequence of the upper bound (&1]), whereas the
fact that p,(0,&;-, ) solves the PDE in (2I3) follows by differentiating ([2-I6]), and by using again estimate
(1) and integrating by parts to deal with the time-integral in (Z16), which is singular near 0 and t¢.

Before to continue, let the family of operators (.Zlfls) be defined as

n<N+1,0<s<T,E€R

= N . 1 o

A= Ao+ Y A with A = S > ( ; )Biu(s, ), (422)
h=1 " i=0

where the family of operators is as defined in (2I4). We also recall to the reader the

3
~ (Bk,i)ogigk,geR
definitions of py, Py given in (ZH)-(2.8).

Lemma 4.7. For any N € N with N < N + 1, the following identity holds:

N
(p—pn)(0,&t,2) = Z% ﬁ /Ot /Rp(s, yit, @) (As(y) — AS (1)) Pn—n(0,& 5,y)dyds,  (4.23)
foranyt >0 and z,£ € R.
Proof. By induction on N. We first prove the statement for N = 0. We set
Yo(s) = — /RP(S,y;taw)ﬁo(O,é“;S,y)dy, 0<s<t, &xeR.

By the continuity of p(-,-;t,z) and po(0,&;-, ) along with the terminal condition in (3] and the initial
condition in (2I1]), one readily has

lim Q/JO(S) = —p(O,{;t,:v), S]igli wO(S) = _ﬁO(ng;tax)'

s—0t
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4.2 Proof of Theorem [2.9 4 PROOF OF THEOREMS 2.2 AND 2.9

On the other hand, for any s €]0, [ we obtain
Dstho(s) = —/R ((8sp(57y; t,2))Po(0,&:5,y) + (s, y;t,2) (9spo(0, &; s,y)))dy
(by the PDEs in (I3]) and 2I1])
= [ ((Akpto. 58,2000, €55.9) = plo. st ) (Aol)(0. €55.9) )y
(as A; is the adjoint of A%)

= /Rp(sa yit, ) (As(y) — Ao(y))5o(0,&; 5, y)dy

Now, by employing the estimates in Lemmas [Tl and 5] it is straightforward to see that ds1)g is integrable
on the interval [0,t]. Therefore, by Newton-Leibniz axiom along with definition (2.1 we get

(p— o)(0,€:t,2) = /0 /R D5, 51, 2) (Aa(y) — Ao(y))Fo(0, E: 5, y)dyds,

which, by (£22), yields (@23) for N = 0.
Fix now N < N, assume that (Z23) holds true for N = N, and prove it true for N = N 4 1. We set

Vi (8) = /p(s,y;t,x)ﬁml((),&; s,y)dy,  0<s<t, EreR
R

By the continuity of p(-,;¢,x) and pg_,(0,§;, ) along with the terminal condition in (L3) and the initial
condition ([@21]), one readily has

lim 1/)]\7+1(5) = Oa lim 1/)]\7+1(5) = ﬁNJrl(O,g;t,I)-

s—0t st~

On the other hand, for any s €]0, t[ we get
st 41(8) = /R ((651?(8, Yit, )P 1(0,& 8,9) +p(s, 43t 2) (0sPry 41 (0, & s,y)))dy
(by the PDE in (L3)) and since A? is the adjoint of Ay)
= [ 3382001 = o)+ Aofo) = A0)) 5 41 0. €55, 9)dy
(by the PDE in (2I3) (see Remark FL6]) and by definition ([@22]))

- / P51 2)(Ao() — Au()) B, (0.6 5,3)dy

N+1 N+1 ~
+ p(s,y;t,2) A5 ((Y) Py, (0,655, 9)dy.
ZNH_H/RW ) AS, () By 1 (0. €: 5.9y

Now, by employing again the estimates in Lemmas {L.Iland (L it is straightforward to see that 9595, ; is
integrable on the interval [0,¢]. Therefore, it holds

1 t ~
POt = / / D5, 2) (Ao (y) — As()) B30, (0.€: 5, y)dyds

(N +1)! (
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4.2 Proof of Theorem [2.9 4 PROOF OF THEOREMS 2.2 AND 2.9

JV—i—l t
1 // s 0)?
+ E = p(s, Y5t w) As s(U) D1 —n (0,858, y)dyds.  (4.24
= (N+1-n)Jo M P A WP ) (129

Now, by definition (23] we finally obtain

_ _ 1
(p—DPyy1)(0,& L, 0) = (p—px— mﬁﬁ+1)(07§;t7$)

(by inductive hypothesis, and shifting the index n, and by [@24))
N+1 1 . y
=2 T JePE w0 — A )P 06 )duds
7;(]\“'1—71)!/0/11@ (5,95, 2) (A (v) 1) Na1-n(0:& 8, y)dy

t -~
+ﬁ /0 /R P53, 2)(As() — Ao (1)) By 41 (0, €: 5, y)dyds

N+1

— s,y;t,x Afw 0,¢&;s,y)dyds,
Z Nl // Yt ) Ay (V) Py —n(0,€5,9)dy

which, by [@22), yields @23) with N = N + 1 and concludes the proof. O

Lemma 4.8. For any n € N with n < N + 1 we have

(40000 = 8, 0) = 0, (T — 00 0) + 3 5 (Pacamse 0006 ) = P2[01046 ) (0= 6 ).
i=0

(4.25)
where Tég)b(y, -) represents the k-th order Taylor expansion of b(y,-) centered at £, i.e.
k b
T9b(y,) =0, Ty, ) =3 4 —i, k>0 (4.26)
i=0

Proof. We prove the statement by induction on N. For N = 0, it directly stems from [@22)), and from the
definition of A, and A in (I4) and (ZI0), respectively.

Fix now 7 < N, assume that ([@25)) holds true for any n = 71, and we prove it true for n = 7 + 1. By
[#22)) and by induction hypothesis, we get

_ n—1

(As() = Aiy1,5(9)) = By (Ps b0, )~ bly, V] + 3 5 (oo salofble, )] — PaIdRHE ) (v~ 5>i)

=0

A5 (s
(by @I)
=0, ( P10 0.~ b0 + Y o (Proics 03006, = PIOIB(E ) (0 - 5>i)
=0

vou (3 e loe - )

=0
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4.2 Proof of Theorem [2.9 4 PROOF OF THEOREMS 2.2 AND 2.9

(by definition of Pn_;in 29)

n—1

=0y (Ps (T9,005,) = )] + 3 7 (Pais 01b(E, ) — Pulofvie, 1) (v - sv)

=0

+0,( 2o [ofb(e. ) - ")

which is ([@25) with n =n + 1. O
We are now in the position to prove Theorem 2.9

Proof of Theorem [Z29. 'We proceed by induction on N. For N = 0, by (Z23)-(@25]) we have

(p—p0)(0,&t,x) = —/0 /Rp(svy;tvx)ay(Ps[b(yv')]ﬁo((),&;s,y))dyds

(integrating by parts)

= —/0 /]R (0yp(s,y:t,x)) Ps[b(y, )] $o(0, &; s, y)dyds.

By applying Lemma 5] Lemma [T and Lemma [A. Tl on dyp(s,y; ¢, z), Pi[b(y,-)] and po(0,&; s, y), respec-
tively, we get

_ ¢ 1
’(p_ﬁO)(Oué-’tux)’ S Cca/ (t_s)_a/Fco’(t_Sax_y)rca(say_g)dyds
0 R

(by Chapman-Kolmogorov identity)

t
< Cco/ (= $)"3dsTur(t, 2 — €) = Coot? Tu (b, — £),
0

which is [223) for N = 1.
Fix now N < N, assume that 223) holds true for any N < N, and prove it true for N = N + 1. By
(#23)-([E25) we obtain

N+1 1
- :~ 0, ;t, == ~7In7
(p pN+1)( &t x) 7;) (N+1—n)

where

t
In = / / p(87 Y; t7 x)&, (PS [Tég_)lb(yu ) - b(ya ')}ﬁﬁ_ﬁ_l_n(ov 6; S, y))dde
0 JR

= 1 ! i i [
D [ e300, (Pracscl03006. ) = PORME D0 = 'y, (0,855 ),
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5 PROOF OF THEOREMS 2.12 AND 2.16

(integrating by parts)
t
= [ [ @t P[00 = 0. 1065l
0o Jr
n—1 1 + : _ - .
+ Z ﬁ /0 /]R (8yp(57 Y; t, :E)) (Pnflfi,s[aib(gv )] - Ps [aib(gv )])(y - g)lf)ﬂprlfn(oa g; 5, y>dyd5
i=0
Now, by Taylor Theorem with Lagrange remainder along with assumption [Hyp-b.N + 1], we get
P10y, ) = by, )] | < Moy €[,

whereas, by induction hypothesis, we have

n—i

|Pai—i,s[006(€, )] — PA0Ib(E, ]| < Ceo?(0®s)

as a corollary of (Z23) with N =n — 1 — i. Therefore, one has
t
1,| < M(,?/ /R\@yp(s,y;t,w)! ly =& Prs1_ (0, 5, y)|dyds
0
n-1 t n—i .
+C. o? Z/ (025) 2 / }@;P(Say; t,CL‘)} |y - §|Z’ﬁﬁ+1_n(07§§ S, y)}dyds'
i=0 70 R

Eventually, by applying Lemma [4.3] on ‘8yp(s, y; t, :v)|, and by applying Lemma 1] with Lemma [A 1] on
ly — §|i‘ﬁﬁ+1_n(0,f; S,y)’, we obtain

N+1

_ t
|1rn|sccaN+2/0 (t—s5) 153 /Rrw(t—s,x—y)rw@,y—&)dyds

(by Chapman-Kolmogorov identity)

N+42

N t N+1 N+2
SCCUN+2/ (t—s)_%sN%dsl"w(t,:v—f)ch (U2t) T Teo(t,x — &),
0

which yields Z23) with N = N + 1. O

5 Proof of Theorems [2.12] and [2.16]

5.1 Proof of Theorem

Hereafter, throughout this subsection, we assume the hypotheses [Hyp-b.N] and [Hyp-o] to be in force
for a fixed N € N*. Recall that S§(R™) denotes the Schwartz space of rapidly decreasing functions on R™.
The proof of Theorem 212, which is based on Lemma .3 combined with the following

Lemma 5.1. For anytyo < s<t, z,y, T € R, and k € N* with k < N, we have

% i (k> /Rl“g (t—s;2 —y—m"(s,4)) B ; (s,9) f(y)dy

i=o N

= Qf(s,t,a:)/RFg(t—s;x—y—mf(s,t))f(y)dy, (5.1)
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5.1 Proof of Theorem[2.12 5 PROOF OF THEOREMS 2.12 AND 2.16

and

k! jz: (I;) /Rf(x) 7. (8:2)0g (s — to;x —y — m® (Lo, s))da

= G¥(to, 5, y)/RFg (s —to;x —y — m*(to, s))f(:z:)da:, (5.2)

for any f € 8(R), where GF = Gi(to, s,y) is the differential operator acting as
- 1 <Ak - , _ »
Gt 0)u(0) =~ 3 () P 00002 ] (0t 5.0) — 2) 0,000, (5.3
s

and the operator M* = M*(to, s,y) acts as
M (to,s,y) = y +m®(tg,s) + o*(s — ty) Oy
Moreover, the following relation holds:
G (s, t, )Ty (t —to;x —y) = G (to, s, y) o (t — to; o — y). (5.4)
Proof. Similarly to (£9) and (@I0), we have

0., (t —s;x —y — m”(s, t))

(s:1))

2T, (t—s;z —y—m"(s,t))

—0yl's (t —sx—y— mi(s,t)),

8l

Mi(sutax)l—‘a(t —STr—y—m (Sut))u

(s,1)).

Now the proof of (BI)-(E.2]) is completely analogous to that of ([@A])-([{H6), and thus we omit the details for
brevity. Eventually, identity (&) is a consequence of (5.1)-(52) combined with the Chapman-Kolmogorov

yl"g(t—s;:t—y—m

Mj(s,t,y)l"g(t—s;x—y—m

equation:
/ Fg(t —s,x—n— mi(s,t))Fg(s —to,n—y — mi(to,s))dn = Fg(t —to,x —y — mi(to,t)),
R
for any to < s < tand z,y,z € R. O

We are now ready to prove Theorem [2.12]

Proof of Theorem[2.12. The proof is a straightforward application of Lemma with the kernel
wsﬁt(f,x):Fg(t—s;x—g—mi(s,t)), & eR,
and the operators
Prstz=9n(s:t,2),  Prstz=05(s,t,€), heN", h<N,

with G7 and G as in (Z35) and (53), respectively. In particular, under assumption [Hyp-b.N], the
functions (P,.¢)n<xn appearing in (Z35)-(E3) are well defined and satisfy the estimates @32). It follows
that Py, s .z and 75;1157@5 are well defined as operators from S(]R2) onto itself, and they admit a representation
of the form (14) where s — a(}}’j)(s, t) and s — d(Z’j)(s, t) are bounded and measurable (by assumption
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5.2 Proof of Theorem[2.16 5 PROOF OF THEOREMS 2.12 AND 2.16

[Hyp-b.N]) functions on [0,¢]. Moreover, ([G.4]) implies the symmetry property [@IH). Therefore, by
Lemma 3 we have that (fn i0.6,7)n<N0<to<t.zer as in [@IT) is well defined as a family of functions in
8(R?), and in particular

n t

fn ,to,t,T 67

9h(5 t ZC)/ Fa’ (t — 5T —Y— mi(sat))fn—h,to,s,i(gay)dyds
il to R

(by .1D)

n

Z()Z()// (t=s.2—y—m®(s,8)) B} ;(5,9) fan.to.sa(€ y)dyds.

h=1
This proves that the function pZ (s,&;t,x) := — fr.s.¢.2(§, x) is well defined, satisfies ([2.33)), and also
Pals, &ty @) = —L5(s,t,2) pi (s, &5t ).

This concludes the proof.

5.2 Proof of Theorem

Throughout this section we fix a time 7" > 0 and we consider assumptions [Hyp-o], [Hyp-b.0] and [Hyp-
b.N + 1] to be in force for a fixed N € N*.

Notation 5.2. Throughout the rest of this section, unless explicitly stated, we will denote by (C.)es0
any family of positive constants that depend at most on N, 7T and on the constants M, & of assumptions
[Hyp-o], [Hyp-b.0] and [Hyp-b.N + 1]. Note that, in particular, C, is independent of o.

We start with the following upper bounds for the functions pZ (s, &;t, ).

Lemma 5.3. For any ¢ > 1, k € N, and n € N* with n < N, we have

|8§p§(sa€7tax>| S OC(UQ(t_ S))_%ch(t— S I_g)a (55)

J

(ZW—W t_S))_z)Fca(t—S,:v—@, (5.6)

‘ pnsﬁt:v’<Cc(02(t—s

forany 0 <t <T and z,£,7 € R.

Proof. Note that [Z30) and [@2) yield |m?(s,t)] < C.0?(t — s). Therefore, (55) follows by applying
Lemma [A2 and [A-3l Now, for n € N* with n < N, by Corollary .14 we have

‘851)2(5,5;@1:)’ SOCZ Z Z ‘FvH—m]z S5, t Hak j—2m— vl( ) g(S,g;t,I)’.

h=li€ln,n ~,m,l,jeN"
14<5q<iq
jo—1
quL]qg 1]
Ya<Jq—2mq—lg

Now, proceeding as we did before to prove (@4]), one easily gets

Th_ Gg+2—ig+2lg+2mq+27q) nt2h+ TR (2lg+2mg+2vg—iq)

B2 Limga(s:1)] < Ce(0(t = 5)) : < Co(0?(t - 9)) z
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5.2 Proof of Theorem[2.16 5 PROOF OF THEOREMS 2.12 AND 2.16

ntl+h+ Tl 2lg+2mgtrg—iq)
2

< Ce(0?(t —9)) (5.7)
On the other hand, definition (221]) yields
|OSHT oy 1 (2)PF (5,68, )| < Cle > |z — z[P[072p5 (s, & 8, ) |
0<p1<n, 0<p<2n
p1—p2=—h—k+30_; (jg—2mq—74—2lg)
(by Lemma [A.2])
_p2
< C, Z |x—3‘:|p1(02(t—s)) 22Fm(t—s,:1:—§),
0<p1<n, 0<p3<2n
p1—p2=—h—k+30_; (jg—2mq—74—2q)
which in turn, combined with (E1), yields
‘F'w;,ler,j,i(Sv t)| |8§g{?72m7’y,l (I)pg (Sa 57 ta I)|
ntl ~ _pitk
< Coo?(t—1s)) * ( Z |z — 2| (o?(t —s)) ? )I‘cg(t — s,z —§),
p1=0
and this concludes the proof. O

Remark 5.4. Under assumptions [Hyp-b.N + 1] and [Hyp-o], the functions pZ(s,¢;+,-), 1 < n < N,
are solutions of the Cauchy problems (2.32) , meaning that the PDE is satisfied on the internal domain
]s, 00[xR, and that the initial condition is fulfilled in the distributional sense, i.e.
Jm [ gtaetade =0, E€R, peCylls TIxR), T els,o0l
t,&)—(s,€ R
t>0
In fact, the initial condition above is a straightforward consequence of the upper bound (5.0]), whereas the

fact that pZ(s,&;-,-) solves the PDE in (232)) follows by differentiating (Z33]), after using again estimate
(EE) and integrating by parts to deal with the time-integral in (233]), which is singular near 0 and ¢.

. . . _i
In order to continue, let us introduce the family of operators ('Anvs)nSN,OSSST,EGR

n h
‘An,s = ‘AO + };‘Ah,m with h,s _H s (,L-)Bh,i(su ')7

where the family of operators (Bf”) is as defined in (2.I4). We also recall to the reader the
definition of py given in (2.20)).

The proof of Theorem [2.16] is preceded by the following two Lemmas.

0<i<h,z€R

Lemma 5.5. For any N € N with N < N, and & € R, the following identity holds:
) N 1 t _ )
(p—ﬁf\”/)(S,f;t,x) = Z m/ /P(Ta%taﬂﬁ)(ﬂr(y) _‘Az,r(y))pijﬂvfn(sag;ru y)dydru (58)
n=0 *Js JR
forany 0 < s <t and z,& € R.
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Lemma 5.6. For any n € N with n < N we have
1z z 1= i i =\
(Ar(y) = A5 (v)) = 0 (Pr [Tb(y, ) = bly, )] + D 7 (Pacir [010(F, )] = P [01b(z, )] ) (v — ) ) (5.9)
=0
where Téi)b(y, -) represents the k-th order Taylor expansion of b(y,-) centered at T, see ([A.26]).

The proofs of Lemmas and are totally analogous to those of Lemmas .7 and respectively,
and they are based on Remark [5.4] along with the upper bounds in Lemma [5.3] and the Cauchy problems
([C3)-@31). For brevity, we leave the detailed proofs to the reader.

We are now in the position to prove Theorem

Proof of Theorem[216. Let N € N with N < N. By (5.8)-(5.9) we get
) N 1 )

= -

where
t
Iff:/ /Rp(r,y;t,x)ay(Pr[Tf)b(y,-)—b(y,-)}p?vfn(s,é;r,y))dydT
"1 [t = . ) o
#30 g e 0st a0, (sl ) = PG )~ 31057, o

(integrating by parts)

:/ /R(3yp(7",y;tvﬂﬂ))Pr[Tf)b(y,-)—b(ywﬂp?vfn(s,émy)dydr
L p ib(z b(z, - —I)ip% s, & r
+;5/ /R(ayp(T’y7t’I))(P"*iﬂ”[alb(xv')] = P[01b(7,)]) (y — T)'PN (5, & 7, y)dydr.

Now, by Taylor Theorem with Lagrange remainder along with assumption [Hyp-b.N + 1], we get
|Pr [Trgi)b(yu ) - b(y7 )} | < M02|y - j|n+17

whereas, by Theorem [2.9] we have

n—it+1

| Pacir[030(z, )] = Po[0b(z, )] < Coo®(o?r) 7

as a corollary of (Z23) with N = n — i. Therefore, one has

n+1

_ t n—it1 L
17| < C.0? Z/ (o) /R\ayp(r,y;t,x)\ ly — Z|'|pR_n (s, & my ) [dydr. (5.11)
i=0"S

Consider now the case 0 <n < N. By applying Lemma we obtain

N—

n

o 1 .
|y - j|z|p?\ffn(87§;7a7 ?J)| S CC(Uz(T - S)) 2 |y - ‘f|z(|y - j|N_n + (0'2(7" - S)) : )F\/EU(T -5y - 5)7
which combined with the identity

ly— Az + (1 =X)¢)| <Ay —a|+ (1 =Ny — ¢ <max (Jy—z|, |y —&]),  Ae[0,1]
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A  GAUSSIAN ESTIMATES

yields

=l .
L R |

< Colo*r =) = (= ¢" " + (020 =) 7 )Py = sy =)

+Cu(02r =) ly — ol (ly = al¥ "+ (020 =) T )Ty (r = 5,5 — €)

(by applying Lemma [A-T))
<C(o®(r =) (02(r —5)) * Tupl(r—s,y—¢)
+ Ce(o®(r — s))%|y - :C|l(|y — 2N+ (0P (r — 5)) ¥)FCU(T —s,y—¢).(5.12)

N—n—+1i

Now, replacing (512) into (5I1), and applying Lemma [H along with Chapman-Kolmogorov equation, we
finally obtain

t n+1 ) )
I§|i:)\m+(1_>\)£} <, O’N+3/ (t — r)*% < Z T"*;H (T _ S) N—"2+1+1>dr ch(t s 5)
' s i=0
¢ 1 N—n N—n nt! n—i+1 i—1
+CcoN+3/ (r—s)f(|t—r|T +(r—s) )(Zr : (t—r)z)drrw(t—s,w—é)
s i=0
(by using 0 < s <t <T)
< C,. (0%) % (o (t — s))% Lo (t —s,2—&). (5.13)

Similar computations give a bound for Iy:

t N+1
T 1 N—it+1 B
IN‘i:,\m+(1_>\)5’SCCUN+2/S(t—r) 2<Zr 2 (r—s)z)drl"ca(t—s,:v—f)

=0
t N+l N—it1 i—1
+CCUN+2/ (ZT = (r—s)g)drl—‘cg(t—s,w—g)
5 N\ i=0
(by using 0 < s <t<T)
<C. (U2t)# (o*(t — s))% Lo (t — s,z —§). (5.14)

Combining (5.13)-(14) with (ZI0) yields (2:30). O

A Gaussian Estimates

We recall here some standard estimate for the Gaussian density

22
), z€eR, t>0. (A1)

1
Fg(t,x) = U—\/ﬁ exp (—m

In the following, o > 0 is fixed.

Lemma A.1. For anyn € N and ¢ > 1 we have

2

(%)nrg(t,;p) §c<ﬁ>2 Teo(t,z), z€R, t>0.
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B PATH-DEPENDENT MCKEAN SDE

Proof. Set z = Lzl For any ¢ > 1 we have

oVt’
(L) oo = Zm e (-5 ) = ca@ra 0
- 5 o\L,T) = —F——€X —5 | = cG(2)leall, T),
O'\/E oV 2nt P 2

with

The statement now follows by observing that G attains a global maximum at z; = 0‘322_”1 and that

Lemma A.2. For anyn € N and ¢ > 1 we have

02T, (t,2)| < C (ovt) " Teo(t, ), r€R, t>0,

where C' is a positive constant only dependent on n and c.

1

Proof. Let us define the n-th order Hermite polynomial as H,(z) := 6%228267522. Then, by definition

(A1) we have
T, (t, ) = (%) *H, (i) T, (t ),
and thus the statement easily stems from Lemma [A1] O

Lemma A.3. For any ¢ > 1 we have

12

m)ww% v, uER, t>0.

To(t,x 4+ p) < cexp(

Proof. This is straightforward using the inequality z? < (z + u)?(1 + §) + p2(1 + 1/§) (available for any
§>0), with 1+ = ¢2. O

B Path-dependent McKean SDE

Lemma B.1. Assume that F = (F(t,z,2') : 0 < t < T,z,2’ € C°([0,T],R%)) is a family of bounded
continuous functional valued in R, globally Lipschitz in the paths x and ', i.e. there exists a finite

constant Lr such that

|F(t,2,2") — F(t,y,y')| < Lr < sup |zs — xi| + sup |y, —y§|> ,  Vtelo,T],
0<s<t 0<s<t

for any continuous functions z,y,x’,y’ : C°([0,T],R%) s RY. Let o € R; consider the equation
dZ, =E'[F(t, Z, Z")|dt + cdW,, t>0,
Zo =Y,

(B.1)

where Y is a square integrable random variable, independent of the Brownian motion W. Then there exists

an unique solution to (B), continuous in time and square integrable uniformly in time.
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Proof. This is a sort of extension of [Pro04, Theorem 7, Chapter V] to the McKean-Vlasov case. We closely
follow the proof of [Szn91] by constructing the solution using a fixed point argument. For this, we introduce
the Wasserstein distance D (-, -), defined on the set M(Cr) of the probability measures on the continuous
trajectories Cp := C°([0, T], R%):

Dr(v1,1v) = inf { /(sup lwi,s — wa,s| A 1)V(dw1,dw2)}.

veM(Cr XCr) with marginals v and vo s<T

This defines a complete metric on M (Cr), whose topology is that of weak convergence. For v in M(Cr),
let us denote by ®(v) the distribution of the solution defined as

¢
Z, = Y+/ (/ F(s,Z,w’)u(dw')) ds + oW;.
o \Je,

Note that this path-dependent stochastic differential equation has a unique strong solution [Pro04, Theorem
7, Chapter V] since z € C°([0,T],R?) = [, F(s,x,w)r(dw) is Lipschitz, uniformly in s € [0,7]. Given
two probability measures v and vo in M(Cr), compare the two SDEs corresponding to Z; and Z: for

any coupling v on C; with marginal distributions v; and vy, we have
t
sup |Z1,s — Za s S/ ‘ F(s,Z1,w1)v1(dwy) —/ F(S,Zg,wg)ug(do.)g)‘ds
s<t 0 Ce Ct

t
< / [LF sup|Zy,, — Za.r| —|—/ ([LF sup lwy,r — wa || A [2|F|w])u(dw1,dw2)} ds.
0 Cy XCy

r<s r<s

Set K = max(Lp,2|F|x); then, taking the infimum over the couplings v and using the Gronwall lemma,

we get

t ¢
sup |Z1,s — Za 5| < K/ [sup |Z1,r — Zar| + Ds(11, Vg)} ds < KeKT/ D (v1,v2)ds.
0 0

s<t r<s

From this we deduce a precise control of Dy (®(v1), ®(1p)) < KeKT fot Ds(v1,v2)ds. We can easily con-
clude to the result: we take v € M(Cr) and iterating this procedure, we get Dr(®*(v), ®*F1(v)) <

WDT(V, ®(v)), which allows us to prove easily that (®*(v)); is a Cauchy sequence, converging to
the fixed point of ®. This implies existence and uniqueness as announced. o
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