
14 May 2024

Università degli studi di Udine

Original

Interval vs. Point Temporal Logic Model Checking: an Expressiveness
Comparison

Publisher:

Published
DOI:10.1145/3281028

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/1139003 since 2021-03-25T20:51:49Z

Interval vs. Point Temporal Logic Model Checking:
an Expressiveness Comparison*

Laura Bozzelli1, Alberto Molinari2, Angelo Montanari2,
Adriano Peron1, Pietro Sala3

1 University of Napoli “Federico II”, IT 2 University of Udine, IT 3 University of Verona, IT

Abstract

In the last years, model checking with interval temporal logics is emerging as a viable
alternative to model checking with standard point-based temporal logics, such as LTL, CTL,
CTL∗, and the like. The behavior of the system is modelled by means of (finite) Kripke
structures, as usual. However, while temporal logics which are interpreted “point-wise”
describe how the system evolves state-by-state, and predicate properties of system states,
those which are interpreted “interval-wise” express properties of computation stretches,
spanning a sequence of states. A proposition letter is assumed to hold over a computation
stretch (interval) if and only if it holds over each component state (homogeneity assumption).
A natural question arises: is there any advantage in replacing points by intervals as the
primary temporal entities, or is it just a matter of taste?

In this paper, we study the expressiveness of Halpern and Shoham’s interval temporal
logic (HS) in model checking, in comparison with those of LTL, CTL, and CTL∗. To this end,
we consider three semantic variants of HS: the state-based one, introduced by Montanari et
al. in [34, 30], that allows time to branch both in the past and in the future, the computation-
tree-based one, that allows time to branch in the future only, and the trace-based variant,
that disallows time to branch. These variants are compared among themselves and to the
aforementioned standard logics, getting a complete picture. In particular, we show that HS
with trace-based semantics is equivalent to LTL (but at least exponentially more succinct),
HS with computation-tree-based semantics is equivalent to finitary CTL∗, and HS with
state-based semantics is incomparable with all of them (LTL, CTL, and CTL∗).

The work has been supported by the GNCS project Formal Methods for Verification and Synthesis
of Discrete and Hybrid Systems. The work by A. Molinari and A. Montanari has also been supported
by the project (PRID) ENCASE - Efforts in the uNderstanding of Complex interActing SystEms.

*This work is an extended and revised version of [8].

1

ar
X

iv
:1

71
1.

08
19

1v
2

 [
cs

.L
O

]
 2

4
Se

p
20

18

1 INTRODUCTION 2

1 Introduction

Point-based temporal logics (PTLs) provide a standard framework for the specification of the
behavior of reactive systems, that makes it possible to describe how a system evolves state-
by-state (“point-wise” view). PTLs have been successfully employed in model checking (MC),
which enables one to automatically verify complex finite-state systems usually modelled as finite
propositional Kripke structures. The MC methodology considers two types of PTLs—linear and
branching—which differ in the underlying model of time. In linear PTLs, like LTL [37], each
moment in time has a unique possible future: formulas are interpreted over paths of a Kripke
structure, and thus they refer to a single computation of the system. In branching PTLs, like CTL
and CTL∗ [17], each moment in time may evolve into several possible futures: formulas are inter-
preted over states of the Kripke structure, hence referring to all the possible system computations.

Interval temporal logics (ITLs) have been proposed as an alternative setting for reasoning
about time [20, 36, 42]. Unlike standard PTLs, they assume intervals, instead of points, as their
primitive entities. ITLs allow one to specify relevant temporal properties that involve, e.g., actions
with duration, accomplishments, and temporal aggregations, which are inherently “interval-
based”, and thus cannot be naturally expressed by PTLs. ITLs have been applied in various areas of
computer science, including formal verification, computational linguistics, planning, and multi-
agent systems [26, 36, 38]. Halpern and Shoham’s modal logic of time intervals (referred to as
HS) [20] is the most popular among the ITLs. It features one modality for each of the 13 possible
ordering relations between pairs of intervals (the so-called Allen’s relations [1]), apart from
equality. Its satisfiability problem turns out to be highly undecidable for all interesting (classes of)
linear orders [20]; the same happens with most of its fragments [11, 25, 29], but there are some
noteworthy exceptions like the logic of temporal neighbourhood AA, over all relevant (classes of)
linear orders [13, 14], and the logic of sub-intervals D, over the class of dense linear orders [12, 35].

In this paper, we focus on the MC problem for HS. In order to check interval properties
of computations, one needs to collect information about states into computation stretches,
that is, finite paths of the Kripke structure (traces for short). Each trace is interpreted as an
interval, whose labelling is defined on the basis of the labelling of the component states. Such
an approach to HS MC has been simultaneously and independently proposed by Montanari
et al. in [34, 30] and by Lomuscio and Michaliszyn in [26, 27].

In [34, 30], Montanari et al. assume a state-based semantics, according to which inter-
vals/traces are “forgetful” of the history leading to their initial state. Since the initial (resp.,
final) state of an interval may feature several predecessors (resp., successors), such an interpreta-
tion induces a branching reference both in the future and in the past. A graphical account of the
state-based semantics can be found in Figure 1; a detailed explanation will be given in the follow-
ing. The other fundamental choice done in [34, 30] concerns the labeling of intervals: a natural
principle, known as the homogeneity assumption, is adopted, which states that a proposition
letter holds over an interval if and only if it holds over each component state (such an assumption
turns out to be the most appropriate choice for many practical applications). In this setting, the
MC problem for full HS turns out to be decidable. More precisely, it is EXPSPACE-hard [7], while

1 INTRODUCTION 3

ϕ1

〈B〉ϕ1

ϕ1

〈E〉ϕ1

ϕ1

〈A〉ϕ1

ϕ2

〈A〉ϕ2

Figure 1: State-based semantic variant HSst: past and future are branching.

◦

the only known upper bound is non-elementary [30].1 The exact complexity of MC for almost
all the meaningful syntactic fragments of HS, which ranges from co-NP to PNP, PSPACE, and
beyond, has been determined in a subsequent series of papers [7, 9, 10, 30, 31, 32, 33].

In [26, 27], Lomuscio and Michaliszyn address the MC problem for some fragments of HS
extended with epistemic modalities. Their semantic assumptions are different from those
made in [34, 30]: the fragments are interpreted over the unwinding of the Kripke structure
(computation-tree-based semantics—see Figure 2 for a graphical account), and the interval label-
ing takes into account only the endpoints of intervals. In [26], they focus on the HS fragment BE
of Allen’s relations started-by and finished-by, extended with epistemic modalities. They consider
a restricted form of MC (local MC), which checks the specification against a single (finite) initial
computation interval, and prove that it is PSPACE-complete. In [27], they demonstrate that the
picture drastically changes with other fragments of HS that allow one to access infinitely many
intervals. In particular, they prove that the MC problem for the HS fragment AB of Allen’s rela-
tions meets and starts, extended with epistemic modalities, is decidable with a non-elementary
upper bound. The decidability status of MC for full epistemic HS is not known.

To summarize, the MC problem for HS (and its fragments) has been extensively studied under
the state-based and the computation-tree-based semantics, mainly focusing on complexity
issues. What is missing is a formal comparison of the expressiveness of HS MC and MC for
standard point-based temporal logics. A comparison of the expressiveness of the MC problem
for HS under the state-based and the computation-tree-based semantics is missing as well.

Our contribution. In this paper, we study the expressiveness of HS, in the context of MC, in
comparison with that of the standard PTLs LTL, CTL, and CTL∗. The analysis is carried on
enforcing the homogeneity assumption.

1Here and in the following we refer to the combined complexity of MC (which accounts for both the size of the
Kripke structure and of the formula at the same time).

1 INTRODUCTION 4

ϕ1

〈B〉ϕ1

ϕ1

〈E〉ϕ1

ϕ1 〈A〉ϕ1

ϕ2

〈A〉ϕ2

Figure 2: Computation-tree-based semantic variant HSct: future is branching, past is linear, finite
and cumulative.

◦

We prove that HS endowed with the state-based semantics proposed in [34, 30] (hereafter
denoted as HSst) is not comparable with LTL, CTL, and CTL∗. On the one hand, the result sup-
ports the intuition that HSst gains some expressiveness by the ability of branching in the past. On
the other hand, HSst does not feature the possibility of forcing the verification of a property over
an infinite path, thus implying that the formalisms are not comparable. With the aim of having a
more “effective” comparison base, we consider two other semantic variants of HS, namely, the
computation-tree-based semantic variant (denoted as HSct) and the trace-based one (HSlin).

The state-based (see Figure 1) and computation-tree-based (see Figure 2) approaches rely on
a branching-time setting and differ in the nature of past. In the latter approach, past is linear:
each interval may have several possible futures, but only a unique past. Moreover, past is assumed
to be finite and cumulative, that is, the story of the current situation increases with time, and is
never forgotten. The trace-based approach relies on a linear-time setting (see Figure 3), where
the infinite paths (computations) of the given Kripke structure are the main semantic entities.
Branching is neither allowed in the past nor in the future. Note that the linear-past (rather
than branching) approach is more suited to the specification of dynamic behaviors, because it
considers states in a computation tree, while the branching-past approach considers machine
states, where past is not very meaningful for the specification of behavioral constraints [23].

The variant HSct is a natural candidate for an expressiveness comparison with the branching
time logics CTL and CTL∗. The most interesting and technically involved result is the char-
acterization of the expressive power of HSct: HSct turns out to be expressively equivalent to
finitary CTL∗, that is, the variant of CTL∗ with quantification over finite paths. As for CTL, a
non comparability result can be stated.

The variant HSlin is a natural candidate for an expressiveness comparison with LTL. We prove
that HSlin and LTL are equivalent (this result holds true even for a very small fragment of HSlin),
but the former is at least exponentially more succinct than the latter.

We complete the picture with a comparison of the three semantic variants HSst, HSct, and

1 INTRODUCTION 5

ϕ1

〈B〉ϕ1

ϕ1

〈E〉ϕ1

ϕ1 〈A〉ϕ1

ϕ2〈A〉ϕ2

Figure 3: Trace-based semantic variant HSlin: neither past nor future are branching.

HSct

HSlin

HSst

finitary CTL∗

LTL

CTL

CTL∗≡

≡

<
6=

<
6=

6=
6=

6=

Figure 4: Overview of the expressiveness results.

◦

HSlin. We prove that, as expected, HSlin is not comparable with either of the branching versions,
HSct and HSst. The interesting result is that, on the other hand, HSct is strictly included in HSst:
this supports HSst, adopted in [30, 31, 32, 33, 7, 9], as a reasonable and adequate semantic choice.
The complete picture of the expressiveness results is reported in Figure 4 (the symbols 6=, ≡, and
< denote incomparability, equivalence, and strict inclusion, respectively).

Structure of the paper. In Section 2, we introduce basic notation and preliminary notions. In
Subsection 2.1 we define Kripke structures and interval structures, in Subsection 2.2 we recall the
well-known PTLs LTL, CTL, and CTL∗, and in Subsection 2.3 we present the interval temporal
logic HS. Then, in Subsection 2.4 we define the three semantic variants of HS (HSst, HSct, and
HSlin). Finally, in Subsection 2.5 we provide a detailed example which gives an intuitive account
of the three semantic variants and highlights their differences. In the next three sections, we
analyze and compare their expressiveness. In Section 3 we show the expressive equivalence
of LTL and HSlin. Then, in Section 4 we prove the expressive equivalence of HSct and finitary
CTL∗. Finally, in Section 5 we compare the expressiveness of HSst, HSct, and HSlin. Conclusions
summarize the work done and outline some directions for future research.

2 PRELIMINARIES 6

2 Preliminaries

In this section, we introduce the notation and some fundamental notions that will be extensively
used in the rest of the paper. Let (N,<) be the set of natural numbers equipped with the standard
linear ordering. For all i , j ∈N, with i ≤ j , we denote by [i , j] the set of natural numbers h such
that i ≤ h ≤ j . Let Σ be an alphabet and w be a non-empty finite or infinite word over Σ. We
denote by |w | the length of w (|w | =∞ if w is infinite). For all i , j ∈N, with i ≤ j , w(i) denotes the
i -th letter of w , while w [i , j] denotes the finite subword of w given by w(i) · · ·w(j). If w is finite
and |w | = n +1, we define fst(w) = w(0) and lst(w) = w(n). The sets of all proper prefixes and
suffixes of w are Pref(w) = {w[0, i] | 0 ≤ i ≤ n −1} and Suff(w) = {w[i ,n] | 1 ≤ i ≤ n}, respectively.
The set of all the finite words overΣ is denoted byΣ∗, andΣ+ :=Σ∗\{ε}, where ε is the empty word.

2.1 Kripke structures and interval structures

Systems are usually modelled as Kripke structures. Let AP be a finite set of proposition letters,
which represent predicates decorating the states of the given system.

Definition 2.1 (Kripke structure). A Kripke structure over a finite set AP of proposition letters is
a tuple K = (AP ,S,δ,µ, s0), where S is a set of states, δ ⊆ S ×S is a left-total transition relation,
µ : S → 2AP is a total labelling function assigning to each state s the set of proposition letters that
hold over it, and s0 ∈ S is the initial state. For (s, s′) ∈ δ, we say that s′ is a successor of s, and s is a
predecessor of s′. Finally, we say that K is finite if S is finite.

For example, Figure 5 depicts the finite Kripke structure K = ({p, q}, {s0, s1},δ,µ, s0), where
δ={(s0, s1), (s1, s0), (s1, s1)}, µ(s0)={p}, µ(s1)={q}. The initial state s0 is marked by a double circle.

Let K = (AP ,S,δ,µ, s0) be a Kripke structure. An infinite path π of K is an infinite word over
S such that (π(i),π(i +1)) ∈ δ for all i ≥ 0. A trace (or finite path) of K is a non-empty prefix of
some infinite path of K . A finite or infinite path is initial if it starts from the initial state of K . Let
TrkK be the (infinite) set of all traces of K and Trk0

K be the set of initial traces of K . For a trace ρ,
states(ρ) denotes the set of states occurring in ρ, i.e., states(ρ)={ρ(0), . . . ,ρ(n)}, where |ρ|=n +1.

We now introduce the notion of D-tree structure, namely, an infinite tree-shaped Kripke
structure with branches over a set D of directions.

Definition 2.2 (D-tree structure). Given a set D of directions, a D-tree structure (over AP) is a
Kripke structure K = (AP ,S,δ,µ, s0) such that s0 ∈ D, S is a prefix closed subset of D+, and δ is the
set of pairs (s, s′) ∈ S ×S such that there exists d ∈ D for which s′ = s ·d (note that δ is completely
specified by S). The states of a D-tree structure are called nodes.

◦
s0
p

s1
q

Figure 5: The Kripke structure K .

2 PRELIMINARIES 7

s0

s0s1

s0s1s0 s0s1s1

s0s1s0s1 s0s1s1s0 s0s1s1s1

· · · · · ·
Figure 6: Computation tree C (K) of the Kripke structure K of Figure 5.

◦

A Kripke structure K = (AP ,S,δ,µ, s0) induces an S-tree structure, called the computation
tree of K , denoted by C (K), which is obtained by unwinding K from the initial state (note that
the directions are the set of states of K). Formally, C (K) = (AP ,Trk0

K ,δ′,µ′, s0), where the set of

nodes is the set of initial traces of K and for all ρ,ρ′ ∈ Trk0
K , µ′(ρ) = µ(lst(ρ)) and (ρ,ρ′) ∈ δ′ if

and only if ρ′ = ρ · s for some s ∈ S. See Figure 6 for an example.
Given a strict partial ordering S= (X ,<), an interval in S is an ordered pair [x, y] such that

x, y ∈ X and x ≤ y . The interval [x, y] denotes the subset of X given by the set of points z ∈ X
such that x ≤ z ≤ y . We denote by I(S) the set of intervals in S.

Definition 2.3 (Interval structure). An interval structure IS over AP is a pair IS = (S,σ) such that
S= (X ,<) is a strict partial ordering and σ : I(S) → 2AP is a labeling function assigning a set of
proposition letters to each interval over S.

2.2 Standard temporal logics

In this subsection, we recall the standard propositional temporal logics CTL∗, CTL, and LTL [17,
37]. Given a set of proposition letters AP , the formulas ϕ of CTL∗ are defined as follows:

ϕ ::=> | p | ¬ϕ | ϕ∧ϕ | Xϕ | ϕUϕ | ∃ϕ,

where p ∈ AP , X and U are the “next” and “until” temporal modalities, and ∃ is the existential
path quantifier. 2 We also use the standard shorthands ∀ϕ :=¬∃¬ϕ (“universal path quantifier”),
Fϕ := >Uϕ (“eventually” or “in the future”) and its dual Gϕ := ¬F¬ϕ (“always” or “globally”).
Hereafter, we denote by |ϕ| the size of ϕ, that is, the number of its symbols/subformulas.

The logic CTL is the fragment of CTL∗ where each temporal modality is immediately pre-
ceded by a path quantifier, whereas LTL corresponds to the path-quantifier-free fragment of
CTL∗.

2Hereafter, we denote by ∃/∀ the existential/universal path quantifiers (instead of by the usual E/A), in order not to
confuse them with the HS modalities E/A.

2 PRELIMINARIES 8

Given a Kripke structure K = (AP ,S,δ,µ, s0), an infinite path π of K , and a position i ≥ 0
along π, the satisfaction relation K ,π, i |= ϕ for CTL∗, written simply π, i |= ϕ when K is clear
from the context, is defined as follows (Boolean connectives are treated as usual):

π, i |= p ⇔ p ∈µ(π(i)),
π, i |=Xϕ ⇔π, i +1 |=ϕ,
π, i |=ϕ1Uϕ2 ⇔ for some j ≥ i :π, j |=ϕ2 and π,k |=ϕ1 for all i ≤ k < j ,
π, i |= ∃ϕ ⇔ for some infinite path π′ starting from π(i), π′,0 |=ϕ.

The model checking (MC) problem is defined as follows: K is a model of ϕ, written K |= ϕ, if
for all initial infinite paths π of K , it holds that K ,π,0 |= ϕ.

We also consider a variant of CTL∗, called finitary CTL∗, where the path quantifier ∃ of
CTL∗ is replaced by the finitary path quantifier ∃ f . In this setting, path quantification ranges
over the traces (finite paths) starting from the current state. The satisfaction relation ρ, i |=ϕ,
where ρ is a trace and i is a position along ρ, is similar to that given for CTL∗ with the only
difference of finiteness of paths, and the fact that for a formula Xϕ, ρ, i |= Xϕ if and only if
i + 1 < |ρ| and ρ, i + 1 |= ϕ. A Kripke structure K is a model of a finitary CTL∗ formula if for
each initial trace ρ of K , it holds that K ,ρ,0 |= ϕ.

The MC problem for both CTL∗ and LTL is PSPACE-complete [18, 40]. It is not difficult to
show that, as it happens with finitary LTL [15], MC for finitary CTL∗ is PSPACE-complete as well.

2.3 The interval temporal logic HS

An interval algebra was proposed by Allen in [1] to reason about intervals and their relative
order, while a systematic logical study of interval representation and reasoning was done a few
years later by Halpern and Shoham, that introduced the interval temporal logic HS featuring
one modality for each Allen relation, but equality [20]. Table 1 depicts 6 of the 13 Allen’s rela-
tions, together with the corresponding HS (existential) modalities. The other 7 relations are
the 6 inverse relations (given a binary relation R , the inverse relation R is such that bR a if
and only if aR b) and equality.

◦

Table 1: Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example
x y

v z
v z

v z
v z
v z

v z

MEETS 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v
BEFORE 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

STARTED-BY 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y
FINISHED-BY 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧x < v

CONTAINS 〈D〉 [x, y]RD [v, z] ⇐⇒ x < v ∧ z < y
OVERLAPS 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

2 PRELIMINARIES 9

For a set of proposition letters AP , the formulas ψ of HS are defined as follows:

ψ ::= p | ¬ψ |ψ∧ψ | 〈X 〉ψ,

where p ∈ AP and X ∈ {A,L,B ,E ,D,O, A,L,B ,E ,D ,O}. For any modality 〈X 〉, the dual universal
modality [X]ψ is defined as ¬〈X 〉¬ψ. For any subset of Allen’s relations {X1, . . . , Xn}, X1 · · ·Xn

denotes the HS fragment featuring (universal and existential) modalities for X1, . . . , Xn only.
We assume the non-strict semantic version of HS, which admits intervals consisting of a single

point.3 Under such an assumption, all HS modalities can be expressed in terms of 〈B〉,〈E〉,〈B〉,
and 〈E〉 [42]. As an example, 〈A〉 can be expressed in terms of 〈E〉 and 〈B〉 as: 〈A〉ϕ := ([E]⊥∧
(ϕ∨〈B〉ϕ))∨〈E〉([E]⊥∧ (ϕ∨〈B〉ϕ)). We also use the derived operator 〈G〉 of HS (and its dual
[G]), which allows one to select arbitrary subintervals of a given interval, and is defined as:
〈G〉ψ := ψ∨ 〈B〉ψ∨ 〈E〉ψ∨ 〈B〉〈E〉ψ.

HS can be viewed as a multi-modal logic with 〈B〉,〈E〉,〈B〉, and 〈E〉 as primitive modalities and
its semantics can be defined over a multi-modal Kripke structure, called abstract interval model,
where intervals are treated as atomic objects and Allen’s relations as binary relations over intervals.

Definition 2.4 (Abstract interval model [30]). An abstract interval model over AP is a tuple
A = (AP , I,BI,EI,σ), where I is a set of worlds, BI and EI are two binary relations over I, and
σ : I→ 2AP is a labeling function assigning a set of proposition letters to each world.

Let A = (AP , I,BI,EI,σ) be an abstract interval model. In the interval setting, I is interpreted
as a set of intervals, BI and EI as Allen’s relations B (started-by) and E (finished-by), respectively,
and σ assigns to each interval in I the set of proposition letters that hold over it. Given an in-
terval I ∈ I, the truth of an HS formula over I is inductively defined as follows (the Boolean
connectives are treated as usual):

• A , I |= p if and only if p ∈σ(I), for any p ∈ AP ;

• A , I |= 〈X 〉ψ, for X ∈ {B ,E }, if and only if there exists J ∈ I such that I XI J and A , J |=ψ;

• A , I |= 〈X 〉ψ, for X ∈ {B ,E }, if and only if there exists J ∈ I such that J XI I and A , J |=ψ.

The next definition shows how to derive an abstract interval model from an interval structure.

Definition 2.5 (Abstract interval model induced by an interval structure). An interval structure
IS = (S,σ), with S = (X ,<), induces the abstract interval model AIS = (AP , I(S),BI(S),EI(S), σ),
where [x, y]BI(S) [v, z] iff x = v and z < y, and [x, y]EI(S) [v, z] iff y = z and x < v.

For an interval I and an HS formula ψ, we write IS , I |=ψ to mean that AIS , I |=ψ.

3All the results we prove in the paper hold for the strict version as well.

2 PRELIMINARIES 10

2.4 Three semantic variants of HS for MC

In this section we define the three variants of HS semantics HSst (state-based), HSct (computation-
tree-based), and HSlin (trace-based) for model checking HS formulas against Kripke structures.
For each variant, the related (finite) MC problem consists of deciding whether or not a finite
Kripke structure is a model of an HS formula under such a semantic variant.

Let us start with the state-based variant [34, 30], where an abstract interval model is nat-
urally associated with a given Kripke structure K by considering the set of intervals as the
set TrkK of traces of K .

Definition 2.6 (Abstract interval model induced by a Kripke structure). The abstract interval
model induced by a Kripke structure K = (AP ,S,δ,µ, s0) is AK = (AP , I,BI,EI,σ), where I= TrkK ,
BI = {(ρ,ρ′) ∈ I× I | ρ′ ∈ Pref(ρ)}, EI = {(ρ,ρ′) ∈ I× I | ρ′ ∈ Suff(ρ)}, and σ : I→ 2AP is such that
σ(ρ) =⋂

s∈states(ρ)µ(s), for all ρ ∈ I.
According to the definition of σ, p ∈ AP holds over ρ = s1 · · · sn if and only if it holds over all
the states s1, . . . , sn of ρ. This conforms to the homogeneity principle, according to which a
proposition letter holds over an interval if and only if it holds over all its subintervals [39].

Definition 2.7 (State-based HS—HSst). Let K be a Kripke structure and ψ be an HS formula. A
trace ρ ∈ TrkK satisfies ψ under the state-based semantic variant, denoted as K ,ρ |=stψ, if it holds
that AK ,ρ |=ψ. Moreover, K is a model of ψ under the state-based semantic variant, denoted as
K |=stψ, if for all initial traces ρ ∈ Trk0

K , it holds that K ,ρ |=stψ.

We now introduce the computation-tree-based semantic variant, where we simply consider
the abstract interval model induced by the computation tree of the Kripke structure. Notice that
since each state in a computation tree has a unique predecessor (with the exception of the initial
state), this HS variant enforces a linear reference in the past.

Definition 2.8 (Computation-tree-based HS—HSct). A Kripke structure K is a model of an HS
formula ψ under the computation-tree-based semantic variant, written K |=ctψ, if C (K) |=stψ.

Finally, we define the trace-based semantic variant, which exploits the interval structures
induced by the infinite paths of the Kripke structure.

Definition 2.9 (Interval structure induced by an infinite path). For a Kripke structure K =
(AP ,S,δ,µ, s0) and an infinite path π = π(0)π(1) · · · of K , the interval structure induced by π

is IS K ,π = ((N,<),σ), where for each interval [i , j], σ([i , j]) =⋂ j
h=i µ(π(h)).

Definition 2.10 (Trace-based HS—HSlin). A Kripke structure K is a model of an HS formula ψ
under the trace-based semantic variant, denoted as K |=linψ, if and only if for each initial infinite
path π and for each initial interval [0, i], it holds that IS K ,π, [0, i] |=ψ.

In the next sections, we compare the expressiveness of the logics HSst, HSct, HSlin, LTL,
CTL, and CTL∗ when interpreted over finite Kripke structures. Given two logics L1 and L2, and

2 PRELIMINARIES 11

s0
p$=0

s2
p$=2

s1
p$=1

s3
p$=0.50

s4
pcandy

s5
photdog

s6
pwater

s7
pchange

s8
pmaint

s9
pmaint_end

ins_$2

ins_$1

ins_$0.50

sel

sel

sel
sel

sel

sel

dispensed

dispensed
dispensed

change_given

change_given
maint_ongoing

maint_failed

maint_success

poperative

¬poperative

Figure 7: Kripke structure representing a vending machine.

◦

two formulas ϕ1 ∈ L1 and ϕ2 ∈ L2, we say that ϕ1 in L1 is equivalent to ϕ2 in L2 if, for every
finite Kripke structure K , K is a model of ϕ1 in L1 if and only if K is a model of ϕ2 in L2. We
say that L2 is subsumed by L1, denoted as L1 ≥ L2, if for each formula ϕ2 ∈ L2, there exists a
formula ϕ1 ∈ L1 such that ϕ1 in L1 is equivalent to ϕ2 in L2. Moreover L1 is as expressive as
L2 (or L1 and L2 have the same expressive power), written L1 ≡ L2, if both L1 ≥ L2 and L2 ≥ L1.
We say that L1 is (strictly) more expressive than L2 if L1 ≥ L2 and L2 6≥ L1. Finally L1 and L2 are
expressively incomparable if both L1 6≥ L2 and L2 6≥ L1.

2.5 An example: a vending machine

In this section, we give an example highlighting the differences among the HS semantic vari-
ants HSst, HSct, and HSlin.

The Kripke structure of Figure 7 represents a vending machine, which can dispense water,
hot dogs, and candies. In state s0 (the initial one), no coin has been inserted into the machine
(hence, the proposition letter p$=0 holds there). Three edges, labelled by “ins_$1”, “ins_$2”, and
“ins_$0.50”, connect s0 to s1, s2, and s3, respectively. Edge labels do not convey semantic value
(they are neither part of the structure definition nor associated with proposition letters) and
are simply used for an easy reference to edges. In s1 (resp., s2, s3) the proposition letter p$=1

2 PRELIMINARIES 12

(resp., p$=2, p$=0.50) holds, representing the fact that 1 Dollar (resp., 2, 0.50 Dollars) has been
inserted into the machine. The cost of a bottle of water (resp., a candy, a hot dog) is $0.50 (resp.,
$1, $2). A state si , for i = 1,2,3, is connected to a state s j , for j = 4,5,6, only if the available credit
allows one to buy the corresponding item. Then, edges labelled by “dispensed” connect s4, s5,
and s6 to s7. In s7, the machine gives change, and can nondeterministically move back to s0

(ready for dispensing another item), or to s8, where it begins an automatic maintenance activity
(pmaint holds there). Afterwards, state s9 is reached, where maintenance ends. From there, if
the maintenance activity fails (edge “maint_failed”), s8 is reached again (another maintenance
cycle is attempted); otherwise, maintenance concludes successfully (“maint_success”) and s0

is reached. Since the machine is operating in states s0, . . . , s7, and under maintenance in s8 and
s9, poperative holds over the former, and it does not on the latter.

In the following, we will make use of the B formulas lengthn , with n ≥ 1: for any given n,
lengthn characterizes the intervals of length n, and is defined as follows:

lengthn := (〈B〉 . . .〈B〉︸ ︷︷ ︸
n−1

>) ∧ ([B] . . . [B]︸ ︷︷ ︸
n

⊥).

We now give some examples of properties we can formalize under all, or some, of the HS
semantic variants HSst, HSct, and HSlin.

• In any run of length 50, during which the machine never enters maintenance mode, it
dispenses at least a hotdog, a bottle of water and a candy.

K 6|= (poperative ∧ length=50) −→ (
(〈B〉〈E〉photdog)∧ (〈B〉〈E〉pwater)∧ (〈B〉〈E〉pcandy)

)
Clearly this property is false, as the machine can possibly dispense only one or two kinds
of items. We start by observing that the above formula is equivalent in all of the three
semantic variants of HS: since modalities 〈B〉 and 〈E〉 only allow one to “move” from an
interval to its subintervals, BElin, BEst, and BEct coincide (for this reason, we have omitted
the subscript from the symbol |=). Homogeneity plays a fundamental role here: asking
poperative to be true implies that such a letter is true along the whole trace (thus s8 and s9

are always avoided).

It is worth observing that the same property can be expressed in LTL, for instance as
follows: ∧

i∈{0,...,49}
Xi poperative ∧

∨
i , j ,k∈{1,...,48},i 6= j 6=k 6=i

(Xi photdog)∧ (X j pwater)∧ (Xk pcandy).

The length of this LTL formula is exponential in the number of items (in this case, 3),
whereas the length of the above HS one is only linear. As a matter of fact, we will prove
(Theorem 3.5) that BE is at least exponentially more succinct than LTL.

• If the credit is $0.50, then no hot dog or candy may be provided.

K |= (〈E〉p$=0.50) −→¬〈A〉(length=2 ∧〈E〉(photdog ∨pcandy))

2 PRELIMINARIES 13

We observe that a trace satisfies 〈E〉p$=0.50 if and only if it ends in s3. This property is
satisfied under all of the three semantic variants, even though the nature of future differs
among them (recall Figure 1, 2, and 3). As we have already mentioned, a linear setting
(rather than branching) is suitable for the specification of dynamic behaviors, because it
considers states of a computation; conversely, a branching approach focuses on machine
states (and thus on the structure of a system).

In this case, only the state s6 can be reached from s3, regardless of the nature of future. For
this reason, HSst, HSct, and HSlin behave in the same way.

• Let us exemplify now a difference between HSst (and HSct) and HSlin.

K |=st

K |=ct

K 6|=lin

(〈E〉pmaint_end) −→〈A〉〈E〉poperative

This is a structural property, requiring that when the machine enters state s9 (where
maintenance ends), it can become again operative reaching state s0 (s9 is not a lock state
for the system). This is clearly true when future is branching and it is not when future
is linear: HSlin refers to system computations, and some of these may ultimately loop
between s8 and s9.

• Conversely, some properties make sense only if they are predicated over computations.
This is the case, for instance, of fairness.

K |=st

K |=ct

K 6|=lin

([A]〈A〉〈E〉pmaint) −→ [A]〈A〉〈E〉poperative

Assuming the trace-based semantics, the property requires that if a system computation
enters infinitely often into maintenance mode, it will infinitely often enter operation mode.
Again, this is not true, as some system computations may ultimately loop between s8 and
s9 (hence, they are not fair). On the contrary, such a property is trivially true under HSst or
HSct, as, for any initial trace ρ, it holds that K ,ρ |= 〈A〉〈E〉poperative.

• We conclude with a property showing the difference between linear and branching past,
that is, between HSst and HSlin (and HSct). The requirement is the following: the machine
may dispense water with any amount of (positive) credit.

K |=st

K 6|=ct

K 6|=lin

(〈E〉pwater) −→〈E〉(pwater ∧
∧

p∈{p$=2,p$=1,p$=0.50}
〈A〉(length=2 ∧〈B〉p)

)
Again, this one is a structural property, that cannot be expressed in HSlin or HSct, as these
refer to a specific computation in the past. Conversely, it is true under HSst, since s6 is
backward reachable in one step by s1, s2, and s3.

3 EQUIVALENCE BETWEEN LTL AND HSLIN 14

3 Equivalence between LTL and HSlin

In this section, we show that HSlin is as expressive as LTL even for small syntactical fragments
of HSlin. To this end, we exploit the well-known equivalence between LTL and the first-order
fragment of monadic second-order logic over infinite words (FO for short). Recall that, given
a countable set {x, y, z, . . .} of (position) variables, the FO formulas ϕ over a set of proposition
letters AP = {p, . . .} are defined as:

ϕ ::=> | p(x) | x ≤ y | x < y | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ .

We interpret FO formulas ϕ over infinite paths π of Kripke structures K = (AP ,S,δ,µ, s0).
Given a variable valuation g , assigning to each variable a position i ≥ 0, the satisfaction relation
(π, g) |=ϕ corresponds to the standard satisfaction relation (µ(π), g) |=ϕ, whereµ(π) is the infinite
word over 2AP given by µ(π(0))µ(π(1)) · · · . More precisely, (π, g) |= ϕ is inductively defined as
follows (we omit the standard rules for the Boolean connectives):

(π, g) |= p(x) ⇔ p ∈µ(π(g (x))),
(π, g) |= x op y ⇔ g (x) op g (y), for op ∈ {<,≤},
(π, g) |= ∃x.ϕ ⇔ (π, g [x ← i]) |=ϕ for some i ≥ 0,

where g [x ← i](x) = i and g [x ← i](y) = g (y) for y 6= x. Note that the satisfaction relation depends
only on the values assigned to the variables occurring free in the given formulaϕ. We write π |=ϕ
to mean that (π, g0) |=ϕ, where g0(x) = 0 for each variable x. An FO sentence is a formula with
no free variables. The following is a well-known result (Kamp’s theorem [21]).

Proposition 3.1. Given an FO sentence ϕ over AP , one can construct an LTL formula ψ such that,
for all Kripke structures K over AP and infinite paths π, it holds that π |=ϕ if and only if π,0 |=ψ.

Given a HSlin formula ψ, we now construct an FO sentence ψFO such that, for all Kripke
structures K , K |=lin ψ if and only if for each initial infinite path π of K , π |=ψFO.

We start by defining a mapping h assigning to each triple (ϕ, x, y), consisting of a HS formula
ϕ and two distinct position variables x, y , an FO formula having as free variables x and y . The
mapping h returns the FO formula defining the semantics of the HS formula ϕ interpreted over
an interval bounded by the positions x and y .

The function h is homomorphic with respect to the Boolean connectives, and is defined for
proposition letters and modal operators as follows (here z is a fresh position variable):

h(p, x, y) =∀z.((z ≥ x ∧ z ≤ y) → p(z)),
h(〈E〉ψ, x, y) =∃z.(z > x ∧ z ≤ y ∧h(ψ, z, y)),
h(〈B〉ψ, x, y) =∃z.(z ≥ x ∧ z < y ∧h(ψ, x, z)),
h(〈E〉ψ, x, y) =∃z.(z < x ∧h(ψ, z, y)),
h(〈B〉ψ, x, y) =∃z.(z > y ∧h(ψ, x, z)).

It is worth noting that homogeneity plays a crucial role in the definition of h(p, x, y) (without
it, a binary predicate would be necessary to encode the truth of p over [x, y]).

3 EQUIVALENCE BETWEEN LTL AND HSLIN 15

Given a Kripke structure K , an infinite path π, an interval of positions [i , j], and an HSlin

formulaψ, by a straightforward induction on the structure ofψ, we can show that IS K ,π, [i , j] |=ψ
if and only if (π, g) |= h(ψ, x, y) for any valuation such that g (x) = i and g (y) = j .

Now, let us consider the FO sentence h(ψ) given by ∃x((∀z.z ≥ x)∧∀y.h(ψ, x, y)). Clearly
K |=linψ if and only if for each initial infinite path π of K , π |= h(ψ). By Proposition 3.1, it follows
that one can construct an LTL formula h′(ψ) such that h′(ψ) in LTL is equivalent to ψ in HSlin.
Thus, we obtain the following expressiveness containment.

Theorem 3.2. LTL≥HSlin.

Now we show that also the converse containment holds, that is, LTL can be translated into
HSlin. Actually, it is worth noting that for such a purpose the fragment AB of HSlin, featuring
only modalities for A and B , is expressive enough.

Theorem 3.3. Given an LTL formula ϕ, one can construct in linear-time an AB formula ψ such
that ϕ in LTL is equivalent to ψ in ABlin.

Proof. Let f : LTL→AB be the mapping, homomorphic with respect to the Boolean connectives,
defined as follows:

f (p) = p, for each proposition letter p,

f (Xψ) = 〈A〉(length2 ∧〈A〉(length1 ∧ f (ψ))),

f (ψ1Uψ2) = 〈A〉(〈A〉(length1 ∧ f (ψ2))∧ [B](〈A〉(length1 ∧ f (ψ1))
)
.

Given a Kripke structure K , an infinite path π, a position i ≥ 0, and an LTL formula ψ,
by a straightforward induction on the structure of ψ we can show that π, i |= ψ if and only if
IS K ,π, [i , i] |= f (ψ). Hence K |=ψ if and only if K |=lin length1 → f (ψ).

The next corollary follows immediately from Theorem 3.2 and Theorem 3.3.

Corollary 3.4. HSlin and LTL have the same expressive power.

While there is no difference in the expressive power between LTL and HSlin, things change
if we consider succinctness. Whereas Theorem 3.3 shows that it is possible to convert any LTL
formula into an equivalent HSlin one in linear time, the following theorem holds.

Theorem 3.5. HSlin is at least exponentially more succinct than LTL.

Proof. To prove the statement, it suffices to provide an HSlin formula ψ for which there exists no
LTL equivalent formula whose size is polynomial in |ψ|.

To this end, we restrict our attention to the fragment BElin. Since modalities 〈B〉 and 〈E〉
only allow one to ‘move’ from an interval to its subintervals, BElin actually coincides with BEst,
whose MC is known to be hard for EXPSPACE [7]. Thus, in particular, it is possible to encode
by means of a BElin formula ψcpt the (unique) computation of a deterministic Turing machine

4 A CHARACTERIZATION OF HSCT 16

using b(n) ∈O(2n) bits that, when executed on input 0n , for some natural number n ≥ 1, counts
in binary from 0 to 22n −1, by repeatedly summing 1, and finally accepts. The length of ψcpt is
polynomial in n, and the unique trace which satisfies it (that is, that encodes such a computation)
has length `(n) ≥ b(n) ·22n

.
Conversely, it is known that LTL features a single-exponential small-model property [16],

stating that, for every satisfiable LTL formulaϕ, there are u, v ∈ S∗ with |u| ≤ 2|ϕ| and |v | ≤ |ϕ|·2|ϕ|,
such that u · vω,0 |= ϕ. This allows us to conclude (by an easy contradiction argument) that
there is no polynomial-length (w.r.t. |ψcpt|, and thus to n) LTL formula that can encode the
aforementioned computation. An exponential-length LTL formula would be needed for such an
encoding.

Exactly the same argument can be used to show that HSlin is at least exponentially more
succinct than the extension of LTL with past modalities (denoted in the following as LTLp) [24].

4 A characterization of HSct

In this section, we will focus our attention on the computation-tree-based semantic variant HSct,
showing that it is as expressive as finitary CTL∗. As a matter of fact, the result can be proved
to hold already for the syntactical fragment ABE which does not feature transposed modalities.
In addition, we show that HSct is subsumed by CTL∗.

4.1 From finitary CTL∗ to HSct

We first show that finitary CTL∗ is subsumed by HSct. As a preliminary fundamental step, we
prove that when interpreted over finite words, the BE fragment of HS and LTL define the same
class of finitary languages (Theorem 4.5).

For an LTL formula ϕ with proposition letters over an alphabet Σ (in our case Σ is 2AP), let
us denote by Lact(ϕ) the set of non-empty finite words over Σ satisfying ϕ under the standard
action-based semantics of LTL, interpreted over finite words (see [41]). A similar notion can be
given for BE formulasϕwith proposition letters inΣ (under the homogeneity assumption). Then,
ϕ denotes a language, written Lact(ϕ), of non-empty finite words over Σ inductively defined as:

• Lact(a) = a+, for a ∈Σ (we observe that this definition reflects the homogeneity assump-
tion);

• Lact(¬ϕ) =Σ+ \ Lact(ϕ);

• Lact(ϕ1 ∧ϕ2) = Lact(ϕ1)∩Lact(ϕ2);

• Lact(〈B〉ϕ) = {w ∈Σ+ | Pref(w)∩Lact(ϕ) 6= ;};

• Lact(〈E〉ϕ) = {w ∈Σ+ | Suff(w)∩Lact(ϕ) 6= ;}.

4 A CHARACTERIZATION OF HSCT 17

We prove that, under the action-based semantics, BE formulas and LTL formulas define
the same class of finitary languages.

To prove that the finitary languages defined by LTL formulas are subsumed by those defined
by BE formulas we exploit an algebraic condition introduced by Wilke in [43], called LTL-closure,
which gives, for a class of finitary languages, a sufficient condition to guarantee the inclusion
of the class of LTL-definable languages. The converse inclusion, that is, the class of finitary
languages defined by the fragment BE is subsumed by that defined by LTL, can be proved by
a technique similar to that used in Section 3, and thus omitted.

We start by considering the former inclusion recalling from [43] a sufficient condition for a
class of finitary languages to include the class of finitary languages which are LTL-definable.

Definition 4.1 (LTL-closure). A class C of languages of finite words over finite alphabets is LTL-
closed if and only if the following conditions are satisfied, where Σ and∆ are finite alphabets, b ∈Σ
and Γ=Σ\ {b}:

1. C is closed under language complementation and language intersection;

2. if L ∈C with L ⊆ Γ+, then Σ∗bL, Σ∗b(L+ε), LbΣ∗, (L+ε)bΣ∗ are in C ;

3. Let U0 = Γ∗b, h0 : U0 →∆, and h : U+
0 →∆+ be defined by h(u0u1 · · ·un)=h0(u0)· · ·h0(un).

Assume that for each d ∈∆, the language Ld = {u ∈ Γ+ | h0(ub) = d} is in C . Then, for each
language L ∈C such that L ⊆∆+, the language Γ∗bh−1(L)Γ∗ is in C .

In Figure 8, we graphically depict condition 3 of the definition of LTL-closure. In the proposed
example, we have: (i) for all i , di ∈∆ andγi ∈ Γ, (i i) w = (γ1γ2γ3b)(γ4γ5b)(γ6γ7γ8b)(γ9γ10γ11b) ∈
U 4

0 , (i i i) w ′ = h(w) = h0(γ1γ2γ3b)h0(γ4γ5b)h0(γ6γ7γ8b)h0(γ9γ10γ11b) = d1d2d3d1 ∈∆4. For in-
stance, γ1γ2γ3,γ9γ10γ11 ∈ Ld1 and γ4γ5 ∈ Ld2 .

The following result holds [43].

Theorem 4.2. Any LTL-closed class C of finitary languages includes the class of LTL-definable
finitary languages.

Therefore, to prove that the finitary languages defined by BE formulas subsume those defined
by LTL, as stated by Theorem 4.5 below, it suffices to prove that the class of finitary languages

◦
d1 d2 d3 d1 ∈ ∆+

∈ U +0γ1 γ2 γ3 b γ4 γ5 b γ6 γ7 γ8 b γ9 γ10 γ11 b

h0 h0 h0 h0

w =

w′ =

w′ = h(w)

Figure 8: Visual description of condition 3 of Definition 4.1 (LTL-closure).

4 A CHARACTERIZATION OF HSCT 18

definable by BE formulas is LTL-closed, and to apply Theorem 4.2. We observe that, by definition,
the class of BE-definable languages is obviously closed under language complementation and
intersection (condition 1 of Definition 4.1). The fulfillment of conditions 2 and 3 of Definition 4.1
is then proved by the two following Lemmata 4.3 and 4.4, respectively.

Lemma 4.3. Let Σ be a finite alphabet, b ∈ Σ, Γ= Σ \ {b}, L ⊆ Γ+, and ψ be a BE formula over Γ
such that Lact(ψ) = L. Then, there are BE formulas defining (under the action-based semantics)
the languages bL, Σ∗bL, Σ∗b(L+ε), Lb, LbΣ∗, (L+ε)bΣ∗, and bLb.

Proof. We focus on the cases for the languages bL, Σ∗bL, Σ∗b, and bLb (for the other languages,
the proof is similar: Σ∗b(L+ε) =Σ∗bL+Σ∗b, Lb is symmetric to bL, LbΣ∗ to Σ∗bL, and (L+ε)bΣ∗

to Σ∗b(L+ε)). Let ψ be a BE formula over Γ such that Lact(ψ) = L.

Language bL. The BE formula defining the language bL is the formula:

(¬length1 ∧〈B〉b ∧ [E](¬b ∧ [B]¬b))∧hb(ψ), (1)

where the formula hb(ψ) is inductively defined on the structure of ψ in the following way. The
mapping hb is homomorphic with respect to the Boolean connectives, while for the atomic
actions in Γ and the modalities 〈E〉 and 〈B〉, it is defined as follows:

• for all a ∈ Γ, hb(a) = a ∨ (〈B〉b ∧〈E〉a ∧ [E]a);

• hb(〈B〉θ) = (〈B〉hb(θ)∧¬〈B〉b)∨〈B〉(hb(θ)∧〈B〉b);

• hb(〈E〉θ) = (〈E〉hb(θ)∧¬〈B〉b)∨ (〈B〉b ∧〈E〉〈E〉hb(θ)).

The first conjunct of the formula of (1) ensures that a word u′ in the defined language has length
at least 2 and it has the form bu without any occurrence of b in u. The second conjunct hb(ψ)
ensures that u belongs to the language defined byψ. For atomic actions and temporal modalities,
hb(ψ) is a disjunction of two possible choices; the appropriate one is forced at top level by the
first conjunct of the formula of (1), that constrains one and only one b to occur in the word in the
first position.

By a straightforward structural induction on ψ, it can be shown that the following fact holds.
Claim 1. Let u ∈ Γ+, u′ = bu, and |u| = n+1. Then, for all i , j ∈ [0,n] with i ≤ j , u[i , j] ∈ Lact(ψ)

if and only if u′[î , j +1] ∈ Lact(hb(ψ)), where î = i if i = 0, and î = i +1 otherwise.
By Claim 1, for each u ∈ Γ+, u ∈ Lact(ψ) if and only if bu ∈ Lact(hb(ψ)). Therefore, the formula

of (1) captures the language bLact(ψ).

Languages Σ∗bL and Σ∗b. Following the proof given for the case of the language bL, with
L ⊆ Γ+, one can construct a BE formula ϕ defining the language bL. Hence, the BE formula
ϕ∨〈E〉ϕ defines Σ∗bL. The BE formula defining Σ∗b is b ∨〈E〉b.

4 A CHARACTERIZATION OF HSCT 19

Language bLb. By the proof given for the language bL, with L ⊆ Γ+, one can build a BE formula
ϕ defining the language bL. The BE formula defining the language bLb is the formula:

(¬length1 ∧¬length2 ∧〈B〉b ∧〈E〉b ∧ [E][B]¬b)∧kb(ϕ) (2)

where the formula kb(ϕ) is inductively defined on the structure of ϕ in the following way. The
mapping kb is homomorphic with respect to the Boolean connectives, while for the atomic
actions in Σ and the modalities 〈E〉 and 〈B〉, it is defined as follows:

• for all a ∈ Γ, kb(a) = a ∨ (〈E〉b ∧〈B〉a ∧ [B]a);

• kb(b) = b;

• kb(〈B〉θ) = (〈B〉kb(θ)∧¬〈E〉b)∨ (〈E〉b ∧〈B〉〈B〉kb(θ)).

• kb(〈E〉θ) = (〈E〉kb(θ)∧¬〈E〉b)∨〈E〉(kb(θ)∧〈E〉b).

The first conjunct of the formula of (2) ensures that a word u′ in the defined language has
length at least 3 and it has the form bub without any occurrence of b in u. The second conjunct
kb(ϕ) ensures that bu belongs to the language defined by ϕ. Similarly to the case of the language
bL, for atomic actions (different from b) and temporal modalities, kb(ψ) is a disjunction of two
possible choices; the appropriate one is forced at top level by the first conjunct of the formula of
(2), that constrains one and only one b to occur in the word in the last position.

By a straightforward structural induction on ϕ, it can be shown that the following fact holds.
Claim 2. Let u ∈ Γ+ and |bu| = n +1. Then, for all i , j ∈ [0,n] with i ≤ j , bu[i , j] ∈ Lact(ϕ) if

and only if bub[i , ĵ] ∈ Lact(kb(ϕ)) where ĵ = j if j < n, and ĵ = n +1 otherwise.
By Claim 2, for each u ∈ Γ+, bu ∈ Lact(ϕ) if and only if bub ∈ Lact(kb(ϕ)) implying that the

formula of (2) defines the language Lact(ϕ)b. This concludes the proof of the lemma.

Lemma 4.4. Let Σ and ∆ be finite alphabets, b ∈ Σ, Γ = Σ \ {b}, U0 = Γ∗b, h0 : U0 → ∆ and
h : U+

0 →∆+ be defined by h(u0u1 · · ·un) = h0(u0) · · ·h0(un). Assume that, for each d ∈∆, there is a
BE formula capturing the language Ld = {u ∈ Γ+ | h0(ub) = d}. Then, for each BE formula ϕ over
∆, one can construct a BE formula over Σ capturing the language Γ∗bh−1(Lact(ϕ))Γ∗.

Proof. By hypothesis and Lemma 4.3, for each d ∈∆ there exists a BE formula θd over Σ defining
the language bLd b, where Ld = {u ∈ Γ+ | h0(ub) = d}. Hence, there is a BE formula θ̂d over Σ
capturing the language bL̂d b, where L̂d = {u ∈ Γ∗ | h0(ub) = d} (note that Ld = L̂d \ {ε}).

Let ϕ be a BE formula over ∆. By structural induction over ϕ, we construct a BE formula ϕ+

over Σ such that Lact(ϕ+) = Γ∗bh−1(Lact(ϕ))Γ∗. The formula ϕ+ is defined as follows:

• ϕ= d with d ∈∆. We have that Lact(d) = d+ and Γ∗bh−1(Lact(d))Γ∗ is the set of finite words
in Γ∗bΣ∗bΓ∗ such that each subword u[i , j] of u which is in bΓ∗b is in bL̂d b as well. Using
the formula ψb := ¬length1 ∧〈B〉b ∧〈E〉b ∧ [E][B]¬b to define the language bΓ∗b, ϕ+ is
defined as follows:

ϕ+ = (〈G〉ψb)∧ [G](ψb → θ̂d).

4 A CHARACTERIZATION OF HSCT 20

• ϕ=¬θ. We have that

Γ∗bh−1(Lact(ϕ))Γ∗ = Γ∗bh−1(∆+ \ Lact(θ))Γ∗ = Γ∗bh−1(∆+)Γ∗∩Γ∗bh−1(Lact(θ))Γ∗,

where Γ∗bh−1(∆+)Γ∗ restricts the set of ‘candidate’ models to the well-formed ones.

Thus, taking ψb as defined in the previous case, ϕ+ is given by:

ϕ+ = (〈G〉ψb)∧ [G](ψb → ∨
d∈∆

θ̂d)∧¬θ+,

where, by the inductive hypothesis, Lact(θ+) = Γ∗bh−1(Lact(θ))Γ∗.

• ϕ= θ∧ψ. We simply have ϕ+ = θ+∧ψ+.

• ϕ= 〈B〉θ. First, we note that Γ∗bh−1(Lact(〈B〉θ))Γ∗ is the set of finite words in the language
Γ∗bh−1(Lact(θ))h−1(∆+)Γ∗, which is included in the languageΓ∗bh−1(∆+)Γ∗ defined by the
formula [G](ψb →∨

d∈∆ θ̂d). Note also that, by the inductive hypothesis, Γ∗bh−1(Lact(θ)) is
included in the language of θ+. Thus, ϕ+ is given by:

ϕ+ = [G](ψb → ∨
d∈∆

θ̂d)∧ (ξ∨〈B〉ξ),

where ξ= (〈E〉b)∧〈B〉(θ+∧〈E〉b).

• ϕ = 〈E〉θ. Γ∗bh−1(Lact(〈E〉θ))Γ∗ is the set Γ∗bh−1(∆+)h−1(Lact(θ))Γ∗ included in the lan-
guage Γ∗bh−1(∆+)Γ∗, symmetrically to the previous case. Thus, ϕ+ is given by:

ϕ+ = [G](ψb → ∨
d∈∆

θ̂d)∧ (ξ′∨〈E〉ξ′),

where ξ′ = (〈B〉b)∧〈E〉(θ+∧〈B〉b).

Since, by Lemmata 4.3 and 4.4, the class of finitary languages definable by BE formulas is
LTL-closed, by Theorem 4.2 we get the following result.

Theorem 4.5. Let ϕ be an LTL formula over a finite alphabet Σ. Then, there exists a BE formula
ϕHS over Σ such that Lact(ϕHS) = Lact(ϕ).

The result expressed in Theorem 4.5 above is used to prove that finitary CTL∗ is subsumed
by the fragment ABE under the state-based semantics.

Theorem 4.6. Let ϕ be a finitary CTL∗ formula over AP . Then, there is an ABE formula ϕHS
over AP such that for all Kripke structures K over AP and traces ρ, K ,ρ,0 |= ϕ if and only if
K ,ρ |=st ϕHS.

4 A CHARACTERIZATION OF HSCT 21

Proof. The proof is by induction on the nesting depth of modality ∃ f in ϕ. In the base case, ϕ is a
finitary LTL formula over AP . Since what we need to deal with it is just the first part of the work
we have to do for the inductive step, it is omitted and only the inductive step is detailed.

Let H be the non-empty set of subformulas of ϕ of the form ∃ f ψ which do not occur in the
scope of the path quantifier ∃ f , that is, the ∃ f ψ formulas which are maximal with respect to the
nesting depth of modality ∃ f . Then, ϕ can be seen as an LTL formula over the extended set of

proposition letters AP = AP ∪H . Let Σ= 2AP and ϕ be the LTL formula over Σ obtained from ϕ

by replacing the occurrences of each proposition letter p ∈ AP in ϕ with the formula
∨

P∈Σ : p∈P P ,
according to the LTL action-based semantics.

Given a Kripke structure K over AP with labeling µ and a trace ρ of K , we denote by ρH the

finite word over 2AP of length |ρ| defined as ρH (i) = µ(ρ(i))∪ {∃ f ψ ∈ H | K ,ρ, i |= ∃ f ψ}, for all
i ∈ [0, |ρ|−1]. One can easily prove by structural induction on ϕ that K ,ρ,0 |= ϕ if and only if
ρH ∈ Lact(ϕ). By Theorem 4.5, there exists a BE formula ϕHS over Σ such that Lact(ϕ) = Lact(ϕHS).

Now, by the induction hypothesis, for each formula ∃ f ψ ∈ H , there exists an ABE formula
ψHS such that for all Kripke structures K and traces ρ of K , K ,ρ,0 |=ψ iff K ,ρ |=stψHS. Since ρ
is arbitrary, K ,ρ, i |= ∃ f ψ iff K ,ρ[i , i],0 |= ∃ f ψ iff K ,ρ[i , i] |=st 〈A〉ψHS, for each i ≥ 0.

Let ϕHS be the ABE formula over AP obtained from the BE formula ϕHS by replacing each
occurrence of P ∈Σ in ϕHS with the formula

[G]
(
length1 −→

∧
∃ f ψ∈H∩P

〈A〉ψHS ∧ ∧
∃ f ψ∈H\P

¬〈A〉ψHS ∧ ∧
p∈AP∩P

p ∧ ∧
p∈AP \P

¬p
)
.

Since for all i ≥ 0 and ∃ f ψ ∈ H , K ,ρ, i |= ∃ f ψ if and only if K ,ρ[i , i] |=st 〈A〉ψHS, it is possible
to prove by a straightforward induction on the structure of ϕHS that, for any Kripke structure K
and trace ρ of K we have K ,ρ |=st ϕHS if and only if ρH ∈ Lact(ϕHS).

Therefore, since K ,ρ,0 |=ϕ if and only if ρH ∈ Lact(ϕ) and Lact(ϕ) = Lact(ϕHS), K ,ρ,0 |=ϕ if
and only if K ,ρ |=st ϕHS, for any Kripke structure K and trace ρ of K .

Since the fragment ABE of HS does not feature any modalities unravelling a Kripke struc-
ture backward (namely, 〈A〉 and 〈E〉), the computation-tree-based semantics coincides with
the state-based one (recall Figure 1 and 2), and thus the next corollary immediately follows
from Theorem 4.6.

Corollary 4.7. Finitary CTL∗ is subsumed by both HSst and HSct.

4.2 From HSct to finitary CTL∗

We show now that HSct is subsumed by both CTL∗ and its finitary variant. To prove this result,
we first introduce a hybrid and linear-past extension of CTL∗, called hybrid CTL∗

l p , and its

finitary variant, called finitary hybrid CTL∗
l p .

Besides standard modalities, hybrid logics make use of explicit variables and quantifiers
that bind them [4]. Variables and binders allow us to easily mark points in a path, which will be

4 A CHARACTERIZATION OF HSCT 22

considered as starting and ending points of intervals, thus permitting a natural encoding of HSct.
Actually, we will show that the restricted use of variables and binders exploited in our encoding
does not increase the expressive power of (finitary) CTL∗ (as it happens for an unrestricted use),
thus proving the desired result. We start defining hybrid CTL∗

l p .

For a countable set {x, y, z, . . .} of (position) variables, the set of formulas ϕ of hybrid CTL∗
l p

over AP is defined as follows:

ϕ ::=> | p | x | ¬ϕ | ϕ∨ϕ | ↓x.ϕ | Xϕ | ϕUϕ | X−ϕ | ϕU−ϕ | ∃ϕ,

where X− (‘previous’) and U− (‘since’) are the past counterparts of the ‘next’ and ‘until’ modalities
X and U, and ↓x is the downarrow binder operator [4], which binds x to the current position
along the given initial infinite path. We also use the standard shorthands F−ϕ :=>U−ϕ (‘even-
tually in the past’) and its dual G−ϕ := ¬F−¬ϕ (‘always in the past’). As usual, a sentence is
a formula with no free variables.

Let K be a Kripke structure and ϕ be a hybrid CTL∗
l p formula. For an initial infinite path

π of K , a variable valuation g , that assigns to each variable x a position along π, and i ≥ 0,
the satisfaction relation π, g , i |= ϕ is defined as follows (we omit the clauses for Boolean con-
nectives, for U and X):

π, g , i |=X−ϕ ⇔ i > 0 and π, g , i −1 |=ϕ,
π, g , i |=ϕ1U−ϕ2 ⇔ for some j ≤ i ,π, g , j |=ϕ2 and π, g ,k |=ϕ1 for all j < k ≤ i ,
π, g , i |= ∃ϕ ⇔ for some initial infinite path π′ such that π′[0, i] =π[0, i], π′, g , i |=ϕ,
π, g , i |= x ⇔ g (x) = i ,
π, g , i |= ↓x.ϕ ⇔π, g [x ← i], i |=ϕ,

where g [x ← i](x) = i and g [x ← i](y) = g (y) for y 6= x. A Kripke structure K is a model of a
formula ϕ if π, g0,0 |= ϕ, for every initial infinite path π of K , with g0 the variable evaluation
assigning 0 to each variable. Note that the path quantification is ‘memoryful’, i.e., it ranges over
infinite paths that start at the root and visit the current node of the computation tree. Clearly,
the semantics for the syntactical fragment CTL∗ coincides with the standard one. If we disallow
the use of variables and binder modalities, we obtain the logic CTL∗

l p , a well-known linear-past

extension of CTL∗ which is as expressive as CTL∗ [22]. We also consider the finitary variant of
hybrid CTL∗

l p , where the path quantifier ∃ is replaced with the finitary path quantifier ∃ f . This

logic corresponds to an extension of finitary CTL∗ and its semantics is similar to that of hybrid
CTL∗

l p with the exception that path quantification ranges over the finite paths (traces) that start
at the root and visit the current node of the computation tree.

In the following, we will use the fragment of hybrid CTL∗
l p consisting of well-formed for-

mulas, namely, formulas ϕ where:

• each subformula ∃ψ of ϕ has at most one free variable (namely, not bound by the downar-
row binder operator);

• each subformula ∃ψ(x) of ϕ having x as free variable occurs in ϕ in the context (F−x)∧
∃ψ(x).

4 A CHARACTERIZATION OF HSCT 23

Intuitively, the above conditions affirm that, for each state subformula ∃ψ, the unique free
variable (if any) refers to ancestors of the current node in the computation tree.4

The notion of well-formed formula of finitary hybrid CTL∗
l p is similar: the path quantifier

∃ is replaced by its finitary version ∃ f .
We first show that HSct can be translated into the well-formed fragment of hybrid CTL∗

l p
(resp., well-formed fragment of finitary hybrid CTL∗

l p). Then, we show that this fragment is

subsumed by CTL∗ (resp., finitary CTL∗).

Proposition 4.8. Given a HSct formula ϕ, one can construct in linear-time an equivalent well-
formed sentence of hybrid CTL∗

l p (resp., finitary hybrid CTL∗
l p).

Proof. We focus on the translation from HSct into the well-formed fragment of hybrid CTL∗
l p .

The translation from HSct into the well-formed fragment of finitary hybrid CTL∗
l p is similar,

and thus omitted. Let ϕ be a HSct formula. The desired hybrid CTL∗
l p sentence is the formula

↓x.G f (ϕ, x), where f (ϕ, x) is a mapping which is homomorphic with respect to the Boolean
connectives, and over proposition letters and modalities behaves as follows:

f (p, x) =G−((F−x) → p),
f (〈B〉ψ, x) =X−F−(f (ψ, x)∧F−x),
f (〈B〉ψ, x) =∃(XF f (ψ, x))∧F−x,
f (〈E〉ψ, x) = ↓y .F−(

x ∧XF↓x.F(y ∧ f (ψ, x))
)
,

f (〈E〉ψ, x) = ↓y .F−(
(XFx)∧↓x.F(y ∧ f (ψ, x))

)
,

where y is a fresh variable.
Clearly ↓x.G f (ϕ, x) is well-formed. The formula f (ϕ, x) intuitively states that ϕ holds over an

interval of the current path that starts at the position (associated with the variable) x and ends at
the current position. More formally, let K be a Kripke structure, [h, i] be an interval of positions,
g be a valuation assigning to the variable x the position h, and π be an initial infinite path. By a
straightforward induction on the structure of ϕ, one can show that K ,π, g , i |= f (ϕ, x) if and only
if C (K),C (π,h, i) |=st ϕ, where C (π,h, i) denotes the trace of the computation tree C (K) starting
from π[0,h] and leading to π[0, i]. Hence, K is a model of ↓x.G f (ϕ, x) if, for each initial trace ρ of
C (K), we have C (K),ρ |=st ϕ.

Let LTLp be the past extension of LTL, obtained by adding the past modalities X− and U−.
By exploiting the well-known separation theorem for LTLp over finite and infinite words [19],
which states that any LTLp formula can be effectively converted into an equivalent Boolean
combination of LTL formulas and pure past LTLp formulas, we can prove that, under the hy-
pothesis of well-formedness, the extensions of CTL∗ (resp., finitary CTL∗) used to encode HSct

4The well-formedness constraint ensures that a formula captures only branching regular requirements. As an
example, the formula ∃F↓x.G−(¬X−> → ∀F(x ∧ p)) is not well-formed and requires that there is a level of the
computation tree such that each node in the level satisfies p. This represents a non-regular context-free branching
requirement (see, e.g., [2]).

4 A CHARACTERIZATION OF HSCT 24

formulas do not increase the expressive power of CTL∗ (resp., finitary CTL∗). Such a result is
the fundamental step to prove, together with Proposition 4.8, that CTL∗ subsumes HSct. In
addition, paired with Corollary 4.7, it will allow us to state the main result of the section, namely,
that HSct and finitary CTL∗ have the same expressiveness.

Let us now show that the well-formed fragment of hybrid CTL∗
l p (resp., finitary hybrid CTL∗

l p)

is not more expressive than CTL∗ (resp., finitary CTL∗). Once more, we focus on the well-formed
fragment of hybrid CTL∗

l p omitting the similar proof for the finitary variant.
We start with some additional definitions and auxiliary results. A pure past LTLp formula

is an LTLp formula which does not contain occurrences of future temporal modalities. Given
two formulas ϕ and ϕ′ of hybrid CTL∗

l p , we say that ϕ and ϕ′ are congruent if, for every Kripke
structure K , initial infinite path π, valuation g , and current position i , K ,π, g , i |=ϕ if and only if
K ,π, g , i |=ϕ′ (note that congruence is a stronger requirement than equivalence).

As usual, for a formula ϕ of hybrid CTL∗
l p with one free variable x, we write ϕ(x). Moreover,

since the satisfaction relation depends only on the variables occurring free in the given formula,
for ϕ(x) we use the notation K ,π, i |= ϕ(x ← h) to mean that K ,π, g , i |= ϕ for any valuation g
assigning h to the unique free variable x. For a formula ϕ of hybrid CTL∗

l p , let ∃SubF(ϕ) denote
the set of subformulas ofϕ of the form ∃ψwhich do not occur in the scope of the path quantifier ∃.

Finally, for technical reasons, we introduce the notion of simple hybrid CTL∗
l p formula.

Definition 4.9. Given a variable x, a simple hybrid CTL∗
l p formula ψ with respect to x is a hybrid

CTL∗
l p formula satisfying the following syntactical constraints:

• x is the unique variable occurring in ψ;

• ψ does not contain occurrences of the binder modalities and past temporal modalities;

• ∃SubF(ψ) consists of CTL∗ formulas.

Intuitively, a simple hybrid CTL∗
l p (over AP) formulaψwith respect to x can be seen as a CTL∗

formula over the set of proposition letters AP∪{x} such that x does not occur in the scope of ∃. The
next lemma shows that ψ can be further simplified whenever it is paired with the formula F−x.

Lemma 4.10. Let ψ be a simple hybrid CTL∗
l p formula with respect to x. Then, (F−x)∧ψ is

congruent to a formula of the form (F−x)∧ξ, where ξ is a Boolean combination of the atomic
formula x and CTL∗ formulas.

Proof. Let ψ be a simple hybrid CTL∗
l p formula with respect to x. From a syntactic point of view,

ψ is not, in general, a CTL∗ formula due to the occurrences of the free variable x. We show
that these occurrences can be separated whenever ψ is paired with F−x, obtaining a Boolean
combination of the atomic formula x and CTL∗ formulas.

The base case with ψ= x, ψ= p ∈ AP , or ψ=∃ψ′ is obvious.
As for the inductive step, let ψ be a Boolean combination of simple hybrid CTL∗

l p formulas

θ, where θ is either p ∈ AP , the variable x, a CTL∗ formula, or a simple hybrid CTL∗
l p formula

4 A CHARACTERIZATION OF HSCT 25

(with respect to x) of the forms Xθ1 or θ1Uθ2. Therefore, we just need to consider the cases where
θ =Xθ1 or θ = θ1Uθ2.

Let us consider the case θ = Xθ1. Since there are not past temporal modalities in θ1, Xθ1

forces the free occurrence of x in ψ to be interpreted in a (strictly) future position. However,
ψ is conjunct with the formula F−x, which turns out to be false when x is associated with a
(strictly) future position. Let us denote by θ̂ the CTL∗ formula obtained from θ by replacing each
occurrence of x in ψ with ⊥ (false). Now, when x is mapped to a (strictly) future position, F−x is
false, and, when x is mapped to a present/past position, F−x is true, and θ and θ̂ are congruent.
As a consequence, it is clear that (F−x)∧θ is congruent to (F−x)∧ θ̂.

Let us consider the case for θ = θ1Uθ2. Using the same arguments of the previous case, we
have that (F−x)∧θ is congruent to (F−x)∧ (θ2∨ (θ1∧X(�θ1Uθ2))). By distributivity of ∧ over ∨, we
get ((F−x)∧θ2)∨((F−x)∧θ1∧X(�θ1Uθ2))). The thesis follows by applying the inductive hypothesis
to (F−x)∧θ2 and to (F−x)∧θ1, and by factorizing F−x (notice that �θ1Uθ2 is a CTL∗ formula).

The next lemma states an important technical property of well formed formulas, which will
be exploited in Theorem 4.14 to prove that the set of sentences of the well-formed fragment
of hybrid CTL∗

l p has the same expressiveness as CTL∗. Intuitively, if the hybrid features of the
language do not occur in the scope of existential path quantifiers, it is possible to remove the
occurrences of the binder ↓ and to suitably separate past and future modalities. The result is
obtained by exploiting the equivalence of FO and LTLp over infinite words and by applying the
separation theorem for LTLp over infinite words [19], that we recall here for completeness.

Theorem 4.11 (LTLp separation over infinite words). Any LTLp formula ψ can be effectively
transformed into a formula

ψ′ =
t∨

i=1
(ψp,i ∧ψ f ,i),

for some t ≥ 1, where ψp,i is a pure past LTLp formula and ψ f ,i is an LTL formula, such that for
all infinite words w over 2AP and i ≥ 0, it holds that w, i |=ψ if and only if w, i |=ψ′.

Lemma 4.12. Let (F−x)∧∃ϕ(x) (resp., ∃ϕ) be a well-formed formula (resp., well-formed sentence)
of hybrid CTL∗

l p such that ∃SubF(ϕ) consists of CTL∗ formulas. Then, (F−x)∧∃ϕ(x) (resp., ∃ϕ) is

congruent to a well-formed formula of hybrid CTL∗
l p which is a Boolean combination of CTL∗

formulas and (formulas that correspond to) pure past LTLp formulas over the set of proposition
letters AP ∪∃SubF(ϕ)∪ {x} (resp., AP ∪∃SubF(ϕ)).

Proof. We focus on well-formed formulas of the form (F−x)∧∃ϕ(x). The case of well-formed
sentences of the form ∃ϕ is similar, and thus omitted.

Let AP = AP ∪∃SubF(ϕ)∪ {x}. By hypothesis, ∃SubF(ϕ) is a set of CTL∗ formulas, that is, they
are devoid of any hybrid feature.

Given a Kripke structure K = (AP ,S,δ,µ, s0), an initial infinite path π, and h ≥ 0, we denote

by πAP ,h the infinite word over 2AP , which, for every position i ≥ 0, is defined as follows:

4 A CHARACTERIZATION OF HSCT 26

• πAP ,h(i)∩AP =µ(π(i));

• πAP ,h(i)∩∃SubF(ϕ) = {ψ ∈ ∃SubF(ϕ) | K ,π, i |=ψ};

• x ∈πAP ,h(i) if and only if i = h.

By using a fresh position variable present to represent the current position, the formula ϕ(x)
can be easily converted into an FO formula ϕFO(present) over AP having present as its unique
free variable, such that for all Kripke structures K , initial infinite paths π, and positions i and h,
we have:

K ,π, i |=ϕ(x ← h) if and only if πAP ,h |=ϕFO(present ← i). (3)

(To this end, it suffices to map any proposition letter p ∈ AP into a unary predicate p, and all the
operators X,X−,U,U−,↓ into FO formulas expressing their semantics.)

By the equivalence of FO and LTLp and the separation theorem for LTLp over infinite words
(Theorem 4.11), starting from the FO formula ϕFO(present), one can construct an LTLp formula
ϕLTLp over AP of the form

ϕLTLp := ∨
i∈I

(ϕp,i ∧ϕ f ,i) (4)

such that ϕp,i is a pure past LTLp formula, ϕ f ,i is an LTL formula, and for all infinite words w

over 2AP and i ≥ 0, it holds that:

w, i |=ϕLTLp if and only if w |=ϕFO(present ← i). (5)

The LTLp formula ϕLTLp over AP corresponds to a hybrid CTL∗
l p formula ϕLTLp (x) over AP .

(Note that the only hybrid feature is the possible occurrence of the variable x.) By definition of
the infinite words πAP ,h , one can easily show by structural induction that for all Kripke structures
K , initial infinite paths π, and positions i and h:

πAP ,h , i |=ϕLTLp if and only if K ,π, i |=ϕLTLp (x ← h), (6)

the latter being a hybrid CTL∗
l p formula. Thus, by Points (3), (5), and (6), we obtain that ϕ(x) and

ϕLTLp (x) are congruent.

Since in (4), for each i ∈ I , ϕp,i is a pure past LTLp formula over AP , ∃ϕp,i (x) is trivially
congruent to ϕp,i (x). As a consequence, we have that (F−x)∧∃ϕ(x) is congruent to (F−x)∧∨

i∈I (ϕp,i (x)∧∃ϕ f ,i (x)), which is congruent to
∨

i∈I (ϕp,i (x)∧ (F−x)∧∃ϕ f ,i (x)), which is in turn
congruent to

∨
i∈I (ϕp,i (x)∧∃((F−x)∧ϕ f ,i (x))).

Now,ϕ f ,i (x) is a simple hybrid CTL∗
l p formula with respect to x, and ∃x (resp., ∃¬x) is trivially

congruent to x (resp., ¬x). By Lemma 4.10 and some simple manipulation steps, we can prove
the following sequence of equivalences:

4 A CHARACTERIZATION OF HSCT 27

∨
i∈I

(
ϕp,i (x)∧∃((F−x)∧ϕ f ,i (x))

)
= (Lemma 4.10 and disjunctive normal form)∨

i∈I

(
ϕp,i (x)∧∃(

(F−x)∧ ∨
j∈J

(x̃i , j ∧ψi , j)
))= (F−x is a pure past LTLp formula)

∨
i∈I

(
ϕp,i (x)∧ (F−x)∧∃ ∨

j∈J
(x̃i , j ∧ψi , j)

)
= (Distributive property of ∧ over ∨)

(F−x)∧∨
i∈I

(
ϕp,i (x)∧∃ ∨

j∈J
(x̃i , j ∧ψi , j)

)
=

(Distributive property of ∃ over ∨ and x̃i , j is a pure past LTLp formula)

(F−x)∧∨
i∈I

(
ϕp,i (x)∧ ∨

j∈J
(x̃i , j ∧∃ψi , j)

)
= (Distributive property of ∧ over ∨)

(F−x)∧∨
i∈I

∨
j∈J

(
ϕp,i (x)∧ x̃i , j ∧∃ψi , j

)
where x̃i , j is either x, ¬x, or >.

Hence, (F−x)∧∃ϕ(x) is congruent to a formula of the form (F−x)∧∨
i∈I ′(ψp,i (x)∧∃ψi), for

some I ′, where ψp,i (x) corresponds to a pure past LTLp formula over AP (= AP ∪∃SubF(ϕ)∪ {x})
and ψi is a CTL∗ formula.

The following lemma generalizes the separation result given by Lemma 4.12 to any well-
formed formula of the form (F−x)∧∃ϕ(x), that is, to formulas where ϕ(x) is unconstrained.

Lemma 4.13. Let (F−x)∧∃ϕ(x) (resp., ∃ϕ) be a well-formed formula (resp., well-formed sentence)
of hybrid CTL∗

l p . Then, there exists a finite set H of CTL∗ formulas of the form ∃ψ, such that

(F−x)∧∃ϕ(x) (resp., ∃ϕ) is congruent to a well-formed formula of hybrid CTL∗
l p which is a Boolean

combination of CTL∗ formulas and (formulas that correspond to) pure past LTLp formulas over
the set of proposition letters AP ∪H ∪ {x} (resp., AP ∪H).

Proof. As in the case of Lemma 4.12, we focus on well-formed formulas of the form (F−x)∧∃ϕ(x)
(the case of well-formed sentences of the form ∃ϕ is similar).

The proof is by induction on the nesting depth of the path quantifier ∃ in ϕ(x).
Base case: ∃SubF(ϕ) =;. We apply Lemma 4.12, and the result follows taking H =;.
Inductive step: let ∃ψ ∈ ∃SubF(ϕ). Since (F−x)∧∃ϕ(x) is well-formed, either ψ is a sentence,

or ψ has a unique free variable y and ∃ψ(y) occurs in ϕ(x) in the context (F−y)∧∃ψ(y). Assume
that the latter case holds (the former is similar). By definition of well-formed formula, y is not free
in ϕ(x), and (F−y)∧∃ψ(y) must occur in the scope of some occurrence of ↓y . By the inductive
hypothesis, the thesis holds for (F−y)∧∃ψ(y). Hence, there exists a finite set H ′ of CTL∗ formulas
of the form ∃θ such that (F−y)∧∃ψ(y) is congruent to a well-formed formula of hybrid CTL∗

l p ,

say ξ(y), which is a Boolean combination of CTL∗ formulas and formulas that correspond to
pure past LTLp formulas over the set of proposition letters AP ∪H ′∪ {y}.

4 A CHARACTERIZATION OF HSCT 28

By replacing each occurrence of (F−y)∧∃ψ(y) in ϕ(x) with ξ(y), and repeating the procedure
for all the formulas in ∃SubF(ϕ), we obtain a well-formed formula of hybrid CTL∗

l p of the form
(F−x)∧∃θ(x) which is congruent to (F−x)∧∃ϕ(x) (note that the congruence relation is closed
under substitution) and such that ∃SubF(θ) consists of CTL∗ formulas. At this point we can apply
Lemma 4.12 proving the assertion.

We can now prove that the well-formed sentences of hybrid CTL∗
l p can be expressed in CTL∗.

Theorem 4.14. The set of sentences of the well-formed fragment of hybrid CTL∗
l p has the same

expressiveness as CTL∗.

Proof. Let ϕ be a well-formed sentence of hybrid CTL∗
l p . To prove the thesis, we construct a

CTL∗ formula which is equivalent to ϕ.
Since ϕ is equivalent to ¬∃¬ϕ and ¬∃¬ϕ is well-formed, by applying Lemma 4.13 one can

convert ¬∃¬ϕ into a congruent hybrid CTL∗
l p formula which is a Boolean combination of CTL∗

formulas and formulas θwhich can be seen as pure past LTLp formulas over the set of proposition
letters AP ∪H , where H is a set of CTL∗ formulas of the form ∃ψ.

Since the past temporal modalities in such LTLp formulas θ refer to the initial position of
the initial infinite paths, one can replace θ with an equivalent CTL∗ formula f (θ), where the
mapping f is inductively defined as follows:

• f (p) = p for all p ∈ AP ∪H ;

• f is homomorphic with respect to the Boolean connectives;

• f (X−θ) =⊥ and f (θ1U−θ2) = f (θ2).

The resulting CTL∗ formula is equivalent to ¬∃¬ϕ, as required.

By an easy adaptation of the proof of Theorem 4.14, where one exploits the separation
theorem for LTLp over finite words [19], it is possible to characterize also the expressiveness
of well-formed finitary hybrid CTL∗

l p .

Theorem 4.15. The set of sentences of the well-formed fragment of finitary hybrid CTL∗
l p has the

same expressiveness as finitary CTL∗.

Together with Proposition 4.8, Theorem 4.14 (resp., Theorem 4.15) allows us to conclude
that CTL∗ (resp., finitary CTL∗) subsumes HSct.

Finally, by exploiting Corollary 4.7, we can state the main result of the section, namely, HSct

and finitary CTL∗ have the same expressiveness.

Theorem 4.16. CTL∗ ≥HSct. Moreover, HSct is as expressive as finitary CTL∗.

5 EXPRESSIVENESS COMPARISON OF HSLIN, HSST, AND HSCT 29

K1: s0 s1
p K2: s′0 s′1

p
s′2
p

Figure 9: The Kripke structures K1 and K2.

◦

5 Expressiveness comparison of HSlin, HSst, and HSct

In this section, we compare the expressiveness of the three semantic variants of HS, namely,
HSlin, HSst, and HSct. The resulting picture was anticipated in Figure 4. Here, we give the
proofs of the depicted results.

We start showing that HSst is not subsumed by HSct. As a matter of fact, we show that
HSst is sensitive to backward unwinding of finite Kripke structures, allowing us to sometimes
discriminate finite Kripke structures with the same computation tree (these structures are al-
ways indistinguishable by HSct).

Let us consider, for instance, the two finite Kripke structures K1 and K2 of Figure 9, whose
forward and backward unwinding is shown in Figure 10. Since K1 and K2 have the same com-
putation tree, no HS formula ϕ under the computation-tree-based semantics can distinguish
K1 and K2, that is, K1 |=ct ϕ if and only if K2 |=ct ϕ. On the other hand, the requirement “each
state reachable from the initial one where p holds has a predecessor where p holds as well” can
be expressed, under the state-based semantics, by the HS formula ψ := 〈E〉(p ∧ length1) →
〈E〉(length1 ∧〈A〉(p ∧¬length1)). It is easy to see that K1 |=st ψ: for any initial trace ρ of K1, we
have K1,ρ |=st 〈E〉(p ∧ length1) iff ρ = s0sk

1 for k ≥ 1; the length-1 suffix s1 is met-by s1s1, and
K1, s1s1 |=st p ∧¬length1.

On the contrary, in K2 there is an initial trace, s′0s′1, for which K2, s′0s′1 |=st 〈E〉(p ∧ length1);
however the only traces that meet the length-1 suffix s′1 are s′1 itself and s′0s′1, but neither of them
model p ∧¬length1. Therefore, K2 6|=st ψ. This allows us to prove the following proposition.

Proposition 5.1. HSct 6≥HSst.

◦

K1: · · · s1
p

s0

s1
p

s0

· · ·

K2:

s′0 s′1
p

s′2
p· · · s′2

p

s′1
p

s′0

· · ·

Figure 10: Forward and backward unwinding of K1 and K2.

5 EXPRESSIVENESS COMPARISON OF HSLIN, HSST, AND HSCT 30

Since, as stated by Theorem 4.16, HSct and finitary CTL∗ have the same expressiveness and
finitary CTL∗ is subsumed by HSst (Corollary 4.7), by Proposition 5.1 the next corollary follows.

Corollary 5.2. HSst is more expressive than HSct.

In the following, we focus on the comparison of HSlin with HSst and HSct showing that HSlin

is incomparable with both HSst and HSct.
The fact that HSlin does not subsume either HSst or HSct can be easily proved as follows.

Consider the CTL formula ∀G∃Fp asserting that from each state reachable from the initial one, it
is possible to reach a state where p holds. It is well-known that this formula is not LTL-definable
(see [3], Theorem 6.21). Thus, by Corollary 3.4, there is no equivalent HSlin formula. On the
other hand, the requirement ∀G∃Fp can be trivially expressed under the state-based (resp.,
computation-tree-based) semantics by the HS formula 〈B〉〈E〉p, proving the following result.

Proposition 5.3. HSlin 6≥HSst and HSlin 6≥HSct.

To prove the converse, namely, that HSlin is not subsumed either by HSst or by HSct, we
will show that the LTL formula Fp (equivalent to the CTL formula ∀Fp) cannot be expressed
in either HSct or HSst. The proof is rather involved and requires a number of definitions and
intermediate results. We work it out for the state-based semantics only, because the one for
the computation-tree-based semantics is very similar.

Let us start by defining two families of Kripke structures (Kn)n≥1 and (Mn)n≥1 over {p} such
that for all n ≥ 1, the LTL formula Fp distinguishes Kn and Mn , and for every HS formula ψ of
size at most n, ψ does not distinguish Kn and Mn under the state-based semantics.

For a given n ≥ 1, the Kripke structures Kn and Mn are depicted in Figure 11. Notice that
the Kripke structure Mn differs from Kn only in that its initial state is s1 instead of s0. For-
mally, Kn = ({p},Sn ,δn ,µn , s0) and Mn = ({p},Sn ,δn ,µn , s1), with Sn = {s0, s1, . . . , s2n , t }, δn =
{(s0, s0), (s0, s1), . . . , (s2n−1, s2n), (s2n , t), (t , t)}, µ(si) =; for all 0 ≤ i ≤ 2n, and µ(t) = {p}.

Now, it is immediate to see that Kn 6|= Fp and Mn |= Fp.
On the contrary, we are going to prove that Kn |=stψ if and only if Mn |=stψ for all balanced

HSst formulas ψ of length at most n with n ≥ 1. An HSst formula ψ is balanced if, for each
subformula 〈B〉θ (resp., 〈B〉θ), θ has the form θ1 ∧ θ2 with |θ1| = |θ2|. Proving the result for
balanced HSst formulas allows us to state it for any HSst formula, since it is possible to trivially

◦

Kn : s0 s1 s2n t
p

Mn : s0 s1 s2n t
p

Figure 11: The Kripke structures Kn and Mn with n ≥ 1.

5 EXPRESSIVENESS COMPARISON OF HSLIN, HSST, AND HSCT 31

convert an HSst formula ψ into a balanced one (by using conjunctions of >) which is equivalent
to ψ under any of the considered HS semantic variants.

To prove such a result, we need some technical definitions. Let ρ be a trace of Kn (note that
Kn and Mn feature the same traces). By construction, ρ has the form ρ′ ·ρ′′, where ρ′ is a (possibly
empty) trace visiting only states where p does not hold, and ρ′′ is a (possibly empty) trace visiting
only the state t , where p holds. We say that ρ′ (resp., ρ′′) is the ;-part (resp., p-part) of ρ. Let
N;(ρ), Np (ρ), and Dp (ρ) be the natural numbers defined as follows:

• N;(ρ) = |ρ′| (the length of the ;-part of ρ);

• Np (ρ) = |ρ′′| (the length of the p-part of ρ);

• Dp (ρ) = 0 if Np (ρ) > 0 (i.e., lst(ρ) = t); otherwise, Dp (ρ) is the length of the minimal trace
starting from lst(ρ) and leading to s2n . Note that Dp (ρ) is well defined and 0≤Dp (ρ)≤2n+1.

By construction, the following property holds.

Proposition 5.4. For all traces ρ and ρ′ of Kn , if Dp (ρ) = Dp (ρ′), then lst(ρ) = lst(ρ′).

Now, for each h ∈ [1,n], we introduce the notion of h-compatibility between traces of Kn .
Intuitively, this notion provides a sufficient condition to make two traces indistinguishable under
the state-based semantics by means of balanced HS formulas having size at most h.

Definition 5.5 (h-compatibility). Let h ∈ [1,n]. Two traces ρ and ρ′ of Kn are h-compatible if the
following conditions hold:

• Np (ρ) = Np (ρ′);

• either N;(ρ) = N;(ρ′), or N;(ρ) ≥ h and N;(ρ′) ≥ h;

• either Dp (ρ) = Dp (ρ′), or Dp (ρ) ≥ h and Dp (ρ′) ≥ h.

We denote by R(h) the binary relation over the set of traces of Kn such that (ρ,ρ′) ∈ R(h) if and
only if ρ and ρ′ are h-compatible. Notice that R(h) is an equivalence relation, for all h ∈ [1,n].
Moreover, R(h) ⊆ R(h −1), for all h ∈ [2,n], that is, R(h) is a refinement of R(h −1).

By construction, the next property, that will be used to prove Lemma 5.9, can be easily shown.

Proposition 5.6. For every trace ρ of Kn starting from s0 (resp., s1), there exists a trace ρ′ of Kn

starting from s1 (resp., s0) such that (ρ,ρ′) ∈ R(n).

The following lemma lists some useful properties of the equivalence relation R(h).

Lemma 5.7. Let h ∈ [2,n] and (ρ,ρ′) ∈ R(h). The following properties hold:

1. for each proper prefix σ of ρ, there exists a proper prefix σ′ of ρ′ such that (σ,σ′) ∈ R(bh
2 c);

5 EXPRESSIVENESS COMPARISON OF HSLIN, HSST, AND HSCT 32

2. for each trace of the form ρ ·σ, where σ is not empty, there exists a trace of the form ρ′ ·σ′

such that σ′ is not empty and (ρ ·σ,ρ′ ·σ′) ∈ R(bh
2 c);

3. for each proper suffix σ of ρ, there exists a proper suffix σ′ of ρ′ such that (σ,σ′) ∈ R(h −1);

4. for each trace of the form σ ·ρ, where σ is not empty, there exists a trace of the form σ′ ·ρ′

such that σ′ is not empty and (σ ·ρ,σ′ ·ρ′) ∈ R(h).

Proof. We prove Properties 1 and 2. Properties 3 and 4 easily follow by construction and by
definition of h-compatibility.

Property 1. We distinguish the following cases:

1. Dp (ρ) < h and N;(ρ) < h. Since (ρ,ρ′) ∈ R(h) and h ∈ [2,n], it holds that Dp (ρ) = Dp (ρ′),
N;(ρ) = N;(ρ′), and Np (ρ) = Np (ρ′), and thus ρ = ρ′.

2. Dp (ρ) ≥ h. Since (ρ,ρ′) ∈ R(h), Dp (ρ′) ≥ h, Np (ρ′) = Np (ρ) = 0, and either N;(ρ′) = N;(ρ),
or N;(ρ) ≥ h and N;(ρ′) ≥ h. In both cases, by construction it easily follows that for each
proper prefix σ of ρ, there exists a proper prefix σ′ of ρ′ such that (σ,σ′) ∈ R(h−1) ⊆ R(bh

2 c).

3. Dp (ρ) < h and N;(ρ) ≥ h. Since (ρ,ρ′) ∈ R(h), we have that Dp (ρ′) = Dp (ρ) (and hence, by
Proposition 5.4, lst(ρ) = lst(ρ′)), Np (ρ′) = Np (ρ), and N;(ρ′) ≥ h.

Let σ be a proper prefix of ρ. We distinguish the following three subcases:

(a) N;(σ) < bh
2 c. Since N;(ρ) ≥ h, we have that Dp (σ) ≥ bh

2 c and |σ| = N;(σ) (and thus
Np (σ) = 0). Since N;(ρ′) ≥ h, by taking the proper prefix σ′ of ρ′ having length N;(σ),
we obtain that (σ,σ′) ∈ R(bh

2 c).

(b) N;(σ) ≥ bh
2 c and Dp (σ) ≥ bh

2 c. By taking the prefix σ′ of ρ′ of length bh
2 c, we get that

(σ,σ′) ∈ R(bh
2 c).

(c) N;(σ) ≥ bh
2 c and Dp (σ) < bh

2 c. Since lst(ρ) = lst(ρ′), Np (ρ′) = Np (ρ), and N;(ρ′) ≥ h,
there exists a proper prefix σ′ of ρ′ such that lst(σ′) = lst(σ), Np (σ′) = Np (σ), and
N;(σ′) ≥ bh

2 c. Hence (σ,σ′) ∈ R(bh
2 c).

Thus, in all the cases Property 1 holds.
Property 2. Let (ρ,ρ′) ∈ R(h) and σ be a non-empty trace such that ρ ·σ is a trace. We

distinguish the following cases:

1. Dp (ρ) < h. Since (ρ,ρ′) ∈ R(h), we have that Dp (ρ′) = Dp (ρ), Np (ρ) = Np (ρ′), and either
N;(ρ′) = N;(ρ), or N;(ρ) ≥ h and N;(ρ′) ≥ h. Hence, lst(ρ) = lst(ρ′) and, by taking σ′ =σ,
we obtain that (ρ ·σ,ρ′ ·σ′) ∈ R(h) ⊆ R(bh

2 c).

2. Dp (ρ) ≥ h and Dp (σ) < bh
2 c. It follows that N;(ρ ·σ) ≥ bh

2 c. Since Dp (ρ′) ≥ h, there exists
a trace of the form ρ′ ·σ′ such that Dp (ρ′ ·σ′) = Dp (ρ ·σ), Np (ρ′ ·σ′) = Np (ρ ·σ), and
N;(ρ′ ·σ′) ≥ bh

2 c. Hence (ρ ·σ,ρ′ ·σ′) ∈ R(bh
2 c).

5 EXPRESSIVENESS COMPARISON OF HSLIN, HSST, AND HSCT 33

3. Dp (ρ) ≥ h and Dp (σ) ≥ bh
2 c. Thus Dp (ρ′) ≥ h. If N;(ρ ·σ) < bh

2 c, then N;(ρ) = N;(ρ′).
Therefore, there exists a trace of the form ρ′ ·σ′ such that N;(ρ′ ·σ′) = N;(ρ ·σ) and
Dp (σ′) ≥ bh

2 c. Otherwise, N;(ρ ·σ) ≥ bh
2 c and there exists a trace of the form ρ′ ·σ′ such

that N;(ρ′ ·σ′) ≥ bh
2 c and Dp (σ′) = bh

2 c. In both cases, (ρ ·σ,ρ′ ·σ′) ∈ R(bh
2 c).

Thus, Property 2 holds.

By exploiting Lemma 5.7, we can prove the following lemma.

Lemma 5.8. Let n be a natural number, ψ be a balanced HSst formula, with |ψ| ≤ n, and (ρ,ρ′) ∈
R(|ψ|). Then, Kn ,ρ |=ψ if and only if Kn ,ρ′ |=ψ.

Proof. The proof is by induction on |ψ|. The cases for the Boolean connectives directly follow
from the inductive hypothesis and the fact that R(h) ⊆ R(k), for all h,k ∈ [1,n] with h ≥ k.

As for the other cases, we proceed as follows:

• ψ= p. Since (ρ,ρ′) ∈ R(1), that is, either N;(ρ) = N;(ρ′) = 0 or both N;(ρ) ≥ 1 and N;(ρ′) ≥
1, ρ visits a state where p does not hold if and only if ρ′ visits a state where p does not hold,
which proves the thesis.

• ψ= 〈B〉θ (resp., ψ= 〈B〉θ). Since ψ is balanced, θ has the form θ = θ1 ∧θ2, with |θ1| = |θ2|.
Hence |θ1|, |θ2| ≤ b |ψ|

2 c. We focus on the case ψ = 〈B〉θ. Since R(|ψ|) is an equivalence
relation, by symmetry it suffices to show that Kn ,ρ |=ψ implies Kn ,ρ′ |=ψ. If Kn ,ρ |=ψ,
then there exists a proper prefixσ of ρ such that Kn ,σ |= θi , for i = 1,2. Since (ρ,ρ′) ∈ R(|ψ|),
by property (1) of Lemma 5.7, there exists a proper prefixσ′ of ρ′ such that (σ,σ′) ∈ R(b |ψ|

2 c).

Since R(b |ψ|
2 c) ⊆ R(|θi |), for i = 1,2, by the inductive hypothesis we get that Kn ,σ′ |= θi , for

i = 1,2, thus proving that Kn ,ρ′ |=ψ.

The case for ψ= 〈B〉θ can be dealt with similarly by exploiting property (2) of Lemma 5.7.

• ψ= 〈E〉θ (resp., ψ= 〈E〉θ). We can proceed as in the previous case by applying property (3)
of Lemma 5.7 (resp., property (4) of Lemma 5.7) and the inductive hypothesis.

Lemma 5.9. For all natural numbers n ≥ 1 and balanced HSst formulasψ, with |ψ| ≤ n, Kn |=stψ

if and only if Mn |=stψ.

Proof. First, let us assume that Kn 6|=st ψ. Then, there exists an initial trace ρ of Kn such that
Kn ,ρ 6|=stψ. By Proposition 5.6, there exists a trace ρ′ of Kn , which is an initial trace for Mn , such
that (ρ,ρ′) ∈ R(|ψ|). By Lemma 5.8, we have that Kn ,ρ′ 6|=stψ. Since for any trace σ and any HSst

formula ϕ, we have that Kn ,σ |=st ϕ if and only if Mn ,σ |=st ϕ (Kn and Mn feature exactly the
same set of traces with exactly the same labeling; they only differ in the initial state), we can
conclude that Mn ,ρ′ 6|=stψ, and thus Mn 6|=stψ.

Let us now assume that Mn 6|=st ψ. Then, there exists an initial trace ρ of Mn such that
Mn ,ρ 6|=stψ. As in the converse direction, we have that Kn ,ρ 6|=stψ, and, by Proposition 5.6, we
can easily find an initial trace ρ′ of Kn such that (ρ,ρ′) ∈ R(|ψ|). By Lemma 5.8, we can conclude
that Kn 6|=stψ.

6 CONCLUSIONS AND FUTURE WORK 34

As an immediate consequence of Lemma 5.9 and of the fact that, for each n ≥ 1, Kn 6|= Fp
and Mn |= Fp, we get the desired undefinability result.

Proposition 5.10. The LTL formula Fp (equivalent to the CTL formula ∀Fp) cannot be expressed
in either HSct or HSst.

The next proposition immediately follows from Corollary 3.4 and Proposition 5.10.

Proposition 5.11. HSst 6≥HSlin and HSct 6≥HSlin.

Putting together Proposition 5.3 and 5.11, we finally obtain the incomparability result.

Theorem 5.12. HSlin and HSst are expressively incomparable, and so are HSlin and HSct.

The proved results also allow us to establish the expressiveness relations between HSst, HSct

and the standard branching temporal logics CTL and CTL∗.

Corollary 5.13. The following expressiveness results hold:

1. HSst and CTL∗ are expressively incomparable;

2. HSst and CTL are expressively incomparable;

3. HSct and finitary CTL∗ are less expressive than CTL∗;

4. HSct and CTL are expressively incomparable.

Proof. (Item 1) By Proposition 5.10 and the fact that CTL∗ is not sensitive to unwinding.
(Item 2) Again, by Proposition 5.10 and the fact that CTL is not sensitive to unwinding.
(Item 3) By Theorem 4.16, HSct is subsumed by CTL∗, and HSct and finitary CTL∗ have the

same expressiveness. Hence, by Proposition 5.10, the result follows.
(Item 4) Thanks to Proposition 5.10, it suffices to show that there exists a HSct formula which

cannot be expressed in CTL. Let us consider the CTL∗ formula ϕ :=∃(
((p1Up2)∨ (q1Uq2))Ur

)
over the set of propositions {p1, p2, q1, q2,r }. It is shown in [17] that ϕ cannot be expressed in
CTL. Clearly, if we replace the path quantifier ∃ in ϕ with the finitary path quantifier ∃ f , we
obtain an equivalent formula of finitary CTL∗. Thus, since HSct and finitary CTL∗ have the same
expressiveness (Theorem 4.16), the result follows.

6 Conclusions and future work

In the present paper, we compared interval temporal logic model checking with point-based one
with respect to its expressiveness (and succinctness). To this end, we took into consideration
three semantic variants of the interval temporal logic HS, namely, HSst, HSct, and HSlin, under the
homogeneity assumption. We investigated their expressiveness and we systematically contrasted
them with the point-based temporal logics LTL, CTL, finitary CTL∗, and CTL∗.

6 CONCLUSIONS AND FUTURE WORK 35

The resulting picture is as follows: HSlin and HSct turn out to be as expressive as LTL and
finitary CTL∗, respectively. Moreover, HSlin is at least exponentially more succinct than LTL. HSst

is expressively incomparable with HSlin/LTL, CTL, and CTL∗, but it is strictly more expressive
than HSct/finitary CTL∗. We believe it possible to fill the expressiveness gap between HSct and
CTL∗ by considering abstract interval models, induced by Kripke structures, featuring worlds also
for infinite traces/intervals, and extending the semantics of HS modalities to infinite intervals.
Such an extension will be investigated in future research.

It is worth noting that the decidability of the MC problem for (full) HSct and HSlin immediately
follows from the above results as a byproduct. We leave for future work the study of the related
complexity issues, which have been systematically investigated only for HSst.

MC for HS can be extended in various directions. Recently [28], a more general definition of
interval labeling, that is, of the behavior of proposition letters over intervals, has been proposed,
which allows one to associate a regular expression over the set of states of the Kripke structure
with each proposition letter. An in-depth investigation of MC with regular expressions for HS
and its fragments can be found in [5, 6], where, in particular, it is shown that MC for full HSst with
regular expressions is still (nonelementarily) decidable, and all the sub-fragments of AABBst

and AAEEst become complete for PSPACE.
Another research direction looks for possible replacements of Kripke structures by more

expressive system models. On one hand, we are interested in the investigation of the MC prob-
lem for HS over visibly pushdown systems, that can encode recursive programs and infinite
state systems. On the other, we are thinking of the possibility of devising and exploiting inher-
ently interval-based models in system descriptions. Kripke structures, being based on states,
are naturally oriented to the representation of the state-by-state evolution of the systems and
to the characterization of their point-based properties. To express and check temporal con-
straints which are inherently interval-based, such as, for instance, those involving temporal
aggregations, a different formalism is needed, which allows one to directly model systems on
the basis of their interval behavior/properties, thus making it possible to define and benefit
from a really general interval-based MC.

REFERENCES 36

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11):832–843, 1983.

[2] R. Alur, P. Cerný, and S. Zdancewic. Preserving secrecy under refinement. In ICALP, LNCS
4052, pages 107–118. Springer, 2006.

[3] C. Baier and J. P. Katoen. Principles of Model Checking (Representation and Mind Series).
The MIT Press, 2008.

[4] P. Blackburn and J. Seligman. What are hybrid languages? In AiML, pages 41–62. CSLI
Publications, 1998.

[5] L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. An in-Depth Investigation of Interval
Temporal Logic Model Checking with Regular Expressions. In SEFM, LNCS 10469, pages
104–119. Springer, 2017.

[6] L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. On the complexity of model checking for
syntactically maximal fragments of the interval temporal logic HS with regular expressions.
In GandALF, EPTCS 256, pages 31–45. EPTCS, 2017.

[7] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval Temporal Logic Model
Checking: the Border Between Good and Bad HS Fragments. In IJCAR, LNAI 9706, pages
389–405. Springer, 2016.

[8] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval vs. point temporal logic
model checking: an expressiveness comparison. In FSTTCS, pages 26:1–26:14. LIPIcs, 2016.

[9] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Model Checking the Logic of
Allen’s Relations Meets and Started-by is PNP-Complete. In GandALF, pages 76–90. EPTCS,
2016.

[10] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Satisfiability and model checking
for the logic of sub-intervals under the homogeneity assumption. In ICALP, volume 80 of
LIPIcs, pages 120:1–120:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[11] D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. The dark side
of interval temporal logic: marking the undecidability border. Annals of Mathematics and
Artificial Intelligence, 71(1-3):41–83, 2014.

[12] D. Bresolin, V. Goranko, A. Montanari, and P. Sala. Tableau-based decision procedures for
the logics of subinterval structures over dense orderings. Journal of Logic and Computation,
20(1):133–166, 2010.

REFERENCES 37

[13] D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighborhood
logics: Expressiveness, decidability, and undecidable extensions. Annals of Pure and Applied
Logic, 161(3):289–304, 2009.

[14] D. Bresolin, A. Montanari, P. Sala, and G. Sciavicco. Optimal tableau systems for proposi-
tional neighborhood logic over all, dense, and discrete linear orders. In TABLEAUX, LNCS
6973, pages 73–87. Springer, 2011.

[15] G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic on finite
traces. In IJCAI, pages 854–860. IJCAI/AAAI, 2013.

[16] S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science: Finite-State
Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2016.

[17] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: on branching
versus linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986.

[18] E. A. Emerson and C. Lei. Modalities for model checking: Branching time strikes back. In
PoPL, pages 84–96. Elsevier, 1985.

[19] D. M. Gabbay. The declarative past and imperative future: Executable temporal logic for
interactive systems. In Temporal Logic in Specification, LNCS 398, pages 409–448. Springer,
1987.

[20] J. Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal of the
ACM, 38(4):935–962, 1991.

[21] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Ucla, 1968.

[22] O. Kupferman, A. Pnueli, and M. Y. Vardi. Once and for all. J. Comput. Syst. Sci., 78(3):981–996,
2012.

[23] F. Laroussinie and Ph. Schnoebelen. A hierarchy of temporal logics with past. Theoretical
Computer Science, 148(2):303–324, 1995.

[24] O. Lichtenstein and A. Pnueli. Propositional temporal logics: Decidability and completeness.
Logic Journal of the IGPL, 8(1):55–85, 2000.

[25] K. Lodaya. Sharpening the undecidability of interval temporal logic. In ASIAN, LNCS 1961,
pages 290–298. Springer, 2000.

[26] A. Lomuscio and J. Michaliszyn. An epistemic Halpern-Shoham logic. In IJCAI, pages
1010–1016. IJCAI/AAAI, 2013.

REFERENCES 38

[27] A. Lomuscio and J. Michaliszyn. Decidability of model checking multi-agent systems against
a class of EHS specifications. In ECAI, pages 543–548. IOS Press, 2014.

[28] A. Lomuscio and J. Michaliszyn. Model checking multi-agent systems against epistemic HS
specifications with regular expressions. In KR, pages 298–308. AAAI Press, 2016.

[29] J. Marcinkowski and J. Michaliszyn. The undecidability of the logic of subintervals. Funda-
menta Informaticae, 131(2):217–240, 2014.

[30] A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval properties
of computations. Acta Informatica, 53(6-8):587–619, 2016.

[31] A. Molinari, A. Montanari, and A. Peron. Complexity of ITL model checking: some well-
behaved fragments of the interval logic HS. In TIME, pages 90–100. IEEE, 2015.

[32] A. Molinari, A. Montanari, and A. Peron. A model checking procedure for interval temporal
logics based on track representatives. In CSL, pages 193–210. LIPIcs, 2015.

[33] A. Molinari, A. Montanari, A. Peron, and P. Sala. Model Checking Well-Behaved Fragments
of HS: the (Almost) Final Picture. In KR, pages 473–483. AAAI Press, 2016.

[34] A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval properties of computa-
tions. In TIME, pages 59–68. IEEE, 2014.

[35] A. Montanari, G. Puppis, and P. Sala. A decidable weakening of compass logic based on
cone-shaped cardinal directions. Logical Methods in Computer Science, 11(4):1–32, 2015.

[36] B. Moszkowski. Reasoning About Digital Circuits. PhD thesis, Stanford University, CA, 1983.

[37] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE, 1977.

[38] I. Pratt-Hartmann. Temporal prepositions and their logic. Artificial Intelligence, 166(1-2):1–
36, 2005.

[39] P. Roeper. Intervals and tenses. Journal of Philosophical Logic, 9:451–469, 1980.

[40] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. Journal
of the ACM, 32(3):733–749, 1985.

[41] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for concur-
rency, pages 238–266. Springer, 1996.

[42] Y. Venema. Expressiveness and completeness of an interval tense logic. Notre Dame Journal
of Formal Logic, 31(4):529–547, 1990.

[43] T. Wilke. Classifying discrete temporal properties. In STACS, LNCS 1563, pages 32–46.
Springer, 1999.

	1 Introduction
	2 Preliminaries
	2.1 Kripke structures and interval structures
	2.2 Standard temporal logics
	2.3 The interval temporal logic HS
	2.4 Three semantic variants of HS for MC
	2.5 An example: a vending machine

	3 Equivalence between LTL and HSlin
	4 A characterization of HSct
	4.1 From finitary CTL* to HSct
	4.2 From HSct to finitary CTL*

	5 Expressiveness comparison of HSlin, HSst, and HSct
	6 Conclusions and future work

